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ABSTRACT

The theoretical advantage of perfusion data over wall motion data for diagnosing 

coronary artery stenosis relates to the temporal sequence of these phenomena in 

the ischaemic cascade. Myocardial perfusion evaluation could thus provide 

earlier information than wall motion assessment, with important clinical 

consequences. This thesis examines myocardial perfusion assessment using 

ultrasound and micro-bubble contrast in stable coronary artery stenosis.

The first set of experiments were undertaken to establish both a means of 

infusing Optison™ (GE Healthcare, UK), and of displaying static frame contrast 

signal using Power Contrast Imaging™ (Acuson Sequoia™, Siemens Medical 

Solutions, Mountain View, CA, USA.). Three Optison™ concentrations, five 

infusion rates, and five trigger intervals were evaluated. This revealed an 

appropriate concentration and infusion rate for Optison™ and identified an ideal 

trigger interval of one in four cardiac cycles.

The second part of this study evaluated Power Contrast Imaging™ with 

Optison™ infusion in stable single or double vessel coronary artery stenosis. 

Perfusion assessment during Adenosine vasodilator stress was compared with 

standard wall motion assessment during Dobutamine stress, coronary 

angiography being the diagnostic standard. Among twenty-eight subjects and 

eighty-four coronary territories, Power Contrast Imaging™ had low sensitivity 

but equivalent specificity compared to wall motion assessment.

The third component of this research evaluated micro-bubble preserving real

time Coherent Contrast Imaging (Acuson Sequoia™, Siemens Medical 

Solutions) alongside Optison™ infusion in stable single or double vessel
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coronary stenosis. Thirty-eight subjects and one hundred and fourteen coronary 

arteries were evaluated. Each subject underwent Dobutamine stress, during 

which standard wall motion, contrast wall motion, and contrast perfusion 

imaging were all assessed, the diagnostic standard being coronary angiography. 

This demonstrated that contrast wall motion evaluation is accurate and that 

combined contrast wall motion and perfusion imaging is at least equivalent to 

standard wall motion imaging alone for detecting underlying coronary stenosis.
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INTRODUCTION

Coronary Heart Disease (CHD) is a leading cause of morbidity and mortality in 

the Developed World and is the main cause of death in Europe, accounting for 2 

million deaths per annum. Approximately 2.6 million people in the United 

Kingdom have CHD \  which accounted for 233000 deaths in 2003 2. Despite a 

promising reduction in Heart Disease deaths between 1997 and 2002, which was 

optimistically heralded as indicative of potential elimination of premature CHD 

death within a decade 3, trends in physical inactivity, Obesity, and Type Two 

Diabetes Mellitus are likely to offset these long term mortality improvements. To 

impact on CHD outcomes, primary prevention needs to be supported by early 

and accurate diagnosis of established disease, allowing appropriate symptomatic 

and prognostic therapies to be implemented in a timely fashion. While accurate 

diagnosis of CHD is achievable by means of coronary angiography, this is an 

invasive procedure with an associated mortality risk and it is not appropriate as a 

general means of investigating patients with symptoms that might have a cardiac 

origin. Non-invasive investigations are required for this purpose, at least as a first 

line approach.

Echocardiography has become integral to clinical cardiology and developments 

in stress techniques have broadened its scope to include functional assessment of 

coronary artery stenosis. Despite progress in computed tomographic, magnetic 

resonance and radionuclide imaging, there is a need for an inexpensive, efficient, 

mobile, non-radiological and non-invasive technique for assessment of coronary 

artery disease. Echocardiographic quantification of myocardial perfusion would
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fit this requirement and would complement existing cardiac ultrasound 

capability, including stress echocardiography.

It has been evident for decades that it is possible to introduce certain substances 

into the vascular space and then visually display the interaction between incident 

ultrasound waves and the substance, effectively creating an intra-vascular tracer. 

These substances are typically composed of a fluid solution of micro-bubbles 

containing a gaseous core. The particular property that enables these substances 

to act as intra-vascular tracers is the ability to reflect ultrasound at harmonic 

frequencies such as double or triple the incident ultrasound wave frequency. If 

such tracers remain predominantly within the vascular space, they can 

theoretically be used to highlight cardiac cavities, coronary and other vessels, 

and the capillary bed of myocardial and other tissues. The myocardial contrast 

echocardiography research community has been aware of this fact for some time, 

but has been hindered by limitations in physical characteristics of ultrasound 

contrast agents, machine hardware, and processing software.

Recent developments in ultrasound contrast agent design have ensured sufficient 

stability that micro-bubbles can survive from venous injection through 

pulmonary circulation and the left sided cardiac chambers to the coronary 

arteries and myocardial vascular bed. Parallel advances in echocardiographic 

imaging, including harmonic and related capabilities, have allowed visual display 

of the effect of such agents on ultrasound backscatter. Considerable data exists 

on accuracy of contrast echocardiographic myocardial perfusion assessment 

under experimental conditions, especially by intra-coronary contrast injection.
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Whether myocardial perfusion assessment using peripheral venous injection 

routes is reliable in clinical practice has been unclear and has been the subject of 

growing interest over recent years. In order for such a technique to be of clinical 

use, it would need to have a diagnostic efficacy at least equivalent to that of 

techniques such as stress echocardiography and nuclear perfusion assessment.

This Thesis is based on the feasibility and diagnostic utility of myocardial 

contrast echocardiographic perfusion assessment in clinical practice.

Chapter One begins with a review of other directly relevant assessment 

techniques, including basic clinical evaluation, Electrocardiography (resting and 

stress), Nuclear perfusion methods, Computed Tomography, Magnetic 

Resonance Imaging, and Stress Echocardiography. There follows a discussion of 

the dynamics of coronary and myocardial blood flow in health and disease, 

illustrated with reference to some of the physiological research enabled by early 

myocardial contrast imaging techniques. The next section deals with micro

bubble characteristics, design, and development. The final section of the first 

chapter reviews the major technical developments in ultrasound system design 

that have made echocardiographic myocardial perfusion assessment possible.

Chapter Two details a series of experiments designed to establish a means of 

infusing micro-bubbles such that supply to the myocardial vascular bed is 

constant. These experiments used Optison™ (GE Healthcare, UK) and the Power 

Contrast Imaging™ facility on the Acuson Sequoia C256 ultrasound system 

(Siemens Medical Solutions, Mountain View, CA, USA), a form of intermittent
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high power ultrasound imaging capable of demonstrating myocardial perfusion. 

The technique involves intermittent image acquisition at between one and eight 

cardiac cycle intervals.

Chapter Three details a study of the feasibility and diagnostic efficacy of the 

Acuson Power Contrast Imaging™ system for detection of stenotic and non- 

stenotic coronary arterial supply during Adenosine hyperaemia, using the 

Optison™ infusion system described in Chapter Two. The technique is compared 

with Dobutamine Stress Echocardiography, X-ray Coronary Angiography being 

the reference standard for significant coronary artery stenosis.

The logical progression from intermittent perfusion imaging, which by definition 

cannot utilise wall motion data, is to real-time perfusion imaging. Chapter Four 

details a study of the feasibility and diagnostic efficacy of the Acuson Coherent 

Contrast Imaging™ real-time perfusion system for detection of stenotic and non- 

stenotic coronary arterial supply during Dobutamine stress. For this 

investigation, Dobutamine Stress Echocardiographic wall motion was used as the 

comparison technique, and X-ray Coronary Angiography was used as the 

reference standard for significant coronary artery stenosis.

The final Chapter is a summary of the major findings of this work, followed by a 

discussion of the implications for further research and clinical practice.
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CHAPTER ONE

ESTABLISHED INVESTIGATIVE TECHNIQUES, UNDERLYING 

PHYSIOLOGY, AND EARLY DEVELOPMENTS IN ULTRASOUND

PERFUSION ASSESSMENT

1. ESTABLISHED TECHNIQUES FOR FUNCTIONAL ASSESSMENT 

OF CORONARY ARTERY STENOSIS

(i) Clinical Assessment

Angina Pectoris was first described in 1772 by William Heberden (the elder), 

with details of his observations of twenty patients appearing in the Royal College 

of Physicians of London report “Medical Transactions” under the title “Some 

Account o f a Disorder o f the Breast” 4. A  more complete description appeared 

some years later, based upon his assessment of nearly one hundred patients, 

sometimes over as much as a sixteen-year period. The condition was described as 

a painful, disagreeable sensation in the chest initially brought on by exertion or 

stress, especially after meals, and eventually occurring at rest. Radiation of pain 

to the left arm was noted to be common. There was specific reference to the 

strangling sensation often characterising the condition, as well as accompanying 

anxiety and even the sense of imminent death during a prolonged attack. The 

observation that the discomfort would ease quickly with physical rest was clearly 

stated, as was the fact that symptom cessation would occur with less rapidity 

after a number of years with the condition. Heberden described a prolonged 

course of symptoms, often lasting more than a decade, with gradual increases in 

frequency and severity of attacks, but with apparently preserved health between
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episodes. He not only described in considerable detail the main presenting 

features of the condition, but also highlighted variants such as pain extending to 

the right arm, epidemiological aspects such as preponderance among men aged 

over fifty years of age, and the absence of tachycardia during an attack. Perhaps 

the most noteworthy aspect of the account is a clear description of the 

condition’s termination, which he noted to be characterised by abrupt collapse 

followed by almost immediate death. This description of Angina Pectoris has 

stood the test of time and remains to this day as thorough and detailed an 

evaluation of the symptoms and course of Angina Pectoris as can be found in 

most textbooks. However, there are deficiencies in Heberden’s account that have 

been clarified over the subsequent two hundred years. For example, although use 

of the adjective “strangling” in relation to the character of ischaemic chest pain is 

common, it is also relatively frequent to find descriptions such as “aching”, 

“dull”, and “burning” in confirmed myocardial ischaemia. In addition, the site of 

discomfort can often include the neck, face, or upper back, and isolated exertion 

induced breathlessness may be the presenting feature. The latter two features 

appear to be more common in the very elderly 5. Despite the relative ease with 

which typical symptoms can be labelled as Angina Pectoris, diagnosing less 

typical cases and confidently labelling certain symptoms as being of non- 

ischaemic origin can be difficult. In addition, clinical features do not usually give 

a reliable impression of the severity of underlying coronary disease, nor of 

prognosis. Furthermore, chest pain due to acute coronary plaque instability with 

associated spasm and thrombosis often presents with sudden onset of non

specific chest discomfort at rest. Incorporating certain other clinical features, 

including risk factors for CHD and physical findings such as obesity and
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stigmata of Hyperlipidaemia, may help determine the likelihood of CHD in a 

population, but this approach is not particularly helpful when attempting to 

diagnose an acute episode in an individual. In addition to difficulties precisely 

defining the origin of symptoms such as chest pain, history and physical 

examination are unable to quantify silent myocardial ischaemia in patients with 

possible underlying CHD but without chest pain. The qualitative features and 

subtle clinical variations in Angina Pectoris do not lend the condition to easy 

quantitative measurement, and there is consequently relatively little published 

scientific data on diagnosis based on the history and physical examination alone. 

Despite the popular notion that cardiac pain is easy to diagnose, there is evidence 

that more experienced physicians are less likely to discharge patients presenting 

with acute onset chest pain than less experienced physicians 6, reflecting 

experience based appreciation of the above difficulties. Thus, a more sensitive 

and specific means of diagnosing myocardial ischaemia is needed.

(ii) The Electrocardiogram

The resting twelve lead electrocardiogram (ECG) can provide supporting 

evidence for CHD in the form of Q waves, ST segment and T wave 

abnormalities, left bundle branch block, and arrhythmia. Berger et al found that 

any ECG abnormality in patients presenting acutely with chest pain had a 

sensitivity of 98% for underlying coronary artery disease, while ST segment shift 

and T wave abnormalities had a sensitivity of 86% 1. However, Gregoire et al 

found the sensitivity of ECG abnormality to be only 65%, with a specificity of 

63% in similar circumstances 8. It is important to note that these data relate to 

acute chest pain onset. Sensitivity and specificity values are significantly lower
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in populations with stable Angina Pectoris without previous myocardial 

infarction, as these patients usually have normal resting myocardial perfusion.

Certain electrocardiographic changes provide evidence of previous 

manifestations of coronary artery disease. For example, pathological Q waves 

suggest previous myocardial infarction, which can be taken as additional 

evidence that ongoing symptoms may be of ischaemic origin. In addition, 

previous myocardial infarction, especially if extensive and anterior characterised 

by anterior electrocardiographic Q waves, suggests adverse long-term prognosis. 

Left bundle branch block may also be due to previous myocardial infarction, 

although other causes such as hypertension and left ventricular impairment are 

frequent. Indeed, numerous electrocardiographic abnormalities can relate to non

coronary conditions. Typical examples in clinical practice include abnormalities 

of ST segments and T waves being secondary to left ventricular hypertrophy, 

digitalis therapy, and electrolyte disturbances. Furthermore, such changes can be 

normal variants.

A theoretical advantage of ECG over history and physical examination alone is 

the possibility of localising the region of ischaemia to a certain vascular territory. 

While some data suggests anterior ST segment and T wave abnormalities are 

associated with Left Anterior Descending coronary artery stenosis 9, the 

territorial correlation between ST segment abnormality and underlying coronary 

stenosis in stable Angina is generally weak and cannot be relied upon to make 

clinical judgements.

20



The inability of resting electrocardiography to detect underlying coronary disease 

with sufficient accuracy to enable clinical decision-making has led to the 

suggestion that provision of ECG recordings for patients with recent onset chest 

pain should be replaced by full clinical assessment in a Cardiology setting 10. 

Evidence of general acceptance of this notion can be seen in National Service 

Framework format as the current recommended United Kingdom model for 

assessing patients with new cardiac symptoms 11.

(iii) Stress Electrocardiography

Increased cardiac workload generates increased metabolic demand, which in turn 

is met by increases in myocardial blood flow, provided there are no restrictions 

to normal physiological responses. When coronary artery disease limits the 

necessary augmentation in coronary arterial flow, ischaemia develops. This 

sequence of events gives rise to electrocardiographic changes such as T wave 

inversion and ST segment shift. This principle is used in stress 

electrocardiography, the usual stressor being treadmill exercise and the usual 

protocol being that of Bruce and Homsten 12. Treadmill stress 

electrocardiography is undoubtedly the most widely used form of stress testing in 

the United Kingdom, where virtually every Cardiac department is set up to 

process a significant inpatient and outpatient caseload by means of this tool.

The accuracy of exercise electrocardiographic ST segment depression for 

presence of coronary artery disease is very variable, and resulting predictive 

values depend on the prevalence of coronary artery disease as well as other 

specific characteristics in the population under investigation 13,14. Previous
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studies suggest sensitivities of 40%, 66%, and 75% for single, double, and triple 

vessel disease respectively 15’16, but a meta-analysis of use of exercise 

electrocardiographic ST segment depression to diagnose coronary artery disease 

reported a mean sensitivity of 68%, range 23-100%, standard deviation 16%, and 

a mean specificity of 77%, range 17 to 100%, standard deviation 17% 17. When 

used in the common clinical setting characterised by mixed pre-test coronary 

artery disease probability, co-morbidity, and age, the diagnostic effectiveness of 

stress electrocardiography starts to fall. In elderly patients, relatively limited 

exercise capacity and the high prevalence of baseline electrocardiographic 

abnormalities significantly limits the usefulness of this investigation 18'20, while 

there are diagnostic and prognostic limitations in female populations due to a 

combination of factors such as limited exercise capacity, baseline 

electrocardiographic changes, and a high false positive rate 21. In general, the 

electrocardiographic territory in which ST segment change occurs does not 

correlate well with the territory of angiographic stenosis 1415>22'24) although there 

may be specific situations in which ST depression in lead VI or the right 

precordial leads improves the sensitivity of the test 25,26. Specific factors likely to 

give false positive results include digitalis therapy 27’28, hypokalaemia 29’30, 

pulmonary hypertension 31, left ventricular hypertrophy 32 33, mitral valve 

prolapse 34,35, bundle branch block 36, and pectus excavatum 37. Despite problems 

with the accuracy of exercise electrocardiography, prognostic information can be 

obtained. For example, studies concur in the suggestion that those with 

significant ST segment depression have a relatively high likelihood of 

experiencing cardiac events in subsequent years 38_44. In addition, incorporating 

factors beyond the degree of ST segment depression appears to confer prognostic
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information. Those incapable of exercising to 6 minutes of the Bruce protocol or 

unable to achieve a heart rate of at least 85% of their predicted maximum have 

an increased risk of cardiac events, while those capable of exceeding the 

equivalent of ten metabolic equivalents are thought to have a good prognosis 45‘ 

47. The Duke treadmill score 45 and Long Beach Veteran’s Administration score 

48 allow prognostic stratification by incorporating clinical, electrocardiographic, 

and exercise capacity data. However, prognostic stratification based on treadmill 

exercise tests is heavily based on exercise capacity as a whole, which is more 

likely to be limited in those with co-morbidity, a group who are in turn more 

likely to suffer cardiac and other events during follow up.

Summary: Exercise Electrocardiography

Despite its wide availability and routine clinical use, there are major limitations 

to exercise electrocardiography including limited sensitivity and specificity and 

lack of territorial correlation.

(iv) Nuclear Perfusion Imaging

Nuclear cardiac imaging can be achieved using a Gamma Camera or Positron 

camera. Gamma cameras allow planar or tomographic imaging by detection of 

single photons (Single Photon Emission Computed Tomography, SPECT), while 

Positron cameras allow imaging by detection of paired photons emitted by tracer 

material and rejection of single scattered photons, thus improving spatial 

resolution and minimising tissue attenuation (Positron Emission Tomography, 

PET).
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Single photon approaches include Radionuclide angiography and Myocardial 

perfusion imaging. The former method allows assessment of ejection fraction 

and regional wall motion using agents such as Technetium-99m, while the latter 

allows assessment of myocardial perfusion itself using Thallium-201 or 

Technetium-99m based agents. Nuclear perfusion methods rely on the fact that 

certain tracers are extracted by viable myocardial tissue, resulting in spatial 

distribution in proportion to regional blood flow and volume. For detection of 

ischaemia and infarction, images acquired shortly after physical stress or 

pharmacological hyperaemia are compared to those acquired a number of hours 

later, after redistribution of tracer has taken place. Infarction is represented by a 

fixed defect and ischaemia is represented by a reversible defect. In addition, by 

using protocols and tracers suited to delayed post-redistribution image 

acquisition, markedly under-perfused but viable tissue representing hibernating 

myocardium can be detected. Certain differences between Technetium-99m and 

Thallium-201 based imaging account for minor differences in applicability, but 

in general the methods are comparable in terms of sensitivity and specificity for

49-53coronary artery disease

Positron Emission Tomography utilises agents such as Rubidium-82, oxygen-15 

water, and Nitrogen-13 ammonia to depict perfusion. The short half-life of such 

agents allows serial imaging within a short time period, which is ideal for 

protocols involving stress or hyperaemia. Metabolic activity, estimated using F- 

18 fluorodeoxyglucose, and associated perfusion information can be used 

together to assess viability in regions of wall motion abnormality. Using this 

approach, metabolically active tissue can be identified as hibernating
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myocardium. Some studies suggest PET scanning may be more accurate than 

Thallium-201 SPECT 54,55.

The accuracy of SPECT imaging for diagnosis of coronary artery disease is 

variable. Diagnostic effectiveness depends, like exercise electrocardiography, on 

certain patient characteristics and the overall population disease prevalence. 

Thallium-201 SPECT scintigraphy has, in general, been more accurate than 

planar techniques 56. In addition, computer coding of regional perfusion signal 

derived from numerous tomographic planes allows three-dimensional perfusion 

maps to be generated, which can be automatically compared to normal control 

regions for a quantitative assessment of perfusion ' . Using such techniques, a 

sensitivity of 90% and specificity of 70% has been suggested 64, although 

previous non-quantitative analysis had already been shown to have a mean 

sensitivity of 89% and specificity of 76% 65,66. However, specificity in this range 

is disappointing and problematic in clinical practice. In a bid to minimise the 

impact of this moderate degree of specificity, the same authors “qualify” it by 

stating a “normalcy rate” of 89% for patients who have not undergone cardiac 

catheterisation and have no clinical or stress electrocardiographic evidence of 

coronary artery disease M. This represents the proportion of patients without 

other clinical or exercise electrocardiographic evidence of coronary artery 

disease who can be expected to have a normal Thallium-201 perfusion study. 

Hence, 11 % of patients with no other evidence of coronary artery disease who 

have not undergone cardiac catheterisation, will have a positive Thallium-201 

SPECT study. While some of these will have otherwise latent epicardial coronary 

artery disease, a significant proportion will not.
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Despite problems with specificity, the territory and size of a Thalium-201 

perfusion defect relates to the site and functional significance of coronary artery 

disease. For example, prevalence of Thallium-201 perfusion defects among 

patients with significant left main stem disease is very high 51’67'70, while large 

severe defects correlate well with severe proximal vessel disease 71'74. To some 

extent, coronary artery stenosis location and severity correlate with perfusion 

defect size 75'79, but most importantly number of reversible defects has been 

shown to be a very reliable predictor of future cardiac events 80"82.

While it is true that Thallium-201 SPECT scintigraphy is sensitive and 

prognostically useful, specific clinical situations reduce its’ accuracy. For 

example, there is evidence to suggest that the sensitivity of the technique is 

reduced in women 83,84. Another factor limiting the usefulness of SPECT imaging 

is Obesity due to adipose tissue related photon attenuation. This can be 

significantly overcome by using Technetium-99 based methods or PET. In 

addition, left bundle branch block increases the likelihood of a false defect in the 

septal region, especially during exercise stress 85'87. Such artefact may be 

minimised by using pharmacological hyperaemia rather than exercise stress 88,89.

Summary: Nuclear Perfusion Methods:

Nuclear perfusion methods have a definite role in the diagnosis, localisation, and 

prognostic stratification of coronary artery disease. These techniques have an 

extremely valuable complementary role alongside other investigational 

approaches. However, certain drawbacks can be a limitation in clinical practice. 

Firstly, despite being “non-invasive”, nuclear methods by definition rely upon
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nuclear isotope exposure, with albeit small associated risks. In addition, nuclear 

methods for assessment of coronary artery disease are not portable, are relatively 

time consuming, and remain expensive compared with other methods such as 

stress electrocardiography and echocardiography. Furthermore, the specificity of 

nuclear perfusion techniques in certain situations can be a significant problem in 

clinical practice.

(v) Computed Tomographic Imaging

Cardiac imaging by Computed Tomography is achieved by Electron-Beam 

(EBCT) or Multidetector-Row CT (MDCT). The EBCT method involves a 

focused electron beam being swept across the target structure, while the MDCT 

method uses a rotating X-ray source and detector that allow data acquisition in a 

spiral fashion. EBCT has a higher temporal resolution and lower spatial 

resolution than MDCT.

Computed Tomographic Assessment of Coronary Calcium:

Coronary calcification is part of the atherosclerotic condition, and is found in a 

variety of coronary artery plaques 90,91. While many imaging modalities can 

detect the simple presence or absence of coronary calcification, quantification 

can only be achieved using computed tomography, and there are a number of 

specific methods for this within the field 92,93. For purposes of diagnosis, high 

coronary calcium levels are sensitive but not specific markers of significant 

coronary stenosis 94. However, EBCT appears to have high prognostic value, 

with high coronary calcification burden being strongly linked to future cardiac 

events 95. Indeed, it has been suggested that the technique might prove useful in
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targeting prognostically beneficial therapies to high risk individuals 96. MDCT 

has been shown to be capable of differentiating soft, intermediate, and calcified 

coronary plaques 96, and may allow imaging of segments of non-calcified 

coronary disease at the expense of motion artefact relating to a relatively poor 

temporal resolution 91. EBCT has been considered the best way to assess 

calcification within atherosclerotic plaques for some time 92, and has been 

advocated as a means of non-invasive diagnosis and follow-up among certain

94patient groups .

Computed Tomographic Coronary Angiography:

Both EBCT and MDCT have been evaluated in conjunction with intravenous 

contrast for the assessment of coronary artery stenosis, with variable stated 

accuracies and proportion of cases affected by insufficient visualisation. For 

example, Achenbach et al reported 92% sensitivity and 94% specificity 98, while 

Budoff et al published an EBCT series with 78% sensitivity and 91% specificity 

for identification of significant coronary artery stenosis against the gold standard 

of quantitative X-ray angiography However, the former study excluded 25% 

and the latter 11% of vessels on grounds of poor visualisation. In another study, 

32% of imaged vessels had to be excluded before reaching a sensitivity of 85% 

and specificity of 76% 10°. On the other hand, excellent specificity (98%) and 

moderate sensitivity (78%) has been achieved with exclusion of only 6% of 

segments by utilising good beta-blockade to minimise motion artefact before 

image acquisition 101. MDCT advances over recent years have continued, with 

ever-greater spiral rotation speed and increasing detector numbers, with 

consequent improvements in resolution.
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Summary: Computed Tomographic Techniques:

Both EBCT and MDCT have roles in the diagnosis and prognostic assessment of 

coronary artery disease by means of detecting stenosis angiographically and by 

coronary calcium quantification. Image acquisition is fast and entirely non- 

invasive. However, a significant proportion of the coronary arterial tree may be 

poorly imaged, radiation is involved, and these techniques are not portable. 

Despite the outstanding recent advances in computed tomographic techniques, it 

would appear that there is still a niche for an alternative, non-radiation based, and 

portable technique of coronary artery disease assessment.

(vi) Magnetic Resonance Imaging

Magnetic resonance images are created by detecting changes in proton alignment 

after application of magnetic field and radio-frequency pulses. Proton 

realignment during this process is dependent upon relaxation time, proton 

density, molecular diffusion, and tissue motion, among other variables. Images 

are constructed by encoding proton realignment, which can be taken as a marker 

of tissue characteristics. Certain processing steps and contrast enhancement can 

be used to help delineate coronary vessels and other moving structures, although 

there are definite limitations to the technique when it is used to image small 

moving structures.

Three types of Coronary Magnetic Resonance Angiography (CMRA) have been 

investigated. Firstly, 2-dimensional breath-hold techniques were evaluated, with 

sensitivities for significant coronary stenosis from 63% to 90% and specificities 

from 89% to 92% in the first published studies 102~104. The next “generation”
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CMRA technique was 3-dimensional retrospective respiratory navigator-gated 

imaging. This was expected to improve accuracy, but in fact made no real 

difference to published results, which included sensitivities from 38% to 83% 

and specificities from 54% to 95% for coronary stenoses in excess of 50% 

luminal diameter 105-113. Later work, using 3-dimensional prospective respiratory 

gating, demonstrated successful imaging of the proximal and middle sections of 

84% of coronary vessels in one hundred and nine patients referred for coronary 

angiography. CMRA accuracy for diagnosing coronary artery disease was 72%, 

while not a single case of left main stem or proximal triple vessel disease of 

>50% luminal diameter was missed 114. Specificity for left main or proximal 

triple vessel disease in this study was 85%. Accuracy has continued to improve 

as second generation methods requiring long acquisition times, hence lengthy 

breath holding, have given way to third generation techniques that are capable of 

multiple slice imaging in a single breath-hold. While accuracy with this method 

is still variable, two experienced groups have shown sensitivities of 86% and 

68%, and specificities of 91% and 97%, with and without contrast enhancement 

respectively, for coronary stenosis in excess of 50% luminal diameter 115116. A 

potential role for CMRA, even if lower sensitivities for distal vessels remains, 

might be to stratify patients according to the existence of left main stem or 

proximal triple vessel disease, on the basis that prognostically beneficial 

treatments such as coronary artery bypass surgery might only apply in these 

groups. This concept has some validity, but it should be noted that percutaneous 

revascularisation is increasingly undertaken for patients with coronary artery 

disease patterns that do not strictly require surgical revascularisation. If non- 

invasive imaging strategies were only capable of determining patterns such as
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proximal triple vessel or left main stem disease, many patients would eventually 

undergo X-ray coronary angiography regardless of the results of initial imaging, 

with a view to percutaneous interventional therapy.

Summary: Magnetic Resonance Techniques:

The first clinical results of CMRA demonstrating excellent sensitivity of 90% 

and specificity of 92% against standard radiographic coronary angiography 102, 

were met with enthusiasm and expectation in 1993. Despite major advances in 

the technique in the decade since, these results have not been matched. 

Optimistic expectations that CMRA would be the major non-invasive coronary 

imaging technique have dwindled and are replaced by the hope that it will help 

complement existing non-invasive and invasive means of assessing coronary 

disease, and might perhaps be used to stratify patients into low and high 

likelihood of having major coronary disease prior to invasive investigation. 

CMRA techniques capable of sub-millimetre imaging resolution are currently 

being assessed 117, and it is likely that such developments coupled with improved 

contrast agent design will lead to this safe, non-radiation based method of cardiac 

imaging being used increasingly in clinical settings. However, for the time being 

CMRA is expensive, moderately accurate, and not widely available. It is also 

nowhere near as portable a tool as echocardiography.

(vii) Stress Echocardiography

The central tenet of stress echocardiography relates to the series of events 

depicted by the ischaemic cascade 118)119. The first event is ischaemia induced by 

increased cardiac workload, which is followed sequentially by diastolic
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dysfunction, systolic dysfunction, electrocardiographic changes, and symptoms 

such as chest pain (Figure 1.1). Furthermore, regional ischaemia gives rise to 

regional systolic dysfunction, which in turn can be assessed 

echocardiographically 119. It was clear that wall motion abnormalities could be 

induced by ischaemia long before stress echocardiographic assessment of this 

phenomenon was possible 120, but advances in echocardiographic image 

acquisition and processing over the last ten to fifteen years, especially the ability 

to digitise images, have resulted in this technique becoming a standard clinical 

investigative tool. The required stress can be achieved by exercise or 

pharmacological means. The most widely used form of exercise stress is 

treadmill testing, while the most widely used pharmacological approach is 

Dobutamine infusion. However, bicycle exercise stress, Arbutamine, 

Dobutamine-Atropine, Dipyridamole, and Adenosine have been used with 

success.

Evidence for the ability of stress echocardiography to accurately diagnose

1 0 1 1 0 0coronary artery disease is overwhelming . A review of published data up to 

1997 showed sensitivity of 80%, specificity of 84%, and accuracy of 81% among 

2246 patients 130 while head to head comparison with nuclear perfusion 

estimation has revealed either equivalent or superior sensitivity of nuclear 

perfusion methods and equivalent or superior specificity of stress

1 9 6  101 1 0 0echocardiography ’ . Prognostic value of stress echocardiography for

prediction of future cardiac events has been found to be strong among various 

populations 134 137? although it is true that nuclear perfusion has been studied in a 

wider set of population types. Perhaps the most practically useful and clinically
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relevant aspect of Stress Echocardiography is that the technological requirements 

for it are entirely in keeping with the technological requirements for modem 

clinical echocardiography in general. Stress Echocardiography can therefore be 

part of a General Echocardiographic laboratory set up, without the need for 

extensive provision of additional equipment, space, data storage, archiving 

facilities, appointment systems, insurance and maintenance contracts, and 

administrative time. This tremendous capacity of a single system to generalise 

for multiple functions is especially impressive when one considers that 

myocardial perfusion might soon be added to the capabilities of clinical 

echocardiography. In addition, the hardware required is entirely portable and 

does not require special provision of lead lined screening for radiation protection.

However, Stress Echocardiography does demand specific investment in skilled 

personnel, ongoing training, and quality assurance 138. The United Kingdom has 

been relatively slow to take up Stress Echocardiography widely, although centres 

of excellence and leading research are based here. Furthermore, despite advances 

in ultrasound such as second harmonic imaging, wall motion interpretation is 

sometimes misleading. False negative stress echocardiographic studies may 

occur if stress levels are sub-optimal, with poor image quality, and in single 

vessel stenosis. False positive studies may also occur if images are sub-optimal. 

Although the rate of non-interpretable studies has fallen with the use of second 

harmonics and ultrasound contrast (for cavity / endocardium delineation), the 

fundamental limitation for this technique is a poor echocardiographic window, 

which seems less of a problem with nuclear, Computed Tomographic X-ray, and 

Magnetic Resonance based methods.
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Summary: Stress Echocardiography

Stress Echocardiography is a non-invasive, non-radiation based, portable 

technique that allows assessment of the full spectrum of cardiac haemodynamics 

as well as myocardial ischaemia. As such, it is well suited to routine clinical 

practice. However, as illustrated by the ischaemic cascade, perfusion defects 

occur before systolic wall motion abnormalities, and development of 

echocardiographic techniques to enable perfusion to be assessed would strongly 

complement current echocardiographic capability. This would allow 

haemodynamic, wall motion, and perfusion information to be derived from a 

single non-invasive and non-radiation based technique.

2. MYOCARDIAL PERFUSION DYNAMICS

(i) Vascular Anatomical Factors

As with all vasculature, vessel types supplying myocardium start with arteries 

and sequentially involve arterioles, capillaries, venules, and finally veins (Figure 

1.2). All of these share an endothelial inner layer, while arteries, arterioles, 

venules, and veins share variable amounts of elastin, smooth muscle, and 

collagen in respective outer layers towards the vessel’s external surface. The 

major difference between capillaries and other vessel fypes is therefore the lack 

of smooth muscle, and consequently lack of the typical vasoconstrictive 

properties found elsewhere. Similarly, absence of elastin results in almost no 

capillary distensibility 139. These anatomical differences have important 

consequences for auto-regulation of blood flow.
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(ii) Micro-bubbles as Flow Tracers

Both physiological and patho-physiological understanding of myocardial 

perfusion has been clarified using Myocardial Contrast Echocardiography. The 

micro-bubbles comprising ultrasound contrast material behave as pure 

intravascular tracers. Hence, signal intensity from reflected ultrasound relates to 

myocardial micro-bubble concentration in the ultrasound field, which has in turn 

been shown to depict myocardial blood volume 140. When imaging during steady 

state contrast agent infusion, signal enhancement in the myocardium is due to the 

micro-bubbles that are in the capillaries at the moment of imaging, which can 

then be used as a marker of capillary blood volume. This constitutes 90% of the 

total myocardial blood volume 141144.

(iii) Myocardial Blood flow in Health

Auto-regulation of blood pressure within the microvascular compartments can be 

divided into intrinsic and extrinsic components.

While intrinsic auto-regulation in the brain and kidney depend on myogenic 

factors to maintain constant perfusion pressure irrespective of fluctuations in 

arterial pressure, the Heart depends much more on intrinsic metabolic 

autoregulation, mediated by local factors such as temperature, nitric oxide, 

adenosine and related compounds, lactate, pyruvate, and potassium 

concentration. Intrinsic humoral autoregulation, involving kallikrein, bradykinin, 

and histamine also play a role in local alteration of blood supply, although more 

so in exocrine, cutaneous, and gastrointestinal tissue than in the heart.
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Extrinsic sympathetic and parasympathetic nervous and adrenergic humoral 

factors are involved in auto-regulation, but again less so in myocardium 

compared to systemic tissues 139.

Myocardial tissue extracts a large proportion of available substrates for metabolic 

function from supplying vasculature, such that there is little residual capacity to 

meet greater metabolic demand. Consequently, myocardial blood flow must 

increase dramatically to meet the metabolic requirements of increased cardiac 

workload. Under physiological conditions, this is believed to occur by means of 

vascular dilatation and capillary recruitment.

Determination of capillary flow is complex, and depends on a mixture of 

intrinsic and extrinsic factors affecting arteries, arterioles, and venules without 

actual vasoconstriction or dilatation of the capillaries themselves. There has been 

considerable debate as to the site of myocardial blood flow autoregulation. Some 

data has suggested predominant vasomotor control of overall blood flow at an 

arterial and arteriolar level, involving vessels of lOOum to 150um diameter 145,146, 

while other findings have suggested autoregulation predominantly by means of 

“recruitment and decruitment” of unutilised capacity at the capillary level147-151. 

The notion behind capillary recruitment is that, at basal levels, a significant 

proportion of a capillary network does not participate in blood circulation, while 

at levels of increased work, capillary networks saturate with blood. The 

gatekeepers of this variable capillary blood saturation are smooth muscle 

components in the walls of pre-capillary arteriolar tissue, the so-called pre

capillary sphincters. It is suggested that during basal non-hypoxic conditions,
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pre-capillary sphincters are capable of diverting blood away from capillaries 

through “thoroughfare channels” directly to venules, thereby bypassing the major 

network through which cellular metabolic function occurs. Under conditions 

requiring additional metabolic capacity, pre-capillary sphincters are thought to 

alter the supply of capillary networks such that maximal use is made of capillary 

surface area, thus enhancing nutrient and oxygen supply. However, this concept 

is not entirely supported by myocardial contrast echocardiographic perfusion 

data. In reality, it may be that arteriolar vasomotor and capillary recruitment and 

decruitment co-regulate tissue blood flow, as evidenced by discrepancies 

between measured and predicted variables according to models based exclusively

152on either one or other assumption

(iv) Myocardial Blood Flow in Disease

Myocardial ischaemia occurs if myocardial blood flow is insufficient to meet 

myocardial oxygen demand. The resulting switch from aerobic to anaerobic 

metabolism, accompanied by a number of biochemical changes, leads to 

contractile impairment, electrophysiological changes, and varying clinical 

features. Adenosine produced during ischaemia leads to arterial and arteriolar 

dilatation as well as stimulation of sensory afferent nerves, resulting in the 

patient suffering noxious effects such as chest pain. Disease dependent local 

abnormalities in collateralisation, cellular respiration and microvascular function 

greatly complicate the model of normal coronary haemodynamics derived from 

the controlled and standardised conditions necessary for animal experiments, 

which constitute much of the published findings relating to microvascular 

physiology. Gould and Lipscomb are credited with the original demonstration of
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dynamics of myocardial blood flow in coronary artery stenosis. They showed 

that normal perfusion is maintained under basal conditions at up to 85% coronary 

artery stenosis, while a normal hyperaemic response occurs at stenoses of <50% 

luminal diameter, and a blunted hyperaemic response at between 50 and 85% 

coronary stenosis 153. This led to the widespread assumption that inter-territory 

relative myocardial blood flow mismatch was responsible for the perfusion 

defects seen in territories supplied by stenotic coronary arteries on scintigraphic 

myocardial perfusion imaging. Subsequent work has cast doubt on this as an 

isolated mechanism, suggesting that there is an absolute reduction in myocardial 

blood volume in stenotic territories subjected to exogenous hyperaemia.

To understand the mechanism of reduced blood volume and flow rate in such 

circumstances, it is necessary to consider how blood flow is affected by flow- 

limiting stenoses as well as non flow-limiting stenoses with and without 

exogenous hyperaemia. A number of investigators have found that, in the 

absence of stenosis, drug induced hyperaemia increases mean myocardial blood 

velocity without affecting myocardial blood volume significantly 144,148,154. A 

proposed mechanism by which this phenomenon occurs is through reductions in 

arteriolar and venular resistance. These changes were quantified by Professor 

Sanjiv Kaul’s group at the University of Virginia, who demonstrated constant 

baseline to peak hyperaemic myocardial contrast video intensity but changing 

rate of microbubble replenishment after their destruction within the ultrasound 

field by high power pulses 144. In non flow-limiting stenosis, myocardial blood 

flow is maintained under basal conditions by means of an increase in myocardial 

blood volume, with flow and volume reductions occurring during coronary
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hyperaemia 14U55’156. Furthermore, it has been shown that the extent of 

hyperaemia induced myocardial blood volume reduction, as measured by 

myocardial contrast echocardiography in open-chest dogs, is very closely related

1 ^ 7  •to the degree of coronary artery stenosis . This may be mediated by 

decruitment of capillaries in order to maintain constant intracapillary perfusion 

pressure. This hypothesis gave rise to further work which demonstrated, using 

myocardial contrast echocardiography and radiolabelled microsphere techniques, 

that 99mTc-sestamibi perfusion defects occurring during drug induced 

hyperaemia are largely secondary to reductions in myocardial blood volume in 

the territory of a stenosis rather than simple myocardial blood flow disparity 

' caused by marked blood flow increase in non-stenosed vascular beds. However, 

this is very much an oversimplification of the likely dynamics of hyperaemia in 

non-experimental conditions. For example, most hyperaemia inducing methods 

also induce myocardial ischaemia or systemic arterial blood pressure reduction, 

which will in turn result in a combination of coronary arterial, arteriolar, and 

venular dilatation, and coronary capillary recruitment. The auto-regulatory 

responses during such systemic changes are likely to have similar effects on 

myocardial blood flow and volume to exogenous hyperaemia, although differing 

in degree and proportion. It is worth noting that recent data comparing the effects 

of Adenosine and Dobutamine, in a rigorous and well-controlled experimental 

design, confirm that both agents induce perfusion defects as well as reduced rate 

of contrast agent replenishment after destructive ultrasound pulses in a model of 

coronary stenosis 158. This again suggests reduction in capillary blood volume 

and myocardial blood flow velocity, which is in keeping with other data.
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It is unrealistic to think of the effects of hyperaemia or ischaemia as being 

confined within the territory of a stenotic coronary artery, as microvascular 

networks of different coronary territories interact with each other by means of 

collateral vessels. The resultant myocardial blood flow and volume distribution, 

hence markers of perfusion, will depend not just on the capillary network in the 

myocardium supplied by a stenotic coronary artery, but on intra and inter 

regional diversion of blood 159. These phenomena will tend to complicate the 

changes in myocardial blood flow and volume described thus far. Indeed, there is 

canine experimental evidence to suggest that double vessel coronary stenosis 

reduces the capacity for collateralised perfusion in a neighbouring stenotic 

territory 160. This may explain why sensitivity of stress techniques increase with 

increasing number of stenosed vessels.

In summary, Myocardial Contrast Echocardiography has been used to clarify 

myocardial perfusion physiology and pathophysiology, and has specifically 

characterised variation in myocardial blood volume and velocity with differing 

degrees of stenosis during hyperaemic or ischaemic stress.

3. ULTRASOUND CONTRAST AGENTS

(i) History and Overview

The first report of echo contrast in 1968 160, and later work by Feigenbaum et.al. 

161 formed the basis for dramatic subsequent development of ultrasound contrast 

agents. Initially, saline or dextrose was agitated with a small amount of air 

between two syringes in an attempt to form a solution of suspended air micro

bubbles. While this approach, subsequently modified by using sodium
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bicarbonate with ascorbic acid 162, hydrogen peroxide 163>164, and Renograffin® 

i65’!66̂ provided good ultrasound back-scatter, it did not reliably produce 

solutions with micro-bubbles small enough to behave like red blood corpuscles 

or stable enough to survive pulmonary circulation after peripheral venous 

injection. Although left heart opacification was partly successful after venous 

injection of related lipid emulsion based agents, the earliest contrast agents were 

essentially limited to delineation of right heart cavities or right-left shunts by 

venous injection and to early work on myocardial perfusion assessment by intra

coronary or aortic root injection.

Significant advances in contrast agent design came in the form of sonication, 

whereby micro-bubbles in solution are made to undergo a number of ultrasound 

induced alterations in physical characteristics that ultimately result, after 

separation and re-suspension, in small and stable micro-spheres. Initially 

Renograffin® (sodium diatrizoate) was sonicated in this way, but the process 

was also used for other substances such as saline, dextrose, galactose, and 

albumin. Feinstein and colleagues were the first to demonstrate reliable left heart 

opacification after venous injection of insonicated human albumin solution 167. 

This solution was developed into Albunex ® (Mallinkrodt pharmaceuticals, later 

incorporated into Amersham Healthcare / GE Healthcare, United Kingdom), 

which became the first such agent to receive United States Food and Drug 

Administration approval and product licences for clinical use. A large amount of 

data supported the notion that Albunex was safe and had neutral haemodynamic 

effect. However, users found the reliability and duration of contrast effect to be 

limited and generally insufficient to assess myocardial perfusion, despite
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excellent left ventricular opacification. The reason for this is the unfortunate fact 

that opposite physical characteristics are required for vascular transit and 

ultrasound scattering. Contrast agent ultrasound scattering ability is related to 

the sixth power of bubble radius 168. Although larger bubbles produce greater 

scatter, the ability to pass through capillaries without becoming trapped requires 

smaller micro-bubbles 167,169. The earliest contrast micro-bubbles were either 

large enough that rapid decay would still leave enough size to scatter ultrasound 

intensely yet too large to traverse capillaries, or they were so small and unstable 

that air diffused out of them to a point at which ultrasound scatter intensity was 

too low. Hence, the search for newer ultrasound contrast agents centred on 

- developing stable but small bubbles (<10um diameter). This lead to two types of 

micro-bubble: those with durable shell components (Optison™, Sonovue™); and 

shell-less bubbles stabilised with palmitic acid (Levovist™) or surfactant 

(Imavist™). The so-called second generation contrast agents such as Optison™ 

were variations on the theme of gaseous cored micro-bubbles, but contained 

synthetic gases rather than air, which are less likely to diffuse outward and 

reduce particle size. Choice of contrast agent depends on the intended use and 

individual ultrasound machine type and settings. Some examples of these micro

bubbles preparations available for clinical or research use are detailed in Table 

1.1.

Safety of ultrasound contrast agents could not be taken for granted. At high 

power, ultrasound can damage blood or tissue structures by means of 

“cavitation”. This phenomenon occurs when cavities in fluid generated by 

ultrasound bombardment collapse, releasing high concentrations of energy which
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170 _
result in free radical and electromagnetic radiation emission . Theoretically, 

micro-bubble solutions might increase the chances of this process. However, 

previous work has suggested that such problems only occur with ultrasound 

doses far greater than those used in diagnostic imaging, and that there is no 

significant deleterious effect with the micro-bubble concentrations and 

ultrasound intensity used during contrast echocardiography 171174.

(ii) Optison™

This thesis is based on a series of studies using Optison™, an agent consisting of 

micro-bubbles of Perfluoropropane in a shell of human albumin with a mean 

- particle diameter of 3.9 pm. Optison™ has been found to have no significant

1 7 ^ 17  f \effect on gas exchange or haemodynamics, and is safe in humans ’ .

Optison™ is presented as a 3-millilitre suspension of micro-bubbles, which are 

ready to use after aspiration from a vial using a special device to avoid 

destruction by the negative pressure of suction. It is usually given in small bolus 

doses to highlight the left ventricular cavity walls.

4. ULTRASOUND CONTRAST MYOCARDIAL PERFUSION: EARLY 

RESULTS

Myocardial contrast echocardiography has a well established role in endocardial 

border delineation for purposes of ejection fraction calculation 176'179, stress 

echocardiography 18°, and pulmonary vein Doppler flow signal enhancement 

181,182 Qtjjer r e s e a t  has investigated use of contrast to improve Left Anterior 

Descending coronary flow detection 183. The series of studies detailed in this
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thesis deal with myocardial perfusion assessment, which will be the theme of all 

further discussion.

In theory, if myocardial contrast agents could behave as pure intravascular 

tracers, quantification of the relative ultrasound backscatter intensity generated 

by an agent in different myocardial regions could be taken as a surrogate marker 

of relative myocardial perfusion in those regions. In addition, if accurate 

quantification of myocardial vascular bed contrast input were possible, contrast 

backscatter parameters could also be used to calculate actual regional myocardial 

blood flow. These assumptions depend heavily on the design of contrast agents 

- themselves as well as the ability of ultrasound machines to detect and display 

different backscatter intensities in a proportionate fashion.

The first published report of myocardial contrast echo demonstrating myocardial 

perfusion showed that autoradiographic evidence of blood flow deficit distal to 

coronary occlusion correlated with myocardial contrast echo score 184. At a 

similar time, radio-labelled microsphere and electromagnetic flow probe 

evidence of perfusion and flow were shown to correlate well with various echo 

contrast indices of perfusion 163’185 188> Many such reports relate to highly 

experimental conditions whereby the ultrasound probe was fixed against an 

exposed canine heart and contrast was injected directly into the aorta or coronary 

arteries. While such protocols continue to this day to contribute to our 

understanding of myocardial perfusion physiology, myocardial perfusion contrast 

echocardiography required significant advances in micro-bubble design and 

ultrasound machine hardware and software before clinical use could be

44



considered. Contrast agents suitable for peripheral venous administration were 

the immediate priority.

5. PERIPHERAL VENOUS CONTRAST DELIVERY

Contrast echocardiographic estimation of perfusion after peripheral venous 

injection became more of a reality with the advent of contrast agents capable of 

not only surviving pulmonary circulation after peripheral venous injection, but of 

generating a detectable echocardiographic signal after penetrating myocardial 

vasculature. Animal experimental work subsequently enabled demonstration of 

myocardial vascular penetration 175, coronary flow reserve 18°, and risk area in 

myocardial infarction 189 after venous injection. The importance of these highly 

experimental studies was that they confirmed myocardial perfusion could be 

assessed after venous injection of micro-bubbles in animal models. Subsequent 

research on human subjects, including developments relevant to intermittent 

Stimulated Acoustic Emission and low Mechanical Index real-time perfusion 

imaging, will be discussed in the relevant chapters.

6. ULTRASOUND SYSTEM CAPABILITY

(i) Ultrasound Power and Micro-bubble Response

The various ways in which ultrasound and micro-bubbles interact must be 

understood in order to appreciate the principles underlying design of contrast 

echocardiographic hardware and software. The most important single 

determinant of this interaction is the power of transmitted ultrasound pulses. This 

is expressed as the Mechanical index, an estimate of the maximum amplitude of 

a pressure pulse in tissue (Mechanical index = P / f ~2 where P = peak negative
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pressure in and f = ultrasound frequency). Conventional low power ultrasound 

(<100kPa, Mechanical index <0.1) tends to result in linear backscatter 190 with 

signal intensity largely proportional, within a certain range, to micro-bubble 

concentration. Linear backscatter depends on micro-bubbles being of a certain 

size, stability, and concentration. Providing these conditions are satisfied, a 

marked contrast effect is seen in the large cavities of the heart with such imaging. 

However, the myocardial vascular bed cannot be identified easily using linear 

backscatter. This is due to the resulting mix of tissue and micro-bubble grey

scale data within the same image, making it difficult for the human eye to 

differentiate the two. New low power techniques are discussed in relation to real- 

j time imaging in section (iii) “Real-Time Myocardial Perfusion Imaging”.

When higher power ultrasound is used (100 kPa to 1 MPa, Mechanical index 0.1 

to 1), micro-bubbles start to exhibit harmonic behaviour. This is due to an 

inherent physical characteristic of bubbles that leads to them reaching a resonant 

state when bombarded with certain power and frequency ultrasound. When this 

occurs, reflected ultrasound waves with frequencies that are multiples of the 

incident wave frequencies are generated 191’192. Ultrasound systems have been 

designed to detect these so-called harmonic frequencies, which are mainly 

double the transmit frequency (second harmonics), while suppressing display of 

fundamental frequencies. This improves the contrast to background signal ratio, 

since micro-bubbles are much more able to behave in this fashion at conventional 

transmit frequencies than surrounding tissue. Despite the fact that interrupted 

static frames and extensive post-processing are necessary if attempting to assess 

myocardial perfusion with second harmonic imaging, there have been
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demonstrations of successful perfusion imaging using such methods. For 

example, Porter et al showed excellent correlation between nuclear perfusion and 

intermittent harmonic ultrasound perfusion with intravenous PESDA during 

Dipyridamole stress tests 193. Similarly, Kaul et al also demonstrated outstanding 

segmental concordance between intermittent harmonic contrast 

echocardiography with Optison™ and Tc-99 sestamibi SPECT, again in a 

Dipyridamole stress protocol 194. However, extensive post-processing of images 

was used in both of these studies, and such success has not been widely 

replicated by others.

A variation on the theme of harmonic imaging is Pulse Inversion Imaging, which 

theoretically improves the ability to selectively represent contrast signal. This 

technique, also occurring at relatively low ultrasound power, relies on the fact 

that blood and tissue structures resonate symmetrically while micro-bubbles 

resonate asymmetrically under ultrasound exposure. Hence, when dual pulses of 

ultrasound of identical but directionally opposite waveform are transmitted into a 

region of myocardium supplied by contrast micro-bubbles, blood and tissue 

signal is minimised through cancellation effects, while micro-bubble signal is 

enhanced through summation effects. Although theoretically useful, Pulse 

Inversion Imaging still results in cluttered echo signal combining tissue and 

micro-bubble data, in part due to tissue motion being encoded as harmonic signal 

artefact.

At still higher ultrasound power (>1 Mpa, mechanical index > IMPa) micro

bubbles are destroyed. In the process of destruction, they emit ultrasound waves
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over a range of frequencies, causing a Doppler shift, which can then be 

represented in image form. This phenomenon is called Stimulated Acoustic 

Emission, and is utilised in such techniques as Harmonic Power Doppler and 

Power Contrast Imaging™. These methods rely on subtraction of reflected 

ultrasound after transmission of dual pulses along the same scan line separated 

by a short delay 195 197. The major problem with this approach is the necessity for 

intermittent imaging to allow the vascular space to be replenished with micro

bubbles in time for the next pulse of destructive ultrasound.

The above techniques were not able to show myocardial perfusion in real-time. 

Even when intermittent imaging was used, with the exception of stimulated 

acoustic emission methods, significant post processing was necessary to reliably 

detect perfusion. Despite the technical difficulties, the end of the last decade saw 

a number of claims that myocardial perfusion echocardiography might be ready 

for routine clinical use. These hopes proved too optimistic. While the techniques 

were successful to a degree in a handful of research laboratories, there was a 

distinct lack of replication of such success elsewhere. Marwick et al published 

one of the largest series of the late 1990s in the form of a multi-centre study of 

contrast echocardiography compared to SPECT imaging in 200 patients with 

previous myocardial infarction 198. Partly due to methodological differences from 

previous work, including lack of post-processing and use of fundamental 

imaging for a significant proportion of cases, Marwick’s results indicated a poor 

correlation between contrast echocardiography and nuclear perfusion. 

Nevertheless, this was a very useful reminder that better ultrasound capability, 

with or without specific post processing of images, was necessary before
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myocardial contrast echocardiography could be used for perfusion analysis in a 

clinical setting.

(ii) Intermittent Myocardial Perfusion Imaging

The discovery that ultrasound destroys micro-bubbles and that intermittent 

imaging leads to improved micro-bubble backscatter was serendipitous. Porter 

and Xie were the first to report increased myocardial opacification secondary to 

micro-bubble signal after brief interruption to harmonic imaging following 

venous contrast injection 199. Meanwhile, Sanjiv Kaul and colleagues at the 

University of Virginia confirmed that real-time imaging was responsible for 

micro-bubble destruction, as evidenced by gradual linear decline in video

intensity signal during contrast echocardiography at conventional frame rates 200. 

Furthermore, it was noted that larger intra-myocardial vessels such as septal 

perforators could be seen during contrast echocardiography even at conventional 

frame rates, the implication being that high velocity flow would be sufficient to 

continuously replenish the ultrasound beam area and allow continuous signal, 

whereas low velocity flow such as occurs at the capillary level would not. These 

observations lead to intentional interruption of imaging as a means of improving 

micro-bubble signal. Such an approach is no more pertinent than during high 

power Stimulated Acoustic Emission, which results in transient harmonics at the 

expense of almost complete micro-bubble destruction. The interruption to 

ultrasound allows micro-bubbles to replenish the myocardial vascular bed, a 

process that is more complete the higher the concentration and rate of flow of 

contrast agent and the longer period of the interruption. Hence, if images are 

acquired at pre-specified points in the cardiac cycle and contrast micro-bubbles
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are infused at a steady rate, intermittent imaging can be set at the cardiac cycle 

frequency that best displays myocardial opacification. Furthermore, if non flow- 

limiting stenoses could be unmasked by stress or hyperaemia during intermittent 

imaging, differential micro-bubble flow rates and signal intensities could be 

detected, allowing functional assessment of stenosis in coronary artery disease.

The question of how to move on from demonstration of myocardial capillary bed 

micro-bubble signal in an experimental setting to assessment of perfusion defects 

in the clinical practice has been a focus for numerous investigators for several 

years. Most early research quantifying myocardial micro-bubble signal under 

various imaging conditions used highly experimental models, often with exposed 

canine hearts and ultrasound probes fixed against a pre-determined point for the 

perfect 2-dimensional image slice. However, in the clinical environment it 

becomes impossible to control for many factors that can adversely affect image 

quality. Firstly, intermittent imaging does not give the subtle visual clues 

required by the sonographer to perfect the image plane, resulting in loss of ideal 

ultrasound probe position and image slice. Thus, it can be very difficult to 

acquire two or more perfectly comparable images, especially for detection of 

perfusion at baseline and peak stages of exercise, Dobutamine, Adenosine, or 

Dipyridamole stress protocols, where tachycardia and deep breathing become 

factors. Secondly, Stimulated Acoustic Emission based methods tend to result in 

wall motion artefact being represented as perfusion. One way around the latter 

problem is to employ two closely spaced pulses of ultrasound (within 

approximately 50 milliseconds). The first pulse destroys micro-bubbles and 

creates a perfusion image. The second pulse is used to verify that signal from the
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first pulse is due to perfusion and not wall motion -  the entire myocardium 

should be devoid of signal as micro-bubble destruction will have been complete 

after the first pulse. If signal is present within the myocardium on the image 

generated by the second pulse, it must be due to wall motion and not perfusion. 

Hence, the interpreter does not falsely label myocardial segments devoid of 

perfusion as normal. The third significant problem with intermittent imaging is 

the fact that real-time data, perhaps the most dramatic triumph of 

echocardiography over other non-invasive imaging modalities, is completely lost. 

Wall motion is not assessable unless a separate echocardiographic imaging 

protocol is employed in addition to Stimulated Acoustic Emission Myocardial 

Contrast Echocardiography. Finally, artefacts caused by contrast agent 

shadowing and the inherent problems with ultrasound dynamics in the lateral 

image plane serve to further limit the accuracy of the displayed image as a true 

representation of myocardial perfusion level.

These physiological variations, the nature of ultrasound itself, and technical 

problems such as limited acoustic window and tissue or contrast agent blocking 

of ultrasound signal mean that comparing different regions with one another may 

not be an ideal way to assess perfusion. This can be overcome to an extent in 

stress test situations, where the same myocardial segments are compared with 

each other before and after stress.

Stimulated acoustic emission was briefly the method of choice for myocardial 

perfusion imaging, but has since been largely replaced by low mechanical index
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real-time myocardial perfusion imaging. Research undertaken during this era is 

detailed in Chapter 3.

(iii) Real-time Myocardial Perfusion Imaging

There had been a degree of success at visualising wall motion and perfusion in 

what was effectively real-time using Accelerated Intermittent Harmonic Imaging 

201,202. In this technique, mechanical index is reduced to approximately 0.3, 

allowing relatively micro-bubble conserving frame rates of 10 to 12 Hz. 

However, few were able to show this method to be effective. In order to solve the 

problem of image clutter with standard harmonic imaging and the constraints of 

intermittent imaging with Stimulated Acoustic Emission based methods, a 

technique capable of selectively imaging micro-bubbles rather than tissue during 

real-time imaging was required.

A number of such methods for real-time imaging began to appear in prototype 

form in 1999. Different techniques evolved in line with slightly different research 

strategies and partnerships in various sectors of the ultrasound imaging industry. 

For example, some groups worked almost exclusively with a single ultrasound 

contrast agent, while others attempted to broaden the applicability of their 

technique to a number of different agents. The main outcomes of this phase of 

real-time perfusion ultrasound development were Power Pulse Inversion / Pulse 

Inversion Doppler™ (ATL, Phillips Medical Systems, Eindhoven, the 

Netherlands), Power Modulation Imaging™ (ATL, Phillips Medical Systems), 

and Coherent Contrast Imaging™ (Acuson Sequoia, Siemens Medical
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Solutions). The first demonstration of the new generation of real-time imaging 

systems was in 1999, in the form of ATL’s Power Pulse Inversion 203.

Power Pulse Inversion™ is, to some extent, a fusion of Harmonic Power Doppler 

and Pulse Inversion imaging. Here, Doppler processing of returning ultrasound 

from alternating standard and inverted waveforms is used to separate linear 

(symmetrical) and non-linear (asymmetrical) signal, allowing highly selective 

colour coded display of micro-bubble signal to be superimposed on two- 

dimensional grey-scale tissue signal 204. Early work demonstrated that this 

technique did not destroy micro-bubbles to any significant degree and that it 

allowed simultaneous display of both wall motion and perfusion 203. Subsequent 

research went further, suggesting that the agreement between territory of stenosis 

according to quantitative coronary angiography and echocardiographic 

myocardial perfusion was greater than the agreement between angiography and 

wall motion assessment during stress echocardiography 205.

The principle underlying Power Modulation Imaging™ is again that micro

bubbles resonate asymmetrically, while tissue behaves in a symmetrical fashion. 

For contrast imaging, two identically shaped but different amplitude pulses 

(single versus double amplitude) are emitted, followed by subsequent 

multiplication of the smaller returning wave by a factor of two and subtraction of 

it from the higher amplitude returning wave. Symmetrically behaving tissue 

results in identical transmitted and returning waveforms, the latter of which are 

cancelled out by the type of mathematical processing detailed above. 

Asymmetrically behaving micro-bubbles result in return of two waves of
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differing amplitude and shape, such that simple multiplication and subtraction 

processes do not cancel the signal. In common with certain other methods, signal 

amplitude is then colour coded and superimposed for display purposes.

The real-time imaging technologies described above require multiple ultrasound 

pulses to ensure separate display of tissue and micro-bubble signal. There are 

two potential problems with multiple pulse generation. Firstly, despite some 

evidence to the contrary, it theoretically increases the risk of bubble destruction. 

Secondly, it reduces the capacity for high frame rate imaging. Acuson 

Corporation designed a real-time contrast imaging system that avoids the need 

for multiple pulses and such associated problems. The system is based on 

shaping emitted pulses such that ultrasound waves returning from micro-bubble 

and tissue naturally fall into separate spectra. The tissue signal is then suppressed 

at a given spectrum with single ultrasound pulses rather than numerous 

“cancellation pulses”. Grey scale signal is then used to display presence of 

micro-bubbles. While this theoretically allows greater frame rates and minimal 

bubble destruction, it is clear that certain actual or theoretical advantages could 

be claimed for each system. Certainly, no single technique was thought to be 

significantly better than any other. Acuson pioneered pulse shaping and single 

pulse cancellation technology and launched it in prototype form under the name 

Coherent Contrast Imaging™ in 1999. Research conducted into this technique is 

detailed in Chapter 4.

The arrival of micro-bubble sensitive low mechanical index imaging techniques 

allowed simultaneous assessment of perfusion and wall motion in real-time. 

Thus, perfusion assessment could at last be obtained without discarding wall
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motion data, which had long been a clear advantage of echocardiography over 

other imaging techniques. An obvious application for real-time perfusion 

assessment is stress echocardiography, which conventionally relies on detection 

of wall motion and thickening abnormality alone. According to the ischaemic 

cascade, one would expect perfusion abnormalities to be more sensitive than wall 

motion abnormalities for detecting coronary artery disease 1I8,119. Given that the 

sensitivity of (Dobutamine) Stress Echocardiography is approximately 80%

HAoverall, and lower in single vessel coronary artery disease , a significant 

clinical benefit could result if perfusion assessment were able to provide 

additional diagnostic information beyond that which is conventionally obtained 

by wall motion analysis alone. The only standard means of assessing myocardial 

perfusion at present are nuclear imaging modalities. Such methods should 

theoretically be more sensitive for coronary artery disease than wall motion 

assessment during stress echocardiography. However, a combination of artefact 

and technical limitations mean that nuclear perfusion methods are only slightly 

more sensitive than stress echocardiography when it comes to clinical practice. If 

real-time low mechanical index myocardial perfusion assessment with ultrasound 

contrast agents is to become a clinical tool for use in chronic coronary artery 

disease, it needs to overcome the technical limitations of nuclear imaging 

techniques while retaining valuable wall motion data.

With all of these phenomena and the techniques that have been derived from 

them, far-field image problems can occur due to shielding from incident 

ultrasound by excessive near-field micro-bubble concentration. In addition, 

myocardial capillary density is not necessarily uniform across all myocardial
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regions. It is therefore important to be aware that there may be variations 

between contrast signals originating from different myocardial segments, even in 

normal myocardium.
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CHAPTER TWO

DEVELOPING AN OPTISON™ INFUSION METHOD AND 

IDENTIFYING THE IDEAL TRIGGER INTERVAL FOR POWER

CONTRAST IMAGING™

1. BACKGROUND

(i) Rationale for Ultrasound Contrast Infusion

In order to compare myocardial perfusion at baseline and peak stages of a stress 

protocol, the rate of delivery of contrast agent to the coronary arteries should 

ideally be even. Bolus injection of a contrast agent results in a steep rise in 

contrast effect followed by a brief plateau and rapid fall to minimally detectable 

levels of agent. Infusion at an appropriate constant rate should theoretically result 

in a steady rise to a plateau effect that will persist as long as infusion is continued 

207, although this is not strictly the case according to in-vivo results, which 

suggest an exponential association 144. Figures 1.3 and 1.4 show the type of 

micro-bubble signal response following contrast bolus and infusion respectively. 

A steady rise in contrast effect with subsequent plateau, or an exponential 

variation on this, could potentially be mimicked by repeated small boluses or 

slow manual injection, but the resulting contrast signal is unlikely to be smooth 

and would not represent a true steady state. Aside from failure to provide a 

smooth steady state contrast signal, it is clear that bolus dosing often results in 

too high a concentration of micro-bubbles in the image plane during maximal 

effect. This leads to an excessive ultrasound signal in and around the region 

nearest to the ultrasound probe and signal dropout beyond this region, a 

phenomenon known as contrast shadowing. Related to this is the phenomenon of
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blooming, whereby signal is saturated by such an excess of micro-bubble 

scattered ultrasound that there is an impression of strong contrast effect in nearby 

myocardial regions despite lower actual micro-bubble concentration within them. 

These phenomena not only lead to difficulty in visualising certain myocardial 

regions adequately, but significantly distort quantification based assessment of 

contrast effect and hence perfusion. For example, if one myocardial region is 

subject to contrast shadowing while the other is subject to blooming effect, any 

attempt to compare perfusion between the two, based on intensity of contrast 

signal, would be subject to major error.

(ii) Previous Studies of Ultrasound Contrast Infusion

The earliest comparison of bolus and infusion methods of ultrasound contrast 

delivery confirmed prolonged steady state Doppler profile enhancement in 

arterial and venous circulation of a number of small animals after venous 

infusion of a galactose based agent . It has since been demonstrated in humans 

that, compared to bolus dosing, infusion of Levovist® (Schering AG, Berlin, 

Germany) provides sustained and even femoral artery pulsed and colour Doppler 

signal while minimising saturation artefact 209. Elsewhere, canine experimental 

work with Imagent® infusion (now known as Imavist®, Alliance Pharmaceutical 

Corp., San Diego, USA) confirmed prolongation of signal and reduction of 

saturation artefacts, with the additional finding that calculations incorporating 

video intensity and pulsing interval during intermittent imaging allowed 

quantification of myocardial signal 143. Subsequent work with Optison™ 

infusion, published after the technique established here, will be discussed in the 

context of the experimental findings later in this chapter.
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(iii) Problems Associated with Optison™ Infusion

Some ultrasound contrast agents are better suited to infusion than others. It is true 

that Optison™, while best choice for use alongside the Ultrasound System 

employed in this study (Acuson Sequoia C256 with Power Contrast Imaging™), 

is not ideally suited to infusion. The main problem encountered with infusion of 

this agent is related to the relative buoyancy of the contained micro-bubbles 

compared to the solution in which they are suspended. If left to stand for more 

than a few seconds, the micro-bubble fraction begins to float to the top of the 

container. This leads to uneven infusion unless it is somehow ensured that 

complete mixture of micro-bubbles and carrier solution is maintained. The 

phenomenon of micro-bubble and carrier solution separation is not only confined 

to syringes or vials but also to infusion lines. However, this protocol required 

steady state contrast effect throughout each perfusion study for the sake of 

baseline and peak stage comparisons, and an infusion method was needed.

(iv) Trigger Intervals

All Stimulated Acoustic Emission based imaging systems allow alteration of the 

image trigger interval, based on either a fixed time period (time triggered) or a 

certain cardiac cycle frequency (ECG triggered). The period between triggers 

allows the vascular space within the ultrasound field to replenish with micro

bubbles after a destructive ultrasound pulse, while the next triggered image 

displays the resulting pattern of vascular replenishment. Different ultrasound 

contrast agents will suit different trigger intervals, depending on their individual 

physical properties and behaviour under incident ultrasound waves. Furthermore, 

the rate of delivery of ultrasound contrast micro-bubbles to the myocardial
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vascular bed will affect how rapidly the ultrasound field is replenished, and will 

therefore impact on the ideal trigger interval. In other words, under conditions of 

increased cardiac output and high micro-bubble infusion rate, the trigger interval 

may not need to be so long, while at low cardiac output and low infusion rate, a 

longer ultrasound field replenishment time would be necessary, requiring longer 

trigger intervals. Because a number of variables affect the time needed for micro

bubble replenishment, there is no predetermined ideal trigger interval. It is 

therefore necessary to set a trigger interval appropriate to the particular study 

being undertaken, making an allowance for factors such as micro-bubble infusion 

rate and dilution, heart rate, Stimulated Acoustic Emission imaging system type 

and settings, and ease of image acquisition and interpretation.

(v) Power Contrast Imaging™

Power Contrast Imaging™ (PCI) (Acuson, Siemens Medical Solutions USA), is 

a contrast specific imaging modality designed to assess myocardial perfusion. It 

relies on the acoustic properties of micro-bubbles when bombarded with high- 

energy ultrasound, namely stimulated acoustic emission. Details of this process 

are described in Chapter 1. The Acuson system is designed in such a way that 

Doppler energy from stimulated acoustic emission is displayed as a colour image 

superimposed on the standard grey scale two-dimensional echocardiogram. This 

allows visual assessment of myocardial perfusion without resorting to offline 

digital subtraction techniques. Because high-energy ultrasound destroys micro

bubbles, imaging must be intermittent and at low frame rate, and contrast agent 

must be infused at a constant rate.
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(vi) Outline of Investigation: Infusion Methods and Trigger Intervals

At the commencement of this research, there was no accepted best method of 

Optison™ infusion, and there were no clear recommendations for trigger interval 

in such a protocol as Adenosine Power Contrast Imaging™. The first stage of the 

study was therefore to identify a reliable means of infusing Optison™ and a 

suitable ECG trigger interval for the purposes of such protocols. This was 

undertaken in the context of Adenosine Power Contrast Imaging™ Studies using 

visual interpretation of contrast effect. These cases were not included for 

subsequent analysis of the accuracy of Adenosine Power Contrast Imaging™, as 

the protocol for this section was designed to address issues of infusion and 

trigger interval. Assessment of the accuracy of Adenosine Power Contrast 

Imaging™ per se is discussed in Chapter 3.

2. AIMS

1. To identify the most appropriate method of infusing Optison™ for the 

purpose of Power Contrast Imaging™ during an Adenosine vasodilator stress 

protocol.

2. To ascertain which trigger intervals are most appropriate for the combination 

of the Acuson Power Contrast Imaging™ technique and Optison™ infusion.

3. METHODS

(i) Ethical Approval

The study was approved and registered by the Royal Free Hospital medical ethics 

committee (Reference: Royal Free Hampstead NHS Trust Ethics code 161-99,
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research and development reference number 3810). All subjects gave written 

informed consent.

(ii) Subjects

Twelve patients with >50% stenosis affecting one or two coronary arteries, but 

without occlusion or sub-total occlusion, were recruited (Table 2.1). These 

patients had been scheduled for percutaneous coronary intervention. Inclusion 

criteria were diagnostic coronary angiography within one month and informed 

consent. Exclusion criteria were previous transmural myocardial infarction 

(clinical, electrocardiographic, or echocardiographic evidence), unstable angina 

or symptomatic deterioration within the previous month, sensitivity to albumin 

products, previous adverse reaction to Dobutamine or Adenosine, valvular heart 

disease, asthma, second or third degree atrio-ventricular block, and caffeine or 

methylxanthine related product ingestion during the 24 hours preceding each 

study.

(iii) Echocardiography

Contrast Echocardiography was performed with subjects in the left lateral 

decubitas position. The Acuson Sequoia C256 ultrasound machine was used, 

incorporating the Power Contrast Imaging™ facility (PCI). Baseline standard 

two-dimensional echocardiography was used to confirm normal myocardial 

resting function and wall thickness. For perfusion imaging, machine settings 

were as per the recommendations of the manufacturer, adjusted to optimise the 

contrast echocardiographic image (Table 3.1). Power Contrast Images were 

acquired using intermittent electrocardiographic triggering in the apical four-
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chamber view at end diastole. Acquisition intervals of once in every cardiac 

cycle, one in two, one in four, one in six, and one in eight cardiac cycles were 

used. If myocardial segmental perfusion was not clearly seen at end diastole, 

triggers were reset to end systole. Images were stored on optical disc and VHS 

videotape. The best trigger interval, as established by visual assessment of the 

quality of myocardial contrast effect during baseline imaging, was then selected 

for imaging during the final minute of Adenosine infusion.

(iv) Optison™ Infusion

Two 18G peripheral venous cannulae (Vygon, Ecouen, France) were placed in 

large antecubital fossa and forearm veins. A three-way tap was connected to the 

most proximally sited cannula, which was reserved for infusing Optison™. The 

second cannula was used for Adenosine infusion. Optison™ was drawn into a 50 

ml syringe and either left undiluted or diluted to one of two concentrations with

0.9% saline (see below). Extension tubing (1ml priming volume, length 19cm, 

Alaris Medical Systems ®, San Diego, Ca, USA) was connected to the syringe, 

primed with 1ml of syringe contents, and then connected at the other end to the 

three-way tap.

Optison™ was left undiluted in four cases and was diluted to two concentrations 

with 0.9% saline in two further sets of four cases each. The following three 

Optison™ preparations resulted:

1. Non diluted Infusion (4 subjects):

Six millilitres of Optison™ (2 vials) was drawn into a 50 ml syringe, using 

the manufacturer’s recommended vial aspiration unit, designed to minimise
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negative pressure induced micro-bubble disruption. Infusion tubing was 

connected and primed with Optison™ from the syringe. The syringe was then 

inserted into a 50 ml syringe driver (Graseby 3400, Graseby Medical 

Limited, Smiths Industries pic, Watford, UK), which was set to infuse at 72 

ml/hr initially, followed by stages at 36, 24, 18, and 14 ml/hr, during which 

baseline images were acquired. The rates of 72 to 14 ml/hr corresponded to 

infusion durations of 2.5, 5, 7.5, 10, and 12.5 minutes per vial of Optison™, 

excluding the 1 ml volume contained in the connection tubing. The syringe 

driver was rotated continuously by hand in horizontal and vertical planes to 

prevent separation of micro-bubbles from solution. Infusion was halted for 4 

- minutes during Adenosine infusion at 140 mcg/kg/min, with the 3-way tap 

turned so that Optison™ in the connection tubing could not ascend the 

intravenous line into the vein. Manual rotation of the syringe driver was 

continued throughout. Optison™ infusion was recommenced for peak 

imaging during the fifth minute of Adenosine stress at the rate and trigger 

interval that resulted in best myocardial perfusion during the first part of the 

Optison™ infusion. If more than one infusion rate and trigger interval 

appeared equally suitable, they were each used during the peak stage.

2. Diluted Infusion A (4 subjects):

Six millilitres of Optison™ was drawn into a 50 ml syringe as previously 

described. Nine millilitres of 0.9% saline was drawn into the same syringe to 

make a diluted 15ml solution. Subsequent priming of the extension tubing 

and connection of devices was as above. The Syringe driver was to infuse at 

180 ml/hr initially, followed by stages at 90, 60, 45, and 36 ml/hr, during 

which baseline images were acquired. These rates corresponded to infusion
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durations of 2.5, 5, 7.5, 10, and 12.5 minutes per vial of Optison™, excluding 

the 1 ml volume contained in the connection tubing. Image acquisition, 

manual rotation of the syringe driver, Adenosine infusion, and peak stage 

imaging were as above.

3. Diluted Infusion B (4 subjects):

Six millilitres of Optison™ was drawn into a 50 ml syringe. Twenty-four 

millilitres of 0.9% saline was drawn into the same syringe to make a diluted 

30 ml solution. Subsequent priming of the extension tubing and connection of 

devices was as above. The Syringe driver was to infuse at 360 ml/hr initially, 

followed by stages at 180, 120, 90, and 72 ml/h. Once more, these rates 

corresponded to infusion durations of 2.5, 5, 7.5, 10, and 12.5 minutes per 

vial of Optison™, excluding the 1 ml volume contained in the connection 

tubing. Image acquisition, manual rotation of the syringe driver, Adenosine 

infusion, and peak stage imaging were as above.

In all cases, an assistant was assigned the task of continuous manual rotation of 

the Optison™ charged syringe driver.

(v) Adenosine Infusion

Adenosine infusion was commenced at a dose of 140mcg/kg/min through a 

separate intravenous cannula after baseline imaging had been completed and 

continued for five minutes. Peak stage images were acquired during the final 

minute of infusion. Adenosine was supplied in a solution with 0.9% saline to a 

total volume of 125ml and was delivered by standard intravenous infusion using 

an Ivac® 572 volumetric infusion pump (Alaris Medical Systems®). Clinical and
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electrocardiographic monitoring was carried out continuously and blood pressure 

was checked every two minutes during the infusion. Adenosine was stopped if 

the following occurred: horizontal or down-sloping electrocardiographic ST 

segment depression of >0.2mV 80 ms beyond the J point; electrocardiographic 

ST segment elevation; severe angina; fall of systolic blood pressure of > 40 

mmHg from baseline or to < 90 mmHg systolic; significant brady-arrhythmia; 

intolerable Adenosine related side effects, or at the patient’s request.

(vi) Image Analysis

After review and selection, baseline and peak images were placed on screen side 

by side for comparison. Each set of images was assessed for the presence of 

myocardial contrast effect, blooming, and contrast shadowing.

(vii) Dobutamine Stress Echocardiography

Dobutamine Stress Echocardiography was carried out in a separate sitting in 

accordance with standard techniques and guidelines in the cases that had a valid 

and successful contrast echocardiogram. Only three such cases occurred, so 

Dobutamine Stress Echocardiography was only carried out for these three cases.

4. RESULTS

There were four females and eight males in the group.

Mean age was 64.8 years, standard deviation 7.6 years.

All patients had stable coronary artery disease but no clinical, 

electrocardiographic, or echocardiographic evidence of myocardial infarction.
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Heart rates during image acquisition were between 50 and 90 beats per minute in 

all cases.

Adenosine infusion was terminated prematurely in four cases due to dyspnoea or 

chest pain (Table 2.1).

Dyspnoea and associated deep breathing contributed to inadequate image clarity 

in at least two cases (cases seven and eight) (Tables 2.1 and 2.5).

During Adenosine infusion, electrocardiograms were negative for inducible 

ischaemia in five cases, inconclusive in five cases (minor T wave abnormalities 

in three cases and normal electrocardiogram with early termination of Adenosine 

infusion in two cases), and positive for inducible ischaemia in two cases (ST 

segment depression > 1.5 millimetres). Both the cases with ST segment 

depression had non-interpretable peak stress Power Contrast Images due to 

technical problems with Optison™ infusion (Case 1 with undiluted Optison™ 

and case 8 with Optison™ in dilution A) (Table 2.5).

(i) Non-diluted Infusion

At 24 ml/hr, adequate myocardial contrast signal was visualised in all cases at a 

trigger interval of 1 in 4 cardiac cycles and in three cases at a trigger interval of 1 

in 6 cycles.

At 18 ml/hr, adequate myocardial contrast signal was visualised in all cases at a 

trigger interval of 1 in 6 cycles and in three cases at trigger intervals of 1 in 4 and 

1 in 8 cardiac cycles (Table 2.2).

Blooming and shadowing effects occurred at all trigger intervals in all cases at 72 

ml/hr and 36 ml/hr. Myocardial contrast effect was deficient in all cases at 14 

ml/hr, irrespective of the trigger interval (Table 2.2).
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Image quality was best at trigger intervals of 1 in 4 cardiac cycles at 24 ml/hr in 

two cases (cases 1 and 2) and at 1 in 4 cycles at 18 ml/hr in two cases (cases 3 

and 4), so these trigger intervals and infusion rates were selected for resumption 

of imaging after Adenosine infusion (Table 2.5).

Upon resumption of imaging during the final minute of Adenosine infusion, non- 

uniform myocardial contrast effect with associated artefact such as blooming or 

shadowing occurred in all cases. Furthermore, inspection of the connection 

tubing, three-way tap and cannula hub after completion of the infusion revealed 

deposits of Optison™ in every case.

(ii) Diluted Infusion A

At 90 ml/hr, adequate myocardial contrast signal was visualised in two cases at 

trigger intervals of 1 in 6 and in two cases at intervals of 1 in 8 cardiac cycles 

(Table 2.3).

At 60 ml/hr, adequate myocardial contrast signal was visualised in two cases at a 

trigger interval of 1 in 4 cycles and in all four cases at a trigger interval of 1 in 6 

cycles (Table 2.3).

At 45 ml/hr, adequate myocardial contrast signal was visualised in three cases at 

a trigger interval of 1 in 6 cardiac cycles (Table 2.3).

Blooming and shadowing effects occurred at all trigger intervals in all cases at 

180 ml/hr and in all cases at 1 in 1, 2, and 4 cardiac cycles at 90 ml/hr. 

Myocardial contrast effect was deficient in all cases at 36 ml/hr, irrespective of 

the trigger interval.

Image quality was best at trigger intervals of 1 in 6 cardiac cycles at 90 ml/hr in 

one case (case 7), 1 in 4 cycles at 60 ml/hr in two cases (cases 5 and 6), and at 1
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in 6 cycles at 60 ml/hr in 1 case (case 8). These trigger intervals and infusion 

rates were selected for resumption of imaging after Adenosine infusion (Table 

2.5).

Upon resumption of imaging during the final minute of Adenosine infusion, non- 

uniform myocardial contrast signal with associated artefact such as blooming or 

shadowing occurred in two cases. Inspection of the connection tubing, three-way 

tap and cannula hub after completion of the infusion revealed deposits of 

Optison™ in both of these cases. In the remaining two cases, good myocardial 

contrast effect was seen at peak stage in all except the basal-lateral segments in 

the apical four-chamber image.

(iii) Diluted Infusion B

At 180 ml/hr, adequate myocardial contrast signal was visualised in all cases at 

trigger intervals of 1 in 6 and 8 cardiac cycles (Table 2.4).

At 120 ml/hr, adequate myocardial contrast signal was visualised in all cases at 

trigger intervals of 1 in 4 and 6 cycles and in three cases at 1 in 8 cardiac cycles 

(Table 2.4).

At 90 ml/hr, all cases demonstrated adequate myocardial contrast signal at a 

trigger interval of 1 in 8 cycles while only one case demonstrated good 

myocardial contrast signal at a trigger interval of 1 in 6 cycles (Table 2.4). 

Blooming and shadowing effects occurred at all trigger intervals in all cases at 

360 ml/hr and in all cases at 1 in 1, 2, and 4 cardiac cycles at 180 ml/hr. 

Myocardial contrast effect was deficient in all cases at 72 ml/hr, irrespective of 

the trigger interval.
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Image quality was best at a trigger interval of 1 in 4 cardiac cycles at 120 ml/hr 

in all four cases, so this rate of infusion and trigger interval were selected for 

peak stress image acquisition after Adenosine infusion (Table 2.5).

Upon resumption of imaging during the final minute of Adenosine infusion, good 

myocardial contrast signal was seen in all cases. Inspection of the connection 

tubing, three-way tap and cannula hub after completion of the infusion did not 

reveal evidence of concentrated Optison™ deposits in any case (Table 2.5). An 

example of image quality using this infusion with 1 in 4 cardiac cycle image 

acquisition is shown in Figure 2.1.

5. DISCUSSION

(i) Infusion Technique

At the time this series of studies was commenced (November 1999), there was 

little published data regarding bolus injection or continuous infusion of 

ultrasound contrast agents. Specifically, there had been no practical 

demonstration of the actual means by which continuous infusion of an agent such 

as Optison™ could be achieved. The central problem with this agent, namely that 

of separation of micro-bubbles from the carrying solution, has made infusion a 

very awkward undertaking and has been partly responsible for more recent 

development of infusible contrast agents such as Definity™ (DuPont 

Pharmaceutical Co., Wilmington DE, USA) 210,21 \  Optison™ was not the only 

ultrasound contrast agent available at the time this study was undertaken, 

however. It had previously been demonstrated that femoral artery flow signal 

could be enhanced very effectively for prolonged periods without technical 

difficulty using an intravenous infusion of Levovist® (Schering AG, Berlin,
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Germany) 212, so one might assume Levovist® should have been used in this 

study. It should be noted, however, that simply switching to an alternative 

ultrasound contrast agent is not necessary an appropriate way to overcome 

problems of agent delivery, as most ultrasound systems incorporating contrast 

imaging were originally developed to complement the specific acoustic 

properties of a single “partner” agent. For the Acuson Power Contrast Imaging™ 

system, Optison™ was the specific agent of choice at the time.

This data suggests that infusion of undiluted Optison™ is effective as long as 

infusion is not interrupted. If interruption occurs, significant quantities of 

contrast agent become lodged in tubing and connection taps, rendering the 

second stage infusion uneven. This becomes less of a problem with a dilution of 

6 ml Optison™ to 9 ml 0.9% Saline, and the problem disappears with a dilution 

of 6 ml Optison™ to 24 ml 0.9% Saline. It is most likely that this relates to the 

relative quantities of micro-bubbles contained in the syringe, connection tubing, 

intravenous cannula, and three way taps. To infuse 6ml of Optison™ using the 

stated equipment requires approximately 1.5ml of the agent to be contained in 

parts of the infusion system that it is not possible to subject to continuous 

rotation. Hence, unless the rate of infusion is rapid, these relatively static parts 

will allow separation of Optison™ micro-bubbles from the carrying solution. 

This in turn allows aggregation of micro-bubbles in certain parts of the system. 

This effect will be minimised with continuous moderate to high flow rates, but 

will be exacerbated by either flow interruption or very low flow rates. The 

physical effect of this on delivery of contrast agent would be infusion of 

collections of micro-bubbles interspersed with columns of carrier solution, while
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the imaging consequence would be periods of excess micro-bubble signal 

alternating with periods of insufficient signal. However, a larger volume of 

contrast agent with the same number of contained micro-bubbles would result in 

a relatively small proportion of micro-bubbles separating within the static 

components connecting the syringe to the vein. As long as the infusion rate is 

increased in proportion to the dilution factor, the uneven delivery of micro

bubbles arising in the connection system (in these cases developing during 

interruption to infusion) will last for a brief period only, allowing resumption of 

infusion of adequately mixed Optison™ micro-bubbles from the agitated syringe 

after a very brief period of time. This explains the finding that undiluted 

Optison™ infusion worked well until interruption for Adenosine delivery, while 

dilution A worked well after interruption in only two cases and dilution B 

worked well in all cases despite interruption. Further tests on greater dilutions of 

Optison™ were not carried out, as dilution B provided the necessary properties 

and image quality.

(ii) Accuracy of Myocardial Contrast Effect Assessment

It could be reasoned that assessment of the accuracy and appropriateness of 

various trigger intervals and Optison™ infusion methods should incorporate 

some type of quantitative contrast echocardiographic signal analysis. While this 

implies a certain methodological rigour, image analysis needs to be seen in the 

context of the eventual use of the technique. One of the theoretical strengths of 

Power Contrast Imaging™ in myocardial perfusion assessment is its suitability 

for visual analysis in a clinical setting. As such, it is equally appropriate for 

visual analysis of contrast effect to be used for defining standardised aspects of

72



the protocol such as infusion method and trigger interval. In other words, the 

margin of error for the accuracy of visual assessment of myocardial perfusion 

according to Power Contrast Imaging™ will not exceed the margin of visual 

error for assessment of the effects of various trigger intervals and infusion 

methods. However, if quantitative methods of perfusion assessment had been 

employed, matters of protocol and technique would need to have been pre

determined by quantitative means. Such an approach has been adopted 

elsewhere, requiring video intensity analysis to interpret evidence of perfusion

213level during an intermittent second harmonic imaging protocol

(iii) Triggering Intervals

The ideal triggering intervals for optimal myocardial contrast signal were one in 

four or six cardiac cycles, at heart rates of between 50 and 90 per minute. This 

suggests that, with the Acuson Power Contrast Imaging™ system and Optison™ 

infusion, four or more cardiac cycles are required to fully replenish the 

myocardial vascular bed with contrast material after destruction by high power 

ultrasound. Shorter intervals result in an incomplete perfusion image, while 

longer intervals gain little additional perfusion effect and occasionally result in 

blooming. The reason for patchy perfusion defects at lower intervals is not 

entirely clear, but possible explanations were discussed by Kolias et al after they 

found patchy perfusion signal in a very similar imaging protocol to the one used 

in this study 214. Particular explanations might be variable intensity of ultrasound 

incident power at different locations in myocardial tissue and myocardial 

capillary density variability as a normal physiological phenomenon.
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It is important to note that the rate of micro-bubble replenishment is unlikely to 

be constant at all times under all conditions. One might expect more rapid 

replenishment, hence the need for a shorter triggering interval, during 

tachycardia and high cardiac output, as occurs in exercise or pharmacological 

stress. Therefore, a vasodilator induced perfusion deficit could theoretically “fill 

in” in the time taken for four cardiac cycles to pass, making it inappropriate to 

apply a one in four triggering interval to the peak stage of a stress protocol 

simply on the basis of this frequency being ideal at rest. This theoretically 

becomes problematic if one is attempting to derive perfusion information by 

comparing baseline and peak stage images from an Adenosine vasodilator 

protocol. However, alternative approaches such as reducing the trigger interval at 

peak stage until evidence of perfusion defects appears are open to strong 

criticism. For example, it is clear that reducing the trigger interval at rest to one 

in one or two cardiac cycles results in patchy myocardial contrast effect, despite 

complete contrast “fill-in” at less frequent trigger intervals with no other reason 

to expect impaired resting myocardial perfusion. According to this data, all cases 

showed variable myocardial contrast deficit at rest using trigger intervals of one 

in one or two cardiac cycles, despite absence of other manifestations of impaired 

resting myocardial blood flow and normal perfusion image at frequencies of one 

in four, six, or eight. There are therefore limitations to the validity of comparing 

perfusion at baseline and peak stress using different triggering interval. Some 

would contend that reduction of peak stress trigger interval is still valid, on the 

basis that it is possible, in some cases at least, to differentiate contrast signal 

deficit due to perfusion impairment from physiological perfusion variability or 

artefact related contrast signal deficit. However, the decision as to which defects
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are “genuine” can be very subjective, and the concept of altering trigger intervals 

at peak stress was so significantly problematic that it was decided to keep 

triggering intervals constant throughout each Power Contrast Imaging™ 

investigation. While this work was being undertaken, Heinle et al published data 

confirming myocardial perfusion could be assessed without resorting to low

91 S •trigger intervals such as one in one or two cardiac cycles . In fact, their reason 

for not using such frequent triggering stemmed from a pilot study they had 

previously undertaken which concurred with the above stated effect; namely, that 

lower triggering intervals result in inadequate representation of myocardial 

perfusion in otherwise normal regions.

(iv) Other data relating to Optison™ infusion

Research published after this work had been completed identified a means of 

infusing Optison™ by specifically utilising the buoyant properties of its 

contained gaseous micro-bubbles 213. Essentially, the technique involves saline 

being “infused through” a vertically oriented extension tube containing 

Optison™, which then travels to the patient at a rate and dilution determined by 

the saline infusion rate. It was demonstrated using the vertical extension line 

technique that steady microsphere concentration as well as excellent myocardial 

opacification were possible, while diluted infusions were less effective. Others 

have since found that such an infusion of Optison™ is superior for detecting 

myocardial opacification in direct comparison with bolus dosing 216. There has 

been little progress in infusion techniques since, and it had remained the case 

until after completion of this study that some researchers used diluted infusions 

while others preferred the vertical extension line technique. In general, the
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consensus would appear to be that infusions are preferable to boluses for the sake 

of stress protocols, and this is reflected in the subsequent development and 

promotion of ultrasound contrast agents specifically designed for ease of 

infusion.

(v) Comparison of Power Contrast Imaging with Dobutamine Stress 

Echocardiography

Clearly, the lack of success with all but a smallest number of Power Contrast 

Imaging cases means that comparison with Dobutamine Stress 

Echocardiographic wall motion analysis is meaningless in this part of the study.

6. CONCLUSIONS

1. Optison™ infusion is feasible during an Adenosine vasodilator protocol.

2. Non-diluted infusion of Optison™ works well until interruption occurs. This 

results in the relatively large static fraction of remaining micro-bubbles 

contained in the connection tubing, intravenous cannula, and three way tap 

separating into components and either remaining trapped or travelling as a 

bolus into the vein upon resumption of infusion, leading to inadequate 

subsequent myocardial contrast effects. The dilution most likely to result in 

high quality second phase images after interruption was 6 ml Optison™ in 30 

ml total volume saline solution.

3. The most suitable triggering intervals for this protocol are 1 in 4 or 1 in 6 

cardiac cycles.

4. Blooming and contrast shadowing tend to occur at high infusion rates, while 

incomplete myocardial contrast effect tends to occur at low infusion rates.
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7. LIMITATIONS

1. The main limitation of this part of the study is the small sample size. 

Although carried out according to a pre-specified and rigorous protocol, this 

work should be regarded in essence as a pilot study.

2. Of the three Optison™ concentrations tested, the most dilute provided the 

best imaging characteristics. Theoretically, higher dilutions could also have 

provided adequate or better imaging characteristics. However, this possibility 

was not tested.

3. It should be noted that Optison™ infusion is in fact an awkward and labour 

intensive process, requiring the dedicated attention of an assistant throughout

- the examination. Further development in contrast agent and ultrasound 

system design will eventually render this work on infusion obsolete.
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CHAPTER THREE

INTERMITTENT POWER CONTRAST IMAGING™ IN STABLE 

CORONARY ARTERY DISEASE

1. REVIEW OF STIMULATED ACOUSTIC EMISSION BASED

IMAGING

(i) Background

The technical aspects relating to image formation using these techniques have 

been outlined in Chapter 1. Previous research in perfusion assessment will be 

discussed in relation to such methods.

While intermittent harmonic imaging allowed for enhanced micro-bubble signal 

by utilising harmonic back-scatter and avoiding excessive bubble destruction, a 

significant amount of post-processing, typically off-line video intensity and 

digital subtraction techniques, was necessary in order to selectively display 

micro-bubble signal superimposed on tissue signal. The post-processing stage 

was recognised as being very important in intermittent harmonic imaging after 

the publication of the results of a large series of myocardial contrast 

echocardiography cases by Marwick’s group 198. This series demonstrated 

limited sensitivity for SPECT derived resting perfusion defects of standard, 

harmonic, and intermittent harmonic myocardial contrast echocardiography. 

Post-processing was not used in the study. However, much better results were 

reported by Kaul and colleagues using video intensity quantification techniques 

to identify presence of resting perfusion impairment in a series of patients who
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had also undergone nuclear perfusion imaging 194. Unfortunately, the post

processing stage is very time consuming and, in general, needs to be specifically 

designed to meet the requirements of single laboratories. Hence, it became clear 

that a more clinically appropriate and widely applicable method of micro-bubble 

display was necessary. This appeared in the form of Stimulated Acoustic 

Emission techniques. However, even after these methods had matured, off-line 

video intensity assessment remained necessary in certain highly experimental 

protocols, and desirable in some clinical studies.

(ii) Tissue Models

It has been shown that micro-bubble flow can be quantified accurately in a tissue 

model by a variety of stimulated acoustic emission methods coupled with 

infusion of Levovist® 217 and Definity™ 218, and with bolus doses of Optison™ 

219. While in vitro work is obviously important as a precursor to animal and 

human studies, in vivo work is vastly different. Biological factors such as 

variable capillary density, distance of object from ultrasound source, movement 

artefact, and interference with image caused by adiposity, lungs, and ribs make 

the assumption that in vitro studies are transferable to and comparable with in 

vivo work almost invalid.

(iii) Animal Experimental Data

Animal experiments have been conducted to assess Stimulated Acoustic 

Emission based methods in settings of normal perfusion, variable coronary artery 

stenosis, coronary occlusion, and myocardial infarction. Broillet et. al. published 

results of experiments with a combination of such a technique (Harmonic Power
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Doppler, ATL HDI 3000) and intravenous Sonovue™ (Bracco Diagnostics, 

Princeton, NJ 08540, USA) in both a tissue model and in mini-pigs 220. Variable 

echocardiographically derived contrast flow rates were detected in keeping with 

actual flow in the tissue model and in keeping with the dynamics of coronary 

vascular bed flow during and immediately after occlusion of the left anterior 

descending coronary artery in the mini-pigs. Others, using Optison™ infusion 

coupled with the ATL HDI 5500 ultrasound machine, have found a strong 

correlation between Intermittent Harmonic Power Doppler (IHPD) derived video 

intensity and fluorescent micro-bubble flow ratios in open chest dogs subjected 

to variable coronary artery stenosis 221. Grey scale background subtracted video 

intensity in the same animals was also found to be inferior to IHPD in terms of 

ability to demonstrate reduced video signal at all grades of stenosis except total 

occlusion. Meanwhile, visually appreciable myocardial contrast signal was 

demonstrated without offline processing by using IHPD imaging coupled with 

Levovist® injections in dogs with normal coronary arteries 222. More recently, 

two and three-dimensional IHPD has been shown to accurately predict nuclear 

perfusion defect size and subsequent post mortem verified myocardial infarction 

size during and after coronary occlusion in dogs injected with the new agent AI 

700™ (Accusphere Inc., Watertown, MA, USA) 223. Interestingly, however, grey 

scale harmonic imaging undertaken on the same series of dogs was more 

sensitive for perfusion defects than Harmonic Power Doppler. This finding is not 

in keeping with the results of most comparisons, and it should be noted that the 

sensitivity of Harmonic power Doppler was still high at 80%.
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(iv) Human studies

In 1997, using IHPD and peripheral venous injection of Levovist®, Becher et al. 

demonstrated patchy reticular contrast signal representing the myocardial 

capillary bed in three healthy volunteers and two patients with ischaemic heart 

disease 1%. The primary aim of their study was to show delineation of left and 

right ventricular cavities from myocardium rather than to quantify myocardial 

perfusion, so stressors were not used and detailed assessment of Power Doppler 

signal was not carried out. However, the results did suggest that IHPD imaging 

could be used to display myocardial vasculature with sufficient clarity for visual 

appreciation without off-line post-processing. The next step for similar imaging 

modalities was to be able to demonstrate resting perfusion defects, and this 

capability was soon confirmed. For example, Nanda et al. demonstrated an apical 

contrast deficit using Power Contrast Imaging™ in a single patient with prior 

myocardial infarction and an associated apical nuclear perfusion defect 224. A 

careful and more systematic study by Roxy Senior et al used blinded observers to 

rate presence or absence of myocardial perfusion by Harmonic Power Doppler 

after injections of Sonovue™ among fifteen patients with known coronary artery 

disease and Tc99m-SPECT resting perfusion defects 225. In the latter study, 

excellent mean territorial concordance of 92% was demonstrated between 

SPECT and Harmonic Power Doppler. However, caution is still necessary in 

interpreting perfusion images, as evidenced by the findings of Kolias et al. using 

video intensity analysis of images generated by the Acuson Sequoia Power 

Contrast Imaging™ package coupled with Optison™ infusion 214. This study 

confirmed significant regional variation in percentage contrast signal intensity
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reduction between perfusion and post-destruction frames, implying regional 

variation in ultrasound effect, capillary density, or artefact.

The first major published study exploring the ability of Harmonic Power Doppler 

imaging to detect Adenosine stress induced perfusion defects in a clinical setting 

used Optison™ micro-bubbles and a Hewlett-Packard Sonos 5500 ultrasound 

system in patients who also underwent nuclear myocardial perfusion assessment 

215. The results, published while the series of investigations detailed in this thesis 

was underway, were encouraging but did not establish a significant clinical role 

for perfusion myocardial contrast echocardiography, with agreement between 

SPECT and HPD of 81%, 76%, and 72% for the left anterior descending, right, 

and circumflex coronary territories respectively. Only 15 out of 103 patients 

underwent combined Harmonic Power Doppler Imaging, SPECT, and 

angiographic assessment, as the authors felt coronary angiography was not a 

valid comparator for myocardial perfusion imaging. While this assumption about 

angiographic imaging is true in physiological terms, coronary angiography is 

without doubt the gold standard for diagnosing and quantifying epicardial 

coronary artery disease in clinical practice and it is still informative to include it 

as a comparator, especially given the fact that nuclear perfusion estimates have a 

significant false positive rate. However, when the results from this subgroup of 

15 patients is scrutinized, it becomes clear that Harmonic Power Doppler 

imaging was less sensitive (62% vs. 73%) although more specific (89% vs. 79%) 

than SPECT for significant coronary artery disease (>50% luminal diameter 

stenosis). In fact, Harmonic Power Doppler and SPECT correlated only 

moderately with one another (Phi=0.526, Cohen’s Kappa=0.513, p=0.001).
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Taking all 103 patients into consideration, if one assumes SPECT to be accurate 

for significant underlying coronary artery stenosis and fixed defects are excluded 

on the basis that they represent either artefact or infarction (i.e. the investigation 

is designed to detect impaired perfusion secondary to coronary artery stenosis 

rather than scar tissue), reversible defects on Harmonic Power Doppler imaging 

were present in 12 out of 24 coronary territories with similar SPECT defects, and 

15 out of 174 territories without such defects. This gives a sensitivity of only 

44%, a specificity of 93%, positive predictive value of 50% (95% confidence 

interval 31% to 69%), negative predictive value of 91% (95% confidence interval 

86% to 95%), and a Cohen’s Kappa score of 0.39 (p<0.001) for stenotic coronary 

arteries supplying non-infarct myocardium. If both fixed and reversible defects 

are assumed to be valid (i.e. the investigation is designed to detect impaired 

perfusion secondary to coronary artery stenosis or scar tissue), sensitivity rises to 

68% and specificity falls to 81%, with a Cohen’s Kappa score for agreement 

between the two techniques of 0.48 (p<0.001). Given published sensitivity of 

conventional stress echocardiography of at least 74% and specificity of 69% to 

100%, it is unclear if the above degree of accuracy is of any practical use. 

However, it remained the case that each individual method, with its specific 

combination of hardware, software, micro-bubble type, and stress protocol, 

needed to be considered on its own specific merits. It was premature to make 

generalisations of poor performance of such a new technique, and there was 

certainly a need to quantify accuracy in other clinical circumstances. 

Furthermore, it should perhaps be regarded as very promising that one of the 

earliest forms of modem ultrasound perfusion analysis demonstrated even 

moderate correlation with nuclear perfusion imaging results.
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(v) Rationale for this Study

The case for further investigation of Stimulated Acoustic Emission based 

imaging remained at the outset of this study, in many respects because of, rather 

than despite, the moderate accuracy of such techniques declared previously. 

There was a clear need to assess the clinical role of these imaging technologies in 

combination with a variety of technical modifications, micro-bubble contrast 

agents, and imaging protocols. This study deals with Adenosine Power Contrast 

Imaging™ using the Acuson Sequoia ultrasound system and Optison™ micro

bubbles in patients also assessed by conventional Dobutamine Stress 

Echocardiography and Coronary Angiography.

2. HYPOTHESES

Regarding detection of coronary artery stenosis of greater than 50% luminal 

diameter:

Null Hypothesis 1 (Sensitivity):

The sensitivity of Adenosine Power Contrast Imaging™ is NOT SUPERIOR to 

the sensitivity of Dobutamine Stress Echocardiography.

Alternative Hypothesis 1 (Sensitivity):

The sensitivity of Adenosine Power Contrast Imaging™ is SUPERIOR to the 

sensitivity of Dobutamine Stress Echocardiography.
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Null Hypothesis 2 (Specificity):

The specificity of Adenosine Power Contrast Imaging™ is INFERIOR to the 

specificity of Dobutamine Stress Echocardiography.

Alternative Hypothesis 2 (Specificity):

The specificity of Adenosine Power Contrast Imaging™ is NOT INFERIOR to 

the specificity of Dobutamine Stress Echocardiography.

3. AIMS

To compare the ability of Dobutamine Stress Echocardiographic wall motion 

assessment (DSE) and Adenosine Power Contrast Imaging™ perfusion 

assessment (PCI) to detect one or two vessel coronary artery stenosis in excess of 

50% luminal diameter.

4. METHODS

(i) Ethical Approval

The study was approved and registered by the Royal Free Hospital medical ethics 

committee. (Reference: Royal Free Hampstead NHS Trust Ethics code 161-99, 

research and development reference number 3810). All subjects gave written 

informed consent.

(ii) Assumptions and Sample Size Calculations

Analysis of a series of Dobutamine Stress Echocardiograms carried out at the 

local institution in which this study was undertaken revealed a Sensitivity of 70% 

and Specificity of 80% in a population with >50% stenosis of one or two
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coronary vessels, the overall ratio of stenotic to normal vessels being 

approximately 1:1 (Operator E Roberts). It should be noted that these figures are 

slightly lower than mean sensitivity and specificity quoted in many published 

series. This presumably relates to the fact that the cases concerned were a 

mixture of relatively simple single and double vessel stenosis.

To be clinically useful, Adenosine Power Contrast Imaging™ would need to be 

no less specific but significantly more sensitive than current techniques. A 

clinically relevant improvement would probably require sensitivity of 

approximately 90%, which coincidentally matches or exceeds stated sensitivity 

values for certain nuclear perfusion methods and approximates experimental 

sensitivity using certain echocardiographic myocardial perfusion methods 226. At 

the time this work was undertaken there were no directly comparable studies 

from which to draw conjectured sensitivity and specificity values.

Sample sizes were calculated using the principles and formulae of CA Beam 227 

and WC Blackwelder 228. These formulae were specifically designed to allow 

sample size estimation for sensitivity and specificity data.

For Sensitivity

Null Hypothesis: Sensitivity PCI not > Sensitivity DSE.

Alternative Hypothesis: Sensitivity PCI > Sensitivity DSE.

Conjectured Sensitivity of DSE = 70% (from Royal Free Hospital DSE series).

Conjectured Sensitivity of PCI = 90% (conservative from work of Moraes et al

226^
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Conjectured threshold for superior sensitivity of PCI = 90%.

Alpha = 5%.

Power = 80%.

Minimum number of stenotic territories required = 29 (assuming absolute 

correlation between DSE and PCI).

Maximum number of stenotic territories required = 50 (assuming non-correlation 

between DSE and PCI).

For Specificity

Null Hypothesis: Specificity PCI < Specificity DSE.

Alternative Hypothesis: Specificity PCI not < Specificity DSE.

Conjectured Specificity of DSE = 80% (from Royal Free Hospital DSE series).

Conjectured Specificity of PCI = 90% (conservative from work of Moraes et al

226^

Conjectured threshold for inferiority of PCI = 75%.

Alpha = 5%.

Power = 80%.

Minimum number of non-stenotic territories = 25 (assuming absolute correlation 

between DSE and PCI).

Maximum number of non-stenotic territories = 69 (assuming non-correlation 

between DSE and PCI).

Thus, the target sample size was approximately 50 stenotic and 50 non-stenotic 

coronary arteries among a population of patients with one or two vessel disease. 

Recruitment of 33 patients with an equal proportion of single and double vessel
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disease would result in approximately 50 stenotic vessels and 50 non-stenotic 

vessels in total.

(iii) Subjects

Thirty-five patients with >50% stenosis, affecting one or two coronary arteries 

and without occlusion or sub-total occlusion, were recruited. These patients had 

been scheduled for percutaneous coronary intervention. Inclusion criteria were 

diagnostic coronary angiography within one month, and informed consent. 

Exclusion criteria were previous trans-mural myocardial infarction, acute 

coronary syndrome or symptomatic deterioration during the previous month, 

unstable angina, sensitivity to albumin products, previous adverse reaction to 

Dobutamine or Adenosine, valvular heart disease, asthma, second or third degree 

atrio-ventricular block, and caffeine or methylxanthine related product ingestion 

during the 24 hours preceding each study. Each patient underwent Power 

Contrast Imaging™ using Adenosine vasodilator stress and echocardiographic 

wall motion assessment using Dobutamine stress. Investigations were carried out 

on separate days within a two-week period.

(iv) Dobutamine Stress Echocardiography Protocol

Dobutamine Stress Echocardiography was performed according to standard 

protocols, using the segmental model recommended by the American Society of 

Echocardiography . Baseline electrocardiogram, blood pressure and two- 

dimensional echocardiogram were recorded at rest. Two-dimensional images of 

the parasternal long and short axes and apical four and two-chamber views were 

obtained with the patient in the left lateral decubitus position. Images were
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acquired with an R-wave trigger to obtain a continuous loop using the Stress 

Echocardiography program of the Sequoia C256 echocardiography machine. 

Image loops from baseline, low, intermediate and peak stress stages were 

displayed in a quad screen format for analysis. Dobutamine was infused through 

a peripheral intravenous line using a mechanical pump starting at a dose of 5 

mcg/kg/min and increasing to 10, 20, 30, 40 and 50 mcg/kg/min at intervals of 3 

minutes until an end point was reached. If significant wall motion abnormalities 

were absent and the target heart rate had not been achieved (>85% of maximum 

predicted for age and sex of the patient) the final stage was prolonged to a 

maximum of 5 minutes, and/or atropine was added in bolus doses of 300 meg, up 

to a maximum of 1500 meg.

Electrocardiograms and two-dimensional echocardiograms were monitored 

continuously and blood pressure was measured at three-minute intervals. 

Continuous clinical monitoring was also undertaken throughout. Test end points 

included >85% of maximum predicted heart rate, development of severe and/or 

extensive new wall motion abnormalities, horizontal or down-sloping 

electrocardiographic ST segment depression of >0.2mV 80 ms beyond the J 

point, ST segment elevation, severe angina, fall of systolic blood pressure of > 40 

mmHg from baseline or to < 90 mmHg systolic, blood pressure of > 230/120 mm 

Hg, significant tachyarrhythmia, and intolerable side effects secondary to 

Dobutamine.
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(v) Power Contrast Imaging™ Protocol

For Power Contrast Imaging™, Optison™ was infused as a diluted solution of 

3ml in 15 ml solution with 0.9% saline via an 18 gauge intravenous cannula 

placed in a large antecubital fossa vein. A 50ml syringe driver was used to infuse 

the solution at a constant rate, starting at 120 ml/min and increasing as necessary 

until good baseline perfusion was seen. This is the same concentration and 

infusion rate that was found to be ideal in previous work detailed in Chapter 2. 

However, only half the quantity of Optison™ was used for each study, reflecting 

the fact that the required period of Optison™ enhanced was brief. The syringe 

driver was rotated continuously by hand in horizontal and vertical planes. 

Optison™ infusion was started one minute prior to acquisition of baseline 

images, discontinued during the first three minutes of Adenosine infusion, and 

then recommenced for peak imaging during the fourth minute of Adenosine 

stress. Peak stress images were acquired during the fifth minute.

Triggers were set to acquire end diastolic images every fourth cardiac cycle. If 

end diastolic imaging resulted in poor visualisation of perfusion effect during 

Optison™ infusion at baseline, triggering was adjusted to acquire end systolic 

images before image acquisition. The ultrasound machine settings were 

according to the recommendations and pre-sets of the Power Contrast Imaging™ 

(PCI) mode of the Acuson Sequoia C256 echo machine (see table 3.1). Focus 

depth was set during baseline PCI at the level of the mitral valve. If contrast 

signal was not seen in the apical myocardium during baseline PCI, the focal 

depth was moved toward the apex until signal was evident. If apical signal was 

absent despite this adjustment, it was assumed a fixed perfusion defect was
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present. Contrast image settings were established during baseline PCI and 

maintained constant throughout each study. Imaging frame rate was kept at 1:4 

cardiac cycles throughout each study. Apical four and two chamber images were 

acquired at baseline and repeated during the fifth minute of “stress”, which was 

achieved by infusing Adenosine at 140mcg/kg/min for five minutes, through a 

separate intravenous cannula. Patients were re-warned about possible sensations 

of flushing, dyspnoea, and faintness due to Adenosine and were asked to hold 

their breath for each peak stress image acquisition at the point of the respiratory 

cycle allowing the best echocardiographic view.

Clinical and electrocardiographic monitoring was carried out continuously 

throughout the investigation and blood pressure was checked every two minutes 

during Adenosine infusion. Adenosine was stopped if the following occurred: 

horizontal or down-sloping electrocardiographic ST segment depression of 

>0.2mV 80 ms beyond the J point; ST segment elevation; angina pectoris; fall of 

systolic blood pressure of > 40 mmHg from baseline or to < 90 mmHg systolic; 

significant brady-arrhythmia; and intolerable Adenosine related side effects.

(vi) Echocardiographic Image Interpretation

Images were acquired digitally and stored in digital format on magneto-optical 

discs and in analogue format on VHS video. Interpretation of images was done in 

a blinded fashion in order that the observer had no knowledge of the 

angiographic data.
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Dobutamine Stress:

The 16 segment model was used for interpretation of Dobutamine Stress 

Echocardiograms, in line with previous widely accepted recommendations 

Images were placed in quad screen format, enabling baseline, low, intermediate, 

and peak stages of stress to be compared in phase with each other. If peak stress 

occurred at a dose other than 40 mcg/kg/min, the relevant images were placed in 

the 40mcg/kg/min screen slot. DSE was regarded as positive if there was 

evidence of new or worsening wall motion or thickening abnormalities, with 

more than one segment needing to be involved to confirm ischaemia in the basal 

segments of the posterior circulation.

Adenosine Power Contrast Imaging™:

After completion of each PCI investigation, the highest quality images were 

selected from baseline and peak stress and placed in a dual screen format for 

comparison. Presence or absence of perfusion was assessed visually, using the 

model for coronary territories depicted in figure 3.1. Perfusion was graded as full 

or impaired. PCI signal defects were interpreted as genuine perfusion deficit or 

artefact using comparator segments as detailed in table 3.2 and the general 

principles outlined in previous recommendations 230. A reversible perfusion 

defect was deemed present if a clearly demarcated contrast signal deficit 

appeared at peak stress in a segment characterised by good signal at baseline. If a 

segment was not visualised at baseline, it was not included in analysis.
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(vii) Angiographic Image Interpretation

All patients had undergone X-ray coronary angiography according to standard 

techniques 231 less than one month prior to echocardiographic studies. An 

experienced interventional cardiologist (Dr DP Lipkin) analysed each coronary 

angiogram to give a visual estimate of the percentage reduction in luminal 

diameter. Coronary stenosis was deemed significant if this figure exceeded 50%. 

Cases with evidence of distal vessel collateralisation were excluded, as were 

cases with occluded or sub-totally occluded vessels, or evidence of transmural 

Myocardial Infarction. If a patient agreed to participate, he/she was entered into 

the study with angiographic details omitted from the data sheet. After 

echocardiographic image analysis and reporting, angiographic data was 

recombined with the relevant echocardiographic and clinical data.

(viii) Statistical Analysis

Parametric variables are expressed as mean plus standard deviation. Non- 

parametric variables are expressed as median with inter-quartile range.

Sensitivity, specificity, negative and positive predictive values, and accuracy 

were calculated for DSE and PCI, using angiography as the reference standard. 

Sensitivities, specificities, and accuracies of each investigation were compared 

using McNemar’s test for dependent proportions. Fisher’s Exact Test was used 

for comparison of categorical values for heterogeneous groups and when it was 

not feasible to calculate McNemar’s Test due to sample size. Correlation of DSE 

and PCI results with angiographic coronary stenosis territory were calculated 

using Chi square-based statistics (Phi). Statistical significance was set at a p 

value of < 0.05 (2-sided).
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Interobserver variability was tested for DSE and PCI on an individual territory 

basis and for all territories combined. For this, presence or absence of a peak 

stress territorial wall motion abnormality or reversible contrast deficit were rated 

independently by two operators, with subsequent Kappa score calculation.

5. RESULTS

Thirty-five patients were recruited to the study. Four patients were excluded after 

they declined further investigation following DSE. Three patients with poor 

baseline image quality, uninterpretable PCI images, and left anterior descending 

coronary artery stenosis were excluded. In two of these cases, DSE was 

successful and suggested left anterior descending territory ischaemia. The 

remaining twenty-eight patients had stenoses of greater than 50% luminal 

diameter in forty-one out of eighty-four coronary arteries, while there were forty- 

three normal or minimally stenosed coronary arteries. The mean age of this group 

was 62.6 years (standard deviation 9.9 years). All patients had a history of stable 

exertional Angina Pectoris but none had experienced Myocardial Infarction. For 

baseline characteristics and coronary stenosis territories, see Tables 3.3 and 3.4.

All patients reached a suitable end-point for DSE (wall motion abnormality or 

85% target heart rate). All patients completed five minutes of Adenosine 

infusion. Chest pain occurred during 6 DSE and 13 PCI studies. Dyspnoea 

occurred during 10 PCI studies. There were no significant haemodynamic 

problems or cardiac rhythm disturbances.
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For details of wall motion abnormality and PCI result against angiographic 

stenoses, see Table 3.10, 3.11, and 3.12.

(i) Diagnostic Effectiveness for Combined Territories

Among the 28 cases in whom both DSE and PCI were conclusive (Tables 3.5 and 

3.10):

DSE correctly identified significant coronary artery disease in 18 out of 20 left 

anterior descending territories (LAD), 11 out of 12 right coronary territories 

(RCA), and 6 out of 9 circumflex territories (Cx). DSE correctly identified all 8 

non-stenosed left anterior descending territories, 14 out of 16 non-stenosed right 

coronary territories, and all 19 non-stenosed circumflex territories. Overall 

sensitivity of DSE was 85.4% (95% Confidence Interval 70.1% to 93.9%), 

specificity was 95.4% (95% Confidence Interval 82.9% to 99.2%), negative 

predictive value was 87.2% (95% Confidence Interval 71.3% to 95.4%), positive 

predictive value was 94.6% (95% Confidence Interval 80.5% to 99.1%), and 

accuracy was 90% (95% Confidence Interval 81.6% to 95.5%).

PCI correctly identified significant coronary artery disease in 14 out of 20 LAD 

territories, 6 out of 12 RCA, and 4 out of 9 Cx territories. PCI correctly identified 

7 out of 8 non-stenosed left anterior descending territories, all 16 non-stenosed 

right coronary territories, and 15 out of 19 non-stenosed circumflex territories. 

Overall sensitivity of PCI was 58.5% (95% Confidence Interval 42.2% to 

73.3%), specificity was 88.4%, (95% Confidence Interval 74.1% to 95.6%), 

negative predictive value was 69.1% (95% Confidence Interval 49.2% to 84.1%),
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positive predictive value was 82.8% (95% Confidence Interval 63.5% to 93.5%), 

and accuracy was 73.8% (95% Confidence Interval 62.9% to 82.5%).

The difference in sensitivity between DSE and PCI among the 28 cases for whom 

both imaging modalities were interpretable is statistically significant (McNemar 

based p value = 0.003), implying that PCI has inferior sensitivity to DSE. The 

difference in specificity is statistically non-significant. The difference in negative 

predictive value is statistically significant (Fisher’s exact p value = 0.034), 

implying PCI has inferior negative predictive value compared to DSE. The 

difference in positive predictive value is statistically non-significant. The overall 

accuracy of DSE was greater than that of PCI, in terms of both statistical and 

clinical significance, at 90% compared to 73.8% (McNemar based p value =

0.003). For an example of a reversible apical contrast defect in a patient with 

stenosis in the mid left anterior descending coronary artery, see Figure3.2.

Among the 30 cases for whom DSE was successful, including 2 cases for whom 

PCI was unsuccessful (Tables 3.6, 3.10, 3.12):

Overall sensitivity of DSE was 86.1% (95% confidence interval 71.4% to 

94.2%), specificity was 95.7% (95% confidence interval 84.3% to 99.3%), 

positive predictive value was 94.9% (95% confidence interval 81.4.1% to 

99.1%), negative predictive value was 88.2% (95% confidence interval 73.0% to 

95.8%), and accuracy was 91.1% (95% confidence interval 82.7% to 95.8%). 

When diagnostic effectiveness of DSE among these 30 cases was compared with 

diagnostic effectiveness among the 28 interpretable PCI cases, DSE was superior
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in terms of sensitivity (p value = 0.007), negative predictive value (p value =

0.02), and accuracy (p value = 0.004).

Among 26 patients with good or fair echocardiographic images, after exclusion 

of all those with poor images (Tables 3.7 and 3.11):

Overall sensitivity of DSE was 84.6% (95% confidence interval 68.8% to 

93.6%), specificity was 94.9% (95% confidence interval 81.4% to 99.1%), 

positive predictive value was 94.3% (95% confidence interval 79.5% to 99.0%), 

negative predictive value 86% (95% confidence interval 69.3% to 94.8%), and 

accuracy was 90.4% (95% confidence interval 80.3% to 95.2%). Overall 

sensitivity of PCI was 61.5% (95% confidence interval 44.7% to 76.2%), 

specificity was 92.3% (95% confidence interval 78.0% to 98.0%), positive 

predictive value was 88.9% (95% confidence interval 69.7% to 97.1%), negative 

predictive value was 70.6% (95% confidence interval 49.9% to 85.7%), and 

accuracy was 76.9% (95% confidence interval 65.8% to 85.4%). Among these 

cases, PCI was inferior to DSE in terms of sensitivity (p value = 0.012) and 

accuracy (p value = 0.021).

(ii) Diagnostic Effectiveness for Individual Coronary Territories

(See Tables 3.8, 3.9, 3.10, and 3.12).

Sample size was too low for meaningful subgroup analysis by coronary territory. 

However, for completeness, results are shown in the tables specified above.
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(iii) Reproducibility

Interobserver variability testing was possible among 21 cases, one of whom had 

poor image quality, five of whom had fair image quality. Intraobserver variability 

was not systematically tested, as it was apparent that repeat interpretation was 

influenced by recollection of images that had been analysed previously.

Agreement between raters for presence or absence of DSE wall motion 

abnormality was 90.5% in the left anterior descending coronary territory, with a 

Kappa score of 0.80 (p=0.001). For the right coronary artery territory, agreement 

was also 90.5%, with a Kappa score of 0.80 (p<0.001). For the circumflex 

territory, agreement was again 90.5%, with a Kappa score of 0.62 (p=0.029). 

Overall agreement between raters for presence or absence of DSE wall motion 

abnormality was 90.5%, with a Kappa score of 0.80 (p<0.001)

Agreement between raters for presence or absence of PCI reversible contrast 

deficit was 85.7% in the left anterior descending coronary territory, with a Kappa 

score of 0.70 (p=0.002). For the right coronary artery territory, agreement was 

95.2%, with a Kappa score of 0.83 (p=0.003). For the circumflex territory, 

agreement was 81.0%, with a Kappa score of 0.57 (p=0.017). Overall agreement 

between raters for presence or absence of PCI reversible contrast deficit was 

87.3%, with a Kappa score of 0.73 (p<0.001).

6. DISCUSSION

The acid test for Myocardial Contrast Echocardiography in diagnosis of stable 

coronary artery disease is whether it is any better than Dobutamine Stress
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Echocardiography in routine clinical practice. This data suggests that the 

particular PCI technique under investigation here, using Adenosine as the 

stressor, is not as diagnostically effective as conventional DSE in a clinical 

setting. The results concur to a degree with the work of Heinle et al.215, in that 

sensitivity of such echocardiographic perfusion techniques is low, while 

specificity is high. In many respects, the fact that the specificity of the technique 

is so high is a very promising finding. As with any diagnostic test, the balance of 

sensitivity and specificity are the determinants of their clinical usefulness. It is 

frequently the case that a high specificity is accompanied by a low sensitivity, 

and vice versa. When techniques are in their design and development phase, it 

may be possible to adjust the threshold at which the test is said to have produced 

a positive result, thereby shifting the balance between sensitivity and specificity 

in a more favourable direction. These findings suggest there may be scope for 

reducing the stringency of criteria required to label a myocardial segment as 

having a perfusion defect, or to alter the ultrasound system settings such that 

micro-bubble contrast effect is less intense, increasing the chance of detecting 

underlying impairment.

(i) Choice of Stress Agent for Power Contrast Imaging™

As previously discussed, coronary stenoses of between 50% and 85% luminal 

diameter are likely to result in perfusion abnormalities under stress or 

hyperaemic conditions, while more severe stenoses may cause resting 

hypoperfusion in the associated coronary artery territory.
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The methods of “stress” for echocardiographic or radionuclide imaging protocols 

depend on a number of variables and essentially fall into one of two categories -  

those that cause vasodilatation and those that directly increase cardiac work. 

Vasodilators, such as Adenosine and Dipyridamole, predominantly cause 

changes in myocardial perfusion dynamics such that perfusion defects appear in 

ischaemic regions. Inotropic agents such as Dobutamine increase cardiac work 

thereby causing perfusion supply and demand mismatch and ultimately 

ischaemia. Exercise is certainly the most physiological stressor, as it exactly 

replicates the local conditions likely to produce ischaemia while also increasing 

non-cardiac work with consequent increases in tissue metabolism and respiration.

Adenosine is a purine nucleoside with a complex set of cardiac effects, including 

potent vasodilatation mediated via coronary smooth muscle and endothelial 

relaxation. Wilson et al demonstrated that an intravenous infusion of Adenosine 

at 140 mcg/kg/min achieved full coronary vasodilatation 84 +/- 46 seconds after 

starting the infusion, while cessation of effect occurred 145 +/- 67 seconds after 

termination of infusion . Haemodynamic effects of this Adenosine dose 

include a modest rise in heart rate, increased pulmonary capillary wedge 

pressure, a fall in systolic blood pressure and a reduction in systemic vascular

233resistance . However, ischaemia does not necessarily become simultaneously 

manifest during Adenosine infusion according to non-perfusion based assessment

234methods . Dipyridamole has similar effects mediated by inhibition of 

endogenous Adenosine uptake at the cellular level, thereby mimicking the effects 

of exogenous Adenosine.
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Dobutamine is a synthetic catecholamine capable of producing a marked 

inotropic and chronotropic response, the overall balance of effect being 

determined by a mixture of alpha and beta-adrenergic stimulation. While the 

degree of coronary hyperaemia associated with Dobutamine infusion is nearly as 

pronounced as with intracoronary Adenosine, the latter drug induces less 

contractility and rate rise than the former, during either coronary or intravenous 

infusion 235. Theoretically, this makes Dobutamine more likely to induce 

ischaemia than Adenosine. Dobutamine, in common with other stressors, has a 

short half-life, which makes it suitable for short-term induction of stress during 

echocardiography, its half-life being approximately 2 minutes 236.

Conventionally, Stress Echocardiography is carried out during exercise or 

Dobutamine / Dobutamine-Atropine infusion, although some would advocate use 

of Dipyridamole 237-240 Arbutamine 241-243? or high dose Adenosine 

(200mcg/kg/min) 244. There is some evidence suggesting, perhaps counter 

intuitively, that Dipyridamole and Dobutamine stress echocardiography are 

similarly accurate 245, despite the different modes of action of these stressors 246. 

Adenosine is seldom used in clinical practice of stress echocardiography, as 

evidence of its effectiveness is lacking for all but high dose infusions, which 

produce more unpleasant side effects than the standard dose. For nuclear 

perfusion assessment, however, Adenosine 233>247-249 m d Dipyridamole 250251 

have a very large body of evidence behind their use. Despite a general preference 

for vasodilator stress during nuclear perfusion assessment, there is data to 

suggest that Dobutamine is just as suitable, with acceptable sensitivity, 

specificity, and safety 252"254. Preference for one form of stress over another is
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ultimately dictated by practical and technical considerations. It remains the case 

that Dobutamine (with or without Atropine) is predominantly used for stress 

echocardiography, and Adenosine or Dipyridamole are predominantly used for 

nuclear myocardial perfusion studies, and there is some data to support such an 

approach 233,255.

Using Power Contrast Imaging™ puts certain limitations on the choice of stress 

agent. It should be appreciated that it is very difficult to keep the same 

echocardiographic section through the heart when the subtle visual clues of 

continuous high frame rate imaging are lost. Triggering at one in four cycles 

often results in slightly different frame-to-frame image sections despite no 

conscious alteration of probe position relative to the heart. Physical exercise 

stress simply exacerbates this problem and is therefore extremely unlikely to 

provide accurate information, making pharmacological agents necessary. 

Although there are a number of reasons for using Dobutamine in this type of 

investigation, this drug does cause significant tachycardia. This becomes 

important when intermittent imaging parameters, such as electrocardiography 

based image triggers as per the Acuson PCI system, need to be set at baseline. It 

is not easy to re-set these at peak stress and inaccurate setting can result in wall 

motion artefact being mistaken as perfusion. In addition, the inotropic effect of 

Dobutamine can markedly alter the cross sectional profile of myocardium at end 

systole, making it difficult to be sure if an appropriate and representative image 

has been acquired, as well as making comparison of baseline and peak perfusion 

images difficult. It is therefore important to use an agent that does not cause 

significant tachycardia or major inotropism, such as Adenosine. This agent does
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cause a sense of dyspnoea, which can impair the echocardiographic window due 

to deep and rapid breathing. However, it is possible to minimise this effect to 

some extent by careful reassurance and by asking the patient to breath hold or 

take shallow breaths at crucial imaging points.

While Adenosine is at least theoretically more practicable than Dobutamine or 

other stressors for intermittent stimulated acoustic emission based methods, there 

is no data directly comparing stressors for such imaging methods. However, 

recent work by Lafitte et al demonstrates that Adenosine and Dobutamine are 

able to induce perfusion impairment that is detectable by real-time low 

mechanical index myocardial contrast echocardiography, even without coexisting 

wall motion abnormality 158. Laffite’s findings also suggest that, while 

Dobutamine results in perfusion impairment and wall motion abnormality at less 

severe grades of stenosis than Adenosine, the latter drug yields more 

interpretable contrast echocardiographic images than Dobutamine. Whether the 

superiority of Adenosine over Dobutamine for real-time imaging is as marked for 

Power Contrast Imaging™ remains unclear in terms of the available evidence, 

although it is plausible that this is the case.

Considering the above discussion and previous published data, it would seem 

that Adenosine is the most suitable agent for pharmacological vasodilatation 

during Power Contrast Imaging™. The precise mode of administration is also an 

issue, as the drug can be introduced into venous circulation as a continuous 

infusion or as a bolus dose (direct coronary injection is not within the remit of 

the study). Most investigators have tended to use infusions, mirroring experience
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with nuclear perfusion methods, but there is data to suggest Adenosine is 

effective when introduced in bolus doses of 6 to 18 mg, albeit during intermittent

256 257second harmonic myocardial contrast echocardiography ’ . Moreover, a well-

designed study has recently shown that, among 64 patients undergoing 

Myocardial Contrast Echocardiography and Dipyridamole Thallium SPECT, 

Adenosine bolus and infusion are equivalent in terms of diagnostic accuracy, 

practicality, and safety 258. It must be recognised, however, that such high bolus 

doses can be extremely unpleasant for the patient. Beyond this, and despite the 

above studies, such an approach might result in image acquisition during 

different stages of Adenosine response from one patient to the next, depending 

on when during Adenosine build up, peak, or decay phases the images were 

captured. In addition, an infusion offers the advantages of steady state 

vasodilatation and controlled conditions. It was therefore decided not to use 

bolus doses of Adenosine, and the standard infusion of 140mcg/kg/minute was 

chosen.

(ii) Choice of Dobutamine Stress Echocardiography and Coronary 

Angiography as Comparators

While others have validated a number of echocardiographic perfusion techniques 

against radionuclide methods 198’215225>259-261? ^ js ciear that ultrasound 

myocardial perfusion estimation needs to be at least as clinically useful as 

conventional stress echocardiography. This requires excellent diagnostic 

accuracy in an equivalent or broader population group to that for which stress 

echocardiography is currently used. Comparison of echocardiographic perfusion
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estimation with conventional stress echocardiographic parameters is therefore 

appropriate.

Coronary Angiography is by no means a functional assessment of perfusion and 

ischaemia. Territories supplied by a significantly stenotic coronary artery can 

also be supplied by good collateral vessels, making perfusion normal or near 

normal. To reduce the chances of this phenomenon, cases of angiographically 

detectable collateralisation were excluded from the study. In addition, normal 

epicardial coronary arteries do not preclude perfusion impairment, presumably 

due to unrecognised small vessel disease 262. Despite this, angiographic measures 

of coronary disease type and severity remain the ultimate determinant of 

treatment strategy and have powerful prognostic value.

Because of these issues, diagnostic efficacy of Adenosine PCI was compared 

with that of conventional DSE in a cohort of patients with angiographically 

determined coronary artery disease.

(iii) Mechanism of Reduction in Peak Stress Contrast Intensity

In theory, the intensity of micro-bubble signal in a myocardial region relates to 

the concentration of micro-bubbles in that region, which in turn relates to its 

contained Myocardial Blood Volume. In terms of two dimensional imaging, as 

evidenced by a series of careful experiments conducted at the University of 

Virginia School of Medicine, a similar relationship holds for the myocardial 

cross sectional area in a two-dimensional image plane 144. While normal coronary 

vessels can supply increased flow demand under hyperaemic conditions, thus
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allowing for an increase in myocardial blood flow with or without a limited 

expansion of myocardial blood volume, the same conditions in a stenotic 

myocardial bed result in a reduction in the myocardial blood volume. This is 

probably mediated by an increase in the capillary bed gradient and collapse or 

compensatory decruitment of capillaries in order to maintain constant pressure. 

Thus, reduced micro-bubble signal video intensity during peak hyperaemia in 

regions supplied by a stenotic coronary artery can be expected.

(iv) Trigger Interval Settings

Some researchers recommend using variable trigger interval during intermittent 

Harmonic Power Doppler studies. While it is theoretically possible to quantify 

myocardial micro-bubble replenishment rate and hence myocardial blood flow 

with this approach, the intention here was to allow display of impaired contrast 

signal at fixed trigger intervals. It may be that sensitivity could have been 

improved using triggering intervals such as one in two instead of one in four 

cardiac cycles at peak stress. The one in four interval used in this study may have 

been too high, allowing capillary replenishment with micro-bubbles between 

triggers despite impaired myocardial perfusion in the stenotic vascular territory. 

However, there are problems with reducing trigger intervals at peak stress, as 

discussed in Chapter 2. Others agree that triggering intervals should be at least 

one in four cardiac cycles at peak Adenosine stress using such imaging 

techniques, based on their findings of contrast deficit as part of normal 

physiology at lower intervals 215.

106



Dual trigger imaging and wall motion artefact:

Another possible reason for the low sensitivity demonstrated here could have 

been false interpretation of wall motion Doppler signal as perfusion. One way to 

negate such a problem is to use dual trigger intermittent imaging, whereby a 

second pulse of ultrasound shortly after the main imaging pulse is used to verify 

complete micro-bubble destruction. If a “perfusion signal” is present on the 

second pulse, it must logically be due to wall motion and not perfusion. This 

approach, utilised by Graybum’s group and others 214’215, allows the interpreter to 

make an allowance for wall motion artefact when comparing pre and post stress 

images, therefore reducing the chance of false attribution of Doppler signal to 

perfusion. This problem is more pronounced if tachycardia occurs, such as with 

Dobutamine or exercise stress, as this makes identification of the ideal trigger 

point within the cardiac cycle prone to error. Dual triggering was not used in this 

study because previous local experience was that the second trigger made it 

difficult to assess during the study whether or not an adequate perfusion effect 

had been displayed at the time of the first trigger. Such an assessment is 

important because it allows for minor but crucial alteration of the image plane 

during baseline and peak imaging as well as alteration of infusion rate and 

machine settings prior to commencing Adenosine. It was reasoned that minimal 

tachycardia, as per Adenosine infusion, would allow very precise selection of 

triggering point, thereby avoiding wall motion signal as much as possible.

End-systolic and End-diastolic Triggering:

There is no consensus as to which of these trigger points is most suitable. The 

end-diastolic period has the advantage of being relatively easy to accurately

107



identify and end-diastolic images may be less prone to wall motion artefact. 

However, the broader the “object” to be interrogated by an ultrasound beam, the 

more problematic the displayed image. This is partly related to rib and lung 

induced lateral dimension image loss and partly due to inherent problems with 

ultrasound in the lateral plane at depth. In addition, end diastolic frames tend to 

have a relatively thin rim of myocardium and relatively strong mitral annular and 

epicardial signal, especially toward the basal wall segments. Previous local 

experience of this technique revealed that this thinness occasionally made visual 

interpretation of myocardial contrast signal very difficult. End-systolic triggering 

is not without its problems, however. Firstly, the precise point at which “end- 

systole” occurs may be difficult to identify, despite careful attention to the 

electrocardiographic signal. This makes wall motion artefact very difficult to 

avoid. Secondly, the inotropic effect of the “stressor”, even Adenosine rather 

than Dobutamine, is such that the myocardial thickness at peak stress is greater 

than at baseline imaging. This incomparability of images will certainly affect 

interpretation and could conceivably reduce its accuracy. However, there are two 

specific advantages to end-systolic imaging: firstly, the relatively narrow 

“object” allows better imaging in the lateral plane at depth; secondly, the 

relatively high myocardium to epicardium ratio allows good visualisation of 

myocardial contrast signal. To analyse accuracy among subgroups according to 

which technique was used in this study would introduce bias due to the small 

numbers involved. For this reason, this was not formally investigated.

The decision to use a combination of end-diastolic and end-systolic triggering, 

maintaining the most suitable method for each individual patient constant
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between baseline and peak stress imaging, reflects a pragmatic approach based 

on the fact that different patients have different echocardiographic features which 

render one or other technique more suitable. Purists might suggest only systolic 

or diastolic frame imaging should have been used, but this does not take account 

of the inherent biological variability for which a clinically relevant tool must 

cater.

(v) Subendocardial and Transmural Contrast Effect

Trans-myocardial perfusion is not necessarily evenly distributed, especially 

under hyperaemic conditions with underlying coronary stenosis. There is 

evidence that relative endocardial perfusion deficit can be detected by 

Myocardial Contrast Echocardiography using detailed quantitative analysis of 

myocardial blood volume and flow 142,263. However, demonstration of this effect 

has tended to require selective imaging of a specific region of myocardium, often 

to the exclusion of other regions. Transmural gradients in contrast signal were 

not evident in any consistent pattern during visual assessment in this study, 

although their detection was not a specific part of the experimental protocol. The 

same imaging system could have been set up to detect Adenosine induced trans- 

myocardial micro-bubble signal gradients, albeit at the expense of losing other 

relevant data.

(vi) Optison™ Infusion

Optison™ was designed for bolus injection rather than infusion. Although others 

have used Optison™ boluses to quantify myocardial perfusion, comparison 

between baseline and peak stress images in this protocol required steady state
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micro-bubble concentration. Boluses would probably have caused shadowing and 

blooming artefact at peak signal. In addition, boluses could have resulted in 

mistaken attribution of “decay phase contrast defects” to perfusion impairment, 

as discussed in Chapter 2. The notion that infusion is ideal has been generally 

accepted within the field of contrast echocardiography, as evidenced by the fact 

that many other investigators have used infusion for Optison™ administration, 

albeit with slightly different methods.

(vii) Image Quality

Three cases were excluded from the study on the basis that the PCI image quality 

was very poor. A number of other myocardial wall segments could not be 

visualised, although this did not affect an entire coronary territory in the 

remaining 28 patients. This remains a limitation of PCI perfusion assessment, 

especially when one takes into account that parasternal windows are not 

generally suitable for PCI, while being eminently suitable for DSE. This allows 

up to twice the number of opportunities to image myocardial segments during 

DSE than during PCI. It is important to note that many demonstrations of PCI 

imaging have involved a high degree of subject selection, mainly for image 

quality. This study assessed applicability of the technique to clinical practice 

without heavy case selection, with purposeful inclusion of patients who might 

normally be considered for stress echocardiography, irrespective of baseline 

image quality. Justification for this is strong when one considers that ultrasound 

based perfusion assessment should ideally be at least as applicable and accurate 

as conventional stress echocardiography, which often provides valuable 

information in cases of less than perfect image quality. Indeed, the other main
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application for ultrasound contrast agents, namely endocardial border delineation 

in sub optimal echocardiography, has allowed greater accuracy in precisely such 

cases, making the standard for perfusion assessment even more rigorous. The 

only patients excluded in this series were the three with such poor 

echocardiographic windows that PCI was virtually impossible to interpret. 

Stringent selection of cases based on baseline image quality may have resulted in 

better accuracy, but this would have undermined any suggestion that the 

technique could be used as a clinical tool. It is noteworthy that DSE was 

successful in two of the three cases excluded from PCI on the basis of poor 

image quality, and the diagnostic effectiveness of Dobutamine Stress 

Echocardiography among the 30 patients for whom images were interpretable 

still exceeded that of Adenosine Power Contrast Imaging™ among the 28 

patients for whom contrast images were interpretable.

(viii) Single, Double, Triple and Complex Coronary Artery Disease

The coronary lesions included in this study were simple in that they were 

between 50% and 95% luminal diameter, affected the main vessel only, and did 

not have angiographically evident distal collateralisation. In addition, only 

patients with one or two such vessels were included as this enabled non-stenotic 

territories to be used as controls. These results cannot therefore be extrapolated to 

more complex or widespread coronary artery disease. Even with the simple 

coronary disease patterns described, control territories could have been affected 

by unrecognised small vessel disease.
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(ix) Visual Assessment

Purely visual assessment of myocardial perfusion was used in this study. It is 

possible to quantify signal intensity, mainly by off-line video intensity analysis 

200,214,219 may jiaye keen p o s s i b l e  t0 improve the accuracy of contrast 

echocardiographic perfusion estimation using such techniques, and perhaps even 

to quantify degrees of perfusion impairment. These techniques have generally 

been applied to the open chest canine model, with near perfect image quality at 

baseline. Although post processing of imperfect images in clinical investigation 

of humans might compound errors originating prior to the image acquisition 

phase, it is certainly worthy of investigation. However, the Acuson PCI system 

was designed as an entity, with visual interpretation in mind. Later versions of 

perfusion imaging systems, from a variety of manufacturers, have since 

incorporated on-line quantification.

7. CONCLUSIONS

Regarding detection of single or double vessel coronary artery stenosis of greater 

than 50% luminal diameter using visual assessment during Power Contrast 

Imaging™:

1. Dobutamine Stress Echocardiography is superior to Adenosine Power 

Contrast Imaging™ in terms of sensitivity, accuracy, and negative predictive 

value.

2. The specificity and positive predictive value of Dobutamine Stress 

Echocardiography and Adenosine Power Contrast Imaging™ are not 

significantly different.
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3. There is evidence to reject Alternative Hypothesis 1. Null Hypothesis 1 is 

therefore accepted.

4. There is insufficient evidence to reject Alternative Hypothesis 2. Alternative 

Hypothesis 2 is therefore accepted.

5. Exclusion of cases with less than ideal image quality did not make any 

significant difference to the diagnostic effectiveness of Power Contrast 

Imaging™ in this series.

6. Power Contrast Imaging™ may be better suited to detecting underlying 

coronary artery stenosis in certain myocardial regions than in others.

8. LIMITATIONS:

1. Greater accuracy may have been achieved using a quantitative measurement 

technique such as video-intensity analysis.

2. The Power Contrast Imaging™ protocol relied on Optison™ infusion. As 

previously discussed, this contrast agent is not ideally suited to infusion.

3. Adenosine and Dobutamine are not directly comparable means of hyperaemia 

and stress induction.

4. Coronary Angiography is an imperfect means by which to assess coronary 

artery stenosis and therefore has limitations as a reference standard for flow- 

limiting disease.

5. The possibility that small vessel coronary disease could have been present in 

some cases is acknowledged, as all patients had documented epicardial 

coronary stenosis in at least one major vessel.

6. The sample size is relatively small. Thus, small differences in diagnostic 

efficacy between imaging techniques could have been overlooked.
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CHAPTER FOUR

REAL-TIME COHERENT CONTRAST IMAGING™ IN STABLE 

CORONARY ARTERY DISEASE

1. REVIEW OF LOW MECHANICAL INDEX REAL-TIME PERFUSION 

IMAGING TECHNIQUES

(i) Background

As previously alluded to, the fact that perfusion impairment precedes wall 

motion abnormality in the ischaemic cascade implies that myocardial perfusion 

assessment should be more sensitive than wall motion assessment for underlying 

coronary artery disease. Despite demonstration of this in humans using relatively 

outdated intermittent harmonic imaging techniques 264, evidence of early 

perfusion impairment was not apparent during the Adenosine Power Contrast 

Imaging™ study described in the previous chapter. Among a number of reasons 

for the limited accuracy of the technique was difficulty holding an exact and 

specific image plane between triggered images. It is difficult to circumvent this 

problem using intermittent imaging techniques. In addition, while subtle 

refinements to the Power Contrast Imaging™ method could conceivably have 

improved the accuracy of the technique, wall motion data could never be 

incorporated into it. Real-time myocardial perfusion imaging, recently developed 

as a natural progression from intermittent imaging techniques, offers an unique 

opportunity to avoid the problem of image plane loss while incorporating 

myocardial perfusion and wall motion information. The logical next phase of this 

research was therefore real-time low mechanical index myocardial contrast 

imaging using the Acuson system (Coherent Contrast Imaging™ package).
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(ii) Technical Details of Real-Time Myocardial Contrast Echocardiography

The first reliable method available for echocardiographic perfusion assessment in 

real-time was Power Pulse Inversion imaging / Pulse Inversion Doppler (ATL, 

Phillips Medical Systems, Eindhoven, the Netherlands) which uses Pulse 

Inversion technology with additional Doppler processing to differentiate micro

bubble and tissue signal. These and other approaches have been outlined in 

Chapter 1. The Acuson Coherent Contrast Imaging System™ (CCI) was made 

available in prototype form in 2000 as a logical development from Intermittent 

Power Contrast Imaging™, using identical system hardware alongside 

substantial software alteration. CCI was designed to allow high frame rates while 

minimising wall motion artefact, and relies on specifically shaped ultrasound 

pulses generating separate returning micro-bubble and tissue signal, with 

subsequent single pulse cancellation of the latter.

(iii) Data Available Prior to this Study

The first demonstrations of non-destructive real-time myocardial contrast 

echocardiography using micro-bubble selective methods were in 1999 and early 

2000. The progression of experiments from tissue-mimicking phantoms through 

animal experiments to human studies was rapid, such that by 2001 real-time 

myocardial contrast echocardiography had become the preferred method for 

ultrasound perfusion clinical research.

(a) Phantom models of the myocardial vascular bed:

Before animal experimentation could begin, the effects of real-time low 

mechanical index ultrasound on micro-bubbles in a variety of tissue phantom
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models were examined. Initially, each imaging system was tested separately 

using this approach, but certain later studies add to our understanding of real

time low mechanical index imaging in general. While real-time perfusion 

imaging was being tested in animal and clinical settings, researchers continued to 

turn to specifically designed tissue phantom experiments to understand the 

interaction between contrast micro-bubbles and various types of real-time 

imaging.

The most important single aspect of the real-time imaging approach is micro

bubble preservation. Tiemann et al first demonstrated the imaging characteristics 

necessary for real-time myocardial perfusion using Power Pulse Inversion in an 

experimental design incorporating a flow phantom acting as a tissue model 265. 

In this experiment, power pulse inversion at a low mechanical index of 0.1 

resulted in non-destructive real-time imaging, while a mechanical index of 0.3 

resulted in partial micro-bubble destruction, and a mechanical index of 0.8 

resulted in near total micro-bubble destruction. Furthermore, it was shown that 

micro-bubble flow rate correlated highly with rate of contrast signal 

replenishment after high mechanical index destructive ultrasound pulses, 

implying that blood flow dynamics could be quantified using the technique. This 

series of experiments involved coupling the ATL Power Pulse Inversion system 

with infusions of Definity™ (DuPont Pharmaceutical Co., Wilmington DE, 

USA). The same authors went on to demonstrate that different ultrasound 

contrast agents had different durability under Power Pulse Imaging, showing 

Optison™ micro-bubbles to be destroyed in significant quantities compared to 

Definity™ and AFO 150 (Imavist ®, Alliance Pharmaceuticals, San Diego, CA,
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USA) even at a mechanical index as low as 0.09 . Higher mechanical index

was again confirmed to be more destructive, whatever the micro-bubble type. 

Clearly, different contrast agents are capable of withstanding different ultrasound 

power before significant bubble destruction occurs. The question of whether 

variable micro-bubble destruction would occur if the same ultrasound contrast 

agent was used in conjunction with a variety of different real-time imaging

0 f \ lsystems was addressed by TR Porter and colleagues as recently as 2003 . Their

tissue phantom consisted of a set of vessels into which ultrasound was directed, 

connected to an input and output micro-bubble flow line. Pulse Inversion 

Doppler and then Power Modulation real-time imaging were commenced, with 

both contrast intensity and output micro-bubble concentration being measured 

during each phase. Contrast intensity was lower and micro-bubble destruction 

was higher during Pulse Inversion Doppler than Power Modulation, despite 

similar mechanical indices.

The lessons from these experiments were that low mechanical index real-time 

perfusion imaging was feasible, but that different systems and contrast agents 

were prone to different degrees of micro-bubble destruction. It therefore follows 

that it is important to use appropriate coupling of imaging system and contrast 

agent for clinical studies.

(b) Animal models of perfusion impairment and wall motion abnormality:

The ability of low mechanical index real-time imaging to detect both wall motion

and perfusion was assessed in an animal model of acute ischaemia by Mor-Avi et

268al . While coronary haemodynamics during acute ischaemia are not the same
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as those occurring during non-flow-limiting coronary stenosis, their model is 

sufficient to allow clear demonstration of the system’s capacity to display both 

perfusion and wall motion. In this set of experiments, anaesthetised pigs 

underwent trans-thoracic Power Modulation imaging during infusion of 

Definity™ contrast agent. Wall motion was analysed by semi-automated 

detection of endocardial borders and contrast signal was assessed by a 

combination of mean regional pixel intensity and contrast replenishment rate 

after high mechanical index destructive frames. Data was acquired at baseline, 

during, and after coronary occlusion. The pigs were then injected with 

fluorescent micro spheres to enable subsequent post mortem quantification of 

ischaemic area. Each ischaemic episode was evident by both wall motion 

abnormality and contrast parameters such as reduction in peak signal and 

contrast replenishment time delay. In addition, regional fluorescent microsphere 

defects matched regional contrast defects in those pigs that underwent post 

mortem examination.

The ability of real-time perfusion imaging to detect contrast deficit during 

Adenosine hyperaemia was assessed in a canine model of graded coronary 

stenosis by Masugata et al. 269, using Power Pulse Inversion and Sonovue™ 

(Bracco Diagnostics Inc., Princeton, NJ 08540, USA). Masugata’s team used 

highly controlled conditions in that each dog had the heart surgically exposed 

and perfusion was assessed quantitatively for peak signal intensity as well as 

replenishment time after high power destructive ultrasound pulses. Calculated 

myocardial blood flow correlated highly with radiolabelled microsphere evidence 

of perfusion in both non flow-limiting stenosis (with Adenosine infusion) and
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flow-limiting stenosis (without Adenosine). It was noted that simple visual 

assessment of contrast signal was possible during severe non-flow limiting 

stenosis as well as during vessel occlusion. Perfusion quantification has also been 

explored in the canine experimental model using Power Pulse Inversion and a 

facility to rapidly engage destructive high mechanical index ultrasound 270. This 

work provided quantitative confirmation that high power ultrasound almost 

totally destroys micro-bubble signal, and also confirmed that Power Pulse 

Inversion allows quantification of micro-bubble replenishment rate, even after a 

bolus dose of Optison™.

Masugata’s team went on to assess the comparability of Intermittent and Real

time low mechanical index perfusion imaging in a very similar experimental 

design to that outlined above 271. In both techniques, correlation between contrast 

derived and fluorescent microsphere derived indices of perfusion was excellent. 

Furthermore, visual assessment was equally accurate for both intermittent and 

real-time imaging.

It should be noted that all of the above studies assessed perfusion in the Left 

Anterior Descending territory alone. Hence, the inference that other territories 

can be assessed with equal success by such techniques is not necessarily valid.

(c) Real-time perfusion and wall motion imaging in humans:

Early human work on myocardial perfusion and wall motion imaging tended to 

relate to healthy volunteers and to involve Power Pulse Inversion. For example, 

Tiemann and colleagues, from the University of Bonn, proceeded from tissue
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phantom work to demonstrate the feasibility of simultaneous wall motion and 

perfusion assessment at a frame rate of 12 Hz in eighteen healthy humans at rest 

272. This was achieved using Optison™ infusions alongside the Power Pulse 

Inversion system. The findings were presented at the 49th Scientific Session of 

the American College of Cardiology in March 2000, although results of earlier 

stages in their research had been published in journal format shortly beforehand

203

The issue of diagnosing coronary artery disease using low mechanical index real

time imaging was first investigated in 2000 and 2001. Porter et al published their 

findings in relation to Pulse Inversion Doppler with Optison™ and Definity 

during a Dobutamine Stress Echocardiography protocol in 117 patients in March 

2001 205. This study demonstrated the feasibility of the method in a good sample 

size. However, the absence of a comparator for underlying disease in all but forty 

patients, and the fact that different contrast agents were used in the same series, 

limit the applicability of the results. Among the forty patients who underwent 

comparator imaging in the form of coronary angiography, agreement with 

myocardial contrast echocardiographic perfusion scoring was eighty-three 

percent, while agreement with wall motion was seventy-two percent. Analysis 

according to subgroups revealed eighty three percent agreement for the Left 

Anterior Descending territory, eighty percent for the Right Coronary territory, 

and eighty five percent for the Circumflex territory. It is difficult to calculate 

precise sensitivity and specificity values from the data made available in the 

published article, but the stated agreement levels with quantitative coronary 

angiography are high. A potential limitation, acknowledged as such by the
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authors, was that micro-bubble contrast agents were injected as boluses. In fact, 

complete contrast opacification was often present at peak overall contrast 

intensity in regions that subsequently developed reduced contrast intensity.

The results discussed above using Power Pulse Inversion were similar to those 

obtained by the same group using Accelerated Intermittent Harmonic Imaging 

202. In this study, Thallium SPECT results were compared with real-time 

perfusion and wall motion assessment after bolus doses of Optison™ during 

exercise stress in one hundred consecutive patients. Myocardial contrast 

perfusion results matched SPECT data on a territorial basis in seventy six percent 

of.cases, while perfusion and wall motion data matched in eighty eight percent of 

cases. Furthermore, among a subgroup of forty patients who also underwent 

coronary angiography, sensitivity of myocardial contrast perfusion assessment 

for significant coronary artery stenosis was equivalent to that of wall motion and 

SPECT, at seventy five percent. Specificity was above eighty percent for each 

imaging modality. When wall motion data was combined with perfusion data, 

sensitivity rose to 86%, specificity was 88%, and overall accuracy was 86%. 

Others have not demonstrated such a high accuracy using Accelerated 

Intermittent Harmonic Imaging, and the majority of recent attention to 

echocardiographic real-time perfusion assessment has focused on “micro-bubble 

selective” imaging techniques such as Power Pulse Inversion, Power Modulation, 

and Coherent Contrast Imaging™.

At the time this work was commenced (December 2000), there had been little 

published research relating to real-time perfusion and wall motion assessment
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with the Acuson system. Indeed, there was no data available on diagnostic 

efficacy in patients with coronary artery stenosis undergoing Dobutamine Stress 

Echocardiography. The earliest results available in peer reviewed journal format

273demonstrated the potential of the technique in humans very convincingly . In 

their study, researchers from the University of Michigan used the Acuson 

Sequoia™ system to compare real-time and triggered imaging in twenty-three 

normal adults without evidence of vascular disease. Real-time imaging differed 

from triggered imaging in that it did not show evidence of significant contrast 

signal intensity mismatch between different myocardial regions, despite careful 

digital quantification of grey scale signal. Furthermore, quantification of 

myocardial blood flow reserve using Dipyridamole infusion alongside contrast 

replenishment time and signal intensity data, which had been acquired after high 

power ultrasound destruction of micro-bubbles, demonstrated values entirely 

consistent with widely validated echocardiographic and invasive assessments of 

the same or equivalent parameters 274,275. While it should be noted that the 

University of Michigan group used DMP-115 (Definity™), their results did set 

an important base from which investigation of Acuson’s real-time perfusion 

imaging system could proceed, using Optison™ among a number micro-bubble 

agents.

2. HYPOTHESES

There are three sets of hypotheses relating to detection of coronary artery 

stenosis of > 50% luminal diameter. The first set refers to the comparability of 

wall motion assessment during Coherent Contrast Imaging™ and Standard
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Harmonic Imaging, while the second and third sets refer to the sensitivity and 

specificity of combined wall motion and perfusion assessment.

Null Hypothesis 1 (Wall motion comparability): The agreement between wall 

motion assessment during Coherent Contrast Imaging™ and conventional 

harmonic imaging is MODERATE OR WEAK (matching in less than 70% of 

territories).

Alternative Hypothesis 1 (Wall motion comparability): The agreement 

between wall motion assessment during Coherent Contrast Imaging™ and 

conventional harmonic imaging is STRONG (matching in at least 85% of 

territories).

Null Hypothesis 2 (Sensitivity): The sensitivity of combined assessment of wall 

motion and micro-bubble signal during Coherent Contrast Imaging™ is NOT 

SUPERIOR to the sensitivity of conventional harmonic Dobutamine Stress 

Echocardiography.

Alternative Hypothesis 2 (Sensitivity): The sensitivity of combined assessment 

of wall motion and micro-bubble signal during Coherent Contrast Imaging™ is 

SUPERIOR to the sensitivity of conventional harmonic Dobutamine Stress 

Echocardiography.

Null Hypothesis 3 (Specificity): The specificity of combined assessment of wall 

motion and micro-bubble signal during Coherent Contrast Imaging™ is
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INFERIOR to the specificity of conventional harmonic Dobutamine Stress 

Echocardiography.

Alternative Hypothesis 3 (Specificity): The specificity of combined assessment 

of wall motion and micro-bubble signal during Coherent Contrast Imaging™ is 

NOT INFERIOR to the specificity of conventional harmonic Dobutamine Stress 

Echocardiography.

3. AIMS

1. To assess the technical feasibility of Dobutamine Stress Coherent Contrast 

- Imaging™.

2. To compare wall motion assessment during Coherent Contrast Imaging™ 

and standard Harmonic imaging.

3. To assess the ability of perfusion analysis by Coherent Contrast Imaging™ to 

detect underlying coronary artery stenosis in excess of 50% luminal diameter.

4. To compare the ability of standard harmonic wall motion analysis and 

combined wall motion and perfusion analysis during Coherent Contrast 

Imaging™ to detect underlying coronary artery stenosis in excess of 50% 

luminal diameter.

4. METHODS

(i) Ethical Approval

The study was approved and registered by the Royal Free Hospital medical ethics 

committee. (Reference: Royal Free Hampstead NHS Trust Ethics code 161-99,
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protocol amendment number one, research and development reference number 

3810). All subjects gave written informed consent.

(ii) Assumptions and Sample Size Calculations

The baseline accuracy of Dobutamine Stress Echocardiography, as discussed in 

Chapter 3, consists of a sensitivity of 70% and specificity of 80%.

To be clinically useful, Coherent Contrast Imaging™ would need to be no less 

specific but significantly more sensitive than current techniques. A clinically 

relevant improvement would probably require sensitivity of approximately 90%, 

while specificity would need to be maintained at 80%. No directly comparable 

studies were available for conjectured sensitivity and specificity values.

Thus, for sample size calculation, the threshold for superior sensitivity of 

Coherent Contrast Imaging™ was set at 90% compared to 70% for Dobutamine 

Stress Echocardiography, while the threshold for inferior specificity of Coherent 

Contrast Imaging™ was set at 75% compared to 80% for Dobutamine Stress 

Echocardiography. Conjectured sensitivity and specificity for Coherent Contrast 

Imaging™ under alternative hypotheses were both 90%.

Sample sizes were calculated using the principles and formulae of CA Beam 227 

and WC Blackwelder . The calculations were the same as those detailed in 

Chapter 3. Hence, as for the Power Contrast Imaging™ investigation, 33 patients 

with an equal balance of single and double vessel disease would satisfy this 

sample size requirement.
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(iii) Subjects

Thirty-eight patients with >50% stenosis affecting one or two coronary arteries, 

but without occlusion or sub-total occlusion, were recruited. Inclusion criteria 

were diagnostic coronary angiography within one month and informed consent. 

Exclusion criteria were previous trans-mural myocardial infarction, acute 

coronary syndrome or symptomatic deterioration during the period between 

angiography and echocardiography, unstable angina, sensitivity to albumin 

products, valvular heart disease, and previous adverse reaction to Dobutamine. 

Each patient underwent Dobutamine Stress Echocardiography Myocardial 

Contrast Echocardiography.

(iv) Echocardiography Protocol

Echocardiography was performed with the patient in the left lateral decubitas 

position. Patients underwent baseline conventional imaging at the beginning of 

the investigation. Subsequently, baseline contrast imaging was undertaken. 

During this phase, imaging parameters were chosen according to the presets of 

the Acuson CCI system to optimise myocardial contrast effect. Image presets 

were as described in Table 4.1. Optison™ infusion was commenced at the 

beginning of baseline contrast imaging and interrupted for conventional imaging 

during Dobutamine stress. Immediately after acquisition of peak stress 

conventional images, Optison™ infusion was recommenced for acquisition of 

peak stage contrast images. A delay of one minute was set between 

recommencing Optison™ infusion and image acquisition, as a steady state was 

required. Dobutamine Stress Echocardiography was performed by adapting the 

standard protocol described in the previous chapter in order to accommodate
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Optison™ infusion. Images were digitised on-line with an R-wave trigger to 

obtain a continuous loop using the Stress Echocardiography program of the 

Sequoia C256 echocardiography machine. Dobutamine was infused through a 

peripherally sited intravenous line using a mechanical pump as described 

previously, until an end-point was reached. If significant wall motion 

abnormalities were absent and the target heart rate had not been achieved (>85% 

of maximum predicted for age and sex of the patient) the final stage was 

prolonged to a maximum of 5 minutes, and/or atropine was added in bolus doses 

of 300 meg, up to a maximum of 1500 meg.

Both the parasternal and apical echocardiographic windows were utilised for 

conventional harmonic imaging. As parasternal imaging during contrast infusion 

tends to result in significant shadowing of myocardial segments deep to the 

ventricular cavities, only the apical window was used for CCI. High power 

destructive ultrasound pulses were applied for one second during baseline and 

peak stages of CCI, allowing Contrast Replenishment Time (CRT) analysis.

(v) Optison™ Infusion

Optison™ was prepared and infused using the techniques described in Chapter 2, 

with a total infusion syringe volume of 30ml. Although it was evaluated with a 

view to Power Contrast Imaging™, it became clear that the same infusion 

technique provided high quality images during Coherent Contrast Imaging™. 

Infusions were started for baseline contrast imaging, discontinued for standard 

imaging during Dobutamine infusion, and recommenced for peak stage contrast 

imaging immediately after the last conventional imaging stage. An interval of
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one minute was allowed to pass before peak contrast images were acquired, as 

steady state contrast concentration was necessary.

(vi) Clinical and Electrocardiographic Monitoring

Clinical and electrocardiographic monitoring was carried out continuously 

throughout the investigation exactly as described in Chapter 3.

(vii) Echocardiographic Image Analysis

Images were acquired digitally and stored in digital format on magneto-optical 

discs and in analogue format on VHS video.

Conventional wall motion images:

Conventional Dobutamine Stress Harmonic wall motion was analysed in the 

same way as described in Chapter 3.

Coherent Contrast Image analysis:

Contrast perfusion images were stored separately as baseline and peak stages. 

After review of all acquired images, the most representative and high quality 

baseline and peak stress images were selected and analysed for wall motion, 

contrast signal, and artefact. End-systolic frames were used for assessment of 

contrast image intensity. Wall motion was graded as normal, hypokinetic, 

akinetic, or dyskinetic in each of the myocardial regions depicted in figure 3.1. 

Contrast deficits were interpreted as genuine or artefact related based on specific 

signal characteristics and in relation to comparator segment signal as previously

230described (Table 3.2). If a segment was not visualised at baseline, it was not
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included in analysis. Reversible contrast deficits were categorised as genuine if 

contrast effect was visible in a myocardial region at baseline and either absent or 

diminished at peak stress. In regions not demonstrating peak stress contrast 

deficit, further assessment of perfusion capacity was undertaken by measurement 

of Contrast Replenishment Time (CRT). Perfusion was deemed to be impaired if 

the time interval between micro-bubble destruction and complete replenishment 

increased from baseline to peak stress. Contrast Replenishment Times were 

measured, to the nearest second in each myocardial region, from the end of each 

destructive pulse to the first point at which a systolic frame appeared to show full 

contrast signal.

(viii) Angiographic Image Interpretation

Coronary Angiographic Image interpretation was exactly as described in Chapter 

3, section 4(vii).

(ix) Statistical Analysis

Parametric variables are expressed as mean plus standard deviation. Non- 

parametric variables are expressed as median with inter-quartile range. Statistical 

significance is set at a p value of < 0.05 (two-sided).

Baseline to peak stress contrast replenishment changes were compared for 

stenotic and non-stenotic regions using the Mann-Whitney U test.

Sensitivity, specificity, negative and positive predictive values, and accuracy 

were calculated for:
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a. Conventional wall motion.

b. CCI wall motion.

c. Reversible peak stress contrast deficit.

d. Combined reversible peak stress contrast deficit and impaired contrast 

replenishment.

e. Combined peak stress contrast deficit, contrast replenishment impairment, 

and CCI wall motion abnormality.

Coronary angiography was the reference standard. Sensitivities, specificities, and 

accuracies of each CCI modality were compared with conventional wall motion 

assessment using McNemar’s test for dependent proportions. Fisher’s Exact Test 

was used for comparison of categorical values for heterogeneous groups and 

when it was not feasible to calculate McNemar’s Test due to sample size. 

Correlation of conventional imaging and CCI results with angiographic coronary 

stenosis territory were calculated using Chi square-based statistics (Phi and 

Kappa).

Alternate cases were selected for interobserver variability assessment, on an 

individual territory basis and for all territories combined. For this, two operators 

independently rated presence or absence of a peak stress wall motion abnormality 

in conventional and CCI™ modes, peak stress reversible contrast deficit, and 

contrast replenishment times. Comparison was made using the Kappa score.
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5. RESULTS

Baseline characteristics of patients:

The group consisted of 28 males and 10 females, mean age 60.9 years, standard 

deviation 9.7 years. All patients had angina but none had a clinical history of Q 

wave myocardial infarction. For other baseline characteristics and distribution of 

coronary artery stenosis, see Tables 4.2 and 4.3.

Uninterpretable and inconclusive cases (Figure 4.1):

In one case, wall motion in conventional harmonic mode and CCI™ assessment 

were both impossible due to very poor image quality. In five cases, myocardial 

perfusion and contrast wall motion assessment were not possible despite 

successful conventional harmonic wall motion assessment. This was due to poor 

image quality in two cases, peak stress hypotension requiring the patient to lie 

flat with resulting image loss in two further cases (after conventional image 

acquisition and before CCI™ image acquisition), and uneven contrast infusion 

with a suboptimal heart rate in one case. The peak heart rate of the latter case 

was 79% of target, and there did not appear to be any wall motion defect, peak 

stress contrast defect or abnormality in contrast replenishment time. However, it 

was apparent that the contrast effect was much stronger at peak stress than at 

baseline in all regions. The case was therefore excluded from wall motion 

analysis on grounds of suboptimal heart rate and from contrast analysis on 

grounds of uneven contrast infusion (and suboptimal heart rate). Thus, 

conventional Dobutamine Stress Echocardiography yielded an interpretable 

positive or negative result in 36 cases, while Coherent Contrast Imaging yielded 

an interpretable positive or negative result in 32 cases.
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Image artefact (Tables 4.4 and 4.5):

Artefact was a relatively frequent finding in contrast signal analysis, especially in 

the basal segment of the lateral wall. However, this did not usually affect the 

entirety of a coronary artery territory. Regions affected by artefact were excluded 

from contrast wall motion, signal intensity, and replenishment time analysis.

For territorial results according to each imaging modality, see Tables 4.6 and 4.7.

(i) Wall Motion Assessment: Conventional Harmonic Imaging

Interpretation of standard wall motion was possible in 37 out of 38 cases. One 

case was inconclusive on grounds of normal wall motion at sub-optimal heart 

rate, and was therefore excluded form analysis. Apical thinning and hypokinesia 

was evident in two cases due to previous unrecognised myocardial infarction, but 

both developed ischaemic wall motion abnormalities in other left anterior 

descending territory segments. For detection of >50% coronary artery stenosis 

among 108 coronary territories in these cases, sensitivity was 72.5% (95% 

confidence interval 58.0 to 83.7%), specificity was 94.7% (95% confidence 

interval 84.5 to 98.6%), positive predictive value was 92.5% (95% confidence 

interval 78.5 to 98.0%), and negative predictive value was 79.4% (95% 

confidence interval 63.2 to 90%). Overall accuracy was 84.3% (95% confidence 

interval 75.7 to 90.3%), while correlation with angiography was 0.70 (Chi square 

based Phi). For details, see Table 4.9.

Using standard wall motion assessment in the 32 patients for whom CCI based 

imaging was assessable resulted in a sensitivity of 71.7% (95% confidence
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interval 56.3 to 83.5%%), specificity of 94% (95% confidence interval 82.5 to 

98.4%), positive predictive value of 91.7% (95% confidence interval 76.4 to 

97.8%), and negative predictive value of 78.3% (95% confidence interval 61 to 

89.7%). Overall accuracy was 83.3% (95% confidence interval 74.0 to 89.9 %), 

while correlation with angiographic result was 0.678 (Chi square based Phi). For 

details, see Table 4.8.

(ii) Wall Motion Assessment: Conventional Harmonic Compared with 

Coherent Contrast Imaging™

Using CCI based wall motion assessment for identification of >50% coronary 

artery stenosis among 96 coronary territories of 32 patients, sensitivity was 

63.0% (95% confidence interval 47.5% to 76.4%), specificity was 100% (95% 

confidence interval 91.1% to 100%), positive predictive value was 100% (95% 

confidence interval 85.7% to 100%), and negative predictive value was 74.6% 

(95% confidence interval 54.8% to 88.1%). Overall accuracy was 82.3% (95% 

confidence interval 72.9% to 89.1%), while correlation with angiographic result 

was 0.69 (Chi square based Phi). For details, see Tables 4.8 and 4.9.

When conventional and CCI wall motion were compared among these thirty-two 

patients, there were no statistically significant differences for sensitivity, 

specificity, predictive values, overall accuracy, or angiographic correlation 

(Table 4.8). Furthermore, there were no statistically significant differences 

between such parameters among the 108 territories assessable by conventional 

wall motion and the 96 territories assessable by CCI wall motion (Table 4.9).
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The agreement between conventional harmonic wall motion assessment and CCI 

wall motion assessment among cases for which both techniques were applicable 

is depicted in Table 4.10. Results matched in 86.5% of cases, with a Kappa score 

of 0.70, p<0.001. Tables 4.11, 4.12, and 4.13 denote agreement between the 

techniques for each coronary territory.

(iii) Conventional Harmonic Imaging Compared with Peak Stress Contrast 

Assessment

Two patients had apical peak stress contrast defects at rest associated with 

previous unnoticed myocardial infarction. These two segments were excluded 

from analysis. Using visually appreciable contrast defects at peak stress for 

identification of >50% coronary artery stenosis among 83 interpretable coronary 

territories of 32 patients, sensitivity was very low at 37.5% (95% confidence 

interval 23.2% to 54.2%), specificity was excellent at 97.7% (95% confidence 

interval 86.5% to 99.9%), positive predictive value was 93.8% (95% confidence 

interval 67.7% to 99.7%), and negative predictive value was 63.2% (95% 

confidence interval 36.5% to 84.2%). Overall accuracy was 68.7% (95% 

confidence interval 57.9% to 78.4%, while correlation with angiography was low 

at 0.45, (Chi square based Phi).

When the above results were compared with figures for conventional wall 

motion assessment among the same 32 cases, the differences between 

sensitivities and accuracies were statistically significant, whereas the differences 

between specificities and predictive values were not (Table 4.14).
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(iv) Contrast Replenishment Time Analysis

There were one hundred and ninety two myocardial regions among the thirty-two 

patients included for analysis of CCI data, representing the six regions depicted 

in Figure 3.1. Artefact was present in seventeen myocardial regions at baseline, 

and a further six regions at peak stress. Reversible peak stress defects were 

present in thirty-three myocardial regions. Hence, there were one hundred and 

seventy five myocardial regions at baseline and one hundred and thirty six 

myocardial regions at peak stress that were suitable for Contrast Replenishment 

Time analysis (CRT) (Table 4.15).

At baseline, CRT was a median of 5 seconds (interquartile range 4 to 6) in both 

stenotic and non-stenotic coronary territories (Table 4.16). There were minor 

differences in CRT between regions, as depicted in Table 4.17. The lateral region 

in the apical 4-chamber view had the longest baseline CRT, with a median of 6 

seconds and an inter-quartile range of 4 to 6 seconds, compared to medians of 5 

seconds for the septal region and 4 seconds for other regions in the apical 2- 

chamber view. These differences were statistically significant, with a 2-sided p 

value of 0.015, based on the Kruskall-Wallis Test for comparison of multiple 

groups of non-parametric data.

Baseline to peak stress CRT changes were analysed according to presence or 

absence of stenosis in the supplying coronary artery (Table 4.18). There was a 

general trend of increase in CRT in regions with stenotic arterial supply and 

reduction in CRT in regions with non-stenotic arterial supply. In regions supplied 

by a stenotic coronary artery, there was a median increase in CRT of 33.3%
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(interquartile range 0 to 60%), whereas in regions supplied by a non-stenotic 

coronary artery, there was a median decrease in CRT of 25% (interquartile range 

-  40 to 0%). The difference between these was statistically significant, with a 2- 

sided p value < 0.001, based on the Mann-Whitney U Test for comparison of two 

groups of non-parametric data.

Analysis of CRT changes in separate regions (Table 4.19) demonstrated similar 

trends for the apex in both 2-chamber and 4-chamber views and the inferior wall 

in the apical 2-chamber view. In septal and lateral walls supplied by a stenotic 

artery, there was no median percentage change in CRT, while there was a median 

decrease in CRT of 33.3% in septal and lateral walls supplied by a non-stenotic 

artery. In anterior wall regions supplied by a stenotic artery, the median CRT 

increased by 50%, while anterior wall regions supplied by a non-stenotic artery 

did not show any median change in CRT. With the exception of CRT changes in 

the lateral wall, the differences in CRT between regions supplied by stenotic and 

non-stenotic arteries were all statistically significant. For incorporation of CRT 

data into other aspects of CCI, an increase from baseline to peak stress was taken 

to imply significant stenosis in the supplying coronary artery, while either a 

reduction or no change in CRT was taken to imply a non-stenotic supplying 

artery.

Changes in CRT for combined and separate territories are depicted in Figures 4.2 

through to 4.8. Delayed apical contrast replenishment in a case with left anterior 

descending coronary artery stenosis is shown in figure 4.9.
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(v) Combined Peak Stress Contrast Assessment and Contrast 

Replenishment Time Analysis

By assuming peak stress contrast defects and increased baseline to peak contrast 

replenishment time to imply coronary artery stenosis, correlation with 

angiography among 85 assessable territories was high at 0.815 compared to 

0.678 for conventional wall motion assessment (2-sided p value 0.036). While 

specificity, positive and negative predictive values, and overall accuracy were 

similar to the values obtained by conventional wall motion assessment, 

sensitivity appeared greater using the CCI technique than with conventional wall 

motion assessment, although the difference was not statistically significant 

(85.7% vs. 71.7%, 2-sided p value based on Fisher’s Exact Probability = 0.128) 

(Table 4.20).

(vi) Combined Peak Stress Contrast Assessment, Contrast Replenishment 

Time Analysis, and Contrast Wall Motion Assessment

Combined assessment of peak stress contrast defects, contrast replenishment 

time, and contrast wall motion abnormalities was possible for 96 coronary artery 

territories in 32 patients. Assuming abnormalities in any of the three parameters 

to imply coronary stenosis resulted in a slightly higher sensitivity than that for 

conventional wall motion assessment (82.6% vs. 71.7%), although this did not 

reach statistical significance. Specificity, positive and negative predictive values, 

and overall accuracy were equivalent for each technique. Correlation with 

angiographic result appeared slightly better for combined peak stress contrast 

defect, CRT delay, and CCI wall motion than for conventional wall motion
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assessment alone, although statistical significance was not reached (Chi square 

based Phi 0.80 vs. 0.68, 2-sided p value = 0.070). (Table 4.21).

When conventional imaging among all 108 assessable territories was compared 

with combined peak stress contrast defect, CRT delay, and CCI wall motion 

among 96 assessable territories, there were no significant differences for 

sensitivity, specificity, predictive values, or overall accuracy. Again, correlation 

between combined CCI parameters and angiographic result appeared slightly 

better than correlation between conventional wall motion assessment and 

angiographic result, but the difference did not reach statistical significance using 

a 2-sided p value (Chi square based Phi 0.797 vs. 0.696, p = 0.106). (Table 4.22).

(vii) Reproducibility

Interobserver variability testing was undertaken for sixteen cases, after selecting 

alternate cases from the group of thirty-two cases with satisfactory contrast 

images. Intraobserver variability was not assessed, as it was apparent that recall 

of previously studied images would bias the reproducibility assessment.

For combined territories, agreement between raters for conventional wall motion 

abnormality was 93.8%, with a Kappa score of 0.87 (p<0.001). For CCI™ based 

wall motion, agreement was 91.7%, with a Kappa score of 0.81 (p<0.001). For 

presence or absence of reversible peak stress contrast deficit, agreement was 

95.1%, Kappa score 0.83 (p<0.001). For presence of either a reversible peak 

stress contrast deficit or abnormal contrast replenishment time, agreement was 

93%, Kappa score 0.87 (p<0.001). For presence of either reversible contrast

138



abnormality or CCFM wall motion abnormality, agreement was 95.8% with a 

Kappa score of 0.92 (p<0.001). These levels of agreement are very high, and it is 

noteworthy that although contrast replenishment timing was subject to minor 

variation between raters, this seldom resulted in discrepancy between the two 

raters when criteria for impaired or preserved perfusion were applied. For 

individual coronary territories, agreement levels were generally high, although 

statistical significance was not always reached because of the small numbers 

involved. For details, see Table 4.23.

6. DISCUSSION

These results relate to three core aspects of low mechanical index myocardial 

perfusion imaging, namely; CCI wall motion abnormality, peak stress contrast 

deficit, and peak stress contrast replenishment abnormality.

(i) Coherent Contrast Imaging™ Wall Motion

Despite the advantage of single pulse cancellation in CCI over the potential 

frame rate limiting disadvantage of multiple pulse cancellation techniques, CCI 

frame rates still cannot match those of conventional harmonic imaging, at 

approximately 20Hz compared to 40Hz. This might easily lead to CCI wall 

motion assessment being inferior to standard wall motion assessment, reducing 

the stated theoretical benefits of real-time over intermittent imaging. The finding 

that there is strong agreement between wall motion assessment in conventional 

harmonic and CCI modes is therefore important if wall motion and perfusion 

assessment are to be combined in a single stress test. Although the differences in 

sensitivity and specificity between these imaging techniques did not reach
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statistical significance, it is noteworthy that it appears as if CCI wall motion is 

less sensitive but more specific than conventional wall motion assessment. The 

specificity of 100% for the former method is surprising and, in the context of 

moderate sensitivity, suggests that the threshold for identifying abnormal wall 

motion is simply too high. Despite this, it has been established that wall motion 

assessment in CCI mode during Dobutamine Stress Echocardiography is feasible 

and sufficiently accurate, especially if additional components of CCI imaging are 

to be incorporated to improve sensitivity of the technique as a whole.

It is possible to draw some conclusions from subgroup analysis according to 

separate coronary artery territories. The overall agreement between CCI and 

conventional imaging was excellent in all three territories, although the small 

number of stenotic Circumflex Coronary Arteries resulted in statistically non

significant results for this territory. It certainly seems appropriate to draw the 

conclusion that wall motion agreement between the two techniques is high for 

the Left Anterior Descending and Right Coronary Artery territories.

This was among the first studies of its kind to confirm the high level of wall 

motion agreement between CCI and conventional harmonic imaging during a 

Dobutamine Stress protocol. The results compare favourably with findings from 

other similar studies using different ultrasound systems. For example, agreement 

between angiography and wall motion was approximately ten percent inferior at 

seventy two percent in the series reported by Porter et al 205. Results of a study 

comparing Optison™ enabled CCI wall motion assessment with SPECT based 

myocardial perfusion assessment on a territorial basis were published later, 

suggesting a similar level of agreement 261. Although Dipyridamole was used as
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the stressor and conventional wall motion was not assessed, level of agreement 

between SPECT and CCI wall motion in the study by MA Oraby et al and 

conventional wall motion and CCI wall motion in this study are similar, 

suggesting a real effect is present. Furthermore, extrapolation to slightly different 

protocols might be justified.

(ii) Peak Stress Contrast Deficit

Using intermittent imaging, Wei et al demonstrated that peak signal intensity fell 

more modestly than replenishment rate among mildly and severely stenotic 

regions under hyperaemic stress (to ninety-six and seventy-one percent of 

baseline respectively) 144. There is also real-time imaging data to support the 

notion that Dobutamine and Adenosine induce a marked reduction in rate of 

contrast replenishment but only a modest reduction in peak stress contrast signal

158intensity . This might support the notion that CCI peak stress contrast deficit 

should be relatively insensitive for coronary stenosis. However, as may have 

been the case with CCI wall motion, the threshold for identifying abnormal 

perfusion is likely to have been too high, as the coinciding specificity was very 

high at nearly ninety-eight percent. Notwithstanding this, the magnitude of 

inferiority for this method’s overall accuracy compared to conventional wall 

motion assessment is both statistically significant and clinically relevant. It 

would appear that CCI peak stress deficit alone is insufficient for identifying 

regions likely to be supplied by a stenotic artery.
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(iii) Contrast Replenishment Time

The landmark series of experiments conducted by Wei et al documented the 

relationship between signal intensity, rate of signal intensity rise, and

Btreplenishment time. This is expressed by the exponential function y=A(l-exp' ), 

where y is the signal intensity at time t, A is the plateau signal intensity, and 6 is 

the rate constant determining the rate of rise of signal intensity 144. In their series 

of experiments, contrast replenishment rate during hyperaemia reduced to fifty 

eight percent of baseline rate in territories of minor coronary stenosis and forty 

three percent of baseline rate in territories of severe stenosis. Such findings are in 

keeping with the results of CRT analysis in this study. Unlike Wei and 

colleagues’ findings relating to intermittent imaging, the CCI results discussed 

here did not reveal contrast replenishment rate reduction (CRT increases) to be 

universal in stenotic regions. This relates in part to the fact that the University of 

Virginia group utilised open-chest dogs and artificial single coronary stenosis in 

otherwise entirely normal vessels, thereby removing most signal artefact and any 

confounding factors such as small vessel disease.

When myocardial regions in the present study were analysed separately, there 

was no significant difference between Dobutamine Stress CRT in lateral walls 

supplied by stenotic and non-stenotic coronary arteries. All other regions 

demonstrated significant differences. The reasons for the lateral wall results are 

unclear, although a relative deficiency of Circumflex artery stenosis compared to 

stenoses of the Right and Left Anterior Descending vessels may be partly 

responsible. Another important finding when regions were analysed separately is 

the fact that, while the general trend in CRT was a decrease in regions supplied
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by a normal vessel and an increase in regions supplied by a stenotic vessel, septal 

regions supplied by a stenotic vessel and anterior regions supplied by a non- 

stenotic vessel both exhibited a median change of zero. Septal myocardium is 

well supplied by septal perforator vessels, which arise from the Left Anterior 

Descending coronary artery at various points along its course. In theory, a 

stenosis in the mid Left Anterior Descending coronary artery, prior to which 

several septal perforators have originated, might not be expected to cause a large 

stress induced septal wall contrast defect. Reasons for the absence of a median 

reduction in CRT in non-stenotic anterior regions are unclear.

Previous studies have generally utilised specifically designed hardware and 

processing software to quantify both myocardial contrast signal intensity and 

replenishment rate. This has not been particularly suitable for a clinical setting 

until very recently, with the advent of such facilities as an integral part of certain 

contrast perfusion packages. This CCI study utilised a semi-quantitative method 

based on visual estimation of contrast signal intensity and stopwatch estimation 

of contrast replenishment rate. While it was readily evident whether a reversible 

peak stress contrast deficit was present or absent, contrast replenishment time 

estimation was more difficult. It became clear that it was difficult to be certain of 

the exact point in time at which maximum contrast replenishment had occurred. 

To measure to fractions of a second would be to overestimate the accuracy of 

visual assessment. Furthermore, even precise signal intensity based 

quantification would have been an oversimplification, as replenishment in a 

“region of interest” is highly likely to differ from an adjacent region affected by 

the same arterial supply, and could therefore not be taken as representative of the
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territory as a whole. It appears acceptable to use visual and stopwatch estimation 

as long as the above limitations are understood. However, these results may well 

have demonstrated true superiority over conventional wall motion assessment if 

precise quantification tools had been available.

Despite the obvious limitations of this in terms of subjectivity and therefore 

precision, the results do suggest that this form of CRT analysis, when combined 

with peak stress contrast deficit assessment, allows identification of stenotic 

territories with a sensitivity at least equivalent to that of conventional wall 

motion assessment.

(iv) Systolic and Diastolic Frames

Moving images are difficult to interpret for micro-bubble signal intensity. It 

seems apparent, even during visual assessment, that there are subtle differences 

in grey scale between systolic and diastolic phases. A plausible explanation for 

this might be that different diameter myocardial sections could result in the 

illusion of different signal intensity. However, there is data to support an 

alternative notion that signal intensity genuinely differs between systolic and 

diastolic frames. Bekeredjian et al demonstrated this phenomenon during real

time perfusion imaging in pigs (Sonovue™ infusion) and then in humans 

(Optison™ boluses) in 2002 276. The explanation for this is not clear, but the data 

does suggest higher signal intensity in systolic frames. The decision to choose 

systolic frames for comparisons in this series was based in part on the fact that 

they allow a greater section of myocardium to be visualized than diastolic 

frames. It was fortuitous that it was later recognized that systolic frames
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displayed greater signal intensity. Comparison of systolic and diastolic signal 

intensity was not done in any systematic way in this study.

(v) Subendocardial and Transmural Micro-bubble Signal

As with Power Contrast Imaging™, perfusion may not always be evenly 

distributed across the entire myocardial wall. There is evidence that Power Pulse 

Inversion imaging can detect subendocardial perfusion impairment during 

Adenosine Stress in humans, but detection of this phenomenon tends to require 

dedicated imaging or processing 277. There was no consistent pattern of 

transmural micro-bubble signal gradient in the series presented here, although 

this was not part of the protocol and was not specifically assessed.

(vi) Optison™ Infusion

As previously discussed, Optison™ has certain limitations when infusion is 

attempted instead of bolus injection. It is certainly conceivable that an ultrasound 

contrast agents designed specifically for infusion might have allowed more 

accurate perfusion data to be gained.

(vii) Single, Double, Triple, and Complex Coronary Artery Disease

As discussed in Chapter Three, the coronary artery disease patterns evaluated 

here were relatively simple. Extrapolation of these results to more complex 

situations should therefore be avoided. It remains to be seen whether CCI is 

capable of depicting such complex disease and perfusion patterns.
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(viii) Choice of Stressor

Dobutamine is an excellent stressor in terms of increasing myocardial workload 

and it follows that perfusion defects should also be produced. Although there is a 

belief that Dobutamine is less effective than other stressors such as Adenosine at 

producing perfusion defects in stenotic coronary territories, there is data to 

suggest that it is very effective in precisely this role during real-time myocardial

• • * 1 5 8  •perfusion imaging . In addition, simultaneous wall motion and perfusion 

assessment demand that effective induction of both be achieved.

(ix) Comparison with Dobutamine Stress Echocardiography and Coronary 

Angiography

As discussed previously, coronary angiography is not a physiological assessment 

of myocardial perfusion and ischaemia. Nevertheless, it remains necessary to 

evaluate the comparability of Coherent Contrast Imaging™ and Dobutamine 

Stress Echocardiography in diagnosis of coronary disease using coronary 

angiography as the gold standard, as the latter is still the main determinant of 

coronary artery disease treatment strategy and a strong indicator of prognosis.

7. CONCLUSIONS

Regarding detection of single or double vessel coronary artery stenosis of greater 

than 50% luminal diameter using visual assessment during CCI™ imaging:

1. Dobutamine Stress Coherent Contrast Imaging™ is feasible in a clinical 

setting.

2. Peak Stress Contrast Deficits have a very poor sensitivity for underlying 

coronary artery stenosis.
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3. Increased Contrast Replenishment Time between baseline and peak stress 

may indicate underlying coronary artery stenosis, whereas a decrease in 

Contrast Replenishment Time may indicate a patent coronary artery.

4. There is strong agreement between wall motion assessment in the 

Conventional Harmonic and Coherent Contrast Imaging™ modes. There is 

evidence to reject Null Hypothesis 1. Alternative Hypothesis 1 is accepted.

5. Sensitivity of combined assessment of wall motion and micro-bubble signal 

characteristics during Coherent Contrast Imaging™ is not significantly 

greater than the sensitivity of wall motion assessment in Conventional 

Harmonic mode alone. There is insufficient evidence to accept Alternative 

Hypothesis 2. Null Hypothesis 2 is accepted.

6. Specificity of combined assessment of wall motion and micro-bubble signal 

characteristics during Coherent Contrast Imaging™ is equivalent to the 

specificity of wall motion assessment in Convention Harmonic mode alone. 

There is sufficient evidence to reject Null Hypothesis 3. Alternative 

Hypothesis 3 is accepted.

8. LIMITATIONS

1. As with the Power Contrast Imaging™ study, greater accuracy may have 

been achieved using quantitative measurement techniques rather than visual 

assessment.

2. The Optison™ infusion used in this CCI study was initially tested in a 

Power Contrast Imaging™ protocol. Imaging characteristics were good in 

CCI cases using the same infusion concentration and rate, but there was no 

formal reassessment of optimal infusion method for CCI purposes.
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3. As discussed in relation to the Power Contrast Imaging™ work in Chapter 

Three, the following are acknowledged as limitations:

a. Coronary angiography was used as the reference test.

b. Small vessel coronary disease could have been present in some cases.

c. Sample size is relatively small.
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CHAPTER FIVE 

SUMMARY AND IMPLICATIONS FOR FUTURE RESEARCH AND 

CLINICAL PRACTICE

The first phase of this research established a reliable means of infusing 

Optison™ for purposes of a steady state contrast effect during Adenosine 

vasodilator stress. It is possible to utilise bolus doses during a stress protocol, but 

it was reasoned that, for these studies, a reliable steady state ultrasound contrast 

effect should be achieved. This success enabled progress with the second and 

third phases of the investigation into myocardial perfusion contrast 

echocardiography, namely Power Contrast Imaging™ and subsequently 

Coherent Contrast Imaging™. Although the Optison™ infusion method 

described in Chapter 1 was not specifically tested in conjunction with Coherent 

Contrast Imaging ™, it became clear during early experience with this method 

that the infusion technique that had been developed with a view to Power 

Contrast Imaging™ also provided high quality myocardial contrast images 

during the real-time technique. While other solutions such as infusion of saline 

through a reservoir containing the contrast agent have been used with success, 

many investigators have turned to other infusible contrast agents, such as 

Levovist®. Further developments in ultrasound contrast design will completely 

resolve issues of micro-bubble buoyancy and separation from solution, enabling 

infusion for situations where a steady state contrast effect is required over long 

periods, especially if attempts at contrast quantification are to be made. Thus, the 

method for infusing Optison™ described in this thesis will become obsolete.
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Nevertheless, the method allowed excellent quality contrast signal generation for 

the perfusion techniques investigated here.

Power Contrast Imaging™ might theoretically have been more sensitive than 

wall motion assessment for underlying ischaemia due to coronary artery stenosis. 

However, the results discussed in Chapter 3 certainly do not indicate such a high 

sensitivity. Indeed, sensitivity was at best moderate, while specificity was 

notably high. Such results suggest that the particular combination of imaging 

system, hardware, software, and vasodilator protocol used in this study is not 

appropriate for further investigation without modification, and is certainly 

unsuitable for clinical use. Reasons for the low sensitivity and overall accuracy 

have been discussed, including issues relating to thresholds for determining a 

contrast deficit, quantification, and trigger intervals. However, it is difficult to 

see how this and similar intermittent stimulated acoustic emission methods can 

play a role in clinical investigation now that real-time imaging systems are 

widely available and, at least according to a number of single institution studies, 

highly accurate. The only conceivable scenario in which intermittent stimulated 

acoustic emission methods might be subject to renewed interest would be failure 

to reproduce the early successes of real-time imaging techniques in clinical 

practice outside the handful of institutions that have thus far declared their 

impressive results. It is otherwise unlikely that intermittent imaging techniques 

will have a significant role in the future, and the results detailed in Chapter 3 will 

be of historical value only.
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Real-time myocardial contrast echocardiography offers the possibility of 

simultaneous wall motion and perfusion assessment, and therefore has theoretical 

advantages over intermittent imaging techniques, which necessarily discard wall 

motion data. Coherent Contrast Imaging has been shown in the study detailed in 

Chapter 4 to allow accurate wall motion assessment and to allow an insight into 

myocardial perfusion dynamics during Dobutamine stress. It is noteworthy that 

the sensitivity of a reversible peak stress contrast deficit, in terms of a visually 

appreciable reduction in contrast signal intensity, was poor for underlying 

coronary artery stenosis. This was a similar finding to those discussed in Chapter 

Three, where a peak stress contrast deficit had a low and clinically unhelpful 

sensitivity for underlying coronary stenosis. It is unclear why the case remains 

the same for peak stress contrast deficit in real-time myocardial contrast 

echocardiography using Coherent Contrast Imaging™, but certain technical 

issues such as the reliability of visual quantification might have played a role. 

The fact that timing of contrast replenishment rates after destructive ultrasound 

pulses increased the sensitivity of the technique as a whole is a triumph for the 

real-time imaging technique over its’ predecessor Power Contrast Imaging™ 

modality. This enabled the sensitivity and specificity of combined Coherent 

Contrast Imaging™ wall motion and perfusion assessment to reach that of 

conventional stress echocardiography. A caveat must be, however, that 

conventional wall motion imaging allowed a greater number of cases to be 

successfully investigated, owing in part to echocardiographic window problems 

in some Coherent Contrast Imaging™ cases. It would be incorrect to dismiss this 

fact, as the diagnostic effectiveness of the new method would be slightly lower 

on an “intention to diagnose” basis.
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A question that should be addressed is the suitability of Coherent Contrast 

Imaging as a clinical tool to be used outside the research laboratory. This 

research suggest that the technique, at least in combination with other parts of the 

real-time imaging protocol detailed in Chapter Four, is currently not suitable as a 

clinical tool. Stress echocardiography, a well-established conventional method 

for which there is a wealth of supporting evidence, would appear to have a 

similar accuracy but greater applicability than Coherent Contrast Imaging ™.

Further research in other institutions is ongoing, with a number of variations in 

imaging system, ultrasound contrast agent, and stress protocol. Data is emerging 

to suggest real-time imaging techniques are very accurate for detecting coronary 

disease and ischaemia, and indeed of some prognostic value. However, even 

current large series cannot be taken as an indication to proceed with widespread 

perfusion based imaging instead of other well-established methods. Results need 

to be repeatable in a number of institutions, and there are certain to be issues of 

standardisation with respect to imaging system settings, contrast agent use, stress 

protocols, quantification, and interpretation of findings. If accuracy of real-time 

perfusion imaging is as high in widespread use as some investigators have shown 

in single centres, and the issues above are addressed, the future prospects for 

clinically applied real time myocardial contrast stress echocardiography are very 

good.
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APPENDIX ONE 

1. TABLES

Key to Tables:

M = Male 

F = Female 

Y = Yes 

N = No

DSE = Dobutamine Stress Echocardiography 

PCI = Power Contrast Imaging™

CCI = Coherent Contrast Imaging™

LAD = Left Anterior Descending Coronary Artery

CX = Circumflex Coronary Artery

RCA = Right Coronary Artery

WMA = Wall Motion Abnormality

PSCD = Peak Stress Contrast Deficit

CRT = Contrast Replenishment Time anomaly

95% Cl = 95% Confidence Interval

IQR = Interquartile Range



Table 1.1

Examples of Transpulmonarv Ultrasound Contrast Agents:

Agent Gas Shell or 
Stabiliser Manufacturer

Albunex ® Air Albumin
Mallinckrodt pharmaceuticals 

(now part of Amersham 
Healthcare)

Levovist ® Air Palmitic acid Schering AG, Berlin, Germany

Optison™ Octafluoro-
propane Albumin

Amersham Healthcare (GE 
Healthcare Bio-Sciences: 

United Kingdom)

Definity™ Perflouoro-
propane Liposome DuPont Pharmaceutical Co., 

Wilmington DE, USA

Sonazoid™ 
(NC 100100)

Perfluoro-
carbon Phospholipid Amersham Healthcare

SonoVue™
(BR1)

Sulphur-
hexafluoride Phospholipid Bracco Diagnostics Inc., 

Princeton, NJ 08540, USA

Imavist ® Perfluoro-
hexane Surfactant

Alliance Pharmaceuticals, San 
Diego, CA, USA

A I700 ™ Perfluoro-
carbon

Phospholipid 
and L-lactide 
co-glycolide

Accusphere Inc., Watertown, 
MA, USA
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Table 2.1

Clinical characteristics among the twelve subjects:

Case Age Sex Stenotic
Territory

(% of
luminal

diameter)

Resting 
Heart rate 

range
(to nearest 5 
beats /min)

Main
Adenosine

side
effect

Completed
Adenosine

infusion

1 75 M LAD
90% 70-80 Dyspnoea N

2 64 M c x
70%

60-65 Flushed Y

3 63 M
LAD
50%

65-75 Dyspnoea Y

4 69 F CX 70%, 
LAD 50% 80-90 Dizziness Y

5 54 M
LAD
90%

75-80 Chest pain N

6 75 F
CX
90%

50-55 Dyspnoea N

7 58 F
CX
50%

65-80 Dyspnoea Y

8 70 M CX 90%, 
LAD 50% 70-75 Dyspnoea Y

9 73 F
LAD
70%

60-65 Dyspnoea N

10 59 M
LAD
70%

55-60 Dizziness Y

11 54 M
CX
70%

60-65 Nil Y

12 63 M
LAD
70%

70-75 Nil Y
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Table 2.2

Summary of undiluted infusions (cases 1 to 4)

(Bold print highlights acceptable image quality)

Rate Trigger
settings

Acceptable 
quality at 

baseline (of 4)

Acceptable 
quality at peak 

(of 4)

Optison™ deposits 
in tubing (of 4)

72
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 0 NA NA

1:8 0 NA NA

36
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 0 NA NA

1:8 0 NA NA

24
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 4 0 2

1:6 3 NA NA

1:8 0 NA NA

18
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 3 0 2

1:6 4 NA NA

1:8 3 NA NA

14
(14.4)
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 0 NA NA

1:8 0 NA NA
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Table 2.3

Summary for diluted infusion A - 6ml Optison™ in 15 ml solution (cases 5 to 8)

(Bold print highlights acceptable image quality)

Rate Trigger
settings

Acceptable 
quality at 

baseline (of 4)

Acceptable 
quality at peak 

(of 4)

Optison™ deposits 
in tubing (of 4)

180
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 0 NA NA

1:8 0 NA NA

90
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 2 0 1

1:8 2 NA NA

60
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 2 2 0

1:6 4 0 1

1:8 0 NA NA

45
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 3 NA NA

1:8 0 NA NA

36
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 0 NA NA

1:8 0 NA NA
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Table 2.4

Summary for diluted infusion B - 6ml Optison™ in 30 ml solution (cases 9 to 

12)

(Bold print highlights acceptable image quality)

Rate Trigger
settings

Acceptable 
quality at 

baseline (of 4)

Acceptable 
quality at peak 

(of 4)

Optison™ deposits 
in tubing (of 4)

360
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 0 NA NA

1:8 0 NA NA

180
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 4 NA NA

1:8 4 NA NA

120
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 4 4 0

1:6 4 NA NA

1:8 3 NA NA

90
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 1 NA NA

1:8 4 NA NA

72
ml/hr

1:1 0 NA NA

1:2 0 NA NA

1:4 0 NA NA

1:6 0 NA NA

1:8 0 NA NA
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Table 2.5

Power Contrast Imaging™ Results: Summaries of all cases using most suitable 

trigger interval

Case
Optison

TM

Dilution

Best
Baseline
Infusion

rate

Best
Baseline
Trigger
Interval

Contrast 
effect at 

Peak 
stage

Optison
TM

deposits 
in tubing

Revers
-ible

deficit
ECG

1 Not
diluted 24 ml/hr 1:4 Poor Yes NA Pos

2 Not
diluted 24 ml/hr 1:4 Poor Yes NA Neg

3 Not
diluted 18 ml/hr 1:4 Poor Yes NA Neg

4 Not
diluted 18 ml/hr 1:4 Poor Yes NA Inc

5 6ml in 
15ml 60 ml/hr 1:4 Good No No Inc

6 6ml in 
15ml 60 ml/hr 1:4 Good No No Inc

7 6ml in 
15ml 90 ml/hr 1:6 Poor Yes NA Inc

8 6ml in 
15ml 60 ml/hr 1:6 Poor Yes NA Pos

9 6 ml in 
30 ml

120
ml/hr 1:4 Good No No Inc

10 6 ml in 
30 ml

120
ml/hr 1:4 Good No No Neg

11 6 ml in 
30 ml

120
ml/hr 1:4 Good No No Neg

12 6 ml in 
30 ml

120
ml/hr 1:4 Good No No Neg

NA = Not Assessable due to poor image quality
Neg = Negative (No electrocardiographic changes)
Pos = Positive (Significant ST segment depression)
Inc = Inconclusive (Non-specific T wave changes or Adenosine terminated

early)
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Table 3.1

Standard Power Contrast Imaging™ Settings on Acuson Sequoia C256

Transmit Power Full, 0 dB

Filter 2

Gate 2

Post Processing map E3+1

Depth Level of Mitral Valve

Dynamic Range 55

Persistence 0

Doppler Gain 65

Space Time T3

Edge -3

Frequency Harmonic

R-wave Trigger N=4
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Table 3.2

Interpretation of perfusion defects:

ANALYSED SEGMENT COMPARATOR SEGMENT(S)

Basal Septum (A4c) Basal Lateral (A4c)

Mid Septum (A4c) Basal Septum, Mid Lateral (A4c)

Basal Lateral (A4c) **

Mid Lateral (A4c) Basal Lateral (A4c)

Apex (A4c) Mid Septum and Mid Lateral (A4c)

Basal Inferior (A2c) Basal Anterior (A2c)

Mid Inferior (A2c) Mid Anterior, Basal Inferior (A2c)

Basal Anterior (A2c) **

Mid Anterior (A2c) Basal Anterior, Mid Inferior (A2c)

Apex (A2c) Mid Inferior and Mid Anterior (A2c)

** The basal anterior and basal lateral walls are often poorly visualised. A 

perfusion defect was only deemed present in these if there was evidence of 

perfusion impairment in the adjacent proximal segments of the anterior and 

lateral walls respectively, and if the image quality for the entire myocardium was 

very good at baseline.

A4c = Apical four chamber view 

A2c = Apical two chamber view
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Table 3.3

Baseline characteristics

RISK FACTOR NUMBER (of 28 cases interpretable 
by both DSE and PCI)

Diabetes 9

Hypertension 9

Hypercholesterolaemia (total 
cholesterol >5.2 mmol/1) 14

Family history of premature Coronary 
Artery Disease 10

Peripheral arterial disease 4

Obesity 10

Smoking 5

Male 23

Female 5
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Table 3.4

Coronary angiographic stenoses > 50%

TERRITORY NUMBER (of 28 cases interpretable 
by both DSE and PCI)

LAD alone 10

RCA alone 5

CIRCUMFLEX alone 0

LAD + RCA 4

LAD + CIRCUMFLEX 6

RCA + CIRCUMFLEX 3

TOTAL NUMBER OF STENOSES 41
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Table 3.5

Comparative ability of PCI and DSE to detect coronary artery stenosis (28 cases

interpretable by both DSE and PCD

Among cases for which both DSE and PCI were interpretable

(84 territories)

DSE PCI Test P Value (2 sided)

Sensitivity
(%) 

(95% Cl)

85.4

(7 0 .1 -9 3 .9 )

58.5 

(42.2 -  73.3)
McNemar 0.003

Specificity
(%) 

(95% Cl)

95.4 

(82.9 -  99.2)

88.4 

(74.1 -9 5 .6 )
McNemar 0.453

Positive 
Predictive 
Value (%) 
(95%C\)

94.6

(8 0 .5 -9 9 .1 )

82.8

(63 .5 -93 .5 )
Fisher’s

Exact
0.226

Negative 
Predictive 
Value (%) 
(95% Cl)

87.2

(71 .3 -9 5 .4 )

69.1

(49 .2 -84 .1 )
Fisher’s

Exact 0.034

Accuracy
(%) 

(95% Cl)

90.0

(8 1 .6 -9 5 .5 )

73.8 

(62.9 -  82.5)
McNemar 0.003

Angio.
correlation

(Phi)

0.81

(p<0.001)

0.49

(p<0.001)
Z 3.79 <0.001
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Table 3.6

Comparative ability of PCI and DSE to detect coronary artery stenosis (30

interpretable DSE cases and 28 interpretable PCI cases)

Among 30 interpretable DSE cases and 28 interpretable PCI
cases

DSE cases 
(90 territories)

PCI cases 
(84 territories)

Test
Statistic P Value (2-sided)

Sensitivity
(%) 

(95% Cl)

86.1
(71.4-94.2)

58.5 
(42.2 -  73.3)

Fisher’s
Exact 0.007

Specificity
(%) 

(95% Cl)

95.7 
(84.3 -  99.3)

88.4 
(74.1 -95 .6 )

Fisher’s
Exact 0.252

Positive 
Predictive 
Value (%) 
(95% Cl)

94.9
(81 .4-99 .1)

82.8
(63.5-93.5)

Fisher’s
Exact 0.127

Negative 
Predictive 
Value (%) 
(95% Cl)

88.2
(73.0-95 .8)

69.1
(49.2-84.1)

Fisher’s
Exact 0.020

Accuracy
(%) 

(95% Cl)

91.1
(82.7-95.8)

73.8 
(62.9 -  82.5)

Fisher’s
Exact 0.004

Angio.
correlation

(Phi)

0.82 
(p<  0.001)

0.49
(p<0.001)

Z 4.02 <0.001
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Table 3.7

Comparative ability of PCI and DSE to detect coronary artery stenosis (after

exclusion of cases with poor image quality)

After exclusion of all cases of poor image quality 
(78 coronary territories)

DSE PCI Test
Statistic P Value (2-sided)

Sensitivity
(%) 

(95% Cl)

84.6 
(68.8 -  93.6)

61.5 
(44.7 -  76.2)

McNemar 0.012

Specificity
(%) 

(95% Cl)

94.9
(81 .4-99 .1)

92.3 
(78.0 -  98.0)

McNemar 1.0

Positive 
Predictive 
Value (%) 
(95% Cl)

94.3 
(79.5 -  99.0)

88.9
(69.7-97.1)

Fisher’s
Exact 0.645

Negative 
Predictive 
Value (%) 
(95% Cl)

86.0 
(69.3 -  94.8)

70.6 
(49.9 -  85.7)

Fisher’s
Exact 0.086

Accuracy
(%) 

(95% Cl)

90.4 
(80.3 -  95.2)

76.9 
(65.8 -  85.4)

McNemar 0.021

Angio.
correlation

(Phi)

0.80 
(p <  0.001)

0.57
(p<  0.001)

Z 2.762 0.006
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Table 3.8 (continued on next page)

Comparative ability of PCI and DSE to detect coronary stenosis subdivided 

according to coronary territory (28 cases interpretable bv both DSE and PCD

Among 28 cases for which both DSE and PCI were interpretable

Terr
itory DSE cases PCI cases Test

Statistic
P value (2- 

sided)

Se
ns

iti
vi

ty
 

(%
) 

(95
% 

C
l)

LAD
90.0 

(66.0 -  98.2)
70.0 

(45.7 -  87.2)
McNemar 0.219

RCA
91.7 

(59.8 -  99.6)
50.0 

(22.3 -  77.7)
McNemar 0.063

CX
66.7

(30 .9-91 .0)
44.4

(15.3-77.3)
McNemar 0.5

Sp
ec

ifi
ci

ty
 

(%
) 

(95
% 

C
l)

LAD
100 

(5 9 .8 - 100)
87.5 

(46.7 -  99.3)
McNemar 1.0

RCA
87.5 

(60.4 -  97.8)
100 

(75 .9 - 100)
McNemar 0.5

CX
100 

(79.1 -95 .5 )
78.9 

(53.9 -  93.0)
McNemar 0.125

Po
sit

iv
e 

Pr
ed

ic
tiv

e 
Va

lue
 

(%
) 

(95
% 

C
l) LAD

100 
(78.1 -  100)

93.3 
(66.7 -  99.7)

Fisher’s
Exact 0.455

RCA
84.6

(53.7-97.3)
100

(51.7-100)
Fisher’s
Exact 0.544

CX
100

(51.7-100)
50.0

(17.4-82.6)
Fisher’s
Exact 0.085

N
eg

at
iv

e 
Pr

ed
ic

tiv
e 

Va
lu

e 
(%

) 
(95

% 
C

l) LAD
80.0 

(54.2 -  93.9)
53.8

(27.8-78.1)
Fisher’s
Exact 0.379

RCA
93.3 

(63.3 -  99.8)
72.7 

(28.3 -  96.3)
Fisher’s
Exact 0.204

CX
86.4 

(39.0 -  99.6)
75.0 

(35.6 -  95.5)
Fisher’s
Exact 0.445
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Table 3.8 continued

Ac
cu

ra
cy

 
(%

) 
(95

% 
C

l)

LAD
92.9 

(75 -  98.8)
75.0 

(54.8 -  88.6)
McNemar 0.125

RCA
89.3 

(70.6 -  97.2)
78.6

(58.5-91 .0)
McNemar 0.453

CX
89.3 

(70.6 -  97.2)
67.9 

(47.6 -  83.4)
McNemar 0.031

An
gio

 
co

rr
el

at
io

n 
(P

hi
)

LAD
0.849

(p< 0.001)
0.521 

(p = 0.009)
Z 2.386 0.017

RCA
0.786

(p< 0.001)
0.603

(p = 0.001)
Z 1.284 0.200

CX
0.759

(p< 0.001)
0.242

(p = 0.201)
Z 2.641 0.004*

* Although the p value is below 0.05, it does not take account of the fact that the 

Phi value for Angiography and PCI in the Circumflex territory could be a chance 

finding (Phi 0.242, p=0.201). It therefore cannot be concluded that the difference 

in Angiographic correlation between DSE and PCI is statistically significant.
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Table 3.9 (continued on next page)

Comparative ability of PCI and DSE to detect coronary stenosis, according to 

coronary territory (30 interpretable DSE cases and 28 interpretable PCI cases)

Among 30 interpretable DSE cases and 28 interpretable PCI cases

Terri
tory

DSE cases 
(90 territories)

PCI cases 
(84 territories)

Test
Statistic

P value (2- 
sided)

Se
ns

iti
vi

ty
 

(%
) 

(95
% 

C
l)

LAD 90.9 
(69.4 -  98.4)

70.0 
(45.7 -  87.2)

Fisher’s
Exact 0.123

RCA
91.7 

(59.8 -  99.6)
50.0 

(22.3 -  77.7)
Fisher’s
Exact 0.069

CX
66.7

(30 .9-91.0)
44.4

(15.3-77.3)
Fisher’s
Exact 0.637

-
Sp

ec
ifi

ci
ty

 
(%

) 
(95

% 
C

l)

LAD
100 

(5 8 .9 - 100)
87.5 

(46.7 -  99.3)
Fisher’s
Exact 1.0

RCA
88.9

(63.9-98.1)
100 

(75 .9 - 100)
Fisher’s
Exact 0.487

CX
100 

(80.8 -  100)
78.9 

(53.9 -  93.0)
Fisher’s
Exact 0.042

Po
sit

iv
e 

Pr
ed

ic
tiv

e 
Va

lue
 

(%
) 

(95
% 

C
l) LAD 100

(80.0-100)
93.3 

(66.7 -  99.7)
Fisher’s
Exact 0.429

RCA
84.6 

(53.7 -  97.3)
100

(51.7-100)
Fisher’s
Exact 0.544

CX
100

(51.7-100)
50.0

(17.4-82.6)
Fisher’s
Exact 0.085

N
eg

at
iv

e 
Pr

ed
ic

tiv
e 

Va
lu

e 
(%

) 
(95

% 
C

l) LAD
80.0 

(55.7 -  93.4)
53.8

(27.8-78.1)
Fisher’s
Exact 0.379

RCA
94.1 

(64.2 -  99.9)
72.7 

(28.3 -  96.3)
Fisher’s
Exact 0.113

CX
87.5 

(40.0 -  99.8)
75.0 

(35.6 -  95.5)
Fisher’s
Exact 0.436
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Table 3.9 continued

Ac
cu

ra
cy

 
(%

) 
(95

% 
C

l)

LAD 93.0 
(76.5 -  98.8)

75.0 
(54.8 -  88.6)

Fisher’s
Exact 0.075

RCA
90.0 

(72.3 -  97.4)
78.6

(58.5-91.0)
Fisher’s

Exact 0.290

CX
90.0 

(72.3 -  97.4)
67.9 

(47.6 -  83.4)
Fisher’s
Exact 0.053

An
gio

 
co

rr
el

at
io

n 
(P

hi
)

LAD
0.853

(p< 0.001)
0.521 

(p = 0.009)
Z 2.484 0.013

RCA
0.80 

(p< 0.001)
0.603

(p = 0.001)
Z 1.444 0.148

CX
0.76

(pcO.001)
0.242

(p = 0.201)
Z 2.700 0.008*

* Although the p value is below 0.05, it does not take account of the fact that the 

Phi value for Angiography and PCI in the Circumflex territory could be a chance 

finding (Phi 0.242, p=0.201). It therefore cannot be concluded that the difference 

in Angiographic correlation between DSE and PCI is statistically significant.
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Table 3.10

Comparison of DSE and PCI in 28 cases for which both imaging methods were 

interpretable and conclusive

DSE WMA PCI contrast defect

Territory Angiographic
stenosis N Y N Y

LAD
N 8 8 0 7 1

Y 20 2 18 6 14

RCA
N 16 14 2 16 0

Y 12 1 11 6 6

CX
N 19 19 0 15 4

Y 9 3 6 5 4

All
N 43 41 2 38 5

Y 41 6 35 17 24
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Table 3.11

Comparison of DSE and PCI in 26 cases after exclusion of inconclusive, non

interpretable. and poor image quality cases

DSE WMA
(26 cases)

PCI contrast defect 
(26 cases)

Territory Angiographic
stenosis N Y N Y

LAD
N 6 6 0 6 0

Y 20 2 18 6 14

RCA
N 16 14 2 16 0

Y 10 1 9 4 6

CX
N 17 17 0 14 3

Y 9 3 6 5 4

All
N 39 37 2 36 3

Y 39 6 33 15 24
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Table 3.12

Comparison of DSE and Coronary Angiography results for all cases interpretable 

/ conclusive according to DSE

Territory Angiographic
stenosis

DSE WMA

Total

N Y

LAD
N 8 0 8

Y 2 20 22

RCA
N 16 2 18

Y 1 11 12

CX
N 21 0 21

Y 3 6 9

All
N 45 2 47

Y 6 37 43
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Table 4.1

Coherent Contrast Imaging™ Presets

CCI
PARAMETER

EASY
All wall visible 

with clear 
myocardial 

texture

AVERAGE
All walls visible 
but myocardial 
texture unclear

DIFFICULT
Poor endocardial 
and myocardial 

definition.

Space Time T1 SI S2

Mechanical
Index 0.1 0.1 / 0.2 0.2 /0 .3

Depth 140 mm 140 mm 140 mm

Dynamic Range 50 -  55 dB 50 dB 45 -  50 dB

Trigger Interval 50 ms 50 ms 50 to 75 ms

Focus level Mid Left 
Ventricle

Mid Left 
Ventricle

Mid Left 
Ventricle

Time Gain 
Control Slight Diagonal Slight Diagonal Slight Diagonal
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Table 4.2

Baseline characteristics

RISK FACTOR
Original group of 

38
Final group of 

32

Diabetes 13 12

Hypertension 11 10

Hypercholesterolaemia (total 
cholesterol >5.2 mmol/1) 23 19

Family history of premature Coronary 
Artery Disease 17 15

Peripheral arterial disease 4 4

Obesity 14 12

Smoking 7 7

Male 28 23

Female 10 9
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Table 4.3

Coronary angiographic stenoses > 50%

TERRITORY NUMBER (of total 38 
cases recruited)

NUMBER (of 32 cases 
interpretable in CCI 

mode)

LAD alone 13 10

RCA alone 6 5

CIRCUMFLEX alone 3 3

LAD + RCA 8 8

LAD + CIRCUMFLEX 5 4

RCA + CIRCUMFLEX 3 2

TOTAL NUMBER OF 
STENOSES 54 46
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Table 4.4

Distribution of artefacts and fixed contrast defects.

WALL SEGMENT NUMBER (Total = 320)

Artefact in basal lateral wall alone 21

Artefact in basal and mid lateral wall 5

Artefact in basal septal wall alone 4

Artefact in basal and mid septal wall 1

Artefact in basal and mid inferior wall 6

Artefact in basal anterior wall alone 9

Artefact in basal and mid anterior wall 3

Artefact in apical wall in 2 Chamber view 3

Fixed defect in apical wall in 4 Chamber view 2

Fixed defect apical wall alone in 2 Chamber view 1

Fixed defects in apical and mid anterior walls 1

Total number of regions affected by artefact
67

(10 segment model)

Total number of regions affected by fixed
defects (unrecognised infarction, 10 segment 5
model)

Fixed defects were due to previous unrecognised apical myocardial infarction in 

one case and limited antero-apical myocardial infarction in one further case.
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Table 4.5

Regions interpretable bv Contrast Imaging

WALL REGION ARTE
FACT

OTHER
DEFECT

INTER
PRETED

LAD
(32)

CCI wall motion 0 0 32

PSCD 0 2 30

PS CD / CRT 0 0 32

PSCD / CRT / Wall motion 0 0 32

RCA
(32)

CCI wall motion 0 0 32

PSCD 6 0 26

PSCD / CRT 6 0 26

PSCD / CRT / Wall motion 0 0 32

CX
(32)

CCI wall motion 0 0 32

PSCD 5 0 27

PSCD / CRT 5 0 27

PSCD / CRT / Wall motion 0 0 32

Total

CCI wall motion 0 0 96

PSCD 11 2 83

PSCD / CRT 11 0 85

PSCD / CRT / Wall motion 0 0 96
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Table 4.6

Contrast imaging parameters divided according to presence or absence of 

coronary artery stenosis (32 patients for whom a contrast imaging parameter and 

conventional DSE wall motion were interpretable and conclusive)

DSE
wma
(96)

CCI
wma
(96)

PSCD
(83)

PSCD/
CRTI
(85)

PSCD/
CRTI/

CCI
wma
(96)

Terr
itory Angio N Y N Y N Y N Y N Y

LAD
N 10 9 1 10 0 10 0 10 0 10 0

Y 22 5 17 6 16 10 10 1 21 1 21

RCA
N 17 16 1 17 0 13 1 12 2 15 2

Y 15 4 11 5 10 10 2 2 10 4 11

CX
N 23 22 1 23 0 19 0 19 0 23 0

Y 9 4 5 6 3 5 3 3 5 3 6

All
N 50 47 3 50 0 42 1 41 2 48

'

2

Y 46 13 33 17 29 25 15 6 36 8 38
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Table 4.7

Conventional wall motion results divided according to presence or absence of 

coronary artery stenosis (36 patients for whom conventional DSE wall motion 

was interpretable and conclusive')

DSE wma 
(of 108 territories)

Territory Angiographic stenosis N Y

LAD
N 12 11 1

Y 24 5 19

RCA
N 19 18 1

Y 17 4 13

CX
N 26 25 1

Y 10 5 5

All
N 57 54 3

Y 51 14 37
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Table 4.8

Comparison of Standard wall motion and CCI based wall motion assessment for 

detection of > 50% coronary artery stenosis (32 cases interpretable / conclusive 

according to both tests')

Among cases of successful DSE + CCI 
(32 subjects, 96 territories)

DSE wma CCI wma Test
statistic

P value (2- 
sided)

Sensitivity 
(%) 

(95% Cl)

71.7 
(56.3 -  83.5)

63.0 
(47.5 -  76.4)

McNemar 0.344

Specificity 
(%) 

(95% Cl)

94.0 
(82.5 -  98.4)

100 
(91.1 - 100)

Fisher’s
Exact 0.242

Positive 
Predictive 
Value (%)
(95% Cl)

91.7 
(76.4 -  97.8)

100 
(85.7 -  100)

Fisher’s
Exact 0.247

Negative 
Predictive 
Value (%)
(95% Cl)

78.3
(61 .0 -89 .7 )

74.6
(54.8-88 .1)

Fisher’s
Exact 0.679

Accuracy
(%) 

(95% Cl)

83.3 
(74.0 -  89.9)

82.3
(72.9-89.1)

McNemar 1.0

Angio
correlation

(Phi)

0.678
(p<0.001)

0.690
(p<0.001)

Z 0.102

_

0.918

_
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Table 4.9

Comparison of Standard wall motion and CCI based wall motion assessment for 

detection of > 50% coronary artery stenosis (all interpretable / conclusive DSE 

cases and 32 interpretable /  conclusive CCI cases)

DSE wma
(108

territories)

CCI wma 
(96 territories)

Test
statistic

P value (2- 
sided)

Sensitivity 
(%) 

(95% Cl)

72.5
(58 .0 -83 .7 )

63.0 
(47.5 -  76.4)

Fisher’s
Exact 0.385

Specificity 
(%) 

(95% Cl)

94.7 
(84.5 -  98.6)

100 
(91.1 - 100)

Fisher’s
Exact 0.246

Positive 
Predictive 
Value (%)
(95% Cl)

92.5 
(78.5 -  98.0)

100 
(85.7 -  100)

Fisher’s
Exact 0.258

Negative 
Predictive 
Value (%)
(95% Cl)

79.4 
(63.2 -  90.0)

74.6
(54.8-88.1)

Fisher’s
Exact 0.545

Accuracy

(%) 
(95% Cl)

84.3 
(75.7 -  90.3)

82.3
(72.9-89.1)

Yates Chi 
sq. 0.035 0.851

Angio
correlation

(Phi)

0.696
(pcO.001)

0.690
(p<0.001)

Z 0.134 0.849
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Table 4.10

Agreement between DSE and CCI regional wall motion abnormality (32 

conclusive cases interpretable bv both methods)

CCI wma absent CCI wma present TOTAL

DSE wma absent 57 3 60

DSE wma present 10 26 36

TOTAL 67 29 96

Chi-Square =  48.2, degrees of freedom  =  1, Phi correlation =  0.71 (p<0.001) 

Kappa score -  0.70 (p<0.001), Agreement 86.5%.

Table 4.11

Agreement between DSE and CCI regional wall motion abnormality for the Left 

Anterior Descending Territory (32 conclusive cases interpretable bv both 

methods)

CCI wma absent CCI wma present TOTAL

DSE wma absent 13 1 14

DSE wma present 3 15 18

TOTAL 16 16 32

Chi-Square =  18.3, degrees o f freedom  =  1, Phi correlation =  0.76 (p<0.001) 

Kappa score =  0.75 (p<0.001), Agreement 87.5%.
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Table 4.12

Agreement between DSE and CCI regional wall motion abnormality for the 

Right Coronary Artery Territory (32 conclusive cases interpretable bv both 

methods)

CCI wma absent CCI wma present TOTAL

DSE wma absent 19 1 20

DSE wma present 3 9 12

TOTAL 22 10 32

Chi-Square = 17.1, degrees o f freedom = 1, Phi correlation =  0.73 (p<0.001) 

Kappa score =  0.72 (p<0.001), Agreement 87.5%.

Table 4.13

Agreement between DSE and CCI regional wall motion abnormality for the 

Circumflex Coronary Artery Territory (32 conclusive cases interpretable bv both 

methods)

CCI wma absent CCI wma present TOTAL

DSE wma absent 25 1 26

DSE wma present 4 2 6

TOTAL 29 3 32

Chi-Square =  5.0, degrees o f freedom  =  1, Phi correlation =  0.40 (p=0.026) 

Kappa score =  0.37 (p=0.083), Agreement 84.4%.
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Table 4.14

Comparison of Standard Wall Motion assessment and Peak Stress Contrast 

Deficit for detection of > 50% coronary artery stenosis (32 cases interpretable bv 

both tests)

DSE wall 
motion 

assessment
(96 territories)

Peak Stress 
Contrast 
Deficit

(83 territories)

Test
statistic

P value (2- 
sided)

Sensitivity 
(%) 

(95% Cl)

71.7 
(56.3 -  83.5)

37.5 
(23.2 -  54.2)

Fisher’s
Exact 0.002

Specificity 
(%) 

(95% Cl)

94.0 
(82.5 -  98.4)

97.7 
(86.5 -  99.9)

Fisher’s
Exact 0.620

Positive 
Predictive 
Value (%)
(95% Cl)

91.7 
(76.4 -  97.8)

93.8 
(67.7 -  99.7)

Fisher’s
Exact 1.000

Negative 
Predictive 
Value (%)
(95% Cl)

78.3
(61 .0 -89 .7 )

63.2 
(36.5 -  84.2)

Fisher’s
Exact 0.080

Accuracy

(%) 
(95% Cl)

83.3 
(74.0 -  89.9)

68.7 
(57.9 -  78.4)

Yates Chi 
sq. 4.541 0.033

Angio
correlation

(Phi)

0.678
(p<0.001)

0.446
(p<0.001)

Z 2.27 0.024
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Table 4.15

Contrast replenishment — regions eligible for assessment

REGIONS NUMBER

Total 192

Baseline Artefact 17

Assessable by CRT at Baseline 175

Peak Stress Artefact 23

Reversible Peak Stress Contrast 
Deficit 33

Assessable by CRT at Peak 136

Table 4.16

Baseline contrast replenishment -  all regions combined

CRT (seconds)
(Median plus Interquartile range)

STENOSIS NO STENOSIS
N =  103

CNII£

All Regions 5 (iqr 4 to 6 ) 5 (iqr 4 to 6 )
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Table 4.17

Baseline contrast replenishment — according to territory

REGION CRT (seconds)
(Median plus Interquartile range)

P value (2-sided, based on 
Kruskall-Wallis Test)

Inferior 4 (iqr 4 to 5)

V  0.015

J

Anterior 4 (iqr 4 to 5)

Apex
2-chamber 4 (iqr 4 to 5)

Septal 5 (iqr 4 to 6)

Lateral 6 (iqr 4 to 6)

Apex
4-chamber 5 (iqr 4 to 6)

Table 4.18

Peak contrast replenishment -  all regions combined

% CHANGE IN CRT 
(Median plus Interquartile range) P value (2-sided, 

based on Mann- 
Whitney U)STENOSIS,

N=66
NO STENOSIS, 

N=70

All
Regions

+ 33.3 
(iqr 0 to 60)

-2 5  
(iqr -  40 to 0)

<0.001

187



Table 4.19

Peak contrast replenishment — according to territory

Territory

% CHANGE IN CRT 
(Median plus Interquartile range) P value (2-sided, 

based on Mann- 
Whitney U)STENOSIS NO STENOSIS

Inferior
+ 55 

(iqr 30 to 70)
- 2 5  

(iqr -  40 to 0)
0.002

Anterior
+ 50 

(iqr 10 to 67.5)
0.0

(iqr -  43.8 to 0)
0.002

Apex
2-chamber

+ 50 
(iqr 25 to 71.3)

-  10 
(iqr -  27.1 to 0)

0.001

Septal
0.0

(iqr -  40 to 33.3)
-3 3 .3  

(iqr -  44.6 to -  25)
0.017

Lateral
0.0

(iqr -31.4 to 41.7)
-3 3 .3  

(iqr -  42.9 to 0)
0.091

Apex
4-chamber

+ 33.3 
(iqr 0 to 60)

-2 9 .2  
(iqr -33.7 to -  15)

<0.001
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Table 4.20

Comparison of Standard Wall Motion assessment with combined assessment of 

Peak Stress Contrast Deficit and Contrast Replenishment Abnormality for 

detection of > 50% coronary artery stenosis (32 cases interpretable bv both tests)

DSE wall 
motion 

assessment
(96 territories)

Combined 
peak stress 

contrast 
defect and 

contrast 
replenishment 

abnormality
(85 territories)

Test
statistic

P value (2- 
sided)

Sensitivity 
(%) 

(95% Cl)

71.7 
(56.3 -  83.5)

85.7
(70 .8-94 .1)

Fisher’s
Exact

0.128

Specificity 
(%) 

(95% Cl)

94.0 
(82.5 -  98.4)

95.3
(83 .3 -99 .2 )

Fisher’s
Exact 1.0

Positive 
Predictive 
Value (%)
(95% Cl)

91.7 
(76.4 -  97.8)

94.7
(80 .9-99 .1)

Fisher’s
Exact

0.670

Negative 
Predictive 
Value (%)
(95% Cl)

78.3
(61 .0 -89 .7 )

87.2
(71 .9-95.4)

Fisher’s
Exact

0.309

Accuracy

(%) 
(95% Cl)

83.3 
(74.0 -  89.9)

90.6
(82.0-95.6)

Yates Chi 
sq. 1.55

0.213

Angio
correlation

(Phi)

0.678
(p<0.001)

0.815
(p<0.001)

Z 2.088 0.036
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Table 4.21

Comparison of Standard Wall Motion assessment with combined assessment of 

Peak Stress Contrast Deficit, Contrast Replenishment Abnormality, and CCI 

based Wall Motion assessment for detection of > 50% coronary artery stenosis 

(32 cases interpretable bv both tests)

DSE wall 
motion 

assessment
(96 territories)

Combined 
CCI wall 

motion, peak 
stress contrast 

defect, and 
contrast 

replenishment 
abnormality

(96 territories)

Test
statistic

P value (2- 
sided)

Sensitivity 
(%) 

(95% Cl)

71.7 
(56.3 -  83.5)

82.6
(68 .0 -91 .7 )

McNemar 0.267

Specificity 
(%) 

(95% Cl)

94.0 
(82.5 -  98.4)

96.0 
(85.1 -9 9 .3 )

McNemar 1.0

Positive 
Predictive 
Value (%)
(95% Cl)

91.7 
(76.4 -  97.8)

95.0
(81 .8-99 .1)

Fisher’s
Exact 0.663

Negative 
Predictive 
Value (%)
(95% Cl)

78.3
(61 .0 -89 .7 )

85.7 
(70.3 -  94.2)

Fisher’s
Exact

0.342

Accuracy

(%) 
(95% Cl)

83.3 
(74.0 -  89.9)

89.6
(81.3-94.6)

McNemar 0.238

Angio
correlation

(Phi)

0.678
(p<0.001)

0.797
(p<0.001)

Z 1.807
0.070 (2-sided) 

0.035 (1-sided)
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Table 4.22

Comparison of Standard Wall Motion assessment with combined assessment of 

Peak Stress Contrast Deficit. Contrast Replenishment Abnormality, and CCI 

based Wall Motion assessment for detection of > 50% coronary artery stenosis 

(All 36 interpretable DSE cases and 32 cases interpretable bv CCI)

DSE wall 
motion 

assessment
(108

territories)

Combined 
CCI wall 

motion, peak 
stress contrast 

defect, and 
contrast 

replenishment 
abnormality 

(96 territories)

Test
statistic

P value (2- 
sided)

Sensitivity 
(%) 

(95% Cl)

72.5
(58 .0 -8 3 .7 )

82.6
(68 .0 -91 .7 )

Fisher’s
Exact

0.332

Specificity 
(%) 

(95% Cl)

94.7 
(84.5 -  98.6)

96.0 
(85.1 -9 9 .3 )

Fisher’s
Exact

1.0

Positive 
Predictive 
Value (%) 
(95% Cl)

92.5 
(78.5 -  98.0)

95.0
(81 .8 -99 .1 )

Fisher’s
Exact 1.0

Negative 
Predictive 
Value (%)
(95% Cl)

79.4 
(63.2 -  90.0)

85.7 
(70.3 -  94.2)

Fisher’s
Exact

0.480

Accuracy
(%) 

(95% Cl)

84.3
(75 .7 -90 .3 )

89.6
(81.3-94.6)

Yates Chi 
sq. 0.830

0.362

Angio
correlation

(Phi)

0.696
(p<0.001)

0.797
(p<0.001)

Z 1.621
0.106 (2-sided) 

0.053 (1-sided)
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Table 4.23

Interobserver variability for CCFM cases

Parameter Territory Agreement (%) Kappa

Conventional
WMA

LAD (n=16) 93.8 0.86 (p=0.001)

RCA (n=16) 87.5 0.733 ((p=0.008)

CX (n=16) 100 1 (p=0.002)

CCI™ WMA

LAD (n=16) 100 1 (p=0.001)

RCA (n=16) 87.5 0.71 (0.013)

CX (n=16) 87.5 0.45 (p=0.187)

PSCD

LAD (n=14) 92.9 0.84 (p=0.005)

RCA (n=14) 100 1 (p=0.071)

CX (n=13) 92.3 0.63 (p=0.154)

PSCD / CRT

LAD (n=16) 93.8 0.85 (p=0.003)

RCA (n=14) 92.9 0.86 (p=0.005)

CX (n=13) 92.3 0.81 (p=0.014)

PSCD / CRT / 
CCI™ WMA

LAD (n=16) 93.8 0.846 (p=0.003)

RCA (n= 16) 100 1 (p=0.001)

CX (n=16) 93.8 0.82 (p=0.007)
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2. FIGURES

Figure 1.1

The ischaemic cascade
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Figure 1.2

Components of Coronary Blood Volume

VeinsArteries VenulesArterioles Capillaries

TOTAL CORONARY BLOOD VOLUME

(Myocardial blood volume) 
(90% capillary blood volume, 10% 

arteriolar and venular)
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Figure 1.3

Graphical representation of bolus dose micro-bubble signal
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Figure 1.4

Graphical representation of in vivo association between signal intensity and time 

with micro-bubble infusion
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Figure 2.1

Power Contrast Imaging™ Apical 4 chamber view with image acquisition once 

every four cardiac cycles
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Figure 3.1

Division of myocardial regions bv territory for assessment of perfusion using the 

3-territory, 10-segment model. All cases had dominant Right Coronary 

circulation, hence RCA equates to Posterior Descending Artery territory
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Figure 3.2

Example Power Contrast Imaging™ case

A. Baseline image 
showing strong septal 

contrast signal

B. Stress image showing 
diminished septal 

contrast signal



Figure 4.1
Cases for which each imaging modality was successful / conclusive

SWM = Standard wall motion
CCI = Coherent contrast imaging
CWM = Contrast wall motion
PSCD = Peak stress contrast deficit
PSCD / = Combined peak stress
CRT contrast deficit and contrast

replenishment time
PSCD/ = Combined
CRT/ peak stress contrast deficit /
CWM contrast replenishment time /

contrast wall motion

1 case excluded 
(sub-optimal 

HR)

38 angiographic cases

37 cases interpretable
by SWM

36 conclusive
SWM cases

32 conclusive 
CCI cases

108 territories
SWM

1 case excluded 
(image quality)

2 cases excluded 
(image quality)

2 cases excluded 
(peak stage 

image quality)

1 case excluded 
(uneven contrast 
infusion and sub- 

optimal HR)

1 r i r 1

96 territories 
CWM

83 territories 
PSCD

85 territories 
PSCD / CRT

96 territories 
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Figure 4.2

Contrast Replenishment Time for all Regions Combined
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Figure 4.3

Contrast Replenishment Time for the Anterior Wall in the Apical 2 Chamber View
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Figure 4.4

Contrast Replenishment Time for the Apical Wall in the Apical 2 Chamber View
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Figure 4.5

Contrast Replenishment Time for the Inferior Wall in the Apical 2 Chamber View
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Figure 4.6

Contrast Replenishment Time for the Septal Wall in the Apical 4 Chamber View
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Figure 4.7

Contrast Replenishment Time for the Apical Wall in the Apical 4 Chamber View
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Figure 4.8

Contrast Replenishment Time for the Lateral Wall in the Apical 4 Chamber View
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Figure 4.9

Example of Coherent Contrast Imaging™ case

A. Baseline 
Good 

contrast 
signal 

throughout 
myocardial 
regions(4 
chamber 

view)

B. Stress 
Minimal 
contrast 
signal 

immediately 
after 

destruction 
pulse

C. Stress 
Diminished 

contrast 
signal in 

apical region 
5 seconds 

after 
destruction 

pulse
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2. PATIENT INFORMATION SHEETS

a. Sample patient information sheet 1 (Adenosine Power Contrast Imaging™).

M YOCARDIAL CONTRAST ECHOCARDIOGRAPHY (MCE) AND STRESS 
ECHOCARDIOGRAPHY

We would like to invite you to take part in this study. It is entirely voluntary.

What is myocardial contrast echocardiography (MCE)?
MCE is a technique for studying blood supply to heart muscle. It involves having an 
echocardiogram (ultrasound picture of the heart) at the same time as injection of a 
contrast agent (Optison) and a drug called Adenosine. These substances are injected 
through small needles in an arm vein. You may already have been referred for a 
Dobutamine Stress Echocardiogram (DSE) test by your consultant. A DSE test will 
be incorporated into our study.

Why are we undertaking this research?
We believe that MCE could provide an important insight into the nature of coronary 
artery disease. We would like to compare the accuracy of information gained by 
MCE with other tests for coronary artery disease such as Dobutamine Stress 
Echocardiography and Coronary Angiography.

How could you be affected by the test?
The echocardiogram is painless and requires the patient to lie on a couch for about 30 
minutes. Minor discomfort may occur on the chest wall where the probe is placed. 
Two needles will be inserted into a vein in the arm (like having a blood test -  it can 
hurt but only for a few seconds). The contrast agent (Optison) is a safe substance that 
is widely used for similar purposes and usually has no noticeable effects. Adenosine 
and Dobutamine are also widely used drugs with which we have extensive 
experience. Adenosine can cause brief feelings of flushing, faintness, wheeziness, or 
shortness of breath and can slow the heart rate temporarily but has no lasting effects. 
It cannot be given to Asthmatics or patients with certain types of heart rate problems 
-  so we will check with you first that you can be given the drug. Dobutamine can 
cause brief sensations of tingling or flushing in the skin, dizziness, palpitations 
(feeling of the heart racing), and can cause the blood pressure to fluctuate during the 
test, but these effects are completely gone within a few minutes of stopping the test. 
It is possible but very unusual for people to have an allergic reaction to Adenosine, 
Dobutamine, or the contrast agent. It is also possible, although extremely unlikely, 
that the insertion of a needle into a vein could introduce infection.

IT IS ESSENTIAL FOR YOU TO UNDERSTAND THAT ANY 
TREATM ENTS YOU NEED WILL BE GIVEN AS USUAL. THIS STUDY 
DOES NOT PREVENT YOUR DOCTORS FROM DECIDING WHAT IS 
BEST FOR YOU AND THEN GOING AHEAD WITH THE TREATMENT.
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What does being a subject involve?
II you take part in our study, you will undergo the following:

1. Brief interview about your symptoms and a physical examination
2. Insertion of two small needles into your arm followed by MCE 

(echocardiogram, plus injection of Adenosine and Optison through the needles)
3. Insertion of a needle into your arm followed by DSE (echocardiogram, plus 

injection of Dobutamine through the needle).

The interview and examination will take approximately 10 minutes. The MCE and 
DSE tests will take approximately 60 minutes each and will be done on separate 
days. It is anticipated that these tests could be started within 2 weeks of you agreeing 
to take part in the study.
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b. Sample patient information sheet 2 (Real time Coherent Contrast Imaging™).

M YOCARDIAL CONTRAST ECHOCARDIOGRAPHY (MCE) AND STRESS 
ECHOCARDIOGRAPHY

We would like to invite you to take part in this study. It is entirely voluntary.

W hat is myocardial contrast echocardiography (MCE)?
MCE is a technique for studying blood supply to heart muscle. It involves having an 
echocardiogram (ultrasound picture of the heart) at the same time as injection of a 
contrast agent (Optison) and a drug called Dobutamine. These substances are 
injected through small needles in an arm vein. You may already have been referred 
for a Dobutamine Stress Echocardiogram (DSE) test by your consultant. A DSE test 
will be incorporated into our study.

Why are we undertaking this research?
We believe that MCE could provide an important insight into the nature of coronary 
artery disease. W e would like to compare the accuracy of information gained by 
MCE with other tests for coronary artery disease such as Dobutamine Stress 
Echocardiography and Coronary Angiography.

How could you be affected by the test?
The echocardiogram is painless and requires the patient to lie on a couch for about 30 
minutes. Minor discomfort may occur on the chest wall where the probe is placed. 
Two needles will be inserted into a vein in the arm (like having a blood test -  it can 
hurt but only for a few seconds). The contrast agent (Optison) is a safe substance that 
is widely used for similar purposes and usually has no noticeable effects. 
Dobutamine is also a widely used drug with which we have extensive experience. It 
can cause brief sensations of tingling or flushing in the skin, dizziness, palpitations 
(feeling of the heart racing), and can cause the blood pressure to fluctuate during the 
test, but these effects are completely gone within a few minutes of stopping the test. 
It is possible but very unusual for people to have an allergic reaction to Dobutamine 
or the contrast agent. It is also possible, although extremely unlikely, that the 
insertion of a needle into a vein could introduce infection.

IT IS ESSENTIAL FOR YOU TO UNDERSTAND THAT ANY 
TREATM ENTS YOU NEED W ILL BE GIVEN AS USUAL. THIS STUDY 
DOES NOT PREVENT YOUR DOCTORS FROM DECIDING WHAT IS 
BEST FOR YOU AND THEN GOING AHEAD WITH THE TREATMENT.

What does being a subject involve?
If you take part in our study, you will undergo the following:

1. Brief interview about your symptoms and a physical examination
2. Insertion of two small needles into your arm followed by combined MCE and 

DSE (echocardiogram, plus injection of Dobutamine and Optison through the 
needles)
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The interview and examination will take approximately 10 minutes. The MCE and 
DSE test will take approximately 60 minutes. It is anticipated that this tests could be 
started within 2 weeks o f you agreeing to take part in the study.
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3. CONSENT FORMS

C O N SEN T F O R M  FO R  M YOCARDIAL CONTRAST
E C H O C A R D IO G R A P H Y  STU D IES AT TH E ROYAL FREE HOSPITAL

P A T IE N T ..................................................................................................................................
DATE O F  B I R T H .................................................................................................................
R E SEA R C H  N U M B E R ............................. H O SPITA L NUM BER...........................
S E X  M . . . / . . .F ......................................

D O C TO R :

MYOCARDIAL CONTRAST ECHO AND DOBUTAMINE STRESS ECHO

I confirm that I have explained the above examination and any likely risks associated 
with it in terms which, in my judgement, are understandable by the patient. I have 
explained that this examination is part of clinical research and will not hinder any 
necessary treatments or investigations.

SIGNATURE.............................................................................. D A T E ....................................
NAM E.............................................................................................................................................

SU B JEC T:

Please read this form and the attached information sheet carefully.
1. If you do not understand anything or if you would like more information please 

ask the Doctor.
2. Please check that all the information on the form is correct.
3. If you are happy with the information given and are willing to take part in this 

study, please sign the form below.

I am the above named individual.

I understand the procedure above and consent to being recruited as a subject for the 
study specified above.

I understand that I can withdraw from the study at any time.

I understand that my usual treatments will continue regardless of the study.

SIG N A TU R E................................................................................ DATE
N A M E .........................................................................................................
A D D R E SS.................................................................................................

2 1 0



APPENDIX THREE

PUBLICATIONS AND PRESENTATIONS

PEER REVIEW ED JOURNAL ARTICLE

EB Roberts, F Schafer, W Akhtar, D Patel, TR Evans, JG Coghlan, DP Lipkin, JI 

Davar. Real-time myocardial contrast dobutamine stress echocardiography in 

coronary stenosis. Original research article, accepted for publication in the 

International Journal of Cardiology, 19th August 2005. Available online 9th 
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PRESENT ATION S

1. Regional dynamics of myocardial vascular bed contrast replenishment after 

destructive ultrasound pulses: lessons for quantitative myocardial perfusion 

assessment. EB Roberts, F Schafer, W Akhtar, D Patel, TR Evans, JG Coghlan, 

DP Lipkin, JI Davar. Oral presentation, Euroecho VI, Munich, Germany, 

December 2002 (publication details 1. above).

2. Assessment of single or double vessel coronary artery disease with real time 

myocardial perfusion imaging. EB Roberts, W Akhtar, F Schafer, TR Evans, JG 

Coghlan, DP Lipkin, JI Davar. Poster presentation, Euroecho V, Nice, France, 

December 2001 (publication details 2. above).

3. Wall motion and perfusion assessment using real-time myocardial contrast 

dobutamine stress echocardiography. EB Roberts, W Akhtar, F Schafer, TR 

Evans, JG Coghlan, DP Lipkin, JI Davar. Oral presentation, 10th Annual 

Scientific and Clinical Meeting of the British Society of Echocardiography, 

Birmingham, UK, October 2001.

4. Adenosine Myocardial Contrast versus Dobutamine Stress Echocardiography for 

Assessment of Coronary Artery Disease. EB Roberts, DP Lipkin, JG Coghlan, 

TR Evans, JI Davar. Oral presentation, Annual Scientific Conference of the 

British Cardiac Society, Manchester, UK, April 2001 (publication details 3. 

above).
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