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ABSTRACT



ABSTRACT: SOFT TISSUE ATTACHMENT TO ORTHOPAEDIC IMPLANT 

MATERIALS

Most orthopaedic endoprostheses are used to replace damaged joint surfaces and rely 

little on soft tissue attachment for their function. Massive bone tumour implants and 

solutions to attach external implants to the skeleton for amputees rely on soft tissue 

attachment for successful function. Massive implants require a tendon-metal attachment 

to preserve joint movement. Implants for amputees where the skeletally anchored 

implant penetrates the skin, require soft tissue attachment to produce an effective 

microbial seal which prevents infection.

My thesis aims to investigate the concept that biomimetic soft tissue-implant interfaces 

can be engineered using surface texturing, coatings and biological augmentation, to 

enhance the attachment and function of the soft tissues between:

1) Metallic implants and tendons, used for proximal tibial replacement

2) The epithelial and sub-epithelial soft tissues to transcutaneous implants used for 

amputation prostheses

I have shown that soft tissue derived cells’ proliferative capacity, morphology and 

attachment are significantly affected by biomaterials and surface topography of the 

substrate used to support their growth, whilst biological substrate coatings can be used to 

optimise these functions to suit the requirements of an implant.

My findings have demonstrated that a functionally and morphologically successful tendon 

soft tissue -  implant interface can be engineered using autologous cancellous bone and 

marrow graft combined with hydroxyapatite coatings in a clamp device, resulting in an 

interface that has significantly more bone attachment associated with fibrocartilage 

compared with hydroxyapatite alone.

My thesis demonstrates that the soft tissue -  implant interface around intraosseous 

transcutaneous amputation prostheses can be optimised based on natural analogues. Deer 

antlers produce a microbial seal by engineering a region of thick dermal collagen fibres 

attached to the bone surface which supports the epithelium. Increasing the surface 

porosity and area of transcutaneous implants in the dermis results in significantly less 

epithelial down growth and significantly greater attachment of the epithelial and dermal 

tissue layers respectively.
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1 INTRODUCTION

1.1 AIMS AND HYPOTHESES

This thesis aims to investigate the concept that soft tissue-implant interfaces can be 

engineered to enhance their attachment and function using surface texturing, 

coatings and biological augmentation developed from research into natural 

analogues. My study aims to engineer the interfaces between:

1) The soft tissue of tendons to implants, used for proximal tibial 

replacement

2) The epithelial and sub-epithelial soft tissues to transcutaneous implants 

used for amputation prostheses

This thesis tests the general hypothesis that successful soft tissue -  implant interfaces 

can be engineered, by artifically simulating the morphological adaptations observed 

in soft -  hard tissue interfaces of natural analogues.

This chapter of my thesis gives an insight into the current status of research into soft 

tissue-implant interface engineering, a background into the biology of the soft tissues 

interfacing subcutaneous and transcutaneous implant materials and the problems 

associated with these interfaces.

Chapter Two presents a histological analysis o f the soft-hard tissue interface that occurs 

naturally in deer antlers with the aim of developing an artificial transcutaneous interface. 

In deer antler, the skin forms an interface with the pedicle when the velvet is shed. It is 

hypothesised that the bone surface of the antler and pedicle will be different.

Based on the observations from Chapter Two, Chapter Three investigates the effects of 

titanium alloy substrate topography on the proliferative capacity, morphology and 

attachment o f fibroblasts and epithelial cells in vitro. This chapter is designed to 

determine the optimal surfaces for soft tissue attachment in vitro. The hypothesis that 

fibroblast and epithelial cells9 proliferative capacity, morphology and attachment 

will be directly affected by the type and topography of the substrates used to support 

their growth is tested.
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From the observations in Chapter Two, Chapter Four examines the additional affects of 

two biological coatings, fibronectin and laminin, on fibroblast and epithelial cell 

attachment, proliferation and morphology in association with the biomaterials used for the 

development of soft tissue-implant interfaces, but essentially with the view to 

incorporation into other implants abutting soft tissues in vivo. It is hypothesised that 

biomaterial topography will have a lesser effect on cell attachment and proliferation 

compared to adhesion protein coatings. The hypotheses that fibronectin will 

increase the attachment and proliferation of dermal fibroblasts, and laminin will 

increase the attachment and proliferation of dermal epithelial cells, will be tested.

Chapter Five is an in vivo study of the development of an intraosseous transcutaneous 

amputation prosthesis. In Chapters Three and Four the effects of biomaterial topography 

and biological coatings were investigated in vitro. In Chapter five, emphasis is placed on 

engineering a successful skin-implant interface, examining the effects of different implant 

surface topographies, biomaterial and biological coatings to optimise the soft tissue seal 

surrounding transcutaneous implants. It is hypothesised that implants designed to 

mimic naturally occurring transcutaneous structures provide surfaces that promote 

epithelial and sub-epithelial soft tissue attachment in an in vivo model.

In the preceding chapters natural analogues, implant materials and biological 

augmentation were investigated. In Chapter Six, the principles developed were applied to 

enhance the attachment of tendon to metallic implants. This Chapter includes a 

functional and histological study of the reconstruction of the lower limb extensor 

mechanism in vivo and tests the hypothesis that a tendon-implant neo-enthesis can be 

engineered in situ, using a suitable osteoconductive scaffold, bioactive material and 

autogenous cancellous bone and marrow graft augmentation. It develops the 

concepts of tendon clamp design and implementation, enabling sufficient mechanical 

strength for early mobilisation, with biological fixation developing over time. It aims to 

achieve a fully functional extensor mechanism reconstruction by re-attaching the soft 

tissues of the patellar tendon to a metal implant used to simulate a proximal tibial 

replacement. It is hoped that once the concept is fully developed, it can be utilised as a 

universal method of re-attaching tendons and ligaments to orthopaedic implants 

irrespective of anatomical location.
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The final chapter discusses the key findings of my thesis. It unites the principles of soft 

tissue attachment to orthopaedic implant materials in both subcutaneous and 

transcutaneous environments, which have been developed over the course of my research. 

It presents and discusses the benefits and drawbacks of the research included in my thesis 

and proposes possible future directions for research in the area of soft tissue-implant 

interface engineering, with the ultimate aim o f artificially recreating the soft-hard tissue 

interfaces observed in nature.

It is hoped that some of the developments from my thesis will be incorporated into future 

implant designs to benefit patients suffering conditions requiring surgical orthopaedic 

intervention that rely on soft tissue re-attachment for good biological integration and 

function.

1.1.1 OVERVIEW

Introduction of a foreign material into the human body results in damage of the soft tissue 

scaffolds that support the body as a whole. Examples of this phenomenon include the 

disruption of soft tissue attachments as a result of bone replacement by massive 

prostheses used for bone tumour resection surgery, implantation of transcutaneous 

implants for dental, auricular and orthopaedic uses, and the subcutaneous implantation of 

medical devices. In all o f these cases, soft tissue interfaces are disturbed, resulting in the 

need to restore continuity. The examples listed may appear unrelated, however our 

ability to re-establish soft tissue attachments remains restricted by our failure to 

successfully re-interface biological and implant materials. In order to redress this 

problem, a full understanding of soft tissues and interface biology is essential. In vivo, 
numerous soft -  hard tissue interfaces exist in both subcutaneous and transcutaneous 

forms. The osseo-tendinous junction is an example of a natural, deep interface between 

the soft tissue o f tendon and the hard tissue of bone, whilst the dento-epithelial junction is 

an example of a true, permanent transcutaneous structure, where the soft tissues o f the 

gingiva interface with the hard enamel o f the teeth. Understanding the biology and 

morphology of these natural interfaces may give insights into possible methods that could 

be employed to engineer interfaces with implant materials.
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1.2 NATURALLY OCCURING SOFT-HARD TISSUE INTERFACES

1.2.1 TRANSCUTANEOUS INTERFACES

A number of conditions exist that necessitate the implantation of long-term skin 

penetrating devices. The introduction of transcutaneous devices can lead to a number of 

complications including inflammation, foreign body reaction, infection, marsupilization 

(pocket formation) and extrusion (epithelial migration through porous structures)(Von 

Recum and Park 1981, Grosse-Siestrup et al 1977). To date, a permanently successful 

transcutaneous interface between living and artificial materials has not been described; 

however naturally, a number of junctions between solid structures and soft tissues are 

observed. A number of structures which appear to penetrate the skin layers, for example 

hair, fingernails, hooves, horns and feathers, actually originate at the base of epidermal 

invaginations within the dermal layers, thus do not disrupt the epithelial layer continuity 

(Von Recum and Park 1981, Grosse-Siestrup and Affeld 1984). Examples of true, 

naturally occurring, transcutaneous structures include teeth, deer antlers and Babyrussa 

tusks. In these instances, nature has overcome the problems associated with 

transcutaneous devices by incorporating the numerous design criteria needed for artificial 

transcutaneous implant success, into a single structural element. Nature supplies the 

optimal biomaterial, to which soft tissues will adhere in a transcutaneous site, irrespective 

of the dynamic nature of the skin layers, where the rapid turnover of cell type and 

maturation present numerous problems for researchers aiming to artificially engineer this 

interface type.

1.2.1.1 THE SKIN

By definition, all transcutaneous structures penetrate the skin. In order to engineer an 

interface where the soft tissues o f the skin layers are intimately associated with the 

transcutaneous implant material, a full understanding of the tissue types abutting the skin- 

penetrating segment o f the implant is required. The epidermis is a multi-layered 

epithelium (Figure 1.1), composed largely of keratinocytes (named because of their 

ability to synthesise intermediate filament proteins called keratins). It is regenerated and 

replenished by a keratinocyte cell linage of stem cells from the basal layer, which 

differentiate as they migrate through the layers towards the surface of the skin. As the 

cells migrate, they change appearance from one layer to the next. The innermost layer 

contains basal cells attached to the underlying basal lamina via hemidesmosomes. Above 

the basal cells are several layers o f prickle cells, whose numerous desmosomes (each a 

site of anchorage for thick keratin filaments) are visible under the light microscope as tiny
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prickles around cell surfaces. Beyond the prickle cell layer, is a thin granular cell layer, 

which acts as a boundary between the inner metabolically active strata and the outermost 

layer of dead cells whose intracellular organelles have disappeared. The outermost cells 

are reduced to flattened scales, called squames (filled with densely packed keratin). This 

description is very ‘static’, however it is far from being so. While some basal cells are 

dividing, adding to the core number of basal cells, others are being released from the 

basal layer into the prickle cell layer, which is the initial step on the outward journey to 

the skin surface. When the cells reach the granular layer, they begin to loose their nuclei 

and cytoplasmic organelles, and are thus transformed into keratinised squames. These 

cells eventually flake away from the skin surface.

The skin is best viewed as a large organ composed of two main soft tissue types, 

epithelial tissue of the epidermis and connective tissue of the dermis. The connective 

tissue of the dermis consists of a loose layer (fibroblasts, collagen, mast cells, 

macrophages, lymphocytes) and a dense layer (fibroblasts, collagen, elastic fibres). There 

is also an underlying fatty hypodermis.

The basement membrane or basal lamina is a thin flexible mat, 40-120 nm thick, of 

specialised extracellular matrix that lies beneath all epithelial cell sheets (Stem 1965). 

The basement membrane separates these cells and cell sheets from the underlying or 

surrounding connective tissue. They are also found in other anatomical locations, for 

example the kidney glomerulus and lung alveolus, where they lie between two cell sheets 

and function as a selective filter. Basement membranes have more functional roles than 

merely structural and filtering, as they are capable of determining cell polarity, 

influencing cell metabolism, organising the proteins in adjacent plasma membranes, 

inducing cell differentiation and function as specific highways for cell migration (Alberts 

et al 1994). In skin, owing to the fact that basal cells are released from the basement 

membrane to migrate through the epidermal layers, it is thought that at least some 

components of the structure are involved in cell adhesion functions. The basement 

membrane is mainly synthesised by the cells that rest upon it, and consist of two distinct 

layers: an electron lucent layer, also called the lamina lucida, that is located adjacent to 

the basal plasma membrane of cells that rest upon it (typically epithelial cells), and an 

electron dense layer or the lamina densa below. In some cases, a third layer, the lamina 

fibroretularis, is present which connects the basal lamina to the underlying connective 

tissue.

The exact composition of the basement membrane varies between tissue types; however 

most contain type IV collagen, the heparin sulphate proteoglycan ‘perlecan’ and
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glycoproteins laminin and entactin (Alberts et al 1994). Laminin is one of the initial 

extracellular proteins synthesised in a developing embryo. It is a large (approx 850,000 

daltons) complex o f three long polypeptide chains arranged in the shape of an asymmetric 

cross. It is held together by disulphide bonds, but as a whole, is a flexible structure. It 

contains many functional domains, one to bond collagen IV, one heparin sulphate, one 

entactin and two or more to bond to laminin receptor proteins on cell surfaces 

(Tryggvason 1993).

It is thought that one or more basement membrane components play a functional role in 

assisting cells adherence to transcutaneous structures, owing to their roles in cell 

attachment from the basement membrane (Wang et al 1997). Laminin is the most 

abundant glycoprotein in basement membrane and is both structurally and biologically 

active. Laminin binds to collagen IV, heparin sulphate proteoglycan, entactin and to 

itself, to create an integrated structure within the basement membrane. Due to its size and 

shape, it can span the membrane and bind to various substances on the surface of cells. 

These substances include a specific high-affinity membrane receptor (Mr = 67.000) and 

other ligands (heparin sulphate, gangliosides). Binding to laminin elicits cell-specific 

responses including polarization, migration and differentiation, hence it is an important 

structural and regulatory molecule. It has diverse effects on cultured cells, and can 

influence growth, survival, morphology, differentiation and motility (Kleinman et al 

1985). These effects may be related to and proceed from the binding of cells to a laminin 

substrate.
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FIGURE 1.1 Histology of the skin

1.2.1.2 THE TOOTH

Since the 1960’s we have been aware of the morphology of the structures that interface 

the natural tooth (Kobayashi et al 1976, Listgarten 1966, Schroeder 1969) (Figure 1.2). 

The teeth penetrate the stratified squamous epithelium of the gum, or gingiva. They are 

constantly surrounded by saliva containing microorganisms, and are also in contact with 

enzymes and globulins that repress pathologic organisms, fight infection and encourage 

healing (Bodner 1991, Varshney et al 1997, Gocke et al 1999). The skin penetrating 

section is made of hard, polished enamel. The periodontal ligament runs between the root 

of the tooth and the wall of the bony cavity in which the tooth resides, and reduces stress 

at the soft tissue -  tooth interface. The region where the external environment, the tooth
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and the soft tissues meet is maintained within a recess called the sulcus and is formed by 

the specialised crevicular epithelium, with a basal lamina and hemidesmosomes attaching 

the soft tissues of the gingiva to the hard enamel of the tooth. This is a dynamic interface 

like any other transcutaneous structure. The cells of the crevicular epithelium move 

towards the enamel of the tooth before migrating through the epithelial tissue layers 

towards the gingival surface, where they are found as dead cells that become washed 

away by sulcular fluids. In cases of irritation, the crevicular epithelium thickens and 

supports an increased number of polymorphonuclear leucocytes. Hemidesmosomes are 

intimately involved in epithelial attachment to natural teeth (Kobayashi et al 1976, 

Listgarten 1966). The attachment of the marginal gingiva to the tooth is mediated by a 

thin non-keratinized epithelium known as the junctional epithelium (JE). The junctional 

epithelium (JE) attaches to the tooth via hemidesmosomes and a basal lamina-like 

extracellular matrix known as the internal basal lamina (Hormia et al 1998, Marks et al 

1994). The junctional epithelium is found to be in contact with both the hard surfaces of 

the tooth and the basement membrane adjacent to the connective tissues (Hormia et al 

2001). This epithelium-tooth juncture is a unique interface in which the junctional 

epithelium achieves a tight attachment with the tooth, as well as accomplishing successful 

cell turnover, tissue permeability and the initial line o f defence against oral pathogens. 

Mimicking the interface between soft and hard tissues observed in this natural example of 

a transcutaneous structure is the ultimate goal of artificial skin-penetrating implant 

development. The gingival soft tissues attach to the hard enamel covering the crowns of 

the teeth, and the cement layer covering the dental roots. Dental enamel is a mineralised 

cell secretion containing crystalline apatites. It is composed of densely packed enamel 

rods, each around 3-6pm wide, containing flattened hexagonal hydroxyapatite crystallites 

(Bannister et al 1995). At the enamel surface the rods are packed with their long axes 

parallel to form a continuous layer. At regular intervals along the length of each rod, 

swelling and shrinking can be observed under the light microscope, which result from 

growth. Cement is the bone-like covering of the dental roots. It is composed of 50% 

hydroxyapatite and amorphous calcium phosphates, by weight, and overlaps the enamel 

slightly in newly erupted teeth. Cement is perforated by collagen fibres, which extend 

into it from the periodontal ligament collagen fibres. New layers of cement are deposited 

over time to compensate for tooth movement, and these layers incorporate the collagen 

fibres further within the cement layer. In 1969, Schroeder described the ultrastructure of 

the junctional epithelium of human gingiva. Standardized areas of junctional epithelium 

were investigated using electron microscopy. All junctional epithelium specimens were
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shown to possess a stratified squamous epithelium, twelve to eighteen cell layers thick, 

grouped into a stratum basale or basal cell layer and a stratum spinosum. In the tissue 

approaching the tooth, the cells’ shape changes from cuboid to flat with cytoplasm rich in 

glogi apparatus, large cistemae of endoplasmic reticulum and sparse bundles of 

cytoplasmic filaments. The basement membrane and basal lamina were found to be 

indistinct with few desmosomal cell junctions. The connective tissue underlying the 

basement membrane was shown to contain an accumulation of cells directly below the 

basal lamina, where instead of a dense network of collagen fibres, fibroblasts, mast cells, 

neutrophilic granulocytes, macrophages, plasma cells and small lymphocytes were 

observed in abundance. Schroeder (1969) described the stratum basale as containing cells 

of a cuboid, flattened morphology with round, oval or flat nuclei, few desmosomes, and 

numerous hemidesmosomal junctions. In the stratum spinosum the cells adjacent to the 

enamel surface of the tooth were flat with a thin cytoplasmic content, few desmosomes 

and numerous neutrophilic granulocytes. Epithelial cells were not found to directly attach 

to the enamel surface (Schroeder 1969), instead ‘a complex of organic layers’ was 

observed, interposed between the cytoplasmic membrane of the epithelial cells and the 

tooth enamel. Schroeder (1969) termed this complex the Epithelial Attachment Lamina 

(EAL). He described the EAL as having two structurally and histochemically different 

layers, the EAL-1 and EAL-2. The EAL-1 was always observed, covering the epithelial 

cell layers, and was described as a moderately dense, slightly fibriliar, ruthenium-red 

positive (a stain for glycosaminoglycans) layer of between 0.1-0.2 microns thick. 

Towards the EAL-1, the cytoplasmic membrane of the abutting epithelial cells possessed 

what Schroeder then described as ‘ half-desmosomal junctions of varying length’ now 

known as hemidesmosomes. The EAL-2 layer was located between the EAL-1 and the 

tooth enamel, and was not continuous with the tooth surface. It was described by 

Schroeder (1969) as, an electron dense, fibriliar, striated, ruthenium-red negative layer, 

ranging from 0.1-0.7 microns, varying both within and between patient specimens. The 

thickness of the EAL-2 layer was seen to increase where extensions of the epithelium- 

enamel towards the enamel were observed.

In 1967, Lde defined normal junctional epithelium as containing no inflammatory cells, 

with an underlying connective tissue free from inflammatory infiltrate. This finding was 

not collaborated by Schroeder (1969) who stated that in humans this was rarely the case, 

and an inflammatory cell population was always observed in the connective tissue layer 

beneath the junctional epithelium.
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The gingival junctional epithelium is a stratified tissue, without a stratum granulosum or 

stratum comeum (McHigh 1964, Loe 1967, Schroeder 1969). The epithelial attachment 

to the tooth enamel is characterised by the presence of hemidesmosomes and an 

interposing epithelial attachment lamina. The hemidesmosomes are identical to those of 

basal cell membranes facing the basal lamina (Stem 1965). The ‘basal lamina’ between 

the junctional epithelium and the tooth surfaces is a multi-layered structure which 

mediates the attachment of epithelial cells to the tooth enamel via fine filaments that span 

between the interposing lamina, hemidesmosomes and tooth enamel, combining them to 

form a stable structural unit (Listgarten 1966, Schroeder 1969, Kobayashi et al 1976, 

Marks et al 1994, Hormia et al 2001).
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Figure 1.2 Schumatic of the natural tooth

1.2.1.3 THE BABYRUSSA TUSK

The only permanent naturally occurring transcutaneous structure is the tusk of the 

babyrussa, a very rare pig originating from the Celebes in South-East Asia. In this 

animal, the canine teeth of the upper jaw do not penetrate the gingiva like ordinary teeth; 

instead they grow in the opposite direction, piercing the external skin layers of the snout 

immediately beneath the animal’s eyes. The tusk is a bone-anchored structure. In 1999, 

Knabe et al published a light microscopy, histological analysis of the transcutaneous 

interface of the babyrussa tusk. The tusk, consisting of dentin and a cement layer, is 

surrounded by an accumulation of keratin at the skin-penetrating region. It is anchored to 

the bone via a periodontal membrane, which contains a large blood vessel. In most cases, 

the epidermis is found to be in close adherence to the tusk, with no downgrowth. The
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epidermis displays downward thickening regions, known as rete pegs, into the upper 

layers o f the dermis. The tissues surrounding the tusk-skin juncture display signs of 

chronic inflammation, containing large numbers of lymphocytes, macrophages, plasma 

cells and polymorphonuclear leucocytes. To date no study has been able to characterise 

the ultrastructure of the attachment observed between the epithelium and the babyrussa 

tusk. It is possible that the structures that mediate epithelial attachment to the tooth, 

hemidesmosomes and the internal basal lamina, are also responsible for the junctional 

adherence observed in the babyrussa tusk. Certainly the observed pronounced thickening 

and keratinization are common to both interface structures, however they are more 

evident in the tusk model. It is postulated that the major contributing factor to the success 

of babyrussa tusk transcutaneous interface, is the subcutaneous bone attachment, which 

will greatly reduce interfacial stresses (Knabe et al 1999).

1.2.1.4 DEERANTLERS

Deer antlers are a true, but transient, transcutaneous protrusion of the skull. The growing 

antlers are covered by a specialised tissue called velvet, and from the moment this 

material is exfoliated to the time the antlers are shed, they penetrate all layers of the skin. 

The skin penetrating segment is made of bone and the epithelium surrounding the antlers 

is firmly attached to the skull, where, as it approaches the antler structure, it forms a 

sulcus from which the skin rises to interface with the antlers surface. The skull provides 

the subcutaneous anchor for the antlers, and reduces the interfacial stresses around the 

skin-antler interface. This anchor system allows the animal to apply great stress on the 

antlers without adversely affecting the transcutaneous junction (Grosse-Siestrup and 

Affeld 1984). On the dermal level, collagen fibres penetrate the antlers’ surface in a 

perpendicular orientation, which may reduce epithelial layer downgrowth into the 

underlying tissue layers (Winter 1974).

The morphology and interface biology associated with deer antlers will not be considered 

in any great detail in this section of my thesis as Chapter Four provides a detailed 

histological and scanning electron microscopy analysis of antlers as a model for the soft 

tissue attachment.

1.2.2 SUBCUTANEOUS INTERFACES

Implants designed to be integrated into the human body by tissue ingrowth have 

numerous applications, and in many cases are dependant on the infiltration of soft or 

fibrous connective tissue. The subcutaneous segment of skin penetrating implants and
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cardiovascular devices depend on fixation by fibrous tissue ingrowth (Femie et al 1977, 

Grosse-Siestrup et al 1979). Immobilisation of cardiac pacemaker electrodes is achieved 

by soft tissue integration (MacGregor et al 1979, Amundson et al 1979), as are the 

stabilisation of artificial larynx devices (Debreconi et al 1977), the attachment of avulsed 

ligaments and tendons (Amstutz et al 1976) and the resurfacing of the articular aspect of 

implants with cartilage-like tissue (Mears 1979). Finally, implants used in joint 

replacement rely on soft tissue attachments to supplement bone ingrowth for long-term 

stability (Pilliar et al 1981, Kent et al 1972, Jaffe et al 1978). In order to gain a better 

understanding of the interface biology associated with subcutaneous, soft-hard tissue 

interfaces, the osseo-tendinous junction is a good basis for the development of an 

engineered construct capable of soft tissue integration and incorporation.

1.2.2.1 THE OSSEO-TENDINOUS JUNCTION

12.2.1.1 TENDON ANATOMY

Tendons are anatomical structures that exist between muscles and bones. They transmit 

the forces generated in the muscles to the bones, thus enabling joint laxity. Tendon is a 

highly organised structure containing a sparse population of elongated fibroblasts, or 

tenocytes, within an extensive extracellular matrix; predominantly composed of type I 

collagen (~ 85% dry weight), with smaller quantities of other collagens (types III, V and 

XII), proteoglycans (Decorin, Biglycan, Fibromodulin) (Kastelic et al 1978, Blevins 

19%) and elastin. Tendons are able to withstand both tension and compression, and the 

biochemistry o f their extracellular matrix changes depending on the forces they 

encounter. In compression, tendons are often observed to be fibrocartilagenous in nature 

containing type in collagen (Gillard et al 1979), whilst the presence of fibrocartilage is 

also well documented at the tendon insertion sites or entheses, where it acts to reduce the 

stress concentration at the soft-hard tissue interface (Benjamin and Evans 1990, Ralphs et 

al 1991, Ralphs etal 1992).

In the tendon proper, the collagen molecules cross link to form fibrils, which grouped 

together make up collagen fibres, which in turn are the building blocks of primary 

(subfasicles), secondary (fasicles) and tertiary fibre bundles of which the tendon is 

composed.

In resting state, the collagen fibres and fibrils of the tendon display a wavy configuration 

that is clearly visible under the light microscope. Fibre orientation has been well defined 

(Rowe 1985, Whittager and Canham 1991) and is seen to disappear when the tendon is 

stretched, accompanied by a straightening of collagen fibres (Hess et al 1989). When the
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tensile force is released, the normal wavy pattern is recovered provided the tendon is not 

stretched above approximately 4% elongation, otherwise the original wavy pattern will 

not return to its previous dimensions (Elliot 1965). If an elongation of greater than 8% is 

encountered, the tendon is subject to rupture (Jozsa and Kannus 1997). The collagen 

fibrils and fibres comprising the tendon structure run in a parallel orientation to the 

tendon, and are clearly visible under polarized light. A tendons matrix to collagen fibril 

ratio varies depending on its specific requirements. Tendons subject to predominately 

tensional forces with areas experiencing compression, for example flexor tendons, contain 

fibrocartilagenous regions with a high rate of glycosaminoglycan synthesis. They contain 

low collagenous and non-collagenous protein synthesis in the regions that encounter 

pressure as apposed to tensional forces (Abrahamsson et al 1989, Abrahamsson 1991). 

Glycosaminoglycan side chains attached to a core protein form proteoglycans, which 

joined via linking proteins, form hydrated space filling polymers found in extracellular 

matrix. The increased glycosaminoglycan content enables 'dampening’ of the 

compressive forces that may otherwise irreversibly damage the tendon architecture. 

Hence the importance of a tendon’s three dimensional structure can not be over 

emphasised. As previously stated, a tendon’s function is to transmit the forces generated 

in the muscles to the bone, enabling joint motion, and it is the intricate micro- and 

macrostructure of a tendon that makes this possible. Tendons can be subjected to 

longitudinal, transverse and rotational forces, whilst being expected to withstand pressure 

and contusion. It is the internal three-dimensional architecture of fibrils and extracellular 

matrix that provides a buffer against these forces, and enables tendons to function 

successfully. Imposing a change in the physical forces affecting a tendon will 

undoubtedly result in a marked change in that tendon’s composition and three- 

dimensional architecture (Abrahamsson 1991). It is a tendon’s ability to respond to 

changes in physical forces and to regenerate following disruption of normal morphology 

that will determine whether it can be successfully re-attached to an implant in vivo.

1.2.2.1.2 THE TENDON-BONE INTERFACE

Tendons are connective tissues that attach muscles to bone, whilst ligaments are 

connective tissues that fulfil a stabilizing role between two bones across a joint. Tendons 

and ligaments display differences in matrix composition and organization (Amiel et al 

1984), however their insertion sites into bone are structurally similar.

The term ‘enthesis’ has been applied to the attachment of a tendon or ligament to bone, 

and this juncture has been extensively studied (Cooper et al 1970, Benjamin et al 1986,
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Kumagai et al 1994, Rufai 1995, Clark et al 1998, Waggett et al 1998, Benjamin et al 

1998). The enthesis has been divided according to its morphology into Direct, also 

known as fibrocartilagenous or chondral (Evans et al 1990), and Indirect, otherwise 

known as fibrous or periosteal. Indirect attachments generally occur to the diaphysis or 

metaphysis of bones, where the superficial layers of the tendon merge with the 

periosteum whilst in the deeper layers Sharpey’s fibres perforate the underlying bone. 

Epiphyseal tendon attachments, for examples the patellar tendon -  tibial tuberosity 

interface, are of the Direct type. Here, there is a clear transition from the dense 

connective tissue of the tendon, through a fibrocartilage and then mineralised 

fibrocartilage region, to the sub-chondral bone. A "Tidemark7 at the calcification 

boundary is clearly visible under the light microscope and appears as a line o f basophilic 

staining. Between the tendon and fibrobcartilage regions of the direct interface, the 

morphology of the resident cells changes. The elongated fibroblasts, characteristic o f the 

tendon material, disappear and are replaced with round chondrocyte-like cells, in lacunae. 

The fibrocartilage and mineralised fibrocartilage regions differ as the name implies, by 

the laying down of mineralised areas between the lacunae. Stripping of the soft tissues 

disrupts a direct enthesis, and the interface separates through the tidemark, with the 

mineralised fibrocartilage remaining associated with the bone, which has a smooth 

surface. In contrast, in an indirect enthesis, lacking transitional zones, the bone at the 

interface displays ridges and fissures that accommodate the infiltrating collagen fibres 

(Benjamin et al 1986).

In 1999, Thomas et al described the variable nature of the direct insertion and its 

morphological dependence on anatomical location. The tissue composition and 

organization of the interface is largely dependant on the mechanical forces it experiences. 

For example, greater amounts of fibrocartilage and calcification are observed at entheses 

where the tendon is required to move through a wide range of angles and is subject to 

high tensile stresses (Evans et al 1990, Evans et al 1991). The fibrocartilage content of 

the osseo-tendinous interface also responds to compressive loading and is distributed 

according to the structural forces encountered at specific anatomical locations (Okuda et 

al 1987, Benjamin and Ralphs 1998). Morphological adaptations associated with 

immobilisation and physical activities have been well documented (Laros et al 1971, Woo 

et al 1987) and demonstrate that mechanical usage is a prerequisite for maintaining 

normal structure and morphology.

The unique interface that exists between tendon and bone demonstrates the ability o f two 

tissue types with significantly different material and biomechanical properties, to unite
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achieving a mechanically superior structure to either tendon mid-substance or sub­

chondral bone, which are both observed to fail under mechanical loading prior to failure 

at the interface (Gao et al 19%).

Limited options for tumour control and the poor reconstructive surgical techniques of the 

nineteenth century meant that amputation was the treatment of choice for malignant bone 

tumours (Rubin 1971, Sweetnam et al 1971, Freidman and Carter 1972, Elton 1988, 

Checketts 1991). Since then, our understanding of, and ability to control tumours has 

greatly improved and earlier diagnosis, neoadjuvant therapies (Bacci et al 1976, Jaffe and 

Knapp 1983, Rosen and Marcove 1983, Goodnight and Bargat 1985, Rosen and 

Nirenburg 1985, Springfield et al 1988, Perek and Jurczyk-Procyk 1995, Thompson et al

2002) and a more concise comprehension of tumour biology (Enneking et al 1980, Simon 

1984, Sundaram and McGuire 1986, Watt 1985, Grundmann 1995) has brought about 

radical changes in our approach to treating tumour patients. Currently, most patients 

receiving joint replacements report improved function and reduced pain (Walker et al 

1989), resulting in reconstructive surgical techniques being the treatment of choice for 

many cases. Despite this, a clear need exists to reduce and repair the damage done to 

connective tissues during orthopaedic procedures.

1.2.2.1.3 TENDON AND LIGAMENT HEALING

Extra-articular tendons and ligaments heal via a four-stage process, including 

haemorrhage, inflammation, proliferation and maturation or remodelling. The stages are 

those of a regular healing response observed for all soft tissue injuries. Immediately 

following trauma, where blood vessels are damaged, blood plasma and tissue fluids 

infiltrate the affected area. Platelets bond to collagen, releasing phospholipids that 

stimulate the clotting mechanism (Houglum 1992). Fibrin and fibronectin are observed in 

the wound site within sixty minutes of initial injury (Lehto et al 1990), forming a glue­

like substance at the wound site that provides a temporary plug to restrain local 

haemorrhaging and a provisional matrix to resist tensile stresses during early tendon 

healing. Fibrin and fibronectin act as a transient matrix for the infiltration of 

polymorphonuclear leukocytes, monocytes (Ciano et al, Lanir et al 1988) and later, 

fibroblasts (Grinnell et al 1980, Brown et al 1993). Chemotactic agents (specific 

substances produced to attract particular cell types) attract the cellular elements, 

polymorphonuclear leukocytes, monocytes and macrophages, into the wound site. 

Histamine is one such agent, produced by mast cells, platelets and granular leukocytes,
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causing vasodilation and increasing vascular permeability. Fibronectin is a chemotactic 

agent for macrophages, leukocytes and fibroblasts (Grinnel et al 1980), whilst bradykinin 

increases vascular permeability and stimulates prostaglandin (PGE) release -  PGEi, 

which increases vascular permeability, and PGE2 , which attracts leukocytes. The 

inflammatory cells act to clear the area of necrotic tissue and debris, after which the 

proliferation and maturation phases can occur. Infiltration and accumulation of 

fibroblasts, myofibroblasts and endothelial cells into the injured tendon marks the 

beginning of the proliferation phase (Katenkamp et al 1976, Gelberman et al 1985). 

Platelets and macrophages secrete the growth factors required to cause migration and 

proliferation of these cell types (Houglum 1992), which then begin to synthesize the 

required collagenous and non-collagenous extracellular matrix components. These cells, 

the extracellular matrix and new capillaries, which form from buds and sprouting of the 

existing capillaries, are collectively known as granulation tissue. Hence, the provisional 

fibrin clot is gradually replaced with a more permanent structure, whose remodelling and 

maturation can take over a year from the time of injury (Clark and Henson 1988). During 

this phase, the number of fibroblasts, macrophages, myofibroblasts and capillaries 

decreases. This is accompanied by a decline in synthesis activity and a thickening of the 

resulting scar tissue as the vascularity and fluidity of the tissue is reduced. 

Glycosaminoglycan concentration decreases and tendon collagen becomes more densely 

packed, predominately Type I. The tensile strength of the tendon increases throughout 

this phase until the resulting collagen network has totally remodelled into a strong 

permanent structure (Leadbetter 1992). Scar formation occurs by a controlled programme 

of collagen and matrix synthesis that is mediated by gene expression and growth factor 

synthesis, and is similar to that seen in developmental processes. The resulting scar tissue 

is inferior to intact tissue, both mechanically and biochemically (Frank et al 1985, Liu et 

al 1995, Woo et al 1998, Lo et al 2000). Early research suggesting that tendons and 

ligaments have limited regenerative capacity for healing of mid-substance injuries, has 

been superseded by work showing that tendon fibroblasts have an intrinsic capacity to de­

differentiate, proliferate and synthesize new extracellular matrix (Mast 1997).

Techniques for promoting soft tissue repair, in mid-substance or interface sites, have been 

well documented (Frank et al 1985) and a number of exogenous growth factors have been 

shown to enhance recovery in vivo and in vitro (Frank et al 1985, Natsu-Ume et al 1998). 

These include platelet derived growth factor (PDGF), insulin-like growth factor-1 (IGF- 

1), transforming growth factor-beta (TGF-p) and hepatocyte growth factor / scatter factor 

(HGF/SF). Preliminary results show the effects to be dose dependant, with additional

32



growth factor combinations (Hildebrand et al 1998, Let son and Dahners 1994) and tendon 

/ ligament type (Spindler et al 1996) also being contributing variables. Tissue 

engineering approaches, re-introducing isolated culture-expanded, mesenchymal stem 

cells in collagen matrices to repair tendon defects, have yielded encouraging results 

(Awad et al 1999, Young et al 1998). Studies demonstrating the capacity for tendon and 

ligament regeneration have indicated that they have the potential to play active roles in 

healing processes that are required for the successful re-attachment of soft tissues to metal 

implants and bioactive surfaces.

1.2 2.1.4 TENDON BONE-TUNNEL HEALING

Methods employed to re-attach tendon to bone have also been examined to gain an 

understanding o f soft tissue healing processes. In 1942, Kemwein postulated that the 

haemorrhage and trauma associated with drilling a hole into bone for tendon implantation 

would simulate the conditions of a fracture site. He concluded that the firm attachment 

resulting from such a technique was the direct result of gradual ossification of the tendon 

within the bone tunnel, which occurred by the infiltration of osteoblasts into the tendon 

proper and subsequent bone formation therein. Forward and Cowan (1963) described the 

lifeless appearance of the end of a detached tendon in an implantation model. They 

observed that healing of the tendon into a bone tunnel occurred in a similar manner to that 

of an undisplaced fracture, with an initial inflammatory phase (characterised by signs of 

degeneration of the tendon) and repair in the form of anchorage. This is initiated by an 

immature connective tissue sleeve of callus, followed by bone ingrowth into the tendon, 

with the collagen fibres of the tendon orientated along the line of mechanical pull, 

becoming ‘buried in osseous tissue’. In 1960, Whiston and Walmsley described a bone 

tunnel implantation model in vivo. They too noticed the early degeneration of the 

detached tendon end, and described a loss o f fibrocytes, myxomatous collagen fibre 

degeneration and formation of an amorphous poorly stained matrix five days post­

operation. This phase was followed by a streaming of cells from the marrow spaces 

lining the bone tunnel, which invaded the edges of the degenerate tendon, replacing its 

structure from the periphery, inwards. They noted that a central core of degenerate 

tendon was slow to become repopulated. More recent research using a canine model has 

shown an early tendon-bone interface developing, consisting of immature connective 

tissue, which became anchored to the woven bone lining the bone tunnel by collagen 

fibres (Oguma et al 2001). However there was no evidence of a fibrocartilagenous 

layered enthesis during healing. In 1954, Skoog and Person also demonstrated the
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degenerative changes associated with a cut tendon end and its recovery by ingrowth from 

surrounding tissues.

Rodeo et al (1993) used an in vivo canine model to study the development of the tendon- 

bone interface within a bone tunnel. They showed the maturation of a vascular cellular 

fibrous tissue at the interface, with the appearance of a 'basophilic tidemark7 between 

calcified and non-calcified tissue by twenty-six weeks. Mechanical testing of load to 

failure in tension, demonstrated that at twelve weeks, failure occurred at the insertion of 

the tendon to the mechanical testing rig, or within the mid-substance of the tendon, but 

not at the tendon-bone interface. These findings oppose those of Jones et al (1987) who 

found that by twenty weeks, a tendon-bone interface consisted of tendon attached via a 

continuation of the periosteal cell layer without the formation of a layered enthesis in an 

in vivo model. Liu et al (1997) showed the formation of an indirect-like enthesis in a 

rabbit model after six weeks in vivo. The tendon-bone interface consisted of dense 

connective tissue, an interspersed fibroblast population, type in collagen fibres spanning 

the interface in a longitudinal orientation and neo-vascularisation. A fibrocartilage region 

was not observed, whilst the presence of a tidemark was not noted. Similar finding were 

described by Aoki et al (1998) following implantation of canine rotator cuff tendons six 

weeks post-operatively. At nine weeks, fibrocartilage was noted within the bone tunnel 

and a tidemark and layered enthesis had developed by twelve weeks. In contrast, in 1989 

Hausman et al described little evidence o f a tendon-bone union forming after twelve 

weeks, when tendon was attached through a metaphyseal bone tunnel in a Guinea pig 

model.

Other techniques have been employed to fix tendons to bone, the most successful, as 

defined by load to failure, being a screw and spiked washer device (Robertson et al 1986). 

It has been shown that the mechanical load to failure with this technique can be increased 

by increasing torque of the screw (Meriam et al 1995).

1.3 ARTIFICALLY ENGINEERED SOFT-HARD TISSUE INTERFACES

1.3.1 IMPLANT MATERIALS

Whether attempting to re-attach tendons to implants subcutaneously or successfully 

engineer a skin-implant interface in a transcutaneous device, one of the principle factors 

to consider is the type of biomaterial. The word ‘biomaterial’ refers to the synthetic or 

treated natural materials that can be used to replace or augment tissue functions. 

Biomaterials play a crucial role in orthopaedic procedures and an understanding of them 

allows the selection and implementation of a suitable material within a device, realistic
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expectations of clinical performance and prediction of long term success rate. Metals 

possess properties that make them ideal for load bearing applications, thus they are 

regularly used to replace structural elements during skeletal repair and reconstruction. 

Metals have high strengths and are able to withstand plastic deformation under load, 

hence they are resistant to fracture. The biocompatibility of a metal is directly related to 

its corrosion resistance. A number of metals and metal alloys are well tolerated within 

biological systems. Metals are rarely used in their pure form owing to the fact that 

addition of other elements to form alloys can enhance metal properties.

The materials used for orthopaedic implants vary considerably and no optimal material 

has been described (Goldring et al 1990, Galante et al 1991, Black 1992, Wooley et al

1997).

Metals, polymers and ceramics are three of the material type groups used in implant 

manufacture. Commercially pure titanium and titanium alloy are the most commonly 

used metals in the fields of orthopaedics, dental implantology and cardiovascular 

medicine. Properties of the pure metal, including low density (4.5g/cm3), high melting 

point (1668°C) high tensile strength (see Table 1.1), fatigue resistance, anti-corrosion 

characteristics, a low modulus of elasticity (107Gpa) and primarily its high 

biocompatibility, make titanium the most common material o f choice for joint 

replacement (Rae 1975, Solar et al 1979, Albrektsson et al 1981, Kummer and Rose 1983, 

Linter et al 1986, Kodama 1989, Prigent et al 1998, Wang and Li 1998, Matsuno et al 

2001). Titanium alloy properties include high tensile strength (947MPa) and ease of 

forging and machining. However poor wear resistance can result in the liberation of 

potentially toxic local metal debris into tissues surrounding implants (Buchanan et al 

1987, Agins et al 1988). The principal limitation with the use of titanium is its chemical 

reactivity with other materials at elevated temperatures, which has resulted in the 

development of non-conventional refining techniques; consequently, titanium alloys are 

expensive. Table 1.1 summarises the properties of commercially pure titanium and 

titanium alloy Tie A14V used in orthopaedic applications.
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Alloy Type Common
Name

Composition Tensile
Strength

(Mpa)

Yield
Strength

(Mpa)

Ductility 
(% EL in 
50mm)

Commercially
pure

Unalloyed 99.1 % Ti 484 414 25

Alloy Ti* AL,V 6 Al, 4 V, 
balance Ti

947 877 14

Table 1.1- Properties of commercially pure and alloyed titanium for use in orthopaedic 
implant manufacture

More recently, titanium-tantalum alloys have been investigated as possible implant 

biomaterials. A titanium-5% tantalum alloy has been shown to support fibroblast and 

epithelial cell viability, adherence morphology and growth, with no significant 

differences from levels observed on titanium substrates (Prigent et al 1998). When 

alloyed with titanium (Young’s Modulus 100-13OGPa), tantalum (Young’s modulus 

3GPa) enhances the resulting alloy by increasing hardness, resistance to traction and 

corrosion (Mow and Hayes 1997). It is postulated that the alloying of titanium and 

tantalum could produce an implant material with a Young’s modulus closer to that of 

bone (Young’s modulus of cancellous bone 500-1500MPa), which has the potential to 

reduce stress shielding and enhance load transfer.

13.1.1 TEXTURING AND COATINGS

Texturing of implant materials can provide increased surface area for tissue attachment 

and a substrate that will enable tissue ingrowth, hence increase implant stability within 

the biological tissue in which it is placed. Texturing techniques include sintering, 

diffusion bonding and plasma spraying. The plasma spray process involves the spraying 

of molton or heat softened material onto a surface to provide a coating. The powder form 

of the coating material is injected into a very high temperature plasma flame, where it is 

rapidly heated and accelerated to a high velocity. The spray stream of molton particles is 

projected towards the substrate, where it cools forming the coating. The coating can be 

characterised by controlling the particle size of the material powder injected into the 

plasma flame and the pressure and temperature used to apply the coating 

(www.gordonengland.co.uk/ps.htm) (Wolke et al 1992). In 1987, Inoue et al postulated 

that the geometrical configuration of the surface of implants could influence whether a
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capsule or an orientated fibrous attachment is developed. Since then, a number o f authors 

have examined the nature of the soft tissue-porous implant interface. Characterisation of 

soft tissue bonding to porous coated implants has shown that pores of between 300 and 

900 microns can support ingrowth, vascularisation and increased peel strength over time 

(La Berge et al 1990, Freels et al 2002).

The in vitro responses of cells isolated from the soft tissues to implant materials, coatings 

and surface topographies have also been extensively studied. Hydroxyapatite coatings 

have been shown to support and enhance bone and fibrous tissue cell attachment, growth, 

collagen matrix production and metabolism (Van Blitterswijk et al 1986, Ruano et al 

2000).

1.3 1.1.1 HYDROXYAPATITE COATINGS

In the 1930’s calcium phosphate ceramic hydroxyapatite (Caio(Po4 )6(OH2 ))was identified 

as the main constituent of bone mineral (Engstrom 1972). Since then, synthetic 

hydroxyapatite and calcium phosphate materials have been developed that are structurally 

and chemically similar to bone, as well as being non-toxic and highly biocompatible 

(Jarco 1981, Klein et al 1983, Jarco 1986, Ducheyne and Lemons 1987, Manley 1993). 

Hydroxyapatite will support bone ingrowth and osseointegration when used in 

orthopaedics, dental and maxillofacial applications, and its beneficial biocompatible 

properties are well documented (Ducheyne et al 1980, Holmes and Roser 1987, De Groot 

et al 1987, Geesink et al 1987, Geesink et al 1988, Cook and Thomas 1988, D’Antonio et 

al 1992). Its properties make it one of the few materials that are classified as bioactive. 

The term bioactive refers to a substance that can be acted upon by a living organism or an 

extract from a living organism, and provides a surface that will form fixations via 

chemical bonds between the implant and host tissues. It is rapidly integrated into the 

human body without foreign body recognition, and bone will bond to it forming an 

indistinguishable union before undergoing degradation over time (Donath 1990). Despite 

the numerous advantages of hydroxyapatite it cannot be used in bulk for load bearing 

applications because of its poor mechanical properties (de Groot et al 1981), hence it is 

usually plasma sprayed onto a metal substrate. Hydroxyapatite coatings are beneficial 

because they can employ the biocompatible and bonding properties of the ceramic, whilst 

exploiting the mechanical properties of their metal substrate. When applied to 

orthopaedic implants, a hydroxyapatite coating provides an osteophilic substrate for bone 

to bond with and can direct (osteoconduction) and induce (osteoinduction) bone growth 

(Bauer et al 1991). The bone-hydroxyapatite interface stabilises the implant, enabling the
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transference of the loads generated in the muscles to the skeleton, thus reducing atrophy. 

Osteoblasts and osteoclasts have been shown to attach to, and proliferate on 

hydroxyapatite coated implant materials (Bauer et al 1991, Kirschenbaum 1991), and it is 

thought that the coating adsorbs bioactive factors that assist in the initiation of bone 

formation. Mesenchymal stem cells have been observed at different stages of 

differentiation on hydroxyapatite coatings (Hardy et al 1991).

In vivo soft tissue responses to hydroxyapatite have also been documented. Complete soft 

tissue ingrowth into porous hydroxyapatite blocks has been observed after fourteen days 

(Butts et al 1989) and when used to replace bone defects, connective tissue can invade 

and totally replace porous HA within sixteen weeks (Lindholm and Lindholm 1993). 

Sintered porous hydroxyapatite blocks implanted in rat tendons show no inflammatory or 

calcification response (Ozawa 1991), whilst hydroxyapatite powder in a collagen gel has 

been shown to bond directly to rat tendon tissue without fibrous tissue capsule formation 

(Ishikawa et al 2001). More recently, mesenchymal stem cells sub-cultured on 

hydroxyapatite constructs for two weeks, prior to subcutaneous implantation in a rat 

model, develop into bone within thirteen weeks (Dong et al 2002).

1 3.1.1 2 BIOLOGICAL COATINGS

Biological coatings have been applied to implant materials in the hope of increasing their 

integration with and affinity for human tissue cell types and to enhance attachment with 

the soft tissues. Epithelial cells have been shown to proliferate and attach to titanium 

substrates in vitro, whilst laminin initiates early attachment of gingival epithelial cells 

(Wang et al 1998). Extracellular matrix components can affect the cellular response 

observed in relation to implant materials (Park et al 1998). Collagen IV coated titanium 

is a superior substrate compared with uncoated titanium, for encouraging epithelial cells 

attachment, proliferation, morphological pattern, differentiation and cytoskeletal 

organisation, whilst fibronectin coating promotes the adhesion of fibroblasts in vitro. 
Fibronectin is an adhesive protein (Hynes 1986, Ruoslahti and Pierschbacher 1987). The 

extracellular matrix contains a number of non-collagenous adhesive proteins that have 

multiple domains, each with a specific binding site for other matrix macromolecules and 

for cell surface receptors. Hence these proteins contribute to the organization and cell 

adhesive properties of the matrix. One such protein is fibronectin, which is a large 

glycoprotein found in all vertebrates. It is a dimer composed of two large subunits joined 

by a pair of disulphide bonds. Each subunit folds into a series of distinct rod like 

domains, separated by regions of polypeptide chain. Each domain consists of smaller
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modules, each serially repeated. Fibronectin can be analysed by chopping it into pieces to 

determine the functional role of each domain. This can be achieved by treatment with 

low concentrations o f a proteolytic enzyme to cleave the polypeptide chain in the regions 

connecting the domains, leaving the domains intact, hence their individual binding 

activities can be established. This method has been used to demonstrate that in 

fibronectin, one domain binds to heparin, one to collagen and another to specific 

receptors on the surface of various cell types. Once isolated, a domain with cell-binding 

abilities amino acid sequence can be determined and synthetic peptides corresponding to 

different segments of the domain can be prepared. These peptides can be used to localize 

the main region responsible for cell binding (Hynes 1986). For fibronectin, this sequence 

is Arg-Gly-Asp or RGD and can be found in one of the type HI repeats as a central 

feature o f the binding site. Short peptides containing the RGD sequence will compete 

with fibronectin for the cellular binding site and thus inhibit attachment of cells to a 

fibronectin matrix. If these peptides are coupled to a solid surface, they will cause cells to 

attach to it. The RGD sequence is not limited to fibronectin and can be found in a 

number of other extracellular matrix proteins (Ruoslahti and Pierschbacher 1987).

There are numerous isoforms o f fibronectin, one of which is plasma fibronectin which is 

soluble and circulates in the blood and bodily fluids, where it is supposed to enhance 

blood clotting, wound healing and phagocytosis. All other isoforms assemble on the 

surface o f cells before being deposited in extracellular matrix as highly insoluble 

filaments. In cell surface forms, fibronectin molecules are cross-linked together and can 

assemble into filaments on specific cell surfaces (Degasne et al 1999). This information 

suggests that fibronectin may have a positive effect at the soft -  hard tissue interface. If  

the RGD sequence in fibronectin can bind to connective tissue cell surface receptors and 

encourage adhesion, it could increase the degree of soft tissue attachment to implant 

materials if utilised as a biological implant coating. Fibronectins characteristic 

enhancement o f blood clotting, wound healing and phagocytosis may also prevent 

bacterial invasion of the epidermal tissues exposed to the external environment on 

implantation of transcutaneous implants.

Cell attachment to extracellular matrix components is primarily mediated by integrins, a 

widely expressed family of transmembrane receptors (Hynes 1986). Integrins are 

heterodimeric receptors, consisting of alpha and beta subunits that are non-covalently 

associated and interact to bind specific amino acid sequences in the ligand, for example 

the RGD sequence o f fibronectin. Integrin mediated adhesion is a highly regulated, 

complex process involving receptor-ligand interactions and subsequent adhesion
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strengthening and cell spreading. Integrin binding to fibronectin involves a 

conformational change and activation in the receptor that results in mechanical coupling 

to the ligand. Bound receptors rapidly associate with the actin cytoskeleton and cluster 

together giving rise to focal adhesions, discrete complexes that contain cytoplasmic 

structural proteins and signalling molecules. Cell adhesion to the extracellular matrix is 

essential in development, wound healing and tissue remodelling. In addition to anchoring 

cells to provide structure and integrity, cell adhesion triggers signals that regulate 

survival, cell cycle progression and differentiation. Many pathological conditions, 

including blood clotting defects and tumour metastasis involve abnormal adhesion 

processes (Hynes 1986). Adhesion proteins could be used as biological coatings to assist 

the integration of implant materials into soft tissues in orthopaedic procedures.

1.3.2 IMPLANT INTEGRATION WITH THE SOFT TISSUES

Acceptance and integration of implants within soft tissues depends on the relationship 

between the implant material and the constituent parts of the specific soft tissue 

concerned. In vivo, cell populations and interactions remain in a stable equilibrium 

through proliferation, apoptosis and cell-cell interactions (Meffert 1997). Mechanical 

strength is a necessity for all soft tissues and is provided by fibroblasts, which secrete the 

supporting scaffold of extracellular matrix; a complex network of polysaccharides 

(glycosaminoglycans) and proteins. A blood supply is essential to bring nutrients to, and 

remove waste products from the tissues, whilst macrophages, white blood cells and 

lymphocytes are observed to dispose of dying cells and surplus extracellular matrix and 

combat infection. All tissues are a mixture of numerous cell types that are distinguishable 

from one another, whilst coexisting in the same environment. The fundamental properties 

of cells make possible the retention of tissue form and function. 'Cell memory’ enables 

cells to maintain their individual characteristics and pass them on to their progeny, whilst 

constantly sensing their surroundings and adjusting their properties to suit the function 

that is required (Alberts et al 1994). All cells depend on signals from other cells and from 

their surroundings. When a foreign implant material is introduced into the body, all of 

the aforementioned parameters are affected. In vitro experiments demonstrate that even 

when cells are removed from their ‘normal’ environment, they and their offspring 

generally retain their original instructions, however cell behaviour is not totally 

independent of environment. In vivo most specialised cell types act as if their basic 

character has been irreversibly determined. For example, epidermal cells injected into an 

alien bodily environment will grow and form cysts lined with epidermis, suggesting
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retention of characteristics in the most abnormal surroundings. Despite this, the character 

of many differentiated cells can be strongly influenced by their environment. 

Introduction of an orthopaedic implant could potentially be fatal or beneficial to soft 

tissue cell populations. Fibroblasts and their relatives, the connective tissue cell family, 

including osteoblasts/osteoclasts, chondrocytes, adipocytes and smooth muscle cells, are 

an exceptionally adaptive cell family and can undergo numerous interconversions 

(Alberts et al 1994). These conversions play key roles in the processes of fracture healing 

and wound repair, and have the potential to determine the fate of an implanted medical 

device.

Stem cells can generate differentiated cells in the adult form. These cells are precursors 

that have no mature differentiated state, but are able to divide to yield progeny that do. In 

adults, most populations of cells are not permanent and are constantly dying and being 

replaced. In the adult form, new differentiated cells can be produced in two ways, simple 

duplication or generation from an undifferentiated stem cell. Human mesenchymal stem 

cells are influenced by the materials and coatings used in orthopaedic applications and 

have the potential to enhance the acceptance of implant materials in vivo (Rust et al

2003).

To be successful, when implant materials are introduced to the soft tissues, they must 

become integrated through host tissue ingrowth, otherwise they become encapsulated 

within an unattached tissue pocket. Porous and textured surfaces, both metal and 

ceramic, have been shown to support connective tissue ingrowth. Research into the 

relationship between bone ingrowth and implant pore size has shown that optimal 

mechanical fixation is achieved using pores in the region of fifty to six hundred and fifty 

micrometers in diameter (Bobyn et al 1980, 1980, 1999, 1999, Roberetson et al 1976). 

Bobyn et al (1982) have also demonstrated that pore diameters between four hundred and 

eight hundred micrometers are associated with fibrous tissue ingrowth. Interface 

movement inhibits bone ingrowth and results in fibrous interposition, with the collagen 

fibres of the fibrous capsule running parallel to the implant surface (Pilliar et al 1981).

In 1982, Bobyn et al evaluated the peel strength of soft tissues from porous implants, 

from subcutaneous locations. Peel strength was seen to significantly increase with 

implant duration and also with pore sizes ranging from fifty to two hundred micrometers, 

compared with those of between five and twenty, and twenty and fifty micrometers. 

Hacking et al (2000) showed that subcutaneous soft tissue ingrowth into porous tantalum 

(Hedrocel) with pores of between four hundred and six hundred micrometers, consisted of
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densely ordered collagen rich bundles with good vascularity, and a mechanical strength at 

the resulting interface that exceeded that of the tissue alone.

LaBerge et al (1990) used a model in which the femoral mid-shafts were replaced with 

porous coated cobalt-chrome, to study the problems of soft tissue attachment to porous 

implants. Pore sizes between three hundred and nine hundred micrometers, of cobalt- 

chrome implants were examined. Mechanical fixation was seen to be superior in the 

largest pore sizes, with the development of a vascularised interface at four months. The 

smaller pores supported a covering of nonvascularised, pseudoepithelial membrane. 

Bioactive hydroxyapatite coatings have also produced encouraging results for tissue 

attachment and integration. Significant increases in bone ingrowth and mechanical shear 

strength, as demonstrated by push-out tests, compared with uncoated surfaces have been 

demonstrated both clinically and experimentally (Meffert et al 1997, Ducheyne et al 

1980, Soballe et al 1990, Kienapfel et al 1999, Geesink 1990). In vivo versus in vitro 
variations in the behaviour of hydroxyapatite coatings may be due to the deposition 

method, and the physico-chemical properties o f the applied layer (Geesink et al 1990, 

Lavos-Valereto et al 2001, Massaro et al 2001). Hydroxyapatite will support 

mineralisation directly onto an implant surface (biointegration), unlike uncoated implants 

that can demonstrate areas of attachment interspersed with thin fibrous membranes (Cook 

et al 1988, Yan et al 1997).

Soballe et al (1992) have shown that a fibrous connective tissue membrane will form at a 

bone-implant interface that is subject to micro motion of five hundred micrometers. 

Under similar conditions, a hydroxyapatite coating on the titanium implant will produce a 

significantly greater shear strength (push-out). Shear strength results of a hydroxyapatite 

coated unstable implant were comparable with those of a stable uncoated titanium 

implant, leading Soballe et al (1992) to conclude that in addition to its osteoconductive 

properties, hydroxyapatite may induce collagen synthesis.

The clinical success of an oral implant can only be guaranteed if the integrity of the 

permucosal area is maintained by an adequate gingival soft tissue-implant attachment 

(Listgarten et al 1991). In Vitro studies concerning the gingival tissue-implant interface 

include the effect of the physical and chemical properties of implant materials, the 

influence of topographic surface configurations, the type of attachment mechanism 

between cells and implant materials, and the effect of surface composition and 

configuration on the mechanical strength of attachment.

The replacement of extracted teeth by bone anchored synthetic tooth substitutes has been 

one of the principle areas of research for the dental profession. Numerous research
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groups have shown that bone will infiltrate suitable materials, to provide a successful 

bone-implant interface (Hulbert et al 1970, Galante et al 1971, Karagianes et al 1982). 

However, the interface between the junctional epithelium of gingiva and the surface of a 

dental implant is essential because it is the potential biological seal that protects the 

underlying bone and soft tissues from pathogens present in the oral and external 

environments.

In 1984, Gould et al demonstrated that in vivo, epithelial cells attach to titanium 

implanted in human gingiva in a similar manner to that observed in vitro and in the 

natural dento-gingival interface, via hemidesmosomes and a basal lamina. Junctional 

epithelium abutting surgically implanted ceramic dental implants, develop an external 

interposing basal lamina between the epithelial cells and the implant surface, with 

hemidesmosomes at regular intervals, similar to those in natural tissue interfaces 

(McKinney et al 1985). A ‘natural-type’ interface has also been described as developing 

between grooved titanium implants in vivo in a rat model (Chehroudi et al 1989) and 

between titanium dental fixtures and junctional epithelium in vivo in dogs (Berglundh et 

al 1991).

Wang et al (1997) showed that in vitro spreading of primary human gingival epithelial 

cells was greater on titanium surfaces coated with a basement membrane than on titanium 

alone. Based on these findings, it was postulated that attachment of gingival epithelial 

cells to titanium can be enhanced by coating with a basement membrane.

Laminin-5 is a major component of the internal basal lamina observed between the 

junctional epithelial cells and the teeth (Hormia et al 1998). Tamura et al (1997) 

demonstrated that the laminin-5 component of basement membranes promotes gingival 

epithelial cell attachment to a titanium alloy in vitro. They concluded that being a 

constituent of the basement membrane, laminin-5 may play a role in the formation and 

maintenance of hemidesmosomes, which could be used in clinical applications to improve 

the biological seal around dental implants. Clinically it has been shown that the epithelial 

cell adhesion to dental implant materials is vital in retaining the successful condition of an 

implant (Kawahara et al 1998).

It has been shown that a natural-type interface can be recreated between the soft tissues of 

the gingiva and a dental implant surface. However it should be noted that the external 

environment immediately encountered at the neo-interface of a dental implant is very 

different from that of an implant penetrating the external skin of the body.

Following the reported, long-term success of skin penetrating titanium dental implants 

(Adell 1985), bone anchored titanium transcutaneous implants were developed, with the
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first clinical application being that of the bone-conducting hearing aid. In 1977 three 

patients underwent procedures to implant bone-conducting hearing aids at the Bar Nose 

and Throat Department of the Sahlgren’s Hospital in Gothenburg, Sweden. Since 1979 

the same type of implants have been utilised for the retention of external head and neck 

prostheses (Branemark et al 1977, Holgers et al 1987 and 1988). In 1990, Tjellstrom 

published results of patients with auricular prostheses, quoting no adverse skin reactions 

in 89.3% of 2458 observed cases, 92.5% of 1739 observations were in bone-conducting 

hearing aid recipients. In 1989, Holgers et al stated that over 26 years of clinical 

experience of transcutaneous titanium implants in the head and neck, a subcutaneous 

tissue reduction appears to be of vital importance in the maintenance of a reaction-free 

skin abutting the implants surface. It was postulated that a reduction in subcutaneous 

tissue could result in reduced mobility o f skin surrounding the implant surface, which is a 

prerequisite for healing and attachment of the soft tissues to the abutment surface. 

Subcutaneous tissue reduction may also decrease the contact area between the implant 

material and the host tissues, hence minimising the possible effects of the metal on the 

biological tissues. The possible elimination of biological factors that can stimulate 

epithelial cell proliferation and migration are also considered to be advantages of subcutis 

removal (Squier and Kammeyer 1983). The interface between bone-anchored auricular 

prostheses and soft tissues has been shown to be successful with the necessary removal of 

subcutaneous tissue mass (Holgers et al 1989), and a failure rate of 0.14% has previously 

been reported (Holgers et al 1987).

Despite the successful findings of the aforementioned studies, all surgically positioned 

implants evoke an inflammatory reaction in the surrounding tissues as a direct result of 

the normal healing response. When the implant also breeches the skin, the system is 

subjected to a further complexity, since the skin barrier function is disrupted and 

extrogenous agents have the potential to colonise the implant material and infiltrate the 

surrounding soft tissues. Although this has been shown not to occur in transcutaneous 

implants of the head and neck, it is postulated that in a weight bearing environment the 

soft tissue - implant interface may be less stable due to increased radial stresses and 

micromotion at the interface, which may increase the potential for failure due to infection 

and soft tissue migration. The success of transcutanoeus implants for weight bearing 

applications will predominately rely on the integrity of the soft tissue -  implant 

attachment.

To date, implant integration with the soft tissues has been demonstrated in both 

subcutaneous and transcutaneous environments, however is still subject to numerous
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complications and limited applications. The aim of my thesis is to overcome some of 

these limitations, and improve the attachment of soft tissues to orthopaedic implant 

biomaterials.

45



CHAPTER TWO

DEER ANTLER: A MODEL FOR THE DEVELOPMENT OF BONE 
ANCHORED AMPUTATION PROSTHESES
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2.1 INTRODUCTION AND HYPOTHESES

Following amputation, patients achieve close to normal limb use with made to measure 

false limbs, however problems are generated by the attachment of the external prosthesis. 

Interface pressures and stresses on the soft tissue of the stump are often high. The limb 

can be subject to periods of disuse following tissue breakdown and in extreme cases 

patients may require revision surgery. Small problems can often be amplified by 

mismanagement causing numerous drawbacks for the patient, which have been discussed 

in detail by Levy in 1995. The stump that results from amputation is a heterogeneous 

amalgamation o f soft tissues, fat, muscle and bone. This affects the biomechanics o f the 

stump, which is different for every patient, and produces non-uniform pressure 

distribution at the socket-stump interface with focal points of high stress (Lee et al 1997). 

The socket is vital as it forms the interface between the body’s soft tissues and the 

external prosthesis required for “normal” motion. Thus, the problems associated with 

current designs and limb management are important factors for the function of the 

prosthetic. One means of achieving this goal would be to try to protect areas that are 

sensitive, whilst redistributing higher stresses to regions that are able to tolerate them. 

Shear stresses are detrimental to the skin and research has focused on maintaining low 

shear at the skin-socket junction (Radcliffe 1955, Appoldt et al 1968, Pritham 1990, Buis 

and Convery 1997).

There are two main socket designs, the quadrilateral socket and the ischial containment 

socket (Schuch and Pritham 1999, Pritham 1990). The need to improve designs is detailed 

in the study by Sherman in 1999. Stump infection is a common occurrence and can be 

brought about by the natural microbial inhabitants of the skin. High humidity and poor 

mechanical conditions enhance this phenomenon. One main concern is the development 

of an unnatural microbial environment that could be detrimental to the success of the 

stump-socket interface and lead to infection (Kohler et al 1989). A further concern is the 

lack of adaptability of the sockets that are currently available. The present designs cannot 

accommodate changes in stump size, and a once well fitting socket can become poorly 

fitting in a short time. In 1995 Levy outlined the detrimental factors of badly fitting 

prostheses and concluded that if the socket is too loose, the stump can sink in too far 

when the limb is used and it is abnormally fixed and loaded. This can cause occlusion of 

the stump’s blood vessels, which leads to odema, ulceration and eventually necrosis of 

the stump. Pain is associated with friction and sweating at the interface and causes skin 

irritation.
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If the socket is tight, pain and bruising of the stump tissues occurs. If the stump sits too 

high in the socket, the bone will be unable to reach its designated place in the junction. 

This leads to skin lesions, which have been shown to be the principle problem 

encountered by lower limb amputees (Canale 1998).

Problems associated with load transmission could be reduced and possibly eliminated by 

anchoring the prosthesis to bone. However this would introduce a breach in the skin’s 

protective barrier to infection, allowing bacterial entry to the exit site. The main question 

is whether it is possible to develop a bone anchored percutaneous prosthesis, without 

destroying the barrier function of the skin. Development of intraosseous transcutaneous 

amputation prostheses (ITAP) is a research concept that will be examined in Chapter Five 

of my thesis. The main goal of the ITAP concept is to overcome the problems associated 

with current amputation prosthetics by attaching the external prosthesis directly to the 

bone via an intraosseous anchor system. The prosthesis will anchor into bone and the soft 

tissues will be attached to the implant. It will require a sufficient tissue-implant seal, on 

all tissue levels, which will prevent infection and provide a load transmission system 

capable of withstanding the stresses and loading associated with normal limb function. 

Currently there are numerous non-loaded percutaneous devices in use. Their life spans 

are governed by foreign body reactions, infection of the exit site, inflammation, 

marsupilisation (where the implant becomes enclosed within a pocket, reminiscent of the 

marsupial pouch, caused by migration of the host tissues around the whole implant 

surface), permigration (epidermal migration through a porous implant leading to implant 

failure) and avulsion (tearing away). One focal point of past research has been the 

disruption of the soft tissue seal surrounding implants of a percutaneous nature and has 

been discussed by Winter in 1974, Von Recum and Park in 1981 and Grosse-siestrup and 

Affeld 1994. It is still one of the principle concerns in the development of bone anchored 

percutaneous prostheses. Currently, percutaneous devices are employed as both auricular 

and dental implants.

Bone anchored percutaneous titanium implants are attached to bone conducting hearing 

aids (Holgers et al 1995 (i)). They have a high success rate, which may be attributed to 

the fact that they are not loaded. In 1992 Holgers et al observed immune cells, able to 

respond to antigens, and phagocytic cells in the connective tissue surrounding the soft 

tissue-implant interface in patients with hearing aids with and without skin irritation.

In 1995, Holgers et al (ii) found no epithelial or connective tissue attachment around 

titanium implants o f a successful or non-successful nature. The conclusion drawn from 

these findings was that inflammatory cells provide a cellular barrier that prevents
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infection and is thus of paramount importance in the successful performance of 

transcutaneous implants. However, in 1995 Holgers et al (i) found no significant 

differences in the amount of T and B lymphocytes surrounding irritated and non-irritated 

cases, which indicates that the reasons for the success or failure of such implants is still 

not known. The statistics concerning the success rate of these implants are encouraging; 

in that 95% of bone anchored auricular implants are successful (Snik et al 1998).

Literary reviews concerning dental implants of a transgingival nature have been available 

since the 1960’s (Branemark et al 1969). Unlike hearing aids, transgingival implants 

appear to have epithelial adhesion, as demonstrated by Listgarten and Lai in 1975 and 

Schroeder et al in 1981. It is important that there is a strong attachment between the 

implant and bone, and the implant and soft tissue. However it is crucial that the 

epithelium provides a barrier between the internal and external environments.

At the implant-bone interface there is osseointegration as demonstrated by Steflick et al 

1991. Dental implants traverse bone, soft tissues and project into the oral cavity, which 

has a microbial rich environment. Saliva contains antimicrobial agents, however it is still 

important that epithelial and underlying connective tissues form a barrier to prevent 

bacterial invasion of the host’s tissues and thus circulatory system (Berglundh et al 1991). 

Many studies, including those by Squier and Collins in 1981, Baier and Mayer in 1988 

and Brunette in 1988, discuss the implications of titanium and biomaterial composition, 

topography, charge density, ion release, corrosion, protein adsorption, oxide layer 

formation and physical factors on implant-cell interactions and cellular behavior.

In 1993, Majeska et al discussed the possibilities of material coatings to enhance and 

promote the attachment of certain chosen cell populations, in the hope of increasing 

overall levels of cellular attachment to implant biomaterials. For example, dental and 

orthopaedic implants could be coated with factors that increase connective tissue cell 

attachment at the site where the implant breaches the soft tissue layers (Lowenberg et al 

1988). Collagen IV was shown to be a suitable coating to encourage epithelial cells to 

attach to titanium in a 1998 study by Park et al, whilst vitronectin appears to deter 

epithelial cell adherence.

Transgingival and orthopaedic implants are not totally comparable. Gingival soft tissues 

differ from those that an orthopaedic implant would be traversing because they are 

maintained within the oral environment. However, an understanding of dental implant 

technology may aid the development of intraosseous transcutaneous amputation 

prostheses. Dental implant failure is generally attributed to implant rejection and/or 

apical epithelisation, for reasons unknown. Two factors are known to influence the
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epithelisation process. Firstly, macro/micro structure of the implants surface affects 

adhesion, orientation and proliferation of epithelial cells (Kawahara et al. 1995 and 

Chehroudi et al. 1998). Secondly, biochemical and physical factors of implant surfaces 

affect adhesion of epithelial and connective tissues to implant materials (Kawahara et al

1998).

It is understood that in cases of gingival-implant success, a zone of epithelial attachment 

approximately 200nm thick consisting of a basal lamina, focal contacts and 

hemidesmosomes, is observed. Inflammatory cell activity may also contribute to the 

success or failure of the implant. In 1989, Seymore et al illustrated the presence of 

inflammatory cells in dental implants of both a stable and unstable nature. Whereas 

Berglundh in 1991 observed no inflammatory cell reaction around titanium gingival 

implants in beagles. Hence the history of inflammatory presence surrounding 

percutaneous implants is not consistent and is thus questionable.

For ITAP to be successful, a number of obstacles need to be overcome. The bone- 

implant and connective tissue-implant interfaces need to be maintained. The mechanical 

properties acting at the soft tissue-implant junction need to be reduced to protect the 

delicate tissues from large stresses, as motion at the interface has been shown to be 

detrimental to the interface success (Von Recum 1984). In 1980, Daly demonstrated that 

even low forces acting at the interface between percutaneous implants and the soft tissues 

could lead to local inflammation and infection. It is obvious that if implants are subject to 

loading, the forces about the interfaces will be increased. This problem must be 

addressed for ITAP to be successful. One may question the differences between gingival 

and non-gingival connective tissues, owing to the fact that loading of gingival 

percutaneous implants appears not to be associated with the problem of motion at the 

interface. This may be due to the fact that gingiva is designed to withstand the loading 

associated with eating and biting as a normal phenomenon, and thus differs from non- 

gingival connective tissue. A full understanding of how dental and auricular implants 

function successfully, and study of the effects of loading implants on the living-alien 

material interfaces will aid a number of avenues of research. These include ITAP, 

catheters, external fixation pins/screws and cardiovascular devices.

Antlers are bony protuberances arising from the skull of most members of the deer 

family, or Cervidae. They are restricted to Cervidae and generally to the male o f the 

species. Antlers are a natural analogue of ITAP and are a good model for study as, unlike 

teeth, they exist in a non-gingival environment. Antlers have been referred to as horns, 

however they are a structurally different anatomical features. Horns, fingernails, teeth,
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hair and hooves all appear to be analogues of percutaneous structures. However they 

originate from the base of epidermal invaginations of the dermis and hence do not 

penetrate the epidermis. Antlers grow in pairs, annually and emanate from permanent 

bony pedicles arising from the frontal bones of the skull. During growth they are covered 

with a soft hairy skin, called velvet and are provided with an abundant supply of blood 

vessels. On completion of growth, the skin dies and is shed, leaving the antler bare. 

After a designated time period, which is dependent on the species, the antlers are cast, 

epidermal continuity is re-established and the process begins again. Antlers are thus 

transient, true naturally occurring analogues of the percutaneous devices we are 

attempting to mimic. Once the velvet is shed, the antler penetrates all of the skins layers 

for approximately four months, during which time they may be heavily loaded and hence 

they overcome the problems associated with ITAP (Grosse-Siestrup and Affeld 1984). A 

second example of a true permanent natural percutaneous device is the tusk of the 

Babyrussa, which is a small pig that originates from the Celebes, South East Asia, and is 

extremely rare (Knabe et al 1999). Instead of piercing the gingiva and entering the oral 

cavity, its upper jaw canine teeth pierce the external skin of the snout beneath the eyes. 

The skin penetrating component is the circular cross sectional tusk, and there is a slight 

down growth of hairless epithelium around the tusk that serves to reduce stress in the 

area. Knabe et al (1999) described the epidermis as “closely adhered to the tusk surface” 

and the surrounding tissues were seen to contain large numbers of lymphocytes, plasma 

cells and macrophages. The structure of mature antler is comparable to that of the 

diaphysis o f long bones, with an outer cortical layer which varies in thickness dependant 

on the species, and a central trabecular core. Fluctuating testosterone levels in males 

determine the cyclical nature of antlers. Antler growth coincides with deer infertility in 

spring and summer, when the sex hormones are at low levels (Goss 1985), and they grow 

on average at an astounding 1.75cm per day mid-season (Goss 1983). Towards the end of 

the summer testosterone levels increase, leading to the maturation of the antler and the 

velvet is shed (Brown 1983). During the rutting season males fight to maintain their 

hierarchical position in society and this places great forces on the antler structures. 

Decreasing testosterone levels after the rutting season causes the antler to be shed.

The velvet is thought to convey a good blood supply to the underlying antler and hence 

most authors consider the antlers to be dead once the velvet is shed. Rolf and Enderle 

argue this point in their 1999 study and maintain that antler is living bone until casting.

The pedicle is living bone, which becomes evident around the onset of puberty and grows 

from frontal bone cells of the deer skull (Chapman 1975, Goss1985). Li and Suttie 1994
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studied the histology of pedicle development and first antler growth in detail, and Banks 

and Newbrey (1982) discussed the development of antler as a modified form of 

mammalian endochondrial ossification. Knowledge and understanding of these sites may 

aid our progress with ITAP. Antlers are natural transient percutaneous structures once the 

velvet is shed and can act as a model for the development of amputation prostheses.

This chapter aims to determine the nature of the interface that exists between the antler 

and the skin, and describes the surface morphology of the antler-pedicle juncture. The 

information gained will aid the development of ITAP. It is hypothesised that the skin 

forms an interface with the pedicle at the antler-pedicle junction when the velvet is 

shed, and it is this attachment that maintains a stable union. It is hypothesised that 

the bone surface of the antler and pedicle will be different. There are three main 

objectives, firstly to describe the histology of the soft tissue seal around the antler-pedicle 

interface. Secondly, to qualify and quantify the differences in surface morphology of the 

antler and pedicle at and near the junction between the two and finally, to review the 

findings and their implications in terms of ITAP.
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2.2 MATERIALS AND METHODS

2.2.1 HISTOLOGY PROCESSING FOR LIGHT MICROSCOPE ANALYSIS 

Eleven deer antler pairs were obtained from the Rayne Institute and evaluated 

histologically, to qualify the interfaces between antler and pedicle. Three of the sections 

possessed the pedicle-epithelium junction, one showed velvet attached to the antler and 

all sections had pedicle-skin junctions. The samples were dehydrated in an ascending 

alcohol series over two weeks and chloroform was used to clear the specimens for 24 

hours. They were then washed in 100% ethanol and placed in 50:50 LR white (Hard 

grade acrylic resin -  Agar Scientific) : alcohol for three days. For a further two weeks the 

samples were placed in 100% LR white, with one resin change, and then polymerized 

with accelerator in LR white resin. The blocks were cut to size, prior to histology (see 

figure 5 = specimen in LR white block). The blocks were glued to Perspex slides and 

thick sections were cut using an Isomet 2000 with a diamond edge saw blade. The 

sections were then ground to between 60-80 microns using a Motopol 2000 and graded 

wet silicone carbide paper. They were then polished and stained with toluidine blue and 

paragon. The sections were covered with Pertex mounting medium (Xylene) and clean 

cover slips prior to light microscope evaluation.

2.2.3 SCANNING ELECTRON MICROSCOPY PROCESSING FOR ANTLER - 

PEDICLE SURFACE MORPHOLOGY STUDY

Five antlers were thawed and the skin and fascia were removed with care to prevent 

scratching of the bone surface. The frontal bone was partially removed and the antlers 

were macerated by treatment with 0.2M NaOH at 60°C until the soft tissue had dissolved, 

taking up to 48 hours. The specimens were then washed and slices were taken of the 

antler-pedicle interface and the pedicle-skull interface. The specimens were dried at 60°C 

and mounted onto Scanning Electron Microscopy (SEM) stubs, prior to sputter coating 

with a 10-15 nm gold layer and visualization under SEM (JEOL JSM 35C) at 20 Kv 

acceleration voltage.

The number and size of pores on either side of the interfaces were counted and the sizes 

of the pores were measured using an Olympus BH2 microscope linked to Zeiss KS300 

3 .0 computer image software. To establish continuity o f the results, all measurements 

were taken from 1cm either side of the interface. The results were analysed quantitatively 

using statistical analysis and qualitatively with descriptional analysis.
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Figure 6 shows the left macerated antler-pedicle interface from one of the specimens prior 

to sputter coating. The figure demonstrates the raised antler area close to the pedicle and 

the interface between the two.

2.2.4 STATISTICAL ANALYSIS

The numbers of pores observed over 40 antler and pedicle samples were counted and the 

data was tested for normality using a Kolmogorov-Smimov test. To maintain continuity 

and accuracy o f results, all of the measurements were taken at least 1 cm from the antler -  

pedicle interface and within a 1cm2 area. The data was normally distributed and a 

Student T test was used to determine whether there was a statistical difference in number 

of pores between the antler and pedicle surfaces.

Pore size was determined using Zeiss KS300 3.0 Image Analysis software for 70 

randomly selected pores over antler and pedicle surfaces. The distribution of the data was 

found to be non-normal using a Kolmogorov-Smimov test. A Mann Whitney U test was 

used to determine if the pores observed over the antler and pedicle surfaces were 

significantly different in terms of size.
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2.3 RESULTS
2.3.1 ANTLER PREPARATION RESULTS
The antler were prepared for processing on arrival. Figures 2.1 and 2.2 demonstrate the 

appearance of two intact whole antler specimens. Figures 2.3a-d show the antler - pedicle 

interface with velvet absent (2.3a), velvet present (2.3b), in longitudinal section in 

London hard grade resin (2.3c) and as a macerated sample (2.3d).

FIGURE 2.1 Whole antler specimen - frontal bone with the antler and pedicle skin intact.

FIGURE 2.2 Whole antler specimen with velvet.
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FIGURE 2.3

FIGURE 2.3a Antler -  pedicle interface with no velvet

FIGURE 2.3b Antler -  pedicle interface with velvet
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FIGURE 2.3c Antler -  pedicle interface in longitudinal section - cast in london hard 

grade resin (AC -  Antler coronet, A-P -  Antler to pedicle interface, ST -  Soft tissues, PC 

-  Pedicle cortex).

FIGURE 2.3d Macerated antler -  pedicle section (A -  Antler proper, P -  Pedicle, I -  

Antler to pedicle interface region).
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2.3.2 HISTOLOGY -  RESULTS OF PROCESSING FOR LIGHT MICROSCOPY

2.3.2.1 HISTOLOGY OF THE SOFT TISSUE -  PEDICLE INTERFACE

Where the soft tissues abut the bone of the pedicle, the bone appears highly invaginated, 

dense in nature and composed of Haversian systems (channels through which the blood 

vessels run in bone). The pedicle appears to be associated with a thick hypodermal 

connective tissue layer, which is distinctly different from the overlying dermis. The 

dermis possesses numerous longitudinally orientated collagen fibres, which are identified 

within the tissue sections by their dark pink coloration. The density of collagen fibres is 

less in the hypodermal connective tissue. Below the epidermis, the soft tissue abutting 

the pedicle is rich in collagen fibres, which run through the soft tissue and into the 

adjacent bone. These fibres enter the bone at an angle perpendicular to the bone surface, 

and are orientated differently from the fibres seen in the dermis above. These 

observations were found in all of the sections evaluated. Figures 2.4a-c present the 

findings of the histological analysis.

2.3.2 2 HISTOLOGY OF THE EPIDERMAL-PEDICLE INTERFACE

The epidermis is a thin, 1-2 cell thick, layer that forms an interface with the pedicle of the 

antler. In some of the sections observed, no epithelial attachment is evident. The 

epidermis thins as it nears the bone interface, and the epidermis always approaches the 

antler at the pedicle below the antler coronet. At the juncture, there is a collection of 

plasma cells and lymphatic cells that appear to form weak connections with the 

underlying bone. One can observe this phenomenon in all of the epidermal-pedicle 

interfaces when velvet is absent. Figures 2.4 to 2.9 give a visual insight into the 

epithelial-pedicle interface.

2.3.2 3 HISTOLOGY OF THE ANTLER -  VELVET INTERFACE

One of the sections evaluated in this study possessed velvet attached to the antler. There 

is one marked difference between this interface and the one that exists between the 

epidermis and the pedicle (B), in that the velvet-antler interface appears far less 

invaginated. It was also observed that fewer collagen fibres, of smaller diameter, 

intersperse the interface between the velvet soft tissues and the antler. As in the pedicle- 

dermis interface, the collagen fibres orientate in a longitudinal manner along the length of 

the antler. The velvet appears not to have a clearly distinguishable hypodermal 

connective tissue layer between itself and the antler surface, and the antler surface is
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highly organised in terms of active osteoblasts. The interface appears less structured than 

that of the tissue -  pedicle interface. See figures 2.10 and 2.11.

FIGURE 2.4

FIGURE 2.4a Soft tissue-pedicle interface at a magnifiation of x4. Figure demonstrates 

the hypodermal connective tissue layer (CT) that interposes the pedicle bone (P) and the 

soft tissue of the dermis (ST).

FIGURE 2.4b Soft tissue-pedicle interface at a magnification of x20. Figure 

demonstrates the numerous thick collagen fibres that run from the soft tissues into the 

pedicle bone in a perpendicular manor - they can be described as Sharpey’s Fibres.
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FIGURE 2.4c Soft tissue-pedicle interface at a magnification of x40. SF = Sharpey’s 

Fibres inserting perpendicularly into the pedicle bone (P).
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FIGURE 2.5 Epidermal-antler interface at a magnification of x4. Observe the thinning 

of the epidermis as it approaches the pedicle (P) and the nature of the interface that exists 

between them (I). Collagen fibres can be seen running longitudinally in the soft tissues of 

the dermis (ST).

FIGURE 2.6 Epidermis-bone interface at a magnification of xlO. The epidermis (E) 

approaches the pedicle bone (P) near to the widening of the antler (A) into the antler 

coronet (AC). However the interface between them (I) is exceedingly thin. The darkly 

stained region where the epidermis interfaces with the pedicle is a collection of 

inflammatory cells. This can be seen at a higher magnification in Figure 2.7a.
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FIGURE 2.7

FIGURE 2.7a Epithelial-pedicle junction at a magnification of x 20. The epithelium (E) 

thins as it approaches the pedicle (P), to a single epithelial cell attachment (EA). The 

epithelial cells are affiliated with inflammatory cells (IC) which attach to the bone base in 

an area of resorbed bone (R). This area is shown in more detail, at a higher 

magnification, in figure 2.7b.

jHLr

FIGURE 2.7b Epidermal-pedicle interface at a magnification of x40. CA represents the

single cell attachment that exists between the epithelium (E) and the pedicle bone (P).

Inflammatory cells (IC) abutting and attached to the bone bed.
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FIGURE 2.8

CF

FIGURE 2.8a Lack of epithelial attachment at a magnification of xlO. At the interface 

(I) between the epithelium and the pedicle bone, a tight epithelial attachment is not a 

prerequisite for a healthy antler. In Deer No. 11, there is no attachment seen between the 

epithelium (E) and the pedicle (P). The underlying connective tissue contains collagen 

fibres (CF) that are closely associated with both the epithelium and the pedicle bone. 

There is not an excess of epithelial downgrowth, which would be a tunnel for infection 

from the external to internal environments. Figure 2.8b examines this interface at a 

higher magnification. In the sections from Deer No. 11 the lack of epithelial attachment 

could be a result of artefacts generated during histological processing.
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FIGURE 2 .8b Lack of Epithelial Attachment at a magnificantion of x40. The epithelial -  

pedicle interface is examined at a higher magnification. One can observe a slight amount 

of epithelial downgrowth. However this appears to be limited by the collagen fibres in 

the connective tissue adjacent to the epidermis and pedicle bone. The collagen fibres 

appear to run virtually perpendicular to the pedicle bone, and as such there is an element 

of ingrowth of the fibres into the adjacent bone to prevent further epithelial downgrowth.
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FIGURE 2.9

FIGURE 2.9a Increased epithelial downgrowth at a magnification of x4.

FIGURE 2.9b Epidermis (Figure 2.9a) at a magnification of x20. Figures 2.9a and 2.9b 

show the epithelial-pedicle interface with no epithelial attachment at the interface (I), and 

collagen fibres (CF) in the underlying tissue adjacent to the epidermis (E) and pedicle 

bone (P). Collagen fibres appear to be inhibiting further epithelial downgrowth by 

obstructing the path of the epithelium and inserting into the pedicle bone.
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FIGURE 2.9c Attachment zone from Figure 2.9b at a magnification of x40. This image 

at a higher magnification reinforces the hypothesis that the collagen fibres (CF) in the 

connective tissue below the epithelium (E) actually inhibit the downgrowth of the 

epithelial layer. The fibres can be observed actually growing into the pedicle bone, thus 

creating a physical barrier between the external and internal environments. One can 

observe large round cells with darkly stained nuclei surrounding the collagen fibres, and it 

is expected that these cells are active fibroblasts that are producing collagen matrix.
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FIGURE 2.10 Antler -  velvet interface at a magnification of x20. Antler bone appears 

mildly invaginated and few collagen fibres can be seen between the antler and the velvet 

tissues. VCT = Velvet connective tissue AB = Antler bone.

CF

FIGURE 2.11 Pedicle -  connective tissue interface at a magnification of x20. This 

image is presented as a comparison to be drawn against figure 2.10. At the same 

magnification one observes a more organised collagen fibre network at the pedicle 

interface than that which exists between the antler and the velvet. The pedicle is more 

invaginated and the collagen fibres can be seen to grow into the pedicle in a perpendicular 

orientation. The whole structural appearance is more defined than that seen in figure 

2 . 10.
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2.3.3 SCANNING ELECTRON MICROSCOPY RESULTS

Five antlers were used in the SEM study. All of the specimens demonstrated a dramatic 

alteration in surface morphology between the antler and the pedicle (see figure 4.4d). The 

pedicle surface is extremely porous and possesses significantly larger pores compared to 

the antler surface. The antler possesses distinctive grooves present near the junction with 

the pedicle, which decrease in size as the two regions merge. More pores are observed in 

the pedicle than in the antler. The surfaces were evaluated qualitatively in figure 2.12.

FIGURE 2 12

FIGURE 2.12a SEM Image of antler-pedicle interface at a magnification of xlO. This 

figure demonstrates the surface nature of the structure as the antler and pedicle merge. 

One can observe the distinct change in surface morphology from the pedicle, on the left- 

hand side of the image, and the antler, on the right. The pores of the pedicle are clearly 

larger and more numerous than those visible on the antler, and the pronounced ridges and 

grooves are visible on the antler surface. The interface between the two shows a decrease 

in the ridges and grooves and an increase in porosity as the antler merges into the pedicle.
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FIGURE 2.12b SEM Image of the pedicle at a magnification of xlOO. The pedicle 

surface possesses large and numerous pores. At a high magnification these pores are 

visible and can be compared to figure 2.12c which demonstrates the porous nature of the 

antler surface, showing smaller pores with clearly defined borders.

FIGURE 2.12c SEM Image of the antler surface at a magnification of xlOO.
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FIGURE 2.12d SEM Image of the antler -  pedicle junction at a magnification of xlO. 

This image demonstrates the rise of the antler coronet (right hand side of picture) as the 

structure develops from the pedicle (left) to the antler proper (right). Figure 2.12e 

indicates the pedicle nature closer to the interface than that shown in figure 2.12b.

FIGURE 2.12e SEM Image of the pedicle surface close to the antler -  pedicle junction at 

a magnification of x50. The porous nature of the pedicle continues proximally until it 

reaches the interface with the skull. Here the porosity undergoes a change in structure 

that is demonstrated in figure 2.12f, where the large pedicle pores diminish into fewer 

smaller pores visible on the surface of the frontal bone of the skull.
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FIGURE 2.12f SEM Image of the pedicle -  skull juncture at a magnification of xl5. 

Image demonstrates the decreasing porosity from the pedicle (left) to the frontal bone of 

the skull (right).

2.3.4 STATISTICAL ANALYSIS

2.3 4.1 STATISTICAL ANALYSIS OF PORE NUMBER

This analysis was carried out to determine whether there is a statistical difference in the 

number of pores associated with the antler and pedicle surfaces. Counts were carried out 

in five antler specimens across forty different antler and pedicle regions. Figure 2.13 

presents a box plot of the data obtained and the raw data can be observed in Appendix 

1. 1.

Normality tests carried out on the data suggest that the data is normal in nature and is thus 

suitable for parametric testing, hence a Student T test was carried out.

The result of the Student T Test suggests that there is a significant difference in the 

number of pores observed in the antler and pedicle interfaces (P = 0.000).

From the box plot and the results of the T Test, it can be stated that there are significantly 

more pores present on the pedicle surface than on the antler surface.
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FIGURE 2.13 Box plot comparing the number of pores in the antler and pedicle (within
A

1mm ). The boxes indicate the interquartile range. The horizontal lines within the boxes 

represent the median. The whiskers show the range of data within one and a half 

interquartile ranges of the interquartile range, and the data points beyond these appear 

individually.

2.3.4 2 STATISTICAL ANALYSIS OF PORE SIZE

Having established the significant differences in the number of pores between the antler 

and pedicle structures, it was decided to determine whether any differences exist in terms 

of the pore size between the two. Seventy randomly selected pores over antler and 

pedicle regions were measured in five antler pairs. Figure 2.14 presents a box plot 

summary of the data obtained, and the raw data can be observed in Appendix 1.2. The 

normality tests showed that the data does not conform to the assumptions that are 

generally accepted for the use of parametric statistical testing, hence a Mann-Whitney U 

non parametric test was used to analyse the data. The Mann-Whitney U test gave a P 

value of 0.000, hence it can be stated that the pores observed in the pedicle structure are 

significantly larger than those observed in the antler. Figure 2.15 gives a representation 

of the data distribution of pore size between the antler and pedicle structures.
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FIGURE 2.14 Box plot showing the data for pore size anaylsis.
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2.4 DISCUSSION

This chapter was carried out to study the histology, surface morphology and interfaces 

that exist naturally in the deer antler structure. The histological analysis of the epithelial 

-  pedicle interface showed an extremely small area of epithelial attachment, if any. A 

single cell attachment was observed in two out of six of the interfaces studied. Where 

attachment was observed the epithelial cells were elongated in nature and a small 

proportion of the cell surfaces were in contact with the pedicle. In one section no 

epithelial attachment was observed. This cannot be considered conclusive, as the lack of 

attachment could be a natural phenomenon. It should also be noted that it is possible for 

attachments to be disrupted as a result of routine histology processing techniques. From 

the results observed one can state that in living deer, parts of the pedicle at the interface 

are not attached to the epidermis. At these locations there is an element of downgrowth, 

which is arrested by soft tissue adhesion to the underlying pedicle surface. The lack of 

pedicle -  epidermal attachment suggests that it is not a prerequisite for infection 

prevention or longevity of the interface in Red Deer. This finding contradicts those of 

Knabe et al 1999, who state that close adherence of the epidermis to the tusk is observed 

in the Babyrussa model. One would assume a seal between the external and internal 

environments is vital to ensure the healthy and uninfected state of the antler structure. 

The results of my thesis demonstrate otherwise. It is concluded that if it is not solely the 

epidermal-pedicle seal that is maintaining the antler form, there must be a second factor 

that is acting to prevent infection and assist in the sustenance of the structure. 

Inflammatory cells were observed at the epithelial-pedicle interface, attached to the 

antler, pedicle and epithelium. Inflammatory cell presence was also observed by Knabe 

et al 1999, at the soft tissue-tusk interface of the Babyrussa. Neither study characterised 

the inflammatory cells, however their presence indicates the presence of microorganisms 

and bacteria. The bacterial and microbial inhabitants' presence does not necessarily mean 

that the site is infected, and it is conceivable that equilibrium has been established 

between the immune response and the bacteria colonising the interface. This equilibrium 

may be responsible for preventing further bacterial and microbiological colonisation, 

which could be detrimental to the health of the antler. Previous studies have suggested 

that inflammatory cells around the percutaneous interface may protect the junction from 

infection (Holgers et al 1994). From the findings of my thesis, it is concluded that 

inflammatory cells are important in preventing infection at the soft tissue -  antler 

interface.
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The weak epidermal attachment to the pedicle bone is in contrast with the strong 

attachment between the pedicle bone and the sub-epidermal tissues for the entire antler 

evaluated. Numerous thick collagen fibres are evident, connecting the pedicle with the 

soft tissues.

The pedicle surface is invaginated, which increases its surface area for fibrous 

attachment. It is thought that the strong attachment seen here may protect the soft tissue- 

pedicle interface and the supporting epithelium from the forces encountered during 

loading in the rutting season. The fibrous network may also play a part in preventing 

infection by maintaining the dermal-bone junction in tight contact, thus preventing 

bacterial invasion into the underlying bone. The collagen fibres in the sub-epidermal 

tissues appear to prevent further epithelial migration and downgrowth. Where epithelial 

attachment is absent, there is a certain element of downgrowth, which is a result of 

epidermal cell characteristics. Epidermal cells strive to establish layer continuity and are 

stable when surrounded by other epithelial cells on all sides. When at least one side of 

the cells abutting the pedicle are free from any attachment to another epithelial cell, those 

cells migrate proximally along the pedicle surface.

Cell migration appears to be discouraged by the presence o f a tight sub-epidermal tissue -  

pedicle barrier. Fewer collagen fibres with smaller diameters are visible within the antler- 

velvet interface. The antler surface is smooth in nature; therefore less surface area is 

available for fibrous ingrowth. Strong attachment of the velvet to the antler is not 

required because the velvet is shed at continuous intervals throughout the life of the deer, 

thus firm adhesion would serve no beneficial function. Whilst the velvet is attached to 

the antler, the epidermal-pedicle interface is not percutaneous, hence strong adhesion of 

the velvet to the antler is not needed to prevent downgrowth or infection. The surface 

morphology study was carried out using SEM analysis. The results indicate that the 

surface morphology of the antler and pedicle are significantly different in terms of the 

number and size of pores present on their surfaces (P < 0.05 for both parameters). The 

pedicle possesses large poorly defined pores, which reflects its highly invaginated nature, 

whilst smaller well-defined pores were visible on the antler surfaces. The high porosity 

seen on the pedicle surface is not a phenomenon that is generally associated with bone of 

such a hard nature, however it is a prerequisite for a tight soft-tissue seal. The juncture 

between the antler and pedicle is clearly defined. The porosity of the structure increases 

dramatically from the antler to the pedicle. It is postulated that the reason for this is to 

maintain the strength in the antler, where it is required during fighting. Were the porosity
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to remain constant throughout the bone, the antler would be mechanically compromised 

and would not withstand the forces encountered during rutting.

The change in morphology between the antler and pedicle may also play a role in the 

prevention of downgrowth, increasing in surface area where a strong soft tissue 

attachment is required. The ridges and clefts found in the antler-pedicle interface are 

thought to assist infection control. It is thought that the ridges guide the soft tissues to the 

areas where strong attachment is crucial for the health of the antler. SEM images were 

used to examine the surface morphology at the pedicle-skull interface. The number of 

pores decreases from the pedicle to the skull at a definable region. It is assumed that the 

nature of the soft tissue attachment to the pedicle differs from that of the skull, and that 

the pedicle is a morphological adaptation generated by the need for strong support around 

the soft tissue-pedicle interface. This is to protect the interface from mechanical stresses 

encountered by the lifestyle of the deer species. At the soft tissue-skull interface such 

dampening effects are not required and thus the surface morphology is restored to a 

smoother form.

The aim of this chapter was to establish the histological morphology of a non-gingival, 

natural percutaneous structure and relate the findings to the development of an artificial 

amputation prosthesis. The deer antler is a natural transitory percutaneous structure and 

as such, can act as an analogue for limb replacement prostheses. Previous research on 

percutaneous devices is mainly limited to non-bone anchored devices. However studies 

of bone anchored percutaneous hearing aids indicate the success of the implants in the 

absence of epithelial attachment to the biomaterial traversing the living tissues (Snik 

1998). Sniks’ results were consistent with the findings of Knabe et al in their 1999 

analysis o f catheters for peritoneal dialysis. Deer are notorious for having an exceptional 

immune system (Goss 1983), however the extent to which this protects the pedicle-soft 

tissue interface is as yet unknown. This factor should be taken into account when 

developing percutaneous implants for immuno-compromised patients, as they are 

undoubtedly more prone to infection. For other patients, immune system function effects 

on the success of loaded bone-anchored percutaneous implants should be further 

investigated. Owing to the success of the antler as a natural percutaneous structure, it is 

thought that the development of the ITAP concept should begin by recalling the surface 

characteristics and histological morphology of antler. Hence a device should include, a 

porous, roughened surface for bone anchorage, a largely invaginated surface with small 

grooves and ridges for epidermal and soft tissue attachment, and a smooth “non-sticky” 

surface externally. This chapter has shown that the attachment of the skin with the
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pedicle at the antler -  pedicle junction maintains stable union, which supports the antler 

as a non-gingival percutaneous structure. To maximise the chances of success for ITAP, 

it would be desirable if the material used to traverse the soft tissues encouraged collagen 

fibre attachment, ingrowth, proliferation and maturation.

Numerous factors must be considered in the development of ITAP, including surface 

properties, surface chemistry and mechanical properties of biomaterials. For antler to be 

successful, a number of factors are considered vital. Thick collagen fibres anchored to 

the pedicle from the adjacent tissues, provide strong attachment at the interface, prevent 

downgrowth and deter infection. The highly porous nature of the pedicle and smoother 

properties o f the antler proper, provide ideal surface characteristics at different points 

along the length of the whole structure. Finally, the ridges and grooves at the antler- 

pedicle interface mediate soft tissue adherence. These factors should be introduced to the 

amputation prosthesis design to maximise efficiency and longevity. The pedicles’ 

properties appear to be ideal for traversing the bodily tissues and breaching the skin 

barrier without detrimental effects, thus it is this natural structure that we should attempt 

to recreate artificially. It is possible that coating the biomaterials used in ITAP with 

various growth factors, surface finishes/materials and chemical/artificial materials may 

enhance the attachment of the designated tissues to the desired areas of the implant, as 

well as discouraging attachment of bacterial pathogens in the external environment. A 

quantitative and qualitative analysis of the epithelial interaction with the pedicle may give 

an insight into the importance of ITAP longevity and infection prevention. It is thought 

that the main focal point of research for ITAP should be the attachment of the sub- 

epidermal tissues to the biomaterials employed, as it is attachment at this level that 

appears to enable deer antler to function so successfully.
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CHAPTER THREE

THE EFFECTS OF TITANIUM AND DIAMOND-LIKE CARBON 
SURFACE PROPERTIES ON THE ATTACHMENT AND 

PROLIFERATION OF FIBROBLASTS AND EPITHELIAL CELLS
IN  VITRO
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3.1 INTRODUCTION AND HYPOTHESES

A stable connection between orthopaedic implants and their surrounding tissues is one of 

the most important prerequisites for their long-term success. Micro motion at the 

interface can lead to cellular damage, production of a soft tissue capsule and 

inflammation around the implant (Von Recum 1990). Transcutaneously, epithelial down 

growth can occur as a result of lack of cellular attachment, contact inhibition, the 'free 

edge effect’ (see below), and tissue damage at the soft tissue-implant interface (Von 

Recum 1984). Thus, both strong cellular attachment and local stabilisation of the implant 

are vital applications where the principle aim is attachment of the soft tissues to the 

implant body.

In 1911, Harrison proposed that fibroblasts respond to the topography of the substratum. 

This phenomenon is known as “contact guidance”. Contact guidance suggests that cells 

grown on a material surface will align in relation to the microstructures of the substratum 

surface. The term also refers to alterations in cell shape, polarity and orientation 

(Abercrombie et al 1971). Advancements in biomaterial science have produced 

substrates with definable and controllable surface geometries with uniform chemical and 

physical properties, thus allowing in vitro studies of cell orientation, attachment and 

migration (Brunette 1986).

One key feature in determining the nature of the interaction between cells and their 

substrata is the type of attachment. In 1958, Abercrombie and Ambrose were the first to 

describe the ultrastructure of fibroblast adhesion plaques on a glass substratum. From 

these early experiments it is now accepted that focal adhesions, or plaques, are locations 

at which a very close contact exists between the membrane of a cell and the substratum 

(typically 15nm). An adhesion plaque is made up of actin and intermediate filaments that 

are linked via proteins, for example vinculin, talin, alpha-actinin and paxillin, to 

transmembrane integrin receptors and to extracellular matrix (Turner et al 1990). Thus 

focal adhesions can be thought of as sites of contact, forming a stable connection between 

extracellular and intracellular fibre systems (Figure 3.1).

Many studies have been carried out using techniques to locate and visualise cell 

attachment plaques on biomaterial substrata in vitro (Hunter et al 1995, Eisenbarth et al 

1996).

Contact guidance has been observed to occur in fibroblasts cultured on microstructured 

surfaces (Meyle et al 1993), whilst surface roughness has been shown to influence 

cellular behaviour (Richards 1996). Past research has shown inconsistencies in
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observations concerning cellular response to material type and topography. In 1996, 

Richards presented results suggesting that material roughness is independent of fibroblast 

attachment, whilst in 2000 Anselme et al found that a negative correlation exists between 

titanium surface roughness and proliferation and attachment of primary mouse 

osteoblasts. Cambell and Recum (1989) demonstrated that alterations in surface patterns 

in the micrometer range would encourage different tissue reaction when implanted 

subcutaneously. Some research has been aimed at the role of cell shape and its relation to 

cell proliferation and attachment. Folkman and Moscona (1978) hypothesise that 

appropriate cell shape is vital for DNA synthesis of normal cells, and that this theory 

explains anchorage dependence. Anchorage dependence describes the inability of normal 

cells to grow unless attached to a substratum. It is based on the principle that primary 

fibroblasts will proliferate if attached to plastic or glass, but will not in suspension 

culture. This phenomenon indicates that DNA synthesis is coupled to cell attachment and 

the effect of any biomaterial on cell attachment will consequently alter DNA synthesis 

and proliferation rates.

For my thesis the emphasis is placed on fibroblast and epithelial cell attachment for 

subcutaneous soft tissue, including tendon attachment and ITAP development 

respectively. This chapter examines the attachment, proliferation and morphology of 

fibroblasts and epithelial cells cultured on materials in vitro that will be selected and used 

in in vivo studies in subsequent chapters (see Chapters Five and Six). The principle 

advantage of using cell culture techniques to determine biocompatibility is the increased 

definition of the criteria to be evaluated. In culture, each variable that could affect cell 

behaviour can be altered individually, thus determining the consequence of changing that 

parameter independently of the others. The cells physiochemical environment, namely 

pH, temperature, pressure and tension of gases such as oxygen and carbon dioxide can be 

controlled and monitored. In vitro cell populations are more homogenous than those 

observed in living tissue, and as such the culture conditions can be altered to ensure that a 

specific cell type will grow more rapidly. Agents to be tested in vitro can be utilised at 

much lower concentrations as the cells are exposed to them directly rather than by 

injection in vivo. In vitro studies are a cheaper alternative to in vivo models and the need 

to use animals for preliminary studies is significantly reduced.

There are, however, drawbacks to using cell culture as an indication of cellular activity, 

mainly because the cells are subjected to an environment in which they are unaffected by 

the normal in vivo parameters. Cells cultured on traditional substrates adopt a flattened 

morphology, losing any type of physiological three-dimensional structure and polarity. In
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a culture environment cells undergo a selective process whereby those that are most 

suited to survival in vitro proliferate, while others undergo programmed cell death. Over 

time this process produces a uniform population of cells that is useful for reproducibility 

in results, but is considerably different from in vivo conditions, principally because cells 

are deprived of heterotypic cell interactions.

When epithelial cells or fibroblasts are cultured on plastic surfaces, they attach, spread 

and divide until they form a confluent monolayer in which all neighbouring cells are in 

contact with one another. This is a phenomenon known as contact inhibition. When there 

is no more space for cells to occupy, division ceases. If cells are removed from the 

monolayer, the remaining cells divide and fill the gap (Alberts et al 1994). In Vivo, 

epithelial cells in the skin carry out similar behaviour. When the skin layer is interrupted 

(for example, in a cut or wound), the epithelial cells abutting the interruption migrate 

beneath the clot formed to heal the breach in the skins protective layer. In transcutaneous 

implants, one of the principle hurdles is epithelial down growth; also known as 

marsupialization. The epithelial cells on the surface layers of the skin traverse the surface 

of the protruding implant and attempt to travel beneath its structure to heal the breach in 

the skin layers. All of these observations are due to contact inhibition. It is postulated 

that using a material with surface properties that promote epithelial cell attachment, the 

cells on the wound margin surrounding the transcutaneous implant will attach to the 

implant surface and this attachment will prevent their migration into the underlying soft 

tissues.

The material surface properties best suited to fibroblast and epithelial cell attachment, 

proliferation and morphology must be determined to further promote integration of 

implants with soft tissues, either in a subcutaneous or transcutaneous site.

Titanium is the obvious material of choice for any in vitro research owing to its use in 

orthopaedic surgery. Diamond like carbon (DLC) coatings can be applied to numerous 

substrates, and studies have demonstrated its high biocompatibility, durability and wear- 

and corrosion-resistance (Komu et al 1996, Tang et al 1995, Allen et al 2001). DLC has a 

very low surface energy, typically between 40-50mN/m, and possesses few free electrons 

on its surface. It is thought that these properties would make it difficult for a cell to 

spread across a titanium surface coated with DLC, as the weak bonds formed (H-bonds, 

electrostatic forces) which are essential in the early phase of cell spreading and 

attachment, will be inhibited.
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This chapter attempts to determine the effects of titanium and DLC on epithelial and 

fibroblast cell attachment, proliferation and spreading. The role of surface topography in 

influencing these cellular activities is also investigated.

The hypotheses for this chapter are threefold. Firstly, fibroblast and epithelial cells9 

proliferative capacity, morphology and attachment will be directly affected by the 

topography of the substrate used to support their growth. Secondly, DLC is a low 

surface energy coating that will prove detrimental to the maintenance of fibroblast 

and epithelial cell populations in vitro. Finally, innate properties of cell populations 

can outweigh the properties instigated by changing the substrate topography, with 

the emphasis being placed on contact inhibition and contact guidance.
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FIGURE 3.1 Schematic diagram of a focal adhesion plaque.

Integrins are a large family of homologous transmembrane linker proteins that allow 

the cytoskeleton and extracellular matrix to communicate across the plasma 

membrane. Many matrix proteins are recognised by multiple integrins, for example 

eight integrins bind to the RGD sequence in fibronectin (see Chapter One). Integrins 

are made of two noncovalently associated transmembrane glycoprotein subunits called 

heterodimers -  as seen here in the transmembrane integrin fibronectin receptor, which 

serves as a receptor for proteins containing the RGD sequence.
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3.2 MATERIALS AND METHODS

3.2.1 MATERIAL PREPARATION

Smooth Polished Titanium (SPTi) (Ra 0.026 pm, Ry 0.71 pm, Rz 0.47 pm), Machine 

Finished Titanium (MFTi) (Ra 0.210 pm, Ry 1.35 pm, Rz 1.27 pm), Rough Sand Blasted 

Titanium (RSBTi) (Ra 0.404 pm, Ry 2.56 pm, Rz 1.34 pm) and DLC Coated Smooth 

Polished Titanium discs (SPDLC) (Brunei University) (Ra 0.040) were prepared.

A 10.1mm diameter stock bar of medical grade titanium (Ti6Al4V)(BS7252 part 3) was 

machined on a lathe with carbide tooling to a diameter of 9.9mm. The resulting bar was 

sectioned into discs; 3mm in thickness and the sharp edge of each disc was removed. 

This process produced discs of a machine-finished type. A holding device was designed 

to polish the machine finished discs to a smooth polished finish, which was achieved by 

rubbing the machine finished discs vigorously over wet 1200 grade polishing paper and 

then repeating the process on a jean-type material using Buehler Micropolish (1.0 micron 

alumina) and water, mixed to a paste. The smooth polished discs were rough sand blasted 

in a sealed cabernet containing 0.2mm diameter aluminium oxide grit. A number of 

smooth polished discs were sent to Brunei University for DLC coating. The roughness 

average value (Ra) of each disc type was established using a Taylor Hobson Talysurf Ra 

Machine. Five measurements were taken from five randomly selected discs from each 

material type group.

The materials were then cleaned to the level required for orthopaedic implantation.

The three titanium finishes were used to determine the effects of surface roughness and 

topography on cell response (contact guidance, cell attachment, morphology and 

proliferation).

The DLC coated discs were used to determine the effects of lowering surface energy on 

cell response respectively.
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3.2.2 CELL CULTURE TECHNIQUES

3.2.2.1 MATERIAL SET-UP

The following 24 well plates were set up for testing each cell line: 

24-Hour SEM Plate

SPTi RSBTi MFTi SPDLC

SPTi RSBTi MFTi SPDLC

48-Hour SEM Plate

SPTi RSBTi MFTi SPDLC

SPTi RSBTi MFTi SPDLC

48-Hour FM Plate

SPTi RSBTi MFTi SPDLC

SPTi RSBTi MFTi SPDLC

SPTi RSBTi MFTi SPDLC

3.2.2 2 CELL LINES AND SEEDING TECHNIQUES

The materials were all seeded at a rate of 30,000 cells per disc. The two cell lines were 

obtained from the ECACC. The fibroblasts used were 84-BR, human skin fibroblasts 

derived from a biopsy of a radiosensitive female (Ref No. 90011805). The epithelial cells 

were PNT-2 cells established by immortalisation of normal adult prostatic epithelial cells 

by transfection with a plasmid containing SV40 genome with a defective replication 

origin. The primary culture was obtained from a prostate of a 3 3-year-old male at post 

mortem. (Ref No. 95012613). The cells were resuscitated from frozen vials and cultured 

to the numbers required. The cells were stored in a standard incubator at 37°C, 5%CC>2, 

and the medium was changed every other day:

84-BR: PNT-2:

350ml DMEM 90ml RMPI-1640 (sigma)

40ml FCS 10ml FCS

4ml Pen/Strep 1ml Pen/Strep

4ml L-Glutamine 1ml L-Glutamine

4ml NEAA

All cell culture techniques were carried out in a laminar flow hood using standard sterile 

techniques. When the cells had reached sufficient numbers, they were trypsinised, 

centrifuged and re-suspended in medium to produce a cell suspension of suitable cell 

density. The cells were seeded at 30,000 for SEM/FM, onto the discs in the minimum
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amount of medium (50pl). The cells were dropped in suspension, onto the surfaces and 

the discs were placed in the incubator for one hour, to allow the cells to attach. The discs 

were then flooded with medium and incubated for 24 / 48 hours.

3.2.2 3 DETERMINATION OF PROLIFERATION RATES -  ALAMAR BLUE

After 24 hours the medium was removed from the wells of the 48-hour plates. 10% 

Alamar Blue in phenol red free medium was added to the wells and the discs were 

incubated for 4 hours. Two lOOpl aliquots of Alamar blue/medium solution were 

removed from each disc’s well and plated into a 96 well plate for analysis on a Dynatech 

Plate Reader (570nm, ref 630nm). The Alamar blue was washed from the discs using 

sterile PBS and the discs were suspended in fresh medium. The procedure was repeated 

at 48 hours prior to processing for SEM / FM.

3.2.3 CELL MORPHOLOGY - SCANNING ELECTRON MICROSCOPY 

PROCESSING

The medium was removed from the wells containing discs for SEM processing. The 

discs were washed with sterile phosphate buffered saline (PBS) prior to addition of 

medium and placed in a refridgerator at 4°C for 20 minutes. The plates were removed 

from refrigeration and the cells were fixed in a solution of 1.5% gluteraldehyde in 0.1 M 

sodium cacodylate (stock buffer). The plates were left in a refridgerator over night. The 

buffer was removed and replaced with 1% osmium tetroxide in 0.1M buffer for one hour. 

The discs were then subjected to 2x5 minute buffer washes. A filtered 1% tannic acid in 

0.05M buffer was applied and left for 1 hour. The discs were then washed 4x5 minutes in 

buffer wash prior to dehydration in an ascending alcohol series. After the 70% alcohol 

stage, the discs were subjected to 0.5% uranyl acetate in 70% ethanol for 30 minutes prior 

to completion of the dehydration process. The discs were then chemically dried using 

Hexamethyldisilazane (HMDS), mounted onto SEM stubs and gold sputter coated prior to 

examination under SEM.

3.2.4 IMMUNOLOCALISATION OF VINCULIN

The medium was removed from the wells containing discs for processing. The discs were 

washed (2x5mins) in sterile PBS and fixed in 10% formal saline for 5 minutes. The discs 

were washed (4x5mins) in sterile PBS prior to application of the primary antibody 

solution: 0.2ml monoclonal anti-human clone HUV-1 (Sigma V9131 = Anti-vinculin) + 

0.01% Triton X-100 + 40ml sterile PBS -  for a duration of 2 hours. The discs were re-
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washed (3xlOmins) and soaked in secondary antibody solution -  0.5ml FITC conjugate 

(Sigma F2883) + 50ml PBS -  for a duration of 45 minutes. The discs were washed in 

PBS (3xl0mins) and examined under a Weiss fluorescent microscope.

3.2.5 COUNTING VINCULIN MARKERS

Vinculin markers were counted for 10 randomly selected cells on each material tested. 

Photographs were taken to give a visual image of the appearance of the cells -  see Figure 

3.14.

3.2.6 MEASURING CELL AREA

SEM images were taken from five typical cells from each material tested. The negatives 

were analysed using the Zeiss KS300 image analysis package, and the cell area for each 

cell was determined.

3.2.7 STATISTICAL ANALYSIS

The data obtained was examined and analysed using the SPSS software package. 

Normality tests (Kolmogorov-Smimov) were used to determine whether the data fitted 

the assumptions for parametric (normally distributed data i.e. symmetrically distributed 

into a bell shaped curve) or nonparametric testing (data not fitting into a standard bell 

shaped curve). Values <0.05 generated using the Kolmogorov-Smimov normality test 

were considered to be non-normally distributed data sets and were analysed using 

nonparametric tests, including Mann Whitney U (a nonparametric equivalent to the t test) 

and Spearman R (a nonparametric equivalent to standard correlation coefficient analysis).

3.2.7.1 STATISTICAL ANALYSIS OF MULTIPLE COMPARISONS 

For some data sets it was necessary to carry out a number o f hypothesis tests. Clearly, if 

one were to carry out a large number of tests, each with the significance level set at the 

5% level, then even in the absence of any real effects, some of the tests would appear to 

be significant. This is a type I error. The method employed in these cases to avoid the 

type I error was simple. When conducting n significance tests, to achieve an overall 

type I error rate of a, one would only declare any of them significant if the p value was 

found to be less than a/n. Thus, if 5 tests were carried out the result would not be 

declared significant unless the p value for that result was found to be less than 0.01. For 

these, and all following multiple analyses, the 0.05 value was divided by the number of
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comparisons being made to the particular data set of interest, to avoid error in the 

findings.

Data sets demonstrating no significant differences between means using Mann-Whitney 

U tests were not statistically analysed further.
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3.3 RESULTS
3.3.1 ANALYSIS OF SURFACE ROUGHNESS

The data did not fit the assumptions required for parametric testing, hence Mann Whitney 

U tests were carried out to determine the significance of the findings. Significant 

differences were observed in the average surface roughness (Ra) values between the three 

titanium-finished discs tested. The rough sand blasted titanium discs were found to 

possess an Ra value significantly higher than both the machine finished and smooth 

polished groups (p < 0.01), whilst the machine finished discs were observed to have a 

significantly higher Ra than the smooth polished discs (p < 0.01). There was no statistical 

difference observed in Ra value between the smooth polished titanium and the smooth 

polished DLC discs (p = 0.09). The box and whiskers plot (figure 3.2) displays a visual 

summary of the data, where the boxes represent the interquartile range, the horizontal 

lines inside the boxes represent the median value, the whiskers demonstrate the range of 

data that falls within one and a half interquartile ranges, with data points beyond the 

whiskers appearing individually.

Tables of summary data can be referred to in Appendix 2 (2.1 and 2.2).

SPTi MFTi RSBTi SPDLC

Material Type

FIGURE 3.2 Box plot summarising the data for surface roughness analysis.
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3.3.2 PROLIFERATION RATES -  ALAMAR BLUE
3.3.2.1 FIBROBLASTS - 24 HOURS

The data did not fit the assumptions required for parametric testing, thus Mann Whitney 

U tests were used to demonstrate the statistical significance of the findings. The 

numerical data for the results is presented in Appendix 2 (2.3 and 2.4) and the box and 

whiskers plot in Figure 3.3 summarises the data obtained. There were no significant 

differences observed in proliferation rate of fibroblasts cultured on any of the materials 

tested after a period of 24 hours (p>0.01)
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FIGURE 3.3 Box plot summarising the data for fibroblast proliferation after a culture 

period of 24 hours.

3.3.2 2 EPITHELIAL CELLS - 24 HOURS

The data was analysed using Mann Whitney U tests as it was found to be non-normally 

distributed. There were no significant differences in proliferation rate of epithelial cells 

cultured on any of the test substrates after a period of 24 hours. The numerical data 

summary is presented in Appendix 2 (2.5 and 2.6) and the box and whiskers plot in 

Figure 3.4 summarises the data obtained.
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FIGURE 3.4 Box plot summarising the data for epithelial cell proliferation after a culture 

period of 24 hours.

3.3.2 3 FIBROBLASTS - 48 HOURS

The data was analysed using Mann Whitney U tests and a numerical summary of the data 

can be seen in Appendix 2 (2.7 and 2.8). The box plot in Figure 3.5 gives a visual data 

summary. Smooth polished titanium was observed to support fibroblasts with the highest 

proliferative capacity (p<0.01). The proliferation rates observed between all o f the 

material substrates were found to be significantly different.

Correlation between surface roughness and fibroblast proliferation was determined using 

the Titanium groups -  SPTi, MFTi and RSBTi. Surface roughness values were evaluated 

against the Alamar Blue Absorbance result. To express a relationship between two 

variables, one usually computes the correlation coefficient. Non-parametric equivalents 

to the standard correlation coefficient are Spearman R, Kendall Tau and coefficient 

Gamma. Here, the Spearman R test was used to express the nature of the relationship 

between surface roughness and fibroblast proliferation. The data table is presented in 

Appendix 2 (2.9). The correlation between the two variables was found to be significant 

at the 0.01 level. The correlation coefficient reflects the degree of linear relationship 

between two variables. It ranges from +1 to -1. A correlation o f +1 means that there is a 

perfect positive linear relationship between variables. A correlation of -1 means that 

there is a perfect negative linear relationship between variables. A correlation of 0 means 

there is no linear relationship between the two variables. Here there was a significant
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negative correlation between the two variables i.e. as surface roughness increased 

proliferation decreased.

©oc
- Q

o</>
.a
<
©3

CD

«)
ETO
<

.12

.11

.10

09

.08

.07

.06
SPTi MFTi RSBTi SPDLC

Material Type

FIGURE 3.5 Box plot summarising the data for fibroblast proliferation after a culture 

period of 48 hours.

3.3.2 4 EPITHELIAL CELLS - 48 HOURS

The data did not fit the assumptions for parametric testing, hence Mann Whitney U tests 

were carried out to determine the significance of the findings. From the box and whiskers 

plot in figure 3.6 it is clear that the proliferation rate of epithelial cells cultured on 

titanium substrates, decreases as surface roughness increases. The statistical analysis 

showed a significant decrease in proliferative capacity of epithelial cells cultured on SPTi 

and MFTi (p = 0.00) and MFTi and RSBTi (p = 0.000). No significant differences were 

observed between MFTi and SPDLC (p = 0.223). The numerical data summary and 

Mann Whitney U test results can be observed in Appendix 2 (2.10 and 2.11).
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FIGURE 3.6 Box and whiskers plot summarising the data for epithelial cell proliferation 

after a culture period of 48 hours.

Correlation between surface roughness and epithelial cell proliferation was determined 

for the Titanium groups using a Spearman’s rho analysis. The relationship between the 

two variables was found to be significant at the 99% level, with Figure 3.7 showing that 

as the surface roughness of epithelial cell substrata increases the proliferative capacity 

decreases.

Alamar Blue Absorbance (nm)
09

08

07

Observed

06 D Linear
0.0

R Squared = 0.616

Sig of R value = rVn-2 
Vl-r2

= 0.616x5.292 =5.26 
0.620

5.26 significant at the 
99% level.

Surface Roughness Ra (microns)

FIGURE 3.7 Curve estimation for the relationship between alamar blue absorbance and 

surface roughness (Summary data -  Appendix 2 (2.12)).
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3.3.3 CELL SURFACE AREA RESULTS

The surface area of fibroblasts and epithelial cells cultured for 24 and 48 hours, on the 

titanium and DLC substrates were established and evaluated statistically. The data did 

not fit the assumptions required for parametric testing, hence Mann Whitney U tests were 

used to determine the significance of the findings. The data summaries are presented in 

Appendix 2 (2.13). No significant differences in cell area were observed for fibroblasts 

or epithelial cells after 24/48 hours on any of the material types tested.

3.3.4 NUMBER OF VINCULIN MARKERS PER CELL

3.3.4.1 FIBROBLASTS 48 HOUR

The results were analysed statistically using Mann Whitney U tests as the data was found 

to be non-normally distributed. The box and whiskers plot in Figure 3.8 demonstrates the 

findings and the numerical data can be referred to in Appendix 2 (2.14 and 2.15). There 

were more vinculin markers per fibroblast cultured on SPTi than on RSBTi and SPDLC 

substrates (all p values < 0.01). There was no significant difference in the number of 

vinculin markers per cell in fibroblasts cultured on SPTi and MFTi (all p values > 0.01). 

MFTi supported a fibroblast population with significantly higher numbers o f vinculin 

markers per cell than RSBTi (p < 0.01).

Figure 3.8 shows the relationship between numbers of vinculin markers and surface 

roughness within the titanium substrate materials. Spearman’s rho correlation analysis 

was carried out to determine the relationship between the surface roughness of the 

titanium substrates and the average number of vinculin markers per cell. Figure 3.9 

demonstrates the findings of this analysis and the numerical data is presented in Appendix 

2 (2.16). The correlation between these two variables was found to be significant at the 

99% level, indicating that as surface roughness of a titanium substrate increases, a 

fibroblast population cultured on that substrate will possess significantly fewer numbers 

of vinculin markers per cell.
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FIGURE 3.8 Box plot demonstrating the relative numbers of vinculin markers observed 

within fibroblasts cultured on the test substrates after a period of 48 hours.
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FIGURE 3.9 Spearman’s rho correlation analysis demonstrating the nature of the 

relationship between titanium substrata surface roughness and the number of vinculin 

markers per fibroblast cultured thereon for a period of 48 hours.
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3.3.4 2 EPITHELIAL CELLS - 48 HOUR

The data was analysed using Mann Whitney U tests as the data did not fit the assumptions 

for parametric testing. The box and whiskers plot in Figure 3.10 shows a summary of the 

data obtained, whilst the numerical data can be referred to in Appendix 2 (2.17, 2.18 and 

2.19). Figure 3.10 indicates a trend for decreasing numbers of vinculin markers with 

increasing titanium surface roughness, which was found to be significant between all of 

the titanium substrates tested (all p values < 0.01). There was a significant decrease in the 

number of vinculin markers observed in epithelial cells supported on SPTi compared to 

SPDLC (p < 0.01).
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FIGURE 3.10 Box plot demonstrating the number of vinculin markers per epithelial cell 

cultured for 48 hours on the substrates under test.

Spearman’s rho correlation analysis was carried out to determine the nature of the 

relationship between titanium surface roughness and the number of vinculin markers per 

epithelial cell cultured thereon for a period of 48 hours. Figure 3.11 displays the curve 

obtained for the analysis and demonstrates that the relationship is significant at the 99% 

level, indicating that as titanium surface roughness increases, the number of vinculin 

markers per epithelial cell decreases.
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FIGURE 3.11 Spearman’s rho correlation analysis of titanium surface roughness 

number of vinculin markers per epithelial cell -  48 hours.

3.3.5 CELL ATTACHMENT: AS A RATIO OF NO. MARKERS:CELL AREA

3.3.5.1 FIBROBLASTS - 48 HOUR

The cell area and average number of vinculin markers per cell data can be seen in 

Appendix 3. This data was combined to determine the mean number of vinculin markers 

per fibroblast cultured on the test substrates for a period of 48 hours. The data did not 

meet the requirements for parametric testing, hence Mann Whitney U tests were used to 

determine the significance of the findings. The results show that fibroblasts cultured on 

SPTi for 48 hours have significantly greater numbers of vinculin markers per cell than 

those supported by MFTi or RSBTi (all p values < 0.02). The graph in Figure 3.12a 

demonstrates these findings. The data for fibroblasts cultured on SPDLC could not be 

compared statistically to all of the titanium materials tested, as both surface topography 

and material chemical composition are variables. As there was no significant difference 

observed for surface roughness between SPTi and SPDLC, the mean number of vinculin 

markers per unit fibroblast cell area cultured on each of these materials was compared 

statistically. The results of these findings are presented in Figure 3.12b, where it was 

established that the fibroblasts cultured on SPTi possessed significantly greater numbers 

of vinculin markers per unit cell area than those supported by SPDLC (p < 0.05).
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FIGURE 3 .12

Material Type

FIGURE 3.12a Graph of average number of vinculin markers per fibroblast cultured on 

the three titanium substrates under test.
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FIGURE 3.12b Graph of average number of vinculin markers per fibroblast cultured on 

SPTi and SPDLC.
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3.3.5 2 EPITHELIAL CELLS - 48 HOUR

The cell area and average number of vinculin markers per cell data can be seen in 

Appendix 2 (sections 2.13 and 2.17 respectively). This data was combined to determine 

the mean number of vinculin markers per epithelial cell cultured on the test substrates for 

a period of 48 hours. The data did not meet the requirements for parametric testing; 

hence Mann Whitney U tests were used to determine the significance of the findings. 

Figure 3.13a shows the data obtained for the three titanium substrates. The epithelial 

cells cultured on SPTi were observed to have significantly more vinculin markers per unit 

cell area than those cultured on MFTi (p < 0.02). Figure 3.13b shows the number of 

vinculin markers per unit cell area for epithelial cells cultured on SPTi and SPDLC. The 

number of markers per unit cell area was found to be significantly greater for cells 

cultured on SPTi compared to SPDLC (p <0.05).
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FIGURE 3.13a Graph of average number of vinculin markers per epithelial cell cultured 

on the three titanium substrates under test.
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FIGURE 3 .13b Graph of average number of vinculin markers per epithelial cell cultured 

on SPTi and SPDLC.

3.3.6 CELL MORPHOLOGY AND DESCRIPTIVE ANALYSIS

3.3.6.1 IMMUNOLOCALISATION IMAGES

The images obtained were not used for a descriptive analysis of cell morphology. The 

images in Figure 3.14 show the appearance of fibroblasts cultured on SPTi and RSBTi 

and demonstrate the presence of fluorescently labelled vinculin markers within adhesion 

plaques.
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FIGURE 3 .14

FIGURE 3.14a Appearance of fibroblasts under FM on SPTi for 48 hrs (x 50).

FIGURE 3.14b Appearance of fibroblasts under FM on RSBTi for 48 hrs (x 50).
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3.3.6 2 SCANNING ELECTRON MICROSCOPY IMAGES

3.3.6 2.1 FIBROBLAST CELL CULTURE -  48 HOURS

Figures 3 .15a-d demonstrate the appearance of fibroblasts cultured on the test substrates. 

Fibroblasts cultured on SPTi for 48 hours (Figure 3.15a) showed a definite polarity and 

appeared well spread out over the surface. They possessed numerous membrane 

projections indicating extensive cell-cell interaction, and an almost confluent monolayer 

of cells was observed over the entire material surface. After 48 hours, fibroblasts cultured 

on RSBTi (Figure 3.15b) were poorly spread and appeared to possess few membrane 

projections. The cells seemed to have maintained a polar nature, however they showed 

minimal cell-surface or cell-cell interaction. Fibroblasts supported by a MFTi substrate 

for 48 hours (Figure 3.15c) appeared flattened in morphology. The cells clearly displayed 

contact guidance as they were seen to be orientated parallel to the grooves of the titanium 

surface, whilst numerous membrane projections indicated a large degree of cell-cell 

communication. SPDLC supported a fibroblast population of considerably lower density 

than that of any of the titanium substrates tested (Figure 3 .15d). The majority of the cells 

were observed to be adopting a more rounded morphology, indicating a lack of cell- 

substrate interaction. Large amounts of cell debris were observed, suggesting that a 

considerable number of cells had undergone programmed cell death. The fibroblasts 

were not seen to adopt any particular orientation pattern.
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FIGURE 3 .15

FIGURE 3.15a SEM image demonstrating the appearance of fibroblasts cultured for 48 

hours on a SPTi substrate (x 150).

FIGURE 3.15b SEM image displaying the appearance of fibroblasts cultured on RSBTi 

for 48 hours (x 150).
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FIGURE 3.15c SEM image demonstrating the morphology of fibroblasts cultured on 

MFTi for 48 hours (x 150).

FIGURE 3.15d SEM image showing the appearance of fibroblasts cultured on a SPDLC 

substrate for 48 hours (x 150).
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3.3.6.2 2 EPITHELIAL CELL CULTURE -  48 HOURS

Figures 3.16a-d demonstrate the appearance of epithelial cells cultured on the test 

substrates. Figure 3.16a shows the appearance of epithelial cells cultured on SPTi for 48 

hours at a magnification of X I50. The cells adopted a typical epithelial cell, cuboid 

morphology, clearly displaying the effects of contact inhibition -  all cells were positioned 

immediately adjacent to the neighbouring cells on all sides. RSBTi supported an 

epithelial cell population (3.16b) of a much lower density than that observed on SPTi. 

The cells adopted a more rounded morphology and there was a considerable amount of 

cell debris observed across the substrate surface, indicating that a number of cells had 

undergone programmed cell death. Figure 3.16c demonstrates the appearance of 

epithelial cells cultured on MFTi for 48 hours. In contrast to fibroblasts cultured on 

MFTi for an equivalent time period (Figure 3.15c), the epithelial cells displayed contact 

inhibition overriding the effects o f contact guidance, as no orientation to the grooved 

substratum is apparent. There was no visual difference in epithelial cell morphology 

between SPTi and MFTi. The epithelial cell population supported by the SPDLC 

substrate (Figure 3 .16d) was of a markedly lower density than those sustained on any of 

the titanium surfaces tested. The cells displayed contact inhibition, whereby the cells 

adopting edge positions possessed increased numbers of projections and lamella podia, 

indicating migratatory behaviour as an attempt to establish continuity within the cell 

sheet.
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FIGURE 3 .16
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FIGURE 3 .16a SEM image of epithelial cells cultured for 48 hours on SPTi (xl50).

FIGURE 3 .16b SEM image of epithelial cells cultured on RSBTi for 48 hours (x 250).
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FIGURE 3.16c SEM image of an epithelial cell population supported by a MFTi 

substrate for 48 hours (x 190).

FIGURE 3 .16d SEM image of epithelial cells cultured on SPDLC for 48 hours (x 190).
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3.4 DISCUSSION

3.4.1 PROLIFERATION RATES -  FIBROBLASTS 24/48 HOUR CULTURE

No significant differences were observed in proliferation rates of fibroblasts after 24 

hours between titanium groups (smooth polished, rough shot blasted and machine 

finished). This finding is attributed to the short incubation duration because after 48 

hours, significant differences were observed. This suggests that after 48 hours 

incubation, surface topography of titanium does affect proliferation rate of fibroblasts. 

Fibroblasts cultured on SPTi had significantly higher proliferation rates than those 

cultured on RSBTi and MFTi. In 1978, Folkman and Moscona demonstrated that cell 

morphology and shape have a regulatory effect on cell proliferation; well attached 

flattened cells have a higher proliferation rate than cells that are more rounded and 

loosely attached. These findings are observed to be true for this study where proliferation 

changes were observed, and further assays indicate an inverse correlation between surface 

roughness and cell attachment criteria.

Statistical analysis of SPTi and SPDLC materials showed no significant differences in 

surface roughness parameters. After 24 hours there was no significant difference in 

proliferation rates. However, after 48 hours the proliferation rate of fibroblasts on SPTi 

was significantly greater than the proliferation rate of those cultured on SPDLC. It is 

understood that the low surface energy of the DLC coating (40-50mN/m) and the lack of 

abundance of free electrons on its surface, should make it a substrate on which cells do 

not spread, attach and proliferate. This was found to be true after a 48 hour incubation 

period.

3 .4.2 PROLIFERATION RATES -  EPITHELIAL CELLS 24/48 HOUR CULTURE

After 24 hours incubation, no significant differences were observed in proliferation rate 

of epithelial cells cultured on any of the titanium materials tested. This implies that 

titanium topography does not influence epithelial cell proliferative capacity following a 

24 hour incubation period. After 48 hours, a negative correlation between surface 

roughness and proliferation rate was observed within the titanium materials tested. 

Attachment criteria (cell spread and adhesion plaque density) were found to be influenced 

by surface roughness; hence these findings also complement those of Folkman and 

Moscona (1978) -  implicating cell shape and attachment as controlling factors of 

proliferation rate.
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In 1985, Jansen et al determined that properties of the substrate material are responsible 

for the nature and structure of epithelial cell -  substratum contact sites. It was shown that 

attachment occurs on apatite and polystyrene materials, but not on metals (titanium or 

gold). The findings from this Chapter of my thesis have shown that epithelial cells 

proliferate, spread and attach to titanium in vitro. After 48 hours, epithelial cell 

proliferation was observed to be significantly higher on SPTi than on SPDLC. This 

finding must be attributed to the DLC coating, as the surface roughness values for these 

materials are not significantly different. In 1989 Jansen et al studied rat palatal epithelial 

cells cultured on various implant materials to determine the possible influence of surface 

free energy on cell growth rate. Their results demonstrated no significant relationship 

between the two parameters. The results of this study contradict these findings as it is 

clearly demonstrated that the DLC actively reduces epithelial cell proliferation.

3.4.3 CELL SURFACE AREA

No significant differences were observed between cell area data after 24 or 48 hours for 

fibroblasts or epithelial cells. These findings contradict those of Hormia et al 1991 who 

demonstrated that epithelial cells attach and spread more readily on smooth rather than 

rough sand blasted titanium. In this study, no significant change in epithelial cell spread 

was observed between any of the titanium groups at either time period tested.

Numerous reports provide explanations why increasing surface roughness should 

decrease cell surface area. The phenomenon may arise from the fact that cell spreading is 

an active process (Richards 1996, Brunette 1986). In 1996 Eisenbarth et al proposed that 

ridges and troughs form a physical barrier to the progression of migrating cells and this 

can be extrapolated to the migration of membranes in cell spreading. The results of this 

study show that fibroblast cell area is not influenced by the topography of the titanium 

groups tested. It is possible that the ridges and troughs of the sand blasted and machine 

finished substrata were not exaggerated enough to observe the results expected by 

Eisenbarth. It is postulated that the method employed to obtain cell area data is another 

factor influencing this study's findings. It should be noted that as the SEM observes cells 

from a plan view, it could only be used to record the cell area on the visible surface of the 

cells. A more accurate measure of cell spread would be a measure of the area of a cell’s 

membrane that is in contact with a surface. On a smooth surface this area is clearly 

equivalent to the area measured by an SEM image. However, on a rough substratum the 

undulations may increase the surface area of the membrane contact underneath the cell
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without increasing the area observed under a plan view. Unfortunately no assay could be 

carried out to measure the underside of the cells’ membranes in contact with the 

biomaterials used.

3.4.4 NUMBER OF VINCULIN MARKERS PER UNIT CELL AREA

After 48 hours fibroblasts cultured on the three types of titanium finish tested showed a 

significant negative correlation between surface roughness and the number of adhesion 

plaques observed per cell. This finding opposes those of Richards (1996) who showed 

that surface finish had no effect on the measure of attachment for fibroblasts. However in 

2000 Anselme et al demonstrated similar findings to those of this study using osteoblastic 

cells. The mean number of markers per cell cannot be taken as a measure of attachment 

alone, hence a ratio of mean number of markers : cell area was established. These results 

indicate that for fibroblasts cultured on titanium with three surface finishes, the extent of 

attachment decreases from SPTi to RSBTi to MFTi. It is thought that the cell membrane 

does not directly follow the undulations in surface topography of RSBTi and hence 

spaces are left between the cell membrane and the material surface. Close contacts are 

known to form in areas where the cell membrane is typically 10-15nm from the material 

surface (Burridge et al 1988). In areas where spaces exist between cell membranes and 

surface undulations, this distance may be greater than 10-15nm and thus they inhibit close 

contact formation, and hence decrease attachment. This theory holds for MFTi surfaces 

where the undulations in the surface exceed those observed on RSBTi in the grooved 

regions. It is accepted that cells align to grooves created on titanium surfaces, and the 

phenomenon is known as contact guidance (Chehroudi et al 1990). With contact 

guidance, if the cell membrane on the underside of the cell cannot follow the grooves in 

the substratum, large gaps exist between the two making adhesion plaque formation 

impossible and thus the cell is less well attached. This phenomenon is demonstrated by 

the graph presented in the Cell Attachment (48 Hour Fibroblasts) section of the results. A 

separate graph for cell attachment of fibroblasts is presented for SPTi and SPDLC. It is 

clear that DLC cannot be compared to all of the titanium groups, as both material type 

and surface topography are variables. It can however be evaluated against SPTi because 

the surface roughness values for these two materials are not significantly different, hence 

the only variation is chemical composition of the surface material. The graph 

demonstrates that fibroblasts cultured on SPDLC are less well attached than those on 

SPTi. The result was expected and is thought to be accreditable to the physical properties 

of the DLC coating. DLC has a very low surface energy and relatively few free electrons 

on its surface (www.bekart.com/dymonics/coatings/eng/E-deklagen.htm). Surface
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energy, in the form of wetability, has been correlated to the strength of fibroblast 

attachment to metals and organic material types (Baier 1970). However, this relationship 

is seen to be a far more complex interaction between the substrate material, proteins and 

enzymes in the medium and ECM and the cell type used (Brunette 1986). Having taken 

these factors into consideration it is concluded that DLC coating is detrimental to 

fibroblast attachment due to its surface properties and chemical constitution.

Epithelial cell attachment results indicate a marked decrease in number of markers per 

unit cell area between SPTi and RSBTi and between SPTi and MFTi. Observation of 

SEM images demonstrate that, unlike fibroblasts, epithelial cells do not display contact 

guidance when cultured on MFTi surfaces. Moreover it appears that contact inhibition 

overrides the effect of contact guidance. This is determined from the fact that epithelial 

cells form a uniform layer with no alignment to the grooved substratum as observed with 

fibroblasts. Hence the majority of the epithelial cells are spread over smooth areas of the 

MFTi surfaces and not over the grooves like fibroblasts. Thus more epithelial cells have 

a greater proportion of their underlying membrane in contact with the substratum, hence 

covering areas that are well suited to adhesion plaque formation. Fibroblasts alignment to 

the grooves makes plaque formation impossible unless the membrane directly follows the 

surface undulations. This compliance with surface undulations is not observed, as a 

marked decrease was observed between RSBTi and MFTi indicating that gaps exist 

between the cell membrane and the material surface which are too to great for adhesion 

plaque formation to occur. This phenomenon can be explained using attachment ratios. 

The attachment ratios for epithelial cells and fibroblasts cultured for 48 hours on MFTi 

are 0.046 and 0.014 respectively. It is clear that the value for epithelial cells exceeds that 

for fibroblasts three fold. Thus, from these findings it is concluded that contact inhibition 

displayed by epithelial cells results in increased attachment to a MFTi substrate, in 

contrast to the actions of fibroblasts on an identical substrate and equivalent time period. 

In 1991, Hormia et al observed the attachment of gingival epithelial cells to different 

titanium surfaces and concluded that epithelial cells attach and spread more readily on 

smooth rather than rough finished titanium surfaces. These findings are complementary 

to those of this study. However, they also concluded that no vinculin containing focal 

adhesions were detected, suggesting that the cells attach by means of close contacts, ECM 

contacts and hemidesmosomes. This opposes the findings of this study, where vinculin 

containing focal adhesions were clearly labelled with indirect immunofiuorescent 

techniques. Hormia concluded that smooth and finely grooved titanium surfaces could be
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optimal in maintaining attachment of gingival epithelial cells and this is mirrored by my 

finding using epithelial cells derived from human skin.

The SPTi and DLC attachment data for epithelial cells mimicked that of fibroblasts and 

can also be contributed to the surface properties and chemical composition of DLC.

3.4.5 CELL MORPHOLOGY AND DESCRIPTIVE ANALYSIS

The SEM images show that fibroblasts adopt a typical morphology when cultured on 

SPTi and proliferate, spread and attach after an incubation period of 48 hours. The cells 

are seen to be migrating across the surface and cell-cell interaction is abundant. On 

RSBTi, the lack of cell processing and lamella podia suggests less cell-cell interaction 

and locomotion respectively. From qualitative data it is observed that cells proliferate on 

RSBTi. However a decrease in cell area and attachment compared to SPTi is observed.

Fibroblasts cultured on MFTi for 48 hours clearly exhibit contact guidance (Figure 

3.15c). Figure 2.16c demonstrates the appearance of epithelial cells cultured on MFTi for 

the same duration and shows contact inhibition overriding contact guidance. This 

conclusion is presented because of the lack of epithelial cell alignment to the grooved 

substratum, whilst contact guidance is so clearly demonstrated by the fibroblast 

population.

Fibroblasts and epithelial cells cultured on DLC -  Figures 3.15d and 3.16d respectively, 

have lower proliferation rates than those cultured on the other material types tested. All 

discs were seeded at the same initial rate, hence it is concluded that the DLC surface is 

not supporting growth and maintenance of either cell type population.

Epithelial cells form a complete monolayer on SPTi in which cells are seen to adopt 

typical epithelial cell morphology. This complements the findings of Hormia et al 

(1991). However RSBTi appears to be detrimental to epithelial cell populations. All 

cells observed on RSBTi appeared round in morphology and the overall cell density was 

far less than that observed on SPTi and DLC. This shows that epithelial cells are more 

sensitive to increasing surface roughness than fibroblasts. These findings contradict the 

proliferation results, which indicate no significant differences in proliferation rates 

between any of the material types. Conflict also exists between these findings and well- 

accepted theories of cell shape and attachment being strong influencing factors on the 

proliferative capacity of cells. It is thus concluded that the Alamar blue results are not
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representative of the study as a whole and that a low sample number could be responsible 

for the lack of significant differences.

3.4.6 GENERAL CONCLUSIONS

It is concluded that smooth polished titanium is the optimal surface to support the growth 

and attachment of fibroblasts and epithelial cells in vitro. The findings of my study have 

demonstrated that the proliferative, morphological and attachment properties of 

fibroblasts and epithelial cells are greatly influenced by the surface topography of their 

titanium substrate. It has been clearly demonstrated that the effects of contact inhibition 

outweigh the phenomenon of contact guidance for epithelial cells and as such, a grooved 

substrate for the purpose of encouraging alignment and attachment of epithelial cells in 

ITAP is counterproductive. From the results of this chapter, it is conceivable that an 

innate property of a cell population can overcome the effects of substrate topography, 

with the emphasis being placed on contact inhibition and surface roughness respectively. 

My study has also shown that DLC is detrimental to the maintenance of fibroblastic and 

epithelial cell populations.

Based on the findings from this chapter, it is proposed that in vivo, grooved titanium alloy 

abutments for epithelial layer attachment will not reduce epithelial migration compared 

with smooth polished implants. However, they may direct attachment of dermal 

fibroblastic tissue layer attachment. It is postulated that epithelial cell attachment and 

migration may be prevented by DLC coating the external sections of ITAP implants. 

Implants with rough sand blasted, as apposed to a grooved topography, could enhance 

epithelial cell attachment in vivo, whereas a smooth topography could enhance attachment 

of tissues in which the predominant cell type is fibroblastic.

Hydroxyapatite has been shown to enhance attachment of soft tissues and their 

constituent cell types in vivo and in vitro (Butts et al 1989, Hardy et al 1991, Lindholm 

and Lindholm 1993). The main limitation of this chapter is that I was unable to examine 

the attachment of fibroblasts and epithelial cells to hydroxyapatite coated discs using 

immunolocalisation of vinculin. This is due to the fact that the coating absorbed the 

fluorescent dye, making it impossible to differentiate the cells from the disc surface. 

Preliminary work showed that fibroblasts cultured on hydroxyapatite coated discs, using 

the methods outlined in this chapter, have significantly greater proliferative capacity 

(p<0.05) compared to those cultured on titanium alloy discs with any of the surface 

topographies used in this chapter. Based on these observations it is postulated that
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hydroxyapatite could enhance soft tissue attachment in both subcutaneous and 

percutaneous implants, and has been tested in vivo in Chapters five and six of my thesis.

It should be noted that the findings of this Chapter are limited to work in vitro and that in 
vivo analysis is required to test them in an environment where numerous other influencing 

factors present themselves to the relationship between cells and implant materials.

It is concluded that to achieve soft tissue attachment in vivo, the material properties of the 

implant should be tailored to the requirements of the predominant cell type within that 

specific tissue. Some of the findings from this Chapter have been tested in vivo, in 

Chapters five and six of my thesis.
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CHAPTER FOUR

EFFECTS OF LAMININ AND FIBRONECTIN ON FIBROBLAST 
AND EPITHELIAL CELL ATTACHMENT, PROLIFERATION AND

MORPHOLOGY
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4.1 INTRODUCTION AND HYPOTHESES

Intraosseous transcutaneous amputation prostheses (ITAP) are being developed in an 

attempt to solve the current problems associated with stump-socket design. It is essential 

that the final implant design maintains a strong and lasting integration within the internal 

and external environments that it will be subjected to on a daily basis. This criterion 

involves the stable integration of the implant into bone and a tight soft tissue attachment 

around the implant to form a biological seal. In past studies, emphasis has been placed on 

improving osseointegration (dental and maxillofacial), with little attention paid to soft 

tissue attachment. The formation and maintenance of a soft tissue biological seal is vital 

to protect the supporting bone from bacteria present in the external environment which 

could initiate an inflammatory response and thus threaten the integrity and long-term 

success of ITAP.

The first line of defence in the ITAP biological seal is attachment of the skin’s epithelium 

to the body of the implant. In teeth, a natural example of epithelium-hard surface is 

presented. The interface consists of an epithelial attachment lamina interposed between 

the tooth enamel and the abutting junctional epithelial cells, as described in section

1.2.1.2 and Figure 1.2 in Chapter One of my thesis. Epithelial cells have also been shown 

to assemble hemidesmosomes on titanium and dental implants in vivo and In Vitro (James 

and Schultz 1974, Gould et al 1981, Karagianes et al 1982, Gould et al 1984, McKinney 

et al 1985).

It is thought that the use of a biological coating to enhance epithelial attachment may 

encourage the formation of a biological seal around the implant. Laminin-5 has been 

used previously, as it plays a crucial role in the assembly and maintenance of 

hemidesmosomes within the basement membrane. In 1997, Tamura et al reported the use 

of soluble laminin-5 as a coating for titanium alloy to promote the attachment of gingival 

epithelial cells (1HGK). It was shown that 1HGK cells formed hemidesmosomes within 

24 hours of attachment to laminin-5 coated titanium alloy, but not to titanium alone. 

Thus it was concluded that soluble laminin-5 might be beneficial as a dental implant 

coating to promote a biological seal between epithelium and implant materials.

In 1985, Jansen et al cultured guinea pig epithelial cells on gold, titanium, carbon, 

hydroxyapatite, carbonate apatite and modified polystyrene substrates. They 

demonstrated that as attachment structures, focal contacts and hemidesmosome-like 

contacts could be distinguished. However, hemidesmosome-like contacts were observed 

only on polystyrene and apatite surfaces. It was concluded that a property of the substrata 

used to culture epithelial cells, determined the nature and structure of the contact sites.
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In dentistry, hemidesmosomes are thought to play a mediating role in epithelial 

attachment. Since 1977 evidence suggests that titanium implants in jaws of edentulous 

(without teeth) patients have high long-term success rates (Branemark et al 1977, Adell et 

al 1981, Zarb and Symington 1983).

A principle factor in dental implant success is the attachment of oral epithelium to the 

implant in the same way that the epithelial cell attachment is applied to a tooth surface 

i.e.: sealing off the oral environment from the bone and surrounding tissues.

In 1984, Gould et al showed that after four weeks implantation, sections of titanium 

coated epon, placed into the gingival sulus-bone of a forty year old man, had numerous 

layers of epithelial cells formed against the titanium surface and demonstrated 

characteristic interdigitation of cell membranes and intercellular desmosomal attachment. 

At the titanium-epithelial interface there were also hemidesmosomes present and the 

appearance of basal lamina.

In 1976, Cohen stated that “Nowhere else in the body does so complex a relationship 

exist between soft and mineralised tissue, nowhere else is connective tissue separated 

from hostile environment by so tenuous an epithelial integument and in no other part of 

the skeleton is cancellous bone so ineffectively shielded from extraneous contamination”. 

It is clearly important to strive to develop a firm epithelial-implant attachment so that the 

seal created separates the delicate endosseous from the bacteria-rife oral environments. 

The principle concern is the lack of ability to characterise the interface in vivo. Reports 

have implicated other parameters affecting fibroblast adhesion to biomaterials In Vitro, 

for example, the sterilisation process (Michaels et al 1991).

Biocompatibility and bio adhesiveness at an implant-soft tissue interface are essential in 

establishing the success of dental, auricular and amputation prostheses. Numerous 

investigations have concentrated efforts on the osseointegration of bone tissue adhesion to 

dental implants. However, limited studies have investigated the soft tissue-implant 

junction in detail. Owing to the fact that the biological junction is considered a 

predominant factor in the success of any transcutaneous implant, it is the soft tissue seal 

that will be examined here.

The soft tissue layers abutting a transcutaneous implant are presented in Chapter One of 

my thesis.
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The biology and biochemistry of laminin has been extensively studied and it is thought 

that it may play a functional role in assisting epithelial cell adherence within the basal 

lamina (Tryggvason 1993, Martin 1987, Liotta et al 1985). Laminin is an important 

structural and regulatory molecule and has been shown to have diverse effects on cultured 

cells, influencing growth, survival, morphology, differentiation and motility (Kleinman et 

al 1985, Baker et al 1996, Gonzales et al 1999, Salo et al 1999). The effect of laminin on 

cells In Vitro is type dependent. In 1985, Hadley et al demonstrated that laminin affects 

sertoli cells by altering their morphology and in 1982, Baron Von Evercooren et al 

showed that neural cells produce axon-like processes in response to laminin. Laminin has 

also been shown to enhance gingival epithelial cell adhesion in vivo (El-Ghannam et al 

1998). The molecular basis of the interaction between cells and laminin has been 

partially defined, including locating a major cellular receptor for laminin (Von der Mark 

et al 1984, Von de Mark and Kuhl 1985, Liotta et al 1985) and determining a major cell- 

attachment sequence on the laminin molecule (Graf et al 1987). Laminin resides in 

basement membranes (BM’s) in combination with entactin, collagen IV and heparin 

sulphate proteoglycan, each of which may also possess cell binding capacities and/or 

modulate the cell binding activities of laminin. Hence it is conceivable that multiple 

interactions occur between cells and BM’s. By isolating laminin and using it in vitro with 

single cell type populations, it is possible to investigate its effects without interactions 

with other BM components. This could be beneficial to ITAP. If laminin possesses 

properties that influence epithelial cell adhesion, proliferation and morphology, it could 

be used to enhance the epithelial layer -  ITAP implant interface.

Fibronectin is an adhesive protein that helps cells adhere to the extracellular matrix 

(ECM) (Hynes 1986, Ruoslahti and Pierschbacher 1987). The ECM contains a number of 

non-collagenous adhesive proteins that have multiple domains, each with a specific 

binding site for other matrix macromolecules and for cell surface receptors. These 

proteins contribute to the organisation and cell adhesive properties of the ECM. One such 

protein is fibronectin (fn), which is a large glycoprotein found in all vertebrates. The 

biology and biochemistry of fibronectin is well understood, and its cell binding domain, 

the Arg-Gly-Asp or RGD sequence, has been identified (Hormia 1994, Zlatopolsky et al 

1992, Culp et al 1979). The cell binding abilities of fibronectin in vitro and in vivo 
suggest that it could have a positive effect at the soft-tissue -  ITAP interface (MacDonald 

et al 1998, Nuttleman et al 2001, Singer et al 1989, Dean et al 1995, Degasne et al 1999). 

If the RGD sequence of fibronectin can bind fibroblasts in the sub-epithelial soft tissue 

layers abutting transcutaneous implants, the interface could be stabilised and epithelial
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layer migration could be retarded. Fibronectin’s characteristic enhancement of blood 

clotting and wound healing may also prevent bacterial invasion of ITAP sites exposed to 

the external environment.

Cell adhesion to the ECM is essential in development, wound healing and tissue 

remodelling. In addition to anchoring cells to provide structural integrity, cell adhesion 

triggers signals that regulate survival, cell cycle progression and differentiation. Many 

pathological conditions, including blood clotting defects and tumour metastasis, involve 

abnormal adhesion processes. Cell attachment considerations are critical to biomedical 

and biotechnological applications, for example, biomaterials, tissue engineering and in 
vitro culture systems. In this study the understanding of cell attachment and the proteins 

laminin and FN, will be used in an attempt to enhance ITAP-soft tissue adhesion in vitro.

It is postulated that fibronectin and laminin will influence adhesion, proliferation and 

morphology of fibroblasts and epithelial cells cultured on biomaterials In Vitro. It is 

thought that fibronectin will increase the adhesion and proliferation of dermal fibroblasts 

cultured on biomaterials In Vitro, and that laminin will increase the adhesion and 

proliferation of dermal epithelial cells cultured on biomaterials In Vitro. It is also 

hypothesised that material topography will have a lesser effect on cellular behaviour 

compared to adhesion protein coating effects.

This Chapter examines the in vitro affects of fibronectin and laminin on fibroblast and 

epithelial cell attachment, proliferation and morphology, in association with the 

biomaterials used for the development soft tissue-implant interfaces. It is hypothesised 

that fibronectin and laminin will increase fibroblast and epithelial cell attachment 

and proliferation respectively.
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4.2 MATERIALS AND METHODS

4.2.1 MATERIAL PREPARATION

The materials used for this study were smooth polished titanium (SPTi), rough sand 

blasted titanium (RSBTi) and diamond-like carbon coated smooth polished titanium 

(DLC). The titanium surfaces were prepared as stated in Chapter Two of my thesis. The 

DLC coating was applied at Diavac ACMLTD at Brunei University. It was applied at a 

thickness of approximately 1-3 microns. DLC is a low surface energy coating, and was 

used in an attempt to deter cell adhesion.

4.2.2 CELL CULTURE TECHNIQUES

4.2.2.1 MATERIAL SET-UP

The following plates were set up for each cell line used:

PLATE 1: SEM Controls: PLATE 2: Laminin Group SEM:
SPTi con RSB con DLC con SPTi LN RSBTi LN DLC LN
SPTi con RSB con DLC con SPTi LN RSBTi LN DLC LN

PLATE 3: Fibronectin Group SEM: PLATE 4: FM Controls:
SPTi FN RSBTi FN DLC FN SPTi con RSB con DLC con
SPTi FN RSBTi FN DLC FN SPTi con RSB con 

SPTi con RSB con
DLC con 
DLC con

PLATE 5: Laminin Group FM: PLATE 6: Fibronectin Group FM:
SPTi LN RSB LN DLC LN SPTi FN RSB FN DLC FN
SPTi LN RSB LN DLC LN SPTi FN RSB FN DLC FN
SPTi LN RSB LN DLC LN SPTi FN RSB FN DLC FN
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4.2.2 2 ADHESION PROTEINS AND PROTEIN ANALYSIS

Laminin (Human PlacentaXSigma L6274) and Fibronectin (Human PlasmaXSigma 

F2006) were applied to the surfaces of the test substrates at a rate of lOjig per disc.

To determine the amount of protein remaining on the discs after a series o f incubation 

periods, a Bicinchoninic Acid Assay (Sigma BCA-1) was used. The assay determined the 

quantities of protein in the solution used to wash the discs, by reducing copper (II) to 

copper (I) in a concentration dependent manner. Bicinchoninic acid formed a complex 

with copper (I) resulting in a colour change, which was quantified using a BIO-RAD 

Micro-plate Manager 2.1 spectrophotometer. The readings were taken at a reference 

wavelength of 540nm. A calibration curve was established using a protein standard -  

bovine serum albumin (BSA). Concentrations of BSA from 0.5 to 10 pg/ml in sterile 

phosphate buffered saline (PBS) were added to 1ml of the protein determining reagent 

(one part copper n  sulphate pentahydrate 4% solution to fifty parts bicinchoninic acid) 

and vortexed. The solutions were incubated for 30mins at room temperature, after which 

the absorbance of each solution was determined using the microplate reader.

The discs were spotted with lOpg of laminin or fibronectin dissolved in 5pi of sterile 

PBS, and placed to dry for durations of 30, 60, 90 and 120mins at 37°C, 5% CO2.

The discs were then washed with lml of sterile PBS and the amount of protein in the 

wash solution was determined using the Bicinchoninic acid assay. The amount of protein 

remaining on each disc was calculated by subtracting the amount of protein in the wash, 

from the application amount of lOpg.

4.2.2 3 CELL LINES AND SEEDING TECHNIQUES

The cells used were obtained from the ECACC. The fibroblast line is a human skin 

fibroblast line derived from a biopsy of a radiosensitive female (84Br). The epithelial cell 

line was established by immortalisation of normal adult prostatic epithelial cells by 

transfection with a plasmid containing SV40 genome with a defective replication origin. 

The primary culture was obtained from a prostate of a 3 3-year-old male at post mortem.

The cells contain the SV40 genome and express large T protein and they possess a well- 

differentiated morphology (PNT-2). The cell lines were chosen as a representation of the 

cells abutting the materials chosen for implantation in ITAP. The fibroblasts are 

representative of the cell type found in the dermal layer of the skin, whilst the epithelial 

cells are typical of the epithelial layer.
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The medium requirements for these cell lines are displayed in Chapter Three of my 

thesis.

The discs were incubated with the adhesion proteins for an optimal period and cells were 

then seeded onto all of the surfaces under test, at a rate of 30,000 cells per disc in 8pl 

medium. The cell spots were incubated for 1 hour to allow cell adhesion and the wells 

were then flooded with complete culture medium. The discs were incubated at 37°C, 5% 

CO2 for 48 hours.

4.2.2 4 DETERMINATION OF PROLIFERATION RATES -  ALAMAR BLUE

Alamar Blue is a redox indicator, which responds to oxidation and reduction of the 

surrounding medium. It changes colour in response to chemical reduction of culture 

medium, which results from cell growth and division.

Medium was made up using phenol red (PR) free medium. Alamar Blue was diluted 1:10 

with PR free medium and added to the wells under test (1ml per well/disc). The discs 

were incubated for 3-4 hours at 37°C, 5% CO2 . Two lOOjil aliquots were removed from 

each well and transferred to a 96 well plate. Absorbance was read at 570nm with a 

reference wavelength of 630nm on a Dynatech Plate Reader. Alamar Blue was washed 

from the discs with sterile PBS, and fresh medium was added.

4.2.2 5 INDIRECT IMMUNOFLUORESCENCE

The medium was removed from the wells containing discs to be processed for 

fluorescence microscopy (FM). Two, ten minute PBS washes were carried out prior to 

fixing the cells in 10% formal saline for 5 minutes. Four, 5 minute PBS washed were 

applied. The primary antibody -  monoclonal anti-human clone HUV-1 (Sigma V9131 

Anti-vinculin) was applied 0.2ml in 40ml PBS + 0.05ml Triton X-100 for 2 hours at 

room temperature. Three, 10 minute PBS washes preceded the secondary antibody stage 

-  FITC (Fluoroscein isothiocyanate conjugate - Sigma F2883 ) 1 in 100 in PBS at room 

temperature for 1 hour. The discs were given three final PBS washes prior to 

examination under FM. Ten cells on each substrate type were randomly selected and the 

number of vinculin markers was determined.
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4.2.2 6 CELL MORPHOLOGY - SCANNING ELECTRON MICROSCOPY

The discs to be processed for SEM were covered with fresh medium and placed in the 

fridge at 4°C for 20 minutes, after which the medium was removed and the cells on the 

discs were fixed using a solution of 1.5% glutaldehyde in 0.1M sodium cacocylate. After 

two hours this solution was replaced with 0.1M sodium cacocylate (stock buffer) and the 

plates were left at 4°C overnight. The buffer was removed and replaced with 1% osmium 

tetroxide in 0.1 M stock buffer for 1 hour. Two 5 minute buffer washes were applied and 

a filtered solution of 1% tannic acid in 0.05M stock buffer was applied for a further hour. 

The discs were subjected to four 5 minute buffer washes prior to dehydration in an 

ascending alcohol series ( 2 x 5  minute in 20-70% ethyl alcohol). After the 70% alcohol 

wash, a solution of 0.5% uranyl acetate in 70% ethanol was applied and left for 30 

minutes. This solution was removed, and the dehydration was continued (90, 96 and 

100% @ 2 x 5  minute). The discs were air dried in HMDS and mounted. A small 

amount of conductive paint was applied between the mounting block and the discs. The 

discs were then sputter coated with a layer of gold and examined in a JEOL 35C scanning 

electron microscope. SEM images were taken and analysed with a Zeiss KS300 image 

analysis package to determine the average cell area of cells cultured on each of the test 

substrates.

4.2.3 STATISTICAL ANALYSIS

The degree of normality of all the data was determined using Kolmogorov-Smimov tests 

and none of the data was observed to be normally distributed. Kruskal-Wallis H and 

Mann Whitney U tests were used to determine the significance of the findings. Mann 

Whitney U tests are significance tests for comparing two independent samples and can be 

used to determine whether a variable measured in each of the two samples can be 

assumed to be from the same underlying population. For multiple comparative analysis 

the p value obtained from Mann Whitney U tests can be reduced to avoid the Type I 

Error. However, for numerous comparisons this is impractical and an alternative analysis 

is the Kruskal-Wallis H test. For data to be analysed using this test, the samples must be 

taken randomly and independently from one another. The populations have to be 

approximately the same shapes (according to the box plots obtained) and the sample sizes 

have to be at least five. The Kruskal-Wallis H test is an extension of the Mann Whitney 

U test for multiple samples and is a nonparametric alternative to one-way analysis of 

variance. It tests the null hypothesis that samples do not differ in mean rank for the
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criterion variable. Kruskal-Wallis H is calculated on the basis of sums of ranks for 

combined data. If the p value obtained from the Kruskal-Wallis H test is less than or 

equal to 0.05, then at the 0.05 level of significance it can be stated that enough evidence 

exists to conclude that there is a significant difference among the groups based on the test 

scores. The Kruskal-Wallis test cannot tell which of several groups stands out, but can 

show a significant variation across groups, after which a Mann Whitney U test can be 

used pair-wise.

4.3 RESULTS

4.3.1 ADHESION PROTEIN ANALYSIS -  BICINCHONINIC ACID ASSAY

4.3.1.1 PROTEIN STANDARD CALIBRATION CURVE

Increasing amounts of protein standard BSA were added to 1ml of the protein reagent 

consisting of one part copper (II) pentahydrate solution (4%) in fifty parts bicinchoninic 

acid, and the absorbance of the resulting solutions was determined. The findings are 

presented in Figure 4.1 and demonstrate that increasing amounts of protein added to the 

assay reagents results in an increase in the absorbance observed. The curve was used to 

calculate the amounts of laminin and fibronectin remaining on the test substrates after 

different incubation periods.

0.16

0.14

0.12

0.08

o 0.06

<  0.04

0.02

Micrograms BSA

FIGURE 4.1 Graph showing absorbance values obtained using an increasing BSA protein 

standard solution and bicinchoninic acid assay.
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4.3.1.2 DISC PROTEIN ANALYSIS

The bicinchoninic acid assay and calibration curve in Figure 4.1 was used to determine 

the amount of laminin and fibronectin in washes from the discs coated and incubated for 

increasing time periods. From this data the amount of laminin and fibronectin remaining 

on the discs after each incubation time was established and the data is presented in Figure 

4.2. No significant differences were found between the amounts of laminin or fibronectin 

on any of the test substrates after 120 minutes (all p values <0.01). It was observed that 

with an incubation period of 120 minutes and an initial spotting concentration of 10pg, an 

average of 8.93jig of laminin and 8.87pg of fibronectin remain on all of the test 

substrates.

FIGURE 4.2
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FIGURE 4.2a Graph showing the amount of laminin adhered to the test substrates after 

increasing incubation periods.
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FIGURE 4.2b Graph showing the amount of fibronectin adhered to the test substrates 

after increasing incubation periods.

4.3.2 DETERMINATION OF PROLIFERATION RATES -  ALAMAR BLUE ASSAY

4.3.2.1 FIBROBLASTS -  24 HOURS

After a culture peirod of 24 hours on the test substrates, the proliferative capacity of 

fibroblasts was analysed using alamar blue assays. The findings are presented in Figure

4.3 and the summary data is given in Appendix 3 (3.1).

The data sets were found to be non-normally distributed using a Kolmogorov-Smirnov 

normality test. A Kruskal-Wallis H multiple comparative analysis was used to determine 

that at the 0.01 level there is a significant difference between all of the groups based on 

the test rank scores (p < 0.01). Within each substrate material group, pair-wise Mann 

Whitney U tests determined a significantly higher proliferative capacity of fibroblasts 

cultured on fibronectin coated materials than on control or laminin coated substrates (all p 

values < 0.02).
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FIGURE 4.3 Box plot of data for fibroblast proliferation analysis after 24 hours on the 

test substrates.

4 3.2.2 FIBROBLASTS -  48 HOUR

After a culture peirod of 48 hours on the test substrates, the proliferative capacity of 

fibroblasts was analysed. The findings are presented in Figure 4.4 and the summary data 

is displayed in Appendix 3 (3.2).

The data sets were found to be non-normally distributed using a Kolmogorov-Smirnov 

normality test and a Kruskal-Wallis H multiple comparative analysis was used to 

determine that at the 0.02 level there is a significant difference between all o f the groups 

based on the test rank scores (p < 0.02). Pair-wise Mann Whitney U tests determined a 

significantly higher proliferative capacity of fibroblasts cultured on fibronectin coated 

RBSTi than on control or laminin coated RSBTi (all p values < 0.01). Fibronectin coated 

RSBTi was also shown to support fibroblasts with significantly higher proliferative 

capacities than SPTi, SPTi LN, DLC and DLC LN substrates (all p values < 0.02). There 

were no significant differences observed between fibronectin coated SPTi, RSBTi or 

DLC, indicating that fibronectin overrides the material topography effect on fibroblast 

proliferation.
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FIGURE 4.4 Box plot of data for fibroblast proliferation analysis after 48 hours on the 

test substrates.

4.3.2 3 EPITHELIAL CELLS -  24 HOUR

After a culture peirod of 24 hours on the test substrates, the proliferative capacity of 

epithelial cells was analysed. The findings are presented in Figure 4.5 and the summary 

data is displayed in Appendix 3 (3.3)

The data sets were found to be non-normally distributed using a Kolmogorov-Smirnov 

normality test and a Kruskal-Wallis H multiple comparative analysis was used to 

determine that at the 0.001 level there is a significant difference between all of the groups 

based on the test rank scores (p < 0.001). Pair-wise Mann Whitney U tests demonstrated 

the significantly greater proliferative capacity of epithelial cells cultured on laminin 

coated substrates of all material types tested compared to control and fibronectin coated 

discs (all p values < 0.002).
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FIGURE 4.5 Box plot of data for epithelial cell proliferation analysis after 24 hours on 

the test substrates.

4.3.2 4 EPITHELIAL CELLS -  48 HOUR

After a culture peirod of 48 hours on the test substrates, the proliferative capacity of 

epithelial cells was analysed. The findings are presented in Figure 4.6 and the summary 

data is displayed in Appendix 3 (3.4). The data sets were found to be non-normally 

distributed using a Kolmogorov-Smimov normality test and a Kruskal-Wallis H multiple 

comparative analysis was used to determine that at the 0.001 level there is a significant 

difference between all of the groups based on the test rank scores (p < 0.001). Pair-wise 

Mann Whitney U tests demonstrated that laminin coating substrates of all material types 

significantly increases the proliferative capacity of supported epithelial cell populations 

compared to fibronectin coated discs of the same type (all p values < 0.05). Laminin 

coated DLC discs supported epithelial cells with a significantly lower proliferative 

capacity than laminin coated SPTi or RSBTi (all p values < 0.01). This indicates that 

after 48 hours in culture the detrimental effect of DLC coating observed in Chapter two of 

my thesis is evident.
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FIGURE 4.6 Box plot of data for epithelial cell proliferation analysis after 48 hours on 

the test substrates.

4 3.3 DETERMINATION OF CELL AREA -  SEM AND IMAGE ANALYSIS

4.3.3.1 FIBROBLAST CELL AREA -  48 HOURS

Ten randomly selected cells from each substrate type were photographed under SEM and 

the cell areas were calculated using KS300 image analysis software. The laminin coated 

RSBTi discs did not support a fibroblast population large enough to obtain sufficient data 

for the statistical analysis. Figure 4.7 displays the data obtained and the summary data 

can be observed in Appendix 3 (3.5).

The data sets were found to be non-normally distributed using a Kolmogorov-Smirnov 

normality test and a Kruskal-Wallis H multiple comparative analysis was used to 

determine that at the 0.02 level there is a significant difference between all of the groups 

based on the test rank scores (p < 0.02). Pair-wise Mann Whitney U tests showed that 

fibroblasts cultured on fibronectin coated SPTi have significantly greater cell area than 

those cultured on SPTi (p < 0.001) and laminin coated SPTi (p < 0.002).
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4.3.3 2 EPITHELIAL CELL AREA -  48 HOURS

The cell area of ten randomly selected epithelial cells cultured on each of the test 

substrates was analysed using KS300 image analysis software. Figure 4.8 displays the 

data obtained and the summary data can be observed in Appendix 3 (3.6). The data sets 

were found to be non-normally distributed using a Kolmogorov-Smirnov normality test. 

Kruskal-Wallis H multiple comparative analysis was used to determine that at the 0.01 

level there is a significant difference between all of the groups based on the test rank 

scores (p < 0.01). Pair-wise Mann Whitney U tests showed that epithelial cells cultured 

on SPTi substrates, irrespective of protein coating, have significantly greater cell area 

than those on any of the surfaces tested. Epithelial cells cultured on laminin coated 

RSBTi display significantly greater cell areas than those on RSBTi control or fibronectin 

coated discs.
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4.3.4 NUMBER OF VINCULIN MARKERS PER CELL -  FLUORESCENCE

4.3.4.1 NUMBER OF VINCULIN MARKES PER FIBROBLAST -  48 HOUR

The number of vinculin markers in thirty randomly selected fibroblasts, from each 

substrate, was established using a Weiss Fluorescence Microscope. The data is presented 

in Figure 4.9 and the summary data is given in Appendix 3 (3.7). Fibroblasts cultured on 

laminin coated RSBTi had an insufficient cell population density to obtain the data 

required and has been omitted. The data sets obtained were found to be non-normally 

distributed using a Kolmogorov-Smimov normality test. Kruskal-Wallis H multiple 

comparative analysis was used to determine that at the 0.01 level there is a significant 

difference between all of the groups based on the test rank scores (p < 0.01). Pair-wise 

Mann Whitney U tests showed that fibroblasts cultured on fibronectin coated SPTi 

possess significantly greater numbers of vinculin markers per cells than those supported 

by any of the other test substrates. This suggests that the surface topography and 

chemical composition are still affecting cell parameters despite the protein coating 

applied to the substrates. Within each substrate type group, SPTi, DLC and RSBTi, the 

fibronectin coated discs supported fibroblasts with significantly more vinculin markers 

per cell than the control or laminin coated discs.
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FIGURE 4.9 Box plot of the number of vinculin markers observed in fibroblasts cultured 

on test substrates for a 48 hour incubation period.

4.3.4 2 NUMBER OF VINCULIN MARKES PER EPITHELIAL CELL -  48 HOUR

The number of vinculin markers in thirty randomly selected epithelial cells, from each 

substrate, was established using a Weiss Fluorescence Microscope. The data is presented 

in Figure 4.10 and the summary data is given in Appendix 3 (3.8).

The data sets obtained were found to be non-normally distributed using a Kolmogorov- 

Smimov normality test. Kruskal-Wallis H multiple comparative analysis was used to 

determine that at the 0.01 level there is a significant difference between all o f the groups 

based on the test rank scores (p < 0.01). Pair-wise Mann Whitney U tests showed that 

within each material type group, SPTi, RSBTi and DLC, laminin coated discs supported 

epithelial cells with significantly greater numbers of vinculin markers per cell than 

control or fibronectin coated discs (all p values <0.01). Epithelial cells cultured on 

fibronectin coated substrates, within material type groups, show significantly higher 

numbers of vinculin markers per cell than those on control discs (all p values < 0.05). 

Laminin coated SPTi discs support epithelial cells with significantly greater numbers of 

vinculin markers per cell than either DLC or RSBTi laminin coated discs. This indicates 

that the surface roughness and chemical composition of material substrates still affect cell

088  0106-
SPTi Control SPTi LN DLC FN RSB Control

SPTi FN DLC Control DLC LN RSB FN
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population parameters, irrespective of the protein coating (all p values < 0.01). SPTi 

substrates support populations of epithelial cells with significantly higher numbers of 

vinculin markers than either DLC or RSBTi control or fibronectin coated discs (all p 

values < 0.01), but with lower numbers of markers than laminin coated DLC or RSBTi 

(all p values > 0.05).
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FIGURE 4.10 Box plot of the number of vinculin markers observed in epithelial cells 

cultured on test substrates for a 48 hour incubation period.

4.3.5 CELL ATTACHMENT: AS A RATIO OF NO. MARKERS:CELL AREA

4.3.5.1 FIBROBLAST CELL ADHESION -  48 HOURS

The cell area and number of vinculin markers per cell data was combined to establish the 

average number of vinculin markers per unit cell area for fibroblasts cultured on the test 

substrates for a 48 hour incubation period. The resulting data is presented in Figure 4.11 

and the summary data is given in Appendix 3 (3.9). For each material type tested, the 

adhesion of fibroblasts to fibronectin coated discs is significantly greater than that for 

laminin coated or control discs (all p values < 0.05). In the case of DLC and RSBTi 

substrates the increase in fibroblast adhesion to fibronectin coated compared to control 

discs is threefold.
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FIGURE 4.11 Adhesion data for fibroblasts cultured on test substrates for 48 hours.

4.3.5 2 EPITHELIAL CELL ADHESION -  48 HOURS

The cell area and number of vinculin markers per cell data was combined to establish the 

average number of vinculin markers per unit cell area for epithelial cells cultured on the 

test substrates for a 48 hour incubation period. The resulting data is presented in Figure 

4.12 and the summary data is given in Appendix 3 (3.10). Laminin coated materials from 

each group support epithelial cells with a 1.5 to 2 fold increase in adhesion compared to 

the control substrates. For each group, SPTi, RSBTi and DLC, the laminin coating 

supports a population of epithelial cells that are significantly better adhered to the 

substrates than the control or fibronectin coated discs (all p values < 0.05).
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FIGURE 4.12 Adhesion data for epithelial cells cultured on test substrates for 48 hours.

4 3.6 MORPHOLOGICAL ANALYSIS -  SCANNING ELECTRON MICROSCOPY

4.3.6.1 FIBROBLAST MORPHOLOGICAL ANALYSIS

The appearance of fibroblasts cultured for 48 hours on control, fibronectin and laminin 

coated DLC discs are presented in figure 4.13a -  4.13c. The morphology, density and 

general appearance of the fibroblast populations followed the same pattern for all o f the 

material types tested. The cell density increased from control, laminin coated to 

fibronectin coated discs, the greatest cell density populations being observed on the latter. 

The fibronectin coating increased the extent of cell area / spreading on all o f the substrate 

materials. The degree of cell-cell and cell-substrate communication and interaction were 

increased on the fibronectin coated materials compared to the control and laminin coated 

discs. The SPTi control discs supported the largest numbers of fibroblasts with greater 

cell areas and cell-cell interaction compared to the RSBTi control substrates, whilst the 

DLC control discs presented with a low density, low cell area and predominately rounded 

population. All fibronectin coated discs, irrespective of material type, supported a 

confluent monolayer of fibroblasts, with good cell spread, a large degree of cell-cell 

communication and a flattened morphology.
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4.3.6 2 EPITHELIAL CELL MORPHOLOGICAL ANALYSIS

The cell population density cultured on control, laminin and fibronectin coated substrates 

followed the same pattern for each material type tested. The laminin coated discs, 

irrespective of material type, supported an epithelial cell population of greater density, 

and cell-cell interaction. The laminin coating produced a complete monolayer of 

epithelial cells on all of the surface types tested, and in all cases the cells were observed 

to stratify in areas. The SPTi control discs supported a cell population of greater cell 

density than the RSBTi or DLC controls. The cell area observed on each of the test 

substrates was constant. However, the cells examined on the RSBTi control discs were 

more rounded in morphology than those observed on any of the other material types 

tested. SPTi images of the appearance of epithelial cells on control, laminin and 

fibronectin coated discs are presented in figure 4.14.
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FIGURE 4 .13

FIGURE 4.13a SEM of fibroblasts cultured on a DLC substrate for 48 hours at a 

magnification of x 150.

FIGURE 4.13b SEM of fibroblasts cultured on a DLC substrate coated with 10jig of 

laminin for 48 hours at a magnification of x 150.
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FIGURE 4.13c SEM of fibroblasts cultured on a DLC substrate coated with lOgg of 

fibronectin for 48 hours at a magnification of x 150.
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FIGURE 4.14

FIGURE 4.14a SEM of epithelial cells cultured on SPTi for 48 hours at magnification x 

150.

FIGURE 4.14b SEM of epithelial cells cultured on a SPTi substrate coated with lOpg of 

laminin for 48 hours at magnification x 200.
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FIGURE 4.14c SEM of epithelial cells cultured on a SPTi substrate coated with lOpg 

fibronectin for 48 hours at magnification x 140.
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4.4 DISCUSSION

4.4.1 FIBROBLAST PROLIFERATION

All materials coated with fibronectin were shown to support increased proliferative 

capacity of fibroblasts after 24 hours in vitro. This finding is supported by those of 

Nuttelman et al (2001) who looked at a modified poly (vinyl alcohol) (PVA) hydrogel, 

supporting NIH3T3 fibroblasts attachment. It was shown that by covalently attaching 

fibronectin to PVA hydrogel, the rate of fibroblast attachment and proliferation 

dramatically improved. In 1992, Zlatopolsky et al showed that heparin-binding fragments 

of fibronectin are capable of promoting fibroblast proliferation.

After 48 hours, the data obtained from proliferation analysis showed a significant 

difference between the groups, however the differences were less marked than those 

observed between the 24 hour data. Two reasons for these findings are proposed. Firstly, 

after 48 hours it is questionable whether any of the originally applied fibronectin or 

laminin remains present or active on the disc surfaces. Previous studies have examined 

the effects of fibronectin and laminin for periods ranging from 30 minutes (Tamura et al 

1997), 1.5 hours (Dean et al 1995) to 24 hours (El-Ghannam et al 1998), and 

demonstrated significant differences in cell parameters. However, none have examined 

effects after a 48-hour duration. Secondly, it is postulated that even if the originally 

applied adhesion proteins still remain active or present, the effects could be reduced over 

time owing to the deposition of ECM by adherent cells.

4.4.2 EPITHELIAL CELL PROLIFERATION

After 24 hours in vitro, laminin coated discs were observed to support epithelial cell 

populations with increased proliferative capacity than control or fibronectin coated discs, 

irrespective of the substrate material. This finding is complemented by those of Gonzales 

et al, who in 1999 demonstrated that two distinct laminin-5 function-inhibitory antibodies 

inhibit proliferation of epithelial cells, and that proliferation inhibition by these function 

perturbing laminin-5 antibodies is reversed upon antibody removal (or by providing the 

antibody treated cells with exogenous laminin-5).

Following a 48 hour duration in vitro, there is still a significant difference among the test 

rank scores. Pair-wise analysis showed the pattern of proliferative capacity between the 

substrate types tested to be the same as that observed after 24 hours. This finding
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demonstrates that the laminin coating is still affecting the proliferative function of 

epithelial cells after 48 hours in a culture system.

4.4.3 CELL ADHESION ANAYLSIS

The findings for both dermal epithelial and fibroblast cell adhesion, with and without 

laminin and fibronectin, complement those of Dean et al, whose 1995 study examined the 

effects of these protein coatings on gingival fibroblasts and epithelial cell adhesion in 

association with materials used in dental implantology. The study showed a 2/3 fold 

increase in fibroblast binding to fibronectin coated implants and a 3/4 fold increase for 

epithelial binding to laminin coated materials.

The findings of my study and those of Dean et al (1995), lead to the conclusion that both 

fibroblasts and epithelial cells of dermal and gingival origin present with distinct 

preferences for the different adhesion molecules tested. It is also proposed that surface 

roughness has some effect on adhesion of cells of this type.

Overall it is concluded that fibronectin coatings sustain fibroblast, and laminin coatings 

enhance epithelial cell populations compared with control discs. Cell spreading is an 

active process and cells rely on morphological changes associated with the cell cycle. 

Smaller cells membrane movement constraints, caused by topographical variations, 

would inevitably be more detrimental than those imposed on cells of a larger size.

4.4.4 GENERAL CONCLUSIONS

For application of the findings of this chapter for in vivo soft tissue adhesion promotion in 

transcutaneous or percutaneous environments, it is proposed that a fibronectin coating 

applied to implants abutting soft tissues with predominantly fibroblastic cell populations, 

could benefit from a fibronectin protein coating. The soft tissue-implant interface 

involving epithelial cell populations could be enhanced using a laminin protein coating. 

The effects of these proteins may be short-lived in an in vivo environment. However, it is 

concluded that if the coating can stabilise the interface between soft tissues and implant 

materials, even for a 24 hour period, then it could increase implant longevity.

There are limiting factors associated with the in vitro environment that have the potential 

to result in different findings in an in vivo system. Cells in vitro loose a degree of three- 

dimensional shape, adopting a flattened, spread morphology; they undergo a selection 

process for those that are best suited to the cell culture environment and are a uniform
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population of cells. They are deprived of heterotypic cell interactions and can rapidly 

loose differentiated functions. As a result, the environment in vitro is significantly 

different from that which the cells would experience in vivo. These factors must be 

considered as limiting in terms of in vivo expectations.
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5.1 INTRODUCTION AND HYPOTHESES

Skeletally anchored, transcutaneous amputation prostheses could be used to replace 

current stump-socket designs for amputees. To date, numerous problems associated with 

artificial limb design have been encountered. These include, mismanagement (Levy 

1995), focal points of increased stress caused by non-uniform pressure distribution at 

stump-socket junctions (Lee et al 1997), skin related problems caused by sheer stresses 

leading to infection (Pritham 1990, Canale 1998) and the unnatural microbial 

environment at the stump-socket interface, to which the skin is unaccustomed, causing 

infection (Kohler et al 1989). The development aims of intraosseous transcutaneous 

amputation prostheses (ITAP) are to overcome these problems by attaching the external 

implant directly to the skeleton via a transcutaneous prosthesis. This method would 

transfer the detrimental loads currently applied to the stump-socket interface, directly to 

the skeleton.

Since the 1960’s Branemark has been the pioneer of transcutaneous implant technology 

and research (Branemark et al 1969, Branemark et al 1977, Branemark and Albrektsson 

1982, Branemark 1988, Branemark et al 1999, Branemark et al 2001). Branemark has 

demonstrated that skin penetrating implants in human epithelium, with restricted 

movement, show no inflammatory or other adverse skin reactions after 7-25 months, and 

that hearing aids anchored in temporal bone placed in a two stage surgical procedure will 

minimise trauma and remain functional after 38-50 months (Branemark and Albrektsson 

1982). Dental and auricular implants using Branemark fixtures were originally placed in 

two stage surgical procedures. The first stage of the procedure introduced the bone 

anchored or subcutaneous section of the implant, after which the soft tissues were closed 

and allowed a healing time of between one and six months prior to a second stage 

operation to implant the transcutaneous section. In 1999 Branemark demonstrated 

encouraging results with single stage procedures in the lower jaw. In 1992, Chehroudi et 

al compared one and two stage procedures and demonstrated that placing implants in two 

stages improves the performance of transcutaneous devices, and that further improvement 

is observed by promoting connective tissue ingrowth.

Skin penetrating implants can be considered to be foreign bodies penetrating the skin 

through surgically created defects. Implant failure can occur as a direct result of 

marsupialisation, permigration, avulsion and infection (Heaney 1977, Von Recum 1984, 

Chehroudi et al 1989, Chehroudi et al 1992). In 2000, Holgers demonstrated that many 

inflammatory cells are present at tissue-implant interfaces of transcutaneous devices. T
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and B-lymphocytes, macrophages, polymorphonuclear cells and plasma cells at the 

interface around transcutaneous devices indicate a chronic inflammatory state. Microbial 

adhesion is a prerequisite for infection. Immediately after implantation of a 

transcutaneous device, host proteins are adsorbed to the biomaterial surface. The proteins 

adsorbed depend on properties of the implant material, including hydrophobicity and 

surface charge, as well as the composition of the hosts proteinaceous fluid. Microbial 

adhesion can occur to these surface-adsorbed structures. Fibronectin has been shown to 

mediate adhesion of staphylococci to materials in the blood stream (Vaudaux et al 1993), 

whilst vitronectin could mediate adhesion of coagulase negative staphylococci to 

polymers in cerebrospinal fluid (Lundberg et al 1997). It has been shown that staph, 

epidermidis is the most common infectious agent in polymer related infections, whereas 

staph, aureus dominates infections surrounding metal implants (Gristina 1987). 

Decreasing bacterial adhesion to ITAP devices is vital to limit infection and increase 

implant longevity.

In 1999 Branemark presented data concerning the use of osseointegrated prostheses in 

lower limb amputation at the 10th International Symposium on Limb Salvage. The 

concept for this application was originally proposed by Winter in 1974, who stated that a 

new method for providing artificial limbs for amputees might be to attach the external 

prosthesis directly to the skeleton. In 1999 Branemark detailed 16 patients who had 

received bone anchored amputation prostheses. Most presented with superficial 

infections, treatable with peroral antibiotics and frequent re-dressing. However, four 

patients suffered deep infection and implant loosening and three required a new titanium 

fixture. One patient had stump shortening, whilst surgical intervention was needed for 

two patients with chronic fistulae, and improvement was observed following changes in 

surgical technique. These findings indicate a further need to develop the ITAP concept.

Numerous authors have published concerning design criteria for transcutaneous devices 

(Grosse-siestrup and Affeld 1994, Von Recum 1984, Tjellstrom 1985, Von Recum and 

Park 1981), as well as examining naturally permanent transcutaneous structures (Knabe et 

al 1999), and to date no truly successful artificial alternative is available for amputees. 

Studies have examined the attachment of human gingiva to teeth and dental implant 

materials to gain an insight into how the interface is formed (Gould et al 1984, McKinney 

et al 1985). It has been shown that epithelial cells attach to titanium in vivo in a similar 

manor to that observed in vitro and in the natural tooth, via formation of 

hemidesmosomes and basal lamina.
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In 1981, Gould et al studied the attachment mechanism of epithelial cells to titanium in 
vitro, showing that hemidesmosome-like structure formation is key to epithelial cell 

attachment.

In dentistry and orthopaedics, hydroxyapatite (HA) has been utilised as the best 

biomaterial for bone prostheses as it bonds directly to hard tissues without forming a 

fibrous connective tissue layer at the implant-bone interface (Kato et al 1979, Jarcho 

1981). Tissue reactions to various materials used for transcutaneous devices have been 

studied showing that HA has greater compatibility with skin tissue and imparts an 

increased resistance to bacterial infection (Shin and Akao 1997). Many devices and 

materials have been proposed to overcome the problems associated with transcutaneous 

implants, but as yet they remain unsolved, and a stable interface between living and 

artificial materials remains illusive. A totally stable junction between soft tissues and 

implants is essential for ITAP to function successfully. Nowicki et al (1990) have shown 

that porous materials can be used to promote tissue ingrowth and vascularisation and can 

provide an alternative to natural bonding, with pore size and structure being critical to 

success. However, transcutaneous devices composed of porous materials do not help 

prevent bacterial infection (Shin and Akao 1997) and are generally associated with a high 

risk of infection. Transcutaneous implants made from other porous materials, including 

fibermesh and velour for anchoring soft tissues into pores or among fibres, have also met 

with limited success (Paquay et al 1996).

In 1991 Tsuji et al demonstrated the use of HA transcutaneous devices implanted into the 

forearms of human volunteers that were successfully maintained for seven years with no 

special care. In vivo and in vitro studies of dental interfaces give a good insight into soft 

tissue and soft tissue cell interfaces with hard surfaces, and how surfaces and implants 

can be designed to maximise implant longevity (Listgarten 1966, Zachrisson and Schultz- 

Haudt 1968, Karring et al 1975, Mackenzie and Hill 1981, Mackenzie and Fusenig 1983, 

Meffert 1988, Seymour et al 1989, Kononen et al 1992). However, most literary evidence 

is conflicting and a totally successful implant design has not yet been developed for 

amputation prosthetics.

Epithelial downgrowth around transcutaneous implants is the principle reason for 

infection and ultimately implant failure. Winters’ research in 1974 showed that the 

epidermis can migrate through damaged collagenous tissue, however epidermal cell 

migration is halted when confronted by healthy collagenous bundles. Downgrowth is a
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result of epithelial cell proliferation one to two days post injury and the ‘free edge effect’ 

whereby the absence of neighbouring cells at a wound margin acts as a signal for 

migration and proliferation of wound edge epithelial cells, to re-establish epithelial cell 

layer continuity. Local release of growth factors has also been implicated as factors 

affecting epithelial proliferation and migration (Heimark et al 1986, Heimark and 

Schwartz 1985). In wound healing and response to transcutaneous implants, epithelial 

cells migrate over a provisional matrix of collagen I, collagen V, fibrin, vitronectin and 

fibronectin, which is deposited by wound fibroblasts, macrophages and migrating 

epithelial cells. A series of phenotypic alterations in epithelial cells results in their lateral 

mobility and they begin to migrate. In normal wound healing this migration serves to 

heal the wound defect, but in ITAP this leads to downgrowth. For ITAP to be successful 

it is necessary to prevent epithelial migration and downgrowth by utilising biomaterials 

and coatings to promote epithelial adherence, and to stabilise the sub-epithelial soft tissue 

seal by supplementing epithelial cell adherence with dermal attachment.

The research in this chapter aims to examine and enhance the reactions of the skin around 

titanium alloy transcutaneous implants, to eliminate downgrowth by incorporation of 

biomaterials and implant design and to promote sub-epithelial soft tissue adhesion, with 

the final aim being a tight soft tissue- implant interface for use in amputation prosthetics. 

Titanium alloy is the material of choice for the development of ITAP because it is 

stronger than commercially pure titanium (www.Matweb.com) and better suited to a 

weight bearing application such as amputation prosthetics.

Chapter Two of my thesis examined Deer antler as a model for the development of ITAP. 

The results showed that Deer antler are successful for a number of reasons. Thick 

collagen fibres anchor to the pedicle from the adjacent tissues, preventing epithelial 

downgrowth and providing a strong attachment at the interface. The highly porous 

pedicle provides an ideal surface for tissue ingrowth, whilst the ridges and grooves at the 

antler-pedicle interface mediate soft tissue adherence. In this chapter, these findings have 

been considered and applied to the development of ITAP to maximise efficiency and 

longevity. Chapter Two demonstrates that epithelial attachment to a transcutaneous 

structure is not a prerequisite for a stable interface between the soft tissues and the skin- 

penetrating device. As a result of these findings it is hypothesised that for the 

development of ITAP, it is sub-epithelial/dermal fibroblastic, but not epithelial layer 

adhesion, that is directly responsible for the degree of downgrowth observed around 

ITAP implants. The development of the ITAP implant in this chapter is based on 

deer antler; biomimetic surfaces for the development of amputation prostheses. It is
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hypothesised that implants designed to mimic antler, providing ideal surface 

characteristics at different points along the length of the implant, will result in 

increased tissue attachment and reduced epithelial downgrowth. Also, that it is sub- 

epithelial/dermal fibroblastic, but not epithelial layer adhesion, that is directly 

responsible for the degree of downgrowth observed around ITAP implants.
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5.2 MATERIALS AND METHODS

5.2.1 IMPLANT PREPARATION

Two implant designs were tested, straight and flanged, which were machined from a 

stock bar of medical grade titanium (Ti6ALtV)(BS7252 part 3). Both implant types were 

40mm in length, of which 22mm comprised a self-tapping screw thread.

A minimum of six animals were used in each Group and the implants were tested with the 

surface finishes and coatings presented in table 5.1

Table 5.1 Implant surface finishes and coatings

Group 1 Group 2 Group 3 Group 4

MF MF MF MF

RSB SG + DLC PTi P Flange

SG LG + DLC PTi + HA HA Flange

LG RSB + DLC PTi + DLC 100 FN Flange

HA - PTi + DLC + HA 200 FN Flange

(MF = Machine Finished, RSB = Rough Sand Blasted, SG = Small Grooved, LG = Large Grooved, HA = 
Hydroxyapatite, DLC = Diamond-like Carbon, P = Plain Machine Finished, FN = Fibronectin)

Following results from preliminary studies, Machine Finished (MF) (Ra 0.210pm, Ry 

1.356pm, Rz 1.265pm), straight pins were used as a negative control in all animals. MF 

pins were rough sand blasted (sealed cabernet - 0.2mm aluminium oxide grit) to create 

the Rough Sand Blasted implants (RSB) (Ra 0.404pm, Ry 2.561pm, Rz 1.342pm). A 70 

micron thick coating of dense hydroxyapatite was applied to MF implants to create 

Hydroxyapatite implants (HA) (Ra 2.375pm) using a plasma spray process (Plasma 

Biotal Ltd, UK). Small Grooved (SG) (groove depth = 0.3mm, groove width = 0.5mm), 

Large Grooved (LG) (groove depth = 0.6mm, groove width = 1.0mm) and RSB implants 

were coated with an externally applied 2-4 micron thick coating of diamond-like carbon 

(DLC) applied at Diavac ACMLTD at Brunei University. DLC is a low surface energy 

coating used to deter bacterial adhesion to the external segments of the implants. MF
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implants were plasma sprayed with porous titanium, at a thickness of 70-100 microns for 

the Porous Titanium implants (PTi). PTi implants were tested +/- HA and +/- DLC.

All of the coatings were applied to the surface region spanning the dermal and epidermal 

abutting region of the implants only, with the exception of the DLC coating which was 

only applied to the external portion of the implants.

The results obtained for the straight implant trials generated a change of design, which 

was tested in Group 4. A flange was incorporated into the straight implant design (Figure 

5.1) to increase the surface area for soft tissue adhesion. The flange was positioned 2mm 

above the self-tapping screw thread, to be located immediately below the epithelial layer 

in situ. The flange diameter (including the central implant section) was 10mm, and a 

series of 24, 0.7mm diameter holes were drilled into the flange to simulate the porous 

nature of the pedicle structure observed in deer antler (see Chapter Two). The flanged 

implants were tested with and without a 70 micron thick HA coating, applied only to the 

flange section of the implants.

In Chapter Three of my thesis it was shown that a fibronectin coating, applied to titanium 

discs in vitro, results in a threefold increase in fibroblast adhesion. Owing to these 

findings, it was postulated that a fibronectin coating applied to the dermal abutting section 

of ITAP implants could increase the degree of dermal fibroblastic adhesion. Human 

plasma fibronectin (Sigma F2006) was dissolved in the minimum volume of sterile saline 

solution and applied to the flanged region of the implants at lOOpg and 200pg. The 

coating was allowed to dry prior to implantation during the surgical procedure.

iT
FIGURE 5.1 Appearance of the flanged pin design with a whole HA coating (5.1a) and 

from plan view (5.1b) showing the hole series.
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5.2.2 OPERATIVE PROCEDURES

5.2.2.1 PIN IMPLANTATION

Four to five implants were surgically implanted into the medial aspect of the right tibia of 

adult female goats weighing between 60-90 Kg as specified in table 5.1. The animals 

were sedated pre-operatively with an intramuscular injection of Rompun at a dose rate of 

0.005 ml/Kg body weight. Anaesthesia was induced with a Ketamine / Midazolam 

intravenous mix, at a dose rate of 0.2 and 0.5 ml/Kg respectively. The animals were 

intubated and anaesthesia was maintained with a 2% Oxygen Halothane mix. The 

animals were administered with analgesia 2 ml Fetagesic perioperatively and for two days 

post-operatively via intramuscular injection. Antibiotics (Ceporex) were administered 

perioperatively and for 5 days post-operatively in a 5 ml dose subcutaneous injection.

Once anaesthetised the right leg of the animal was shaved and cleaned using a dilute 

Pevidine solution, followed by a Hydrex wash and the medial aspect of the tibia was 

isolated in a sterile field (Figure 5.2). For each implant, a small incision was made in the 

skin over the site where the implant was to be placed and a periosteal elevator was used to 

expose and clear the tibial area. Care was taken to minimise the damage caused to the 

soft tissues. An electric drill was used to create a 4.2mm hole through both cortices of the 

tibia. The implants were sterilised in a steam autoclave at 135 degrees centigrade and 

then screwed into place using a hand held T-bar (Figure 5.3). The pins were inserted to 

the depth required for the appropriate section to be abutting the desired soft tissue layers, 

and at approximately 2cm intervals along the tibia. At each stage throughout the surgical 

technique, the operative site was well irrigated with saline solution.

Implantation of straight implants required no further surgical intervention. However, in 

the case of the flanged implants, one to two sutures (2.0 vicryl) were applied to tightly 

interface the dermis with the pin surface. Implant position was randomised and care was 

taken to ensure that each implant type was not in the same position relative to the other 

implant types. Once all of the implants had been positioned (Figure 5.4), the wound sites 

were cleaned and dressed with Opsite Moisture Vapour Permeable Spray dressing (Smith 

and Nephew), and a Sodium Fusidate dressing was applied. Cotton wool was used to 

apply pressure to the implant-skin interface and was bandaged from above the proximal 

implant position to the hock. An elasticated bandage was then placed over all of the 

dressings.
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The animals were maintained under observation until they regained consciousness and 

were then transferred to individual pens where they were monitored at regular intervals 

for a four week duration (Figure 5.5).

FIGURE 5.2 Medial aspect of the right tibia isolated in a sterile field -  prepared for 

surgery.

FIGURE 5.3 Central tibial implant being positioned with a hand held T-bar.
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FIGURE 5 .4 Appearance of the medial aspect of the tibia following implantation of five 

straight design transcutaneous implants.

FIGURE 5.5 Monitoring of the implant site 3 weeks post operatively.
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5.2.2.2 IMPLANT RETRIEVAL AND TISSUE HARVESTING

The animals were sedated with an intramuscular injection of Rompun at a dose rate of 

0.005ml/Kg body weight, and were euthanised with an overdose of Pentobarbitone 

injected into the jugular vein. Once expired, the medial aspect of the animal’s tibia was 

exposed (Figure 5.6) and using a scalpel, a square of soft tissue around each implant was 

incised to the underlying bone (Figure 5.7). The tibia was removed by amputation 

through the knee and the extraneous soft tissues were removed. Most implants were 

clinically normal, however a few had soft tissue overgrowing the transcutaneous section 

(Figure 5.8). Removal of all implants was carried out using a hand held saw to cut 

through the tibial sections surrounding each implant. The overgrown implants, however, 

required slightly different histological processing (see section 5.2.3). In all cases, care 

was taken not to disrupt the skin-implant interface during implant retrieval. Immediately 

after removal the tissue samples were fixed in 10% formal saline.

FIGURE 5.6 Exposed medial aspect of the tibia of the operated limb, 4 weeks post- 

operatively.

162



FIGURE 5.7 Appearance of the skin incised to the underlying bone around each of the 

transcutaneous implants.
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FIGURE 5.8

FIGURE 5 .8a Appearance of a standard straight implant harvested from an unswollen 

site from a medial aspect.

FIGURE 5.8b Shows a transverse section of the implant from 5.8a prior to removal of 

excess soft tissues.
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FIGURE 5.8c Appearance of an implant where the soft tissues have grown over the 

transcutaneous section, from a medial aspect.

FIGURE 5.8d Tissue section form 5.8c in transverse section.
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5.2.3 HISTOLOGY PROCESSING

For preparation of hard tissue sections, following 10% formal saline fixation for 8-10 

days, the tissue samples were dehydrated in an ascending alcohol series (30, 50, 70, 90 

and 100%) and washed in chloroform to achieve fat clearance, prior to impregnation and 

casting in LR White hard grade acrylic resin (Agar Scientific Ltd). The samples were 

then cut longitudinally through the centre of the implant and thin sections (70-100p) were 

prepared from the cut surface, using an Exakt 310 band cutting system with a 0.2mm 

diamond cutting band, and an Exakt 400cs grinder and polisher. The sections obtained 

were stained with toluidine blue and paragon for soft tissue and bone respectively.

For tissue samples where the soft tissues had overgrown the transcutaneous section of the 

implant, the longitudinal centre pin cut position was established by x-raying the tissue 

samples once embedded in acrylic resin, for four minutes at 40 kilovolts and 5 mill 

amperes.

From the developed x-ray, the position of the pin within the tissue and resin block could 

be established and the central cut could be made without the ability to visualise the pin 

within the block itself.

Once stained, the sections were mounted and covered with glass cover slips prior to light 

microscopy and image analysis assessment. Light microscopy was used to qualitatively 

analyse the morphology of the transcutaneous interface, whilst image analysis was used 

for quantitative analysis.

5.2.4 IMAGE ANALYSIS

The Zeiss KS 300 Image Analysis System (Release 3.0) was used to measure values from 

each section for epithelial downgrowth, epithelial layer thickness and amount of epithelial 

layer attachment, soft tissue (sub-epithelial dermal) layer thickness and soft tissue layer 

attachment -  see Figure 5.9. Drawing and measuring a line from the skin surface to the 

position at which the epithelium was observed to end at the epithelial layer -  implant 

interface, was the method employed to measure epithelial downgrowth. A line was used 

to measure the thickness of the epithelial and sub-epithelial tissue layers, and the 

percentage of the layers contacting the implant surface was calculated using the line 

method. The values from both the left and right sides of each implant were taken, and the 

results were analysed statistically.
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FIGURE 5.9 Schematic showing the values obtained from each transcutaneous pin using 
Image Analysis.

5.2.5 STATISTICAL ANALYSIS

The data obtained was analysed statistically using SPSS software. The values for 

downgrowth, percentage epithelial layer and percentage sub-epithelial soft tissue layer 

attachment were examined. The data was found to be non-normally distributed using 

Kolmogorov-Smimov tests. For multiple comparative analysis of each pin type data set, 

a Kruskal-Wallis H test was used. If the p value obtained for the test was less than or 

equal to 0.05, then it was assumed that at the 0.05 level of significance there was enough 

evidence to conclude that there was a significant difference among the groups based on 

the test rank scores, showing a significant variation across groups. Pair-wise Mann 

Whitney U tests were used to further determine individual differences. Spearman R 

(nonparametric equivalent to standard correlation coefficient analysis) was used to 

determine the nature of relationships between downgrowth and percentage epithelial layer 

attachment, and between downgrowth and percentage sub-epithelial layer attachment.
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5.3 RESULTS

5.3.1 STATISTICS

5.3.1.1 DOWNGROWTH ANALYSIS

Limiting downgrowth around transcutaneous implants is a prerequisite for their success. 

The extent of downgrowth observed and measured using image analysis surrounding the 

implants tested in this thesis was analysed statistically. The data was found to be non- 

normally distributed using a Kolmogorov-Smirnov test (p <0.05). A summary of the data 

is presented in Appendix 4 (4.1), whilst the box and whiskers plot in Figure 5.10 presents 

the findings of the analysis.

10

Pin Type

FIGURE 5.10 Box plot of data obtained for degree of downgrowth (mm) surrounding the 

transcutaneous pins tested. Key: MF = Machine Finished, SG = Small Grooved, LG = 

Large Grooved, RSB = Rough Shot Blasted, HA = Hydroxyapatite Coated, DLC = 

Diamond-like Carbon, PTi = Porous Titanium, P Flange = Plain Flange, 100 FN Flange = 

lOOpg Fibronectin Coated Flange.
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From the box plot, it is visually evident that the flanged implants present with lesser 

degrees of downgrowth than the straight pin design, irrespective of the coatings applied. 

A Kruskal-Wallis H test multiple comparative analysis was used to determine that at the 

0.001 level there is a significant difference in downgrowth observed around all of the pin 

types tested based on the test rank scores (p = 0.000).

Pair-wise Mann Whitney U tests were then used to determine whether a difference in 

downgrowth is observed around straight and flanged implants of the same material type 

to determine the effect of the stress reducing flange in terms of limiting downgrowth. 

The data for the straight machine finished and the plain flanged implants were compared 

to determine the effect of altering implant design. Figure 5.11 shows a box and whiskers 

plot of the extent of downgrowth surrounding the two machine finished implant designs. 

The data was subjected to a pair-wise Mann Whitney U test which presented with a p 

value of 0.001, demonstrating that the amount of downgrowth observed around 

transcutaneous implants with a stress reducing flange incorporated is significantly lower 

than that observed around a straight implant of the same material type and finish.

P Flange

Pin Type

FIGURE 5.11 Box plot of the data obtained for the degree of downgrowth observed 

surrounding machine finished titanium transcutaneous pins of straight and flanged 

designs.
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Pair-wise Mann Whitney U tests were used to determine that no significant differences in 

downgrowth are observed surrounding machine finished and straight implants of all other 

surface topographies and coatings (p > 0.05). For the straight porous pins, an HA coating 

with or without an external DLC coating did not significantly alter the extent of 

downgrowth observed (p > 0.05). However the incorporation of a flange into the implant 

design resulted in a significant decrease in the degree of downgrowth surrounding the 

transcutaneous implants (p < 0.01). Plain flanged implants evoke significantly less 

downgrowth than all straight pin designs (p < 0.01), irrespective of surface finish or 

coating. However no significant difference between plain and fibronectin coated flanged 

implants is observed (p > 0.05).

5.3.1.2 ANALYSIS OF % EPITHELIAL LAYER ATTACHMENT 

The percentage of the epithelial layer attached to the transcutaneous implants was 

calculated as the amount of epithelial layer immediately abutting the implant surface 

divided by the thickness of the epithelial layer, multiplied by one hundred. The data for 

percentage epithelial layer attachment did not fit the assumptions required for parametric 

testing - established using a Kolmogorov-Smimov test (p <0.05). The raw data is 

presented in Appendix 4 (4.2), whilst a summary of the data is presented in Figure 5.12. 

The data was analysed using a Kruskal-Wallis H multiple comparative analysis test, 

which demonstrated that the data sets show no significant difference based on the test 

rank scores.

This result means that the independent sample data sets are from the same population.

No further pair-wise Mann Whitney U tests were carried out based on the findings of the 

Kruskal-Wallis H test.

The plot of the summary data presented in Figure 5.12 shows that for all of the implant 

types incorporating the stress reducing flange, the percentage epithelial layer attachment 

is always in excess of 40%. However, for eight out of twelve of the straight implant 

designs, the degree of epithelial layer attachment does not exceed 40%.
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FIGURE 5.12 Graph demonstrating the % epithelial layer attachment observed 

surrounding the transcutaneous implants tested.

5.3.1.3 ANALYSIS OF % SUB -  EPITHELIAL SOFT TISSUE LAYER 

ATTACHMENT

The data was found to be non-normally distributed using a Kolmogorov-Smirnov test (p 

<0.05), and a Kruskal-Wallis H multiple comparative analysis showed that the individual 

sample data sets are from significantly different populations (p = 0.004). Appendix 4 

(4.3) presents the raw data, and Figure 5.13 displays a summary of the findings.

Pair-wise Mann Whitney U tests show that flanged pins support a significantly greater 

degree of sub-epithelial soft tissue attachment than straight implants, irrespective of 

surface topographies and coatings (p < 0.05). No significant differences in the extent of 

sub-epithelial soft tissue attachment were observed between any of the straight implants 

tested (p > 0.05), nor between any of the flanged pin designs (p > 0.05).

The summary data for the HA coated straight and flanged implants was compared 

statistically, using a Mann Whitney U test, as the data did not fit the assumption required 

for parametric testing (Kolmogorov-Smirnov p < 0.05). It was found that the HA coated 

flanged pins supported significantly greater degrees of sub-epithelial attachment than the 

HA coated straight implants (p < 0.001). A box and whiskers plot of the data is shown in 

figure 5.14.
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FIGURE 5.13 Graph showing the % sub-epithelial, soft tissue layer attachment 

surrounding transcutaneous implants.
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FIGURE 5.14 Box plot demonstrating the extent of sub-epithelial soft tissue layer 

attachment to HA coated straight and flanged implant designs.
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5.3.1.4 REGRESSION ANALYSIS

5.3.1.4.1 DOWNGROWTH VERSUS % EPITHELIAL LAYER ATTACHMENT

Spearman R is the non-parametric equivalent to standard correlation coefficient analysis, 

and was used to determine the nature of the relationship between downgrowth and 

percentage epithelial layer attachment for all of the implant types tested. The Spearman 

R analysis showed that the correlation between downgrowth and % epithelial layer 

attachment is significant at the 0.01 level, whilst regression analysis demonstrated that the 

relationship is one of negative correlation -  as percentage epithelial layer attachment 

increases, downgrowth decreases. The graph displayed in Figure 5.15 shows the 

regression analysis summary.

R sq = 0.185

Significant at the 
0.01 level.

-20 0  20 40 60 80 100 120

% Epithelial Layer Attachment

FIGURE 5.15 Graph showing the nature of the relationship between the degree of 

downgrowth observed surrounding transcutaneous implants and the associated extent of 

epithelial layer attachment.
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5.3.1.4.2 DOWNGROWTH VERSUS % SUB - EPITHELIAL LAYER 

ATTACHMENT

Spearman R standard correlation coefficient analysis, and was used to determine the 

nature of the relationship between downgrowth and percentage sub-epithelial layer 

attachment. A significant negative correlation between the extent of downgrowth 

observed surrounding transcutaneous implants and the degree of sub-epithelial dermal 

fibroblastic layer attachment was established and was found to be significant at the 0.01 

level. Figure 5.16 demonstrates the nature of the relationship.

Downgrowth (mm)

R sq = 0.151

Significant at the 
0.01 level

Observed 

° Linear
-20 0  20 40 60 80 100 120

% Sub-epithelial Soft Tissue Layer Attachment

FIGURE 5.16 Graph demonstrating the relationship between downgrowth and 

percentage sub-epithelial soft tissue attachment observed around transcutaneous implants.
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5.3.1.4.3 % EPITHELIAL LAYER ATTACHMENT VERSUS % SUB-EPITHELIAL 

LAYER ATTACHMENT

It has been observed that the extent of adhesion of both soft tissue layers abutting 

transcutaneous implants significantly influences the degree of downgrowth observed. It 

was hypothesised that the degree of sub-epithelial dermal fibroblastic tissue adhesion 

ultimately determines the amount of downgrowth and epithelial layer attachment. To test 

this hypothesis, the relationship between the amount of adhesion of the epithelial and sub- 

epithelial layer was tested using Spearmans R and regression correlation analysis. It was 

established that there is a significant positive correlation between the two variables at the 

0.01 level. This demonstrates that as the percentage of sub-epithelial dermal fibroblastic 

tissue adhesion to transcutaneous implants increases, the percentage of epithelial layer 

attachment increases. This finding is presented in Figure 5.17.

% Epithelial Layer Attachment
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0.01 level
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FIGURE 5 .17 Graph demonstrating the nature of the relationship that exists between the 

amount of sub-epithelial dermal fibroblastic tissue and epithelial layer attachment to 

transcutaneous implants.
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5.3.2 HISTOLOGICAL ANALYSIS

Host tissues surrounding straight implants with standard orthopaedic finishes (machine 

finished, small and large grooved, shot blasted and HA coated), displayed no signs, which 

could result in total implant failure. In most cases the epidermis was observed to migrate 

from the cut edges beneath the resulting blood clot and fibrinous exudate, vertically down 

between the cut dermal surface and the implant. The epidermal layer migration into the 

dermis was of varying depth, but was greatest surrounding machine finished implants. A 

contact between the dermis and the implant surface was observed at some point for every 

implant examined, hence a tract directly from the external environment to the host bone 

was avoided in all cases.

Downgrowth around machine-finished implants was observed in all cases. The epithelial 

layer was seen to stop within the host sub-epithelial tissues, and was never found to be in 

close association with the implant surface. A dense non-fibrous clot was observed 

between the epithelial downgrowth and the implant, which dispersed when an attachment 

of the sub-epithelial tissues and the implant was formed. At the three-phase junction, the 

adjacent tissues contained inflammatory cells, principally lymphocytes, with smaller 

populations of macrophages and foreign body giant cells. The matrix of the dermal 

connective tissue contained elongated fibroblast nuclei running parallel to the implant 

surface, dispersed in a collagenous matrix that was organising in a similar orientation 

(Figure 5.18).

The epithelial layers around small and large grooved implants were seen to migrate 

around larger sized fibrous clots, supporting dense populations of inflammatory cells. 

Around the large grooved implants, the end of the epithelial layer was in close apposition 

with the implant surface, whilst in the dermal connective tissue attachment was sporadic 

between the grooves. The host tissues supported a population of inflammatory cells 

mainly concentrating around the three-phase junction. However, the density was lower 

than that observed within the external fibrous exudate (Figure 5.19). The small grooved 

implants did not support attachment of the host epithelial or dermal tissues. The end of 

the epithelial layer was free from the pin surface and generally obscured by the fibrous 

exudate. The connective tissue of the dermis was rarely observed to attach to the groove 

troughs, but generally contacted the peak regions of the implant surface over small areas 

(Figure 5.20). The tissues contained a high density population of lymphocytes, 

macrophages, foreign body giant and other multi-nucleated cells.
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A DLC coating applied to the small and large grooved implant appeared to increase the 

degree of downgrowth observed around the pins. However, it did not alter the 

morphology of the tissue contact regions. When poorly positioned, the DLC surface was 

immediately abutting the epithelial and sub-epithelial tissues resulting in further 

migration of the epithelial cut surface. In these cases even the large grooved implants 

demonstrated a lack of epithelial layer attachment, with the end of the basement 

membrane observed within the exudate. In one slide, a small section of ectopic bone was 

observed immediately adjacent to the exudate-implant interface. The epithelial layer was 

seen to cease in this region and intimately associate with the bone surface (Figure 5.21).

HA coating of straight implants supported improved dermal connective tissue integration. 

A layer of dense connective tissue was observed immediately adjacent to the HA coating, 

which was clearly different from the surrounding layers of the dermis (Figure 5 .22). The 

layer abutting the implant surface was more darkly stained and supported a large 

population of lymphocytes and macrophages. However, elongated and oval fibroblast 

nuclei were well organised within a collagenous matrix that was observed to run 

perpendicular to the HA coating. The surrounding layers possessed defined zones of 

tissue containing mainly rounded fibroblast nuclei with randomly orientated collagen 

matrices and fewer inflammatory cells, interspersed with occasional adipocytes and fluid 

filled vacuole-like regions.

Shot blasted implants generated a degree of downgrowth similar to that observed for 

other straight pin types. The amount of dermal tissue contacting the pin was reduced and 

in most cases the collagenous fibres were adopting a parallel orientation to the pin 

surface. An exudate was observed at the skin -  implant interface and the tissue close to 

the implant surface was rich in inflammatory cells, including lymphocytes, macrophages 

and foreign body giant cells. Pockets of high density lymphocytic populations became 

more prominent towards the epithelial-implant interface. Application of an external DLC 

coating produced an increase in downgrowth and a decrease in sub-epithelial layer 

attachment when the DLC segment of the implant was positioned abutting the host 

tissues.

The degree of downgrowth associated with porous titanium coated implants was greater 

than that observed surrounding straight implants with standard orthopaedic finishes. The 

tissue immediately below the keratinised epithelial layers contained numerous vacuoles,

epithelialised pockets and small reservoirs of lymphocytes. Debris was observed to be 

encapsulated within epithelial invaginations and were surrounded by densely populated
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lymphocytes. The cut surface of the epithelial layer was found to be in association with 

the exudate rather than the surface of the implant and the surrounding tissue contained a 

large number of lymphocytes and macrophages and a small number of foreign body giant 

cells. Below the epithelial layer, large empty spaces were observed between the surface 

of the porous titanium and the dermal tissue, which were interrupted by dermal tissue in 

intimate contact with the implant surface. The tissue immediately abutting the implant 

surface contained numerous lymphocytes, macrophages and foreign body giant cells, 

whilst the collagenous ground substance was disorganised with round, oval and elongated 

fibroblast nuclei interspersed in no definable orientation (Figure 5.23).

The epidermal and dermal layers approaching hydroxyapatite coated porous titanium 

implant are vacuolated and contain reservoirs of lymphocytes immediately below the 

basement membrane. Clotting obscured the epithelial -  implant interface of some 

implants. However, the soft tissue of the dermis was found to be closely adhered to the 

HA surface and a small number of inflammatory cells were observed within the poorly 

organised collagenous matrix. In other sections, the epithelial layer was found to be in 

complete contact with the implant after a degree of downgrowth, and beneath this 

attachment a more organised collagenous dermal ground substance was seen, supporting 

more oval and elongated fibroblast nuclei (Figure 5.24). An externally applied DLC 

coating appeared to have the same effect as that observed on previous implant types. The 

positioning of the DLC in relation to the surrounding tissues determined the degree to 

which downgrowth and attachment parameters were affected. Where the DLC coating 

had been implanted abutting the host tissues, an increased degree of downgrowth was 

seen and the dermal tissues contained a large population of inflammatory cells, including 

lymphocytes, macrophages and foreign body giant cells. The cut surface of the epithelial 

layer was not attached to the implant surface and the underlying dermal tissues were more 

fatty in nature with large pockets of inflammatory cells and infiltrate (Figure 5.25).

The plain flanged implants produced a clear reduction in epithelial downgrowth, which 

was either eliminated by epithelial layer attachment to the implant surface, or where the 

epithelial layers cut surface was free within an exudate which had been invaded by 

fibrous tissue, and was actively remodelling a new tissue-implant interface (Figure 5.26). 

The dermal tissues were found to be in complete contact with the implant surface, 

including the flange portion, for almost all implant sections examined. The sub-epithelial 

layers were not vacuolated and did not contain pockets of large numbers of lymphocytes. 

Instead a few inflammatory cells were dispersed within the matrix of organising 

collagenous ground substance (Figure 5.26). The findings for HA coated flanged
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implants were comparable to those of the plain flanged pins. The epithelial layers were 

found to be intimately associated with the pin surface, and the dermal tissues with the HA 

coating. Some macrophages and lymphocytes were present in the tissues surrounding the 

epithelial layer-implant interface, but were not as evident in the surrounding dermal 

tissues (Figure 5.27). The fibronectin coated flanged implants produced an interface 

similar to those observed for the other flanged implants tested. The epithelial layer was in 

contact with the pin surface, and the tissue immediately adjacent supported a population 

of inflammatory cells. Dermal tissues were usually in complete contact with the implant 

surface and contained fewer inflammatory cells than the epithelium immediately abutting 

the attachment site (Figures 5.28 and 5.29).
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FIGURE 5.18c Downgrowth around clot and free end of epithelial layer between dermal 

tissues and implant surface at a magnification of x40.

FIGURE 5.18d The free end of the epithelial layer seen in 5.18c at a magnification of 

xlOO. The epithelial cell layer has not been arrested by sub-epithelial dermal tissue 

adhesion.
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FIGURE 5.18e Dermal tissues adjacent to the end of the epithelial layer harbouring a 

small reservoir of inflammatory cells, predominately lymphocytes and macrophages, at a 

magnification of x 100.________________________________________________________
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FIGURE 5.19

FIGURE 5.19a Downgrowth around clot associated with large grooved implant , at a 

magnification of xlO.

FIGURE 5.19b Displays the appearance of the end of the epithelial layer in close 

apposition with the implant surface, at a magnification of x40.
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FIGURE 5.20

FIGURE 5.20a Demonstrates the appearance of the interface between the host soft 

tissues and the small grooved implant; the epithelial layer being remote from the implant 

surface, at a magnification of xlO.

FIGURE 5.20b Shows the dermal tissues attaching to the peaks of the small grooved 

implants, but lacking attachment in the trough regions xlOO.
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FIGURE 5.21

FIGURE 5.21a Demonstrates the appearance of skin layers abutting DLC coating, 

resulting in increased migration of the epithelial layers around exudate, at a magnification 

of xlO.

FIGURE 5.21b Shows the presence of a small amount of ectopic bone at the epithelium- 

exudate-implant interface, at a magnification of x40.
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FIGURE 5.21c The end of the epithelial layer is not associated with the implant surface, 

however it appears to terminate at an interface with the ectopic bone segment. The 

adjacent exudate is rich in inflammatory cells, predominately lymphocytes, and has been 

invaded by fibrous tissue, resulting in a new host tissue-implant interface which does not 

involve the epithelial layer. Magnification xlOO.
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FIGURE 5.22

FIGURE 5 .22a Demonstrates the appearance of downgrowth around an HA coated 

implant at a magnification of xlO.

FIGURE 5.22b Shows the presence of a layer of dense connective tissue immediately 

adjacent to the HA coating, containing regions of calcification, at a magnification of xlOO.
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FIGURE 5.23

FIGURE 5.23a Demonstrates the appearance of downgrowth surrounding porous 

titanium implants, at a magnification of xlO.

FIGURE 5.23b Shows the tissue below the epithelial layer, containing numerous 

vacuoles, epithelialised pockets and invagniations and small reservoirs of lymphocytes, at 

a magnification of x40.
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FIGURE 5.23c Displays the cut surface of the epithelial layer in association with the 

exudate, and not the implant surface. Magnification x40.

FIGURE 5 .23d Shows the end of the epithelial layer from Figure 5.23c at a 

magnification of xlOO. The cut surface is free from any association with the implant 

surface, and terminates within a fibrous exudate, rich in inflammatory cells, principally 

lymphocytes and macrophages.
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FIGURE 5.23e Shows a region of dermal tissue in intimate contact with the porous 

titanium coating, rich in lymphocytes and macrophages, with a lesser population of 

foreign body giant cells. Magnification xlOO.
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FIGURE 5 24

FIGURE 5.24a Demonstrates the appearance of the soft tissue -  

HA coated porous titanium implants, at a magnification of xlO.

implant interface around

FIGURE 5.24b Shows the vacuolated tissue immediately below the epithelial layer at a 

magnification of x40.
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FIGURE 5.24c The epithelial layer is seen to be in complete contact with the HA porous 

titanium surface, below a small downgrowth with no exudate. Magnification x 40.

FIGURE 5.24d Shows the complete ingrowth of dermal tissues into a pore within the HA 

porous titanium coating, at a magnification of xlOO.
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FIGURE 5.24e The dermal layers abutting the HA coated porous titanium - rich in 

macrophages, lymphocytes and foreign body giant cells, whose population density was 

observed to decrease with distance from the implant surface. Magnification xlOO.

193



FIGURE 5.25

FIGURE 5.25a Demonstrates the epithelial downgrowth and dermal tissue adhesion to 

externally DLC coated, HA coated porous titanium implants, at a magnification of xlO.

FIGURE 5.25b Shows the downgrowth path of the cut epithelial surface adjacent to the 

fibrous exudate and implant. The exudate contains a high density population of 

lymphocytes, interspersed with macrophages. Magnification xlOO.
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FIGURE 5.25c The end of the epithelial layer, immediately distal to 5.25b, terminates 

between the dermal fibroblastic tissue and the fibrous exudate -  no relation to the implant 

surface. All tissues immediately adjacent to the implant are rich in inflammatory cells, 

which reduce in number with distance from the pin surface. Magnification xlOO.

FIGURE 5.25d Demonstrates the appearance of the dermal tissues in association with the 

implant surface at a magnification of xlOO. The dermal tissues are completely in contact 

with the implant surface and host a large population of macrophages, lymphocytes and 

foreign body giant cells. The concentration of inflammatory cells reduces with distance 

from the implant surface.
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FIGURE 5.26

FIGURE 5.26a Demonstrates the appearance of downgrowth around a plain flanged 

implant. The epithelial layer migrates towards the surface of the implant, as it approaches 

the surface, and the downgrowth terminates at the level of the epithelial layer to the left of 

the image. Magnification x 10.
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FIGURE 5.26b The epithelial layer terminates between the dermal layers and the fibrous 

exudate. The exudate is located immediately adjacent to the implant surface. The 

inflammatory infiltrate reduces in density with distance from the implant surface, but is 

mostly localised within the fibrous exudate, which forms a biological seal with the 

transcutaneous implant. Magnification x40.
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FIGURE 5.26c Displays a second example of the fibrous exudate produced immediately 

adjacent to the implant surface of plain flanged pins. Once again, the epithelial layer 

terminates within the exudate, and the area abutting the implant contains a high density 

population of inflammatory cells, which decrease with distance from the surface. 

Magnification xlO.
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FIGURE 5.26d The dermal layers were observed to be in intimate contact with the 

flanged implant surface to the level of the underlying bone. Magnification xlO.
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FIGURE 5.26e Beneath the end of the epithelial layer, the dermal tissues are abutting the 

implant surface. There is a large population of inflammatory cells, including 

lymphocytes, macrophages and foreign body giant cells, observed immediately adjacent 

to the pin surface. This layer clearly differs from the surrounding dermal tissues. 

Magnification x40.
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FIGURE 5.27

FIGURE 5.27a Demonstrates the degree of downgrowth surrounding HA coated flanged 

implants, at a magnification of xlO.

FIGURE 5.27b Shows the absence of fibrous exudate adjacent to the implant surface at a 

magnification of x40.
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FIGURE 5.27c Shows the epithelial layer intimately associated with the pin surface, at a 

magnification of x40.

FIGURE 5.27d Demonstrates the termination of the epithelial layer at the HA surface. 

The underlying tissues of the dermis are in close association with the HA. Magnification 

x lO O .
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FIGURE 5.27e Shows the HA -  dermal interaction on the underside of the flange, with 

complete tissue attachment, at a magnification of xlOO.
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FIGURE 5.28
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FIGURE 5.28a Displays the minimal downgrowth associated with fibronectin (100 jig) 

coated flanged implants, at a magnification of xlO.

FIGURE 5.28b Shows the epithelial layer in intimate contact with the implant surface, at 

a magnification of x40. The underlying dermal layers are in immediate association with 

the pin, and contain a low density population of inflammatory cells.
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FIGURE 5.28c At a magnification of xlOO, this is a higher power image of the epithelial 

-  implant interface seen in Figure 5.28b. The end of the epithelial layer is clearly 

attached to the implant surface, and the dense population of inflammatory cells observed 

surrounding other implant types is absent.

FIGURE 5.28d Displays the 100% dermal attachment observed around the 100 pg 

fibronectin coated flanged implants, at a magnification of x40.
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FIGURE 5.28e Shows the normal morphology of the dermal tissues adjacent to the 

implant surface, containing small blood vessels, capillaries and low density population of 

lymphocytes and macrophages. Magnification xlOO._______________________________
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FIGURE 5.29

Figure 5.29a Shows the low degree of downgrowth associated with 200pg fibronectin 

coated flanged implants. There is a small amount of fibrous exudate at the epithelial layer 

-  implant interface. Magnification xlO.

FIGURE 5.29b Displays the epithelial layer -  implant interface from figure 5.29a at a 

magnification of x40.
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FIGURE 5.29c A xlOO image of the fibrous exudate immediately adjacent to the implant 

surface from Figure 5.29b. The exudate contains a high density population of 

lymphocytes and macrophages, interspersed with foreign body giant cells and red blood 

cells.

FIGURE 5.29d Demonstrates the appearance of another 200pg fibronectin coated 

flanged implant -  host tissue interface, at a magnification of x40. Here the epithelial 

layer is intimately associated with the implant surface.
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FIGURE 5.29e Shows the dermal tissue in 100% contact with the flange section of the 

implant. The image centres on a stress reducing hole within the flange, which has been 

completely invaded by the fibrous tissue of the dermis. Magnification x40.
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5.4 DISCUSSION

The transcutaneous implants used in this study demonstrated no adverse soft tissue 

reactions and in most cases, generated a biological seal around the implant surface that 

prevented infection. Branemark et al (1969, 1975) have shown that there are no 

detrimental effects on the skin surrounding mandibular maxillary implants penetrating the 

gingiva, inserted with care to minimise surgical trauma. These findings suggest that the 

care taken during implantation of ITAP assists in the successful seal formation process.

It is proposed that for gingival implants, the surgical technique is not the only factor 

responsible for favourable outcome. Comparing transcutaneous implant passage through 

the tissues to those observed surrounding natural transepithelial passages of the tooth, it is 

observed that in the natural analogue, the soft tissues are firmly attached at the epithelial- 

penetration site and the abutting tissue movement is restricted by this attachment. It is 

thus postulated that no transcutaneous implant can be successful without elimination of 

the relative movement between the soft tissues and the implant. The significant decrease 

in downgrowth and increase in sub-epithelial layer attachment surrounding flanged 

implants is thought to be due to decreasing the relative movement between the host 

tissues and the implant surface, via the stress reducing segment. Hence it is proposed that 

the flange is responsible for the significant improvement in attachment parameters.

In 1983, Squier and Kammeyer stated that for clinical applications, reduction of the 

subcutaneous tissue is essential in maintaining a reaction-free interface around 

transcutaneous implants. Removing subcutaneous tissues could reduce mobility of the 

skin hence assist healing and attachment to the abutment surface. It could also minimise 

the contact area between host and implant materials, thus reducing the possibility of 

detrimental metal/implant influence on the biological tissues. The sub-epithelial tissue 

may contain factors that stimulate growth and migration of epithelial cells, hence its 

reduction could be advantageous. The subcutaneous tissues surrounding the 

transcutaneous implants examined in my thesis were not reduced, as there was minimal 

soft tissue coverage over the tibial implantation sites. Implants located in the proximal 

tibia were seen to interface with a greater amount of subcutaneous tissues than those in 

distal sites. This did not cause any adverse effects on the development of the skin - 

implant interface. It is possible that given an increased amount of subcutaneous tissue 

with which to interface, the implants would be subject to larger amounts of interfacial 

movement and at greater risk of failure due to downgrowth and marsupilisation. This was 

not observed in my research.
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It is without doubt that surgical technique and implant design are principle criteria in 

determining the success of transcutaneous implants. However, other limiting factors are 

observed. Patient hygiene is paramount if transcutaneous implants are to be functional 

and remain uninfected. It is also possible that hair in the skin surrounding transcutaneous 

implants could cause adverse reactions, whilst hairless skin is easier to keep clean.

Contact dermatitis is an immune-mediated inflammatory skin rash that results from an 

allergy to a substance that is elicited by metals, and is characterised by infiltration and 

presence of mononuclear cells. Plasma cells and polymorphonuclear cells are indications 

of bacterial infection (Welboum et al 1976). Any presence of polymorphonuclear cells, 

B-lymphocytes and plasma cells suggests that the response is due to presence of 

exogenous agents rather than an allergic skin response. The cellular presence 

surrounding the skin -  penetrating implants used in my thesis indicates that the response 

observed was totally independent of the implant material. It can be stated that the 

integrity of the implant-soft tissue interface as a barrier to exogenous agents is vital to the 

success of an implant. It is thought that if the epithelium is attached to the implant 

surface, then this attachment provides the barrier function. However if not, the 

subcutaneous connective tissue layer attachment supplemented by an inflammatory 

infiltrate, provides a secondary barrier ready to eliminate any extrogenous agents 

attempting to invade the transcutaneous site. This was found to be the case for all 

implants examined in this research. Implants with total attachment to the host epithelium 

demonstrated lower density populations of lymphocytes, macrophages and foreign body 

giant cells than those lacking attachment. In implants lacking epithelial layer adhesion, 

the sub-epithelial attachment appeared to arrest downgrowth, and a high density 

population of inflammatory cells was present at the interface zone immediately below the 

cut end of the epithelial layer. In some cases, where the epithelial layer ended further 

from the implant surface, a considerable amount of fibrous exudate containing numerous 

inflammatory cells was observed. It appears from these findings, that epithelial layer 

attachment to the implant surface is not essential for the short-term success of skin 

penetrating implants. However, it is felt that for long term viability, the integrity of the 

implant - soft tissue seal could only benefit from this additional protective adhesion.

In 1990, Chehroudi et al, examined smooth transcutanous implants and those 

incorporating grooves of different dimensions (30pm pitch with depths of 22, 10 and 

3pm. 10pm and 3pm deep grooves with pitches of 39 and 7pm respectively). Clinical 

observations included the advantage of placing the pins in a parietal area, which provided 

support beneath the implants reducing the chance of dislocation, as well as providing a
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good reference surface so that depth of implantation could be maintained. The degree of 

healing was excellent and uneventful judged by tissue texture and colour, as well as the 

absence of bleeding or exudates. Histological observations included a clear outline of cell 

nuclei with both epithelium and connective tissue found snugly attached to the grooved 

and smooth implant surfaces. Differences in cell arrangement, orientation and location on 

grooved and smooth coated implants were observed. Epithelial cells were closely 

attached to all surfaces. On smooth surfaces epithelial cells were arranged in multilayer 

fashion with elongated nuclei. In contrast, fibroblasts were found to be inserting 

obliquely into implants with 22pm deep grooves and nuclei were round and elongated in 

nature. Inflammatory cells were observed in some sections. They found no noticeable 

differences between smooth and grooved implants. It was concluded that groove depth is 

an important factor in controlling epithelial migration on horizontally orientated grooves, 

shallow grooves being least effective. My research has produced a high success rate with 

few clinical complications and a fast healing time. However, it has produced a number of 

results which contrast with those of Chehroudi et al (1990). The groove dimensions of 

even the small grooved implants used in my thesis are far larger than those utilised by 

Chehroudi et al. However, they did not support an epithelial or sub-epithelial -  implant 

interface akin to that described in 1990. The sub-epithelial layer tissues were unable to 

invade the troughs of the small grooved implants. However, by increasing the depth of 

the grooves to 600pm and the width to 1000pm, a dermal fibroblastic seal was observed. 

In comparison to the research by Chehroudi et al (1990), the bone anchor system did 

similarly reduce the relative interfacial movement between the implant and the host 

tissues, and the finding regarding groove depth is maintained. However, due to the 

significant differences observed between straight and flanged implant types, it is 

concluded that to optimise ITAP success, a stress reducing flange, as apposed to a 

grooved substrate, is more beneficial.

My research has shown that where sub-epithelial dermal fibroblastic layer attachment is 

observed, even with a lack of attachment of the epithelial layer, downgrowth is 

effectively inhibited or retarded, hence the underlying organisation and attachment of the 

connective layer is contributing, at least in part, to the prevention of epithelial layer 

migration. In 1981, Squier and Collins reported inhibition of epithelial downgrowth by 

connective tissue attachment and ingrowth on millipore filters with pores of greater than 3 

pm implanted percutaneuosly in pigskin. In my study, where connective tissue was not 

organised in such a way as to inhibit epithelial downgrowth, contact guidance and the free 

edge effect lead to migration of the layer. This was eliminated by increasing the surface
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area for tissue attachment and reducing micromotion between the implant and the host 

tissues. Further research with porous implant material in a flanged pin design could 

optimise the interface further. Surface topographies of dental and percutnaeous implants 

have been varied, but the need is to optimise the extent of tissue attachment to the implant 

surface. Some designs have presented differing surfaces to bone and soft tissues. 

However, it is uncommon that a distinction is made between the layers of the soft tissues. 

The optimal surface for epithelial and sub-epithelial tissues may not be the same, hence 

the perfect implant would be one where the surface topography of the implant is optimal 

for the attachment of the specific tissue type it contacts.

To avoid marsupilisation, a number of transcutaneous studies have incorporated porous 

implant surfaces. It is thought that a porous surface will allow for growth and migration 

of dermal components as well as epithelial cells into the superficial pores, forming a 

bacteria and fluid-tight seal. In 1974, Winter demonstrated that connective tissue 

infiltrates pores greater than 40 pm, and when pores are between 10 and 40 pm only 

individual cells and collagen can migrate in. In 1980 Daly stated that after migrating into 

such pores, fibroblasts do not survive owing to lack of nutrients and the pores finally 

become filled with cell debris. When the pores are in excess of 40pm, connective tissue 

soon fills them in a manor similar to normal wound healing, except that they are in 

competition for space between fibroblasts, macrophages and giant cells. Epidermal basal 

cells are seen to follow the connective tissue ingrowth into the pores. In rabbits, dogs and 

pigs, epidermal basal cells migrate through dacron velour and porous materials in 10-20 

days (Winter 1974, Hall 1975).

There are four principle reasons for transcutaneous implant failure; infection, avulsion 

(mechanically induced failure), permigration and marsupilisation (downgrowth and 

pocket formation causing transcutaneous implant to become extracutaneous). To reduce 

infection, low surface energy coatings such as diamond-like carbon can be incorporated. 

In 1995, Tang et al, demonstrated that diamond-like carbon is as biocompatible as Ti and 

stainless steel, but in vivo and in vitro shows reduced cellular adhesion 

(polymorphonuclear leucocytes) and activation. In this thesis, the application of 

diamond-like carbon was not found to have any significant effects on downgrowth, 

epithelial or sub-epithelial layer attachment. As a means of preventing infection, the soft 

tissue seal surrounding all implants tested in my research proved sufficient to prevent 

failure due to infection, and the application of DLC did not significantly alter the results 

obtained. The reasons for this could be two fold. First, the titanium material used for 

implant manufacture could elicit an adequate soft tissue attachment that prevented
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infection, without the need for any external coatings. Alternatively, the diamond-like 

carbon coating was not presented to the correct area of the interface. If the pin was 

screwed too far into the tibia, and the DLC coating was found to be abutting the soft 

tissues, the coating would minimise the extent of epithelial attachment and lead to 

downgrowth, which would halt when faced with the healthy collagenous dermal-implant 

interface. If  the DLC coating was not implanted, interfacing with the three-phase 

junction, the area of the pin immediately external to the skin would not have been coated, 

hence the effect would be the same as that observed surrounding non-DLC coated 

implants. It is thought that a combination of screwing the implants in too far, and not far 

enough, resulted in a lack of significant differences in DLC coated and uncoated 

implants. Further research would be required to develop an implantation system whereby 

precise positioning of the implant surface is possible. This system could be used to 

position sections of the implant with surface properties that would optimise tissue 

attachment immediately adjacent to specific layers of tissues.

Overall, the implants developed in my thesis have been successful in that none have 

failed due to infection, avulsion, permigration or marsuplilsation. The degree of 

downgrowth associated with transcutaneous implants was shown to be directly related to 

the condition and extent of attachment of the dermal fibroblastic tissue layers. It has been 

shown that over a four week duration, downgrowth has been retarded and in some cases 

prevented by the establishment of a healthy collagenous tissue -  implant interface at the 

dermal level. The degree of downgrowth has been significantly reduced and the extent of 

sub-epithelial soft tissue attachment has been significantly increased, by the incorporation 

of a flange positioned immediately below the epithelial layer. It is thought that the 

flanged implants are more successful because they not only reduce the radial stresses at 

the skin-implant interface and the relative interfacial movement between the implant and 

host materials, but they also provide an increased surface area for sub-epithelial, dermal 

fibroblastic tissue adhesion. Further work will be carried out, evaluating the effect of 

increasing the surface area of the flanged implants by incorporating porous titanium 

flanges. A long-term follow up study is required to test the stability and integrity of the 

soft tissue -  implant seal over a greater period of time.
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6.1 INTRODUCTION AND HYPOTHESES

The function of a tendon is to transmit the forces generated in the muscles to the skeletal 

system resulting in the movement of the body. The use of segmental massive 

endoprostheses to replace bone tumours often involves resection of the tendon-bone 

interface. Recovery of normal limb function following this type of surgical intervention 

depends on the re-attachment of the connective tissues to the metal implant. The method 

of re-attachment must provide sufficient mechanical strength to allow force transmission.

Resection of the proximal tibia is a limb sparing operative procedure for bony sarcomas. 

Several problems have hindered the success of limb sparing surgery for tumours at this 

site, including anatomical constraints, awkward surgical approach, vascular 

complications, lack of soft tissue coverage and the need to recover the patellar or extensor 

mechanism (Cannon 1997). The proximal tibia is one of the most common sites for 

primary bone sarcomas (Sim et al 1987, Yaw and Wurtz 1991, Malawer and McHale 

1989, Horowitz et al 1991). There are complications associated with the replacement of 

the proximal tibia that include failure of the extensor mechanism following reconstruction 

resulting in altered gait (Cannon 1997), extension lag, patella alta (high-riding patella), 

altered biomechanics and quadriceps atrophy (Jeon et al 1999).

Several methods have been employed to re-attach the patellar tendon to proximal tibial 

replacement. However, no technique is universally accepted due to inconsistencies in 

functional outcome (Cannon 1997). Methods of patellar tendon re-attachment have 

included suture to Dacron tape anchored to a metal loop on the anterior surface of the 

implant that is reinforced with a gastrocnemius flap (Malawer and McHale 1989, Eckardt 

et al 1991) or overlying a porous coated extra-medullary implant surface (Bickels et al 

2001), direct anchorage with twisted polyester sutures to drill holes (Jensen 1983), tendon 

autograft reinforcement using gracilis or sartorius tendons (Jeon et al 1999), allograft 

replacement of the proximal tibia (Brien et al 1994), anchoring of muscle flaps and 

tendon sections to polyethylene terephalate tubes (Gosheger et al 2001), the use of non- 

resorbable mesh to augment fixation strength (Ozaki et al 1999) and the use of allograft to 

re-establish continuity between the tendon and the proximal tibia following total knee 

arthroplasty (Emerson et al 1990, 1994). With extra reticular resection of tumours around 

the knee, excision margins can be extended to include the patellar tendon and the patella. 

In these instances an augmentation process is required, for example using 

polytetrafluoroethylene (PTFE) and a gastrocnemius flap to bridge the defect (Jeon et al
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1999). However, where adequate amounts of soft tissue have been preserved, 

augmentation processes can be avoided.

This chapter of my thesis explores novel methods of soft tissue attachment to prostheses, 

using extensor mechanism reconstruction in sheep. Extensive research has been carried 

out to describe the interface that exists at the normal tendon -  bone interface, and its 

functional and morphological characteristics are well understood (see Introduction section 

1.2.2.1.2). A number of research groups have attempted to re-attach tendons to the body 

of a metallic prosthesis with varying results. In 1994 Gottsauner-Wolf et al analysed the 

mechanical strength of a tendon attachment to metal, with and without a bone block. 

They tested a number of different attachment devices, including a custom-made enhanced 

tendon anchor consisting of a base plate with sintered titanium wire mesh with ten 

protruding spikes, and a bridging plate housing three angled interlocking spikes. The 

initial attachment strength of the enhanced tendon anchor was found to be greater than 

that of other commercially available devices, with or without a bone block. The same 

group published data of an in vivo canine model (1994), reporting improved forelimb 

function, using force-plate analysis, following supraspinatus tendon attachment to their 

enhanced tendon anchor and bone block compared with a direct tendon attachment. 

Histological analysis showed that in the bone block group, a mature interface had 

developed between the bone and the sintered mesh of the base plate. However, in the 

direct tendon group, a fibrous tissue was found penetrating the mesh with no evidence of 

a re-modelling enthesis after sixteen weeks. Two out of twelve of the specimens were 

found to contain necrotic tissue with no attachment of any form. Chao et al (1997) and 

Inoue et al (1996, 1999) have further investigated the custom tendon anchor with 

incorporation of an autogenous cancellous bone graft. A sixteen week in vivo study 

demonstrated that the graft material was absorbed and replaced with collagen fibres, 

which underwent a significant, random to parallel, orientation change (Inoue et al 1996). 

In a similar model where bone marrow supplement was used, areas of ectopic 

calcification were observed. An improved mechanical and functional outcome was 

demonstrated in the marrow supplement group compared with tendon or bone graft alone. 

Histological analysis of the marrow supplemented group showed the formation of new 

bone, mineralised and unmineralised fibrocartilage and a mature direct-like enthesis after 

fifteen weeks in vivo. It was proposed that these findings were a direct result of 

osseoinduction, initiated by the bone marrow in the graft material (Chao et al 1997).

Tendon healing within a bone tunnel has been shown to occur by a front of advancing 

mineralisation into a collar of soft tissue callus surrounding the tendon (see Introduction
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section 1.2.2.1.4). This phenomenon could be applied to the attachment of a tendon to the 

body of a metal implant, via generation of an in situ bone block on the implant surface, 

into which the tendon could integrate. Fixation may be augmented via established 

mechanisms known to promote osteogenesis and osseointegration, or those that accelerate 

healing of tendon to bone. This technique would avoid the problems associated with 

attaching a connective tissue to a biocompatible, but inert metal implant.

Accepted techniques in orthopaedic surgery to increase bone stock for filling bone 

defects, aiding fracture healing and fixation of uncemented implants, include autologous 

bone grafting, bone allograft, demineralised bone matrix, cytokines, including bone 

morphogenic proteins in carrier systems such as collagen I, and bioactive ceramic 

incorporation (Grey and Elves 1982, Lewis et al 1997, Oikarinen and Korhonen 1979). 

Bone marrow has been identified as a source of pluripotent cells which can differentiate 

into many different connective tissue cell types (Haynesworth et al 1992). Engineered 

constructs containing growth factors or mesenchymal stem cells extracted from marrow 

or periosteum, have been shown to elicit calcification responses in vivo and in vitro 
(Oreffo et al 1998, Goshima et al 1991, Ohgushi et al 1989, Salama et al 1973, Caplan 

1991, Burwell 1985, Majors et al 1997, Beresford et al 1989, Ashton et al 1980, Sakou 

1998, Uludag 1998, Nakahara et al 1990). Other work on tendon re-attachment to bone 

has included biological augmentation with periosteum (Ohtera et al 2000), bone 

morphogenic proteins (Rodeo et al 1999) and bone growth factors (Anderson et al 2001). 

Augmentation using these methods produced a mature enthesis containing regions of 

fibrocartilage. A recent study of tendon reattachment to a metal prosthesis used a similar 

implant and study design to those used in my thesis (Inoue et al 2002). The supraspinatus 

tendon was re-attached to a porous titanium prosthesis in a canine model. At 16 weeks 

the interface demonstrated four zones, tendon with no crimp pattern, rounded 

chondrocyte-like cells arranged in rows corresponding to unmineralised fibrocartilage, 

newly formed bone with large rounded cells arranged in rows corresponding to 

mineralised fibrocartilage, and bone. The patellar tendon model used in my thesis, is a 

more testing model of tendon re-attachment compared to the supraspinatus, which “while 

it undoubtedly plays an important role in shoulder function it is sometimes difficult to 

demonstrate its necessity” (www.ortho-u.net/05/187.htm). It has been shown that total 

experimental paralysis of supraspinatus will simply reduce the force of abduction with no 

other loss of function (www.ortho-u.net/05/187.htm). The patellar tendon is vital to the 

extensor mechanism and no other structures can compensate for its loss. It is a model in 

which relevant functional assessments in the form of kinematic gait, and force plate

219

http://www.ortho-u.net/05/187.htm
http://www.ortho-u.net/05/187.htm


analysis can be applied. As the supraspinatus is one of four muscles of the rotator cuff, 

the in vivo forces do not directly correspond to the measurable values from force plate 

data. Re-attachment of the patellar tendon is more representative of the clinical model of 

extensor mechanism recovery following proximal tibial replacement, compared to the 

canine supraspinatus as a model for proximal humeral replacement adopted by Inoue et al 

(2002).

My study has used HA as an intermediate between the cut surface of the tendon, the 

autologous cancellous bone graft and the implant surface, as mesenchymal stem cells 

have been shown to differentiate along an osteoblast lineage on an HA scaffold (Rust et al 

2003).

In my thesis, it is postulated that a tendon-implant neo-enthesis can be engineered 

using a hydroxyapatite coated implant, augmented with a suitable bioactive 

material; autogenous cancellous bone graft and marrow. It is hypothesised that a 

tendon-implant neo-enthesis with similar functional and morphological properties to 

that of a normal tendon-bone interface, can be engineered in situ (See Figure 6.1).
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FIGURE 6.1 Hypothesis Schematic

BP
BG/M 

6.1a

BG

6.1b

FIGURE 6.1a Perioperative construct with the tendon (T) clamped onto the 

hydroxyapatite coated (HA) base plate (BsP) using the bridging plate (BP), augmented 

with bone graft and marrow (BG/M).

FIGURE 6.1b Post-operatively the hypothetical remodelling and integration o f bone graft 

(BG) on the hydroxyapatite coated (HA) base plate (BsP), resulting in the formation of a 

hydroxyapatite-bone-fibrocartilage-mineralised fibrocartilage-tendon 

(HA/B/FC/MFC/T) neo-enthesis.________________________________________________

HA/B/FC/MFC/T
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6.2 MATERIALS AND METHODS

6.2.1 THE CLAMP DEVICE

Cadaveric and radiographic analyses of the ovine proximal tibia were used to design a 

custom-made titanium alloy (Ti6AUVXBS7252 part 3) implant. A base plate was 

designed to simulate the surface of a proximal tibial replacement, to which the patellar 

tendon could be re-attached without the complications of a proximal tibial replacement. 

The base plate was designed to fit the cut bone surface resulting from tibial tubercle 

osteotomy and to isolate the patellar tendon attachment site, which involves preventing 

bone cell migration from the cut tibial bone. One proximal and three distal holes were 

incorporated into the base plate design to allow fixation to the proximal tibia using 

cortical bone screws (Synthes cortex screw 2.7mm self-tapping L 14mm ref: 402.814). 

The clamp design was optimised to provide an enclosed space to isolate the tendon from 

the surrounding tibial bone bed, thus enabling the biological processes at the tendon- 

implant interface to take place as if the whole of the proximal tibia had been replaced. 

The solid bridging plate was clamped to the base plate via screws through the lid sides. A 

series of nine interlocking spikes, 1mm in diameter and 4mm in length, which were press- 

fit into the clamp plates, were designed to secure the cut end of the tendon.

Following cadaveric and pilot clamp testing studies (outlined in section 6.2.2), the 

bridging plate was modified to create a more open environment on the extra-medullary 

surface. The upper bridging plate was reduced to an open H-shaped segment containing a 

series of 1mm drill holes (Figure 6.2). The upper surface of the base plate was plasma 

sprayed with a seventy to one hundred micrometer thick coating of CAPTAL® 

Hydroxyapatite (Plasma Biotal Limited, UK). The implants were cleaned ultrasonically 

and sterilised in an autoclave (Instaclave 230, 136°C, 2.2 bar, 3.5 minutes, total cycle 

length 15 minutes) pre-operatively.
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FIGURE 6.2 Final clamp design in plan view showing base plate (BsP) with spikes (S) 

and redesigned open H-shaped bridging plate(BP).

6.2.2 CADAVERIC AND PILOT STUDIES

6.2.2.1 ANIMAL MODEL SELECTION

The ovine patellar tendon was selected for this model since sheep have a single true 

patellar tendon, whose most significant attachment is to the tibial tuberosity with medial 

and lateral retinacular expansions, as in the human knee (Allen et al 1998). Cadaveric 

dissection of the ovine hind limb stifle joint (knee) revealed this to be an accurate 

description (Figure 6.3). The lateral retinacular expansion formed a tough fibrous band 

that enclosed a tunnel for the Long Digital Extensor tendon. It was decided that 

interruption of this might compromise the distal function and stability of the joint. The 

medial retinacular expansion comprised a thin broad retinacular expansion blending with 

the antero-medial soft tissues. Other ruminants possess three discrete patellar ligaments 

(Dyce et al 1996). The sheep was selected as a model for study because of its patellar 

tendon morphology, which is analogous to the single tendon found in humans. The size 

of the ovine patellar tendon is of a similar magnitude to that of a human and during 

normal gait, it is anticipated that a comparable physiological loading of the tendon -  

implant interface would occur.
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FIGURE 6.3 Dissection of the ovine stifle joint revealing central patellar tendon (PT) 

inserting into the tibial tuberosity (TT). The lateral retinacular expansion (L) enveloping 

the tunnel for the Long Digital Extensor Tendon (LDE), and the Medial/Lateral Femoral 

condyles (MFC/LFC). Bar = 15mm.

6.2.2 2 CLAMP DESIGN PILOTS

The operative protocol outlined in section 6.2.5 of my thesis was carried out in an ovine 

model in vivo, using the original prototype, solid bridging plate / clamp design, and 

remained in situ for two weeks. This was carried out to determine whether the implant 

could provide sufficient mechanical fixation of the tendon to the base plate, whilst 

allowing revascularisation and repopulation of the tendon. A second two week, in vivo 

pilot study was run in parallel, using the modified open H-shaped clamp lid with 

perforated drill holes. This was carried out to determine whether a more open 

environment, introduced by the modifications to the clamp lid, would reduce the periods 

of necrosis, revascularisation and repopulation, whilst still providing sufficient 

mechanical fixation.
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6.2.2 3 CONTROL PILOT

Pre-operative force plate measurements served as positive control data, whilst for analysis 

of joint function the data was normalised to the unoperated limb. A single in vivo 
negative control pilot was carried out, in which the operative protocol from section 6.2.5 

of my thesis was performed without clamping the patellar tendon within the clamp 

device. The soft tissue fascia was closed over the top of the clamp, and the patellar 

tendon was sutured into the subcutaneous soft tissue layers with 2.0 Vicryl ®. The 

animal was allowed free mobilisation on return to an individual pen, and for a further six 

weeks post-operation. Force plate assessment was carried out at six weeks as stated in

6.2.4.2 to determine functional outcome without tendon-tibia re-attachment. No further 

animals were operated on as negative controls due to the severity of the effects observed 

in this case. With the exception of the re-attachment of the patellar tendon, the surgical 

procedures carried out on the negative control animal were identical to those performed 

on the test Groups. Hence the poor functional outcome could not be attributed to the 

surgical intervention, but only a result of the lack of extensor mechanism function 

resulting from the free tendon suture. It was thus considered unethical to continue with a 

group of negative control animals.

6.2.3 IN VIVO ANIMAL STUDY

6.2.3.1 STUDY OVERVIEW

Twenty-four skeletally mature Friesland ewes, weighing fifty five to ninety kilograms 

were used for this study. Pre-operatively the animals were subjected to two-dimensional 

optical kinematic gait analysis of the right hind limb (6.2.4.1). For each of these animals, 

the surgical procedures described in section 6.2.5 were employed, to clamp the patellar 

tendon into the custom made implant (6.2.1). Twelve animals were randomly selected to 

constitute the Autograft Group, in which the tendon-implant interface was augmented 

with fresh autogenous cancellous bone and marrow graft. The remaining twelve animals 

served as non-augmented controls and were assigned to the Hydroxyapatite (HA) Group.

6.2.3.2 ANIMALS

6.2.3 2.1 SEX WEEK ANIMALS

Six weeks post-operatively, all animals were subject to force-plate analysis of both hind 

limbs. Twelve animals, six from each of the study groups (Autograft and HA), were 

assigned to the Six-Week Group (by time), and underwent two-dimensional optical
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kinematic gait analysis of the right hind limb, followed by euthanasia (under Schedule I 

method of the Animals (Scientific Procedures) Act 1986) by lethal injection of 20% 

Pentobarbital Solution. A radiograph of the right proximal tibia was taken for each 

animal, prior to harvest and standardised dissection of both proximal tibiae and patellar 

tendons. The removed specimens were processed as outlined in section 6.2.6.

6.2.3.2 2 TWELVE WEEK ANIMALS

Twelve weeks post-operatively, the remaining twelve animals, six from each study group, 

assigned to the Twelve-Week Group (by time), were subject to further force plate and 

two-dimensional optical kinematic gait analyses. Measures were taken to ensure that 

functional results were not compromised, by allowing each animal twenty four hours rest 

between kinematic gait analysis and force-plate assessment. The Twelve-Week animals 

then underwent euthanasia, harvest and processing procedures (6.2.6).

6.2.3 3 OPERATIVE PROCEDURES

All animals were starved of solid foods for at least twelve hours prior to surgery. Peri- 

operatively the animals received a 1 mg/kg antibiotic dose of Excenel RTU (Ceftiofur) 

(Pharmacia & Upjohn, UK) subcutaneously, and an intra-muscular 10-20pg/kg dose of 

Vetergesic (Buprenorphine hydrochloride, Reckitt & Coleman Products Ltd, UK). The 

animals were returned to individual pens post-operatively once vital signs were stabilised, 

and positioned with the operated limb extended at the knee in a position of sternal 

recumbency. Regular checks were carried out until the animals were fully awake, after 

which they were allowed free mobilisation and were returned to solid food access. 

Vetagesic was administered at the previously stated dose rate, one day post-operatively, 

whilst subcutaneous doses of Excenel RTU antibiotic were administered for a further five 

days. The animals remained individually housed for a period of between five and seven 

days, after which they were placed in larger pens in small groups of three to four animals. 

During the first two weeks post-operatively the animals were checked regularly. The 

wounds were assessed frequently, with local wound hygiene being administered in the 

form of topical cleaning with Pevidine (aqueous Povidone Iodine 0.75% W/V). The 

wound dressings were removed one week post-operatively.
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All procedures were carried out under a project licence protocol accepted under the Home 

Office Animals (Scientific Procedures) Act 1986. Each animal was sedated pre- 

operatively with a subcutaneous injection of Rompun (Bayer pic, Germany) (Xylazine 

Hydrochloride solution 2%) at 0.2mg/kg. Anaesthesia was induced with Hypnovel® 

(Midazolam, Roche Products Ltd, UK) 2.5mg dose, and Ketaset® (Ketamine 

Hydrochloride, Fort Dodge Animal Health Ltd, UK) at 2.5mg/kg intravenously. The 

animals were intubated and anaesthesia was maintained with Halothane (Merial Animal 

Health Ltd, UK) 3% and 100% oxygen (flowing at four litres per minute). A stomach 

tube was placed on free drainage and intra-operative vital signs were monitored using a 

pulse oximeter. The hindquarter was shaved and cleaned with dilute Pevidine prior to 

transfer to theatre. Operative procedures were carried out with the animal in the left 

lateral position. The operative site was prepared with Hydrex® solution (Blue 

Chlorhexidine Glucuronate 0.5% w/v in 70% v/v Industrial Methylated Spirit, Adams 

Healthcare, UK) and isolated in a sterile field with drapes.

A midline incision, approximately eight centimetres long was made over the anterior 

aspect of the right stifle joint, with the tibial tuberosity located centrally to the incision. 

The subcutaneous tissues were divided to enable isolation of the patellar tendon. The 

lateral margin was defined, and the tendon was isolated by passing small artery forceps, 

lateral to medial, through the infra-patellar tendon space (Figure 6.4). The tendon was 

released from its insertion into the tibial tuberosity by sharp dissection. The deep infra­

patellar fat pad was removed, and the soft tissues over the proximal tibia were cleared 

with a periosteal elevator. An osteotomy of the tibial tuberosity was performed with an 

oscillating power saw (Howmedica), from proximal to distal, creating a flat bone bed to 

accommodate the base plate. The base plate was located onto the tibial osteotomy site 

and three holes were drilled through the proximal and two of the distal holes, using a 

2mm drill bit. The plate was fixed to the bone bed with three 14mm long, 0  2.7mm self­

tapping cortical bone screws (SYNTHES®, STRATEC Medical Ltd, UK)(Figure 6.5).

The tendon was pressed onto the spikes within the clamp lid in an inverted position, and 

the clamp was assembled by screwing the bridging plate to the base plate with custom 

made screws whilst the leg was held in extension (Figure 6.6). The wound was irrigated 

with one litre of normal saline (Aquapgarm NaCl Ph. Eur. 0.9% w/v), and haemostasis 

was secured with bipolar diathermy. The wound was closed in three layers with 

absorbable Coated Vicryl® (Ethicon®, Johnson & Johnson Inti, Belgium). Skin closure 

was carried out with sub-cuticular sutures. The wound was sprayed with OpSite (Smith 

& Nephew Medical Limited, UK) moisture vapour permeable spray dressing and a gauze
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dressing was applied, followed by a cotton wool layer, crepe bandage and ‘Tubigrip’ 

elastic stocking.

Bone graft was harvested intra-operatively from the ipsilateral iliac crest, for animals in 

the Autograft Group. A skin incision approximately 40mm in length was made over the 

right iliac crest and the subcutaneous tissues were divided. A hole was drilled into the 

iliac crest through a protective sleeve (Dynamic Hip Screw 5-hole plate) using a 6mm 

auger drill-bit. The reamings were collected. A curette was used to collect cancellous 

bone from the site, whilst a 16-gauge needle with syringe was used to draw the fluid 

contents of the iliac crest drill hole and aspirate bone marrow from the bone substance. 

The wound was closed in two layers with Vicryl®, with sub-cuticular sutures for the skin 

closure. The skin was sprayed with OpSite.

The cancellous bone and marrow (wet weight approximately 1.5g) was packed into the 

central portion of the base plate to the height of the spikes, prior to assembly of the 

clamp. Remaining graft material was packed around the distal section of the tendon 

protruding distally from the lid of the clamp (Figure 6.8).

Professor Gordon Blunn and myself (Centre for Biomedical Engineering, Institute of 

Orthopaedics, University College London) performed the first three operations. Mr 

Michael Oddy (MSc Student -  Centre for Biomedical Engineering) and I performed the 

remaining operations.

FIGURE 6.4 Image showing the appearance of the Patella Tendon isolated with small 

artery forceps.

228



FIGURE 6.5 Shows the base plate screwed to the tibial osteotomy with three cortical 

bone screws. Bar = 30mm.

BONE
GRAFT

FIGURE 6.6 Demonstrates the clamp fully assembled prior to closure of the wound. The 

bone graft taken from the ipsilateral iliac crest is visible beneath the tendon. Bar = 

30mm.
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6.2.3 4 GAIT ASSESSMENT TECHNIQUES

6.2.3 4.1 TWO-DIMENSIONAL KINEMATIC GAIT ANALYSIS

6.2.3 4.1.1 CADAVERIC STUDY -  ASSESSMENT OF SKIN DISPLACEMENT

It was postulated that skin displacement could affect the data for in vivo two-dimensional 

optical kinematic gait analysis (6.3.4.1.1). To determine the extent of skin displacement 

in the chosen model of study, radiographs of the hind limbs of ovine cadavers were taken, 

with markers positioned and glued to the skin, with metal-backed cross-hair wires at 

different degrees of flexion (Figure 6.7) and extension (Figure 6.8) to assess skin 

displacement. The markers were positioned using a two person assessment of surface 

anatomy, on the skin overlying the greater trochanter, distal femur, proximal tibia and 

distal tibia, and the extent of marker migration from the centre of each anatomical 

landmark was measured on the resulting radiographs. The data was analysed using SPSS 

(version 10.1 for Windows). The Kolmogorov-Smimov test was used to test for 

normality of the data and analysis was carried out using the Mann-Whitney U non- 

parametric test.
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FIGURE 6.7 FIGURE 6.8

«■*. W©

6.7 A radiograph of a cadaveric ovine 
hind limb in full flexion, with 
markers positioned on the distal 
femur (DF), the proximal tibia (PT) 
and the distal tibia (DT) -  arrows 
demonstrate the positions of the 
cross-hairs of the wires fixed to the 
back of the polystyrene skin markers.

6.8 A radiograph of a cadaveric ovine 
hind limb in extension, with markers 
positioned on DF, PT and DT as above, 
arrows demonstrate the cross-hairs 
fixed to the skin markers. The distal 
femoral marker shows slight 
displacement from its position in 
flexion (above).

6.4 4.1.2 IN VIVO TWO-DIMENSIONAL KINEMATIC GAIT ANALYSIS

The animals were allowed to acclimatise to the gait laboratory prior to any functional 

assessment. The right hind quarter of each animal was shaved to enable more accurate 

positioning of the skin markers. Careful assessment of surface anatomy was used to 

locate landmarks for four markers (25mm diameter, hemispherical polystyrene covered 

with retro-reflective tape) which were positioned on the right hind limb, on the skin 

surface overlying the greater trochanter, lateral distal femoral condyle, lateral proximal 

tibial condyle and lateral distal tibial condyle. The animals were trained to walk in a 

straight line, along a twelve meter runway and once a routine had been established, their 

gait was recorded with an infra-red light emitting diode camera system (Qualisys 

ProReflex Version 6.42, Qualisys AB, Sweden). One camera was used at 240 Hertz (one 

still image recorded every 1/240 of a second) to record the two-dimensional positional
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change of the reflective markers in the sagittal plane over a ten second time period. The 

camera was set with a field of view angle of 43.8 degrees and was positioned 2.16 meters 

from the centre of the runway. Using trigonometry, the field of gait recorded was 

calculated to be 1.7 meters. Up to fifteen voluntary walks were recorded for each animal 

and the data from each file generated (one file per walk) was processed using the 

Qualisys Qtrac software (version 2.56). Each file consisted of at least two full gait cycles 

over the 1.7 meter distance recorded. The files were exported from the Qtrac software 

into readable Microsoft Excel files, expressing the sagittal plane x-y coordinates in 

millimetres, for the position of each marker over time. The speed of each walk was 

independently calculated using the x-coordinate displacement of the greater trochanter 

marker, and dividing it by the duration of the walk (Appendix 6.1). Only walks which 

did not significantly differ in terms of speed (determined using SPSS version 10.1) were 

used for further analysis of gait. A custom-written programme, designed and written by 

Andy McPherson (The Centre for Biomedical Engineering, Institute of Orthopaedics, 

University College London, UK) was applied to the tracked Excel raw data files to 

calculate the angle at the stifle joint at the extremes of the gait cycle. The angle 

calculated was the bisecting angle between two lines drawn between the two femoral 

markers and the two tibial markers (Figure 6.9). The calculated difference between the 

angle at extremes of flexion and extension was defined as the Range of Movement, in 

degrees. A second derived angle was calculated by subtracting the post-operative angle 

of the knee in the extended position, from the equivalent pre-operative value (Figure 6.9 -  

difference in pre- and post-operative angle B), and was used as a measure of extensor 

mechanism competence following reconstruction. This derived angle was termed Lag if 

it was a negative value, or Hyperextension if positive.
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FLEXION EXTENSION

Pre-operative Post-operative

FIGURE 6.9 Schematic demonstrating the right hind limb marker positions for gait 

analysis. The difference in angle A between full flexion and full extension positions 

corresponds to the Range of Movement. The difference in angle B between pre- and 

post-operation corresponds to the Lag or Hyperextension.

6.2.3.4 2 FORCE PLATE ANALYSIS

In the gait laboratory, animals were trained to walk across a force plate (Kistler 

Biomechanics Ltd, UK) that had been incorporated at ground level and was 

indistinguishable from the remainder of the floor surface. A walk was only recorded 

when one or other of the animal’s hind limbs had contacted the centre of the force plate 

without any contact with other limbs, in a normal walking cycle. Twelve readings were 

performed for each hind limb. The data were collected as x, y and z coordinates of the 

Ground Reaction Force (GRF) in Newtons, and the force plate software calculated the 

mean peak vertical component (z co-ordinate) normalised for the weight of the animal for 

each limb (Fmax/weight), and the mean right hind limb peak vertical (Fz) GRF as a 

percentage of the mean left hind limb peak vertical (Fz) GRF (operated/control expressed 

as a percentage) for all twenty four walks.
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6.2.4 HISTOLOGY PROCESSING - QUANTITATIVE AND SEMI-QUANTITATIVE 

HISTOLOGICAL ANALYSIS OF COLLAGEN FIBRE ORIENTATION

The right and left proximal tibiae with the surrounding soft tissue attachments were 

removed using standard dissection techniques, and the patellar tendon insertion site 

containing the implant in the case of the right limb, was isolated. The specimens were 

fixed in 10% formal saline for seven to ten days prior to dehydration in an ascending 

alcohol series (10%, 30%, 50%, 70%, 90%, Absolute Alcohol), (Industrial Methylated 

Spirit 99%, 74°P, Genta Medical, UK), followed by de-fatting in chloroform (AnalaR®, 

BDH Laboratory Supplies, UK). The chloroform was cleared with absolute alcohol, after 

which the specimens were embedded in LR White Hard Grade Resin (London Resin 

Company Ltd, UK). Once set, radiographs were taken of the resin blocks to establish the 

specimens orientation. An EXAKT 310CP (supplied by MEDEREX, UK) was employed 

to rough cut sections of between 150-200pm in thickness. The resulting sections were 

ground using P500/P1200 grade paper on an EXAKT -Micro-Grinding System 

(MEDEREX, UK) to a thickness of approximately 100pm, prior to polishing with a 

Motopol 2000 using Mastertex® polishing cloth and Silico-Colloidal liquid (Buehler, 

UK). The slides were stained with Toluidine Blue and counter stained with Paragon 

(approximately twenty minutes each), air dried and then covered with a cover slip and 

Pertex Mounting Medium. The slides were viewed with an Olympus BH2 microscope 

linked to Zeiss KS300 3.0 computer image software.

Three sections at regular width intervals across the clamp were prepared for each animal. 

For each section, five fields of view along the length of the base plate were observed at a 

magnification of xlOO. A double-blind, quantitative analysis of collagen fibre orientation 

at the implant surface was performed by measuring the angles of elevation of the collagen 

fibres per field of view, with respect to the HA-coated base plate which was taken as a 

point of zero reference, using Adobe® Photoshop® version 6.0.1. The collagen fibre 

orientation in the normal patellar tendon -  bone enthesis was measured similarly, using 

the tangent to the surface of the tibial tuberosity as a point of zero reference. 

Comparisons were made between the HA and Autograft Groups, and normal patellar 

tendon -  bone insertion using a Mann-Whitney U test (SPSS version 10.1 for Windows). 

A double-blind analysis of the bone -  tendon interface was carried out for all sections 

where bone graft was observed within the clamp, whether associated with the HA coating 

or not. The tissue was described as either fibrous or fibrocartilaginous on the basis of the 

histological appearance at six and twelve weeks, and was expressed as a percentage. The
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independent assessments were carried out by Siva Sundar (BSc student -  Centre for 

Biomedical Engineering). The results were tested for significance using a Mann-Whitney 

U test.

6.2.5 STATISTICAL ANALYSIS

The raw data was entered into SPSS version 10.1 for Windows statistical analysis 

software. The distribution of the data was analysed for normality using the Kolmogorov- 

Smiraov test. The data sets were examined for statistical differences between groups at a 

single time period and within each group between the two time periods. Non-normally 

distributed data sets were analysed using the Mann-Whitney U test, with results of p<0.05 

being considered to be significantly different.
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6.3 RESULTS

6.3.1 CLAMP DESIGN PILOTS

Results from hard grade resin histology of the prototype clamp device with a solid 

bridging plate (Figure 6.10a) demonstrated that a more enclosed environment lead to 

significant tissue necrosis (Figure 6.10b). The modified H-shaped clamp lid with 

perforating drill holes allowed ingrowth of the overlying tissues and vascular infiltration 

that was sufficient to prevent tissue necrosis, whilst providing sufficient mechanical 

fixation to hold the tendon within the clamp.

FIGURE 6.10 a Shows the prototype clamp device used in pilot study with solid lid
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FIGURE 6.10b Shows the necrotic tendon at autopsy processed in paraffin wax and 

stained with haematoxylin and eosin. Bar =100 pm.

6.3.2 NEGATIVE CONTROL PILOT

The negative control animal was found to be lame at six weeks post-operation, and it was 

considered unethical to force the ewe to walk.

6.3.3 SURGERY

All animals recovered from the surgical procedures and were observed to be standing 

within twenty-four hours. One animal (#1382) developed a deep suppurative infection - 

Actinomyces pyogenes and coagulase-negative Staphylococcus, which became apparent 

after thirteen days. A Veterinary Surgeon incised the wound whilst the animal was under 

general anaesthesia. The tendon-attachment site was found to be necrotic, hence the 

animal underwent terminal anaesthesia. This animal was replaced with another animal 

selected at random from the same stock (#1652). One animal (#1399) developed a 

superficial wound infection approximately twenty-one days post-operation. The animal 

was examined by a Veterinary Surgeon who prescribed an intra-muscular course of 

Ceftiofur antibiotic and local wound cleaning with Pevidine, which cleared the infection.
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Some animals in the Autograft Group were lethargic in the early post-operative period, 

however this appeared to resolve itself within three weeks post-operative date.

6.3.4 GAIT ASSESSMENT RESULTS

6.3.4.1 TWO-DIMENSIONAL KINEMATIC GAIT ANALYSIS RESULTS

The gait laboratory provided an unrestrained path for the animals to walk at their own 

speed and direction. Generally, the animals maintained a straight gait pattern and were 

assisted by guided strips of flooring. The speed at which the animals walked was found 

to vary and in some cases the animals would stop directly in front of the camera. Owing 

to these problems, a large number of walks were discarded, either because the walk was 

flawed, as determined by a two person subjective assessment, or if the optical system did 

not correctly track the position of the markers for at least one entire gait cycle per walk. 

All animals were walked pre-operatively and pre-euthanasia. Animals in the Twelve- 

week Group did not undergo assessment at six weeks post-operation due to a computer- 

software problem.

6.3.4.1.1 CADAVERIC STUDY -  ASSESSMENT OF SKIN DISPLACMENT

The data did not fit the requirements for parametric testing; hence a Mann-Whitney U test 

was used. No significant differences were observed between the position of the markers 

on their original anatomical landmarks and their respective positions with the limb 

orientated in full flexion or full extension (p values > 0.05).

6.3.4.12 GAIT SPEED

It was assumed that the speed at which an animal walked would affect the range of 

movement at the stifle joint. The nature of the correlation between pre-operative gait 

speed and the range of movement of the stifle joint was determined using Spearman’s rho 

analysis. The relationship was found to be significant at the 99.9% level (R squared = 

0.264, p<0.001), hence the range of movement at the stifle joint is observed to increase 

with increasing walking speed. Figure 6.11 displays a regression curve of the results 

obtained.
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In order to study the effect of the operative procedure on the gait kinematics, the speed of 

the animals had to be eliminated as a variable from the pre- and post-operative data. For 

each animal, the data sets of up to fifteen accepted walks were analysed. At least six 

walks were taken for each animal, both pre- and post-operatively, where the speed was 

not significantly different between the time periods. The speed data sets were found to be 

non-normally distributed, hence Mann Whitney U tests were carried out on all of the pre- 

and post-operative raw speed data, for each animal individually. The mean, +/- standard 

error, median and p values for pre- and post-operative speeds are presented in Appendix 5 

(5.1).

(Aa>a>a>a)
TJ

2
<uCl9
a>
a.

90

80

70

60

50

40

30

20

°  Observed 

“ Linear
1.0 1.2 14 1.6 1.8

Speed (m/s) Pre-op

FIGURE 6.11 Demonstrates the relationship observed between pre-operative speed and 

stifle joint range, obtained using two-dimensional optical kinematic gait analysis.

6.3.4 1.3 RANGE OF MOVEMENT

The data obtained for range of movement at the stifle joint (normalised for speed pre- and 

post-operatively) for the groups by intervention and time and are presented in Figure 

6.12. The summary and individual animal data is presented in full in Appendix 5 (5.2).
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The results were analysed statistically using the Mann -Whitney U test to establish any 

significant differences between the stifle joint range pre- and post-operatively, within 

each of the four groups by intervention or time. No significant differences were observed 

(p values > 0.05). A summary of these findings is presented in Appendix 5 (5.2). There 

were no significant differences between data sets for pre- and post- operative stifle joint 

range in the HA or Autograft Group animals in both the Six- and Twelve-Week groups 

(all p values >0.05).

Groups (x-axis):

Six-Week groups
1= HA Group pre-op 
2= HA Group 6 weeks 
3= Autograft Group pre-op 
4= Autograft Group 6 weeks

Twelve-Week groups 
5= HA Group pre-op 
6= HA Group 12 weeks 
7= Autograft Group pre-op 
8= Autograft Group 12 weeks

1 2 3 4 5 6 7 8

Group

FIGURE 6.12 Displays a box and whiskers plot of the stifle joint range data, displaying 

the median, interquartile range and extreme values of stifle joint range in degrees, for the 

grouped data listed in the table above, which presents a summary of stifle joint range 

statistics for HA and Autograft (Auto) groups pre- and post-operatively.

Stifle joint range data was plotted on a graph as shown in Figure 6.13. The graph 

demonstrates that the surgical procedure did not compromise the stifle joint range at 

either six or twelve weeks post-operation, and that the morphology of the range of 

movement of the joint through one gait cycle was not altered by the re-attachment of the 

patellar tendon using the methods described.

*
20
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FIGURE 6.13 Graph showing the change in stifle joint angle with time for an individual 

animal through one gait cycle.

6.3.4.1.4 DERIVED ANGLE AT EXTENSION - LAG OR HYPEREXTENSION

At six weeks, all animals displayed a significant extensor lag; the position of the knee at 

extension was in a more flexed position than the same limb pre-operatively (p < 0.05). 

The mean (+/- standard error) lag for the HA and Autograft groups were found to be -  

14.75 +/-3.71 degrees and -18.34 +/- 4.75 degrees respectively. A Mann Whitney U test 

showed that there was no significant difference in the extent of lag measured between the 

HA and Autograft groups (p = 0.631). The individual animal data is presented in 

Appendix 5 (5.3).

At twelve weeks, a number of animals displayed hyperextension of the stifle joint during 

the gait cycle, as compared with their joint position at extension pre-operatively 

(Appendix 5 (5.3)). The mean angles (+/- standard error) for the HA and Autograft 

groups were found to be 2.73 +/-6.13 degrees and 0.97 +/- 7.31 degrees respectively, and 

the data is presented in a box and whiskers plot in Figure 6.1 lb (individual animal data is 

presented in Appendix 5 (5.3)). A Mann Whitney U showed that no significant difference
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in mean extension angle was observed between the HA and Autograft groups at twelve 

weeks (p = 0.749).

6.3.5 2 FORCE PLATE RESULTS 

6.3.5.21 SIX WEEKS

At six weeks post-operatively, the vertical component of the Ground Reaction Force 

(GRF) (Fz) expressed as a % Mean Right / % Mean Left (+/- standard error) was found to 

be 65.16 +/- 3.83 for the HA Group (12 animals), and 65.51 +/- 3.05 for the Autograft 

Group (12 animals). A Mann Whitney U test detected no significant difference between 

the HA and Autograft groups (p = 0.954).

6.3.5.2 2 TWELVE WEEKS

Animal number 1386 was injured in transfer following kinematic gait analysis, at twelve 

weeks post-operation. When tested over the force plate the following day, she displayed 

a noticeably altered gait pattern and a decrease in the GRF (Fz) compared with the value 

recorded at six weeks was noted. The animal was considered lame on grounds unrelated 

to the surgery; hence force plate data were not included at twelve weeks.

At twelve weeks post-operatively, the GRF (Fz) expressed as % Mean Right / Mean Left 

(+/- standard error) for the HA Group (6 animals) was found to be 78.97 +/-3.71, and for 

the Autograft Group (5 animals) was 80.21 +/- 7.65. A Mann Whitney U test showed no 

significant difference between the HA and Autograft Groups (p = 0.465).

6.3.5.2 3 BETWEEN SIX AND TWELVE WEEKS

The data obtained for the Twelve-Week Group animals was examined to determine 

whether there was a change in functional weight bearing between six and twelve weeks 

post-operatively. To allow the data to be compared between the six and twelve week time 

points, the differences in Fmax/weight (data normalised for weight of each animal -  

Methods Section 6.2.4.2) between the two time points was calculated for both right 

(operated) and left (non-operated control) hind-limbs for animals in the Autograft (five 

animals) and HA (six animals) groups. The mean increase in Fmax/weight (+/- standard 

error) for the operated limb was 0.81 +/- 0.80 for the HA Group and 5.31 +/- 0.86 for the 

Autograft Group. A Mann Whitney U test detected a significant difference between the
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change in Fmax/weight for the Autograft Group compared with the HA Group between 

six and twelve weeks (p = 0.018). The increase in force (normalised for weight) put 

through the operated limb between six and twelve weeks, was significantly greater in the 

Autograft Group compared to the HA Group (p < 0.05). In comparison, for the non­

operated limb (control), the mean change in Fmax/weight was -3.99 +/- 1.76 for the HA 

Group and -1.71 +/- 2.08 for the Autograft Group. No significant difference was 

detected between the group changes in Fmax/weight for the Autograft Group compared 

with the HA Group using a Mann Whitney U test (p = 0.715). These findings are 

presented in Figure 6.14.

5 6 5

HA (operated) HA (control)
Autograft (operated) Autograft (control)

Group

FIGURE 6.14 Presents the Box and Whiskers plot of the data obtained for differences in 

Fmax/weight between six and twelve weeks for the HA vs. Autograft operated limb data 

(p = 0.018*) and HA vs. Autograft control limb data (p = 0.715).

Force plate assessment of early functional response to the operative procedure at six 

weeks varied noticeably between individual animals in both the Autograft and the HA 

Group. Twelve weeks post operatively, some individuals were observed to have 

recovered a GRF (Fz) for the operated limb, with a magnitude and morphology 

approaching that of the control limb -  Figure 6.15.
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FIGURE 6.15 Shows the GRF (Fz) plot at six and twelve weeks for operated (right) and 

non-operated (left) hind limbs with the traces superimposed.

6.3.6 GROSS MORPHOLOGY

In the two week pilot, the tendon tissue appeared as a soft, brittle, brown degenerate 

tissue mass, with little similarity to that of normal healthy tendon material. At six and 

twelve weeks, the subcutaneous tissues over the patellar tendon-clamp had healed, 

forming a dense connective tissue scar. The patellar tendon had thickened and it was 

difficult to differentiate it from the overlying tissues. The patellar tendon was traced 

along the deep surface from proximal, at the patella, to its entry into the clamp. The 

clamp was enveloped in a mass of thickened, hard white scar tissue, whilst moderate 

vascularity in the surrounding tissues was noted. Disruption to the tissue-clamp construct 

was avoided. The specimens for histology were maintained intact to prevent damage to 

the developing interface (Figure 6.16).
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FIGURE 6.16

FIGURE 6.16a Shows the deep surface of the patellar tendon (PT) as dissected out, with 

the patella (P) and clamp (C) in a six week specimen.

FIGURE 6.16b Shows the superficial surface of the patella (P) -  Patellar Tendon (PT) -  

Clamp (C) dissection of a six week specimen.
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6.3.7 HISTOLOGY RESULTS

6.3.7.1 NORMAL TENDON-BONE INTERFACE HISTOLOGY

The left hind control, stifle joint patellar tendon-bone interface site is a direct-type 

insertion comprising a four-layered enthesis as seen in Figure 6.17. A clear layer of 

rounded cells lying in lacunae was observed between the tendon and the bone. A 

tidemark o f differential staining was seen, separating the unmineralised and mineralised 

fibrocartilage regions.

FIGURE 6.17

MFC

FIGURE 6.17 a Shows the appearance of a normal patellar tendon insertion in the sheep 

stifle joint. Tendon (T) and bone (B) are clearly separated by a fibrocartilage region, 

where a tidemark of stain is seen between unmineralised (UFC) and mineralised (MFC) 

zones. Toluidine blue and Paragon X10. Bar = 1mm.
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FIGURE 6.17 bThe tidemark (TM) from 6.17 a at a higher magnification, separating 

regions of unmineralised (UFC) and mineralised (MFC) fibrocartilage. Rounded 

chondrocyte-like cells (CH) are visable within lacunae, surrounded by a parallel- 

orientated collagenous fibre (CF) matrix. Toluidine blue and Paragon X I00. Bar = 

100pm.
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6.3.7 2 CLAMP DESIGN PILOTS

The clamped portion of the tendon from the two week pilot study, appeared to have lost 

all normal parallel-orientated crimped collagenous fibre morphology. It possessed 

regions of vacuolar and fatty degeneration surrounded by a sparse network of collagen- 

fibre remains, interspersed with disorganised areas containing amorphous cells in a pale 

stained matrix, the remnants of a resolving blood clot and an acute inflammatory infiltrate 

-Figure 6.18.

FIGURE 6.18 Demonstrates the appearance of the degenerate clamped tendon two weeks 

post-operatively. The sparce strands of collagen fibres border areas of vacuolar 

degeneration and adypocytes. Haematoxylin and Eosin x40.
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6.3.7 3 SIX AND TWELVE WEEK HA AND AUTOGRAFT GROUP HISTOLOGY

For ease of analysis, the low power sections were divided into regions, which were 

considered separately, as shown in Figure 6.19.

PROXIMAL DISTAL

j  i& nm  ■ ■  d

IM S

TIBIA

FIGURE 6.19 Low power section of clamped tendon six weeks post-operatively. T -  

Normal tendon region. MS -  Mid-substance tendon. I -  Interface region. D -  Down- 

growth. Toluidine blue and Paragon. Bar = 10mm.
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6.3.7 3.1 NORMAL TENDON REGION

Analysis of the normal tendon region in all sections revealed the morphology to be 

similar to that of an unoperated tendon running into the clamp, consisting of dense 

connective tissue with parallel orientated collagen fibres adopting a crimped pattern 

(Figure 6.20). In some sections this region was easily differentiated from that of the mid­

substance (MS), defined by a clear boundary between the two tissue types with differing 

morphologies, whilst in others a gradual transition was evident between the two zones. 

Ectopic calcification was observed within the normal tendon region of some specimens 

from both the HA and Autograft Groups at six and twelve weeks.

v  ^#*%. 4

FIGURE 6.20 Shows the dense crimped collagenous connective tissue observed in the 

normal tendon region of all sections, six weeks post-operatively. Toluidine blue and 

Paragon xlOO. Bar =100 pm.
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6.3.7.3 2 MID-SUBSTANCE REGION

The clamped tissue was found to be morphologically distinct from that of normal tendon. 

At six weeks, the connective tissue showed extensive loss of normal collagen fibre 

density and orientation. In some areas, collagen fibres appeared randomly organised and 

interspersed with a moderately high population density of fibroblast-like cells with 

rounded, plump nuclei, whilst in others they maintained a degree of parallel alignment 

and contained oval/spindle shaped fibroblast nuclei. Some sections contained areas of 

vacuolar degeneration (Figure 6.21a), which were located centrally within the mid­

substance tissue, whose peripheral morphology consisted of a denser collagenous 

connective tissue with a higher cell population density. A number of sections from both 

groups displayed a mixture of chronic inflammatory cells, with pools of lymphocytes and 

macrophages, and occasional foreign-body giant cells.

At twelve weeks, the mid-substance region in both groups had significantly re-organised. 

Collagen fibre density had increased, with a higher proportion of tissue displaying a 

parallel orientation to the long axis of the tendon. Some areas had adopted a "wavy7 

pattern (Figure 6.21b). Fewer inflammatory cells were present compared with the six 

week sections and numerous fibroblasts were observed with both oval and spindle shaped 

nuclei. No noticeable differences were observed between the HA and Autografi groups at 

six or twelve weeks.

At six and twelve weeks, the Autografi group sections contained islands of actively 

remodelling bone graft material which had become incorporated into the mid-substance 

tissue. Osteoblasts and osteoclasts were visible within the bone graft regions (Figure 

6.21c). At six weeks (6.2Id), collagenous fibres were seen running in a perpendicular 

orientation into the remodelling bone graft material. By twelve weeks, areas of the bone 

graft material were found to be surrounded by fibrocartilagenous regions, in which cells 

adopting a rounded morphology were observed, set in lacunae within a darkly stained 

ground substance (6.2 le).
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FIGURE 6.21

FIGURE 6.21a Demonstrates the appearance of a degenerative clamped tendon at six 

weeks with a considerable inflammatory infiltrate and vacuole density. Toluidine blue 

and Paragon xlOO. Bar =100 pm.

FIGURE 6.21b Shows the dense crimped collagenous connective tissue observed within 

the mid-substance clamped tissue at twelve weeks, containing fibroblasts with oval, 

plump nuclei (Fb). Toluidine blue and Paragon xlOO. Bar = 100 pm.
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FIGURE 6.2 le  Shows the zonal organisation observed at the periphery of the bone graft 

material at twelve weeks. The cartilage layer (C) showed a uniformally stained 

amorphous ground substance with chondrocyte-like cells (Ch) seen singly or grouped in 

lacunae. The neighbouring fibrocartilage (FC) region, with a mixed morphology was 

easily differentiated from the cartilagenous tissue. Toluidine blue and Paragon xlOO. 

Bar = 100 pm.
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6.3.7.3 3 INTERFACE REGION

In the Autograft Group specimens in regions where the bone graft was retained on the HA 

surface, the interface was found to be different from the HA Group interface. Tissue 

processing and preparation resulted in the loss of tissue in intimate apposition with the 

HA surface in a number of samples. However, a sufficient number retained the tissue- 

implant interface to enable a descriptive analysis of the resulting attachment. In the HA 

group at six and twelve weeks, the implant surface was enveloped by a connective tissue 

layer in which the collagen fibres were observed to run parallel to the orientation of the 

base plate (Figure 6.22a). In the Autografi group, the fate of the bone graft varied 

between specimens. In some samples, the graft material became incorporated into the 

mid-substance connective tissue without an attachment to the HA surface. In others, 

where the bone graft remained in intimate contact with the HA layer, the graft material 

was seen to undergo significant resorption, leaving faint impressions of trabecular 

structures with a considerable inflammatory infiltrate. In the six week specimens, some 

areas contained actively remodelling bone graft and newly formed bone in intimate 

contact with the HA layer o f the base plate. In some of these sections, a developing soft 

tissue-bone interface with the adjacent tendon material in the clamp centre was also 

observed. The early (six week) soft tissue-bone interface was composed of collagenous 

Sharpey’s-like fibres, originating from new bone, and spanning the soft tissue-bone 

interface in a perpendicular orientation (Figures 6.22b and 6.22c). By twelve weeks, 

insufficient bone graft material remained in intimate contact with the HA surface to 

accurately describe the soft tissue-bone-implant interface. However, it is speculated that 

had the interface been preserved and continued to develop from the morphology of the 

interface observed at six weeks, a layered soft tissue-fibrocartilage-bone interface, similar 

to that observed between the mid-substance soft tissue and dislodged bone graft islands, 

may have developed (Figure 6.22e).
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FIGURE 6.22c High power image of the interface observed in 6.22b. Bone (B) is seen in 

intimate association with the HA surface, with clearly visible ostoeblasts (OB) and 

perpendicular Sharpey’s-like, collagen fibres (CF) spanning between the new woven 

bone and soft tissue in a perpendicular maner. Toluidine blue and Paragon x200. Bar = 

50 pm.

257



6.3.7 4 QUANTITATIVE AND SEMI-QUANTITATIVE HISTOLOGICAL ANALYSIS 

OF COLLAGEN FIBRE ORIENTATION

Quantitative analysis showed the collagen fibre orientation to the implant surface in both 

the HA and Autografi Group to be significantly lower than the fibre insertion angle at a 

normal patellar tendon enthesis (p < 0.05) (Table 6.1). However, there was significantly 

less difference in collagen fibre orientation angle between the Autografi Group and the 

normal patellar tendon enthesis (14.13 +/- 1.77 degrees) than between the HA Group and 

normal patellar tendon enthesis (27.18 +/- 3.54 degrees) (p < 0.01).

In the Autografi Group the nature of the tendon -  bone graft interface, increased 

significantly with respect to percentage fibrocartilagenous nature, between six and twelve 

weeks (p < 0.01). The bone graft -  tendon interfaces in the Autografi Group were 

significantly more fibrocartilaginous in nature at twelve weeks compared to those at six 

weeks (p < 0.01). In the HA Group no bone was found within the clamp and hence no 

semi-quantitative analysis of tendon -  bone interface was performed.

HA GP AUTOGRAFT GP INTACT

6 Wks 12 6 Wks 12

Wks Wks

Collagen fibre orientation - 13.68 - 19.73 34.96 +/-

(Degrees +/- Standard +/- +/- 2.55

Error) 0.86 1.02

Fibrocartilagenous % - - 16+/- 1.4 76 100

Interface +/- 3.4

Fibrous % Interface 84 +/- 5.7 

+/- 1.6

24 0

TABLE 6.1 Shows collagen fibre orientation and interface characterisation data for HA, 

Autografi and Intact Groups

259



6.4 DISCUSSION

This Chapter was carried out in an attempt to re-attach a major load-bearing tendon to a 

metal implant with sufficient mechanical strength to enable early limb use, whilst 

incorporating elements to develop a biological interface that would, over time, resemble 

the structure of the normal enthesis.

6.4.1 THE CLAMP DEVICE -  EFFECTS ON TENDON ATTACHMENT

In current clinical practice, tendons are physically clamped to the body of the implant via 

specialised design features (Cannon 1997). Biologic responses of tendons subjected to 

compressive loads are often overlooked in an attempt to re-establish the biological 

continuity between muscle and bone units (Meriam et al 1995). In 2001, Rempel and 

Abrahamsson examined the effects of local ischaemia, a low oxygen state usually caused 

by the obstruction o f the blood supply, on tendon explants in vitro, finding it significantly 

reduced collagen synthesis, whilst having no effect on tendon cell proliferation, 

proteoglycan and non-collagenous protein production or synthesis. Gottsauner-Wolf et al 

(1994) postulated that perforation of a tendon under compression results in less tissue 

damage. The clamp tested in my thesis provided mechanical fixation, which enabled 

immediate unprotected weight bearing, with no evidence for attachment failure. 

Functional assessment by direct biomechanical testing would provide useful objective 

data to supplement my results. However, this has not been presented here. The clamp 

compresses the tendon, hence the internal environment will be relatively avascular. 

Degenerative changes were only observed in the two-week studies. Tissue necrosis was 

not observed as a consistent finding in either Group, which concurs with other work in 

this field (Gottsauner-Wolf et al 1994). The prototype design tested in the pilot studies 

showed that a more enclosed environment lead to tendon necrosis. The modified H- 

shaped lid was a compromise to optimise ingrowth and allow vascular infiltration, whilst 

maintaining mechanical fixation. A time course assessment of the compressive forces 

encountered by the tendon in vivo may be valuable in determining whether degenerative 

changes are directly associated with mechanical clamping. Degenerative changes may 

also be a result of tendon detachment (Skoog and Persson 1954, Whiston and Walmsley 

1960, Forward and Cowan 1963).
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6.4.2 GAIT ASSESSMENT

Kinematic gait analysis has been utilised in numerous clinical and in vivo experimental 

models (van Best et al 1984, Chen et al 1991, Laassel et al 1992, Gage et al 1996). 

Reflective markers are fixed to the skin over skeletal prominences to define body 

segments. However, skin displacement and inconsistencies in surface anatomy definition 

are considered the principle drawbacks. In my study, surface anatomy assessment and 

marker attachment was carried out by two independent assessors to reduce error in 

marker positioning, whilst skin displacement was considered negligible based on 

radiograph analysis (Figures 6.4 and 6.5). More advanced gait laboratories can perform 

three-dimensional assessments. Two-dimensional analysis is limited by the fact that a 

surgical procedure on an isolated joint will undoubtedly affect the total gait patterns of the 

subject, and that limb segments both proximal and distal to the site of intervention should 

be evaluated (van Best at el 1984). However, more advanced software would be required. 

Despite these drawbacks, it is considered a more objective measure of extensor 

mechanism competency than some o f the previously reported subjective scales of 

function (Gottsauner-Wolf et al 1999). No previous study of tendon re-attachment has 

reported the use of kinematic gait analysis with force-plate assessment of weight bearing. 

For all animals in my study, there were no significant differences in gait cycle speed. 

Force-plate analysis is widely used to assess limb function. It can be used independently 

or in association with gait analysis (Otis et al 1985, Ghosh et al 1993, Jevens et al 1996, 

Muir et al 1996). Using data recorded from an implanted transducer in a goat model, it 

has been shown that the forces transmitted through the patellar tendon during normal gait 

increase in relation to the GRF (Fz) in a non-linear manner (Korvick et al 1996). For my 

study, the data obtained using force-plate analyses were thought to be directly related to 

the in vivo forces encountered by the tendon-implant construct. The speed of the animals 

over the force-plate was maintained using two-person subjective assessment to avoid 

possible error associated with speed effects on GRF (Fz). Force plate data obtained from 

twelve equivalent Friesland ewes showed that pre-operatively there was no significant 

difference between the right and left hind-limb GRF (Fz) (Appendix 6.5). Thus, 

differences observed in GRF (Fz) data post-operatively were considered to be a direct 

result of the surgical intervention and an accurate representation of the function of the 

extensor mechanism reconstruction. No significant differences were observed in weight 

bearing, determined using force plate data, between the groups at six or twelve weeks 

post-operatively. The increase in Fmax/weight between six and twelve weeks was 

significantly greater for the Autograft group compared to the HA group for the operated
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limb, whilst no significant differences were observed for the non-operated limb of either 

group. In the Autograft group, both surgical procedures (the tendon re-attachment and 

the bone graft harvest) were carried out on the right hindquarter. It is possible that at six 

weeks the animals were affected by the dual interventions. However, by twelve weeks 

the animals showed a significant increase in functional weight bearing through the 

operated limb. It is appreciated that this increase may be the result of recovery from the 

operative procedures as apposed to a true reflection of the effects of the bone and marrow 

graft augmentation. At six weeks, the non-operated limb may be compensating for the 

weakened operated limb, thus resulting in a higher GRF (Fz) during the normal walking 

gait cycle. As the operated limb function improves with time, the GRF (Fz) of the non- 

operated limb would be expected to decrease. This was observed to be true where a 

negative value for the difference in Fmax/weight between six and twelve weeks for the 

non-operated limb is presented. Quadrepedal locomotion may enable the forelimbs to 

compensate for reduced operated limb function. In retrospect, it is thought that the GRF 

(Fz) should have been measured in all four limbs to quantify any compensatory gait 

variations. The operated limb of all animals demonstrated no significant variation from 

pre-operative range of movement at the stifle joint at six and twelve weeks. This is 

thought to reflect the successful mechanical fixation of the clamp device. At six weeks, 

the lag demonstrated by all animals indicated there was extensor mechanism dysfunction. 

By twelve weeks, an improvement in extensor mechanism was observed, where mean 

angles at extension for both groups indicated hyperextension. At twelve weeks, the near 

normal extension angle achieved, with the range of movement being not significantly 

different from that observed pre-operatively, is proposed evidence for a kinematic 

functional result equivalent to that seen in the normal stifle joint. The degree of extensor 

mechanism recovery here is greater than that reported (Jeon et al 1999, Bickles 2001). 

However, it is appreciated that the use of a quadrupedal model may mean that the in vivo 
patellar tendon forces are less than those encountered in a biped.

6.4.3 DEVELOPMENT OF THE TENDON-IMPLANT INTERFACE

Tendon and ligament insertions are characterised according to differences in morphology, 

into direct and indirect (Benjamin et al 1986, Rufai et al 1995, Clark and Stechschulte 

1998). The normal ovine patellar tendon insertion is a direct enthesis. In studies of 

tendon -  bone tunnel healing, collagen fibres are seen to span the developing interface 

(Jones et al 1987, Liu et al 1997). Although the clamp environment is unlike that seen
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within a bone tunnel, it is proposed that augmentation with autogenous bone and marrow 

graft applied to the HA-coated implant can create an environment capable of supporting 

the development of a tendon -  implant attachment. In the Autograft Group at six weeks, 

the presence of perforating collagen fibres between the tendon and bone is consistent with 

development of a direct enthesis. In the Autograft Group fibrous, tissue encapsulation 

was observed adjacent to the HA in areas not covered in bone graft material. Values for 

collagen fibre orientation at the interface showed no significance between the HA and 

Autograft Groups. In the Autograft Group, the interface contained regions with both 

tendon -  HA and Tendon -  bone attachment. The collagen fibre angles in both these 

regions contributed to the overall results and were responsible for the apparent lack of 

statistical significance, despite obvious qualitative morphological differences between 

regions on the same base plate. Better bone graft retention at the HA surface in the 

Autograft Group would reflect the different interface characteristics between the two 

groups. The differences in interface morphology between the Groups are thought to be 

due to biological augmentation with marrow and bone, since both Groups were exposed 

to similar local mechanical environments. It is appreciated that the presence of additional 

bone graft volume may have influenced the degree of tendon compression, and thus affect 

the resulting morphology. Collagen fibre insertion angle in a normal enthesis varies with 

respect to the position along the tuberosity and hence I have presented mean values in this 

Chapter. Variation in fibre orientation with respect to bone and implant surfaces has been 

shown to reflect the nature and integrity of the resulting attachment (Donley and Gillette 

1991). The flat implant surface and angle of the osteotomy may have contributed to the 

shallow insertion angles observed in the Groups, and hence the mechanical environment 

may have influenced our findings. Tissue within the mid-substance region showed a 

progressive change with time for both groups. The morphology of the tissue through the 

integration phases was found to be consistent with other studies of tendon and ligament 

scarring (Liu et al 1997; Frank et al 1999). The process of tissue integration encompasses 

phases of tissue necrosis, revascularisation, cell re-population and collagenisation. Early 

regenerative processes associated with tendon and ligament healing have been reported to 

be 'disorganised' and the tissue is observed to be populated with numerous inflammatory 

cells and plump fibroblasts, which are seen to remove debris and produce new, but 

disorganised collagenous matrix (Frank et al 1985). Maturation and remodelling of 

tendon has previously been seen to occur from six weeks (Woo et al 1998) and was also 

observed in my study. Fibroblast shape has been studied under a number of mechanical 

conditions (Shrive et al 1993; Giori et al 1993) and the fibroblasts observed in the twelve
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week specimens adopting a spindle-shaped / elongated morphology are consistent with 

that expected of cells in tensile load-bearing tissue. The tissue-implant interface in the 

HA group specimens did not form a similar attachment to a direct or indirect enthesis, and 

in all samples the HA layer was enveloped in a dense collagenous tissue with collagen 

fibres running parallel to the surface and the axis of tensile load. Reports demonstrating 

the osteoinductive potential of HA in vivo have always incorporated mineralised tissue, 

for example, in bone tunnel models (Ishikawa et al 2001) or injected into bone marrow 

sites (Katumura et al 1998; Sato et al 1998). Studies of soft tissue-implant interfaces have 

demonstrated that cell morphology and collagen fibre orientation to the implant surface 

are found to direct towards fibrous encapsulation rather than attachment (Donley and 

Gillette 1991; Chehroudi et al 1992; Steflik et al 1993). In the Autograft group at six 

weeks, the interface was similar in morphology to those observed previously in bone 

tunnel studies in which, at six weeks no layered enthesis with fibrocartilagenous regions 

were observed. However, the attachment consisted of anchoring collagen fibres 

originating from the new woven bone lining the tunnel (Jones et al 1987; Rodeo et al 

1993; Panni et al 1997; Liu et al 1997; Shaieb et al 2000; Oguma et al 2001). The 

augmentation of bone and marrow graft used in my study assisted the successful 

development of a neo-enthesis, with the trabeculae of the cancellous bone providing an 

osteoconductive scaffold and the marrow providing a source of pluripotent cells, which 

are thought to induce osteogenesis (Gray and Elves 1982; Burwell 1985; Ohgushi et al 

1989a and 1989b; Caplan 1991; Goshima et al 1991). By twelve weeks the morphology 

was similar to that seen in direct entheses. The maturation phase of bone tunnel-tendon 

healing interfaces has been reported to be considerably variable. Development of direct- 

like entheses up to six months post-operatively in tendon-bone tunnel healing studies 

have been shown (Rodeo et al 1993, Panni et al 1997, Aoki et al 1998). However, 

conflicting reports have described the presence of a less mature indirect-type entheses 

after twenty weeks (Jones et al 1987). Previous studies of tendon-implant attachment 

have used cancellous bone blocks and marrow augmentation; however they have not 

described the morphology of the bone block-implant interface or the extent of bone graft 

retention. In their 1995 and 1996 studies, Inoue et al observed the absorption of 

supplemented autogenous bone graft and replacement with a 'thick collagen bundle’. 

Inoue et al (1996) and Chao et al (1997) proposed that marrow supplement was 

responsible for osseoinduction and limited bone resorption. However, in my research the 

principle drawback with marrow augmentation was reliable retention within the clamp 

device. Since the clamp used in my thesis is a more closed system than the Enhanced
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Tendon Anchor used by Inoue et al (1996) and Chao et al (1997), it is considered that 

their assumptions concerning the role of marrow supplement in osseoinduction and bone 

resorption processes are questionable. They showed a four-layered interface after sixteen 

weeks with bone integration through the titanium wire mesh-base plate construct. 

Successful attachment of bone graft to the HA coated implant used in my study would 

provide a superior attachment, mechanically and biologically, than that observed via 

solely mechanical fixation of bone to a wire mesh as presented by Chao et al (1997). 

Increased duration in vivo may allow further characterisation of the developing enthesis 

whilst implant design modification could improve graft retention. The interlocking spike 

mechanism within the clamp was shown to provide adequate mechanical stability. 

However, alternative means of fixation, including the development of a purely biological 

attachment using a resorbable mesh, are being examined further (Appendix 6.6). The 

bone and marrow graft may affect all of the layers of the developing interface. The 

marrow provided a source of pluripotent cells with osteogenic potential (Beresford 1989, 

Caplan 1991), whilst the trabeculae of the cancellous bone provided an osteoconductive 

scaffold for subsequent remodelling. HA has been shown to induce differentiation of 

pluripotent cells along an osteoblast linage (Rust et al 2003), provide a bioactive surface 

that can support mineralisation (Cook et al 1988, Ohgushi et al 1989, Meffert 1997) and 

induce collagen synthesis (Soballe et al 1990). I have shown that integration is observed 

with bone in intimate apposition with an HA-coated base plate. At twelve weeks, 

fibrocartilagenous regions between the tendon and bone trabeculae in the Autografi 

Group differentiated the interface from that observed in the Autografi group at six weeks 

and the HA Group at both time points. Semi-quantitative analysis of the amount of 

fibrocartilagenous tissue present at the bone graft -  tendon interface showed an increase 

of 60% between six and twelve weeks. This was consistent with observations in longer- 

term tendon-bone tunnel healing studies (Rodeo et al 1993, Panni et al 1997). Other 

studies have shown lack of interface maturation (Jones et al 1987, Hausman et al 1989), 

however the type of model and study duration may have contributed to these findings. It 

is appreciated that the fibrocartilagenous tissue could represent progression of 

endochondrial ossification rather than a four zone direct interface and it is postulated that 

a longer term follow-up would help to determine the fate of the tissue. This study was 

limited by poor graft retention. However, the analysis of the tendon -  bone interface was 

performed regardless of whether the bone was attached to the HA surface and hence, 

reflects the nature of the interface rather than the problem of bone -  HA association that 

was experienced in the methodology.
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6.4.4 SUMMARY

• The mechanical fixation provided by the interlocking-spike mechanism enabled 

unprotected weight bearing, with no evidence of attachment failure.

• In contrast to a negative control, extensor mechanism function with an attachment 

implant has been shown to recover fully by twelve weeks post operation and was 

not significantly compromised by the surgical procedures used here.

• Tendon reconstruction to a metal implant, augmented with autogenous cancellous 

bone and marrow, has been shown to result in the development of a neo-enthesis 

with similar morphological features to those observed in time-course studies of 

tendon re-attachment to bone.
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CHAPTER SEVEN

GENERAL DISCUSSION
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The aim of my study was to investigate the concept that soft-tissue implant interfaces can 

be engineered in vivo, using surface texturing, coatings and biological augmentation. The 

materials were chosen from in vitro studies and research into natural analogues, and were 

used to enhance the attachment and function of the soft tissues abutting implants used for 

proximal tibial implants and transcutaneous amputation prostheses.

In this thesis, Chapter One presented a background into soft tissue biology, naturally 

occurring and artificially engineered transcutaneous and subcutaneous soft-hard tissue 

interfaces, and an overview of implant integration into connective tissue. Based on this 

review and on the aims of the project, a number of hypotheses were constructed and 

investigated. Subsequently, each practical chapter investigated a hypothesis.

Chapter Two examined the histology of deer antlers, in which the skin forms an interface 

with the pedicle at the antler-pedicle junction that maintains a stable transcutaneous 

interface (Chapman 1975, Goss 1985, Banks and Newbrey 1982, Li and Suttie 1994). It 

was hypothesised that as different soft tissue types interface with the antler and pedicle 

structure as it traverses the skin layers, the surface morphology of those regions would be 

significantly different from one another, thus optimising attachment of each specific 

tissue. The results proved the hypothesis, demonstrating that there is a significant 

difference in surface structure and morphology of the antler compared to the pedicle 

surface to which the sub-epithelial soft tissues attach. Numerous thick collagen fibres 

were observed connecting the pedicle with the soft tissues. The pedicle bone is highly 

specialised to maximise sub-epithelial tissue attachment and maintain the tight seal 

between the internal and external environments. The chapter determined the histological 

morphology of a non-gingival transcutaneous structure, which was compared with the 

periontal ligament in the gingival environment. The findings were used in Chapter Five 

of my thesis to develop an analogue for use in limb replacement prostheses.

Chapter Three determined the effects of substrate topography on fibroblast and epithelial 

cell proliferation, morphology and attachment. It was hypothesised that low surface 

energy coating of implant materials is detrimental to fibroblast and epithelial cell 

population maintenance in vitro, and that inherent properties of cell populations, for 

example contact inhibition displayed by epithelial cells, can outweigh the properties 

instigated by surface topography. The findings demonstrated that significant differences 

in fibroblast and epithelial cell proliferation, morphology and attachment are brought 

about by implant topography. This Chapter showed that low surface energy coatings 

reduce attachment of both fibroblasts and epithelial cells in vitro. Contact inhibition,
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which is an inherent property of epithelial cells, was seen to outweigh the effects of 

material topography, which normally results in contact guidance and thus, cell alignment. 

The Chapter demonstrated that different types of connective tissue cells are influenced to 

differing degrees by surface topography and that cell properties can overcome the 

potential influence of implant surface characteristics. Hence, in terms of ‘soft tissue 

attachment’ to implants in any field, it is proposed that each cell population in tissue types 

abutting an implant should be considered separately, and that the implant surface must be 

engineered to take account of specific connective tissue cell requirements.

Chapter Four of my thesis was carried out to determine the influence of bio-adhesive 

factors, namely fibronectin and laminin, on the attachment, proliferation and morphology 

of fibroblasts and epithelial cells cultured on biomaterials in vitro. Fibronectin was 

shown to significantly increase the attachment and proliferation of dermal fibroblasts, 

whilst laminin was seen to have a similar influence on epithelial cells. Implant 

topography was observed to have a lesser effect on cell behaviour in the presence of bio­

adhesive factors. Once again, a clear difference was observed between the distinct 

connective tissue cell populations used in this Chapter. This indicates that for successful 

connective tissue attachment to orthopeadic implant materials, it is necessary to consider 

the precise cellular composition of the interfacing tissue and tailor the implant surface 

appropriately to maximise attachment for each specific tissue type. In vivo, there may be 

more than one cell type to consider, for example, in transcutaneous devices which 

interface with a fibroblastic population in the sub-epithelium, as well as epithelial cells in 

the epidermis.

Chapter Five of my thesis examines soft tissue attachment to, and development of 

intraosseous transcutaneous amputation prostheses (ITAP). In this Chapter, biomimetic 

surfaces whose designs were based on information from Chapter Two, were developed 

and the hypotheses tested were that it is the sub-epithelium, but not epithelial layer 

attachment, that is responsible for the degree of downgrowth observed around ITAP. In 

this Chapter, the degree of downgrowth was shown to be governed by the condition and 

extent of the attachment of the sub-epithelium and was reduced with implant biomaterials 

and coatings designed to mimic the surfaces of the deer antlers.

Chapter Six tested the hypothesis that a tendon-implant neo-enthesis could be engineered 

using a hydroxyapatite coated implant, augmented with autogenous cancellous bone and 

marrow graft. It was proposed that a tendon-implant interface, with similar functional 

and morphological properties to that of a normal tendon-bone enthesis, could be 

engineered in situ. Tendon attachment to bone in a normal direct type enthesis occurs via
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progressive calcification through regions of fibrocartilage, mineralised fibrocartilage and 

bone (Cooper et al 1970, Benjamin et al 1986, Evans et al 1990, Kumagai et al 1994, 

Rufai 1995, Clark et al 1998, Waggett et al 1998, Benjamin et al 1998). Hence, it was 

considered necessary to introduce an intermediate tissue rather than attach the soft tissue 

of the tendon directly to an implant biomaterial. The attachment of tendon (soft tissue) 

was thus not a direct attachment as observed in ITAP, but one that introduced morcelised 

autogenous cancellous bone, marrow and HA, to mimic those of fibrocartilage and 

mineralised fibrocartilage, as observed in a normal enthesis. The findings showed that by 

supplying appropriate bio-active and biological augmentation, namely HA and 

autogenous cancellous bone and marrow, a functional tendon -  bone -  HA -  implant 

interface develops, whose function and morphology are similar to that of a normal direct- 

type enthesis.

Overall, my thesis was designed to determine the optimal material types, biological 

augmentation factors and implant designs required for the artificial development of 

successful soft tissue -  implant interfaces in both transcutaneous and subcutaneous 

environments. Natural examples of such interfaces overcome the problems of insufficient 

soft tissue attachment strength, as demonstrated by natural analogues such as deer antler, 

teeth and normal tendon-bone entheses. Both deer antlers and tendon-bone entheses 

encompass soft -  hard tissue interfaces that are of sufficient strength to prevent epithelial 

migration and infection, and provide successful muscle attachment and function 

respectively. This thesis has aimed to mimic some of the aspects of these natural 

analogues in an attempt to improve the quality of life for patients requiring proximal tibial 

replacement and amputation.

Natural analogues of the soft-hard tissue interfaces examined in my thesis include deer 

antlers, teeth and normal tendon insertions. I have shown that thick collagen fibres span 

the interface and maintain the tight soft tissue seal around deer antlers. Fine filaments 

span the interposing lamina between gingival marginal tissues and tooth enamel in normal 

dental morphology, combining them to form a stable structural unit (Listgarten 1966, 

Schroeder 1969, Kobayashi et al 1976, Marks et al 1994, Hormia et al 2001). Finally, in 

tendon insertions, the soft-hard tissue interface occurs either via perpendicularly 

orientated perforating fibres (indirect type enthesis), or via progressive calcification 

through intermediate tissue layers (direct type enthesis) (Benjamin et al 1986, Evans et al 

1990). Knese and Bierman (1958) proposed that the entheses have evolved to balance the 

differing elastic (Young’s) moduli of tendon and skeletal tissue so that peaks in tension
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are avoided. It is also proposed that tendons splay out at their attachment sites, in order to 

to distribute force over a greater area.

It is accepted that stress will concentrate at interfaces between structures with different 

mechanical properties, namely soft-hard tissue interfaces, and thus the tendon entheses, 

deer antlers and teeth have all adapted and evolved to dissipate stress away from the 

interface to the surrounding tissues.

The analogues examined here involve perforating fibres or tissues to mediate the 

interfaces. As nature appears to solve all of the problems associated with artificially 

engineering the soft-hard tissue interface, both transcutaneously and subcutaneously, the 

aim of this thesis was to attempt to mimic some of these evolutionary adaptations for use 

in orthopaedic implant development.

It is documented that parallel alignment of fibres adjacent to implant biomaterials will 

lead to encapsulation, and that connective tissue cells will deposit their collagen matrix 

with respect to their orientation (Donley and Gilette 1991). It is concluded that for 

artificially engineered soft-hard tissue interfaces to be successful, both functionally and 

morphologically, fibres or tissues are required to mediate at the attachment site. To 

enable perforating collagen fibres to develop within the soft tissue seal around 

transcutaneous implants, or within tendon re-attachment sites, the formation of connective 

tissue matrix must be perpendicular to the implant surface. These cells will deposit 

extracellular matrix and hence collagenous fibres, in a similar orientation, which can act 

as an intermediary between the soft connective tissues and the hard implant material. The 

implant surface must be adequately porous to enable ingrowth of the perforating fibres, as 

well as to increase the surface area for soft tissue attachment. Providing there are suitable 

biomaterials, bioactive augmentation factors and healthy collagenous tissues, the resulting 

interface has the potential to develop and encompass at least some of the aspects of 

normal soft -  hard tissue interfaces. It is appreciated that there are numerous other factors 

that dictate the success or failure of soft tissue attachments, namely micromotion at the 

soft tissue -  implant interface, infection, encapsulation and pull out. However, it is 

proposed that provided adequate mechanical fixation is avaliable, biological integration 

will occur over time.

My thesis has shown that soft -  hard tissue interfaces can be engineered in vivo, both 

transcutaneously (Chapter Five) and subcutaneously (Chapter Six), by drawing on 

findings of in vitro studies of cell -  implant interactions as described in Chapters Three 

and Four, and mimicking aspects of natural analogues like deer antler and normal tendon
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insertions (Chapters Two and Six respectively). In this thesis I have demonstrated that 

the resulting artificial interfaces are both morphologically and functionally similar to 

those of their natural counterparts.

It is concluded that research designed to further mimic natural analogues may eliminate 

the problems that persist in this field, and that the resulting implant technology could 

have a huge impact on the quality of life experienced by patients requiring any surgical 

intervention that disrupts the soft -  hard tissue interfaces of the body.

CONTRIBUTION TO SCIENTIFIC RESEARCH AND FURTHER WORK 

In my thesis, I have developed new methods of soft tissue integration and attachment to 

orthopaedic implants for two types of implant, subcutaneous and transcutaneous, both of 

which rely on the integrity of the soft tissue-implant interface for success.

For the re-attachment of tendon soft tissues (subcutaneous) to implant materials, my 

thesis has concentrated on the re-attachment of the patellar tendon to proximal tibial 

replacements. The findings can be tailored to suit a number of clinical applications, 

including re-attachment of tendons or ligaments inserting into or around any part of the 

skeleton, which may require replacement with a massive endoprosthesis e.g., rotator cuff 

during shoulder replacement, abductors during hip replacement. The successful re­

attachment of tendons and ligaments in this way provides an interface between the body 

and the implant material that is both functionally and morphologically similar to the 

natural entheses observed. Attachment of tendons in this way re-establishes continuity 

within the musculoskeletal system that is lacking with current methods of tendon-implant 

fixation. A successful method for tendon re-attachment in the form of a viable biological- 

artificial material interface has been presented here. Further work in this field is ongoing 

to determine the long-term outcome of tendon-implant fixation using this method and 

examine the progressive maturation of the tendon-bone-HA-implant interface. A study 

examining the effects of a more open environment on the maturation of the tendon-bone- 

HA-implant interface has begun, in which the patellar tendon has been attached to a 

customised implant base plate with a sleeve of resorbable undyed Vicryl® knitted mesh. 

The interface has been augmented with autogenous cancellous bone and marrow graft and 

will be compared using the same techniques to the closed system presented in Chapter six 

of my thesis. Following endoprosthetic replacement for tumour surgery, the surgeon is 

often required to remove a large amount of the surrounding soft tissues to remain within 

safe surgical parameters. When this happens, some of the length of the tendon is 

sacrificed, and hence no longer reaches its insertion site on the body of the prosthesis.
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Further work is being carried out to develop ways of augmenting tendon length, with the 

use of autograft, allograft and tissue engineered constructs.

The development of a successful seal around transcutaneous prostheses has also been 

presented in my thesis, from cell-implant material interactions in vitro, to tissue layer 

attachment to transcutaneous abutments in vivo. The findings of this research can be 

applied to any implant that penetrates the skin for a prolonged period of time, but are 

principally aimed at the development of amputation prostheses. The attachment of an 

external implant directly to the skeleton via a transcutaneous abutment will totally 

eliminate stump-socket interface complications, which are the principle limiting factors 

for lower limb amputees wanting to return to an active lifestyle. The requirements 

outlined here, for a successful soft-tissue -  implant seal, have been incorporated into a 

prototype implant design and a clinical trial of an intraosseous transcutaneous amputation 

prosthesis has begun. Research into methods to further stabilise the interface is ongoing 

and further work aims to assess the skin-implant interface in clinical trial subjects.

Current methods of re-establishing soft tissue attachments to implants are insufficient and 

result in abnormal gait and altered limb function. It is my hope that the findings of my 

thesis will be incorporated into orthopaedic implant design to improve the quality of life 

of individuals who have undergone surgery which results in disruption of the soft tissue 

attachments that we normally rely on for basic locomotion.
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APPENDIX 1 : CHAPTER TWO

1.1 STATISTICAL ANALYSIS OF PORE NUMBER

Case Processing Summary

Cases
Valid Missing Total

SAMPLE N Percent N Percent N Percent
Number Pedicle 41 100.0% 0 .0% 41 100.0%

of pores Antler 40 100.0% 0 .0% 40 100.0%

Descriptives

SAMPLE Statistic Std. Error
Number Pedicle Mean 18.8049 1.0135
of pores 9 5 % Confidence Lower Bound 16.7566

Interval for Mean Upper Bound 20.8532
5% Trimmed Mean 18.5921
Median 18.0000
Variance 42.111
Std. Deviation 6.4893
Minimum 7.00
Maximum 38.00
Range 31.00
Interquartile Range 1 0 . 0 0 0 0

Skewness .523 .369
Kurtosis .480 .724

Antler Mean 11.8000 .6672
95% Confidence Lower Bound 10.4505
Interval for Mean Upper Bound 13.1495
5% Trimmed Mean 11.6944
Median 1 2 . 0 0 0 0

Variance 17.805
Std. Deviation 4.2196
Minimum 4.00
Maximum 23.00
Range 19.00
Interquartile Range 6 . 0 0 0 0

Skewness .153 .374
Kurtosis .017 .733
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1.2 STATISTICAL ANALYSIS OF PORE SIZE

Case Processing Summary

Cases
Valid Missing Total

Sample N Percent N Percent N Percent
Pore Pedicle 72 100.0% 0 .0% 72 100.0%
sa e  Antler 71 100.0% 0 .0% 71 100.0%

Descriptives

SAMPLE Statistic Std. Error
Pore Pedicle Mean 217.2222 19.0710
s ẑ e  95% Confidence Lower Bound 179.1958

Interval for Mean Upper Bound 255.2487
5% Trimmed Mean 197.2531
Median 160.0000
Variance 26186.54
Std. Deviation 161.8226
Minimum 50.00
Maximum 800.00
Range 750.00
Interquartile Range 190.0000
Skewness 1.975 .283
Kurtosis 3.855 .559

Antler Mean 40.1408 3.1749
95% Confidence Lower Bound 33.8086
interval for Mean Upper Bound 46.4730
5% Trimmed Mean 37.8638
Median 40.0000
Variance 715.694
Std. Deviation 26.7525
Minimum 10.00
Maximum 120.00
Range 110.00
Interquartile Range 40.0000
Skewness 1.109 .285
Kurtosis 1.115 .563
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3.9 FIBROBLAST CELL ADHESION -  48 HOURS

Mean Cell Area (fim) Mean No 
Markers/Cell

Ratio

SPTi 828 38 4.6 xlO'2

SPTiFN 1464 74 5.1x10^

SPTi LN 672 22 3.3 xlO'2

DLC 1733 19 1.1x10^

DLCFN 1078 34 3.2 xlO^

DLC LN 875 16 1.8 xlO'^

RSBTi 1263 18 1.4 xlO'2

RSBTi FN 1055 41 3.9 xlO^

RSBTI LN - - -

3.10 EPITHELIAL CELL ADHESION -  48 HOURS

Mean Cell Area (jun) Mean No 
Markers/Cell

Ratio

SPTi 389 59 0.15

SPTiFN 376 62 0.16

SPTi LN 392 77 0.20

DLC 187 20 0.11

DLCFN 165 37 0.22

DLC LN 207 51 0.25

RSBTI 179 27 0.15

RSBTi FN 168 31 0.18

RSBTi LN 241 52 0.22
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APPENDIX 4 : CHAPTER FIVE

4.1 DOWNGROWTH SUMMARY STATISTICS

PIN TYPE MEAN
DOWNGROWTH
(mm):

ST.
ERROR:

ST.
DEVIATION:

MEDIAN:

MF 3.12 0.46 2.12 3.70
SG 1.83 0.21 0.66 1.61
LG 2.21 0.36 1.24 2.04
RSB 1.96 0.23 0.74 1.84
HA 1.49 0.13 0.L47 1.52
SG + DLC 2.60 0.50 0.71 2.60
LG + DLC 2.19 0.44 0.62 2.19
RSB + DLC 4.10 0.49 0.69 4.10
PTi 3.36 0.59 2.36 2.97
PTi + HA 3.48 0.38 1.42 4.00
PTi + DLC 4.16 0.37 1.16 4.39
PTi + DLC + HA 4.28 0.19 0.59 4.24
P. FLANGE 0.69 0.15 0.58 0.68
HA FLANGE 1.36 0.10 0.29 1.37
100 FN FLANGE 0.94 0.57 1.14 0.72
200 FN FLANGE 0.89 0.15 0.09 0.99

Tests of Normality

Pin Type
Kolmogorov-Smimov

Statistic df Sig.
Downgrowth (mm) MF .197 21 .033

SG .187 10 .200
LG .136 12 .200
RSB .216 10 .200
HA .194 13 .193
SG + DLC .260 2
LG + DLC .260 2
RSB + DLC .260 2
PTi .148 16 .200
PTi + HA .248 14 .019
PTi + DLC .194 10 .200
PTi + DLC + HA .142 10 .200
P Flange .149 16 .200
HA Flange .156 8 .200
100 FN Flange .295 4
200 FN Flange .286 4
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4.2 % EPITHELIAL LAYER ATTACHMENT SUMMARY STATISTICS

PIN TYPE MEAN %
EPITHELIAL
ATT:

ST.
ERROR:

ST.
DEVIATION:

MEDIAN:

MF 38.48 10.35 47.41 37.20
SG 39.80 12.70 40.22 37.50
LG 31.58 9.59 33.22 29.00
RSB 46.90 14.28 45.17 49.00
HA 54.08 14.04 50.61 54.53
SG + DLC 37.00 37.00 52.33 37.00
LG + DLC 50.00 50.00 70.71 50.00
RSB + DLC 50.00 50.00 70.71 50.00
PTi 25.00 11.18 44.72 22.22
PTi + HA 36.00 11.27 42.17 16.00
PTi + DLC 26.20 13.56 42.88 23.56
PTi + DLC + HA 4.50 4.50 14.23 2.50
P. FLANGE 43.75 12.81 51.24 43.06
HA FLANGE 53.38 15.84 44.80 75.00
100 FN FLANGE 55.75 14.91 29.82 44.00
200 FN FLANGE 56.50 19.27 38.54 70.50

Tests of Normality

Pin Type
Kolmogorov-Smirnov

Statistic df Sig.
% Epithelial Layer MF .363 21 .000
Attachment SG .239 10 .111

LG .246 12 .044
RSB .250 10 .075
HA .318 13 .001
SG + DLC .260 2
LG + DLC .260 2
RSB + DLC .260 2
PTi .462 16 .000
PTi + HA .303 14 .001
PTi + DLC .429 10 .000
PTi + DLC + HA .524 10 .000
P Flange .366 16 .000
HA Flange .310 8 .022
100 FN Flange .391 4
200 FN Flange .337 4
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4.3 % SUB - EPITHELIAL LAYER ATTACHMENT SUMMARY STATISTICS

PIN TYPE MEAN %
SUB -
EPITHELIAL
ATT:

ST.
ERROR:

ST.
DEVIATION:

MEDIAN:

MF 72.71 6.23 28.56 78.00
SG 79.10 8.65 27.35 90.50
LG 77.25 8.40 29.11 93.00
RSB 74.30 6.93 21.89 80.00
HA 75.77 5.21 18.79 76.00
SG + DLC 68.50 5.50 7.78 68.50
LG + DLC 59.00 6.00 8.49 59.00
RSB + DLC 55.00 45.00 63.64 55.00
PTi 68.44 8.48 33.94 82.50
PTi + HA 75.36 3.61 13.49 72.50
PTi + DLC 68.20 6.09 19.27 70.50
PTi + DLC + HA 50.00 6.51 20.58 55.50
P. FLANGE 85.56 5.65 22.61 94.00
HA FLANGE 97.75 1.97 5.57 100.00
100 FN FLANGE 92.00 8.00 16.00 100.00
200 FN FLANGE 95.25 2.75 5.50 95.50

Tests of Normality

Pin Type
Kolmogorov-Smirnov

Statistic df Sig.
% Sub-epithelial Soft MF .170 21 .117
Tissue Layer Attachment SG .300 10 .011

LG .265 12 .020
RSB .249 10 .079
HA .111 13 .200
SG + DLC .260 2
LG + DLC .260 2
RSB + DLC .260 2
PTi .246 16 .011
PTi + HA .143 14 .200
PTi + DLC .214 10 .200
PTi + DLC + HA .223 10 .173
P Flange .362 16 .000
HA Flange .464 8 .000
100 FN Flange .441 4
200 FN Flange .306 4

300



APPENDIX 5



APPENDIX 5: CHAPTER SIX

5.1 SPEED ANALYSIS DATA

SIX-
WEEK
Animal

No.

Pre-op 
Speed 

(Mean +/- 
std error)

Post-op
Speed

(Mean+/-std
error)

Post-op
Speed

(Mean+/-std
error)

Post-op
Median

Mann- 
Whitney U p 

value

1379 (HA) 0.86 +/- 0.09 0.86 +/- 0.05 0.79 0.89 0.625
1395 (HA) 0.67 +/- 0.07 0.57+/- 0.01 0.60 0.56 0.295
1398 (HA) 0.55+/- 0.06 0.77 +/- 0.22 0.45 0.48 0.538
1380 (HA) 0.72+/- 0.05 0.72 +/- 0.08 0.66 0.64 0.593
1399 (HA) 0.40+/- 0.02 0.47+/- 0.03 0.42 0.48 0.061
1393 (HA) 0.58+/- 0.04 0.60+/- 0.04 0.56 0.62 0.662

1649(A) 0.56+/- 0.01 0.58+/- 0.04 0.54 0.62 0.099
1384 (A) 0.77+/- 0.04 0.82 +/- 0.04 0.76 0.87 0.264
1381(A) 0.78 +/- 0.06 0.67+/- 0.04 0.73 0.72 0.236
1394 (A) 0.86+/- 0.08 0.85 +/- 0.05 0.88 0.82 0.931
1396 (A) 0.66+/- 0.04 0.67 +/- 0.03 0.59 0.68 0.772
1652 (A) 0.53+/- 0.02 0.49+/- 0.02 0.52 0.50 0.315

TWELVE- 
WEEK 

Animal No.

Pre-op 
Speed 

(Mean +/- 
std error)

Post-op
Speed

(Mean+/-std
error)

Post-op
Speed

(Mean+/-std
error)

Post-op
Median

Mann- 
Whitney U p 

value

1378 (HA) 0.83 +/-0.12 0.79 +/- 0.05 0.69 0.77 0.298
1391 (HA) 1.02+/- 0.07 0.92+/- 0.04 1.04 0.89 0.210
1383 (HA) 0.63+/- 0.02 0.65+/- 0.04 0.62 0.67 0.583
1390 (HA) 0.60+/- 0.03 0.66+/- 0.03 0.56 0.68 0.163
1397 (HA) 0.63+/- 0.04 0.68+/- 0.02 0.63 0.68 0.335
1642 (HA) 0.54+/- 0.05 0.49+/- 0.03 0.50 0.45 0.213

1386 (A) 0.64+/- 0.03 0.57+/- 0.04 0.69 0.55 0.157
1389 (A) 0.85+/- 0.07 0.71+/- 0.05 0.74 0.72 0.254
1387 (A) 0.59+/- 0.01 0.66+/- 0.03 0.58 0.68 0.045
1392 (A) 0.47+/- 0.05 0.60 +/- 0.02 0.43 0.62 0.087
1647 (A) 0.72+/- 0.03 0.77+/- 0.07 0.70 0.78 0.805
1646 (A) 0.91+/-0.09 0.83+/- 0.07 0.87 0.83 0.703
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5.2 SUMMARY AND INDIVIDUAL ANIMAL RANGE DATA

SUMMARY DATA

Group 
Number 
From Box 
Plot Above

Group Mean
(degrees)

Standard
Error

Standard
Deviation

Median Normality
p-value

1 HA Gp Pre-op (6 Wk Gp) 37.80 2.07 5.07 35.82 0.0087

2 HA Gp 6 Wks (6 Wk Gp) 44.61 1.65 4.05 43.84 0.200

3 Auto Gp Pre-op (6 Wk Gp) 42.73 1.92 4.71 42.28 0.200

4 Auto Gp 6 Wks (6 Wk Gp) 50.01 1.90 4.66 50.83 0.200

5 HA Gp Pre-op (12 Wk Gp) 42.27 1.38 3.39 42.03 0.200

6 HA Gp 12 Wks (12 Wk 
Gp)

46.65 1.82 4.45 45.87 0.200

7 Auto Gp Pre-op (12 Wk 
Gp)

46.17 2.63 6.44 45.29 0.200

8 Auto Gp 12 Wks (12 Wk 
Gp)

52.78 2.46 6.03 52.85 0.200

303



SIX-WEEK GROUP -  Stifle joint range (degrees) - Kinematic Gait Analysis

SIX-WEEK 
Animal No.

Pre-op 
Range 

(Mean +/-std 
error)

Post-op
Range

(Mean+/-std
error)

Pre-op
Normality

test

Post-op
Normality

test

Mann 
Whitney U p 

value

1379 (HA) 44.67 +/- 
1.87

43.60 +/- 
1.99

0.170 0.172 0.792

1395 (HA) 43.35 +/- 
0.98

50.53 +/- 
0.78

0 .2 0 0 0 .2 0 0 0.004

1398 (HA) 34.38 +/- 
1.60

44.05 +/- 
3.78

0 .0 0 1 0.148 0.049

1380 (HA) 36.01 +/- 
2.35

42.98 +/- 
1.19

0 .2 0 0 0.065 0.028

1399 (HA) 35.63 +/- 
0.51

47.67 +/- 
3.49

0.199 0.008 0.045

1393 (HA) 31.73+/-
0.89

38.81 +/- 
1.72

0 .2 0 0 0 .0 0 2 0 .0 0 2

1649(A) 46.78 +/- 
2 .2 2

44.16+/-
1.92

0 .2 0 0 0.199 0 .6 6 8

1384 (A) 37.15+/-
2.16

48.27 +/- 
0.87

0.000 0 .2 0 0 0.000

1381 (A) 39.57 +/- 
1.91

4 5 .4 4  +/. 
1.69

0 .2 0 0 0 .0 1 0 0.073

1394 (A) 44.98 +/- 
1.27

54.22 +/- 
4.26

0 .2 0 0 0 .2 0 0 0.065

1396 (A) 39.17+/-
1 .1 1

53.39+/-
2.34

0 .2 0 0 0 .2 0 0 0.003

1652 (A) 48.17+/-
2.69

54.60 +/- 
1 .2 0

0 .2 0 0 0.143 0.109
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5.3 LAG / HYPEREXTENSION DATA

SIX-WEEK GROUP -  Pre and Post-Operative Stifle Joint Extension Angle, and Derived 

Lag or Hyperextension Angle (degrees) for Individual Animals in the Six-Week Group.

SIX- 
WEEKS 

Animal No:

Mean Ext0 angle 
pre-op (degrees)

Mean Ext0 angle 
post-op (degrees)

Lag (-) or Hyper-extension (+) 
Angle (degrees)

1379 (HA) 119.57 116.42 -3.15
1395 (HA) 155.99 135.80 -20.19
1398 (HA) 134.07 121.27 -12.80
1380 (HA) 152.84 124.33 -28.51
1399 (HA) 138.09 130.67 -7.42
1393 (HA) 150.73 134.28 -16.45

1649(A) 136.86 122.13 - 14.73
1384(A) 151.76 136.94 -14.82
1381 (A) 154.44 127.43 -27.01
1394 (A) 146.56 126.97 -19.59
1396(A) 165.77 131.94 -33.83
1652 (A)

TWELVE-WI

Hyperextensic

TWELVE- 
WEEKS 

Animal No:

128.45

iEK GROUP -  Pre- 

>n Angle (degrees) f<

Mean Ext0 angle 
pre-op (degrees)

128.39

and Post-Operative 

3r Individual Animal

Mean Ext0 angle 
post-op (degrees)

-0.06

Stifle Joint Angle, Derived Lag or 

s in the Twelve-Week Group.

Lag (-) or Hyper-extension (+) 
Angle (degrees)

1378 (HA) 142.81 140.90 -1.91
1391 (HA) 136.77 149.13 12.36
1383 (HA) 141.10 145.51 4.41
1390 (HA) 157.37 146.57 - 10.80
1397 (HA) 150.29 136.42 - 13.87
1642 (HA) 125.25 151.45 26.20

1386(A) 129.12 150.84 21.72
1389(A) 145.08 154.55 9.47
1387 (A) 155.97 143.29 - 12.68
1392 (A) 158.45 138.48 - 19.97
1647 (A) 130.35 149.15 18.80
1646 (A) 154.76 143.26 -11.50
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5.5 MESH STUDY SUMMARY

A mesh pilot was used to evaluate an attachment model that did not use the clamp lid, 

thus providing an open environment for the patellar tendon -  base plate construct. The 

surgical procedures were followed from the previous HA and Autograft Groups. 

However, instead of clamping the tendon onto the base plate with the clamp lid, 

absorbable undyed Vicryl ® Mesh (VM 95 from Ethicon Ltd, UK) was used to create a 

sleeve to house the tendon and was sutured to the base plate which was augmented with 

autogenous cancellous bone and marrow graft material. The pilot ran for six-weeks, after 

which time the GRF (Fz) expressed as % Mean Right / Mean Left was 79.85%. This 

value was found to be 14.34% greater than the mean value for the Autograft Group six 

weeks post-operatively.

Histologically, the specimen demonstrated a similar loss of bone graft material at the HA- 

coated interface of the clamp. The absence of the bridging plate meant that the specimen 

was more accessible to the surrounding tissues, allowing earlier revascularisation, 

fibroblast infiltration and collagen matrix production. It also meant that the tendon tissue 

was harder to define from the surrounding tissues. The tissue in the central region above 

the base plate was observed to be a more organised, dense collagenous tissue compared to 

that observed in the Six -Week HA or Autograft Groups. The tendon tissue was 

completely integrated with the remaining visible mesh fibres and there was a vigorous 

inflammatory response observed, immediately associated with the mesh zones. This 

reaction was characterised by the presence of lymphocytes, macrophages and foreign 

body giant cells.
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