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Abstract

The docking problem is to start with unbound conformations for the
components of a complex, and computationally model a near-native
structure for the complex. This thesis describes work in developing
computer programs to tackle both protein/protein and protein/DNA
docking.

Empirical pair potential functions are generated from datasets of
residue/residue interactions. A scoring function was parameterised
and then used to screen possible complexes, generated by the global
search computer algorithm FTDOCK using shape complementarity and
electrostatics, for 9 systems. A correct docking (RMSD < 2.54) is placed
within the top 12% of the pair potential score ranked complexes for all
systems.

The computer software FTDOCK is modified for the docking of proteins to
DNA, starting from the unbound protein and DNA coordinates modelled
computationally. Complexes are then ranked by protein/DNA pair
potentials derived from a database of 20 protein/DNA complexes. A
correct docking (at least 65% of correct contacts) was identified at rank
< 4 for 3 of the 8 complexes. This improved to 4 out of 8 when
the complexes were filtered using experimental data defining the DNA
footprint.

The FTDOCK program was rewritten, and improved pair potential
functions were developed from a set of non-homologous protein/protein
interfaces. The algorithms were tested on a non-homologous set of 18
protein/protein complexes, starting with unbound conformations. Us-
ing cross-validated pair potential functions and the energy minimisation
software MULTIDOCK, a correct docking ( RMSD of C, interface < 7A
and > 25% correct contacts) is found in the top 10 ranks in 6 out of 18
systems.

The current best computational docking algorithms are discussed, and
strategies for improvement are suggested.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 The need for protein/protein and protein/DNA docking

A full description of many biological processes requires knowledge of the three-
dimensional structure of macromolecular complexes. Such structural infor-
mation provides insights into specificity and so can suggest lead compounds
for the development of novel pharmaceutical agents. However, structural
studies by crystallography and NMR often follow a divide and conquer approach,
so that the coordinates of the component molecules are available but the
conformation of the complex is unknown. Indeed in the protein data bank
(PDB)! there is a large discrepancy between the number of determined protein
structures (c. 20 thousand) and the number of protein/protein and protein/DNA
complexes (c. 1000). Computer algorithms are therefore needed to predict
the structure of macromolecular complexes starting from coordinates of the
unbound components. This chapter describes the current computational
strategies that can be employed to solve this problem, and this thesis describes
the work on one strategy from 1996 to 2001.

The crystal structures of protein/protein and protein/DNA complexes have
provided detailed descriptions of the interactions that lead to the specificity
that is central to the biological activity of those systems, such as mechanisms
that lead to disease. Currently we have details of a variety of protein/protein
complexes including enzyme/inhibitor, antibody/antigen, hormone/receptor
and cell surface/cell surface proteins.25

The nature of the inter-protein recognition can be understood in terms
of a general shape complementarity, with specificity provided by particular
spatial constraints from close packing, hydrogen bonds, and charge-charge ion
pairings. Given the full structural information, one could start to alter one of the
proteins to affect its recognition properties. For example, the details of a given
protein/protein complex might suggest that a particular loop is central to the
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interaction. This allows towards the design of lead compounds that could yield
novel drugs. Indeed, there are several lead compounds that have been designed
based on the structure of a protein receptor interacting with a small molecule
ligand (for examples see the 1994 review by Colman®). With the increasing
number of determined protein structures, the determination of protein/protein
complexes by both experiment and modelling should lead to suggestions of new
pharmaceutical agents.

1.1.2 Overview of the computational approach

This chapter will describe various computational strategies used to predict
the structure of protein/protein complexes. The consensus approach to
protein/protein docking is described in Figure 1.1. The precise order of
implementing the steps can differ, but essentially the key features are:

e Start with the three-dimensional structures of two unbound components.
Consider systems that are expected to have limited conformational change
on association.

¢ The rigid-body approximation is then used. This is that one can simulate a
docking starting with unbound components given a limited conformational
change.

e A search is performed over all of the rotational and translational space
that could allow association between the two components. All of this space
must be considered (global scan) when there is no biological information
about which parts of the molecules interact. If however there are some
constraints, these can be used to limit the space of the initial search
(targeted scan). Depending on the algorithm used, constraint information
may instead be used as a post search filter. The search will sample the
space in a discrete manner, and consequently there will be a lower limit
on the difference in conformations between two model complexes that
determines the resolution of the search procedure.

e A function is developed to score the quality of each model complex, often
using simplified terms to evaluate shape and electrostatic complementarity.
There are two reasons for simple functions at this stage. First, as a large
number of different models are generated in a global scan, the scoring
function must be computationally fast to evaluate. Secondly, one requires a
soft function that is not unduly sensitive to the conformational differences
between the model complexes formed from unbound components and the
true complex with its bound components.
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¢ Ideally, the docking algorithm would thereby identify a single model
complex that is a close approximation to the true complex, based on this
complex having the best score (i.e. the lowest energy model). In practice,
the current status of the algorithms is that they generate a limited list of
model complexes ranked on the score, and the objective is that one member
of a short list should be close to the true complex.

o At this stage, a re-ranking of the model complexes can be done, possibly
using more computationally intensive calculations.

¢ Conformational flexibility is generally introduced into the algorithm when
there is only a limited number of models to consider. Perturbations to the
structure of the model complex are made and the energy of the resultant
conformation is evaluated. The aims are both to improve the structural
quality of the model and to improve the power of identifying the best model
from the list of false models that have been generated.

1.1.3 Scope of this thesis

This thesis covers work done mainly between 1996 and 2001. This introductory
chapter therefore includes reference to work done after this time. This includes
the algorithms that have appeared in the wider community, and the Critical
Assessment of PRotein Interactions (CAPRI) trials.

Given the reliance of most methods on starting by a rigid-body docking, the
next section in this chapter will describe the extent of conformational change on
protein/protein association. It will be shown that for many systems, the change
is sufficiently limited to suggest that the rigid-body approach is viable.

The following section of this chapter then describes the algorithms and
software in the Biomolecular Modelling (BMM) group at the Imperial Cancer
Research Fund (ICRF) (now Cancer Research UK) at the end of 1996. The
following chapters will describe the subsequent additions and modifications that
constitute the work that this thesis is reporting on.

The following section is a review of the various computational strategies that
are currently around (mid 2004) and their reported success. This is not an
exhaustive list of every protein/protein docking study, but it does cover the
broad categories of approach to the problem.

A good test of any predictive method is its success in blind trials, of which
there have been several for protein/protein docking. This chapter concludes
with a brief report on the entries and results of those trials.

Chapter 2 covers the work which was reported in the 1999 paper "Use of
Pair Potentials Across Protein Interfaces in Screening Predicted Docked
Complexes".” It was the first use of pair potentials to evaluate the quality of
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possible models resulting from a docking algorithm.

Chapter 3 covers the work which was reported in the 1998 paper "Modelling
repressor proteins binding to DNA".8 This was the first report of protein/DNA
interface pair potentials.

Chapter 4 shows work which integrated the BMM software, and tested it on a
significantly larger set of test cases. Parts of it have been reported elsewhere.®11
This is the methodology that has been used for the CAPRI competitions.

Chapter 5 contains the conclusions to this thesis.

The appendices include a lists my publications connected to this thesis and
a copy of the software manual that is available for the programs I have written
and made available.

1.2 Structural studies of protein complexes

The first step in the development of a protein docking algorithm is to examine the
known complexes to establish the principles of molecular recognition. Following
early work by Chothia,!? there have been reviews that examined the interactions
between hetero-protein complexes.>'13 These analyses have focused on the
static structure of the complexes. A major problem in protein docking is to
cope with the conformational flexibility that occurs on complex formation. This
was addressed by the study of Betts and Sternberg in 1999.3 This analysed
the conformational changes on complex formation for 39 pairs of proteins, from
their unbound states to the formation of protein/protein complexes. The dataset
mainly consisted of enzyme/inhibitor and antibody/antigen complexes, but also
included other systems such as human growth hormone and its receptor.

The conformational differences were evaluated in terms of root mean square
deviations (RMSD), both of C, positions and of side-chain positions. Residues
were identified as exposed when their total relative side-chain accessible area
(main-chain for Gly) was greater than 15%. Interface residues were defined as
having at least one atom within 4A of the other component of the complex.

To assess the significance of the differences between bound and unbound
structures, it is necessary to identify the differences in coordinates that
can occur simply from the crystallographic determination of the structure.
Accordingly, 12 pairs of independently solved crystal structures of identical
proteins were analysed. 92% of this dataset (11 out of 12) had an RMSD for
exposed C, atoms of < 0.6A, and for exposed side-chain atoms of < 1.7A. These
values were taken as the control cut-off values.

Four measures were used for overall conformational change

¢ RMSD of C, atoms for just the interface atoms

¢ RMSD of C, atoms for exposed non-interface atoms
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o RMSD of side-chain atoms for just the interface atoms
¢ RMSD of side-chain atoms for exposed non-interface atoms

It was found that 19 out of the 39 proteins that were involved in complex
formation do not have any of their four measures for conformational change
above the control determined cut-off values. Many of the other proteins showed
changes less than double the cut-off values. Thus for many systems there
is limited overall conformational change on protein/protein association. This
suggests that the rigid-body approach should be widely applicable.

In addition to overall conformational changes, a few individual residues
might show particularly large conformational changes. This could markedly
affect the viability of the rigid-body approach. The control cut-off values for
the movement of an individual residue are 3.0A for the C, and 5.6A for side-
chain atoms. Examination of the complexes showed that all large movements
of exposed residues that were not in the interface can be explained either by
their close proximity to the interface or by structural disorder. For a few of the
systems there are movements of individual or sets of residues in the interface
that are above the control cut-offs. These shifts are intimately involved in the
complex formation. Thus there are several complexes that have substantial
conformational changes for individual or sets of residues, while still having a
limited overall structural perturbation.

The general conclusion from this analysis was that protein/protein inter-
actions are described by the induced fit model. That is to say, complex
formation is accompanied by conformational changes that benefit the formation.
Some examples are illustrated in Figure 1.2. However, for many systems the
extent of conformational change is limited, and a lock-and-key model is a
valid first approximation. Accordingly, for many systems it is appropriate to
develop a protein/protein docking algorithm that starts with the docking of the
components as rigid bodies - i.e. the rigid-body approach. Only as a refinement
is it then necessary to consider the limited conformational changes. The major
caveat is that the systems analysed were dominated by enzyme/inhibitor and
antibody/antigen complexes. Other biological systems may exhibit a greater
degree of conformational change on complex formation.

1.3 BMM protein/protein docking strategy in 1996

In this section, the algorithms developed in the Biomolecular Modelling Lab-
oratory (BMM) at ICRF by the time of CASP2 (December 1996, see 1.5.2) are
described. The other chapters describe work carried out since that time. At that
time the strategy consisted of:
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Figure 1.2: Examples ofdocking to illustrate induced binding in the interface,

(a) Selected binding site residues ofovomucoid when free (2ovo - light grey) and
when bound to a-chymotiypsin (Icho - dark grey), (b) Selected binding site
residues of BPTI when free (4pti - light grey) and when bound to trypsin (2ptc
- dark grey). Scoring functions used for predictive docking must be sufficiently

"soft" to allow for conformational changes ofthis magnitude.
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1. A rigid-body search for putative docked complexes that are favourable in
terms of shape complementarity and electrostatics,

2. The use of biological distance constraints, particularly details of the binding
sites in one or both proteins, to screen the putative complexes.

3. The final refinement and further screening of the rigid-body structure by a
consideration of side-chain conformational change.

Figure 1.3 shows a schematic of this combined approach. The following
sections describe each of the component algorithms in more detail.

1.3.1 FTDock

The first step in most approaches, including that of the BMM group, is the
rigid-body docking of the two molecules to generate a set of complexes. The
Fourier correlation approach introduced by Katchalski-Katzir'4 was used as the
starting point. The software written in the BMM group augmented the method
to include electrostatic effects. The software developed was called FTDOCK, and
the original version was finished in time for CASP2. This original version is
described in this chapter and in a 1997 paper by Gabb.!5 The current (finished
in 2001) implementation is described in chapter 4. What follows is a more
detailed description of the various stages of the algorithm.

The generation of the grid representation

The first step is to change from the coordinates of the structures, as described
in PDB files, to discrete models of the molecules. Each molecule was placed onto
a regular 3-dimensional orthogonal grid. The algorithm requires that both grids
are the same size (NxNxN). The size of grid cell must be sufficiently small to
model the atomic structure of the molecules. However the computational time
increases as the cell size decreases. In this original version of FTDOCK, N was
set at 64 at compile time. This resulted in grid cell sizes from approximately
1.3A to 2.2A on a side, over all the systems that were studied.

The discretisation is done with each molecule at the centre of its own grid.
The empty space not filled by the molecule is necessary for the algorithm, as the
convolution in Fourier space is cyclic. To perform the discretisation, each grid
cell within which an atomic position is found is turned 'on’. Grid cells whose
centre is within 1.8A of any atomic position are also turned on. This value of
1.8A was chosen to approximate an effective van der Waals radius for an atom
combined with any hydrogen atoms that are bound to it. Thus the surface of the
resulting grids represents the atomic surface of the molecules.

Next, the larger static molecule (S) is assigned a surface thickness below
its atomic surface. This means that any grid cell that was turned on by the
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Figure 1.3: Flow chart of the docking algorithm in BMM lab in 1997 for CASP2.
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discretisation algorithm, whose centre is within the surface thickness of a cell
not turned on by that algorithm, now becomes assigned as a surface cell. This
is essential in order to be able to calculate the quality of the fit. For algorithmic
speed, this surfacing procedure is done to the static molecule, and accordingly
it needs to be done only once by the program. The depth of this surface was
1.4A. A slice through such a discretised and surfaced molecule can be seen in
Figure 1.4. The abundance of cells assigned as surface is necessary for complex
formation since we are using a rigid body approximation where steric clashes
are inevitable.

Figure 1.4: Discretisation and surfacing of a slice of 1BRA by FTDOCK.
The protein is shown as spacefilled blue. Those grid cells switched to the internal

deterrent value are shown as red, and those that are surface value are shown
as green. In this diagram, the grid cell size is 0.7A and the surface is 1.3A.
These are values that are used in the current version of FTDOCK, for which
a subroutine was written than allowed for the viewing of the discrete grid as
shown.
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Evaluation of shape complementarity

The grid values s, , , for the static molecule (S), that has been discretised and
then surfaced, at grid cell [,m,n are given by

1 for grid points on the surface of the molecule
Simm = { p for the core of the molecule
0 for outside the molecule
where p is negative (we use -15, see below).
For the second molecule (M), that has just been discretised, the grid values
are given by
1 for the molecule

Mimn =
0 for outside the molecule

The two grids can then be superimposed, and the mobile grid (M) discretely
translated by «, 5,v. The value

St,mn-M—am—B,n—vy

gives the shape complementarity for grid cell /,m,n of the static molecule. If
either grid cells are empty of molecule, then the product is zero, as would be
desired. If the static grid cell has a surface value of 1, and the mobile grid has
a molecule value of 1, then the product is 1, which is positive and favourable.
However, if the static grid cell has a core value of p, and the mobile grid has a
molecule value of 1, then the product is p, which is negative and unfavourable.
The summation of all such values over the grid representing the static molecule
provides the surface complementarity score for a given translation of ¢, 3,7. iLe.
N N N
Cafy =D D D Slmn-Mi-am—Bn—y

=1 m=1n=1

which is a convolution, i.e.

cC=8*xmMm

Figure 1.5 shows this in a 2D analogy.

Use of discrete Fourier transforms

The value of ¢ is a convolution and its calculation requires approximately N3
multiplications (and a summation) for every N2 translations of a, 3,7, resulting
in calculation times proportional to N®. Katchalski-Katzir!4 introduced the use
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of discrete Fourier transforms to speed up the process of calculating c. First
calculate the discrete Fourier transforms of the discrete functions s;,,, and
Mymn. L€ the two grids. Let the resulting transforms be denoted as F(s) and
F(m). The multiplication of these two functions is the Fourier space equivalent
to the convolution of the functions s and m, ie.

F(s*m) = F(s) x F(m)

SO

s*xm = F Y (F(s) x F(m))

where F~! is the reverse Fourier transform. Hence ¢ can be calculated using
Fourier space. The multiplication in Fourier space is of the order N3, and
the Fourler transforms and reverse Fourier transform are dependent on the
discrete Fourier transform algorithm. If performed efficiently then they are of
the order N3logN. So, by using fast discrete Fourier transforms, the time for the
calculation of ¢ for all «, 8,7 is reduced from N to the order of N3 + N3logN, a
reduction by at least N2. Where N is 64, this results in an approximately 3000
fold reduction in computing time.

The global search

The mobile molecule was rotated to sample all possible rotations in as fair a
way as possible. Three rotational angles are required in order to describe the
orientation of a three-dimensional object in a three-dimensional space. These
three Euler angles were sampled at 15°. (Since only integer values are used to
describe the rotations, this limits the angle step used to being an integer factor
of 180.) This results in 360x360x180/15 = 6912 orientations. However, many of
these orientations are degenerate, and so must be removed using the following
relationship.!®

Ty _

where R; is the rotation matrix of the first orientation, R is the transpose of the
rotation matrix of the second orientation, and t¢r is the matrix trace. If o < 1°
then the two orientations are degenerate. Removing degeneracies in this fashion
yields 6385 unique orientations. A finer angular rotation rapidly results in more
orientations, e.g. 22,105 for a sample of 10°.
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Residue | Atom type | Charge (e)
All Cao 0.0
All C 0.0
All N 0.5
All o -0.5
All Terminal N 1.0
All Terminal O -1.0
Arg NH 0.5
Glu OE -0.5
Asp OD -0.5
Lys NZ 1.0
Pro N -1.0

Table 1.1: Charges assigned by FTDOCK to the proteins, used for electrostatic
complementarity calculations.

Electrostatic effects

Both shape complementarity and electrostatic effects are important in the
recognition process during protein complex formation. Accordingly, a treatment
of electrostatics was introduced (which was not present in the original work
by Katchalski-Katzir'4). The charge-charge interaction is evaluated from point
charges of the mobile molecule M interacting with the electric field potential
from static molecule S. This choice results in having to perform the more
computationally intensive potential calculation only once for the static molecule,
whilst the quick charge calculation is performed for every rotation of the
mobile molecule. In the above treatment of rigid-body docking based on shape
complementarity, it is possible for a model complex to place two charges
closer together than would be allowed by van der Waals packing. Since
the potential energy of two interacting charges depends inversely on their
separation, such close placement would result in an artificially very favourable
or very unfavourable interaction. These artificial terms are prevented in the
method used, by setting a lower limit (2A) on the distance at which a charge
effects the field potential.

Charges, as shown in Table 1.1, were assigned to the atoms of molecule S
and the electrostatic potential evaluated from

_ qj
¢l,m,n = E e(rij)"'ij

where ¢, is the potential for grid cell /,m,n (position i), ¢; is the charge on
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atom j, r;; is the distance between i and j (with a minimum value of 2A to
avoid artificially large values of the potential as mentioned above) and &(r;;)
is a distance dependent dielectric function, namely the sigmoidal function of
Hingerty,!” given by

4 for Tij < GA
e(rij) = { 38r;; — 224 for 6A < ry; < 8A
80 for Tij > 8A

This function was originally introduced for modelling the effective dielectric
between atoms in proteins. The rationale for this function is that at close
separation (r;; < 6A), when there is no intervening water molecules, the effective
dielectric is that of protein atoms, and a value of 4 is appropriate. For
separations of 8A or more, the dielectric is dominated by the screening effect
of the intervening water, and so the value for bulk water (80) is used. Between
these two separations a linear interpolation is used. In FTDOCK, precise atomic
positions are not used, but there is still a need to model the complex dielectric
behaviour of proteins in solvent, and so this function was used and found to
perform well.

The potential ¢, ., », is only assigned to grid cells outside and on the surface
region of molecule S. For the core of molecule S, where s; . = p, ¢1mn is zero.
For the mobile molecule M, the charges on the charged atoms are distributed
amongst the closest 8 grid cells.!® Figure 1.6 shows the normalised coordinate
system used.

Given the atomic position of the charged atom, normalised onto the shared
vertex of the 8 neighbouring grid cells, as (z,y, z), the charge on the atom being
g, and the normalised centre of any one of those closest 8 cells as (X,Y, Z), then
the charge given to that cell is

z+ X >(y-&-Y N 2+ 27
X Y VA

q
8><

Each grid cell has a total pseudo-charge that is the summation of all charged
atoms that are in its immediate neighbourhood.

Having now assigned an electric field to each grid cell of S, and electric
charges to each grid cell of M, the electrostatic interaction e, g, for a translation
of o, 3,7 is given by

N N N

€aBy = Z Z Z ¢l,m,n-QI—a,m—[3,n—'y

=1 m=1n=1
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This equation can be seen to be analogous to the equation for the surface
complementarity score c, ., derived above. Hence it is possible to treat the
electrostatic charges in Fourier space in the same way as shape complementarity
is used.

Generation of model complexes

In trials with FTDOCK, it was found that the electrostatic term worked best as
a binary filter. This resulted in a method where complexes with unfavourable
electrostatics were immediately discarded, and the remaining docked structures
ranked by shape complementarity. For a given orientation of the movable
molecule, the shape complementarity correlation function ¢ was examined, and
the three highest scoring models stored. After all orientations were sampled, the
top 4000 of the models were kept for subsequent examination (Figure 1.3).

gl g2

g3

Figure 1.6: Schematic diagram of the method used to distribute an electronic
point charge among its nearest eight grid cells.

The charge is q, with normalised position (z,y, z). The eight grid cells centres’ are
labelled g1 through to ¢8, and their common centre is the origin of the coordinate
system.
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1.3.2 Use of distance constraints

The location of the binding site can yield distance constraints to be used to filter
the model complexes. An intermolecular residue-residue interaction was defined
if any pair of atoms is closer than a 4.5A distance cut-off. This cut-off value
incorporates the van der Waals radii plus the probable error in conformation
of any model complex. One feature of the Fourier correlation method, as
implemented in FTDOCK, is that biological constraints cannot be used to reduce
the initial search, so forcing any pruning of allowed model complexes to be after
a global search.

1.3.3 Finescan

The original FTDOCK implemented a possibility for scanning the space imme-
diately around an already identified model. This scan used a finer angle step,
and the linear translation and orthogonal discretisation was based on a compile
time grid size of 128. This step was used on all the models which passed the
distance constraints filter. (A minor error existed in that this resulted in some
duplicated refined models, but these were not identified and removed.) This step
did improve the results, though not significantly.

1.3.4 Additional screening of models

The above strategy explores and ranks rigid-body model complexes. The next
step is to allow for conformational changes in side-chains, and to consider the
interactions between the proteins at the atomic level. Jackson developed a
procedure,'® MULTIDOCK, that models both side-chain conformational changes
in a mean field approach, together with limited rigid-body shifts between the
components of the model complex. The energy of interaction is evaluated from a
molecular mechanics function.

Potential energy function

The proteins are represented at the atomic level by multiple copies of side-
chains, on a fixed peptide backbone, modelled according to a rotamer library that
gives the commonly occurring side chain conformations.2° The use of a rotamer
library means that side chains adopt a imited number of conformations, rather
than being able to sample every value for bond rotation.

The model description needs to consider the various types of protein/protein
interactions. The terms for van der Waals interactions are taken from the
AMBER force field,%! and atomic charges from the PARSE parameters.?? A
cut-off of 10A is used in the calculation of the non-bonded interactions (van
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der Waals and electrostatic) between atoms. The dielectric screening between
charges is represented by the widely-used distance dependent dielectric

dielectric ¢ = distance of separation in Angstroms

The effect of this dielectric model is that for close separations the value is low,
representing the dielectric due to protein atoms. Thus at a separation of 4A
the dielectric is 4. For larger separation the dielectric increases, so representing
the greater electrostatic screening due to water molecules (that are not included
explicitly).

The starting model generated by FTDoOCK (or another rigid-body docking
approach) is unlikely to be a very good one. A consequence of this is that
there can be unrealistically close approaches of atoms that would distort the
modelling by MULTIDOCK, due to high repulsive van der Waals interactions or
electrostatic effects of large magnitude. To reduce this effect, van der Waals
interactions were truncated to a maximum value of 2.5 kcal/mol. Similarly, an
electrostatic interaction scheme was used in which a minimum allowed distance
separation between two interacting charges is set. This means that atom pairs
that come closer than allowed are re-scaled to realistic values which are no
greater than the approximate sum of their van der Waals radii. The minimum
allowed distances for two charges are 3A for two heavy atoms, 2A for one heavy
atom with a hydrogen, and 1A for two hydrogen atoms. It should be noted
that the treatment of the screening effect of water for larger separations and the
prevention of anomalous electrostatic effects were also included in FTDOCK.

Refinement procedure

The object of the refinement procedure is to move from a completely rigid-
body docking scheme to one that includes both flexibility of the side-chains
together with a limited re-orientation of the two interacting molecules. Thus
the refinement procedure is an iterative two step approach repeated until
convergence involving

1. optimisation of the protein side chain conformations by a self-consistent
mean field approach?3-24

2. rigid-body energy minimisation to relax the protein interface

The mean-field approach

The side chain degrees of freedom are defined by a conformational matrix,
CM, where each rotamer, k, has a probability of CM;;, where the sum of the
probabilities for a given residue, i, must be equal to 1. The potential of mean
force, E(i, k), on the kt* rotamer of residue, 4, is given by
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N K;j

EG,k) = V(xik) + V(Xik Xme) + D D CMV (ks Xi1)
j=1,j#i I=1

where V is the potential energy, xir are the coordinates of atoms in rotamer k
of residue ¢, and x,. are the coordinates of atoms in the protein main chain. N
is the number of residues in the protein, and K is the number of rotamers for
residue j. The first term models the internal energy of the rotamer whilst the
second represents the interaction energy between the rotamer and all the main
chain atoms. These two values are constant for a given rotamer on a given main
chain. The third term models the interaction energy between the rotamer and
all the rotamers of other residues, weighted by their respective probabilities.

Given the effective potentials acting on all K; possible rotamers of residue i,
the Boltzmann principle can be used to calculate the probability of a particular
rotamer

¢—E(ik)/RT
T K e-EGk)/RT

CM, ;.

where R is the Boltzmann constant and T the temperature. The values of
CM, ;. are substituted back into the equation describing E(i,k), and its new
value recalculated. This process is repeated until values of CM;; converge. The
predicted structure corresponds to the rotamer of each residue with the highest
probability. Trials showed that the procedure converged to the same side-
chain rotamers using a number of different schemes for initiating the starting
probabilities in the CM matrix.

Rigid-body energy minimisation

After a complete cycle of mean field optimisation of side-chain conformation,
a rigid-body minimisation is performed on the resultant coordinates of the
new model complex. Only interface residues whose Cz atoms (C, for Gly)
are within 15A of a Cs atom of the other molecule are included in the
minimisation. The larger molecule is kept stationary while the three rotational
and three translational degrees of freedom of the smaller mobile molecule
are varied according to the path determined by the derivatives to minimise
the intermolecular interaction energy. The steepest descents approach for
minimisation is used.

1.3.5 Results

The benchmark used by both Gabb!® and Jackson!® consisted of six en-
zyme/inhibitor and four antibody/antigen complexes. With the exception of




System PDBCode N Ny Rank RMSD (4)
a-chymotrypsinogen / human pancreatic trypsin inhibitor =~ 1CGI?® 93 1 3 1.8
a-chymotrypsin / ovomucoid 1CHO%* 85 5 11 1.2
kallikrein / bovine pancreatic trypsin inhibitor 2KAI?” 349 16 128 1.5
trypsin / bovine pancreatic trypsin inhibitor 2PTC22 205 7 12 1.5
subtilisin / Streptomyces subtilisin inhibitor 2sIC?® 26 2 8 1.8
D1.3 Fyp, / lysozyme IFDL* 636 2 149 2.1
D44.1 Fy / lysozyme IMLC3! 539 4 34 1.2
HyHel-5 Fgy, / lysozyme 3HFL3? 498 2 218 1.8
HyHel-10 F,p, / lysozyme SHFM32 700 4 48 1.1

Table 1.2: Original FTDOCK results as reported in Gabb et al. 1997.
For fuller descriptions of the test systems, see Section 2.2.1. N is the number of complexes left after filtering and finescan. Nyooq
is the number of models that are considered good, by the criteria of having a RMSD < 2.5A from the crystallographic structure.
RMSD is calculated over Caatoms for all residues. The numbers in this table are in some cases slightly lower than those in
reported in 1997 by Gabb!® due to the removal of duplicate structures generated by local refinement after the global scan.
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the coordinates of two antibodies (HyHEL5 and HyHEL10), all the coordinates
were from separately determined unbound components. Table 1.2 presents the
results from FTDOCK. For each complex system, 4000 model complexes were
generated. The value of N shows the number that were left subsequent to a
biological filter and local refinement. As all the enzymes were serine proteinases,
the distance filter for them was that at least one residue in the inhibitor must be
in contact with the one of the catalytic triad residues (i.e. His, Ser or Asp). For
the antibody/antigen systems, the constraint was that the antigen must contact
the third complementarity determining region of either the light or the heavy
chain (CDR-L3 or CDR-H3).

In this study a good prediction was defined as within 2.5A of the correct
structure over the C, atoms of all residues in the complex. The number of good
predictions is shown as Ny,.¢. FTDOCK generated at least one good model in all
bar one of the systems. The results for subtilisin docking to its inhibitor are not
shown, as no good models were generated for this system.

The evaluation of MULTIDOCK was based on these lists. The program was run
on the N models, and the energy function used to re-rank them. Table 1.3 shows
the results, both for when MULTIDOCK was run in vacuo, and for when solvent
was included. The solvent calculations took a large amount of computational
time, so only the two antibodies with more favourable results from the in vacuo
simulations were evaluated, and then only the top 50 models as ranked by
those in vacuo simulations. It can be seen that the ranks are an improvement
on those from FTDOCK for all the enzyme/inhibitors, and for two of the four
antibody/antigens. For the enzyme/inhibitors the results are very good.

Figure 1.7 illustrates how MULTIDOCK is capable of moving a side chain out
from a steric clash and towards its correct position (not shown in the figure).

1.3.6 Implementation of the docking suite

The original distributed version of FTDOCK (version 1.0) had two implemen-
tations of Discrete Fast Fourier Transforms (DFFTs). One was the DFFT
routines from Numerical Recipes Software,3* which can be implemented on
most platforms. The other implementation used the more efficient Silicon
Graphics library functions, suitable for those with SG machines, including
parallel architectures.

The FILTER program implemented the distance constraints. The program
takes a list of inter-molecular constraints which can either be residue to residue,
chain to residue, or chain to chain. Only one from a given list of constraints
needs to be satisfied for the program to accept a model complex as passing the
filter (Le. logical OR).

MULTIDOCK was made available as an executable for a Silicon Graphics
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Figure 1.7: Movement of Arginine in interface of Trypsin complex (IBRC) by
MvuLTID OCK

The chains coloured orange (trypsin) and magenta (inhibitor) are from the rigid
body docking. The chains coloured yellow (trypsin) and green (inhibitor) are from
the MmuLTID ock refinement. Most of the orange chain is in an identical position
to that of the yellow, in which case only the yellow is seen. The cyan residues are
the catalytic triad of'the trypsin. Two distances are shown between an inhibitor
Arginine and the trypsin in the rigid body docking positions, showing that in this
position there is a steric clash. When moved by MuLtiD ock, the Arginine is no
longer clashing (it is fully 'in front' of the catalytic triad Histidine).
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Rank Rank Rank
Systtm N  Ngo FTDOCK EMt EIt L AAGW
1CGI 94 1 3 2 3
ICHO 86 5 11 1 1
2KAI 364 18 130 2 2
2PTC 229 8 16 47 11
2SIC 26 2 8 12 4
IFDL 707 2 176 178 ND
IMLC 590 4 41 110 ND
3HFL 519 2 228 29 39
3HFM 762 6 65 9 4

Table 1.3: Original MULTIDOCK results, as reported in Jackson et al. 1998.
For fuller descriptions of the test systems, see Section 2.2.1. N is the number
of complexes left after filtering and finescan. Nyo.q is the number of models
that are considered good, by the criteria of having a RMSD < 2.5A from the
crystallographic structure. RMSD is calculated over Coatoms for all residues.
The numbers in this table are as in the 1998 paper by Jackson,!® so do not
necessarily agree with those in 1.2, where there was some removal of duplicate
structures generated by local refinement after the global scan.

computer, and since 2001 has also been available as an executable for Linux.
The development of MULTIDOCK included a version that explicitly introduced
solvent molecules.

1.4 Other strategies for protein/protein docking

Different groups have explored a variety of methods for protein/protein docking.
This section reviews the major strategies that have been used, with emphasis on
recent developments.

1.4.1 Evaluation of the results of docking simulations

There is a fundamental problem when comparing different reported results. This
is that each study will tend to use a different calculation for the quality of the
models. Although the calculations themselves are accurate, some values are
more correctly descriptive than others.

In the following summary of the different algorithms to date, little assessment
will be made of how each study evaluated its results. Given that it is not possible
to re-calculate reported values to what may be considered a more correct value
without having the actual coordinates of each model, there is little use in trying
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to quantitatively compare different studies. For a more detailed description of
all the possible measures that can be calculated, see 4.4.

Each study also used a different set of complexes on which it was assessed.
It will be noted whether the study used bound complexes that were re-docked
after having separated the components, or if it used components of unbound
coordinates that were determined separately from the complex. The former does
not reflect a real-world problem. The later is the real-world problem, and is more
difficult since it requires the algorithm to be able to cope with conformational
changes on association. Also, although it will be reported which complexes
that were studied, it will not be noted how hard these cases are. It is however
generally true that smaller enzyme/inhibitor complexes are easier to get good
results for than larger antibody/antigen complexes, and so a study that only
tackled easier cases is possibly of less widely applicable value.

In all the studies, the models that result from the algorithm are sorted
by whichever energy function is used. This results in a ranked list of model
complexes, and in all studies, rank 1 is the best rank, and rank n, where the
algorithm generates n models, is the worst.

1.4.2 Fourier correlation methods

The Fourier correlation method was originally introduced by Katchalski-Katzir!4
in 1992. The original paper emphasised the application to docking bound
complexes. This is the method used, with additions, by FTDOCK.

One of the authors of this work was Vakser, who has continued with this
approach and explored its application to low resolution docking.3®> In this
approach, a low resolution grid (typically several Angstroms) is used. This
leads to representing only the major spatial features of the two molecules. The
surface is therefore smoother, i.e. not at the atomic level, and the search much
faster as the number of cells used to represent the two molecules is far fewer.
This low resolution docking was tested on a database of 475 co-crystallised
protein/protein complexes.® Most of the database were multimeric proteins,
though it also included complexes of the type conventionally studied in docking.
The study considered the binding region to be defined as being within a 10A
region traced out from the centre of mass of the ligand in the true complex.
Hence, a good docking is one which places the centre of mass of the ligand
within 10A of its correct position. Note that the orientation of the ligand is not
considered, only the location of its centre of mass, so a good model will by this
criteria have identified the receptor binding site but not necessarily the correct
section of the ligand surface (see 4.4 for a more detailed evaluation of this). The
docking program GRAMM was run at grid spacing of 6.8A and a rotational step
of 20°. The receptor binding site was recognised by the above criteria in 52%
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of the complexes used. For 113 complexes with a large interface area (> 4,000
A?), the success rate rose to 76%. Hence this low resolution docking provides a
possible tool to delineate a putative binding site in a protein. This could then be
used to provide a filter for results of higher resolution procedures.

Palma3’ has implemented the Katchalski-Katzir algorithm, with various
modifications, but without making use of Fourier space mathematics. By using
grid representations that use logical states, as opposed to numerical values,
and some very fast logical matrix algorithms, they report speeds for simulations
that are in fact faster than those of either FTDOCK or GRAMM. They report
results for systems starting with unbound components which are generally
useful. However, both of the antibody/antigen systems failed.

A new approach for rapid protein/protein docking, HEX, has been introduced
by Ritchie and Kemp,® that employs spherical polar Fourier correlations. This
removes the time consuming requirement of FTDOCK and GRAMM for explicitly
generating different orientations for the mobile molecule. The algorithm
considers both shape complementarity and electrostatic effects. Note that
the approach uses a Fourier correlation but does not use a discrete Fourier
transform as employed by FTDOCK and GRAMM. A full search on a single
workstation is reported as taking around two hours. Importantly, constraints
on the location of the receptor binding site can readily be incorporated, so
reducing the calculation to the order of minutes. In the conventional Fourier
approach (FTDock and GRAMM), knowledge of the binding site in either of the
two molecules was not used to provide such a constraint. The program has been
extensively benchmarked on unbound docking and yields results that suggest it
is a valuable tool.

It has been standard with those methods based on algorithms using Fourier
convolution, such as FTDOCK, that filtering is done after a global scan.
Since the grid representation loses information about which residues are being
represented, it was not obvious how a biological filter could be introduced
during a global scan. However, this problem has been solved by Ben-Zeev and
Eisenstein,3® using complex numbers in the grid, and using the imaginary part
to represent biologically derived constraints.

ZDOCK% is a more recent rigid body Fourier grid method. The scoring
function uses pairwise shape complementarity, desolvation and electrostatics.
The shape complementarity function is somewhat different from that used by
FTDOCK. A favourable value is given by a count of all atom pairings across
the interface. Unfavourable values are then assigned to all overlap cases,
with increasing severity of 9, 27, and 81 to surface/surface, surface/core,
and core/core overlap. The desolvation term is calculated from the ACE*!
potential. The electrostatic term is not simply a binary filter as used in FTDOCK.
These three terms are variously weighted to what is considered to allow for the
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correct balance of the respective terms towards an overall potential. RDOCK*2
is a second stage refinement that performs an energy minimisation using the
molecular mechanics software CHARMM. 43

1.4.3 Other rigid-body docking approaches

Janin and coworkers** in 1991 used spheres of different radii to model residues,
and docked the resultant structures so as to maximise the buried surface area.
The resultant initial models were refined using a Monte Carlo search. In a Monte
Carlo search, trial perturbations are generated randomly from the existing state.
A perturbation is always accepted if it reduces the energy, and may also be
accepted if the energy increases but is below a statistical value determined by
Boltzmann'’s principle. After the Monte Carlo search, a full atomic representation
(apart from hydrogen) was restored. An energy minimisation was then performed
that allowed the side-chains in the predicted interface to move. Note that the
selection of initial models examined to include flexibility is constrained by the
rigid-body approximation. The method was tested on two unbound docking
systems,*4 resulting in one system for which a native-like solution was generated
at rank three.

The DOCK algorithm, developed by Kuntz and his group, is widely used in the
community for the docking of low molecular weight ligands to protein receptor. It
can however also be applied to protein/protein docking.4® The DOCK approach
fills the binding site of one protein (the receptor) with a cluster of overlapping
spheres. Then the algorithm matches the sphere centres of this cluster with
similar clusters from the ligand protein. Predicted models are then ranked in
terms of a score for residue-residue contact. In the early study on docking
starting with unbound complexes,*® individual atoms from the molecules had to
be manually truncated to obtain good results. Although there were suggestions
of which atoms were mobile, from the crystallographic thermal parameters
present in the coordinate file, in other simulations it may not be known in
advance which atoms need to be truncated. This approach has been developed
further for macromolecular docking by Hendrix.#¢ The method consists of
three steps: defining the shape-based sites that define putative docking
locations; docking using these site points; and scoring the docked complex.
Complexes were scored using van der Waals and electrostatic interactions
calculated from the AMBER program with united-atom parameters.2! The
method was benchmarked on re-docking several complexes starting from the
bound coordinates. The approach was then used to suggest a model for the
docking of human growth hormone to its receptor.

The groups of Wolfson and Nussinov have developed an approach for docking
approach based on matching critical points.4”-4° These points define the knobs
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and holes on the two interacting surfaces. Both surface points and surface
normals are matched. The approach can be implemented as a fast program,
and a global search takes of the order of minutes. After the search, putative
solutions are checked to penalise overlap. In addition, the extent of hydrophobic
packing across the interface is assessed. The method was recently tested on four
different protease/inhibitor systems starting with unbound components and two
bound antibody / unbound antigen complexes. For each system studied, several
sets of coordinates were used in different runs of the program. The RMSD was
taken between the true and predicted ligand after optimally superposing the
receptor. Rankings of the first structure with an RMSD of 5A or lower were
between 1 and 600, with several systems having rank 10 or better. The variance
of results with the different sets of coordinates showed that the method proved
sensitive to the precise starting set of coordinates for a given biological complex.
This highlights that for other algorithms (including FTDOCK) it is important to
assess the dependency of the results on the precise starting coordinates.

Lenhof?° has developed an approach for docking based on the identification
of points on the surface of each molecule that could be equivalenced in a close-
packed docked complex. The search for possible rigid-body models is then
sped up by considering which sets of three points on one molecule could be
equivalenced to three points on the other molecule. Suitable model complexes
are then scored in terms of the geometric match between atoms followed by
consideration of the chemical complementarity of the match. Trials starting
from unbound components showed that for several, but not all systems, the
method yielded lists of a few complexes (< 10), one of which was close (< 4A
RMSD) to the native. This method has been extended to include a treatment of
side-chain flexibility in a subsequent screening®'[1.4.6].

Ausiello®? has developed a docking procedure named ESCHER. The method
starts with shape complementarity based on slices along the z axis of the protein
surface mapped to sets of polygons. Complementarity is assessed by the close
approach of polygon vertices between the two docked molecules. Steric clashes
and charge complementarity are then evaluated. The quality of the results is
assessed from the RMSD of the predicted model complex from the best attainable
model. Only one true unbound docking system was studied (chymotrypsin
/ ovomucoid inhibitor), and a good structure (RMSD for the complex < 2.0A)
was obtained at rank three. In addition, similar results were obtained for two
complexes in modelling the docking of bound antibody to unbound antigen.

1.4.4 Flexible protein/protein docking

Totrov and Abagyan®3 developed a method that introduces side-chain flexibility
early in the search procedure. The approach was applied to the unbound
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docking of hen lysozyme to the bound conformation of the combining site of
antibody HyHEL5. An initial set of starting conformations are generated that
sample space. Then a Monte Carlo search is performed starting with random
rigid-body translations (see 1.4.3 for a brief description of the Monte Carlo
procedure). Following each translation, side chain torsion angles were allowed to
vary, and the energy of the resultant model complex minimised. This procedure
was run to identify the set of conformations close to (within 20 kcal/mol) to
the best possible model. In this system, this leads to 30 models that were
then subjected to extensive energy minimisation, including both rigid-body
translations and side-chain rotations. The lowest energy model complex was
close the native complex. When the antibody coordinates were superimposed,
the RMSD for the C,, C and N backbone lysozyme atoms was 1.6A. The primary
limitation to this method was its use of bound conformation antibody, therefore
requiring the algorithm to introduce conformational movement in only one
component of the complex. This makes the method of limited value to a real-
world problem. However, a major factor in deciding to show the ability of the
algorithm in this limited fashion, must have been resources. The procedure was
reported in 1994, and was very time consuming, taking 500 hours (three weeks)
of computing time on a state-of-the-art workstation of that time (AXP3000/400).

More recently, the above method has been updated. The method is essentially
the same, but a rigid body Monte Carlo search is done prior to the flexible Monte
Carlo search.5455

1.4.5 Rigid-body treatment to re-rank model complexes

Evaluation of a scoring function to assess the stereochemistry of model com-
plexes is a central feature of all docking algorithms. However, additional
methods can be applied to re-rank model complexes. We will distinguish between
whether the re-evaluation treats the model complexes as rigid bodies, or if
the procedure includes conformational flexibility to refine the model before re-
ranking. This section deals with the former, the next section with the later.

One rigid body method was developed by Jackson and Sternberg,% and is
referred to as the continuum model. This approach evaluated the electrostatic
and hydrophobic energy contributions to a set of putative docked complexes,
treating the solvent macroscopically (i.e. as a continuum), rather than explicitly
including the solvent atoms. The total electrostatic energy of binding involves
the loss of interaction between the solvent and each of the protein components
independently, followed by the interaction between the two protein components
of the complex. The algorithm treated each protein as a low dielectric
surrounded by a high dielectric solvent. The electrostatic contributions were
evaluated using the program DelPhi.3” This program maps the protein/solvent
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system onto a grid, and then calculates the resultant electrostatic effects
considering both the local dielectric (protein or solvent) and the local charge
distribution. In the continuum model, the position of polar hydrogens were
optimised prior to the calculation of the electrostatic effects.

The hydrophobic effect was quantified in terms of the change to the molecular
surface (MS) when the two proteins dock.%® Generally the hydrophobic effect is
quantified in continuum modelling as being proportional to the change in solvent
accessible surface (SAS) area,?® where SAS is the surface traced by the centroid
of a hypothetical water molecule (solvent probe) as it rolls along the surface of the
protein.?® Molecular surface can be considered as the surface representing the
protein/solvent-probe interface. Previously Jackson and Sternberg® suggested
that MS provides a better model for the hydrophobic effect than SAS.

The continuum method was applied to re-rank the results on three en-
zyme/inhibitor systems generated from the docking of unbound components
using DOCK.45 The continuum model was able to identify a near native solutions
as having particularly low energies.

Another approach to re-rank model complexes treated as rigid bodies was
developed by Robert and Janin.%! They developed a new soft mean-field potential
derived from analysis of protein/protein contacts in crystal structures. A
hydrophobic-hydrophobic atom potential was applied to screen putative docked
complexes generated by the approach of Cherfils,** see 1.4.3 above. Four
systems were studied: a reconstitution of the bound components of barnase
and barstar, two systems starting with unbound coordinates (3-lactamase / (-
lactamase inhibitor, and chymotrypsin / ovomucoid), and one system of bound
antibody to unbound lysozyme. For the first three of these systems studied, the
lowest free energy model complex was considered a good prediction, being within
2.5A of the true complex. In the fourth system, such a good solution was found
at rank two. Thus the potentials were highly effective in screening for a good
model complex in this limited set of systems.

1.4.6 Introduction of flexibility to re-rank putative docked com-
plexes

A method to include side-chain flexibility into the refinement and re-ranking of
docked complexes has been developed by Weng.52 The algorithm was tested
on three enzyme/inhibitor systems generated from the docking of unbound
components using DOCK,%® the same as those studied for the evaluation of
the continuum model by Jackson and Sternberg®® (see 1.4.5 above). The
conformation of inhibitor side chains buried in the docked complex with
the enzyme were examined with an exhaustive conformational search for
energetically more stable positions using CONGEN.%3 The resultant models were
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then scored by a measure of their relative energetic stability, the function
considering the electrostatic interaction between the molecules, desolvation
and side-chain conformational entropy. Desolvation was evaluated using the
rapid approach of being considered proportional to the change in accessible
surface area, where the constant of proportionality depends on the nature of
the atom.%* Side-chain conformational entropy was assumed to be proportional
to the change in solvent accessible surface.®%:56 For each model complex, the
procedure lead to the identification of a native-like model as having the lowest
energy of association. In addition, there was a general improvement in the
agreement between the native and predicted geometry of the side-chains whose
conformations were adjusted.

A method that provides an extensive sampling of side-chain conformations
has been recently reported by Althaus.5! The set of rigid-body model complexes
for screening were generated by the method of Lenhof,5 described in section
1.4.3. All side chains with rotatable bonds to non-hydrogen atoms that are
part of the interface of the model complex are considered. A combinatorial
search for favourable orientations is undertaken using computational methods
(dead-end elimination and branch-and-bound) to prune the search space and
thereby speed up the calculation. The model complexes are evaluated in a
method similar to the continuum model of Jackson and Sternberg.5¢ The study
considered three enzyme/inhibitor systems, for each of which the lowest energy
conformation was reported as close to the native complex.

More recent work by Gray and Baker has brought together a wide range of
algorithms and scoring functions, many of which have been used separately
in other studies. The method®”:%® uses a Monte Carlo search in a rigid-body
approximation, followed by a Monte Carlo refinement of the models allowing
backbone and side-chain movement. The resulting models are finally ranked
by an energy function. This energy function is made up of several calculated
values, including van der Waals interactions and a solvation model.

1.5 Blind trials of protein/protein docking

As mentioned above (1.4.1), there are several problems in comparing the success
of docking approaches from different groups. In 4.4 there is a full discussion
of the different measures that can be used to report the agreement between
a predicted and the true complex. The largest problem in comparing between
different groups’ reported results is the difficulty of translating between the
different measures. (It is in fact impossible unless the coordinates of every
model are made available.) Another problem is that of optimising an approach
until it is successful when working on reproducing the docked structures of
known complexes. In addition, a developer may be aware of specific features of
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the stereochemistry of the known complexes, and include these features in an
algorithm, leading to a bias towards known rather than unknown targets.

In recognition of these problems the docking community has had, and contin-
ues to have, blind tests of protein/protein docking. In these evaluations, docking
groups were supplied coordinates of the components of a protein/protein
complex. The challenge was to predict the structure of the complex prior to
its structure being reported.

1.5.1 The Alberta Challenge

The first test, the Alberta challenge, was organised by James and Strynadka in
1996.%° It involved docking the coordinates of unbound S-lactamase to those of
its unbound inhibitor. Six groups submitted entries (see Table 1.4). The results
were impressive because all entrants identified as their favoured suggestion a
model that had an RMSD for superimposed C, atoms of no more than 2.5A.
However some groups submitted other entries that were far from the correct
structure. Many of the entries used a biological filter requiring that the inhibitor
docked to the known active site of 3-lactase.

The closest prediction to the true structure, submitted by Eisenstein and
Katchalski-Katzir, had an RMSD of all superimposed C, atoms of 1.1A,
which corresponds to an RMSD for the inhibitor C, atoms of 4.6A when the
enzyme was optimally superposed. Their successful approach employed the
Fourier correlation method developed by Katchalski-Katzir.!4 Their version only
considered rigid-body shape complementarity which clearly was sufficient in this
system for a successful prediction.

Four other groups each performed a global search and submitted a model
between 1.9A and 2.5A RMSD over all C, atoms from the true complex,
corresponding to an RMSD for the inhibitor C, atoms of between 4.0A and
6.6A. Two methods were totally rigid-body dockings: the DOCK approach from
Shoichet and Kuntz*5 (section 1.4.3), and the comparison of protein surfaces
using a smoothed representation from Duncan, Rao and Olson.”® The model
submitted by Janin, Cherfils and Zimmerman** (section 1.4.3) started with
a rigid-body docking, and then included side-chain optimisation. Only one
approach, from Abagyan and Totrov, used a procedure®® (section 1.4.4) that
incorporated flexibility at an early stage of the search procedure.

These results suggest that for this system, the rigid-body approximation is
appropriate for docking simulation. In addition, the different approaches to
match surfaces yield broadly similar results.

In contrast to the other five submissions that performed a global search,
Jackson & Sternberg used an implementation of the continuum model®®
(section 1.4.5) for screening results generated by the DOCK algorithm. They



RMSD (A) of RMSD (A) range RMSD (A) of
Group Number of  best ranked  of other models best ranked
models (Over (Over (Over
whole complex) whole complex) inhibitor)

Abagyan & Totrov 3 1.9 11.3 — 16.2 6.6
Duncan, Rao, & Olson 14 1.9 2.0-17.7 4.5
Eisenstein & Katchalski-Katzir 3 1.1 134 — 14.1 3.4
Jackson & Sternberg 1 1.9 N/A 4.0
Janin, Cherfils, & Zimmerman 4 2.5 2.5 - 16.0 6.1
Shoichet & Kuntz 15 1.8 2.3 - 18.7 3.8

Table 1.4: Results of the Alberta Docking Challenge.%°
There are two RMSD values used. Over whole complex was calculated over the main-chain atoms for the whole complex. Over
inhibitor was calculated over the main-chain atoms for the inhibitor, after optimally superposing the enzyme.
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were able to identify a single preferred complex that was close to the native.

1.5.2 CASP2

The second test was as part of the Second Critical Assessment of Tech-
niques for Protein Structure Prediction (CASP2).7! The target was an anti-
body/haemagglutinin complex. Coordinates of unbound haemagglutinin and
bound antibody were supplied. This was a difficult target given the size of the
complex, and only four groups entered. Multiple entries were allowed, to which
confidences then had to be assigned such that the total was 100%.

No group submitted any entry that was close to the true complex (Table 1.5).
The best averaged prediction was from Vakser.”2 Only one model was submitted
and this ylelded an RMSD for the interface C, atoms of the antibody of
9.5A, calculated after optimally superposing the haemagglutinin. However this
prediction did not have any correct contacts. A correct contact was defined as
trans-interface residues with atoms that are separated by less than their van
der Waals radii plus 1A. The submission was based on the Katchalski-Katzir
Fourier method, implemented for low-resolution search in Vakser’s program
GRAMM.3%.72 The single prediction that was closest to the native (an RMSD of
8.5A calculated as before) was also based on the Fourier correlation method,
as implemented by the ICRF group of Sternberg, Jackson and Gabb using
FTDocCK and MULTIDOCK. However, since the approach did not provide a clear

Group Number of RMSD (A) Number of Correct Contacts
models mean minimum mean maximum

DelLisi 2 18.3 15.1 4.5 5

Rees 2 32.3 30.6 0 0

Sternberg 8 20.2 8.5 1.8 8

Vakser 1 9.5 9.5 0 0o

Table 1.5: Results of CASP2 Docking Challenge.

The RMSD calculations are of interface Fab C, atoms after optimal superposition
of the haemagglutinins. The interface atoms of the antibody are those within 8A
of the haemagglutinin. Correct residue-residue contacts are defined as where
the trans-interface residues have at least one atom-atom distance less than the
sum of their van der Waals radii plus 1A. There were a total of 59 contacts in
the true complex. The mean values refer to the weighted scores from all the
predictions.
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single confident prediction, 8 entries were submitted with associated confidence
values, as allowed by the competition. This best single prediction did contain
correct contacts. There were two other entries using other approaches. Rees
and coworkers used a matching of surfaces using graph theory,”® and DeLisi
and coworkers used an implementation of Weng®? (see 1.4.6).

From only two blind trials, one cannot draw definitive conclusions. However,
in both challenges the Fourier correlation approach of Katchalski-Katzir yielded
the best submission, which suggests that it can be considered as a valuable
strategy for macromolecular docking.

1.5.3 CAPRI

Occurring after the work in this thesis was completed, the Critical Assessment of
PRediction of Interactions (CAPRI) evaluations are a major step forward from the
above two tests. 13 targets over 4 rounds of the competition have been assessed
to date (April 2004). The number of groups/people submitting entries has varied
from 16 to 25 (the latest round). These include both groups who have been in
the field for over a decade, and others who are new to it.

The assessment of the quality of structures’* set three bands of quality of
prediction (plus failure). These are shown in Table 1.6. The High quality is a
great deal more stringent than most people have used to date in papers to show
the success of their algorithms, and could be said to be excellent. The Medium
quality is closer to what most would consider a good model. The Acceptable
quality is only really acceptable in the sense that it would be a good starting
point for further algorithms to refine a model from, and in itself is very poor.

Looking at which groups have done well after 13 targets, it is possible to
start ranking the abilities of the algorithms. However, it should be noted that
the algorithms are being changed constantly, and specifics of these changes
after the second round are not necessarily known. The Abagyan group, Baker
group, Camacho and Weng groups have so far modelled four different targets at
Medium or High qualities. Ritchie, the Ten Eyck and Wang groups have so far
modelled three targets at Medium or High qualities, and ClusPro, the Eisenstein
and Sternberg groups two. Other groups have modelled one target to date to
such a quality.

The software in this thesis was used by the Sternberg group. Collectively
referred to as 3D-Dock, the only additional algorithm to this work was the use of
a clustering algorithm before the use of MULTIDOCK. Manual intervention was
also used immediately prior to submission. Particular success was achieved
with Target 06; alpha-amylase complex camelid antibody VH domain 3. The
RMSD was below 1A, and 56 out of 65 correct interface pairs were modelled.!!

SmoothDock, used by the Camacho group,’® is a combination of using
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Rank frat L_rms (A) or L_rms (A)
High >05 <1.0 or <1.0
Medium >0.3 1.0<z<5.0 orl0<z<20
Acceptable >0.1 50< <100 or2.0<z<4.0
Incorrect <01

Table 1.6: Criteria for Ranking the CAPRI Predictions.”*
Column 1 defines the quality of a prediction. f,,;: is the fraction of native contacts
defined as the number of native residue-residue contacts in the predicted
complex divided by the number of native contacts in the target. A contact is
defined as when a pair of residues on different sides of the interface have any
of their atoms within a 5A distance. L_rms is the backbone rms displacement
of the ligands in the predicted versus the target structures computed after the
receptors of these structures have been superimposed. The I_rms is the rms
displacement of the interface residues only, in the predicted versus the target
complexes. An interface residue is defined as a residue that looses accessible
surface area when the two proteins in the target complex associate.

DOT,!4 a desolvation and electrostatics filter, clustering and refinement. It is
of particular interest because it does not really represent anything new in terms
of algorithms, but shows good success by its combination of already existing
tools. Of particular note is the way in which the filters are applied in a logical
OR manner. 500 models are allowed through by the desolvation filter, and
1500 by the electrostatics filter. This is aimed at trying to include different
modes of association, and the refinement step can still remove models that are
unfavourable by either criteria.

1.6 Energy landscape for protein docking

This chapter has considered predictive protein/protein docking. There remains,
however, a related question of how two molecules can associate within the time
observed biologically. The problem is that association rates for protein/protein
docking would be of the order 103M~1s~! if they were just governed by diffusion
and a correction for orientational constraints. However, observed rates are
typically far faster, being of the order of 10°M~1's~!. This large difference
is often attributed to long range effects, particularly long range electrostatic
steering. Janin’® has shown that long-range electrostatic steering can enhance
association rates by up to 10° fold.

Zhang”” has since modelled the energy surface near the native docked
complex in terms of empirical atomic contact energies and Coulomb electrostatic
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interactions. The Coulomb interaction has a distance dependent dielectric and
a cut-off of 20A. Thus the energy surface does not consider long-range effects.
The study showed that the energy gradient provided by the surface provides
a funnel towards the docked structure that increases the probability that an
encounter will evolve into the stable complex by about 400 fold. Given the
simplified treatment of the interaction energy, in real systems energy funnels
could provide even greater enhancements for the rates of association. Thus,
even without long-range electrostatic effects, energy funnels provide a possible
explanation for the observed relatively rapid association rates. More generally,
the role of funnels in directing protein folding and function has been reviewed
by Tsai.”

1.7 Conclusion

This chapter has shown that there are a variety of algorithms and methods
available to tackle protein/protein docking. Although they have had varying
success, together they help further development in the field.

Chapter 2 will show the work which constituted the first use of empirically
derived residue pair potentials to evaluate the quality of possible models
resulting from a docking algorithm.

Chapter 3 contains both some of the first work in docking protein repressors
to DNA, and the first report of protein/DNA interface pair potentials.

Chapter 4 displays a thorough testing of the work started in Chapter 2, and
also develops better pair potentials.

These chapters do not provide a best solution to the docking problem.
However, they do provide a different approach, and this is useful in itself. This
was original work, and constitutes a useful addition to the toolkit available for
protein/protein docking. Residue level pair potentials have an advantage of
being fast to calculate, making it easily possible to incorporate them into other
methods that currently do not use them.
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Chapter 2

Protein/Protein Docking

2.1 Introduction

The diversity of interactions between residues provides the specificity of recogni-
tion in protein folding and ligand binding. A simple model for these interactions
is provided by residue/residue pair potentials. These have been widely used to
evaluate the stability of protein fold predictions. In this chapter, pair potentials
are used to identify a near-native predicted model for a protein/protein complex
from decoys of false positives obtained from the FTDoOCK rigid-body docking
program.

The protein docking problem is to start with coordinates of two molecules
in their uncomplexed state and hence predict the structure of the complex. A
solution to this problem is becoming increasingly important as the number of
experimentally determined protein structures (or protein domains) is increasing
rapidly, without the corresponding characterisation of their docked complexes.
Advances in computing have lead to the development of several algorithms
that tackle the step of exhaustively searching all rigid-body dockings. The
approaches primarily match shape complementarity without too many steric
clashes. Some then filter on burial of hydrophobic surfaces and/or electrostatic
complementarity (see Sections 1.4.2 & 1.4.3).

For many test systems, these approaches generate one or more complexes
that are close to the native (typically root-mean-square distance (RMSD) for C
atoms of less than 2.5A at the interface) but also generate several false positives
of comparable score to the true positive. The scoring function used during
exhaustive searching must be fast to evaluate. However, more sophisticated and
time consuming treatments can be applied as a subsequent step of screening a
limited set of alternative dockings (see Sections 1.4.5 & 1.4.6).

Strategies that have been explored for a subsequent screening include
atomic solvation potentials, empirical functions for atom/atom surface con-
tacts, and continuum models with Poisson-Boltzmann electrostatic calcula-
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tions.45:56.62.79.80  These approaches require a decomposition of the effects
stabilising the complex with consequential simplifications and omissions. In
addition, the treatment of electrostatic effects is particularly sensitive to atomic
positions, so these screening approaches tend to have a limited radius of
convergence. Also, some of these approaches are time-consuming and so are
less appropriate for screening hundreds of complexes. Therefore there is a
requirement for an alternative strategy for screening that is both robust, with
respect to the detailed atomic interaction, and fast enough to be applied to a
large set of complexes.

These considerations have led us to evaluate the use of residue/residue
pair potentials for screening docked complexes. Following earlier work,8!:82
several groups have derived these potentials from frequencies of residue/residue
pairs in an appropriate database of experimentally determined protein struc-
tures.838% The theory is that by applying Boltzmann’s principle to the ratio
of observed to expected frequencies of pairings between two residue types one
obtains an estimate of the mean force potential between those two residue
types. This potential should then incorporate all the pertinent thermodynamic
effects, including protein/solvent effects, interresidue van der Waals forces,
and electrostatic interactions. The use of residue level (rather than atomic
level) potentials provides a smoothness in the energy landscape that is likely
to reduce the sensitivity of the function to precise atomic position. In addition,
residue/residue potentials are fast to evaluate.

Residue pair potentials are often used in protein fold recognition (ie.
threading) to evaluate the fit of a sequence of unknown structure onto a known
fold.83-86.90 In addition, the potentials can be used to evaluate simplified
folding simulations,®! including those on lattices. However, several problems
have been identified in simply applying Boltzmann's equation to observed
frequencies to obtain a potential of mean force.%2%4 In particular, the difficulty
in correctly identifying the random state and the validity of the quasi-chemical
approximation that neglects the chain connectivity have been emphasised by
some investigators.92:9¢ With the quasi-chemical approximation there remains
several possible reference states, including one that is purely compositional
(mole-fraction) or one that incorporates the differing tendencies of residues to
make pairs (contact-fraction).

In this chapter, the problems of deriving potential of mean force from pairing
frequencies are acknowledged, and the formalism is simply used to derive a
statistical log odds ratio. These log odds were then used to screen docked
complexes generated by FTDOCK in the study by Gabb.!®

This chapter describes the same work as in the 1999 paper by Moont et al..”
Although chapter 4 greatly extended the work on the datasets used to generate
the pair potentials, this work established some basic facts which encouraged
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further work. Possibly the most important of these is the ability of pair potentials
to avoid low rankings, extreme false negatives, as compared to other scoring
methods. It also showed that pair potentials have a usefully large radius of
convergence. Finally, it showed that the mole-fraction random model for the
expected pairings was the better model to use for pair potentials in docking.

2.2 Methods

2.2.1 protein/protein complexes

All of the methods of residue potentials were evaluated on the set of possible
complexes generated by FTDOCK, on the same systems as used in the study of
FTDOCK by Gabb!® (Table 1.2). The ten systems used in that study were a large
dataset for that time. It was known that there was at least one correct docking in
these lists of possible complexes for 9 out of the 10 systems. A correct docking
was described as when the RMSD between the prediction and the experimentally
determined complex was 2.5A or less for the C, of the interface. The interface
is considered to comprise of residues within 10A of the opposing protein, and
the superposition was done using all C, atoms in the complex. The one system
where there was no correct docked structure to be found was not used.

The enzyme-inhibitor systems consisted of the following experimentally
determined complexes and components of those complexes (with their PDB
codes):

1. CHI, human pancreatic trypsin inhibitor (1apt)®® / a-chymotrypsinogen
(1chg).?® The PDB code of the complex is 1cgi.?5

2. CHO, ovomucoid (20v0)®? / a-chymotrypsin (5cha).®® The PDB code of the
complex is 1cho.26

3. KAlI, bovine pancreatic trypsin inhibitor (1bpi)®° / kallikrein A (2pka).2” The
PDB code of the complex is 2kai.??

4. PTC, bovine pancreatic trypsin inhibitor (4pti)!% / trypsin (2ptn).!°! The
PDB code of the complex is 2ptc.28

5. SNI, chymotrypsin inhibitor 2 (2¢i2)!92 / subtilisin (1sup).!3 The PDB code
of the complex is 2sni.2®

The antibody-antigen systems used consisted of the following F,;’s and F,’s
bound to lysozyme (11za):104

1. FDL, D1.3 F,, (1vfa),1%5 complex (1fd}).3°

2. MLC, D44.1 F, (1mlb),3! complex (1mlc).3!
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3. HFL, HyHel-5 F,; (2hfl).32
4. HFM, HyHel-10 F,; (3hfm).33

Native crystal structures for the antibody in 2hfl and 3hfm were not yet solved.
Therefore the bound forms of the F,;’s were used in HFL and HFM docking. Only
the F, regions of 1mlb, 2hfl, and 3hfm were used during docking.

2.2.2 Pair potentials

In order to generate an empirical pair potential there were three main consider-
ations; which dataset to use, what ‘level’ the potentials should be at, and which
random model to use in order to calculate the expected values.

Datasets

The ideal dataset for generating a pair potential to be used across a pro-
tein/protein interface would be one generated from other such interfaces.
However, at the time of the work being done, the number of such interfaces was
small. Using a recent study of the time,!%¢ 11 non-homologous interfaces with
resolutions of 2.5A or better were found. From the same study, 23 homodimer
interfaces with resolutions of 2.5A or better were also found. These two datasets
were both tested, though their small size was of evident concern.

The other dataset used was that of a set of non-homologous domains.
Although this would result in a pair potential generated from intramolecular
pairings, as opposed to the intermolecular pairings across a docked interface,
there is evidence that at least some docked interfaces have a composition closer
to that of a protein domain core than the average protein surface.!? The
dataset was created by using the Structural Classification of Proteins (SCOP)!%7
database (version 1.37). The best resolution structure of each superfamily was
taken for each of the superfamilies in the first four fold classes (a, 3, a/8, a+g).
Superfamilies where there was no structure with a resolutions of 2.5A or better
were ignored. The dataset totalled to 385 domains, listed in Table 2.1.

Table 2.1: Dataset of 385 domains used to generate
matrices. The range can be either "all" of the PDB file,
or a chain identifier, followed by (a colon and) a range,
which can either be "all” or the range of residue IDs.

PDB range PDB range PDB range
1351 all laac all laba all
labr B:1- 140 lads all lafw A:25-293

continued on next page
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Dataset of 385 domains used to generate matrices.
The range can be either "all" of the PDB file, or a chain
identifier, followed by (a colon and) a range, which can
either be "all" or the range of residue IDs.

continued from previous page

PDB range PDB range PDB range
lah6 all lahs Aall laie all
laih A:all laij H:36 - 256 lail all

lajs A:all lak4 C:all lako all
lakz all lalk A:all lalo -:81 -193
lalo -:194 - 310 | lalo -:311 - 442 laly all
lamm -:1-85 laof A:134 -567 | laol all
laor A:211-605 | laor A:1-210 larb all
laru all laxn all layl all
l1bam all 1bco -:481 - 560 1bdo all
1beo all 1ber A9 -137 lbgl  A:220 - 333
l1bgl  A:731-1023 | 1bia -:64 - 270 1bkf all
1bme all 1bpl -:1-217 1bpy A:10-91
1brs D:all 1btk A:all 1bvl all

lceil all lcem all lcex all

1cfy A:all 1chd all lchm A:2-156
lcly -1256 - 461 | 1lcka A:all lckm A:11-238
lecmb A:all 1cpo -:1-119 lcse E:all
lcse L:all lcsh all letf all

1ctj all lctt -:11-150 lcuk -:156 - 203
lcuk -:65 - 142 lcxs A:626 - 780 | lcxs A:1-625
lcyo all ldar -:283-400 | ldar  -:477 -599
ldar -:600 - 689 | 1ldco A:all 1ddt -:381 - 535
ldea A:all lder A:2 - 526 lder A:137-409
1dik -:510-874 | 1dik -:377 - 505 ldnp A:201 -469
1dnp A:1-200 ldor A:all ldos A:all
1dup A:all lecm A:all lefn B:all
lefu A:297 -393 | lema all lepn E:all
lesc all lesf A:1-120 lesf A:121-233
lezm -:154 -298 | lezm -:1-153 1fbt A:all
1fid all 1fie A:516 - 627 | lfip A:all
1ffm A:all 1fnb -:19 - 154 lfnb  -:155-314
1frd all 1fua all 1fui A:356 - 591
1fui A:1-355 1fur A:all 1fvk A:65 - 128

continued on next page
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Dataset of 385 domains used to generate matrices.
The range can be either "all" of the PDB file, or a chain
identifier, followed by (a colon and) a range, which can
either be "all" or the range of residue IDs.

continued from previous page

PDB range PDB range PDB range
1fxd all 1gad 0:149 - 312 | 1lgar A:all
1gdo A:all 1giln -:306 - 468 | 1gof -:11-150
1gof -1151 - 537 | 1got B:all 1gpb all
1gpl -:337 - 449 | 1gpm A:3-207 1gpm A:405 - 525
lgpr all lg -2 -79 lg -:80 - 158
1gtq A:all 1gtr A:339 -547 | 1gua B:all
1gvp all 1gym all 1gzi all
lhal -:8-92 lhan -12-132 lher A:all
lhcz -11-250 lhcz -:168 - 230 | lhiw A:all
lhoe all 1hpm -:4-188 l1hrd A:1 -194
lhsb A:1-181 lhxn all 1hxp A2 -177
lidk all lido all lifc all

ligd all lihf A:all liow -:11-96
liow -:97 - 306 lisa A:1-82 liso all

ljac A:1 -B:18 | 1jbc all 1ljet A:all
1jhg A:all 1jpc all lkap P:247 -470
1kid all 1knb all 1kpt A:all
llam -:11-159 1lba all 1lbu -:1-83
11dg -1164 - 329 | llis all 1lit all
11kk A:all 1lla -:2-379 1lts A4 -C:236
1luc A:all 1mka A:all 1lmla -:3-307
lmla -:1128-197 | Ilmng  A:93-203 1mol A:all
1mrj all lmsc all 1msk all
lmty B:all lmty G:all 1mzm all
Inba A:all 1nbc A:all Inci A:all
Infn all 1nox all lnpk all
1nsy A:all 1nul A:all 1nzy A:all
loac A:301 - 724 | loac A:91 - 185 loac A:5-90
lobw A:all lone A:142 - 436 | lone A:l - 141
lonr A:all lopd all lorc all
losp O:all lotf A:all loun A:all
lpam A:583-686 | lpau A:150-B:401 | lpax -:662 - 796
lpbn all lpca -14A - 99A lpda -:220- 307

continued on next page
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Dataset of 385 domains used to generate matrices.
The range can be either "all” of the PDB file, or a chain
identifier, followed by (a colon and) a range, which can
either be "all" or the range of residue IDs.

continued from previous page

PDB range PDB range PDB range
1pdo all 1ptk A:all 1pgs -:4 - 140
1phc all 1php all 1phr all
lpky  A:70-167 | 1pky A:351-470 | 1plq -1-126
1pmi all l1pne all 1poa all
1pox A:183-365 | 1ppn all 1ppr M:1 - 156
1prc C:all 1puc all 1pud all
lpya A:1 -B:310 | 1gba -:201-337 | 1ra9 all
lrai A:1 -150 lrai B:1-100 1rcf all
lreg X:all 1req A:2 - 560 lreq A:561 - 728
1rge A:all 1rgp all 1ris all

1rla A:all 1rlr -:110-221 1rdr -:1221 - 748
1rpo all lrro all 1rsy all
1rtm 1:73-104 | 1rvv A:all lscu A:122 - 288
1sei A:all 1sfe -:93-176 1sfe -112 -92
1sft A:2 - 383 1sft A:12-244 1slu A:all
l1smd  -:404-496 | lsmn A:all 1smp I:all
1sri A:all lsry A:1-110 1stm A:all
ltad A:57 - 177 1taf A:all 1tca all
1tdt A:all 1tfe all 1tfr all
1thw all 1tif all 1tig all
1tml all 1tph 1:all 1trk A:3 - 337
1trk A:535-680 | 1tta A:all 1tul all
1tup A:all 1tvx A:all 1tys all
1tyu all lu9a all luae all
lubi all lutg all luxy -:3-200
luxy -:201 - 342 | 1v39 all lvao  A:274 - 560
lvee all lvdf A:all 1vhh all
1vhr A:all lvie all lvin -:181 - 308
1vls all lvmo A:all lvnce all
lvom -:34-79 lwap A:all lwba all
1whi all 1lwho all 1wpo A:all
1xgs A:195-271 | 1xgs A:1-295 1xso A:all
1xxa A:all 1xyz A:all lyge -:150 - 839

continued on next page
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Dataset of 385 domains used to generate matrices.
The range can be either "all" of the PDB file, or a chain
identifier, followed by (a colon and) a range, which can

either be "all” or the range of residue IDs.

continued from previous page

PDB range PDB range PDB range
lyge -11-149 lytb A:61 - 155 1ytf B:all
1ytf C:all lyve 1:308 - 595 | lyve 1:83 - 307
256b A:all 2abk all 2arc A:all
2bbk H:all 2bnh all 2bop A:all
2cba all 2chs A:all 2cpl all
2ctc all 2dtr -:65 - 140 2dtr -:148 - 226
2end all 2eng all 2erl all
2gyl A:all 2hft -:1 -106 2hmz A:all
2ilk all 2kau A:all 2kau B:all
2kau C:2-475 2kau C:130-567 | 2mas A:all
2mem all 2nac A:1-374 2ora -:1-149
2pcd A:all 2phl A:11-210 2phy all
2pii all 2reb -1269 - 328 | 2rhe all
2rn2 all 2rsl A:all 2sil all
2sns all 2spc A:all 2tct -2 - 67
2tct -:68-208 | 2tmd A:341-729 | 2trc P:all
2tsl -:1228 - 319 | 2tsl -1 -217 2tys A:all
2tys B:all 2zta A:all 3bcl all
3bto A:1-374 3chy all 3cla all
3cox -:319 - 450 | 3dpa -11-119 3dpa -:120-218
3grs -:118-363 | 3grs -:364 -478 | 3mdd A:242-395
3min A:all 3pmg A:1-190 |3pmg A:421-561
3sdh A:all 3sic L:all 4aah A:all
4fgf all 4pga A:all 5eas -:124 - 220
5eas -:221 - 548 | 5p21 all 6gsv A:85-217
7acn -:629 - 754 | 7acn -:12 - 528 7rsa all
8abp all 8ruc A:148 - 475 | 8ruc A9 - 147
end
Level

For this work, several different ‘levels’ of pair potentials were tested. The level
is a measure of how specific the pair potential is to individual components of
protein structures. The four levels studied here were; (i) residue level using Cg
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atoms, (ii) residue level using all atoms, (iii) residue level using all side-chain
atoms, and (iv) atom level. This is best clarified by showing how each type of
pair potential was generated.

To generate the Cg potentials, the number of pairings between each type of
residue were counted. A pair, p; ;, was defined as occurring between residues
and j if the Cg atoms in the two residues were within a given distance cut-off
(Cq for Gly). In the case of the intramolecular pairings, the pairs were within a
domain. In the case of the interfaces and homodimers, the pairs spanned an
interface.

For the residue level potential based on all atoms, a pair, p; ;, was defined as
occurring between residues ¢ and j if any of the atoms in the two residues were
within a given distance cut-off. Similarly for the residue level potential based
on all side-chain atoms, a pair, p;; , was defined as occurring between residues
i and j if any of the side-chain atoms in the two residues were within a given
distance cut-off (C, was counted as side-chain for Gly).

For the atom level potential, each atom on every residue was assigned an
atom type. We used 40 atom types, the same used as in a previous study of
atom level pair potentials.!98 To generate the potential we then did essentially
the same as was done for the residue level potentials. A pair was defined as
occurring between atom types ¢ and j if they were within a given distance cut-
off.

Random model

There were two methods used for calculating the expected number of pairs
between residues i and j. Both assume a quasi-chemical approximation that
the amino acids are not parts of connected polymers.?* One, the mole-
fraction method, e(moie— fraction)i,j» 18 proportional to the product of the fractional
abundances of the two residues in the pair. The other, the contact-fraction
method, e(contact—fraction)i,j» 1S proportional to the propensities of the two residues
to be paired with any residue at all. ie.

ng 1Ny
€(mole—fraction)i,j — P x ’N‘ X 7\%

pi DPj
€(contact— fraction)i,j = P x ﬁl X Fg

7=20

pi= Y pij
=1



PROTEIN/PROTEIN DOCKING 56

where n; and n; are the total occurrences of each residue.

For all the types of pair potential that were generated, it was considered
necessary for the expected value of any given pair to be at least 5. If the expected
value was lower than this it was considered to show that there was not enough
data to generate a useful pair potential value. Where this occurred, the pair
potential value for that pair was made equal to zero. This was not common
for most types of pair potential, but did sometimes occur with small distance
cut-off values. However, in the case of the atom level calculations using the
heterodimer and homodimer datasets, there was not enough data to make even
a small number of the expected values large enough to be acceptable. Therefore
we did not use those datasets for atom level pair potentials.

The score, s;;, for each pair was then taken as the log fraction of the actual
count and the expected count.

8ij = Sji = 10810(2:—'1')

The value of the score for each pair can be considered as a statistical measure
of the likelihood of that pair occurring. Since the quantity is a log fraction, the
total likelihood for a structure is the sum of all the individual scores. A widely
used approach is to equivalence this method to Boltzmann’s law, %% and thereby
relate the negative of the log fraction to an estimate of relative free energies for
different residue pairings. This was not done for this work, though it would not
alter the actual results.

Figure 2.1 shows the 205 different scores of a residue level potential based
on all atoms, calculated using e(nole— fractiony With a distance cut-off of 8A. There
is a score value for each type of residue-residue pair, including pairings where
the type is identical. The charge-charge interactions have score values of the
expected sign (apart from the case of arg-arg), and pairings between hydrophobic
residues have generally positive values. This is because hydrophobic residues
tend to pair, yet the mole-fraction method does not take into account this
information. The values calculated using e(contact—fraction) €Xhibited this feature
to a lesser extent.
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Figure 2.1: Example Pair Potential Matrix.
A graphical representation of an example matrix, generated from 385 SCOP
domains, using all atoms and €(mle- fraction) With a 8A cut-off.

Scoring docked structures

A score was calculated for a complex by summing the appropriate scores of pairs
that spanned the interface of the complex. The pairs were considered to exist
in exactly the same way as when generating the matrices. That meant that the
exact method of scoring was different for each different type of pair potential.

A minimum relative surface accessibility (MRSA) was used as a further
constraint on whether two residues are paired.!1? The program used to calculate
this value was naccess, written by Simon Hubbard when at University College
London (present URL is http://wolf.bms.umist.ac.uk/naccess/). This was used
to assign a relative percentage accessibility value to a reside while in the
unbound state, by dividing the accessible area of the residue by its accessibility
in a standard conformation. By making the constraint that both residues in the
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bound pair have to have had at least a given MRSA while unbound, residues
that were not accessible when unbound ( either buried or on the surface but
largely unexposed ) could be ignored.

There were two parameters which were varied to find the optimum values;
the distance cut-off and the MRSA. For the residue level potential based on
Cp atoms, the distance cut-off was varied from 5 to 15A at 1A steps. For the
other three types of potential, the variation was from 4 to 10A at 1A steps.
The difference was due to the first type being essentially a measurement of
interresidue distance, whereas the other three are all measuring interatom
distance. The MRSA for all methods was varied at values of 0, 5 and 20%.

The list of structures were then sorted according to their pair potential scores,
and the positions in the sorted list of correct structures was determined.

Where it was found that the native complex, with a given parameter set,
would have less than 20 pairs across the interface, that parameter set was not
used. This was because the results were found to be too erratic when less than
this number of pairs were involved, especially if a good result was due to, for
example, only 3 pairs. This often occurred when the MRSA was high and the
distance cut-off was low.

The primary value of interest was the rank at which at least one correct
structure could be found in all of the test systems. To enable fair comparison
between different test systems, the absolute rank was converted in to a
percentage rank. This was because filtering of the output of FTDOCK had
resulted in the length of lists differing by over an order of magnitude, from 26 to
762, and an absolute rank would not take this into consideration.

2.3 Results

2.3.1 Screening unbound complexes with pair potentials

Table 2.2 shows all the results using the optimal parameters for each method.
The majority of the pair potential methods improve in ranking correct dockings
high up the list of complexes compared to the ranking by FTDOCK (which
puts a correct docking within 43.8%). The FTDOCK rank is from the shape
complementarity value given by the FTDOCK program.!® Although the FTDOCK
algorithm is good at being able to generate a correct docking in a small list of
complexes, it is not so succesful at selecting within that list.

The key observations are that the best dataset for any given level or random
model of pair potential is intramolecular, and that the mole-fraction random
model is better for all levels and datasets. The only exception to this is for the all
side-chain atoms pair potential with the homodimer dataset, where the contact-
fraction random model is better. It is not clear why this type of pair potential



Type

Cp—Cp

Residue All atoms
Residue Side-chain atoms
Atom - Atom

Cp-Cp

Residue All atoms
Residue Side-chain atoms
Atom - Atom

Percentage Ranks

Heterodimers Homodimers Intramolecular
molar | contact molar | contact molar | contact
32.3 72.9 33.6 48.4 29.9 35.8
22.0 43.4 27.3 46.2 16.3 30.1
21.3 60.7 29.8 18.9 11.8 41.9
38.7 53.8

Parameters

Heterodimers Homodimers Intramolecular
molar | contact molar | contact molar | contact
14A, 0% | 11A, 0% || 14A, 5% | 144, 0% || 6A, 5% | 14A, 0%
10A,0% | 7A,0% || 8A,5% | 4A, 5% || 6A, 5% | 8A, 0%
7A,0% | 5A,0% || 5A 0% | 4A, 0% || 6A, 5% | 10A, 0%
7A,0% | 3A, 5%

Table 2.2: Results for all Datasets, Levels, and Random Models.

The top half of the table shows the percentage down the list at which at least one good (within 2.5A of the correct structure)
complex is found for all the systems, for that dataset, level, and random model. The lower half gives the parameters used; the

distance cut-off (in A) and the MRSA (as a percentage).

DNINOO( NIZLOVJ /NIALOA]
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breaks the trend.

Two types of pair potentials performed particularly well; the residue level
potential based on all atoms and the residue level potential based on all side-
chain atoms. The best result is for the residue level all side-chain atoms type
using the intramolecular dataset and a mole-fraction calculated expected. There
is very small difference between these two types with the other two datasets
using the mole-fraction calculated expected method.

Table 2.2 also shows that the MRSA value of the optimal parameters is either
0% or 5%, but never 20%. This may show that using 20% excludes some still
useful pairings. However, since there were results with a 20% MRSA parameter
(not shown) not significantly worse than the best parameters shown in the table,
it is hard to be sure of making any firm conclusion from this.

Table 2.3 shows the absolute rankings for the best results, namely using the
residue level all side-chain atoms potential with a cut-off of 6A and an MRSA
of 5%. Pair potentials substantially improve on the ranking for all the systems,
apart from for PTC, where the rank is only just below. Table 2.3 also shows that
the pair potentials are better at ranking all the correct structures towards the
top. The worst rank they produce is still in the top 40% of the list. Compared to
this, FTDOCK can put correct dockings right at the end of the list.

Table 2.4 shows where the actual crystal structure is ranked when it is
included into the list of possible dockings produced by FTDoOCK. The ranking
is that given when using the same method as produced the best results (i.e. all
side-chain atoms potential with a cut-off of 6A and an MRSA of 5%). Clearly
the rank is rarely the ideal top rank that was desired, and although the ranks
for the enzyme-inhibitor systems still seem to be acceptable, the ranks given for
the antibody-antigen systems are very bad. This shows that however good the
method to produce a list of possible dockings for the pair potentials to evaluate
is, the pair potentials used here are on their own unlikely to improve much on
what they are currently capable of when given results from the present version
of FTDOCK.

Figure 2.2 shows how the values for the best ranks vary with the distance
cut-off parameter (MRSA = 5%). It shows that the method is stable around
the optimal parameter for the best method. Therefore, even if the optimal
parameters chosen using these test systems are not ideal for another system,
they should still produce results which are useful.

2.3.2 Control - bound complexes

To investigate how sensitive the pair potential algorithm is to precise atomic
positions, the experiment was repeated using the best performing pair potential
(side-chain atoms, 6A cut-off, 5% MRSA, €(mole—fraction)). this time using the
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System Rank at which ...
first correct solution found || all correct solutions found
l N l N good || FTDOCK | pair potentials || FTDOCK | pair potentials
CGI | 93 1 3 2 3 2
CHO | 85 5 11 6 39 23
KAI | 349 16 128 13 336 131
PTC | 205 7 12 14 145 49
SNI | 26 2 8 1 23 4
FDL | 636 2 149 75 401 89
MLC | 539 4 34 24 493 182
HFL | 498 2 218 36 416 153
HFM | 700 4 48 6 342 220

Table 2.3: Best Results : Residue Side-chain atoms potential with a 6A cut-off
and MRSA of 5% using e(mole— fraction)-

System | N | Rank |
cGl |93 | 5
CHO | 85 | 12
KAl [349| 9
PTC [205| 5
SNI | 26 | 1
FDL |636 | 283
MLC |539 | 259
HFL |498 | 246
HFM | 700 | 120

Table 2.4: Ranking of Correct Structure : Residue Side-chain atoms potential
with a 6A cut-off and MRSA of 5% USINg e(moie— fraction)-

Key for Tables 2.3 and 2.4: N is the number of possible dockings generated
by FTDOCK for that system, after biological filtering. N good is the number of
those possible dockings which are within 2.5A of the correct structure. The
parameter values are the distance cut-off (in A), and the minimum relative
surface accessibility (MRSA) as a percentage.
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Figure 2.2: Stability of Results around the Minima.

bound forms of the two parts of each system. Table 2.5 shows that the results of
the bound forms are no better than those of the unbound. Hence the algorithm
is clearly able to cope well with the side-chain flexibility that occurs when two
unbound proteins dock.

System Rank at which ...
first correct solution found ( all correct solutions found
I N | N good || FTDOCK | pair potentials || FTDOCK | pair potentials
CGI | 123 11 2 1 59 12
CHO | 170 9 23 25 138 65
KAI | 370 18 24 14 287 188
PTC | 410 7 59 47 309 151
SNI 44 11 5 1 42 20
FDL | 574 1 210 62 210 62
MLC | 464 5 2 48 215 183
HFL | 708 5 68 43 299 210
HFM | 578 1 94 13 94 13

Table 2.5: Best Bound Results : Residue Side-chain atoms potential with a 6A
cut-off and MRSA of 5% usIng emole— fraction)-
For key see Table 2.3.
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2.3.3 Combining algorithms

Pair potentials, although producing false positives, never rank a correct struc-
ture as completely wrong. This is shown by the all-inclusive rank, which is the
lowest rank of any correct docking (Table 2.3). In contrast, the scoring functions
of FTDOCK and MULTIDOCK (see below), produce large all-inclusive ranks that
are of little use. The MULTIDOCK algorithm, developed by Richard Jackson while
in the group, is a simulation which allows for movement of side-chains into
lower energy states, once a complex is formed. When run on the same dataset
as used in this study,!® the best ranks were comparable to those given by pair
potentials, but the all-inclusive rank showed that correct dockings can be placed
as completely wrong.

Accordingly, it was investigated whether the two algorithms could be run
sequentially in order to produce a useful combined rank. By cutting the pair
potential score ranked list of complexes at a given percentage down the list, it
could still be guaranteed that at least one correct docking was still present, so
allowing for fewer complexes to be evaluated by MULTIDOCK. MULTIDOCK is a
computationally intensive and time consuming program, so this trimming of the
number of structures for MULTIDOCK to evaluate has a clear added benefit of
greatly reducing the computational requirements. It was decided to cut the list
at 25% down the list, over double the length at which a correct docking was
always found. This whole combined process is illustrated in Figure 2.3.

From the previous work,!® the ranks that MULTIDOCK gave for the systems
were already available. Once the lists were cut to the smaller sizes, the
MULTIDOCK ranks were re-ordered, so giving a combined rank. Table 2.6 shows
all the results together. The FTDOCK ranks were not used in the combination,
and are for comparison only.

The combined rank clearly improves beyond either pair potentials or MUL-
TIDOCK alone. Due to the order in which the algorithms were applied, it is
impossible for the combined rank to be worse than that for MULTIDOCK alone,
but it is possible for it to be worse than the rank given by pair potentials
alone. This shows in SNI where there is a deterioration in its rank from the
pair potential rank. However, overall, the distance down the list of complexes at
which all systems have a correct docking is reduced. This is particularly found
in the antibody-antigen systems, where there was more scope for improvement.
All the systems now have a correct docking within the top 8%, as opposed to the
top 12% for pair potentials alone, or top 34% for MULTIDOCK alone.

This therefore shows that a combined approach to filtering a list of complexes
can yield better results than single algorithms alone, and that pair potentials are
particularly useful in reducing a list of possible complexes.
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Rank at which at least
System one correct solution found combined
I N I N good || FTDOCK | pair potentials | MULTIDOCK || N good | Rank
CGI | 93 1 3 2 2 1 2
CHO | 85 5 11 6 1 4 1
KAI | 349 16 128 13 2 12 2
PTC | 205 7 12 14 23 7 3
SNI | 26 2 8 1 12 2 2
FDL | 636 2 149 75 211 2 38
MLC | 539 4 34 24 101 2 21
HFL | 498 2 218 36 29 1 29
HFM | 700 4 48 6 9 2 2

Table 2.6: Best Combined Results : Residue Side-chain atoms potential with a
64 cut-off and MRSA of 5% using €(mole— fraction)-
For key see Table 2.3.

2.3.4 Control - significance of results above random

In some of the systems studied, FTDOCK generates several dockings which are
correct. It is possible that in a list of a limited size, with a large number of
correct solutions to find, that our algorithms for screening a correct docking
from the complexes generated by FTDOCK, though seemingly impressive, were
not performing any better than chance. We therefore ran simulations of placing
Ngood solutions in a list of length N, to see what the probability was of obtaining
our ranks or better. For each system, the computer simulation was run 10,000
times, and used a random number generator.

Table 2.7 shows that for most systems, the probability of obtaining by chance
the observed rank or better is small. As the probabilities are independent of
each other, the total probability of getting all these ranks or better together is
the multiple of the probabilities for each individual system. Thus the success of
each algorithm can be expressed as a single number. These values show that all
the algorithms are well above random, and there is a clear progression to better
values in the order FTDOCK =—> MULTIDOCK = pair potentials = combined
method. If for a given algorithm, the probability of getting the rank given for any
system was 50/50 (i.e. a coin toss), then the combined probability of success in
9 systems would be (0.5)°, which is 0.002. All of our algorithms do better than
this.
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System Probability of getting rank
] N I N good (| FTDOCK | pair potentials | MULTIDOCK Lcombined
CGI | 93 1 0.031 0.023 0.023 0.023
CHO | 85 5 0.504 0.311 0.058 0.058
KAI | 349 16 0.999 0.466 0.092 0.092
PTC | 205 7 0.352 0.401 0.579 0.099
SNI | 26 2 0.530 0.082 0.724 0.159
FDL | 636 2 0.417 0.218 0.554 0.114
MLC | 539 4 0.230 0.166 0.567 0.144
HFL | 498 2 0.690 0.144 0.116 0.116
HFM | 700 4 0.256 0.034 0.051 0.010
Total Probabilities || 5+ 10~ 24108 | 1+1077 | 4s1071

Table 2.7: Probabilities showing significance of results.

For key see Table 2.3.
System FTDOCK MULTIDOCK || pair potentials combined
RMSD | PCP || RMSD | PCP || RMSD | PCP RMSD | PCP
CaGI 11.61 | 0.0 6.05 20.0 || 7.96 0.0 6.05 20.0
CHO 8.29 17.4 || 1.52 73.9 || 6.20 21.7 1.52 73.9
KAI 7.13 11.1 || 4.85 5.6 6.28 5.6 4.85 5.6
PTC 5.98 10.5 || 6.57 5.3 7.79 0.0 5.00 21.1
SNI 5.98 4.8 7.52 9.5 1.56 28.6 8.49 4.8
FDL 8.59 0.0 12.96 | 0.0 9.46 11.1 4.68 22.2
MLC 12.20 | 0.0 9.28 21.1 |} 9.86 10.5 10.04 | 0.0
HFL 10.68 | 15.4 || 10.27 | 0.0 12.92 | 0.0 10.27 | 0.0
HFM 1794 | 0.0 17.70 | 3.2 10.09 | 0.0 13.63 | 3.2

Table 2.8: False Positives : RMSD (A) and Percentage Correct Pairs for top ranks.
Key: RMSD RMSD (in Angstroms) from crystal structure. PCP Percentage
Correct Pairs compared to crystal structure. Pairs considered up to distance
of 6A. Pair Potential is Residue Side-chain atoms potential with a 6A cut-off and
MRSA of 5% using e(mole—fraction)-
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2.3.5 False positives

Table 2.8 shows the RMSD and percentage correct pairs for the top ranked
structure for each method. It can be seen that FTDOCK does not have any
top rank with both less than 6A RMSD and more than 20% correct pairs. Both
MULTIDOCK and pair potentials have one top rank with an RMSD of less than
6A and more than 20% correct pairs. The best method by these criteria is the
combined method with three such top ranks.

The reasons why the false positive structures are ranked at the top are not
consistent. Since all the structures in the ranked list have been filtered, there
is for the four trypsin complexes, at least one residue of the catalytic triad
is in the interface, and for the antibody complexes, at least a single antigen
residue in contact with the H3 or L3 CDRs. However, compared to any lower
ranked incorrect structure, there is no increase in hydrophobic pairs across the
interface, or salt bridges for the top rank. Overall, there is no discernible single
reason why the false positives are ranked as they are.

2.3.6 Relationship of score to correct pairs

Looking at all the systems together, an initial examination for a relationship
between rankings and RMSD for the structures being screened was performed
for each of the algorithms; FTDOCK. MULTIDOCK and pair potentials (RPDOCK).
None was observed. However, when the percentage of correct pairs formed by the
known complex, which are then found in the complex, were considered instead
of RMS, relationships were observed (Figures 2.4, 2.6 and 2.5). A pair was
considered to exist between two residues if any of the side chain atoms in the two
residues were within 6A of each other. There is still no discernible relationship
with shape complementarity ranks from FTDOCK. However, pair potentials now
show a clear relationship, even when the percentage of correct pairs is as low
as 50%. MULTIDOCK also shows a relationship, which although not as good
overall, is in fact better when the percentage of correct pairs is above 70%.
This shows that though pair potentials have a larger radius of convergence than
MULTIDOCK, once a complex is very near to the correct solution, MULTIDOCK
will select it to a higher rank.

These results are consistent with the level of representation used in the
modelling. Only surfaces are considered by FTDOCK, pair potentials are at the
residue level, while MULTIDOCK is at the atomic level. The order in which the two
rankings are integrated to produce the combined rank is a consequence of their
different relationships and radii of convergence. For protein complexes with
limited conformational change on association, this stepwise refinement, from
a discretised molecular representation via residue pair potentials to an atomic
representation, provides a useful strategy to predict docked protein complexes.
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2.4 Discussion and Conclusion

The key conclusion of this study was that pair potentials have considerable
power in correctly selecting correct dockings from a list of complexes. Although
the scoring function also produces false-positives, pair potentials can position a
correctly docked complex at or near the top of a score-ranked list. Possibly more
importantly, the pair potentials avoid low ranking, extreme false negatives, as
compared to the other scoring methods.

This study also shows that of the various models proposed for the random
state required in generating pair potentials, it is the mole-fraction method which
should be used when using pair potentials across an interface. However, the
best strategy for docking need not necessarily apply to the use of pair potentials
within a single domain, as is done for threading.

Of the various datasets from which pair potentials were generated, it was
clear that the best results came from the intramolecular pairings in a database
of non-homologous protein domains. Why this is so is not evident. It could be
presumed that pair potentials generated from intermolecular pairings should be
a better method, and the reason they were not so here was due to the small size
of the datasets available at the time. This is particularly true of the heterodimer
dataset, which should most closely represent the propensities of intermolecular
pairings in complexes, yet at the time was limited to 11 structures.

The results for the enzyme-inhibitor systems were clearly better than those
for antibody-antigen systems. This problem is not unique to pair potentials,
and as was discussed above is possibly due to the differing recognition stereo-
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chemistry and lower affinity of the antibody-antigen interactions, compared to
those for enzyme-inhibitors.!1! However, the results even for the antibody-
antigen systems were still significantly more useful than relying only on the
shape complementarity as calculated by FTDOCK.

Finally, it has been shown that as part of a combined approach, the large
radius of convergence makes pair potentials useful in screening large numbers
of structures before more detailed all-atom refinement procedures are used.
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Chapter 3

Protein/DNA Docking

3.1 Introduction

The characterisation of the three-dimensional structure of a protein/DNA
complex provides major insights into the stereochemistry and biochemistry
of recognition and gene expression.!!2:113 However, the determination of the
structure of the unbound protein and knowledge of the cognate DNA sequence
can precede structural knowledge of the complex. Consequently, computa-
tional methods can be useful to model protein/DNA associations for structure
prediction to probe the stereochemistry of recognition. As a step toward a
general approach for protein/DNA docking, this study considers transcriptional
repressor complexes!!4123 a5 an appropriate starting system. There are several
experimentally determined structures, revealing a variety of recognition modes.
Although they exhibit conformational changes on association, this study aimed
to apply to protein/DNA interactions the previously successful strategy used
for protein/protein interactions. Those interactions also involve conformational
changes, and the algorithms had proved capable of accommodating those
changes.

The objective is to start with the crystal or nuclear magnetic resonance
structure of an individual repressor. The docking simulation will then be
done with a standard B-DNA model containing the recognition sequence. This
presents several problems. The number of rotatable bonds in the system
makes it at present unfeasible computationally to explore the 6 degrees of
associational freedom together with explicit modelling of the conformational
changes. Thus one must start by docking the static molecules (i.e. rigid
body docking) and employ a scoring function that can accommodate some
degree of overlap. This softness in the scoring function approximates induced
binding conformational changes. The scoring function must also evaluate the
electrostatic stability including the cationic screening of the highly charged
sugar-phosphate backbone.
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These problems presumably have hindered the development of protein/DNA
docking protocols. Kaptein and coworkers!24 125 developed a Monte Carlo simu-
lation program (MONTY) to model repressor/DNA interactions. They considered
flexibility of the protein side chains together with limited deformations of the
DNA and explored docking of unbound repressor to model DNA. The systems
considered were repressors that bind with the a-helix/turn/a-helix in the major
groove such as the 434 cro protein. The majority of their simulations probed
the local specificity of interactions and consequently the repressor was correctly
oriented within the DNA major groove and shifted by + 2 base pairs. A
further simulation was aimed at distinguishing two alternate orientations of the
repressor a-helix within the DNA. In general, the MONTY program was capable
of retrieving the correct repressor/DNA complex with many native interactions
reproduced within the limited space of the search performed.

Campbell!?® explored the specificity of hydrogen-bond recognition in pro-
tein/DNA complexes. The bound coordinates of the protein were used and
residues with hydrogen-bonding possibilities within or near to the true binding
site considered. The protein was docked as a rigid body to a model DNA
with limited flexibility. When the study was restricted to consider only those
base pairs that have at least two strong hydrogen bonds with the protein, the
procedure was able to identify at rank one the biologically correct DNA sequence.

These previous studies did not therefore tackle the overall objective of
performing a complete search of protein/DNA binding space starting with both
sets of coordinates in their unbound states.

The work described in this chapter is the same as published in the 1998
paper by Aloy et al..8 The work can be divided into two independent parts. The
first was to use FTDOCK to perform a series of rigid body dockings between
proteins and DNA fragments. Due to lack of experimental data, although the
protein structures were from unbound crystallographic data, the DNA fragments
were modelled. In addition, the electrostatics used in FTDOCK had to be further
developed in order to be useful. This work was done mainly by Patrick Aloy and
Henry Gabb. The second was to screen the results from the first part with pair
potentials specific to protein/DNA interactions, and was done by myself, Gidon
Moont. The pair potentials were calculated from a database of crystallographic
protein/DNA complexes. This database did not include any protein homologous
to any of the proteins that were used in the docking evaluation.
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3.2 Methods

3.2.1 Repressor/DNA molecules

Eight repressor/DNA complexes (systems) were examined (see 3.3 below), repre-
senting the available systems (excluding close homologues of the repressors)
in the PDB at the time (May 1998). Five of the 'repressor structures (CRO,
GAL, LAC, LAM, PUR) have the o-helix/turn/a-helix motif, and show major
grove recognition on the DNA. Two involve a two-stranded anti-parallel 3-sheet
recognising bases in the major groove (ARC, MET). One (TRP) has the repressor
recognising bases via the minor groove, but also interacts with the major groove
and the DNA backbone. This means that the method was tested on three
different binding modes.

Unbound coordinates were used for the repressors apart from LAM, where
only Ca coordinates were available and so the bound coordinates were used
instead. The structures for the DNA sequences corresponding to those in the
complexes were constructed starting from standard B-DNA!?? geometry, and
then energy minimised using the JUMNA program.!28

3.2.2 Rigid body docking

A global search of rigid body docking was performed by FTDOCK as described
previously. The grid size was set at 128 x 128 x 128, resulting in grid cell sizes
ranging from 0.51A to 0.87A. In all the systems, the DNA was defined as being
the static molecule. The surface was set at 1.2A, rather than the previously
used 1.5A. The rotational angle step for the mobile repressor molecule was set
at 12°, as opposed to the previously used 15°, yielding 12,661 non-degenerate
rotations.

The correct treatment of electrostatics had previously been found to be
essential to successful docking of protein/protein complexes using FTDOCK.
For these simulations, the Coulombic electrostatic field of the DNA (the static
molecule) was evaluated for each grid cell, while the repressor (the mobile
molecule) had its charged atoms discretised among the closest 8 grid cells
(Figure 1.6). Initial work used the AMBER charge set,2! but gave poor results on
trials with CRO. There was too much noise from partially charged Carbon atoms,
causing problems such as masking the charge groups that actually contribute to
specificity. A specific charge set, shown in Table 3.1, was therefore developed to
calculate the electrostatic field of the DNA. Sequence specific recognition tends to
occur through the bases rather than the sugar-phosphate backbone. However,
the phosphate groups are highly charged, and can so mask the partially charged
atoms within the helix grooves. This was overcome by a distance cut-off for
calculating the field. The field strength contribution from a charged atom was
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Atom type Charge
All phosphorous atoms | -0.25¢
The purine N7 0.10e
The pyrimidine O2 -0.25¢
cytosine-N4 0.25e¢
thymine-O4 -0.25¢
guanine-N2 0.25e
guanine-O6 -0.25¢
adenine-N6 0.25¢

Table 3.1: Charges assigned by FTDoOCK to the DNA, used for electrostatic
complementarity calculations.

calculated only for grid cells within 2A of that atom, using a sigmoidal dielectric
function.!”

The use of these values effectively dampened the phosphate charges while
exaggerating the partial charges of the chemical groups in the helix grooves,
thus enhancing sequence recognition by the repressor proteins.

In the previous work for protein/protein interactions, partial charges were
assigned to the main chain, but only fully charged side chains were considered.
For this work, the protein charges were as before (Table 1.1), except that Asn,
Gln, and His, known to be important in DNA recognition, were also considered.
The additional charges are shown in Table 3.2

All the above values and parameters used by FTDOCK, the surface thickness,
rotational angle and electrostatic charges, were developed by modelling the
CRO system, starting with the unbound repressor and modelled DNA. These
parameters were then applied when modelling the docking of the remaining
seven systems.

The top 4,000 structures were kept from each experiment, and examined

Residue | Atom | Charge
Asn OD1 -0.25¢
Asn ND2 0.25e
Gln OEl -0.25¢
Gln NE2 0.25¢
His ND1 0.25e
His NE2 0.25¢

Table 3.2: Additional charges assigned by FTDOCK to the protein repressors,
used for electrostatic complementarity calculations when docking to DNA.
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for good solutions. Each run took approximately one day of computational
time on a single Silicon Graphics R10000 processor. By the use of a
Silicon Graphics parallel Challenge machine, with its own parallel fast Fourier
transform routines, a run took about 7 hours on four R10000 processors.

3.2.3 Geometric filters

The structures generated by the global search were filtered by distance con-
straints. Each amino acid had an effective side-chain length, L, (ranging from
0.5A for Gly to 6.0A for Arg), as in the previous work. Distances, D, were
calculated between the Ca atoms of the amino acids and the nucleotides (base
glycosidic N) of the DNA bases. The initial filter (filter 0) removed dockings that
were artifacts of the repressor docking to the terminus of the DNA fragment. A
docking was excluded if either end of the fragment had both nucleotides at that
end with a distance to a Ca, D, less than the corresponding L for that amino
acid.

The next filter (filter 1) was based on the DNA footprinting information. In
most cases this information would be available before a docking simulation was
attempted. The two central base pairs of the footprint were identified from
biochemical references (see 3.3). A docking was passed by the filter if there was
at least one amino acid for which D < L+4.5A to any one of the four nucleotides
of the two central base pairs.

The last filter (filter 2) considered that there may be information defining
which amino acids on the repressor interact with DNA. This would typically be
obtained from phylogenetic studies or from mutagenesis. A list of these residues
was obtained from the available literature (see 3.3). A docking was passed by
the filter if any one of those residues satisfied D < L+4.5A to any nucleotide in
the DNA fragment.

3.2.4 Quality of predicted complexes

Two measures were available to evaluate the agreement between the predicted
dockings and the experimental structure; root mean square deviation (RMSD)
of the atomic positions, and percentage correct contacts (%CC) across the
interface. To calculate the RMSD values is a standard procedure, and was
calculated using the profit program. The calculations were limited to using the
C, atoms in the repressors and C1' atoms in the DNA fragments. To calculate
the %CC values it was first necessary to define the interface regions. This
was done by finding all the amino acid / nucleotide pairs in the experimental
structure which had at least one non-hydrogen atom-atom distance < 5A. For
each of these pairs the C,-C1’ distance was measured in both the experimental
structure and the predicted docking, and if the difference in the distances was <
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Figure 3.1: Relationship of RMSD values to Percentage Correct Contact values.

4A then a correct pairing was considered to have been modelled in the predicted
docking. %CC gives the number of correct pairings as a percentage of the total
pairs found in the experimental structure.

Figure 3.1 shows a plot of these two values calculated for all the predicted
dockings that passed through filter 0. As can be seen, there is a very good
relationship between %CC above 65% and RMSD values, with a RMSD of
5.5A or lower guaranteed. However, Figure 3.2 does not show a simlarly good
relationship for RMSD values of 5.5A or lower. For this reason, it was decided
that a predicted docking with a %CC value of 65% or higher would be considered
‘good’.

The highest value for %CC attainable from rigid body docking was evaluated
for each test system. This was done by seperately superimposing the model DNA
and the unbound repressor onto the experimental structure using the C, atoms
in the repressor and C1’ atoms in the DNA. For six of the eight test systems this
yeilded a %CC value of 100%. For MET and GAL the highest attainable values
were found to be 91% and 96% respectively.

3.2.5 Pair potentials

Protein/DNA complexes were identified from the Nucleic Acid Database (NDB)!2°
(http:/ /ndbserver.rutgers.edu/). From the list of entries, non-identical peptide
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chains complexed with at least ten nucleotides were selected. A non-redundant
set of repressor/DNA complexes were developed by taking the best resolved
structure from repressor homologues with more than 25% identity over the
entire sequence. In addition, the eight test systems and their homologues (
> 25% identity) were excluded from the non-redundant set. The PDB codes of
the resulting 20 complexes are given below (3.3).

An empirical amino acid / nucleotide pairing score was then derived. The
distance between the Cg (C, for Gly) to the base glycosidic N between each amino
acid and each nucleotide was calculated within each of the 20 complexes. The
number of pairs of amino acid type a and nucleotide type b (p,;) having a distance
less than a given cut-off, d.,:, were then counted. In order to derive a probability
for any such pairing, a random model is required. Two models for a random state
were considered, both involving the quasi-chemical approximation that assumes
that the amino acids and nucleotides are not parts of connected polymers.®* The
first model is a molar-fraction random state that is based purely on composition.
Let n, and n; be the total occurrences in the whole dataset of amino acids of type
e and nucleotides of type b, and P the total number of all pairings, i.e.
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Figure 3.2: Relationship of Percentage Correct Contact values to RMSD values.
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Then the molar-fraction expected pairings are given by

Ma Ny
eqp = P X =20 X =1
i a=1 b=1

The second model is based on the observed pairings and is proportional to the
tendency of a given amino acid to make a pair with any of the 4 nucleotides,
and the tendency of a given nucleotide to make a pair with any of the 20 amino
acids. The expected pairings are given by

€ab = P x a=1 Dab x Zb:l Dab
@ P p

From these expected values, a log-odds score for a pairing is given by

S = logio(222)

a,

A S, value was only calculated if p,, > O and e, > 5, to ensure against nonsense
values created by small numbers. A total score for a complex was obtained by
summing the S, ; values for all the amino acid / nucleotide pairs with a distance
less than the distance cut-off, d.,: (raw score). Values for scoring a complex were
also calculated by dividing this value by the numbers of pairs counted (pair
normalised). In addition, a sparse form of the S,; values was considered, in
which interactions (pairs) involving any hydrophobic residue type were excluded
(ie. only using C, D, E, G, H, K, N, Q, R, S, and T). We chose to evaluate the
complexes using a log odds ratio rather than applying Boltzmann’s principle and
converting the ratio to a potential mean force, as the validity of this approach
has been questioned, %394

3.3 Structural data

The structural data is shown as: complex name (capitalised); repressor name;
PDB code of complex (reference); PDB code of unbound repressor (reference);
region of peptide used; DNA sequence generated, with the two bases used in
filter 1 underlined; peptide residues used in filter 2. The regions and filters use
the notation chain(residue-code)residue-number. In the case of only one chain
being present, the notation will shorten to (residue-code)residue-number.

1. ARC; arc repressor; 1par;!14 larr;130 chain C, D(P)8-(E)48; ATAGTAGAGTG;
C(Q)9, D(Q)9, C(R)13, D(R)13;

2. CRO; cro repressor-operator; 3cro;!3! 2cro;!'6 all; AAGTACAAACTTT;
K)27;
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3. GAL; CD2-GAL4 DNA binding domain; 1d66;!17 125d;!32 A(E)8-(K)43;
CCGGAGG; A(Q)9, A(R)15, A(K)17, A(K)18, A(K)20, A(C)21, A(K)23;

4. LAC; lactose operon repressor; 11bg;118 11qc;133 A(P)3-(P)49; AATTGTGAGCG;
A(Y)17, A(Q)18, A(N)25, A(H)29;

5. LAM; LAM phage repressor-operator N-terminal domain; 1lmb;!34 11rp;134
chain 4, and used bound form of the protein since only C, available for the
unbound protein; GGCGGTGATAT; 4(K)4, 4(N)55;

6. MET; met repressor-operator; lcma;'®® 1lcmc;!3% chains A and B;
TTAGACGTCT:; A(K)23, B(K)23, A(T)25, B(T)25;

7. PUR; pur R repressor-operator; 1pnr;!22 1pru;!22 A(T)3-(S)46; ACGAAAA;
A(K)5, A(S)14, A(T)16, A(T)17, A(H)29, A(N)23, A(R)26;

8. TRP; trp repressor-operator; 1tro;!36 2wrp;137 G(S)5-(A)105; TGTACTAGTTAAC;
G(Q)68, G(R)69, G(L)71, G(K)72, G(G)78, G(1)79, G(A)80, G(T)81, G(T)83,
G(G)85;

The PDB codes of repressor/DNA complexes used to generate the potentials
were; 3mht, 2bop, 1lat, 1zaa, lber, lhcr, 1pdn, 1per, 1vol, lihf, 1fjl, 1apl, 1pue,
1bhm, lign, 1ltsr, 1ytb, 1nfk, 1rva, leri.

3.4 Results

3.4.1 Rigid body docking and distance constraints

Each of the test systems was run through FTDOCK in the standard fashion,
using surface complementarity to rank the some 10'° dockings, and with the
electrostatics acting as a binary filter. The top 4000 dockings were stored
and then put through each of the three filters in turn. Table 3.3 shows the
results after each of the three filters with ranks calculated using the surface
complementarity score from FTDOCK (as normal). The ranks calculated using
the electrostatic scores calculated by FTDOCK are also shown (though these
are in fact the ranks within the top 4000 dockings as ranked by surface
complementarity, not the rankings from the 10!° dockings). Each of the lists
of dockings were also scored by the empirical pair potentials, and the ranks
calculated from those scores are in the rightmost column. After Filter O a good
docking is ranked at 140 or better for seven out of the eight systems using
the surface complementarity score. These good dockings have %CC ranging
from 65% to 85% with corresponding RMSDs between 4.3 and 3.0 Angstroms.
In the list there are several good dockings and the best for each system has



PROTEIN/DNA DOCKING

80

No. No. of good Rank of first good solution evaluated by
of solutions shape electrostatics empirical pairing
solutions ie. with complementarity [rank score [rank

Complex %CC > 65 | [rank(96CC/RMSD(A)} | (9%6CC/RMSD(A))] | (%6CC/RMSD(A)]

I Filter O - disallow repressor at ends of DNA |
ARC 2972 14 140( 69/4.1) 69(75/4.0) 1(69/4.0)
CRO 3010 2 28(85/3.0) 1815(85/3.0) 220(80/3.8)
GAL 2941 7 55(75/3.6) 298(75/3.6) 2(75/3.6)
LAC 3299 7 88(72/4.0) 960( 65/5.9) 302(77/3.4)
LAM 3175 8 38(84/3.0) 32(98/1.6) 4(98/1.6)
MET 2938 none no solution no solution no solution
PUR 2876 33 11( 68/4.3) 129(100/1.8) 30(92/2.3)
TRP 2854 9 15(65/4.2) 35(81/2.8) 17(67/3.2)

Filter 1 - use information about DNA bases with filter O I
ARC 1232 11 91(69/4.1) 42(75/4.0) 1(69/4.0)
CRO 570 2 12(85/3.0) 387(85/3.0) 121(80/3.8)
GAL 1470 4 37(75/3.6) 220( 75/3.6) 2(75/3.6)
LAC 800 6 30(72/4.0) 561(65/5.9) 133(77/3.4)
LAM 889 6 22(84/3.0) 10(98/1.6) 4(98/1.6)
MET 1017 none no solution no solution no solution
PUR 1444 13 9(68/4.3) 101(100/1.8) 28(92/2.3)
TRP 564 6 4(65/4.2) 12(81/2.8) 1(67/3.2)

I Filter 2 - use information about DNA bases and repressor residues with filter 0 ]
ARC 219 11 N 22(69/4.1) 6(75/4.0) 1(69/4.0)
CRO 11 1 3(85/3.0) 7(85/3.0) 9(80/3.8)
GAL 789 4 26(75/3.6) 133(75/3.6) 2(75/3.6)
LAC 270 6 13(72/4.0) 188( 65/5.9) 117(77/3.4)
LAM 141 6 3(84/3.0) 5(98/1.6) 4(98/1.6)
MET 40 none no solution no solution no solution
PUR 732 13 2(68/4.3) 55(100/1.8) 28(92/2.3)
TRP 104 6 2(65/4.2) 7(81/2.8) 1(67/3.2)

Table 3.3: Rank of Solutions, Starting With Unbound Structures.
After each of the three filters, the first column gives the complex, the second column the

number of solutions left in the list of the top 4000 complexes generated from FTDOCK
(N), and the third column gives the number of good solutions, i.e. with %CC > 65.
The final three columns give the rank of the first coorect solution followed by its %CC
and RMSD(A). Rankings were calculated using shape complementarity from FTDOCK,
electrostatic score from FTDOCK, and the empirical score for nucleotide/amino acid
pairings (EPS). No solution with %CC > 65 was generated for MET.
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%CC between 75% and 100%, corresponding to RMSDs between 3.6 and 1.4
Angstroms (Table 3.4).

The MET docking fails to find a solution with %CC > 65%. This in part
stems from the inability to model the interaction of the DNA with a repressor
loop that moves towards the DNA on binding. This loop movement limits to 91%
the maximum attainable value for %CC resulting from an optimal superposition
of the bound complex with the unbound repressor and model DNA (Table 3.4).
Rigid body methods are therefore unable to model the surface contact between
this mobile loop and the DNA.

Filter 1 is based on the central two base pairs and provides a substantial
discrimination. The number of dockings to be examined in a ranked list to find
a good docking is 91 or less when ranking by the surface complementarity score
(excluding MET), and for six out of the eight systems is less than 40. The further

Best possible complex from
unbound unbound bound
coordinates coordinates coordinates

(superposition) (FTDoOCK) (FTDOCK)

%CC/RMSD(A) %CC/RMSD(A) %CC/RMSD(A)
ARC 100/1.1 100/1.7 100/0.5
CRO 100/1.0 85/3.0 100/0.3
GAL 96/2.1 75/3.6 100/0.6
LAC 100/1.0 77/3.4 N/A
LAM 100/1.1 100/1.4 100/0.4
MET 91/3.3 60/5.3 100/0.2
PUR 100/1.5 100/1.8 100/0.6
TRP 100/1.0 98/2.2 77/2.5
TRP + WAT - - 100/0.9

Table 3.4: Agreement between Model-Built and X-Ray Structures.

For each complex, and for TRP together with bound waters (TRP + WAT), the
correct % correct contact (%CC) / RMSD (A) are given for three models of the
complex. First the best possible model complex that could be generated from
unbound coordinates is given, based on optimal superposition of the unbound
components onto the bound components of the complex. The next column is that
of the best model generated by FTDOCK, starting with the unbound components.
The last column is that of the best model generated by FTDOCK, starting with
the bound components. N/A denotes that FTDOCK was not run for LAC with
the bound coordinates, due to only a C, trace existing for the repressor in the
bound complex.
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RMSD RMSD RMSD RMSD

DNA DNA PROT PROT
Complex | All(A) C1{A) AlA) C.A)
ARC 2.3 1.8 1.9 1.1
CRO 2.2 1.7 1.6 0.6
GAL 2.3 1.8 3.0 2.0
LAC 3.2 2.8 - 2.3
LAM 2.3 1.8 - -
MET 2.7 2.5 2.6 2.2
PUR 2.0 1.3 2.1 1.4
TRP 2.0 1.6 2.2 1.9

Table 3.5: RMSD for Superimposed Bound and Unbound Molecules.
The superpositions were performed separately for the DNA and for the protein
molecules.

specification of one repressor residue interacting with the DNA (Filter 2) yields
a list of no more than 26 dockings to be examined (excluding MET) and for
four systems a list of the top three solutions ranked by surface complementarity
would include a good docking.

Figures 3.3 through to 3.10 show a superposition of the native complex with
the highest ranked good docking, represented by the repressor C, trace and
the DNA as a phosphate backbone with schematic bases. Figures 3.11 through
to 3.18 show the same superpositions, but with just the repressors with their
side chains drawn. For MET the best available model is shown. In all the
systems, including MET, the model reproduces the principal recognition mode
such as a helix or a 3-sheet fitting into the major groove. No consistent errors
such as the molecules being always too distant or too close were apparent. The
figures also highlight the extent of conformational change to the molecules on
association. In particular, the DNA is substantially distorted from ideal geometry
in several of the systems. In addition, a combination of rigid body shifts and
the change in conformation results in some, though far from all, of the side
chains showing substantial changes in position between the predicted and the
X-ray structures. The conformational change on association for each system
is quantified in Table 3.5, which details the RMSD between the experimental
complex and model DNAs, and the RMSD between the experimental complex
and unbound repressors. It was coping with these conformational changes that
presented the challenge in developing a viable computational strategy.
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Figure 3.3: Superposition ofnative and 1st correctly modelled complexes for ARC

Jarc repressor.
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Figure 3.4: Superposition ofnative and 1st correctly modelled complexes for CRO
: cro repressor-operator.

Key to Figures 3.3 and 3.4.

Superposition of native and predicted complexes for repressor (Ca trace)
and DNA (phosphate backbone with lines for base pairs). The first correct
modelled complex in Table 3.3 (column 4) is shown. See Section 3.2.4
for explanation of fitting values. Diagrams were generated by PREPI
(http://www. sbg. bio. ic.ac. uk/prepi/).
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Figure 3.5: Superposition ofnative and Ist correctly modelled complexes for GAL
: CD2-GAL4 DNA binding domain.
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Figure 3.6: Superposition ofnative and 1s* correctly modelled complexes for LAC
s lactose operon repressor.

Key to Figures 3.5 and 3.6.

Superposition of native and predicted complexes for repressor (Ca trace) and
DNA (phosphate backbone with lines for base pairs). The first correct modelled
complex in Table 3.3 (column 4) is shown. See Section 3.2.4 for explanation of
fitting values. Diagrams were generated by PREPI.
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Figure 3.7: Superposition ofnative and Ist correctly modelled complexes for LAM
:LAM phage repressor-operator N-terminal domain.
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Figure 3.8: Superposition ofnative and Ist correctly modelled complexes for MET

:met repressor-operator.

Key to Figures 3.7 and 3.8.

Superposition of native and predicted complexes for repressor (Ca trace) and
DNA (phosphate backbone with lines for base pairs). The first correct modelled
complex in Table 3.3 (column 4) is shown for LAM, and the best prediction
for MET. See Section 3.2.4 for explanation of fitting values. Diagrams were
generated by PREPI
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bound DNA bound purine

model DNA unbound purine
PURINE rmsd =4.3A % correct contacts = 68%

Figure 3.9: Superposition ofnative and 1st correctly modelled complexes for PUR
:pur R repressor-operator.

bound DNA bound trp
model DNA unbound trp
TRP rmsd =4.2A % correct contacts = 65%

Figure 3.10: Superposition of native and 1st correctly modelled complexes for
TRP: trp repressor-operator.

Key to Figures 3.9 and 3.10.

Superposition of native and predicted complexes for repressor (Ca trace) and
DNA (phosphate backbone with lines for base pairs). The first correct modelled
complex in Table 3.3 (column 4) is shown. See Section 3.2.4 for explanation of
fitting values. Diagrams were generated by PREPI
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Figure 3.11: Superposition of 1% correctly modelled and best modelled
complexes for ARC : arc repressor.

Figure 3.12: Superposition of 1% correctly modelled and best modelled
complexes for CRO : cro repressor-operator.

Key to Figures 3.11 and 3.12.

Superposition of native (black) and predicted (grey) complexes for repressor (C,
trace with side chains). The first correct modelled complex in Table 3.3 (column
4) is show along with the best prediction for MET. Diagrams were generated by
PREPI.
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Figure 3.13: Superposition of 1% correctly modelled and best modelled
complexes for GAL : CD2-GAL4 DNA binding domain.

Figure 3.14: Superposition of 1% correctly modelled and best modelled
complexes for LAC : lactose operon repressor.

Key to Figures 3.13 and 3.14.

Superposition of native (black) and predicted (grey) complexes for repressor (C,
trace with side chains). The first correct modelled complex in Table 3.3 (column
4) is show along with the best prediction for MET. Diagrams were generated by
PREPL
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Figure 3.15: Superposition of 1% correctly modelled and best modelled
complexes for LAM : LAM phage repressor-operator N-terminal domain.

Figure 3.16: Superposition of 1% correctly modelled and best modelled
complexes for MET : met repressor-operator.

Key to Figures 3.15 and 3.16.
Superposition of native (black) and predicted (grey) complexes for repressor (C,
trace with side chains). The first correct modelled complex in Table 3.3 (column

4) is show along with the best prediction for MET. Diagrams were generated by
PREPL
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Figure 3.17: Superposition of 1% correctly modelled and best modelled
complexes for PUR : pur R repressor-operator.

Figure 3.18: Superposition of 1% correctly modelled and best modelled
complexes for TRP : trp repressor-operator

Key to Figures 3.17 and 3.18.
Superposition of native (black) and predicted (grey) complexes for repressor (C,
trace with side chains). The first correct modelled complex in Table 3.3 (column

4) is show along with the best prediction for MET. Diagrams were generated by
PREPL
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3.4.2 Empirical scoring of amino acid / nucleotide pairings

The use of empirical pairing scores to identify a good solution from false positives
was evaluated on dockings that were allowed after filter 1. To decide on the
best method for screening the lists of models, eight different methods of scoring
dockings by an empirical log-odds score matrix for amino acid / nucleotide
pairings were considered. The values for the distance cut-off, d..:, explored
were from 10 to 20 A in 1 A steps. For each approach we took the values
for the number of structures (N) that would need to be examined in the score
ranked list to identify a single good docking for all M out of the 7 systems (M
= 1-7). MET was excluded as there was no good docking. There is a trade off
between the number of dockings N (how few alternatives need to be examined)
and M (how many systems can yield a good docking in the top N dockings). We
considered that when the procedure is practically used for experimental design,
N can be no more than 5, and accordingly identified the optimal parameters
to yleld the maximum M for N < 5. The best approach used was the un-
normalised score with a sparse matrix using molar-fraction expected and d.,;
of 12 A, corresponding to N=4 and M=4.

Table 3.3 presents the results of ranking by the empirical score in the
final column. After filter 1, for the seven systems that can be considered (i.e.
excluding MET), in four (ARC, GAL, LAM, TRP) a good solution was ranked four
or better, and for ARC and TRP a good solution was the top rank. In PUR the
solution was at a middle rank (28) whereas for CRO and LAC more than 100
dockings would have to be examined before a good one would be found. In
four systems, pairing scores improved the ranking of the first good docking,
compared to the ranking by shape complementarity. In the remaining three the
ranking was poorer.

Table 3.3 also gives the results of re-ranking by the pair potentials after filter
0. For three systems (ARC, GAL, LAM), good dockings were in the top 5 ranked
scores, which is a marked improvement over ranking by shape complementarity.
Again, for CRO and LAC, the ranking by pair potentials was poorer than by
shape complementarity. PUR and TRP gave similar ranking from the two scores.
This shows that just using FTDoOCK followed by ranking by the empirical pair
potential score can yield a very small list of dockings, one of which is a good
docking, but with only a success rate of three out of eight. Nevertheless, this
level of accuracy can be useful to suggest subsequent experiments. The results
of screening by the empirical score after filter 2 are also given in Table 3.3. These
show little improvement over the ranking after filter 1.

The magnitude of the empirical score provides a guide to the confidence that
can be placed in a high ranking docking. For six of the eight systems the
maximum empirical pair potential score was < 30. However, for ARC and LAM,
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when the dockings were ranked by pair potential score (after filters O and 1),
the highest ranked good docking had a score > 35. This suggests that when the
answer in a study is unknown, if the highest values of the pair potential score
are > 30, then one can have confidence that the list will have a good solution at
a high rank. However, the converse is not true — a list with scores < 30 can still
have a good solution at a high rank.

acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt acgt
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Figure 3.19: Empirical amino acid / nucleotide pairing scores.
Values of S, for amino acid pairing with the four nucleotides (acgt), derived
using molar expected frequencies with a distance cut-off of 12A. All amino acid
scores are shown although only the sparse matrix was used in scoring dockings.
due to absence of data there are no values for TRP (W) with bases c and g.

The empirical score for all amino acid / nucleotide pairings (molar fraction
and d,; of 12A) are shown in Figure 3.19. Residues with favourable scores for
interactions with nucleotides are, as expected, the positively charged Arg, His
and Lys, the amides Asn and GIn, Ser and Thr with a hydroxyl group (but not
Tyr), and Gly, which allows the close approach of the main-chain of the protein
to the DNA. Some amino acids show a discrimination between AT and GC bases.
In particular, the preference of Gin for AT could reflect the opportunity for the
amide to make hydrogen bonds with both the acceptor and a donor of the base
pair via atoms accessible in the major groove. Lustig and Jernigan!38 have
previously derived an empirical scale of amino acid / nucleotide interactions
from a series of zinc fingers interacting with DNA. Their values differ from ours.
For example, in their values, Arg and Lys form unfavourable interactions with
some bases. These differences stem from their use of only zinc fingers and their
use of an expected frequency based on contact fraction.
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3.4.3 False positives

To obtain further information on the modelling implemented in this strategy,
we visually examined, using a graphics package, the structures of the five top
ranked dockings after filter 1, when ordered by either shape complementarity or
by empirical pair potential score. We identified three “native-like” distinguishing
features in the false positive dockings (Table 3.6). Shifted is when the false
positive repressor is docked in the same mode to the DNA helix as in the
experimental complex, but the site of the interaction was shifted along the DNA
helix. The second, Rotated, is when the false positive is rotated by roughly
180° about an axis perpendicular to a plane that defines the interface region
compared with the correct solution (e.g. an a-helix that lies in the major groove
still sits in the groove, but runs in the opposite direction). The third is referred
to as correct Key residues, as several of the key repressor residues that recognise
the DNA in the experimental complex still point to the DNA in the false positive,
but the repressor is in a different position with respect to the DNA. Combinations
of the above features are possible, and it is of course possible for a false positive
to display none of these features.

Table 3.6 shows that most of the false positives ranked by shape comple-
mentarity do not show any of the native-like features. In contrast, the empirical
pair potential score tends to maintain more of the native-like features in the top
ranked dockings. In particular, of the six possible false positives at the top rank,
five maintain the native-like key interactions.

Four representative false solutions are illustrated in Figures 3.20 through
to 3.23. The DNA coordinates of the false positive docking were superposed on
the crystallographic DNA coordinates. Each picture then depicts the predicted
coordinates of the repressor with the X-ray repressor/DNA complex. The
predicted model of LAM (ranked 3 by shape complementarity) is shifted with
correct key residues. The docking for MET (ranked 4 by shape complementarity)
does not have any native-like features. This predicted model is similar to
that incorrectly proposed for the interaction of the met repressor operator
with DNA after the structure of the repressor was solved but before the
complex was experimentally determined.!3% The proposal was based on the a-
helix/turn/a-helix motif inserted into the major groove. Our study confirms
that the proposed model was highly favourable when assessed by shape
complementarity. However, when ranked by the pair potential score, this model
was placed at rank 1,011. Figures 3.22 and 3.23 also show the predicted
structures for GAL and LAM at the top rank when ranked by the pair potential
score. Both models were determined to be rotated with correct key residues.



PROTEIN/DNA DOCKING 94

Complex || Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
s|rRIK[|s|rR[K|S|[R[K|S|R[K|s|[R[K

L Surface Complementarity
ARC * + + *
CRO * +
GAL + + *
LAC + +
LAM +|* + *
MET | + + . ~

HEIN

correct

|
+
+ *
+
|
ARC correct + * |+ *
CRO | [+]*] .
b *

GAL * + *

LAC n.n .

LAM : % + *

MET *

PUR + * |+ *

TRP correct +| ¢ || + * | 4+ * + | *

Table 3.6: Analysis of False-Positive Solutions.

The first five ranked solutions after Filter 1, evaluated by shape complementarity
and by the Empirical Pair Potentials Score, are reported. A “+” under “S” denotes
a solution shifted along the DNA groove, and “+” under “R” a solution with
about 180° rotation. Asterisk under “K” denotes that the solution had some of
the key repressor residues correctly positioned interacting with the DNA. Solid
black background denotes a correct prediction. Grey shading shows the four
complexes whose structures are shown in Figures 3.20, 3.21, 3.22, and 3.23.
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Figure 3.20: Superposition of a false positive and native complexes for LAM:
rank 3 (after filter 1) by Surface Complementarity.

Figure 3.21: Superposition of a false positive and native complexes for MET:
rank 4 (after filter 1) by Surface Complementarity.

Key to Figures 3.20 and 3.21.

Structures of false-positive modelled structures. The false-positive location of
the repressor (red) is shown on top of the X-ray DNA (blue) and repressor
complex (green). Diagrams were generated by PREPI.
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Figure 3.22: Superposition ofa false positive and native complexes for GAL: rank
1 (after filter 1) by Empirical Pair Potential Score.

Figure 3.23: Superposition of a false positive and native complexes for LAM:
rank 1 (after filter 1) by Empirical Pair Potential Score.

Key to Figures 3.22 and 3.23.

Structures of false-positive modelled structures. The false-positive location of
the repressor (red) is shown on top of the X-ray DNA (blue) and repressor
complex (green). Diagrams were generated by PREPIL
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3.4.4 Control - bound complexes

To assess the algorithm, we evaluated the effect on the performance of our
approach of the conformational changes that occurred on docking. The docking
procedure involving FTDOCK, filtering, and empirical pair potential scoring was
repeated, this time starting with the bound coordinates for both the repressor
and the DNA. The parameters were those used for unbound docking, and
consequently the approach is not optimised for modelling starting with bound
coordinates. (LAC was excluded as there are only C, coordinates for the bound
repressor.) The results are shown in Table 3.7. As expected, the ranks for the
first good docking are generally higher when starting with the bound rather than
the unbound coordinates. For three out of the seven systems after filter O, a good
docking is within the first three ranks by surface complementarity. In addition,
the solutions are far closer to the correct coordinates, with six of the top ranking
by surface complementarity good dockings having 100% correct contacts and
RMSD < 2.0A. When starting from bound components, there were no systems
that failed to generate at least one good docking.

The MET complex can now be modelled with a structure that has an RMSD of
0.9A. However, this docking is at a low rank of 268, showing that there are many
alternatives with superior shape complementarity. The role of electrostatics in
the MET complex will be discussed below.

The poorest result was for TRP, with the first correct solution after filter O at
rank 638 with %CC of 77. In the list of 4,000 dockings for TRP their are two good
dockings, but neither survive filter 1. The interaction between the TRP repressor
and DNA is unusual compared with the other systems modelled, as it is mediated
by many water molecules, and their exclusion from the modelling was thought
to be the possible cause of the poor results with the bound coordinates. The
effect of the bound waters is that the repressor is further away from the DNA
in this system than in the seven others studied, and so the two good dockings
can be scored as having correct contacts but do not pass filter 1 as they do
not form direct protein/DNA interactions. The success of the docking algorithm
when starting with the unbound TRP is probably due to the less extended side
chain in the unbound molecule compared with the bound form, which enables
unbound TRP to pack close to the DNA and achieve a high measure of shape
complementarity.

The modelling was repeated adding the 31 crystallographic waters that were
in van der Waals contact with any repressor interface amino acid. The aim was
to explore the effect of water on the evaluation of shape complementarity by
FTDOCK, and so the waters were considered as van der Waals particles without
charge. The results are a marked improvement in the ranking of the first good
docking after filter O and filter 1 (Table 3.7). Of course in a real predictive study,
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No. No. of good Rank of first good solution evaluated by
of solutions shape electrostatics empirical pairing
solutions Le. with complementarity frank score [rank

Complex %CC > 65 | [rank(%CC/RMSD(A))] | (9%6CC/RMSD(A))] | (%CC/RMSD(A))]

Filter O - disallow repressor at ends of DNA —]
ARC 3147 27 3(100/0.5) 90( 100/0.5) 4( 100/0.5)
CRO 3110 47 11( 100/0.3) 20(100/1.1) 1( 100/0.3)
GAL 2535 107 2(100/0.6) 3(100/0.8) 6(96/3.1)
LAC N/A N/A N/A N/A N/A
LAM 3023 27 2(100/1.2) 2(100/0.4) 2(77/3.5)
MET 3371 8 268( 100/0.9) 1( 100/0.2) 188( 100/0.2)
PUR 2793 31 58(100/1.6) 14(89/2.4) 16( 100/0.9)
TRP 3365 2 638(77/2.5) 800(77/3.3) 78(77/3.3)
TRP + WAT 3371 4 1(84/2.1) 249(98/1.2) 55(98/1.2)

[ Filter 1 - use information about DNA bases with filter O j
ARC 1318 22 3(100/0.5) 57(100/0.5) 4(100/0.5)
CRO 705 34 2(100/0.3) 5(100/1.1) 1( 100/0.3)
GAL 1481 100 2(100/0.6) 3(100/0.8) 6(96/3.1)
LAC N/A N/A N/A N/A N/A
LAM 674 23 2(100/1.2) 1( 100/0.4) 2(77/3.5)
MET 197 2 86( 100/0.9) 1( 100/0.2) 24(100/0.2)
PUR 1016 16 32(100/1.6) 5(89/2.4) 16( 100/0.9)
TRP 727 none no solution no solution no solution

TRP + WAT 718 3 1(84/2.1) 85(98/1.2) 55(98/1.2)

Filter 2 - use information about DNA bases and repressor residues with filter 0 I
ARC 201 21 1( 100/0.5) 7(100/0.5) 4(100/0.5)
CRO 25 12 1( 100/0.3) 1( 100/1.2) 1( 100/0.3)
GAL 713 100 2(100/0.6) 2(100/0.8) 6(96/3.1)
LAC N/A N/A N/A N/A N/A
LAM 138 23 1( 100/1.2) 1( 100/0.4) 2(77/3.95)
MET 5 2 2(100/0.9) 1( 100/0.2) 2(100/0.2)
PUR 469 16 16( 100/1.6) 5(89/2.4) 16( 100/0.9)
TRP 140 none no solution no solution no solution

TRP + WAT 150 3 1(84/2.1) 16(98/1.2) 16(98/1.2)

Table 3.7: Rank of Solutions, Starting With Bound Structures.
After each of the three filters, the first column gives the complex, the second column the
number of solutions left in the list of the top 4000 complexes generated from FTDOCK
(N), and the third column gives the number of good solutions, i.e. with %CC > 65.
The final three columns give the rank of the first correct solution followed by its %CC
and RMSD(A). Rankings were calculated using shape complementarity from FTDOCK,
electrostatic score from FTDOCK, and the empirical score for nucleotide/amino acid
pairings. TRP + WAT refers to simulations with the trp repressor and bound waters.
N/A denotes that FTDOCK was not run for LAC with the bound coordinates, due to only
a C, trace existing for the repressor in the bound complex.
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knowledge of these waters would not be available. The results show that when
bound waters are included for TRP, FTDOCK can model bound-protein/bound-
DNA for all seven systems. This is basic to any confidence in predictive modelling
starting from unbound coordinates.

The bound FTDOCK solutions after each of the three filters were also
ranked by their empirical pair potential scores (Table 3.7), and the results were
comparable to the ranking from shape complementarity. For some systems,
ranking with the pair potential scores was worse for the bound than with the
unbound.

A further question was which was the greater problem for our approach; the
conformational changes in the repressor or in the DNA. To study this, FTDOCK
was run for unbound repressor with bound DNA, and for bound repressor
with model DNA. After filter 1, there was no systematic trend showing that
modelling is better starting with the bound coordinates for the repressor or for
the DNA (data not shown). The results could not be explained in terms of the
RMSD values between unbound (or model) and bound coordinates, as shown in
Table 3.5.

3.4.5 Role of electrostatics

To evaluate the role of electrostatics, FTDOCK was also run without the
electrostatic binary filter, so only shape complementarity was used when ranking
the some 10'° dockings in order to provide the top 4,000 as output. The ranking
of the first good docking was about twice the rank from when the electrostatic
filter was on (data not presented), showing that choosing only dockings with
favourable electrostatics is an important filter in these docking simulations.
Tables 3.3 and 3.7 also show the consequence of ranking the FTDoOCK
dockings by electrostatic score rather than by shape complementarity, for each
of the three filters. (Note that as the dockings generated by FTDOCK are the
top 4,000 by shape complementarity, this set could exclude a very favourable
electrostatic score that has a poor shape complementarity.) For most systems
starting from unbound coordinates, ranking by electrostatics yielded poorer
results than by shape complementarity. This confirms our strategy of using
electrostatics only as a binary filter. The results when starting from the bound
coordinates show that, in general, ranking by electrostatics is comparable to
ranking by shape complementarity. This suggests that for most complexes,
recognition is a combination of good shape complementarity and favourable
electrostatics. However, the ranking of the best attainable docking for MET
(%CC of 60 for unbound coordinates) improves markedly using electrostatics,
for both the unbound and bound systems. After filter O starting with the bound
coordinates, a model for MET is top rank by electrostatics, with an RMSD of
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0.2A. This suggests that for MET, specificity is determined primarily by the
favourable electrostatic interactions.

3.5 Discussion and Conclusion

The results show that computer modelling can generate from unbound coor-
dinates a limited set of repressor/DNA dockings, one of which is close to the
experimental complex. This was, as far as is known, the first reported study
that considered several systems starting with unbound repressor and model
DNA, and systematically performed a global search to yield a restricted list
of dockings that in the vast majority of cases included at least one docking
close to the experimental complex. In the absence of any biological data, the
standard procedure is to run FTDOCK, that evaluates shape complementarity
and requires favourable electrostatics, followed by ranking using the empirical
score for amino acid / nucleotide pairing. This can yield a list of less than
five dockings, one of which is good, in three out of eight of the case systems
studied. Additional use of DNA footprinting increases this to four out of the
eight systems. For further improvement, knowledge of which amino acids on
the repressor interact with the DNA is required. With this knowledge, using
the ranking just from FTDOCK, a good docking is found in the top 30 ranks for
seven out of the eight systems. These different results show the applicability of
the algorithm with different levels of available biological data.

The empirical scoring of amino acid / nucleotide pairings were successful
in removing false solutions from the list of dockings generated by FTDOCK.
This would be useful to reduce the number of dockings to be examined by a
subsequent computationally more intensive step, such as refining the structures
of the dockings by allowing flexibility in the DNA and the protein side chains.
Such refinement procedures have been developed by Kaptein's group.124-125
There are also several approaches for deriving empirical pairing scores,87:93.94
and further studies could improve the discrimination of these scores in screening
dockings of protein/DNA complexes.

From this study, it can be seen that the level of discrimination, and the
accuracy of the good dockings (%CC and RMSD), is useful enough to prioritise
further experimental studies in a genuine unkown system. For example,
mutagenesis could be used to probe structure / function relationships or to
design protein based regulators of transcription. More generally, this study
shows that in the absence of gross conformational change on association, it
is viable to predict computationally the structure of protein/DNA complexes.
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Chapter 4

Integrated Docking System

4.1 Introduction

The initial investigation into using empirical residue level pair potentials
(Chapter 2)7 was successful enough to warrant further study. The two main
aims of the work in this chapter were to use a pair potential derived from protein
interfaces, and to test the method on a wider range of systems. Both aims were
made possible by the increased numbers of structures in the PDB. A further aim
was to rewrite the software so as to create a better integrated system.

Empirical residue level pair potentials were used to screen possible dockings
of protein/protein complexes. A possible docking is defined as any model
structure of a protein/protein complex. A correct docking is defined as a
possible docking which meets two criteria. First, it must have not more than
a 7.0A RMSD for the C, atoms of the smaller component of the complex, the
larger component having been superposed on its C, atoms, from the known
experimental structure of the complex. Second, it must exhibit at least 25% of
the pairs across the interface that exist in the known experimental structure. A
pair is defined as when two residues on different sides of the interface have at
least one atom within a distance cut-off. This distance is determined to be the
same as the optimal value used for defining the pair potential function (4.54). A
change from earlier work is the use of the word ‘pair’ as opposed to using the
word ‘contact’. It was felt that 'contact’ was misleading when a pair of residues
can interact without being in contact.

The possible dockings were generated by FTDOCK (version 2.0)!5 , a rigid-
body docking program that ranks using shape complementarity and contains
an electrostatic filter.

The complexes studied were 4 protease/inhibitors, 5 antibody/antigens, and
9 other complexes that do not fall into either of those categories. All these
complexes exist in the PDB, as do their component parts in unbound forms, with
the exception of the §-lactamase / $-lactamase inhibitor complex.®® Starting
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from the unbound crystallographic coordinates, FTDOCK was used to generate
10,000 possible dockings for each complex.

The pair potential functions tested were derived from observed intermolecular
pairings across the interfaces in sets of non-homologous complexes. We found
that the best parameters for the pair potential function was an interatomic cut-
off distance of 4.5A, along with disregarding any residue that did not have at
least the equivalent surface accessibility of half a water molecule.

The experiment was run 3 times for each of the 18 complexes. In 14 out of
the 18 systems, FTDOCK generated at least one correct docking in all 3 runs. In
the remaining 4, FTDOCK generated a correct docking in at least 1 of the 3 runs.
After the use of cross validated pair potential functions, a correct docking was
found in the top 750 model structures (the top 250 from each of the 3 runs) in
12 out of the 18 complexes. This increased to 13 out of 18 if a biological filter
was used where available.

The use of MULTIDOCK,!® a side-chain refinement algorithm on the filtered
lists of 750 model structures resulted in 6 out of the 18 complexes having a
correct docking in the top 10 of the ranked complexes, with a further 3 in the
top 30.

4.2 Methods

4.2.1 Software

Previous versions of all the software used in this work existed. However, due to
both portability issues and a wish to integrate the software, both the rigid-body
docking program and the pair potential scoring program were rewritten.

The original version of FTDOCK was written in Fortran77 with parallel
capabilities on Silicon Graphics architectures with the appropriate parallel
Fourier Transform libraries. The original version of the pair potential scoring
program was written in Fortran90 and required a PDB structure as its input.
Both programs were rewritten in ANSI compliant C and have successfully been
compiled and run on Silicon Graphics machines with IRIX, and on Intel (and
AMD) and DEC Alpha processors running Linux.

FTDoCK now uses for its Fourler library the 'Fastest Fourier Transform in
the West’ (FFTW)!3° which is itself written in C and portable to most platforms.
The basic algorithm of FTDOCK has not changed apart from in the two following
ways. The first is that the angle sampling was changed to what was considered a
fairer sampling. The second is that it is now a command line option to choose the
size of the grid cells as opposed to choosing the size of the grid (at compile time)
in the original. This means it is easier to treat different size systems equally in
the way in which they are discretised and subsequently surfaced by the program.
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RPSCORE is the pair potential scoring program, and now reads in output
files from FTDOCK directly. (There is still the option of reading in a PDB file,
so as to allow for the evaluation of models built by other software.) All other
peripheral programs were also rewritten in C to form an integrated package. The
only exception is MULTIDOCK, the side-chain refinement program, which has not
been updated apart from to compile it for an Intel processor Linux platform.

4.2.2 Test set of protein/protein interfaces

In previous work’ we generated matrices from intramolecular pairings (ie.
pairs within a single protein domain) from a dataset of 385 protein domains.
These matrices were used to screen modelled complexes for 9 protein/protein
complexes with encouraging results. We also presented results using matrices
generated from intermolecular pairings across protein/protein interfaces. An
intermolecular dataset would have been expected to give better results due to the
better similarity with the intermolecular pairs being evaluated by the matrices.
However, due to the small size of the dataset the results were not as good as
from using the intramolecular dataset.

With the steadily increasing number of structures in the PDB it is now
possible to retrieve a larger dataset of protein/protein interfaces; large enough
to be used to generate useful matrices. We selected all PDB structures with
more than one chain, and the words ‘Complex’ or ‘Bound’ in their 'HEADER’ or
'COMPOUND’ fields. We then used SCOP (version 1.53) to determine homology
criteria for the domains on either side of the interface. An interface (A-B) was
considered to be homologous to another interface (C-D) if A was in the same
SCOP Superfamily as C, and B was in the same SCOP Superfamily as D, ie.
there were only two SCOP Superfamilies represented in the total of four domains
from the two interfaces. We did not use homodimeric interfaces as they are not
the same form as protein/protein complex interfaces. A homodimer is more
permanent and the component parts are not necessarily biologically viable in
isolation.

In addition to this homology criteria, we made a restriction for the resolution
of the PDB structure to be equal to or better than 2.5A, and for there to be no
nucleic acids in the structure. In the case of there being homologous interfaces,
the interface from the best resolution structure was selected. The resulting
dataset of 90 interfaces is shown in Table 4.1.

4.2.3 Interface residue level pair potential matrix generation

The matrices were generated from the interface dataset by counting the
frequency of pairs of residue types i and j. From previous work 7 we already
established that the random model should be calculated from the residue
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PDB Side 1 Side 2 PDB Side 1 Side 2 PDB Side 1 Side 2
1A14 LH N 1DPJ A B 1QAV A B
1A2X A B 1DUZ A B 1QKZ LH A
1A2Y AB C 1DX5 AM I 1QLA AB CF
1A4Y A B 1EAI A C 1QMZ A B
1ACB E I 1EAY A C 1Q00 A DE
1AK4 A D 1EER A BC 1Q03 AB CD
1AVA A C 1EFN A B 1QUQ A B
1AVW A B 1EFU A B 1SBB A B
1AY7 A B 1EG9 A B 1SGP E I
1AZS AB C 1EUV A B 1SLU A B
1BON A B 1EV2 A E 1SMP A I
1BGX HL T 1FAK H I 1STF E I
1BLX A B 9FAK LH T 1TAF A B
1BVN P T 1FLE E 1 1TCO AB C
1BVY AB F 1FLT vw X 1TMQ A B
1C1y A B 1GC1 C G 1TX4 A B
1CDK A I 9GC1 LH G 1UGH E I
1CLV A I 1GOT BG A 1VPP v X
1CSE E I 1IBR A B 1WEJ LH F
1CXZ A B 1ICF AB 1 1YAG A G
1D2Z A B 11IKN AC D 1YCS A B
1D3B A B 1JSU A B 2BTC E 1
1D4av A B 9JSU AB C 2JEL LH P
1D5M A C 1LPB A B 2PCC A B
1D6R A I 1MDA HL A 2TRC BG P
1D8D A B INSG A B 3BTH E 1
1DAN HL TU 10AK LH A 3SIC E I
1DEV A B 10SP LH (6] 4CPA E I
1DHK A B 1PDK A B 4HTC HL I
1DIO AB G 1PYT AB CD 7CEIl A B

Table 4.1: Dataset of 90 interfaces used to generate pair potential matrices.
The PDB code is provided along with the chainIDs for the two component sides

of the interface.
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frequency (mole-fraction) as opposed to using pairing propensities (contact-
fraction). Le.

ng n;
i = Pro X i x M
€i,j Total N N

i=20
Prota = ) _ pi
i=1

7=20

bi = Z Dij
j=1

where n; and n; are the total occurrences of each residue, p;; is the number of
pairs made across the interfaces between residue types i and j, and e;; is the
expected number of pairs made between residue types i and j. Also established
from the previous work,” was the best definition of a pair. A pair is considered
to exist if any atom from one residue is within a cut-off distance of any atom in
another residue across the interface. (We have not tried using an atom level pair
potential, as previous work” showed them to be of less value than residue level
potentials.)

It should be noted that the ranges over which p;; is summated to calculate
Proq is important. Although in effect the same pairs are counted twice, this
compensates for the fact that p; ; is a symmetrical value, i.e. a single pair between
residue types i and j causes an increment to both the counts of p;; and p;;
(except when i is the same as j). All this ensures that the total of the expected
values is equal to the total of the observed number of pairs (Protq1)-

The score function is the same in the previous work, ie.

si = n(g2)
allpairs
STotal = Y, Pig

There are two ways in which it is sensible to limit the counts of the
occurrences of a residue type n;; either to only those residues found on the
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surface of the domains, or to only those residues found to make at least one
pair across an interface. There is also the option of no restriction. This would
mean counting n; for all the residues, including core, in the structures. In
work by Glaser!4? in 2001, the latter restriction is made. We, however, consider
this restriction to bias the potentials towards an ability to select the correct
orientation of an interface that is already established, as opposed to an ability to
select docking interfaces from the surfaces of the two molecules. By not counting
residues that do not appear in the interfaces, the potential loses any information
about the propensity of a residue to be in an interface at all (regardless of what it
pairs with). We therefore restricted the residue count only by a minimum relative
surface accessibility (MRSA) value (calculated by DSSP).

There were two parameters therefore for which optimal values needed to be
established; the cut-off distance and the MRSA of the residues to be considered
in the calculations. We tested MRSA values of O (no restriction), 5, 10, 15, and
20, where a value of 10 is equivalent to an accessibility of one water molecule.
The distance cut-off value was varied between 3 and 7A at half Angstrom steps.

4.2.4 Test systems

In order to properly evaluate a docking algorithm it is necessary to find
complexes in the PDB which also have their component parts in the PDB in
an unbound form. By docking these unbound components, and comparing the
modelled structures to the known crystallographic structure, the algorithm can
be properly evaluated.

It has been a problem in the past to find a sufficiently large set of such
examples in order to evaluate a docking algorithm. Previous studies have either
shown only the few possible results from the examples available at the time, or
have otherwise used bound components, either for one half of the complex, or for
the total. However, with the increased size of the PDB we consider we have now
got to the stage that there are sufficient examples of complexes with unbound
components available to validly test an algorithm on these alone.

In order to find our test systems of complexes with unbound components, a
Perl script was used to do as much as possible in an automated fashion. The
use of SCOP (version 1.53) also sped the process up considerably. The method
was as follows:

1. Identify all PDB coordinate sets with a resolution of 3A or better. Only these
PDB coordinate sets are being referred to below.

2. Use SCOP to make a list of those PDB coordinates that consist of more than
one domain. This means the coordinates potentially constitute a complex.
The keyword "COMPLEX" or "BOUND" is not always clearly present in a
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PDB file that is a complex. By presuming these multidomained coordinate
sets are complexes until the end of the procedure, we reduce dramatically
the number of PDB files that need to be examined by hand.

3. Check the above structures to determine how many SCOP Superfamilies
are present. If there is only one, then the structure was removed from the
list. This removed homodimers.

4. For each of the list from above:

(a) for each domain, find all other PDB coordinate sets that contain the
same domain. These coordinates are potentially unbound conforma-
tions of the domain in the potential complex.

(b) stop unless at least two domains in the potential complex have
been matched to other PDB coordinate sets. Since we want both
components of the complex in unbound conformations, this requires
at least two domains to have been matched. There is no guarantee at
this stage of the automated process that even if the potential complex
is a real complex, that the domains matched constitute the domains
involved in the interface. This is determined by hand at the end.

(c) for each match above, attempt a sequence match to the appropriate
potential complex domain. A match was considered to have occurred
when at least half the potential complex domain sequence was exactly
matched.

(d) stop unless at least two domains are still matched, for the same reason
as in (b), now with more information.

(e) if the potential complex is matched across all of its domains by a
single other PDB coordinate set, remove those matches since that
other coordinate set would also be the same complex (presuming the
potential complex is an actual complex).

(f) stop unless at least two domains are still matched, for the same reason
as in (b) and (d), now with even more information.

(g) report on those PDB coordinate sets that have reached this stage,
along with the matches. These are potential complexes with potentially
unbound conformations available.

When we ran this the numbers were whittled down from just over 10
thousand PDB structures with domains in SCOP 1.53, to 180 possibles. The
last stage had to be performed by hand. To determine between a multidomained
structure and a complex, looking to see if the word "COMPLEX" or such was
in the PDB headers was not always enough. SCOP proved useful in unclear
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cases. The search resulted in 17 systems. A further system was known; beta-
lactamase/BLIP, from a previous blind trial.’® Table 4.2 shows the PDB files
of the complexes and their unbound components. Figure 4.1 shows the reason
for the inclusion of two antibody/lysozyme complexes. As can be seen, the two
antibodies bind to the lysozyme in very different ways.

Description PDB codes (chains or sections)

Complex I Component 1 | Component 2
TRYPSIN / AMYLOID BETA-PROTEIN 1BRCI4! (e: 1) 1BRA!Z (-) | 1AAPM41 (a:)
PRECURSOR INHIBITOR DOMAIN (APPI)
ALPHA-CHYMOTRYPSINOGEN / HUMAN 1CGI? (e: 1:) 2CGA43 (a: ) 1HPTI44 (-)
PANCREATIC SECRETORY TRYPSIN INHIBITOR
KALLIKREIN A / 2KAI?7 (a: b: 1:) 2PKA?7 (a: b:) SPTI!45 ( -)
BOVINE PANCREATIC TRYPSIN INHIBITOR
SUBTILISIN BPN' / 2SIC146 (e: 1:) 1SUP103 (-) 3SSI146 ()
STREPTOMYCES SUBTILISIN INHIBITOR
EXTRACELLULAR DOMAIN OF TISSUE 1AHW147 (2:1-108 | 1FGN147 (1:1-108 1BOY148
FACTOR / INHIBITORY FAB (5G9) b:1-117 ¢:107-211) h:1-117) (107-213)
HUMANIZED ANTI-LYSOZYME FV / 1BVK!9 (a: b: c: ) 1BVL!4? (b: a:) 3LZT150 (-)
LYSOZYME
MONOCLONAL ANTIBODY FAB D44.1 / 1IMLC3! (a:1-108 | 1MLB3! (a:1-108 3LZT150 (-)
LYSOZYME b:1-118e: ) b:1-118)
ANTI-LYSOZYME ANTIBODY HYHEL-63 / 1DQJ5! (a: b: c:) [ 1DQQ!5! (a: b:) 3LZT190 (-)
LYSOZYME
IGG1 FAB FRAGMENT / 1WEJ!52 (1:1-107 | 1QBL152 (1:1-107 | 1HRCI53 (-)
HORSE CYTOCHROME C h:1-112 f:) h:1-112)
YEAST CYTOCHROME C PEROXIDASE (CCP) / 2PCC!54 (a: b:) 1CCAISS (-) | 1YCCI® (-)
YEAST ISO-1-CYTOCHROME C
BARNASE (G SPECIFIC ENDONUCLEASE) / 1BGS!%6 (a: e: ) 1A2P156 (a:) | 1A19'57 (a:)
BARSTAR MUTANT (C40A,C82A)
BETA-LACTAMSE / tem.blip®® (a: b:) 1TEM!58 (-) blip%® (-)
BETA LACTAMASE INHIBITOR PROTEIN
RIBONUCLEASE INHIBITOR / 1DFJ1%9 (i: e:) 2BNH!60 ( -) 7RSAlI6! (-)
RIBONUCLEASE A
ACETYLCHOLINESTERASE / 1FSS162 (a: b:) 1VXR!®3 (a) 1FSCl62 ()
FASCICULIN-II
V-1 NEF PROTEIN / 1AVZ64 (a: c:) 1AVV164 (_) | 1SHF!65 (3:)
WILD TYPE FYN SH3 DOMAIN
HUMAN URACIL-DEOXYRIBONUCLEIC 1UGH!66 (e: 1:) 1AKZ!%7 (-) | 1UGI'®8 (a:)
ACID GLYCOSYLASE / PROTEIN INHIBITOR
RAS / 1WQ1169 (g: 1) 1WER!70 (-) 5P21171 (-)
RASGAP
HPT DOMAIN / 1BDJ172 (a: b:) 3CHY!73 (-) | 2A0B!74 (-)
CHEY

Table 4.2: Dataset of 18 systems used as the test set.
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Figure 4.1: Superposition oftwo antibody/lysozyme complexes.
The antibody is in the lower part of the picture, with the Heavy chain of the left.
The lysozyme of Imlc is on the top left (red), and that of Ibvk on the top right

(green).
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4.3 Results

4.3.1 Best use of FTDOCK -

FTDoCK!® was run on all 18 test systems. Although no systematic study was
done for all 18 systems to determine the best value for the grid size, it was
observed for several systems (2KAI, 1IMLC, 1BGS) that a smaller grid size gave
better results. We then observed that for a grid cell size of 0.7A, a surface
thickness of 1.3A gave the best results for those same systems. A grid cell size
of 0.7A results in grids ranging in size from 130 to 204 cells on a side. This
results in computer memory requirements of up to 200 MegaBytes (dependent
on hardware and architecture).

After running FTDOCK many times, a further observation was made. If the
molecules to be docked are spun before running FTDOCK, there is a clear effect
of the initial orientations of the molecules on the results. This is despite the
fact that when we counted the cells that are set as protein by the discretisation
process for different initial orientations, the number varies only a few percent.
However, the results show clearly that a small change in the way that the
discretisation process models the molecules has a significant effect on the
results. This is discussed further in 4.5.1.

This is a clear problem and the current solution is non-ideal. In order to
reduce the bias of the initial orientation of the molecules on the results, we ran
FTDoCK three times for each test system, randomly spinning both components
before each run. By looking at the combined results, 10,000 possible dockings
from each of the three runs, we increased the chance of finding a correct docking
in the list of now 30,000 possible dockings. The increase in required computing
time was a large disadvantage of this approach.

The best pair potential parameters

FTDoOCK was used to generate 3 sets of 10,000 possible dockings for each of 15
test systems. (It is not 18 test systems because this part of the work was done
early on, prior to finding a further 3 test systems.) Each of the lists of 10,000
possible dockings had a correct docking for 11 of the test systems in all 3 sets.
The remaining 4 test systems had a correct docking in 2 of the 3 sets. We then
ranked the total of 45 sets by cross-validated pair potential matrices. These
were generated separately for each of the 15 test systems. For each test system,
any interface in the dataset of 90 interfaces (Table 4.1) was removed if any of its
components shared a SCOP Superfamily with any component of the test system.
This resulted in 69 to 90 interfaces being left, which were then used to generate
the cross-validated matrix for that test system. Each of these 15 cross-validated
matrices were generated for each set of parameters that were investigated.
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The performance of the parameters was evaluated by the number of test
systems having a good model placed in the top 200 ranks in at least one of
the three sets of 10,000 possible dockings. A good model was here defined
as being one with 3A or less RMSD over Co atoms for the whole complex
from the experimental structure. The value of 200 was decided upon for
computational reasons. Any final stage of screening the possible dockings is
currently computationally intensive, and it was felt that 600 complexes was a
sensible number for such an algorithm to manage in a reasonable time. (We later
changed this to 250.) Table 4.3 shows the values over the range of parameters.
As can be seen, several pairs of parameters give equally good results by this
criterion.

We therefore changed the criteria by changing the definition of a correct
docking to being a possible docking with 5A or less RMSD from the experimental
structure. Table 4.4 shows the subsequent results. From this it can be seen that
a distance cut-off of 4.5A and a minimum relative surface accessibility (MRSA)
of 5% gave the best results by this new criterion, with a total of 14/15 systems
having a good model. This determined the use of those parameters for evaluation
of pair potentials.

4.3.2 The pair potential matrix

The parameters of a distance cut-off of 4.5A and a minimum relative surface
accessibility (MRSA) of 5 are biologically sensible values. A distance of 4.5A
reflects the maximum distance at which an atomic interaction is likely across
an interface. The requirement of having a residue not be totally buried is also
sensible. Although such totally buried residues would rarely contribute to the
count of pairs across an interface, the removal of these residues has an effect
on the scores, since the expected values are calculated from the abundance of
residue types.

Table 4.5 and Figure 4.2 respectively show the non cross validated matrix as
a graphical representation and as numerical values.

It can be seen that the charged residues act in a largely ‘classical’ manner,
i.e. like repel and opposites attract. The exception is Lys-Arg which shows no
less preference to being in a pair than the expected calculation. The other broad
observation is that large hydrophobics like to be paired.

These two observations show that our matrix is fulfilling two roles. The first
is showing that the matrix, by reflecting features we know to be true about
electrostatic interactions, is also hopefully including features we do not know
about other specific residue/residue pairing preferences. The second is that
a given residue having consistently positive scores in the matrix is showing
a preference to being in the interface, a fact we know to be true of large
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Distance cut-off (A)

MRSA (%) | 3.0 35 4.0 45 50 55 6.0 6.5 7.0
00 0O 2 9 8 8 9 8 9 8
05 2 4 9 9 7 8 8 8 7
10 2 4 9 8 7 8 8 7 7
15 4 4 8 9 6 9 7 7 7
20 3 3 8 8 6 9 7 7 6

Table 4.3: Parameter Justification for Pair Potentials Matrices: 3A as a good
prediction.

Distance cut-off (A)

MRSA (%) | 3.0 3.5 40 45 50 55 6.0 6.5 7.0
00 8 10 12 12 11 13 12 13 11
05 11 12 13 14 10 12 13 11 11
10 11 11 13 13 11 12 12 11 11
15 12 11 12 13 11 13 10 11 10
20 11 11 13 12 11 13 10 11 10

Table 4.4: Parameter Justification for Pair Potentials Matrices: 5A as a good
prediction.

Key to Tables 4.3 and 4.4: The numbers in the grids show the number of test
systems (out of 15) where a good model was found in at least one of the three
sets of 10,000 possible dockings, ranked in the top 200 by the cross-validated
pair potential generated with the given distance cut-off and MRSA.

hydrophobics. Thus our matrix is providing both the ability to select the correct
binding areas of protein surfaces, and then the more specific residue/residue
pairing preferences can provide information about the correct orientation of
interfaces.

As a result of not using homodimers in our dataset, there is no anomalously
high cystine—cystine score that needs to be dealt with as in previous work.

Arginine may have slightly more preference to pair than the chemically
similar Lysine due to the larger charged terminus side chain. This would mean
that the exact position of an Arginine side chain would have less effect than for
that of Lysine.

Table 4.6 shows the raw counts of residue/residue pairs across all the
interfaces. This shows that the size of the dataset being used to generate the
matrix is statistically sensible. The addition of a single individual interface will
not cause a significant change to these values. However, the addition of a single
individual interface will also change the calculations of the expected values,



The values of the non cross validated pair potential matrix, generated using the best parameters of distance cut-off 4.5A, MRSA

of 5%.

D E K R A v F P M I L W Y N [ Q G H S T
AsparticAcid | -0.7 -0.3 02 05 -04 -03 -00 -02 00 -02 -02 00 02 -01 -05 -00 -02 01 00 -02
Glutamic Acid | 0.3 -07 02 04 -04 01 -01 -03 01 03 -03 00 01 00 -0.1 01 -04 01 -01 -02
Lysine 02 02 -08 -00 -05 -02 -01 -05 01 -02 -01 01 03 -02 -00 -02 -02 -00 -02 -02
Arginine 05 04 -00 -01 -02 -00 03 00 04 O01 O01 04 04 02 02 02 00 01 02 -00
Alanine 04 -04 -05 -02 -05 -00 01 -06 01 -01 00 01 01 -02 -01 -02 -03 0.0 -0.1 -04
Valine 03 -01 -02 -00 -00 -00 02 -01 04 02 02 04 03 -01 -01 01 '-01 -01 -02 -0.1
Phenylalanine | 00 -0.1 -01 03 01 02 03 01 06 06 04 03 04 -01 02 02 -01 03 01 00
Proline 02 -03 05 00 -06 -01 01 -06 04 -04 -01 03 02 00 -03 -01 -03 -02 -01 -0l
Methionine 00 01 01 04 01 04 06 04 00 03 04 00 05 -00 00 02 03 00 -00 Ol
Isoleucine 02 -03 -02 01 -01 02 06 -04 03 -02 03 04 03 -01 00 01 -02 02 -01 -0.1
Leucine 02 -03 -01 01 00 02 04 -01 04 03 -01 02 03 -03 01 00 -01 01 -02 -0.1
Tryptophan 00 00 O01 04 O01 04 03 03 00 04 ©02 00 06 00 00 02 01 00 01 00
Tyrosine 02 01 03 04 01 03 04 02 05 03 03 06 01 03 02 03 01 05 01 0.1
Asparagine 01 -00 -02 02 -02 -01 -01 00 -00 -01 -03 00 03 -02 -03 01 -02 -01 -02 -02
Cystine 05 -01 -00 02 -01 -01 02 -03 00 00 O01 00 02 -03 00 02 01 00 01 -02
Glutamine 00 -01 -02 02 -02 01 02 -01 02 O01 00 02 03 01 02 -03 01 00 -01 -02
Glycine 02 -04 -02 00 -03 -01 -01 -03 03 -02 -01 01 01 02 O01 01 -04 01 -02 -02
Histidine 01 01 -00 01 ©00 -01 03 -02 00 02 01 00 05 -01 00 ©00 01 00 01 0.1
Serine 00 01 -02 02 -01 -02 01 -01 -00 -01 -02 01 ©O01 -02 ©O01 -01 -02 0.1 -06 -0.1
Threonine 02 -02 -02 00 -04 01 00 -01 ©01 -01 -01 00 01 -02 -02 -02 -02 01 -01 -06
totals 25 26 26 31 -35 02 38 28 40 08 09 33 54 -16 -04 06 -21 13 -16 -25

Table 4.5: Best Pair Potential Matrix
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S clolejofolfe| |o]ol-|eflojefs|o]-|O|-| Serine
T|lo|ojo Ofef-|elt-|-|-lefo]elolo]| | -|O| Threonine

Figure 4.2: Best Pair Potential Matrix
A graphical representation of the non cross validated pair potential matrix,
generated using the best parameters of distance cut-off 4.5A, MRSA of 5%.

used in the generation of the score matrix. In the case where the interface is
part of a large domain, the number of residues, not in the interface, counted
for the calculations could change more markedly. This could cause a significant
change to the calculations of the expected values (not shown).

Figure 4.3 shows that the composition of residues types in the dataset is
broadly similar to that of the whole of SCOP 1.53 (i.e. PDB without homologues),
from which the dataset was extracted.

4.4 Measurements of quality of models

In any field of research, it is important for different studies to agree on which
metrics to use to measure the results of various approaches to the problem.
Unfortunately there is no such clarity when it comes to measuring the success



D E K R A v F P M 1 L W Y N C Q G H S T

Aspartic Acid 11 24 74 120 17 20 23 23 12 16 30 13 52 30 4 34 30 22 56 27
GlutamicAcid | 24 13 83 111 19 32 20 21 16 16 28 14 39 43 10 35 25 29 49 31
Lysine 74 83 9 44 13 26 22 14 15 18 44 15 56 28 12 25 36 19 34 30
Arginine 120 111 44 29 23 31 42 36 24 31 50 26 67 60 16 53 47 21 76 41
Alanine 17 19 13 23 12 33 27 9 14 19 43 13 35 21 8 21 23 18 34 15
Valine 20 32 26 31 33 31 32 24 22 35 64 25 43 24 8 34 31 12 29 28
Phenylalanine | 23 20 22 42 27 32 24 22 21 52 60 13 37 15 9 24 19 20 30 24
Proline 23 21 14 36 9 24 22 8 22 8 33 22 39 32 5 20 22 9 32 27
Methionine 12 16 15 24 14 22 21 22 5 14 32 14 20 9 10 14 27 17 13 14
Isoleucine 16 16 18 31 19 35 52 8 14 10 62 19 36 20 7 28 19 19 23 24
Leucine 30 28 44 50 43 64 60 33 32 62 43 22 54 20 15 37 39 26 36 42
Tryptophan 13 14 15 26 13 25 13 22 14 19 22 8 29 11 7 15 17 10 16 13
Tyrosine 52 39 ©56 67 35 43 37 39 20 36 54 29 21 42 13 38 37 33 44 39
Asparagine 30 43 28 60 21 24 15 32 9 20 20 11 42 21 5 34 28 11 31 22
Cystine 4 10 12 16 8 8 9 5 10 7 15 7 13 5 1 15 17 14 20 8
Glutamine 34 35 25 53 21 34 24 20 14 28 37 15 38 34 15 13 42 14 32 23
Glycine 30 25 36 47 23 31 19 22 27 19 39 17 37 28 17 42 23 25 39 31
Histidine 22 29 19 21 18 12 20 9 17 19 26 10 33 11 14 14 25 8 26 21
Serine 56 49 34 76 34 29 30 32 13 23 36 16 44 31 20 32 39 26 15 48
Threonine 27 31 30 41 15 28 24 27 14 24 42 13 39 22 8 23 31 21 48 12
[ totals [638 658 617 948 417 584 536 428 335 476 780 322 774 507 204 551 577 374 683 520

Table 4.6: Raw observations of residue-residue pairings.
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Figure 4.3: Comparison ofpopulations ofresidue types.
The comparison is between the residue type populations in SCOP 1.53 (steadily
decreasing line) and the dataset of 90 complexes shown in Table 4.1.

of protein/protein docking algorithms. Even the blind trials have used different
ways of measuring success.

There are two Issues that need to be addressed. The first is how to measure
the quality of a given model complex. The other is the number of models an
algorithm may propose, stating that it thinks at least one of them is of good
quality, and still be useful.

To address the second issue first, it is probably of little use to an end user
to provide more than ten possible models of how two proteins dock. Even this
may be considered too many, and recognising that a single good model is the
at present unrealistic ideal, it is enough to say that the fewer the better. What
an algorithm should be able to state is a certain probability of generating a
good model in the top N models, where N needs to be no more than 10. It is
however evident that any given study will want to differentiate between the types
of protein/protein complexes when providing such statistics. The reason for this
is that all algorithms to date have for example had more success at docking
serine protease / inhibitor complexes than antibody / antigen complexes,
and providing statistics across all systems with no discrimination will often
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downgrade the successes of an algorithm.
In addressing the quality of a model, the following is thought to be an
extensive list of measurements that have or could be used.

e RMSD over either C,, backbone, Cg, backbone and Cg, all atoms,
calculated over

- the whole complex, superpositioning using the same atom types

- the interface on both sides of the complex, superpositioning using the
same atom types

- the whole smaller (ligand / mobile) component, optimally superposi-
tioning the whole of the larger (receptor / static) component first, using
the same atom types

- the interface of the smaller (ligand / mobile) component, optimally su-
perpositioning the interface of the larger (receptor / static) component
first, using the same atom types

e Percentage Correct Pairs (PCP) - of those found in the true complex, how
many are found in the model.

o Centre of Mass Movement (CMM) of the centre of mass of the smaller (ligand
/ mobile) component from the correct position

There are two further questions with respect to the calculations of RMSD
values. The first is the matter of what the model is being superposed onto
and being compared to. Most studies use the true crystallographic complex.
However, some use a “best possible model”, where the unbound components
have been individually optimally superposed onto the true crystallographic
complex. The second question is what constitutes an interface. In this study
the interface was defined as consisting of those residues which had at least one
atom within 10A of any atom in the other component of the true complex. This
is not an uncommon value to choose as a distance cut-off, although there are
no reasons against justifying the use of a smaller value.

For the analysis of the results of FTDOCK, a large number of the above
measurements were calculated. The RMSD values were calculated only from
the true crystallographic complex, and only using either C, atoms or all atoms.
This resulted in 8 RMSD values for each model. The other two values, namely
percentage correct pairs (PCP) and centre of mass movement (CMM) were also
calculated. With a total of 510,000 models from a total of 51 runs (17 systems
each run three times - 1BDJ not included), reasonable analysis could be done
on the relationship between these different values.

The first thing to note is the difference between calculations using all
atoms or just C, atoms. For calculations across both components of the
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complex, whether it was the whole complex or the interface only, the differences
were always within £ 1A. For calculations where the larger component was
first optimally superposed, and the RMSD calculation was over the smaller
component, the value differed more, up to £ 2.5A. Although these values are
large enough to make a difference in stating whether a given model is of a good
quality or not, it is small enough to be able to use to compare previous studies
where different sets of atoms were used, given that the superpositioning and
calculations were over the same regions.

>
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RMSD values calculated using all atoms over interface residues only

Figure 4.4: Comparison between RMSD (A) value calculations.

The two calculations being compared are the RMSD values (in Angstroms)

calculated using the whole complex, and RMSD values (in Angstroms) calculated
usingjust interface residues. RMSD calculations are for all atoms. The graph

shows the range of RMSD values calculated using the whole complex that can

exist for a given calculation of RMSD using only the interface residues. For
example, a calculation of 104 using only interface residues can correspond to
a calculation of between 74 and 1s4 for the whole complex, depending on the

structure. The same can be shown in the other direction. For a calculation of
104 using the whole complex, a calculation using only the interface residues

can yield values between 5A and I6A. An interface residue is one that possesses

at least one atom within IOA ofany atom on the other side of the interface. Data

is from the evaluation ofs 10,000 model complexes generated by FTDock.
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In comparing values calculated over different regions there is a substantially
larger change. Comparing the methods of superposing just the interface as
opposed to the whole complex, the highest increase is 8A and the lowest decrease
is 10A, both using CQand all atoms. However, as can be seen in Figure 4.4, the
change is related to the value. At low, good quality, RMSD values, the region
of calculation changes the values very little, though more often than not an
interface calculation gives a higher value. From this it can be seen that, as
above, different studies using different measures can still be crudely compared,
at least when discussing the number of good quality models. This may not be
as true if a tighter definition (< 10A) is used to define those residues that are
considered to be in the interface.

The next relationship observed was the change in the RMSD value between
calculating using the whole of both sides of the complex and calculating over
just the whole of the smaller component, the larger having been optimally
superposed. A first guess would be that the value would double, since the
number of atoms dividing the total translations is halved. This is shown
schematically in Figure 4.6. This seems to be approximately correct, with a

nc 0 2 4 6 8 10

RMSD calculated for C alpha atoms over whole complex (Angstroms)

Figure 4.5: Further Comparison between RMSD (4) value calculations.
Comparison between use of RMSD calculated using either a whole model
complex, or usingjust the whole of the mobile component, the static component
having been optimally superposed on the native static component.
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Figure 4.6: Schematic showing RMSD calculation methods.

The diagrams show why superpositioning of the static component, followed by
calculation of the RMSD over the mobile component only, would led to an
RMSD value double that of superpositioning and calculating RMSD over both
components.

The top ofthe figure shows a schematic representation of an RMSD calculation
done over both components after optimally superpositioning the model over the
whole complex. The value is (IA + [A) divided by two atoms, i.e. lA. The lower
figure shows a representation of an RMSD calculation done over the mobile
component with the static component already optimally superposed. The value
here is simply 2A.
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certain amount of variation, once that fact that the smaller component often
has significantly less than half the total atoms, and the fact that the calculation
ignores the value of the optimal superposition of the larger component are taken
into account. Figure 4.5 shows the relationship for low RMSD values. For higher
values the RMSD calculated over the whole complex reaches a maximum before
that of the RMSD calculated overjust the interface residues, so the ratio breaks
down for values calculated over the whole complex above 40A (not shown).

Next studied was the RMSD calculations where the larger component’s
interface is superposed and the evaluation is across the smaller component’s
interface. Here the values vary between an increase of 10A or a decrease of
25A. This very large difference would be expected, as the superposition takes
no account of which residues on the smaller component are interface. Since
the residues now contributing to the RMSD calculation are now all near the
surface of the smaller component, no dampening effect on the RMSD value by
core residues now exists. This dampening effect is due to the fact that when
the smaller component is docked in an approximately correct position, but
the wrong orientation, RMSD calculations over the whole component include
residues in the core of the small component, which are in approximately the

c - D I H I & D I D W

Percentage Correct Pairs (%)

Figure 4.7: Comparison between RMSD (A) calculated using the mobile
component and % Correct Pairs.
The two lines are atx =25 and y =7



INTEGRATED DOCKING SYSTEM 122

10000 -

-

100 -

O iz

62

0 20 40 60 80 100
Percentage Correct Pairs

Figure 4.8: Comparison between Centroid Movement and % Correct Pairs.
The histogram shows the number ofmodels whose movement of the centroid of

the mobile component was less than 10 A for a given % Correct Pairs value.

correct position, irrespective of the orientation of the component as a whole.

The relationship between the RMSD value calculated over interface Ca atoms
and the percentage ofcorrect pairs (distance cut-off4.5A) is shown in Figure 4.7.
It can be seen that there is a relationship at high percentage correct pairs (PCP)
and low RMSD values. It can also be seen that at very low PCP values there
are still low RMSD values (though not as low as for high PCP values). This lead
to a decision to quantify a good model as one that possessed both at least 25%
correct pairs, and an RMSD, calculated using CQatoms over interface residues
of the mobile component, of < 74.

The last quality value, that was used by Vakser,36 is the centre of mass
movement (CMM), the purely translational movement of the centroid of the
mobile component from its correct ciystallographic position. As was discussed
in 1.4.2, this value takes no account of the orientation of the mobile component.
Figure 4.8 shows this very clearly, where it can be seen that a large number of
models with a CMM value < 10A actually have no correct pairs. (In fact it is
9452 models ofa total 16019 models that had such a CMM value < 10A from all
the experiments, /e. 59%.) 10A was the limit used by Vakser as defining a good
quality model.36
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4.4.1 Conformational changes

Table 4.7 shows the broad extent of conformational changes undergone in each
of the 18 systems tested. Values are shown both for the whole proteins and for
the interface residues, here defined as those residues with atoms within 10A
of the other component when docked. The first two columns for each of these
two sets show the RMSD for each component, between the unbound structure
used in the simulation and the bound form of the known complex. The third
column has the RMSD between the “best possible model” complex and the true
complex. Such a model is sometimes used as the structure against which RMSD
calculations are made. It is made simply by the combination of the two separate
optimal superpositions of each unbound component on the bound complex. Due
to this method of construction, this “best possible model” may well have steric
clashes in its interface. All these three columns’ RMSD values were calculated
over all atoms. The fourth column has the RMSD value for the “best possible
model” if all calculations were done using just C, atoms.

Comparing these values to those discussed in Section 1.2, it can be seen that
the proportion of systems whose conformational changes are within what can
be regarded as experimental crystallographic variance is about half, the same as
in the study by Betts and Sternberg.2 However, the results below (4.4.2) show
an unclear relationship between the extent of conformational change and the
success of FTDOCK.

4.4.2 Results of global scans

Table 4.8 shows the results for FTDOCK, along with the re-ranking of the models
by pair potentials cross-validated for each system. The first thing that is clear is
the variance in the quality and number of good models between the different
systems. All the test systems generated at least 3 good models out of the
30,000 models generated. However, the ranking of some of those models, by
both surface complementarity and pair potentials was simply too poor to be
of any real use. On the other hand, some systems have good models ranked
very highly, particularly by the pair potential scores, and this is without any
biological filter.

There is in general a large improvement from the surface complementarity
ranks to the pair potential ranks. What is also still true, as it was in the work
shown in Chapter 2 (and in the 1999 paper by Moont et al.?), is that the number
of false negatives, i.e. good models ranked badly, is significantly less for the pair
potential ranks than the surface complementarity score ranks (data not shown).

As can be seen in Table 4.8, only one system, in one of the three runs, has
a good model ranked highly by the surface complementarity scores, namely the
Ribonuclease Inhibitor / Ribonuclease A complex (1DFJ) at rank 3. The pair



Test Whole Structure [RMSD(A)] Interface [RMSD(A)]
System | Static Mobile Complex Complex (C,) | Static Mobile Complex Complex (C,)
1BRC 0.8 1.2 0.9 0.4 0.9 1.3 1.0 0.4
1CGI 1.9 2.5 2.0 1.5 2.8 2.4 2.7 2.0
2KAI 1.2 1.2 1.2 0.7 1.4 1.1 1.3 0.6
2SIC 0.6 1.3 0.9 0.4 0.6 1.1 0.8 0.4
1AHW 0.9 1.3 1.0 0.7 0.9 1.2 1.1 0.7
1BVK 1.4 1.9 1.6 1.0 1.2 2.0 1.6 1.2
1MLC 1.0 1.2 1.1 0.7 0.9 0.9 0.9 0.6
1DQJ 1.2 1.5 1.3 0.7 1.0 1.4 1.2 0.8
1WEJ 0.8 1.2 1.0 0.3 0.7 1.3 1.0 0.3
2PCC 0.8 1.1 0.9 0.4 1.1 0.9 1.0 0.4
1BGS 0.9 1.1 1.0 0.5 0.9 1.0 0.9 0.4
BLIP 1.0 1.0 1.0 0.5 1.2 1.1 1.1 0.5
1DFJ 1.8 1.2 1.7 1.4 1.6 1.3 1.5 1.0
1FSS 1.0 1.3 1.1 0.6 1.3 1.5 1.4 0.7
1AVZ 1.2 1.3 1.2 0.6 1.3 1.4 1.3 0.6
1UGH 0.9 1.5 1.1 0.5 0.9 1.5 1.2 0.5
1WQ1 1.3 1.0 1.2 0.8 1.4 1.2 1.3 0.8
1BDJ 1.8 1.1 1.5 0.9 2.3 1.3 1.9 1.0

Table 4.7: Conformational changes between unbound and bound structures.
Values are RMSD (in A) between unbound and bound structures. Calculations are over all atoms, except where C, is specified.
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Run 1 Run 2 Run 3
Test Surface Pair Surface Pair Surface Pair Total

System Complementarity Potentials Complementarity Potentials Complementarity Potentials Good

Rank RMSD(A)/PCP | Rank RMSD(A)/PCP || Rank RMSD(A)/PCP | Rank RMSD(A)/PCP || Rank RMSD(A}/PCP | Rank RMSD(A)/PCP || Structures
1BRC 631 5.3/58 | 20 4.3/78 565 3.8/76 4 5.7/60 206 1.9/86 | 8 1.6/86 33
1CGI failed 89 4.8/31 21 6.6/33 failed 3
2KAI 201 6.5/38 | 286 3.2/40 || 2936 2.7/59 | 307 2.7/55 160 6.8/28 | 218 3.2/51 17
2SIC 620 6.9/29 | 225 4.8/72 || 8526 4.7/46 | 715 4.7/46 || 2215 2.1/54 | 291 2.1/54 15
1AHW 288 2.2/64 | 240 5.9/37 780 3.6/50 | 600 6.9/35 240 5.1/45 123 5.1/45 12
1BVK 579 4.5/45 144 6.9/45 368 4.0/40 | 194 4.4/62 || 7103 5.4/37 | 686 5.3/45 14
IMLC 5514 3.8/27 | 209 3.8/27 || 2375 5.0/34 | 364 5.0/34 failed 3
1DQJ 6227 6.1/26 | 518 6.1/26 failed 2867 5.5/29 | 654 5.7/31 5
1WEJ 200 4.3/48 95 5.5/65 68 6.7/28 45 7.0/51 || 6893 5.4/25 28 4.5/28 13
2PCC 979 6.7/36 | 771 6.5/36 || 9404 5.6/44 | 2165 5.6/44 || 3768 59/52 | 205 5.9/52 6
1BGS 542 4.9/36 33 4.9/36 892 5.9/56 76 4.0/56 || 1993 6.7/29 7 4.3/59 18
BLIP 185 4.2/45 33 3.8/30 400 3.1/36 63 3.1/36 || 5620 3.1/47 | 419 3.1/47 13
1DFJ 3 5.6/25 | 3316 5.4/28 fatled 85 4.6/35 | 2821 4.6/35 3
1FSS 5251 3.4/43 | 1289 3.4/45 47 5.7/26 78 5.7/26 257 5.2/26 45 4.9/33 13
1AVZ 1198 5.2/25 | 1243 5.2/25 || 1421 6.9/50 | 557 6.9/50 || 4680 5.1/28 | 2481 6.8/53 10
1UGH 1692 6.1/25 | 911 6.1/25 || 6747 5.3/25 | 441 5.3/25 587 5.5/27 | 458 5.5/27 6
1WQ1 7994 5.5/30 | 1414 5.5/30 776 5.1/47 | 5362 5.1/47 (| 3404 6.6/30 | 2672 4.8/44 6
1BDJ 2394 5.3/56 | 7618 4.8/43 || 8407 6.7/50 | 3388 6.4/50 || 2988 5.1/50 | 7649 5.1/50 9

Table 4.8: Top ranks of correct dockings. RMSD values in Angstroms.
Each set of 4 columns shows the top rank for each of the 3 runs - both by surface complementarity score and by cross validated
pair potential score. The last column showing the total number of correct dockings over all 3 runs. A correct docking is a
structure whose RMSD value is < 7A over C, atoms for the interface residues of the mobile molecule (the static molecule having
been superposed with the correct structure over all its C,, atoms), and which has at least 25% of the correct pairs (PCP > 25) that
exist in the correct structure. An interface residue is a residue with at least one atom within 10A of any atom on the other side of
the interface. A pair is defined as between two residues spanning the interface, where at least one atom in one residue is within
4.5A of any atom in the other residue on the other side of the interface.
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potentials ranks two systems, in at least one run, in the top 10, the Trypsin
complex (1BRC) and the Barnase / Barstar complex (1BGS). Both of these two
systems are often used in docking studies, and most algorithms model them
well. The success of modelling these systems correctly is therefore more an
indication that the FTDOCK algorithm is not doing anything too wrong, rather
than an indication that it is advancing the progress of protein/protein docking.

The reasons for being able to generate good models for some test systems
and not others, and the subsequent ranking of good models, tend to be unclear
and varied. There is a case for example that the a-Chymotrypsinogen complex
(1CGI) is the least successful of the serine protease systems, at least in terms of
the total number of good models generated, because of the large conformational
changes. However, in the case of the three antibody/lysozyme complexes, it is
the system with the highest conformational changes (1BVK) that in fact was the
most successful at generating a large number of good models.

4.4.3 Effect of biological filtering

Table 4.9 shows the results from Table 4.8 after a biological filter has been
applied. Information for biological filtering existed for 16 of the 18 systems,
the two without being the last two in the tables, for which there is therefore no
change between from Table 4.8. The biological filter for the enzyme/inhibitor
systems was that the inhibitor should be in contact with at least one of the
catalytic triad residues. For the antibody/antigen systems, the antigen had to
be in contact with at least one residue on the H3 or L3 CDRs of the antibody.
Other systems biological filters were based on literature. It should be noted
that these biological filters would not always be known in the absence of an
experimentally determined structure for the complex.

It can be seen that there is still in general a large improvement from the
surface complementarity ranks to the pair potential ranks.

On investigation, it could be seen that the ranks changed differently for
surface complementarity compared to pair potentials, when a biological filter
was applied. Fewer models ranked highly by pair potentials were removed by the
biological filter, compared to models ranked highly by surface complementarity.
This was particularly true of antibody/antigen systems. In the antibody / horse
cytochrome C system (1WEJ), there is no improvement at all for the best model
rank by pair potentials for any of the three runs.

Figure 4.9 shows the different effects of filtering the two different rankings.
The lines show the % of models remaining after filtering (in statistical bins of
100 models), when ordered by that rank. The green lines show the % for the
pair potential ranks, the red lines show the % for the surface complementarity
ranks. Figure 4.9 shows lines for IWEJ, as well as the antibody / tissue factor



Run 1 Run 2 Run 3

Test Surface Pair Surface Pair Surface Pair Total

System Complementarity Potentials Complementarity Potentials Complementarity Potentials Good
Rank RMSD(A)/PCP | Rank RMSD(A)/PCP || Rank RMSD(A)/PCP | Rank RMSD(A)/PCP || Rank RMSD(A)/PCP | Rank RMSD(A)/PCP || Structures
1BRC 41 5.3/58 [ 13 4.3/78 39 3.8/76 1 5.7/60 10 1.9/86 [ 1 1.6/86 33
1CGI failed 8 4.8/31 4 6.6/33 failed 3
2KAI 43 6.5/38 81 3.2/40 302 2.7/59 41 2.7/55 21 6.8/28 35 3.2/51 17
28IC 36 6.9/29 9 4.8/72 235 4.7/46 12 4.7/46 101 2.1/54 12 2.1/54 15
1AHW 126 2.2/64 233 5.9/37 276 3.6/50 443 6.9/35 85 5.1/45 112 5.1/45 12
1BVK 249 4.5/45 144 6.9/45 133 4.0/40 189 4.4/62 || 2267 5.4/37 646 5.3/45 14
1IMLC 1117 3.8/27 162 3.8/27 564 5.0/34 251 5.0/34 failed 3
1DQJ 1509 6.1/26 482 6.1/26 failed 968 5.5/29 604 5.7/31 5
1WEJ 87 4.3/48 95 5.5/65 36 6.7/28 45 7.0/51 1918 5.4/25 28 4.5/28 13
2PCC 526 6.7/36 355 6.5/36 || 4914 5.6/44 | 1013 5.6/44 1979 5.9/52 84 5.9/52 6
1BGS 314 4.9/36 26 4.9/36 503 5.9/56 48 4.0/56 1150 6.7/29 7 4.3/59 18
BLIP 4 4.2/45 7 4.9/41 270 4.9/37 5 4.9/37 84 3.1/47 10 3.1/47 8
1DFJ 3 5.6/25 | 1061 5.4/28 failed 37 4.6/35 933 4.6/35 3
1FSS 401 3.4/43 108 3.4/45 6 5.7/26 10 5.7/26 19 5.2/26 7 4.9/33 12
1AVZ 708 5.2/25 | 1046 5.2/25 805 6.9/50 484 6.9/50 || 2489 5.1/28 | 1754 6.8/53 10
1UGH 295 6.1/25 134 6.1/25 941 5.3/25 64 5.3/25 110 5.5/27 53 5.5/27 6
1wWQ1 7994 5.5/30 | 1414 5.5/30 776 5.1/47 | 5362 5.1/47 (| 3404 6.6/30 | 2672 4.8/44 6
1BDJ 2394 5.3/56 | 7618 4.8/43 || 8407 6.7/50 | 3388 6.4/50 || 2988 5.1/50 | 7649 5.1/50 9

Table 4.9: Top ranks of correct dockings after filtering. RMSD values in Angstroms.
Each set of 4 columns shows the top rank for each of the 3 runs after filtering - both by surface complementarity score and by
cross validated pair potential score. The last column showing the total number of correct dockings over all 3 runs after filtering.
A correct docking is a structure whose RMSD value is < 7A over C, atoms for the interface residues of the mobile molecule (the
static molecule having been superposed with the correct structure over all its C, atoms), and which has at least 25% of the
correct pairs (PCP > 25) that exist in the correct structure. An interface residue is a residue with at least one atom within 10A of
any atom on the other side of the interface. A pair is defined as between two residues spanning the interface, where at least one
atom in one residue is within 4.5A of any atom in the other residue on the other side of the interface.
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Retention of structures after filtering:
Comparrison between Surface Complementarity Scores and Pair Potenatial Scores
shown for three antibody/antigens

0 p.| 4 @ 9 10

bins of 100 structures

Figure 4.9: Complexes not discarded after filtering.
The x-axis shows 100 bins of 100 model complexes corresponding to the 10000
ranked models produced by FTDock before biological filtering. The steeply
dropping green lines show that models ranked high (in the first several bins)
by pair potential score are rarely discarded. The steady red lines show that
the ranks provided by surface complementarity do not exhibit this feature. The
behaviour is shown here for three systems: IWEJ, 1AHW, and IMLC.

(1AHW) and one of the antibody / lysozyme systems (IMLC). It can be seen that
the green lines have near 100% values at the highest ranks, dropping rapidly for
lower ranks. The red lines do not show this feature.

It can be seen that after filtering, surface complementarity scores can place a
good model in the top 10 ranks for five different systems. Each of these systems
have quite a snug interface, in that the two components of the complex come
together in a lock and key type fit. This is in comparison to the type of interface
an antibody / antigen complex exhibits, which is significantly more open, and for
which surface complementarity cannot rank a good model well. Since FTDoOCK
primarily relies on surface complementarity to screen the millions of possible
relative positions and orientations of the two components, it is also reasonable
to assume that the overall success of FTDOCK is affected in the same manner.

There is only one system for which surface complementarity ranks are more
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successful than pair potentials, namely the Ribonuclease Inhibitor / Ribonu-
clease A complex (1DFJ). The interface here is predominantly electrostatic
in nature, and the inhibitor is strongly negative, while the ribonuclease is
approximately balanced in overall charge in the interface.!”®> However, on closer
examination, of the 4 positively charged residues in the interface surface of
the Ribonuclease A, 3 are Lysine, 1 is Arginine. This is important in that the
Lysine-negatively charged residue scores in the pair potential matrix are not
large, though they are positive. This is referring to the cross-validated matrix
(data not shown), though it is also true of the total matrix shown in Figure 4.2.
Combining this fact with the overall reduction of hydrophobic pairings in the
interface, means that the interface, although biologically favourable, is not
scored particularly well by the pair potential matrix.

The six systems for which a good model is ranked in the top ten by pair
potential scores are the same as those for surface complementarity in four out
of six systems. The other two systems are also ones which could be described as
having snug interfaces. The more notable difference is that the ranking in the
top ten occurs over more of the runs. Notably, the -lactamase / BLIP system
has a good model in the top ten for all three runs.

The overall reduction of the number of models by the biological filters varied
greatly between systems. For the serine proteases and the -lactamase / BLIP
system, the number of models left after the filter was less than 1000, a reduction
to less than 10% of the list generated by FTDOCK. However, for some other
systems the reduction was not even to half the list generated by FTDOCK, though
all systems did lose at least 40% of models (data not shown).

4.4.4 Combined results with MULTIDOCK

The combined approach, as used in Chapter 2 (and in the 1999 paper by
Moont et al.”), was again used, though with some changes. The top 250 models
(see section 4.3.1) as ranked by pair potentials were taken from each of the
three runs. This was done with the lists that had been filtered, and also with
those that had not been filtered. MULTIDOCK was then run for each of the 750
models from each system, and the resulting models were ranked according to the
energy function. The results can be seen in Table 4.10, both for the unfiltered
and filtered experiments.

The most impressive improvement is for the antibody / tissue factor system
(1AHW), which now has moved to rank 1, irrespective of whether a filter was
used or not (though Figure 4.9 shows that this is maybe not surprising). In
total there are four systems when unfiltered, 6 when filtered, which have a good
model in the top ten ranks, and in both cases three of these are in the top 3
(though not exactly the same three).
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Test Unfiltered Filtered
System || Rank RMSD(A)/PCP || Rank RMSD(A)/PCP
1BRC 3 4.2 / 86 4 4.2 / 86
1CGI failed failed
2KAI 45 4.5 / 57 18 3.3/ 59
2SIC failed 8 3.7/ 53
1AHW 1 6.4 / 43 1 6.4 /43
1BVK 213 6.0 / 50 218 6.0 / 50
1IMLC failed failed
1DQJ failed failed
1WEJ 22 5.0 / 42 22 5.0 / 42
2PCC 6 6.8 / 56 7 6.8 / 56
1BGS 108 2.6 /54 106 2.6 /54
BLIP 1 4.4 /50 2 4.4 /50
1DFJ failed failed
1FSS 45 4.4/ 45 1 3.5/ 67
1AVZ failed failed
1UGH failed 11 5.4 /28
1IWQ1 failed failed
1BDJ failed failed

Table 4.10: MULTIDOCK results.

The change from rank 1 to rank 2 for the S-lactamase / BLIP system may
seem strange. However, all it is showing is that the filtering, though removing
false positives as ranked by pair potentials, in fact introduced other false
positives, one of which was ranked by MULTIDOCK at rank 1 in place of the
good model.

There is in fact a problem with MULTIDOCK which would be hard for any
algorithm to overcome. If the initial rigid body model, good or not, has too many
steric clashes, then MULTIDOCK crashes, unable to complete the algorithm. It is
known that this does remove some good models (not shown).

4.4.5 False positives

Table 4.11 shows the quality of the models ranked top by the various algorithms.
All these ranks are without filtering. Although none of the top rank models
as ranked by either surface complementarity or pair potentials are of any
use, a small change can be seen in the quality. The top model by surface
complementarity scores have an RMSD below 20A a total of 6 times over the
three runs. None of these 6 is below 10A. In comparison, pair potential ranks



Test Run 1 Run 2 Run 3
System Surface Pair Surface Pair Surface Pair
System (| Complementarity Potentials Complementarity Potentials Complementarity Potentials MuLTIDOCK
RMSD(A)/PCP | RMSD(A)/PCP RMSD(A}/PCP | RMSD(A)/PCP RMSD(A)/PCP | RMSD(A)/PCP || RMSD(A)/PCP
1BRC 43.1/0 154/8 18.1/0 240/0 278/0 290/0 17.1/0
1CGI 493/0 8.7 /20 23.8/11 44.0/0 44.1/0 14.1/15 144/5
2KAI 35.1/0 17.1 /10 220/0 141/0 345/0 208/0 185/ 12
2SIC 28.1/0 344 /0 442 /0 455 /0 335/0 338/0 199/ 12
1AHW 453/0 31.1/0 334/0 288/0 214/1 21.2/0 6.4/ 43
1BVK 150/7 21.2 /12 339/0 166 /5 53.0/0 147 /2 202 /0
1IMLC 354/0 242 /0 16.7 / 4 355/0 243/0 29.7/0 25.7/0
1DQJ 406 /0 21.3/3 535/0 246/0 245/ 4 243/0 180/0
1WEJ 44.1/0 198/0 270/0 12.7/5 492 /0 19.2/0 19.1/ 14
2PCC 490/0 626 /0 175 /0 242 /0 179/ 4 53.2/0 62.4/0
1BGS 422 /0 133/6 44/0 180/ 11 19.1/2 454 /0 223/0
BLIP 31.7/0 30.1/0 23.1/1 38.1/0 285/0 249/0 4.4 /50
1DFJ 276/5 276/1 468 /0 325/8 294 /0 272 /0 7.7/8
1FSS 46.7 /0 488 /0 396/0 425/0 55.2/0 48.7/0 482 /0
1AVZ 209/3 35.0/0 205/0 35.7/0 27.1/0 229/0 39.1/0
1UGH 32.7/0 235/3 38.6/0 292/0 42.0/0 300/3 41.2/0
1WQ1 52.0/0 51.3/0 61.6/0 371/0 35.5/2 57.8/0 245/0
1BDJ 32.7/0 295/0 408/0 300/0 30.4/0 459/0 314/0

Table 4.11: Top ranks of the docking algorithms. RMSD values in Angstroms.

Each set of 2 columns shows the RMSD and PCP of rank 1 for each of the 3 runs - both by surface complementarity score and
by cross validated pair potential score. The last column shows the RMSD and PCP of the rank 1 after MULTIDOCK. No filtering
is used for these results. The RMSD value is in A calculated over C, atoms for the interface residues of the mobile molecule,
the static molecule having been superposed with the correct structure over all its C, atoms. The Percentage Correct Pairs (PCP)
value is the % of the correct pairs exhibited in the predicted structure that exist in the correct structure. An interface residue
is a residue with at least one atom within 10A of any atom on the other side of the interface. A pair is defined as between two
residues spanning the interface, where at least one atom in one residue is within 4.5A of any atom in the other residue on the

other side of the interface.
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have an RMSD below 20A a total of 12 times, one of which is as low as 8.7A.

The main change is when you look at the results for the combined approach
with MULTIDOCK. Now there are models with an RMSD below 20A in half
the systems, including all of the serine proteases. Two of which are good
models. Although a model with an RMSD below 20A is in itself of no use,
it may be useful as a starting point for a non global search algorithm. Even
though using FTDOCK and MULTIDOCK is not fast, an algorithm that introduced
flexibility would be even more computationally intensive, and knowledge of the
approximate correct position would be of great use.

4.5 Discussion

4.5.1 Initial orientation of the molecules

As was discussed above (section 4.3.1), there is a large and problematic effect of
the initial orientations of the component molecules on the results of FTDOCK. In
order to assess exactly how large this problem is we repeatedly randomly spun
both individual components and complexed models, and plotted histograms of
the resulting surfacing and surface complementarity values.

In order to see how much the initial orientation affected the surfacing
algorithm, the trypsin variant 1BRA was spun 10,000 times. The average
number of cells set to core was 14330, with a standard deviation of 84. The
average number of cells set to surface was 49826, with a standard deviation of
78. These standard deviations may seem small against the average value, yet
small initial changes can result in large final differences.

4.5.2 Decoy sets

We generated a set of decoys for each system from our runs of FTDOCK. A decoy
set is a list of model structures, containing both good and bad models. Such a
set can then provide a quick way of testing new energy functions. A good set of
decoys for a sizable group of systems can also then provide a standardised test
set for use in the wider community.

There are 100 structures in each set of decoys, one set for each of the
18 systems, with the exception of BLIP. The first is the experimental crystal
structure. The next 3 are the best good models, selected from the combination
of the three runs of FTDOCK. The remaining 96 are decoys, grouped into bins of
3 for each 1 Angstrom RMSD range. The lowest range is from 9 to 10 Angstroms,
the highest from 40 to 41, making a total of 32 bins. These decoys were
selected by binning the much longer list of all the models generated over three
runs, and then choosing as decoys the 3 in each bin with the highest surface
complementarity scores. This binning schema is illustrated in Figure 4.10.
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It was also considered that we should test our pair potential matrix on our
own decoy set. We have already established the success of a correctly cross-
validated pair potential score. Here we used the non-cross-validated matrix, the
one which has been distributed with the software. Table 4.12 shows the results.

It can be seen that the native crystal structure is placed at rank one in 4
systems, and in the top ten for a total of 14 systems. A good model is ranked top
once (and in the case of it being ranked 2 it is because the native structure is at
rank 1), and in the top ten for a total of 12 systems. The very poor performance
of the HPT domain /CheY (1BDJ) system may be partially due to the large
conformational change on association, as shown in Table 4.7. However, it is
not the only complex with such high values.

4.6 Conclusion

The work done for this chapter showed improvement on the previous work.
A larger set of test systems was used, and showed that the method could be
applied to a substantively wider variety of biological forms than was shown
before. A larger dataset of interfaces allowed for the successful generation of
a pair potential from the same environment as it was to be applied to, and so
avoids assumptions about the similarity or not of interfaces to domain cores.
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Figure 4.10: Distribution of RMSD values for the decoy sets.
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The final results using a non-cross-validated matrix on our decoy sets gave
results which are not only very good, but never fail entirely for the native
structure. This is always in the top quartile, with the exception of 1BDJ. There
is further evidence of pair potentials of giving false negatives less commonly
than surface complementarity in the way that the biological filters retain models
ranked highly by the pair potentials.

MULTIDOCK, although not developed any further for this work, has still
shown itself to be a very useful tool. It is particularly good at picking out near
native models. However, it is a slow algorithm and so is in its present form only
practical to use as a final step in any methodology.

However, in the course of reimplementing the FTDOCK program, a problem
came to light stemming from the fact that the initial orientation of the molecules
effects the discretisation models. This problem would indicate that the initial
global search step may be the weakest point in the overall strategy described in
this chapter.

Rank of...

Test good model
System || native | best worst
1BRC 5 1 4
1CGI 1 5 23
2KAI 8 3 17
2SIC 1 2 4
1AHW 9 7 15
1BVK 26| 28 45
1IMLC 7 5 28
1DQJ 4 19 33
1WEJ 3 5 16
2PCC 1 4 20
1BGS 2 3 6
1DFJ 3| 43 62
1FSS 1 9 16
1AVZ 3 12 69
1UGH 22 6 23
1WQ1 23| 28 53
1BDJ 33| 68 85

Table 4.12: Results of using non-cross-validated pair potential matrix on decoy
sets.
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Chapter 5
Conclusions

The work included in this thesis, and published in journals”-8 has shown that
knowledge based pair potentials can be useful in differentiating good models
in protein/protein and protein/DNA docking algorithms. This thesis has also
shown the ability of one docking method, the combined approach in Chapter 4,
in tackling a large set of dissimilar protein/protein complexes.

Knowledge Based Potentials

The number of docking algorithms and protocols has increased quickly in the
last few years, encouraged by the CAPRI competitions. Some of the other
algorithms have incorporated knowledge based pair potentials, though none of
them have used the exact method as described in Chapter 4.

The major way in which the pair potentials of Glaser'4? and Gray®” differ is in
how to count the residues. Both agree with our method in using a mole fraction
calculation for the expected pairings. Gray uses the same dataset of interfaces
as Glaser. However, it is not clear if the volume term used by Glaser is used by
Gray.

In Section 4.2.3 it was argued that all the surface residues should be counted
in order to calculate the expected pairing values. If only the residues in the
interface are counted, then the potential loses information about where on the
surface it is better to associate. Both Glaser'4? and Gray®’ use only residues
in the interface (defined by the areas of protein surface whose accessible
surface area changes on association). The algorithm reported by Gray®? does
compensate for this by a separate residue environment term in the potential
function. The success of that algorithm could imply that two pair potentials
could be used. The first would incorporate information about where on the
surface it is better to associate (as used in Chapter 4). The second would give
more information about the correct orientation, given that the position on the
surface was correct.

Zhou has used a knowledge based potential in round 4 of CAPRI.176:177
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The form of the potential is more of a model of physical processes based on
structural data, than a statistical potential as in this work. Interestingly, the
derivation from an ideal gas model, effectively uses a mole fraction calculation
when modelling the expected interactions. The end form of the potential is quite
different.

The other knowledge based potential used is the atomic contact energies
(ACE), developed by Zhang*! and applied to screening lists of docking models
by Camacho!”® and Chen.%® ACE uses 18 atom types rather than residues. The
dataset used is of protein domains. The potential used across an interface is
the same potential as used for say protein folding, with the part of the potential
describing interactions along the peptide chain ignored. This is reported as
not being a problem due to the known ability to discriminate protein/protein
interfaces.*! The calculation of the reference state (expected values) involves a
contact fraction part.

Initial Orientation

Two of the more successful algorithms to date in the CAPRI competitions have
been ZDOCK (Weng) and SmoothDock (Camacho) (see sections 1.4.2, 1.5.3).
Due to the Fourier grid method natures of these methods, and the required
discretisation of the structures, they are both susceptible to problems associated
with initial orientation (Section 4.5.1). The reason for the higher success rate
of these methods against other Fourier grid methods, including FTDOCK, is
therefore of interest.

ZDOCK uses a finer rotational scan, 6° as opposed to 12° for FTDOCK. It
is unclear what the rotational sampling is for DOT, though it is probably 10°
(based on the value used for the ClusPro server). Both these values will result
in more rotational sampling than the 12° default of FTDoOCK. There is also the
chance factor, and even the large number of targets in CAPRI as opposed to
previous competitions is maybe not enough to yet rule out statistical variances.
The FTDOCK procedure purposefully spins the components before running, and
this is a random process, so there is always the chance that none of the three
orientations happens to cause a favourable discretisation for the global scans.

Biological knowledge, intervention, and automation

A large number of the groups reporting on the first two rounds of CAPRI in
the special issue of Proteins’* wrote that they used some form of manual
intervention. This either took the form of using visualisation tools to check the
seeming sensibility of the models they were going to submit, or they used general
biological knowledge to discount a model. There is a danger in doing this in
that general ideas of what is sensible biologically can only be based on specific
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knowledge from previous cases. Even when the new problem is homologous
to a system which is known, the small differences can change the form of the
binding interface. Using a strict constraint to be like the homologous case may
be a mistake. This was reported by, for example, Smith and Sternberg!! for
Target 07 and Camacho and Gatchell”® for Target 04.

ClusPro is a full automation of the first three steps of the SmoothDock
algorithm (everything bar the refinement step). A server has been set up
and is running at http://nrc.bu.edu/cluster/ (April 2004). It succeeded in
generating medium (Target 08) and High (Target 12) models in CAPRI. Although
the submissions by the Camacho group for these targets were of higher rank,
this is a very good result for what is currently the only fully automated method.

Standardisation

There has been a persistent problem when comparing the reported results
for different algorithms. Each paper has superimposed different bits of the
structure before RMSD calculations, used different atoms for those RMSD
calculations (C,, backbone, all), and defined the interfaces in different ways.
It can be hoped that all future papers in the field will adopt the calculations
used by CAPRI, and described in Table 1.6, although other measurements could
be reported as well.

Further Work

The CAPRI competitions have shown that there is a wide variety of algo-
rithms available now to tackle the problem of computationally modelling
protein/protein interactions. The work in this thesis, and CAPRI, has also shown
the advantages possible from combining various algorithms. Section 2.3.6
shows that different algorithms can have very different convergence behaviours.
It is important that these be known and the knowledge used to order the steps
in a procedure correctly.

The available number of targets on which to test algorithms has grown
significantly since the work carried out in Chapter 4 was completed. At the end
of 2002, just over 30 targets existed with the same criteria that both components
existed in an unbound conformation.!7® This has now doubled in just over two
years (http://zlab.bu.edu/zdock/benchmark.shtml). It is still noticeable that
more than half the targets are either enzyme/inhibitors or antibody/antigens,
so limiting the available systems that can be tested to a subset of all the types of
biological systems that exist. However, this larger benchmark for an algorithm
is of definite benefit. It makes less likely the case of an algorithm being over
trained on a limited set of test cases which do not represent the wider biological
diversity of interactions.


http://nrc.bu.edu/cluster/
http://zlab.bu.edu/zdock/benchmark.shtml
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Computing power has increased dramatically in the last decade, and is now
less of a concern. This greatly increases the possibilities of which algorithms
to use. Flexibility is a necessity at some stage in any methodology, and the
increased computational power puts the algorithms’ run times into the realm
of hours rather than days. The increased available computer resources also
make it more reasonable to introduce flexibility earlier on in procedures. More
computing power, in particular cluster architectures, also allows for multiple
algorithms to be run and the results brought together in a consensus manner.



PUBLICATIONS 139

Appendix A

Publications

This thesis includes work which has been published in journals, as proceedings,
and in books. The following are the publications, in chronological order by
publication.

"Modelling repressor proteins binding to DNA"
P. Aloy, G. Moont, H.A. Gabb, E. Querol, F.X. Aviles & M.J.E. Sternberg
Proteins: Structure, Function, and Genetics 33(4):535-549 (1998)

"A computational system for modelling flexible protein-protein and protein-
DNA docking"

M.J.E. Sternberg, P. Aloy, H.A. Gabb, R.M. Jackson, G. Moont, E. Querol & F.X.
Aviles

Proceedings of the 6th International Conference on Intelligent Systems for
Molecular Biology (ISMB-98) 6:183-192 (1998)

"Use of Pair Potentials Across Protein Interfaces in Screening Predicted
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Appendix B

Software Manual

The following pages contain the software manual as distributed with the
software. This version of the manual differs from the distributed one only in that
margin settings have been changed so as to be regulation for this thesis. As a
result, some figures have been resized, and the length of the whole thing extends
over more pages. There are also some very minor changes to the examples given
in the Tutorial section.

The software homepage is http://www.bmm.icnet.uk/docking/. The source
code for all programs written by me is available.

Since the software was made public there have been almost 1500 downloads
of the RPSCORE part of the program. Since the FTDOCK software is available
without registration it is unknown how many times this has been downloaded
(though presumably at least as many times).

Openness of algorithms should be encouraged. FTDOCK is still only case of
open source code.


http://www.bmm.icnet.uk/docking/
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B.1 Introduction

3D-Dock is a suite of programs designed to enable computational prediction of
protein/protein docking. It does this in several steps, as described in Algorithms
(B.2) below. This document is designed to enable the various programs to be
run successfully, as well as provide a basic understanding of the underlying
algorithms.

Although the suite includes the program MULTIDOCK, it is not covered by
this document
(please see http://www.bmm.icnet.uk/docking/).

Although this document explains the basics of how the programs work it does
not discuss how various parameters or strategies were decided upon. For this
information please refer to the published papers in the References at the end of
the document.

B.1.1 Key to font usage

To try and make things slightly clearer, different fonts are used in this section
to signify different things.

e Normal font is explanation and hence most text.

e typewriter font is used for program names, things that would be typed on
a command line, and things that would be seen when looking in a file.

e italics are used for file and directory names

B.1.2 Requirements

There are several different requirements that have to be met in order to run this
suite of programs. These fall into 3 categories; operating system, hardware, and
software.

operating system The main programs were written on, and with an aim to
running on, a UNIX style operating system. They were actually written on
an SGI/IRIX platform, but have also been tested on the easily available
Linux, running on an i386 processor. Anything else is not supported,
though since the programs are in Perl and C, it is possible that you could
compile and run them on something else.

hardware The main limitation to hardware is RAM. ftdock uses large amounts of
memory, and although you could set the parameters to lower this, standard
run of the program will want up to 100 Megabytes of memory. If you do not
have this as RAM, the program will be paging constantly and may well take
weeks to run.


http://www.bmm~icnet.uk/docking/
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software You will need a C compiler (though there are unsupported binaries
available for SGI and Linux i386), and PERL, version 5.003 or later.
The only non-standard C libraries required are those of the fast fourier
transform, which you will need to download and compile (see Installation
B.3)).

B.2 Algorithms

This suite of programs is intended to be able to dock two proteins. This means
starting from the known structures of two protein subunits of a biological
complex known to exist, in unbound conformations, and ending up with a
limited set of possible models for the complex. This overall algorithm is here
achieved in up to 4 steps.

1. a global scan of translational and rotational space of possible positions of
the two molecules, limited by surface complementarity and an electrostatic
filter (ftdock).

2. an empirical scoring of the possible complexes using residue level pair
potentials (rpscore (and rpdock)).

3. using biological information to screen the possible complexes (filter).

4. an energy minimisation and removal of steric clashes on the side-chains of
the interface (MULTIDOCK!9).

The middle two steps are interchangeable in the order in which they are run,
and the filter can be run more than once if so desired (see Tutorial). A schematic
of the overall approach is shown in Figure B.1.

The ftdock algorithm is based on that of Katchalski-Katzir.!4 It discretises the
two molecules onto orthogonal grids and performs a global scan of translational
and rotational space. In order to scan rotational space it is necessary to
rediscretise one of the molecules (for speed the smaller) for each rotation. The
scoring method is primarily a surface complementarity score between the two
grids, and this is shown in Figure B.2. To speed up the surface complementarity
calculations, which are convolutions of two grids, Fourier Transforms are
used. This means that the convolutions are replaced with multiplications in
Fourier space, and despite having to perform the forward and reverse Fourier
Transforms, this decreases the overall computation required. The surface
complementarity was the only score used in the original method. The original
work on ftdock by Gabb!® found it a useful addition to include an electrostatic
filter, and this is again implemented in the current version (though it can be
turned off).



SOFTWARE MANUAL 143

The rpscore program uses an empirical pair potential matrix to score each
possible complex. The pair potentials are at a amino acid residue level. Each
potential corresponds to the empirically derived likelihood of a trans-interface
pair of two residue types, limited only by a distance cut-off.” The present most
useful matrix used is generated from 103 non-homologous interfaces found in
the PDB with the aid of SCOP 1.50 (http://scop.mrc-lmb.cam.ac.uk/scop/). If
two interfaces are described as pairings of domains A — B and C — D, then a
non-homologous interface is defined as being when either A and C, or B and D,
are homologous, but not both. Homology is in this case defined as being in the
same ‘Superfamily’ in the SCOP classification tree.

The biological filter is a simple program to screen the complexes by requiring
them to have a given chain or residue on one side of the interface within a
certain distance of another chain or residue on the other side. The manual
(B.5.6) explains this in full.

For the manual and program MULTIDOCK please see

http:/ /www.bmm.icnet.uk/docking/. This calculates side-chain energy minimi-
sations and removes steric clashes along the interface. It is presently only
available as an IRIX5.3 executable.

B.3 Installation

You need to download two files: fftw-2.1.3.tar.gz, and once you have registered,
ftdock.tar.gz.

The first thing is to compile FFTW. You do not need to install it. To do this you
should not have to do more than

gunzip fftw-2.1.3.tar.gz — gives you file fftw-2.1.3.tar
tar xvf fftw-2.1.2.tar — makes a directory fftw-2.1.3 with all the bits inside it.

Change into that directory then

./configure -enable-float

make

This is all you need to do. There is of course no harm in installing it properly.
The reason for using -enable-float is to reduce (typically halve) the memory
requirements. If you are going to use FFTW for other programs you may need to
consider if you want this.


http://scop.rnrc-lmb.cam.ac.uk/scop/
http://www.bmm.icnet.uk/docking/
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Figure B.2: Grid discretisation of molecules and calculation of surface complementarity.
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Once you have done this, you can compile the actual programs

gunzip ftdock.tar.gz — gives you file ftdock.tar
tar xvf ftdock.tar — makes a directory ftdock with all the bits inside it.

Change into that directory, and then into the progs directory. You will have to
edit the Makefile to give the correct complete path to the fftw-2.1.3 directory.
(If you have fully installed FFTW, you will need to edit the Makefile to put the
correct paths in.) Then

make
The most likely cause for failure is incorrect C flags for your compiler. You will
have to change the CC_FLAGS line in the Makefile to correct this problem. You

should now have all the executables!

The only other possible change required is to the first line of the Perl scripts to
the correct path for your machine.
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B.4 Tutorial

This tutorial will take the example of bovine pancreatic trypsin inhibitor bound to
kallikrein A complex. The necessary PDB files are included in the distribution.
You will have to give the full paths to the various executables as appropriate.
This tutorial uses the minimum number of options for each program. For
complete options and further details please see the manuals section (B.5) below.

All this tutorial presumes you are executing all the programs in the same
directory, and not changing the names of any files produced.

Preprocessing

Manually edit the PDB files so that you have the components you want to dock.
Then

preprocess-pdb.perl -pdb file.pdb

This will give any number of messages, normally complaining of non-standard
residue designations. I do not recommend you use this program indiscriminately
for other work as it removes everything but the ATOM records of the 20 standard
residues it recognises, and it also removes Hydrogens and 0XT records as well.
The output will have the name file.parsed. It will also produce a FASTA format
file called file.fasta which you may find useful.

Global scan

To run the main program type
ftdock -static 2pka.parsed -mobile 5pti.parsed > output &

I recommend you redirect the standard out for safety reasons. The program is
going to take a long while to run, and it will want to write out stuff throughout.
If you want to be able to close the shell without crashing the program, you need
to do this. In order to see what is going on, the following UNIX command is ideal

tail -f output

The output you will now have is the file fidock_global.dat, which will contain
10000 records.
(best rank on my run = 1619)
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Pair Potential scoring

In order to assign a pair potential score to each record you should type
rpscore

This very simple command will only work if you also have the file best.matrix in
the current directory.

The output is ftdock_rpscored.dat, which contains the same 10000 records, but
reordered by the new score.
(best rank on my run = 65 )

Filtering

As is often the case, we have biological information which can reduce the number
of possibilities. We want to filter such that the remaining complexes have the
inhibitor (chain I) in proximity (distance default is 4.5 Angstroms) to the catalytic
triad of the enzyme (chains A and B). This is expressed as

filter -constraints A57:I B102:I B195:1

Each constraint is treated as an OR statement. The designators each side of the
colon are of the form chainID then residue number (+ insertion code if defined),
and for the whole chain, the residue number is simply missed out. The order is
irrelevant, so

filter -constraints I:B195 I:A57 B102:I

would give the same output. For more explanations see the manuals section
(B.5) below.

The output is ftdock_filtered.dat, which contains a reduced set of records.
(in my run 900)
(best rank on my run = 12)

In order to have the effect of an AND statement, you will have to run the filter
program several times.

filter -constraints A57:I -out ftdock_filter_A.dat

then
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filter -constraints B102:I -in ftdock_filter_A.dat -out ftdock_filter_B.dat

then

filter -constraints B195:I -in ftdock_filter_B.dat -out ftdock_filtered.dat

(best rank on my run = NA . This can often happen that a too strict series of
constraints will loose good results )

Side-chain refinement

For the manual and program MULTIDOCK please see

http:/ /www.bmm.icnet.uk/docking/. This calculates side-chain energy minimi-
sations and removes steric clashes along the interface. It is presently only
available as an IRIX5.3 executable.


http://www.bmm.icnet.uk/docking/

SOFTWARE MANUAL 150

B.5 Manuals

B.5.1 preprocess-pdb.perl

Due to the nature of PDB files, a preprocessor is used to both clean up and
add limited information to the PDB files. The cleaning method is described
below. The added information is simply the one letter amino acid codes, and

a numerical assignment for each residue type, assigned in alphabetical order
(1-20).

what the cleaner does

1. removes all residues that are not one of the twenty standard amino acids
or one of the five standard nucleic acids.

2. only keeps atoms it recognises as "useful’ - so removes all Hydrogen atoms.
It also removes 'OXT - terminal Oxygens, simply because their assignment
is not always sensible.

3. removes all but the first of an alternative atom indicator entry.
4. checks for the correct number of atoms for that residue, then

¢ if too many, checks for doubles of any atom type labels and removes
all but first ( ie copes with missing Alternate Indicator ).

e if still too many atoms for residue, then checks for atom type validity
for that residue type.

e if still too many, will chuck (remove) that residue.

o if too few, will do nothing, unless MULTIDOCK is set, in which case it
will attempt to replace with a modelled Alanine.

Command line options

-pdb PDB style file name
no default
-nowarn turns off all but the most severe warnings
-multidock this makes the output fit for input into the program
MULTIDOCK

this is not for use prior to running ftdock
it will change to model Alanine any residue which does not
contain its full complement of (non-Hydrogen) atoms
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B.5.2 change-pdb-chain-id.perl

A script to change PDB ChainlDs.

Command line options

-pdb PDB style file name
no default

-old chain ID that you want to change
for a non labelled chain use * °
no default

-new replacement chain ID that you want
for a non labelled chain use * °
no default

examples

change-pdb-chain-id.perl -pdb 2pka.pdb -o0ld A -new E
change-pdb-chain-id.perl -pdb ihpt.pdb -0ld ’ ’ -new I

B.5.3 ftdock

The main global docking program. Due to the rescue abilities, please do not run
this in a given directory more than once at any one time.

Command line options

-out output file name
default is _ftdock_global.dat

-static larger of the two molecules being docked
this PDB style file must be output from preprocess
no default

-mobile smaller of the two molecules being docked

this PDB style file must be output from preprocess
no default
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-grid

-calculate_grid

-angle_step

-surface

-internal

-noelec

-keep

number of grid units in one dimension

this means a grid of 64 has 643 grid units in total

this also means that memory requirements go roughly as n3
of grid size

a grid that results in a grid spacing of more than 1 angstrom
is unlikely to be useful

the grid size must be integer and even (to ease Fourier
calculations)

no default

the desired size of a single grid unit in angstroms

due to the limitations on the grid size, the actual grid unit
will vary slightly (less than 10.01) from the given value

default is on with a value of 0.875

to turn off, use -grid option

the maximum planar angle (in degrees) separating any two
rotations of the mobile molecule when subtended to the
point around which the rotation takes place (geometric
centre of the mobile molecule)

default is 12 degrees

will only accept integer values that are integer factors of 180

surface thickness in angstroms
default is 1.5

internal deterrent value
default is -15.0

electrostatics calculations switch
default is to do the electrostatics, this switch will turn them
off

number of (best surface complementarity) translations to
keep from each rotation
default is 3
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-rescue if your machine falls over, then just run ftdock -rescue in the

same directory

do not alter anything between the crash and using this

to make this option available in this very simple form, two
files exist in the directory from which you run ftdock;
namely scratch_parameters.dat and scratch_scores.dat.
This means that you should not run ftdock more than once
at any given time in the same directory. There is no system
at present to prevent this from being done, so be careful.

Understanding the output

FTDOCK data file

Global Scan

Command line controllable values

Static molecule :: static.parsed

Mobile molecule :: mobile.parsed

Global grid size HH 110 (default calculated)
Global search angle step e 12 (default)

Global surface thickness HH 1.40 (default)

Global internal deterrent value HH -15.00 (default)
Electrostatics HH on (default)

Global keep per rotation HE 3 (default)

Calculated values

Global rotations 9240

Global total span (angstroms) H 96.079

Global grid cell span (angstroms) :: 0.873

Data

Type ID prvID SCscore ESratio Coordinates Angles
G_DATA 1 0 173 13.992 22 19 -7 120 96 228
G_DATA 2 0 173 1.941 -27 4 -4 144 96 336
G_DATA 3 0 163 17.331 -23 10 -11 180 84 156

Output 1: Example output from ftdock

Output 1 shows a typical output file to a run of ftdock (default ftdock_global.dat)
or defined by the -out option). All values that can be controlled by the command
line (apart from the output file name) are shown at the top of the file. Along with
each value is information showing whether it has been chosen or is the default
value (apart from for the molecules which are required and have no default
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values). These lines must not be changed since the values are used by other
programs which use this file for input. In general, it is suggested that any data
files produced by any of the programs should not be edited directly, and there
should be no need to do so.

Below this are shown a few calculated values. These are purely for the users
information and are never used by any of the other programs.

The G_DATA lines contain all the information corresponding to each putative
complex. The ID is that used for the build program (see B.5.7 below). The
previous ID (prvID) is zero in this case as this is the first program. The Surface
Complementarity Score (SCscore) is the value which determines the order of the
file, the highest score having the lowest ID. The electrostatic score ratio (ESratio)
is there to possibly show varying electrostatic favourability when a group of
complexes have the same surface complementarity. It is a ratio as opposed
to an absolute value, ranging from O (least favourable) to 100 (most favourable).
After this come the translational coordinates (z,y,z) expressed as integer grid
cell displacements of the mobile molecule’s centre from the centre of the static
molecule. At the end come the rotational angles (2;ist, 8, ¢) expressed in degrees.

B.5.4 rpscore

The residue level pair potentials scoring program.

Command line options

-in input file name
default is fidock_global.dat
-out output file name

default is _ftdock_rpscored.dat

-matrix matrix file name
default is best.matrix
this can be found in the data directory

Understanding the output

Output 2 shows a typical output file to a run of rpscore (default ftdock_rpscored.dat
or defined by the -out option). All the information from the run of ftdock and
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FTDOCK data file
Global Scan

Command line controllable values

Static molecule :: static.parsed

Global grid cell span (angstroms) :: 0.873
LTI
Residue level Pair Potential Scoring

Command line controllable values

Matrix :: /home/ftdock/data/best.matrix (user defined)
Data

Type ID prvID SCscore RPscore Coordinates Angles
G_DATA 1 502 139 14.778 12 36 14 276 24 120
G_DATA 2 5839 114 14.011 37 -5 7 96 60 276
G_DATA 3 21 151 13.196 12 36 14 276 156 120

Output 2: Example output from rpscore

any previous runs of rpscore or filter are still at the top of the file, followed by
the command line controllable matrix.

The G_DATA lines contain all the information corresponding to each putative
complex. The fields are identical to those in the output from ftdock with the
exception of RPscore which replaces ESratio. The complexes are now ordered by
their residue level pair potential scores (RPscore), and the prvID field has values
corresponding to the ID field in the input data file. The prvID field can be used
to track the ranking of a complex as the successive programs are run.

B.5.5 rpdock

The residue level pair potentials scoring program for use with complexes
generated by another docking program apart from ftdock.
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Command line options

-static PDB style file of one side of the complex. Must have been
parsed with pre-process.perl .
no default

-mobile PDB style file of the other side of the complex. Must have
been parsed with pre-process.perl.
no default

-matrix matrix file name
default is best.matrix
this can be found in the data directory

Understanding the output

The program returns a line of the form

G_DATA -3.646

to standard out. To screen a list of complexes it is advised to write a perl script
wrapper.

B.5.6 filter

The biological filter program.

Command line options

-in input file name
default is _ftdock_rpscored.dat

-out output file name
default is ftdock_filtered.dat
-distance the inter-atomic distance cut-off (in angstroms) for determin-

ing whether the residues, of which a given two atoms are
members of, are in contact or not.
default is 4.5
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-constraints a space separated list of the form
chainID[residuenumber] [Icode] : chainID[residuenumber] [Icode]
easiest explained by example

1. residue 45 of chain A to be in contact with chain B
A45:B

2. residue 45 of chain A to be in contact with residue 3
of chain B
A45:B3

3. residue 45 , insertion code A, of chain E to be in
contact with chain I
E45A:1

the list is treated as a set of logical OR statements, so if any
are satisfied, the statement is satisfied.

there is a limit of 50 constraints

if no constraints are given, the program will simply not run

Understanding the output

Output 3 shows a typical output file to a run of rpscore (default ftdock_filtered.dat
or defined by the -out option). All the information from the run of ftdock and
any previous runs of rpscore or filter are still at the top of the file, followed by
the command line controllable matrix.

The G_DATA lines contain all the information corresponding to each putative
complex. The fields are identical to those in the output from rpscore. The
complexes are ordered by their residue level pair potential scores (RPscore), and
the prvID field has values corresponding to the ID field in the input data file.

B.5.7 build

The program to build a complex or a range of complexes.

Command line options

-in input file name
default is ftdock_rpscored.dat

-b0 single complex number to build
no default
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FTDOCK data file

Global Scan

Command line controllable values

Static molecule :: static.parsed

Matrix :: /home/ftdock/data/best.matrix (user defined)
ko

Filter

Command line controllable values

Constraints :: A57:1 B102:1 B195:I (3)

Distance HH 4.50 (default)

Data

Type ID prvID SCscore RPscore Coordinates Angles
G_DATA 1 1 139 14,778 12 36 14 276 24 120
G_DATA 2 3 151 13.196 12 36 14 276 156 120

Output 3: Example output from filter

-b1 beginning of range of complex numbers to build
default is 1
-b2 end of range of complex numbers to build

default is 10000

-c_alpha build only the Ca atoms

Understanding the output

The outputs from this program are the modelled complexes in PDB format.
(There is extra information beyond column 80, but this should not cause
problems to other programs such as visualisation tools.) The complexes are
called Complex_zg.pdb, where z corresponds to the record ID number in the
input file. If the -c_alpha option is used, this changes to CA_Complex_zg.pdb.
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B.5.8 randomspin

A program that randomly spins a PDB file. This is useful for testing the stability
of a docking algorithm with respect to the initial orientations of the molecules.
Command line options

-in input file name
default is unspun.pdb

-out output file name
default is spun.pdb

B.5.9 centres

A program to visualise the spread of positions of the mobile molecule with
respect to the static molecule. The output PDB file centres.pdb contains the
static molecule and water molecules, each of which represents the central
position of the mobile molecule for each complex. Can show clustering of results
when it occurs.

Command line options

-in input file name
default is ftdock_global.dat
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