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Abstract

This thesis describes and evaluates approaches to computational models of Epithelial 

cell interactions. It begins with a review of existing approaches and in particular 

includes a rational reconstruction of a model of squamous epithelial cell interactions 

previously described by Stekel [Stekel et al., 1995]. Suggestions for improving this 

model are made, including methods for analysing spatial clusters of cells using Delau­

nay triangulation and heterogeneity of epithelial tissue using connective component 

labeling.

Histological images of oral epithelium are used to develop a classification of base­

ment membrane shape in normal and dysplastic tissues. The method combines 

Fourier descriptors for shape representation, Principal Component Analysis for data 

reduction and the closest mean and support vector machine algorithms for pattern 

recognition. This approach is suggested as a general technique for evaluating the 

output of simulation models which involve curvilinear features in a shape-based clas­

sification of the tissues modelled.

A new model of epithelial cell interactions is proposed by extending the Glazier- 

Graner framework for cell sorting [Graner, 1993, Graner and Sawada, 1993]. The 

model includes biological processes such as cell division, differentiation, adhesion 

and death. In particular, the roles of differential adhesion and cell division during 

the development of epithelium are discussed. The typical ordered structure of a 

healthy epithelium is shown to arise provided differential adhesion and cell division 

are modelled appropriately.
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Chapter 1 

Introduction

The emergence of multicellular tissue structure is an important process in embryonic 

development. During development, individual cells need to adhere to each other in 

order to function correctly as a tissue structure. In doing so, the cells develop ways of 

organizing themselves into compartments and communicating with each other. The 

compartment boundaries have fascinated biologists for some time and these bound­

aries play an important role in pattern formation. During the development of a 

multi-cellular organism, cells not only have to proliferate and differentiate but also 

have to sort themselves into different tissue structures. In addition, cells within tissues 

sometimes sort out or separate from each other. The Differential Adhesion Hypoth­

esis (DAH) [Steinberg, 1963] has long been suggested as one possible hypothesis for 

cell sorting during embryonic development.

Epithelium is one of the primary tissues in animals as well as plants. There are 

at least seven different types of epithelia: (a)squamous epithelial cells are shaped like 

flat plates and may be found in cells lining the alveoli in the lung and renal glomeru­

lus; (b)cuboidal epithelial cells are extensively involved in secretion and absorption 

and-can be found in much of the renal tubular system; (c) columnar epithelial cells 

are tall and rectangular, highly polarized, and may be found in the small intestine; 

(d)pseudostratified columnar epithelial cells are usually found lining the airways such

7
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as the trachea. Here, the epithelium consists of a basal layer as well as a differen­

tiated layer; (e)stratified squamous epithelium is where cells are multi-layered. Here 

the basal cells take over the proliferative function of the tissue, giving rise to dif­

ferentiated cells which flatten and mature as they migrate through the epithelium. 

The stratified squamous epithelia are usually covered with fluid and can be found in 

areas such as the mouth, cornea and oesophagus; (f) stratified cuboidal and columnar 

epithelia are relatively sparsely distributed and can be found in sweat gland ducts; 

(g) transitional epithelium can be found lining the urinary tract in the bladder and 

upper urethra. Here the surface cells are large while the basal cells are smaller.

The epidermis consists primarily of keratinocytes. Scattered among the ker- 

atinocytes are a few other cell types like melanocytes, Langerhans cells, and Merkel 

cells. The quality of epidermis differs from place to place in the body and can also be 

altered by various disease states which influence the rate of cell division and differenti­

ation. We focus on Stratified squamous epithelium. The epidermis consists of several 

layers. The layers are not distinctly different cells, but reflect visible changes along 

the process of keratinocyte maturation or keratinization. The stratified squamous ep­

ithelium is usually divided into 4 layers: the basal layer; the prickle or spinous layer, 

also called the Malpighian layer; the granular layer; and finally the keratin layer. 

Figure 1.1(a) shows a histological section of buccal epithelium.

During Epithelial Dysplasia (ED), which effects the palate, tongue and floor of 

the mouth, the structure of epithelium changes greatly. The shape of the basement 

membrane becomes more curvy and bulbous, basal cells detach themselves from the 

basement membrane and move into the differentiated layers. The biological hypothe­

sis for such changes in the structure of epithelium include increased cell proliferation 

and changes in cell-cell adhesion [Thomas and Speight, 2001]. Figure 1.1(b) shows a 

histological section of a dysplastic epithelium.
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Figure 1.1: (a)The epithelium shown above is taken from buccal mucosa which is 
classified as a stratified squamous epithelium. The connective tissue lies beneath the 
epithelium, separated from the epithelium by the basement membrane (black line). 
The basal layer cells are attached to the basement membrane by hemi-desmosomes. 
When a basal cell divides, the daughter migrates upward to replenish outer layers of 
cells. Cells of the “prickle-cell” layer are attached to one another by desmosomes. 
These cells gradually move outward as new cells are formed from the basal layer. 
Cells in the granular-cell layer accumulate keratohyalin, visible as darkly stained 
granules before moving off to the keratinized layer and eventually get taken off. (b)A 
histological section of a dysplastic. oral epithelium. As can be seen in the image, 
pronounced curved rete pegs is a highly indicative feature of severe cases as well 
as atrophy of the epithelium above retepegs. The basal cells are also completely 
distributed throughout the epithelium and the top layer is dekeratinized. Excessive 
numbers of lymphocytes can also be found in the connective tissue.
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1.1 M otivation

Our motivation is two-fold: how the Stratified squamous epithelium, from here on 

referred to as the epithelium, is organised during development; and what causes the 

change in tissue structure when the epithelium becomes dysplastic. The morphogen­

esis of epithelium and its compartment has fascinated epithelial biologists for some 

time [Wright and Alison, 1984]. The stacking in epithelium has important conse­

quences for cell-shedding mechanisms and the stability of epithelium. Since cells in 

the keratin layer are dead, stacking must be determined by the cells belonging to lower 

layers. During the establishment of an ordered structure of epithelium, cells formed 

in the basal layer, migrate into the Malpighian layer, flattening and moving laterally 

towards the top of epithelium. It has been known since the 1970s that epithelium 

is organised into columns of maturing layers as shown in Figure 1.2(a). Researchers 

initially anticipated that the entire basal cell layer consisted of stem cells [Mackenzie, 

1997]. However, radiation dose-survival studies have suggested that only 2 — 7% are 

stem cells in the basal layer [Mackenzie, 1997]. The current view of epithelial mainte­

nance consists of periodically dividing stem cells with slow cycling times, giving rise 

to transit amplifying cells which populate most of the basal layer, dividing two or 

three times before moving upward and differentiating into mature cell layers 1.2(b).

We use computer models, from here on referred to as in silico models, to study the 

development of tissue architecture in epithelium. The in silico models may be built 

using existing biological results obtained from experiments and the literature. They 

then have to be validated before being used to test new biological hypotheses. The 

in silico models could simulate biological experiments before expensive and time con­

suming laboratory research is undertaken. We choose to concentrate our simulations 

at the cellular level using Individual Based Model approaches [Reynolds, 1987]. We 

focus on simulating biological processes which are widely believed to be the driving 

force in cell sorting and the formation of ordered structures and compartments in
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Figure 1.2: (a)Diagrammatic representation of skin epithelial histology. Cells of the 
basal layer attach to an underlying basement membrane. Basal cells are mitotically 
active, but they lose this potential when they detach from the basement membrane 
and embark on the outward trek toward the skin surface, (b) Diagram of the epidermal 
proliferative unit. A slow-cycling epidermal stem cell occasionally divides, giving 
rise to a stem cell daughter and a transiently amplifying daughter. The transiently 
amplifying cell divides two to four times, and these progeny then leave the basal layer 
and execute a program of terminal differentiation. The description and figures are 
reproduced here from Alonso [Alonso and Fuchs, 2003]
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biological tissues [Dahmann and Basler, 1999].

1.2 H ypothesis

The main hypothesis to be tested in this thesis is :

It is possible to build in silico models to simulate stratified squamous epithelial ar­

chitecture on the basis of the differential cell adhesion using behavioural rules together 

with judicious selection of model parameters.

•  By “possible” we mean implementing the biological rules on a personal computer 

using a standard computer language (C++/Java)

•  The term differential cell adhesion refers to the hypothesis suggested by Stein­

berg [Steinberg, 1963] for cell sorting in cell populations.

•  Behavioural rules governing cell-cell and cell-tissue interactions are derived from 

the existing biological literature and form the core of the in silico model.

•  Model input parameters are chosen such that either they are supported from 

the biology literature or can be otherwise scientifically justified.

The subsidiary hypotheses in this thesis include :

•  Chapter 3: The spatial organisation of epithelial tissue architecture may be 

quantitatively analysed by combining Delaunay triangulation and the connected 

component algorithm.

•  Chapter 4: Curvilinear features in tissue shape profiles may be classified by 

using Fourier descriptors for shape description, Principal Component Analysis 

for dimensionality reduction and closest mean classification for discrimination.
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1.3 Contributions

The contributions of this thesis include: a rational reconstruction of the squamous 

epithelial model proposed by Stekel [Stekel et al., 1995]; a method to quantitatively 

measure cell clusters in tissue; a method to evaluate output from in silico models 

using histological images; and, finally a model of epithelial cell-cell interaction using 

the Glazier-Graner cell sorting algorithm.

We rationally reconstructed Stekel’s model to familiarise ourselves with the In­

dividual Based Modelling (IBM) approach. We report on areas of concern in the 

model and suggest ways of overcoming some of these problems. Another contribution 

is that we present a method which combines Delaunay triangulation and connected 

component labelling to quantitatively analyse the ordering of a tissue structure. This 

method is applied to epithelial tissue to measure the level of heterogeneous ordering 

in the tissue architecture.

Additionally, we present a method to classify curvilinear features. This combines 

Fourier Descriptors for shape representation, Principal Component Analysis for data 

reduction and closest mean and support vector machine algorithms for pattern recog­

nition. The method is applied to histological images of oral epithelium to discriminate 

between normal and dysplastic tissue structures. We believe this approach enables 

histological images to be used to evaluate the output from an in silico model of 

epithelial tissue.

A further contribution is the model of epithelial cell-cell interaction. We include 

in the model biological processes such as cell division, differentiation, adhesion and 

death. Glazier-Graner’s cell sorting algorithm is used to model cell sorting in ep­

ithelium. Our model is based on the Differential Adhesion Hypothesis suggested by 

Steinberg [Steinberg, 1963] and we apply this to epithelium. The model is evaluated 

by simulating experiments and comparing the results with the existing biological 

literature. These are the methodological innovations at the heart of this thesis.
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1.4 Structure of thesis

Chapter 2 provides a background to the Individual Based Model approach and 

its application to modelling cell-cell interactions.

C hapter 3 gives details of the reconstruction of Stekel’s model for squamous 

epithelium. We also discuss here our method for analysing spatial structures in the 

epithelium.

C hapter 4 discusses the proposed method for classifying curvilinear features. We 

provide an introduction to Fourier descriptors and the classification techniques before 

moving on to explain our method and its application.

Chapter 5 introduces our model of epithelial cell-cell interaction. Here, we ex­

plain our cell behaviour rules and cite the biological evidence to support them. We 

conclude the chapter by showing results of the simulation runs obtained using various 

combinations of input parameters.

C hapter 6 uses the biological literature on the development of compartments in 

epithelial tissue architecture to validate our model output. It has been suggested that 

differential cell adhesion may be the driving force in the emergence of compartments 

in Drosophila [Dahmann and Basler, 1999, McNeill, 2000]. We use our model to see 

if this may be the case in epithelium.

C hapter 7 brings the main conclusions of the thesis together. Here we also 

discuss possible future work and how our model could be improved.



Chapter 2

Background

In this chapter, we establish a research context by considering how this thesis fits into 

the existing literature. We first introduce some concepts related to the thesis and then 

provide a selective discussion on computational models of cell-cell interactions. We 

then discuss ways of evaluating the in silico model outputs using histological images. 

We conclude our discussion by outlining the morphology of epithelium and review 

implementations of cell sorting algorithms suggested by Glazier [Graner and Glazier, 

1992]. Given the interdisciplinary nature of our work, the reader may find some 

concepts basic.

2.1 Individual Based M odels (IBM )

Individual Based Models (IBM) simulate global consequences of local interactions of 

members of a population [Reynolds, 1987]. These individuals may represent cells, 

plants, animals or people in crowds. An individual based model typically consists 

of a framework in which rules of interactions are defined for the individuals and be­

havioural characteristics are tracked through time. IBMs are also known as agent 

based models and each agent corresponds to an individual in the simulated do­

main. IBMs are of three types : Continuous Individual Based Simulation, Discrete 

Individual-based Simulation and Cellular Automata (CA).

15
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2.1.1 Continuous Individual Based Simulation

The best example which describes this type of IBM is the “boid” 1 model proposed 

by Reynolds [Reynolds, 1987] to simulate the flocking behavior of birds. Reynolds 

placed a large number of boids in a virtual environment and programmed them to 

follow three simple rules.

•  Separation: Maintain a minimum distance from other objects and obstacles in 

the environment

• Alignment: Match velocities with other boids in the neighbourhood

• Cohesion: Move toward the perceived center of mass of boids in the neighbour­

hood

What is interesting, is to note that none of these local rules says “form the flocks” 

and the rules only refer to what an individual “boid” could do and see in its own 

activity. A flock can only form bottom-up as an emergent phenomenon and they do 

form every time [Reynolds, 1987]. Reynolds extended the concept of bird flocking 

(steering) behaviour to the entertainment industry by applying behavioural rules to 

autonomous characters in animation to perform a wide range of motion behaviour2.

2.1.2 D iscrete Individual Based Simulation

Discrete individual based models are used to model complex objects which can be

generated from a collection of simple single objects. In this type of modelling, what

is being formed is the space itself rather than individual elements. For example, a

settlement can be generated by aggregating a collection of houses [Hillier and Hanson,

1984, Hillier, 1996]. The elementary objects in the model are square cells and the

rule of addition of square cells is a full face-wise join. The square cells are not

*an autonomous bird like agent
2http: /  /  www.red3d /  cwr /  steer /  gdc99/index.htm l

http://www.red3d
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allowed to join at the vertices. During the aggregation process, objects may be added 

randomly, but under the constraint that each cell must retain at least one side free 

from other square cells. This process results in a dense and continuous aggregate of 

cells containing a number of void spaces irrespective of the sequence of placing the 

objects [Hillier and Hanson, 1984, Hillier, 1996]. Once again, this is an example of 

the emergence of a global structure from the application of local rules.

2.1.3 Cellular A utom ata (CA)

When simulating nature, are mathematical equations the best way? In the early 

1980s, Stephen Wolfram suggested that computer programs may be used to build 

models to study nature. Wolfram made a detailed study of a class of such models 

known as Cellular Automata (CA) and discovered that even when the underlying 

rules are very simple, the behaviour produced by computer models can be highly 

complex and mimic many features seen in nature [Wolfram, 1983, Wolfram, 1994]. 

The results of Wolfram’s work are found in many applications, such as artificial life, 

biology, cryptography and fluid dynamics. The CA consist of a regular uniform lattice 

and a state for each cell or site (on/off for example). The CA evolves in discrete time 

steps, which means the value of a variable of one site is affected by states of its 

neighbourhood at the previous time step. The variables at each site are updated 

simultaneously according to a definite set of local rules.

2.2 M odelling biological system s using IBM  and 
CA approaches

In this section, we review uses of the IBM and CA approaches. We restrict our 

review to the models simulating cell-cell interactions. Drasdo [Drasdo et al., 1995] 

suggested an approach which describes cells as particles in a strongly viscous fluid 

for growing tissue cultures and non-vascular tumors. The model assumes that each
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cell is spherical in shape directly after division and deforms to a “dumb-bell” shape 

during mitosis. The model assigns a total energy for an assembly of cells according 

to the interactions between the cells resulting from attractive interactions due to cell 

adhesion and repulsive contributions from the ability of cells to deform and compress. 

The model has been extended to describe blastula formation [Drasdo, 2000] and the 

cell kinetics in intestinal crypts [Drasdo and Loeffler, 2001].

Dubertret suggested a model based on topology and statistical mechanics for the 

renewal of epidermis [Dubertret and Rivier, 1997]. In this model, each basal cell is 

attached to the basement membrane through a polygonal facet and the model assumes 

that the basement membrane to be flat; the tissue is in equilibrium and the horizontal 

pressure on the basal layer is isotropic. The model predicts that cells with a smaller 

attachment than average are likely to detach and ascend in the epidermis. The larger 

the attachment of a basal cell to the basement membrane, the more likely it is to 

divide. Moreover, the model suggests that a cell surface tension and adhesion play a 

paramount role in the renewal of the epidermis.

Clem suggested a 3D simulation of the renewal of the epidermis based on the 

hypothesis that consecutive transformation through stages is mainly due to increased 

cell growth [Clem and Rigaut, 1995,Clem et al., 1997]. A cell in the model is described 

by position in the tissue, age, phase in the cell cycle and generation (number of mitoses 

since birth). The model consists of stem and differentiated cells and only stem cells are 

allowed to divide. The first step of their simulation consists of a static representation 

of nasal epithelium based on positions, sizes, shapes and orientations of the nuclei of 

the cells of the tissue identified in 2D histological sections [Clem et al., 1992]. Using 

the starting values of cell proliferation parameters, they simulated the tissue growth 

process, and reproduced its evolution from normality to hyperplasia3.

CA approaches on regular lattices have been used to model cell kinetics in intesti­

nal crypts [Loeffler et al., 1986]. Crypts are pear shaped, single cell layer thick pockets

3An increase in the number of cells.
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in the intestinal wall, which are responsible for maintenance of high-cell turnover in 

the intestine [Potten and Loeffler, 1990]. The majority of cell division takes place 

in the lower half of the crypts, cells then migrate towards the top of the crypt be­

fore being released into the intestinal lumen. In the model, the individual crypt is 

represented by a cylindrical array of cells with a periodic boundary condition in the 

horizontal direction. Cell migration is controlled by cell division, which is governed 

by two rules: cell division direction is chosen randomly; and the oldest neighbour 

cell is shifted towards the top of the crypt to make way for the newly divided cell. 

Cells that reach the top of the crypt axe assumed to be released into the lumen and 

removed from the model. Meineke presented a model for intestinal crypt simulation 

using Voronoi tessellation [Meineke et al., 2001].

2.3 Evaluating in silico m odel outputs using histo­
logical images

In silico models have to be validated before their results could be used with any 

confidence. Traditionally, researchers have validated their models using data from 

biological experiments, either their own or those reported in the literature. We sug­

gest that in some cases in silico models may be evaluated using histological images. 

Later, we demonstrate this using histological sections of oral epithelium. Oral epithe­

lial structures vary greatly from one image to the next. However, the main charac­

teristics include the basal cell distribution within the epithelium, the curved nature 

of the rete pegs, the depth of the layer of keratin and the population of lympho­

cytes [Speight et al., 1996]. In order to familiarise the reader with the histological 

terms used throughout this thesis, we provide a detailed discussion of the character­

istics of epithelium as shown in Figure 2.1. The pink region is the epithelial tissue 

that lies at the surface of the mouth. A thin mucus-type liquid covers the top of the 

epithelium, which is called the keratin or superficial layer. The dark cells at the base
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-Lymphocyte*

Figure 2.1: A histological section of oral epithelium

of the epithelium are the basal cells; in sections of healthy epithelium these are found 

at the base, but as tissue becomes dysplastic, such cells are found in the upper layers. 

The lymphocytes below the epithelial tissue are the small black spots in the image. 

The drop shaped rete pegs form the base of the epithelium. They become bulbous 

and highly curved in shape when an epithelium becomes dysplastic. Figure 2.2 shows 

histological sections of oral epithelium at different stages of dysplasia.

Oral pathologists have developed systems to diagnose oral carcinoma [Landini and 

Rippin. 1996.Aranjo. 1999] using descriptions of retepegs shape, distribution of basal 

cells and lymphocytes. One motivation of our work is to evaluate in silico models 

using histological sections of oral epithelium and build a shape model to represent 

the shape variation in normal and dysplastic rete pegs (basement membrane). The 

basement membranes can be represented as a collection of pixels in an image. In 

order to differentiate between the pixels, we need a way of describing them with a set 

of numbers called the object’s descriptors. Previously unidentified objects can then
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(c )  ( d )

Figure 2.2: (a) Normal epithelium - The most distinctive feature of normal healthy 
epithelial tissue is a high concentration of basal cells lining the rete pegs and very 
straight rete pegs with few curved sections, (b) Mild Dysplasia - In comparison to 
Figure 2.2(a), the basement membrane is bulbous. Also the distribution of basal cells 
is far less concentrated in comparison to normal, (c) Moderate Dysplasia - In this 
case, the rete pegs are more rounded in shape and are curved. The distribution of 
basal cells covers more of the epithelium. (d)Severe dysplasia - Here, the rete pegs 
exhibit pronounced curvature.
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be classified by matching the descriptors of the unknown objects against the known 

objects. However, in order to be useful descriptors they should have the following 

four properties.

First, two objects should have the same descriptors, if and only if the shapes are 

the same. Secondly if the two shapes have the same size and shape, their descrip­

tors should be similar. Thirdly, they should have invariant properties. For example, 

rotation invariant descriptors would be useful for recognising objects, whatever their 

orientation. Other invariant properties include scale and translation. Fourthly, the 

descriptors should be compact. In other words, a descriptor should represent an object 

in an efficient way. The quantity of information used to describe this characterisation 

should be less than the information necessary to have the complete description of the 

object itself. However, there is 110 set of complete and compact descriptors to charac­

terise general objects and the best recognition performance is obtained by carefully 

selecting a descriptor related to a particular type of application.

The descriptors may be divided into two types: Region and Shape descriptors. 

The Region descriptors characterise an arrangement of pixels within the area of an 

image and Shape descriptors characterise the arrangement of pixels in the perimeter 

or boundary. It is clear that for our application we would require a shape descriptor 

to describe the shape of the basement membrane. Fourier descriptors are a form of 

Shape descriptors, which allows the application of Fourier theory to shape description. 

The main idea of Fourier descriptors is to characterise a curve/contour as a set of 

numbers that represent the frequency content of the whole shape. Fourier based 

shape description has been around for some time [Persoon and Fu, 1977, Chellappa 

and Bagdazian, 1984] and has application in biology [Lestrel, 1997] and hand printed 

character recognition [Granlund, 1972].
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2.4 T h e  M o rp h o lo g y  of E p i th e l iu m

Stratified squamous epithelium may be divided in to two types: non-keratinizing and 

keratinizing. The non-keratinizing normally refers to wet surfaces which are subjected 

to wear and tear. The keratin is formed when the squamous epithelium covers a dry 

surface, such as the skin. The structural organisation of both types of epithelium 

are similar and are usually divided into several zones: the basal layer; the prickle or 

spinous layer, also called the Malpighian layer; the granular layer; and finally the 

keratin layer. Figure 2.3 provides a diagrammatic representation of the epithelium.

Spinous Layer (SL)

Basal Layer (BL)

13 Basement Membrane

Stratum comeum (SC) 

Granular layer (GL)

□  ^dheren^ *Hem idesm osom e 3  Desomosome o Focal Contacts 
junction

Figure 2.3: The epidermis is a stratified squamous epithelia, which consists of several 
layers. Resting on the basement membrane is the basal layer (BL) consisting of prolif­
erating Stem and Transit amplifying cells. The basal layer give rise to differentiated 
cell layers of the spinous layer, granular layer and the stratum  corneum. This image 
and text is reproduced from [Fuchs and Raghavan, 2002]

The basal cells form the proliferative compartment of epithelium, from which 

cells migrate, differentiate as they progress arid eventually get desquamated at the 

surface. Most cells within the basal layer are the rapidly dividing progeny of stem
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cells, referred to as transit amplifying cells [Jones and Watt. 1993, Jones and Watt. 

1995]. The transit amplifying cells undergo a limited number of divisions before they 

withdraw from the cell cycle and commit to differentiation and begin to move towards 

the surface of the skin [Watt, 1998. Watt. 2001]. The epidermis is in a constant state of 

dynamic equilibrium, where it replenishes itself every two weeks [Fuchs and Raghavan, 

2002].

The cells then migrate into the Malpighian layer, the thickness of which can vary 

a great deal. The cells in the Malpighian layers are attached to each neighbour by 

cytoplasmic processes called desmosomes , and the attachment between cells and the 

basement membrane are called hemidesrnosornes. Since epithelium consists of a self 

renewing population of epithelial cells, these contacts between cells and membranes 

are constantly broken down and reformed as cells migrate. The granular layer is the 

transitional zone between the viable keratinocytes and the dead cells on the surface. 

The keratin layer is formed of flat keratinized plates.

Intercellular adhesion and its function on the development of tissue structures has 

been known for some time [Wilson, 1907]. Gumbiner [Gumbiner, 1996] suggested that 

the cell-cell adhesion system should be thought of as a mechanism that helps basic ge­

netic information into the complex patterns of cells in tissues. Cell adhesion mediated 

morphogenesis is observed in several biological systems; for example Drosophilia wing 

development [McNeill, 2000, Dahmann and Basler, 1999], and the apical ectodermal 

ridge in the developing vertebrate limb [Kimmel, 2000]. In order for the epithelium 

to function as a tissue, epithelial cells must have the right shape and structure to 

pack together with their neighbours. This cellular architecture is maintained by cell­

cell and cell-matrix adhesion and is important in its barrier and protective functions. 

This order is perturbed in several human genetic disorders including degenerative 

blistering diseases as well as carcinomas.

In epithelium, the adhesion is maintained by two types of adhesion junctions: ad­

herens junctions (AJs) and desmosomes, which together constitute the intercellular



25

T ig h t Ju n c tio n

A dherens Ju n c tio n

Desm osom e

Figure 2.4: ( A) Diagram of the three major types of intercellular junctions in epithelial 
cells. Tight junctions are composed of transmembrane proteins linked to the actin 
cytoskeleton and constitute a physical barrier between the apical and basolateral 
regions of the cells. (B) Electron micrograph depicting the ultrastructure of adherens 
junctions, desmosomes and tight junctions between two intestinal epithelial cells. The 
description and diagram is taken from [Perez-Moreno et al., 2003]
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adhesion complex as shown in Figure 2.4. The transmembrane receptors4 in the com­

plex mediate the binding at the extracellular surface and determine the intracellular 

response. The associated cytoplasmic proteins of the transmembrane receptors struc­

turally link them to the cvtoskeleton 5, thereby establishing lines of communication 

to other cell-cell junctions and to cell-matrix junctions. This linkage of cell-cell and 

cell-matrix junctions allows the formation of epithelial tissue from individual epithe­

lial cells [Green and Gaudry, 2000.Vasioukhin et al., 2000,Runswick et al.. 2001]. The 

AJs’ functions include: directing cellular organisation, movement within epithelia and 

transmitting information from the environment to the interior of cells [Tsukita et al., 

2001]. During the formation of epithelial sheets, epithelial cells constantly change 

their intercellular interactions. For example, during wound healing epithelial cells 

momentarily downregulate intercellular adhesion and increase cell proliferation. The 

association between defects in adherens junctions proteins and human cancer is well 

understood [Pelfer and Polakis, 2000]. The AJs are cadherin6-dependent adhesive 

structures which are linked to the actin niicrofilament network within the cytoskele- 

ton. E-cadherin, a member of the cadherin family, exists primarily in epithelia at the 

sites of cell-cell contacts.

The adheren junctions are also integrated into a variety of other cellular processes 

through associations with other types of intercellular junctions and membrane recep­

tors. Epithelial sheets display AJs alternating with desmosomes [Vasioukhin et al., 

2000, Green and Gaudry, 2000] as shown in Figure 2.4. Studies have revealed that 

the establishment of AJs is a prerequisite for the formation of desmosomes and other

4Transmembrane receptors are integral membrane proteins, which reside and operate typically 
within a cell’s plasma membrane, but also in the membranes of some subcellular compartments and 
organelles. Binding to a signalling molecule or sometimes to a pair of such molecules on one side of 
the membrane, transmembrane receptors initiate a response on the other side. In this way they play 
a unique and important role in cellular communications and signal transduction. This description 
was taken from wikipedia.org

5The cytoskeleton is both a muscle and a skeleton, and is responsible for cell movement, and the 
organization of the organelles within the cell.

6A homophilic cell adhesion protein, which binds to other cadherin molecules
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junctions [Gumbiner et al., 1988]. The desmosomes are specialized cadherin medi­

ated cell-cell junctions which attach to the intermediate filament network providing 

internal mechanical strength to epithelial cells [Fuchs and Cleveland, 1998].

During embryogenesis, boundaries usually develop between cell populations. It 

has long been suggested that differential cell affinities play a role in orchestrating 

the formation of tissue boundaries and cadherin plays a cental role in this process. 

There are now more than 20 cadherin proteins, which are differentially expressed in 

complex patterns. Takeichi et al [Nose et al., 1988] transfected two of the cadherins, 

E- and P-cadherin into a separate group of cells which normally express little or no 

cadherin. The transfected cells preferentially adhered to cells expressing the same 

cadherin proteins and developed epithelial sheets, whereas untransfected cells did not 

express any cadherin and did not form epithelial sheets.

2.5 Cell sorting and computer models

Steinberg and colleagues performed a series of experiments to study various cell mech­

anisms suggested by Holtffetter and others [Curtis, 1960, Curtis, 1961], which underly 

tissue affinities. Steinberg suggested the Differential Adhesion Hypothesis(DAH) 

as the driving mechanism behind cell sorting as observed in embryonic develop­

ment [Steinberg, 1963, Steinberg and Takeichi, 1994, Steinberg, 1996, Steinberg and 

Foty, 1997]. The DAH postulates that cell surface adhesive properties cause tissues 

whose cells axe mobile to behave as living liquids. For a system to show behaviour 

postulated by DAH, they must be composed of many subunits which cohere while 

being motile. In liquids, the subunits are molecules and the mobility is thermal; in 

cell populations, the subunits are living cells and their mobility may be active or 

passive. The syndrome of behaviors displayed by embryonic cell populations which 

duplicate the behaviors of immiscible liquids include: irregularly shaped tissue frag­

ments with shapes toward a sphere, the spreading of one tissue mass over the surface 

of another [Steinberg, 1996].
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Glazier and Graner suggested a cell sorting algorithm to model DAH using a 

cellular automaton approach [Wolfram, 2002]. The algorithm simulated the sorting of 

a mixture of two types of biological cells using a modified version of the large-Q Potts 

model with differential adhesion [Graner and Glazier, 1992, Graner, 1993, Graner and 

Sawada, 1993, Ball, 2000]. Savill [Savill and Sherratt, 2003] extended the Glazier- 

Graner model to study the control of stem cell clusters by Notch-mediated lateral 

induction. The simulations were based on the Glazier-Graner [Graner and Glazier, 

1992] framework. The model included cell properties like age, size, type, adhesion 

strength to neighbouring cells and Delta and Notch concentration on its membrane. 

Savill [Savill and Sherratt, 2003] concluded that the regulation of differentiation is the 

most likely mechanism for cluster control in epithelium and stem cells must adhere 

more strongly to each other than they do to differentiated cells. Developing the model 

further, he showed that lateral-induction mediated by the Notch signalling pathway 

is a natural mechanism for cluster control. Savill’s work focussed on a single stem 

cell cluster. The ability of the basal layer of the epidermis to produce a single stem 

cell giving rise to multiple stable clusters is not modelled [Jones and Watt, 1995].

Savill [Savill and Hogeweg, 1997] presented a 3D hybrid cellular automata with 

a partial differential equation model to study the morphogenesis in simple cellular 

systems. He applied the model to the cellular slime mould Dictyostelium discoideum, 

“from single cells to crawling slug” and demonstrated that using local interactions, 

basic morphogenesis can be obtained with three processes: production of and chemo- 

taxis to cAMP, and cellular adhesion. The cellular adhesion is modelled using the 

Glazier-Graner model and the amoebae are represented as many connected automata 

instead of a point like object. Several extensions and modifications were made to the 

Glazier-Graner model: three dimensions, coupling to a partial differential equation 

and chemotaxis along a positive spatial cAMP  gradient.

Izaguirre [Izaguirre et al., 2004] suggested a multi-model software framework called 

COMPUCELL for simulation of morphogenesis by extending the Glazier-Graner model
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It models the interaction of cellular mechanisms such as cell adhesion, division, hap- 

totaxis 7 and chemotaxis 8. A combination of stochastic local rules and a set of 

differential equations and partial differential equations model cellular processes. Iza­

guirre used COMPUCELL to simulate the formation of the skeletal architecture in 

the avian limb bud.

Stott [Stott et al., 1999] suggested a simulation of benign avascular tumour growth 

using the Glazier-Graner model. He simulates tumour growth including cell sorting, 

the latter occurring due to variation of adhesion between different types. The simu­

lated tumor grew exponentially, then formed three concentric shells as the nutrient 

supplied to the core by diffusion decreases: the outer shell consisting of proliferating 

cells, the middle of quiescent cells and the centre a necrotic core where there is insuf­

ficient nutrient to sustain life. The simulated tumour eventually approaches a steady 

state, where the increase in growth is equal to the loss due to the disintegration of 

the cells in the necrotic core.

Turner [Turner and Sherratt, 2002] developed a discrete model of malignant in­

vasion by extending the Glazier-Graner model. The model simulates a population of 

malignant cells experiencing interactions due to intracellular adhesion while secreting 

enzymes and experiencing a haptotactic gradient. The model investigates the influ­

ences of changes in cell-cell adhesion on the invasion processes and demonstrates that 

the morphology of the invading front is influenced by changes in the adhesive strength 

between cells. Turner also demonstrates with the model that cell-cell adhesion is less 

of an influence compared with cell-medium adhesion. The simulation is then extended 

by including cell proliferation. Turner concludes that increased proliferation rate does 

not necessarily result in an increased depth of invasion into the extracellular matrix, 

and may indeed cause the invasiveness to be reduced.

Mombach [Mombach et al., 1993], [Mombach et al., 1995], [Mombach and Glazier,

7 A directed response of cells in a gradient of adhesion.
8The movement of a cell or organism in response to a chemical gradient.
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1996] studied cell sorting using the Glazier-Graner model. He presented a three- 

dimensional lattice simulation of embryonic cell movement driven by differential ad­

hesion mechanisms [Mombach, 1999]. The simulation is evolved by a Metropolis 

algorithm 9 and he found that variation on the relative concentration of the cell types 

in an aggregate affects the dynamics of sorting.

9The Metropolis algorithm was invented by Metropolis et al in 1953 for sampling an arbitrary 
probability distribution. This algorithm has been very successful and influential in many areas of 
Monte Carlo method.



Chapter 3

Modelling Epithelial Cell 
Interactions

3.1 Introduction

Our aim is to construct an in silico model of epithelial cell-cell interactions. Once val­

idated, the model can be perturbed to simulate and hence enhance our understanding 

of the role of cellular interactions in disease processes. Any such model would have 

to be compared with in vivo or in vitro experiments to determine its validity. The in 

silico models can then simulate novel biological experiments on a computer. In vitro 

biological experiments are used to inform and enhance simulation models. Conversely, 

in silico models could simulate in vitro biological experiments before expensive and 

time consuming laboratory research is undertaken. Here we report on our attempts 

to extend Stekel’s [Stekel et al., 1995] rule based model of the squamous epithelium.

Stekel [Stekel et al., 1995] proposed a rule based model to simulate a multilayered 

sheet of epithelial cells. The model consists of several cell layers, where the deepest 

undulating layer is known as the basal layer. The basal layer is separated from the 

underlying connective tissue matrix by the basement membrane. The model simu­

lated biological processes such as cell division, differentiation, death and adhesion. 

The kinetics of the simulation were modelled through pressure arising from overlap­

ping cells. Stekel initialised the model in a variety of ways, e.g with a single cell and

31
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a line of cells and showed that the model can reach a steady state in terms of cell 

population distribution. The model employed five cell types: Stem, Basal, Interme­

diate, Mature, and Dead. Only Stem and Basal cells on the basal layer are capable 

of dividing in the model. Intermediate, Mature and Dead cells are produced through 

cell differentiation. Chemical factors which affect the cell differentiation of individual 

cell types are produced by cells within the model. We produced a rational reconstruc­

tion of Stekel’s model in order to gain experience of agent based modelling. Collision 

detection algorithms were used to improve computational efficiency. We extend the 

model by suggesting a method to analyse spatial ordering of cells from the model 

output using techniques from computational geometry and image processing.

3.2 The Stekel’s 2D M odel For Squamous Epithe­
lium

Stekel suggested a model for squamous epithelium by suggesting a rule based simu­

lation. The cell shape was modelled as a circle of fixed radius. All types of cells are 

assumed to be of the same size. Cell movement results from physical interaction with 

other cells. The basement membrane consists of a continuous line of cells forming 

a lower boundary of the simulated epithelium. On division, each stem cell on the 

basement membrane gives rise to a stem and a basal cell. Stekel assumed the exis­

tence of an interaction between stem and basal cells and the underlying connective 

tissue in terms of a downward force which acts on Stem and Basal cells only. This 

force is known as the Connective Tissue Attractive Force(CTAF). Another force in 

the model, known as the Connective Tissue Repulsive Force(CTRF), acts on Inter­

mediate, Mature and Dead cells.

The connective tissue repulsive force causes all cells apart from Stem and Basal 

cells to move away from the basement membrane. It is likely these assumed forces 

give rise to the formation of retepegs in the model, although there is no evidence
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in the literature to suggest that such forces exist in real biology. Basal cells on the 

basement membrane are also capable of division giving rise to two basal cells. When 

a basal cell is sufficiently distant from the basement membrane, it differentiates into 

an intermediate cell. Intermediate cells are not capable of dividing. However, if at 

any stage an intermediate cell comes into contact with the basement membrane, the 

cell differentiates back into a basal cell and thereafter is capable of division.

3.2.1 Cell D ivision

Cell division is modelled as a stochastic process. The parent cell retains its original 

position. The daughter cell is placed such that the distance between the center of 

the parent and daughter cell is two cell radii. The cells are programmed to divide 

“upwards” away from the basement membrane at an angle between 0 and 90 degrees 

in a random fashion as shown in Figure 3.1. Cells divide randomly to the right and 

left of the perpendicular to the horizontal line through the centre of the cell about to 

divide. However, this is biased so that cells divide away from the nearest stem cell or 

stem cell clusters [Stekel et al., 1995]. This bias is computed according to the stem 

cell factor (see section 3.2.2) perceived by the cell.

3.2.2 Chemical Factors

Cells axe assumed to secrete chemical factors in the model. The chemical factor 

produced by a cell is distributed throughout the model on the basis of an inverse 

square law. Cells respond to the various chemical factors either as a threshold or on 

a linear basis. Stem cells secrete chemicals, which is referred to in Stekel’s model as 

the stem cell factor. If the Stem cell factor at a point falls below the threshold level, 

the basal cells differentiate and become Stem cells. The chemical factors produced 

by Stem and Basal cells act on Intermediate cells to prevent their differentiation to 

mature cells and is known as the Stem and Basal cell factor. All chemical factors are 

computed at a point, ie: from the center of a target cell. The Stem and Basal factor
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Cel:

CelM

Direction Of Cell Division

Figure 3.1: Direction of cell division as proposed by Stekel [Stekel et al., 1995]. After 
division, the parent cell (cell 1) retains its position. The daughter cell (cell 2) is placed 
such that the distance between the center of the two cells is twice the cell radius.

decays with respect to distance and is computed as shown in Equation 3.1.

S B F ( y )  =  V " 1 +  4 ;  T  .A, 1 \2  (3 1 )

where S and B represent the sets of stem and basal cells respectively and d (x ,y )  

is the Euclidean distance between cells x and y.

3.2 .3  Cell D ifferentiation

Cell differentiation is determined by age, position and neighbouring cells. However, 

Stekel gave no explanation of how neighbouring cells are defined. We define neigh­

bours as cells within some predefined distance from the center of the target cell. Stem 

cells do not differentiate if they are in contact with the basement membrane. How­

ever, if a stem cell is positioned off the basement membrane and is surrounded by
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intermediate cells it differentiates to become an intermediate cell. The surrounding 

intermediate cells are those within a predefined distance from the centre of a target

Basal cells differentiate into Stem cells if the chemical signal perceived by the 

basal cell falls below a threshold defined for the Stem cell factor. If a basal cell 

is positioned away from the basement membrane it differentiates and becomes an 

intermediate cell. An intermediate cell differentiates to become a mature cell when 

the cell’s age is greater than a pre-determined threshold. When an intermediate cell 

comes into contact with the basement membrane, it differentiates into a basal cell.

Mature cells that he above the intermediate cell layer arise from the differentiation 

of intermediate cells. This process of differentiation from intermediate cell to mature 

cell also depends on cell age. Stem and Basal cells in the model do not age. Only 

differentiated cells age. The cell age is computed 011 the basis of biological iteration 

(see section 3.2.7). The age of a cell is one of the variables taken into consideration 

during cell maturation and cell death. Figure 3.2 shows possible differentiation paths 

available for cells in the Stekel model.

cell.

S tem
(If not on BM) (If not on BM) (If Stem factor <

threshold)

(If age <
Dead

threshold)
(if in contact 

with BM)
(3 or more Mature 
or Dead cells in 

neighbourhood)

BM = Basement Membrane

Figure 3.2: Possible cell differentiation paths in the Stekel model.
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3.2.4 Cell D eath

A mature cell becomes a dead cell when there are three or more neighbouring mature 

or dead cells [Stekel et al., 1995]. The desquamation factor, as it is known, is computed 

on the basis of an inverse square law and is modelled to be secreted by mature and 

dead cells. A dead cell is removed from the model when its age is greater than 

a specified threshold and the desquamation factor is below a predefined threshold 

value [Stekel et al., 1995].

3.2.5 Cell M ovement

The model employs both physical and chemical forces. The physical force, also re­

ferred to as the compressive force, is proportional to the amount of overlapping area 

between cells. We use the formula suggested by Stekel ( [Stekel et al., 1995], page 286) 

to compute the overlap. Cells in the model also experience the two chemical forces 

mentioned earlier. The connective tissue attractive force acts on Stem and Basal cells 

by moving them downwards towards the basement membrane. The connective tissue 

repulsive force acts on Intermediate, Mature and Dead cells by moving them upwards 

away from the basement membrane. Cells respond to this connective tissue repulsive 

force by moving upwards towards the top of the tissue being modelled. According 

to Stekel [Stekel et al., 1995], these forces are modelled to simulate the chemical fac­

tors secreted by the underlying connective tissue. The connective tissue attractive 

force and connective tissue repulsive force are assumed to be uniform throughout the 

model.

3.2.6 Defining the Basem ent Membrane

Stekel modelled basement membrane shape according to rules defining positions of 

stem and basal cells. A scoring system is used to decide if a cell is on the basement 

membrane. If a cell detects that another cell below is within 3 cell radii from the 

centre of the target cell, then 2 is added to its score. A score of 1 is added if the



37

cell below is between 3 and 5 cell radii from and at an angle less than from the 

vertical as shown in Figure 3.3. If a cell scores less than 6 then it assumed to be on 

the basement membrane [Stekel et al., 1995]. The basement membrane shape is then 

defined as the curve outlined by stem and basal cells.

= Score 1 = Score 2

Figure 3.3: StekeFs algorithm for deciding on which cells are on the basement mem­
brane. Cells directly below the target cell and within 3 cell radii score 2. Cells within 
5 cell radii and at an angle J from the vertical score 1. If the total score is greater 
than 6, the cell is assumed not to be on the basement membrane

3.2 .7  R ational recon stru ction  o f  th e  Stekel M o d e l

We initialise our version of the Stekel model with a single stem cell (Figure 3.4(a)) 

and with multiple stem cells (Figure 3.4(b). In our implementation, we deal with 

biological processes in the following order.

• Compute which cells are on the basement membrane

• Compute Stem and Stem Basal chemical factors

• Compute cell differentiation
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• Compute cell age, cell death and cell desquamation

• Check for cell mitosis

The above steps are referred to as a biological iteration. We then model the 

kinetics of the cells by computing the compressive and chemical forces 011 each cell 

and move them according to the forces acting 011 them.

(a)

Figure 3.4: (a) Initialise the simulation with a single stem cell [Stekel et ah, 1995]. 
(b) Initialise the simulation with multiple stem cells [Stekel et ah, 1995]

Compressive Force 0.03
Stem Factor 0.005

Stem Basal Factor 0.05
Desquamation Factor 0.007
Inter to Mature age 15
Mature to Dead age 40

CTRF 3
CTAF 1

Stem probability 0.6
Basal probability 0.8

Table 3.1: List of input parameters used in the simulation

All results shown here were obtained using the input parameters shown in Ta­

ble 3.1. The compressive force parameter defines the force between two cells due to 

overlap. The stem factor, inter to mature age and mature to dead age influences cell 

differentiation as explained in section 3.2.3. The stem and basal probabilities refer to

( b )
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likelihood of cell division. Stekel [Stekel et al., 1995] did not publish or provide evi­

dence for the input parameters used in the simulations. Initially we were motivated 

by producing outputs similar to Stekel's results. Our input parameters were obtained 

through trial and error and do not reflect in anyway biological measurements. The 

model is sensitive to the choice of input parameters.

j  Stem Cell

•  Basal Cell

0  Intermediate Cell

Mature Cell 

Dead Cell

Figure 3.5: Colour key for different types of cells in the model

Example output data from our re-implementation of the Stekel model are shown 

in Figures 3.6, 3.7 and 3.9. In Figure 3.6, the model was initialised with a single stem 

cell and executed for 200 biological iterations. Like Stekel [Stekel et al., 1995], we also 

initialised our model with multiple stem cells and the results are shown in Figure 3.7. 

A movie named Stekel can be found in the CD attached and a description of the 

movie is provided in Appendix B. The movie is obtained bv recording the simulation 

output over time.



Figure 3.6: A simulation run after 200 biological iterations. The simulation was initialised with a single stem cell
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Figure 3.7: A simulation run after 200 biological iterations. The simulation was initialised with multiple stem cells 
as shown in Figure 3.4(b)
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In one of our experiments as shown in Figure 3.8, we initialised the model with 

a large number of cells derived from an epithelial image. We used the buccal ep­

ithelial image in Figure 3.8(a) to derive initial cell positions and types, as shown in 

Figure 3.8(b). We then ran the simulation for 200 biological iterations and the result 

is shown in Figure 3.9.
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(a)

(b)

Figure 3.8: (a) A histological image of buccal epithelium. (b)Cell positions and 
thickness of the layers are derived from the buccal epithelial image.



• »

Figure 3.9: A simulation run after 200 biological iterations. The simulation was initialised with a histological image 
as shown in Figure 3.8(b). The simulation shows a lack of cohesion in the epithelial cell mass.

4-*
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3.3 Criticism of Stekel’s M odel

After re-implementing Stekel's model [Stekel et al., 1995], we identified a number 

of inadequacies. The major problem is the lack of biological evidence to support 

the assumptions about the direction of cell division, the connective tissue attractive 

force and repulsive forces, and the determination of which cells form the basement 

membrane. We discuss criticisms related to cell division, chemical forces and cell 

shape here.

3.3.1 Cell D ivision

The algorithm provided by Stekel [Stekel et al., 1995] to compute the direction of cell 

division works when the model is started with two cells separated by some distance 

or with a line of cells. However as the number of cells in the model increases and the 

basement membrane becomes undulated, this algorithm is no longer sufficient. Cells 

are programmed to divide away from the basement membrane according to Stekel. 

However when the basement membrane is undulated, we need to compute the line 

from which the cell moves away by taking adjacent cell positions into account as 

shown in Figure 3.10.

Robert [Lavker and Sun, 1983] suggested that as stem cells divide they move along 

the basement membrane layer. In order to model this, the Stekel algorithm for cell 

division would have to be modified significantly. For reasons explained in section 3.5 

we choose not to do this, but propose an alternative algorithm to that of Stekel [Stekel 

et al., 1995].

• Compute a line L\  through the cell about to divide and its adjacent neighbours 

on either side

• Construct line perpendicular to L\ through the centre of target cell as shown 

in Figure 3.10
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• Compute a random angle between L\ and its perpendicular.

• Place the new cell on tangential to its parent.

Diroction Of C«ll Division

Direction 
O f Cell 
.Division

brane

(a) (b)

Figure 3.10: (a) Direction of cell division when the basement membrane is flat, (b) 
Direction of cell division when the basement membrane becomes undulated

3.3.2 C hem ical Forces

We have found no biological evidence to suggest the existence of the connective tissue 

attractive and repulsive forces introduced by Stekel. We also failed to find any bio­

logical explanation for the undulation of the basement membrane shape. Figure 3.11 

shows an output from the simulation, where the Connective Tissue Attractive Force 

(CTAF) and Connective Tissue Repulsive Force (CTRF) are set to 0. As can be seen 

from Figure 3.11, the retepegs are not well formed in comparison to the output shown 

in Figure 3.7 and layering of different type of cells are not as uniform as that shown 

in Figure 3.7.



Figure 3.11: A simulation output, where the CTAF and CTRF are set to 0

4-
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3.3.3 Defining Neighbours

A healthy epithelial tissue is an ordered structure consisting of several layers of cells of 

different types. Epithelial signalling may be mainly due to cell-cell contacts. There­

fore, it is important to define neighbours of a cell as accurately as possible. Defining 

all cells within a particular area as neighbours is probably the wrong way to ap­

proach the problem. Since cell signalling here is through cell contact we propose 

to use a tessellation technique [Okebe et al., 1992] in order to describe cell shape. 

Meineke [Meineke et al., 2001] used Voronoi tessellation to define neighbours when 

simulating gut epithelium. We believe this may also be extended to the Stekel model.

3.3.4 Cell Shape

Another area of concern is the modelling of cell shape. We demonstrate how cell

shape can be modelled when using an individual based model approach. We filmed a

mono layer of epithelial cells over 14 hours using a digital camera system from Leica

Microsystems to record the motion sequence of oral epithelial cells1. Images were

acquired every 10 minutes over the 14 hour period.

Although we were not able to follow an individual cell during filming and observe

its shape change, we saw significant changes in cell shape in the population observed.

Therefore modelling all cells as of equal size and of circular shape is far too simple.

Epithelial tissue is an ordered structure of cells and the shape of epithelial cells plays

an important part in how tightly they are packed together.

Drasdo [Drasdo et al., 1995] suggested that cells may be modelled as a dumbbell

shape just before division. At the beginning of the cell cycle, the cell radius will be

Rm in• Radius will grow until the cell mass is doubled. During the cell division phase

of the cell cycle, the distance d between the two centers of the symmetrical dumbbell

shape is grown until d =  2 x R min- At the same time the radius R  shrinks to keep the

!The Filming experiment was carried out at the Department of Orthodontics, Eastman Dental 
Institute with help from Dr Mark Lewis.
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Figure 3.12: A diagrammatic representation of how cell shape could be modelled. 
Figure is reproduced from Drasdo et al [Drasdo et al., 1995]

surface area constant. Figure 3.12 is reproduced from Drasdo [Drasdo et al., 1995] 

and provides a pictorial representation of how cell shape could be modelled.

Schaller [Schaller et al., 2003] presented a solution to modelling cell shape using 

weighted Delaunay triangulation for modelling cell shape in tumour growth. Honda 

et el. [Honda et al., 1996] proposed an explanation of the topological organisation of 

corneal epithelium based on the assumption that cells migrate upwards to occupy less 

crowded regions in tissue. They show that the structure shown by corneal epithelium 

can be described through spontaneous organisation of cells. This is one of the first 

models to suggest that epithelial structure can be a consequence of a self-organised 

process. A different approach taken by Dubertret et al. [Dubertret and Rivier, 1997] 

models epithelial cell shape as a two-dimensional topological foam and is based on 

topology and statistical mechanics. Dubertret’s approach predicts a strong correlation 

between the size of the attachment of the basal cells to the basement membrane and 

their biological fate (division or detachment from basement membrane). The models
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proposed by Honda [Honda et al., 1996] and Dubertret [Dubertret and Rivier, 1997] 

to explain epithelial organisation are not applicable to our approach of individual 

based modelling since they do not model cells and their properties individually.

We believe cell shape should be modelled by simulating the mechanisms which 

cause it to change. In other words, we argue that the cause is what we should be 

modelling and not the effect. The cause of cell shape change may take place at 

a molecular level. Moreover, it is beneficial to address the problem using a method 

which requires little processing time until we have enough biological information about 

what causes the cell to change its shape. If we were to pursue the individual based 

model approach, modelling the cell shape from the molecular level will not be possible 

since the individual molecules would have to be modelled instead of the cells as 

proposed here. Drasdo's [Drasdo et al., 1995] approach appears to be more suitable 

for modelling at the cellular level and for incorporating into StekeFs model. We 

demonstrate a model of cell shape in a later chapter.

3.4 Simulating a stable normal epithelium

Healthy epithelial tissue does not alter in thickness significantly after its initial de­

velopment. An example of this is our skin, which does not get infinitely thicker as we 

age. Hence the tissue must enter a dynamic equilibrium, where the rate of division 

equals the rate of death. Initial conditions in a simulation of epithelial tissue struc­

ture may vary from a few cells to a large collection of cells derived from an image of 

the epithelium. Therefore, it is important to define a stage in the model where the 

epithelium moves from development to one of maintenance.

Stekel [Stekel et al., 1995] used the raw number of cells of different types in the 

model to decide if dynamic equilibrium had been reached. He claimed that when 

cell numbers in the model do not change significantly, the model is in a state of 

dynamic equilibrium. An output from our implementation of Stekel’s model as shown 

in Figure 3.13 demonstrates that, although cell numbers do not change significantly



51

there is no cell type ordering in the structure. Therefore, the epithelium shown 

in Figure 3.13 cannot be considered to represent a “normal” epithelium in a state of 

equilibrium. Thus, it is essential to take the distribution of cell type into consideration 

when defining a stable epithelium. A dysplastic epithelium exhibits a disordered 

structure in comparison to a healthy epithelium. We seek ways to define a dynamic 

equilibrium state using spatial positions of the cell as well as cell numbers. Our 

method employs Delaunay triangulation and connected component labelling.

3.4.1 Delaunay Triangulation

There exists several ways to build a triangulation from a set of points. Figure 3.14 

shows 3 different ways of generating triangles for a given set of points. A Delaunay 

triangulation of a vertex set is a triangulation of the vertex set with the property that 

no vertex in the vertex set falls in the interior of the circumcircle (a circle that passes 

through all three vertices) of any triangle in the triangulation [Okebe et al., 1992].

All triangles in the Delaunay triangulation for a set of points will have empty cir­

cumscribed circles. That is, no points lie in the interior of any triangle’s circumcircle. 

Figure 3.15 shows the triangulation for the points shown in Figure 3.14. We can im­

mediately see that the first triangulation is Delaunay, since all of its circumcircles are 

empty. There exists a Delaunay triangulation for any set of points in two dimensions. 

It is always unique as long as no four points in the point set are co-circular.

Delaunay triangulations are used to build topological structures from unorganized 

(or unstructured) points. Applications of Delaunay triangulation include computa­

tional geometry, simulation of the growth of crystals, mesh generation, computation 

of neighbouring points and visualisation of surfaces. We use the Visualisation Toolkit 

library 2 to build our Delaunay triangulation structures.

2http: / /public.kitware.com /  VTK /
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Change in cell numbers for each type in the model
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Figure 3.13: (a) We modify the compressive force in the model to 0.15, a five fold 
increase from the value chosen in Table 3.1 to obtain a disordered structure, (b) We 
demonstrate that even though cell numbers don’t change, the epithelium generated 
in Figure 3.13(a) can not be considered normal due to the disordered nature of the 
cell layers. By disordered we mean no clear continuous layer or boundaries.
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B

A

Figure 3.14: Triangulation of unstructured points. This figure is reproduced from 
“http://www.geom.uiuc.edu/ samuelp/delproject.html”

3.4.2 Connected Com ponent Labelling

Connected component labelling is commonly used in image processing to join neigh­

bouring pixels into connected regions. Connected component labelling scans an image 

and groups its pixels into components based on pixel connectivity, i.e., all pixels in 

a connected component share similar pixel intensity values and are in some way con­

nected with each other [Davies, 1990]. The extraction and labelling of disjointed 

and connected components in an image is central to many automated image anal­

ysis applications. The main computational task is to take local information (bond 

connections) and work out global information (clusters of sites).

3.4.3 Combining Delaunay triangulation and Connected com­
ponent labelling

In this section we explain how we combine Delaunay triangulation and Connected 

component labelling to determine the level of ordering in a set of cells, real or sim­

ulated, using information about cell type and position. We use the centres of the 

cells as the unstructured points from which to construct a topological structure us­

ing Delaunay triangulation. In this topological structure, the centres of cells become 

the vertices of the Delaunay triangles. Once we have built a topological structure 

of cells using Delaunay triangulation we assign a number as the label to each cell as

http://www.geom.uiuc.edu/
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Figure 3.15: Figure shows possible triangulations of all arrangements. We can imme­
diately see that the first triangulation is Delaunay. This diagram is reproduced from 
“http://www.geom.uiuc.edu/ samuelp/delproject.html”

shown in Figure 3.16(a). If the two vertices of an edge in the Delaunay triangle have 

different labels but the cells are of the same type, all instances of higher numerical 

labels of the vertices are then replaced with the lowest one until there are no further 

changes 3.16(b).

This is repeated for every Delaunay triangle in the topological structure. The 

end result of this process is to identify clusters of cells with the same label. Fig­

ure 3.16 shows edges connecting vertices with the same label being collapsed in order 

to identify different clusters. The greater the disorder in the system the more labels 

are required to label clusters. Figure 3.17 shows results of applying this algorithm 

to various distributions of cells. We apply our method to a model output as shown 

in Figure 3.18. As can be seen from Figure 3.18, we require large number of labels 

(above 100) to label the structure. An ordered structure of epithelium consisting of 

5 different cell types would require 5 labels to identify the layers as demonstrated in 

Figure 3.17(e). Hence the number of labels required to label the epithelium may be 

used together with cell numbers to decide if the model has reached a state of dynamic

http://www.geom.uiuc.edu/
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Figure 3.16: (a) An example of Delaunay triangulation for two different type of cells. 
(b)Same label is associated with two cells, since they are of same type and connected 
via an edge, (c) Edges connecting vertices with the same label are collapsed

equilibrium.



(e)

Figure 3.17: (a) An ordered structure of 5 different types of cells, which is labelled 
using 5 labels as expected, (b) An ordered structure of 5 different types of cells, which 
is labelled using 5 labels as expected, (c) A structure of 5 different types of cells, 
where one half represents some level of ordering and the other half is not ordered. 
Higher number of labels is required to label connected structures, (d) A structure of 
5 different types of cells with no ordering in the structure. Larger number of label is 
required to label the structure, (e) A structure of 5 different types of cells which looks 
similar to a healthy epithelium. Only 5 labels are required to label the structure.
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Figure 3.18: We apply our connected component labelling method to a sample of Stekels’ model output. As can 
be seen, we require a large number of labels to label the clusters in the output. This could be used as a measure 
to quantitatively evaluate the level of ordering in the model output.
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The number of different labels required to label an epithelial tissue structure in 

this way will give us insight into the level of ordering in the tissue. We believe this 

approach together with numbers of cells in the system as described by Stekel [Stekel 

et al., 1995], gives a more useful test to see if the model has reached a state of dynamic 

equilibrium. Stekel claimed that when cell numbers in the model do not change very 

much, the model can be considered to be in a state of dynamic equilibrium. We have 

shown here that this is not adequate to describe the dynamic equilibrium.

3.5 Discussion and Conclusion

In this chapter, we have provided a rational reconstruction of the Stekel’s model of 

epithelium. Several aspects of the model were shown to be inadequate or at least 

without strong evidence in the biological literature. These areas included the direc­

tion of cell division, computing neighbour cells, modelling compressive forces and cell 

shape. In particular, the suggested connective tissue attractive and repulsive forces 

appear to have no biological basis. Such assumptions can be made to produce desir­

able graphical output from the model, but do not enhance our current understanding 

of biological processes.

Stekel proposed a model motivated by the desire to simulate a stable, healthy 

epithelium. He initialised the execution of his model using a single cell or a line of 

a few cells. This is similar to modelling an epithelial tissue from a developmental 

biology perspective. Two other biological stages could have been tested by Stekel. 

They are modelling how a dynamic equilibrium is reached and modelling how the 

tissue organisation is maintained. It is our view that Stekel only tested the first 

phase, even though the latter two appeared to be the motivating factor.

Our implementation of the Stekel model had 10 input parameters. We chose ar­

bitrary values as input parameters. It would be more favorable to use input values 

obtained from the biological experiments literature or new experiments. In order to 

use these values from biological experiments, we must make sure that the modelling
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scales involved are the same. When modelling a biological problem, the models are 

built using the known biological processes. It is our opinion that in a good model 

results from simulation would suggest new biological experiments, which would ulti­

mately enhance the understanding of the biological problem being modelled. There­

fore, it is vital to keep the information flow in both directions between the biological 

problem and the model. However, prior to the flow of information from the model 

to suggest new biological experiments, it is important that the model is validated. 

The model should be validated using in vitro experiments, in vitro images or in vivo 

experiments. This will improve confidence in the model output significantly.



Chapter 4

Using in vitro images to evaluate 
in silico models

4.1 Introduction

Landini [Landini and Rippin, 1996] previously used fractal techniques to distinguish 

between normal and dysplastic structures for diagnostic purposes by measuring cur­

vature along the basement membrane and classifying using Linear Discriminant Anal- 

ysis(LDA). In contrast, we capture curvilinear features on a global scale. We present 

a method which combines Fourier Descriptors, Principal Component Analysis(PCA) 

and closest mean classification techniques to distinguish labelled classes of tissue im­

ages using the curvilinear shape of features found in the image set. We employ Fourier 

Descriptors to represent boundary features and PCA to reduce dimensionality. The 

labelled classes are then used in a supervised fashion to train the closest mean algo­

rithm to distinguish unseen examples from the different classes. We demonstrate this 

combination of techniques on histological images of normal and dysplastic (abnormal) 

tissue samples taken from two sites of the oral mucosa, the tongue and inner cheek 

(buccal surface).

The data set of images consisted of randomly chosen images of normal epithelium, 

30 from tongue mucosa and 40 from buccal mucosa. We also used 10 randomly chosen 

images of dysplastic tissue. Dysplasia causes the shape of the basement membrane,

60
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the boundary between the epithelium and extracellular matrix, to change irrespective 

of its location in the mouth. Hence, we use this shape change to build our model. An 

example of buccal epithelium and a manually traced basement membrane is shown 

in Figure 4.1. These tracings were used to build a statistical model of the shape 

variation.

(c) (d)

Figure 4.1: (a) A histological section of normal buccal epithelium, (b) A section of 
dysplastic epithelium, (c) Shape of the normal basement membrane from 4.1(a). (d) 
Shape of dysplastic basement membrane traced from 4.1(b).

4.2 F ea tu re  E x tra c t io n , B o u n d a ry  R e p re se n ta t io n  
an d  P r in c ip a l  C o m p o n e n t A nalysis

Feature extraction and object recognition are active research areas in the field of 

computer vision and image processing. Object recognition is largely based on match­

ing descriptions of shapes. There are numerous shape description techniques, such
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as analysis of scalar features, Fourier descriptors, moment invariants and boundary 

chain coding. A detailed description of these techniques can be found in Nixon [Nixon 

and Aguado, 2002]. The application of these techniques is well understood when 

applied to images and has been developed to describe shapes irrespective of scale, 

rotation and translation. The application of one of these techniques, Fourier descrip­

tors is described here. The Fourier descriptor is an all purpose shape description 

technique [Persoon and Fu, 1986, Granlund, 1972, Leicester et al., 1998]. Fourier 

Descriptors(FD) are obtained from Fourier Transforms.

4.2.1 Fourier Transform

The Fourier Transform (FT) has played a key role in image processing for many years, 

and it continues to be a topic of interest in theoretical as well as applied work in this 

field. The fundamental principle behind FT is that a pattern (or an image) can be 

treated as a signal and can be represented by basic components of the signal. The 

FT is used to decompose an image into its sine and cosine components. The output 

of the transformation represents the image in the Fourier or frequency domain. In 

the Fourier domain image, each point represents a particular frequency contained in 

the spatial domain image.

If a function f {x)  can be represented by its Fourier series, then f ( x )  is uniquely 

determined by its Fourier coefficients, cn. Inversely, if the Fourier coefficients Ck of its 

Fourier series are known, f ( x )  can be reconstructed from the set of c„. The Fourier 

series establish an unique correspondence between f(x) and its Fourier coefficients. 

This correspondence is expressed by the Fourier transform of f ( x ):

/oo

f (x)exp(—j27rux)dx (4.1)
■oo

Since our application deals with images, we require the Discrete Fourier Transform 

(DFT). In order to convert Equation 4.1 into discrete form, f ( x )  is sampled into N  

samples, which may be given as
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f ( x o), f ( x o -I- Ax), f ( x o +  2Ax), • •• , f ( x 0 +  (N -  l)A x) 

where Ax is called the sample step in spatial domain, then /(x ) can be expressed

as

/(x ) =  /(x 0 -I- xAx), x =  0,1,2, • • • , N  -  1 

The DFT is then given as

=  U =  0,1,2,-■■ (N -  1) (4.2)
2=0

The sample step Au in frequency domain and the sample step Ax in spatial 

domain are related by the expression

A u >
N  A X

For a two variable function /(x , y) defined in 0 < x, y < N,  the DFT is given by

F (“ > ti) =  ^ E E  f ( x ’ y ) exp ( - ~ < « , » = o, i ,  2, • • • (jv - 1)
2=0  *= 0

(4.3)

Fourier coefficients, from here in referred to as the Fourier descriptor values pro­

duced by FT provide a description of shape. Zhang et el [Zhang and Lu, 2002] pro­

vide a comprehensive review of shape description and image retrieval using Fourier 

descriptors. The Fourier descriptors C* are determined using Equation 4.4.

Cfc =  ^ / (  x ) e x p ( H ^ ) ,  0 < k < N - l  (4.4)
n=0
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Properties of Fourier Descriptors

In reality images are obtained under various camera settings and they need to be 

normalised before analysis can be carried out. FD values provide a description of 

shape, which may be made invariant under scale, rotational and translational using 

the properties of Fourier descriptors.

•  Translation The translation property of the Fourier transform is given by

f ( x  - x 0iy -  yo) <=> F(u,v).exp[-j2ir(ux0 +  vy0)/N]

This indicates that a shift in spatial domain results in phase change in frequency 

domain.

•  Rotation The rotation property of the Fourier transform is given by

/(r ,0  +  Oo) F(u, <f> 4- 0o)

In other words, rotating f(x,  y) by an angle of 0o in spatial domain rotates 

F(u, v) by the same angle in frequency domain.

•  Scaling For two scalars a and b, the scale property of Fourier transform is given 

by
/ (ax, by) < ^ ) — F(u/a,v/b)

It indicates the scaling of f (x , y)  with a and b in x and y directions in spatial 

domain (time domain in 1-D case) causes inverse scaling of magnitude of F(tt, v) in 

frequency domain. It also reduces the number of F(u,v)  by 1/a and l / b  in u and 

v directions in frequency domain. In general terms, enlarging an object in an image 

gives rise to lower frequencies in spectral domain while shrinking an object in an 

image gives rise to higher frequencies in spectral domain. We use these properties of
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Transformation Boundary Fourier Descriptors
Translation
Scaling
Rotation

f (x)  =  f (x)  +  fo 
/ ( x) =  af (x)  
f (x)  =  /(xje*®0

C(k) =  C(k) +  f 05(k) 
C(k) =  aC{k)
C(k) =  C(k)e?e«

Table 4.1: Properties Of Fourier Descriptors

Fourier descriptors to normalise our data. Table 4.1, shows the properties of FDs for 

a 1-D case.

The lower frequency descriptors describe the general shape of the object, and the 

higher frequency descriptors store information about finer details in the image. In 

order to illustrate the use of Fourier descriptors, we represent a circle and rectangle 

using Fourier descriptors. The circle and rectangle are shown in Figure 4.2.1 and 

the resulting Fourier descriptors are shown in Figure 4.3. We show only the first 100 

Fourier descriptors of both shapes since this is done for illustrative purposes and not 

with accuracy in mind.

(a) (b)

Figure 4.2: (a) An image of a Circle, (b) An image of a rectangle
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Figure 4.3: Fourier descriptor representation of the circle and rectangle shown in 
Figure 4.2.1.

Principle Component Analysis (PCA) is a mathematical procedure that trans­

forms a number of (possibly) correlated variables into a (smaller) number of uncorre­

lated variables called principal components. The first principal component accounts 

for as much of the variability in the data as possible, and each succeeding component 

accounts for as much of the remaining variability as possible. A detailed explanation 

of PC A can be found in Appendix A.

4.3 C lassification

In order to distinguish between two kinds of objects using their shape, we require 

both shape representation and a classification algorithm. Classification techniques 

use either supervised or unsupervised learning methods. Supervised learning methods 

are where the system is trained to classify a feature vector. A supervised learning 

algorithm uses a training set which consists of labelled classes to predict labels for
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the unseen test data set. Techniques in supervised learning include closest mean, k- 

nearest neighbour classification and support vector machine techniques. In the case 

of Unsupervised learning, the system is expected to study the data set and predict 

labels for the test data set. Unsupervised learning methods include Bayesian learning 

and k-Means clustering.

4.4 The Application

We wish to evaluate the in silico model outputs using data derived from human tissue 

images. An example of a typical model output from Stekel’s [Stekel et al., 1995] 

model of squamous epithelium is shown in Figure 3.7. The shape of the basement 

membrane changes when the tissue becomes dysplastic. In order to evaluate if the 

model correctly simulates a “normal” basement membrane, help could be sought from 

an expert or we may use existing labelled images. We suggest a method, which aims 

to capture the variation between normal and dysplastic tissue images.

The boundary of the basement membrane in images of normal and dysplastic tissue 

were traced manually. Examples of such tracings were shown earlier in Figure 4.1(c) 

and Figure 4.1(d). The tracings are then chain coded to avoid any possibility of 

over hangs in the shape of basement membrane. The definition given in Equation

4.4 is used to compute the Fourier descriptors for the tracings of normal and dys­

plastic tissues. As mentioned earlier, since images could be obtained under various 

camera settings it is essential that we make the Fourier descriptors invariant under 

scale, translation and rotation. We accomplish this by using the properties of Fourier 

descriptors defined in Jain et el [Jain, 1989]. The FDs are made rotation invariant 

by ignoring the imaginary phase angle as shown in Table 4.1. Scale invariance is 

achieved by dividing all FDs by the first component and translational invariant is 

obtained by defining all FDs from the same reference point. We choose the first FD 

as our reference point.

An exponential decay type of a curve in Fourier space represents a “smooth” line
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in feature space. The “random” behavior of descriptors in Fourier space represents a 

“wavy” line in cartesian space [Jain, 1989]. Hence we expect our Fourier descriptors 

for the normal basement membrane to be distributed along an exponential decay 

type of curve, and dysplastic membrane set of Fourier descriptors to be randomly 

distributed in Fourier space. Figure 4.4 illustrates normal and dysplastic basement 

membrane representations in Fourier space which indeed display an exponential decay 

for normal basement membranes and in the case of dysplastic membranes, Fourier 

descriptors can be seen to be randomly distributed.

We use closest mean classifier as our classification tool. The closest mean classifi­

cation involves the computation of a mean feature vector for the training set in each 

class. Given a test feature vector, the Euclidean distance measure given in Equa­

tion 4.5 is used to compute which mean feature vector the test sample is closest to, 

and the test sample is assigned a label accordingly.

where f m is the mean shape Fourier descriptors, and indexed by f m =  [/^ , / ^ , . . . ,  f £ ] , 

the test feature vector is indexed by /<* =  [ /j , / J , . . . ,  and N  is the length of the 

feature vector.

Our classification is performed using the 10 fold cross validation technique as 

described by Kohavi et el [Kohavi, 1995]. We randomly select 90% of normal and 

dysplastic images as our training set and the rest of the images are used as the test 

cases. For example, if there are 40 normal and 10 dysplastic images in the data set, 

then the training set of images contains 36 randomly chosen images from the normal 

training set and 9 randomly chosen images from the dysplastic set. The remaining 

5 images are then used as the test set. This randomised selection was repeated 1000 

times and the average classification accuracy was computed in terms of specificity 

and sensitivity.

N

E  l/m -  / iI 2
i=0

(4.5)
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FD R epresentation  Normal and O ysplastic 
Buccal Epithelium

Dysplastic

Fourier D escriptor F requency

(a)

FD R epresen ta tion  for Normal and  D ysplastic 
Tongue Epithelium

(b)

Normal

Dysplastic

2 4 6 8 10 12 14 16 18 20
Fourier D escriptor Frequency

Figure 4.4: (a) Fourier descriptors for 40 normal Buccal epithelium and 10 dysplastic 
sections of oral epithelium, (b) Fourier descriptors for 30 normal Tongue epithelium 
and 1 0  dysplastic oral epithelium
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A true positive is when a dysplastic case is classified as dysplastic. A False negative 

is where a dysplastic case is classified as normal. True negative may be defined as 

classifying the normals correctly. False positive is when a normal case is classified as 

a dysplastic case. Sensitivity and Specificity are defined as shown in equations 4.6 

and 4.7 respectively. We move the decision boundary to compute several values 

of specificity and sensitivity and the results are plotted on a Receiver Operating 

Characteristics(ROC) curve.

. . Tru eP osit ive  .
S en s it iv i ty  =  — —— —--------- — — — ;— - (4.6)

(7 ruePositive  +  b a lseN egatw e)

TrueN eqative
Spec if ic ity  =  —  7 7 -— :---------—- — —— ——r (4.7)

[T ru eN ega tw e  +  F alseP ositive)

Figure 4.6 shows the ROC curve resulting from varying the number of Fourier 

descriptors chosen to describe the shape of the basement membrane for Buccal 4.6(a) 

and Tongue Epithelium 4.6(b). Figure 4.5 provides a pictorial representation of how 

we built the model from raw images to classification.

Raw
Image

No Of
Fourier
Descrip.

FT Classifi
cation

Norm.
Fourier
Descrip.

Figure 4.5: A pictorial representation of how the model is built from raw images. We 
first select our model training set of images, then compute the FDs. Once the FDs 
are computed, we choose the number of FDs to describe the image, which are then 
normalised before moving on to use closest mean classification technique to classify 
unseen images.
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Figure 4.6: (a) ROC curve for Buccal epithelium using 5,10,20 and 100 Fourier de­
scriptors. (b) ROC curve for Tongue epithelium using 5,10,20 and 100 Fourier de­
scriptors
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4.4.1 Applying PC  A before classification

We anticipated that by using a large number of Fourier descriptors we would be able 

to improve the accuracy of our classification. However, when the number of Fourier 

descriptors used to describe the shape is increased, the noise in the data set also 

increases. Since PCA seeks directions which are optimal for representation of data, 

we use PCA here to produce an optimal representation of the data set. For example, 

if we choose to represent the data set by using 20 FDs, by applying the PCA, we 

are able to reduce the dimension of the problem further. As an example, in order to 

represent up to 99% variation in the tongue data set, we only required 6  principal 

components. However it should be noted that this is highly dependent on the data 

set. As before, we performed cross validation testing on the reduced number of 

“PCA Fourier descriptors” . After choosing test and training sets randomly, we used 

the training data set to build a PCA model. The closest mean classifier was then 

used to classify the test samples. The results are shown in Figure 4.7 and Figure 4.8 

for buccal and tongue epithelium respectively.

4.5 Discussion and Conclusions

We have proposed a method to classify the curvilinear shape of the basement mem­

brane. Our method captures the global ghape of a curve, whereas Landini [Landini 

and Rippin, 1996] suggested ways of representing the shape using local features of the 

line. We represented the shape of the basement membrane using Fourier descriptors 

and used closest mean to classify the test data set. The ROC curves for our classifica­

tion axe shown in Figure 4.6(a) and Figure 4.6(b) for buccal and tongue epithelium. 

By. performing the classification for an increasing number of Fourier descriptors, we 

have shown the classification accuracy does not improve.

The first few Fourier descriptors describe the overall shape and as the number of 

Fourier descriptors increase we start describing minor changes in shape, which would
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Figure 4.7: Comparing classification accuracy between Fourier Descriptors (FDs) and 
PCA FDs for buccal epithelium. As can be seen, the classification accuracy does not 
improve when PCA is applied, (a) 5 FDs and 5 PCA FDs. (b) 20 FDs and 20 PCA 
FDs. (c) 30 FDs and 30 PCA FDs. (d) 50 FDs and 50 PCA FDs. (e) 80 FDs and 80 
PCA FDs. (f) 100 FDs and 100 PCA FDs.
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Figure 4.8: Comparing classification accuracy between Fourier Descriptors (FDs) and 
PCA FDs for tongue epithelium. As can be seen, the classification accuracy does not 
improve when PCA is applied, (a) 5 FDs and 5 PCA FDs. (b) 20 FDs and 20 PCA 
FDs. (c) 30 FDs and 30 PCA FDs. (d) 50 FDs and 50 PCA FDs. (e) 80 FDs and 80 
PCA FDs. (f) 100 FDs and 100 PCA FDs.
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also include the noise in the data set. We anticipated that by increasing the number 

of Fourier descriptors we would achieve a better classification rate, but due to the 

noise in the data set, our classification rate did not improve. In order to reduce the 

noise in the data set and only to be able to deal with variation in the data set, we 

applied PCA to our Fourier descriptors. Our results are shown in Figure 4.7 and 

Figure 4.8 for buccal and tongue epithelium respectively. We ran our experiments 

for 5,20,30,50,80 and 100 Fourier descriptors. We found no significant improvement 

in classification accuracy when using the closest mean classifier with PCA. Therefore 

we conclude that a model with Fourier descriptor and closest mean classifier provides 

the best classification accuracy.

We ran experiments to investigate if by implementing Fisher Discriminant Analy­

sis [Dudaet al., 2001], Support Vector Machines(SVM) [Cristianini and Shawe-Taylor, 

2000], and Nearest neighbour methods, classification accuracy can be improved. Our 

results axe given in Table 4.2.

Technique Specificity(%) Sensitivity(%) Accuracy(%)
Nearest Neighbour 93(90) 60(60) 85(84)
SVM 93(83) 100(90) 95(84)
Fisher Discriminant 73(50) 1 0 0 (1 0 0 ) 80(60)

Table 4.2: Classification results for Tongue (Buccal) Epithelium

We ran all our experiments with a feature vector which contained 20 Fourier 

descriptors using the 10 fold cross validation technique. Our Fourier descriptors were 

normalised and we applied PCA techniques to the Fourier descriptors. As can be 

seen from Table 4.2, combining Fourier descriptors, PCA and SVM yields the most 

accurate classification results. However more work is needed to analyse what would 

be the effect of including large or small number of Fourier descriptors in the feature set 

before stating that best accuracy can be obtained by combining Fourier descriptors, 

PCA and SVM. We should also do some work to investigate what happens to the



accuracy of the model if the PCA component is removed.



Chapter 5 

The Model

We present an individual based model to simulate epithelial cell interactions. The 

model consists of biological processes such as cell adhesion, differentiation and divi­

sion. Cell types included are Stem, Transit Amplifying (TA), Intermediate, Mature 

and Dead. Stem and Transit Amplifying cells are allowed to mitose provided they are 

on the basement membrane. Cells increase in size before mitosis and subsequently 

differentiate as suggested by Jensen [Jensen et al., 1999]. Cell sorting arises from 

the Differential Adhesion Hypothesis(DAH) proposed by Steinberg et al [Steinberg, 

1963], and is modelled using the cellular automata approach of Glazier et al [Glazier 

and Graner, 1993]. We introduce our method of modelling cell behavior but defer 

simulating biological experiments to a later chapter. We demonstrate in this chapter, 

that it is possible to generate an ordered structure of epithelial tissue from initial 

conditions such as a single cell as well as a line of cells.

5.1 Differential Adhesion Hypothesis

Embryonic cells of two types, when randomly mixed and dissociated, can sort them­

selves to reestablish a homogeneous tissue. Cell sorting has been observed exper­

imentally as the process which drives the ordering process. Steinberg [Steinberg, 

1963] postulated the Differential Adhesion Hypothesis (DAH) to explain this process.

77
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The DAH states that cells can explore various configurations and arrive at the global 

minimum of overall surface energy. Driving forces for the cell sorting arise from dif­

ferential surface energies between cells and the external medium. Glazier( [Graner 

and Glazier, 1992], [Glazier and Graner, 1993]) presented a 2-dimensional Cellular 

Automaton (CA) to simulate cell sorting using the DAH. His model is known as the 

extended large-Q Potts model, which sometimes is referred to as the Glazier-Graner 

model. The Ising model [Ising, 1925], the precursor to the Glazier-Graner model tries 

to imitate behaviour in which individual elements (e.g., atoms, animals, protein folds, 

biological membrane, social behavior, etc.) modify their behaviour so as to conform 

to that of other individuals in their vicinity. Ising tried to explain certain empirically 

observed facts about ferromagnetic1 materials.

In the Ising model, each lattice site can be in one of two different states. In 

the case of magnetic materials, electrons can be in one of two different states. In 

physics, this is referred to as the spin associated with an electron which could either 

be up or down. Potts [Potts, 1952] extended the Ising model by assuming each lattice 

site can be in one of q different states (when q — 2, both models are equivalent). 

Pott’s model was initially used to simulate order-disorder transformations in non- 

biological patterns. Glazier and Graner focussed on the spatial dynamics of the 

Potts model with a high number of states. In applying this to biology, a group of 

the same states(ie lattice sites) refers tb an individual biological cell. Savill [Savill, 

2003], [Savill and Sherratt, 2003] and Maree [Maree, 2000] applied the Glazier-Graner 

model to modelling biological behaviour. Savill’s work focussed on Dictyostelium and 

stem cells cluster formation. We apply the Glazier-Graner cell sorting algorithm to

1The development of extremely strong magnetic properties in certain materials which occurs 
when magnetic domains (regions at most 1mm in dimension) become aligned in the absence of an 
applied field, below a temperature known as the Curie temperature. The net magnetization depends 
on the magnetic history (the hysteresis effect). Above the Curie temperature, these materials be­
come paramagnetic. Iron, nickel, cobalt, and gadolinium are ferromagnetic at room temperature. 
Ferromagnetism is believed to be caused by magnetic fields generated by the electrons’ spins in com­
bination with a mechanism known as exchange coupling, which aligns all the spins in each magnetic 
domain. This is reproduced from “http://scienceworld.wolfram.com/physics/Ferromagnetism.html”

http://scienceworld.wolfram.com/physics/Ferromagnetism.html%e2%80%9d
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the simulation of epithelium.

The Glazier and Graner model is usually embedded in a 2D  lattice, but may be 

extended to three dimensions. The model describes a collection of N  cells, where each 

cell has a unique identifier, p  =  1,2, • • • , N.  A cell consists of all lattice sites with 

identifier p. At each time step, a lattice site is chosen at random and the probability 

of the lattice site being copied into the neighbour (see below) is either 1 if A H  <  0 

or exp(—( ^ ) )  where A H  is the change in energy if the copying were to occur, k is 

the Boltzmann constant and T  is the temperature in the system (see later).

However, when modelling biological cells, the Potts model has to be modified. 

Glazier and Graner made two extensions to it. Biological cells may be assumed 

to be of fixed size. By this we mean they don’t get infinitely bigger. In order to 

accommodate this they added to the energy function 5.1 an extra term to describe 

the area constraint for each individual biological cell. Glazier and Graner took this 

into account by introducing a second term \ ( v p — V )2 into the energy function shown 

in Equation 5.1. The adhesive bond strength between biological cells of the same type 

will be stronger than the adhesive strength between biological cells of different types, 

according to the DAH. The T in equation 5.1 indicates the biological cell type. 

The surface energy is defined between two lattice sites occupied by two biological 

cells of different types as or same types as TiIY The Glazier-Graner model is 

illustrated in Figure 5.1. The Hamiltonian energy function for the Glazier and Graner 

model may then be given as in Equation 5.1 as suggested by Savill [Savill, 2003] and 

Maree [Mare£, 2000]. Savill [Savill, 2003] used the Glazier-Graner model to explain 

spatial self organisation, cell sorting and slug migration of the cellular slime mold 

Dictostelium discoideum. We use equation 5.1 to simulate cell sorting in our model.

E ^fL+ E (5.i)
all p ^  neighbours all p,medium

where vp is the area of the biological cell p, V  is the target area of p and A is the 

inelasticity or rigidity of the cell membrane. The lower the value of A, the easier it will



Figure 5.1: A diagrammatic representation of the Glazier and Graner model. We 
show two different types of biological cells and the medium. All the surface contact 
energies are also drawn JPPl. This figure is a modified version of the representation 
of Glazier-Graner model produced by Maree [Maree, 2000]
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be to deform the cell membrane. The area of a biological cell refers to the number of 

lattice sites in the grid which we refer to in this chapter as the number of automata. 

The target area of a cell is defined as the maximum number of automata that can 

be taken up by the biological cell. In our simulation, we define the neighbourhood of 

( i , j )  as {(i ± k , j ± l )  | k, I e{0 ,1}} where (i, j) are grid points. The division by 2 in 

the first term of Equation 5.1 is necessary when you consider the energy of the cells 

rather than the total energy of the whole system as the energy bond shared between 

two cells is counted twice. By comparison, an energy bond between a cell and the 

medium is counted only once.

5.2 The M odel

In this section, we present a detailed explanation of our epithelial cell-cell interaction 

model. We explain our modelling approach for cell adhesion, growth, division and 

differentiation. The cell movement is modelled from the DAH proposed by Steinberg. 

We present two different cell division models as suggested by Savill [Savill, 2003].

Our model is grid based (CA) and each automaton (grid point) can either be 

empty (medium) or associated with a creature (In this chapter, we use the word 

creature to refer to a biological cell to avoid confusion with the cells in the grid). An 

automaton is a grid point, which may be defined as ( i , j )  and a creature is simply a 

collection of automatons. Each creature in the model holds a list of automata which 

belong to it, its type(eg: stem), its age, cell cycle time, number of divisions it has gone 

through and its target area. A creature can contain many automata and the size of a 

creature is defined by the number of automata associated with it. All automata on a 

creature membrane have dimensionless free energy bonds associated with them. The 

energy bonds connect an automaton with its neighbouring 8 automata. The bonds 

which contribute to the energy are the ones which connect it to another creature with 

a different state or with the surrounding medium. The strength of these energy bonds 

will depend on the type of creature each automaton connects to in the grid.
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5.2.1 Cell Adhesion

The idea of tissues being held together through cellular adhesion goes back to the 

work of von Recklinghausen (1862) on squamous epithelia. We build on this idea to 

construct our epithelial tissue from cells. In an epithelial tissue, cell-cell adhesion is 

mediated by cadherin and cell-matrix adhesion is mediated by integrins [Davies and 

Garrod, 1997]. The strength of bonds formed by integrins between cell and extra 

cellular matrix varies depending on the type of integrins involved [Sheppard, 1996]. 

For simplicity, in our model, cell-cell and cell-matrix adhesion are not distinguished.

We assume that the bond strengths/adhesive strength are defined on the basis of 

selective cell adhesion. By selective adhesion we mean that cells of the same type 

prefer to be together. The adhesive energy between cells of the same type is small in 

comparison to the adhesive energy between cells of different types. The input values 

in the model for cell-cell and cell-matrix adhesive strength values are arbitrary and 

chosen on the basis of selective adhesion (discussed in a later chapter). For example, 

cell-cell adhesion strength between stem and dead cell in the model could be large in 

comparison to the adhesive strength between stem and TA cells. Table 5.1 shows an 

example input of adhesive strength parameters.

5.2.2 Cell Growth

Creatures grow in a randomly chosen direction and are limited to automata on their 

membrane. Since our model is based on minimising the global energy of a creature, 

prior to allowing the cell to grow, we compute the two energy configurations. Energy 

configuration h\ refers to the current energy state while hi  refers to the energy state 

a creature would be in if the creature grew in the randomly chosen direction. We 

compute energy using Equation 5.1. When computing hi, the size of two creatures 

will be the same, but in h<i, one creature grows in size and the other reduces in size 

by one automaton, in order to accommodate the change. We define Ah =  /z2 — h\ 

and the cell is modelled to grow in the randomly chosen direction if the conditions in
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Bond Name Strength Bond Name Strength
Stem- Membrane 1 TA-Membrane 4
Inter-Membrane 16 Mature-Membrane 16
Dead-Membrane 16 Stem-Stern 4

TA-TA 4 Inter-Inter 4
Mature-Mature 4 Dead-Dead 4

Stem-TA 4 Stem-Inter 16
Stem-Mature 16 Stem-Dead 16

TA-Inter 6 TA-Mature 16
TA-Dead 16 Inter-Mature 6

Inter-Dead 16 Mature-Dead 6

Table 5.1: Adhesive bond strength between Cell-Cell, Cell-Matrix and Cell-Medium.

Equation 5.2 are satisfied. Figure 5.1 shows a schematic representation of cell growth 

in our simulation.

A H  < 0, P =  1

A H  >  0, P =  exP ~ ( “ | r )  (5-2)

where k is the Boltzmann constant and T  is the temperature in the system. The 

Boltzmann constant relates to the average kinetic energy of a molecule in an ideal 

gas to its absolute temperature. The Boltzmann constant is given as 1.3810-23 J K ~ l .

The temperature (T), refers to the temperature in the system. When modelling

biological cells, we assume that they are in a medium(eg: in some solution). Therefore 

temperature (T) in our model refers to the temperature of the medium they are in.

5.2.3 Cell D ivision

Cells undergo a programmed cell cycle before dividing [Murray and Hunt, 1993]. The 

length of the cycle varies according to cell type. During the cell cycle, cells grow in 

size and replicate their constituents prior to dividing. We limit cell division to cells
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on the basement membrane. If the daughter cells are of the same type as the parent 

cell, we refer to it as symmetric cell division. If the daughter cells are of different 

types, this is known as asymmetric division. For example, a stem cell division which 

produces two stem cells or two TA cells is a symmetric division. A stem cell division 

which produces one stem cell and one TA cell is known as an asymmetric division.

Dover [Dover and Potten, 1988] found mean stem cell cycle time to be 16 hours 

in human keratinocytes. Therefore, stem cell cycle time in our simulation is set to 

16 hours. There are no biological data at present to suggest a mean cell cycle time 

for TA cells. However, there are suggestions that TA cell cycle times are shorter in 

comparison to Stem cells in human keratinocytes. Stem and TA cell cycle time can 

be set independently in our model. The TA cell cycle is a user set value. The stem 

and TA cells in the model undergo cell mitosis at the end of their cell cycle. The 

number of allowed divisions for stem cells is not defined, since they are not modelled 

to differentiate. However in the case of TA cells, the number of times TA cells divide 

prior to differentiating is set initially by the user. Watt [Watt, 2001] suggested TA 

cells undergo 3 cell divisions prior to differentiation. The direction of cell division is 

chosen in a random fashion relative to the center of mass of the creature. All grid 

points one side of the division line are assigned to the parent cell and the grid points 

on the other side are assigned to the daughter cell.

5.2.4 Cell Differentiation

TA cells differentiate after dividing a number of times predetermined by a parameter 

set by the user or if they are not in contact with the basement membrane. The 

TA cells terminally differentiate into intermediate cells. The differentiation process 

from intermediate to mature and mature to dead cells depends on the cell age since 

becoming intermediate cells.
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5.2.5 M odelling the Basem ent M embrane(BM )

We model the shape of the basement membrane as a straight line. However in real 

tissue, the basement membrane exhibits a wave like structure whose shape varies 

according to the type of epithelium. We assume the BM to be flat in our model until 

we understand the cause of the “wavy” patterns. We resist the temptation to make 

assumptions which produce desirable model outputs consistent with real tissue shape 

but which are not supported by biological principles.

5.2.6 Assum ptions in the model

When modelling a complex biological system, it is inevitable that assumptions have 

to be made. However, these assumptions have to be justifiable under our current 

understanding of epithelial biology. For example, we have assumed that the direction 

of cell division is random. It is probably the case that epithelial cells do not divide 

in a random fashion but respond to chemical stimuli. We were unable to find any 

conclusive biological evidence to support such a notion. By modelling the direction 

of cell division as random we make sure there is no bias introduced into the model. 

We also assume that cell sorting is due to the DAH proposed by Steinberg. Other 

assumptions in our model include: only cells on the basement membrane are capable 

of division; the direction of cell growth is random; and, the basement membrane is 

flat.

5.2.7 Constructing the model

Our software is implemented on the Microsoft Windows platform using the C ++  

programming language. The model implementation is divided into two parts, the 

physical and the biological. During the physical iteration we randomly select a grid 

point and decide if the creature which includes that grid point is allowed to grow (see 

section 5.2.2). If the creature attempts to grow outside a predefined grid boundary, 

it is placed on the opposite side as if the cells were on a cylinder. It is essential that
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we relate the time step of the Glazier-Graner model to the simulated time of cell 

behavior such as mitosis. It is important to avoid updating cellular functions while 

the system is momentarily away from equilibrium. This is more likely to happen 

when a creature has just divided and the two new cells have an unstable geometry. 

Savill [Savill and Sherratt, 2003] found a time scale of about 50 iterations for updating 

cell behavior was effective. Hence in our model, the physical iteration is repeated 50 

times before iterating the biological iteration. The biological iteration consists of cell 

differentiation and cell division.

5.3 Results

We use our model to simulate three different experiments and the results are presented 

in this section. The experiments include varying differentiation ages for intermediate 

and mature cells and also for varying the temperature in the medium. We simulate 

these experiments in order to see if the model produces expected results. For example, 

we expect the differentiated layers to get thicker as we increase the differentiation 

age, and creatures to break up as temperature in the medium increases [Graner and 

Glazier, 1992]. We defer simulating novel biological experiments using this model to a 

later chapter. All input parameters chosen for the experiments are given in Table 5.2. 

The colour scheme used in our simulation to denote different type of creatures is shown 

in Figure 5.2. We use randomly generated shades of one colour to denote different 

creatures of the same type. For example, we use green to denote a TA creature, and 

we randomly generate different shades of green to denote different TA creatures. In 

Figure 5.3 and 5.4, we show typical outputs of the model using parameter values 

given in Table 5.2 for Experiment 1, where the model was initialised with single and 

multiple stem cells respectively.

In the temperature experiment, we vary the temperature parameter in our model 

to find the critical temperature above which cells start to break up. As can be seen 

in Figure 5.5, creatures start breaking up when T is chosen to be more than 5.
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Stem

TA

Inter

Mature

Dead

Figure 5.2: Colour key for simulations outputs from our model

Figure 5.3: A typical output from the model, where input parameters as chosen are 
given in Experiment 1, Table 5.2. The model is initialised with a single stem cell.



Experiment Rigidity (A) Area Temp Inter Age Mature Age Stem Cycle Time(h) TA Cycle Time(h)
Experiment 1 3 50 2 50 1 0 0 16 8

Experiment la 3 50 5 2 0 0 300 16 8

Experiment 16 3 50 10 2 0 0 300 16 8

Experiment lc 3 50 15 2 0 0 300 16 8

Experiment Id 3 50 20 2 0 0 300 16 8

Experiment 2a 3 50 2 50 300 16 8

Experiment 26 3 50 2 100 300 16 8

Experiment2c 3 50 2 150 300 16 8

Experiment2d 3 50 2 300 300 16 8

Experiment3a 3 50 2 2 0 0 50 16 8

Experiment 36 3 50 2 2 0 0 100 16 8

Experiment3c 3 50 2 2 0 0 200 16 8

Experiment3d 3 50 2 2 0 0 300 16 8

Table 5.2: Input parameters for experiments carried out using the model. Inter Age column refers to the cell age 
for differentiating from Inter to Mature. Mature age refers to the cell age for differentiating from Mature to Dead 
cell. Stem and TA cell cycle time refers to how long the cell cycles before going through mitosis and the time is 
given in hours.
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Figure 5.4: A typical output from the model initialised with multiple stem cells. The 
input parameters chosen are given in Experiment 1, Table 5.2

In the Inter to Mature experiment (I => M), we vary the parameter which controls 

the aging of inter to mature cell differentiation. As can be seen in Experiment 5.6, 

the larger the parameter, the thicker an intermediate cell layer becomes.

In the Mature to Dead experiment (M => D), we vary the parameter which controls 

the differentiation of mature to dead cell. As can be seen in Experiment 5.7, the larger 

the parameter, the thicker the mature cell layer becomes.

5.3.1 D eterm in in g  th e  h om ogeneity  o f th e  sim u lation  ou tp u t

We apply the connected component algorithm suggested earlier in Chapter 3 to the 

simulation output from our model of epithelial cell interactions. We do this in or­

der to evaluate if our method can be extended to a different system to analyse the 

homogeneity of the structure. The result is shown in Figure 5.8. As can be seen in 

Figure 5.8, the algorithm identifies 11 clusters of cells of different types. However, if
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Figure 5.5: In this Experiment we vary the temperature of the model. (a)Experiment 
la, temperature =  5. (b)Experiment 16, temperature =  10. (c)Experiment lc, tem­
perature =  15. (d)Experiment Id, temperature =  20.
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(C) ( d )

Figure 5.6: In this experiment, we alter the differentiation age, which models the 
cells differentiating from intermediate to mature cells. We expect the intermediate 
cell layer to get thicker as the differentiation age increases, (a)Experiment 2a where 
I =>• M differentiation age is set to 50. (b) Experiment 2b where I =>■ M age is set to 
100. (c) Experiment 2c where I => M age is set to 150. (d) Experiment 2d where I 
=> M age is set to 300.
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(c) (d)

Figure 5.7: In this experiment, we alter the differentiation age, which models the 
cells differentiating from mature to dead cells. We expect the mature cell layer to 
get thicker as the differentiation age increases, (a)Experiment 3a where M => D age 
is set to 50. (b) Experiment 36 where M => D age is set to 100. (c) Experiment 3c 
where M =>> D age is set to 200. (d) Experiment 3d where M =4> D age is set to 300.
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we look closely, since the stem cells are separated we require 2  different labels to iden­

tify them. Our system consists of 5 different cell types, hence we require a minimum 

of 5 labels to identify the clusters. However our simulation output requires 15 labels. 

This is because there is some mixing of cells of different types at the boundary. We 

mean by boundary, the border between different types of cells.
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5.4 Discussion and Conclusions

In this chapter, we proposed a cellular automaton approach for modelling cell-cell 

and cell-matrix interactions in epithelium. Our model simulates biological processes 

such as division, differentiation and adhesion. We model cell sorting on the basis of 

the Differential Adhesion Hypothesis(DAH) proposed by Steinberg [Steinberg, 1963] 

using the Glazier-Graner model. Model simulations were initialised using two dif­

ferent configurations, namely a single cell and a line of cells. Our simulation rules 

and methods are derived from the biological literature and where possible we cite 

references to support them.

We believe our model simulates the collective behavior of cells in the epithelium. 

We do not model cell shape explicitly in our simulation, as we allow cells to remodel 

their cell membranes and reach a globally minimum energy state. Our model is 

stochastic in nature. The directions of growth and cell division are chosen at random. 

It is probable that epithelial cells do not behave in such a random fashion but respond 

to chemical stimuli. However, we failed to find any conclusive biological evidence 

for this in the case of epithelial cells. The simple question of how cells know in 

which direction to divide during development is not yet fully explained although 

there is evidence from mouse embryo studies which suggest cell polarity may play a 

role [Magdalena, 2002]. We know through observation that healthy epithelial cells 

always divide away from the basement membrane. Therefore, we model the direction 

of cell division as random but assume that cells cannot grow below the basement 

membrane.

In total our model has 26 input parameters, 20 of which define the bond strengths 

between creatures. Adhesive bond strength does have some biological basis. We know 

that adhesion between stem cells and TA cells is stronger than adhesion between 

TA cells and dead cells. Therefore, we can define the relative size of adhesive bond 

strength between cell-cell and cell-matrix to reflect this. The other 6  input parameters
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(shown in Table 5.2) include cell cycle time, temperature, rigidity, target area and age 

to differentiation. The cell cycle time is obtained from the published literature. We 

leave the exploration of different parameters for adhesive bond strengths to a later 

chapter. Altering the target area allows the creatures to become bigger or smaller.

Higher differentiation age results in thicker intermediate and Mature cell layers, 

since they will have more “time” to be intermediate or mature cells before differenti­

ating. We have shown in Figure 5.6 and Figure 5.7 several input parameters for time 

of differentiation of cells. As can be seen in Figure 5.6 and Figure 5.7, bigger values 

of input parameters results in thicker cell layers. The temperature (T) simulates the 

temperature of the medium that the cells are in. If T  is large then all creatures 

become disassociated [Glazier and Graner, 1993]. We demonstrate this by running 

simulations for 4 different temperature values. As can be seen in Figure 5.5, for 

larger values of temperature, the creatures start to break up. However, in our opin­

ion temperature does not reflect the medium that the cells are in. The temperature 

parameter plays a role in determining the probability of cell growth. If T becomes 

large, which in turn increases the probability of growth according to Equation 5.2, 

this causes the cells to break up in the model.

Our model can simulate the behavior of epithelial cells starting from a single cell 

as well as from a line of multiple cells. We have suggested a model for epithelial 

cell-cell interaction. Our rules of interaction are derived from the published epithelial 

cell biology literature. There are many ways of building on this model, but we believe 

this as a suitable juncture to end developing the model and observe the kinds of 

experiments this model can support before extending it further.



Chapter 6 

Cell Adhesion and Tissue 

Formation

Stratified squamous epithelium, may be non-keratinized or keratinized. Non-keratinizing 

squamous epithelium covers wet surfaces, for example much of the oral cavity. The 

keratinized layer is formed when squamous epithelium covers dry surfaces such as 

the epidermal covering of the skin. The structural organisation of both epithelia are 

similar [Wright and Alison, 1984]. Squamous epithelium is divided into several zones, 

namely the basal layer, malpighian layer, granular layer and keratin layer. The basal 

layer cells are regarded as forming the proliferative compartment of the epidermis 

from which cells migrate and differentiate, as they progress to be desquamated at 

the surface. We focus on how such a structure is formed. We postulate that differ­

ential adhesion plays a role in the ordering of cells in the epithelium. We test this 

using our squamous epithelium model and conclude that differential adhesion aids 

the development of an ordered structure in squamous epithelium.

97
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6.1 Cell Adhesion

Cell adhesion is necessary for the assembly of individual cells into tissues [Gumbiner, 

1996]. A variety of cell adhesion mechanisms are responsible for assembling cells 

together and for determining the overall architecture of the tissue. Adhesion also 

aids signalling between cells [Braga and Harwood, 2001]. Although adhesive contacts 

between cells are stable, they should not be regarded as static, since maintenance 

of stable connections requires active cellular processes. Cell adhesion molecules are 

mostly transmembrane molecules, and include members of the integrin, cadherin, im- 

munoglobin and proteoglycan families. While integrins and proteoglycans can execute 

cell-matrix as well as cell-cell interactions, adhesion via cadherins is mostly intercel­

lular [Vleminckx and Kemler, 1999] since cadherins are usually homophilic1 and not 

secreted. Cadherin molecules also play a role in cell differentiation, proliferation, 

death and polarization [Vleminckx and Kemler, 1999].

Differential cell-cell adhesion has long been suggested as a mechanism for cell 

sorting in developing tissues [Steinberg, 1963, Steinberg and Takeichi, 1994]. This 

may be due to cell surface adhesion molecules with different affinities. Evidence that 

cell sorting is achieved in developing tissues through differential adhesion has been 

rare. Since single cells attach to each other to form a tissue structure, there have to 

be processes which cause cells to do so. Basler found evidence of differential adhesion 

in the development of Drosophila wing imaginal disc. The analysis of clones in several 

compartments of the Drosophila wing imaginal disc suggests the presence of adhesion 

between the cells of different compartments [Dahmann and Basler, 1999].

In this chapter, we aim to understand the driving biological processes behind the 

organized structure in epithelium. During the development of epithelium, cells divide 

and attach to other cells or Extra Cellular Matrix(ECM) to form tissues. In the 

case of epithelium, the resulting tissue is a highly organized structure of cells forming

1The attachment of an adhesion molecule in one cell to an identical molecule in an adjacent cell.
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layers of different types of cells. We refer to a layer consisting of basal cells as the 

basal layer, a layer comprising Intermediate cells as the Intermediate layer and so on. 

There must exist a biological process or biological processes which drives the global 

emergence of cellular layers resulting from local cell-cell and cell-ECM interactions.

6.2 M ethods

Our model is based on the Graner and Glazier framework approach to differential 

cell adhesion and cell sorting [Graner and Glazier, 1992, Glazier and Graner, 1993]. 

Each cell in the model is assigned properties such as size, age, type, cell-cycle time, 

differentiation age and adhesion strength to neighbouring cells. Biological processes 

like cell division, growth, differentiation, and cell death are also modelled. A detailed 

description of the model can be found in Chapter 5. The Glazier-Graner model 

has been extended to study morphogenesis in D ictyostelium  [Savill and Hogeweg, 

1997,Maree, 2000], avascular tumour growth [Stott et al., 1999], control of stem cell 

clusters by Notch-mediated lateral induction [Savill and Sherratt, 2003] and migrating 

fronts of cancer cells [Turner and Sherratt, 2002].

We represent cells on a square lattice. Each cell is assigned a type e.g: stem, TA, 

inter, mature and dead. Adhesive strengths between cells are modelled as surface 

energies between neighbouring cell membranes. The cells in the model sort themselves 

by minimising their surface energy under the constraint of maintaining a target area. 

Cell growth is modelled by increasing the target area of the cell at every iteration. 

Cell differentiation is modelled using cell age. A cell differentiates once it is older 

than a predefined threshold. Cell desquamation occurs when cells reach the upper 

boundary layer of the tissue.

We set out to test 3 different scenarios using the model for squamous epithelium. 

In the first scenario, we postulate that for an ordered structure of cells to exist, (where
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intermediate cells lie directly above stem and TA cells, mature cells to be above in­

termediate cells and dead cells above mature cells), adhesive bond strength between 

neighbouring cells must be small. In other words, the bond strength between inter­

mediate and mature cells must be smaller in comparison to bond strength between 

stem and mature cells. In our model, only cells in the basal layer are modelled to 

proliferate. When cells leave the basal layer, they differentiate to intermediate cells. 

The intermediate cell layer is directly above the basal layer. The intermediate cells 

differentiate to mature cells. The mature cell layer is above the intermediate layer. 

The mature cells differentiate to give rise to dead cells which are removed from the 

model when they reach the top. When we refer to one type of cell lying above an­

other, we refer to our modelling frame work. In the case of biology, above and below 

don’t have any relevance. For example we have a keratinized layer of epithelium on 

the surface of skin as well as the layer below and the interactions of these cells are 

no different. In order to model structure with the compartments of layers mentioned 

above, we set up the inequalities shown in Equation 6.1. We abbreviate stem, TA, 

intermediate, mature and dead cells with S', T, / , M  and D  respectively. The dif­

ferential adhesion between stem and TA cells is denoted by Ts - t , stem and mature 

cells as Ts - m and so on.

r5-5? Tt-T, Fs -T < r̂ -M, r5_/, Ts - d , Tt-a/5 Tt-d

Tl »>« l TJ I •-I < Ts-/, r t-d, rT_M,rs_M
Tm-a/, r7_M < Ts-m, rr-M, Fs - d , Tz-Dj Tt-d
Td - d S m - d < Ts-d, r t-d, r7_£)

Our second scenario is to model the system with no differential adhesion between 

cells. In other words, we assume that there is no selective adhesion between cells and 

the surface adhesive energy between all cell types are the same. Inequalities defined 

to test this scenario are given in Equation 6.2.
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r s_s, Tt-t, Ts-t = Ts ~m , r$_/, r̂ -D, r̂ -M, rr_£)
r/_/,rT-/ = r s - i , r T- D ^ T - M ^ s - M  

Tm-mSi-m = r5_M, rT-A/, r5_£), r/_£), rT-D 
r D- D , t m - d  =  r T_£>, r/_£> (6.2)

The final scenario is the reverse of the first in that we assume TA cells can be next 

to mature cells. When a dysplastic epithelium is observed through the microscope, 

it is possible to observe mature cells close to the basement membrane. Malignancy is 

associated with the disassembly of cells that leave their parent tissues and metastasize 

or invade others. Malignant invasion may result from a decrease in the cohesiveness of 

the invading cells and/or from an increase in their adhesiveness to extracellular matrix 

or other components of the invaded tissue [Steinberg and Foty, 1997]. Therefore it is 

tempting to claim that when we modify the selective adhesion parameters, what we 

are modelling is dysplasia. However, we believe the processes involved in dysplasia 

are more complicated. Hence we leave this as future work.

6.3 Results

The input parameters used for the simulations are shown in Table 6.1. Our experi­

ments were initialised with both a single and multiple stem cells. The model output 

for the 3 scenarios are shown in Figure 6.1 and Figure 6.2 for single and multiple stem 

cells, where the simulated epithelium exhibits an ordered structure of cells. This is 

similar in appearance to a histological section of the epithelium analysed using a mi­

croscope. We also provide movies constructed from our model outputs for scenario 

1 , 2 and 3 in the CD attached. The movies are named scenariol.avi, scenario2 .avi 

and scenario3.avi. A description of this movies can be found in Appendix B. Fig­

ure 6 .1 (b), 6 .2 (b) shows model output obtained for the second scenario where we
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assume that there is no differential adhesion between cells, ie: the surface energy 

between different types of cells are the same. As can be seen in Figures 6 .1 (b), and 

6 .2 (b) mature cells are close to the basement membrane which is not the case in nor­

mal epithelium and the Stem cells have moved away from the basement membrane. 

This is not similar to what is observed when a histological section of the epithelium 

is analysed using a microscope.

Parameter Value
Rigidity 3

Target Area 45
Temperature 2

Inter Age 2 0 0

Mature Age 300
Stem Cycle Time (in Hours) 16
TA Cycle Time (in Hours) 8

Table 6.1: Input parameters used, when testing the hypothesis using the epithelial 
model in Chapter 5

In order to test the third scenario we assume the adhesion energy between stem 

cells and dead cells is smaller in comparison to the adhesive energy between stem and 

TA cells. We make this assumption to see if this can aid the emergence of ordered 

structure seen in normal epithelium. The model outputs obtained using scenario 3 

are shown in Figures 6.1(c), and 6.2(c).

To further our understanding of the selective adhesion between cells, we plot 

the age of a cell against the distance from the basement membrane. In a normal 

epithelium, young proliferating cells can be found close to the basement membrane 

and as cells age and differentiate they move away from the basement membrane. 

Figures 6.3(a), and 6.3(b) shows the results obtained, when the model was initialised 

with single as well as multiple stem cells. As can be seen, in scenario 1 , young cells 

are found close to the membrane. However, in scenario 2 and 3, young cells are not 

close to the basement membrane.
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(a)

(b)

Figure 6 .1 : Simulations initialised with a single stem cell and the input parameters 
are given in Table 6 .1 . (a)As can be seen in Figure 6 .1 (a), which simulates scenario 1 , 
an ordered structure of epithelium is observed. (b)Figure 6.1(b) shows the epithelial 
structure for scenario 2. As can be seen, the stem cell is no longer at the basement 
membrane and has moved up towards the top. Since the stem cell is no longer at 
the basement membrane, young proliferating cells, which are produced through the 
stem cell division are now at the top. (c)Scenario 3 result is given in Figure 6.1(c). 
The stem cell is at the top with dead cells and mature cells are close to the basement 
membrane.
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(c)

Figure 6.2: Simulations initialised with multiple stem cells and run using input pa­
rameters given in Table 6.1. (a)Figure 6.2(a) shows results obtained for scenario 1 . 
As can be seen, the simulated epithelium exhibits an ordered structure, (b) Results 
obtained for scenario 2  are shown in Figure 6 .2 (b). As can be seen, stem cells are 
no longer at the basement membrane. (c)Scenario 3 is simulated and shown in Fig­
ure 6 .2 (c). As can be seen, the epithelium is no longer ordered.
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Figure 6.3: We plot the age of a cell against the distance from the basement mem­
brane. Graphs show the results obtained for three different scenarios, (a) Experiment 
initialised with single stem cell, (b) Experiment initialised with multiple stem cells.
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We compute the correlation coefficient between age and distance from the base­

ment membrane. We wanted to investigate how the correlation between age and 

distance from the basement membrane varied as the cells moved away from the base­

ment membrane. Figures 6.4(a), and 6.4(b) shows the results obtained using the 

correlation coefficient analysis. We compute the correlation coefficient by dividing 

the whole tissue area into 4 compartments using the distance from basement mem­

brane. For example, we select all cells within 50 pixels from the basement membrane 

and compute the correlation coefficient between a cell’s distance from the basement 

membrane and its age. We do this in order to analyse how well the tissue is structured 

within compartments as opposed to computing a single correlation coefficient for the 

whole tissue. We expect to find a higher correlation coefficient when the tissue is 

structured as in the case of normal epithelium. As can be seen from Figures 6.4(a), 

and 6.4(b), scenario 1 yields a higher correlation between a cell’s age and its distance 

from the basement membrane in comparison to scenario 2 and 3.

6.4 Discussion and Conclusion

The epithelial tissue is an ordered structure of cells of different types. We suggest 

that this structure may arise due to the differential adhesion hypothesis suggested 

by Steinberg [Steinberg, 1963]. In order to test if this is the case in epithelium, 

we extend the Glazier and Graner model of cell sorting [Graner and Glazier, 1992] 

by using their algorithm for cell sorting and model cellular processes such as cell 

division, growth and differentiation. Chapter 5 provides the detailed description of 

our model of squamous epithelium. The experiments were initialised with single as 

well as multiple stem cells. The model outputs are shown in Figures 6.1, and 6.2.

As can be seen in Figures 6 .1 (b), 6.2(b), 6 .1 (c) and 6 .2 (c), the stem cells are 

not attached to the basement membrane. This is due to the strength of the ad­

hesive energy bonds chosen between the stem cells and the basement membrane.
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Figure 6.4: We plot the correlation between cell age and their distance from the 
basement membrane. The distance from basement membrane is divided into com­
partments. The results were obtained using the input parameters shown in Table 6.1. 
(a)Experiment is initialised with single stem cell, (b) Experiment is initialised with 
multiple stem cells.
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Figures 6.1(b), and 6.2(b) show the simulation output for which we postulate that 

there is no differential adhesion during the development of squamous epithelium. We 

failed to observe the emergence of an ordered structure of epithelium when the cell 

adhesion is modelled with no differential adhesion. When the adhesive bonds are 

chosen such that the energy configuration is low when stem cells are close to mature 

or dead cells, we also fail to observe the ordering of cells from the emerging tissue 

structure.

The graphs in Figure 6.3 show the age of cells plotted against the distance from the 

basement membrane. In a healthy epithelium, young proliferating cells can be found 

closer to the basement membrane. As can be seen in Figure 6.3, in the first scenario, 

young cells are found closer to the basement membrane and older cells are found away 

from the basement membrane. However, when modelling the second scenario, we find 

old cells close to the basement membrane. In order to further our understanding of 

correlation between cell age and distance from the basement membrane, we com­

partmentalise the tissue structure and compute the correlation coefficient between 

age and distance from the basement membrane. As can be seen in Figure 6.4, the 

correlation is high when we assume the differential adhesion hypothesis. However, 

when we assume there is no differential adhesion in the development of epithelium, 

the correlation coefficients are low in comparison.

Cell sorting via differential adhesion is achieved by having different surface energy 

densities between the cell types. We observe a compartmentalized structure of tissue, 

when the epithelium is observed through the microscope. At the bottom of this 

ordered structure, a mixture of stem and TA cells form a compartment, here referred 

to as the basal layer, above which differentiated cell layers are formed. TA cells 

differentiate into intermediate cells to form the intermediate layer compartment. For 

this to occur according to the differential adhesion, the bond strength between TA and 

Inter cells must be smaller in comparison to other differentiated layers. Intermediate 

cells differentiate to form the mature cell layers and mature cells differentiate to form
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the dead cell layers.

We chose input parameters to satisfy Inequalities 6.1 for the strength of adhesion 

between cells and showed differential adhesion may play a part in the development 

of epithelium for a set of input parameters. There are many combinations of input 

parameters which could be used in the simulation to get an ordered structure and 

the parameter ranges we have chosen are not special, just one possible combination 

which could satisfy the inequalities 6.1. However, if DAH is indeed the driving force 

behind the ordered structure in epithelium, and is modelled using Glazier-Graner’s cell 

sorting algorithm, then ordered structures may be shown to arise if the inequalities 6.1 

are satisfied. Since there are many parameters in the model, it is difficult to state 

categorically that no other combination gives rise to ordered structure even when 

there is no differential adhesion. This statement can only be made once we have 

explored all possible ranges of input parameters and this may be a criticism of the 

model.

It is interesting to note that for an ordered structure to stay in dynamic equilib­

rium, cell division must also play a role. We initialised our model with a developed 

epithelium and ran the model by turning off the cell division process with adhesion 

input parameters satisfying scenario 1. Since no division was taking place at the base­

ment membrane, the intermediate cells directly above it were simply aging and not 

getting pushed up by new cells. As the intermediate cells aged, they became mature 

and dead cells. Hence we found mature and dead cells close to the basement mem­

brane, even though our input parameters for adhesion satisfied inequalities. There­

fore, we conclude that pressure from cell division aids the maintenance of the ordered 

structure of epithelium. This behaviour was also observed during experiments where 

cell division was turned off in a biology experiment 2.

We have shown that the cell organisation in the epithelium may be due to DAH.

2Private communication with Helen McNeil at Cancer Research UK on 16th June 2004. Fiona 
Watt’s lab, also at Cancer Resrach UK, carried out experiments where they turned off cell division 
and found the layers to collapse on top of each other
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However, the interesting question is whether this statement can be supported by the 

biology. The biologists are aware that compartment boundaries play an important role 

in pattern formation. However, it is unclear how these boundaries/compartments are 

established during the development of epithelium. Biological experiments supporting 

adhesion aided cell sorting have been completed for the development of the embryonic 

centred nervous system and for wing development [Dahmann and Basler, 1999], in 

Drosophila.

We have shown that in an in silico model, the structural organisation of epithe­

lium may arise from the differential adhesion proposed by Steinberg. Our model does 

not include cell polarity nor cell signalling. There is evidence to suggest that adhe­

sion molecules (eg: cadherins) not only play an adhesive role, but also a signalling 

role [Vleminckx and Kemler, 1999]. It would also be of great interest to see whether 

compartment boundaries arise in vivo, because cells from adjoining compartments 

differ in the activity of a single kind of cell adhesion molecule. The cell adhesion 

molecules are essential to maintain a stable tissue structure and the expression of 

cell adhesion molecules are tightly regulated to control cell proliferation, mobility, 

differentiation and survival, and many of these processes are misregulated in malig­

nant tumors [Thomas and Speight, 2001]. It will be interesting to develop the model 

further to introduce several cell adhesiofi molecules into the model, but we leave this 

for discussion in a later chapter.



Chapter 7

Conclusions and Future Work

We set out to construct an in silico model of epithelial cell-cell interactions. Any such 

model would have to be compared with in vivo or in vitro experiments to determine its 

validity. Once validated, the model could be used to test novel biological hypotheses 

before expensive and time consuming laboratory research was undertaken. In this 

chapter we report on the conclusions arising from our attempts to construct and 

evaluate an epithelial cell-cell interaction model.

In Chapter 3, we produced a rational reconstruction of Stekel’s model of epithe­

lium [Stekel et al., 1995] in order to familiarise ourselves with agent based modelling 

techniques. Several aspects of the model were shown to be inadequate or at least with­

out strong evidence in the biological literature. These areas included the direction 

of cell division, the determination of neighbour cells, the modelling of compressive 

forces and cell shape. In particular, Stekel’s suggested connective tissue attractive 

arid repulsive forces appear to have no biological basis. Such assumptions can be 

made to produce desirable graphical output from the model, but do not enhance our 

current understanding of biological processes. We present a method to analyse spa­

tial clusters and the method is applied to Stekel’s model output. The method uses 

techniques from computational geometry and image processing.

I l l
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Chapter 4, considered ways of using histological sections of oral epithelium to 

validate in silico model outputs. We proposed a method which combines Fourier 

Descriptors, Principal Component Analysis (PCA) and classification techniques to 

distinguish labelled classes of tissue images using the curvilinear shape of features 

found in the image set. We demonstrated this combination of techniques on histolog­

ical images of normal and dysplastic tissue samples taken from two sites of the oral 

mucosa, the tongue and inner cheek (buccal surface). The Fourier descriptor shape 

model for normal and dysplastic epithelium may be compared with in silico outputs 

and used to evaluate the model hypothesis with increased confidence.

In Chapter 5, we proposed a model to simulate epithelial cell-cell interactions. We 

used the Glazier-Graner algorithm for cell sorting and added biological processes such 

as cell division, differentiation and adhesion. Our model simulates the behaviour of 

epithelial tissue starting from a single cell as well as a line of cells. Our rules of cell 

interaction are derived from the published epithelial cell biology literature. There are 

many ways of building on this model, but we believe this is a suitable juncture to end 

developing the model and observe the kinds of experiments the model can support 

before extending it further.

We evaluated our model further in Chapter 6, by testing it against an existing 

hypothesis from biology. It has long been postulated that differential adhesion is 

the driving process behind cell sorting and the formation of compartments during 

embryonic development [McNeill, 2000, Dahmann and Basler, 1999]. We test this 

using our model and conclude that by modelling differential adhesion and allowing 

cells to proliferate in the model it is possible to show the emergence of compartments 

in'epithelium.
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7.1 Future W ork

We explore several avenues of future work in this section. Obvious extensions of 

the model include detailed simulation of biological processes such as cell signalling, 

differentiation, apoptosis and extension to three dimensions. We attempted to extend 

Stekel’s model to three dimensions. Movies obtained from our 3-D simulation can be 

found in the attached CD rom and a description of them is provided in Appendix 

B. We provide 2 movies, namely stekel3D and rotate3D. The stekel3D provides a 

simulation movie for Stekel’s model in 3-D. Rotate3D shows the same simulation by 

rotating the viewing angle. It should be noted that our reconstruction in 3-D did 

not contain all elements of the Stekel’s model. This was performed as an exploratory 

exercise to extend the model into 3-D.

It is important to keep in mind that cellular processes such as differentiation 

and signalling are active research areas in cell biology. Hence we have to strike a 

balance between modelling a biological process and including sufficient, well justified 

biological information into the model to simulate it. For example, the cell cycle may 

be simulated by implementing a detailed model like Novak’s [Novak et al., 1998]. We 

discuss some biological processes here which we have omitted so far, but which could 

improve our model further. We also discuss some possible extensions to our image 

analysis work.

7.1.1 Cell Polarity

The plasma membrane of epithelial cells is typically divided into two domains: an 

apical surface and a basolateral surface. This polarized organisation is the basis for 

the function of these cells in the transport of ions across the epithelium. The epithe­

lial cells rely on two fundamentally different mechanisms to ensure the localisation 

of plasma membrane proteins: the selective targeting of a protein to a specific cell- 

surface domain and the selective stabilisation of a protein at a specific cell-surface
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domain [Yeaman et al., 1999]. Epithelial cell-cell adhesion is mediated principally by 

E-cadherin [Kemler, 1992] and it accumulates membrane proteins at sites of cell-cell 

contacts in polarized epithelial cells [McNeill et al., 1990]. Cell adhesion to the extra­

cellular matrix is mediated by the integrin superfamily of adhesion receptors [Hynes, 

1992] and these interactions generate differences in protein distributions which define 

the apical-basal axis of polarity.

We assume, in our model, that cell adhesion is uniform on cell membranes and we 

do not differentiate between apical and basolateral adhesive surfaces. The model may 

be improved by defining different adhesive strengths along the cell membrane as is 

the case between apical and basolateral cell membrane in epithelial cells. The apical 

and basolateral membranes may be computed using cell polarity, and the adhesive 

strength of the bonds can then be defined as a distribution of the polarity vector. It 

is interesting to note that by introducing the polarity vector of a cell when initialising 

the model, we no longer need to define the basement membrane. The in silico cell 

using its polarity can define its own basement membrane. By this we mean a cell can 

compute the automata directly below it using the direction of its polarity vector.

7.1.2 Cell Cycle

Every living organism is composed of one or more cells, and new cells can only arise 

by the division of pre-existing cells. Instructions governing cell division are encoded in 

the sequence of DNA in the chromosomes. Broadly speaking, rapidly dividing human 

cells have a cell cycle life time of 24 hours, although this may vary according to cell 

type. Cell cycle can be separated into two fundamental parts, namely Inter-phase 

and Mitosis.

During cell division, the cell must replicate all of its components and allocate 

them to two identical daughter cells. Since DNA stores the genetic information of 

the cell, it has particular importance among the cellular constituents. Hence, during
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cell division DNA must be accurately replicated and chromosomes must be precisely 

segregated. The DNA replication phase of the cell cycle is called the S P hase and 

the phase of chromosomes segregation is called M itosis or M  phase. The gaps 

between DNA replication and Mitosis are denoted by G\ and G 2 respectively.

Not all cells proliferate continuously. Cells which cease to proliferate, but retain 

the capacity to re-initiate progress through the cell cycle at a later time, are known 

to be in a Q uiescent sta te . Quiescence can be induced in many types of cells 

by manipulation of their environment. This state represents an important level of 

biological control, since it indicates that cell multiplication may be held back, but 

can be re-initiated rapidly when required. For example in tissue generation following 

injury. Quiescent cells remain in G\ phase of the cell cycle. Moreover, when cells exit 

quiescence, they remain in the G\ phase of the cell cycle for some time, before they 

enter into the S Phase.

By following a population of cells over time, it can be seen that not only does it 

take longer for the population to double in size, but also that a significant fraction 

of cells fail to complete the cell cycle. These cells are known as senescent. In 

senescence, cells enter G\ phase, but they never leave it to enter the S  phase again. 

As time goes on, the amount of senescence in a cell population increases until there 

comes a point at which a plateau phase occurs and further increase in cell population 

is halted.

The total number of cells which can be created from a founder cell is termed 

the proliferative potential. The proliferative potential is highly variable between cell 

types. Hence it is possible to define a population of cells by its proliferative poten­

tial. The proliferative potential is a programmed feature of the cell, rather than a 

random loss of the capacity to divide. The cells in Go are activated to proliferate by 

growth factors, such as the Epidermal growth factor(EGF) and Insulin like growth 

factor (IGF), advancing to the G\ after several hours of stimulation. If the growth 

factors are removed early in Gi, cells revert back to the quiescent state. Growth



116

factors act by binding extracellularly to their specific trans-membrane receptor pro­

teins. Growth factors are a highly heterogeneous group of molecules,whose ability in 

specific circumstances is to regulate cell proliferation. It is a fundamental property of 

all growth factors that they act only upon a characteristic and defined set of target 

cell types.

There is no universal growth factor with identical action on all cells. Each growth 

factor has a designated biological specificity. Another important aspect of growth 

factors is that they act locally within tissue rather than systematically. Growth 

factors not only exhibit positive actions, such as inducing an event which would 

not occur otherwise, but also act as negative regulators. For example, the system  

that controls the multiplication of cell populations has both positive and negative 

regulators. The family of growth factors, TGFp, amongst many biological activities, 

are examples of negative regulators of cell proliferation.

Our model may be extended to include a more detailed model of the cell cycle. 

Cells are currently modelled to divide after completing the appropriate cell cycle 

time. The model may be extended to include check points for cells going through 

their phases prior to dividing. The growth factors may be introduced into the model 

by incorporating a time dependent diffusion equation. This equation can be solved 

using the Finite Difference Method(FDM). The source for the growth factors may be 

placed along the basement membrane and different types of cells can be modelled to 

respond to different types of growth factors.

In the case of oral cancer, patients treated with chemotherapy or radiotherapy are 

often plagued with mucositis1. Severity depends on the quality of dental hygiene, the 

treatment schedule, the irradiated area and the amount of radiation given, as well as 

the age of the patient. Late effects can be characterized by thinning of the mucosa (the 

soft tissues of the oral cavity), and mucosal ulceration and necrosis. The radiation 

removes healthy cells as well as tumour cells and patients may experience discomfort 

inflammation of the lining of the mouth
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due to several layers of the epithelium being removed. However, growth factors may be 

introduced locally to improve the speed of the natural healing processes in epithelium. 

It may be possible to study the effects of locally introducing the growth factors to 

promote healthy cells to divide more frequently. It may be possible to devise better 

treatment protocols of induced growth using this extended model [Shochat et al., 

1999]

7.1.3 Growth Control in Epithelium

The epithelium undergoes self renewal and the whole process is regulated to be in a 

dynamic equilibrium. Growth control in epithelia requires the cell population to be 

maintained at an appropriate level. The hypotheses may be based on a functional 

demand or that the population must be in some way genetically predetermined. How­

ever, any global theory describing the dynamic equilibrium state must be able to deal 

with local physiological adaptation to an induced environmental change and wound 

healing. One of the questions which needs to be answered is how the cell population 

“senses” its cell number, how it realises if a proliferative response is indicated, and 

how the population recognises that the proliferative rate should be curtailed.

The sensor for the population may be modelled at the cellular level and this 

would imply that the normal population size is genetically preprogrammed. This 

hypothesis would only work, if the sensor is placed in stem cells and TA cells, which 

gives rise to cell division. In the case of tissue removal, the stem cells somehow sense 

the deficit (this may be through signalling) and increase the proliferation until the 

predetermined population size is reached. However, it may be difficult to account 

for hyperplasia or increased food intake in which the actual size of the population 

increases. Alternatively, the population size may be determined by the functional 

demands made upon it [Goss, 1964]. Normal functions would impose a certain cell 

number; and if the functional demands are increased either by removal of cell tissue or
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due to physiological adaptation as with increased food intake, increased growth due 

to functional demands would ensure that the demand has been met. Wright [Wright 

and Alison, 1984] provides a detailed explanation of growth control mechanisms in 

epithelium.

Our model may be extended to include the growth control mechanism of epithe­

lium to keep the model in a dynamic equilibrium. When our model is initialised 

with a stem cell or a line of cells, we need to implement the first hypothesis using a 

“sense” mechanism to reach a dynamic equilibrium. However, if we wish to simulate 

oral carcinoma or wound healing, we will have to implement the functional demands 

hypothesis. It is our opinion that development and maintenance of the epithelium 

are two different biological processes and should be modelled separately. Hence, a 

“sense” mechanism could be implemented during the developmental phase and the 

functional demands hypothesis might be modelled to maintain the epithelium in a 

dynamic equilibrium.

7.1.4 Image Analysis

In this section, we discuss the possible extensions of our analysis of images of histo­

logical sections of the oral epithelium. The basement membrane in the images was 

extracted manually. Our attempts at extracting the basement membrane from the 

images using edge detection algorithms did not yield satisfactory results especially 

where there are sharp edges in the basement membrane, a common feature of dysplar 

sia. This problem arises since prior to applying Canny [Canny, 1986] edge detection 

techniques we needed to blur the image with a Gaussian filter to smooth the noise. 

When this procedure is carried out, the sharp edges are smoothed and do not get 

picked up by the edge detection algorithm. Techniques from Active Shape Models 

(ASM) cannot be used, because it is not possible to place landmark points on the 

image since it is a continuous line. This is in contrast to a face, for example, where
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landmark points can easily be identified as unique anatomical features on the nose, 

eyes and mouth. However, we believe snake algorithms [Trucco and Verri, 1998] may 

be applied to detect edges automatically.

We employed supervised learning techniques for classification. It may be possible 

to employ unsupervised learning techniques to classify images. We showed by using 

SVM techniques one is likely to get better accuracy, but there is nothing to suggest 

that our classification accuracy cannot be improved further by optimising other clas­

sification techniques to our data set. This may be an area for further work. We have 

not explored the possibility of using this to aid clinical diagnosis. We would require 

a larger data set and our classification model would require some attention since oral 

dysplasia is usually classified as normal, mild and severe. Hence the classification 

is now a three class problem as opposed to two. We believe our method could be 

extended to aid clinical diagnosis. However, more work needs to be done to test this.



Appendix A 

Principal Component Analysis

Principal component analysis(PCA) is a statistical analysis method. PCA enables 

us to reduce the variation in a data set to a relatively small number of uncorrelated 

parameters. Our feature vector, x  is constructed using the Fourier descriptors of a 

given image. For example, if the basement membrane shape is characterised by k 

Fourier descriptors then the feature vector x  may be defined as follows

Given Equation A .l and n examples in the data set, the mean vector x  may then 

be given as

X =  (xi,x2, (A .l)

(A.2)

where xj is the feature vector of the i th example in the data set.

We then compute the deviations (x* — x) from the mean and construct the scatter 

matrix (also known as the covariance matrix) S, which is given by

(A.3)

and compute the eigenvalues of the matrix S.
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The scatter matrix is positive semi-definite and hence each eigenvalue A* is non­

negative. The eigenvalues are ordered and numbered as Ai, A2 , ......... , A * such that

Ai >  A2 >  A* > 0 where k is the size of the feature vector. If the corresponding

eigenvectors are Pi, P2 , ......... , Pk then

Spj =  AjPj, Aj  >  AJ+i and p jp j  =  1 fo r  j  =  1 ,2 ,......... , k (A.4)

The eigenvectors form an 77,-dimensional spanning set of the feature space. Hence 

every point in this n-dimensional space can be computed from a sum of the mean and 

a linear combination of the eigenvector. The trace of the covariance matrix is equal 

to the sum of the squared differences, which represents the total variation of all the 

elements of the feature vector x, over all the samples in the data set and is equal to 

the sum of all the eigenvalues. Eigenvalues describe the variance of each component of 

the feature vector. The eigenvector corresponding to the largest eigenvalue, describes 

the most significant mode of variation in the variables used to derive the covariance 

matrix. Discarding small eigenvalues and their corresponding eigenvectors, noise in 

the data set can be minimised. Most of the variation can usually be explained by 

a relatively small number of modes, t. One method for calculating t  is to choose 

the smallest number of modes such that sum of their variances explains a sufficiently 

large proportion of Ar, the total variance thus

k
A t  =  (A*5)

j=i
and t  is chosen as the minimum value of g such that Equation A.6,

where /  is a predetermined valve in the range [0,1] that determines the accuracy 

of the statistical model. /  is usually chosen to be between 0.95 and 0.99.
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Any feature vector in the data set can be approximated using the mean and a 

weighted sum of the deviations obtained from the first t  modes:

x  =  x  +  P b

where

P = (Pi)Pai •••)••• >Pt) 

is the matrix of the first t  eigenvectors and

b  =  ( 6 1 , 63, ,  6 ( ) t

(A.7)

(A.8 )

(A.9)

is a vector of weights. It should be noted that by definition in Equation A.8 , P  is an 

n x t  matrix and in general not a square matrix, hence P - 1  is not defined. However, 

since PfcPfc =  P T can be used instead as shown in Equation A. 10

P T  =
P 2

\ Pn  /

(A-1 0 )

in place of P  1 to project out the weights required to parameterise a new feature 

vector via Equation A. 11

b =  P T (x —x) (A.ll)

Equation A. l l  allows us to generate new examples of the data by varying the 

parameters &i, 62 , 6*> within suitable limits so that new examples will be sim­

ilar to the training set data. The limits for the 6* are derived by examining the 

distributions of the parameter values required to generate the training set. Since the 

variances of 6* over the training set can be shown to be A*, suitable limits are given 

by
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- 3 y / h < b k < 3 y /T k (A. 12)

since most of the population (99.73%) lies within three standard deviations of the 

mean.



Appendix B 

Movie Descriptions

In this section, we provide short descriptions of the simulation movies supplied with 

this thesis. All movies can be found on the attached CD and are of avi format. The 

movies can be viewed using suitable software like R eal One player or W indow s 

M edia Player.

•  Stekel.avi This movie is acquired from our implementation of Stekels’ [Stekel 

et al., 1995] model for squamous epithelium. As can be seen, the model is 

initialised with two stem cells. As cells divide and differentiate, the rete pegs 

are formed. The results produced from our implementation in the form of model 

outputs are similar to the published work from Stekel [Stekel et al., 1995].

•  Scenariol.avi We demonstrate our model for epithelial cell interactions in this 

movie as explained in Chapter 6. The model was initialised with two stem cells. 

As can be seen from the movie, stem and basal cells grow and divide. As cells 

differentiate, they move away from the basement membrane and begin to form 

layers of different types of cells.

•  Scenario2.avi Here we show the results obtained for the scenario2 explained in 

Chapter 6. In this scenario, we assume that there is no differential adhesion. As
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can be seen, as stem cells divide they move away from the basement membrane. 

This is because there is no difference in the adhesive strengths between stem 

cells and other cells in the model.

•  Scenario3.avi This movie demonstrates the scenario 3 explained in chapter 

6. We assume here that stem cells prefer to be close to dead cells than the 

basement membrane and so on. As can be seen, stem cells move off the basement 

membrane. We fail to observe any cell sorting in this scenario.

•  Stekel3D .avi and rotate3D .avi We demonstrate the results of some prelimi­

nary work to extend Stekels’ model to 3D. The extended model does not include 

all biological details from the Stekels model. As can be seen from the simulation, 

the stem cells divide and produce TA cells, which differentiate when they leave 

the basement membrane. Since we did not include the connective tissue attrac­

tive and repulsive force in the extended model as suggested by Stekel [Stekel 

et al., 1995], stem cells can be seen to leave the basement membrane. The 

rotate3D.avi shows the simulation from a different angle.
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