
OPTIMISATION OF DOCKING LOCATIONS

FOR REMOTELY OPERATED VEHICLES

by

Trevor John Larkum B.Sc. M.Sc.

A Thesis Submitted for the Degree of

Doctor of Philosophy

in the

Faculty of Engineering

UNIVERSITY OF LONDON

September 2002

Department of Engineering

University College London

Torrington Place

LONDON WC1E 7JE

UMI Number: U592974

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U592974
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

This thesis describes work aimed at developing practical methods for determining the

best docking locations for an underwater remotely operated vehicle (ROV) when

inspecting an offshore platform. ROVs are used extensively in the offshore oil and gas

industry to conduct a large variety of intervention tasks such as visual inspection,

operational monitoring, equipment installation and operation, debris recovery, and so

on. However, they have found only limited use in the more difficult tasks such as the

detailed inspection of complex weld geometries. These complex welds are, however,

found extensively in the construction of the majority of offshore structures and

platforms (‘oil rigs’). Furthermore, there is a safety requirement to have them inspected

regularly since failure of these welds can potentially lead to catastrophic failure of the

structures, the majority of which are manned.

A number of specialist ROV systems have been developed that are able to attach onto

platform structures and use their manipulators to conduct inspection. However, due to

the short reach of the manipulators and the complex geometry of the welds (often

encumbered with protruding pipes and other fittings) the success of any inspection is

crucially dependent on a good initial choice of ROV docking position. This thesis will

describe the problems and current manual planning methods, and then detail the

development of two new methods for automated optimisation of docking positions -

firstly using neural networks, and secondly using more conventional numerical

processing.

This thesis will also review related work in the field, such as the development of neural

networks and their applications in the general offshore environment and in the control

of ROVs and robot manipulator arms, and other approaches to ROV docking. It will

further describe the use of the system developed here for planning docking positions on

example commercial ROV inspection work programmes.

2

DEDICATION

In memory of David Roy Broome (1944-1998), late Professor of Automatic Control at

University College London and Managing Director of General Robotics Limited;

employer, supervisor, mentor, friend

3

ACKNOWLEDGEMENTS

My thanks go to Dr Alistair Greig, my current supervisor at University College London,

and to Dr Martin Hall, o f General Robotics Limited, who have both given me invaluable

advice and guidance. Thanks are due, too, to my colleagues at GRL and TSC for help

with illustrations, and to Dan Clark and his colleagues in Australia for providing

underwater photographs of the Covus NICS inspection system in action.

4

CONTENTS

ABSTRACT 2

DEDICATION 3

ACKNOWLEDGEMENTS 4

CONTENTS 5

LIST OF FIGURES 10

LIST OF TABLES 16

LIST OF ACRONYMS 17

FOREWORD 20

Introduction 20
Background 21
Summary o f Chapters in the Thesis 21

CHAPTER 1: INTERVENTION BY ROV 23

1.1. Introduction 23

1.2. History and Background 23
1.3. Description 30
1.4. Subsea Inspection 32

1.5. Non-ROV Methods 35

1.6. AROWS 40

1.7. Force Controlled Manipulators 44

1.8. Conclusions 44

CHAPTER 2: ROBOTIC ROV MANIPULATOR SYSTEMS 45

2.1. Introduction 45

2.2. Research and Development 46

5

2.3. Supervisory Control Systems 50
2.4. REMO 51

2.5. ATES 54

2.6. ARM 57
2.7. Summary 61

CHAPTER 3: DEVELOPMENT OF NEURAL NETWORK SOFTWARE 62
3.1. Introduction 62

3.2. Neural Network History and Terminology 62

3.3. Implementation 65

3.4. Related Applications 66

3.5. Development of New Software 70

3.6. Neural Networks for Windows (NNW) 72

3.7. NNW in Use 73

CHAPTER 4: TESTING AND VERIFICATION OF NEURAL NETWORK
SOFTWARE 75

4.1. Background 75

4.2. Interactive Activation and Competition Network 75

4.3. Constraint Satisfaction Network, Schema Model 85

4.4. Constraint Satisfaction Network, Boltzmann Machine 93

4.5. Constraint Satisfaction Network, Harmony Model 95

4.6. Pattern Associator Network, Hebb Learning Rule 99

4.7. Pattern Associator Network, Delta Learning Rule 104

4.8. Back Propagation Network 106

4.9. NNW Features 112

4.10. Discussion of Deviations 112

4.11. Early Experimentation 116

4.12. Thesis CD-ROM 117

CHAPTER 5: MANUAL PLANNING OF ROV DOCKING 118

5.1. Introduction 118

5.2. Background to Access Simulation 125

5.3. ARM Access Simulation 126

5.4. Development of ARM Docking Planning 127

5.5. Simulation Process 134

6

CHAPTER 6: DOCKING PLANNING USING NEURAL NETWORKS 137

6.1. Introduction 137

6.2. First Manual Scenario (Coincident Attachment Legs), Schema Model 137

6.3. Second Manual Scenario (Offset Port Attachment Leg), Schema
Model 147
6.4. Second Manual Scenario (Offset Port Attachment Leg), Boltzmann
Machine 158

6.5. Conclusion 163

CHAPTER 7: DOCKING PLANNING USING NUMERICAL PROCESSING 164

7.1. Introduction 164

7.2. First Automated Scenario (Coincident Attachment Legs) 165

7.3. Second Automated Scenario (Offset Port Attachment Leg) 168

7.4. Third Automated Scenario (ARM Collision Detection and Attachment
Leg Features) 170

7.5. Fourth Automated Scenario (Weld Access Check and Deployment
System) 173

7.6. Final Development 177

7.7. Time Analysis 180

7.8. Conclusions 183

CHAPTER 8: FIRST USES OF THE AUTOMATED DOCKING PLANNER 185

8.1. Introduction 185

8.2. Docking Planning for Woodside 185

8.3. Docking Planning for Elf 193

8.4. Competing Systems 194

8.5. Conclusions 199

CHAPTER 9: OPERATIONAL USE OF THE AUTOMATED DOCKING
PLANNER 200

9.1. Introduction 200

9.2. ROV Support Vessel 201

9.3. Operations 204

9.4. Results 207

9.5. Conclusions 208

CHAPTER 10: CONCLUSIONS 210

10.1. Summary of Results 210

10.2. Neural Network Software 211

10.3. Automated Docking Software 212
7

10.4. Future Development 214

10.5. Summary 215

REFERENCES 217

APPENDIX A: PUBLICATIONS BY THE AUTHOR 244

APPENDIX B: DETAILED SOFTWARE DEVELOPMENT HISTORY 247

APPENDIX C: NEURAL NETWORK SOFTWARE FEATURES 251

C.l. File Menu 251

C.2. Edit Menu 252
C.3. View Menu 253

C.4. Settings Menu 254
C.5. Patterns Menu 257

C.6. Run Menu 258

C.7. Options Menu 258

C.8. Window Menu 259

C.9. Help Menu 260

C.10. Toolbar 260

C. 11. PDP Network Definition Files 261

APPENDIX D: NEURAL NETWORK TEST DEFINITION FILES 262
ROV.temFile 262

ROV.loo File 262

ROV.net File 263
ROV2.str File (Schema Model) 263

ROV2.tem File 264

ROV2.1oo File 264

ROV2.net File 265

ROV2.wts File (Boltzmann Machine) 265

APPENDIX E: DOCKING LIBRARY MAIN SOURCE CODE 266

Docking.h 266

Docking.cpp 268

Candidate.h 282

Candidate.cpp 283

8

APPENDIX F: OFFSHORE OPERATIONS 285

F.l. Mobilisation 285

F.2. Node 4E2, Weld 8 286

F.3. Node 4G2, Weld 5 287

F.4. Node 3C2, Weld 1 288

APPENDIX G: THESIS CD-ROM 292

Contents 292

9

LIST OF FIGURES

Figure 1.1 — Divers vs. Submersible and ROV Pilots [from Westwood 1993].............. 23

Figure 1.2 - The most important first generation drill support ROV, the Scorpio [from
Given 1991].. 24

Figure 1.3 - The most important first generation inspection ROV, the RCV 225 [from
Bell 1996]... 24

Figure 1.4 - Triton Diverov Diver Support ROV [from Given 1991].............................25

Figure 1 . 5 - An important second generation inspection ROV, the Hybail [from
Hydrovision brochure].. 26

Figure 1.6 — An important second generation drill support ROV, the Diablo [from
Hydrovision brochure]..27

Figure 1.7 - A typical AUV conducting pipeline survey [from OPL NGUV]............... 27

Figure 1.8 - A typical ROV trencher burying a seabed cable [from OPL NGUV]........ 28

Figure 1.9 - A typical towed plough burying a seabed cable [from OPL NGUV]........ 28

Figure 1.10 - Deployment of an ROV from a platform [from Van Den Hooff 1988]... 29
Figure 1.11 — Deployment of an ROV from a vessel [from Shirasaki 1988]..................30

Figure 1.12 - Typical ROV control cabin [from Hattori 1988]....................................... 31

Figure 1.13 — Typical tubular construction of a jacket [from Van Den Hooff 1988].....32

Figure 1 .14- Manipulator mounted ACFM array probe..33

Figure 1.15 - Wireline intervention system [from Headworth 1988].............................34

Figure 1.16 - Wellman Remotely Operated Tool [from Hoglund 1988].........................35
Figure 1.17 - Snorre Remotely Operated Maintenance Vehicle [from Bell 1996]........ 36

Figure 1.18 - Proposed LAMI crawler deployed by a Scorpio [from Evensen 1988]... 37

Figure 1.19 — Proposed pipe crawler conducting weld inspection [from Hughes 1988] 37

Figure 1.20 - Hardsuit 2000 atmospheric diving suit [from Gibson 2002].................... 38

Figure 1.21 - Sonsub AROWS [from Sonsub IRST]...39

Figure 1.22 - Key to Sonsub AROWS components [from Sonsub IRST]......................40

Figure 1.23 - Diagram of AROWS nodal weld cleaning [from Harman 1988]............. 41

Figure 1.24 - Photograph of AROWS nodal weld cleaning [from Sonsub IRST] 42

Figure 1.25 - Photographs of early and late Triton AROWS [from Sonsub IRST and
Sonsub Triton ROVS].. 42

10

Figure 2.1 - Test arrangement of ASEA robot in pressure chamber [from Aust 1988]. 45

Figure 2.2 - Shell Laboratories' ASEA robot and test node [from Van Den Hooff 1988]
46

Figure 2.3 - TA9 performing a hybrid position/force task [from Dunnigan 1996] and
insertion of subsea mateable connectors [from Lane 1995]..................................... 47

Figure 2.4 - Puma robot conducting cylinder location at UCL [from Hughes 1988].... 47
Figure 2:5 - GE manipulator under PC control at UCL [from Hughes 1988]................ 48

Figure 2.6 - ATC Craftsman controlling a Titan II manipulator [from Pegman 1999]. 49
Figure 2.7 - Proposed MARI Advanced Robotic System [from Duncan 1990]............51

Figure 2.8 - REMO displaying its various IRM tools [from Stolt Comex Seaway RR] 51

Figure 2.9 - REMO 3D graphical user interface [from Ricci 1996]............................... 52
Figure 2.10 - REMO system during ACFM trials [courtesy TSC Ltd]...........................53

Figure 2.11 - ATES advanced robotic system [from Sonsub CN3/1].............................54

Figure 2.12 - ATES user interface [from Sonsub ATES RSE and Sonsub CN4/2]....... 55

Figure 2.13 - ATES 1 prototype [from Sonsub ATES RSE].. 55
Figure 2.14 - ARM System carried on an MRV ROV during the NHC trials............... 57

Figure 2.15 - Diagram comparing the working volume of a standard offshore
manipulator with that of the ARM System..59

Figure 2.16 - ARM Computer System screen showing a Mobil Beryl B node.............. 60

Figure 3.1 - Schematic Diagram of a Neuron..62
Figure 3.2 - NNW screen during an Interactive Activation and Competition problem. 72

Figure 3.3 - NNW screen during a Constraint Satisfaction problem.............................. 73

Figure 4.1 - Diagrammatic representation of an LAC Network....................................... 75
Figure 4.2 - LAC Network retrieving the attributes of an activated node........................78

Figure 4.3 - LAC Network retrieving a node from a partial description of its attributes 79

Figure 4.4 - LAC Network activating an individual given his attributes correctly 79
Figure 4.5 - LAC Network activating an individual given all but one of his attributes

correctly...80
Figure 4.6 - IAC Network retrieving the correct attributes of an activated node given all

information... 81

Figure 4.7 - LAC Network retrieving the correct attributes of an activated node given
partial information.. 81

Figure 4.8 - IAC Network retrieving typical attributes for an activated group node 82

Figure 4.9 - Comparison of activation values changing over time for PDP versus NNW
...83

Figure 4.10 - Diagrammatic representation of a CS Network... 85
Figure 4.11 - CS Network settling on a right-hand Necker Cube interpretation............ 88

Figure 4.12 - CS Network, Schema Model, after activation of b a th tu b input 91

Figure 4.13 - CS Network, Harmony Model, initial state of electricity problem.......... 96
11

Figure 4.14 - CS Network, Harmony Model, final state of electricity problem 97
Figure 4.15 - Diagrammatic representation of a PA Network.. 98

Figure 4.16 - PA Network, Hebb Learning, network state before training...................101

Figure 4.17 - PA Network, Hebb Learning, network state after training......................101

Figure 4.18 - PA Network, Hebb Learning, network state after testing with a new
pattern..102

Figure 4.19 - PA Network, Hebb Learning, network state after three epochs of training
...103

Figure 4.20 - PA Network, Delta Learning, network state after 3 epochs of training. 104

Figure 4.21 - PA Network, Delta Learning, network state after 100 epochs of training,
despite noise... 104

Figure 4.22 - Diagrammatic representation of a BP Network....................................... 106

Figure 4.23 - BP Network, XOR Problem, before training..109

Figure 4.24 - BP Network, XOR Problem, testing results after training with 300 epochs
 110

Figure 4.25 - Comparison of activation values changing over time for PDP versus
NNW using double and float floating point representations.................................. 114

Figure 4.26 - NNW noughts and crosses network...115

Figure 5.1 - Docking onto a proprietary template [from Renard 1988]........................120

Figure 5.2 - Docking onto standard template [after Vinsen 1988]................................ 121

Figure 5.3 - SWIMMER AUV (orange buoyancy) with ROV (yellow buoyancy) [from
Chardard 2002]... 121

Figure 5.4 - ARM attachment leg..123
Figure 5.5 - ARM Software being used for Access Simulation.....................................126

Figure 5.6 - Tartan Alpha: the riser of interest and its mounting brace are directly in
front of the ROV... 127

Figure 5.7 - Access checking on an almost hidden weld (highlighted ahead of the ROV)
 128

Figure 5.8 - Proposed RACAL toolskid and manipulator design................................. 128
Figure 5.9 - RACAL system inspecting the underside (6 o’clock) on a nodal brace... 129

Figure 5.10 - RACAL system manufactured by Tritech [courtesy TSC Ltd]...............129

Figure 5.11 - The ARM System on node 3A2, inspecting the 12 o'clock position 130

Figure 5.12 - The ARM System on the inside of 6A3, inspecting the 6 o'clock position
... 130

Figure 5.13 - ARM Inspecting an internal nodal weld from outside the platform 132

Figure 5.14 - Seal ROV inspecting a weld from the edge of the conductor guide frame
... 132

Figure 6.1 - Illustration of the grid of candidate positions used................................... 138

Figure 6.2 - Illustration of the First Scenario (coincident single leg and manipulator) 138

12

Figure 6.3 - Determining a score value from manipulator or attachment leg extension
... 140

Figure 6.4 - Results of ROV Docking Test after 50 cycles..145
Figure 6.5 - Results after 100 cycles...145

Figure 6.6 - Results after 150 cycles...145

Figure 6.7 - Illustration of the Second Scenario (offset port attachment leg)...............147
Figure 6.8 - Results o f second Manual ROV Docking Test after 30 cycles.................153
Figure 6.9 - A Plot of Goodness Against Number of Cycles for the Second Manual

Scenario, Schema Model..155

Figure 6.10 - A Plot o f Goodness Against Number of Cycles for the Second Manual
Scenario, Boltzmann Model, Annealing over 250 cycles...................................... 159

Figure 6.11 - A Plot of Goodness Against Number of Cycles for the Second Manual
Scenario, Boltzmann Model, Annealing over 500 cycles...................................... 161

Figure 7.1 - Creation-of candidate positions (-1 to +1 in X, Y and Z, lm grid spacing)
 166

Figure 7.2 - Elimination of candidate positions in collision with workpiece................166

Figure 7.3 - Increased grid density from automated method.. 168

Figure 7.4 - Checking a position for sticky feet attachment..170
Figure 7.5 - Checking a position for ROV collision..171

Figure 7.6 - Checking a position for manipulator kinematic access............................. 175

Figure 7.7 - Accessing the far side of a brace using the manipulator deployment system
... 176

Figure 7.8 - Docking Settings dialog box... 178

Figure 7.9 - Docking Results dialog box.. 179
Figure 7.10 - Timing Results for Docking Optimisation Phases.................................. 181

Figure 8.1 - Location of North Rankin Alpha platform [from Batten 1988]................185
Figure 8.2 - Woodside MOC-1 inspection and cleaning toolskid [from Batten 1988] 186

Figure 8.3 - Original NICS design (note toolskid hinge/tilt function).........................186

Figure 8.4 - Covus ARM System inspecting 10 to 10.30 on Woodside weld 9188

Figure 8.5 - Covus ARM System on the weld 9 node, showing automated docking
positions considered... 190

Figure 8.6 - The Covus NICS toolskid..190
Figure 8.7 - The camera/probe mounting with touch switch and 45° mirror at left 192

Figure 8.8 - ARM model of the node 16A5 (welds to be accessed are marked thus*) 193

Figure 8.9 - RovTech system inspecting 9 o'clock on weld 22A9................................ 193

Figure 8.10 — Sonsub system inspecting 4 o'clock on weld 16A13; the manipulator is
rolled over to 125°.. 194

Figure 8.11 — SSOL system inspecting 6 o'clock on weld 16A13; manipulator is
mounted upside down.. 194

13

Figure 8.12 - DSND system inspecting the top and underside of weld 16A13............195
Figure 9.1 - FATs in England of ARM Software controlling a Titan 3 manipulator... 199

Figure 9.2 - Factory Tests in Australia o f ARM Software controlling a Titan 2
manipulator on the NICS skid... 200

Figure 9.3 - Shelf Supporter ROV support vessel, forward and aft views....................201
Figure 9.4 - Shelf Supporter ROV support vessel [from Batten 1988].........................201

Figure 9!5 - The ROV station on Shelf Supporter, with the launch system (orange)
folded over the Triton ROV (yellow)..202

Figure 9.6 - ROV control room with ARM laptop computer in the foreground 203

Figure 9.7 - East face of North Rankin Alpha showing inspected nodes
[courtesy T. Heale]...204

Figure 9.8 - Triton ROV mounting the NICS skid being deployed beside North Rankin
 ... 205

Figure 9.9 - Pan and tilt camera view showing inspection of 5.00 position on node 4G2
(manipulator is rolled over to 135°)..205

Figure 9.10 - Equivalent ARM view (weld from 2.30 to 5.00 is highlighted)............. 206
Figure 10.1 - Relationship between thesis work and existing ARM software............. 213

Figure B.l - WinNeural Version 0.13 running on Windows 3 .1247

Figure B.2 - WinNeural Version 0.16 running on Windows 95248

Figure B.3 - NNW Version 1.0 running on Windows 98.. 249
Figure B.4 - NNW Version 1.1 running on Windows 2000.. 249

Figure C. 1 - File New / New Neural Net dialog box.. 251

Figure C.2 - Edit Input Values / Set Input dialog box... 251

Figure C.3 - Edit Neuron Weights / Set Weight Value dialog box...............................252
Figure C.4 - Run Results dialog box.. 252

Figure C.5 - System Settings dialog box.. 253

Figure C.6 - Display Settings dialog box...254
Figure C.7 - Strength Parameters dialog box...254
Figure C.8 - Activation Parameters dialog box..255

Figure C.9 - Rate and Other Parameters dialog box...255

Figure C.10 - Enter Pattern dialog box... 256

Figure C. 11 - Help / About NNW dialog box..259

Figure F. 1 - NICS on deck, fitted with twin HP water jets, awaiting deployment 284

Figure F.2 - ARM NICS System deploying into the water... 285
Figure F.3 - ARM view of node 4E2, 2.30 - 6.00 on weld highlighted.......................286

Figure F.4 - Inspection of 5.30 position on node 4G2 using right-angled probe
mounting... 287

Figure F.5 - ARM NICS System showing the underside claw and ROV in rear position
 288

14

Figure F.6 - Inspection of 11 o'clock position on node 3C2... 288
Figure F.7 - ARM view of inspection of 11 o'clock position.. 289

Figure F.8 - Inspection of interstitial weld on node 3C2... 290

15

LIST OF TABLES

Table 3.1 - Table of Neural Network Types.. 71
Table 4.1 - Comparison of Necker Cube results, input strength (istr) = 0.4.................. 90

Table 42 - Comparison of Necker Cube results, input strength (istr) = 0.01................ 91

Table 4.3 - NNW results showing activated units for given activated inputs................ 92

Table 4.4 - Comparison of Necker Cube results, annealing over 20 cycles.................. 94

Table 4.5 - Comparison of Necker Cube results, annealing over 400 cycles................ 95

Table 6.1 - Scoring docking positions manually, first scenario.................................... 142

Table 6.2 - Network strengths and unit names in Rov. str file 144

Table 6.3 - Network weights in Rov.wts file... 145

Table 6.4 - Scoring docking positions manually, second scenario............................... 149

Table 6.5 - Network weights in Rov2. wts file... 151

Table 6.6 - Results from 50 runs of the second scenario network definition................153

Table 6.7 - Summary of results from 100 runs using the Schema Model.....................154

Table 6.8 — Rov. str file with Boltzmann mode on and annealing schedule defined.. 158

Table 6.9 — Summary of results from 100 runs using the Schema Model.....................159
Table 6.10 - Summary of results from 100 runs using the Boltzmann Machine..........161

Table 7.1 - Timing Results for different optimisation phases..180
Table 9.1 - Summary of Planned versus Achieved weld access................................... 208

Table B.l - Milestones in the Development of WinNeural... 248
Table B.2 - Milestones in the Development of Neural Networks for Windows.......... 250

16

LIST OF ACRONYMS

3D 3 Dimensional

AAD Articulated Attachment Device

ACFM Alternating Current Field Measurement (crack detection probe)

ACG Automatic Control Group
ACPD Alternating Current Potential Drop (an NDT method for detecting

surface cracks in a metal)

ADS Atmospheric Diving Suit

ALIVE Autonomous Light Intervention VEhicle
AMBNNC Adaptive Model-Based Neural Network Controller

ANN Artificial Neural Network

ANNC Artificial Neural Network Controller

AROWS Advanced Remotely Operated Work System

ARM Advanced Robotic Manipulator

ATES Advanced TElemanipulation System

AUSS Advanced Unmanned Search System

AUV Autonomous Underwater Vehicle
BP Back Propagation (neural network)

CAT Computer-Aided Telemanipulation

CLEROV Cleaning ROV

CMAC Cerebellar Model Articulation Controller (neural network)

CP Cathodic Potential (a measure of the potential for corrosion of a metallic
structure)

CS Constraint Satisfaction (neural network)

CURV Cable controlled Underwater Research Vehicle

DOF Degrees Of Freedom
DP Dynamic Positioning (a computerised position system used by support

vessels)

DSV Dive Support Vessel

FMD Flooded Member Detection

17

GE General Electric

HP High Pressure

HPR Hydroacoustic Position Reference
IAC Interactive Activation and Competition (neural network)

IMCA International Marine Contractors Association

IRM (IMR) Inspection, Repair and Maintenance (Inspection, Maintenance and
Repair)

ITT Invitation To Tender
JCV Jacket Cleaning Vehicle

LARS Launch and Recovery System

LMS Least Mean Square associator (neural network)
MIMIC Modular Integrated Man-machine Interaction and Control

MIT Massachusetts Institute of Technology
MOC Modular Offshore Cleaner

MPI Magnetic Particle Inspection (an NDT method used to locate cracks at
or near the surface of magnetic materials)

MRU Motion Reference Unit
MRV Multi-Role Vehicle

NARRC National Advanced Robotics Research Centre

NDN Neural Dynamic Network

NDT Non-Destructive Testing

NKN Neural Kinematic Network

NNW Neural Network for Windows (thesis software)

NICS Nodal Inspection and Cleaning System

NRA North Rankin Alpha (oil platform)
NTO Neural Trajectory Optimisation
OED Optimal Experiment Design

PA Pattern Associator (neural network)

PC Personal Computer

PDP Parallel Distributed Processing

PID Proportional/Integral/Derivative control system

PSS Pattern Sum of Squares

RBF Radial Basis Function
ROMV Remotely Operated Maintenance Vehicle

ROV Remotely Operated Vehicle

ROT Remotely Operated Tool
ROTV Remotely Operated Television

18

SCS Stolt Comex Seaway

SHARPS Sonic High Accuracy Ranging and Positioning System

SSOL Subsea Offshore Limited

SWIMMER Subsea Works Inspection and Maintenance with Minimum Environment
ROV

TMS Tether Management System

TSC Technical Software Consultants Limited

TSS Total Sum of Squares

TWI The Welding Institute
UCL University College London

UUV Unmanned Underwater Vehicle

WAM Whole-Arm Manipulator

XOR Exclusive-Or

19

FOREWORD

Introduction

A number of initiatives and projects have looked at the problems of complex weld

inspection by ROV, and have produced systems that have achieved varying degrees of

success at the task. These systems typically consist of ROVs mounting one or more

advanced manipulator arms plus a number of attachment legs for fixing to the structure

(these systems will be reviewed in this thesis). The overall systems frequently also

incorporate some form of advanced computer control system with a 3D graphical model

of the worksite and environment.

However, they all have one particular problem in common, in that the success of a

particular inspection operation is crucially dependent on the initial choice of location for

the ROV system to dock onto the worksite (due in part to the complex geometry of the

worksite, and hence the limited access for the ROV, and in part to the limited reach of

the manipulator arms). Since the choice of docking location needs to consider multiple -

often conflicting - constraints on the system it is generally impossible for a human

operator to select the best position without aid, instead relying on time-consuming trial

and error.

This thesis concentrates on this problem of optimising the docking location for an ROV

and examines and compares three techniques for selecting the best docking position

given multiple constraints:

1. Manual selection, which is often accompanied by iterative further guesses at a

best location.

2. Automated selection using an artificial neural network to make a ‘best guess’

selection.

3. Automated selection using the computer control system to generate a large

number of possible locations and then eliminate all positions that violate

20

constraints, such as manipulator reach, unwanted collisions and insufficient

attachment leg positions.

Background

The work for this thesis was begun with registration for a part-time PhD in October

1992, just over a year after the author joined the Control and Robotics Group of

Technical Software Consultants (TSC) Limited as a Robotics Engineer working on the

Automated Robotic Manipulator (ARM) Project. This was under the supervision of Dr,

later Professor, David Broome, then Reader in Automatic Control in the Mechanical

Engineering Department of University College London, and also head of the Control

and Robotics Group, and a Director, at TSC.

The work conducted in 1992 and early 1993 was largely research into the field of neural

networks, as well as a more wide-ranging literature survey. The development of new

neural network software was begun in May 1993 with Interactive Activation and

Competition networks completed in 1993, Constraint Satisfaction and Pattern

Associator networks in 1994, and Back Propagation networks in 1995 (although small

improvements continued thereafter). The Control and Robotics Group separated from

TSC Ltd in March 1996 to form General Robotics Limited (GRL) with David Broome

as Managing Director and the author as General Manager.

The work on using neural networks to select a docking location was conducted in 1996

and early 1997. The work on using the automated numerical pre-processing to optimise

the docking location took place from February 1997 to March 1998. Following David

Broome's death in April 1998, after which the author took on the role of GRL Managing

Director, there was a hiatus. Work continued again from February 1999, concentrating

on the automated optimisation system outputting neural network files in a suitable

format to be read in and solved by the neural network software. Commercial access

simulation work using the automated optimisation system was conducted in 1999 and

early 2000, and offshore operational work using it took place during May and

September 2000. Revisiting of earlier work, writing up and a further literature survey

were conducted up until completion in the summer of 2002.

Summary of Chapters in the Thesis

Chapter 1 describes underwater intervention, and particularly inspection, by ROV and

compares this with other methods. Chapter 2 looks more specifically at the robotic

21

manipulator solutions developed to improve access to welds and to carry out NDT

inspection of complex weld shapes.

Chapter 3 describes the history and development of neural networks, and looks at their

application to the control of robotic manipulators, and to general offshore and

oceanographic use. Chapter 4 describes the author's development of software to model

the four' main types of neural network (Interactive Activation and Competition,

Constraint Satisfaction, Pattern Association and Back Propagation), and Chapter 5

details the background theory, testing and verification of the software.

Chapter 6 describes the main methods for docking ROVs onto underwater structures,

and looks at manual ways of planning docking locations. Chapter 7 looks at using

neural networks to select docking locations, while Chapter 8 looks at an automated

method of optimising docking locations using a numerical software method (and

concludes that this is the best of the three methods).

Chapter 9 describes the use of the automated docking optimisation system on two ROV

access simulation tasks. Chapter 11 describes an operational offshore ROV inspection

programme that made extensive use of the automated optimisation system; Chapter 12

covers conclusions and possible future improvements.

The offshore inspection programme covered in Chapter 11 was a commercial contract,

as were the access simulations described in Chapters 9 and 10, of which the automated

optimisation work was just one, albeit highly significant, element. With these

exceptions, all the work described in this thesis was done as PhD research, and

exclusively by the author.

A selected list of publications by the author is given at Appendix A. A CD-ROM

containing the source files for the neural network software (some 300 files), plus data

files, is attached - for more details see Appendix G.

This thesis is 69,000 words long.

Trevor Larkum

22

CHAPTER 1:
INTERVENTION BY ROV

1.1. Introduction

For many years, all undersea work was performed by human divers. The last few

decades, however, have seen the emergence of the Remotely Operated Vehicle or ROV.

The ROV is controlled from the surface, but can dive down to undersea work sites to

carry out work previously done by divers. This has produced great improvements in

safety, and cost effectiveness.

ROVs were originally developed for military purposes, but rapidly began to be used

more for civilian purposes in support of the offshore oil and gas industries, particularly

in the North Sea during the late 1970s and early 1980s [Marsh, R. 1996]. In fact,

without the driving force of the offshore industry there would have been no ROV

industry as no other outlets - even defence, scientific, inshore or nuclear put together -

provide a sufficient market to make it self-supporting [Hayward 1991].

1.2. History and Background

As early as 1953 in the USA, the development of a diver propulsion vehicle by a

company called Rebikoff produced an ROV called Poodle which was used to locate

shipwrecks [Bell 1996]. ROVs first showed their worth in 1966 when the US Navy used

CURV (Cable controlled Underwater Research Vehicle) to recover a lost nuclear bomb

off Palomares, on the Costa del Sol, Spain. Although primitive by modem standards,

CURV was able to grapple the bomb’s parachute shrouds at a depth of 860m and bring

it safely back to the surface. It was again used in a vital operation in 1973 after the

manned submersible Pisces III sank in 475m of water off Cork, Ireland. CURV attached

a lifting line to the vehicle and allowed a successful recovery [Last 1991].

During the 1980s there was an increasing use of ROVs for mine detection and disposal

purposes. These ROVs normally employed a short-range sonar set in the nose,

frequently backed up by a TV camera for identification. Having identified the mine, it

23

Chapter 1: Intervention by ROV

could either be cut loose or detonated on the seabed by a charge [Blake 1989].

However, as the larger commercial ROV market developed, independent mine-specific

ROV designs were eventually replaced by adaptations of commercial designs.

The first fields in the northern North Sea, Hamilton Argyle and BP Forties, came on-

stream in 1974, when records show that 700 divers were at work in the North Sea.

Numbers'peaked at 1,400 in 1985 then began a decline (e.g. back to mid-‘70s levels in

the early 1990s). There were a number of factors responsible for the decline in divers, in

particular the greatly improved efficiency of vessels, equipment and operational

techniques, and the move by the oil companies towards designing out the need for

divers, as well as a major change in technology [Westwood 1993]. Manned

submersibles were also widely used, operating in either intervention or lock-out diver

mode. In intervention mode they were used for inspection, survey and general

manipulation tasks (as ROVs were to do later), and in diver lock-out mode they were

used as a means of carrying and supporting divers in saturation [Bell 1996].

1600

1 4 0 0 -

1200-

all divers

1000 -

8 0 0 - mixed gas divers

60 0

4 0 0 -

ROV pilots200 -

manned sub pilots

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Figure 1.1 — Divers vs. Submersible and ROV Pilots [from Westwood 1993]

ROVs were introduced into commercial North Sea operations in the late 1970s and met

with a hostile reaction from the diving companies and operators of manned

submersibles. By the mid 1980’s the manned submersible operators were driven out of

business by dynamically positioned (DP) dive support vessels (DSVs) and pipeline

inspection ROVs [Westwood 1993]. As the numbers of divers and submersible pilots

declined so, inexorably, the number of ROV pilots increased (see Figure 1.1).

24

Chapter 1: Intervention by ROV

Figure 1.2 — The most important first generation drill support ROV, the Scorpio [from
Given 1991]

Commercially, the early ROVs were used in cable survey and recovery. They began to

be used regularly in' offshore operations in the late 1970s and have now become

"indispensable" [Last 1991]. There were just 3 ROVs in commercial operation in 1976,

but this rose to 300 in 1986 and to almost 2500 in the early 1990s [Westwood 1993].

The most significant first generation models were the RCV 225 inspection ROV and the

AMETEK (later Perry Tritech Inc.) Scorpio used for drill support (see Figure 1.2)

[Marsh, R. 1991; Westwood 1993; Pedlow 1996]. As discussed above, the origins of

both of these early vehicles were military. The Scorpio had US Navy backing and was

initially intended as a mine recovery vehicle while the RCV 225 (see Figure 1.3) was

designed to be 21 inches in diameter so that it could be deployed through a torpedo tube

[Bell 1996].

Handling
System

Control
Console

Vehicle

Tether

Figure 1.3 — The most important first generation inspection ROV, the RCV 225 [from
Bell 1996]

25

Chapter 1: Intervention by ROV

By the late 1990s ROVs were commonplace in many markets, including oceanography,

fishing, civil engineering, security, mineral prospecting as well as several other niche

areas [Marsh, R. 1996]. This led to fast and significant development in the designs and

technology used, which led to increased reliability, such that the ROV became an

invaluable tool in oil and gas exploration and production. In the early 1980s building

ROVs was a business worth about $55million [Hayward 1991]. During the mid 1980s,

however, there was a slowdown in technological development due in part to the slump

in the price of oil and the world recession [Marsh, R. 1996] and the size of the ROV

building industry halved. It was expected that second generation ROVs would come

into service to replace the excellent but ageing RCV-225s and Scorpios but due to the

collapse in the price of oil in 1986 this did not happen [Marsh, R. 1991]. Where

previously the vision was total diver replacement, instead ROVs were largely used in

conjunction with divers - largely due to insufficient investment in ROV development

and technology [Hayward 1991]. This even led to the rather incongruous situation that

pervaded for a short time of ROVs being designed and built to support divers, for

example the Triton Diverov (see Figure 1.4) operated by Stolt-Nielsen Seaway

[Given 1991].

Figure 1.4 - Triton Diverov Diver Support ROV [from Given 1991]

Nonetheless even by the late 1980s and early 1990s it was clear that ROVs could be

used much more to replace divers, providing improvements in safety and cost: “it is

likely that the current oil/gas economic climate will be the catalyst required to stimulate

a much broader interest in and acceptance of underwater remote technology... There is

little doubt that much work currently being carried out by divers can be done more cost

effectively utilizing remote technology...” [Batten 1988]. This was particularly evident
26

Chapter 1: Intervention by ROV

if the through-life cost of a structure was considered since the increased cost at

installation of providing ROV-friendly controls would be more than repaid in lower

costs during the production and eventual decommissioning phases [Marsh, R. 1991;

Westwood 1993]. Furthermore, by this time, in Shell Expro for example, there were

several tasks that were standardised as diverless including structural cleaning and

inspectipn, and pipeline survey and stabilisation [Marsh, T. 1992].

It was also clear that further improvements could be made by applying new technology

to the ROV systems so that it was predicted that by the end of the 1990’s “there should

be no technical or economic reason why almost every subsea task is not being done

either robotically or by remote control” [Marsh, R. 1991].

Figure 1.5 - An important second generation inspection ROV, the Hyball [from
Hydrovision brochure]

By the middle of the 1990s there had been some further developments. The first

generation ROVs were now being replaced by vehicles that both had a higher

performance and were significantly less expensive, such as the Hydrovision Diablo and

Hyball (see Figures 1.5 and 1.6) systems [Pedlow 1996; Bell 1996]. ROVs were also

being used more and more as intervention tools carrying out tasks traditionally

undertaken by divers. More advanced tooling skids were being developed to undertake

more difficult tasks and ROVs were more capable of manipulative tasks such as valve

operation, subsea assembly and salvage work [Pedlow 1996].

27

Chapter 1: Intervention by ROV

Figure 1.6 - An important second generation drill support ROV, the Diablo [from
Hydrovision brochure]

Concurrently there had been developments in the Autonomous Underwater Vehicle

(AUV), essentially an untethered ROV using batteries for motive power and following

pre-programmed instructions (see Figure 1.7). These vehicles are also often known as

Underwater Unmanned Vehicles (UUV) although, technically, a UUV need not be

autonomous. One of the earliest AUVs was the US Navy’s Advanced Unmanned Search

System (AUSS) originally developed from the mid-1970s, a torpedo shaped vehicle

with a 10 hour endurance at a maximum speed of 5 knots [Westwood 1993]. Despite

two major problems - the difficulty of carrying a power supply to give an adequate

range and endurance, and the bandwidth for adequate real-time control and data

communication - AUVs started to see increasing commercial use during the 1990’s for

offshore pipeline survey and similar tasks.

Figure 1.7 - A typical AUV conducting pipeline survey [from OPL NGUV]
28

Chapter 1: Intervention by ROV

The turn of the millennium saw the introduction of much new ROV hardware, and the

increasing diversification from the oil related and defence roots of the subsea industry.

Oceanographers, civil engineers, marine archaeologists and the fishing industry all

began to view the ROV or the AUV as a routine tool of their trade. A welcome effect of

the Internet is the tremendous amount of subsea fibre optic installation planned around

the world in the next few years, the source of an unprecedented amount of activity for

ROVs, AUVs and their support vessels [Marsh, R. 2000].

Figure 1.8 - A typical ROV trencher burying a seabed cable [from OPL NGUV]

In the early 21st Century, ROV development progress, as a mature technology, is steady

rather than spectacular. There are more capable and powerful vehicles with better

payloads, and a move back to electric vehicles of all sizes, which is where the industry

began a quarter of a century before [Marsh, R. 2002]. More significant is that the

increasing move to oil exploration in deeper waters has eliminated the ROV versus

diver debate - only ROVs can operate at the required depths (600-3000m). Other related

systems, such as ploughs and trenchers (see Figures 1.8 and 1.9), proliferate due to the

inevitable global growth of the IT industry [Marsh, R. 2002] - however, further

consideration of these systems is beyond the scope of this work.

Figure 1.9 - A typical towed plough burying a seabed cable [from OPL NGUV]

29

Chapter 1: Intervention by ROV

The late 1990s and early 2000s saw the early development of new types of vehicles, the

'Hybrid Vehicle' and the 'Work AUV', having some of the attributes of the ROV and

some of the AUV [Chardard 2002]. Although these systems are just at the prototype

stage, they incorporate some interesting docking functions and will be covered in more

detail in Section 5.1.2. Docking Using Pre-Defined Attachment Points.

1.3. Description

A typical workclass ROV (see, for example, Figure 1.6) consists of an aluminium frame

which mounts six-seven thrusters for propulsion, and carries on top large blocks of

buoyancy in order to make it neutrally buoyant in the water. The frame contains control

electronics and an electric pump which is powered by an umbilical cable from the

surface and provides high-pressure hydraulic flow to power the thrusters, any

manipulators at the front of the vehicle, and any other hydraulic equipment onboard.

The manipulators are controlled by an operator at the surface via signals sent down the

umbilical - a process known as 'teleoperation' or 'telemanipulation'. The ROV also

carries many sensors including an obstacle avoidance sonar (and possibly sidescan and

profiling sonars), a depth gauge, an altimeter, a gyro compass, a high-resolution zoom

colour camera on a pan and tilt mounting, a low light level Silicon Intensified Target

(SIT) black and white camera, and possibly a number of other cameras (plus high

intensity lights).

Figure 1.10 - Deployment o f an ROV from a platform [from Van Den Hooff 1988]

30

Chapter 1: Intervention by ROV

The ROV is deployed from a platform (see Figure 1.10) or a vessel (see Figure 1.11).

Operating from a structure is not as weather dependent as operating from a vessel; for

safety reasons, a vessel can only work where the wind would blow it clear of the

platform in the event of a power failure. Vessel operations do, however, have an

advantage in that the vehicle does not need to pull the umbilical through or round the

complex structure (or 'jacket'), which reduces the possibility of umbilical entanglement

[Last 1991]. For deep operations the umbilical will typically not go direct to the ROV

but instead to a Tether Management System (TMS), an intermediate winch held in the

water at the ROV's operating depth, and a smaller tether umbilical then connects the

TMS to the ROV.

Hut Traction Winch

11 .
Rooovary Crano

vehicle

Figure 1.11— Deployment of an ROV from a vessel [from Shirasaki 1988]

The ROV is controlled from a cabin, usually a specially equipped container, on the

platform or vessel. This typically has at least two control stations, one for the ROV pilot

and one for the manipulator operator (see Figure 1.12). The ROV is launched and

recovered over the side using a Launch And Recovery System (LARS), usually either

an A-frame or a knuckle-boom ('Hiab' type) crane.

The International Marine Contractors Association (IMCA) classifies ROVs into five

main types: (1) Pure observation class; (2) Observation with payload option;

(3) Workclass systems; (4) Towed or bottom-crawling vehicles; and (5) Prototype or

31

Chapter 1: Intervention by ROV

development vehicles. With the exception of certain observation vehicles proposed as

deployment systems for inspection probes, generally only Class 3 vehicles, workclass

ROVs, are capable of conducting nodal weld inspection and will be the focus of this

work.

CONTROL CONSOLE

MANIPULATOR MASTER
ARM

— MANIPULATOR OPERATOR STATION
— VEHICLE OPERATOR STATION

Figure 1.12 — Typical ROV control cabin [from Hattori 1988]

1.4. Subsea Inspection

Structural inspections are carried out to provide information on the condition of the

structure and its features. The information is required for certification and maintenance

purposes. Offshore installations are subject to constant stress, from the static loading on

their decks, the dynamic loading of wind and sea and the effects of corrosion and

accidental damage. In the early days of North Sea exploration there were a number of

serious structural failures on rigs and platforms. Such failures can be catastrophic, both

in human and in economic terms. Regular inspection is designed to identify early signs

of failure and allow the operators to take remedial action.

Each country enforces inspection requirements, for example in the UK the Offshore

Installations (Construction and Survey) Regulations 1974 require each installation to

have a Certificate of Fitness, valid for five years [Last 1991]. To obtain a new

certificate, the installation must undergo a major survey, or a series of annual surveys,

32

Chapter 1: Intervention by ROV

during the five year period of its current certificate. The certificate must be issued by an

approved body, such as Lloyds, Det Norske Veritas or the American Bureau of

Shipping. The detailed requirements for each survey are agreed with the certifying

authority. They are different for each installation and depend upon the type of structure

and the results of previous inspections.

A typical survey includes [Last 1991]:

1. Inspection of a representative number of welds.

2. A corrosion survey, which includes cathodic potential (CP) readings and a

survey of the protection system.

3. A full survey of risers, conductors, caissons, etc., and their protection

systems. .

4. A survey of the seabed. This includes a check for scouring, and the

accumulation of debris. Debris may cause damage directly, by impact, or by

increasing corrosion.

5. A survey of any physical damage.

6. A marine growth survey. Marine growth adds significantly to the static

loading on the structure, increases tidal or current drag, blocks inlets and

outlets, and may cause corrosion.

Figure 1.13 — Typical tubular construction o f a jacket [from Van Den Hooff 1988]

33

Chapter 1: Intervention by ROV

Fatigue is the commonest cause of cracking in steel structures. It occurs when a

structural member is subject to alternating or cyclic loads over a prolonged period. The

greater the peak loading, and the greater the frequency of oscillation, the sooner the

member will fail. Cracks normally occur at areas of stress concentration, for example

welds or areas of damage, and the effects are accelerated by corrosion. The most

important areas to inspect are the welds where the tubulars ('braces') that make up the

underwater structure join the structure legs ('chords') in groups called 'nodes' (see Figure

1.13). Unfortunately, these nodal welds are also the most difficult to access, and

developing systems to aid in the inspection of these welds by ROV is the subject of this

work.

Most non-destructive testing (NDT) weld inspection by diver is done using Magnetic

Particle Inspection (MPI) where the metal is magnetised and then sprayed with an ink

containing fluorescent particles - the crack becomes visible because its high magnetic

flux density attracts the ink. This method is generally not appropriate for ROV

deployment because of the dexterity it requires, and the difficulty of interpretation by

camera. Instead, the most appropriate ROV technique is generally considered to be

Alternating Current Field Measurement (ACFM) developed by UCL and TSC [Raine

1996a; Raine 1996b; Pennison 1997]. This injects a magnetic field into the surface of

the metal and, by measuring disturbances in the field, picks up the presence of very

small defects (and unlike other systems based on eddy current principles it can be used

to size defects as well as detect them).

Figure 1.14- Manipulator mounted ACFM array probe

34

Chapter 1: Intervention by ROV

The system is controlled by an operator in the ROV cabin using special computer

software. The standard ACFM probe is required to be scanned along the weld surface

but a specially developed ACFM array probe can be placed at intervals along the weld

instead (see Figure 1.14). This can be done by ROV manipulator, although the

requirements for even spacing and correct orientation generally require a computer

controlled manipulator system. The rest of this work will assume that the ROV docking

location is being determined for ACFM inspection, but nonetheless the method is

equally applicable for eddy current, ultrasonic, automated MPI, or other NDT

techniques, or even for other weld intervention tasks such as cleaning or grinding.

1.5. Non-ROV Methods

Before concentrating-further on the details of ROVs it is worth noting that other systems

are available for underwater intervention tasks. These range in complexity from wireline

systems, through remotely operated tools, to one atmosphere diving suits.

. . . i

/ / / '

/ . /

k . .

k 1“
s \ =------------------------------------- —

- - £ 3 ^ • •___ - —- l i t -

- \ l

OOMntOL UMMHJCAC*

CUMm «Cf*MT

(T O iU MOV

■ s m o m tr s

x » l i e i <P*CU*E
4.UOTKT4TUM WTAC*

] _____-SM W lU Tf XMAS T »ff

Figure 1.15 — Wireline intervention system [from Headworth 1988]

35

Chapter 1: Intervention by ROV

In wireline systems tooling is lowered down on a wire to the worksite; usually the

equipment also has four guidewires, one at each comer. The guidewires are fixed in

place for the duration of the task and ensure that the system is correctly positioned and

oriented to mate with whatever equipment the system is going to work on. The wireline

carries the weight of the system and is used to deploy and recover it (see, for example,

Figure 1.15) while an external umbilical provides the control link.

Remotely Operated Tools (ROTs) are similar but they are deployed on an armoured

umbilical from the surface which provides the control link as well as lifting and

recovering the system. They often also use guidelines, but for very deep water can

incorporate thruster systems, similar to those used on ROVs, to manoeuvre themselves

into position. Their ability to conduct difficult intervention tasks is thus improved, and

the more advanced ones may even incorporate manipulator arms (see, for example,

Figure 1.16).

"5pi

Figure 1.16 - Wellman Remotely Operated Tool [from Hoglund 1988]

Although many of the functions originally performed by ROTs have since been taken

over by ROVs, they are still used where this intervention technique has clear advantages

- for example, the ability to deploy systems that are typically much heavier than can be

carried by ROVs. ROT development continues, and recent improvements include the

addition of 3D graphical visualisation systems to aid with mating in deep water

[Wright 2002].

36

Chapter 1: Intervention by ROV

Where an ROT is deployed onto a subsea installation, and is capable of moving around

within the structure and carrying out several tasks, it is known as a Remotely Operated

Maintenance Vehicle (ROMV) [Bell 1996]. An example of this is the Saga Petroleum

Snorre Subsea Production System, see Figure 1.17. While quite sophisticated, these

vehicles are specific to particular structures and are not generally applicable elsewhere.

ROMV
Landing Area

Manifold

Template

Umbilical
Porches

Flowline
Porches

Figure 1.17 — Snorre Remotely Operated Maintenance Vehicle [from Bell 1996]

Another approach that was proposed in the late 1980s was the deployment of mini

crawling vehicles to conduct weld inspection in difficult access areas (see Figures 1.18

and 1.19). None of these systems, however, are known to have come to fruition

(although similar systems are now widely used for internal pipe inspection). Their

disadvantages are quite clear: they require a workclass ROV to deploy them - so the

ROV could probably be used to conduct the work anyway - and their small size limits

their payload (i.e. inspection equipment) and manipulative ability below that available

to a workclass ROV.

37

Chapter 1: Intervention by ROV

!PK)

m

Figure 1.18 - Proposed LAMI crawler deployed by a Scorpio [from Evensen 1988]

Figure 1.19 - Proposed pipe crawler conducting weld inspection [from Hughes 1988]

One of the most sophisticated non-ROV intervention systems is the atmospheric diving

suit (ADS) in which a human deploys to the work site in a one-man submersible,

usually fitted with very similar equipment to ROVs (thrusters, sonar, cameras and

lights, etc.). The ADS has a long and distinguished history, from the original 1715

Lethbridge 'diving engine' through the successful and widespread JIM suits of the 1970s

to the Newtsuits of the 1980s [Thornton 2001]. The Newtsuit was used in the early

1990s for tasks such as installation of equipment and umbilicals, making and breaking

connections, and pulling-in of stab plates on riser packages [Middleton 1993]. It was

also trialled by BHP Petroleum in Australian waters conducting ACFM array weld

38

Chapter 1: Intervention by ROV

inspection [Pennison 1997]. However, even by then it was losing out to "the capability,

reliability and above all safety of ROVs" [Mills 1993].

Figure 1.20 - Hardsuit 2000 atmospheric diving suit [from Gibson 2002]

For oil and gas support, the fact that ADS systems are comparatively expensive, have an

equipment back up (control cabin, LARS, TMS, etc.) virtually the same as an ROV, and

put a human at risk, mean that they have virtually entirely lost out to ROVs. Currently

the only market that remains strong for the ADS is submarine rescue where the latest

version, the Hardsuit ADS2000 (see Figure 1.20), "has ROV-like range and

manoeuvrability, with the advantage of being small enough to gain access to restricted

spaces and perform intricate useful work, previously the exclusive domain of divers"

[Gibson 2002]. Just as significant, though not stated, is that cost is less of an issue, and

so is human safety since, by the nature of the operation, human lives are already at

stake.

None of the non-ROV intervention methods considered in this section, from the

Wireline or ROT to ADS, have shown that they can conduct nodal weld intervention

(cleaning and inspection) as effectively, cheaply and safely as ROV/manipulator

systems. The remainder of this work will therefore concentrate on these

ROV/manipulator systems, and the others will not be considered further.

39

Chapter 1: Intervention by ROV

1.6. AROWS

Although most offshore oil and gas regions have driving forces for using ROVs in place

of divers, the region that has seen the most innovation in this area is almost certainly

Australia. The philosophy there is to not use divers unless essential and so remote

methods of intervention are much preferred. Because of its remote geographical location

and limited offshore activity compared to most other oil and gas producing areas of the

world, many of the services readily available at short notice and nominal mobilisation

time/cost in other areas, such as DSVs, are not available in Australia. In addition, due to

a combination of local regulatory requirements and maritime union requirements with

respect to onboard living and working conditions, a DSV used in Australia would

probably need to be a North Sea vessel. As a result of the local unavailability of DSVs

and the time and cost of mobilisation and demobilisation, doing work by ROV can be

significantly more cost effective than saturation diving in Australia [Batten 1988].

Almost certainly the most advanced manually controlled ROV and manipulator system

developed before the advent of computer controlled systems (as described in the next

chapter) was the Advanced Remotely Operated Work System (AROWS) usually seen in

its Jacket Cleaning Vehicle (JCV) configuration. It was the archetype for the advanced

ROV and manipulator combinations that are the subject of this work, and will be

described here in some detail.

Figure 1.21 - Sonsub AROWS [from Sonsub IRST]

40

Chapter 1: Intervention by ROV

The AROWS idea was developed by Sonsub at their headquarters in Perth, Western

Australia, during the mid-late 1980s. AROWS essentially consisted of a powerful ROV

with a built-in toolskid mounting the following equipment (see Figure 1.21, and the key

at Figure 1.22):

• Two manipulators on an extending and rotating base; on the right a 7

function Kraft spatially correspondent manipulator mounting a video camera

and a high pressure water cleaning lance, and on the left a 7 function rate

manipulator mounting a video inspection camera.

• Two legs with suction feet for attaching to structures, known as Stabilization

Suction Manipulators or Articulated Attachment Devices (AAD).

• A sector scanning sonar for obstacle avoidance when navigating into

structural jackets.

• A pan and tilt unit, mounting a zoom video camera, that could be elevated

hydraulically above the level of the buoyancy, along with the sonar, to allow

the vehicle to manoeuvre backwards as effectively as forwards.

• Optional equipment for cathodic protection (CP) monitoring, sub-bottom

profiling, sidescan sonar, non-destructive testing (NDT), pipeline tracking

and leak detection.

HYDRAULIC THRUSTER
DEVELOPING 191 kof (420 M)

SONAR MOUNTED ON
HYDRAULIC POP UP UNIT

PAN & TILT CAMERA MOUNTED
ON HYDRAULIC POP-UP UNIT

OPTIONAL
END EFFECTORS9 FUNCTION SPATIALLY

CORRESPOND ANT MANIPULATOR

ULTRA HIGH PRESSURE OSCILLATWG
CLEANING LANCE

VDEO CAMERA

CATHODIC POTENTIAL
PROBE

WIRE BRUSH

ULTRA HIGH PRESSURE
WATER INTENSEIER

7 FUNCTION RATE
MANPULATOREXTEND & ROTATE

TURNTABLE

STABILIZATION
SUCTION MAN**ULATOR

Figure 1.22 - Key to Sonsub AROWS components [from Sonsub IRST]

41

Chapter 1: Intervention by ROV

The first AROWS was originally based on the Sonsub Challenger ROV carrying a 7

function Kraft manipulator (as in Figures 1.21 and 1.22). However, for dextrous work

such as cleaning nodal welds, it could be fitted with a 9 function Slingsby TA33

manipulator; this version saw extensive service working for Esso in the Bass Strait

conducting nodal weld cleaning, close detailed inspection and still photography

[Harman 1988], see Figures 1.23 and 1.24.

WATER JETTING

B R U S H

C H A LL EN G E R

i \ \ \ t o d y

Figure 1.23 — Diagram of AROWS nodal weld cleaning [from Harman 1988]

The Challenger AROWS was developed in conjunction with Perry in Florida, and Perry

later developed the Triton AROWS (see Figure 1.25). Although originally fitted with

the same 7 and 5 function manipulators as the Challenger AROWS, later versions were

fitted with Schilling Titan and Rigmaster manipulators respectively.

As well as seeing use in Australia, both Challenger and Triton AROWS systems were

operated by Wilsub AS in Norway, in conjunction with its UK parent company, Sonsub

Services Limited. Operations included the 1986-1988 node inspection and Cleaning

ROV (CLEROV) contracts for Elf Aquitaine Norge [Harman 1988].

42

Chapter 1: Intervention by ROV

Figure 1.24 - Photograph of AROWS nodal weld cleaning [from Sonsub IRST]

Figure 1.25 - Photographs of early and late Triton AROWS [from Sonsub IRST and
Sonsub Triton ROVS]

Aside from the unique ability to elevate the pan and tilt unit and sonar, the AROWS

configuration was the forerunner of all the ROV/manipulator intervention systems that

are the subject of the remainder of this work - most of them differing only in

manipulator configuration (sometimes having just one central arm) and in the degrees of

freedom used in the manipulator mounting base (either yaw or roll, with or without

extension, etc.).
43

Chapter 1: Intervention by ROV

1.7. Force Controlled Manipulators

The next chapter will look at the benefits of applying robotic control to ROV

manipulators but most early work concentrated on improving manipulation by giving

force feedback to the human operator. Force feedback manipulator systems were

developed by General Electric in the 1960s to prevent damage to components during

manipulation [Schilling 1996] and have been widely used in the nuclear industry [Carre

1991]; during the 1970s and 1980s the technology was applied to developing

underwater force feedback manipulators. They are claimed by the manufacturers to be

capable of performing tasks of significantly greater complexity than conventional

manipulators, in a much shorter period of time, and with less chance of damage to the

arm or worksite [Harbur 1999]. However, they have never received widespread

acceptance due to perceived problems of operator fatigue (from operating a master arm

controller against forced resistance), reliability, and cost, and so the majority of subsea

manipulators continue to be operated by conventional master arms.

However, research in this area continues for terrestrial teleoperation - for example, the

Massachusetts Institute of Technology (MIT) has developed a very advanced 'Whole-

Arm Manipulator' (WAM) for bomb disposal and similar tasks [Townsend 1999]. The

WAM master and slave arms are essentially identical - and may have redundant

kinematics - and through the combination of force sensors at each joint, and low

backlash cable drives, the operator is able to push and pull each link of the slave into a

particular arrangement, and feel any resulting forces, through proxy manipulation of the

master. Currently some of the more interesting work on force control for

telemanipulation is for telesurgery, in particular looking at the problems of force control

on compliant objects [Dhruv 2000, £avu§oglu 2001].

1.8. Conclusions

This chapter has described the history and development of ROVs for the oil and gas

industry and has shown the superiority of advanced ROV/manipulator combination

systems for difficult intervention tasks such as nodal inspection. It has shown that

systems like AROWS have nearly all the capabilities required for detailed NDT of

nodal welds, though they lack the dexterous probe handling required for techniques

such as ACFM. The promise of improved manipulator dexterity through force feedback

never materialised and so the next chapter will show how the application of robotic

control technology can provide the means for nodal weld inspection to be effectively

conducted by ROV/manipulator combination systems.
44

CHAPTER 2:
ROBOTIC ROV MANIPULATOR SYSTEMS

2.1. Introduction

From early on it was recognised that "for reasons of cost, safety and inspection

reliability, it would be advantageous to develop an automated underwater structural

non-destructive testing system" [Van Den Hooff 1988]. However, the manipulators used

on early ROVs had been of a relatively primitive design. This meant that ROVs had

largely been restricted to tasks requiring little manipulative dexterity, such as debris

removal and some forms of cleaning, whereas a large amount of the work remaining to

be done, such as weld inspection, required precise and repeatable positioning [Savut

1985; Broome 1986; Broome 1989]. In order to achieve a considerable improvement in

the capability of an ROV system to undertake such tasks, two main areas had to be

addressed - the design and construction of improved manipulators, and the design and

implementation of suitably advanced control systems [Broome 1991].

A study in the UK in the 1980s examined the potential for full inspection of platforms

by ROVs and the use of geometric modelling to enable manipulator arms to be operated

in real-time [Hayward 1991]. The conclusions at that time were that it was beneficial to

secure the ROV to the structure by a clamp, about which it could then move. Also,

geometric modelling was a help, though not a necessity. At the same time, Japanese

companies were looking at similar problems; Mitsui Industries designed a system with

detachable multifunctional legs allowing a vehicle to attach itself to uneven, asymmetric

structures using suction pad “feet” [Hayward 1991].

Also, it was being predicted that: “In three years whole new tasks could be performed

robotically as a routine and very much more cost effectively than any would dare hope

at present” [Marsh R. 1991]. A number of advanced robotic concepts were proposed

early on, such as the 'Underwater Robot' (UROB) [Hansen 1988] and the 'advanced

underwater robotic system' [Russell 1990]. Most savings were expected from

developing full NDT capabilities, and also remotely controlled welding - “by the end of

45

Chapter 2: Robotic ROV Manipulator Systems

this decade there should be absolutely no technical or economic reason why almost

every subsea task is not being done either robotically or by remote control” [Marsh R.

1991].

2.2. Research and Development

Meanwhile - there was significant development work taking place in research

establishments aimed at producing robotic manipulator arms for underwater

intervention tasks. These were typically based around conventional (electric) factory

robots or adapted commercial ROV (hydraulic) manipulators. For example, research

was being conducted at GKSS in Germany and Shell Laboratories in Amsterdam using

ASEA factory robots, and at University College London (UCL) using a Puma factory

robot. Concurrently, UCL were also conducting experiments using a GE ROV

manipulator and Heriot-Watt University were doing research with Slingsby TA9

manipulators.

The team at GKSS concentrated on using a robot for welding, and tested it in a

hyperbaric chamber to a pressure of 1 lObar [Aust 1988], see Figure 2.1. GKSS later

went on to conduct tests with a number of other electric factory robots - not just at high

pressure but, after appropriate adaptation and marinisation, in water. These included the

Siemens Manutec rl5 robot, which was demonstrated operating successfully in dry and

wet tests at up to 1 lObar [Aust 1995], and eventually the Neos Tricept robot in the

European RobHaz project (in which this author was also involved, and provided the

robot interface program).

3800

main working space welding tablerobot

Figure 2.1 - Test arrangement of ASEA robot in pressure chamber [from Aust 1988]
46

Chapter 2: Robotic ROV Manipulator Systems

The Shell Laboratories system was developed in dry lab tests and used an eddy current

sensor mounted on the robot [Van Den Hooff 1988], see Figure 2.2. Small adjustments

were made during weld tracking by measuring with a camera the offset of a target

projected by laser onto the weld surface.

Figure 2.2 - Shell Laboratories' ASEA robot and test node [from Van Den Hooff 1988]

The Ocean Systems Laboratory group at Heriot-Watt conducted research with TA9

manipulators into a number of relevant areas. They looked at hybrid position/force

control where a manipulator under computer control makes use of force interaction

information to improve contact tasks [Lane 1991; Clegg 1995; Dunnigan 1996], see

Figure 2.3a, and so avoid some of the problems of manual force feedback systems (see

Section 1.7. Force Controlled Manipulators). They also looked at co-ordinated

computer control of multiple manipulators on an ROV [Kato 1996] and supervisory

control and task planning for underwater vehicles [Lane 1994; Lane 1995], see

Figure 2.3b. Other work by the group has looked at the use of visual systems for ROV

station-keeping and docking, and consideration of the effects of manipulator motion

while station-keeping (these are discussed in more detail in Section 5.1.1. Working

Without Docking - Dynamic Positioning).

47

Chapter 2: Robotic ROV Manipulator Systems

Figure 2.3 - TA9 performing a hybrid position/force task [from Dunnigan 1996] and
insertion of subsea mateable connectors [from Lane 1995]

A number of areas of research concerned with the problems of weld inspection by

manipulator were investigated by the Automatic Control Group (ACG) at UCL under

Dr. (later Prof.) David Broome. Work was done on determining the location and

orientation of intersecting cylinders (as in a structural node), both the theoretical

background [Wray 1985; Hughes 1988] and practical developments in the laboratory

using a Puma robot with a touch sensor [Hughes 1988; Greig 1989; Greig 1992], see

Figure 2.4. Work was also done on operating a General Electric (GE) hydraulic

manipulator in Cartesian co-ordinates under control of an IBM PC [Hughes 1988], see

Figure 2.5.

Figure 2.4 - Puma robot conducting cylinder location at UCL [from Hughes 1988]

48

Chapter 2: Robotic ROV Manipulator Systems

The research conducted at UCL laid the foundations for the ARM Project (see Section

2.6. ARM) which was the original test bed for this thesis work. Although the ARM

control software was written from scratch by David Broome's Control and Robotics

Group (which included this author) at Technical Software Consultants Limited (TSC), it

incorporated many of the ideas developed at UCL, including the cylinder location

technique described below.

Figure 2.5 - GE manipulator under PC control at UCL [from Hughes 1988]

Later work by the ACG at UCL included a stereo vision system for motion

compensation (see Section 2.6.1. ARM Development), in which this author played a

small part, and adaptive force control for weld following using neural networks (see

Section 3.4.4. Use with ROVs and AUVs).

The Welding Institute (TWI) conducted research in conjunction with the Danish

welding institute into ultrasonic inspection [Kenzie 1990]. In laboratory trials a 6-axis

welding robot successfully deployed an ultrasonic immersion probe around a T-node in

a testing tank.

At Cranfield University research was conducted into resolved motion control of a

Slingsby TA9 manipulator and, in parallel, into joystick control of an ASEA factory

robot with 3D graphical feedback from simulation software [McMaster 1994]. Research

at the University of Pennsylvania looked at control of a PUMA robot via an acoustic

link and with 3D graphical feedback [Sayers 1994].

49

Chapter 2: Robotic ROVManipulator Systems

UK Robotics Limited developed a system known as ATC Craftsman that combined a

joystick control box with an advanced, scripted robot control system [Pegman 1999]. It

was demonstrated on Schilling Titan (see Figure 2.6) and Slingsby TA40 manipulators,

but it appears to have been targeted primarily at the nuclear industry.

Figure 2.6 - ATC Craftsman controlling a Titan II manipulator [from Pegman 1999]

By the end of the decade it was accepted that in telerobotics, approaches "...with a

human operator interacting and co-operating with a computer demonstrate many clear

advantages" [Pretlove 1999], a philosophy known as Supervisory Control.

2.3. Supervisory Control Systems

Supervisory Control essentially means that the manipulator is put under computer

control but, unlike a terrestrial robot, it remains under the detailed supervision of a

human operator at all times. He is able to step in and suspend or modify the operation at

any time, an important feature of systems designed to work in unstructured and semi-

structured environments such as underwater platform jackets. Manipulators with

supervisory control are known as Computer-Aided Telemanipulation (CAT) - or

sometimes Computer-Aided Teleoperation - systems.

By the early 1990s it was clear that underwater manipulator systems would benefit from

incorporating computer control, for example "Supervisory control of manipulator

functions where precise positioning of an end-effecter is required, is an area of

operational potential" [Mann 1990] and "By extending an existing ROV and

50

Chapter 2: Robotic ROV Manipulator Systems

manipulator with computer control, the capability of the system can be considerably

increased... A semi-automatic work system requires development of a Supervisory

Computer Control System (methodology for combining man and computer control)"

[Sortland 1990].

Three main supervisory control ROV/manipulator combination systems were developed

for nodal weld inspection; they were known as REMO, ATES and ARM and will be

described in the following sections. They each had a hardware configuration that

echoed, consciously or not, the AROWS configuration of a workclass ROV carrying

advanced manipulators mounted on a deployment system with its own motions or

degrees of freedom (DOF), and attaching to structures using suction feet. These

attachment systems are known by various names, particularly 'attachment legs' and

'sticky feet’ (though the latter term really only applies to the suction pad on the end of

the leg), and both terms will be used interchangeably through the remainder of this

work.

These three systems spearheaded the use of 3D graphics as part o f the ROV/manipulator

user interface, although prototype GUI systems had been developed for nuclear

teleoperated systems [Carre 1991; Dotan 1991; Even 1991]. Later, the use of 3D

graphical interfaces became more common; including Oceaneering's Modular Integrated

Man-machine Interaction and Control (MIMIC) system for ROVs [Hallset 1994], the

Magellan CAT system for the Schilling range of manipulators [Lemoine 1995], GRL's

more recent ROVolution system for ROVs and manipulators [Larkum 2000; Larkum

2002], as well as various systems for AUVs [Brutzman 1995; Homfeld 2002]. By 1996

it was accepted that "both offshore and nuclear markets increasingly appreciate the

utility of a 3D graphical model of a robotic system that is calibrated to the task

environment and linked to the robot or tool controller. This model-based control... is

proving to be a vital component in the reliable, efficient performance of remote routine

operations..." [Schilling 1996].

2.4. REMO

The REMO system operated by Stolt Comex Seaway (SCS), now Stolt Offshore

Limited, is believed to have developed from the MARI project funded by Comex UK.

This designed an ROV inspection system with a manipulator and "limpet" attachment

legs (see Figure 2.7), and specifically developed suitable NDT equipment for it

including automated MPI and eddy current probes [Duncan 1990].

51

Chapter 2: Robotic ROV Manipulator Systems

G. P. TDQL3KIDUNIVERSAL JOWT
BRAKE CYKNDB?

BAIL JO (XT
brake c y lo o b ? fNTB* CHANGEABLE

LftFET/MANIPULATOR
MODULE

Figure 2.7 - Proposed MARI Advanced Robotic System [from Duncan 1990]

REMO itself was developed in a joint project between Elf Petroleum Norge, Phillips

Petroleum Company Norway and Stolt Comex Seaway. It followed from extensive

experience Elf had obtained between 1983 and 1987 in using workclass ROVs to clean

structures, prior to divers being brought in to inspect them [Ricci 1996]. An initial

project from 1990-1992 proved the viability of the computer technology and tool

systems, and in the middle of 1993 Elf issued a tender for construction of the system.

The contract was awarded to Stolt Comex Seaway and, after evaluation, a special ROV

was designed and built from scratch for the project, although it used many components

from Stolfs standard SCV ROVs.

Figure 2.8 - REMO displaying its various IRM tools [from Stolt Comex Seaway RR]

52

Chapter 2: Robotic ROV Manipulator Systems

The REMO system had the following equipment (see Figure 2.8):

• Cybemetix manipulator (fitted with a wrist unit from a Schilling Titan

manipulator) mounted on a rotary table.

• Two telescopic attachment legs.

• Multiple special purpose intervention tools, including an eddy current

inspection probe, an eddy current array probe ('Math Scan'), a Current

Output Measurement tool for CP monitoring, and an MPI tool. The eddy

current and MPI tools incorporate force feedback.

• Computer control system used in conjunction with stereo cameras to acquire

a model of the workpiece.

The computer controller provided facilities for automatic tool handling, trajectory

generation, teach and replay operations and manual overlay during automatic trajectory

control. It included an advanced man-machine interface with 3D graphics (see

Figure 2.9)

Figure 2.9 - REMO 3D graphical user interface [from Ricci 1996]

The prototype REMO had passive attachment legs which were placed on the structure

by the manipulator. They were awkward to install and fragile, and made adjustment of

the ROV position difficult, and so were replaced on the production system by hydraulic

powered 5 function legs.

REMO underwent dry trials, then shallow water trials (see Figure 2.10), then offshore

trials during 1994.

53

Figure 2.10 - REMO system during ACFM trials [courtesy TSC Ltd]

During 1995 it conducted a 40 day inspection campaign on the Phillips Ekofisk Field

during which it cleaned and inspected some 30 nodes: "It satisfied certification

authorities and proved superior to using divers with respect to accuracy, repeatability

and crack detection capabilities. REMO found four cracks during the job." [Stolt Comex

Seaway RR]. Later that year it conducted the annual inspection campaign for Elf on the

Frigg Field.

2.5. ATES

During the late 1980's and early 1990's Tecnomare in Italy were working with AEA in

England on developing a Work Inspection Robot (WIR) as part of a European

EUREKA project. This was aimed at designing an advanced ROV system with

attachment legs, and a high precision manipulator on a telescopic boom, primarily for

nodal weld inspection [Smith 1990]; this system is believed to be the forerunner of

ATES.

ATES (Advanced TElemanipulation System) was developed under the European

Thermie programme by Saipem, in conjunction with Sonsub1 and Tecnomare, during a

4 year project running from late 1992 [Brambilla 1996]. The aim of the project was to

1 It is interesting to note that the Sonsub Engineering Manager responsible for ATES testing, Espen
Moller, was previously the REMO project manager.

Chapter 2: Robotic ROV Manipulator Systems

54

Chapter 2: Robotic ROV Manipulator Systems

develop a general purpose subsea robotic system based on work performed up to the

mid-1980s [Moller 1996].

Figure 2.11 - ATES advanced robotic system [from Sonsub CN3/1]

The subsea part of ATES comprised a toolskid carried under a standard ROV and

carrying the following equipment (see Figure 2.11):

• Schilling Titan manipulator with force/torque control sensor at the wrist.

• Attachment legs designed to hold the system onto a work site, but not

necessarily to hold it rigid.

• Tecnomare TV Trackmeter mounted on a pan and tilt unit. The Trackmeter

is a non-contact stereoscopic measuring device which uses an advanced form

of real-time photogrammetry to construct a digitised image of the worksite

[Sonsub CN]. It is able to register targets in its view and calculate residual

motions of the toolskid from the apparent motion of the targets.

• Motion reference unit (MRU) to provide the system with roll, pitch and

heading data.

• Computer control system used in conjunction with the Trackmeter to operate

the manipulator with automatic compensation for movements of the ROV.

55

Chapter 2: Robotic ROV Manipulator Systems

In the surface control cabin there were computers for the ATES supervisory control

computer and the TV Trackmeter. The control system included an advanced man-

machine interface with 3D graphics (see Figure 2.12), and a joystick for resolved

motion control of the manipulator in multiple co-ordinate frames.

Figure 2.12 - ATES user interface [from Sonsub ATES RSE and Sonsub CN4/2]

The first prototype, ATES 1 (see Figure 2.13), was completed in 1996 and tested

mounting a Titan II manipulator and TV Trackmeter. ATES 2 was an upgraded system

with a Titan III manipulator and improved Trackmeter, and ATES 3 incorporated

improved control software. Two ATES systems were built with the intention that while

one was being tested the other was being developed to the next stage, so that at one time

there would be an ATES 1 and an ATES 2, then an ATES 3 and an ATES 2, and so on.

Figure 2.13 - ATES 1 prototype [from Sonsub ATES RSE]

56

Chapter 2: Robotic ROV Manipulator Systems

ATES was successfully demonstrated cutting steel plate, stabbing and air/grit cleaning,

as well as making and unmaking hydraulic connections, turning a valve, connecting and

disconnecting a shackle, and conducting NDT on a test plate [Moller 1996]. These tests

were conducted during 1995 at the GMC tank in Aberdeen, at a pier in Stavanger and in

the Stena tank in Aberdeen [Brambilla 1996], in each case carried by Sonsub’s Triton 16

ROV.

2.6. ARM

The ARM system was the basis for the work undertaken for this thesis and will be

described in some detail.

2.6.1. ARM Development

Under the sponsorship of Mobil North Sea Limited and the UK government's Oil

and Gas Projects Supplies Office (OSO), a project was begun in 1991 to design and

build a new, advanced ROV-based node cleaning and inspection system. It would

incorporate a completely new underwater manipulator - to be designed, built and

tested by Slingsby Engineering Limited (SEL) - and an advanced computer control

system, designed, built and programmed by the Control and Robotics group of

Technical Software Consultants Limited (TSC) in conjunction with University

College London (UCL). The first build manipulator and control system were

completed during ARM Phase 1 which ended in September 1994 [Broome 1993a;

Broome 1993b; Hartley 1993; Langrock 1993; Broome 1994; Greig 1994; Langrock

1994; Larkum 1994a; Larkum 1994b]. At about this time, an additional research

project, ARM Vision, was conducted into using a vision system connected to the

manipulator controller to compensate for residual motions of the ROV when

attached [Turner 1993; Tisdall 1994].

ARM Phase 2 was completed in September 1995 with the build of an entire

inspection system consisting of an improved Slingsby manipulator, an enhanced

control system, and a toolskid (with a manipulator deployment system and

attachment legs) which could be under-slung on any standard work-class ROV.

ARM Phase 3 successfully demonstrated a full commissioning trial of automated

underwater inspection. This took place in the NHC test tank facility in Aberdeen

over a four week period in March 1996, at the same time as the TSC Control and

Robotics Group became General Robotics Limited (GRL). The complete ARM

57

Chapter 2: Robotic ROV Manipulator Systems

System, carried on a Slingsby ROV known as the Multi-Role Vehicle (MRV)

[Hartley 1992], is shown in Figure 2.14. It was deployed on an 18 ton T-piece node

and demonstrated that it could successfully attach, conduct inspection work on the

node, and find defects in the weld [Broome 1995a; Broome 1995b; Broome 1996;

Larkum 1996a; Larkum 1996b; Parkes 1996; Slingsby 1996; Larkum 1998;

Heale 1999].

Figure 2.14 - ARM System carried on an MRV ROV during the NHC trials

The complete system was again tested during 1997 conducting large scale ACFM

array inspection trials on a library of nodal welds as part of the European EDICS

project. These trials were also very successful, with the ARM system producing a

Probability of Detection (POD) on defects at least as good as a human diver.

During 1997 and 1998 GRL developed the ARM control system further to allow it

to conduct other dextrous tasks as well as ACFM inspection, including subsea

welding and grinding. Wet welding trials were conducted for Amerada Hess at the

end of 1997 [Allerton 1998] and wet grinding trials took place in 1998.

2.6.2. ARM Description

The ARM supervisory controller comprises a fast PC surface graphics control unit

linked via the ROV umbilical to a subsea arm controller. This provides full control

58

Chapter 2: Robotic ROV Manipulator Systems

of the manipulator, including manual master-slave telemanipulation and fully

automated, robotic task execution. A 3D video representation of the ROV,

manipulator and work site is presented to the operator using solid-shaded colour

graphics, and can be used to monitor the arm whilst planning or executing tasks. The

main graphical view has facilities for panning left and right and tilting up and down

and around the work space, and also the ability to zoom into and out from points of

interest. A camera view can also be defined on the ROV and the view quickly

changed to the camera viewpoint and back again as required. Secondary views can

be used to display plan and elevation views of the arm and its work area. The arm

can be controlled by a choice of input devices including keyboard, mouse, master

arm or joysticks and operated in a variety of co-ordinate systems such as joint,

world, tool, workpiece, etc.

All the subsea ARM equipment is mounted in a 3 tonne toolskid capable of being

carried on any work-class “ROV of opportunity”. This toolskid is an aluminium and

steel box frame structure mounting the following equipment:

• An advanced manipulator. It has a long reach of 2.5m, and large angular

ranges at each joint (typically 270°) allowing a very high degree of dexterity

and excellent access capability.

• An extend/rotate deployment system. This consists of a steel box frame

running down the centre of the toolskid and mounting the manipulator. It can

be extended up to 2m in front of the toolskid, and it can rotate the

manipulator shoulder through 360 degrees. This allows the arm to reach into

work sites that the ROV cannot access (see Figure 2.15), and enables the arm

to work as easily on its side or upside down.

• Attachment legs. These consist of hydraulic extending legs mounted on the

toolskid and terminated with suction feet. Three arms are the minimum

required for stable attachment, and they are usually arranged in a tripod for

maximum rigidity. This requires one to be attached to the top front face of

the ROV but a 'goal-post crossbar' is provided for this so no modification is

required to the ROV. The sticky feet can be attached anywhere on the

toolskid as required but the usual configuration is for one on either side

attached at the required height on the 'goal-post uprights' and the third on the

crossbar.

59

Chapter 2: Robotic ROV Manipulator Systems

Figure 2.15 - Diagram comparing the working volume of a standard offshore
manipulator with that of the ARM System

Once the ROV is docked onto a node, the arm follows a pre-programmed sequence

of moves to touch components of the node. The information gained through this

process - known as 'workpiece modelling' - is used to update the computer model of

the node for relative position and orientation. The standard ARM System for

workpiece modelling a cylinder, such as the chord, uses a proximity switch to touch

it in a sequence of three patches, each patch consisting of a square of four contact

points. The software calculates the vector cross product of the normal of each patch

to determine the cylinder axis. To completely model a node it is necessary to model

the chord and one other cylinder, determining the node centre from the intersection

of the two cylinder axes.

2.6.3. 3D Graphical User Interface

The ARM Computer System provides the manipulator operator with a very

advanced man-machine interface (see Figure 2.16) that makes use of the Microsoft

Windows Graphical User Interface (GUI). It runs on a high specification IBM PC

compatible and the graphics are typically displayed on a large screen monitor.

A special purpose CAD facility enables the construction of a range of workpieces,

based mainly on cylindrical or plate elements. This permits realistic workpiece

models to be generated from simple plate specimens such as t-butts up to complex

tubular nodes. In addition, a range of fixtures can be added such as sacrificial

anodes, risers, j-tubes, etc. All such items added to the model are checked by the

computer for collision with the manipulator during any tasks. Enhancements to the

graphical views include the ability to model and display weld seams, showing the

weld toes to be cleaned or inspected.
60

Figure 2.16 - ARM Computer System screen showing a Mobil Beryl B node

The ARM hardware fell into disuse from 1999 but the ARM software was further

developed and adapted to the Schilling Titan range of manipulators. This

development is described in Section 9.1. Introduction, in Chapter 9.

2.7. Summary

The requirement to conduct detailed NDT inspection on nodal welds led to the

development of three advanced, robotic ROV/manipulator combination systems -

REMO, ATES and ARM - during the 1990s. Although they were fairly different in

detail, they had many elements in common such as an advanced manipulator, a

manipulator deployment system, and attachment legs, and each demonstrated the ability

to conduct weld inspection (for example, all successfully took part in ACFM array

probe trials as part of the European ICON project [Raine 1996a]).

However, the ability of each system to access required welds for inspection was very

dependent on the initial location chosen to dock the ROV with its attachment legs.

Often a good location for attaching the legs was a poor one for manipulator access and

vice versa. At the same time, attempting to plan locations for docking manually was

very difficult because of the many variables in the system - where to attach each leg,

how to set the manipulator deployment system, how to choose the manipulator

configuration for best access, and so on.

The remainder of this thesis will look at different methods for choosing the optimum

docking location, comparing three methods: manual, selection by neural networks, and

numerical pre-processing.

61

a

Chapter 2: Robotic ROV Manipulator Systems

p eady |l>LVICL^!rtual ^tUMULX: Auto |l OOL: Inspection (wittALIo NG
ARM Cnmput UW»Ja_ | g t tar.bfrop I io | sf 1*1'

CHAPTER 3:
DEVELOPMENT OF NEURAL NETWORK SOFTWARE

3.1. Introduction

At the start of this work the author was working on the control software for the Slingsby

ARM system which was still being developed. ARM posed a number of problems and

interesting areas of research that were also applicable more widely to terrestrial

robotics, such as the solution of manipulator kinematics with redundancy (since the

complete ARM system had a 6 DOF manipulator on a 2 DOF deployment system) and

real-time collision avoidance in a complex environment.

At the time neural network research was a burgeoning field and it was known that

neural networks had been used successfully for solving problems which had shown

themselves to be insoluble by other methods - either theoretically or because of

practical time or computation constraints. It was therefore decided to investigate the

field of neural networks and to look at the development of a neural network system to

supplement the ARM control system for particular, appropriate tasks. This chapter will

describe the history of neural networks and their application to the control of

manipulators, ROVs and related topics. It will then describe the development by the

author of new neural network software.

3.2. Neural Network History and Terminology

Artificial Neural Networks (ANNs) are systems that, unlike conventional computers,

have a structure which, at some level, reflects what is known of the structure of the

brain. The use of neural networks for solving problems is known as neural computing.

Neural computing has been defined as the study of networks of adaptable nodes which,

through a process of learning from task examples, store experiential knowledge and

make it available for use [Aleksander 1990]. However, this is not an ideal definition as

it does not take account of many of the simpler configurations of network that are

possible. Many of these can be very useful for pattern recognition and memory retrieval

62

Chapter 3: Development o f Neural Network Software

but are not adaptable and do not learn. Better terms are Parallel Distributed Processing

(PDP) or Connectionism since these describe the low level arrangement of processing

units but do not limit the implementation or configuration.

The fundamental element of the brain is known as a neuron. A diagrammatic view of a

neuron is shown in Figure 3.1. It receives input signals from many other neurons, on

branches known as dendrites. In response it may output a signal along its axon which

also branches and can therefore pass the signal on to many other neurons. At the sites

where the signals arrive there is a small gap between the incoming path and dendrite

known as a synapse. This transfers the signal across the gap chemically.

While the basic operation of a neuron is very simple, it is also very powerful. The

incoming signals may be inhibitory, tending to stop the neuron 'firing’, or excitatory,

tending to make it 'fire'. The incoming signals are combined and the result may cause

the neuron to fire and so to affect further neurons. The effect of each synapse is variable

and so the neuron can come to 'learn' to fire in response to certain combinations of input

signals.

In 1943 a neurophysiologist, Warren McCulloch, and a logician, Walter Pitts, together

proposed a simple model for neuron operation. In this model the effect of each synapse

is represented by a weighting value applied to the incoming signal, the resulting

weighted signals are summed, and if the result is beyond a certain threshold then the

output signal is set to 'on', otherwise it is 'off. This model forms the basis for the nodes

in all neural networks and is known as the McCulloch and Pitts or MCP model.

Synapse

Dendrite

Cell

Axon

From other neurons

Figure 3.1 - Schematic Diagram of a Neuron

63

Chapter 3: Development of Neural Network Software

The most influential work on neural nets was undertaken in the mid-1960's by Frank

Rosenblatt. He created a network where inputs underwent some simple pre-processing

then each was multiplied by an adjustable weight. The resulting signals were summed

and if the result was greater than a fixed threshold then an output signal was generated.

The input signals were generated from visual information, the operation was electronic

and the. system was named the Perceptron [Rosenblatt 1962]. This system and

developments of it are known as pattern associators and showed great success in

pattern recognition and other areas.

In the late 1960's, however, Marvin Minsky and Seymour Papert demonstrated that

there were a number of supposedly simple pattern recognition tasks that the Perceptron

could not do. Not only that, but in a detailed theoretical treatise they demonstrated that

there were certain so-called hard learning tasks that a Perceptron-type network could

never achieve [Minsky 1969]. The study of neural networks suffered a major setback.

Proponents demonstrated that many tasks impossible to Perceptrons could be achieved

if the simple input layer-output layer structure was replaced by a more complicated

input layer-hidden layer-output layer structure. However, no-one could demonstrate a

means of teaching the hidden layer neurons to change their weights and therefore to

learn.

It was not until the 1980's that interest in neural networks was rekindled. In 1982 John

Hopfield published a very influential paper on the subject and drew attention to two

properties of fully interconnected or auto-associative nets [Hopfield 1982]. Firstly, there

will be stable states which will always be entered if the net is started in similar states.

Secondly, such states can be created by changing the interconnection weights in the net.

While these nets can be shown to be very useful as content-addressable memory

systems, more important was Hopfield's concept of an energy level in the net, with the

net tending to settle into a lowest-energy state. This was achieved by introducing an

asynchronous updating system. In previous nets, inputs were simply summed together at

one time. In this net, the input signals occurred at random times and so the nets

regularly changed state and were therefore able to settle into low energy states.

One drawback of Hopfield nets was that sometimes the final states were only local

energy minima and not the global minima required. This problem was solved by

Geoffrey Hinton and Terry Sejnowski in 1986 [Hinton 1986]. They borrowed many

ideas from thermodynamics and added a variable, 'temperature', to the system. This was

high when the net started and was decreased over time. At high temperatures there was

64

Chapter 3: Development of Neural Network Software

a great deal of noise and therefore the system tended to jump out of local minima and,

as the temperature decreased, the net eventually settled into the global minima, i.e. the

correct solution. This technique is known, because of its origins, as simulated

annealing. The resulting network is known as a Boltzmann machine and is one of a

range of similar nets known as constraint satisfaction networks.

The othef drawback of Hopfield nets, and those derived from them, was the requirement

that they be fully interconnected, i.e. that every neuron is connected to every other

neuron by a variable weight link. Clearly, this became a major overhead as the number

of neurons increased. A major breakthrough was made by David Rumelhart, Geoffrey

Hinton and Ronald Williams, also published in 1986, which has led to the current

resurgence in interest in neural nets [Rumelhart 1986a]. They were part of an important

group working on Parallel Distributed Processing, to use their term, and demonstrated a

new method for training hidden layer neurons in a multi-layer network that was not

fully interconnected. This uses two training steps. First there is a 'forward' phase during

which the input is applied and allowed to propagate to the output. The error values of

the output units are then calculated and compared to their required target values. During

the second phase these errors are propagated 'backwards' and the weights are changed

appropriately. This method is therefore known as back propagation and is the main

technique currently used in neural network research.

3.3. Implementation

McCulloch and Pitts proposed their model of the neuron as something that could be

built at the time using a summing amplifier and voltage comparator. The greatest

difficulty in implementation was the requirement for a variable weight as the only

practical method used a motorised variable resistor for each neuron and any reasonably

sized machine would potentially require the operation of thousands of motors.

With the advent of digital computers, the majority of work on neural networks is now

done in computers using software simulation of neurons. A neuron is simply a variable,

though usually implemented as a member of an array. The weights are held in a two-

dimensional array representing the potential connection between each neuron and every

other neuron. The combination of inputs and the determination of an activation value for

each neuron is done mathematically, usually with a transfer function.

Some current implementations requiring high speed extend this method by using extra

hardware. This may include extra maths circuitry or the use of processors in parallel; in

65

Chapter 3: Development of Neural Network Software

either case the principles are the same. These techniques may change in the next few

years as practical implementations of neural networks appear on silicon. Special

purpose neural network components, particularly Integrated Circuits, promise great

potential for the future, particularly in terms of speed. However, they have to overcome

the difficulty of providing, at the upper limit, a connection on the silicon between each

neuron and every other neuron.

3.4. Related Applications

Neural networks are increasingly being applied in many research areas, particularly for

pattern recognition, prediction and data fusion. For example, by the early 1990s they

were being used for visual interpretation [Bishop 1993], recipe prediction [Bishop

1993], hybrid expert systems [Kasabov 1993] and other areas of artificial intelligence

[Grant 1993]; since then they have become ubiquitous. In the area of control they have

been used for process control, adaptive control [Colina-Morles 1993] and robot control.

Research into applying neural nets specifically to manipulators, ROVs and other

offshore tasks will be described in more detail here.

3.4.1. Control of Conventional Manipulators

This is the control of conventional (i.e. non-redundant) robot manipulators using a

hybrid controller incorporating a neural network. A number of problems in this area

have been addressed. Some use the neural network to calculate an inverse kinematic

solution to a world position problem. For example, Ahmad showed that it is possible

to use a neural network to produce a 'first guess' to an inverse kinematic solution,

the final solution is then obtained by an iterative process [Ahmad 1989]. This has

been demonstrated on a PUMA 560. Yeung used a neural net to learn the inverse

Jacobian matrix for a PUMA 560 to achieve inverse kinematic control [Yeung

1989]. Cohn proposed a method for optimising the kinematic training using

techniques from Optimal Experiment Design (OED) [Cohn 1994].

Others have used the network to learn the moves required to approach or track a

moving object, a task which is of great use on an assembly line. Van Der Smagt has

used a net to learn how to move a simulated robot to an object [Van Der Smagt

1991]. The object was restricted in position to a horizontal plane and an overhead

camera was used to determine the relative position of the object. Walter did similar

work but actually controlled a PUMA 562 to move to the point indicated [Walter

66

Chapter 3: Development o f Neural Network Software

1993]. In this system the object could be anywhere in the workspace of the robot,

and its position was determined by the use of two cameras. Elsharkawi's work used

some of the same ideas but with distance sensors mounted on the robot gripper in

place of external vision systems [Elsharkawi 1992]. He used the PDP software

developed by McClelland and Rumelhart [McClelland 1988] to build a back

propagation network; the original system was implemented in simulation only. A

Hopfield network has been used for a motion planning system for obstacle

avoidance along complex paths, both for mobile robots and manipulator arms

[Glasius 1995].

The dynamic control of a robot manipulator is usually very difficult to achieve by

conventional techniques but neural nets have shown some success in this field. The

CMAC (Cerebellar Model Articulation Controller) developed by Albus in the 1970's

[Albus 1975] was used as the basis for a number of such systems. Miller et al used a

CMAC system to learn the dynamics of a General Electric P-5 robot during high

speed movements, in order to closely follow a required trajectory [Miller 1990].

Graham used a modular architecture with one CMAC system per link and showed

successful results in simulation for a two-link manipulator [Graham 1991]. Johnson

implemented an Adaptive Model-Based Neural Network Controller (AMBNNC)

with a multi-layer Perceptron architecture [Johnson 1990]. This was taught dynamic

control under varying payload conditions and was shown to closely track a given

trajectory even with payload changes while moving. It was experimentally evaluated

on the third link of a PUMA 560.

A team at the University of Ghent successfully used a Kohonen net to calculate the

inverse kinematics for a SCARA robot without an end effecter (i.e. ignoring wrist

orientation) [Declercq 1994]. The method was straightforward and easily adaptable

to different robot configurations; however, it did not always converge to a solution,

there was a minimum residual error (inversely proportional to the size of the

network), and the system was susceptible to singularities. A theoretical examination

of neural networks and similar systems for adaptive non-linear control showed that

they could be used to solve conventionally difficult problems such as the dynamics

of a multi-link robot arm [Sanner 1994].

More recently, a group at the University of Bonn successfully brought together a

number of these ideas. They developed a robot control system for a Siemens

Manutec robot with two neural networks. The first, the Neural Kinematics Network

67

Chapter 3: Development o f Neural Network Software

(NKN) solved the inverse kinematics [Dapper 1997] while the second, the Neural

Dynamics Network (NDN) was able to provide force control so that the robot could

smoothly conduct contact tasks such as using a screwdriver [Dapper 1998]. A later

enhancement to the NKN, known as Neural Trajectory Optimisation (NTO), used a

modified Radial Basis Function (RBF) network to optimise the kinematic control

and calculate not just the joint angles but also the velocities and accelerations

required to conform to a defined trajectory such as along a surface [Maafi 1998].

3.4.2. Control of Redundant Manipulators

Here the aim is the inverse kinematic control of a redundant manipulator, a problem

that is very difficult to solve conventionally. Ahmad extended his 'first guess'

technique, mentioned above, to redundant manipulators. He used a three-layer

Perceptron with back propagation, and the method was demonstrated on a three-link

planar manipulator in simulation [Ahmad 1990]. Tanaka used a modular CMAC

architecture with one CMAC system per link [Tanaka 1991]. The net was taught on

forward kinematic data and was later able to select an inverse kinematic solution.

The algorithm used was based on the pseudo-inverse of the Jacobian matrix. The

system was again demonstrated in simulation on a three-link planar manipulator.

Work was done at the National Advanced Robotics Research Centre (NARRC) at

Salford into the control of a seven-jointed manipulator utilising the redundancy to

allow on-line collision avoidance [Boddy C. 1993]. This used a 'configuration

control technique' and did not originally make use of neural networks; however, a

neural network system was suggested for a theoretical implementation of a

controller for a redundant manipulator with provision for collision avoidance

[Morasso 1991] - it is not known if this materialised. A more advanced system

implemented by Dissanayake used a neural network to control a sixteen-link

manipulator moving in a plane while avoiding collisions with a number of objects

and was successfully demonstrated in simulation [Dissanayake 1993].

3.4.3. Offshore and Oceanographic Usage

With regard to general offshore and oceanographic use, a back-propagation

Artificial Neural Network Controller (ANNC) was demonstrated in simulation as

being able to conduct automatic berthing of a ship [Djouani 1994]. Another back-

propagation network was used for current prediction for shipping guidance

[Wiist 1994].

68

Chapter 3: Development o f Neural Network Software

Other applications included analysis of phytoplankton in seawater [Boddy L. 1994],

visual classification of organic samples [Ellis 1994], filtering of additive noise

[El-Hawary 1994], calculating wind speed and direction from scatterometer

(microwave radar) data [Mejia 1994], 'meshing' a geographical area (mapping the

distribution of hydrological data samples) [Sarzeaud 1994], adaptive signal

processing in underwater acoustic communications [Gomes 1995], simulation of

auditory neurons in dolphins [Dubrovsky 1994], sea-floor classification [Zerr 1994],

and tomography (physical field parameter distribution) data processing [Kamenev

1995; Stephan 1995; Terre 1995].

3.4.4. Use with ROVs and AUVs

Looking more specifically at applications involving ROVs and AUVs, research by

the control group at UCL was conducted into using neural networks to provide

adaptive force control between a manipulator and a workpiece, with a view to

eventually providing a means for adaptive weld following for an ROV manipulator

[Wang 1994; Tisdall 1995; Tisdall 1997].

The 'AUV for Deep-sea Borehole Re-entry' project developed an RBF neural

network for use as an AUV controller. It was able, in simulation, to produce the

correct demands to control an AUV to re-enter a designated borehole [Feng 1994].

Theoretical work was conducted into using the SIGNAL process control language

for programming neural networks for AUV control [Cherruel 1994]. Simulation

results showed that a neural network controller for AUV depth outperformed a

standard PID controller in the presence of noise or when the mass of the vehicle

changed [Sutton 1994],

A multi-layer neural network was used as a directional controller on a test-bed

AUV, taking the output from a flux gate compass and successfully controlling two

thrusters in the horizontal plane to keep the AUV on a required heading [Guo 1995].

Less propitiously, a neural network was used for multi-sensor fusion on an ROV but

was found to be insufficiently robust and was replaced by a conventional Kalman

filter [Drolet 2000].

The DeepC project currently being promoted by the German Federal Ministry of

Education and Research is aimed at developing and demonstrating an AUV with a

decision-making system using fuzzy algorithms and neural networks. It has a core

simulation element "for generating strategies of computerised learning and training

69

Chapter 3: Development o f Neural Network Software

neural networks. Based on the operator-guided AUV operations in the virtual world,

human behavioural patterns... are transferred to the vehicle" [Homfeld 2002].

No references have been found in the literature specifically to using neural networks

for selecting ROV docking locations.

3.5. Development of New Software

At the outset of this work, and after an appraisal of available neural network systems, it

was decided to create new neural network software from scratch for the following

reasons:

• To provide software that could be directly linked in to ARM, or equivalent

manipulator control software, for example as a library, rather than have to be run

independently as a separate program.

• To investigate the main types of neural network and to determine the suitability

of each for the tasks considered.

• To provide greater flexibility in the design of the network, and to provide greater

opportunities for optimisation of those parts of the system most applicable to the

task.

• As a learning method for the author, a technique to learn not just about the uses

of neural networks but also to attempt to learn something about their internal

programming.

Following on from the first requirement, the software system developed during this

work, which was originally referred to as Windows Neural Networks (or “WinNeural”),

was designed from the outset to run in combination with another Windows application

such as ARM. It was therefore implemented in two parts. One half, the interface

application, has libraries for interaction with the user, via dialog boxes and graphical

windows. The other half has independent libraries for neural network calculations and

file interpretation. These libraries are currently accessed directly by the interface

application but could readily be used by a separate application such as ARM. These

libraries could also be encapsulated into dynamic link libraries (DLLs), if required, in

order to facilitate this process further.

The main types of neural network considered are given in the following table. The

nomenclature is that used by McClelland and Rumelhart of the PDP Research Group

70

Chapter 3: Development of Neural Network Software

[McClelland 1988], but common alternative nomenclature is also given. The PDP

nomenclature and terminology will be used in the rest of this work.

PDP Network Type Subtypes Alternative Name

Interactive

Activation and

Competition, IAC

(Processing)

Constraint

Satisfaction, CS

(Processing)

Schema Model

Boltzmann Machine

Harmony Model (Harmonium)

Pattern Associator,

PA (Learning)

Hebb rule

Delta rule Perceptron [Rosenblatt

1962]

LMS Associator

Auto Associator

(Linear Auto-Associator,

DMA Model)

Kohonen net

Brain-State-in-the-Box

(BSB)

Back Propagation,

BP (Learning)

Feed-forward

Cascaded feed-forward

Recurrent

Sequential

Competitive Learning

Table 3.1 - Table of Neural Network Types

71

Chapter 3: Development o f Neural Network Software

The yellow shaded boxes in Table 3.1 indicate the seven neural network types or sub-

types that were fully implemented as part of this work. Their theory, operation and

testing will be described in the next chapter. Some experimental implementation of

Back Propagation extension types, such as cascaded feed-forward nets, was also

conducted (and some of the NNW dialog boxes allow certain parameters for these types

to be entered) but they were not proceeded with as they did not appear to be applicable

to the tasks under consideration.

3.6. Neural Networks for Windows (NNW)

After initial study of the theory and use of neural networks, particularly the work of the

PDP research group, development of the WinNeural software began. It was based on

PDP theory but coded entirely by the author. It was originally written in the C language

using the Microsoft QuickC compiler and development environment. In order to provide

an objective measure of its effectiveness and the accuracy of its results it was designed

from the outset to be able to read files in the public format published by McClelland and

Rumelhart of the PDP Research Group [McClelland 1988]. Hence the software

developed during this work is able to read this format and run neural networks defined

by them. It does not use any of the same code, and this can lead to slight discrepancies

in the published results and those produced by this software; these discrepancies are

examined further in Section 4.10. Discussion of Deviations.

The software underwent many years of development and changes, including a move

from the C language to C++ (and from the QuickC to the Visual C++ compiler) and a

change of name from WinNeural to Neural Networks for Windows (NNW). This

development is covered in detail in Appendix B, with a full listing of all versions and

their features.

The next sections describe the operation of this software, both the WinNeural and NNW

versions. NNW has essentially all the features of, and is fully compatible with,

WinNeural although it has an improved user interface. For convenience all versions will

be referred to as “NNW”, and all screenshots below are taken from the latest versions,

v l.l and vl.2, running under Windows 2000.

72

3.7. NNW in Use
Chapter 3: Development o f Neural Network Software

Fte Edt View speoly Sedhgs tTputs Patterns Rui options wndcw Heh

oiB»iBj¥i vm 'm'«■!" tvn tiwi
J e ts 84 0 A rt 0 0 P h il I! 0 _Art 16 0 P hil lo
Sharks 0 A1 0 Ike 1 1 0 A1 1 3 0 Ike 14

0 San 0 0 Nick 11 0 Sam 16 0 _Nick 15
in20s 51 □ Clyde 0 0 Don 11 0 -Clyde 16 0 Don 1 t

0 in 30s 0 Mike 0 0 Ned 1: 0 _Mike 16 0 _Ned
0 in40s 0 J in 0 0 Karl 11 0 16 0 _Karl i t

0 Greg 0 Ken 11 0 _Greg 0 Ken -
JH 51 0 Q 0 Earl i 1 D 16 Q Earl 1 r.
HS 0 Doug 1; 0 Rick 1: 0 _Doug 1 0 Rick 16
College 0 Lance 0 0 01 1 1 0 _Lance 16 0 01 I t

0 George 0 0 Neal 11 0 _George 16 0 _Neal 15
0 S ingle 51 0 Pete 0 0 Dave 1i 0 _Pete 16 0 _Dave 11
0 Married 0 Fred 0 0 _Fred 16
0 Divorce 0 Gene 0 0 Gene 16

0 Ralph 0 □ _Ralph 16
Pusher 16
B urglar 16
Bookie 16

pmigBMKifcs J O j x J
Weights.

0.00 - 1.00
-1.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00 Jf \

0.00
0.00
0.00

- 1.00
- 1.00
0.00
0.00
0.00
0.00
0.00 '
0.00

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

- 1.00 -1.00 0.00 0.00
0.00 1.00 0.00 0.00

-1.00 0.00 0.00 0.00
0.00 0.00 0.00 -1 -CM)
0.00 0.00 - 1.00 0.00
0.00 0.00 - 1.00 - 1.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

- 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
-1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 - 1.00 - 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 - 1.00 0.00 - 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 - 1.00 - 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

Figure 3.2 - NNW screen during an Interactive Activation and Competition problem

Figure 3.2 shows NNW during operation of a simple PDP IAC network. This example

is of a 68 node neural network which is fully connected and is being used as content-

addressable memory. Each node represents a person (in this example characters from

the musical ’West Side Story') or a property of a person (e.g. their age, marital status or

gang). Each person node is linked by a positive weight to the properties that are true for

that person and by a negative weight to the properties that do not apply. The properties

of this type of network using this example will be described in detail in Section 4.2.

Interactive Activation and Competition Network.

73

Chapter 3: Development o f Neural Network Software

0e 3»d(y Settrgs JppKs Eattems Bin a x » re Wxlom fcSt>

Diktat>1 l | I t| I tw
□B

I R1 R2 RT VI V2 VT
oo io i i oo oo oo :oIn p u ts

F ea tu re s 00 !0 11 00 00 00 .0

cyeleno 0
testp 1.0000
barsony 0.0000

knowledge a tc n a c tiv a tio n s

u u u u u s s s d d d d d
u s d d d u s d u u u s d
u u u s d u s d u s d d d

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o
o o o o o o o o o o o o o

Weights:

0.00
0X0
0.00
0X0
0.00
0.00
0.00
0X0
0.00
0.00
0.00
0.00

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0X0
0.00 0.00
0.00 0.00
0.00 0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00000
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.17
0.17
0.17
0.17

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.20 0.17
0.20 0.17

-0.20 0.17
0.00 X.17

0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.20 0.17
0.20 0.17
0.20 0.17

-0.20 X.17 z]Jd

Figure 3.3 - NNW screen during a Constraint Satisfaction problem

Figure 3.3 shows NNW during operation of a Constraint Satisfaction network,

specifically a Harmony Model variant. In this case the net has been given the basic laws

of electrical circuits, Ohm's and Kirchoffs laws, and the nodes represent current,

resistances, changes in resistance, total resistance, voltages, changes in voltage and total

voltage. The laws have been stored in the weights so that, for example, there is a

positive weight from increasing voltages to increasing total voltage, and likewise for

resistances. The relationships between current, voltage and resistance, summarised by

V=IR, are then deduced by the network when it runs. The properties of this type of

network using this example will be described in detail in Section 4.5. Constraint

Satisfaction Network, Harmony Model.

Figures 3.2 and 3.3 also demonstrate the NNW display and net contents windows. The

display window shows the problem specified along with any inputs and results, and the

contents window shows the internal matrix of weights between all nodes.

74

CHAPTER 4:
TESTING AND VERIFICATION OF NEURAL NETWORK SOFTWARE

4.1. Background

As each type of neural net was completed in NNW it was tested against published PDP

files. The types developed, as detailed above, were the Interactive Activation and

Competition (IAC) network, then the Constraint Satisfaction (CS) network, in its

Schema, Boltzmann and Harmony variants, then the Pattern Associator (PA), and

finally the Back Propagation (BP) network. The results of testing are given in this

chapter; in addition some background theory and implementation notes are given. The

networks generally are similar in construction, though increasing in complexity, and so,

to save repetition, each network type is generally only described in terms of how it

differs (in theory and use) from the type(s) described up to that point.

When analysing the displayed results it should be noted that because of display space

constraints:

• All numbers are scaled up by a factor defined in the template (. tem) file. This is

usually either 10, so 0.9 is displayed as 9, or 100, so 0.99 is displayed as 99 — the

scale factor is usually clear from the context.

• 1.0 when scaled by a factor of 10 would take two digits to display whereas all

other numbers only require one so it is represented as * (similarly when scaled

by a factor of 100 it is represented as **).

• Negative activations are shown in red.

4.2. Interactive Activation and Competition Network

4 .2 .1 .1 AC Theory

An IAC network consists of a collection of processing units organised into some

number of competitive pools. There are excitatory connections among units in

different pools and inhibitory connections among units within the same pool. The

75

Chapter 4: Testing and Verification of Neural Network Software

excitatory connections between pools are generally bi-directional, thereby making

the process interactive as processing in each pool both influences and is influenced

by processing in other pools. Within a pool, the inhibitory connections are usually

assumed to run from each unit in the pool to every other unit in the pool; there is

therefore a kind of competition among the units so those that receive strongest

activation tend to drive down the activation of the other units. The general

arrangement of an IAC network is shown in Figure 4.1 where the units are shown in

green, inhibitory connections are in red and excitatory connections are in blue.

Connections that are uni-directional are shown with an arrowhead; otherwise

connections are bi-directional.

External
Inputs

External
Inputs

External
Inputs

Figure 4.1 - Diagrammatic representation of an IAC Network

The units take on continuous activation values between a maximum value, max

(default 1.0) and a minimum value, min (default -1.0). Their output to other units is

the activation minus a threshold value (fixed for IAC networks at 0.0). The

activations of the units evolve gradually over time, which is modelled as a sequence

of small, discrete steps, known as cycles, based on a function that takes into account

both the current activation of the unit and the net input to the unit from other units or

from outside the network.

76

Chapter 4: Testing and Verification of Neural Network Software

The net input to unit i is the sum of the influences of all the other units in the

network plus any external input. The influence of some other unit j is the product of

that unit's output, outputj, times the strength or weight, Wy, of the connection to unit i

from unit j:

neti = Jw .ou tpu t, + extinputl - Eq. 4.1
j

where outputj is the activation of unit j if positive, otherwise it is zero. The resulting

change in activation is given by:

A a, = (max - a) net, - decay (at - rest) when net, > 0 - Eq. 4.2

Aaj = (a, - min)netj - decay (a, - rest) when net, < 0 - Eq. 4.3

where rest is the resting activation level to which activations tend to settle in the

absence of external input, and decay determines the strength of the tendency to

return to resting level - in general 0 < decay < 1, and min < rest < 0.

In the general case, three further parameters are considered, estr, alpha and gamma,

which can be used to scale the strength of external input, internal excitatory input

and internal inhibitory input respectively. The net input is then the external input

scaled by estr, plus the excitatory input from other units scaled by alpha, plus the

inhibitory input from other units scaled by gamma.

Note that the net input to a unit changes as the unit and other units in the same pool

simultaneously respond to their net inputs; one effect of this is to amplify

differences in the net inputs of units. The end result is a phenomenon known as the

"rich get richer" effect - units with slight initial advantages, in terms of their

external inputs, amplify this advantage over their competitors.

4.2.2. IAC Im plem entation

For the initial implementation of NNW, two generally applicable data structures

were created: VectorN, a vector array of n elements, with each value held in the list

as a double type:

typedef struct {
int nElements;
HANDLE hElementList;
} VECTORN;

where hElementList is created as follows:

77

Chapter 4: Testing and Verification of Neural Network Software
hElementList = GlobalAlloc(GMEM_MOVEABLE,

pVectorn->nElements * sizeof(double));

and MatrixN, a vector array of n x VectorN vectors:

typedef struct {
int nVectorns;
HANDLE hVectornList;
} MATRIXN;

When a network is created, e.g. in response to reading in network definition files, all

parameters are initially set to default values, then a series of vectorNs is created to

hold the values of activation, excitation, inhibition, external input, etc. for all units

in the net, plus a MatrixN to hold the array of weights between units. Any parameter

values specified in the network files are then used to override the defaults.

The rule for calculating the change in activation described above is that proposed by

the PDP Research Group. Another rule was proposed by Grossberg, one of the early

researchers in this area, of the following form:

A a, = (max - a)e - (a, - minfi - decay (a, - rest) - Eq. 4.4

where e is the excitatory input, which drives the activation of the unit up towards the

maximum, and i is the inhibitory input, which drives the activation back down

towards the minimum. Both rules have been implemented in NNW and are selected

from the Options menu (the default is PDP Group Update).

A network is created by selecting File: New in NNW, choosing a network type, then

loading in suitable definition files (typically a strengths file, . str, and a template

file, .tem, which may themselves load further network definition, .net, and

weights, . wts, files). When the network is set cycling (by selecting Go on the Run
menu), at each cycle the new activation of each unit is calculated, based on the net

input and the existing activation value, and then the screen display is updated. This

continues until the total number of cycles set is reached, after which it can be set

cycling again. Alternatively, (using the Reset command on the Run menu) it can be

reset back to its starting state - this resets the unit activations to their starting levels,

the current cycle number to zero, and all other parameters to their starting values,

before refreshing the display.

Discussion of a scenario representing members of two gangs known as "Jets" and

"Sharks" (presumably inspired by West Side Story) has been published in some

detail [McClelland 1986] as well as example tests and results [McClelland 1988].

78

Chapter 4: Testing and Verification of Neural Network Software

This scenario is used here to illustrate the main features of an IAC network and the

results of testing with NNW.

4.2.3. Retrieving the Attributes of an Activated Node

Providing a high input to an individual's name and then cycling leads to all of the

attributes associated with the individual becoming activated (i.e. gang, age,

education, marital status and occupation). NNW produced a set of results (Figure

4.2 shows the state after 100 cycles) essentially identical to the published PDP

results1 - activating Ken to maximum has led to high activation of sharks, in20s,
High School, Single and Burglar respectively2.

0 Jets 13 0 Art 14 0 Phil 14 0 Art 14 0 Phil 14
0 Sharks 51 0 Ai 14 0 Ike 14 0 _A1 15 0 _Ike 12

0 Sam ‘ 14 0 Nick 14 0 _Sam 13 0 _Nick 24
0 in20s 38 0 Clyde 14 0 Don 14 0 _Clyde 14 0 Don 13
0 in30s 1 0 Mike 14 0 Ned 14 0 _Mike 14 0 Ned 14
0 in40s 13 0 Jim 14 0 Karl 14 0 _Jim 14 0 _Karl 12

0 Greg 14 «• Ken 81 0 _Greg 13 0 Ken 68
0 JH 13 0 John 14 0 Earl 14 0 John 14 0 _Earl 4
0 HS 52 0 Doug 14 0 Rick 14 0 _Doug 12 0 Rick 4
0 College 13 0 Lance 14 0 01 14 0 _Lance 14 0 01 14

0 George 14 0 Neal 14 0 _George 14 0 _Neal 24
0 Single 51 0 Pete 14 0 Dave 14 0 _Pete 4 0 _Dave 12
0 Harried 13 0 Fred 14 0 _Fred 4
0 Divorce 13 0 Gene 14 0 _Gene 13

0 Ralph 14 0 _Ralph 14
0 Pusher 11
0 Burglar 38
0 Bookie 11

Figure 4.2 - IAC Network retrieving the attributes of an activated node

4.2.4. Retrieval From a Partial Description

Providing a high input to the attributes that uniquely identify an individual and then

cycling leads to the individual's name becoming activated. NNW produced a set of

results (Figure 4.3 shows the state after 100 cycles) essentially identical to the PDP

results - activating Sharks and in20s has led to high activation of Ken and Ken.

1 Taking into account that when directly comparing results the PDP and N N W activation values are
displayed very slightly differently (though they may be identical internally) because the PDP system
truncates to two significant figures where N N W rounds to two significant figures.
2 It has also led, naturally, to high activation of the Ken node which is an instance node (which can be
considered to be a form of output node). The instance nodes are hidden nodes in the network and cannot
be directly accessed by the user; instead they take their activations directly from the inputs they receive
from other nodes.

79

Chapter 4: Testing and Verification o f Neural Network Software
0 Jets 12 0 Art 13 0 Phil** Sharks 82 0 A1 13 0 Ike

0 Sam 13 0 Hick*-« in20s 82 0 Clyde 13 0 Don
0 in30s 12 0 Hike 13 0 Ned
0 in40s 15 0 Jim 13 0 Karl

0 Greg 13 0 Ken
0 JH 14 0 John 13 0 Earl
0 HS 62 0 Doug 13 0 Rick
0 College 14 0 Lance 13 0 01

0 George 13 0 Heal
0 Single 62 0 Pete 10 0 Dave
0 Harried 14 0 Fred 10
0 Divorde 14 0 Gene 13

0 Ralph 13
0 Pusher 11
0 Burglar 25
0 Bookie 11

13 0 Art 15 0 Phil 15
13 0 _A1 16 0 _Ike 13
10 0 _Sam 13 0 _Hick 31
13 0 _Clyde 15 0 Don 14
13 0 _Hike 15 0 Hed 15
13 0 _Jim 14 0 _Karl 13
34 0 _Greg 13 0 _Ken 66
13 0 _John 14 0 _Earl 11
13 0 _Doug 14 0 Rick 11
13 0 _Lance 14 0 01 15
10 0 _George 14 0 _Heal 31
13 0 Pete 31 0 _Dave 13

0 _Fred 31
0 _Gene 13
0 _Ralph 15

Figure 4.3 - IAC Network retrieving a node from a partial description of its attributes

4.2.5. Graceful Degradation

IAC networks are able to function even in the presence of erroneous information. It

has been shown above that providing a high input to the attributes that identify an

individual and then cycling leads to the individual's name being activated; however,

if sufficient correct attributes are activated then the individual's name will become

activated even if one or more of the attributes are incorrect.

In both cases NNW produced a set of results essentially identical to the PDP results

— activating Sharks, in20s, High School, Single and Burglar has led to high

activation of Ken and Ken (0.36 and 0.72); Figure 4.4 shows the state after 100

cycles. However, replacing High School with Junior High has led also led to an

activation of Ken and Ken but at lower values (0.27 and 0.59); Figure 4.5 shows the

state after 100 cycles.

0 Jets 12 0 Art 13 0 Phil 13 0 Art 16 0 Phil 16
*-• Sharks 84 0 A1 13 0 Ike 13 0 _A1 16 0 _Ike 14

0 Sam 13 0 Hick 11 0 _Sam 14 0 _Hick 27
** in20s 82 0 Clyde 13 0 Don 13 0 _Clyde 16 0 Don 14
0 in30s 10 0 Hike 13 0 Hed 13 0 _Hike 16 0 Hed 16
0 in40s 14 0 Jim 13 0 Karl 13 0 _Jim 14 0 _Karl 14

0 Greg 13 0 Ken 36 0 _Greg 14 0 Ken 72
0 JH 15 0 John 13 0 Earl 11 0 _John 14 0 _Earl 26

** HS 85 0 Doug 13 0 Rick 11 0 _Doug 14 0 Rick 26
0 College 15 0 Lance 13 0 01 13 0 _Lance 14 0 _01 16

0 George 13 0 Heal 11 0 _George 14 0 _Heal 27
*» Single 84 0 Pete 11 0 Dave 13 0 Pete 26 0 _Dave 14
0 Harried 14 0 Fred 11 0 _Fred 26
0 Divorce 14 0 Gene 13 0 _Gene 14

0 Ralph 13 0 _Ralph 16
0 Pusher 12

** Burglar 82
0 Bookie 12

Figure 4.4 - IAC Network activating an individual given his attributes correctly

80

Chapter 4: Testing and Verification o f Neural Network Software
0 Jets 47 0 Art 13 0 Phil 13 0 Art 13 0 Phil 16** Sharks 79 0 A1 13 0 Ike 13 0 A1 12 0 _Ike 10

0 San 13 0 Hick 13 0 _San 12 0 _Hick 15*-*■ in20s 85 0 Clyde 13 0 Don 13 0 _Clyde 13 0 Don 140 in30s 15 0 Hike 13 0 Hed 13 0 _Hike 13 0 _Hed 160 in40s 15 0 Jim 2 0 Karl 13 0 _Jin 47 0 _Karl 16
0 Greg 13 0 Ken 27 0 _Greg 15 0 _Ken 59*» JH 84 0 John 2 0 Earl 13 0 _John 47 0 Earl 14

0 HS 12 0 Doug 13 0 Rick 13 0 _Doug 15 0 Rick 140 College 15 0 Lance 2 0 01 13 0 _Lance 47 0 _01 16
0 George 2 0 Heal 13 0 _George 47 0 _Heal 15*• Single 80 0 Pete 13 0 Dave 13 0 _Pete 12 0 _Dave 160 Harried 1 0 Fred 13 0 _Fred 12

0 Divorce 1 0 Gene 13 0 _Gene 12
0 Ralph 13 0 _Ralph 13

0 Pusher 15
** Burglar 85
0 Bookie 15

Figure 4.5 - IAC Network activating an individual given all but one of his attributes
correctly

4.2.6. Default Assignment

IAC networks are able to fill in missing data by giving 'plausible guesses' as to what

they might be based on the other information it knows. It has been shown above that

providing a high input to an individual's name and then cycling leads to all of the

attributes associated with the individual become activated; however if we remove

the information about a certain attribute (by setting the weights for the connection

between the individual and the attribute to zero) and rerun the network then the

system will attempt to fill in the missing information. As before NNW produced a

set of results essentially identical to the PDP results - activating Lance to maximum

leads to high activation of Jets, in20s, Junior High, Married and, in particular,

Burglar has an activation of 0.67; Figure 4.6 shows the state after 100 cycles.

However, removing the weight connections for Burglar (setting Lance-Burgiar to

zero and Burgiar-Lance to 0) and rerunning activates the same nodes, but now

Burglar has a lower activation of 0.57; Figure 4.7 shows the state after 100 cycles.

81

Chapter 4: Testing and Verification o f Neural Network Software
0 Jets 67 0 Art 14 0 Phil 14 0 Art 15 0 _Phil 16
0 Sharks 14 0 A1 13 0 Ike 14 0 _A1 29 0 _Ike 16

0 San 14 0 Hick 14 0 _San 15 0 _Hick 170 in20s 63 0 Clyde 14 0 Don 14 0 _Clyde 15 0 Don 15
0 in30s 12 0 Hike 14 0 Hed 14 0 _Mike 15 0 Hed 16
0 in40s 14 0 Jim 13 0 Karl 14 0 _Jin 39 0 _Karl 16

0 Greg 14 0 Ken 14 0 _Greg 13 0 Ken 15
0 JH 67 0 John 12 0 Earl 14 0 _John 55 0 _Earl 15
0 HS 14 0 Doug 14 0 Rick 14 0 _Doug 16 0 Rick 16
0 College 14 *» Lance 81 0 01 14 0 _Lance 67 0 01 16

0 George 13 0 Heal 14 0 _George 39 0 _Heal 17
0 Single 14 0 Pete 14 0 Dave 14 0 _Pete 15 0 _Dave 17
0 Married 55 0 Fred 14 0 _Fred 15
0 Divorce 9 0 Gene 14 0 _Gene 15

0 Ralph 14 0 _Ralph 15
0 Pusher 14
0 Burglar 67
0 Bookie 14

Figure 4.6 - IAC Network retrieving the correct attributes of an activated node given all
information

0 Jets 65 0 Art 14 0 Phil 14 0 Art 15 0 Phil 160 Sharks 14 0. A1 13 0 Ike 14 0 _A1 30 0 _Ike 16
0 Sam 14 0 Hick 14 0 _San 15 0 _Hick 17

0 in20s 61 0 Clyde 14 0 Don 14 0 _Clyde 15 0 Don 150 in30s 12 0 Mike 14 0 Hed 14 0 Mike 15 0 Hed 160 in40s 14 0 Jim 13 0 Karl 14 0 _Jin 36 0 _Karl 16
0 Greg 14 0 Ken 14 0 _Greg 13 0 Ken 150 JH 65 0 John 12 0 Earl 14 0 _John 55 0 _Earl 15

0 HS 14 0 Doug 14 0 Rick 14 0 _Doug 16 0 Rick 16
0 College 14 ** Lance 80 0 01 14 0 _Lance 59 0 _01 16

0 George 13 0 Heal 14 0 _George 36 0 _Heal 17
0 Single 14 0 Pete 14 0 Dave 14 0 Pete 15 0 _Dave 17
0 Married 54 0 Fred 14 0 _Fred 15
0 Divorce 5 0 Gene 14 0 _Gene 15

0 Ralph 14 0 _Ralph 15
0 Pusher 14
0 Burglar 57
0 Bookie 14

Figure 4.7 - IAC Network retrieving the correct attributes of an activated node given
partial information

4.2.7. Spontaneous Generalisation

IAC networks are able to retrieve appropriate generalisations over groups of

individuals, i.e. to provide typical attributes of a group such as members of a gang,

or those with a particular education or occupation. Providing a high input to a group

node and then cycling leads to typical attributes associated with the group becoming

activated. NNW appeared initially to produce a set of results that were essentially

identical to the PDP results - activating Jets to maximum leads to high activation

of in20s, Junior High, and single. Also, all three occupations are equally

activated (value 0.16) - Figure 4.8 shows the state after 100 cycles.

82

Chapter 4: Testing and Verification o f Neural Network Software
** Jets 84
0 Sharks 15
0 in20s 51
0 in30s 12
0 in40s 12
0 JH 51
0 HS 12
0 College 12
0 Single 51
0 Married 12
0 Divorce 12
0 Pusher 16
0 Burglar 16
0 Bookie 16

Figure 4.8 - IAC Network retrieving typical attributes for an activated group node

However, at this point an interesting discrepancy was found. When conducting

testing on any of the IAC scenarios detailed, both PDP and NNW systems were run

to many cycles (typically between 200 and 500) but invariably it was found that the

system had settled before reaching 100 cycles - except in this case. Here it was

found that the PDP system appeared to settle after 40 cycles, but then suddenly the

values for the occupation nodes started to change again from 110 cycles with the

Pusher node eventually becoming highly activated.

It was decided to look at this phenomenon in more detail, and both PDP and NNW

results were compared after every 10 cycles (and every 5 cycles near the start where

the activations changed fastest) - in particular looking at the activation of the

Pusher node ("PDP Pusher" and "NNW Pusher" respectively), and the overall

activation of the Jets gang (i.e. the average of the activations of the instance nodes

of the individuals in the gang - "PDP Gang" and "NNW Gang" respectively). The

results are plotted in Figure 4.9. First of all it can be seen that up to 100 cycles the

plots are essentially identical (the only variation is actually due to the difference

between the truncated PDP activation values and the - on average slightly higher -

rounded NNW activation values). However, beyond 100 cycles where the NNW

activations remain constant, the PDP results change significantly - the PDP Pusher

value increases dramatically until it settles at a value of 0.62, while the PDP Gang

values falls away until it settles at 0.05.

0 Art 0 0 Phil 11 0 Art 16 0 _Phil 16
0 A1 11 0 Ike 11 0 _A1 13 0 _Ike 14
0 San 0 0 Hick 11 0 _Sam 16 0 _Nick 15
0 Clyde 0 0 Don 11 0 _Clyde 16 0 Don 16
0 Hike 0 0 Ned 11 0 _Mike 16 0 Ned 16
0 Jim 0 0 Karl 11 0 _Jim 16 0 _Karl 16
0 Greg 11 0 Ken 11 0 _Greg 13 0 _Ken 14
0 John 0 0 Earl 11 0 _John 16 0 _Earl 16
0 Doug 11 0 Rick 11 0 _Doug 13 0 Rick 16
0 Lance 0 0 01 11 0 _Lance 16 0 _01 16
0 George 0 0 Neal 11 0 _George 16 0 _Neal 15
0 Pete 0 0 Dave 11 0 Pete 16 0 _Dave 16
0 Fred 0 0 _Fred 16
0 Gene 0 0 _Gene 16
0 Ralph 0 0 _Ralph 16

83

Ac
tiv

at
io

n
Va

lu
e

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

- 0.10

- 0.20

300

Number of Cycles

PDP Pusher
-■-PDP Gang

NNW Pusher
NNW Gang

Figure 4.9 - Comparison of activation values changing over time for PDP versus NNW

84

Chapter 4: Testing and Verification of Neural Network Software

This phenomenon is not covered or discussed in the PDP literature at all, and

appears to be a new result. On close examination the most reasonable conclusion

appears to be that the PDP software has produced an invalid result, for three

reasons:

1. Although some neural network types can exhibit changeable and unstable

trends, it is atypical for an IAC network

2. The 15 members of the Jets gang are equally divided into 5 Pushers, 5

Burglars and 5 Bookies so one would expect, all other inputs being zero, that

activation of the Jets node should lead to the three occupation nodes being

equally activated. There is no apparent reason why, after the three nodes

have been equally activated for some time, the system should suddenly

change and activate the Pusher node over the others.

3. When the PDP network starts to preferentially activate the Pusher node, it

also starts to decrease the "Gang" value (the average activation of the

instance nodes for the individuals in the Jets gang). It is clearly unexpected

that activating the Jets node eventually leads to the activations of the

member of the Jets gang to decrease. This odd behaviour was noticed early

on in the testing and is the reason why this value was examined in detail and

plotted in Figure 4.9 (and the graph clearly emphasises this aberrant

behaviour).

This particular discrepancy between the behaviour of PDP and NNW results was not

the only one found and possible reasons are discussed in Section 4.10. Discussion of

Deviations.

4.3. Constraint Satisfaction Network, Schema Model

4.3.1. CS Theory

The Constraint Satisfaction type of neural network is capable of "finding near-

optimal solutions to problems with a large set of simultaneous constraints"

[McClelland 1988]. Specifically, this type of network is capable of solving 'best

match' problems - involving the simultaneous satisfaction of a very large number of

constraints, even though there may be no perfect solution in which all of the

constraints are completely satisfied (in which case the solution would involve the

satisfaction of as many constraints as possible). Furthermore, each constraint may

85

Chapter 4: Testing and Verification of Neural Network Software

have an importance value associated with it (reflected by the strength of its

connection), in which case the solution involves the simultaneous satisfaction of as

many of the most important of these constraints as possible.

In the network each unit or neuron represents a hypothesis and each connection

represents a constraint among hypotheses. Units may receive external input which

represents direct evidence for certain hypotheses. It can either have a numerical

value, called bias, which acts to turn the unit on in the absence of other evidence and

represents the probability that it is true. Alternatively, the input can be "clamped"

which means that this particular unit must be on if the input is positive or must be

off if the input is negative (this is set in NNW using the clamping On command on

the Options menu).

External
Inputs &

Biases

Units are

External Inputs are clamped fully on or off
Biases are variable weak constraints

Figure 4.10 - Diagrammatic representation of a CS Network

The degree to which the desired constraints are satisfied is the goodness of fit

(’goodness') and this has three elements. Firstly, it depends on the extent to which

each unit satisfies the constraints imposed on it by other units. Secondly, the a priori

strength of the hypothesis is captured by adding the bias to the goodness measure.

Finally, the goodness for a hypothesis when direct evidence is available is given by

the product of the input value times the activation value of the unit.

Connections are Constraints

External
Inputs &

Biases

Hypotheses

86

Chapter 4: Testing and Verification o f Neural Network Software

Thus the goodness for unit i is given by:

goodness t = ŷ JwljalaJ +biaslal + inputlal - Eq. 4.5

and for the whole system is:

goodness = J] wlJataJ + ^ b ia s lal + f̂Jinputlal - Eq. 4.6
ij i i

Thus the problem is solved when a set of activation values is found that maximises

this function. This is straightforward to achieve in a CS network where the weights

are required to be symmetric, i.e. wy = wJit so that:

= net input into a unit

Therefore the net input into a unit provides the unit with information as to its

contribution to the goodness of the entire solution. Any particular unit can always

behave so as to increase its contribution to the overall goodness if, whenever its net

input is positive, the unit moves its activation towards its maximum value, and

whenever its net input is negative, it moves its activation towards its minimum.

Since the global goodness is simply the sum of the individual goodnesses, a whole

network of units behaving in this way will always increase the global goodness

measure.

4.3.2. CS Implementation

During the implementation of CS networks in NNW, it was found that the previous

data structure (see Section 4.2.2. IAC Implementation) was becoming increasingly

unwieldy, holding large numbers of VectorN structures, each one holding a list with

a value for each unit (so there were vectorNs for activation, excitation, bias,

external input, and so on, plus additional VectorNs to hold the information scaling

and displaying each value).

Using new data types, stringvar and doublevar (which each held the data value

and information on how to scale it and where to display it), a new data structure was

implemented consisting of a single list of a new data type neuron which held all the

data for a particular unit:

goodness, = netlal - Eq. 4.7

where netf = ^ ay + inputt + bias

87

Chapter 4: Testing and Verification o f Neural Network Software
typedef struct {

char szText[MAX_NAME];
int nXPos;
int nYPos;
int nSpaces;
int nScale;
} STRINGVAR;

typedef struct {
double dValue;
int nXPos;
int nYPos;
} DOUBLEVAR;

typedef struct {
STRINGVAR svName;
DOUBLEVAR dvActivation, dvExcitation, dvlnhibition;
DOUBLEVAR dvTotallnput, dvExternallnput, dvBias, dvBiasFlag;
} NEURON;

This change sigiiificantly simplified and improved the data handling within NNW

and was used throughout the rest of the development.

4.3.3. Schema Model Theory

The simplest type of CS network uses the Schema Model which has the following

characteristics:

• Its units can take on any value between their minimum and maximum

values.

• Units may not connect to themselves, i.e. w„ = 0.

• Update is asynchronous, i.e. units are chosen to be updated sequentially in

random order.

When chosen, the net input to the unit is computed and the new activation of the

unit is calculated using the following rule:

a,{t + 1) = a,{t) + neti{ 1 - aft)) when net, > 0 - Eq. 4.8

aft + 1) = a£t) + net, a,{t) when net, < 0 - Eq. 4.9

For a CS network the net input comes from the addition of three sources: the unit's

neighbours, its bias and its external inputs, so:

neti = is tr (£ wtjaj + hiasl) + estr (input t) - Eq. 4.10

88

Chapter 4: Testing and Verification of Neural Network Software

where istr is a new parameter, the Internal Input Strength, that allows the scaling of

the relative contribution of the input from internal sources and is analogous to estr

for external input (see Section 4.2.1. IAC Theory).

Since the units to be updated are chosen in random order, another new parameter is

required, the random number seed, which is used for initialising the system's random

number generator. This also provides a new way of restarting the processing of a

network. The existing Reset command (see Section 4.2.2. IAC Implementation) now

restarts the network with the same random number seed so that it can be run again

and the same activations observed. However, a new command (New start on the

Run menu) restarts the network with a new random number seed, units are updated

in a different order and so different activations can be observed.

4.3.4. Necker Cube (Schema Model)

In the Necker Cube problem there are two possible interpretations of a wire-frame

isometric representation of a cube, either it is facing down and to the left or it is

facing up and to the right. It has been demonstrated that a CS network is able to

capture the fact that there are exactly two good interpretations of a Necker cube

[Rumelhart 1986b]. A correct right-hand interpretation in NNW is shown in

Figure 4.11. The results of a test to compare PDP with NNW, with 100 runs, each of

50 cycles, are given in Table 4.1. In most cases both systems usually settled into a

state that was a correct interpretation of the cube, and had a maximum goodness

value; sometimes, however, they settled into invalid interpretations (with some

nodes activated that represented a different interpretation from the other activated

nodes) with a lower goodness value.

bul
0—/

/

bur
 0

/|
/

/
/

ful
0-

f ur
—0

bul

ful fur
* --*

/I

bur
—*

cycleno
updateno
cuname

50
2

Af ul

| b l l | b l r 1 1 1 1
1 o- 1 o I *----------------- *
j / j / 1 f H f i r

j / | / /
| / | / /
| / | / /
| / | / /

goodness 6.4000
temperature 2.0000

fll fir
A

bll
 *

blr

Figure 4.11 - CS Network settling on a right-hand Necker Cube interpretation

When compared, NNW produced a set of results that are very similar to the PDP

results. However, there does appear to be a slight trend for PDP to reach global
89

Chapter 4: Testing and Verification of Neural Network Software

maxima more often than NNW, i.e. for NNW to get caught in local maxima more

often than PDP. Possible reasons for this are discussed in Section 4.10. Discussion

of Deviations.

Necker Cube
Interpretation

PDP Results NNW Results

Goodness/fv/r Occurrences Total Goodness/fv/r Occurrences Total

Left, down 16 45 76 16 38 61
Right, up 16 31 valid 16 23 valid

Outside
edges

12 5 4.8 8

Inside edges 12 2 12 9

Top left,
bottom right

12 2

24

12 5

39
Top right,
bottom left

12 4 invalid 12 2 invalid

% right, lA
left

12 6 12 8

3/4 left, Va
right

12 5 12 7

TOTAL 100 100 100 100

Table 4.1 - Comparison of Necker Cube results, input strength (istr) = 0.4

There is a parameter in the Schema Model for the input strength to each unit (istr)

that multiplies the weights and biases and that, in effect, determines the rate of

activation flow within the model. The probability of finding a local maximum

depends on the value of this parameter, and so, in order to reduce the occurrences of

local maxima, the Necker Cube problem was retried with various values of istr

lower than that originally used (0.4). Lowering istr, of course, slowed down the rate

of change within the network and so therefore required an increase in the number of

cycles before the network settled. It was found that about 0.01 was a reasonable

compromise for istr (getting the correct interpretation at least 90% of the time, and

just managing it within 500 cycles) and the results for the two systems with this

value are given in Table 4.2.

90

Chapter 4: Testing and Verification o f Neural Network Software

Necker Cube
Interpretation

PDP Results NNW Results

Goodness/w/r Occurrences Total Goodness/fv/r Occurrences Total

Left, down 16 38 94
valid

16 51 90
validRight, up 16 56 16 39

Outside
edges

6
invalid

10
invalid

Inside edges

Top left,
bottom right

12 3 12 1

Top right,
bottom left

Va right, Va
left

12 3

3/4 left, Va
right

12 3 12 6

TOTAL 100 100 100 100

Table 4.2 - Comparison of Necker Cube results, input strength (istr) = 0.01

It can be seen that not only do both systems settle into local maxima less often, but

NNW results are now nearly as good as the PDP results. Again, possible reasons for

this are discussed in Section 4.10. Discussion of Deviations.

4.3.5. Room Schemata

A Schema is a higher-level conceptual structure for representing the complex

relationships implicit in a knowledge base; Schemata are data structures for

representing generic concepts stored in memory. The Schema Model CS network is

so named because it is able to, in some sense, represent this idea — information is

processed by first finding the schema that best fits the current situation and then

using that model to fill in aspects of the situation not specified by the current input.

The units of a CS network correspond to hypotheses that certain semantic features

are appropriate descriptions of a particular situation; some of these features are

available in the input and form the starting place of the interpretation process while

others are unspecified and must be filled in during the process of interpretation.

91

Chapter 4: Testing and Verification o f Neural Network Software
0 ceiling 100 0 very-smalOO 0 desk-cha 0 0 f ire-pla 0 0 dresser 0
0 walls 100 0 desk 0 0 clock 0 0 drapes 0 0 televisi 0
0 door 100 0 telephon 0 0 picture 0 0 stove 0 ** bathtub 100
0 window 1 0 bed 0 0 £loor-la 0 0 sink 100 0 toilet 100
0 very-lar■ 0 0 typewrit 0 0 sofa 0 0 refriger Or 0 scale 100
0 large 0 0 book-she 0 0 easy-cha 0 0 toaster 0 0 coat-han 0
0 medium 0 0 carpet 0 0 cof fee—c 0 0 cupboardlOO 0 computer 0
0 small 0 0 books 0 0 ash-tray 0 0 coffeepo 0 0 oven 0

cycleno 100 goodness 8.10895 temperature 2.0000

Figure 4.12 - CS Network, Schema Model, after activation of bathtub input

It has been shown that this kind of network could behave as if it contained schemata

for five different kinds of rooms - living room, kitchen, bedroom, office and

bathroom [Rumelhart 1986b], The units in this case stood for the hypotheses that a

particular room contained an oven, sofa, desk, bathtub, etc. The state of the network

in NNW for this example, after running 100 cycles with bathtub activated, is

shown in Figure 4.12. The results for activating bathtub, oven, desk and sofa are

given in Table 4.3.

Input Goodness Activated Units

bathtub 8.09 ceiling, wall, door, very small,
sink, cupboard, toilet, scale

oven 21.20 ceiling, wall, window, small,
telephone, clock, coffee-cup,
drapes, stove, sink,
refrigerator, toaster, cupboard,
coffeepot

desk 23.78 ceiling, wall, door, large,
telephone, typewriter,
bookshelf, carpet, books, desk-
chair, picture, coffee-cup, ash
tray

sofa 27.01 ceiling, wall, door, window,
very large, large, desk,
telephone, typewriter,
bookshelf, carpet, books, desk-
chair, picture, floor-lamp,
easy-chair, ash-tray, fire
place, drapes, computer

Table 4.3 - NNW results showing activated units for given activated inputs

Clearly providing input to a particular item tends to activate related items. The

NNW results are identical to the PDP results. Further NNW tests on this example

gave the same results as PDP and will not be detailed further.

92

Chapter 4: Testing and Verification o f Neural Network Software

4.4. Constraint Satisfaction Network, Boltzmann Machine

4.4.1. Boltzmann Machine Theory

A problem found with CS networks using the simple Schema Model is that they

frequently tend towards local maxima of goodness rather than the global maximum

value. A method that is used in the Boltzmann machine to get around this is

simulated annealing (see Section 3.2. Neural Network History and Terminology)

which adds a new global parameter analogous to temperature in physical systems. It

acts in such a way as to decrease the strength of connections at the start and then

change so as to strengthen them as the network is settling. It also exhibits some

random behaviour so that instead of always moving 'uphill' in goodness, when the

temperature is high it will sometimes move downhill; this allows it get out of local

goodness peaks and tend instead to get 'caught' in the global maximum.

The Boltzmann Machine is similar to the Schema Model but has the following

characteristics:

• Its units are binary and take on only their minimum and maximum values.

• The update rule specifies only a probability that a unit will take on one or

other of the values.

The behaviour of the system depends on the global parameter, temperature,

which starts out high and decreases during the settling phase.

The update rule is probabilistic and is given by what is termed the logistic function:

l
probability(aj(f) =1)

\ + e ~ ne,‘ / T - Eq- 4 i i

where T is the temperature.

4.4.2. Necker Cube (Boltzmann Machine)

The results of a test on the Necker cube to compare PDP with NNW when using the

Boltzmann model, with 100 runs, each of 200 cycles, are given in Table 4.4 - using

an annealing schedule over 20 cycles.

93

Chapter 4: Testing and Verification o f Neural Network Software

Necker Cube
Interpretation

PDP Results NNW Results

Goodness/w/r Occurrences Total Goodness/zs/r Occurrences Total

Left, down 16 38 84 16 39 76
Right, up 16 46 valid 16 37 valid

Outside
edges

12 2

Inside edges 12 7 12 22

Top left,
bottom right

16

12 1

24
Top right,
bottom left

12 7 invalid 12 1 invalid

Va right, Va
left

Va left, Va
right

TOTAL 100 100 100 100

Table 4.4 - Comparison of Necker Cube results, annealing over 20 cycles

When compared, NNW produced a set of results that are very similar to the PDP

results. As before, there does appear to be a slight trend for PDP to reach global

maxima more often than NNW, i.e. for NNW to get caught in local maxima more

often than PDP (again, possible reasons for this are discussed in Section 4.10.

Discussion of Deviations).

Compared to the Schema Model tests, the results are generally better than the

original results, but not as good as the results with the lower istr. The tests were

therefore repeated with a much more gentle annealing schedule (over 400 cycles

rather than 20), running to 500 cycles. The results are given in Table 4.5.

94

Chapter 4: Testing and Verification o f Neural Network Software

Necker Cube
Interpretation

PDP Results NNW Results

Goodness/w/r Occurrences Total Goodness/zs/r Occurrences Total

Left, down 16 52 99 16 51 99
Right, up 16 47 valid 16 48 valid

Outside
edges

Inside edges

Top left,
bottom right

12 1

1

12 1

1
Top right,
bottom left

invalid invalid

Va right, Va
left

Va left, %
right

TOTAL 100 100 100 100

Table 4.5 - Comparison of Necker Cube results, annealing over 400 cycles

It can be seen now that not only do both systems settle into local maxima less often,

and NNW results are now nearly as good as the PDP results, but the results are even

better than for the Schema Model with low input strength in the same number of

cycles. This clearly demonstrates the utility of the Boltzmann model.

4.5. Constraint Satisfaction Network, Harmony Model

4.5.1. Harmony Model Theory

In the Harmony Model network (or ’Harmonium') developed by Paul Smolensky

[Smolensky 1986] the principles are similar to the Boltzmann Machine but instead

of an interconnected set of homogeneous units, there are two distinct layers of units.

These are a lower level of representational feature units (corresponding to a featural

description of a situation) and an upper layer of knowledge atoms (corresponding to

pieces of knowledge about what configurations of features go together).

The Harmony Model has the following characteristics:

• The feature units take on activation values of ±1 (representing that they are

either present or absent).

• The knowledge atoms take on values of 0 or 1.
95

Chapter 4: Testing and Verification of Neural Network Software

• All connections are between features and knowledge atoms (and are ±1).

• Each knowledge atom has a strength (a new parameter, sigma)

corresponding to the degree that the knowledge atom implies that the

features to which it is connected are present in the input.

The goodness ("harmony") function is similar to that used before:

harmony = J] o’i at hi - Eq. 4.12
i

where i ranges over the knowledge atoms.

In this function h, is a measure of the degree to which the current set of feature

values is consistent with knowledge atom /, and is given by:

where j ranges over the features, ry is the activation of representational feature y,

and n, is the number of non-zero connections to atom i.

The variable k y is given by:

That is, the total harmony is given by the sum of contributions of each of the

knowledge atoms. If a knowledge atom is not activated (af=0) there is no

contribution. If it is active (a ,= 1) then it contributes an amount proportional to the

product of its importance, <r„ and a term representing the consistency of that atom

with the current pattern of activation among the representational features. This

consistency term, hh is the proportion of relevant features that are consistent, minus

the proportion that are inconsistent, less a constant k (a new parameter in NNW,

k a p p a) . When k is near zero, turning on atom i will contribute a positive amount to

the overall harmony of the system whenever the number of consistent features

exceeds the number of inconsistent features (in this case the goodness function is the

same as for the Schema and Boltzmann models). When k is near 1, the general case

in the Harmony Model, then it will contribute to the overall harmony only when all,

or nearly all, of its features match the template for the atom.

h, = ^ K -Eq. 4.13

k y = 1 if positive connection

k y = -1 if negative connection

k y = 0 if no connection

Chapter 4: Testing and Verification o f Neural Network Software
4.5.2. Electricity Problem Solving

Once the Harmony Model had been added to NNW it was tested using the electricity

problem proposed by Smolensky [Smolensky 1986; McClelland 1988]. This

considers a simple electrical circuit containing a voltage source (Vt) and two

resistors (Ri and R2), and aims to determine the behaviour of the different elements

when the others are changed. For example, if one of the resistances increases (and

the other resistance and total voltage are unchanged) what happens to the voltage

across each resistor (V), V2) and to the current (I)? To solve this and similar

problems the laws of electricity (Ohm’s Law and Kirchoffs Law) are encoded as

knowledge atoms - for example, there will be ones that encode the fact that Vy = V)

+ V2 , and so on.

I R1 R2 RT VI V2 VT cycleno 0
Inputs 00 10 11 00 00 00 10 temp 1.0000

cu cu cu cu cu cu cu harmony 0.0000
Features 00 10 11 00 00 00 10

knowledge atom activations
u u u u u s s s d d d d d
u s d d d u s d u u u s d
u u u s d u s d u s d d d

VI + V2 = VT 0 0 0 0 0 0 0 0 0 0 0 0 0
Rl + R2 = RT 0 0 0 0 0 0 0 0 0 0 0 0 0
I » Rl = VI 0 0 0 0 0 0 0 0 0 0 0 0 0
I * R2 = V2 0 0 0 0 0 0 0 0 0 0 0 0 0
I * RT = VT 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4.13 - CS Network, Harmony Model, initial state of electricity problem

This situation before starting to cycle with the given problem is shown in Figure

4.13. At this stage the interesting lines are marked ’’Inputs” and ’’Features”. In these,

in each pair of digits the first digit (under ’c’) represents whether the feature changes

(0 means not known, 1 means it changes, -1 means it does not change) while the

second digit (under 'u') represents whether the feature changes up or down (0 means

not known, 1 means it increases, -1 means it decreases); the second digit is

irrelevant if the first digit is a -1. The Inputs line represents the problem - in the

example given it means that Ri is fixed (first digit is -1, second digit is ignored), R2

is changing (first digit is 1) and increasing (second digit is 1) and Vj is fixed (first

digit is -1, second digit is ignored). The aim when the network is run is for the

unknown features to be filled in correctly (each 0 in the Features line).

97

Chapter 4: Testing and Verification o f Neural Network Software

I Rl R2 RT VI V2 VT
Inputs 00 10 11 00 00 00 10

cycleno
temp
harmony

200
0.0500
1.1667cu cu cu cu cu cu cu

Features 11 11 11 11 11 11 11
knowledge atom activations
u u u u u s s s d d d d d
u s d d d u s d u u u s d
u u u s d u s d u s d d d

VI + V2 = VT 0 0 0 0 0 0 0 0 0 1 0 0 0
Rl + R2 = RT 0 0 0 0 0 1 0 0 0 0 0 0 0
I * Rl = VI 0 0 0 0 0 0 0 0 0 0 0 1 1
I * R2 = V2 0 0 0 0 0 0 0 0 1 0 0 0 0
I * RT = VT 0 0 0 0 0 0 0 0 0 1 0 0 0

Figure 4.14 - CS Network, Harmony Model, final state of electricity problem

This situation after 200 cycles is shown in Figure 4.14 and the network has

successfully determined the behaviour of the other features. The Features line can be

interpreted as follows (ignoring the elements already specified in the Inputs line):

the current I will change and decrease, the total resistance Rt will change and

increase, V) will change and decrease, and V2 will change and increase. After 200

cycles the features have settled apart from the up/down digit of those that are fixed;

these continue to flick between 1 and -1 but are ignored anyway.

It is of interest to note that the different features usually settle sequentially and in the

same order. Specifically, they settle as follows: V2 goes to 11 (voltage across R2 will

change and increase) after about 50 cycles, I goes to 1-1 (current will change and

decrease) after about 100 cycles, Rj goes to 11 (total resistance will change and

increase) after about 150 cycles, and finally V) goes to 1-1 (voltage across Ri will

change and decrease).

Underneath the Inputs and Features are the representations of the knowledge atoms

in an array where the rows indicate electrical relationships and the columns

represent the new relationships determined by the network. For example, in Figure

4.14, for the first row (Vj + V2 = V t) the network has activated the d-u-s

relationship, i.e. that when the first term (Vi) goes down ('d') and the second term

(V2) goes up ('u') the third term (Vt) remains the same ('s'). Even after 200 cycles

the knowledge atom relationships occasionally flick and continue to do so

indefinitely. However, the relationships being temporarily activated are also valid,

though clearly not as highly activated as the stable ones. In the example given, the

next column to the left is also often activated (d-u-u) meaning that when Vj goes

98

Chapter 4: Testing and Verification of Neural Network Software

down and V2 goes up then Vj goes up, which can also be true (obviously depending

on the relative magnitudes of the changes in Vi and V2).

The results from NNW are essentially identical to the PDP results. They settle

different features at different number of cycles, but the variation between the two

systems is only of the order of magnitude of the variation between different runs of

each system.

4.6. Pattern Associator Network, Hebb Learning Rule

4.6.1. PA Theory

The Pattern Associator is a device that learns associations between input patterns

and output patterns. It is also interesting because what it learns about one pattern it

tends to generalise to other similar patterns. Pattern Associators can learn to act as

content-addressable memories; they generalise the responses they make to novel

inputs that are similar to the inputs they have been trained on; they learn to extract

the prototype of a set of repeated experiences in ways that are very similar to the

concept-learning characteristics seen in human cognitive processes; and they

degrade gracefully with damage and noise.

Inside the network there are two sets of units: input units and output units. There is

also a matrix representing the connections from the inputs to the outputs. The

general arrangement of a PA network is shown in Figure 4.15. Two main learning

rules are used, the 'Hebb' rule (see Section 4.6.2. The Hebb Rule) developed by W.

James in 1890 and again by D. Hebb in 1949, and the error-correcting or 'Delta' rule

(see Section 4.7.1. The Delta Rule) studied by Widrow and Hoff, and Rosenblatt

(see Section 3.2. Neural Network History and Terminology).

External
Inputs

Input Output
Layer Layer

Figure 4.15 - Diagrammatic representation o f a PA Network

99

Outputs

Chapter 4: Testing and Verification of Neural Network Software

In the PA network, pattern pairs are presented consisting of an input pattern and a

target pattern. A training epoch consists of one learning trial on each pattern pair.

On each trial, the input is presented, the corresponding output is computed, and the

weights are updated. Patterns may be presented in fixed sequential order or in

permuted order within each epoch (in NNW this is selected on the O p t i o n s menu).

Four activation rules are available: Linear, Linear Threshold, Stochastic and

Continuous Sigmoid. In Linear activation the output of a unit is simply equal to the

net input. In Linear Threshold the output is set to 1 if its net input is positive,

otherwise it is set to 0 (this form was used in the Perceptron). In Stochastic, the

default, the output is set to 1 with a probability given by the logistic function (see

Section 4.4.1. Boltzmann Machine Theory). In Continuous Sigmoid, each of the

output units takes on an activation given by the logistic function.

After processing each pattern, several measures of the output that is produced, and

its relation to the target, are computed. The patterns are essentially vectors, and the

measures are the normalised dot product (ndp), the normalised vector length (nvl -

the magnitude of the output normalised by the number of elements) and the vector

correlation (vcor - which measures the similarity of the vectors independent of their

length). Further measures are the pattern sum of squares (pss - the sum over all

output units of the squared error) and the total sum of squares (tss - the sum of pss

values for each pattern in the training set). The various values of these measures can

be seen in the output displays illustrating the following tests but their consideration

is not essential to the understanding of the processes involved and they will not be

discussed in further detail (for a formal analysis see [Jordan 1986]).

4.6.2. The Hebb Rule

Hebb proposed that when two cells fire at the same time, the strength of the

connection between them should be increased. More formally, this rule can be

expressed as follows:

Awy = Sdidj - Eq. 4.14

where 8 is referred to as the learning rate parameter.

Activations of the input units are 'clamped' (see Section 4.3.1. CS Theory) based on

an externally supplied input pattern, and activations of the output pattern are

clamped to the values given by some externally supplied target pattern. Learning

100

Chapter 4: Testing and Verification of Neural Network Software

then occurs by adjusting the strengths of the connections using the Hebb rule

formulated as:

Awg = e o f -Eq. 4.15

where ot is the activation of output unit z, and z} is the activation of input unit j.

4.6.3. PA Implementation

A network definition for PA is loaded into NNW as for previous types, but then a

pattern file (.pat) is loaded in which holds definitions of pattern pairs (i.e. an input

pattern and a target pattern) with pattern labels. The network is trained (i.e. it is put

into learning mode) using Run:Go/Train. Training will stop before all requested

epochs are complete if the total sum of squares, tss (see Section 4.6.1. PA Theory), is

less than an error criterion value, ecrit.

For testing (i.e. learning mode is off) all patterns can be applied using

Run:Test All. An individual pattern pair can be selected with Patterns:select
Pattern, or an input or target pattern can be selected with Patterns:Select

input or Patterns:Select Target, or a new pattern and/or pair can be created

with Patterns:Enter Pattern - in all cases the selected pattern/pair can then be

tested with Run: Test.

There are three new parameters in PA: the learning rate, which scales the size of the

changes to the weights (and is equivalent to e); noise, which determines the amount

of random variability added to elements of input and target patterns; and

temperature, used as the denominator of the logistic function to scale net inputs in

the stochastic mode.

4.6.4. Generalisation and Similarity

Once NNW had been extended to model Pattern Associator networks it was tested

on a problem proposed by the PDP group [McClelland 1988] which aims to

demonstrate how its output after training on a given pattern is affected by the

similarity of the input pattern to the original trained pattern. The network definition

files specify a linear Hebb rule PA with eight input units and eight output units

starting with zero initial weights. A further file, the pattern file (.pat) defines a

pattern pair for training with, consisting of two sequences of eight numbers (each

either +1 or -1) - the first eight being the input pattern and the second eight being

the target pattern. Once the PA has been trained on the pattern pair it can then be
101

Chapter 4: Testing and Verification of Neural Network Software

tested to see if it has learned the pattern and can reproduce it, and also tested to see

if it can reproduce other similar patterns. The network state before training is shown

in Figure 4.16.

epochn 0 cpname
ndp 0.0000
nvl 0.0000 vcor 0.0000
pss 0.0000

pname ipattern tpattern a 11111111 11111111

tss 0.0000
weights 0 0 0 0 0 0 0 0

out
0

tar
00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 00 ' 0 0 0 0 0 0 0 0 0

input 0 0 0 0 0 0 0 0

Figure 4.16 - PA Network, Hebb Learning, network state before training

The state shown in Figure 4.17 is after training on the pattern pair (which is shown

in the upper right comer; it has pattern name 'a', input pattern 1-11-11-11-1 and

target pattern 11-1-111-1-1). The new weights calculated by the network are shown

(their absolute magnitude is 0.125, i.e. 1/no. units) and it can be shown that these

network weights will successfully convert the input pattern (shown as the input
row underneath the weight matrix) to an output pattern (shown as the out column to

the right of the weight matrix) that is identical to the target pattern (shown as the

tar column to the right of the output column).

epochn 1
cpname andp 0.0000
nvl 0.0000
vcor 0.0000
pss 8.0000
tss 8.
weights

pname ipattern tpattern a 11111111 11111111

input

00
13 13 13 13 13 13 13 13

out
100

tar
100

13 13 13 13 13 13 13 13 100 100
13 13 13 13 13 13 13 13 100 100
13 13 13 13 13 13 13 13 100 100
13 13 13 13 13 13 13 13 100 100
13 13 13 13 13 13 13 13 100 100
13 13 13 13 13 13 13 13 100 100
13 13 13 13 13 13 13 13 100 100

100100100100100100100100

Figure 4.17 - PA Network, Hebb Learning, network state after training

102

Chapter 4: Testing and Verification of Neural Network Software

It can also be tested with a pattern that it has not seen before. Entering a new input

pattern 1-11-11111, labelled 'b', using the same target pattern, and then testing the

network produces the results in Figure 4.18. Now the output pattern has matched the

target pattern but at only half the activation (0.5 in each position instead of 1).

pname ipattern tpattern
a 11111111 11111111
b 11111111 11111111

epochn 1
cpname b
ndp 0.5000
nvl 0.5000
vcor 1.0000
pss 2.0000

0000 out tar
13 13 13 13 13 13 13 13 50 100
13 13 13 13 13 13 13 13 50 100
13 13 ’13 13 13 13 13 13 50 100
13 13 13 13 13 13 13 13 50 100
13 13 13 13 13 13 13 13 50 100
13 13 13 13 13 13 13 13 50 100
13 13 13 13 13 13 13 13 50 100
13 13 13 13 13 13 13 13 50 100

input 100100100100100100100100

Figure 4 .18- PA Network, Hebb Learning, network state after testing with a new
pattern

A limitation to the Hebb learning rule becomes clear if the sets of patterns are

orthogonal, or not orthogonal but linearly independent. In both cases, after one

epoch of training, a trained input pattern is perfectly reproduced at the output;

however, after further training the output pattern has too high an activation (and for

the orthogonal case it is exactly scaled by the number of epochs of training). Figure

4.19 shows the results of testing the first pattern (from the list of orthogonal patterns

at the upper right) after three epochs of training. A means of solving this problem is

discussed in the next section; however all these NNW results are identical to the

PDP results.

103

Chapter 4: Testing and Verification o f Neural Network Software

epochn 3
cpname a
ndp 3.0000
nvl 3.0000
vcor 1.0000
pss 32.0000
tss
weights

input

0000 out tar
113 38 38 38113 38 38 38 300 100
38 38 38113 38 38 38113 300 100
38113 38 38 38113 38 38 300 100
38 38113 38 38 38113 38 300 100
38113 38 38 38113 38 38 300 100
38 38113 38 38 38113 38 300 100

113 38 38 38113 38 38 38 300 100
38 38 38113 38 38 38113 300 100

100100100100100100100100

pname ipattern tpattern
a 11111111 11111111
b 11111111 11111111
c 11111111 11111111

Figure 4.19 - PA Network, Hebb Learning, network state after three epochs of training

4.7. Pattern Associator Network, Delta Learning Rule

4.7.1. The Delta Rule

With the Delta rule, the idea is that the difference between the desired target

activation and the obtained activation can be used to drive learning, i.e. by adjusting

the strengths of the connections so that they will tend to reduce the difference or

error measure. It can be written:

Awy = eefij - Eq. 4.16

where e„ the error for unit i, is given by:

et = ti - at - Eq. 4.17

the difference between the teaching input to unit i and its obtained activation.

In NNW the selection of Hebb or Delta rule is made on the Options menu.

4.7.2. Solving for Orthogonality and Linear Independence

When the Delta Rule is used the weights are changed in such a way that the output

activations do not just increase with the amount of training. When testing with the

orthogonal patterns from the previous section the output pattern is exactly correct

after just one epoch, and after more epochs the weights do not change further, so the

output pattern remains correct. When testing with the linearly independent patterns

the first output pattern is only approximately correct after just one epoch, but after

more epochs the weights change so that the output pattern converges on the target

104

Chapter 4: Testing and Verification of Neural Network Software

pattern. Figure 4.20 shows the results of testing the first pattern (from the list of

linearly independent patterns at the upper right) after just three epochs of training.

pname ipattern tpattern
a
b
c 11111111 11111111

11111111 11111111
11111111 11111111

epochn
cpname
ndp 0
nvl 0
vcor 0
pss 0
tss 0

3
9844
9849
9995
0098

veights
8
29 4 4 29 29 4 12 13

out
102

tar
10012 13 13 12 12 13 36 61 95 1004 29 29 4 4 29 13 12 102 100

13 12 12 13 13 12 61 36 95 1004 29 29 4 4 29 13 12 102 100
13 12 12 13 13 12 61 36 95 10029 4 4 29 29 4 12 13 102 100
12 13 13 12 12 13 36 61 95 100

input 1001-00100100100100100100

Figure 4.20 - PA Network, Delta Learning, network state after 3 epochs of training

Further NNW tests were conducted on PA networks which, when using the Delta

rule, demonstrated they had the ability to cope well with noise. For example,

repeating the previous test on the orthogonal pattern but introducing a high level of

noise (randomly distributed between -0.5 and 0.5) to each element in the input and

target patterns still produced good results (Figure 4.21 shows results for the first

pattern after the network has been trained for 100 epochs).

pname ipattern tpattern
a 11111111 11111111
b 11111111 11111111
c 11111111 11111111

epochn
cpname
ndp
nvl
vcor
pss
tss

100
a

0410
1.0203
0.9624
0.6637

veights

input

37
38 8 13 10 39 10 13 9

out
103

tar
94

13 15 15 41 14 17 14 37 120 77
14 40 13 13 14 37 10 14 86 106
13 14 37 13 8 10 34 11 88 81
10 39 13 15 12 40 13 18 79 134
13 13 40 14 10 11 37 12 94 120
34 13 11 9 37 14 9 8 105 82
14 10 15 39 18 11 11 38 130 135

129 59 79123108107113100

Figure 4.21 - PA Network, Delta Learning, network state after 100 epochs of training,
despite noise

105

Chapter 4: Testing and Verification of Neural Network Software

These tests demonstrated the effectiveness of the Delta Learning Rule which is now

the primary learning rule used in neural networks. It is an important element of the

most significant type of learning neural network, the Back Propagation network

described in the next section.

In all the PA tests the NNW results were essentially identical to the PDP results and

so the software was developed further to include back propagation networks.

4.8. Back Propagation Network

4.8.1. BP Theory

The Pattern Associator network described above has been known since the late

1950s when variants of the Delta Rule were first proposed. In one version, in which

the output units were purely linear, it was known as the Least Mean Square (LMS)

associator; this used the delta rule for adjusting connection strengths using a

gradient descent method. In the most well known version, in which output units

were linear threshold units, it was known as the Perceptron. Many important

theorems were proved about both of these versions, the most significant being the

Perceptron Convergence Theorem. This demonstrated the remarkable truth that the

Perceptron learning procedure is guaranteed to find a set of weights that can

correctly classify input vectors if such a set o f weights exists.

Unfortunately, such a mapping does not always exist. In their famous book,

Perceptrons, Minsky and Papert demonstrated in 1969 the limitations of the

Perceptron (see Section 3.2. Neural Network History and Terminology), and

specifically showed that it can only solve functions that are linearly separable. A

function that appears to be simple but is not linearly separable and is therefore not

solvable by a Perceptron is the Exclusive-Or (XOR) problem. In the XOR problem

the inputs 00, 01, 10 and 11 should produce the outputs 0, 1, 1 ,0 (i.e. activated if

either input is activated but not if both are activated). This problem is not linearly

separable because, put simply, if the inputs are considered as the co-ordinates (0, 0),

(0, 1), (1, 0) and (1,1) and their outputs are plotted at these co-ordinates (i.e. 0 at

0,0; 1 at 0,1; 1 at 1,0 and 0 at 1,1) then it is not possible to find a line that can be

drawn to separate the 0 outputs from the 1 outputs. Therefore it had been

demonstrated that even a problem as simple as the XOR one could never be solved

by a Perceptron or other PA network.

106

Chapter 4: Testing and Verification of Neural Network Software

One possible way forward was that it was known that any linearly separable

problem could be solved by moving up to the next dimension. In the case of the

XOR function a distinction could be made between the first 0 output and the last by

'ANDing' the first two dimensions, so that the inputs were 000, 010, 100 and 111;

when these are plotted it is a simple matter to find a plane that separates the 0 and 1

outputs. The equivalent procedure with a neural network is to add an extra layer of

units. Unfortunately, these units neither receive inputs directly nor are given direct

feedback; they are known as hidden units and the problem is knowing how to teach

them. The original Perceptron learning procedure could not be applied to more than

one layer, and Minsky and Papert believed that no such general procedure could be

found. As a result of their work, research into neural networks went into a decline

that lasted for more than a decade.

The history of the developments that began in the early 1980s and led to the back

propagation method of learning has been given above (see Section 3.2. Neural

Network History and Terminology). Back Propagation networks combine hidden

units with the BP method of learning and their general arrangement is shown in

Figure 4.22.

External
Inputs

Outputs

Output
Layer

Hidden
Layer

Figure 4.22 - Diagrammatic representation of a BP Network

The basic idea of the back propagation method of learning is to combine a non

linear Perceptron-like system capable of making decisions with the objective error

function and gradient descent of the LMS associator. In such a system the total LMS

error (i.e. summed squared error) is given by:

107

Chapter 4: Testing and Verification o f Neural Network Software

-Eq. 4.18
p p

where p ranges over the set of input patterns, i ranges over the set of output

units, and Ep represents the error on pattern p.

The object is to find a set of weights that minimises this function. The idea of

gradient descent is to make a change in the weight proportional to the negative of

the derivative of the error, as measured on the current pattern, with respect to each

weight (negative because if the weight is above the minimum value the slope is

positive and the weight needs to be decreased, and vice versa), i.e. a learning rule of

the form:

where k is the constant of proportionality, tpi is the desired target for output unit

/, and opi is the actual output of the output unit z, when the pattern p has been

presented.

Carrying out the derivative of the error measure just described gives:

where e = 2k and Spi = tpi - opi is the difference between the target for unit i on

pattern p and the actual output produced.

This is exactly the Delta Rule previously described. If weights are changed

according to this rule, each weight is moved towards its own minimum and the

system moves downhill until it reaches its minimum error value. When all of the

weights have reached their minimum points, the system has reached equilibrium. If

the system is able to solve the problem entirely, it will reach zero error and the

weights will no longer be modified. If the system is unable to solve the problem

entirely, it will have found a set of weights that produces the minimum error.

- Eq. 4.20

108

Chapter 4: Testing and Verification of Neural Network Software

Essentially Spi represents the effect of a change in the net input to unit j on the output

of unit i in pattern p. In Back Propagation, the determination of S is a recursive

process that starts with the output units for which the rule is1:

Sp, = (tpi - api) / r,(netpi) (for output units) - Eq. 4.21

where:

n e t Pi = X w ua pj + b i a s i - Eq- 4 .22
j

and f t (netPi) is the derivative of the activation function with respect to the change in

the net input to the unit. The 6 term for hidden units for which there is no specified

target is determined recursively in terms of the S terms of the units to which it

directly connects and the weights of those connections:

S P, = f t (n e tp ,) 'Z &Pk w ki (for hidden units) - Eq. 4.23
k

The application of the BP rule, therefore, involves two phases: during the first phase

the input is presented and propagated forward through the network to compute the

output value apj for each unit. This output is then compared to the target, resulting in

a S term for each output unit. The second phase involves a backward pass through

the network during which the 6 term is computed for each unit in the network - this

allows the recursive computation of S indicated above. Once these phases are

complete, for each weight is calculated the weight error derivative - the product of

the S term associated with the unit it projects to times the activation of the unit it

projects from. The weight error derivatives can then be used to calculate actual

weight changes pattem-by-pattem, or accumulated over all patterns.

The BP rule only works, as has been shown, if there is a derivative of the activation

function, / \ineti). The PA network used three types of activation function: linear,

linear threshold and the logistic function (the latter being used in both the stochastic

and continuous sigmoid rules). The linear system achieves no advantage from

hidden units, the linear threshold function is discontinuous, and so the logistic

function is used for BP. The derivative of this function with respect to its total input

netPi is given by:

1 For a BP network the output o f a unit is equal to its activation, so opi = api.

109

Chapter 4: Testing and Verification o f Neural Network Software

- Eq. 4.24

so that the error signals are given by:

8 Pi - {tpi ~ ctpi)a pi(1 ~ a pi) (for output units) - Eq. 4.25

^pi a Pi 0 a pi) ^ S pkWjk (for hidden units) - Eq. 4.26
k

4.8.2. Solving the XOR Problem

NNW was adapted to do Back Propagation networks and tested on the XOR

problem. Using appropriate network definition files and an initial set of weights, a

network is created with two inputs units, two hidden units and one output unit. The

state of the network is shown in Figure 4.23 after testing on each pattern but before

any training has taken place.

The four XOR patterns (inputs and output) are shown at top right, and labelled pOO

to pi 1. The current pattern is shown top left, below the current epoch number, and

the main statistics are shown in the centre, i.e. tss and pss (see Section 4.6.1. PA

Theory). A new statistic is the gradient correlation (gcor) which is the vector

correlation of the current weight error derivatives with the previous ones and

indicates whether the gradient is staying relatively stable or shifting from epoch to

epoch (e.g. a negative value indicates the gradient is changing direction). Its value

can be considered to be following the gradient and so the mode for turning on this

calculation is called follow (selected with Options: Follow is on in NNW).

The ’sender’ activations are shown beneath, these are the outputs from units that are

inputs to other units (i.e. the two input and the two hidden units). They form the

pname i pa 11erns tpatterns
0
1
1
0

epoch 0 tss 1.0554
gcor 0.0000

pll pss 0.3857
pOO 0 0
pOl 0 1
plO 1 0
pll 1 1

cpname

sender acts: 100 100 65 40 bia net act tar del
weights: 43 45

4 4
28 60 65
40 40 40
28 49 62

9
3

0 14627 8

Figure 4.23 - BP Network, XOR Problem, before training

Chapter 4: Testing and Verification of Neural Network Software

headings of columns of the (sparse) weight matrix - each column shows the weights

for that sender unit while the rows indicate where the weight is going to, so the first

input has the weights 43 and -4 to the two hidden units, the second input has the

weights 45 and 4 to the two hidden units, and the two hidden units have the weights

27 and 8 to the output unit. The columns to the right provide insights into the

internal values within the network (the biases, net inputs, activations and delta

values for the 'receiving1 units) plus show the target value for the output unit (0 for

pattern pll).

The network is then trained on the four patterns, changing the weights as necessary

to achieve the required target for each input pair presented. After about 60 epochs

the weights begin to build up. After about 200 epochs one of the hidden units starts

to act like an OR unit; its output is about the same for all input patterns in which one

or more input units is on. After 300 epochs the tss value is below the required

threshold; the system has solved the XOR problem. The results of testing on the four

patterns 00, 01, 10 and 11 are shown in Figure 4.24; the input pair has been

highlighted, as well as the output activation ('act') and target ('tar'), in each case.

pname ipatterns tpatterns pname ipatterns tpatterns
tss 0.0101 pOO 0 0 0 tss 0.0187 pOO 0 0 0
gcor 0.00006 pOl 0 1 1 gcor 0.0000 pOl 0 1 1
pss 0.0101 plO 1 0 1 pss 0.0085 plO 1 0 1

pll 1 1 0 Pll 1 1 0

0 0 9 1 bia net act tar del 1 0 100| 97 14 bia net act tar del
582 582 236 236 9 3 582 582 236 347 97 1
340 340 521 521 1 , n 340 340 521 1 81 14 5

673 742 297 243 | 8 0 1 * 673 742 297 250 92 100 5

pname ipatterns tpatterns pname ipatterns tpatterns
tss 0.0272 pOO 0 0 0 tss 0.0379 pOO 0 0 0
gcor 0.0000 pOl 0 1 1 gcor 0.0000 pOl 0 1 1
pss 0.0085 plO 1 0 1 pss 0.0107 plO 1 0 1

Pll 1 1 0 p H 1 1 0

100 97 14 bia net act tar del 100 100} 100 83 bia net act tar del
582 582 236 346 97 1 582 582 236 928 100 0
340 140 521 181 14 5 340 340 521 159 83 7

673 742 297 250 1 92 100 5 673 742 297 241 1 8 0| 6

Figure 4.24 - BP Network, XOR Problem, testing results after training with 300 epochs

The results achieved with NNW were essentially the same as the PDP results except

that NNW takes 300 cycles to complete where PDP takes 289; possible reasons for

this are discussed in Section 4.10. Discussion of Deviations.

I l l

Chapter 4: Testing and Verification o f Neural Network Software

4.9. NNW Features

The NNW interface application provides comprehensive facilities for loading in

network definition files; defining and creating networks directly through menu and

dialog box options; processing defined networks in order to evaluate their result; and the

reporting of results. Its arrangement of windows was covered in Section 3.7. NNW in

Use and its menu commands and other features are detailed in Appendix C.

4.10. Discussion of Deviations

NNW can currently import most network definition files conforming to the PDP

specification [McClelland 1988]. Initial results indicate that on PDP example networks

NNW returns the same results as PDP software with a few exceptions. These deviations

fall into three categories:

1. NNW produced substantially different behaviour to PDP in the IAC spontaneous

generalisation tests (see Section 4.2.7. Spontaneous Generalisation), specifically

after appearing to settle into a valid stable state the PDP system started to change

again and move towards a new state that appeared to be invalid.

2. NNW is slightly more susceptible to getting caught in local minima, where PDP

seems to reach the global maximum more easily (see Sections 4.3.4. Necker

Cube (Schema Model) and 4.4.2. Necker Cube (Boltzmann Machine)).

3. NNW sometimes takes slightly longer (i.e. more cycles) to settle to a solution

compared to PDP (see Section 4.8.2. Solving the XOR Problem).

It was considered that this behaviour could be caused at a low level in the mathematical

implementation by the transfer function diverging in proportion to the difference

between very similar numbers. The PDP software is implemented using the float

representation of floating point numbers in the C language [McClelland 1988 p322],

where NNW uses the double representation (i.e. double the length of float). The

Microsoft C compiler uses the IEEE float format (and PDP probably does too) which is

four bytes long (1 bit for sign, 8 bits for exponent and 23 bits for mantissa) whereas its

double is eight bytes long (1 bit for sign, 11 bits for exponent and 52 bits for mantissa) -

112

Chapter 4: Testing and Verification of Neural Network Software

a substantially greater resolution. The PDP implementation may therefore be much

more susceptible to small errors in the stored value of numbers1.

This can work against the PDP system in, for example, the spontaneous generalisation

example because the network is trying to hold stable with three units in perfectly

balanced equilibrium (because the gang units are equally distributed between three

occupations). It is suggested that due to the small errors resulting from the use of float

the activations for the three units are not exactly the same and, because of the IAC

tendency for the "rich to get richer" one of them eventually wins out.

However, it appears that these errors can work for the PDP system in, for example, the

constraint satisfaction and back propagation examples. It is suggested that in a CS

network the errors may act like a kind of random noise that helps the system sometimes

climb out of local minima, rather like the simulated annealing is explicitly trying to do

on a much larger scale. Also, it is suggested that in the BP network example, the errors

may help the system get to a solution slightly faster by reducing the occurrence of

situations where similar activation values are competing and tending to slow down the

settling. These areas could be worth investigating in future work.

As an experiment, the main doublevar type in the NNW neuron data structure (see

Section 4.3.2. CS Implementation) was changed to use float in place of double. The test

with the most visibly deviating behaviour, the IAC spontaneous generalisation test, was

repeated and the results are given in Figure 4.25. While the NNW results for the average

activation of the Gang are now nearly identical to the PDP results, the results for the

Pusher are very different, dropping very quickly where the PDP results rose quickly -

though the change takes place at about the same number of cycles.

This result seems to confirm that the behaviour observed is due to a lack of accuracy

when using the float representation of floating point numbers (it should be noted,

however, that the test did not make NNW completely equivalent in data storage to PDP,

since all the intermediate and local variables in NNW continued to be held using the

double representation). The result also implies that once significant error has been

introduced into the system it is no longer stable and may diverge unpredictably (and if

the system is monitored over a long period, even to 1000 cycles or more, it can be

1 Note that it is probably the storage, not the calculation, o f the values that introduces the error since most
C compilers conduct floating point calculations at full precision then convert the result to double or float.

113

Chapter 4: Testing and Verification of Neural Network Software

observed that the activations still change occasionally, i.e. the system never seems to

settle to a fully stable state). Furthermore, it is suggested that the activations for Gang
are behaving correctly, but that their reducing values can be considered to indicate that

the system no longer has 'confidence1 in the various activations in the network being

consistent with each other.

114

A
ct

iv
at

io
n

V
al

ue

0.70

0.60

0.50

0.40

0.30

0.20

l l l lMIII0.10

0.00
300

- 0.10

- 0.20

Number of Cycles

“ ♦“ PDP Pusher
-■“ PDP Gang

NNW Pusher (double)
“ *“ NNW Gang (double)
“ *“ NNW Pusher (float)

NNW Gang (float)

Figure 4.25 — Comparison of activation values changing over time for PDP versus NNW using floating point representations

115

Chapter 4: Testing and Verification o f Neural Network Software

4.11. Early Experimentation

At this stage in the development of NNW, the interesting anomalies discussed in the

previous section notwithstanding, it was clear that the software was working correctly.

In parallel it had become clear that of the different areas that neural networks could

usefully be applied to supplement a supervisory manipulator controller (as proposed in

Section 3.1. Introduction) the most promising area was that of optimising a docking

location — particularly as other tasks, such as solving manipulator forward and inverse

kinematics, were routinely solvable by a manipulator controller such as ARM. This was

certainly true for typical offshore manipulator configurations which were generally

designed in such a way as to avoid problems encountered in more general designs, such

as singularity issues, by employing restricted joint ranges.

An analysis of the different neural network types indicated that the Constraint

Satisfaction network would be most appropriate for solving the docking optimisation

since the problem involved solving for constraints on the ROV location, attachment leg

location, manipulator kinematics, and so on (and did not explicitly require pattern

matching, etc.). Some simple initial experiments were therefore conducted using this

type.

As an example, a network definition was created to play the game of 'tic-tac-toe'

('noughts and crosses'), a problem proposed in the literature [Rumelhart 1986b]. This

problem was chosen because of its parallels with the ROV docking problem - selecting

an optimum location from a number of possible locations, given specified constraints.

Following the proposed method a network definition was created (with appropriate

strengths, template and network files) to represent a game state, and choose the next

appropriate move. The screenshot at Figure 4.26 shows the state of the system after an

initial run, where it has chosen to move first into the centre position.

TL-NNW Noughts and Crosses Experiment

Response 000 Friendly 000 Opponent 000 Cycleno 50
units 0*0 posn 000 posn 000 updateno 42

000 000 000 cuname TIel
goodness 9.7024
temperature 2.0000

Empty *** Friendly 000 Opponent 000 Friendly 070 Opponent 080
Lines * * Doublet 0 0 Doublet 0 0 Single 7 7 Single 7 8

*** 000 000 080 080

Figure 4.26 - NNW noughts and crosses network

116

Chapter 4: Testing and Verification of Neural Network Software

Although the results could not be directly verified against published data, the system

could demonstrably play the game. It was therefore decided at this point to conclude

development and testing of the NNW software and turn instead to looking in detail at

the docking optimisation problem.

4.12. Thesis CD-ROM

NNW is a large and complex application not suitable for including as an Appendix. The

lull source code for it (some 300 files) is therefore included on the attached CD-ROM;

this source includes all project and build files necessary to compile it directly in

Microsoft Visual C++ version 6. Installable/executable versions of NNW, plus data

files, are also supplied on the CD ROM - for more details see the Contents list in

Appendix G.

117

CHAPTER 5:
MANUAL PLANNING OF ROV DOCKING

5.1. Introduction

In order for an ROV to be able to conduct manipulative and other intervention tasks it

needs to hold position at the worksite. This can either be done by the ROV itself in the

water by control of its thrusters, a method known as dynamic positioning (DP) or

'station-keeping', or else the ROV can physically dock with the structure. The first half

of the chapter will detail the main methods for docking, and show why the most

appropriate technique for nodal weld inspection uses attachment systems such as sticky

feet. This is because they provide rigidity for conducting manipulator tasks and can

attach the ROV anywhere required around the node.

This approach introduces its own problems - in particular it becomes very difficult to

determine where the ROV system should attach in order to get the best access to the

weld. The second half of the chapter will look at how the ARM Software has been used

to conduct manual planning of docking positions (and the next chapters will introduce

automated planning methods).

5.1.1. Working Without Docking - Dynamic Positioning

Even some of the earliest ROV systems such as Challenger AROWS had dynamic

positioning, altitude and heading control, and autodepth control [Harman 1988;

Russell 1990], and Sonsub claimed "Challenger's dynamic positioning capability

makes it a stable work platform for precision cleaning and inspection operations

when fitted with the JCV work package" [Sonsub IRST]. However, it has not been

demonstrated that a typical DP system as found on most ROVs (usually based on

inertial navigation) is capable of holding the vehicle sufficiently still to undertake

useful work, as clearly indicated by the fact that the AROWS JCV has attachment

legs to hold it still at the worksite while cleaning (see Section 1.6. AROWS).

118

Chapter 5: Manual Planning of ROV Docking

External DP systems, however, have shown more promise, particularly where it is

possible to arrange a network of acoustic transponders around the worksite. A

prototype high resolution and high update rate acoustic DP system for ROVs was

developed and demonstrated in trials on a Perry Slingsby MRV [Somers 1992]. It

successfully achieved station-keeping to within 10cm RMS, and path following to

within 20cm. A variation of this system, known as the Sonic High Accuracy

Ranging and Positioning System (SHARPS), has been used by Imetrix Corporation

for automated dam inspections with the claimed ability to position a modified ROV

beside a submerged structure to ±2cm [Bowen 1995]. Imetrix has also demonstrated

the use of a similar, modified version for nuclear vessel inspection and has claimed

"Manipulation tasks are also made much easier as the need for constant joystick

movements to hold the ROV steady is eliminated" [Fletcher 1995]. An ROV

specially developed by Imetrix for automated control, the Talon, has a control

system that has been demonstrated to automate ROV movements to better than

±10cm [Fletcher 1997].

A more generally applicable system is the CyberStation controller which provides

an ROV station-keeping facility using a support vessel's Hydroacoustic Position

Reference (HPR) system. This has been successfully demonstrated on a HiROV

3000 ROV and can also be integrated with a 3D graphical interface for visualization

[Johansen 2000; Johansen 2001]. However, this system is only capable of keeping

the ROV position constant to ±lm [Hallset 2000].

Some success has been achieved using the ROV's own cameras and a vision system

linked to the ROV controller to provide station keeping. This technique has been

demonstrated in simulation and in an experimental setup in a test tank using a

Cartesian robot to emulate two DOF of an ROV [Lots 2000], and in preliminary

pool and sea trials on an underwater vehicle [Van Der Zwaan 2001]. As far as is

known, however, a commercial system is not yet available.

One of the problems of DP is the limited power and response of the ROV thrusters.

Another is the low resolution of sensing systems for determining the ROV position

and orientation - an alternative method proposed was "to fix the position of the

ROV relative to the subsea structure by deploying 'sensor arms' from the vehicle to

the structure. These arms will sense the movement of the vehicle and provide the

corrective signal to move the vehicle back to its original position" [Vinsen 1988].

This method has seen some experimental development in Brazil, first on the TATUI

119

Chapter 5: Manual Planning o f ROV Docking

experimental ROV [Hsu 1994] and later on a Benthos Mark II ROV when it

successfully followed a defined trajectory with an error of less than 5cm [Hsu 1999].

As far as is known, however, such a system has never been used commercially,

perhaps because, since the sensor arm needs to be fixed to the structure by an

electromagnet or sticky foot, the arm could be used with little modification to

provide simpler direct stabilisation instead.

Even when ROV DP systems good enough for accurate and consistent ROV

positioning do become generally available it is still unlikely that the ROV will form

a sufficiently stable base for general manipulative work because of the movements

of the manipulator and its interactions with the environment. Nonetheless,

theoretical research has already been conducted into compensating for effects on the

ROV from moving the manipulator [Dunnigan 1993; Koval 1994; McLain 1995].

Other work has looked at improving ROV stability through better hydrodynamic

design [Baker 1990].

An alternative technique used in 1993 had the ROV holding an approximate location

with its thrusters, including thrusting against the workpiece, but independently

fixing an ACFM array weld inspection probe in place on the workpiece using its

own suction skirt. A flexible link was used between the array and the manipulator to

allow the ROV some movement without disturbing the probe during data collection

[Raine 1996b; Pennison 1997].

5.1.2. Docking Using Pre-Defined Attachment Points

Physically docking with a structure takes two forms, either attaching to a prefixed

docking point, or using some attachment system connected to a position of

opportunity (see the next section). The most common type of fixed docking point

uses a pair of tapered cones attached to the front of the ROV which engage with

tapered receptacles on the structure; this is usually accompanied by a hydraulic latch

to hold the ROV in place for the duration of the task. This method is very effective

for pre-planned tasks, such as valve operation by ROV, where the structure has been

designed and built with ROV intervention in mind. Unfortunately, particularly in the

early days, every manufacturer used different, incompatible docking systems. A

typical example used by Oceaneering ROVs on the Norsk Hydro Oseberg subsea

system is shown at Figure 5.1. In this case, once docked, the ROV could deploy a

hydraulic torque tool from the front of its toolskid, or stab a control surface-

deployed umbilical into receptacles above the docking point [Renard 1988]. Very
120

Chapter 5: Manual Planning o f ROV Docking

similar systems have been used by Subsea Offshore Limited [Mair 1990] and other

ROV contractors.

y— CHRISTMAS

PROTECTIVE
STRUCTUREMOOULE

r U ~
REMOTELY
OPERATED
VEHICLE

HYDRAULIC
POWER SKID* - EXTENDED

TOOL/SKID
MOUNTM6 FRAME

PRODUCTION
GUIDE BASE

 __________________________ STRUCTURE BASE

Figure 5.1 - Docking onto a proprietary template [from Renard 1988]

The benefits of standardising docking systems are obvious and in the early days

such standardisation was proposed, e.g. "Contractors should continue to develop

their own attachment devices but these should be designed to suit industry standard

docking cones or studs attached to the subsea structures" [Vinsen 1988]; this was

aimed not just at seabed systems but at nodes on jacket structures to aid nodal

cleaning and inspection - see Figure 5.2. Over the next decade or so a degree of

standardisation was achieved for seabed systems but docking points, standard or

otherwise, have never been successfully used on jackets - this is most likely the case

simply because by this time the majority of jackets were already in place, whereas,

with new developments happening increasingly in deeper water, many new systems

were being designed and installed on the seabed.

121

Chapter 5: Manual Planning o f ROV Docking

TYPICAL ROV
ATTACHMENT PO ST

PIPE STRUCTURE

I

Figure 5.2 - Docking onto standard template [after Vinsen 1988]

The French Cybemetix company is currently developing the SWIMMER (Subsea

Works Inspection and Maintenance with Minimum Environment ROV), a hybrid

ROV/AUV (see Figure 5.3). It consists of an AUV that shuttles a conventional ROV

from the surface to a subsea pre-installed docking station which is connected to a

production umbilical [Chardard 2002; Ingebretsen 2002]. The vehicle swims to its

underwater docking station in long range auto-navigation mode, using onboard

sensors and acoustic positioning, supervised through a low speed acoustic modem.

Figure 5.3 - SWIMMER AUV (orange buoyancy) with ROV (yellow buoyancy) [from
Chardard 2002]

On reaching the docking station location, the system switches to a local auto

navigation system based on 3D sonar recognition of the station. Final approach is

followed by mechanical guiding of the vehicle into the station until it is physically

122

Chapter 5: Manual Planning o f ROV Docking

connected, at which point electrical and hydraulic connections are made. At this

point, the onboard ROV can be operated as a conventional vehicle via a TMS on the

shuttle, and using the production umbilical to communicate with the surface. A

similar system, the AUto-ROV, has been proposed by Fugro-UDI [Garmulewicz

2000] but is believed to still be a paper design. Such systems certainly have great

potential, and Shell has predicted that they are feasible in the short term, low-risk,

and on a new field could give operational savings of $0.5m - $12m over five years

[Van Der Veen 2000].

Cybemetix has also started early development of ALIVE (Autonomous Light

Intervention VEhicle), an AUV with work (i.e. manipulative) capabilities [Chardard

2002]. It will be equipped with a telemanipulation unit controlled through an

acoustic modem. It will dock itself onto an underwater structure - one that is known

in detail, but which does not need to have any dedicated docking system like

SWIMMER (the exact details have not yet been published).

5.1.3. Docking Using Attachment Systems

Most docking for nodal weld inspection is done using attachment legs, as described

for the AROWS, REMO, ATES and ARM systems. The idea of using

electromagnets has been proposed a number of times but they have not found

widespread use, probably because of the problems of the uneven attachment surface

(due to marine growth), and potential interference with any electromagnetic

inspection techniques being used (e.g. MPI, ACFM, eddy current). A recent ROV

system introduced a large docking claw underneath the toolskid for clamping onto

horizontal braces; this system is the subject of later chapters.

The attachment legs used on the ARM System are fairly typical - see Figure 5.4.

They have a telescopic extension from 1.3m to 1.6m, a ball-jointed, soft rubber

sticky foot for attaching on to structures, and shoulder yaw and pitch joints each

capable of rotating the leg through ±90°. The leg actuators take their power from the

ROV hydraulics, and the foot attaches through water being drawn out of the foot by

a pump inside the toolskid.

In an ideal system, there are three attachment legs in use on an ROV system so that

they form a rigid tripod arrangement that prevents the ROV from moving

significantly while work is being conducted. The ARM System was designed from

the outset with this philosophy in mind. Other IRM systems, such as AROWS,

123

Chapter 5: Manual Planning of ROV Docking

REMO and ATES, are typically only equipped with one or two attachment legs and

so there may be residual ROV motion induced from movement of the surrounding

water (currents and swell) and from interactions of the manipulator tooling with the

workpiece.

Figure 5.4 - ARM attachment leg

The amount of ROV motion is difficult to quantify (though some limited work has

been done on this issue [Tisdall 1997]) and obviously depends on environmental

factors and the ROV location (e.g. how close it is to the surface). It can be reduced

by various techniques, such as the ATES TV Trackmeter (see Section 2.5. ATES),

using attachment legs in conjunction with dynamic positioning (see above) or by the

simple expedient of thrusting the ROV against a nearby brace or other appurtenance.

The philosophy considered in the remainder of this thesis when planning how to

dock on is simply to maximise the number of attachment legs in position, i.e. three if

possible, two otherwise, or one if that is all that can be achieved.

124

Chapter 5: Manual Planning o f ROVDocking

5.2. Background to Access Simulation

Any offshore underwater activity is very expensive because of the high backup costs,

e.g. a single ROV in the water conducting a task may require a crew of seven, plus the

whole system typically requires a large, expensive vessel, with its own crew of a dozen

or more. For many years it was appreciated that significant costs could be saved by

advance planning, particularly considering the basic issues such as whether an ROV

could gain access to the required work area - “the planning of Inspection, Maintenance

and Repair onto permanent subsea installed production systems are of importance in

order to obtain a satisfactory production availability” [Skyberg 1988]. Before the

availability of the ARM Software for conducting access simulations, however, the

options for checking access were limited.

One engineer described the methods used in his project in some detail [Renard 1988],

one where the structure was still being designed. These were typical of the time and

interesting to look at in detail. The stages were as follows:

1. Small cardboard models - “While waiting for the future sophisticated ROV

simulators to come, and before complete studies and CAD drawings could be

produced, preliminary designs of the prototype structures were simply

transformed into 3 dimensional cardboard models to visualize the geometry,

accesses and potential obstructions for an ROV. The first simulated ROV to ‘fly’

around the structure... was a matchbox.”

2. More detailed plywood and plastic models

3. Half size cardboard models

4. Full size ROV mock-ups made of scaffolding tubulars and joints - “ ... were

suspended to the hook of a crane and ‘flown’ in and out of the structure

openings to each work location”

5. Shallow water testing using a prototype structure

Even at this time, computers were starting to be used to simulate the motions of ROVs

[Primrose 1988; Broome 1988] and it was appreciated that computers could be involved

in access checking. This was particularly true once a project was at the stage where the

structure had been fully modelled in CAD - “for access verification at an early stage of

the subsea production system development Computer Aided Design has proved to be a

satisfactory tool” [Skyberg 1988]. Essentially a model of the ROV and a model of the

structure are both held in the CAD software and the user is able to move the ROV
125

Chapter 5: Manual Planning o f ROV Docking

model around the structure and check access, clearances, etc. More sophisticated

approaches were soon proposed: "Based on numerical models, motions of the vehicle,

manipulator or tools at the work site can be animated. By introducing the surrounding

structures at the work site, both accessibility and obstacle avoidance can be studied"

[Sortland 1990].

Nonetheless, it is of interest to note that at the start of the ARM Project, before the

ARM Software had been developed, one of the first things done by Slingsby was to

make cardboard models of structures and manipulators in order to check manipulator

access capabilities and hence help design the manipulator configuration. Perhaps more

surprising, and despite the rapid advances in computer simulation, is the fact that even

today a number of ROV operating companies check ROV access to subsea structures by

flying an ROV off a crane around the structure before it is deployed into the water.

Notwithstanding the above, it is now possible to test a complete intervention task in

simulation, not just in terms of access checking but also considering the handling of the

vehicle in the ambient water conditions (current, swell, etc.) [Larkum 2000; Larkum

2002]; "3D model testing and simulator training comes highly recommended in the

process of verifying access and purpose testing the application in question" [Ingebretsen

2002].

5.3. ARM Access Simulation

As the development o f the ARM System progressed it became clear that the original

high demand for weld inspection that it had been designed for had receded. This was

largely due to the development of new structural integrity simulations that allowed

platform operators to demonstrate, through finite element analyses and similar

techniques, that a particular structure had sufficient structural integrity to achieve

certification, without requiring large amounts of inspection.

Platform operators began to develop new inspection programmes, and obtained

dispensations from their Certifying Authorities, in order that they could maximise the

period between weld inspections [Raine 1996a; Raine 1997; Pennison 1997]. Two main

philosophies predominated. In the first philosophy, weld inspection on a small number

of node welds was replaced by Flooded Member Detection (FMD) on a much larger

scale. This could be carried out with the use of an ROV and a radiation FMD system

which did not require cleaning of the member or accurate placing of the FMD tool. Only

if flooding was detected would detailed weld inspection be carried out with the

1 2 6

Chapter 5: Manual Planning of ROV Docking

necessary cleaning, and detailed application of a weld inspection tool (preferably by

ROV). The other philosophy was to carry out all but weld inspection over a four year

cycle and then deploy divers in the final year of a five year cycle. If the structures were

located in mixed depths of water (suitable for air diving and saturation diving) then a

saturation diving team would be deployed.

Computer S y s tem NO

Wentatioil Azimuth I Twist

jCOLUSION DETECTION: Workpiece H tM sed (BEVICErVlrtuS |REINDEX: Auto [TOOL- Inspection |>ni i :,\i i ; in. ;

Figure 5.5 - ARM Software being used for Access Simulation

Inspection continued, but at such low volumes that it could be done by means other than

automated ROV deployment, e.g. by divers when on site for other tasks (hence at low

extra cost) or by conventional ROVs (since the low work rate was not significant for a

small amount of inspection). Nonetheless, even as demand for the ARM hardware dried

up, the ARM Software was increasingly in demand as a simulation and task planning

tool (see Figure 5.5): "Using the ARM simulation package it is possible to decide the

suitability of a particular ROV manipulator combination to inspect nodal welds on a

particular platform" [Pennison 1997].

5.4. Development of ARM Docking Planning

Most of the planning work in the literature (as described above) was simply access

checking, i.e. to see if the ROV could physically fit in the workpiece environment.

However, as ARM developed it became more sophisticated and, from 1995, it was able

to model attachment legs in detail, considering their kinematics, and determine whether

a particular leg could attach at a particular position on the workpiece as specified by the

operator. During 1996 and 1997 this was extended so that the software could calculate
127

9

Chapter 5: Manual Planning of ROV Docking

whether a particular leg could attach given a specified ROV location (initially just

considering the closest tubular, but later considering all tubulars in turn to see if a

successful attachment could be made). From this point, ARM was able not just to

conduct an access check, but to plan a docking location for the ROV system - the type

of docking planning that is the subject of this thesis. The remainder of this chapter will

describe the kind of access checks and docking planning tasks that were solved

manually using the ARM Software, with four brief examples from major commercial

jobs.

5.4.1. Texaco Node Visualisation

The first modelling work conducted was for Texaco in August 1995, looking at the

ACFM inspection of nodal welds on the Tartan Alpha platform in the North Sea.

The existing ARM Software was used for the node modelling, but a number of

enhancements were made during the work (particularly allowing for the building of

more complex nodes with longer braces and fixtures such as caissons and risers).

Example screenshots are at Figures 5.6 and 5.7.

Figure 5.6 - Tartan Alpha: the riser of interest and its mounting brace are directly in
front of the ROV

The Tartan Alpha work remained largely an access simulation job - access for the

ROV to the vicinity of the work areas was considered, and the results were primarily

the 3D graphical displays of the nodes which were used by Texaco to help them

visualise and plan the ROV tasks.

128

Chapter 5: Manual Planning o f ROV Docking

Figure 5.7 - Access checking on an almost hidden weld (highlighted ahead of the ROV)

5.4.2. RACAL Manipulator Evaluation

The second job was the simulation of a proposed small inspection ROV toolskid and

manipulator (see Figure 5.8) for RACAL. This was really the first manual docking

planning work since it fully considered the attachment of the ROV system to the

workpiece (as did all later work). The toolskid had a rotating/extending manipulator

boom and sticky feet like ARM, but all on a smaller scale, and carried on a small

Seal ROV. The simulation looked at the access capabilities of the toolskid on the Elf

Claymore Alpha platform, but also with consideration of the way in which the

manipulator design could be changed to improve access.

Figure 5.8 - Proposed RACAL toolskid and manipulator design

The system is shown docked on a node in Figure 5.9. The simulation results showed

that the system could access the nodes considered so long as a number of changes

129

Chapter 5: Manual Planning of ROV Docking

were made to the manipulator configuration (e.g. an extra rotate joint at the end of

the wrist, and a larger joint range at the wrist pitch).

Figure 5.9 - RACAL system inspecting the underside (6 o’clock) on a nodal brace

The system was redesigned, largely in line with the recommendations from the

simulation work. It was built in a very short space of time by Tritech International

Limited (see Figure 5.10), in conjunction with Hydro-Lek Limited, and went

offshore in 1996 [Raine 1997]. It conducted the inspection programme for Elf with

some, limited success [Pennison 1997] - the problems were largely due to

equipment failure rather than faults in the toolskid or manipulator configurations.

Nonetheless, it will be seen in Chapter 8 that Elf looked again at system

requirements for this inspection work.

Figure 5.10 - RACAL system manufactured by Tritech [courtesy TSC Ltd]

130

Chapter 5: Manual Planning o f ROV Docking
5.4.3. Mobil Docking Planning

The third job involved access simulation for the ARM System on to five nodes on

Mobil’s Beryl Bravo platform. This was an important job as it was to be conducted

in advance of the proposed first use of the ARM System offshore - it was Mobil’s

requirement for ROV inspection of the Beryl Bravo that had originally led to Mobil

funding the development of the ARM System.

Figure 5.11 - The ARM System on node 3A2, inspecting the 12 o'clock position

An interim simulation had been conducted in 1994 but the conclusions were

tentative due to the incomplete nature of the ARM Software at the time.

Furthermore, following the ARM 3 trials in April 1996 (see Chapter 2) a number of

significant improvements had been made to the Software.

Figure 5.12 - The ARM System on the inside of 6A3, inspecting the 6 o'clock position

131

Chapter 5: Manual Planning o f ROV Docking

The new simulation results showed that the ARM System was capable of inspecting

most of the welds considered, and certainly as much as could be inspected by diver.

Nonetheless, due to the general changes in inspection philosophy, as discussed

above, combined with particular internal political and financial control changes

within Mobil, the Beryl Bravo work was cancelled and the ARM System never did

go offshore. The ARM System is shown docked onto two of the Beryl Bravo nodes

in Figures 5.11 and 5.12.

5.4.4. Amoco Docking Planning

The fourth job was for the Amoco Leman and Indefatigable platforms in the

Southern Sector of the North Sea for DSND Oceantech. These platforms are smaller

and in shallower water than those further north considered above, and so the work

involved considering whether a smaller ROV system could conduct the work. The

small system proposed was essentially an ARM System with smaller dimensions

(i.e. same toolskid design with extending/rotating manipulator boom plus a

‘goalpost’ at the front mounting three attachment arms) carried by a Seal ROV (as

per the RACAL job above). An important aim was also to compare the results

achieved by:

1. a fixed manipulator, i.e. the same as a standard ROV manipulator

arrangement

2. using the same manipulator mounted on the proposed toolskid (to see the

benefit of the extending/rotating mount)

3. the complete (but much larger) ARM System, as a reference

It was assumed in the simulation that flying the ROV into the inside of the structure

should be a last resort, only to be attempted when access to a weld could not be

achieved from the outside. With this in mind, ARM managed 100% access from

outside (making use of two probe offsets, and therefore requiring a total of three

dives) - see Figure 5.13. Also from the outside, the manipulator on the small

toolskid managed an average of 48% access, while the fixed manipulator managed

an average o f 14%.

If, however, flying inside were regarded as acceptable then the ARM system could

do without the probe offset and could achieve 100% access to each weld in one dive

to each node. Therefore, if these nodes are typical of ones that could be found within

the same platform then ARM could access 100% of the four welds in one and the
132

Chapter 5: Manual Planning of ROV Docking

same dive. Making use of the inside, the manipulator on the small toolskid managed

an average of 91% access (see Figure 5.14), while the fixed manipulator managed

an average of 45%.

Figure 5.13 - ARM Inspecting an internal nodal weld from outside the platform

These results clearly vindicated the original ARM design decisions with regard to

the necessity of having a rotating and/or extending boom for the manipulator.

However, on these smaller platforms at least, and if flying inside was acceptable,

good access could still be achieved by a smaller ROV system so long as it had its

own rotating/extending boom.

Figure 5.14 - Seal ROV inspecting a weld from the edge of the conductor guide frame

133

Chapter 5: Manual Planning o f ROV Docking

5.5. Simulation Process

The process of conducting manual access checks for ROV/manipulator combinations

follows a standard procedure that will be described here. It should be noted that before

any simulation can begin, models of the workpiece, ROV, toolskid and manipulator

need to be created if they are not already available (this applies equally to the automated

methods that will be discussed in the remainder of this thesis). Similarly, after the

simulation is completed there is typically a reporting phase in which the access results

are compiled, tabulated and illustrated - where a manipulator could not access a weld,

the reasons are given; where it could access, information is given on the best ROV

position, the attachment leg and deployment system configurations, and the degree of

access achieved (in terms of clock positions and percentage of total weld reached).

The process of creating the workpiece model, usually a node, involves interpretation of

the platform plans and any other information available (such as photographic stills or

video). The model is then built in the ARM software using a combination of primitive

shapes, primarily cylinders and cuboids, to represent the chord, braces, pipes (e.g. risers

and caissons), and miscellaneous brackets often found on jacket nodes. In addition,

certain predefined components are available in the ARM software that can be added

directly, as required, such as anodes and name plates. Also, ARM has an extensive

database of ROVs, toolskids and manipulators but when a new one is required it can be

constructed from primitives, much like workpieces, but the description is written

directly into a text file (i.e. there is no graphical interface for building it).

The procedure for manual docking planning is fairly informal, but generally takes place

as follows:

1. Choose an appropriate start position (i.e. which side of the node) and approach

direction.

2. Place the ROV at the start position and then move it as necessary to prevent any

collisions with the workpiece.

3. Check to see if any or all of the attachment legs can attach at this ROV position.

If not enough can attach (generally the requirement is all of them) then change

the ROV position and/or orientation and try again.

4. Choose suitable start and end positions on the weld for the inspection task. The

manipulator is then deployed and the probe stepped around the weld in

simulation (the ARM Software creates a model of the weld metal that is

134

Chapter 5: Manual Planning o f ROV Docking

superimposed on the workpiece and used to determine the precise position and

angle required of the probe. Since the software includes full forward and inverse

kinematic models of each manipulator this provides a very accurate

measurement of possible weld access, taking into account collision detection of

the manipulator against itself, the ROV and toolskid, and the workpiece

' components and fixtures). If the simulated inspection fails, try closer and smaller

segments of weld until the inspection has succeeded or all segments have been

tried. This simulated inspection is a very time consuming process since it is

conducted in real-time, and therefore can take some minutes for each partial

check.1

5. If the complete weld cannot be inspected with the manipulator in its default

position, as is invariably the case, estimate a better deployment system setting

(e.g. extending and/or rotating the boom or whatever is appropriate) and repeat

from 4.

6. If the weld has not yet been fully inspected, having tried a number of likely

deployment system settings, then adjust the ROV position as necessary and

repeat from 2.

7. If the weld has not yet been fully inspected, then consider a different approach

position and direction (e.g. from the other side of the node), i.e. repeat from 1.

8. If a sufficient number of permutations have been tried (this is entirely down to

the discretion, experience and patience of the operator) try other means of

improving access, e.g. offset the manipulator from the deployment system, offset

the probe from the manipulator wrist, change the orientation of the probe on the

manipulator, change to a different manipulator (on a two manipulator system),

etc. - and repeat from 1 for each option.

9. If it is required to access different parts of the weld (the default is the chord toe,

the edge touching the chord, but the brace toe and weld cap often also need to be

inspected) then select the new weld path, and repeat all from 1 (though the ROV

configuration chosen this time will obviously be informed to some extent by

successful access achieved for any previous weld paths).

1 After the automated docking work was completed, the kinematic path check it used was made available
for manual use so that this inspection simulation could be replaced with the faster kinematic check.

135

Chapter 5: Manual Planning o f ROV Docking

It is very obvious that the whole process of manual docking planning is a long and

laborious one without any indication of whether an initial location (necessarily chosen

somewhat arbitrarily) was a good position or not until an extensive access simulation

was conducted. It could take an experienced operator some days to plan the docking on

a single complex node, and clearly indicated the requirement for an automated docking

planning system such as those described in detail in the remainder of this thesis.

Although in some ways the proposed solution will inevitably be closely tied to the ARM

Software to avoid unnecessary duplication of work (since this is already used to define

the problem in all its complexity, e.g. workpiece details, manipulator and attachment leg

kinematics, etc.), it is clearly a requirement that the resulting system be applicable to

planning the docking not just of the ARM System (i.e. the Slingsby hardware) but of

any of the many ROV/manipulator combination systems considered in this and earlier

chapters.

136

CHAPTER 6:
DOCKING PLANNING USING NEURAL NETWORKS

6.1. Introduction

As has been described above (see Chapters 3 and 4), a general purpose neural network

software application was created as part of this thesis work. This chapter will describe

the use o f the neural network software to help plan docking locations in an automated

way.

The plan was as follows:

1. Create simple, test docking problem definition files by hand

2. Read these into the neural network software to solve

3. Verify the results were valid

4. If this method proved feasible, adapt the ARM software to create docking

problem definition files using its existing simulation facilities

5. Read these into the neural network software to solve

6. Verify the results were valid and, where feasible, compare with the results

achieved by a human operator

The remainder of this chapter will describe the testing of manual docking definitions

(i.e. 1-3 above) and the next chapter will describe the development and testing of

docking definitions created through ARM processing (i.e. 4-6 above).

6.2. First Manual Scenario (Coincident Attachment Legs), Schema Model

The first scenario to be defined and tried in the neural network software was a very

basic one:

1. Assume a simple node: a vertical chord (radius lm) with a single horizontal

intersecting brace (radius 0.5m) arranged so that the brace direction is

perpendicular to the ROV primary axis.

137

Chapter 6: Docking Planning Using Neural Networks

2. Assume that the required access point is at the centre of the brace where it

intersects the chord (to represent approximately typical access to the whole

weld around the brace where it intersects the chord).

3. Consider possible ('candidate') ROV docking positions as being on a coarse

grid o f points lm apart, centred on the required access point, extending from

-1 to 1 in x, y and z (see Figure 6.1).

4. Discard any points inside the chord or brace.

5. Assume that the manipulator origin (the shoulder mounting plate) is located

at the ROV origin (and that it is not attached to a rotating or extending boom,

or similar system).

6. Discard any points that are too close or too far from the required access point

for practical manipulator interaction, i.e. if not within working manipulator

reach - see below.

7. 'Score' remaining points in terms of how much working reach the

manipulator retained, the criterion being how close it was to the middle of its

reach range (considered to be 0.5m to 2.0m for the Slingsby ARM inspection

manipulator under consideration) - see below.

These items produced a result with a large number of valid ROV positions, and so

further criteria were added in order to distinguish between a number of valid ROV

positions:

8. Assume that the ROV has one attachment leg, and that it is connected to the

ROV at its origin (this will be changed in the next scenario). Discard any

points that are too close or too far from the chord or brace surfaces for the

attachment leg to attach.

9. 'Score' remaining points (for details see below) in terms of how well the

attachment leg is fixed, the criteria being how close it is to the middle of its

extension range (considered to be 1.3m to 1.6m for the Slingsby ARM

attachment legs under consideration at this stage) when reaching the surface

o f either the chord or brace.

138

Chapter 6: Docking Planning Using Neural Networks

Figure 6.1 - Illustration of the grid of candidate positions used

The type of scenario envisaged was entered into the ARM software purely as a means of

illustration, and this is shown at Figure 6.2.

Figure 6.2 - Illustration of the First Scenario (coincident single leg and manipulator)

Note that it was assumed (see item 1.) that the ROV system was 'straight on' to the node

(either from the 'left' in Figure 6.1, as illustrated in Figure 6.2, or 180 degrees around

from the 'right'). This was a simplification that made the solution of the problem

considerably more straightforward than if the orientation was also considered. None of

139

Chapter 6: Docking Planning Using Neural Networks

the methods given below solve for the best orientation — rather they solve for a given

orientation. In an operational situation the ROV orientation is fairly well constrained,

since the front of the ROV with its attachment legs must be generally oriented towards

the node (this is particularly true if the ROV is constrained to stay on the outside of the

jacket structure). It is therefore possible to consider the orientation sufficiently well by

solving for the straight on arrangement plus a small number of arrangements that are

nearly straight on but vary in slightly in heading. For example, once the system can

solve for the straight on arrangement, it can also solve for, say, 10 degrees left, 5

degrees left, 5 degrees right and 10 degrees right. Variations in pitch and roll were not

considered since workclass ROV systems tend to be highly constrained in these by their

buoyancy arrangement.

The purpose of calculating a score for the manipulator reach and the attachment leg

extension was to provide a quantitative value to help distinguish between positions that

were otherwise equivalent. The reasoning was as follows:

• Using the criterion of how close the manipulator was to the middle of its

working range was designed to penalise positions where the manipulator was

nearly fully stowed or fully extended, since this implied that once in location

the manipulator would have very little flexibility in terms of changing

configuration.

• Using the criterion of how close the attachment leg was to the centre of its

telescopic range was designed to penalise positions where the telescopic leg

was nearly fully compressed or fully extended, since this implied that once

in location the ROV would have very little flexibility in terms of changing

position (the orientation of the attached surface is ignored since the suction

feet generally have very flexible ball-joint couplings).

These are just approximations to the actual manipulator reach and leg attachment ability

of a system, and will be refined in the work described below.

140

Chapter 6: Docking Planning Using Neural Networks

Value

1.0

0.0
Extension, xXmin

Figure 6.3 - Determining a score value from manipulator or attachment leg extension

The actual score value was calculated very simply as the absolute ratio between 'the

difference of the extension value from the average/midpoint value' and 'half the working

extension range' - this was then subtracted from one, so that a high value represented a

good extension position, i.e. near its midrange. This is illustrated in Figure 6.3 and can

be represented as follows:

Value = 0 0 < x < xmin, xmax < x - Eq. 6.1

Value = 1 —
k max ^ m in)

= 1 -
2 X ~ * m a x ~ * m in

•^max "^min
-Eq. 6.2

= 1 - 1 +
2 (x —x)
v — X

max min

Xmin ^ X < X max -Eq. 6.3

Using this scheme a table of candidate positions was created, and then each position

checked against the listed criteria and either rejected, or given an appropriate score - see

Table 6.1. Once a criterion was found that led to a position being rejected, the other

criteria were not calculated for that candidate - with the exception of the attachment leg

distance, since it was valid to attach either to the chord or the brace.

141

Chapter 6: Docking Planning Using Neural Networks

Candidate Position
(X, Y, Z)

Outside
Chord?

Outside
Brace?

Manipulator
Reach
Value2

Leg
Distance
to Chord
Value3

(radius R
= 0.5m)

Leg
Distance
to Brace
Value3

(radius r
- 0.25m)

.1 0, 0 ,0 X

2 0, 0,1 X

3 0 ,1 ,0 X7

4 0 ,1 ,1 X

5 1 ,0 ,0 y y 0 0

6 1 ,0 ,1 y y 0.78 (x=V2) 0 0.24
(x=V2-r
=1.16)

7 1 ,1 ,0 y y 0 0

8 1,1 ,1 y y 0 X

9 -1 ,0 ,0 V y 0 0

10 -1 ,0 ,1 y y 0.78 0 0.24

11 -1 ,1 ,0 V y 0 X

12 -1 ,1 ,1 y y 0 X

13 0 , - i ,0 y X

14 0, -1, 1 y y 0 0

15 1 ,-1 ,0 y y 0.78 0.8
(x=1.3/

16 1,-1 ,1 y y 0.36 (x=V3) 0.8

17 0 ,0 , -1 X

18 0 ,1 ,-1 X

19 1,0 ,-1 y y 0.78 0 0.24

20 1,1,-1 y y 0 X

21 1,-1,-1 y y 0.36 0.8

22 0, -1,-1 y y 0 0

23 -1,0 , -1 y y 0.78 0 0.24

24 -1 ,1 ,-1 y y 0 X

25 -1 ,-1 ,0 y y 0.78 0.8

26 -1 ,-1 ,1 y y 0.36 0.8

27 -1,-1 ,-1 y y 0.36 0.8

Table 6.1 - Scoring docking positions manually, first scenario

142

Chapter 6: Docking Planning Using Neural Networks

= valid position, * = invalid or inaccessible positionKey: S

Notes:

7 Points on the chord surface are
considered to be inside the chord

2 For manipulator reach, xmin = 0.5m,
Xmax 2.0m

For attachment leg distance, xmin =
1.1m, xmax = 1.6m (the minimum
extension of the Slingsby legs is 1.3m,
but by inclining the leg at 30° - the
maximum rotation of the ball joint at
the foot - they could be used to attach
to a surface as close as 1.3cos30 =
1.1m away).

4 x = V((l+R)2+ l2)-R = 1.3
(see attached sketch for reasoning)

R 1

1
/ R - 0.5

/ / x

From this manual scoring of docking positions there remained out of the original 27

possible locations, 10 candidate positions that satisfied the different criteria (marked

with yellow shading in Table 6.1). The next stage was to create a neural network

definition that included these 10 positions along with their scores for manipulator reach

and attachment leg extension in order for the neural network software to be able to

make the best selection. Of course, at this stage, the example was artificially simple so

that it could be created manually in a relatively straightforward way - but if the system

worked then this would indicate that the whole approach could be automated and hence

applied to situations of increasing complexity.

A network definition was created with appropriate files as follows:

• R o v . s t r (network strengths): This gave initial values for all main parameters

(based on the values found successful for the tic-tac-toe problem initially - see

Section 4.11. Early Experimentation), the names of other files required, and a

list o f the names of candidate positions. See Table 6.2. The names were created

directly from their co-ordinates, e.g. (1.0, 0.0, 1.0) became '+10+1', (-1.0, 0, 1.0)

became '-10+1' etc.

• R o v . t e m (screen layout) and R o v . l o o (variables layout): These defined some

initial parameters and indicated where unit values were to be displayed on the

screen. See Appendix D.

143

Chapter 6: Docking Planning Using Neural Networks

• R o v . n e t (network definition): This defined a symmetrical network with 12

units, 12 inputs and 12 biases, and with 12 updates per cycle — these were for the

10 candidate positions, plus the two criteria values (manipulator reach and

attachment leg extension). See Appendix D.

• R o v . w t s (unit weights): This defined the weights applied to each unit in the

form of a 12 x 12 array. See Table 6.3.

s e t d l e v e l 1
g e t n e t w o r k r o v . n e t
g e t w e i g h t s r o v . w t s
s e t mode c l a m p 1
s e t p a r a m e s t r 1 . 0
s e t p a r a m i s t r 0 . 2
s e t n c y c 50 ■
g e t unam es +10+1 - 1 0 + 1 + 1 - 1 0 + 1 -1 + 1 + 1 0 - 1 + 1 - 1 - 1 - 1 0 - 1 - 1 - 1 0 - 1 - 1 + 1

- 1 - 1 - 1 Acs SF__

Table 6.2 - Network strengths and unit names in R o v . s t r file

For this First Manual Scenario the Schema Model, the simplest type of constraint

satisfaction network, was used. As has been seen, for a CS network (see Section 4.3.1.

CS Theory)'.

goodness, = ^ wljalaj + inputta(+ biaslal - netlal - Eq. 6.4
j

where nett — ^ wtJ Oj + inputt + biast - Eq. 6.5
j

= net input into a unit

That is, goodness is maximised if each activation is increased when the net input is

positive (and vice versa). Therefore the activation for a particular grid location will

increase from the units it is linked to multiplied by the weight of the link. There are no

dynamic inputs in this system (the requirements do not change during the processing)

and so activation o f all units will initially be just their bias. Then during processing, the

activation o f a grid choice ax>y>z will depend on its initial bias plus any links from

connected units (a simpler case than the general arrangement shown in Figure 4.10).

It is worth looking at the unit weights chosen in the R o v . w t s file in more detail. For

each of the possible candidate positions there is a negative (-1.0) value from each of the

other candidates so that they are mutually exclusive, i.e. as the strength for one position

increases so it tends to push down the strength of any other selection - this is done so as

144

Chapter 6: Docking Planning Using Neural Networks

to produce a best ('winner takes all') solution. For each position there is then a

manipulator reach value and an attachment leg extension value taken directly from the

manual docking table above. Finally, there is a small bias (0.1), highlighted in yellow,

applied to each position so as to 'kick off the selection, i.e. each position has a starting

value as the competition begins so that the system is essentially unstable initially and

will have to start responding to the various unit activations.

0. 00 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0

ol—1I - 1 . 0 - 1 . 0 - 1 .0 - 1 .0 0. 78 0. 24
- 1 .0 0. 00 - 1 .0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 .0 - 1 .0 - 1 .0 0. 78 0. 24
- 1 .0 - 1 . 0 0 . 00 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 -1 . 0 - 1 .0 - 1 . 0 0 78 0. 80
- 1 . 0 - 1 . 0 - 1 .0 0 . 0 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 .0 - 1 .0 0 36 0. 80
- i . 0 - 1 . 0 - 1 . 0 - 1 . 0 0 . 0 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 -1 . 0 0 78 0 24
- 1 .0 - 1 .0 - 1 .0 - 1 . 0 - 1 . 0 0 . 0 0 - 1 . 0 - 1 . 0 - 1 .0 - 1 . 0 0 36 0 80
- 1 .0 - 1 . 0 - 1 .0 - 1 . 0 - 1 . 0 - 1 . 0 0. 00 - 1 . 0 - 1 .0 - 1 .0 0 78 0 24
- 1 . 0 - 1 . 0 - 1 .0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 0. 00 - 1 .0 - 1 . 0 0 78 0 80
- 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 0 . 00 - 1 .0 0 36 0 80
- 1 .0 - 1 .0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 .0 0. 00 0 36 0 80
0. 78 0. 78 0. 78 0 . 3 6 0 . 7 8 0 . 3 6 0 . 7 8 0. 78 0. 36 0. 36 0 00 0 00
0. 24 0. 24 0. 80 0 . 8 0 0 . 2 4 0 . 8 0 0 . 2 4 0. 80 0. 80 0. 80 0 00 0 00
0. 10 0 . 10 0 . 10 0 . 1 0 0 . 1 0 0 . 1 0 0 . 1 0 0. 10 0 . 10 0 . 10 0 00 0 . 00

Table 6.3 - Network weights in R o v . wts file

This network definition was then run in NNW to see if it could make a selection of the

best position. In most runs it made a selection fairly quickly, within about 50 cycles. In

Figure 6.4 it has run 50 cycles and positions 3 and 8 already have high activation values

('*' = 1.0, and '9' = 0.9, respectively) and the overall goodness figure is 2.1562; position

10 is also slightly activated (0.2). In Figure 6.5 it has run 100 cycles and positions 3 and

8 both now have an activation of 1.0, and the goodness is 2.3598; position 10 is no

longer activated at all. In Figure 6.6 it has run 150 cycles - the activation levels are

fixed at 1.0 and the goodness has reached a plateau at 2.3600. Further cycles produce no

change in the system, it has fully settled. When conducting a large number of runs it can

be seen that very occasionally other positions are selected, but positions 3 and 8 are

selected in the vast majority of runs.

145

Chapter 6: Docking Planning Using Neural Networks
Neural N etw orks for W indows - R ov .tem

Fte Edft View Spetify Settings Inputs Patterns Run Options Window Help

D l ^ l H l *1 1 lr-1 d j col 1 T| 1 t |¥ ? l
P i R ov.tem :!

Manual ROV Docking Test

Possible 00*0000902
Locations

Cycleno
updateno
cunaae
goodness
temperature

£0
- 10+1

Manip
Access

Sticky
Foot

i l
Ei Rov.tem :2

Weights:

0.00 1.00 - 1.00 - 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 - 1.00 0.78 0.24
1.00 0.00 - 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 - 1.00 - 1.00 0.78 0.24
1.00 - 1.00 0.00 - 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00 0.78 0.80
1.00 - 1.00 - 1.00 0.00 - 1.00 1.00 - 1.00 - 1.00 1.00 - 1.00 0.36 0.80
1.00 - 1.00 - 1.00 - 1.00 0.00 - 1.00 - 1.00 - 1.00 1.00 - 1.00 0.78 0.24
1.00 1.00 1.00 - 1.00 - 1.00 0.00 - 1.00 1.00 - 1.00 - 1.00 0.36 0.80
1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 0.00 - 1.00 - 1.00 - 1.00 0.78 0.24
1.00 - 1.00 1.00 - 1.00 - 1.00 - 1.00 - 1.00 0.00 - 1.00 - 1.00 0.78 0.80
1.00 1.00 - 1.00 1.00 - 1.00 1.00 - 1.00 - 1.00 0.00 - 1.00 0.36 0.80
1.00 - 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 - 1.00 - 1.00 0.00 0.36 0.80
0.78 0.78 0.78 0.36 0.78 0.36 0.78 0.78 0.36 0.36 0.00 0.00
0.24 0.24 0.80 0.80 0.24 0.80 0.24 0.80 0.80 0.80 0.00 0.00

Figure 6.4 - Results of ROV Docking Test after 50 cycles

The NNW software was clearly giving the correct result, since positions 3 and 8 had

both the highest manipulator reach value and the highest attachment leg value. It was

decided, therefore, to increase the complexity of the scenario.

Manual ROV Docking Test

Possible 00 0000*00

iperature

StickyManip

Manual ROV Docking Test

Cycleno
updatenoPossible 00*0000*00

goodness
temperature

Sticky

Figure 6.5 — Results after 100 cycles Figure 6.6 - Results after 150 cycles

146

Chapter 6: Docking Planning Using Neural Networks

6.3. Second Manual Scenario (Offset Port Attachment Leg), Schema Model

In the second manually defined scenario it was decided to look in more detail at the

requirements for attaching the sticky feet and so produce a more sophisticated scenario

that better reflected real life complexities. Specifically, it was clear that the first

scenario was too simple in that it was possible to look at a particular position and

determine easily whether it was a good position by calculating values for its

manipulator reach, attachment leg extension etc. Since there was no parallel

computation required (choosing one position had no effect on the choice of

neighbouring positions) it was felt that the neural network was not able to show any

advantage over conventional linear processing systems.

Therefore a scenario was defined in which there was a connection implied between

neighbouring positions, specifically that any attachment legs were not connected at a

point on the ROV coincident with the ROV's origin. Rather, that any attachment legs

were offset horizontally or vertically from the ROV origin. This meant that when

considering a particular candidate position, it might have a particular value for

manipulator reach for an ROV at that position (as the manipulator origin was still

assumed to be coincident with the ROV origin). However, in addition it might have, for

example, an attachment leg value that applied to an ROV at a position on its left (for a

starboard attachment leg) or a value that applied to an ROV at a position on its right (for

a port attachment leg) and so on.

This may be better explained with an example (and for simplicity the attachment legs

are assumed to be offset by lm in any direction, i.e. to match the coarseness of the grid

being considered): the position (-1,0, 0) may have a certain manipulator reach value for

an ROV at that position but in addition it may have an extension leg value for a

starboard attachment leg from an ROV docked at (-1, 1, 0) - a position lm to the left,

and a further extension leg value for a port attachment leg from an ROV docked at (-1, -

1, 0) - a position lm to the right, and so on. Although in this example the attachment

leg offsets are artificially constrained to lm, the method could be extended (i.e. if

automated) so that any offset could be fairly well considered given a sufficiently fine

grid.

In order to make manual definition of this scenario feasible the following method was

used:

147

Chapter 6: Docking Planning Using Neural Networks

1. Assume the same simple node, access point and lm grid, discard any points

inside the chord or brace, and score the manipulator access the same as

before.

2. Assume that the ROV has one attachment leg, and that it is offset lm to the

port side o f the ROV. See Figure 6.7. Using this method, unlike the previous

one, any number of attachment legs could ultimately be considered.

3. Assume that the manipulator is at the ROV origin and that the ROV is facing

the access point with its axis normal to the chord and brace axes, i.e. that for

any ROV position the port attachment leg is at y+1 for x<0 and at y-1 for

x>0 (there are no valid positions with x=0). Then score manipulator reach as

before.

4. Score the attachment leg extension as follows: 0 if outside the attachment leg

range, 0.3 if the attachment leg can attach regardless o f extension.

5. Put the attachment leg value at its position in the grid not at the position of

the ROV, which is 1 m to the right.

Figure 6.7 - Illustration of the Second Scenario (offset port attachment leg)

This change in the scoring of the attachment leg extension value was introduced since it

was now possible to take account of multiple attachment legs. The value 0.3 was chosen

so that each leg that could attach added a significant amount to the value (1 leg = 0.3, 2

legs = 0.6, 3 legs = 0.9) up to 3 legs, then, since the value could not exceed 1.0, the

fourth or further legs would add little to the value. This was to reflect the physical

situation where more legs produced a stronger attachment until a tripod was made with

three legs, beyond which a fourth or further legs give very little further improvement in
148

Chapter 6: Docking Planning Using Neural Networks

attachment rigidity. Furthermore, it was felt that this better represented the criteria

involved in choosing a docking position, i.e. it was more important that the ROV could

attach (and have a significant manipulator reach in that position) than whether or not

there was significant residual movement in the attachment legs.

The method was then applied to the candidate positions considered for the first method,

excluding only those points already known to be inside the chord or brace. It included

points excluded previously since in this scenario it is only necessary this time either to

have an acceptable manipulator reach value or for the neighbouring position on the left

to have an acceptable extension leg value, not necessarily both at the same location.

Candidate
Number

ROV
Position
(X, Y, Z)

Manipulator
Reach
Value

Port
Attachment

Leg
Position

Port Leg
can

Attach
to

Chord?

Port Leg
can

Attach
to

Brace?

Valid
Position
Number

5 1 ,0 ,0 0.67
(x=1.0)

i , - i , o 0.3 1

6 1,0 ,1 0.78 1,-1, 1 0.3 2

7 1 ,1 ,0 1 ,0 ,0 0 0

8 1,1 ,1 0.36 1,0 ,1 0 0.3 3

9 -1 ,0 ,0 0.67 - i , - i , o 0.3 4

10 -1 ,0 ,1 0.78 -1,-1, 1 0.3 5

11 -1 ,1 ,0 -1 ,0 ,0 0 0

12 -1 ,1 ,1 0.36 -1 ,0 ,1 0 0.3 6

14 o , - i , i X

15 i , - i , o 0.78 X

16 1,-1 ,1 0.36 X

19 1,0,-1 0.78 1, -1, -1 0.3 7

20 1, 1,-1 0.36 1, 0, -1 0 0.3 8

21 1,-1,-1 0.36 X

22 0, - i , - i X

23 -1 ,0 ,-1 0.78 -1, -1, -1 0.3 9

24 -1 ,1 ,-1 0.36 - i ,o , - i 0 0.3 10

25 -1 ,-1 ,0 0.78 X

26 -1 ,-1 ,1 0.36 X

27 -1,-1 ,-1 0.36 X

Table 6.4 - Scoring docking positions manually, second scenario
149

Chapter 6: Docking Planning Using Neural Networks

From this manual scoring o f docking positions there remained out of the 20 locations

considered, 10 candidate positions that satisfied the different criteria (marked with

yellow shading in Table 6.4). The next stage was to create a neural network definition

that included these 10 positions in two distinct ways, firstly as a set o f possible ROV

docking positions and secondly as a second independent set o f possible attachment leg

positions — so now a 20 unit network was required.

A network definition was created with appropriate files as follows:

• Rov2.str (network strengths), Rov2.tem (screen layout) and Rov2.ioo
(variables layout): Essentially the same as for the first Scenario but with

names for 20 units — these were for the candidate positions in each of the two

sets (10 for ROV positions, prefixed 'RV', and 10 for attachment leg

positions, prefixed 'AL'). See Appendix D.

• Rov2. net (network definition): This defined a symmetrical network with 20

units, 20 inputs and 20 biases, and with 20 updates per cycle. See

Appendix D.

• Rov2. wts (unit weights): This defined the weights applied to each unit in the

form o f a 20 x 20 array. See Table 6.5.

As before it is worth looking at the network weights as defined in the Rov2. wts file in

more detail (see Table 6.5). As before, for each o f the possible candidate positions there

is a negative (-1.0) value from each o f the other candidates so that they are mutually

exclusive, except that this now applies not just to the ROV positions but to the leg

positions as well, i.e. the system will tend to choose one and only one ROV position and

one and only one leg position. This time instead o f having a manipulator reach value for

each position and a fixed starting bias, the manipulator value is used as the starting bias

for the ROV positions (highlighted in blue), and a fixed bias is used for the leg positions

(highlighted in yellow), i.e. the ROV position will be chosen partly depending on its

manipulator value, whereas the leg positions all start on an equal basis.

150

Chapter 6: D ocking P lanning Using Neural Networks

0 .

oI—1 1 - 1 . 0 - 1 . 0

oI—1 1 oI—1 1 - 1 . 0 - 1 . 0 - 1 . 0 - 1 .0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. + 00
- 1 . 0 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 .0 - 1 . 0 - 1 .0 0. 0. 0 . 3 0. 0. 0. 0. 0. 0. 0. + 0+
- 1 .0 - 1 . 0 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 0. 0 . 3 0. 0. 0. 0. 0. 0. 0. 0. +++
- 1 . 0 - 1 . 0 - 1 . 0 0. - 1 . 0 - 1 . 0 - 1 .0 - 1 .0 - 1 .0 - 1 .0 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 0 0
- 1 .0 - 1 . 0 - 1 . 0 - 1 .0 0. - 1 . 0 - 1 . 0 - 1 .0 - 1 .0 - 1 . 0 0. 0. 0. 0. 0. 0 . 3 0. 0. 0. 0. - 0 +
- 1 .0 - 1 . 0 - 1 . 0 - 1 .0 - 1 . 0 0. - 1 . 0 - 1 . 0 - 1 .0 - 1 .0 0. 0. 0. 0. 0 . 3 0. 0. 0. 0. 0. -++
- 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 0. - 1 . 0 - 1 . 0 - 1 .0 0. 0. 0. 0. 0. 0. 0. o . ; 3 0. 0. + 0 -
- 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 .0 0. - 1 .0 - 1 .0 0. 0. 0. 0. •0. 0. o . :3 0. 0. 0. ++-
- 1 .0 - 1 . 0 - 1 . 0 - 1 .0 - 1 . 0 - 1 . 0 - 1 .0 - 1 . 0 0. - 1 .0 0. 0. 0. 0. 0. 0. 0. 0. 0. o. : 3 - 0 -
- 1 . 0 - 1 . 0 - 1 . 0 - 1 .0 - 1 . 0 - 1 . 0 - 1 .0 - 1 .0 - 1 .0 0. 0. 0. 0. 0. 0. 0. 0. 0. o . ; 3 0. -+-
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 0 - 1 0 - 1 0 - 1 .0 + 00
0. 0. 0 . 3 0. 0. 0. 0. 0. 0. 0. - 1 . 0 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 0 - 1 0 - 1 0 - 1 .0 + 0+
0. 0 . 3 0. 0. 0. 0. 0. 0. 0. 0. - 1 . 0 - 1 . 0 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 0 - 1 0 - 1 0 - 1 .0 +++
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. - 1 . 0 - 1 . 0 - 1 . 0 0. - 1 . 0 - 1 . 0 - 1 0 - 1 0 - 1 0 - 1 .0 - 0 0
0. 0. 0. 0. 0. 0 . 3 0. 0. 0. 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 0. - 1 . 0 - 1 0 - 1 0 - 1 0 - 1 .0 - 0 +
0. 0. 0. 0. 0 . 3 0. 0. 0. 0. 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 0. - 1 0 - 1 0 - 1 0 - 1 .0 -++
0. 0. 0. 0. 0. 0. 0. 0. 3 0. 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 0. - 1 0 - 1 0 - 1 0 + 0 -
0. 0. 0. 0. 0. 0. 0. 3 0. 0. 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 0 0. - 1 0 - 1 .0 ++-
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 3 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 0 - 1 0 0. - 1 0 - 0 -
0. 0. 0. 0. 0. 0. 0. 0. 0. 3 0. - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 . 0 - 1 0 - 1 0 - 1 0 0. -+-
0. 67 0.78 0.36 0. 67 0.78 0.36 0. 78 0. 36 0. 78 0. 3 6 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 0 . 1 o .] L o .] 0. 1L o .]L

+ 00 + 0 + +++ - 00 - 0+ -++ + 0 _ ++ — - 0 - -+ - + 00 + 0 + +++ - 0 0 - 0+ -++ +0- ++- - 0 - _ + .

Port Foot. Key: + for +1, - for -1

Table 6.5 - Network weights in Rov2 .wts file

151

Chapter 6: Docking Planning Using Neural Networks

Running this network 50 times gave the results shown in Table 6.6 (where the First

Position and Second Position columns use the Valid Position Numbers from Table 6.4).

Each run consisted o f 500 cycles, though in the majority o f cases the results were settled

on within about 50 cycles.

Run First Position Second Position Goodness

1 2 3 1.18

2 2 3 1.18

3 9 10 1.18

4 2 3 1.18

5 2 3 1.18

6 1 5 0.77

7 5 6 1.18

8 5 6 1.18

9 2 3 1.18

10 2 3 1.18

11 5 6 1.18

12 2 3 1.18

13 7 8 1.18

14 2 3 1.18

15 2 3 1.18

16 2 3 1.18

17 9 10 1.18

18 7 8 1.18

19 2 3 1.18

20 5 6 1.18

21 2 3 1.18

22 7 8 1.18

23 2 3 1.18

24 2 3 1.18

25 2 3 1.18

26 2 3 1.18

27 2 3 1.18

28 2 3 1.18

29 7 8 1.18

152

Chapter 6: Docking Planning Using Neural Networks

Run First Position Second Position Goodness

30 5 6 1.18

31 2 3 1.18

32 2 3 1.18

33 5 6 1.18

34 9 10 1.18

35 2 3 1.18

36 5 6 1.18

37 2 3 1.18

38 7 8 1.18

39 5 6 1.18

40 2 3 1.18

41 2 3 1.18

42 2 3 1.18

43 2 3 1.18

44 2 3 1.18

45 2 3 1.18

46 1 7 0.77

47 2 3 1.18

48 2 3 1.18

49 5 6 1.18

50 2 3 1.18

Table 6.6 - Results from 50 runs of the second scenario network defin on

Figure 6.8 shows the system after 30 cycles as it starts to settle on a First Position (ROV

Location) o f 9 and a Second Position (Sticky Foot Location) of 10, when it has a

goodness o f 0.8206.

153

Chapter 6: Docking Planning Using Neural Networks

J o } * J
Manual ROV Docking Test - O ffse t Port Foot

▲

P o ss ib le 0300001090 Cycleno 30
L ocations updateno 4

cuname -10+1
goodness 0.8206

S tick y 0000000006
Foot

tem perature 2.0000 —J

<i_ _ _ _ _ _ _ _ _ _ - 1

Figure 6.8 - Results o f second Manual ROV Docking Test after 30 cycles

It is clear from these results that positions nearly all come in pairs (position 2 with

position 3, 5 with 6, etc.) and, in fact, it turns out that the system is in each case

correctly choosing a valid ROV position along with a valid attachment leg position 1 m

to the left. Note, however, that nothing should be read into the ordering o f the positions.

The system definition was completely symmetrical and so it is effectively choosing the

best pairs o f points - so in fact it is as likely to produce the pairs 3 and 2, 6 and 5, and it

chooses them the way it does simply because the first element in each pair has the

higher bias.

First Position Second Position Goodness No. Of
Occurrences

1 = 1 , 0 , 0 5 = -1,0, 1 0.77 1

1 = 1 , 0 , 0 7 = 1 , 0 , -1 0.77 2

1 = 1 , 0 , 0 9 = -1, 0,-1 0.77 1

2 = 1 , 0 , 1 (Port Leg) 3 = 1 ,1 ,1 (ROV) 1.18 59

5 = -1,0, 1 (ROV) 6 = -1, 1, 1 (Port Leg) 1.18 17

1 = 1 ,0, -1 (Port Leg) 8 = 1 , 1,-1 (ROV) 1.18 11

9 = -1, 0, -1 (ROV) 10 = -1, 1, -1 (Port Leg) 1.18 9

TOTAL 100

Table 6.7 - Summary o f results from 100 runs using the Schema Model

154

Chapter 6: Docking Planning Using Neural Networks

A second set o f 50 runs o f the system was made and essentially the same results were

found, although this time a new combination o f positions occurred once (1 and 9). The

combined results from the 100 runs are summarised in Table 6.7 (the appropriate

position label, 'ROV' or 'Port Leg', has been applied retrospectively simply to make

interpretation easier). It is clear that in the vast majority o f cases the network

successfully chooses appropriate neighbouring pairs o f positions, one for the ROV and

one for the port leg. However, it is interesting to note that on three occasions it chose

completely inappropriate pairs o f positions (1 and 5, 1 and 7, 1 and 9 - the two from the

first 50 runs are highlighted in Table 6.6). These represent outcomes where the system

has settled into local maxima rather than the global maximum as indicated by the

goodness value. These selections are indicated as inappropriate solutions by the low

goodness value; however, they remain very stable (to check this, one was run to 50,000

cycles and did not change, with the goodness constant at 0.77).

In order to examine this process in more detail, a selection o f 10 runs was repeated, with

the goodness value after each 10 cycles being recorded (and also after 1, 2 and 5 cycles

as it was found that the goodness value changed very quickly right at the start). The

goodness values are plotted against the number o f cycles in Figure 6.9. The plots are

labelled to indicate the number pair that they seemed to be starting towards, and then the

number pair they actually finished on (e.g. "4,8 then 7,8")

The plots clearly fall into three distinct categories. Firstly, the majority o f runs increased

fairly smoothly in goodness and reached the maximum value after about 50 cycles.

Secondly, a smaller number increased in goodness gradually as though about to

converge on a low goodness value and then suddenly start increasing again towards the

final maximum value. Thirdly, a very small number (just one o f which has been plotted)

increase in goodness gradually and do in fact converge on a low goodness value. The

first group are, o f course, those that successfully choose a valid position pair and settle

on the global maximum goodness value. The third group are those that choose an

invalid pair and settle on a local maximum goodness value. The second group are

perhaps the most interesting as they choose an invalid pair temporarily, but then

successfully 'change their minds' and choose a valid pair, at which point their goodness

value starts to shoot up again.

155

G
oo

dn
es

s
V

al
ue

Chapter 6: Docking Planning Using Neural Networks

1.4000

1.2000

1.0000

0.8000

0.6000

0.4000

0.2000

0.0000
0 300 35050 100 150 200 250

1: 4,8 then 7,8
2: 1,10 then 9,10

3: 7,8 throughout
4: 9,10 throughout

5: 2,3 throughout
6: 1,3 or 7,8 then 7,8
7: 4,2 then 2,3
8: 1,7 then 2,3
8: 5,6 throughout
10: 1,9 throughout

Number of Cycles

Figure 6.9 - A Plot of Goodness Against Number of Cycles for the Second Manual Scenario, Schema Model

156

Chapter 6: Docking Planning Using Neural Networks

One point of interest that is not immediately obvious is that the first group actually

includes some (the outlying plots, 2 and 7) that appeared initially to be settling on

invalid pairs just like the other groups but ’changed their minds' early enough that they

are virtually indistinguishable from those that settled on a correct pair from the start.

It was clear that using the Schema Model the network had successfully chosen valid

pairs in the majority of cases; however, it occasionally got completely stuck in a local

maxima and chose an invalid pair and, nearly as problematic, it sometimes chose a valid

pair only after having settled on a different pair for some time - and which pair was

apparently selected depended on how many cycles had been run when making the

assessment. To solve some of these problems, resulting from the system getting stuck

permanently or temporarily in local maxima, it was decided to investigate using the

more sophisticated type of Constraint Satisfaction network known as a Boltzmann

Machine.

157

Chapter 6: Docking Planning Using Neural Networks

6.4. Second Manual Scenario (Offset Port Attachment Leg), Boltzmann

Machine

The previous scenario was rerun using the Boltzmann Machine version of constraint

satisfaction network (see Section 4.4.1. Boltzmann Machine Theory) because of its

ability to get out of local minima (as demonstrated in Section 4.4.2. Necker Cube

(Boltzmann Machine)). A new network definition was therefore created, with
appropriate files as follows:

• Rov2. str (network strengths): See Table 6.8. The main changes were the

incorporation of a flag to indicate that the Boltzmann Machine model was to

be used (highlighted in blue), plus the definition of an annealing schedule

that started with a temperature of 2.0 and decreased down to 0.05 at cycle

250 (highlighted in yellow).

• Rov2.tem (screen layout), Rov2.ioo (variables layout) and Rov2.net
(network definition): unchanged.

• Rov2. wts (unit weights): Because in the Boltzmann machine the units are

binary (the system only settles if the weights are integers) so all the weight

values were multiplied by a factor of 10, then rounded to the nearest integer.

See Appendix D.

set dlevel 1
get network rov2.net
get weights rov2.wts
set mode clamp 0
set mode boltz 1
set param estr .4
set param istr . 4
set ncyc 250
get annealing 2 250 .05 end
get unames RV+100 RV+10+1 RV+1+1+1 RV-100 RV-10+1 RV-1+1+1 RV+10-1
RV+1+1-1 RV-10-1 RV—1+1—1 AL+100 AL+10+1 AL+1+1+1 AL-100 AL-10+1
AL-1+1+1 AL+10-1 AL+1+1-1 AL-10-1 AL-1+1-1

Table 6.8 — Rov. str file with Boltzmann mode on and annealing schedule defined

Running this network 100 times gave the results shown in Table 6.9. Each run consisted

of exactly 250 cycles, as this was the end of the annealing schedule and the selection

was essentially fixed at this point. It was also estimated that 250 cycles would be

sufficient since all changes had largely finished before this in the Schema Model runs.

158

Chapter 6: Docking Planning Using Neural Networks

First Position Second Position Goodness No. Of
Occurrences

1 = 1,0,0 4 = -1,0,0 3.60 3
2 = 1 ,0 , 1 2= 1 ,0 , 1 3.60 1

2 = 1 ,0 , 1 7 = 1, 0,-1 3.60 1

- 2 = 1 , 0 , 1 9 = -1, 0,-1 3.60 1

7=1 ,0 , -1 5 = -1,0, 1 3.60 1

9 = -1, 0,-1 2 = 1,0, 1 3.60 1

9 = >1, 0,-1

oo'H1IITf- 3.60 1

2 = 1, 0, 1 (Port Leg) 3 = 1, 1, 1 (ROV) 4.80 29

5 = -1,0, 1 (ROV) 6 = -1, 1, 1 (Port Leg) 4.80 22

7= 1,0,-1 (Port Leg) 8 = 1, 1,-1 (ROV) 4.80 27

9 = -1, 0,-1 (ROV) 10 = -1, 1,-1 (Port Leg) 4.80 13

TOTAL 100

Table 6.9 - Summary of results from 100 runs using the Schema Model

In fact it was found that there were now more invalid pairs being selected than before.

Five runs were repeated and examined in more detail, considering the goodness value

against cycle number as before, and plotted in Figure 6.10. The first 3 plots are valid

pairs and achieve the maximum global goodness value of 4.8 but the last 2 plots are

invalid pairs and only achieve a goodness value of 3.6. Unlike with the Schema Model

runs, the particular positions chosen change virtually every cycle so there is no concept

of the system settling towards a particular pair then perhaps changing and settling

towards a different pair. This is because the selections are binary so a particular position

is chosen completely then in the next cycle it is rejected and a different one chosen, and

it is essentially the probability of the system staying with a particular selection that is

changing in the Boltzmann Machine. The plots are therefore simply labelled with the

positions they finally selected.

Clearly since there are many invalid pairs being selected, annealing over 250 cycles had

not been sufficient to prevent the system settling into local maxima. The process was

therefore repeated with an annealing schedule extended to 500 cycles ("get annealing
2 500 . 0 5 "), and the runs extended to 500 cycles. The results are summarised in

Table 6.10.

159

G
oo

dn
es

s
V

al
ue

Chapter 6: D ocking P lanning Using Neural Networks

6.0000

4.0000

2.0000

0.0000

- 2.0000

-4.0000

- 6.0000

- 8.0000

Number of Cycles

Figure 6.10 - A Plot of Goodness Against Number of Cycles for the Second Manual Scenario, Boltzmann Model, Annealing over 250 cycles

1 60

Chapter 6: Docking Planning Using Neural Networks

First Position Second Position Goodness No. Of
Occurrences

2 = 1, 0, 1 (Port Leg) 3 = 1, 1, 1 (ROV) 4.80 13

5 = -1, 0, 1 (ROV) 6 = -1, 1, 1 (Port Leg) 4.80 41

7 = 1, 0, -1 (Port Leg) 8 = 1, 1,-1 (ROV) 4.80 18

9 = -1, 0,-1 (ROV) 10 = -1, 1,-1 (Port Leg) 4.80 28

TOTAL 100

Table 6.10 - Summary of results from 100 runs using the Boltzmann Machine

This time the method was highly successful, and no false pairs were selected in the 100

runs shown (or, in fact, in any other runs encountered during testing). Again, five runs

were repeated and examined in more detail, considering the goodness value against

cycle number as before, and plotted in Figure 6.11.

This method was robust and consistently produced correct results, although at the

expense of requiring more cycles to be run than for the Schema Model, and hence

slightly more time was taken to achieve a solution.

161

G
oo

dn
es

s
V

al
ue

Chapter 6: D ocking P lanning Using N eural Networks

6.0000

4.0000

2.0000

0.0000

- 2.0000

-4.0000

- 6.0000

- 8.0000

- 10.0000

4: 9,10

Number of Cycles

Figure 6.11 - A Plot of Goodness Against Number of Cycles for the Second Manual Scenario, Boltzmann Model, Annealing over 500 cycles

162

Chapter 6: Docking Planning Using Neural Networks

6.5. Conclusion

The main results from this section of the work were:

• Both of the manually defined scenarios tested had successfully demonstrated

that the neural network system was capable of choosing appropriate docking

positions given a set of possible candidates and appropriate selection criteria.

• The Boltzmann Machine using a long annealing schedule was the best network

to use in order to avoid getting caught in local maxima.

The second scenario, in particular, could readily be extended to consider multiple

attachment legs. However, any further enhancements would immediately require much

greater manual pre-processing to produce suitable network definition files for the neural

network software to work with.

In fact, it is worth considering the likely additional work required (for n candidate

positions):

• Considering two or three attachment legs would require two or three times the

work of a single attachment leg, n calculations per leg, i.e. order n per leg.

• Adding any new criteria, e.g. manipulator boom extension or rotation, would

require a new n x n array, plus links to existing units, i.e. order n2.

• Increasing the density of the grid would produce better ROV and attachment leg

positioning, and for realistic use should be at least 10 times as fine, say 0.1m

between positions, i.e. order n3.

It was therefore clear that the most appropriate next step would be to develop an

automated method of pre-processing, one where the scenario could be defined in the

ARM Software. The ARM Software would then run through all candidate positions

automatically to exclude invalid ones and score possible ones, then write these out to

network definition files which could be read in by the neural network software. This

development is the subject of the next chapter.

163

CHAPTER 7:
DOCKING PLANNING USING NUMERICAL PROCESSING

7.1. Introduction

The next stage was to add new code to the ARM Software to pre-process a system

definition (ROV, toolskid, manipulator and workpiece) to produce the network

definition files for the NNW software. The aim initially was to conduct the equivalent

of the manual processing described in the previous chapter, then to extend the

processing to deal with more complex scenarios. The procedure would have the

following stages:

1. Create a large number of possible candidate ROV locations.

2. For each candidate, check if the position is in collision (e.g. inside chord or

braces) and eliminate it if it is.

3. Calculate a manipulator reach value for each position.

4. Calculate attachment leg values for each position.

5. Create and write to the appropriate files a network definition encompassing this

information, i.e. *. str, *. tem, *. loo, *. wts, *. net files, ready for the neural

network software to read in and solve.

The new code in ARM consisted of a new "Docking" library (docking.lib) which,

unlike the majority of ARM code, was written in C++ rather than C. This consisted of

two new classes, CDocking and ccandidate, plus a set of C global functions that

formed an interface between the C calling in ARM, and the C++ CDocking class. The

docking files are listed at Appendix E.

164

Chapter 1: Docking Planning Using Numerical Processing

7.2. First Automated Scenario (Coincident Attachment Legs)

The definition of the first manual scenario was used as a 'recipe' for the work that

needed to be done in order to be able to generate suitable neural network files

automatically. The nine specifications (summarised from Section 6.2. First Manual

Scenario (Coincident Attachment Legs), Schema Model) were as follows:

1. Assume a simple node, a vertical chord (radius lm) with a single horizontal

intersecting brace (radius 0.5m) arranged so that the brace direction is

perpendicular to the ROV axis.

2. Assume required access point is at the centre of the brace where it intersects

the chord (to represent approximately typical access to the whole weld

around the brace where it intersects the chord).

3. Consider possible ROV docking positions as being on a coarse grid of points

lm apart, centred on the required access point, extending from -1 to 1 in x, y

and z.

4. Discard any points inside the chord or brace.

5. Assume that the manipulator is located at the ROV origin (and that it is not

attached to a rotating or extending boom, or similar system).

6. Discard any points that are too close or too far from the required access point

for practical manipulator interaction, i.e. if not within working manipulator

reach.

7. 'Score' remaining points in terms of how much working reach the

manipulator retained, the criterion being how close it was to the middle of its

reach range (considered to be 0.5m to 2.0m for the Slingsby ARM inspection

manipulator under consideration).

8. Assume that the ROV has one attachment leg, and that it is connected to the

ROV at its origin. Discard any points that are too close or too far from the

chord or brace surfaces for the attachment leg to attach.

9. 'Score' remaining points in terms of how well the attachment leg was fixed,

the criteria being how close it is to the middle of its extension range

(considered to be 1.3m to 1.6m for the Slingsby ARM attachment legs under

consideration).

165

Chapter 7: Docking Planning Using Numerical Processing

This was considered to be a list of requirements that led to the following tasks being

conducted (one task to satisfy each requirement):

1. A simple node with a vertical chord (radius lm) with a single horizontal

intersecting brace (radius 0.5m) was created in ARM as a workpiece file.

2. The existing ARM software was temporarily modified to use the centre of

the brace where it intersects the chord as the target point for the manipulator

access check.

3. The new docking code generated a large number of candidate positions on a

pre-defined grid; this will be described in more detail below.

4. The candidate positions were checked by existing ARM code for collisions

with the workpiece and rejected if they were inside the chord or brace.

5. In ARM, the ROV origin was set to be the base of the manipulator, and for

the initial work it was assumed there was no extend/rotate boom (though this

was included in later work, as will be detailed below).

6. The new code calculated the manipulator reach value for each candidate

position and rejected any position outside the given range.

7. Remaining positions had their reach value calculated automatically using the

same function as described for manual operation.

8. The new code calculated the distance required for the attachment leg to reach

either the chord or brace surface and rejected any positions outside the given

range.

9. The new code calculated the attachment leg value for each remaining

candidate position.

On command from the user the Docking library creates a list of candidate docking

positions extending from - lm to +lm in all three directions, with a grid spacing of

1.0m, centred on the target point (the chord surface at the intersection of the brace) and

then draws them onto the ARM display; the 27 positions are shown in Figure 7.1. It then

removes any positions in collision with the workpiece (i.e. each point is checked to see

if it is contact with or inside the chord or brace); the remaining 22 positions are shown

in Figure 7.2.

166

Chapter 7: Docking Planning Using Numerical Processing

Figure 7.1 - Creation o f candidate positions (-1 to +1 in X, Y and Z, lm grid spacing)

The architecture'of the Docking library was very straightforward. The ccandidate class

represented a possible candidate position; it contained a standard ARM cvector class

that held the position as X, Y and Z parameters, plus it contained other parameters such

as the reach values and a validity flag, plus various functions for accessing its

parameters (see Appendix E).

Figure 7.2 - Elimination o f candidate positions in collision with workpiece

The CDocking class did most o f the work - creating a list o f ccandidate positions as

required, cycling through them and setting their reach values and other parameters if

they remained valid positions or else setting their validity flag false, then on completion

of the calculation cycles pruning away all invalid positions (see Appendix E). The

167

Chapter 7: Docking Planning Using Numerical Processing

detailed operation of the final version of CDocking will be described below, but some of

the milestones during development will be mentioned here:

• During development of the docking library it was found that the software was

not able to correctly handle the large amounts of memory required for very large

lists of candidate positions. For this reason the code was converted from 16 bit

to 32 bit operation and this cured the problem.

• In order to evaluate the operation of the process a visualization function was

added whereby the candidate positions were drawn onto the ARM display; then,

as the process developed, it was possible for the user to observe as positions

were pruned down to the remaining valid candidates. Furthermore, a facility was

added to step through the process to see at what point particular positions were

rejected.

• During initial testing it was found that there were candidate positions remaining

that had been rejected in the manual processing. It was found that it was

incorrectly allowing the attachment leg to stick on a brace even where the brace

was actually inaccessible because the chord was in the way - this was corrected.

Eventually, with the new library and adaptations to the existing ARM software, it was

possible for the system to take in the first manually defined scenario and create network

definition files suitable for reading into the neural network software. The CDocking
code produced network definitions that were indistinguishable from the ones created

manually and which, therefore, produced the same results when run in the neural

network software.

7.3. Second Automated Scenario (Offset Port Attachment Leg)

Adapting the CDocking code to consider the manipulator/ROV position and attachment

leg position separately - with the attachment leg lm to the left of the ROV position -

appeared to be very straightforward since the values were simply calculated for, and

stored in, different ccandidate positions. With the necessary adjustments to writing the

network definition files, the system would be able to generate both manually tested

scenarios automatically and so get the same results when run in the NNW software.

However, rather than just replicate the manual work, the automated system was

significantly more powerful since everything was parameterised and changeable in the

software. For example, one of the fundamental limitations of the manual method was

168

Chapter 7: Docking Planning Using Numerical Processing

the amount o f work required in defining a network with more than about ten candidate

positions - hence the large 1 m grid spacing. Conversely, the automated system worked

just as easily with a finer grid, say 0.5m spacing (8 times more points) or even 10cm

spacing (1000 times more points). Similarly, the system worked just as easily with a

larger grid, say 3m x 3m x 3m or even 4m x 4m x 4m. Figure 7.3 shows the system

working with a grid 3m in each direction and a spacing o f 0.25m (a total o f 133 = 2197

positions).

f t V%4W-H- +
' I % V*** +

i fk V V ^ *

Figure 7.3 - Increased grid density from automated method

Unfortunately, this brought its own problems. With, say, 10 times as many more points

the automated system was still very fast at checking them all (taking less than a second).

However, when defining the neural network files, it had to create network (*. net) and

weight (* .wts) files which contained an array o f any remaining candidate positions and

their interconnections. Therefore 10 times as many candidates required 100 times as

much disk space. Furthermore, the NNW software conducts its calculations per

connection, and so it now had to do 100 times as many calculations.

It was clear, therefore, that it would be better to use more sophisticated pruning in the

pre-processing phase, rather than try to eliminate the worst candidate positions in the

neural network phase.

169

Chapter 7: Docking Planning Using Numerical Processing

7.4. Third Automated Scenario (ARM Collision Detection and Attachment
Leg Features)

It was decided to significantly increase the sophistication of the scenarios being

considered, since the work was now automated, and so consider the effects of other

elements. Three main changes were incorporated initially:

1. The origin of the grid of candidate positions was moved from the centre of the

brace where it intersects the chord to the centre of the complete workpiece. This

was done to bring the docking code more in line with ARM’s co-ordinate frame,

and hence to make it easier to use the existing ARM features described here.

2. It was now possible to use ARM’s inbuilt feature to check whether defined

attachment legs could attach in a given scenario (taking into account full

kinematics of the leg, including its various links, joints and ball-jointed ’ankle’),

and this replaced the simple check for sticky feet reach used up to this point1.

The attachment leg functionality was also extended in two ways. Firstly, it was

enhanced so that it could check for attachment onto any tubular in the node, not

just the nearest tubular as it had done previously (sometimes the nearest tubular

is too close). Secondly, it was modified so that it could be called

programmatically from the Docking library rather than only on command from

the user. This use of automated checking for sticky feet attachment meant that it

was now fully feasible to consider the attachment of one, two, or three feet at

little cost.

3. It was decided to consider collisions between the ROV and the workpiece. This

required extending the ARM collision detection library since, in the existing

ARM code, the ROV position was considered to be fixed throughout an ARM

session, and so the collision detection only worked between the manipulator and

other elements (e.g. ROV and workpiece). Also, the change of position grid

origin described above made it much easier to interpret the results of the

collision detection checks (since the ROV positions were now relative to the

workpiece origin, rather than to a weld origin which varied with the selection of

the weld, and with the specific chord diameter).

1 In the Docking library code given in Appendix C, the function CheckStickyFeetPositions is
the replacement for CheckStickyFeetReach in docking. cpp.

170

Chapter 7: Docking Planning Using Numerical Processing

Within the docking code, the attachment legs are checked as follows (see

CheckstickyFeetPositions in Appendix E). For each candidate position, and for each

available attachment leg (ARM has 3, most other systems have 2), a check is conducted

to see if the leg can attach to the nearest tubular, and if not then to each o f the tubulars

in turn. With the visualisation and reporting feature turned on (using the show
Graphical Working menu item) it is possible to see the system go through the

processing graphically, and also in that case the system displays messages when a valid

arrangement is found giving first the ROV position and then the sticky foot position on

the tubular. Figure 7.4 shows the system checking one o f the ROV positions (-1, -2,

0.75) and finding it can attach two sticky feet.

Figure 7.4 - Checking a position for sticky feet attachment

It was clear that invalid candidate positions could be rejected by appropriate use of

ARM's collision detection facilities. Specifically, although all scenarios up to this point

(manual and automated) rejected any ROV position that was in contact with or inside

the workpiece, this did not fully take account o f the bulk of the ROV, particularly its

width and height. With the new changes, the docking library was able to check all of the

candidate positions by moving the ROV, in turn, to each position - and then rejecting a

position if any part o f the full ROV model was in contact with the workpiece. For this

process to be appropriate, the orientation o f the ROV was crucial and so from this point

on the grid o f candidate positions was restricted by default to just one side of the

workpiece at one time. O f course, this restriction does not preclude a second check

being conducted with the ROV on the other side, if required. With show Graphical
171

Chapter 7: Docking Planning Using Numerical Processing

working on, Figure 7.5 illustrates the system checking one of the positions and finding

it causes a collision between the ROV frame and the vertical chord.

front ROV frame and chord

Figure 7.5 - Checking a position for ROV collision

From this point on, with these changes and the increased ability for the pre-processing

to reject invalid positions, the system was capable o f conducting docking checks on an

ROV with up to three sticky feet, very quickly and with a much finer grid of candidate

positions (the default grid used had a spacing o f 0.25m). For example, considering the

original workpiece and using a grid that extends from -1 to 0 in X, -2 to 1 in Y (to allow

for more positions opposite the brace, because o f 1. above) and Z from -1 to 1:

• Creation produces 585 positions.

• Removing positions inside the workpiece leaves 509.

• Removing positions that cause ROV collisions leaves 234.

• Removing positions where less than two sticky feet attach leads to just 17

remaining positions.

The work in this phase demonstrated that combining the ROV collision detection

processing and the automatic attachment leg processing with the existing work had

provided a significantly improved automated docking method.

1 7 2

Chapter 7: Docking Planning Using Numerical Processing

Having completed this phase1, the docking library was able to:

1. Create a large grid of candidate docking positions

2. Remove all positions that were in contact with the workpiece

3. Remove all positions that caused the ROV to be in contact with the workpiece

4. Calculate an attachment leg value for each position (this was simply the ratio of

the number of legs successfully attached to the total number of legs on the ROV)

5. Calculate a manipulator reach value (as previously described)

6. Write the results out to network definition files suitable for reading into NNW

At this point NNW was able to successfully read in the network definition files and

solve them to find the optimum docking position. To aid interpretation, the position

labels output to the strengths file (.str) gave the position co-ordinates in the ARM

world co-ordinate frame (rather than the ARM workpiece co-ordinate frame used for the

calculations). This allowed easy visualisation of the final position selected by NNW -

by typing the label into ARM as the ROV position, it was possible to see the ROV in

the chosen position immediately.

It should be noted that once the pre-processing had been completed and the remaining

positions passed to NNW, there was little for NNW to do apart from select the position

with the highest manipulator reach and attachment leg values. Since all attachment legs

were often in use, this actually came down to simply selecting the position with the

highest manipulator reach value. Where there were multiple positions with the same

manipulator reach value, NNW always returned the first position. This process clearly

demonstrated the effectiveness of the pre-processing, but it also brought into question

the value of the NNW 'post-processing'. This point will be returned to later.

7.5. Fourth Automated Scenario (Weld Access Check and Deployment
System)

For the next stage it was decided to add more 'real-world' elements to make the system

more useful. The five main changes were as follows:

1 Some significant time was also spent on general bug fixing in the ARM software; in particular a
problem was found, and eventually fixed, whereby the system would crash, apparently randomly, when
certain workpiece files were loaded in sequence.

173

Chapter 7: Docking Planning Using Numerical Processing

1. Use of two ARM features, one which allows the user to specify the weld

segment of interest and another that conducts a simulated manipulator scan

along the weld segment. These features were incorporated into the pre

processing with a number of enhancements — namely, the ability to call them

programmatically (rather than on command from the user) and to conduct the

manipulator scan as a simple kinematic check along the weld (rather than having

to conduct a complete simulated scan). Another change was made so that the

degree of access was returned as a numerical value which indicated the ratio of

weld path that could be reached (so full access = 1.0) — see below. With this

change it was possible for the Docking library to make an automatic check of all

its candidate positions, and have returned the degree of access each one could

achieve on the weld path of interest.

2. The manipulator kinematic path check made the manipulator reach value scored

from the distance of the manipulator from the weld - as used up to this point -

completely redundant. It was therefore removed, and from this point

'manipulator reach value' is used to mean the access score from the kinematic

path check.

3. Consideration was given to the manipulator deployment system which is usually

available on advanced ROV/manipulator systems, e.g. the extending and rotating

boom on the ARM toolskid. It was decided to automate ARM's deployment

system modelling feature which allowed the user to set fixed values for the

deployment extension and rotate values. Instead, this was controlled

programmatically so that the docking library could cycle through a sequence of

extensions and rotations to check the access available at each arrangement

(using the manipulator kinematic path check just described). This allowed the

system to consider arrangements where, for example, the ROV system was able

to inspect a long weld path by keeping the ROV on one side and using the

deployment system to reach the other side.

4. The ARM collision detection system was extended to consider the deployment

system (e.g. ARM's extending boom), i.e. each boom extension/rotation

174

Chapter 7: Docking Planning Using Numerical Processing

arrangement was checked to ensure it did not bring the boom into contact with

the workpiece1.

The kinematic path check operates as follows. First of all the user selects a section of

weld, which may be either as clock positions, distances along the weld, or angles around

the brace. Next the ARM software generates a fixed number of straight line segments

(typically 1cm long) around the weld that approximates it very closely. Finally, all the

positions at the intersections between these segments are checked to see if the

manipulator can access them — i.e. an inverse kinematic check is conducted to see if a

mathematical solution can be found to position the manipulator tool with the required

position and orientation. This check necessarily considers the manipulator base position

and so it takes account of the deployment boom extension and rotation. The access

value then returned simply represents the ratio of points that could be accessed, for

example, if 30 of 50 points could be accessed then the returned value will be 0.6. An

acceptance limit can be set in the software which indicated the minimum acceptable

value - for example, with an acceptance limit of 0.5 any positions with a lower access

value were pruned away.

Figure 7.6 illustrates the new scenario considering the full ARM toolskid with its

correctly separated attachment legs and its extending/rotating boom for the manipulator.

The weld segment illustrated is the left-hand half as viewed from along the brace, i.e.

from 6 to 12 o'clock in clock positions; the system has conducted a manipulator

kinematic path check (under user command) and found that the manipulator can access

0.82 (displayed to the user as 82%) of the path from its current position and boom

configuration.

1 Note that the manipulator itself was not checked for collision as the boom was extended and rotated
since its particular physical configuration could not be known without conducting a time consuming
simulation o f it accessing all parts o f the weld. Once one or more optimum docking positions had been
determined then, o f course, a more detailed check o f die manipulator configuration during access to the
weld could be conducted.

175

Chapter 1: Docking Planning Using Numerical Processing

Figure 7.6 - Checking a position for manipulator kinematic access

Consideration o f the deployment system, typically an extending and rotating boom,

operates as follows (see checkForReach in Appendix E). For each candidate position

the boom is extended in increments (typically 0.25m); for ARM, this is from 0 to 2.0m.

For each extension the boom is rotated in increments (typically 5°); for ARM this is

from -180° to 180°. At each rotation a manipulator kinematic check is conducted. If the

kinematic check succeeds then a collision check with the boom configuration is

conducted. If this succeeds, the kinematic access value is compared with the current

best value for that ROV position and replaces it if it is greater. The boom is then rotated

again and the operation repeats; once the boom has reached its maximum rotation it

resets to its minimum value, the boom is extended another increment and the operation

repeats. Once the boom reaches its maximum value the ROV is moved to the next

position with the boom reverting to its start extension and rotation. Once all positions

have been checked, the best access value achieved for each one is checked against the

acceptance limit threshold and if it is too low it is pruned away.

Figure 7.7 illustrates the use o f the manipulator deployment boom (here extended to lm

and rotated by 180°) to allow the manipulator to access the far side of the brace (the

weld path from 3 o'clock to 6 o'clock has been selected here). If this is done during the

automated docking, and show Graphical working is on, the system displays a

message as each arrangement is checked - either giving the ROV position, boom extend

and rotate values, and access value achieved or, if it failed due to a collision, giving the

objects in collision (generally the extended boom hitting some part o f the workpiece).

TaskCheckPath

ManjxJator knemadcs alow access to 82% of path

1 7 6

Chapter 7: Docking Planning Using Numerical Processing

Figure 7.7 - Accessing the far side o f a brace using the manipulator deployment system

It was at about this time that a number o f significant changes were made to NNW,

including the conversion from 16-bit to 32-bit processing and the rebuild as "NNW32"

(as discussed in Section 3.6. Neural Networks for Windows (NNW)). The original

intention had been to use the new deployment system extension and rotation values, and

the modified manipulator reach value, as criteria to save to the network definition files,

and thus to use them as inputs to the neural network processing. This was not done,

however, as it was found that the results from the ARM processing, now that they

considered most o f the important criteria, were sufficiently detailed to allow a human

operator to make a good selection o f a docking position from the shortlist produced.

This point will be returned to below.

7.6. Final Development

By this stage the ARM processing method had developed to the point that it was clearly

able to determine a shortlist o f good docking positions for the ROV system. However,

the software needed to be edited in the code slightly each time for different scenarios

and so a number o f changes were made to make it much easier to use. The most obvious

ones were to provide a means for the user to directly edit the various parameters of the

processing, to run some or all stages independently, and then to directly view the

results. A simple Docking Position menu had been added to the ARM Software

during this work and so it was extended to provide the features required.

177

Chapter 7; Docking Planning Using Numerical Processing

The final ARM Docking Position menu has the following options:

Settings...

Initialize
Grid

Check if
Inside
Workpiece

Sticky
Feet Reach

Check for
Collisions

Sticky
Feet
Positions

Kinematic
Access
Check

Init. & Do
All Checks

Write
Neural Net
Files

Show
Graphical
Working
Show
Results...
Shut Down

Brings up the Docking Settings dialog
box (see below)

Creates the list of candidate ROV
positions for a grid of the size and
granularity defined in the Settings dialog
box

Conducts collision detection to see if any
of the candidate positions are inside the
workpiece components, and prunes them
if necessary

Obsolete in final version - replaced by
Sticky Feet Positions as discussed in
Section 7.4. Third Automated Scenario
(ARM Collision Detection and
Attachment Leg Features)
Conducts collision detection to see if the
ROV at each position will clash with the
workpiece, and prunes them if necessary
Checks to see if enough attachment legs
can attach at each position (typically 2 if
3 available) and, if so, stores the ratio of
attached legs/number of legs available - if
not, they are pruned away
Calculates the manipulator kinematic
access value, i.e. what ratio of the
required weld length can be accessed, and
prunes away any below the specified
acceptance threshold
Conducts all steps above from
Initialize Grid to Kinematic Access
Check in sequence, one after the other
Writes out the current state of the list of
candidate positions into the various
neural net definition files (.str, .tem,
.net, .wts, .loo) - usually selected after
all the checks have been completed, e.g.
through Init. & Do All Checks
This is a toggle (ticked if on) that
indicates whether the system should
redraw the graphics during each check
Brings up the Docking Results dialog box
(see below)
Cancels the current docking scenario and
deletes the list of candidate positions

Settings...

Inijdtee Grid
Check f Inside Workpiece

Check for CoKsions
Sticky Feet Positions
Kinematic Access Check

Init. & Do Al Checks Ctrl+D

Write Neural Net Files

<✓ Show Graphical Working
Show Resdts...
Shutdown

Ctrl+U

178

Chapter 7; Docking Planning Using Numerical Processing

Once show Graphical Working is on the system redraws the ROV at each candidate

position in turn, and conducts the requested check. For example, if it is on and then

sticky Feet Positions is selected the system will draw the ROV at each remaining

candidate position with the sticky feet in the best attached arrangement determined at

each position. It should be noted, however, that the system runs considerably faster with

it switched off and so it should be used only when appropriate. For example, with the

scenario described in the previous section and with a grid of 2m x 2m x 2m (405

elements) the optimisation check takes about 10 seconds with the graphics off, and

about 15 minutes with them on. However, the graphical display is very valuable when

used appropriately, for example:

• After a complete check has been run, it can be used to view the remaining

candidate positions and their best attachment leg configurations

• It can be used to view specific checks, e.g. to see why particular positions led to

an ROV collision.

The Docking Settings dialog box (Figure 7.8) allows the user to set the grid spacing,

access value acceptance threshold, grid extent in X, grid extent in Y, grid extent in Z,

the increment for the boom extension, and the increment for the boom rotation.

t e * j |

Grid Spacing [m]: |0.25|

Acceptance Limit [%]: |50

X Range [m]: I-1
Y Range [m]: V
Z Range [m]: h

Extend Step [m]: |0 25

Rotate Step [deg]: I5

OK I Cancel

Figure 7.8 - Docking Settings dialog box

The Docking Results dialog box (Figure 7.9) shows the user the current results of the

list of candidate positions, specifically for each position its X, Y, Z location, boom
179

Docking S ettings

Chapter 7: Docking Planning Using Numerical Processing

extension value (in metres), boom rotation angle (in degrees), then its manipulator

access value and its leg attachment ratio. The dialog box comes up automatically at the

end o f a complete docking optimisation check (initiated via the init. & Do a h

Checks command) if there are fewer than 20 remaining valid positions. It can also be

called up directly by the user at any time.

1: 175. -0.25. -0.50. E= 0.00. R=45i Access = 10CK. Legs = 1.00 II
2: 175. 0.00. -150. E -100, R-65. Access -100%. Legs =0.07 ”
I 175. 0.25. -151 E= 0.00. R=71 Access = 10CR Legs = 0 67
4: 175, 0.50, -175. E= 125, R*61 Access « 96%. Legs = 0.67
5: 175. 0.50. -150. E= 0.00. R=70. Access = 10CR. Legs =0.67
6: 175. 0.75. -0.75. E= 0.25. R=55. Access = 86%. Legs = 0.67
7: 175. 0.75, -150. E= 125, R=75. Access = 10CR. Legs = 0.67 _
ft 3.75, 1.00, -0.75. E= 0.00. R=65. Access = 76%. Legs = 0.67
ft 3.75. 1 00.-150. E= 0.25. R=65. Access = 88%. Legs = 0.67
I I 4.00. -0.25. -175. E= 0.00. R=45. Access = 100%. Legs =0.67 .
11: 4.00, 0.25, -0.25. E= 0.00, R=120. Access = 100%. Legs = 167

Figure 7.9 - Docking Results dialog box

7.7. Time Analysis

After the Final Development work described in the previous section, the last

modification made to the docking optimisation code was the addition of a timing

feature. This calculated the time taken for each o f the phases o f the optimisation, in

order to allow an assessment to be made o f the proportion o f time spent on each of the

different phases.

The results o f running the final version o f the software, modelling the full ARM System

on the standard workpiece, gave the results in Table 7.1. All times are in milliseconds,

and any tests that ran for more than one million milliseconds (about 17 minutes) were

terminated.

Grid Spacing [m] 0.75 0.5 0.4 0.3 0.25 0.2 0.17 0.15 0.12 0.1

Number of Positions 108 405 726 1372 2601 4851 6912 10206 19652 32000

Initialisation of Grid 1 1 10 10 10 20 30 40 70 140

Check if Inside
workpiece 10 10 10 20 50 90 110 171 340 540

Check for ROV
Collision 81 300 521 962 1803 3365 4827 7140 13680 22172

Sticky Feet
Attachment 190 521 841 1512 2794 5148 7301 10825 20700 33598

Manipulator
Kinematic Check 64914 238272 428736 823865

O i h k i n g R e s u l t s

Table 7.1 - Timing Results for different optimisation phases

180

Chapter 7: Docking Planning Using Numerical Processing

Note that this feature used the standard Windows timer (which operates from the PC

hardware interrupt mapped to INT8 and runs at 18.2Hz) and is not guaranteed to be

accurate to more than 55ms. The shortest times recorded (with the fast phases running

on few positions) can therefore only be considered to be approximately correct.

The results are plotted in Figure 7.10 - a logarithmic scale is used because o f the large

spread o f timing results. It can be seen that the time taken to do each o f the calculations

increases in proportion to the number o f positions, as would be expected. It can also be

seen that the manipulator kinematic check takes longest o f all by a large margin, and

this, too, can be explained since most o f the checks just check the position against

certain criteria (e.g. whether inside the workpiece or causing an ROV collision).

However the kinematic check considers the deployment system and therefore conducts

cycling o f the boom through its extension and rotation range, doing the kinematic check

at each increment (the default values were used, 0.25m extension increments over 2m,

and 5° rotation increments over 360°, so the system was conducting about 650 checks at

each position).

Of more interest is the relative speed o f each phase. The checks were implemented in

the given order simply because it was convenient - they increase in coding complexity

in that order. The timing results confirm, however, that this complexity also relates to

the time taken to conduct the calculations, and so this is the optimum order in which to

conduct the checks.

Clearly it is valuable to conduct the fastest checks first in the hope o f eliminating as

many positions as possible before starting on the slower checks. However, it could be

useful to investigate this further - for example, although checking for ROV collisions is

slightly faster than checking for sticky feet attachment, i f the latter removes

significantly more candidate positions then it would be advantageous to conduct it first.

This could be the subject o f further work.

181

Ti
me

Ta

ke
n

(m
s)

i
Chapter 7: Docking Planning Using Numerical Processing

1000000

100000

10000

1000

100

10000 20000 30000 40000

Number of Positions

Initialisation of Grid
Check if Inside workpiece
Check for ROV Collision
Sticky Feet Attachment

^ M a n ip . Kinematic Check

Figure 7.10 - Timing Results for Docking Optimisation Phases

182

Chapter 7: Docking Planning Using Numerical Processing

7.8. Conclusions

By the end o f the development o f the ARM processing described in this chapter the

system was able to conduct the following procedure (this can be compared with the

manual one given on pages 141-142):

1. Provide a number o f optimisation parameters that the operator can set for a

particular scenario via a dialog box, i.e. grid extent and granularity, required

percentage o f weld length accessed, and deployment system increments.

2. Create a grid o f candidate docking positions based on the given parameters.

3. Remove all positions in contact with the workpiece.

4. Move the ROV to each position in turn and conduct the following checks.

5. Remove all positions that would cause the ROV to be in collision with the

workpiece.

6. Calculate an attachment leg value for each position (this was simply the ratio o f

the number o f legs successfully attached to the total number o f legs on the

ROV). Prune away any positions with a ratio below a given threshold (the

default is 0.5).

7. Cycle the deployment system through its range at each position (typically

extension then rotation) using the specified increments.

8. For each configuration calculate a manipulator access value (using the ratio o f

the amount o f weld that could be reached to the amount requested by the

operator). This takes full account o f the manipulator's forward and inverse

kinematic constraints.

9. If a better manipulator access value is found than already held for that position,

check to see if the boom is in collision. If not, replace the existing value with the

new one, and move to the next configuration until all are checked.

10. Having conducted all checks, prune away any positions with an access value

lower than that specified, then display a dialog box listing all remaining

positions and giving their extension/rotation values, access value and attachment

leg ratio.

183

Chapter 7; Docking Planning Using Numerical Processing

This process was very effective at providing a shortlist o f valid positions for the ROV

system to dock (sometimes a ’list' o f just one or two positions) and, as has been

described above, it was decided not to develop the neural network method for docking

planning any further. From the early work on using NNW to solve simple docking

optimisation problems it was clear that it could do so, but increasing complexity in the

test scenarios produced a simple contradiction: if there were many candidate positions

remaining after the ARM pre-processing (as there was with the earlier versions) then the

size o f definition files required and the amount o f processing required by the neural

network was extremely high (an n2 problem). However, if there were only a few

positions then the information provided by the ARM processing was sufficient for a

human operator to choose a position directly, without needing the neural network phase.

It is considered that this problem as finally defined was possibly not appropriate for

neural network processing. Neural networks clearly have an advantage in very complex

situations, where selection or activation o f particular units (in this case positions) has an

interrelated effect on other units. For example, there was an element o f this in the

second scenario, where the ROV and attachment leg positions represented different

units in the same grid and so selections were linked, i.e. the selection o f one position

was affected by selection o f adjacent positions. However, in the general case considered

here where the ROV positions and leg positions may not be interconnected in any way it

appears to be more efficient to consider them independently and the advantage o f a

neural network system is lost.

At this point a system had been developed, based on numerical processing in the ARM

software, that was very effective at determining the optimum position for docking an

ROV system in order to maximise access to a weld, and no further development on a

neural network-based system was conducted. The remainder o f this thesis will look at a

number o f real-life operational scenarios where the system saw extensive use.

184

CHAPTER 8:
FIRST USES OF THE AUTOMATED DOCKING PLANNER

8.1. Introduction

Although the Slingsby ARM System was never to be used operationally, as has been

seen the ARM Software had found use as a simulation tool for ROV access checking

and docking planning. This chapter will describe the use o f the ARM Software with the

newly developed automated docking planning system on two commercial jobs, the first

for Woodside considering an Australian platform and the second for Elf considering a

North Sea platform.

8.2. Docking Planning for Woodside

The ARM Software had been proven as a control system for the computer control of

manipulators in inspection, welding and grinding trials, and even though it was not to

see use in the North Sea, there was great interest in it from Australia and eventually, as

will be seen below, it saw successful use conducting ACFM inspection for Woodside

Offshore Petroleum Pty Ltd based in Perth.

Woodside is the operator o f the North West Shelf Gas Project - Australia's largest

resource development - o ff the north-west coast o f Australia (see Figure 8.1). The first

structure installed in the North West Shelf was the North Rankin Alpha (NRA), a

tubular steel structure, which went in during 1982. The operational requirements for this

platform included long term planning for marine growth removal and detailed NDT of

selected welds [Batten 1988]. Equipment was developed first for marine growth

removal since, as little as two years after installation, marine growth was building up

fast and also because weld inspection necessitated the removal o f marine growth first.

Two systems were developed in the 1980s for marine growth removal, a special purpose

’C’-shaped vehicle called Scimitar and an ROV tooling package designated Modular

Offshore Cleaner 1 (MOC-1). Scimitar was designed for the bulk removal o f marine

growth along main members and was deployed into position by ROV. MOC-1 was a

185

Chapter 8: First Uses o f the Automated Docking Planner

custom designed toolskid mounting twin attachment arms, a manipulator carrying high

pressure water jetting equipment, and an inspection camera - see Figure 8.2.

NORTH RANKIN A’
PLATFORM

TRUNKUNE
40’ DIAM.

134km

LOCALITY MAP

JwK ̂ ' ONSHORE
J PLANT

iZ S

Figure 8.1 - Location o f North Rankin Alpha platform [from Batten 1988]

MOC-1 was later replaced by a Nodal Inspection System (NIS) skid which had a large

hydraulic claw underneath, for attaching onto horizontal braces, in place o f the

attachment legs; this saw extensive use for cleaning and visual inspection on NRA in

the early 1990s. However, Woodside required a more effective means of weld

inspection using a recognised NDT system such as ACFM and so a requirement was

issued for the development o f a new toolskid aimed at manipulator-deployed ACFM

inspection.

The system was designed by Covus Corporation (known as Tritech International at the

start o f the work) and incorporated two Schilling manipulators on rotating mounts. It

also had a hinging mechanism in the skid to allow the front half, with the attachment

claw, to tilt and so attach to vertically diagonal braces - see Figure 8.3 (the tilt function

is not being used in the illustration).

186

Chapter 8: First Uses o f the Automated Docking Planner

Color T V.
Camera Cleaning Manipulator

•Attachment Manipulators (2)

Attachment B&W
Cameras (2)

Cleaning
Nozzle NOT 4000

Inspection
Camera Buoyancy ModuleSuction Pumps/Motors (2)

OOP]

Frame9 / Turntable
Suction Cups (2) Manipulator

Seawater
Intensifier Pumps (2)Hydraulic

Power Units (2)

Figure 8.2 - Woodside MOC-1 inspection and cleaning toolskid [from Batten 1988]

The design appears to have originally also been designated NIS (or possibly NIS-2).

The toolskid that was eventually built, however, and which is believed to have

incorporated the rear frame and some o f the other components from the earlier system,

became generally known as NICS (for Nodal Inspection and Cleaning System).

Figure 8.3 - Original NICS design (note toolskid hinge/tilt function)

In order for the project to proceed it was necessary, firstly, to determine if the proposed

system was capable o f inspecting the required nodes, and, secondly, to source a

computer control system able to operate the manipulators for inspecting the complex
187

Chapter 8: First Uses o f the Automated Docking Planner

weld geometries. The ARM Software appeared to be the solution to both, and so at the

outset a contract was issued to use the ARM Software to determine access to twenty-

five nodal welds on NRA.

The first phase involved access checks on four selected welds and although it did not

produce very conclusive access results, it did lead to the following conclusions:

• It indicated that there was little benefit in having the complex toolskid tilt

function for the nodes being considered, and this was dropped from the design.

• The nodes were generally very difficult to access, and a number o f different

methods were investigated to improve this. The main ones incorporated the use

o f offsets (extension pieces) fitted between the toolskid and manipulator

shoulders, and also offsets between each manipulator and the inspection probe.

The second phase involved access checks on the complete scope o f twenty-five welds,

including redoing the first four following new information being received on the ROV

configuration and anode placement on the nodes. The first phase was conducted entirely

manually (largely by the author).

The second phase was initially conducted manually (by the author and a colleague) but

it soon proved unmanageable due to its sheer size, and the work slipped behind

schedule. Since the ARM Processing work conducted for this thesis was approaching

the point at which it could be used practically, extra effort was made to bring it to a

useable point as soon as possible - essentially by conducting the work described in

Section 7.6. Final Development. Once this was done, the access checking continued but

using the automated docking planner.

It should be noted that this first real use o f the automated docking planner did not fully

require all the features developed for the system, specifically:

• The NICS skid had no sticky feet, and so the complex calculation o f valid

attachment leg configurations was not used.

• There was no extending deployment system so this was not considered, although

the twin rotating deployment systems for the manipulators were fully

considered.

• The toolskid had a V-shaped cut-out along its underside so that, in combination

with the clamping jaws, it was forced to sit hard down on the centreline o f the

188

Chapter 8: First Uses of the Automated Docking Planner

brace. This removed the need to consider candidate docking positions off the

centreline, i.e. there were constraints that Y = 0, and Z = brace radius1.

The optimisation therefore came down, primarily, to considering the access for each of

the possible rotations o f the deployment system for each of the X positions along the

brace, while eliminating any that produced collisions. Conversely, compared to the

Slingsby ARM System there were many more possible permutations that had to be

considered, specifically manipulator offsets o f 0, 0.5, 0.75 and 1.0m; and probe offsets

of 0, 0.3 and 0.5m, each potentially at multiple angles (though this option was only used

occasionally, as a last resort).

The manual part o f the docking planning took place from 22nd to 28th April 1999; this

was followed by completion work on the automated planning system from 29th April to

5th May. The docking planning then resumed using the automated planning system and

took place from 6th to 20th May.

During the manual checking phase, the following welds were checked: numbers 13, 15,

17 and 18, plus half o f 9, - a total o f 4.5 in 5 working days, i.e. about 0.9 checks per

day. During the automated optimisation phase, the following welds were checked: the

other half o f weld 9, plus welds 1-8, 10-12, 14, 16, 19-25 - a total o f 20.5 in 11 days,

i.e. about 1.8 checks per day.

Figure 8.4 - Covus ARM System inspecting 10 to 10.30 on Woodside weld 9

1 Z also has a small offset to the ROV origin that changes slightly depending on the relationship between
the brace radius and the size o f V-shaped cut-out, but is fixed for a particular brace.

189

Chapter 8: First Uses o f the Automated Docking Planner

These results imply, though not prove, a 100% increase in efficiency. Certainly, once

the work was started using the automated planner the manual method was never

returned to. It is interesting to look at the difference the automated planner made, for

example on weld 9 which was partly done manually and partly done with the automated

system. Weld 9 was a particularly challenging one because it was a diagonal extending

out from the underside o f a horizontal node, and hence the only access possible was

from sitting on top o f the node (or one o f the braces joining to it) and reaching down.

The access check began on 28th April, and it was determined manually that it was

possible to inspect from 7.30 to 10.30 with the right hand manipulator. This had a 30cm

offset and was turned all the way over so that it was completely upside down (see

Figure 8.4) and used a series o f ROV positions along the central horizontal brace (X =

15.4,15.2, 14.9 then 15.0, as shown, where the node centre is at 12.2).

However, finding a means o f accessing beyond clock position 10.30 was very

problematic. Firstly, the various X positions clearly indicated that the positioning was

crucial but sensitive (i.e. it was possible to inspect parts o f the weld from X=15.0 that

could not be reached from 15.2 or 14.9, and that having checked in one direction, e.g.

decreasing X, the next segment along may require repeating the check in the opposite

direction, e.g. increasing X). Secondly, having failed to reach beyond 10.30 the logical

next thing to consider was the angle o f rotation o f the manipulator mount - but without

any indication o f the best angle to try, or rather what combination o f angle and position.

Thirdly, for any weld segment that could not be reached it would potentially be

necessary to redo the simulation a number o f times, with a different manipulator offset

and/or probe offset each time. These problems clearly pointed to the use o f the

automated system and largely drove its final development.

Access checking with the automated system began on 6th May, using X increments of

5cm and increments in rotation, R, o f 5°. It found that it was possible with X=14.7 and

R=160° to inspect from 10.30 to 11.00 but no further; repeating the check with a 30cm

probe offset allowed access from 11.00 to 11.30 (with X=14.5 and R=160°); while a

further check with a 0.75m manipulator offset but no probe offset allowed access from

11.30 to 12.00 (with X=14.35 and R=170).

Note that each o f these used a completely different system configuration (different

manipulator offsets and probe offsets) and so would have required a completely new

manual check considering each position along the brace and multiple rotation angles for

each configuration. The automated system was able to check a 3m length (X = 12.2 to

190

Chapter 8: First Uses of the Automated Docking Planner

15.2) in 5cm steps, considering 5° rotation increments at each step over 180°, making a

total o f 61 x 37 = 2257 checks almost instantly (see Figure 8.5 which shows another

view o f the node, and the candidate positions on it - at 10cm spacing for clarity).

Figure 8.5 - Covus ARM System on the weld 9 node, showing automated docking
positions considered

8.2.1. NICS Toolskid

Following the completion o f the detailed simulation and docking planning phase,

Woodside gave the go-ahead for construction o f the NICS toolskid. It is described

here, and its use offshore in conjunction with the automated docking planner system

will be described in the next chapter.

Figure 8.6 - The Covus NICS toolskid

191

Chapter 8: First Uses o f the Automated Docking Planner

The Covus NICS skid uses two Schilling Titan II or Titan III manipulators which

are medium reach and fairly dextrous subsea manipulators. All the subsea ARM

equipment is mounted in a toolskid capable o f being carried on a work-class “ROV

o f opportunity”. This toolskid is an aluminium box and tubular frame structure

mounting the following equipment (see Figure 8.6):

1) Dual shoulder rotate deployment systems. These consist of Titan

manipulator mounting points on rotate actuators, one on each side o f the

skid. They can each rotate the manipulator shoulders through 180 degrees.

This allows the arm to reach into work sites that the ROV cannot access, and

enables the arms to work as easily on their side, or upside down.

2) Attachment claw. This consists o f hydraulic fingers mounted on each side of

the toolskid. They are opened and closed under control from the ROV cabin

and allow the toolskid to be clamped onto the top o f braces or anodes.

3) Integral inspection equipment, optional valve packs, etc. so that the only

links required to the ROV, apart from the physical interface, are an umbilical

communication link and a hydraulic supply.

4) Pressure vessels for the manipulator controller, ACFM inspection system

and toolskid controller.

5) A hydraulic extending measurement probe to measure the distance from the

front o f the toolskid to the node to speed up registering the node position in

the ARM Software.

6) A long hydraulic arm mounting a pan/tilt/rotate camera which can be

deployed over the side o f the toolskid for monitoring manipulator operations,

including under the brace.

7) A sliding mechanism that allows the ROV to fly with the toolskid pushed

back underneath it (so that it is balanced in the water) but which allows the

toolskid to extend forwards o f the ROV when docking (so that the ROV is

clear o f any overhanging braces).

As part o f the work a manipulator mount (proposed by the author) was built for

carrying the inspection probe, a touch switch for ARM to conduct workpiece

modelling (see Section 2.6.2. ARM Description), and a small camera for viewing the

positioning o f the probe on the weld for inspection - see Figure 8.7.

192

Chapter 8: First Uses o f the Automated Docking Planner

Figure 8.7 - The camera/probe mounting with touch switch and 45° mirror at left

8.3. Docking Planning for Elf

The first commercial job to use all features o f the automated docking planner (including

consideration o f attachment legs) was actually the largest and most significant access

check done with ARM until the culmination o f the development o f the ARM NICS

system in the Australian work that is the subject o f the following chapter.

Elf still required significant amounts o f weld inspection to be conducted on the

Claymore Alpha platform, the small RACAL system evaluated above (see Section 5.4.2.

RACAL Manipulator Evaluation) having proven to be inadequate to the task. Elf

therefore put out an Invitation to Tender (ITT) for the work so that a number of offshore

ROV companies could propose different systems (typically ROV/manipulator

combinations) to conduct the work. The significant point is that Elf required each of

them to have their systems simulated in the ARM software in order to provide an

objective assessment o f the access capabilities o f each system. This information,

combined with estimates o f likely system cost and work rate, would be used to

determine which company would get the contract.

Four companies eventually put forward systems and had them evaluated in ARM:

RovTech Limited, Sonsub International Limited, DSND Subsea Limited and Subsea

Offshore Limited (SSOL). The interim results were passed back to each company with

proposed changes to each system to improve its access. Eventually a final, detailed

report was issued to each company and these were included in that company’s bid to

Elf.

193

Chapter 8: First Uses o f the Automated Docking Planner

Figure 8.8 - ARM model o f the node 16A5 (welds to be accessed are marked thus*)

All four systems were evaluated for access on two welds (on braces 16A13 and 22A9)

on the same node, 16A5, on the Claymore Alpha platform (see Figure 8.8).

8.4. Com peting System s

The system proposed by RovTech consisted of a Spartan ROV carrying a toolskid

similar to the ARM toolskid but with a Slingsby Hydrus manipulator on a fixed mount

(rather than a rotating/extending boom); this is shown in Figure 8.9.

Figure 8.9 - RovTech system inspecting 9 o'clock on weld 22A9

194

Chapter 8: First Uses o f the Automated Docking Planner

The system proposed by Sonsub consisted of a Triton ROV carrying a toolskid that was

a cross between the ARM toolskid (with its three sticky feet on a ‘goalpost’) and the

Covus NICS toolskid with a V-cutout in its underside to aid sitting on braces. The

toolskid mounted a Titan 3 manipulator on either of two rotating manipulator mounts,

one on each side of the skid, as required. This system is shown in Figure 8.10.

Figure 8.10 - Sonsub system inspecting 4 o'clock on weld 16A13; the manipulator is
rolled over to 125°

The system proposed by SSOL consisted of a Pioneer HD ROV carrying a new toolskid

that was similar to the ARM skid but using an SSOL design of attachment legs. The

toolskid mounted a Titan 3 manipulator on either o f two fixed manipulator mounts, one

on either side o f the skid, as required. This system is shown in Figure 8.11.

Figure 8.11 - SSOL system inspecting 6 o'clock on weld 16A13; manipulator is
mounted upside down

195

Chapter 8: First Uses of the Automated Docking Planner

The system proposed by DSND was radically different to those proposed by the other

companies, and to any other system previously considered in ARM as it consisted of a

telescopic manipulator mounted on a neutrally buoyant ROV. It was proposed that the

ROV was held onto the brace by its thrusters while small wheels would rotate the ROV

around the brace (including going upside down) so as to move the manipulator around

the brace weld as required. The system is shown inspecting a brace weld in Figure 8.12.

Figure 8.12 - DSND system inspecting the top and underside o f weld 16A13

Because this system involved the ROV changing its position and orientation during the

access task it could not be considered by the automated docking planner. However, the

docking planner could be used for all three other systems, and was used throughout.

Since the other three systems all had attachment legs, and were not constrained to just

sitting on the centre o f a horizontal brace like the NICS skid, they used all features of

the docking optimisation system and so are worthy of closer examination.

8.4.1. Example Use

It is worth examining the use o f the docking optimisation system on the SSOL

system in particular since, compared to the ARM and NICS systems considered so

far, this had different attachment legs (of an SSOL design), different manipulator

mounting system (a fixed mount on each side o f the toolskid, capable of holding the

manipulator upright, on its side, or upside down, but not at any other angle) and a

slightly different manipulator (Titan 3 rather than ARM or Titan 2).

For example, considering access to the brace 16A13 weld, in order to find a position

suitable for inspecting 4.00 to 6.00, the following parameters were used in the

docking planner:

196

Chapter 8: First Uses o f the Automated Docking Planner

Grid Spacing: 0.25m

Acceptance Limit: 100% (since the aim was full access)

X, Y and Z ranges: -3 to 0, 0 to 4, and -2 to 1 respectively

Extend Step: Not used, since there was no extend mechanism

Rotate Step: 90 degrees

The results o f the check are given on the next page (the required clock positions are

highlighted). The figures in brackets for each step are, firstly, the number of

candidate positions remaining and, secondly, the time taken.

After Step five the user has to step in and select a suitable candidate position from

those remaining. In this case, most o f the candidates used a rotation o f 180 (i.e. with

the manipulator upside down) and so one with this configuration, in the middle of a

group o f positions all with 100% access, was selected. This position has been

highlighted in Step 5, determined by following a process o f deduction; a useful

improvement to the system would be a means for automatically highlighting a

chosen position (see Section 10.4.). An inspection o f 5.00 is shown being conducted

from this position in Step 6.

The complete docking optimisation process (Steps 1-5) took less than two and a half

minutes on a 1.4GHz PC. From experience, it is known that doing the same process

manually takes about an order o f magnitude more so the time savings are

considerable. Considering the whole access simulation process, including creation

o f the required workpiece and equipment models, and subsequent reporting of

results, and so on (which do not benefit from the automated optimisation) it is

estimated that a typical automated access check that includes attachment legs would

be two to five times faster than a manual check. This is better than the actual result

(estimated at two times faster) from the work described earlier in this chapter

because the NICS system is constrained in position and orientation on a horizontal

brace which makes manual planning easier than the general case using attachment

legs.

197

Chapter 8: First Uses o f the Automated Docking Planner

1: Creation of candidate positions
(2873, < ls)

3: Remove positions causing collisions
(1914, 13s)

5: Remove positions without 100% access
(29, 107s)

2: Remove positions inside workpiece
(2506, < ls)

4: Remove positions if feet cannot attach
(980, 16s)

6: User selects a position from remaining
candidates

198

Chapter 8: First Uses o f the Automated Docking Planner

8.5. Conclusions

Use o f the automated docking planner on the Woodside and Elf work demonstrated very

effectively its ability to find optimum docking positions very quickly, estimated at two

to five times faster than manual planning. The system was equally applicable to the

three ROV/manipulator combination systems competing for the Elf work, and to the

NICS toolskid, as it was to the ARM toolskid at which it was originally aimed. The next

chapter will describe its use on an operational offshore job.

199

CHAPTER 9:
OPERATIONAL USE OF THE AUTOMATED DOCKING PLANNER

9.1. Introduction

The results o f the docking planning described in the previous chapter led Woodside not

just to proceed with procurement o f the full NICS toolskid but also adaptation of the

ARM software to control its Titan manipulators. This led to manipulator Factory

Acceptance Tests (FATs) in Seascale, England, which demonstrated that the ARM

Software was capable of conducting ACFM weld inspection using a Titan 3

manipulator, see Figure 9.1.

Figure 9.1 - FATs in England of ARM Software controlling a Titan 3 manipulator

This was followed by full system FATs in Perth, Australia - see Figure 9.2. With the

ARM System and toolskid connected together for the first time it was possible to

confirm operation o f the manipulators under computer control, the feedback of the

shoulder rotate system, and the operation o f the probe mounting and touch switch.

200

Chapter 9: Operational Use o f the Automated Docking Planner

Figure 9.2 - Factory Tests in Australia o f ARM Software controlling a Titan 2
manipulator on the NICS skid

Following successful FATs, the complete system went offshore in May 2000 only to

remain on deck for the duration of the operation due to poor weather conditions. Finally,

after remobilising in September 2000, the system was able to go to work inspecting

nodes on NRA as planned. The offshore operation made extensive use of the automated

docking planner both in advance of, and during, the work and will be described in this

chapter.

9.2. ROV S upport Vessel

The system was mobilised on the North West Shelf Gas Project support vessel "Shelf

Supporter" (see Figure 9.3) which is operated by a Woodside subsidiary, Mermaid

Sound Port and Marine Services Pty Ltd. The Shelf Supporter is a dynamic positioning,

60m long, modified ME202 multi-role vessel, specifically intended to support ROV

operations and provide other essential support functions. It has a built-in ROV control

room, storage/workshop area, 3m diameter moonpool (for the secondary ROV) and

accommodation for 11 personnel, in addition to the marine crew of 14, for 24 hour ROV

operations [Batten 1988].

201

Chapter 9: Operational Use o f the Automated Docking Planner

^ ^ « t « l l | i | U l t i t M jj,

Figure 9.3 - Shelf Supporter ROV support vessel, forward and aft views

The layout o f the Shelf Supporter, circa 1988, is shown in Figure 9.4 (by 2000 the

Scimitar vehicle and LARS had been removed and the RCV150 secondary ROV

replaced by a Scorpion).

Launch & Recovery
System - Scimitar Launch & Recovery

System- Triton — ROV Control Room
(RCV150 & TRITON)

A-FRAME

MAIN DECK

R.O.V.
Workshop

‘Scimitar’ Umbilical— «— Triton’ Umbilical RCV150 Moon pool

Triton’ T.M.Sri

-Scimitar’ T.M.S.

‘Triton’ Tether

‘Triton’ Vehicle
‘Scimitar’ Vehicle

Figure 9.4 - Shelf Supporter ROV support vessel [from Batten 1988]

The primary ROV, a Perry Tritech Triton, is deployed over the side using a large A-

frame LARS (see Figure 9.5); this allows the deployment of the ROV with a top-hat

TMS, and large underslung toolskids, such as NICS.

202

Chapter 9: Operational Use o f the Automated Docking Planner

Figure 9.5 - The ROV station on Shelf Supporter, with the launch system (orange)
folded over the Triton ROV (yellow)

The computer facilities for the ARM operators consisted o f two systems:

• The primary ARM computer, a laptop, located in the ROV control cabin (see

Figure 9.6) and provided with a trackball, plus a secondary LCD display (for

viewing by the ROV pilot and other crew). This was connected to the

manipulator master arm connector, for computer control o f the manipulator

(which is done by mimicking the commands sent from a master arm). It was

also connected to the toolskid electronics in order to receive the feedback

from the rotary actuators (for the manipulator mounts) and from the touch

switch on the probe mounting.

• A secondary ARM computer, a desktop configuration, was located in an

adjacent room and used to plan and consider changes to docking positions

based on problems encountered or on new information as it was received

(e.g. new or changed anode locations); this could be done by one operator

using the automated docking planner while the other operated the ARM

control system.

203

Chapter 9: Operational Use o f the Automated Docking Planner

Figure 9.6 - ROV control room with ARM laptop computer in the foreground

9.3. O perations

The work was conducted by Covus Corporation Pty Ltd with inspection personnel

provided by SureSpek ISS Pty Ltd, both based in Perth, Australia, but with the

manipulator computer controlled by the author and, for the second half o f the work, a

colleague, from General Robotics Limited, England.

204

Chapter 9: Operational Use o f the Automated Docking Planner

Figure 9.7 - East face o f North Rankin Alpha showing inspected nodes
[courtesy T. Heale]

Figure 9.7 shows the locations o f the three nodes that were inspected; these were done

in the order 4E2, 4G2, 3C2. The NICS system is shown being deployed in Figure 9.8.

The view through its pan and tilt camera is shown in Figure 9.9 while docked on node

4G2. The equivalent arrangement in the ARM software is shown in Figure 9.10.

205

Chapter 9: Operational Use o f the Automated Docking Planner

Figure 9.8 - Triton ROV mounting the NICS skid being deployed beside North Rankin

A full breakdown o f the offshore operations is given at Appendix F, concentrating on

the access achieved for ACFM inspection.

Figure 9.9 — Pan and tilt camera view showing inspection o f 5.00 position on node 4G2
(manipulator is rolled over to 135°)

206

Chapter 9: Operational Use o f the Automated Docking Planner

Figure 9.10 - Equivalent ARM view (weld from 2.30 to 5.00 is highlighted)

9.4. R esults

Although it had been intended to inspect five welds, time had run out before three were

fully complete. A summary o f the results is given in Table 9.1. Although it is tempting

to draw conclusions from these results with regard to the accuracy of planning resulting

from the use o f the ARM Software in general, and the automated docking planner in

particular, it is not possible to do so with any confidence.

Specifically, the major reason for not achieving full access was simply the lack of time

and it is the author's belief that full planned access could have been achieved given

sufficient time (with the possible exception o f the area around 10.00 on 4G2/Weld 5

where an unexpected bracket was found, obstructing access to the weld). With

increasing time constraints during the operational work, priority was given to attempting

access on the most straightforward parts of as many welds as possible, rather than

aiming to achieve full access on fewer welds. The Planned full access considered the

use o f a number o f different configurations (e.g. different manipulator shoulder and

probe spacers and angled brackets) which improved access but were costly in time and

could not be used during the offshore work because o f time constraints. In particular, to

save time the toolskid was reconfigured as little as possible, so often inspection was

attempted with a configuration that was known not to be optimum but which could be

used on a number o f welds. This is why, for example, the right-angled probe mounting

was not used until the last day.

207

Chapter 9: Operational Use o f the Automated Docking Planner

Planned1
[clock positions]

Achieved
[clock positions]

3C2/Weld 1 Chord Toe 5 .0 0 -1 .0 0 [8] 6 .4 5 -1 .3 0 [6.75]

3C2/Weld 1 Brace Toe 7 .0 0 -1 1 .0 0 [4] 6 .4 5 -8 .0 0 ,1 0 .3 0 -1 1 .1 5 [2]

3C2/Weld 1 Interstitial
Weld Cap

1 .0 0 -5 .0 0 [4] 1 .0 0 -3 .0 0 [2]

4G2/Weld 5 Chord Toe 1 .0 0 -1 1 .0 0 [10] 2.30 - 5.00, 7.00 - 9.00

5.00 - 7.00 (90° mount) [6.5]

4G2/Weld 5 Brace Toe 1 .3 0 -1 0 .3 0 [10] 2.30 - 5.00, 7.30 - 8.30

5.00 - 7.30 (90° mount) [6]

4E2/Weld 8 Chord Toe 1 .3 0 -1 0 .3 0 [9] 1 .3 0 -1 0 .3 0 [9]

4E2/Weld 8 Brace Toe 1 .3 0 -1 0 .3 0 [9] 1 .3 0 -5 .0 0 , 6 .3 0 -1 0 .3 0 [7.5]

Table 9.1 - Summary o f Planned versus Achieved weld access

A significant result was that no cracks were found in any o f the weld segments

inspected. This was clearly a very welcome finding from a safety point o f view, with

regard to the structural integrity o f the platform and the personnel living and working on

it. Unfortunately, it brought into question the requirement for future inspection with the

NICS system, which necessarily had a significant cost attached to it, and may be one of

the reasons why the planned follow-up inspection programme for the next year was

cancelled.

9.5. Conclusions

The NICS system was deployed in September 2000 to clean and inspect nodal welds on

North Rankin. It was very successful, proving to be up to ten times faster than manually

controlled manipulator weld inspection that had been conducted in the North Sea. Due

to many operational reasons, including equipment reliability (resulting largely from

using a very old ROV) and vessel availability, the NICS system was in place inspecting

welds for just 36 hours out o f the total operational duration - however, in that time it

inspected some 12m o f weld metal (representing at least 250 probe readings) a feat that

surpasses any other ROV weld inspection system.

1 From General Robotics document GRL/TJL/093Welds "Examination o f Weld Access for Inspection on
the Woodside North Rankin A Platform Using the ARM Software Simulation System - Appendix One:
Revised Access Checks".

208

Chapter 9: Operational Use o f the Automated Docking Planner

This excellent result was due in part to the success o f the automated docking planner in

finding optimum docking positions in a practical amount o f time, including times

offshore where operational constraints required docking planning to be conducted at

short notice (i.e. the toolskid is currently in such-and-such a configuration - what else

can be inspected before it is brought back up?). It may also be the case that it was the

timely availability o f the planner during the original access simulation work that

allowed the whole operation to go ahead.

209

CHAPTER 10:
CONCLUSIONS

10.1. Summary of Results

Chapter 1 described how ROVs have been increasingly used to conduct underwater

intervention tasks, in place of divers and submersibles, and showed that they are the

only unmanned systems able to attach themselves onto jacket nodes to conduct

inspection. In conjunction with a robotic control system (such as those described in

Chapter 2) they are capable of conducting automated nodal weld inspection using

techniques such as ACFM. A number of similar systems are described, primarily

REMO, ATES and ARM.

Chapter 3 described the background and development of neural networks, and their

application to manipulator control and offshore systems. It also described the

development of new neural network software, NNW. This was extensively tested and

verified in Chapter 4 which also described the four main types of neural network

(interactive activation and competition, constraint satisfaction, pattern associator and

back propagation) giving details of the theory behind them and their implementation in

NNW. It showed techniques to help avoid networks getting caught in local maxima

(particularly through the use of the Boltzmann Machine and an annealing schedule) and

gave a full description of NNW features. It concluded by analysing the differences

between the NNW results and those published for the well known PDP software.

Chapter 5 described various methods for docking with ROVs, looked at the background

for conducting access checks for ROVs, and showed how the ARM software was

developed so that it could initially conduct access checks but could later be used for

manual docking planning, with various examples given. It concluded by describing the

procedure for determining a docking position manually. Chapter 6 looked at using the

neural network software to conduct docking planning on two manually defined

scenarios (a single attachment leg coincident with the manipulator and a single

attachment leg offset to port side of the ROV). Using the Schema Model on the second

210

Chapter 10: Conclusions

scenario resulted in the system quite often getting stuck in local maxima. Using the

Boltzmann Machine instead, and a sufficiently long annealing schedule, it was possible

to reach the global maximum in all tests conducted.

Chapter 7 described the development of a software library to conduct automated

docking planning using some existing features of the ARM Software and adding others.

As well as being able to replicate the manual definitions created in the previous chapter

the final version could also take account of manipulator kinematic access to a selected

weld segment, correct kinematic attachment of the legs to the workpiece, collision

detection of the complete ROV model with the workpiece, and use of any deployment

extension and rotation functions. The Chapter also described the features of the

automated planner in detail and investigated the time taken by each stage of the

processing. Although the work was originally intended to produce a pre-processing

phase before the use of the neural network system, after successive enhancements it

functioned very well on its own and no further development of the neural network

method took place.

Chapter 8 described the use of the automated docking planner on two real-life scenarios,

one for Woodside for an Australian platform and one for Elf for a North Sea platform.

These jobs indicated a significant increase in speed and efficiency when using the

automated planner compared to manual planning. Chapter 9 describes an offshore

operation which had been planned in advance largely through the use of the automated

system, as described in the previous chapter, but also during which the automated

system was used extensively for short term and speedy docking planning.

10.2. Neural Network Software

Completely new Neural Network software was developed which could be configured

for four different types of network structure (interactive activation and competition,

constraint satisfaction, pattern associator and back propagation) and could solve

problems in all these formats. The constraint satisfaction network was most appropriate

for docking optimisation and was used successfully to select the best ROV location in a

number of simplified docking scenarios. However, it required large matrices for

representing candidate docking locations and for each constraint being considered, and

it became increasingly impractical for large, complex docking scenarios. For this

211

Chapter 10: Conclusions

reason, development of a neural network solution for docking optimisation was stopped

in favour of a numerical automated planner.

The neural network software, nonetheless, worked well and could be used effectively on

problems outside the docking domain. It could therefore be developed in the future as a

general neural network tool, in which case it would be appropriate to consider the

following improvements:

1. Add in the neural network subtypes not implemented (such as the Auto

Associator, and the cascaded feed-forward, recurrent, sequential and competitive

learning, variants of the BP type); otherwise the dialog box handling of the

parameters for these subtypes (see Section C.4. Settings Menu) should be

removed.

2. Complete the implementation of a native file format for NNW. Using an

appropriate binary format it may be possible to produce files capable of defining

large numbers of positions and weights without the size and speed overheads of

the PDP text format files.

3. Add in a general graphical feedback system, an idea that was considered during

the work but not implemented. This would provide a graphical representation of

the network and the unit activations and show the flow of activation along the

connections between units, possibly through the use of colour like a contour

plot. It could provide valuable feedback of the state of any network, for example

showing the success of training and the sequence of operations during training

and running, and also highlighting any areas of under-use or saturation.

4. Implement a definable data type that can alternately represent floa t or double (or

other types such as long double) and use this throughout the NNW libraries,

including all uses for local variables. It would then be possible to conduct more

detailed comparisons of the effects of using different data types on the behaviour

of the networks (as begun in Section 4.10. Discussion o f Deviations) simply by

redefining this type.

10.3. Automated Docking Software

By the end of the development of the docking software the system was able to

successfully produce a shortlist of good docking locations in complex scenarios

212

Chapter 10: Conclusions

considering a significant range of constraints. It did this by conducting the following

procedure:

1. Provide a number of optimisation parameters that the operator can set for a

particular scenario, e.g. grid size and granularity, required percentage of weld

length accessed, and deployment system increments.

2. Create a grid of candidate docking positions based on the given parameters.

3. Remove all positions in contact with the workpiece.

4. Move the ROV to each position in turn and conduct the following checks.

5. Remove all positions that would cause the ROV to be in collision with the

workpiece.

6. Calculate an attachment leg value for each position (the ratio of the number of

legs successfully attached to the total number of legs on the ROV). Prune away

any positions with a ratio below a given threshold.

7. Cycle the deployment system through its range at each position (typically

extension then rotation) using the specified increments.

8. For each configuration calculate a manipulator access value (using the ratio of

the amount of weld that could be reached to the amount requested by the

operator) taking account of the manipulator's forward and inverse kinematic

constraints.

9. If a better manipulator access value is found than already held for that position,

check to see if the boom is in collision. If not, replace the existing value with the

new one, and move to the next configuration until all are checked.

10. Having conducted all checks, prune away any positions with an access value

lower than that specified, then display a dialog box listing all remaining

positions and giving their extension/rotation values, access value and attachment

leg ratio.

All the work considering docking locations was done as part of this research but it made

use of existing libraries within the ARM software; this relationship is shown

diagrammatically in Figure 10.1.

213

Chapter 10: Conclusions

CollisiM Detection
on ROV A boom

Automated Weld
Access Checking A

Scoring

Automated Check
of All Attachment

Legs & Scoring

C reation of 3D G rid of Candidate Locations
User Interface fo r Setting Param eters

Cycling Through All Positions Conducting Checks

AUTOMATED DOCKING PLANNER

Thesis
Work

Figure 10.1 - Relationship between thesis work and existing ARM software

The following improvements could be made to the automated docking planner:

1. Currently the results of the planning are a display of remaining candidate

positions in the ARM graphics window, and a dialog box listing their positions

numerically. However, there is no direct correlation between them - it would be

useful to select a position in the list and have it highlighted in the graphics

window; even better would be to click on a position in the graphics window and

be given its position and other details.

2. At the moment it is possible to set the minimum acceptable weld access value,

but it would be useful to also be able to set the minimum acceptable leg

attachment ratio (i.e. how many legs are required to be attached).

10.4. Future Development

There may be general improvements that could be made for optimising docking

positions from further investigation of standard numerical methods. A brief

investigation appeared to show that the most promising methods for this type of

problem are actually very similar to those employed here: "annealing methods... have

solved some problems previously thought to be practically insoluble; they address

directly the problem of finding global extrema in the presence of large numbers of

undesired local extrema" [Press 2002]. Standard numerical methods may also have

particular application in certain phases of the docking optimisation. For example, the

cycling through of all deployment system extension and rotation increments may not be
214

Chapter 10: Conclusions

required. With some investigation, for example plotting the access found for the various

extension and rotation values, may suggest a more efficient means of choosing an

extension and rotation value.

It may be that neural networks do have a useful part to play in automating docking

planning. One idea would be to investigate using neural networks to apply a more

interconnected approach to choosing an optimum docking position (as proposed in

Section 7.8. Conclusions). For example, a more robust choice of position may depend

on looking for clusters of positions with high access values, and avoiding outlying and

single positions..

An alternative approach might be to use a learning type of neural network such as Back

Propagation. Although the implementation would be difficult, it should be possible to

train the network to come up with suitable docking locations by teaching it with a large

set of results from past manual docking procedures.

10.5. Summary

This thesis looked at the development of the ROV and its advantages in conducting

weld cleaning and inspection compared to other intervention methods, and also looked

at how an ROV with a robotic manipulator is able to conduct advanced NDT inspection.

It looked at the different types of ROV docking and at the difficulties of planning

docking positions. It developed an automated docking planner that is significantly

faster, more efficient and easier than manual planning, one that was able to conduct very

complex docking planning for a number of different ROV systems on a range of

complex underwater nodes. Using this planner it is now possible to quickly determine

which nodes on a platform are economically worthwhile to inspect by ROV and which

are not, and to quantify the access possible with given ROV/manipulator combinations.

In addition, it is possible to determine the best toolskid configuration to launch with,

and the best attachment leg arrangement to use including the best position on the node

to place each foot. It is possible to determine in advance whether a particular inspection

programme is economically viable and also what changes could be made to the

proposed ROV system to improve its operational efficiency. Then when the system goes

offshore, the planner is able to quickly provide answers to problems encountered, for

example considering new information about obstructions at the worksite, or finding new

215

Chapter 10: Conclusions

docking locations for a particular ROV/toolskid configuration that was not initially

planned for.

The.early work on the planner was based on specially written (though general purpose)

neural network software, and this showed it was possible to use a neural network to

select from a small number of docking locations in fairly simple scenarios. As the

scenarios considered increased in complexity, however, the neural network system

became increasingly unwieldy and inefficient and an alternative numerical processing

method was developed. Overall, it was found that the numerical approach was more

scalable and appropriate than a neural network approach for solving the general problem

of the optimisation of docking locations for remotely operated vehicles.

216

REFERENCES

References are given in the following forms:

• The standard form consists of the primary author's surname followed by the year

of publication, thus [Ahmad 1989].

• Where there are two authors with the same surname, their first initial is also

used, thus [Marsh R. 1999], [Marsh T. 1999].

• Where one author has two references from the same year, an alphabetic suffix is

used to distinguish between them, thus [Rumelhart 1986a], [Rumelhart 1986b].

• Where a year of publication is not given, e.g. for commercial marketing

brochures, the initials of the publication are given, thus [Sonsub IRST].

Ahmad 1989

Ahmad 1990

Albus 1975

Aleksander 1990

Ahmad Z.
“Fast Solution to the Inverse Kinematic Problem in Robotics via
Multilayered Feedforward Networks ”

MS Thesis, Drexel University, Philadelphia, USA, June 1989

Ahmad Z. and Guez A.
“On the Solution to the Inverse Kinematics Problem ”

Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA 1990), Cincinnati, USA, May 1990

Albus J.S.
“A New Approach to Manipulator Control: The Cerebellar
M odel Articulation Control (CMAC) ”

Transactions of the ASME, Journal of Dynamic Systems,
Measurement and Control, September 1975, Volume 97, pp220-
227

Aleksander I. and Morton H.

An Introduction to Neural Computing

Pub. Chapm an & Hall, London, England, 1990, ISBN 0-412-

217

References

AUerton 1998

Aust 1988

Aust 1995

Baker 1990

Batten 1988

Bell 1996

Bishop 1993

Blake 1989

37780-2

Allerton M., Larkum T.J., Lucas W. and Gibson D.

“Diverless Robot Wet Flux Cored Arc Welding ”

Proceedings of the Offshore Mechanics and Arctic Engineering
Conference, Lisbon, Portugal, July 1998

Aust E., Dos Santos J.F., Bohm K.-H. and Hensel H.-D.

“Mechanized Hyperbaric Welding by Robots ”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp514-525

Aust E., Niemann H.-R., Boke M., Gustmann M. and Wesche A.

“Six-Years Development in Subsea Robotics ”

Proceedings o f Underwater Intervention 1995 Conference,
Houston, Texas, USA, January 1995, ppl58-169

Baker J.H.A.

“Operational Implications o f ROV Hydrodynamic Design ”

Proceedings of International Offshore Inspection Repair and
Maintenance 1990 (IRM90) incorporating Remotely Operated
Vehicle 1990 (ROV90) Exhibition and Conference, Aberdeen,
Scotland, November 1990, Day 3

Batten C .J.
“Offshore Underwater IMR Including Marine Folding Removal
by ROV”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp399-427

Bell C., Bayliss M. and Warburton R.

Handbookfor ROV Pilot/Technicians

Pub. Oilfield Publications Limited, Ledbury, Herefordshire,
England, 1996

ISBN 1-870945-85-9

Bishop J.M., Mitchell R J. and Warwick K.

“Neural Networks in Automation Procedures ”

Proceedings of the Advanced Robotics and Intelligent Machines
Conference (Research Seminar in Robotics and Potential for
Exploration), Manchester, England, March 1993

Blake B., Foreword

Jane’s Underwater Warfare Systems First Edition 1989-90

218

References

Boddy C. 1993

Boddy L. 1994 .

Bowen 1995

Brambilla 1996

Broome 1986

Broome 1988

Broome 1989

Ed. Blake B.

Pub. Jane’s Information Group, Coulsdon, Surrey, England,
1989

ISBN 0-7106-0884-5

Boddy C.L., Hopper D.J.F. and Taylor J.D.

“Advanced Control Systems fo r Robotic Arms ”

Proceedings of the Advanced Robotics and Intelligent Machines
Conference (Research Seminar in Robotics and Potential for
Exploration), Manchester, England, March 1993

Boddy L., Wilkins M.F., Morris C.W., Tarran G.A., Burkill P.H.
and Jonker R.R.
“Techniques fo r Neural Network Identification o f Phytoplankton

fo r the EurOPA Flow Cytometer ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume I, pp565-569

Bowen M.F. and Fletcher B.

“High-Resolution, Wide-Area Dam Inspections by Automated
ROV”

Proceedings of Underwater Intervention 1995 Conference,
Houston, Texas, USA, January 1995, ppl44-157

Brambilla M.

“ATES Test Results”

Proceedings of ROV Technologies Conference, Aberdeen,
Scotland, December 1996

Broome D.R.
“Intelligent Manipulators fo r Automated Subsea Inspection ”

Proceedings of the IEE Colloquium on Robotics in NDT,
October 1986

Broome D.R. and Greenshields M.C.

“A Path Following Controller fo r ROVs ”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp646-647

Broome D.R.
“Improved Underwater Inspection Using Robotic
Manipulators”

Proceedings of the SUT Conference on Advances in Underwater
Inspection and Maintenance, Aberdeen, Scotland, May 1989

219

References

Broome 1991

Broome 1993a

Broome 1993b .

Broome 1994

Broome 1995a

Broome 1995b

Broome 1996

Brutzman 1995

Broome D.R.

“Improved Supervisory Control System for Subsea Robotic
Manipulators ”

Proceedings of Intervention '91, Florida, USA, May 1991

Broome D.R. and Larkum T.J.

“Graphical User Interface fo r an Advanced Telerobotic Control
System ”

Proceedings of the United Kingdom Simulation Society (UKSS)
Conference, Keswick, England, September 1993

Broome D.R., Larkum T.J. and Hall M.S.

“ARM Project: Software Control System ”

Proceedings of Subtech ‘93, Aberdeen, Scotland, November
1993, pp35-41 (Volume 31 of Society for Underwater
Technology: Advances in Underwater Technology, Ocean
Science and Offshore Engineering)

pub. Kluwer Academic Publishers, Dordrecht, Netherlands, 1993

ISBN 0-7923-2544-3

Broome D.R. and Hall M.S.

“Advanced Telerobotic Control System ”

Eds. Jamshidi M., Yuh J., Nguyen C.C. and Lumia R.

Intelligent Automation and Soft Computing, TSI Press, 1994,
Volume 2, pp411-418
Broome D., Larkum T. and Hall M.

“Subsea Weld Inspection Using an Advanced Robotic
Manipulator”

Proceedings of OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 154

Broome D.R., Larkum T.J. and Hall M.S.

“Inspection o f Subsea Nodal Welds by the ARM Robot
Manipulator”

Proceedings of Subtech ’95: SUT Conference on Addressing the
Subsea Challenge, Aberdeen, Scotland, November 1995

Broome D.R. and Larkum T.

“Offshore Platform Inspection using ROVs ”

Proceedings of ROV Technologies Conference, Aberdeen,
Scotland, December 1996

Brutzman D.

220

References

Carre 1991

Cavu$oglu 2001

Chardard 2002

Cherruel 1994

Clegg 1995

Cohn 1994

Colina-Morles 1993

“Virtual World Visualization fo r an Autonomous Underwater
Vehicle ”

Proceedings of OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 232

Carre M., Grignon P., Lefevre J-M.

“Chaine de Commande Generique pour le Pilotage
Telerobotique des Porteurs en Bol de Generateur de Vapeur (A
Command Sequence fo r the Control o f Maintenance Robots in
Nuclear Power Plants) ”

Proceedings of ORIA 91 Conference (Telerobotics in Hostile
Environments: The Major Technical Bottlenecks), Marseille,
France, December 1991, pp233-238

£avu§oglu M.C., Sherman A. and Tendick F.

“Bilateral Controller Design fo r Telemanipulation in Soft
Environments”

Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA 2001), Seoul, Korea, May 2001

Chardard Y.
“W orkAUVfor Deep Water Intervention: Dream or Reality ”

Proceedings of Underwater Intervention 2002 Conference, New
Orleans, Louisiana, USA, February/March 2002

Cherruel G., Autret Y. and Dupont F.
“ Using SIGNAL fo r Developing Neural Control Systems ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume III, ppl 16-120

Clegg A.C., Dunnigan M.W. and Lane D.M.

“Force Control and Modelling o f Hydraulic Underwater
Manipulators ”

Proceedings of the IEE International Workshop on Advanced
Robotics and Intelligent Machines, Salford, England, April
1995, pp l-8

Cohn D.A., “Neural Network Exploration Using Optimal
Experiment Design ”

Advances in Neural Information Processing Systems 6

Eds. J. Cowan et al
Morgan Kaufmann 1994

Colina-Morles E. and Mort N.
“Neural Network-Based Adaptive Control Design”

221

References

Dapper 1997

Dapper 1998

Declercq 1994

Dhruv 2000

Dissanayake 1993

Djouani1994

Dotan 1991

Drolet 2000

Journal of Systems Engineering, Springer-Verlag, England,
January 1993, Volume 3 No. 1 pp9-14

Dapper M., Maafi R., Zahn V. and Eckmiller R.

“Neural Force Control (NFC) fo r Complex Manipulator Tasks ”

Proceedings of the International Conference ICANN97,
Lausanne, Switzerland, October 1997, pp787-792

Dapper M., Maafi R., Zahn V. and Eckmiller R.

“Neural Force Control (NFC) Applied to Industrial
Manipulators in Interaction with Moving Rigid Objects ”

Proceedings of IEEE International Conference on Robotics and
Automation (ICRA 1998), Leuven, Belgium, 1998, pp2048-2053

Declercq F., Dumortier F., De Keyser R. and Van
Cauwenberghe A.
“Real-Time Control o f a Robot Using Neural Networks ”

Proceedings o f the Third IEEE Conference on Control
Applications, Glasgow, Scotland, August 1994, Volume 2,
ppl061-1066

Dhruv N. and Tendick F.

“Frequency Dependence o f Compliance Contrast Detection ”

Proceedings of the ASME Dynamic Systems and Control
Division, DSC-Vol. 69-2, 2000, Volume 2

Dissanayake M.W.M.G.
“Neural Network Based Distance Functions fo r Robot Obstacle
Avoidance ”

Journal of Systems Engineering, 1993, Volume 3 No. 1, pp l-8,
Springer-Verlag, England

Djouani K. and Ham am Y.

“Ship Optimal Path Planning and Artificial Neural Nets for
Berthing”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume I, pp785-790

Dotan O.
“The Role o f 3D Graphic Software Tools in Teleoperation ”

Proceedings of ORIA 91 Conference (Telerobotics in Hostile
Environments: The Major Technical Bottlenecks), Marseille,
France, December 1991, pp92-101

Drolet L., Michaud F. and Cote J.

222

References

Dubrovsky 1994

Duncan 1990

Dunnigan 1993

Dunnigan 1996

El-Hawary 1994

Ellis 1994

Elsharkawi 1992

“An Adaptable Navigation System fo r an Underwater ROV”

Proceedings of PRECARN-IRIS International Symposium on
Robotics (ISR), Montreal, Canada, 2000, pp244-245

Dubrovsky N.A. and Rimskay-Korsakova L.K.

“A Simulation Network o f First Order Auditory Neurons for
Preprocessing o f Acoustic Signals ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume II, pp235-238

Duncan N.

“The Development o f ROV NDT Tooling”

Proceedings of International Offshore Inspection Repair and
Maintenance 1990 (IRM90) incorporating Remotely Operated
Vehicle 1990 (ROV90) Exhibition and Conference, Aberdeen,
Scotland, November 1990, Day 4

Dunnigan M.W. and Lane D.M.

“Evaluation and Reduction o f the Dynamic Coupling Between
an ROV and Manipulator”

Proceedings of the IEE Colloquium on the Control and Guidance
of Underwater Vehicles, December 1993

Dunnigan M.W., Lane D.M., Clegg A.C. and Edwards I.

“Hybrid Position/Force Control o f a Hydraulic Underwater
Manipulator”

IEE Proceedings, Control Theory and Applications, March 1996,
Volume 143 No. 2, ppl45-151

El-Hawary F. and Li J.

“Artificial Neural Network fo r Additive Noise Filtering
Techniques ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume I, pp323-329

Ellis R., Simpson R., Culverhouse P.F., Parisini T., Williams R.,
Reguera B., Moore B. and Lowe D.

“Expert Visual Classification and Neural Networks: Can
General Solutions Be Found? ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume I, pp330-334

Elsharkawi A. and Reinisch H.

“Neural Based Controller fo r Robotic Fine-manipulation ”

Journal of Systems Engineering, Springer-Verlag, England,

223

References

Even 1991

Evensen 1988

Feng 1994

Fletcher 1995

Fletcher 1997

Garmulewicz 2000

Gibson 2002

Given 1991

1992, No. 2 pp224-231

Even P. and Fournier R.

“Interactive Geometric Description and Task Specification for
Intervention Robotics ”

Proceedings of ORIA 91 Conference (Telerobotics in Hostile
Environments: Hie Major Technical Bottlenecks), Marseille,
France, December 1991, ppl63-172

Evensen G.

“Diverless Underwater Inspection ”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp428-444

Feng X., Qiu R. and Yun D. Y. Y.

“A Graphic Simulator fo r Autonomous Underwater Vehicle
Docking Operations ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume I, ppl 52-157

Fletcher B. and Greelish S.
“Precision Automation o f ROV Inspections fo r the Nuclear
Industry”

Proceedings of Underwater Intervention 1995 Conference,
Houston, Texas, USA, January 1995, pp79-83

Fletcher B.
“Talon: A Uniquely Integrated Remotely Operated Vehicle ”

Proceedings of Underwater Intervention 1997 Conference,
Houston, Texas, USA, February 1997, pp l02-107

Garmulewicz J.A.

“The Application o f the AUto-ROV™ System in Deepwater Field
Developments ”

Proceedings of Underwater Intervention 2000 Conference,
Houston, Texas, USA, January 2000, Paper D.1.2.

Gibson J. and English J.
“The U.S. Navy ADS2000”

Proceedings of Underwater Intervention 2002 Conference, New
Orleans, Louisiana, USA, February/March 2002

Given D, Ed.
ROV Review, Fourth Edition, 1991-92

Pub. Windate Enterprises Incorporated, Spring Valley,

224

References

Glagius 1995

Gomes 1995

Graham 1991

Grant 1993

Greig 1989

Greig 1992

Greig 1994

Guo 1995

California, USA, 1991

ISBN 0-9623145-2-8

Glasius R., Komoda A. and Gielen S.

“Neural Network Dynamics fo r Path Planning and Obstacle
Avoidance ”

Neural Networks journal, 1995, Volume 8 (1), ppl25-133

Gomes J. and Barraso V.

“Blind Equalization Using A Radial Basis Function Neural
Network”

Proceedings of OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 101

Graham D.P.W. and D'Eleuterio G.M.T.

“Robotic Control Using a Modular Architecture o f Cooperative
Artificial Neural Networks ”

Proceedings of the International Conference ICANN91, Espoo,
Finland, June 1991

Grant E.

“Machine Intelligence ”

Proceedings of the Advanced Robotics and Intelligent Machines
Conference (Research Seminar in Robotics and Potential for
Exploration), Manchester, England, March 1993

Greig A.R. and Broome D.R.

“Tactile Sensing o f Complex Geometry Workpieces ”

Proceedings of the IFAC/IFIP Conference INCOM89
(International Conference on Problems in Manufacturing
Technology), Madrid, Spain, September/October 1989

Greig A.R.
“Automatic Inspection o f Complex Geometry Welds ”

PhD Thesis, University College, University of London, England,
April 1992

Greig A.R. and Broome D.R.
“Development o f a Robotic Underwater Manipulator”

Transactions of the Institute of Marine Engineers (IMarE), May
1994, Volume 106 Part 5, pp217-229

Guo J., Chiu F.C. and Wang C.-C.
“Adaptive Control o f an Autonomous Underwater Vehicle
Tested Using Neural Networks ”

225

References

Hallset 1994

Hallset 2000

Hansen 1988

Harbur 1999

Harman 1988

Hartley 1992

Hartley 1993

Proceedings of OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 132

Hallset J.O. and Berre G.

“Modular Integrated Man-Machine Interaction and Control
(MIMIC)”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume II, ppl08-l 12

Hallset J.O.

“Automated ROV Manoeuvring”

Proceedings o f Underwater Intervention 2000 Conference,
Houston, Texas, USA, January 2000, Paper A. 1.3.

Hansen R.K. and Bjomo L.

“Underwater Robotics — a Flexible Robot Concept with Novel
Acoustic Sensing Abilities”

Proceedings o f Intervention '88, Bergen, Norway, April 1988,
pp369-379

Harbur S.
“Force Feedback Manipulator Systems: The Myths / The Facts ”

Proceedings of Underwater Intervention 1999 Conference,
Houston, Texas, USA, January 1999, Paper H.2.force

Harman M.V.

“Advanced Remotely Operated Work System (AROWS) ”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp223-243

Hartley D.W.
“The Multi-Role Vehicle (MRV) - RO Vfor the Future ”

Proceedings of IOCE 92 Conference, Aberdeen, Scotland,
October 1992, Day 2

Hartley D.W., Clapham P.D. and Dowkes W.M.

“ARM Project: System Hardware ”

Proceedings of Subtech ‘93, Aberdeen, Scotland, November
1993, ppl9-33 (Volume 31 of Society for Underwater
Technology: Advances in Underwater Technology, Ocean
Science and Offshore Engineering)

Pub. Kluwer Academic Publishers, Dordrecht, Netherlands,
1993
ISBN 0-7923-2544-3

226

References

Hattori 1988

Hayward 1991

Headworth 1988

Heale 1999

Hinton 1986

Hoglund 1988

Hopfield 1982

Hattori M., Nomoto M. and Aoki T.

“Sea Going Tests o f Deep ROV, Dolphin-3K”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp610-619

Hayward A., “The ROV Industry in Review ”

ROV Review, Fourth Edition, 1991-92

Ed. Given D.

Pub. Windate Enterprises Incorporated, Spring Valley,
California, USA, 1991

ISBN 0-9623145-2-8

Headworth C. and Dines C.

“An Operational Subsea Wireline System ”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp380-396

Heale T. and Larkum T.J.

“ARM and Rovsim: Extending Our Reach ”

Industrial Robot Journal

Ed. Loughlin C.

Pub. MCB University Press, Bradford, West Yorkshire, England,
1999, Volume 26 No. 3, pp202-208

ISSN 0143-991X

Hinton G.E. and Sejnowski T.J., “Learning and Relearning in
Boltzmann Machines ”

Parallel Distributed Processing - Explorations in the
Microstructure o f Cognition, Volume 1: Foundations

Ed. Rumelhart D.E., McClelland J.L. and the PDP Research
Group
Pub. MIT Press, Massachusetts, USA, 1986, pp282-317

ISBN 0-262-18120-7

Hoglund K., Husebye R., Lindland H. and Nesse E.

“Wellman — a Multipurpose Intervention System ”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
ppl73-184

Hopfield J.J.

“Neural Networks and Physical Systems with Emergent
Collective Properties ”

Proceeding of the National Academy of Science USA 79, 1982,
227

References

Hornfeld 2002

Hsu 1994

Hsu 1999

Hughes 1988

lugebretsen 2002

Johansen 2000

Johansen 2001

pp2554-2558.

Homfeld W.

“DeepC: the German Development Project fo r an Intelligent
Deep Sea Robot ”

Proceedings of Underwater Intervention 2002 Conference, New
Orleans, Louisiana, USA, February/March 2002

Hsu L., Costa R.R., Lizarralde F., da Cunha J.P.V.S., Scieszko
J.L., Romanov A.V., Wollmann D. Jr. and Sant'Anna A.C.M.

“Underwater Vehicle Dynamic Positioning Based on a Passive
Arm Measurement System ”

Proceedings of the 2nd Workshop on Mobile Robots for Subsea
Environments, IARP, Monterey, California, USA, 1994

Hsu L., Costa R.R., Lizarralde F. and da Cunha J.P.V.S.

“Passive Arm Based Dynamic Positioning System fo r Remotely
Operated Underwater Vehicles ”

Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA 1999), Detroit, Michigan, USA, 1999

Hughes G. and Broome D.R.
“Automated Deployment o f Weld Inspection Systems fo r Tubular
N odes”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp261-275

Ingebretsen E.
“Cost Effective and Safe Intervention with ROV: Technical and
Managerial Aspects ”

Proceedings of Underwater Intervention 2002 Conference, New
Orleans, Louisiana, USA, February/March 2002

Johansen S.

“Added Safety and Increased Efficiency Using Computer
Visualization Technology in the Underwater Intervention
Industry”

Proceedings of Underwater Intervention 2000 Conference,
Houston, Texas, USA, January 2000, Paper A. 1.1.

Johansen S.
“D P Navigation using Virtual Reality Technology in
Underwater Intervention Operations ”

Proceedings of Underwater Intervention 2001 Conference,
Tampa, Florida, USA, January 2001

228

References

Johnson 1990

Jordan 1986

Kamenev 1995

Kasabov 1993

Kato 1996

Kenzie 1990

Koval 1994

Johnson M.A. and Leahy M.B. Jr.

“Adaptive Model-Based Neural Network Control ”

Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA 1990), Cincinnati, USA, May 1990

Jordan, M.I., “An Introduction to Linear Algebra in Parallel
Distributed Processing”

Parallel Distributed Processing - Explorations in the
Microstructure o f Cognition, Volume 1: Foundations

Ed. Rumelhart D.E., McClelland J.L. and die PDP Research
Group

Pub. MIT Press, Massachusetts, USA, 1986, Chapter 9,
pp365-422

ISBN 0-262-18120-7

Kamenev O.T.

“Training Two-Layer Neural Network Model for Tomography
Data Processing”

Proceedings of OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 294

Kasabov N.K.

“Hybrid Connectionist Production Systems: An Approach to
Realising Fuzzy Expert Systems ”

Journal of Systems Engineering, Springer-Verlag, England,
January 1993, Volume 3 No. 1 ppl5-21

Kato N. and Lane D.M.
“Co-ordinated Control o f Multiple Manipulators in Underwater
Robots ”

Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA 1996), Minneapolis, USA, April 1996,
pp2505-2510

Kenzie B.W., Mudge P.J., Lank A.M., Koch B.E., Christensen
J.R. and Jellesen E.K.
“Development o f Mechanised Ultrasonic Flaw Detection
Technology fo r Underwater Inspection o f Complex Geometry
Joints in Offshore Tubular Structures ”

Proceedings of International Offshore Inspection Repair and
Maintenance 1990 (IRM90) incorporating Remotely Operated
Vehicle 1990 (ROV90) Exhibition and Conference, Aberdeen,
Scotland, November 1990, Day 2

Koval E.V.

229

References

Lane 1991

Lane 1994

Lane 1995

Langrock 1993

Langrock 1994

Larkum 1994a

“Automatic Stabilization System o f Underwater Manipulation
R o b o r

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume I, pp807-812

Lane D.M., Dunnigan M.W., Knightbridge P.J. and Quinn A.W.

“Planning and Control fo r Co-ordination o f Underwater
Manipulators ”

Proceedings of the IEEE International Conference, Edinburgh,
Scotland, March 1991

Lane D.M. and Quinn A.W.

“Computational Issues in Motion Planning fo r Autonomous
Underwater Vehicles with Manipulators ”

Proceedings of the IEEE Oceanic Engineering Soc. Symposium
on Autonomous Underwater Vehicle Technology, Boston, USA,
July 1994, pp255-262

Lane D.M. and Knightbridge P.J.
“Task Planning and World Modelling fo r Supervisory Control o f
Robots in Unstructured Environments ”

Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA 1995), Nagoya, Japan, May 1995

Langrock D.G.
“ARM Project: Requirements fo r the Manipulator System ”

Proceedings of Subtech ‘93, Aberdeen, Scotland, November
1993, ppl5-18 (Volume 31 of Society for Underwater
Technology: Advances in Underwater Technology, Ocean
Science and Offshore Engineering)

Pub. Kluwer Academic Publishers, Dordrecht, Netherlands,
1993
ISBN 0-7923-2544-3

Langrock D.G. and Broome D.R.

“Advanced Telerobotic Controller”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume II, pp l57-162

Larkum T. and Broome D.

“Advanced Controller fo r an Underwater Manipulator”

Proceedings of the Third IEEE Conference on Control
Applications, Glasgow, Scotland, August 1994, Volume 2,
ppl081-1086

230

References

Larkum 1994b

Larkum 1996a

Larkum 1996b

Larkum 1998

Larkum 2000

Larkum 2002

Larkum T.J., Broome D.R., Maddocks I. and Hartley D.

“Graphical User Interface fo r an Advanced Telerobotic Control
System ”

Proceedings of the Emerging Technologies in Advanced
Robotics (ETAR 94) Conference, Windermere, England,
September 1994

Larkum T.

“Subsea Weld Inspection Using the ARM System ”

Underwater Contractor

Ed. Bevan J.

Pub. Resort Marketing and Publishing Limited, Weymouth,
Dorset, England, November/December 1996, p i2

ISSN 1362-0487

Larkum T.J. and Broome D.R.

“Nel Centro Nazionale Iperbarico di Aberdeen Testato VUltimo
Robot-Saldatore Sottomarino ”

COCIS (Comitato Citta Sotterranea)

Ed. Villoresi G.

Pub. Associazione per l’Utilizzo del Sottosuolo, Milan, Italy,
October 1996, No. 22/23 Anno 5, pp34-40

Larkum T.J. and Broome D.R.
“ARM: A Proven System fo r the Inspection o f Subsea Welds ”

Measurement + Control

Ed. O’Brien C. and Carter C.
Pub. Institute of Measurement and Control, London, England,
April 1988, Volume 31 No. 3, pp68-72

ISSN 0020-2940

Larkum T.J. and Hall M.S.

“ROVControl Software Finally Goes Modular ”

International Ocean Systems

Ed. Barton R.
Pub. Astrid Powell Associates, Twickenham, England,
January/February 2000, Volume 4 No. 1

ISSN 1460-4982

Larkum T.
“ROVSimulation, Visualization and Supervisory Control ”

Proceedings of Underwater Intervention 2002 Conference, New
231

References

Last 1991

Lemoine 1995

Lots 2000

MaaB 1998

Mair 1990

Mann 1990

Marsh R. 1991

Orleans, Louisiana, USA, February/March 2002

Last G. and Williams P.

An Introduction to ROV Operations

Pub. Oilfield Publications Limited, Ledbury, Herefordshire,
England, 1991

ISBN 1-870945-23-9

Lemoine D., Schilling R. and Rasmussen D.
“Precision Automation o f ROV Inspections fo r the Nuclear
Industry”

Proceedings o f Underwater Intervention 1995 Conference,
Houston, Texas, USA, January 1995, pp79-83

Lots J.-F., Lane D.M. and Trucco E.

“Application o f 2*/2D Visual Servoing to Underwater Vehicle
Station-Keeping ”

Proceedings of OCEANS 2000 Conference, Rhode Island, USA,
September 2000, pp1257-1264

Maafi R., Dapper M. and Eckmiller R.
“Neural Trajectory Optimization (NTO) fo r Manipulator
Tracking o f Unknown Surfaces ”

Springer Proceedings of International Conference on Artificial
Neural Networks (ICANN98), Skoevde, Sweden, 1998,
pp893-898

Mair J.
“Standard Methods Applied fo r Cost Effective ROV Intervention
on Subsea Production Systems ”

Proceedings of International Offshore Inspection Repair and
Maintenance 1990 (IRM90) incorporating Remotely Operated
Vehicle 1990 (ROV90) Exhibition and Conference, Aberdeen,
Scotland, November 1990, Day 3

Mann J.
“Advanced ROVfor Underwater Inspection and Maintenance ”

Proceedings of International Offshore Inspection Repair and
Maintenance 1990 (IRM90) incorporating Remotely Operated
Vehicle 1990 (ROV90) Exhibition and Conference, Aberdeen,
Scotland, November 1990, Day 4

MarshR.J., “DiversForever!”

ROV Review, Fourth Edition, 1991-92

Ed. Given D.

232

References

Marsh R. 1996

Marsh R. 2000

Marsh R. 2002

Marsh T. 1992

McLain 1995

McClelland 1986

Pub. Windate Enterprises Incorporated, Spring Valley,
California, USA, 1991

ISBN 0-9623145-2-8

Marsh R.J., Foreword

Remotely Operated Vehicles o f the W orld- ’96/7 Edition

Ed. Simons J.
Pub. Oilfield Publications Limited, Ledbury, Herefordshire,
England, 1996

ISBN 1-870945-81-6

Marsh R.J., Foreword

Remotely Operated Vehicles o f the World - Fourth Edition

Ed. Simons J.
Pub. Oilfield Publications Limited, Ledbury, Herefordshire,
England, 2000

ISBN 1-902157-16-8

Marsh R.J., Foreword

Remotely Operated Vehicles o f the World - Fifth Edition

Ed. Simons J.
Pub. Oilfield Publications Limited, Ledbury, Herefordshire,
England, 2002

ISBN 1-902157-28-1

Marsh T.R.

“ROV Requirements, Future Needs & Relationships - An
Operator's View”

Proceedings of IOCE 92 Conference, Aberdeen, Scotland,
October 1992, Day 2

McLain T.W., Rock S.M. and Lee M.J.
“Experiments in the Coordination o f Underwater Manipulator
and Vehicle Control ”

Proceedings of OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 153

McClelland D.E., Rumelhart D.E. and Hinton G.E., “The Appeal
o f Parallel Distributed Processing ”

Parallel Distributed Processing - Explorations in the
Microstructure o f Cognition, Volume 1: Foundations

Ed. Rumelhart D.E., McClelland J.L. and the PDP Research
Group

233

References

McClelland 1988

McMaster 1994

Mejia 1994

Middleton 1993

Miller 1990

Minsky 1969

Mills 1993

Pub. MIT Press, Massachusetts, USA, 1986, Chapter 1, pp3-44
ISBN 0-262-18120-7

McClelland J.L. and Rumelhart D.E.

Explorations in Parallel Distributed Processing - A Handbook o f
Models, Programs, and Exercises

MIT Press, Massachusetts, USA, 1988

ISBN 0-262-63113-X

McMaster R.S., Nixon J.H., Boyle B.G. and Fouchier D.

“Task Enhancement o f an Underwater Robotic Arm by
Graphical Simulation Techniques ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume II, pp 163-167

Mejia C., Thiria S., Crepon M. and Badran F.

“A Neural Network Approach fo r Wind Retrieval from the ERS-
1 Scatterometer Data ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume I, pp76-80

Middleton D.J. and Lyons S.
“NEWTSUTT Advanced Diving System ”

Proceedings of Subtech ‘93, Aberdeen, Scotland, November
1993, pl75 (Volume 31 of Society for Underwater Technology:
Advances in Underwater Technology, Ocean Science and
Offshore Engineering)

Pub. Kluwer Academic Publishers, Dordrecht, Netherlands,
1993
ISBN 0-7923-2544-3

Miller W.T. Ill, Hewes R.P., Glanz F.H. and Kraft L.G. Ill
“Real-Time Dynamic Control o f an Industrial Manipulator
Using a Neural-Network-Based Learning Controller ”

IEEE Transactions on Robotics and Automation, February 1990,
Volume 6 No. 1, ppl-9

Minsky M. and Papert S.
Perceptrons: An Introduction to Computational Geometry

MIT Press, Massachusetts, USA, 1969

Mills G., Barrett C., Gorman N. and Wagner S.

“Operational Experiences with Atmospheric Diving Systems ”

Proceedings of Subtech ‘93, Aberdeen, Scotland, November

234

References

Moller 1996

Morasso 1991

MTD 1989

Parkes 1996

Pedlow 1996

Pegman 1999

1993, ppl77-187 (Volume 31 of Society for Underwater
Technology: Advances in Underwater Technology, Ocean
Science and Offshore Engineering)

Pub. Kluwer Academic Publishers, Dordrecht, Netherlands,
1993
ISBN 0-7923-2544-3

Moller E.

“Advances in Manipulator Technology: ATES - an Application
o f the Above Technology ”

Proceedings of International ROV Forum '96, Aberdeen,
Scotland, February 1996

Morasso P. and Solari M.

“A Neural Implementation o f Analogic Planning Methods ”

Proceedings of the International Conference ICANN91, Espoo,
Finland, June 1991

Marine Technology Directorate Limited
Underwater Inspection o f Steel Offshore Installations:
Implementation o f a New Approach

Pub. Marine Technology Directorate Limited 1989

ISBN 1-870553-03-9

Parkes S.
“ARM Trials Success ”

Underwater Contractor

Ed. Bevan J.
Pub. Resort Marketing and Publishing Limited, Weymouth,
Dorset, England, July/August 1996, p27

ISSN 1362-0487

Pedlow P.
“ROVs...O ld vs New ”

Proceedings of ROV Technologies Conference, Aberdeen,
Scotland, December 1996

Pegman G.

“Automating Teleoperation ”

Industrial Robot Journal

Ed. Loughlin C.
Pub. MCB University Press, Bradford, West Yorkshire, England,
1999, Volume 26 No. 3, pp 184-187

235

References

Pennison 1997

Press 2002

Pretlove 1999

Primrose 1988

Raine 1995

Raine 1996a

Raine 1996b

Raine 1997

ISSN 0143-991X

Pennison N. and Raine G.A.

“An Alternative to Conventional Diver Weld Inspection ”

Oil & Gas Gazette

July 1997, pp27-32

Press W.H., Teukolsky S.A., Vetterling W.T. and Flannery B.P.

“Numerical Recipes in C++: The Art o f Scientific Computing”

Pub. Cambridge University Press, Cambridge, England, 2002,
Chapter 10: "Minimisation or Maximisation of Functions"

ISBN 0-521-75033-4

Pretlove J.

“Telerobotics: Merging Man With Machine ”

Industrial Robot Journal

Ed. Loughlin C.

Pub. MCB University Press, Bradford, West Yorkshire, England,
1999, Volume 26 No. 3, ppl59-160

ISSN 0143-991X

Primrose G.M.

“Deepwater Intervention fo r Subsea Production Systems ”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp644-645

Raine G.A. and Lugg M.C.

“ROV Inspection o f Welds - a Reality”

Proceedings of Underwater Intervention 1995 Conference,
Houston, Texas, USA, January 1995, pp 123-129

Raine G.A.
“ROV Weld Inspection - the Next Stage ”

Proceedings of International ROV Forum '96, Aberdeen,
Scotland, February 1996

Raine G.A. and Lugg M.C.

“ROV Inspection o f Welds - a Reality”

Proceedings of International ROV Forum '96, Aberdeen,
Scotland, February 1996

Raine G.A.
“ROV Weld Inspection with a M id Size ROV and an ACFM

236

References

Renard 1988

Ricci 1996

Rosenblatt 1962

Rumelhart 1986a

Rumelhart 1986b

Russell 1990

Array ”

Proceedings of Underwater Intervention 1997 Conference,
Houston, Texas, USA, February 1997, pp51-59

Renard D.B.

“ ROV/Diverless Interventions on Oseberg Subsea Production
Systems ”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp202-222

Ricci F.

“ Use o f Robotics fo r Inspection o f Offshore Structure - Below
Water (from R and D Program to Offshore Operation) ”

Proceedings of International ROV Forum '96, Aberdeen,
Scotland, February 1996

Rosenblatt F.
Principles o f Neurodynamics: Perceptrons and the Theory o f
Brain Mechanisms

Pub. Spartan Books, New York, USA, 1962

Rumelhart D.E., Hinton G.E. and Williams R.J., “Learning
Internal Representations by Error Propagation ”

Parallel Distributed Processing - Explorations in the
Microstructure o f Cognition, Volume 1: Foundations

Ed. Rumelhart D.E., McClelland J.L. and the PDP Research
Group
Pub. MIT Press, Massachusetts, USA, 1986, Chapter 8, pp318-
362

ISBN 0-262-18120-7

Rumelhart D.E., Smolensky P., McCelland J.L. and Hinton G.E.,
“Schemata and Sequential Thought Processes in PDP Models ”

Parallel Distributed Processing - Explorations in the
Microstructure o f Cognition, Volume 2: Psychological and
Biological Models

Ed. McClelland J.L., Rumelhart D.E. and the PDP Research
Group
Pub. MIT Press, Massachusetts, USA, 1986, Chapter 14, pp8-57

ISBN 0-262-13218-4

Russell G.T.
“Intelligent Control fo r Remotely Operated Vehicles ”

Proceedings of Subsea Control and Data Acquisition,

237

References

Sanner 1994

Sarzeaud 1994

Savut1985

Sayers 1994

Schilling 1996

Shirasaki 1988

Skyberg 1988

Technology and Experience, London, England, April 1990,
pp97-108 (Volume 22 of Society for Underwater Technology:
Advances in Underwater Technology, Ocean Science and
Offshore Engineering)

Pub. Kluwer Academic Publishers, Dordrecht, Netherlands,
1990

ISBN 0-7923-0698-8

Sanner R.M. and Slotine J.-J. E.

“Function Approximation, “Neural Networks”, and Adaptive
Nonlinear Control”

Proceedings of the Third IEEE Conference on Control
Applications, Glasgow, Scotland, August 1994, Volume 2,
ppl 225-1232

Sarzeaud O., Stephan Y. Le Corre F. and Kerleguer L.

“Neural Meshing o f a Geographical Space in Regard to
Oceanographic Data Location ”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume I, pp335-339

Savut M., Wray A.M., Ihnatowicz E. and Broome D.R.

“Automated Inspection o f Subsea Structures ”

Proceedings of the International Symposium on Developments
in Subsea Engineering Systems, London, England, May 1985

Sayers C., Stein M., Lai A. and Paul R.
“Teleprogramming to Perform Sophisticated Underwater
Manipulative Tasks Using Acoustic Communications”

Proceedings of OCEANS 94 Conference, Brest, France,
September 1994, Volume II, pp l68-173

Schilling R.
“Advances in Manipulator Technology - the Future o f Subsea
Robotics ”

Proceedings of International ROV Forum '96, Aberdeen,
Scotland, February 1996

Shirasaki Y., Asakawa K., Kojima J., Homma H. and Tamura R.

“Deep Sea ROV 'Marcas-2500' fo r Cable Maintenance and
Repair Works”

Proceedings of Intervention '88, Bergen, Norway, April 1988,
pp627-641

Skyberg 0 .

238

References

Slingsby 1996

Smith 1990

Smolensky 1986

Somers 1992

Sonsub ATES RSE

Sonsub CN3/1

Sonsub CN4/2

“Access Verification Utilizing Computer Aided Design”

Proceedings of Intervention ’88, Bergen, Norway, April 1988,
pp655-656

“ARM Trials Success ”

Underwater Systems Design

Pub. Astrid Powell Associates, Twickenham, England,
July/August 1996, p39
ISSN 1460-4982

Smith B.J.

“Eureka-EU191 Programme — an Inspection Tool Kit for
Advanced RO V”

Proceedings of International Offshore Inspection Repair and
Maintenance 1990 (IRM90) incorporating Remotely Operated
Vehicle 1990 (ROV90) Exhibition and Conference, Aberdeen,
Scotland, November 1990, Day 4

Smolensky P., “Information Processing in Dynamical Systems:
Foundations o f Harmony Theory ”

Parallel Distributed Processing ~ Explorations in the
Microstructure o f Cognition, Volume 1: Foundations

Ed. Rumelhart D.E., McClelland J.L. and the PDP Research
Group
Pub. MIT Press, Massachusetts, USA, 1986, Chapter 6, ppl 94-
281

ISBN 0-262-18120-7

Somers T.

“Mobil/Marquest ROV Dynamic Positioning Trials ”

Proceedings of IOCE 92 Conference, Aberdeen, Scotland,
October 1992, Day 2

“ATESRemote Systems Engineering”

Sonsub International

Marketing material

“Sonsub Pioneers Advanced Telerobotic System ”

Sonsub International
Challenger Newsletter, Vol.3, Issue 1, p i -2

“New Telepresence Technology Promises to Revolutionize ROV
Operations ”

Sonsub International

239

References

Sonsub IRST

Sonsub Triton

ROVS

Sortland 1990

Stephan 1995

Stolt Comex

Seaway RR

Sutton 1994

Tanaka 1991

Terre 1995

Challenger Newsletter, Vol.4, Issue 2, p3

“The Innovators o f Remote Systems Technology”

Sonsub Services Pty. Ltd.

Marketing material

“Triton Remote Operated Vehicle Services ”

Sonsub International

Marketing material

Sortland B.

“Performance Optimisation o f ROV Systems ”

Proceedings o f International Offshore Inspection Repair and
Maintenance 1990 (IRM90) incorporating Remotely Operated
Vehicle 1990 (ROV90) Exhibition and Conference, Aberdeen,
Scotland, November 1990, Day 3

Stephan Y.

“Inverting Tomographic Data with Neural Nets ”

Proceedings o f OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 231

“REMO Robotics”

Stolt Comex Seaway

Marketing material

Sutton R., Johnson C. and Robert G.N.

“Depth Control o f an Unmanned Underwater Vehicle Using
Neural Networks ”

Proceedings o f OCEANS 94 Conference, Brest, France,
September 1994, Volume III, ppl21-125

Tanaka K., Shimizu M. and Tsuchiya K.

“A Solution to an Inverse Kinematics Problem o f a Redundant
Manipulator using Neural Networks ”

Proceedings o f the International Conference ICANN91, Espoo,
Finland, June 1991

Terre T., Golenzer J. and Solaiman B.

“Tracking and Identification o f Ray Acoustic Arrivals by Means
o f Neural Networks ”

Proceedings o f OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 187

240

References

Thornton 2001

Tisdall 1994

Tisdall 1995

Tisdall 1997

Townsend 1999

Turner 1993

Van Den Hooff

1988

Thornton M.A., Randall R. and Albaugh E.K.

“A Survey o f Atmospheric Diving Suits from Past to Present”

Proceedings o f Underwater Intervention 2001 Conference,
Tampa, Florida, USA, January 2001

Tisdall J., Hall M., Larkum T. and Broome D.

“Testing a Stereo Vision System fo r Motion Compensation ”

Proceedings o f OCEANS 94 Conference, Brest, France,
September 1994, Volume II, p p l82-187

Tisdall J. and Broome D.

“Adaptive Force Control fo r the ARM Manipulator”

Proceedings o f OCEANS 95 Conference, San Diego, California,
USA, October 1995, Paper 302

Tisdall J.

“Compliant Force Control fo r Automated Sub-Sea Inspection ”

PhD Thesis, University College, University o f London, England,
August 1997

Townsend W.T. and Guertin J.A.

“Teleoperator Slave — WAM Design M ethodology”

Industrial Robot Journal

Ed. Loughlin C.

Pub. MCB University Press, Bradford, West Yorkshire, England,
1999, Volume 26 No. 3, ppl67-177

ISSN 0143-99IX

Turner J.

“ARM Project: Vision System ”

Proceedings o f Subtech ‘93, Aberdeen, Scotland, November
1993, pp43-49 (Volume 31 o f Society for Underwater
Technology: Advances in Underwater Technology, Ocean
Science and Offshore Engineering)

Pub. Kluwer Academic Publishers, Dordrecht, Netherlands,
1993

ISBN 0-7923-2544-3

Van Den H ooff H. and Kronemeijer D.A.

“The Realization o f an Automated Underwater Structural
Inspection System: a Complex Multidisciplinary Task”

Proceedings o f Intervention '88, Bergen, Norway, April 1988,
pp276-287

241

References

Van Der Smagt

1991

Van Der Veen 2000

Van Der Zwaan

2001

Vinsen 1988

Walter 1993

Wang 1994

Westwood 1993

Van Der Smagt P.P. and Krose B.J.A.

“A Real-Time Learning Neural Robot Controller”

Proceedings o f the International Conference ICANN91, Espoo,
Finland., June 1991

Van Der Veen N.

“AUVTechnology: Why? & Will We?”

Proceedings o f Underwater Intervention 2000 Conference,
Houston, Texas, USA, January 2000, Paper D. 1.1.

Van Der Zwaan S., Bernardino A. and Santos-Victor J.

“ Vision Based Station Keeping and Docking fo r Floating
Vehicles ”

Proceedings o f European Control Conference 2001 (ECC2001),
Porto, Portugal, September 2001

Vinsen R.J.W. and Malone R.B.

“ROV Intervention - the Status and the Future ”

Proceedings o f Intervention '88, Bergen, Norway, April 1988,
pp462-476

Walter J.A. and Schulten K.J.

“Implementation o f Self-Organizing Neural Networks fo r Visuo-
Motor Control o f an Industrial Robot”

IEEE Transactions on Neural Networks, January 1993, Volume
4 No. 1, pp86-95

Wang Q., Greig A.R. and Broome D.R.

"Intelligent Gain Scheduling (IGS) using neural networks for
robotic manipulators ”

Proceedings o f the Workshop on Neural Network Applications
and Tools, Liverpool, England, September 1993.

Pub. IEEE Computer Soc. Press, pp l03-108, 1994

ISBN 0-8186-5845-2/94

Westwood J.

“Man V Machine - 1 0 Years O n”

Proceedings o f Subtech ‘93, Aberdeen, Scotland, November
1993, pp207-217 (Volume 31 o f Society for Underwater
Technology: Advances in Underwater Technology, Ocean
Science and Offshore Engineering)

Pub. Kluwer Academic Publishers, Dordrecht, Netherlands,
1993

242

References

Wray 1985

Wright 2002

Wust 1994

Yeung 1989

Zerr 1994

ISBN 0-7923-2544-3

Wray A.M.

“A Computer Controlled Manipulator System for Autonomous
Inspection ”

PhD Thesis, University College, University o f London, England,
1985

Wright G. and Bamford A.

“Advanced Long Baseline Acoustics fo r Precise Deep Water
Structure M ating”

Proceedings o f Underwater Intervention 2002 Conference, New
Orleans, Louisiana, USA, February/March 2002

Wiist J.C. and van Noort G.J.H.L.

“Neural Network Current Prediction fo r Shipping Guidance ”

Proceedings o f OCEANS 94 Conference, Brest, France,
September 1994, Volume I, pp58-63

Yeung D.-Y. and Gekey G.A.

“Using a Context-Sensitive Learning Network fo r Robot Arm
Control ”

Proceedings o f the IEEE International Conference on Robotics
and Automation (ICRA 1989), Scottsdale, USA, May 1989

Zerr B., Maillard E. and Gueriot D.

“Sea-Floor Classification by Neural Hybrid System ”

Proceedings o f OCEANS 94 Conference, Brest, France,
September 1994, Volume II, pp239-243

243

APPENDIX A:
PUBLICATIONS BY THE AUTHOR

Allerton M.,
Larkum T.J.,
Lucas W. and
Gibson D.

Broome D.R.
and Larkum T.J.

Broome D.R.,
Larkum T.J. and
Hall M.S.

Broome D.,
Larkum T. and
Hall M.

Broome D.R.,
Larkum T.J. and
Hall M.S.

6 Broome D.R.
and Larkum T.

Heale T. and
Larkum T.J.

Diverless Robot Wet Flux
Cored Arc Welding

Graphical User Interface for
an Advanced Telerobotic
Control System

ARM Project: Software
Control System

Subsea Weld Inspection
Using an Advanced Robotic
Manipulator

Inspection o f Subsea Nodal
Welds by the ARM Robot
Manipulator

Offshore Platform Inspection
using ROVs

Proceedings o f the Offshore
Mechanics and Arctic
Engineering Conference,
Lisbon, Portugal, July 1998

Proceedings o f the United
Kingdom Simulation Society
(UKSS) Conference, Keswick,
England, September 1993

Proceedings o f Subtech ‘93,
Aberdeen, Scotland, November
1993, pp35-41 (Volume 31 of
Society for Underwater
Technology: Advances in
Underwater Technology, Ocean
Science and Offshore
Engineering)

pub. Kluwer Academic
Publishers, Dordrecht,
Netherlands, 1993

ISBN 0-7923-2544-3

Proceedings o f OCEANS 95
Conference, San Diego,
California, USA, October 1995,
Paper 154

Proceedings o f Subtech ’95:
SUT Conference on Addressing
the Subsea Challenge,
Aberdeen, Scotland, November
1995

Proceedings o f ROV
Technologies Conference,
Aberdeen, Scotland, December
1996

ARM and Rovsim: Extending Industrial Robot Journal
Our Reach Ed. Loughlin C.

244
Pub. MCB University Press,

Appendix A: Publications by the Author

8 Larkum T. and
- Broome D.

9 Larkum T .J.,
Broome D.R.,
Maddocks I. and
Hartley D.

10 Larkum T.

11 Larkum T.J. and
Broome D.R.

12 Larkum T.J. and
Broome D.R.

13 Larkum T.J. and
Hall M.S.

14 Larkum T.

Advanced Controller for an
Underwater Manipulator

Graphical User Interface for
an Advanced Telerobotic
Control System

Subsea Weld Inspection
Using the ARM System

Nel Centro Nazionale
Iperbarico di Aberdeen
Testato l'Ultimo Robot-
Saldatore Sottomarino

ARM: A Proven System for
the Inspection o f Subsea
Welds

ROV Control Software
Finally Goes Modular

ROV Simulation,
Visualization and

Bradford, West Yorkshire,
England, 1999, Volume 26 No.
3, pp202-208

ISSN 0143-991X

Proceedings o f the Third IEEE
Conference on Control
Applications, Glasgow,
Scotland, August 1994, Volume
2, p p l081-1086

Proceedings o f the Emerging
Technologies in Advanced
Robotics (ETAR 94)
Conference, Windermere,
England, September 1994

Underwater Contractor

Ed. Bevan J.

Pub. Resort Marketing and
Publishing Limited, Weymouth,
Dorset, England,
November/December 1996, p i2

ISSN 1362-0487

COCIS (Comitato Citta
Sotterranea)

Ed. Villoresi G.

Pub. Associazione per PUtilizzo
del Sottosuolo, Milan, Italy,
October 1996, No. 22/23 Anno
5, pp34-40

Measurement + Control

Ed. O’Brien C. and Carter C.

Pub. Institute o f Measurement
and Control, London, England,
April 1988, Volume 31 No. 3,
pp68-72

ISSN 0020-2940

International Ocean Systems

Ed. Barton R.

Pub. Astrid Powell Associates,
Twickenham, England,
January/February 2000, Volume
4 No. 1

ISSN 1460-4982

Proceedings o f Underwater
Intervention 2002 Conference,

245

Appendix A: Publications by the Author

15 Tisdall J., Hall
M., Larkum T.
and Broome D.

Supervisory Control

Testing a Stereo Vision
System for Motion
Compensation

New Orleans, Louisiana, USA,
February/March 2002

Proceedings o f OCEANS 94
Conference, Brest, France,
September 1994, Volume II,
p p l82-187

246

APPENDIX B:
DETAILED SOFTWARE DEVELOPMENT HISTORY

The main milestones in the development o f WinNeural are outlined below:

Description WinNeural Version
Number

Creation o f WinNeural software, initial implementation
(using vectorN data structures, see Section 4.2.2. LAC
Implementation)

Menus

Dialog boxes

Scheme o f architecture

0.00 - 0.04

Construction o f network library

Major bug fixing

0.05

File handling added

Interactive Activation and Competition type completed

Implementation o f new data structure, n e u r o n, to reduce
multiple uses o f VectorN (see Section 4.3.2. CS
Implementation)

First discrepancy found for “spontaneous generalisation”
between WinNeural and published PDP results (see
Section 4.10. Discussion o f Deviations)

0.06

Initial Constraint Satisfaction network, Schema Model,
construction

File and display handling extended

0.07

File and display handling extended (plus bug fixing)

Implementation o f new data types, stringvar and
d o u b l e v a r, to replace multiple uses o f VectorN (see
Section 4.3.2. CS Implementation)

Bug fixing

0.08

Change o f compiler from QuickC to Visual C++

Incorporation o f new Windows File dialog boxes (from
Windows file comdlg32 . dll)

0.09

File handling library created 0.10

247

Appendix B: Detailed Software Development History

Memory handling rewritten and optimised

File handling improved

Constraint Satisfaction, Schema Model, completed

0.11

Constraint Satisfaction, Boltzmann Model, completed

Further discrepancies found between WinNeural and PDP
results (see Section 4.10. Discussion o f Deviations)

0.12

Constraint Satisfaction, Harmony Model, completed 0.13

Pattern Associator network construction 0.14

Pattern Associator completed 0.15

Back Propagation network construction

Bug fixing

0.16

Table B J - Milestones in the Development o f WinNeural

Below are some example screenshots o f WinNeural during its development.

= 1 Neural Nets for M ndows |63X 16341K Free H*
£He £dtt Options Bun S tatus Udp

“ 1 Dtsptay VMndow H*

»• Jet5 B4 D Art 0 0 Phil 0 Art 16 0 Phil ;t.
0 Sharks 0 A1 l _ 0 Ike u 0 _A1 1. 0 Ike : 4

Q Sam 0 0 Hick I) 0 Sam 16 0 _Hick
0 in20e 51 0 Clyde 0 0 Don 0 0 -Clyde 16 0 — Don
0 in30s : l 0 Mike 0 0 Med o 0 .Mike 16 0 _Med 16
0 in40s 0 Jim 0 0 Karl 0 0 _Jim 16 0 _Rarl 6

0 Greg i.: 0 Ren 0 0 _Greg i: 0 _Ren 4
0 JH 51 0 John □ 0 Earl 0 0 _John 16 0 —Earl ►j
0 HS :i 0 Doug I.' 0 Rack o 0 _Doug 1- 0 Rack lb
0 College 12 0 Lance 0 0 01 0 0 _Lance 16 0 _01 6

0 George 0 0 Heal G 0 _George 16 0 _H*al lb
0 Single 51 0 Pete D 0 Dave 0 0 _Pete 16 0 .pave 16
0 Married : l 0 Fred 0 0 _Fred 16
0 Divorce 1 V 0 Gene 0 0 —Gene 16

0 Ralph 0 0 _Ralph 16
0 Pusher 16
0 Burglar 16
0 Bookie 16

N E U R A L N E T S F O R W A N D O W 5

Copyright (c} T L u t a M 1913

Versioe 9.13

Last Change: 22/92/94

1 K-J

Figure B .l - WinNeural Version 0.13 running on Windows 3.1

Appendix B: Detailed Software Development History
I Neural Nets for Windows

Bb
c Di spl ay Window

d

Hi J e t s 84 0 Art 0 0 P h il 11 0 Art 16 0 P h il 16
0 S harks 15 0 A1 11 0 Ike 11 0 A1 13 0 _ lk e 14

0 Sam 0 0 Mick 11 0 Sam 16 0 Hick 15
0 m 2 Os 51 0 Clyde 0 0 Dcm 11 0 _Clyde 16 0 "Don 16
0 in 3 0 s 12 0 Hike 0 0 Med 11 0 _Mike 16 0 Med 16
0 in 4 0 s 12 0 Jim 0 0 K arl 11 0 J i m 16 0 "K arl 16

0 Greg 11 0 Ken 11 0 _Greg 13 0 Ken 14
0 JH 51 0 John 0 0 E arl 11 0 J o h n 16 0 _ E arl 16
0 HS 12 0 Doug 11 0 Rick 11 0 _Doug 13 0 Rick 16
0 C o lleg e 12 0 Lance 0 0 01 11 0 Lance 16 0 "01 16

0 George 0 0 Heal 11 0 _Gearge 16 0 _Heal 15
0 S in g le 51 0 P e te 0 0 Dave 11 0 P ete 16 0 Dave 16
0 M arried 12 0 Fred 0 0 _Fred 16
0 D ivorce 12 0 Gene 0 0 _Gene 16

0 Ralph 0 0 _Ralph 16
0 Pusher 15
0 B u rg la r 18
0 Bookie 16

J

NEURAL NETS FOR WINDOWS

Cspfrirfrt (c) T LaikiH 1993-4
V v n m O IG

15/07/94
E E

«i i *r̂

Figure B.2 - WinNeural Version 0.16 running on Windows 95

By this stage in the development of WinNeural, technology and the general software

environment had moved on such that it was decided to restart the development of the

software. This redevelopment had the following main elements:

• where practical and appropriate move from the C language to C++

• development of a new user interface using new facilities in the Visual C++

environment, and written entirely in C++

• retention of neural network library files in C

• change of name to “Neural Networks for Windows” (NNW).

The main milestones in the development of NNW are outlined below:

Description NNW Version Number

Creation of NNW interface 1.0

Conversion from 16bit to 32bit handling “NNW32” 1.0

Improvements to user interface, for example:

• better display of network definitions

• addition of scroll bars

• appropriate menu greying

1.1

Back Propagation network type completed 1.11

Improvements to user interface to make testing easier
and faster, final bug fixing, modifications to menu
structure

1.2

249

Appendix B: Detailed Software Development History

Table B.2 - Milestones in the Development of Neural Networks for Windows

Below are some example screenshots of NNW during its development:

iw—iwnrogiBBfflB

0 in20s
0 in30s
0 in40s

0 S ing le
0 H arried
0 Divorce

0 Art 0 11
0 San
0 Clyde
0 Kike
D J u
0 Greg

0 P hil
0 Ike
0 Vick
0 Doe

0 Earl
0 Rick
0 01

0 _Greg 13
0 .John 16
0 _Dong 13
0 .Lance 16
0 . George 16
0 _Efete 16
0 .F red 16

16 0 .P h il
13 0 _Ike
16 0 .Vick
16 0 .Dae
16 0 Had
16 0 .K arl

■ »l mmtM |l » 1

4J___ iC1

Figure B.3 - NNW Version 1.0 running on Windows 98

C'. *̂1*1
Dlsfisn H I ?in e | 9[J z u Jlgt___

0 Jets 10 0 Art 10 0 Phil : c 0 Art 10 0 Phil 10
0 Sharks 10 0 A1 10 0 Xke : c Q _A1 10 0 Ike

0 Saa 10 0 Mick 10 0 S am 10 0 .Nick 1 Q
0 in20s 10 0 Clyde 10 0 Don 13 0 .Clyde 10 0 .Don
0 in30s 10 0 Mike 10 0 Med 10 0 .Mike 10 0 _Med 1C
0 in40s 10 0 Jia 10 0 Karl 10 0 .Ji* 10 0 .Karl 10

0 Greg 10 0 Ren 10 0 .Greg 10 0 .Ren 10
0 JH 10 0 John 10 0 Earl 10 0 .John 10 0 .Earl 10
0 HS 10 0 Doug 10 0 Rack 0 0 J t o a g 10 0 Rick 1C
0 College 10 0 Lance 10 0 0 1 1C Q .Lance 10 0 . 0 1 1 0

0 George 10 0 Neal 10 0 .George 10 0 .Neal
0 Single 10 0 Pete 10 0 Dave 10 0 .Pete 10 0 .Dave 1C
0 Married 1 0 0 Fred 10 0 .Fred 10
0 Divorce 10 0 Gene 10 0 .Gene 10

0 Ralph 10 0 .Ralph 10
0 P u s h e r 10
0 B u r g l a r 10
0 B o o k i e 1 -

C? Cdpyegh^TceworLafkwe 1999

For Hefc, press FI

Figure B.4 - NNW Version 1.1 running on Windows 2000

250

APPENDIX C:
NEURAL NETWORK SOFTWARE FEATURES

C.1. File Menu

The File menu has the following items:

New

Close

Import
PDP File.

Print..

Print
Preview

Print
Setup

MRU list

Exit

Creates a new network - brings up
the New Neural Net dialog box (see
below)

Closes down the current network

Brings up the Windows standard
File Open dialog box so the user
can select a PDP compatible file

Brings up the Windows standard
Print dialog box so the user can
select printing options

Changes to preview mode to show
how the screen display will appear
when printed out

Brings up the standard Windows
print Setup dialog box so the user
can change printing options (e.g.
portrait/landscape orientation)

This is a list o f Most Recently Used
(MRU) files that can be loaded by
simply selecting them

Closes the current network and
leaves the program

New Ctrl+N
Open... Ctri+O
Close
Save Ctrl+5
Save As...

Import PDP File.. Ctrl+I

Print... Ctrl+P
Print Preview
Print Setup...

1 XOR.TEM
2 8X8. TEM
3 XOR.TEM
4 3ET5.TEM

Exit

The File Menu also has options for open..., Save and Save As... which operate on neural

net files specific to NNW (extension . nnw); however PDP compatible files were used

throughout the work described in this thesis.

Selecting F i l e -.New brings up the New Neural Net dialog box shown in Figure C.l; this

is used to select the main type o f the network (subtypes can then be set from the options

menu or via character strings in the network definition files as they are read in).

251

Appendix C: Neural Network Software Features

X j

Choose the type of net

New N eural N et

n ter a c t i v e A c t iv a t io n & Lorn p e t it ion
Constraint Satisfaction
Pattern Associator
Back Propagation

OK Cancel Help

Figure C. 1 - File New / New Neural Net dialog box

C.2. Edit Menu

The Edit menu has the following items:

Input
Values...

Brings up the Set Input dialog box
(see below)

Resets all inputs to their initial stateReset
Inputs
Neuron Brings up the Set Weight Value
Weights... dialog box (see below)

Input Values...
Reset Inputs

Neuron Weights.

The Set Input dialog box (see Figure C.2) allows the user to change an input by typing

in the unit name and the new activation value.

S et Input XJ

Neuron Name: |K.en

New Value:

QK | Cancel | Help

Figure C.2 - Edit Input Values / Set Input dialog box

The Set Weight Value dialog box (see Figure C.3) allows the user to change a weight

between units by entering the two unit names and the new weight value.

252

Appendix C: Neural Network Software Features

*J

Neuron Name 1:

Neuron Name 2.

New Value:

[lance

(Buriat

foil

fiK | £ancel | Hefr

Figure C.3 - Edit Neuron Weights / Set Weight Value dialog box

C.3. View Menu

The View menu has the following items:

Toolbar Toggles display o f the Toolbar on or
o ff

Status Toggles display o f the Status Bar
Bar along the bottom o f the program on

or o ff

Contents If checked, the Contents window will
shows display weights (instead o f patterns)
Weights
Contents If checked, the Contents window will
shows display patterns (instead o f weights)
Patterns - only available if at least one pattern

has been loaded or created

Run Brings up the Run Results dialog box
Results (see below)

✓ Toolbar
Status Bar

</ Contents shows Weights
Contents shows Patterns

Run Results

The Run Results dialog box (see Figure C.4) displays the current values o f the network

cycle number, goodness value and total sum o f squares (tss).

Results

Current Cycle Number:

Goodness Value:

Total Sum of Squares:

OK Cancel

JSJ

20

4800
0.000

Help

Figure C.4 - Run Results dialog box

253

Appendix C: Neural Network Software Features

C.4. Settings Menu

The Settings menu has the following items:

System... Brings up the System Settings dialog
box (see below)

System...Display... Brings up the Display Settings dialog
box (see below) Display...

Strengths Brings up the Strength Parameters
dialog box (see below) S t r e n g t h s . . .

Activations... Brings up the Activation Parameters A c t iv a t io n s
dialog box (see below)

Rates... Brings up the Rate and Other R Q t6 S .. .
Parameters dialog box (see below) “ “

The System Settings dialog box (Figure C.5) allows the user to set the number of cycles

per run, the random number seed, the number o f epochs required (see Section 4.6.I. PA

Theory), and the error criterion value (see Section 4.6.3. PA Implementation). Note that

the random number seed will be changed automatically whenever Run:Restart (see

below) is selected (see Section 4.3.3. Schema Model Theory).

The modes for training and for testing can be set independently to be either multiple

stepping (run continuously until the system reaches the required number o f cycles or

epochs respectively) or single stepping, when the program halts after each step (cycle or

epoch) until the user continues.

*1
Various

Number of Cycles per tun: f20~

Random Number S e e d jl 23

Number of Epochs: Jo

Error Criterion: fof

Training Step Mode

S.ingle Stepping

<* MuKpie Stepping

Testing Step Mode

(* S.ingle Stepping

MuKpie Stepping

OK | Cancel I Help

Figure C.5 - System Settings dialog box

254

Appendix C: Neural Network Software Features

The Display Setting dialog box (see Figure C.6) sets whether the screen is updated after

every cycle or only on completion o f all cycles.

Display Settings i l l

Interval to update screen

fEachcydej

After processing complete

OK

Cancel

Help

Figure C.6 - Display Settings dialog box

The Strength Parameters dialog box (see Figure C.7) allows the user to set the required

values for the excitatory input {alpha), inhibitory input {gamma) and external input

strength (estr) - see Section 4.2.1. IAC Theory. It also allows the user to set the internal

input strength {istr) - see Section 4.3.3. Schema Model Theory - and the harmony

constant {kappa) - see Section 4.5.1. Harmony Model Theory (it also allows the user to

set the decay strength, beta, but this is not applicable to the network types considered in

this work).

*J

Excitatory Input, ALPHA; m

Decay Strength, EIETA: l°

Inhibitory Input, GAMMA: |0.1

External Input Strength: h

Internal Input Strength: h

H armory Constant, KAPPA: |6 75

OK 1 Cancel | Help |

Figure C.7 - Strength Parameters dialog box

The Activation Parameters dialog box (see Figure C.8) allows the user to set the

required values for the system resting value {rest), maximum value {max) and minimum

value {min) - see Section 4.2.1. IAC Theory (it also allows the user to set the resting

level, fraction scale factor, and time-averaged scale but these are not applicable to the

network types considered in this work).

255

Strength Parameters

Appendix C: Neural Network Software Features

Activation P aram eters

Resting Value: jg

Resting Levd, GAIN: fo"

Fraction Scale Factor, MU: jo~

McKinium Value: fl

Minimum Value: [T

iime-Averaged Scale: fo~

OK J Cancel | Help

Figure C.8 - Activation Parameters dialog box

The Rate and Other Parameters dialog box (see Figure C.9) allows the user to set the

required values for the decay rate - see Section 4.2.1. IAC Theory, learning rate, noise

and temperature - see Section 4.6.3. PA Implementation (it also allows the user to set the

growth o f net input, integration, momentum, range o f variability, detection probability

and sign flip probability parameters but these are not applicable to the network types

considered in this work).

Rate and Other Par xJ

Rate Parameters:

Growth of Net Input: II

Qecay Rate: |0.1

Learning 0

integration: |o

Other Parameters:

Momentum: 10.9

Range Of Variabity: !°
Detection Probabity: |o

Sign Flip Probability:

Noise: l°

lemperature: |2

OK | Cancel Help

Figure C.9 - Rate and Other Parameters dialog box

256

Appendix C: Neural Network Software Features

C.5. Patterns Menu

The Patterns menu has the following items:

Select Brings up the Select Pattern dialog
Input- box (see below)

Select Brings up the Select Pattern dialog
Target- box (see below)

Select Brings up the Select Pattern dialog
Pattern... box (see below)

Enter Brings up the Enter Pattern dialog
Pattern... box (see below)

Select Input...
Select T arget...
Select P attern ...

Enter P a tte rn ...

The Select Pattern dialog box (Figure C.10) allows the user to choose a pattern from the

list o f patterns available (i.e. those already read in from file, or created by the user via

the Enter Pattern dialog box described below). It can be used in three ways:

1. To select just the input pattern (when the text reads "Choose the input pattern").

In this case the first half o f the pattern is used as the input pattern.

2. To select just the target pattern (when the text reads "Choose the target pattern").

In this case the second half o f the pattern is used as the target pattern.

3. To select a complete pattern (when the text reads "Choose the test pattern"). In

this case the first half o f the pattern is used as the input pattern and the second

half is used as the target pattern.

Enter P a tte rn

Pattern Name | Test!

Pattern Segment--------

(• Whole Pattern

C Input Pattern

C Target Pattern

Pattern;

•\

OK | Cancel | Help

Figure C.10 - Enter Pattern dialog box

257

Appendix C: Neural Network Software Features

The Enter Pattern dialog box (see Figure C.10) allows the user to create a new pattern

by entering it directly (as a series o f numbers, or + for 1.0 and - for -1.0), giving it a

name, and specifying whether it represents a whole pattern (i.e. both input and target

segments) or just an input or target pattern.

C.6. Run Menu

The Run menu has the following items:

Go /
Train

Step
Through

Reset

New Start

Test

Test All

Step
Through

Stop

Starts the system running (i.e.
settling i f IAC or CS, training if PA
or BP)

Runs just the next step (only
available if the system has been
started with Go/Train, and if the
Training Step Mode is set to Single
Stepping - see Section C.4. Settings
Menu)

Returns the network to its starting
state (see Section 4.2.1. IAC Theory)

Returns the network to its starting
state after generating a new random
number seed (see Section 4.3.3.
Schema Model Theory). This is
equivalent to entering a new seed
directly, see Section C.4. Settings
Menu above, and then using Reset
Tests the network against the current
pattern (for selection see Section C.5.
Patterns Menu)

Tests the network against all
available patterns

Tests just the next epoch (only
available if the system has been
started with Test or Test a h , and
i f the Testing Step Mode is set to
Single Stepping - see Section C.4.
Settings Menu)

Stops the current run or test (only
available if the system has been
started with Go/Train, Test Or Test
Ail and the appropriate Step Mode is
set to Single Stepping)

Go / Train F5
Step Through

Reset F7
New Start F8

Test
Test All
Step Through

btop

C.7. Options Menu

The Options menu has the following items:
258

PDP Group
Update

Grossberg
Update

Schema
Model
Boltzmann
Model
Harmony
Model
Hebb
Learning
Delta
Learning
Learning
is on
Follow is
on
Training
is
Permuted
Learn
each
Pattern
Learn
each
Epoch

Appendix C: Neural Network Software Features

If checked, the PDP group update is
being used (otherwise Grossberg
update)

If checked, the Grossberg Update is
being used (otherwise PDP Group
update)

If checked, the network is set to use
the Schema model

If checked, the network is set to act
like a Boltzmann machine

If checked, the network is set to act
like a Harmonium

If checked, Hebb learning is on

If checked, Delta rule learning is on

If checked, Learning is on

If checked, Follow mode is on

If checked, training patterns are
permuted (otherwise sequential)

If checked, the network will update
itself after each pattern (otherwise
after each epoch)
If checked, the network will update
itself after each epoch (otherwise
after each pattern)
If checked, clamping mode is on

PDP Group Update
Grossberg Update

v Schema Model
Boltzmann model
Harmony Model

Hebb Learning
Delta Learning

V Learning is on
v Follow is on

Training is Permuted

Learn each Pattern
</ Learn each Epoch

Clamping On

Clamping
On

For details of the differences between the p d p Group update and the Grossberg

update rules, see Section 4.2.2. IAC Implementation', for the differences between the

Schema, Boltzmann and Harmony models of constraint satisfaction, see Sections 4.3.3.

Schema M odel Theory, 4.4.1. Boltzmann Machine Theory and 4.5.1. Harmony Model

Theory.

For the Hebb and Delta rules and Sequential and Permuted Training see Section 4.6.1.

PA Theory, for Learning Mode see Section 4.6.3. PA Implementation. For Follow Mode

see Section 4.8.2. Solving the XOR Problem. For Clamping Mode see Section 4.3.1. CS

Theory.

C.8. Window Menu

The Window menu has the following items:

259

Cascade

Tile

Arrange
Icons
[Window
names]

Appendix C: Neural Network Software Features
Arrange non-minimised windows in
a cascaded manner (i.e. overlapping)

Arrange non-minimised windows in
a tiled manner (i.e. side by side)

Arranged minimised windows along
the bottom of the application window

Select a window name to give it
focus (i.e. open it if closed, and bring
it to the front). The first window is
usually the network display window,
and the second one is the network
contents (i.e. internal weights)
window

C.9. Help Menu

The Help menu has the following items:

Index

About
NNW...

Intended to bring up the NNW help
file (not implemented)

Brings up the About NNW dialog
box (see below)

Cascade
Trie
Arrange Icons

</ 1 CUBE.TEM:1
2 CUBE.TEM:2

Index

About IMNW...

The About NNW dialog box (Figure C .ll) provides information regarding version,

copyright and date o f the NNW application.

About fNNW

NNWAppfcationVanbiUWWW
Cop5fri^t«TwvaLartajBi2002

f W 1

Figure C. 11 - Help / About NNW dialog box

C.10. Toolbar

D l c s l H l t l a l c o m t H i |t» ? |

The NNW toolbar has buttons for the following commands (identical to the equivalent

menu options), from left to right: File :New, File‘.Open, File: Save, File: Import

260

Appendix C: Neural Network Software Features

PDP File, File: Print, Run:Go/Train, Run:Train Step Through (shown greyed

out), Run:Test All, Run:Test All Step Through (shoWQ greyed OUt), Help:About
and Help:Context Help.

C.11. PDP Network Definition Files

NNW is capable of reading in PDP-compatible network definition files; these have the

following forms (in brief):

Strengths File f . s t r ') :

Template File (' .tern*):

Network File (’.net*):

Weights File ('.wts'):

Pattern File ('.pat'):

Look File (\io o ’):

This defines the values of the main parameters required

(otherwise defaults are used), such as min, max, decay,

estr, plus an annealing schedule if appropriate (of the

form starting temperature / number o f cycles / target

temperature), plus names for the units in the network. It

may also give the names of Network and Weights files to

be read in.

This provides a template for the layout of parameters in

the display window, and how they are to be displayed

(scale factor, etc.).

This defines the number of inputs, outputs and total units,

and the number o f units to update per cycle, and the

values to be used for the various weights between units (if

a separate Weights files has not been specified).

This gives numerical values for all weights and biases in

the network.

This contains a list o f pattern names and their values.

This defines the display window position at which

variables are to be output.

These file types (which contain many complex elements) will not be described further

here - a full specification is given in [McClelland 1988] and examples are included in

Chapter 6, and in Appendix D, and on the attached CD-ROM.

261

APPENDIX D:
NEURAL NETWORK TEST DEFINITION FILES

ROV.tem File
define: layout

Manual ROV Docking Test

$ Possible
Locations

Cycleno $
updateno $
cuname $
goodness $
temperature $

Manip Sticky
Access Foot

end
rovdock look 1 $ 0 activation 1 10' 1 rov. loo
cycleno variable 1 $ 1 cycleno 7 1
updateno variable 1 $ 2 updateno 7 1
uname variable 1 $ 3 cuname -7 1.0
goodness floatvar 1 $ 4 goodness 7 1.0

1.0temperature floatvar 1 $ 5 temperature 7
0 16weight matrix 5 $ o weight h 4 10. 0 0 16

weight vector 5 $ 2 uname v 6 1 0 16
weight vector 5 $ 5 uname h 4 1 0 16

ROV.loo File
9 74 0 1 2 3 4 5 6 7 8 9 .

10

262

Appendix D: Neural Network Test Definition Files

ROV.net File
definitions:
nunits 12
ninputs 12
nupdates 12
end
network:

end
biases:

end

ROV2.str File (Schema Model)
set dlevel 1
get network rov2.net
get weights rov2.wts
set mode clamp 1
set param estr 1.0
set param istr 0.2
set ncyc 50
get unames RV+100 RV+10+1 RV+1+1+1 RV—100 RV—10+1 RV—1+1+1 RV+10—1
RV+1+1—1 RV-10-1 RV-1+1-1 AL+100 AL+10+1 AL+1+1+1 AL-100 AL-10+1
AL-1+1+1 AL+10-1 AL+1+1-1 AL-10-1 AL-1+1-1

263

Appendix D: Neural Network Test Definition Files

ROV2.tem File
define: layout

Manual ROV Docking Test - Offset Port Foot

Possible Cycleno $
Locations updateno $

cuname $
goodness $
temperature $

Sticky
Foot

end
rovdock look 1 $ 0 activation 1 10 1 rov2.loo
cycleno variable 1 $ 1 cycleno 7 1
updateno variable 1 $ 2 updateno 7 1
uname variable 1 $ 3 cuname -8 1.0
goodness floatvar 1 $ 4 goodness 7 1.0
temperature floatvar 1 $ 5 temperature 7 1.0
weight matrix 5 $ 0 weight h 4 10.0 0 16 0 16
weight vector 5 $ 2 uname v 6 1 0 16
weight vector 5 $ 5 uname h 4 1 0 16

ROV2.ioo File
9 74
................................ 0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

264

Appendix D: Neural Network Test Definition Files

ROV2.net File

definitions:
nunits 20
ninputs 20
nupdates 20
end
network:

end
biases:

end

ROV2.wts File (Boltzmann Machine)
0 -10 -10 -10 -10 -10 -10 -10 -10 -10 0 0 0 0 0 0 0 0 0 0 +00

-10 0 -10 -10 -10 -10 -10 -10 -10 -10 0 0 3 0 0 0 0 0 0 0 +0+
-10 -10 0 -10 -10 -10 -10 -10 -10 -10 0 3 0 0 0 0 0 0 0 0 +++
-10 -10 -10 0 -10 -10 -10 -10 -10 -10 0 0 0 0 0 0 0 0 0 0 -00
-10 -10 -10 -10 0 -10 -10 -10 -10 -10 0 0 0 0 0 3 0 0 0 0 -0+
-10 -10 -10 -10 -10 0 -10 -10 -10 -10 0 0 0 0 3 0 0 0 0 0 -++
-10 -10 -10 -10 -10 -10 0 -10 -10 -10 0 0 0 0 0 0 0 3 0 0 +0-
-10 -10 -10 -10 -10 -10 -10 0 -10 -10 0 0 0 0 0 0 3 0 0 0 ++-
-10 -10 -10 -10 -10 -10 -10 -10 0 -10 0 0 0 0 0 0 0 0 0 3 -0-
-10 -10 -10 -10 -10 -10 -10 -10 -10 0 0 0 0 0 0 0 0 0 3 0 -+-
0 0 0 0 0 0 0 0 0 0 0 -10 -10 -10 -10 -10 -10 -10 -10 -10 +00
0 0 3 0 0 0 0 0 0 0 -10 0 -10 -10 -10 -10 -10 -10 -10 -10 +0+
0 3 0 0 0 0 0 0 0 0 -10 -10 0 -10 -10 -10 -10 -10 -10 -10 +++
0 0 0 0 0 0 0 0 0 0 -10 -10 -10 0 -10 -10 -10 -10 -10 -10 -00
0 0 0 0 0 3 0 0 0 0 -10 -10 -10 -10 0 -10 -10 -10 -10 -10 -0+
0 0 0 0 3 0 0 0 0 0 -10 -10 -10 -10 -10 0 -10 -10 -10 -10 -++
0 0 0 0 0 0 0 3 0 0 -10 -10 -10 -10 -10 -10 0 -10 -10 -10 +0-
0 0 0 0 0 0 3 0 0 0 -10 -10 -10 -10 -10 -10 -10 0 -10 -10 ++-
0 0 0 0 0 0 0 0 0 3 -10 -10 -10 -10 -10 -10 -10 -10 0 -10 -0-
0 0 0 0 0 0 0 0 3 0 -10 -10 -10 -10 -10 -10 -10 -10 -10 0 -+-
7 8 4 7 8 4 8 4 8 4 1 1 1 1 1 1 1 1 1 1

+00 +0+ +++ -00 -0+ ++ +0- ++- -0- -+- +00 +0+ ++ + -00 --0+ -++ +0-

Port Foot. Key: + for +1, - for -1

265

APPENDIX E:
DOCKING LIBRARY MAIN SOURCE CODE

Pocking.h
/ ■ i t * /

/* FILE DOCKING.H */
/*--- */
/* File Name : \Include\Docking.h * /
/* Class Name : CDocking */
/* Purpose : Class header file */
/* Author : T.Larkum */
/* Written on : 08/12/95 */
/*--- * /
/ * Copyright (c) Technical Software Consultants Ltd. 1995. */
/ ★ --- * /
/* HISTORY */
/*--- * /

/ * Changed by Date Reason */
/ * * /
/ * * /

♦ifndef INCDOCK
♦define INCDOCK
/*--
/* INCLUDE FILES
/*--

♦include <canddate.h>
♦include <vector.h>
/*--
/* DEFINITIONS
/*--

♦define MINREACHDISTANCE 0.5
♦define MAXREACHDISTANCE 2.0
♦define MINATTACHDISTANCE 1.1
♦define MAXATTACHDISTANCE 1.6
♦define F O O T STICKING RANGE 0. 5
straight ahead

* /
* /
*/

class CDocking : public CWnd
{
public:

CDocking();
~CDocking();

protected:
int WriteLayoutFileO ;
int WriteWeightsFile();
int WriteStrengthsFile();
int WriteTemplateFile();
int WriteNetworkFile() ;
void PruneList();
DECLARE SERIAL(CDocking)

/*-------------------
/* CLASS DEFINITION
/*-------------------------

// Foot sticking point can be
// +- this distance.

*/
*/
*/

. * /

/./

266

Appendix E: Docking Library Main Source Code

// Attributes
protected:

CObList m_posList;
CVector m_vWeldCofG;

_ VECTOR m_vecBaseOrient, m_vecBasePos;
double mdGridSpacing, mdXStart, mdXEnd, mdYStart, mdYEnd;
double mdZStart, mdZEnd, mdExtendStep, mdRotateStep;

// Operations
public:

BOOL AttachmentLegsAvailable() ;
void ShowResults();
int Initialize() ;
int CheckForCollisions() ;
int CheckForROVCollisions();
int CheckForReach();
int CheckStickyFeetReach() ;
int CheckStickyFeetPositions();
int WriteDefinitionFiles() ;
int CloseDown{);
void Draw();
void ChangeSettings();
void ToggleRedraws() ;
virtual void Serialize(CArchivei ar);
// Following copied from scribble (ensures type safe handling of CObList) :
CCandidate* NewCandidate(CVector* pvTemp);
CCandidate* GetNextCandidate(POSITION ipos);
POSITION GetFirstCandidatePos();
void DeleteCandidateList();

// Helper functions
protected:

double m_dAcceptanceLimit;
BOOL m_bShowRedraws;
BOOL m_bDrawCandidates;
BOOL CollisionSituation(BOOL bReport) ;
void WorldCoords(LPVECT pVec, BOOL bForward = TRUE);
void WorldCoords(CVector* pVec, BOOL bForward = TRUE);

// Overrides
/* Having the message map allows basic use of ClassWizard to create command
// functions, but they still don’t get called

// ClassWizard generated virtual function overrides
//((AFXVIRTUAL(CDocking)
//}}AFX_VIRTUAL

public:
// Implementation

//{{AFXMSG(CDocking)
afx_msg void OnDockSettings() ;
//}(AFXMSG
DEC LAREMES S A G E M A P ()

*/
> ;
#endif // INCDOCK

267

Appendix E: Docking Library Main Source Code

Oocking.cpp
/ *

/* FILE DOCKING.CPP
r*---
/ * File Name
/* Class Name
/* Purpose
/* Author
/* Written on /*----------------

\Docking\Docking.cpp
CDocking
Implementation of the CDocking class
T.Larkum
08/12/95

/* Copyright (c) Technical Software Consultants Ltd. 1995. /*---
/* HISTORY
/*------------
/* Changed by Date Reason
/*
/ *

/* 1--
/* INCLUDE FILES/*---

♦include <stdafx.h>
♦include <math.h> // for fabs
♦include <docking.h>
♦include <colision.h>
♦include <gui.h>
♦include <plot.h>
♦include <path.h>
♦include <workpce.h>
♦include <stringex.h>
♦include <guimenu.h>
♦include <jobs.h>
♦include <toolskid.h>
♦include <manip.h>
♦include <task.h>
♦include <message.h>
♦include <coordsys.h>
♦include <docksetdlg.h>
♦include <dockresults.h>
♦include <genmaths.h>

// for kinematic access msg
// Just so we can set the extend/rotate values directly

/'
/*

DEFINITIONS

♦define GRIDSPACING 0.25
♦define GRIDSIZE 1.00
♦define EXTENDSTEP 0.25
♦define ROTATESTEP (PI/36.0)
♦define EXCLUSIVEVALUE -1.00
♦define NOCONNECTION 0.00
♦define DEFAULTBIAS 0.10
♦define FIELDWIDTH 6
♦define PRECISIONDP 2
♦define LAYOUTROWS 9
♦define LAYOUT COLUMNS 74
♦define LAYOUTSTARTPOS 15
♦define LAYOUTEXTRAPOS 6
nodes

// Size of candidate position grid in meters

// every 5 degrees

// Extra variables (access, sticky feet) n rows below

♦define EXTRA CRITERIA

/*---------------
/* MFC MACROS
/*---------------
IMPLEMENTSERIAL(CDocking, CWnd, 1);
/* Having the message map allows basic use of ClassWizard to create command
// functions, but they still don't get called!
BEGINMESSAGEMAP(CDocking, CWnd)

//{(AFXMSGMAP(CDocking)
0 N_C0 MMAND(IDM DOCKSETTINGS, OnDockSettings)
/ /)) A F X M S G M A P

E N D M E S S A G E M A P ()
* /

/ * CLASS IMPLEMENTATION /*--------------------
CDocking::CDocking()
{ m bDrawCandidates = TRUE;

268

Appendix E: Docking Library Main Source Code

m_bShowRedraws = FALSE;
mdXStart = -GRIDSIZE;
mdYStart = -GRIDSIZE;
mdZStart = -GRIDSIZE;
m d X E n d = 0.0;//GRID_SIZE;
m d Y E n d = GRIDSIZE;
m d Z E n d = GRIDSIZE;
mdGridSpacing = GRIDSPACING;
mdExtendStep = EXTENDSTEP;
mdRotateStep = ROTATESTEP;
m_dAcceptanceLimit = 0.5;

}

CDocking::-CDocking()
{
}

CCandidate* CDocking::NewCandidate(CVector* pvTemp)
f

CCandidate* pCandidateltem = new CCandidate(pvTemp);
mposList.AddTail(pCandidateltem);

return pCandidateltem;
}
CCandidate* CDocking::GetNextCandidate(POSITION Spos)
{

return (CCandidate*)mposList.GetNext{ pos);
}
POSITION CDocking::GetFirstCandidatePos{)
{

return m_posList.GetHeadPosition() ;
}

int CDocking::Initialize()
{

double dX, dY, dZ;
CVector vCandidate;

VECTOR vecWeldCofG;
WPGetWorkpieceLocation(WORK_PIECE, NULL, SvecWeldCofG);
GetVector(SvecWeldCofG, SdX, &dY, &dZ);
mvWeldCofG.SetAll(dX, dY, dZ);

WPGetBaseLocation(SmvecBaseOrient, SmvecBasePos);
// If we already have a list, delete it:
DeleteCandidateList();
// Create a set of candidate objects, each representing a point on a cubic grid:
for(dX = m dXStart; dX <= m dXEnd; dX += m dGridSpacing)

for(dY = mdYStart; dY <= mdYEnd; dY += mdGridSpacing)
for(dZ = mdZStart; dZ <= mdZEnd; dZ += mdGridSpacing)
{

vCandidate.SetAll(dX, dY, dZ);
NewCandidate(SvCandidate);

)
return m_posList.GetCount() ;

}
int CDocking::CheckForCollisions()
{

CVector *pvTemp;
double dX, dY, dZ;
VECTOR vecTemp;
BOOL bCollision;
POSITION pos = GetFirstCandidatePosO ;
while(pos != NULL)
{ CCandidate* pCandidate = GetNextCandidate(pos) ;

// check it:
i f (pCandidate->GetIsPossible())
{

pvTemp = pCandidate->GetPos();
pvTemp—>GetAll(SdX, SdY, SdZ);
MakeVectorC (LPVECT)SvecTemp, dX, dY, dZ);

WorldCoords(SvecTemp);
// Check for collision with anything (name is misleading):
bCollision = ColCheckPointlsInWorkpiece ((LPVECT) SvecTemp);
i f (bCollision)

pCandidate->SetIsPossible(FALSE);
}

)
PruneList();
return m_posList-GetCount() ;

}

269

Appendix E: Docking Library Main Source Code

int CDocking::CheckForROVCollisions()
{

CVector *pvTemp;
double dX, dY, dZ;
VECTOR vecOrient, vecCand, vecOldPos, vecNewPos;

WPGetWorkpieceLocation(WORKPIECE, SvecOrient, SvecOldPos);
mbDr a w C a n d i d a t e s = FALSE;
JobCheckForCollision(FALSE) ;

POSITION pos = GetFirstCandidatePos();
w h i l e (pos != NULL)
{

CCandidate* pCandidate = GetNextCandidate(pos);

// check it:
if(pCandidate->GetIsPossible())
{

pvTemp = pCandidate->GetPos();
pvTemp-xSetAll(sdX, SdY, SdZ);
MakeVector((LPVECT)&vecCand, dX, dY, dZ);

CopyVector(SvecOldPos, 6vecNewPos);
// Set the workpiece location to be relative to candidate position:
WorldCoords(&vecNewPos, FALSE);
VectorSubtract(SvecNewPos, SvecCand, SvecNewPos);
WPSetWorkpieceLocation(WO R K P I E C E , SvecOrient, SvecNewPos);
MenuOnEditLocation(mbShowRedraws, FALSE);

// Check for collisions against ROV:
if (CollisionSituation(m_bShowRedraws))

pCandidate->SetIsPossible (FALSE) ;
// Check for collisions against manip:

// else if (ColCheckLinksForContact(FALSE))
// pCandidate->SetIsPossible(FALSE);}

)
PruneList();

// Reset to start position:
WPSetWorkpieceLocation(W O R KPIECE, SvecOrient, SvecOldPos);
MenuOnEditLocation(m_bShowRedraws, FALSE);
mbDr a w C a n d i d a t e s = TRUE;

return m p o s L i s t .GetCount();
}
// This is original version, later replaced by CheckStickyFeetPositions
int CDocking::CheckStickyFeetReach()
{

CVector *pvTemp;
double dDistance, dRoll, dPitch, dYaw, dX, dY, dZ, dChordRadius, dBraceRadius;
TUBULAR tbChord, tbBrace;
VECTOR vecChordPos, vecChordOrient, vecBraceOffset, vecBraceOrient;
VECTOR vecZAxis, vecChordAxis, vecBraceAxis, vecBracePos, vecZero, vecTemp;
MATRIX mChordOrient, mBraceOrient;

// Get the locations and dimensions of the chord and current brace:
WPGetTubularData(WO R K P I E C E , (LPTUBE)fctbChord);
dChordRadius = tbChord.dMainDiameter/2.0;
WPGetWorkpieceLocation (WORK_PIECE, (LPVECT) svecChordOrient, (LPVECT) SvecChordPos);
int nBrace = PathGetNuraber(C U R R E N T C O M P);
WPGetTubularData(nBrace, (LPTUBE)&tbBrace);
dBraceRadius = tbBrace.dMainDiameter/2.0;
WPGetWorkpieceLocation (nBrace, (LPVECT) & vecBraceOrient, (LPVECT) & vecBraceOf f set);

// Set up vectors to represent their directions, first get orientation matrices:
MakeVector((LPVECT)SvecZAxis, 0.0, 0.0, 1.0);
MakeVector((LPVECT)svecZero, 0.0, 0.0, 0.0);
GetVector((LPVECT)6vecChordOrient, idRoll, idPitch, 4dYaw);
VectorGetRotationMatrix(dRoll, dPitch, dYaw, (LPMAT)imChordOrient);
GetVector((LPVECT)SvecBraceOrient, SdRoll, SdPitch, &dYaw);
VectorGetRotationMatrix (dRoll, dPitch, dYaw, (LPMAT) SmBraceOrient);

// ...then orientate unit vector to component direction:
MatrixVectorMultiply ((LPMAT) SmChordOrient, (LPVECT) 4 vecZAxis, (LPVECT) & vecChordAxis);
WE»TransformVector { (LPMAT) 4«BraceOrient, (LPMAT) SmChordOrient, (LPVECT) tvecBraceOf fset,

(LPVECT)SvecZAxis, (LPVECT)ivecBraceAxis, 0RIENT_C0MP_WP);

// now make vecBraceOffset the true world position:
WPTransformVector ((LPMAT) SmBraceOrient, (LPMAT) tmChordOrient, (LPVECT) tvecBraceOf fset,

(LPVECT) ivecZero, (LPVECT) 6vecBracePos, ORIENT AND TRANSLATE);

 -
VectorScalarMultiply ((LPVECT) tvecBraceAxis, dChordRadius, (LPVECT) SvecTemp) ;
VectorAdd { (LPVECT) SvecBracePos, (LPVECT) SvecTemp, (LPVECT) SvecBracePos) ; -

POSITION pos = GetFirstCandidatePos() ;
w h i l e (pos != NULL)

270

Appendix E: Docking Library Main Source Code

{
CCandidate* pCandidate = GetNextCandidate(pos) ;

// check it:
iff pCandidate->GetIsPossible()){

pvTemp = pCandidate->GetPos();
pvTemp->GetAll{ SdX, sdY, SdZ);
MakeVector((LPVECT)SvecTemp, dX, dY, dZ);

WorldCoords(SvecTemp);

// Assume we can't reach either initially:
pCandidate->SetIsPossible(FALSE);

// Is the position close enough to the chord:
dDistance = VectorDistanceFromLine((LPVECT)SvecTemp,

(LPVECT)SvecChordPos, (LPVECT)SvecChordAxi s);
// Its valid to be along or opposite to chord direction
dDistance = fabs(dDistance);

dDistance -= dChordRadius;
i f (dDistance > M I N A T T A C H D I S T A N C E SS dDistance < M A X A T T A C H D I S T A N C E)

pCandidate->SetIsPossible(TRUE);
// or the brace
dDistance = VectorDistanceFromLine((LPVECT)SvecTemp,

(LPVECT)SvecBracePos, (LPVECT)SvecBraceAxis);
if (dDistance < 0.0)
(

VECTOR vecDist;
// vecTemp is on the -ve vecBraceAxis side of vecBracePos, so

vecBracePos
// is actually the nearest point we could stick, +-

F00T_STICKINGRANGE

VectorSubtract((LPVECT)SvecTemp, (LPVECT)SvecBracePos, (LPVECT)SvecDist);
// dlntersection would be negative on this side of vecBracePos
double dlntersection = -1.0 *

DotProduct((LPVECT)SvecBraceAxis,(LPVECT)SvecDist);
if (dlntersection < F O O T S T I C K I N G R A N G E)

// Let it go, it's close enough
dDistance = -dDistance;

}
dDistance -= dBraceRadius;

i f (dDistance > MIN_ATTACH_DISTANCE SS dDistance < MAX_ATTACH_DISTANCE)
pCandidate->SetIsPossible(TRUE);

}
)
PruneList();
return m_posList.GetCount();

int CDocking::CheckStickyFeetPositions()
{

CVector *pvTemp;
double dX, dY, dZ;
VECTOR vecOrient, vecCand, vecOldPos, vecNewPos;
int nLegsAvailable, nLegsStuck;

if (!AttachmentLegsAvailable())
return m_posList.GetCount() ;

WPGetWorkpieceLocation(W O R K P I E C E , SvecOrient, SvecOldPos);
m bDrawCandidates = FALSE;

POSITION pos = GetFirstCandidatePos() ;
w h i l e (pos != NULL)
{

CCandidate* pCandidate = GetNextCandidate(pos) ;

// check it:
i f (pCandidate->GetIsPossible())
(

pvTemp = pCandidate->GetPos() ;
pvTemp—> GetAll(SdX, SdY, SdZ);
Ma k eVector((LPVECT)SvecCand, dX, dY, dZ);

CopyVector(SvecOldPos, SvecNewPos);
// Set the workpiece location to be relative to candidate position:
WorldCoords(SvecNewPos, FALSE);
VectorSubtract(SvecNewPos, SvecCand, SvecNewPos);
WPSetWorkpieceLocation(WORKPIECE, SvecOrient, SvecNewPos);
MenuOnEditLocation(FALSE, FALSE);

// Check for sticky feet positions (arm.c Best Posn):
nLegsAvailable = nLegsStuck = 0;
bTSWPCoords = TRUE;
double dFootAttachValue = 0.0;

f o r (nTSLegID=PORT; nTSLegID<=UPPER; nTSLegID++)

271

Appendix E: Docking Library Main Source Code

{
i f (bTSLegAvailable[nTSLegID])
{

nLegsAvailable++;
if (TSFindBestAttachmentPoint(nTSLegID, m_bShowRedraws, FALSE))

CString strTmp;
VECTOR vecPos;
if (m_bShowRedraws)
{
GetVector(SvecCand, SdX, sdY, SdZ);
strTmp.Format("Pos: %6.31f, %6.31f, %6.31f", dX, dY, dZ) ;
AfxMessageBox(strTmp);
MakeVector(SvecPos, 0.0, 0.0, 0.0);
TSConvLegToWorld(nTSLegID, SvecPos, NULL);
VectorAdd(SvecPos, SvecCand, SvecPos);
GetVector(SvecPos, SdX, sdY, SdZ);
strTmp.Format("Leg: %d, %6.3If, %6.31f, %6.31f", nTSLegID, dX, dY, dZ) ;
AfxMessageBox(strTmp);
}

nLegsStuck++;
GUICalculateLegPositions();}

/* else // this foot couldn't stick{
pCandidate->SetIsPossible(FALSE);
// if 9 single failure at this location, jump out completely:
break;

}*/
}

}
if (nLegsAvailable > 0)
{

if (nLegsStuck < 2)
pCandidate->SetIsPossible(FALSE);

else
pCandidate->SetLegsAttachedRatio((double)nLegsStuck/(double)nLegsAvailable) ;>

nTSLegID=PORT;
// Draw current location (whether abandoned or n o t) :
if (nLegsStuck > 0 SS m_bShowRedraws)
{

// show feet deployed
MenuOnEditLocation(TRUE, FALSE);
MenuOnEditSuctionFoot();
// stow feet

// this seems to produce slightly strange graphics:
// (might need to use full redraw rather than MenuOnEditSuctionFoot? Haven't tried)
// TSStowDeployAllLegs(TRUE);
// MenuOnEditSuctionFoot{);

>)}
PruneList();

// Reset to start position:
WPSetWorkpieceLocation(WORK_PIECE, SvecOrient, SvecOldPos);

TSStowDeployAllLegs(TRUE);
MenuOnEditSuctionFoot();

MenuOnEditLocation(m_bShowRedraws, FALSE);
mbDrawCandidates = TRUE;

return m_posList.GetCount();
}
int CDocking::CheckForReach()
{

double dX, dY, dZ, dlnitialExtend, dlnitialRotate;
VECTOR vecOrient, vecCand, vecOldPos, vecNewPos;
CVector *pvTemp;
CVector vDistance;
char szMsg[STD_STR_LEN], s z B f r [S T D S T R L E N J ;

SysGetExtendRotatePositions(SdlnitialExtend, SdlnitialRotate);
WPGetWorkpieceLocation(WORK_PIECE, SvecOrient, SvecOldPos);
m_bDrawCandidates = FALSE;

POSITION pos = GetFirstCandidatePos();
w h i l e (pos != NULL)
{

CCandidate* pCandidate = GetNextCandidate(pos) ;

// check it:
i f (pCandidate->GetIsPossible())
{

pvTemp = pCandidate->GetPos();
pvTemp—>GetAll(SdX, SdY, SdZ);
MakeVector((LPVECT)SvecCand, dX, dY, dZ);

272

Appendix E: Docking Library Main Source Code

CopyVector(SvecOldPos, SvecNewPos);
// Set the workpiece location to be relative to candidate position:
WorldCoords(SvecNewPos, FALSE);
VectorSubtract(SvecNewPos, SvecCand, SvecNewPos);
WPSetWorkpieceLocation(WORKPIECE, SvecOrient, SvecNewPos);

' MenuOnEditLocation(FALSE, FALSE);

// Let's check at this location (every 1cm for now)
PathSetUpSteps(0.01, FALSE);

double dAccess = 0.0;
double dExtend = 0.0;

BOOL bRotatelncreasing = TRUE;
if (dTSMinDeployRotate > dTSMaxDeployRotate)

bRotatelncreasing = FALSE;

pCandidate->SetAccessValue(0.0, 0.0, 0.0);
while (dExtend <= dTSMaxDeployDistance)
{

double dRotate = dTSMinDeployRotate;
* while { (bRotatelncreasing SS dRotate <= dTSMaxDeployRotate) ||

((bRotatelncreasing SS dRotate >= dTSMaxDeployRotate)){
SysSetExtendRotatePositions(dExtend, dRotate);
GUISetExtendCollPosition();
if (mJbShowRedraws)
{

GUISetScreenUpdate(RECALC_ALL | R E D R A W A L L) ;
MenuOnEditLocation(TRUE, FALSE);

)
dAccess = TaskCheckPath(FALSE);
// Only bother to check for collisions if it has good access
if (dAccess > pCandidate->GetAccessValue())
{

if (dExtend == 0.0 SS dRotate == 0.0)
pCandidate->SetAccessValue(dAccess, dExtend, dRotate);

else
{ / / W e may have caused a boom collision

bJobCollisionDetected = FALSE;
// setup collision arrangement
// (includes ColCheckLinksForContact corrected for boom arrangement)
// (ignore actual arm collisions because configuration is unknown)

// JobCheckForCollision(FALSE);
// Update if not causing collision with boom
if ((CollisionSituation(FALSE))
{

// Note we only store the best access each time so we have
// to redo every check each time
pCandidate->SetAccessValue(dAccess, dExtend, dRotate);

i f (FALSE)// m b S h o w R e d r a w s)
{

// Display to user
LoadString(hlnst, I D S P A T H R E A C H P O S , szBfr, STD STR LEN) ;
sprintf(szMsg, "At %4.21f,%4.21f,%4.21f (E=%4.21f, R=%4.21f)

access is %3.01f%%.", dX, dY, dZ, dExtend, dRotate, dAccess * 100.0);
AfxMessageBox(szMsg, MB_OK);

}
}
else if (m_bShowRedraws)

AfxMessageBox("Collision with ROV (boom)!");
}

}
if (bRotatelncreasing)

dRotate += m_dRotateStep;
else

dRotate -= mdRotateStep;
}
dExtend += mdExtendStep;

}if (pCandidate->GetAccessValue() < mdAc c e p t a n c e L i m i t)
pCandidate->SetIsPossible(FALSE);

)
}
PruneList();

// Reset to start position:
SysSetExtendRotatePositions(dlnitialExtend, dlnitialRotate);
GUISetExtendCollPosition();
WPSetWorkpieceLocation (WORK_PIECE, SvecOrient, SvecOldPos);
GUISetScreenUpdate(RECALC_ALL | R E D R A W A L L) ;
MenuOnEditLocation(mbShowRedraws, FALSE);
m b D r a w C a n d i d a t e s = TRUE;

return m p o s L i s t . G e t C o u n t () ;
>
void CDocking::Serialize(CArchiveS ar)

273

Appendix E: Docking Library Main Source Code

{
// This may be useful for logging
if(a r .IsStoring())
{)

' else
{
}

}

void CDocking::D r a w ()
<

double adPoint[2][3], adN[3], adS[3];
CVector *pvTemp;
CVector vTemp;
int nStartCol, nEndCol;

if (m_bDrawCandidates)
{

f o r (int i=0; i<2; i++)
for(int j=0; j<3; j++)

adPoint[i][j] = 0.0;

// Set up normal and sliding ’vectors':
adN[0] = 0.0; adN[l) = 0.0; adN[2] = 1.0;
a d S [0] = 0.0; adS[l] = 1.0; adS[2] = 0.0;
m v W e l d C o f G . G e t A l l (SadPoint[0]fO], SadPoint{0][1], SadPointf0J[2]);

PlotGetColourRange((LPSTR)"BLUE”, SnStartCol, SnEndCol);

// Iterate through all positions, drawing possible ones:
POSITION pos = GetFirstCandidatePos() ;
w h i l e < pos != NULL)
{

CCandidate* pCandidate = GetNextCandidate(pos);

// check it:
if(pCandidate->GetIsPossible{))
{

pvTemp = pCandidate->GetPos();
vTemp = *pvTemp;
WorldCoords(4vTemp);
vTemp.GetAll(iadPointf1 J 10], SadPoint{1)[1], SadPoint[1][2]);
GUIDisplayCross(adPointfl], adN, adS);

GUIDisplayLine(adPoint, 2, nEndCol);
}

}

void CDocking::DeleteCandidateList()
{

// Delete the list of candidate positions:
while (.'m posList. IsEmpty ())

delete m_posList.RemoveHead{) ;
}
int CDocking::WriteDefinitionFiles()
{

int nErr;

// Initialize();
// CheckForCollisions();
// CheckForReach();
// CheckStickyFeetReach();

nErr = WriteStrengthsFile();
i f (!nErr)

nErr = WriteTemplateFile();
i f (InErr)

nErr = WriteWeightsFile();
i f (InErr)

nErr = WriteLayoutFile{) ;
i f (inErr)

nErr = WriteNetworkFile();
return nErr;

}
void CDocking::PruneList()
{

POSITION po s 1, pos2;
CCandidate* pCand;

// This is based on example code from RemoveAt help
for { posl = mjposList.GetHeadPositionO ; (pos2 = posl) != NULL;)

 ̂ pCand = (CCandidate*)m_posList .GetNext (posl) ;//posl now set to next object
if (!pCand->GetIsPossible())
{ m posList.RemoveAt(pos2);

//

}}

274

Appendix E: Docking Library Main Source Code

delete pCand; // Deletion avoids memory leak.
>}

}
int CDocking::WriteStrengthsFile()
{

CString sFileName, strData;
int nErr=0;

sFileName = "e:\\neuralnw\\data\\phd\\rov.str";
CStdioFile fDef;
CFileException e;
i f (!fDef.Open(sFileName, CFile::modeCreate I CFile:imodeWrite I CFile::typeText, &e)) {

#ifdef DEBUG
afxDump « "File could not be opened " « e . m c a u s e « "\n”;

#endif
}
else
{

strData = "set dlevel l\nget network rov.net\nget weights rov.wts\n";
fDef.WriteString(strData);
strData = "set mode clamp l\nset param estr 1.0\nset param istr 0.2\n";
fDef.WriteString(strData);
strData = "set ncyc 50\nget anneal 2 20 .05 end\nget unames
fDef.WriteString(strData);
/ / ---
// Iterate through all positions, writing name labels of possible ones:
double daPoint[3];

POSITION pos = GetFirstCandidatePos() ;
w h i l e (pos != NULL)
{

CCandidate* pCandidate = GetNextCandidate(pos);

// check it:
if(pCandidate->GetIsPossible())
{

VECTOR vecBasePos;
CVector vBasePos;
double dX, dY, dZ;

// Get ROV position:
WPGetBaseLocation(NULL, SvecBasePos);
GetVector(SvecBasePos, &dX, &dY, &dZ);
vBasePos.SetAll(dX, dY, dZ);

CVector* pvTemp = pCandidate->GetPos();
CVector vTemp;
vTemp = *pvTemp;
WorldCoords(&vTemp);

vTemp += vBasePos;
vTemp.GetAl1(SdaPoint[0], SdaPointll], &daPoint[2]);
StringSetDouble(SstrData, daPoint[0], 3, 2);
fDef.WriteString{ strData+",");
StringSetDouble(&strData, daPointfl], 3, 2);
fDef.WriteString(strData+M,");
StringSetDouble(SstrData, daPoint[2], 3, 2);
fDef.WriteString(strData);
fDef-WriteString(" ");

}
}
//--

// Write labels for extra criteria

fDef.WriteString{"Legs Access"); --
fDef.Close();

}
return nErr;

}
int CDocking::WriteTemplateFile()
{

CString sFileName, strData;
int nErr=0;

sFileName = " e :\\neuralnw\\data\\phd\\rov.tern";
CStdioFile fDef;
CFileException e;
i f (|fDef.Open{ sFileName, CFile::modeCreate I CFile::modeWrite | CFile::typeText, &e))
{

#ifdef DEBUG
afxDump « "File could not be opened " « e.m cause « "\n";

#endif

275

Appendix E: Docking Library Main Source Code

}
else
{

strData = "define: layout\n\n"; fDef.WriteString(strData ;
strData = ” ROV Docking Definition Created by ARM\n";

fDef.WriteString(strData);
strData - " ----------- -

fDef.WriteString(
strData = "$ Possible

strData);
Cycleno $\n";

fDef.WriteString(strData
strData = ” Locations

) ;
updateno $\n”;

fDef.WriteString(strData
strData = "

) ;
cuname $\n" ;

fDef.WriteString(strData
strData = "

) ;
goodness $\n";

fDef.WriteString(strData
strData = "

);
temperature $\n\n

fDef.WriteString(strData);
strData = " Manip Sticky\n";

fDef.WriteString(strData);
strData = " Access Foot\nend\n";

16\n";

strData "rovdock
fDef.WriteString(strData) ;

look 1 $ 0 activation 1 io :
strData "cycleno

fDef.WriteString(strData);
variable 1 $ 1 cycleno 7 i\i

strData = "updateno variable
fDef.WriteString(strData

1 $ 2 updateno 7
) ;
1 \ n " ;

strData = "uname
fDef.WriteString(strData

variable 1 $ 3 cuname
) ;

-10 1.

strData = "goodness floatvar
fDef.WriteString{ strData);
1 $ 4 goodness 7 1.0\n";

strData "temperaturefloatvar
fDef.WriteString(strData

1 $ 5 temperature 7
) ;
1.0\n";

strData = "weight
fDef.WriteString(strData);
matrix 5 $ 0 weight h 4 10.

strData _ "weight
fDef.WriteString(strData);
vector 5 $ 2 uname v 6 1 0

strData = "weight
fDef.WriteString(strData

vector 5 $ 5 uname
) ;

h 4 1 0
/ /

fDef.WriteString(strData) ;

fDef.Close();
}
return nErr;

int CDocking::WriteWeightsFile()
{

CString sFileName, strData, sTmp;
int nErr=0;

sFileName = "e:\\neuralnw\\data\\phd\\rov.wts";
CStdioFile fDef;
CFileException e;
if(! fDef .Open (sFileName, CFile: rmodeCreate I CFile: -.modeWrite I CFile:-.typeText, &e))
{

#ifdef _DEBUG
afxDump « "File could not be opened " << e.mcause << "\n";

#endi f
}
else
{ --

// Iterate through all positions, writing possible ones:
POSITION posl = GetFirstCandidatePos();

// Set up weights for each element
while(posl != NULL)
{ CCandidate* pCandl = GetNextCandidate{ posl);

POSITION pos2 = GetFirstCandidatePos();
// Set up weights for each element
while (pos2 != NULL)
{ CCandidate* pCand2 = GetNextCandidate(pos2);

if(posl != pos2)
StringSetDouble(SsTmp, EXCLUSIVE VALUE, FIELD WIDTH, PRECISION DP) ;

else
StringSetDouble(SsTmp, NO_CONNECTION, FIELD WIDTH, PRECISION^DP);

strData += sTmp;
> // Add pCandl leg values

StringSetDouble(SsTmp, pCandl->GetLegsAttachedRatio() , FIELD_WIDTH,
PRECISION_DP);

strData += sTmp;
// Add pCandl access values
StringSetDoubleUsTmp, pCandl->GetAccessValue() , FIELD_WIDTH,

PRECISIONDP);

276

Appendix E: Docking Library Main Source Code

strData += sTmp;

strData += "\n";
fDef.WriteString(strData);
strData.Empty();}
// Add pCand2 leg values
POSITION pos2 = GetFirstCandidatePos();
w h i l e (pos2 != NULL)
{

CCandidate* pCand2 = GetNextCandidate(pos2);
StringSetDouble(SsTmp, pCand2->GetLegsAttachedRatio(), FIELD WIDTHPRECISION_DP);
strData += sTmp;

}
for (int i=0; i<EXTRA_CRITERIA; i++)
{
StringSetDouble(SsTmp, NO^CONNECTION, FIELDWIDTH, PRECISIONDP);

strData += sTmp; ~
}

strData += "\n";
fDef.WriteString(strData);
strData.E m p t y ();

// Add pCandl access values
pos2 = GetFirstCandidatePos();
w h i l e (pos2 != NULL)
{

CCandidate* pCand2 = GetNextCandidate(pos2);
StringSetDouble(isTmp, pCand2->GetAccessValue(), FIELD WIDTH,

PRECISION_DP);
strData += sTmp;

}
for (i=0; i<EXTRA_CRITERIA; i++)
{
StringSetDouble(&sTmp, NO_CONNECTION, FIELD_WIDTH, PRECISION DP) ;

strData += sTmp;
)

strData += "\n";
fDef.WriteString(strData);
strData.E m p t y ();

// Set up biases for each element
for (i=0; i<m_posList.GetCount{)+EXTRA_CRITERIA; i++)
{

StringSetDouble(SsTmp, DEFAULTBIAS, FIELD_WIDTH, PRECISION_DP);
strData += sTmp;

}
strData += "\n";
fDef.WriteString(strData);
//--
fDef.Close() ;

}
return nErr;

}
int CDocking::WriteLayoutFile()
{

CString sFileName, strData, sTmp;
int nErr=0, nElements = m p o s L i s t .GetCount();

sFileName = "e:\\neuralnw\\data\\phd\\rov.loo";
CStdioFile fDef;
CFileException e;
if(!fDef.Open(sFileName, CFile::modeCreate I CFile:imodeWrite I CFile::typeText, &e))
{

#ifdef DEBUG
afxDump << "File could not be opened " << e.m cause << "\n";

#endif
}
else
{ //--

// Iterate through all positions, writing possible ones:
StringSetlnt(SstrData, LAYOUTROWS);
strData += " ";
StringSetlnt(SsTmp, LAYOUT_COLUMNS);
strData += sTmp;
strData += "\n";
fDef.WriteString(strData);
strData.Empty();

// Set up weights for each element
for (int i=0; i<LAYOUT_ROWS; i++)
{

for (int j=0; j<LAYOUT_COLUMNS; j++)

277

Appendix E: Docking Library Main Source Code

{
if(j>=LAYOUT_STARTPOS){

// Do main row of nodes
if(i==0 && j<LAYOUT_STARTPOS+nElements)

StringSetlnt(SsTmp, j-LAYOUT_START POS, 3);
// Do first extra criteria

else if (i==LAYOUT_EXTRAPOS && j==LAYOUT_STARTPOS)
StringSetlnt(SsTmp, nElements, 3);

//Do second extra criteria
else if (i==LAYOUT_EXTRAPOS && j==LAYOUT_STARTPOS+15)

StringSetlnt(SsTmp, nElements+1, 3);
else

sTmp = "
}
else

sTmp = "
strData += sTmp;

}
strData += "\n";
fDef-WriteString(strData);
strData.Empty();

/ /----------
fDef.C l o s e (;

}
return nErr;

int CDocking::WriteNetworkFile()
{

CString sFileName, strData, sTmp;
int nErr=0, nElements = m posList-GetCount() ;

sFileName = "e:\\neuralnw\\data\\phd\\rov.net";
CStdioFile fDef;
CFileException e;
if(!fDef.Open(sFileName, CFile::modeCreate I CFile::modeWrite | CFile::typeText, &e
{

#i fdef DEBUG
afxDump << "File could not be opened " << e.mcause << "\n";

#endif
}
else

strData = "definitions:\n";
fDef.WriteString(strData);
strData.Format((LPCTSTR)"nunits %d\n", m_posList.GetCount()+EXTRA CRITERIA) ;
fDef.WriteString(strData);
strData.Format((LPCTSTR)"ninputs %d\n", m_posList.GetCount()+EXTRA_CRITERIA) ;
fDef-WriteString(strData);
strData.Format((LPCTSTR)"nupdates %d\n", m posList-GetCount()+EXTRA CRITERIA) ;
fDef-WriteString(strData);
strData = "end\nnetwork:\n" ;
fDef.WriteString(strData);
//--
// Iterate through all positions, writing position for weights:
for (int i=0; i<m_posList-GetCount()+EXTRACRITERIA; i++)
{

strData.Empty();
for (int j=0; j<m_posList.GetCount()+EXTRACRITERIA; j++)
{

sTmp =
strData += sTmp;

}
strData += "\n";
fDef-WriteString(strData);

}
strData = "end\nbiases:\n";
fDef-WriteString(strData);
// Iterate through all positions, writing position for biases:
strData.Empty();
for (i=0; i<m_posList.GetCount()+EXTRACRITERIA; i++)
{

sTmp =
strData += sTmp;

}
strData += "\nend\n";
fDef-WriteString(strData);

//--
fDef-Close() ;

}
return nErr;

278

Appendix E: Docking Library Main Source Code

int CDocking::CloseDown()
{

DeleteCandidateList();
return 0;

}
void CDocking::WorldCoords(CVector * pVec, BOOL bForward){

if (bForward)
*pVec = *pVec + m_vWeldCofG;

else
*pVec = *pVec - m_vWeldCofG;}

void CDocking::WorldCoords(LPVECT pVec, BOOL bForward){
double dX, dY, dZ;
VECTOR vecTemp;

mvWeldCofG.GetAll(&dX, &dY, &dZ);
MakeVectorf (LPVECT)&vecTemp, dX, dY, dZ);
if (bForward)

VectorAdd(pVec, 4vecTemp, pVec);
else

VectorSubtract(pVec, svecTemp, pVec);}
BOOL CDocking::CollisionSituation(BOOL bReport)
{

COLOBJECT ccTempCollisionObject;
int nContactMade=0;
char szContactText[96];
char szContactl[32], szContact2[32];
BOOL bCollision = FALSE;

// for each object in workpiece (mostly cylinders)...
for (int i=nBaseCollisionObjects; i<ColGetNCollisionObjects(); i++)
{

ColGetCollisionDetails(i, 4ccTempCollisionObject);
if (ccTempCollisionObject.nColObjectType == COLCUBOIDOBJECT)

break; // we cant yet check 'other fixtures' against other cuboids

// ...check against each object in ROV & toolskid
for (int j=0; j<nBaseCollisionObjects; j++)
{

ColGetCollisionDetails (j , ^.ccTempCollisionObject) ;
if (ccTempCollisionObject.nColObjectType == COLCUBOID_OBJECT)
{

nContactMade = ColCheckCylinderAgainstCuboid(i, j);
if (nContactMade == 3)
{

AfxMessageBox("Error in collision handling");
return 0;

}
else if (nContactMade == 1 I I nContactMade == 2)

break;
}
else
{

nContactMade = ColCheckContactBetweenCylinders(i, j);
if (nContactMade == 3)
{

AfxMessageBox("Collision handling", MB_OK);
return 0;

}
else if (nContactMade == 1 I I nContactMade == 2)

break;
}

}
i f(nContactMade==l 11 nContactMade==2)
{

bCollision = TRUE;
if (bReport)
{

lstrcpy((LPSTR)szContactl,
(LPSTR)ccTempCollisionObject.szColObjectName);

ColGetCollisionDetails(i, SccTempCollisionObject) ;
lstrcpy((LPSTR)szContact2,

(LPSTR)ccTempCollisionObject.szColObjectName);

wsprintf((LPSTR)szContactText, (LPSTR)"%s and %s"
(LPSTR)szContactl,

(LPSTR)szContact2);
AfxMessageBox)(LPCTSTR)szContactText, MBOK);

}
break;

}
279

Appendix E: Docking Library Main Source Code

}
return bCollision;}

void CDocking::ToggleRedraws()
{

if (mbShowRedraws)
mbShowRedraws = FALSE;

else
m_bShowRedraws = TRUE;

}

void CDocking::ChangeSettings()
{

CDockSettingsDlg dig;

dlg.m_dXStart = OfRound(m_dXStart, 3);
dig.mdYStart = GMRound(mdYStart, 3);
dig.m_dZStart = GMRound(m_dZStart, 3);
dlg.mdXEnd = GMRound(mdXEnd, 3);
dlg.mdYEnd = GMRound(mdYEnd, 3);
dig.m_dZEnd = GMRound(m_dZEnd, 3);
dlg.mdGridSpacing = m_dGridSpacing;
dlg.mdExtendStep = mdExtendStep;
dig.m_dRotateStep = 180.0 * (m_dRotateStep/PI);
dlg.mdAcceptanceLimit = m_dAcceptanceLimit * 100.0;

// Show dialog
if (dig.DoModal() == IDOK)
(

m dXStart = dlg.m_dXStart;
mdYStart = dlg.mdYStart;
mdZStart = dig.mdZStart;
mdXEnd = dlg.m_dXEnd;
m_dYEnd = dlg.ra_dYEnd;
m_dZEnd = dlg.mdZEnd;
m__dGridSpacing = dig ,m_dGridSpacing;
mdExtendStep = dlg.mdExtendStep;
m_dRotateStep = PI * (dig.m_dRotateStep/180.0) ;
m_dAcceptanceLimit = dig.m_dAcceptanceLimit/100 . 0 ;

}

void CDocking::ShowResults()
{

CDockResultsDlg dig;
double dRoll, dPitch, dYaw;
CVector vTemp;
int i=l;
MATRIX matBase;

GetVector(&m_vecBaseOrient, SdRoll, SdPitch, sdYaw);
VectorGetRotationMatrix(dRoll, dPitch, dYaw, SmatBase);

POSITION pos = GetFirstCandidatePos() ;
while(pos != NULL)
{

CCandidate* pCandidate = GetNextCandidate; pos);

// check it:
if(pCandidate->GetIsPossible ())
{

double dX, dY, dZ;
CString strPosition;
VECTOR vecTemp;

vTemp = * (pCandidate->GetPos()) ;
// Convert to ROV coords
WorldCoords(SvTemp);

// Convert to rig coords
vTemp.GetAll(&dX, &dY, &dZ);

MakeVector(&vecTemp, dX, dY, dZ);
MatrixVectorMultiply(SmatBase, &vecTemp, svecTemp);
VectorAdd(SvecTemp, SmvecBasePos, SvecTemp);
GetVector(SvecTemp, &dX, &dY, &dZ) ;

strPosition.Format("%2d: %5.21f, %5.21f, %5.21f. E=%5.21f, R=%d: Access = %d%%. Legs
= %5 . 21 f ", i, dX, dY, dZ,

pCandidate->GetExtend(),
(int) (180.0*(pCandidate->GetRotate()/PI)),
(int) (100.0*pCandidate->GetAccessValue()),
pCandidate->GetLegsAttachedRatio()) ;

dig.msaPositions.Add(strPosition);
i + + ;
)

}
dig.DoModal();

)
280

Appendix E: Docking Library Main Source Code

BOOL CDocking::AttachmentLegsAvailable()
t

BOOL bLegsAvailable = FALSE;
for(nTSLegID=PORT; nTSLegID<=UPPER; nTSLegID++)
' {

if(bTSLegAvailable[nTSLegID])
{

bLegsAvailable = TRUE;
}

}

return bLegsAvailable;
}

281

Appendix E: Docking Library Main Source Code

Candidate.h

/* File Name
/* Class Name
/* Purpose
/* Author
/* Written on

/* FJLE CANDDATE.H */
/ * --*/

\Include\Canddate.h */
CCandidate */
Class header file for possible docking positions */
T.Larkum */
08/12/95 */

/ * --* /

/* Copyright (c) Technical Software Consultants Ltd. 1995. */
/ * --* /

/* HISTORY */
/ * --*/
/* Changed by Date Reason */
/ * * /
/ * * /

#ifndef INCCAND
idefine _INC_CAND

/ * -- * /
/* INCLUDE FILES */
/ * -- * /

#include <vector.hpp>
/ * -- * /

/* CLASS DEFINITION */
/ * -- * /

class CCandidate : public CObject
{
public:

CCandidate();
CCandidate(CVector* pvTemp) ;
-CCandidate();

protected:
DECLARE_SERIAL(CCandidate)

// Attributes
protected:

CVector m_vPos;
BOOL mbPossible;
double mdReachValue; // Percentage of weld reachable
double m_dExtend, m_dRotate; // at this arrangement
double m_dLegsAttachedRatio;

// Operations
public:

void Initialize();
CVector* GetPos();
BOOL GetlsPossible();
void SetlsPossible(BOOL bFlag);

// Helper functions
protected:

public:
double GetLegsAttachedRatio();
void SetLegsAttachedRatio(double dRatio);
double GetRotate();
double GetExtend();
double GetAccessValue();
void SetAccessValue(double dValue, double dExtend, double dRotate);
virtual void Serialize(CArchiveS ar);

} ;

iendif // _INC_CAND

282

Appendix E: Docking Library Main Source Code

Candidate.cpp
/******************■*****•*•*■*****■*****************■***-■**■*******■*******■*■*********■* j
/* RILE CANDDATE.CPP */
/ * * /

/* File Name : \Docking\Canddate.cpp */
/* Class Name : CCandidate */
/* Purpose : Implementation of the CCandidate class */
/* - a Candidate is a possible docking position */
/* Author : T.Larkum */
/* Written on : 11/12/95 */
/*-- */
/* Copyright (c) Technical Software Consultants Ltd. 1995. */
/ * --* /

/* HISTORY */
/ * --* /

/* Changed by Date Reason */
/ * * /
/ * * /

/ * -- * /

/* INCLUDE FILES */
/ * -- * /

#include <stdafx.h>

#include <canddate.h>
/ * ---* /

/* MFC MACROS */
/ * ---* /

IMPLEMENTSERIAL(CCandidate, CObject, 1);
/ * ---* /

/* CLASS IMPLEMENTATION */
/ * -- * /

CCandidate::CCandidate()
{

Initialize ();
}

CCandidate::CCandidate(CVector* pvTemp)
{

mvPos = *pvTemp;
Initialize ();

>
CCandidate::-CCandidate()
{}
void CCandidate::Initialize ()
{

m_bPossible = TRUE;
mdReachValue = 0.0;
m_dExtend = 0.0;
m_dRotate = 0.0;
m_dLegsAttachedRatio = 0.0;

}

CVector* CCandidate::GetPos()
{

return (CVector*)&m_vPos;
}

void CCandidate::SetlsPossible(BOOL bFlag)
{

mbPossible = bFlag;
}
BOOL CCandidate::GetlsPossible()
f

return m_bPossible;
}

void CCandidate::Serialize(CArchiveS ar)
{ // This may be useful for logging

if(ar.IsStoring())
{
}
else
{
}

283

Appendix E: Docking Library Main Source Code

void CCandidate::SetAccessValue(double dValue, double dExtend, double dRotate)
{

m_dReachValue = dValue;
m_dExtend = dExtend;
m_dRotate = dRotate;

}
double CCandidate::GetAccessValue()
{

return m_dReachValue;
}

double CCandidate::GetExtend()
{

return m_dExtend;
}

double CCandidate::GetRotate()
{

return m_dRotate;
}

void CCandidate::SetLegsAttachedRatio(double dRatio)
{

m_dLegsAttachedRatio = dRatio;
}

double CCandidate::GetLegsAttachedRatio()
{

return m__dLegsAttachedRatio;

284

APPENDIX F:
OFFSHORE OPERATIONS

F.1. Mobilisation

The Shelf Supporter with the ROV crew and NICS toolskid on board (see Figure F.l)

left port on 27th August to transit to NRA, arriving about midnight. The next day the

Triton was tested in the water and suffered the first o f a number o f faults (TMS winch,

system oil leak, compensator leak); the Supporter was also moved off station a number

of times for other work. Since the FATs Covus had developed a new high pressure

water cleaning system (to allow the removal o f hard and soft marine growth from the

weld areas before inspection) and this was initially fitted to both NICS manipulators.

Finally on 1st September the Triton was deployed carrying the full NICS skid

configured for HP water cleaning and the first system check with the ARM Software

was conducted; unfortunately this was cut short by another oil leak.

Figure F.l - NICS on deck, fitted with twin HP water jets, awaiting deployment

On 2nd September the system was deployed again (see Figure 9.8) and this time

successfully flew down to node 4E2, docked on, and successfully conducted automated

weld cleaning from clock positions 1.00 to 6.30 and 8.00 to 10.00.

285

Appendix F: Offshore Operations

F.2. Node 4E2, Weld 8

The .next day, 3rd September, the system was reconfigured for ACFM inspection and

launched overboard at 1400 (see Figure F.2). At 1515 it was in position, docked on 4E2,

and began inspecting - a significant moment, the first operational use of the ARM

Software after a decade in development and also believed to be the first operational

robotic deployment o f the ACFM array probe inspection system.

Figure F.2 - ARM NICS System deploying into the water

By 2000 it had successfully inspected from 2.30 to 6.00 on the chord toe (highlighted in

Figure F.3) and 3.00 to 5.00 on the brace toe. Following a wrist rotation problem the

system was recovered. After repair it was redeployed back onto the node at 0440 on 4th

September, when it inspected from 6.00 to 10.30 on the chord toe and 6.30 to 9.00 on

the brace toe. Early the next morning, 5th September, it inspected 8.30 to 10.30 on the

brace toe, then 1.30 to 2.30 on the chord toe, then 1.30 to 3.00 on the brace toe, after

which it was withdrawn and flown to node 4G2 to conduct manual cleaning.

286

Appendix F: Offshore Operations

Figure F.3 - ARM view of node 4E2, 2.30 - 6.00 on weld highlighted

F.3. Node 4G2, Weld 5

ACFM inspection on 4G2 began in the early afternoon o f 7th September, with the

toolskid clamped to an anode, achieving 7.00 to 9.00 on the chord toe and 7.30 to 8.30

on the brace toe, then the next day 2.30 to 5.00 on both toes (the final position is shown

in Figures 9.9 and 9.10).

To get beyond 5.00 the right-angled probe mount was fitted on 10th September and this

allowed inspection from 5.00 to 7.00 on the chord toe (the 5.30 position is shown in

Figure F.4) and 5.00 to 7.30 on the brace toe.

287

Appendix F: Offshore Operations

Figure F.4 - Inspection o f 5.30 position on node 4G2 using right-angled probe
mounting

F.4. Node 3C2, Weld 1

Manual cleaning o f Weld 1 (brace L317) on 3C2 took place on the morning of 9th

September. Unfortunately while manoeuvring the ROV around with the claw open, it

collided with the structure causing one o f the claw hydraulic hoses to burst. This caused

a massive oil leak, forcing an emergency recovery o f the ROV which succeeded just

before it shut down through lack o f oil. Its recovery did, however, provide a rare

opportunity to see the large docking claw in the open position and the ROV in its 'slid

back' position (see Figure F.5).

288

Appendix F: Offshore Operations

Figure F.5 - ARM NICS System showing the underside claw and ROV in rear position

ACFM inspection o f the weld began late that night with the ROV sitting on the brace to

the 'left' o f L317 (as viewed when looking at the weld). By 3am the next day the weld

had been inspected from 6.45 to 11.30 on the chord toe (see Figures F.6 and F.7), and

6.45 to 8.00 and 10.30 to 11.15 on the brace toe.

Figure F.6 - Inspection o f 11 o'clock position on node 3C2
289

Appendix F: Offshore Operations

In the afternoon o f the 10th the ROV was flown down again, with the ACFM probe

swapped over to the left manipulator, and it docked onto the brace to the 'right' of L317.

From there it was possible to inspect 11.30 to 1.30 on the chord toe; it was not possible

to inspect the brace toe because o f another brace intersecting the node just above the

weld.

Figure F.7 - ARM view o f inspection o f 11 o'clock position

The interstitial segment o f the weld between this brace and the next one to the 'right'

was also inspected (see Figure F.8), approximately equivalent to 1.00 to 3.00 on the

brace weld.

290

Appendix F: Offshore Operations

Figure F.8 - Inspection o f interstitial weld on node 3C2

At 2200 on 10th September the NICS system was recovered from node 4G2 and the

operational work came to a close.

291

APPENDIX G:
THESIS CD-ROM

Contents

The CD-ROM contains the following items:

Root directory:

• Setup.exe: a directly installable version of the NNW neural network software

• NeuralNW.exe: the NNW executable which can just be copied onto a PC to run

Data directory:

• Manual test definition files

• ARM docking library test definition files

• Tic-tac-toe test definition files

Docking directory:

• ARM docking library source code

NeuralNW directory:

• Full source code to NNW (approximately 300 files)

292

