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Abstract

Early reports indicated cell engraftment from bone marrow transplants into non- 

hematopoietic tissues in mouse to mouse and in human allogeneic bone marrow 

transplants. To investigate the developmental potential o f human stem cells I used 

xenotransplantation of stem cells purified from cord blood into a mouse model. Human 

stem cells introduced into the NOD/Scid mouse after partial myeloablation repopulate 

the bone marrow and contribute to the hematopoietic system of the mouse. Engraftment 

into the bone marrow was measured by FACS and human genetic material was found in 

the spleen, skin, lung and liver. Engraftment in the liver was studied with a variety o f 

methods, ranging from PCR based assays to FISH analysis and immunohistochemistry. 

To allow better identification o f human cells transduction with a lentivirus carrying the 

GFP gene was used. Liver damage has been suggested as one o f the factors influencing 

homing of stem cells to the liver and transdifferentiation of bone marrow cells into 

hepatocytes. To assess the role of tissue damage a model o f severe liver injury induced 

by CCL was utilised. Two stages o f damage might be important in this context, damage 

during the process of homing, and damage during transdifferentiation both o f which 

were studied.

I demonstrate that stem cell homing to the liver is significantly increased upon liver 

injury. Human albumin and a-anti-trypsin messenger RNA is expressed in the livers o f  

some animals by RT-PCR and large GFP positive hepatocytes and hepatocytes staining 

with HepPar-1, thought to be specific for human hepatocytes, are present.

However, transdifferentiation defined as the emergence o f mature human hepatocytes 

after bone marrow transplantation could not be found. A variety o f methods used to 

determine the genetic identity in GFP positive hepatocytes only identified remnants of 

the human genome. In addition to small amounts o f human DNA the murine Y 

chromosome and the murine TNFa locus were readily detected in these hepatocytes.

I conclude that transdifferentiation of human stem cells to a mature hepatocyte 

phenotype does not occur in the NOD/Scid model o f bone marrow transplantation even 

after severe CCI4  induced liver damage. Instead human cells most probably of 

haematopoietic origin fuse with resident hepatocytes to give rise to mixed 

heterokaryons expressing some, but not all markers o f human hepatocytes. To achieve 

true transdifferentiation a different, more chronic type o f tissue damage, or a better 

defined stem cell population might be required.
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Introduction

The haematopoietic system  

Overview

The haematopoietic system produces all cells of the blood lineage. To compensate for 

the finite lifespan of mature haematopoietic cells a constant replenishment o f dying 

cells is necessary. The turnover o f cells in the haematopoietic system in a human 

weighing 70 kg can be estimated to be close to 1 trillion cells per day, including 200 

billion erythrocytes and 70 billion neutrophilic leukocytes. This remarkable cell 

renewal process is supported by a small population o f bone marrow cells termed 

haematopoietic stem cells

Bone marrow is derived from the mesoderm (Zon 1995) and consists of a 

haematopoietic cellular component supported by a microenvironment composed of 

stromal cells embedded in a complex extracellular matrix. Two distinct but co-existing 

populations of stem cells have been identified in the bone marrow, the haematopoietic 

stem cell (HSC), and the mesenchymal stem cell (MSC).

Haematopoietic Stem Cells

The haematopoietic stem cell (HSC) is the only stem cell routinely used in the clinic. 

Through the successful use of HSC in bone marrow transplantation it became the most 

widely studied human stem cell population. As depicted in Figure 1 the HSC is the 

prototype o f a lineage specific multipotent stem cell with well defined source and 

differentiation potential. The HSC is able to self renew, and to give rise to differentiated 

progenitors of the lymphoid and myeloid lineage. The lymphoid progenitor gives rise to 

B, T and NK cells whereas the myeloid lineage provides erythrocytes and platelets from 

the CFU-E/Mega, and monocytes, neutrophiles, eosinophiles and basophiles from the 

CFU-G/M. (Figure 1) HSC can be identified based on surface markers and self-renewal 

capacity. The HSC activity in bone marrow is contained within the lineage negative c- 

Kit+/Sca-1+ population (Uchida et al. 1992). When this subset of cells from the bone 

marrow was injected into lethally irradiated mice it gave rise to long-term multi-lineage 

engraftment (Smith et a l  1991). The characterization o f human haematopoietic stem
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cells was traditionally done in vitro due to the lack of a suitable experimental system 

and host organism. Much progress has been made after the introduction o f the 

NOD/Scid mouse model (Larochelle et al. 1996) where the severe combined 

immunodeficiency gene was introduced into mice of the non obese diabetic strain 

giving rise to a severely immunocompromised mouse model capable of reliably 

engrafting human cells. Using this model it could be shown that HSC reside in the 

CD34+ (Larochelle et al. 1996; Bhatia et al. 1997) and CD34'(Bhatia et al. 1998) 

fraction of human bone marrow.
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Figure 1 Schematic representation of human haematopoiesis

M esenchym al stem  cells

Mesenchymal stem cells (MSC) are clonogenic stromal cells of bone marrow origin and 

were first described by Friedenstein et al (Friedenstein et al. 1974). The inability to 

sustain and expand haematopoietic stem cells, and the ethical issues hampering the use 

of embryonic stem cells have created great interest in mesenchymal stem cells. MSC 

have the ability to self renew and differentiate into multiple tissue lineages. They are
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easily transferable making them an interesting tool in gene therapy. MSC have been 

isolated from human adult and foetal peripheral blood, bone marrow and recently from 

several foetal tissues (Campagnoli et al. 2001). Adult bone marrow is the most reliable 

source for the generation and isolation of MSC. Human MSC are characterised as non- 

haematopoietic cells lacking CD45 which express VCAM-1 (CD 106), SH2 (CD 105), 

SH3/SH4(CD73) (Pittenger et al. 1999). MSC grow in plastic dishes as an adherent 

layer, and unlike ES cells they have a finite lifespan o f approximately 40-50 cell 

doublings (Colter et al. 2000). MSC can differentiate into multiple tissue types in vitro 

and in vivo, and can support haematopoiesis. The differentiation of MSC into 

adipocytes, chondrocytes and osteocytes under special culture conditions in vitro was 

shown by Pittenger et al (Pittenger et al. 2000) and by Anjos-Afonso et al (Anjos- 

Afonso et al. 2004). Figure 2A demonstrates in vitro differentiation of MSC into 

adipose tissue, cartilage, bone, muscle, astrocytes and neurons. Jiang et al (Jiang et al. 

2002) demonstrated that MAPC, a cell type closely related to MSC adopt the phenotype 

of many different tissues both in vitro and in vivo. These investigators injected a single 

ROSA26 derived murine MAPC into a blastocyst embryo which was then transferred to 

a foster mother until the litter was bom. ROSA26 cells have the lacZ gene that 

transcribes p-galactosidase, therefore donor MAPC and its progeny could be identified 

by P-gal staining. Histological analysis isolated skeletal myoblasts, cardiac myoblasts, 

endothelium, lung, gut, skin epithelia and neuroectodermal cells from MAPC donor 

origin. (Figure 2B)
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Figure 2 Differentiation potential of mesenchymal stem cells
Left Panel: In vitro differentiation. Unstimulated eGFP-MSCs under UV light (A). After 14 days of 
induction, cells were fixed and stained with Oil Red O (B, C). Chondrogenic differentiation was revealed 
with Safranin O staining which reveals proteoglycans and glycosaminoglycans (E) with a representative 
section of the micropellet viewed under the fluorescent microscope before staining (D). The osteogenic 
potential o f MSCs was determined by staining for alkaline-phosphatase (F) and calcium production (G): 
stimulated eGFP-MSCs (black bar), non-stimulated eGFP-MSCs (grey bar), control-water (light grey 
bar). eGFP expression alone on myocyte-like cells (H). Myogenic differentiation was confirmed by 
staining with dystrophin-Cy3 (I, J) and FTM-Cy3 (K). eGFP expression alone on astrocyte- (L) and 
neuronal-like (O) cells. Neuronal differentiation was confirmed by staining with GFAP-Cy3 (M, N) and 
Tau-TRITC (O). Overlay of eGFP and dystrophin (J), eGFP and FTM (K) and eGFP with GFAP (N). 
Cells were counterstained with haematoxylin (B, C, F), DAPI (H-J, L-N) or methyl green (E). 
Magnifications: xlOO (A, B, F); x200 (D, L-N); x400 (C, E, H-K, O) (Anjos-Afonso et a l  2004). Right 
Panel: In vivo differentiation. X-Gal staining of tissue sections after injection o f ROSA26 beta- 
galactosidase positive MSC into blastocysts o f wildtype hosts. Brain (a), skin (b), muscle (c), heart (d), 
liver (e), intestine (f), kidney (g), spleen (h). Uninjected mouse (i) and blastocysts chimera (j). Taken 
from (Jiang et al. 2002).
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Development of the haematopoietic system

In humans, the first signs of haematopoiesis occur in the yolk sac during the 3rd week 

of embryogenesis. This first haematopoiesis is called primitive haematopoiesis and 

produces embryonic nucleated erythrocytes. Progenitors from primitive haematopoiesis 

colonise the liver and also the bone marrow for accelerated procurement of vital 

myeloerythroid blood cells (Moore et a l  1970). True haematopoietic stem cells are not 

part of primitive haematopoiesis and arise separately in a different environment. At 

about 3-4 weeks of gestation clusters o f haematopoietic cells emerge in the ventral 

endothelium of the human embryonic arteries prior to the onset of circulation between 

the embryo proper and the yolk sac (Tavian et a l 1996; Tavian et a l  1999). These cells 

form the basis of definitive haematopoiesis. From the aorta-gonads-mesonephros 

(AGM) region these cells migrate to the liver and replace primitive macrocytes (large 

definitive enucleated erythrocytes) already hosted there. This is called extramedullary 

haematopoiesis. At about the 4th month of gestation the bone marrow spaces begin to 

fill with haematopoietic cells and become important haematopoietic organs, later taking 

over to become the final site o f haematopoiesis of the adult organism. However, if  

sufficient stress is placed on the adult, extramedullary haematopoiesis again contributes 

to haematopoiesis and becomes a compensatory mechanism.

Assays

Various methodologies exist to measure the frequency of haematopoietic stem cells or 

progenitors within a given population of cells. They include in vitro clonogenic assays, 

in vitro phenotyping and in vivo transplantation assays. However, the main standard by 

which every haematopoietic stem cell is measured is its ability to continuously and 

long-term repopulate all blood lineages, myeloid and lymphoid, o f an irradiated 

recipient after bone marrow transplantation. This fundamental activity can only be 

adequately shown in chimeric models where a distinction between cells o f the host and 

the transplanted cells is possible. Upon injection of haematopoietic stem cells into 

lethally irradiated recipients two features of the stem cells are crucial for survival o f the 

host. The stem cells have to be able to rescue the recipient animal from the effects of 

the total body irradiation in the short term, and they have to be able to provide long
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term engraftment for sustained survival. The repopulation assay is the gold standard to 

demonstrate the long-term repopulating ability of haematopoietic stem cells.

In vitro assays

Long-term bone marrow cultures showed that HSC could be cultured on pre-established 

stromal cell layers mimicking the natural environment o f HSC in close vicinity of 

supporting stroma (Dexter et a l  1977). From this observation assays which analyse the 

formation of colonies were derived. In these assays the frequency and nature of colony 

forming cells (CFC’s) is tested (Eaves et al. 1992). The CFC is a cell that is already 

committed to a specific myeloid lineage and has limited proliferative potential. An 

assay which demonstrates more primitive cells is the assay for long term culture 

initiating cells or LTC-IC. Using a different endpoint the long-term culture initiating 

cell (LTC-IC) assay tests for the presence o f cells capable to initiate haematopoiesis on 

a stromal cell layer for up to 60 days (Sutherland et al. 1989). In a modified protocol 

some cells grew underneath the supporting stromal layer forming the so called 

cobblestone areas (Ploemacher et al. 1991). It could be demonstrated that the frequency 

of cobblestone area forming cells (CAFCs) showed good correlation with different 

assays, like colony forming unit in culture, colony forming units in the spleen and 

marrow repopulating ability. To assay even more primitive cells than the LTC-IC the 

protocol was further modified and used to identify a small subpopulation o f LTC-IC 

termed the extended-LTC-IC which is able to support haematopoiesis on stroma for up 

to 100 days (Hao et al. 1995). However, since growth conditions o f human LTCs do not 

support the development of all blood lineages and these assays are unable to assess 

repopulating capacity, little is known about the relationship o f LTC-ICs and pluripotent 

stem cells. Ultimately, the only conclusive assay for stem cells is their ability to 

reconstitute the entire haematopoietic system after transplantation.
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M ultipotent Progenitor C om m itted Progenitor

|
SRC E-LTC-IC LTC-IC Colony Forming Cell (CFQ

Figure 3 In vitro assays for stem and progenitor cells

While no in vitro assay exists to measure true stem cells, very early progenitor cells can 
be measured with the E-LTC-IC (extended long-term-culture initiating cell) assay, 
which highlights a very primitive subpopulation of the LTC-IC (long-term-culture 
initiating cell) population. Progenitors of various stages of differentiation can be 
measured in the CFC (colony forming cell) assays.

P henotyp ic A ssays

Recent advances in flow cytometry have helped immensely in defining the phenotype 

of primitive haematopoietic stem cells. While many different sorting strategies have 

been tested over time, a general consensus has emerged that stem cells lack lineage 

specific markers, i.e. markers identifying mature granulocytes, macrophages B and T 

cells and reticulocytes. Another very important marker for stem cells is CD34. It was 

first identified as a haematopoietic cell-surface antigen using the early human 

myeloblastic cell line KG la  which highly expresses CD34 and displays a strong 

potential for myeloid colony-forming cells (Civin et al. 1984). CD34+ cells have been 

shown to engraft in baboons (Berenson et al. 1988) and have since been used both for 

autologous and allogeneic transplantations in human medicine, resulting in a rapid 

reconstitution of all blood lineages (Civin et al. 1996; Link et al. 1996). Human CD34+ 

and Lin'CD34+ cells have also been found to engraft in foetal sheep and NOD/Scid
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mice (Srour et al. 1993; Bhatia et al. 1997) which led to the concept that human HSCs 

are positive for the CD34 antigen. In the mouse model, murine CD34+ cells have been 

shown to contain both functional progenitors and HSCs, indicating that CD34 is also an 

HSC marker in mice (Krause et al. 1994; Morel et al. 1996). Despite the versatility of 

CD34 to identify haematopoietic stem cells its function is unknown and CD34 knockout 

mice develop normally and show a regular haematopoietic profile (Cheng et al. 1996). 

The notion that haematopoietic stem cells are generally CD34+ was first challenged by 

Osawa et al (Osawa et al. 1996). Transplantation o f single CD34 c-kit+Sca-l+Lin' cells 

resulted in multilineage repopulation, contributing up to 85% of peripheral blood cells 

in host mice, whereas similarly purified but CD34+ cells revealed early, but unsustained 

multilineage haematopoietic reconstitution. Goodell et al purified a stem cell population 

identified by a distinct dye-exclusion profile (SP) from mouse bone marrow, and 

showed that this population is also CD34' (Goodell et al. 1997).

To explain the different findings with regard to CD34 expression o f stem cells Sato et 

al. exposed CD34' HSCs to early acting cytokines like interleukin-11 and stem cell 

factor in culture, resulting in a population of CD34+ cells. When these cells were 

injected into lethally irradiated mice they generated long-term multilineage 

engraftment, suggesting that CD34- cells can develop into CD34+ cells and retain their 

HSC capacity (Sato et al. 1999). In the NOD/Scid mouse model Bhatia et al. could 

show engraftment of Lin'CD34'CD38' stem cells purified from human cord blood 

(Bhatia et al. 1998). While these cells had low clonogenic activity in vitro, they 

regenerated multilineage haematopoiesis in mice. It could also be shown that CD34' 

cells give rise to CD34+ cells resulting in a greater repopulating activity in cytokine- 

supported short-term cultures, whereas CD34+ cells lost their stem cell potential in 

culture. Using in utero transplantation into pre-immune sheep, Zanjani et al. observed 

engraftment of human haematopoietic cells with Lin'CD34' bone marrow cells (Zanjani 

et al. 1998). Human CD34+ cells could also be observed in sheep transplanted with 

CD34' cells, again suggesting that CD34' HSC can give rise to CD34+ cells in vivo. 

Human Lin’CD34’CD38" cells from normal BM and G-CSF-mobilised peripheral blood 

do not grow well in methylcellulose, but proliferate and differentiate rapidly into 

erythrocytes, granulocytes and megakaryocytes in serum-free culture. They also turn 

into CD34+ cells after 10 days of culture and significantly increase their colony forming 

potential (Fujisaki et al. 1999). Nakamura et al. show that CD34‘ cord blood cells with 

initial low colony forming potential gain the ability to form colonies during 7  days of
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culture, coinciding with the formation of CD34+ cells (Nakamura et al. 1999). While 

the original population of CD34' cells had only low repopulation activity this activity 

was increased after culture and the cells could repopulate the bone marrow of 

NOD/Scid mice and also give rise to CD34+ cells. This supports the theory that CD34' 

cells are more primitive than CD34+ cells. In the sheep model Zanjani et al. reported 

that CD34" cells showed significantly higher levels o f engraftment than CD34+ cells 15 

months post transplantation (Zanjani et a l  2003). The phenotype o f CD34 and CD38 

expression on human cord blood cells is shown in Figure 4d.

The apparent lack of markers on true stem cells made it necessary to find other ways of 

identification. One functional property of stem cells seems to be the ability to efficiently 

extrude dyes from the cytoplasm. This property may be beneficial for stem cells to 

protect them from toxins like chemotherapy and can be exploited for purification. The 

dye Hoechst 33342 gets efficiently extruded from a stem cell population leading to a 

characteristic picture in the FACS plot when the emission o f the dye is plotted in two 

dimensions. This population has been termed the side population (SP) (Goodell et al. 

1996). SP cells have been shown to reside in bone marrow (Goodell et al. 1996), liver 

(Uchida et al. 2001), skin (Yano et al. 2005), lung (Majka et al. 2005) and even in the 

corneal stroma (Du et al. 2005). SP populations have also been found in cells from 

patients with acute myeloid leukaemia (Wulf et al. 2001) and in cell suspensions from 

solid tumours (Hirschmann-Jax et al. 2004; Patrawala et al. 2005). Figure 4a depicts a 

typical SP cell population from murine bone marrow taken from (Pearce et al. 2004). 

Another possible physiological property of stem cells seems to be a high activity of 

aldehyde dehydrogenase (Hess et al. 2004). Using a fluorescent substrate these cells can 

be purified by FACS sorting. Figure 4c depicts the stem cell population highlighted by 

aldefluor staining (Pearce et al. 2005).



Karl Kashofer Page 24 PhD thesis, 2006

(0 . 1%)
-»•» P™|------r-1

Hoechst Red

I <M,I 
CD34

Figure 4 Phenotypic stem cell assays

Hoechst dye exclusion (A). Stem cells efficiently extrude Hoechst dye leading to a tail 
of stem cells in the blue vs. red Hoechst emission FACS plot (R-SP). From Pearce et al 
(Pearce et al. 2004). Staining for lineage antigens and CD34 reveals CD34+/Lm stem 
cells (B). Stem cells identified by high aldehyde dehydrogenase activity (C). From 
Pearce et al (Pearce et al. 2005). CD34+/7CD38+/' stem cell populations (D). Pearce D, 
pers.comm.
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In vivo assays

The gold standard at which haematopoietic stem cells are measured is the in vivo 

repopulation o f the bone marrow of irradiated host animals. When working with mouse 

models, syngeneic strains of mice o f which one bears an identification marker can be 

used. Examples for this are the CD45.1 and CD45.2 system (Mardiney et al. 1996), a 

model utilizing cells from a genetically modified mouse expressing GFP in all tissues 

(Okabe et al. 1997) and a similar model using a mouse expressing lacZ (Friedrich et al. 

1991). To test the properties o f human stem cells a mouse model had to be devised 

which allows engraftment of xenogeneic cells leading to the development o f the 

NOD/Scid and |32/NOD/Scid xenotransplantation models.

Mouse models

The human genetic disease severe combined immunodeficiency (SCID) impairs the 

differentiation o f T and B lymphocytes. About half o f the patients with autosomal 

recessive SCID are deficient in the enzyme adenosine deaminase. Mice homozygous for 

this mutation have few if  any lymphocytes; consequently they are 

hypogammaglobulinaemic and deficient for immune functions mediated by T and B 

lymphocytes. These mice have been identified as a model for investigating how 

lymphoid differentiation may be impaired in the disease state and regulated in the 

normal state (Bosma et al. 1983). It was soon after discovered that these mice can be 

engrafted with human peripheral blood leukocytes (PBL) allowing studies of the human 

immune system in a murine model (Mosier et al. 1988). Suboptimal engraftment of 

human cells in the scid/scid mouse hampered the use o f this model for many years, but 

nevertheless first haematopoietic stem cell populations were found to engraft when 

human foetal bone marrow was grafted into scid/scid mice (Baum et al. 1992). The 

investigation o f the influence o f mouse strain background on the ability to support 

xenotransplanted cells led to the discovery of the non obese diabetic/Scid (NOD/Scid) 

mouse model (Shultz et al. 1995). Improved engraftment o f human cells was shown 

with human spleen cells (Greiner et al. 1995) and with human cord blood cells (Lowry 

et al. 1996). NOD/Scid mice were then further crossed with mice harbouring a defect in 

beta-2-microglobulin, leading to a lack o f cell surface MHC class 1 expression and 

absence o f detectable levels o f class 1 dependent cells, including CD8+ T cells, NK
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cells and NK1+ T cells. These (32/NOD/Scid mice are even further 

immunocompromised and provide excellent hosts for human haematopoietic stem cells 

(Kollet et a l 2000) and also human leukaemic stem cells (Feuring-Buske et al. 2003).

Foetal sheep model

Another model for testing human haematopoietic stem cells is in-utero transplantation 

into pre-immune sheep (Flake et a l 1986). This method has been successfully used to 

show engraftment of purified human haematopoietic cells (Srour et a l 1992) and has 

helped define novel stem cell populations (Zanjani et a l  1998).

The stem cell niche

The environment in which stem cells reside is called the stem cell niche. In the adult 

mammal the bone marrow (BM) is the main specialised microenvironmental niche for 

both self-renewal and differentiation o f HSC. The concept o f a stem cell niche was first 

proposed for the human haematopoietic system in the 1970’s (Schofield 1978). A 

similar concept was later postulated for stem cells of the epidermis, intestinal 

epithelium, nervous system and gonads (Fuchs et a l  2004). The niche o f the HSC is not 

yet as well defined as the Drosophila germ stem cell niche(Spradling et a l  2001), or the 

niche of the skin stem cell in the bulge region of the hair follicle (Fuchs et a l 2004).

The purpose of the niche is to provide stem cells with an environment in which the 

maintenance of the quiescent stem cell pool and the asymmetric division giving rise to 

differentiating cells can be regulated and take place.

Two different niche environments for HSC have been studied, the vascular 

haematopoietic niche which is predominantly utilised in embryonic development, and 

the osteoblastic niche which is the main environment o f HSC in the adult organism.

The vascular niche

The vascular niche is the main source o f haematopoietic cells in the developing 

organism. Endothelial cells give rise to HSCs in the aorta-gonad-mesonephros (AGM)
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region and the placenta labyrinth (de Bruijn et al. 2002; Ottersbach et a l 2005). This 

highlights the existence of a common progenitor of haematopoietic and endothelial 

cells, the hemangioblast (Choi et al. 1998). Endothelial cells and HSCs co-express 

CD34, CD 133, Glkl, VEGFR and Tie2 (Rafii et al. 2002) suggesting a ligand-receptor 

signalling relationship between HSC and endothelial cells. Vascular endothelial 

progenitor cells are also essential for organogenesis o f the liver and pancreas 

underlining the role of endothelial cells to provide inductive signals for organ 

development (de Bruijn et al. 2002; Ottersbach et al. 2005).

The osteoblastic niche

The osteoblastic niche provides the environment for the main haematopoietic organ of 

the adult organism. Osteoblasts play a crucial role in the bone marrow by providing the 

niche environment for HSC (Calvi et al. 2003; Zhang et al. 2003). Osteoblasts are a 

heterogeneous population including mature cells contributing to bone formation as well 

as immature cells. Osteoblasts are derived from mesenchymal stem cells. Mesenchymal 

cells also induce the formation o f bone resorbing cells, the osteoclasts, from 

haematopoietic stem cells (Yasuda et al. 1998).

HSC can be divided into two populations according to their cell cycle state. Most HSCs 

divide frequently, (Zhang et al. 2003) but some label-retaining cells remain over several 

months representing a population of quiescent stem cells. These quiescent cells are 

maintained in the resting state by their close proximity to osteoblasts. Zhang et al 

showed that a small subset of osteoblastic lining cells expressing N-cadherin are the 

niche cells for HSCs in the bone marrow. An increase in the number o f osteoblasts after 

administration of parathyroid hormone-related protein (PTHrP) also leads to a increase 

of haematopoiesis (Calvi et al. 2003). Chemokines and chemoattactive proteins are 

responsible for homing and mobilisation o f HSC and also for the interaction o f HSC 

with the stromal cells. The protein stromal cell-derived factor-1 (SDF-1) is involved in 

homing to the haematopoietic organs. Deletion of the genes for SDF-1 or its receptor, 

CXCR4 severely affects homing of stem cells to the bone marrow so that in mutant 

animals foetal liver haematopoiesis is normal, but marrow engraftment o f HSC is not 

observed (Nagasawa et al. 1996; Tokoyoda et al. 2004). As CXCR4 is not expressed in 

quiescent HSC the factors for homing o f HSC are probably different to adhesion 

molecules in the osteoblastic niche.
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Tie2-Ang-1 signalling is one molecular mechanism which is implicated in suppressing 

cell division and thus maintaining stem-ness of HSC in the bone marrow. Slow cycling 

HSCs express the receptor tyrosine kinase Tie2 and are a SP fraction of HSCs(Arai et 

al. 2004). Ang-1, which is a ligand for Tie2 is expressed primarily by osteoblasts in the 

adult bone marrow. The signalling from Tie2 to Ang-1 promotes tight adhesion of 

HSCs to osteoblasts and maintains an immature HSC phenotype with upregulated N- 

cadherin expressions and no cell cycle progression. In mice lacking the family o f Tie 

proteins (Tiel and Tie2) postnatal haematopoiesis is impaired, whereas foetal 

haematopoiesis is unaffected (Puri et al. 2003). Other adhesion molecules such as 

activated leukocyte cell adhesion molecule (ALCAM) (Arai et al. 2002) and 

osteopontin (Chen et al. 1993) are expressed by osteoblasts, and N-cadherin (Arai et al.

2004) is expressed in both quiescent HSCs and osteoblasts.

The Liver

In Greek mythology, Prometheus was punished by the gods for revealing fire to humans 

by being chained to a rock where a vulture would peck out his liver, which would grow 

back again overnight. It thus may already have been known to the Greeks that the liver 

is the only human internal organ that actually can regenerate itself to a certain extent, a 

characteristic which is even better preserved in rodents.

Introduction

The liver is an organ in vertebrates which plays a major role in metabolism and has a 

number of functions in the body including detoxification, glycogen storage and plasma 

protein synthesis. It also produces bile, which is important for digestion.

The adult human liver normally weighs between 1.0 - 2.5 kilograms, the liver of a 20 

week old mouse approximately 2.4 grams.

The liver is supplied by two major blood vessels: the hepatic artery and the portal vein. 

The hepatic artery supports the liver with oxygen. The arteric blood is pumped into the 

capillaries of the liver stroma and from there joins the interlobular hepatic veins. The 

portal vein brings venous blood from the digestive tract, so that the liver can process the
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nutrients and toxic by-products of food digestion. The hepatic veins drain directly into 

the inferior vena cava.

The bile produced in the liver is collected in bile capillaries, which merge to form bile 

ducts. These eventually drain into the right and left hepatic ducts, which in turn merge 

to form the common hepatic duct. The cystic duct (from the gallbladder) joins with the 

common hepatic duct to form the common bile duct. Bile can either drain directly into 

the duodenum via the common bile duct or be temporarily stored in the gallbladder via 

the cystic duct.

The major functions of the liver are:

• Production and excretion o f bile required for food digestion. Some of the bile 

drains directly into the duodenum, and some is stored in the gallbladder.

• The liver performs several roles in carbohydrate metabolism:

o Gluconeogenesis (the formation of glucose from certain amino acids, 

lactate or glycerol) 

o Glycogenolysis (the formation of glucose from glycogen) 

o Glycogenesis (the formation of glycogen from glucose) 

o LDL uptake 

o Ketogenesis

• The breakdown of insulin and other hormones

• The liver also performs several roles in lipid metabolism:

o Cholesterol synthesis 

o The production of triglycerides (fats).

• Production o f coagulation factors I (fibrinogen), II (prothrombin), V, VII, IX, 

and XI, as well as protein C, protein S and antithrombin.

• Breakdown of haemoglobin (bile pigments are its metabolites), toxic substances 

and most medicinal products. This sometimes results in toxication, when the 

metabolite is more toxic than its precursor.

• Conversion of ammonia to urea.

• Storage of a multitude o f substances, including glucose in the form of glycogen, 

vitamin B12, iron, and copper.
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• In the first trimester foetus, the liver is the main site of red blood cell 

production. By the 42nd week of gestation, the bone marrow has almost 

completely taken over that task.

These tasks are accomplished by specialised cells, the hepatocytes. During embryonic 

development hepatoblasts generate both hepatic epithelial cell lineages, hepatocytes and 

biliary cells. The liver is made up of lobules, each of which is a functional unit. (Figure 

5) On the outside the lobe is surrounded by the limiting plate and portal tracts. The 

portal tract consists of an artery which supplies oxygen, a bile duct which collects bile 

produced by hepatocytes and a branch of the portal vein which brings nutrient rich 

blood from the intestine for processing by the liver. The portal vein blood then flows in 

sinusoids between hepatocytes towards the central vein. The bile, produced by 

hepatocytes, flows in the opposite direction collecting in the bile ducts for drainage.
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Figure 5 Organization of the liver

Hexagonal liver lobes have portal triads on the outside and the central vein in the 
middle. Hepatocytes have different characteristics from the outside to the inside. 
Schematic drawing (A, redrawn) and artistic impression (B) taken from Fausto et al 
(Fausto et a l 2003).
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Origin of the liver

Several decades of work in numerous vertebrate model systems have firmly established 

that hepatocytes and bile duct cells originate from a common precursor, the hepatoblast, 

which derives from the definitive endoderm (Chalmers et a l  2000; Deutsch et al. 2001; 

Field et a l  2003). In the mouse, at around embryonic day (E)7.0 the definitive 

endoderm emerges from the primitive streak to displace the extraembryonic endoderm 

of the yolk sack. By approximately E8.0, in mouse embryos containing seven somite 

pairs, the ventral wall of the foregut endoderm is positioned adjacent to the developing 

heart, and signals from the heart induce the underlying endoderm to initiate its 

development towards a hepatic fate by releasing bone morphogenetic proteins (BMP) 

and fibroblast growth factors (FGF) (Jung et a l 1999). The endoderm responds to this 

induction by generating the primary liver bud that can be identified as an anatomical 

outgrowth from the ventral wall o f the foregut by E8.5 to E9.0. By E9.5 the nascent 

hepatoblasts delaminate from the endoderm and cords o f hepatoblasts invade the 

septum transversum mesenchyme, which is the source of stellate cells as well as 

sinusoidal endothelial cells that begin to form vessels (Sosa-Pineda et a l 2000). The 

early development o f the liver in mammals is depicted in Figure 6. In the adult 

mammal, the afferent blood vessels of the liver consist o f branches of the hepatic artery 

and portal veins, and the efferent vessels consist o f centrolobular veins. These two 

systems are connected by a network of small capillaries called sinusoids, which are 

separated from the basal surface of the hepatocytes by the space of Disse, which also 

contains retinoid-storing hepatic stellate cells. The sinusoidal capillaries consist of 

phagocytic Kupffer cells, which scavenge spent cell debris from the circulation, and 

fenestrated endothelial cells that are highly specialised to facilitate selective transport 

between hepatocytes and the blood (Braer F 2001). The sinusoidal capillaries and portal 

veins are among the first hepatic vessels to develop, with centrolobular veins and portal 

arteries forming later (Gouysse et a l  2002).
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Figure 6 Overview of early stages of liver development in mouse embryos.

Definitive ventral endoderm (VE, blue), developing heart (He), mesenchymal septum 
transversum (S, green). Induction by FGFs and BMP’s leads to formation of the liver 
bud (Lb) from specialised endoderm (E). Hepatoblasts (H) then delaminate from the 
endoderm (E) and invade the septum transversum mesenchyme (S). Taken from Zhao et 
al (Zhao et al. 2005).

The hepatocyte

Hepatocytes make up 60-80% of the cytoplasmic mass of the liver. They are involved 

in protein synthesis, protein storage and transformation of carbohydrates, synthesis of 

cholesterol, bile salts and phospholipids, and detoxification, modification and excretion 

of exogenous and endogenous substances. The hepatocytes also initiate the formation 

and secretion of bile.

The hepatocytes are the only cells in the body that manufacture albumin, fibrinogen, 

and the prothrombin group of clotting factors. It is the main site for the synthesis of 

lipoproteins, ceruloplasmin, transferrin, and glycoproteins.

Hepatocytes have the ability to metabolise, detoxify, and inactivate exogenous 

compounds such as drugs and insecticides, and endogenous compounds such as 

steroids. The drainage of the intestinal venous blood into the liver requires efficient 

detoxification of miscellaneous absorbed substances to maintain homeostasis and 

protect the body against ingested toxins. One of the detoxifying functions of 

hepatocytes is to modify ammonia to urea for excretion.

After severe damage to the liver the hepatocytes can rapidly divide and replace lost 

liver mass. The usually quiescent hepatocytes divide rapidly only a few hours after the 

mitogenic stimulus, which is usually partial hepatectomy (the removal of large parts of 

the liver) or CCI4 intoxication. After partial hepatectomy 95% of hepatocytes of young



Karl Kashofer Page 33 PhD thesis, 2006

animals replicate between 12 and 48 hrs in rats and 30 to 60 h in mice. Cell 

proliferation is synchronised, at least for the first wave o f replication (Grisham 1962). 

In adult rodent liver only 20-25% of hepatocytes are diploid. The majority of 

hepatocytes are tetraploid (either mononucleated or binucleated with two diploid nuclei) 

and cells o f higher ploidy constitute 5-10% of the hepatocyte population. DNA 

replication after partial hepatectomy takes place in cells o f all ploidies at approximately 

equal rates (Weglarz et al. 2000). The regenerative capacity of hepatocytes is truly 

astounding. Already in 1963 Simpson et al. reported that hepatocytes were able to 

regenerate the liver for as many as five consecutive partial hepatectomies, after which 

less than 5% of the original liver mass remained and more than 95% of the liver was 

generated by replication o f hepatocytes (Simpson et al. 1963). The model of  

hepatectomy is not suitable to assess the proliferative capacity o f hepatocytes in more 

detail, as the regeneration of the hepatectomised liver requires only few divisions of  

resident hepatocytes. A different model, the regeneration of the liver o f newborn 

urokinase-type plasminogen activator (uPA) transgenic mice allows for the almost 

complete liver repopulation from a starting population o f only few transplanted human 

hepatocytes. In these animals the hepatocytes need 10-15 rounds of replication to 

generate the normal liver mass (Grompe 2001). This transplantation can even be done 

serially leading to an expansion of the original transplanted hepatocytes of 7.3x1020 

corresponding to 60-80 population doublings (Overturf et al. 1997).

The oval cell

Despite the hepatocytes being able to repopulate the liver mass even after substantial 

loss, there also seem to be stem cells in the liver. These cells do not participate in the 

aforementioned regeneration and only become apparent in special circumstances. While 

in proliferative tissues such as the skin and intestinal epithelia stem cells continually 

generate progenies which differentiate thereby losing the replicative capacity, the liver 

is mostly quiescent and hepatocytes divide very rarely in steady state conditions. The 

liver is unique in that intrahepatic stem and progenitor cells constitute a secondary 

proliferative compartment in addition to differentiated cells which can also replicate 

readily. The facultative stem cells o f the liver have their niche in the canals o f Hering, 

the most distal part o f the bile canaliculi in the liver lobe. These cells are components of 

a functional segment o f the biliary system and are not part o f a separate compartment of
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proliferative cells such as the basal cells in the skin (Theise et al. 1999). Oval cells, the 

presumed progeny of these cells are not detectable in normal liver and only become 

abundant as an amplifying transit compartment after suitable induction. Oval cell 

proliferation is prominent in many models of liver injury including carcinogenesis 

induced by azo-dyes and choline deficient/ethionine-containing diets (CDE diet), injury 

caused by D-galactosamine and injury produced by acetyl aminofluorene in conjunction 

with partial hepatectomy (AAF/PH) (Sell et al. 1981; Shafritz et al. 2002). In the 

AAF/PH and galactosamine models as well as in rodents fed the CDE diet, oval cells 

can constitute more than 50% of cells in the liver. Although there was speculation that 

these cells are derived from the bone marrow (Petersen et al. 1999), more recent 

research does not support that hypothesis (Menthena et al. 2004).

Figure 7 Hepatocyte and oval cell morphology

(A) Drawing of hepatocyte morphology displaying the space of Disse, mitochondria, 
bile canaliculi and the nucleus. Murine hepatocytes in healthy liver (B), and oval cells 
after 2 -acetylaminofluorene treatment and CCU injury (arrows) (Yang et al. 2 0 0 2 ).
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Plasticity and Transdifferentiation 

Introduction

Until recently it was thought that tissue specific stem cells could only differentiate into 

cells of the tissue of origin or at least would be restricted to a specific lineage of cells. 

However, recent developments have suggested that stem cells from various origins are 

capable o f transgressing the limits of their lineage and give rise to cells of unrelated 

tissues. Bone marrow derived cells (BMDCs) have been shown to contribute to skeletal 

muscle and this contribution was enhanced upon damage with a toxin or genetic muscle 

disease (Ferrari et al. 1998; Gussoni et al. 1999; LaBarge et al. 2002). BMDCs also 

incorporate into the cardiac muscle(Jackson et al. 2001), liver (Krause et al. 2001; Jang 

et al. 2004), skin (Brittan et al. 2005), epithelia o f the gastrointestinal tract (Krause et 

al. 2001; Brittan et al. 2002), lung tissue (Kotton et al. 2001; Theise et al. 2002; 

Spencer et al. 2005) and cells of the central nervous system (Kopen et al. 1999; Bonilla 

et al. 2002; Corti et al. 2002).

One possibility for achieving plasticity is transdifferentiation o f a committed cell 

directly into another cell type as a response to environmental cues. Transdifferentiation 

has been shown mainly in vitro (Tosh et al. 2002; Jang et al. 2004), but can also occur 

in vivo (Scarpelli et al. 1981; Eguchi et al. 1993).

Direct transdifferentiation would be difficult to exploit in clinical situations, as the lack 

of self renewal capacity o f differentiated cells would limit the efficiency of any 

treatment based on direct transdifferentiation. If bone marrow cells could on the other 

hand give rise to stem cells of another tissue then they could in theory repopulate whole 

organs from a few starting cells.

Genetic analysis of cells of donor origin in vivo and in vitro has brought to light another 

possible mechanism. The fusion of host and donor cells can give rise to mature tissue 

cells without trans- or dedifferentiation. The resulting heterokaryons are able to cure a 

lethal genetic defect and do not seem to be prone to give rise to cancer. All these 

models will clinically face the problem of accessibility of healthy primary cells for 

transplantation. This underlines the importance o f the recent identification o f a 

population of mesenchymal stromal cells with stem cell properties similar to ES cells. 

These cells can be cultured and expanded in vitro without losing their stem cell
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potential making them an attractive target for cell therapy (see introduction) (Pittenger 

et al. 1999; Pittenger et al. 2000; Anjos-Afonso et al. 2004).

Finally, stem cells of various tissues could be circulating in the peripheral blood, or be 

present in the bone marrow and could be directly purified from these sources. 

Identification of putative tissue stem cells would be necessary before purification 

strategies can be devised(Ratajczak et al. 2004; Kucia et al. 2005).
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Figure 8 Different proposed mechanisms of cell fate change

Transdifferentiation: change of cell type of a fully differentiated cell, Dedifferentiation: 
reacquisition of stem cell phaenotype, Fusion: merging of two different cells, Totipotent 
cell: no lineage restriction, Circulating tissue stem cell

Transdifferentiation in vitro a c ro ss  different germ layers

Differentiation in vitro provides an effective way of exploring the intrinsic capabilities 

of cells. Hepatic foci in the pancreas have been known to arise in rodents from copper 

depletion in the diet or in transgenic mice overexpressing keratinocyte growth factor in 

the pancreas. In an in vitro assay using a pancreatic cell line, AR42J-B13, foci of 

hepatic cells could be induced by exposure to the synthetic glucocorticoid 

dexamethasone. Dexamethasone can induce hepatic differentiation in the pancreatic bud
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of a normal mouse embryo and its effect is mediated by C/EBP-a. Transdifferentiated 

cells expressed albumin, glucose-6-phosphatase and amylase. Residual GFP protein 

which had been expressed from the elastase promoter, specific for mature exocrine 

cells, demonstrates that these albumin producing cells have been derived from fully 

differentiated exocrine cells (Tosh et al. 2002).

In a different study by Jang et al a cell population with hepatic potential was purified 

from mouse bone marrow. Bone marrow cells were elutriated, depleted of mature 

haematopoietic cells and injected into primary host animals. The cells which homed to 

the bone marrow in the first 24 hours were recovered and then transferred into transwell 

plates. These wells allow the exchange of soluble factors, but no direct contact between 

the two populations of cells. When liver tissue which had been damaged by CCLj was 

placed in the second chamber up to 2.5% of the bone marrow derived cells matured into 

a hepatic phenotype expressing albumin, CK18, GATA4, HNF4, TDO and cytochrome 

P450 (Jang etal. 2004).

These examples demonstrate that a change of cell identity or fate is possible if  the right 

environmental cues are given to a cell in vitro. How much inherent plasticity a cell can 

demonstrate, how far transdifferentiation can go and which cell types retain this ability 

remains to be shown.

Dedifferentiation from a mature cell to a stem cell

Direct transdifferentiation is thought to give rise to a differentiated cell without 

generating an intermediate tissue stem cell. In the lung some experiments suggest a 

different mechanism. The high level of engraftment observed in this organ could be 

linked to damage induced by whole body irradiation used as part o f the bone marrow 

transplantation protocol. Histological signs of tissue damage in the lung are first present 

on day 3 and are countered by proliferation and repair first apparent on day 5. From this 

timepoint on donor derived type II pneumocytes could be shown by Y-fish and RNA in- 

situ. The percentage of marrow derived type II pneumocytes increased over time from 

0.9% to 13% at month 6. As type I pneumocytes are progeny of type II pneumocytes 

the latter are regarded as the tissue stem cell in the lung. The authors argue that 

dedifferentiation of a bone marrow cell to an epithelial stem cell must have occurred to 

explain these results (Theise et al. 2002).

LaBarge et al studied the dedifferentiation of a bone marrow cell into a muscle stem 

cell and from there to mature muscle fibers. The authors show that cells from the bone
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marrow integrate into muscle tissue in two distinct stages. First the irradiation used for 

the bone marrow transplant clears the tissue stem cell niche from the native satellite 

cells followed by repopulation from bone marrow derived cells. The engrafted cells 

expressed markers of satellite cells (cMet-R and Myf-5) and where phenotypically 

indistinguishable from native satellite cells in situ. (Figure 9c) After this stage cells 

contribute to the muscle mass by creating muscle fibers, albeit at a low level which 

could be increased by a training regimen for the mice (from 0.17% to 3.52% donor 

nuclei). Exercise induces damage to intracellular and membrane components of the 

muscle and satellite cells respond to this environment by becoming mitotic and fusing 

with the muscle tissue. When bone marrow derived satellite cells were isolated in high 

purity from the muscle these cells were able to self renew and produce muscle fibers in 

vitro. Furthermore when injected into the TA muscle of experimental mice they again 

contributed to the muscle tissue in the secondary recipient. No gross abnormalities were 

found in the karyotype of these cells indicating that a bone marrow cell has successfully 

adopted an unrelated stem cell phenotype (LaBarge et al. 2002).

In the second study by Camargo et al single sorted side population (SP) cells from 

mouse bone marrow where introduced into hosts. Upon successful bone marrow 

engraftment muscle damage was induced. Repeated injections o f cardiotoxin into the 

TA muscle on one side of the animal induce damage which is subsequently repaired. 

Analysis of the injured and the non-injured muscle revealed donor derived nuclei only 

in muscle fibers of the injured side. However, even with extensive analysis of the 

muscle fibers the authors where unable to find donor derived satellite cells in sections 

of the muscle, by flow cytometry or after isolation of all satellite cells in an in vitro 

assay of myotube formation. Instead the authors demonstrate that a cell o f the 

macrophage lineage is the main contributor to donor myotubes in this model, likely 

attracted by the inflammation caused by the toxin used to induce tissue damage 

(Camargo et al. 2003).

Spontaneous cell fusion in vitro and in vivo
In an attempt to generate pluripotent stem cells in vitro from adult bone marrow Terada 

et al established co-cultures of murine puromycin resistant GFP+ bone marrow cells 

with wild type puromycin sensitive embryonic stem cells. After 7 days of co-culture 

puromycin was added to the culture medium to eradicate the embryonic stem cells. A 

surviving cell fraction was obtained which expressed markers o f the donor animal
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(GFP+ and puromycin resistant) but exhibited the proliferation rate of embryonic stem 

cells and also the expression of ES-cell markers (Oct3/4 and UTF1). These cells could 

successfully be differentiated into various lineages similar to the potential found in 

embryonic stem cells. However subsequent DNA analysis showed that all 13 cell lines 

derived with this protocol had more than diploid DNA content and microsatellite 

analysis revealed genomic content from both mouse strains used in the co-culture 

(Terada et al. 2002).

Yiang et al initiated neurosphere cultures from dissociated forebrains o f ROSA26 

foetuses and cultured them with ES cells. After selection they could demonstrate 

frequent generation o f hybrids showing genomic markers o f both mouse strains used. 

Interestingly, upon introduction into a blastocyst these cells contributed to intestine, 

kidney, heart and most prominently liver (Ying et al. 2002). Cell fusion was also shown 

in a model of co-culture of small airway epithelial cells with human MSC (Spees et al.

2003). In vitro fusion is not a property equally shared by all cell types. Mesenchymal 

stem cells and long term marrow culture cells are more susceptible to fusion than 

CD34+ cells (Shi et al. 2004).

An example of in vivo fusion was found in the brain. When GFP+ bone marrow was 

transplanted into normal hosts green purkinje neurons could be found in the brain. 

Purkinje neurons are mononucleate diploid cells that constitute the only efferent from 

the cerebellum to other brain regions. Each purkinje neuron can receive over one 

million inputs from other neurons, and lack o f purkinje neurons results in ataxias. Close 

inspection of the GFP+ purkinje neurons revealed that these where not generated de- 

novo, but had acquired the GFP gene by fusion o f a bone marrow derived cell with a 

resident purkinje neuron. The fusion o f the two cells gives rise to stable heterokaryons, 

and the morphology of the bone marrow derived nucleus changes to a typical purkinje 

neuron nucleus over time. (Figure 9d) GFP expression could only be found in these 

specialised neurons, indicating a predisposition to fusion in the purkinje neurons 

(Weimann et al. 2003).

In the FAH_/ mouse model of hereditary tyrosinaemia functional rescue from a lethal 

genetic disease could be achieved by bone marrow transplantation. (Figure 9a) 

Hepatocytes derived from the donor bone marrow contributed about 65% of the final 

recipient liver after serial hepatocyte transplantation, but the percentage o f original 

karyotype was only 30% by southern blot inconsistent with simple transdifferentiation. 

Analysis o f metaphase spreads of these cells revealed that more than 30% of cells had a
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karyotype consistent with fusion of a diploid donor cell with a diploid or tetraploid host 

cell. (Figure 9b) Additionally many cells displayed aberrant numbers o f chromosomes, 

and 94% had a Y chromosome which was not present in the original donor (Wang et a l

2003). Analysis of viral integration sites established that these hepatocytes where 

derived from a clonal cell population also present in the bone marrow of the recipient 

mice (Vassilopoulos et a l 2003). Camargo et al demonstrate that the bone marrow 

derived fusion partner has once in its development activated the lysozyme-M promoter 

which is thought to only be active in the monomyelocytic lineage (Camargo et al.

2004).

Common myeloid progenitor cells which lack self-renewal capacity, but give rise to a 

burst of differentiated myelomonocytic cells were also able to create hepatocytes by 

fusion as where mature macrophages derived in vitro from bone marrow (Willenbring 

et a l  2004).

It can be concluded that in the FAH'7" model of damage and repair fusion of 

macrophages with resident hepatocytes is the cause o f  the recovery from metabolic 

disease. The absence of fusion in early stages of development when macrophages are 

not yet present in the foetal liver further strengthens this observation (Stadtfeld et a l

2005).

Not all conversion of bone marrow to other cell types is the result of 

fusion

As already discussed earlier a highly purified haematopoietic stem cell could be 

induced to a hepatocyte phenotype by factors released from damaged liver tissue (Jang 

et a l 2004). These cells where introduced into animals and as early as two days later 

the authors found donor cells which produce albumin and where fully integrated into 

the hepatic plate. This integration of bone marrow derived cells into the liver could be 

enhanced with damage of the liver tissue by irradiation or with the liver toxin CCI4. 

Analysis of the allosomes of many donor derived cells did not reveal any other genetic 

compositions as the ones expected from multinucleated liver cells. The speed of 

integration (few days), the extent (up to 4.5%) and the genomic stability of the cells in 

this experimental setup makes this study very promising (Jang et a l  2004). 

Almeida-Porada et al use a different animal model for their experiments. The 

transplantation into a pre-immune sheep foetus has several advantages: The cells are 

introduced into an environment where all the organs have differentiated but still need to
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grow exponentially and when the lack o f a native immune system allows engraftment 

without the usual conditioning regimens necessary in other models. Haematopoietic and 

mesenchymal stem cells from various sources have been shown to populate the bone 

marrow and other organs o f the sheep in this model (Almeida-Porada et al. 2004). 

Human lineage negative cells from either adult bone marrow or cord blood where 

transplanted into foetal sheep and contributed 2-4% of the haematopoietic cells in the 

bone marrow. Analysis of the livers o f these animals revealed many hepatocytes of 

human origin staining positive for human hepatocyte antigen (HEPAR-1) and human 

albumin but negative for CD45. Analysis of serum revealed secreted human albumin, 

and genomic probes for human and sheep DNA failed to detect any events o f fusion 

(Almeida-Porada et a l  2004).

Bone marrow transplantation in the mouse also leads to engraftment in the stem cell 

compartment o f the skin. Bone marrow derived cells identified by GFP staining could 

be detected in the CD34-positive bulge region of hair follicles, in the interfollicular 

epidermis and the sebaceous glands. When the skin was injured by full thickness 

cutaneous wounds an increase of contribution from 7% to 11% could be achieved. In a 

male into male transplant all GFP positive cells had only one Y chromosome indicating 

that transdifferentiation and not fusion had taken place (Brittan et al. 2005).

Another possibility to probe for fusion events in vivo utilises the Cre-Lox system. When 

bone marrow cells o f a reporter strain harbouring a stop-floxed GFP gene are 

introduced into a host expressing intracellular Cre recombinase in all cells any cells 

arising from fusion would excise the stop codon before the GFP coding region and 

become GFP positive. Tissues o f recipients were analyzed 8 and 12 weeks after 

transplantation for BM-derived (Y-chromosome positive) epithelial cells and GFP 

expression. FACS analysis o f single cell suspensions o f lung tissue revealed that donor 

cells contribute up to 0.6% of cytokeratin positive cells. None o f these cells were 

positive for GFP and all had normal autosome content, thus they could not have been 

created by fusion. Y-chromosome containing cytokeratin positive hepatocytes were 

identified in all experimental animals at levels close to 0.05%. None o f these cells 

where GFP positive. Analysis o f the skin revealed up to 0.1% of donor-origin 

keratinocytes again without any fusion events. RT-PCR failed to detect any GFP 

transcript from the muscles o f transplanted animals. However, when the muscle tissue 

was damaged by notexin injection GFP transcript was detected in the damaged tissue 

but not in the contralateral uninjured muscle. The toxin also leads to necrosis of the
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liver and consequentially two GFP positive hepatocytes could be found. In the 

experimental settings presented here the profound damage by a strong toxin seems to 

promote fusion events while a non-damaged environment is permissive for 

transdifferentiation (Harris et a l  2004).

BM cells harbouring a stop-floxed GFP-gene and Cre under the INS2 promoter which 

leads to GFP expression in cells activating the insulin promoter were transplanted into 

wild type mice by Ianus et al. Analysis o f the pancreatic islets revealed multiple green 

cells containing a Y-chromosome which further demonstrated donor origin. These cells 

where expressing insulin, glucose transported and transcription factors typically found 

in pancreatic (3 cells. In a second set of experiments cells which express Cre under the 

INS2 promoter where introduced into hosts harbouring the stop-floxed GFP gene. A 

fusion event would lead to excision of the stop-codons in front o f the GFP gene and 

thus to green cells with a Y-chromosome. Although multiple Y-chromosome positive 

cells could again be detected in the pancreas of the experimental animals, none of them 

where GFP positive excluding any possibility o f fusion (Ianus et a l  2003).

Cells with properties similar to ES cells reside in adult tissues

Jiang et al purified a cell population from mouse bone marrow which is viable for more 

than 120 population doublings in vitro. These cells termed multipotent adult progenitor 

cells (MAPC) express markers of embryonic stem cells like RexI and Oct4. Consistent 

with the ES marker expression these cells could also contribute to many adult tissues 

after injection into a blastocyst (Jiang et a l  2002). (Figure 2 right panel) Clonal 

populations o f these cells where established and could be differentiated into 

mesodermal endothelium by VEGF-B and into neuronal lineages by bFGF. Endodermal 

cell types induced by FGF-4 and HGF showed functional characteristics of hepatocytes 

(Jiang et a l  2002). These differentiated cells express early hepatocytic markers HNF- 

la, HNF-3P and GATA4 after 4 days and late hepatic markers CK18 and albumin after 

14 days. A convincing demonstration of the functionality of the cells was provided by 

six different assays measuring urea production and secretion, albumin production, 

cytochrome activity, LDL uptake and gluconeogenesis. Remarkably, MAPCs 

differentiated to the hepatic lineage produce levels o f albumin similar to those seen in 

monolayer cultures of primary rat hepatocytes (Schwartz et a l  2002).

When murine MAPCs where cultured with a series of growth factors specific for the 

neuronal lineage a mature neuronal phenotype emerged. Thorough analysis revealed
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that 25% of the cells expressed markers of dopaminergic neurons, 18% expressed 

markers o f serotonergic neurons and 52% expressed markers o f GABA-nergic neurons. 

Co-culture o f these cells with primary mouse astrocytes further matured the cell and led 

to a more elaborate array o f axons. In a series o f patch-clamp recordings the authors 

show occurrence of spiking behaviour that can be attributed to voltage-gated sodium 

channels and also suggested the occurrence o f synaptic events (Jiang et al. 2003).

The fact that MAPCs can be efficiently transduced with retroviral vectors underlines 

their potential applicability for clinical purposes. However, the current isolation 

procedure involves extensive culture and replating to enrich for MAPCs which could be 

prohibitively slow for clinical application underlining the importance o f devising new 

methods for direct isolation of MAPCs.

Stem cells similar to ES cells seem to be retained in multiple tissues, as evidenced by 

the fact that MAPCs can be isolated from bone marrow, muscle or brain. A cell 

population with similar potential has been isolated by Fernandes et al from skin. These 

cells termed skin derived precursors can be differentiated into multiple tissues in vitro, 

and are derived from neural crest cells (Fernandes et al. 2004). Kogler et al describe 

isolation o f a stem cell population with hepatic potential from placental cord blood 

(Kogler et al. 2004), and Gianluca et al use culture conditions mimicking the 

microenvironment of the marrow niche to isolate multipotent cells from bone marrow 

(D'Ippolito et al. 2004).

Tissue stem cells may circulate in the adult organism

Work done by Ratajczak et al suggests a different model to explain the plasticity 

phenomena seen in many experiments. Cells which express CXCR4 and can be isolated 

from bone marrow according to their migration towards the CXCR4 ligand SDF-1 seem 

to display properties consistent with a tissue committed stem cell (TSC) phenotype 

(Ratajczak et al. 2003; Ratajczak et al. 2004). Markers usually associated with tissue 

stem cells from muscle, neuronal tissue, liver, cardiac tissue and pancreas are expressed 

in TCSC. Interestingly also markers usually found in more primitive cells, like Oct4, 

Nanog and REX-1 are present. These cells are similar to haematopoietic stem cells in 

the presence and absence of surface markers which could mean that they co-purify in 

the extraction protocols for HSC used by other researchers. As upregulation of SDF-1 is 

a common feature o f die damage done in transdifferentiation experiments it could play 

a role in recruiting these stem cells to the site of damage (Kollet et al. 2003). Ratajczak
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et al propose that the bone marrow is not only the niche for haematopoietic stem cells, 

but also a hideout for already differentiated non-haematopoietic CXCR4+ tissue 

committed stem cells. Specific tissue stem cells isolated from the bone marrow or from 

peripheral blood would be the ideal candidate for cell replacement therapies.

A B C D

Figure 9 Bone marrow cells can have stem cell properties or fuse with resident 

cells

(a)HSC fuse with liver cells to rescue a fatal liver disease (blue X-Gal staining) 
(Lagasse et al. 2000). (b)Aberrant karyotype of hepatocytes generated by fusion (FISH: 
Y red, X green) (Wang et al. 2003). (c) Muscle satellite cell generated from donor bone 
marrow (LaBarge et al. 2002). (d) Binucleate purkinje cell with one host and one donor 
nucleus (Weimann et al. 2003).

Summary

Several different mechanisms which could explain stem cell plasticity have been 

discussed so far. Any clinical application of stem cells will have to be preceded with 

research into the mechanism by which cellular plasticity is achieved, to allow a realistic 

estimate of the impact and risks of any future treatments arising from this research.

If stem cells are to be used directly to regenerate damaged tissues the issue of fusion is 

of serious concern. As shown in the FAH'a model fusion can create therapeutically 

active cells without overt negative reactions. The heterokaryons shown in the liver and 

brain of experimental mice do not seem have any detrimental effect and have so far not 

given rise to tumours. However, as the observation period of all the experiments done to 

date is only a small fraction of the total lifetime of the animals no final conclusion can 

be drawn yet. If a clinical application accepts fusion as a way of delivering therapeutic
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genetic material into cells then the consequences o f fusion need to be studied in more 

detail.

Culture o f primary cells is complicated and successful culture and expansion is not 

possible for most stem cell populations. The possibility of generating multipotent cell 

lines would allow for genetic manipulation of these cells. Earlier gene-therapy 

applications were hindered by the inability to screen transduced cells for integration 

into known oncogenic sites, mainly because of the inability to culture the cells. If a 

clonal population o f cells can be derived after transduction the problems of untargeted 

virus insertion could be overcome. Thorough screening o f the insertion site and 

elimination of cells with multiple hits, or without transgene expression would greatly 

improve the safety of this approach.

If the damage done to the organ o f interest in the patient is not genetic in nature then the 

generation of tissue stem cells in vitro would be another promising approach. 

Autologous transplantation would not only remove the need to find suitable donors, but 

would also eliminate the problem of immunological incompatibility. To achieve this, a 

better understanding of the mechanisms o f transdifferentiation and of the molecules 

involved needs to be achieved.
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Aims of this study

anti-hum an c-m et

Figure 10 Human hepatocyte like cells after bone marrow transplantation

A) Immunohistochemical staining for human hepatocyte specific antigen and human c- 
met, B) mRNA analysis for human albumin and GAPDH

We described in 2002 that human stem cells purified from cord blood give rise to 

hepatocyte like cells when transplanted into NOD/Scid mice (Danet et al. 2002).

In these experiments stem cells were isolated by FACS sorting for a population of cells 

that were CD38'ClqRp+CD34+/\  ClqRp (CD93) is a phagocytic receptor for C lq  and 

the homologue to AA4 in the mouse. These cells were injected into NOD/Scid mice and 

after 8  weeks bone marrow engraftment could be observed. At the same time analysis 

of purified liver mRNA by RT-PCR revealed the expression of human albumin. 

Immunohistochemical staining of liver sections revealed a population of cells with clear 

hepatocyte morphology staining for human hepatocyte specific antigen and human c- 

met. (Figure 10)

The aim of this study is to further analyse the functionality and identity of these 

hepatocyte like cells. At the same time we attempt to devise an animal model system for 

enhancement of human hepatocyte like cell engraftment in the murine liver.
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Materials and Methods

Stem cell purification

Stem cells were extracted from human cord blood. Informed consent was obtained from 

mothers awaiting cesarean section at the obstetric units of the Royal London hospital, 

Whitechapel, London and the University College Hospital, Camden, London. Blood 

was extracted from the placenta and umbilical cord with a 50ml syringe and 

immediately supplemented with heparin (Sigma Aldrich, Dorset, UK) to a final 

concentration of 1 mg/ml in 50 ml falcon tubes. Tubes were transferred to the 

laboratory, and stored over night on a rocker at room temperature for extraction o f stem 

cells on the next day.

The cord blood was diluted 1:4 with sterile phosphate buffered saline (PUBS). 15 ml of 

ficoll-paque plus, a solution of Ficoll 400 and Diatrizoate Sodium with a density of 

1.077 g/ml (Stem Cell Technologies, Meylan, France), was put in the bottom of a 50 

ml tube, and 35 ml o f diluted cord blood was carefully applied on top o f the ficoll. 

Tubes were then spun at 400g for 25 minutes with no brake applied. Mononuclear cells 

which form a layer at the interphase o f serum and ficoll were collected with a Pasteur 

pipette into new tubes. Cells were resuspended in a suitable volume o f PBS, and three 

times that volume of Ammonium Chloride solution (Stem Cell Technologies, Meylan, 

France) was applied for red cell lysis. Cells were stored on ice for 4 min, after which 5 

ml of foetal calf serum were added to stop the cell lysis. Cells were resuspended in PBS 

supplemented with 2% FCS and counted on a haemocytometer.

Lineage depletion

Mononuclear cells were depleted of cells expressing lineage antigens using the 

StemSep column system from Stem Cell Technologies. Cells were diluted to 5xl07 

cells/ml in dilution medium and IOOjulI of StemSep enrichment cocktail was added per 

ml of cells. The enrichment cocktail contains monoclonal antibodies for CD2, CD3, 

CD14, CD16, CD19, CD24, CD56, CD66b and Glycophorin A. An additional aliquot 

of lOpl o f CD41 antibody was added to enhance depletion of platelets. After incubation 

on ice for 30 minutes 60pl/ml o f thoroughly vortexed magnetic colloid was added. 

After another incubation o f 30 minutes on ice cells were processed through a metal 

mesh column suspended in a strong magnetic field according to the manufacturer’s
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recommendations. The flowthrough o f the column, containing unmarked lineage 

negative cells was collected. Cells were spun, counted and either frozen in FCS 

supplemented with 10% dimethyl-sulfoxide (DMSO) (Sigma Aldrich, Dorset, UK) or 

used immediately for transduction or transplantation. The column, containing the 

lineage positive cells was washed with 2% PBS and the cells were either discarded, or 

frozen down and used as accessory cells in transplantation experiments.

CD34 enrichment

Enrichment for CD34+ stem cells was performed with the CD34 MiniMax enrichment 

kit from Miltenyi Biotec, Germany. Mononuclear cells from human cord blood were 

diluted in 300pl buffer per 108 cells. Per 108 cells 100 pi o f FcR blocking reagent and 

100 pi of Hapten-labelled Anti-CD34 antibody were added. After incubation on ice for 

15 min cells were washed with 20x the volume in buffer, and resuspended in 400 pi per 

108 cells. lOOpl anti-Hapten microbeads were added, mixed and incubated again 15 min 

on ice. After this the cells were washed and resuspended in 500 pi Buffer. The cells 

were filtered through a 30pm nylon mesh and applied on an appropriate column in the 

provided separating magnet. After three washes the column was removed from the 

magnet and cells were eluted with the provided plunger. The column separation step 

was repeated to raise purity. Finally CD34+ cells were either frozen in FCS with 10% 

DMSO or used directly for transduction with lentivirus.

Lentiviral vector

The lentiviral vector used in the GFP experiments was a kind gift from Prof. A. 

Thrasher, Institute of Child Health, London, UK. Its backbone comprises several 

specialised sequences which have been shown to give high efficiency transduction of  

haematopoietic stem cells. (Demaison, Parsley et al. 2002; Siapati, Bigger et al. 2005)

The central polypurine tract (cPPT) sequence facilitates reverse transcription, nuclear 

entry and transduction. (Follenzi, Ailles et al. 2000) The Woodchuck hepatitis virus 

posttranscriptional regulatory element increases the level of transgene expression in 

non-haematopoietic cell lines (Zufferey, Donello et al. 1999) and in haematopoietic
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cells. (Demaison, Parsley et al. 2002) The promoter that drives the expression of the 

GFP gene is from the spleen focus forming virus (SFFV) as the activity of the 

cytomegalovirus (CMV) promoter is suboptimal in haematopoietic cells. (Figure 11)

HIV2G (pHRSINcPPTSEW)

HIV U3 cPPT SFFVp eGFP WPRE

Figure 11 Schematic of GFP lentivirus used for transduction

HIV-U3: 3’ LTR region, cPPT: central polypurine tract, SFFV: promoter from spleen 
focus forming virus, GFP: green fluorescence protein, WPRE: woodchuck hepatitis 
virus postranscriptional regulatory element, dU3: 5’ LTR

Vector production

The viral vector used to transduce HSC was produced by transient transfection of three 

plasmids into 293T cells, namely the self-inactivating transfer vector plasmid, a 

multideleted packaging plasmid and pMD.G which provides the viral envelope. 

(Zufferey, Donello et al. 1999)

A total of 107 293T cells were seeded in a 150 cm2 flask overnight prior to transfection. 

Cells were cultured in Dulbecco’s modified Eagle medium (DMEM) with 10% FCS, 

penicillin (100 iU/ml), and streptomycin (100 pg/ml) in a 5% C02 incubator. 17.5pg of 

the envelope plasmid, 32.5pg of packaging plasmid and 50pg of transfer vector plasmid 

were precomplexed with 0.25 mM polyethylenimine (PEI) (Sigma Aldrich, Dorset, 

UK) (22 kDa) in 10 ml of Optimem at room temperature for 15 min. The DNA plus PEI 

complexes were added to the cells, and after 4 hr incubation at 21° C the medium was 

replaced with fresh DMEM supplemented with 10% FCS. At 36 hrs and 60 hrs post­

transfection the medium was harvested cleared by low-speed centrifugation (12000 

rpm, 5 min) and filtered through 0.45pm filters. Vector particles were concentrated 20 

to 100 fold by ultracentrifugation at 50.000g for 90 min at 4°. The pellet was 

resuspended in serum-free X-VIVO 10 medium (BioWhittaker Europe, Belgium) and 

kept at -80°C until use. Vector titer was determined by titration on HeLa cells with 

serial dilutions of virus and analyzing for GFP expression at 3 to 5 days postinfection.
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Lentiviral gene transfer

HSC were plated in plastic dishes with serum free X-VIVO 10 medium. After adherence 

of the cells on Fibronectin coated petridishes the medium was supplemented with 1% 

human serum albumin (HSA), polybrene (4pg/ml), stem cell factor (SCF) (100 ng/ml), 

flt-3 ligand (FL-3) (100 ng/ml), IL-3 (20ng/ml) and IL- 6  (20ng/ml). Virus particles 

were added at multiplicity of infection (m.o.i.) of 35 and transduction was performed 

for 24 hours. Cells were harvested on the next day after virus removal and transplanted 

into pre-conditioned mice. To avoid viral contamination in the administered cell 

suspensions the transduced HSCs were washed several times with culture medium 

before cell infusion into mice. A small aliquot o f cells was analyzed for eGFP 

expression by flow cytometry.

Mice

NOD/Scid mice were originally obtained from The Jackson Laboratories (Bar Harbor, 

ME). Mice were bred in house or at Charles Rivers, UK. Animals were kept in sterile 

microisolators, fed rodent chow and provided with sterile water. Animals used for 

transplantation were 8-12 weeks old. All procedures were conducted in accordance with 

the Home Office Animals (Scientific Procedures) Act o f 1986. In few experiments 

P2/NOD/Scid mice were used. To obtain methallothionein null mice suitable for 

xenotransplantation the 129S7/SvEvBrd-MtltmlBriMt2tmlBri mouse strain stock 

number 002211 was obtained from Jackson lab and backcrossed with NOD/Scid mice. 

Maintenance o f MT-/- and SCID mutations was supervised by genomic PCR and 8  

rounds of backcrossing were performed before the first experimental animals were 

used. uPA+/‘rag2'/‘ mice were a kind gift from Dr. Jorg Petersen.

Liver toxin administration

Administered toxins were carbon-tetra-chloride (CCI4) (BD Biosciences, Oxford, UK), 

Paracetamol and Retrorsine (Sigma, Dorset, UK). The average weight o f the 

experimental animals at time of injection was 25 grams. CCL4  was diluted in 

autoclaved com oil (Sainsburys) on the day of injection. To apply 40pl CCI4 per animal 

a mixture o f 40pl CCI4 and 260jil oil was injected. Paracetamol was diluted in PBS and 

filtered through a .22 pm filter. 20mg/ml Retrorsine was dissolved in pure sterile



Karl Kashofer Page 51 PhD thesis, 2006

Ethanol at 55°C with shaking over night to obtain a stock solution which was divided 

into aliquots and frozen. To administer a 70mg/kg dose to a 25g mouse 87 j l i 1 of stock 

solution was diluted with 213 j l i 1 sterile PBS and immediately injected.

Cadmium treatment of NOD/Scid/met mice

To induce liver damage in the metallothionein knockout mouse model NOD/Scid/Mf7" 

animals were treated with 5 to 10|umol/kg CdSC>4 dissolved in PBS by i.p. injection. 

Treatment was given in two week intervals. The dose which was well tolerated was 

determined to be 5 pmol/kg for both males and females.

Bone marrow transplantation

To facilitate bone marrow transplantation animals were treated with 375 RAD gamma 

radiation. Mice aged 8-12 weeks were irradiated inside the sterile microisolator for 264 

seconds at 1.42 RAD/second delivering a total o f 375 RAD using a 137Caesium source 

up to 24 hours before intravenous injection of cells. Cells for injection were diluted in 

PBS supplemented with 2% FCS to obtain a final injection volume of 200pl. The mice 

were placed in a hotbox at 42°C for several minutes to dilate superficial blood vessels. 

After that mice were restrained and the cells were injected into the tail vain with a 

0.5ml syringe. After a period o f observation mice were returned to the storage racks in 

their cages.

Assessment of BM engraftment

Engraftment into the bone marrow was determined by flow cytometry. Animals were 

sacrificed by cervical dislocation, and femurs, tibias and the iliac crest were collected. 

Using a 1 ml syringe containing sterile PBS the bone marrow was flushed from the 

bone cavity into 4 ml polypropylene tubes. After dissociation of clumps 3 ml of 

Ammonium Chloride solution were added and tubes were stored on ice for 7 min to 

lyse red cells. Cells were spun down, washed once and then resuspended in 500pl PBS 

2% FCS and filtered through a sterile 40pm mesh. 50pl o f this solution which 

contained an average of 2  million cells was used for staining. 5pi of monoclonal, 

fluorochrome conjugated antibodies against human CD45, CD 19 and CD33 were added
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to the aliquot o f cells and incubated for 30 min on ice. After two washing steps cells 

were resuspended in 300pl PBS 2%FCS supplemented with DAPI (4,6 diamidino-2- 

phenylindole). Analysis was performed using an LSR (Becton-Dickinson).

A ssessm ent of liver engraftment 

Liver perfusion

Animals were anaesthetised in a chamber flooded with Halothane (2-Bromo-2-Chloro- 

1,1,1-Trifluoro-ethane). During the operation constant anaesthesia was provided by a 

face mask supplying an air/halothane mixture. After successful anaesthesia the animal 

was immobilised with tape on a sterile workbench on top o f several paper towels. The 

abdomen was cleaned with 70% ethanol and opened with scissors from the sternum to 

the genitals. The intestines were relocated to one side with a cotton swab, and the liver 

lifted to expose the inferior vena cava and the portal vein. Eagles basic salt solution 

(EBSS) without Ca and Mg (GIBCO, Paisley, UK) supplemented with 0.5mM EGTA 

(solution 1), EBSS with Ca and Mg plus lOmM Hepes, ph7.4 (solution 2) and 

collagenase solution (solution 2 with 0.15 Wunsch units /ml Liberase 3 (Roche UK, 

Welwyn Garden City, UK)) were prewarmed in a 39° water bath. A standard infusion 

drip and a children vein catheter were used for perfusion. The tubing of the infusion 

drip was placed in the buffer, and then through a Pharmacia peristaltic pump operating 

at 5ml/min. The vena cava was cleared of surrounding tissue. A standard surgical 

thread was looped around the vena cava before the vein was catheterised and the thread 

was tied around the vein and the catheter to prevent slipping. Then the peristaltic pump 

was switched on and the portal vein on the liver was cut open. Now the chest cavity was 

opened and the superior vena cava was clamped. The liver was perfused with solution 1 

for 3 minutes, then solution 2 for 2 minutes and then with collagenase solution. After 8 - 

15 minutes the liver was completely digested and the catheter removed. The gall 

bladder was dissected out and the liver removed from the animal. In a petridish the liver 

was now carefully dissociated in warm collagenase solution. The cells were collected 

and filtered through a nylon mesh into a sterile 50ml tube containing warm DMEM 

with 10% FCS. The cells were pelleted by a 60-90sec spin at lOOOg. The supernatant 

was removed and the pellet resuspended in 50ml medium for another wash. Viability 

was assessed by trypan blue staining (0.04%) and was typically between 70 and 80%.
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Histology

Animals were sacrificed and tissues were removed. One part o f the tissues was fixed in 

4% NBF over night and embedded in paraffin blocks. Other parts were frozen in liquid 

nitrogen. For histology paraffin sections and frozen sections were cut and stained with 

haematoxylin and eosin.

Immunohistochemistry

Liver tissue was collected from animals and either immediately frozen in liquid 

nitrogen or fixed overnight in 4% neutral buffered formalin (NBF). Cryosections were 

thawed, fixed for 5 minutes in NBF at room temperature, washed, incubated in acetone 

at -20°C for 10 minutes and blocked with 1:25 swine serum with 0.1 % Triton-X for 30 

minutes. After washing, antibodies against human nuclei or human mitochondria 

(Chemicon, Temecula, CA) were applied at 1:20 dilution in PBS for 1 hr. Secondary 

anti-mouse antibodies bearing fluorochromes Alexa 488 or Alexa 594 were used at 

1:100 dilution for visualization. Paraffin sections were cut, de-waxed in Histoclear 

(RaLamb, East Sussex, UK) and blocked in 3% hydrogen peroxide for 10 minutes. 

Antigen unmasking was performed by microwaving at 700 watts for 10 minutes in 

citrate buffer pH 6 . After blocking, anti-eGFP polyclonal rabbit serum (Invitrogen, 

Paisley, UK) was applied 1:500 in PBS while anti-human-albumin antibody (Cedarlane, 

Ontario, Canada) was used 1:25. Secondary antibodies conjugated to a fluorochrome 

(anti-mouse or anti-rabbit Alexa Fluor 594 or Alexa Fluor 488, Invitrogen) were used at 

1 : 1 0 0  dilution, while horseradish peroxidase conjugated secondary antibody 

(Dakocytomation, Cambridgeshire, UK) was used at 1:400 for visualisation with DAB 

(Sigma-Aldrich, Dorset UK). Detection o f incorporated BrDU into mitotic cells was 

performed on paraffin sections. After de-waxing and blocking, rat anti-BrDU antibody 

(Seralab, Leicestershire, UK) was applied in a 1:500 dilution for 1 hr. Anti-rat HRP- 

conjugated secondary antibody (Sigma, Dorset, UK) was used at 1:100.

RT-PCR

Approximately 25 mg of liver tissue were cut from frozen tissue samples. Tissue was 

homogenised in Trizol reagent (Invitrogen) with a pistil, and RNA was extracted 

according to the manufacturer’s protocol. 3 pg of RNA were subjected to DNase 

digestion (Quiagen Ltd. Sussex UK) and subsequent generation of cDNA was
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performed with the Sensiscript kit (Quiagen) in 20 pi volume. 2 pi of cDNA was added 

to PCR reactions with primers for

GAPDH (5'-catcaagaaggtggtgaagcag/ 3’-tgtgggccatgaggtccaccac),

human P-Actin (5’-caggctgcttccagctcc/ 3’-gggtataacgcaactaagtcatag),

eGFP (5'-accccgaccacatgaagcagc/ 3’-cgttggggtctttgctcaggg),

human alpha-anti-Trypsin (5’-gctgaagaccttagtgatgc/ 3’-ctttgaagtcaaggacaccg) and

human Albumin (5’-cattagctgctgattttgttgaaag/ 3’-tgtgcagcattttgtgactctg).

PCR was performed with the High fidelity PCR kit (Roche) using buffer 3. PCR 

conditions were 94°C 30 seconds, annealing temperature for 30 seconds and extension 

at 72°C for 1 minute. Annealing temperature was 60°C for P-Actin, albumin and 

GAPDH, 62°C for a-anti-Trypsin and 67°C for eGFP. PCR products were separated by 

agarose gel electrophoresis and stained with ethidium bromide.

Micro-dissection and single cell PCR
Frozen tissue sections were stained for eGFP, but after dehydration no cover-slip was 

applied. Sections were placed on the stage o f a PALM micro-dissection microscope 

(PALM microlaser technologies AG, Bemried, Germany). A standard PCR tube cap 

containing 15pl of PCR buffer supplemented with 0.5% Triton was placed above the 

section, and eGFP stained cells were positioned in the centre of the field of view. The 

laser was used to excise the single eGFP positive cell from the surrounding tissue, and 

then to catapult it into the tube cap. The tube was closed, supplemented with 2 pi 

proteinase K (20 pg/ml) and incubated at 48° C overnight. This was followed by 60 

rounds of i-PEP PCR as described. (Dietmaier, Hartmann et al. 1999) 3 pi of the 

reaction were used as template for nested PCR specific to the human and mouse TNFa 

locus and for eGFP.
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Primers:

human TNFa

outer: 5 ’-aggaacagcacaggccttagtg/ 3’-aggaacagcacaggccttagtg, 

inner: 5’-ggatactcagaacgtcatggcc/ 3’-ctcataccagggcttggcct, 

mouse TNFa

outer: 5 ’ -ccaccatcaaggactcaaatg/3 ’ -cactgggtcctccaggaca, 

inner: 5 ’-ggctttccgaattcactggag/ 3’-ccccggccttccaaataaa. 

eGFP outer as mentioned before, 

inner: 5 ’-gcatcgacttcaaggaggac/ 3’-tgctcaggtagtggttgtcg.

PCR was performed as mentioned before with an annealing time of 65 °C for the first 

round and 55°C for the second round. Efficiency o f PCR was determined by cutting 

hepatocytes from normal human and mouse liver tissue.

Fluorescence In Situ Hybridisation

Frozen sections were fixed in 4% PFA for 10 minutes and pictures of natural eGFP 

fluorescence were immediately taken on a Zeiss LSM 510 confocal microscope. The 

position of individual eGFP positive hepatocytes was saved with custom made 

software, and subsequent FISH analysis was performed on the slide. The slides were 

digested with 0.005% pepsin in 0,9% saline at pH 1.5 for 2-5 minutes. Following 

dehydration, probes for either mouse Chromosome Y, human Chromosome 1 or human 

centromeres (Cambio Cambridge, UK) were applied according to the manufacturer’s 

recommendations. The tissue section was then covered with a cover-slip and sealed 

with rubber glue. Sections were then incubated at 80° C for 10 minutes for co- 

denaturation o f nuclei and probes. After overnight incubation at 37° C the sections were 

washed in 0.4% SSC at 72° C for 30 seconds and mounted in fluorescence mounting 

medium (Dakocytomation, Cambridgeshire, UK) supplemented with DAPI. The slides 

were again inserted into the confocal microscope, the exact position saved earlier was 

reloaded, and pictures o f the nuclei of the same cells photographed before were taken. 

Overlay images o f eGFP and FISH signals were produced using Adobe Photoshop.

To obtain FISH signals on paraffin embedded tissues, sections were dewaxed, 

rehydrated and incubated in 1M sodium thiocyanate at 80° C for 10 min. Then sections 

were washed in distilled water and incubated in 5mg/ml pepsin in 0.9% Saline ph 2 for 

5-15 min at 37°C. After this sections were washed and probes were applied similar to 

the protocol for frozen sections. If HSA staining was performed before the FISH
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protocol the digestion time was reduced as the tissue was already more accessible to the 

protease due to the microwaving step in the HS A immunohistochemistry protocol.
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Results

Chapter 1 Generation of an environment conducive to cell 
engraftment

Introduction

The engraftment of cells within an organ can be conceived as a two stage process. The 

first stage is the homing following the transplantation of cells. This stage could be 

facilitated by damage to the organ. If liver tissue is in an active process o f regeneration, 

accompanied by the production o f growth factors and signalling molecules the homing 

of cells injected into the tail vein could be enhanced. Increasing the homing would lead 

to a higher amount o f cells in the tissue from the beginning of the experiment. The 

second stage of cellular contribution to an organ would be expansion following later 

stage damage. If damage to a tissue would occur when there is already a nascent 

population of engrafted cells in the organ, these could be induced to proliferate and 

expand, thus producing higher levels of donor derived cells in the tissue.

To establish an animal model in which we can selectively induce damage to liver tissue 

we tested several chemical compounds for their effect. The toxins used in this study 

where selected according to several criteria.

Specificity

When applying a toxin to induce damage to a specific organ, all non-specific 

impairment of other organs is detrimental to the aims o f the study. Toxins selected for 

this study had to have an established phenotype in liver tissues without causing 

destruction of other cell types. Absolute specificity is very difficult to achieve, so a 

compromise had to be made between dosage and damage to retain the tissue specificity 

of the toxin.

Reversibility

The damage done to the tissue needed to be reversible. The rodent liver has an amazing 

ability to regenerate itself even after severe damage. Regeneration from damage caused
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by the toxins used here usually commenced after 7 to 14 days. Liver morphology 

returned to a normal phenotype, and animals looked healthy again.

Repeatability

As we hoped to expand a putative stem cell population engrafted into the liver to 

generate therapeutically promising levels o f liver repopulation our treatments had to be 

repeatable. This would allow to induce damage not only at the timepoint of actual cell 

transplantation, but also at a later stage, where successful bone marrow engraftment has 

been established, and secondary colonization by bone marrow derived cells via the 

circulation was possible.

Legal considerations

As all our animal experiments had to be approved by the Home Office in a lengthy 

process, we were restricted in the possibilities of not only choice of toxins, but also in 

experimental design.

Acetaminophen (Paracetamol)

Acetaminophen is a commonly used analgesic and antipyretic compound. 

Acetaminophen hepatotoxicity due to overdose is the most frequent cause of fulminant 

liver failure, with a mortality rate up to 90% (Makin et al. 1994). The mechanism of 

this liver injury is not fully understood, however, the generation o f reactive oxygen 

species, the transcription factor NF-kB, nitric oxide and lipid peroxides have been 

postulated to be the major factors involved in this mechanism. Oral administration of 

antioxidants significantly attenuates the acetaminophen induced liver damage (Oz et a l 

2004). As the toxicity of acetaminophen in NOD/Scid mice was not known in advance, 

a pilot experiment using three doses of acetaminophen (100, 200, 300 mg/kg) was 

performed. Liver sections where analyzed for overt signs o f necrosis 24 hrs after i.p. 

injection. 300 mg/kg acetaminophen induced only mild morphologic changes when 

analyzed with hematoxylin & eosin (H&E) staining. As the maximal dose included in 

our animal experimentation license was 350 mg/kg we subsequently performed a 

timecourse analysis o f 350 mg /kg acetaminophen in 16 mice. Animals were injected 

intra-peritoneal with 200pl PBS containing 8.75 mg acetaminophen which is equivalent 

to 350 mg/kg for NOD/Scid mice of an average body weight o f 25 grams. To assess the
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mitotic activity in the liver tissue mice where additionally injected with BrDU i.p. at a 

dose of 50 mg/kg body weight 24 hours before sacrifice. Mice were analyzed at 2, 3 and 

4 days after i.p. injection of acetaminophen.

The top panel o f Figure 12 depicts hematoxylin & eosin staining o f the livers of 

experimental animals. The leftmost image is from a control animal, which had not 

received any acetaminophen. The other three panels follow the timecourse from left to 

right. Morphological changes are barely visible in any o f the three timepoints. (Figure 

12a) The BrDU incorporation into newly formed nuclei is shown in Figure 12b. Nuclei 

that have been subject to mitosis in the last 24 hours are stained by the anti-BrDU 

antibody. However, no increase in the number o f stained nuclei is visible when 

comparing the untreated control (leftmost panel) with sections from experimental 

animals.

As evidenced by Figure 12, liver damage with the maximal dose of acetaminophen 

permitted by our animal licence was limited, and no increase in mitotic activity of the 

liver parenchyme could be observed. Acetaminophen is well tolerated in NOD/Scid 

mice at a dose of 350 mg/kg body weight and does not induce gross changes in liver 

morphology or increased mitosis. This observation prevented use of acetaminophen as a 

hepatotoxin in this study.
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Figure 12 Acetaminophen toxicity of NOD/Scid mice

A) Timecourse of acetaminophen intoxication in H&E staining. Mice were injected 
with 350mg acetaminophen per kilogram body weight. 24 hours before sacrifice mice 
were treated with BrDU to allow staining of cells that have performed mitosis in the last 
24 hours. At the indicated timepoints animals were sacrificed, livers were harvested and 
processed for histology. B) Tissue sections from the same animals stained for BrDU 
incorporated by cell division.
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Carbon-T etra-Chloride 
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Figure 13 Chemical structure of CC14

Carbon-tetra-chloride is a heavy (1.6g/ml), colourless liquid which is not soluble in 

water, but miscible with common organic solvents. It is composed of a central carbon 

atom surrounded by four chlorine atoms. (Fig. 13) It has been used as a refrigerant, as a 

solvent in rubber production and as a grease removing agent for machinery and tools, 

but because of its distinct toxicity it has now been banned or its use severely restricted. 

Despite this, CCI4 remains a potent tool to elucidate the mechanisms of action of 

hepatotoxic effects such as fatty degeneration, fibrosis, hepatocellular death, and 

carcinogenicity. CCI4 is activated by cytochrome (CYP)2E1, CYP2B1 or CYP2B2, and 

possibly CYP3A, to form the trichloromethyl radical, CCI3. This radical can bind to 

cellular molecules (nucleic acid, protein, lipid), impairing crucial cellular processes 

such as lipid metabolism with the potential outcome o f fatty degeneration (steatosis). 

Adduct formation between CCI3 and DNA is thought to function as an initiator of 

hepatic cancer. This radical can also react with oxygen to form the 

trichloromethylperoxy radical CCI3OO, a highly reactive species. CCI3OO initiates the 

chain reaction o f  lipid peroxidation, which attacks and destroys polyunsaturated fatty 

acids, in particular those associated with phospholipids. This affects the permeability of 

mitochondrial, endoplasmic reticulum, and plasma membranes, resulting in the loss of 

cellular calcium sequestration and homeostasis, which contributes heavily to subsequent 

cell damage.

None of these processes per se is considered the ultimate cause of CCU-induced cell 

death, but by cooperation they achieve a fatal outcome, provided the toxin acts in a high 

single dose, or over longer periods of time at low doses. At the molecular level CCI4 

activates tumour necrosis factor (TNF)alpha, nitric oxide (NO), and transforming
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growth factors (TGF)-alpha and -beta in the cell, processes that appear to direct the cell 

primarily towards (self-)destruction or fibrosis. TNF alpha pushes toward apoptosis, 

whereas the TGFs appear to direct towards fibrosis.

Oxygen partial pressure can also direct the course o f  CCI4  hepatotoxicity. Pressures 

between 5 and 35 mmHg favour lipid peroxidation, whereas absence of oxygen, as well 

as a partial pressure above 100 mmHg, both prevent lipid peroxidation entirely. 

Consequently, the location of CCU-induced damage mirrors the oxygen gradient across 

the liver lobule.
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DNA of dividing cells. In the normal liver only very few hepatocytes are mitotically 

active (Figure 12b). After damage however this number rises rapidly leading to up to 

50% BrDU positive hepatocytes (Figure 15). As BrDU will stain the parent cell as well 

as the daughter cell after cell division, this allows to estimate that about 25% of 

hepatocytes have been generated de novo in the course o f one day of damage repair. 

The highest percentage o f mitotic nuclei is present at day 4. (Figure 15b)



Karl Kashofer Page 65 PhD thesis, 2006

A 3 days 4 days 5 days

10 pi CCL4

20 jj.1 CCL4

40 pi CCL4

B

> y v c ••

^ iili

Figure 14 Liver damage by different doses of CCL

A) H&E staining o f liver sections from experimental animals. Clearly visible is 
extensive damage around the central veins in all treatment groups on the 3 rd day o f the 
timecourse experiment. B) Macroscopic view o f whole liver after 7 days. Although 
cellular regeneration will have taken place by now the liver still displays discolouring 
and liver tissue is hard and rigid. C) Because of necrosis inside the liver lobe the surface 
of the liver sinks in above sites o f damage leading to an uneven surface and rugged look 
of the organ on day three of regeneration.
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Figure 15 BrDU staining of liver sections after CC14 damage

A) The same tissue samples shown in Figure 14 stained for BrDU B) BrDU positive 
and negative cells were counted and the percentage of BrDU positive nuclei was 
calculated from three different fields of view.
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Retrorsine
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Figure 16 Chemical structure of retrorsine

Retrorsine is a member of the pyrrolizidine alkaloid (PA) family o f naturally occurring 

compounds that are toxic to various mammalian tissues, including liver, lung, kidney, 

brain, muscle, heart, thymus, lymph nodes, and blood vessels (Bull et a l 1959; 

Schoental et a l 1959). Pyrrolizidine alkaloids were studied originally because o f their 

toxicity in animals, particularly sheep and cattle where they cause both acute and 

chronic liver injury. These agents are natural plant substances that are selectively taken 

up and metabolised by the liver to bioactive compounds that alkylate proteins and 

DNA. Retrorsine is metabolised to toxic pyrrolic metabolites through the action o f the 

P450 enzymes. The hepatotoxic effects of PAs are long-lasting (Hayes et a l 1985) and 

include inhibition of hepatocyte cell division coupled with induction o f polyploidy and 

megalocytosis (Jago 1969). The acute development of megalocytosis in the livers of 

retrorsine-exposed rats results from the antimitotic action o f the PA and its metabolites 

on hepatocytes that are stimulated to divide, such as induced by partial hepatectomy 

(PH) or hepatocellular necrosis. In the retrorsine/PH model, neither retrorsine injured 

fully differentiated hepatocytes nor do oval cells proliferate abundantly to contribute 

significantly to the restoration of liver mass after PH. Instead the entire liver mass is 

reconstituted after PH through a cellular response that is mediated by the emergence 

and rapid expansion of a population of small hepatocyte-like progenitor cells, which 

share some phenotypic traits with foetal hepatoblasts, oval cells and fully differentiated 

hepatocytes (Gordon et a l  2000). Small hepatocytes appear as isolated clusters of 3 to 6  

cells at 3 days post-PH and do not co-localise with oval cells. These small cells are 

found in all lobular zones unlike oval cells which typically locate in the periportal areas. 

Small hepatocyte-like cells proliferate readily and by 30 days post-PH normal liver
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structure is restored and the tissue is nearly indistinguishable from that of control 

animals. Although the proliferation o f small hepatocyte like cells ultimately leads to 

complete repair o f damaged liver tissue it nevertheless takes significantly more time (30 

days retrorsine/PH vs. 10 days control PH) to achieve complete regeneration. The origin 

of the small hepatocyte like cells is still being debated; however, more recent research 

indicates that mature hepatocytes escaping the mitotic block mediated by retrorsine 

might be the source (Avril et a l  2004).

The effect of retrorsine can be used to prevent regrowth o f host liver tissue in 

transplantation experiments. Rats treated with retrorsine were subjected to PH and 

simultaneous infusion of isolated hepatocytes from a donor animal (Laconi et a l  1998). 

In this animal model donor hepatocytes are taken from a rat strain expressing an 

enzyme (DPPIV) missing in the host animal. Immunohistochemical staining for this 

enzyme allows for reliable detection of donor hepatocytes in the host liver. After 2 

weeks donor hepatocytes contributed 3-5% of liver mass, rising to 15-25% at one 

month and peaking at 40-60% after 2 months. This level o f engraftment is stable from 

there on. In a follow-up study the same group could show that the growth stimulus 

provided by PH is not necessary to achieve liver repopulation by transplanted 

hepatocytes. In rats treated only with retrorsine (30mg/kg 2x two weeks apart) 

transplanted hepatocytes occupied 80% of liver parenchyme after 9 months (Laconi et 

a l 2001). Another interesting issue raised in this study is the impact o f different 

susceptibility o f female and male rats to retrorsine treatment. Female rats are reported to 

be relatively resistant to the acute toxicity o f retrorsine, with an LD50 almost five times 

as high as that for male rats of the same age, however female rats also undergo massive 

liver replacement by transplanted cells with percentages of repopulation similar to these 

observed in males. This finding underscores that the immediate toxic effects o f 

retrorsine, i.e. dilation and congestion of hepatic sinusoids, mild inflammation and 

biliary epithelial cell proliferation are not a major factor in determining the efficiency of 

cell engraftment.

As the retrorsine model would be a powerful tool to investigate liver regeneration by 

hematopoietic progenitor cells we tested several aspects of retrorsine with regards to the 

NOD/Scid xenotransplantation model.
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Administration of retrorsine

In the original publications retrorsine was administered by dissolution in low pH. 

Retrorsine (12,18-dihydroxysenecionan-l l,16-dione;p-longilobine; Sigma, St. Louis, 

MO) was added to distilled water at lOmg/ml and titrated to pH 2.5 with IN HC1 to 

completely dissolve the solid. Subsequently the solution was neutralised using IN 

NaOH and NaCl was added for a final concentration o f 6 mg/ml retrorsine and 

0.15mol/L NaCl (pH 7.0). However, the neutralisation of small amounts of unbuffered 

solution was difficult, and the retrorsine precipitated immediately after neutralization 

rendering the solution unusable after approximately 20 minutes. In addition, the 

retrorsine solution was badly tolerated by animals, leading to visible stress and 

discomfort to the animals.

In subsequent experiments retrorsine was dissolved in EtOH. A stock solution of 

20mg/ml was prepared and diluted with distilled water before administration. The 

alcoholic solution was well tolerated, leading to no visible stress other than deep sleep 

for several hours as an effect of the solvent.

Dose response:

All previous work with retrorsine was done in rat. To establish a dose of retrorsine that 

is tolerated in NOD/Scid mice we performed initial experiments with several different 

doses. Mice were injected intra-peritoneal with control saline, 30mg, 90mg and 

300mg/kg body weight retrorsine in groups of 6  mice. All animals in the 90mg and 

300mg groups died within few hours from the immediate effects of the toxin. In a 

subsequent similar experiment using retrorsine dissolved in alcohol we established 

70mg as a dose well tolerated in NOD/Scid mice.

Long term tolerance

In the rat model retrorsine administration leads to visibly growth arrested hepatocytes 

even in the absence of a growth stimulus like PH or CCL treatment. To exclude any 

long term toxicity in our model we performed long term observation of mice treated 

with retrorsine.

4 NOD/Scid animals were treated with retrorsine 30mg/kg four times in weekly 

intervals. After 8  weeks animals were sacrificed and liver morphology was analyzed in 

H&E stained liver sections. As is shown in Figure 17a no changes in liver morphology
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could be observed. In rats the treatment with retrorsine induces formation of 

megalocytosis. In our model no obvious megalocytic hepatocytes could be observed.

Effectiveness o f retrorsine in the mouse

In rats, retrorsine delays the recovery from PH about threefold from 10 days to more 

than 30 days. To assess the efficiency of retrorsine in the mouse model we induced 

massive tissue necrosis by CCU intoxication after pre-treatment o f animals with 

retrorsine. Animals received either alcohol alone or one or two injections of retrorsine 

(30mg/kg body weight, dissolved in ethanol) one week apart. Two weeks after the last 

retrorsine treatment an injection o f 20pl CCI4 in oil was given which has been shown to 

induce severe necrosis of liver parenchyme extending to up to 2 0 % of the surface area 

in liver sections. Two animals o f all three groups were sacrificed on days 3 ,4 , 5, 6  after 

CCI4 treatment receiving a BrDU injection 24 hrs before sacrifice. Liver sections from 

all animals were stained with H&E. In contrast to the strong mitotic arrest induced in rat 

hepatocytes retrorsine does not impair liver regeneration in NOD/Scid mice as 

efficiently as in rats. As shown in Figure 17b regeneration o f liver tissue is similar in 

retrorsine treated animals (upper panels) to animals without retrorsine pre-treatment 

(lower panels). The necrotic areas are quickly filled with hepatocytes and on day 5 post 

CCI4 treatment liver morphology is nearly normal again. To assess regrowth efficiency 

we stained the liver sections with antibodies against BrDU and determined the 

percentage of BrDU positive nuclei by counting. As can be seen in Figure 17c animals 

treated with retrorsine show a higher percentage o f BrDU positive hepatocytes on day 4 

after CCU treatment, but no other significant delay in tissue repair. Due to a shortage of 

retrorsine no more preparatory experiments were performed.
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Figure 17 Effect of retrorsine on liver tissue in NOD/Scid animals

A) Long term retrorsine exposure has no negative effect on liver tissue morphology 
Animals were treated with 4x 30 mg/kg retrorsine and analysed after 8 weeks. B) Liver 
regeneration after hepatocyte damage with 20pl CC14 is not significantly inhibited by 
two doses of 30mg/kg retrorsine. C) Retrorsine treatment marginally delays repair after 
CCL4 induced liver damage. 30mg/kg retrorsine were administered once or twice two 
weeks before CCU damage. Animals were given injections of BrDU 24hrs before 
sacrifice, and the percentage o f BrDU positive hepatocytes was counted.
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Cadmium

Inducing damage to tissue with toxic substances allows preparing the tissue for 

engraftment and creating a regenerative environment. Unfortunately no mechanism 

exists to prevent administered toxins to damage freshly engrafted donor tissue making it 

impossible to apply repeated rounds of toxin after initial engraftment has taken place. 

The success of the FAH'7' mouse model in live regeneration research is based largely on 

its ability to discriminate between host and donor cells. This allows for selective 

removal of cells o f the host while preserving the newly engrafted donor cells.

To generate a similar system, albeit able to be used in xenotransplantation o f human 

cells we devised a backcrossing strategy to backcross a mouse strain in which the genes 

for both metallothionein I and II had been knocked out onto the NOD/Scid background.

Metallothioneins (MTs) are characterised by their low molecular weight, high cysteine 

content, lack of aromatic residues, and the presence of 7-12 metal atoms per molecule 

(Kagi et al. 1987). In mammals, the cysteine residues are absolutely conserved in 

number and serve to coordinate heavy metal atoms such as zinc, copper and cadmium 

via mercaptide linkages. Two major isoforms of MT have been described in mammals, 

and in mouse the genes encoding these two isoforms are 6  kb apart on chromosome 8 . 

MTs have been postulated to detoxify metals, play a role in zinc and copper 

homeostasis during development and protect against reactive oxygen species. The MT'7' 

mouse strain was originally described by Masters et al in 1994 (Masters et al. 1994). In 

it both genes for metallothionein I and II were inactivated by insertion o f a stop codon 

in the first exon. The mutant animals do not have an abnormal phenotype under 

standard conditions. However, the ability of MT-null mice to detoxify cadmium is 

severely impaired. A daily dose o f lOpmol cadmium/kg body weight, which is well 

tolerated by wild type animals, killed all male animals within 48 hrs and 50% of 

females in four days. Livers from cadmium-injected MT-null mice exhibited consistent 

histopathological changes including focal areas of cellular degeneration and necrosis, 

congestion, and haemorrhaging. In addition, all control and MT-null males showed 

signs o f extensive testicular necrosis. Repeated exposure of these animals to cadmium 

exacerbates the effect (Habeebu et al. 2000). In a different experimental setup Liu et al 

showed that this strain also is more sensitive to chronic oral cadmium-induced 

nephrotoxicity (Liu et al. 2000).
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The MT'a strain has been maintained at Jackson laboratories under the strain name 

129S7/SvEvBrd-MtltmlBnMt2tmlBn. We obtained the strain from Jackson laboratories, 

and used standard backcrossing to introduce the MT'A mutation onto the NOD/Scid 

background. Backcrossing was performed by Charles Rivers UK for 10 generations.

Male NOD/Scid mice tolerate 5pmol/kg CdS0 4

To be able to selectively damage the host tissue in xenotransplantation experiments we 

needed to define a concentration of Cadmium that is well tolerated in normal NOD/Scid 

mice. This is necessary to prevent damage to engrafted hepatocyte cells. Because male 

MT'' mice have been reported to be very sensitive to cadmium treatment only half the 

dose used for females was tested in this experiment. Due to a lack of animals we could 

not investigate the dose-response of female animals.

Normal NOD/Scid animals were intoxicated with a solution of CdS0 4  via i.p. injection. 

After 1, 3 and 7 days animals were sacrificed and H&E sections o f liver and testis were 

prepared. As can be seen in the upper panel of Figure 18a this dose of cadmium did not 

have any influence on liver morphology in normal NOD/Scid animals. The sections 

from testis however present widespread necrosis as early as 24 hrs after cadmium 

treatment. Immediately after treatment complete tissue destruction is evident, and can 

not be repaired within the timeframe of this experiment

MT'"/NOD/Scid mice are more sensitive to hepatotoxic effect o f cadmium 

In male MT^VNOD/Scid mice exposed to the same regimen o f intoxication a clear 

hepatotoxic effect of cadmium is visible. 24 hrs after intoxication foci of necrosis 

appear in the liver tissue. In contrast to the centrilobular damage induced by CCI4 these 

foci are not located around the central vein of the liver lobe but appear dispersed in the 

tissue well away from both central veins and portal triads. After initial necrosis at 

around day three small hematopoietic cells infiltrate the sites o f necrosis. After one 

week the necrotic foci have been repaired, and liver morphology appears normal again. 

However, small aggregates of hematopoietic cells are still visible at this time.
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Figure 18 Tissue damage by cadmium toxicity in male MT_/7NOD/Scid mice.

Animals were treated with 5 pmol/kg CdSC>4 via i.p. injection. A) Male NOD/Scid mice 
show no tissue damage in the liver with this amount of CdSC>4 . On all timepoints liver 
morphology is normal. Testicular damage however is widespread, and complete 
destruction of testis cords is present throughout the whole experimental timecourse. B) 
Tissue damage induced in male MT^VNOD/Scid mice. In liver tissue clearly visible 
liver damage is present 24 hrs after CdS0 4  treatment. The necrotic patches are 
dispersed in the liver parenchyme. At day 3 post treatment hematopoietic cells can be 
seen infiltrating the foci of dead cells and removing debris. At day 7 visible recovery of 
liver tissue has taken place, and no more necrosis is present. The testicular damage in 
MT^TNOD/Scid mice is similar to the damage in NOD/Scid mice.
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Summary

The aim of this project was to study the environmental parameters that influence 

transdifferentiation of hematopoietic stem cells into hepatocytes. To achieve this we 

studied several animal models in which we can either generate a general environment 

conductive to regeneration or in which we can provide engrafted cells with a growth 

advantage.

Although acetaminophen can induce serious liver damage, the limited dose we were 

able to use in our experiments made it ineffective for our purpose. As NOD/Scid mice 

tolerate even the highest dose of 350mg/kg body weight very well we could not use it in 

later experiments.

CCU is a powerful hepatotoxin which has been studied for a long time. The acute 

damage done by CCI4 to liver tissue is very similar to the strong mitotic activation after 

partial hepatectomy. However, partial hepatectomy is a complicated procedure, and 

associated with a high risk o f infection or other complications which lead to animal 

loss. The administration of CCI4 is simple, and in healthy animals a dose of 40pl CCI4 

per 25g animal does induce severe liver damage without other detrimental side effects. 

The damage done is specific to hepatocytes, so even if transplanted hematopoietic cells 

are introduced into the organism quite early after CCI4 intoxication they should not be 

affected. Despite causing serious hepatocyte destruction, CCI4 is well tolerated and the 

damage induced is repaired within a very short period usually less than 1 0  days until 

complete recovery. CCI4 thus is a powerful tool in preparing an environment engaged in 

fulminant repair and restoration in the animal.

The pyrrolizidine alkaloid retrorsine effectively inhibits mitosis of hepatocytes in the 

rat model. In the mouse however, its effectivity has not been tested before. In our 

experiments it did not significantly delay repair after CCI4 damage. We could not 

observe megalocytic cells as described in the rat. However, the repair o f damage after 

CCI4 intoxication is providing a very strong mitotic stimulus, probably overcoming a 

weak mitotic block induced by retrorsine, and the effect o f retrorsine has been described 

to be long lasting, so we could not rule out a long-term growth impairment o f resident 

hepatocytes. Retrorsine is a naturally occurring compound and is extracted from plants. 

At the time o f the start of this project retrorsine was readily available from Sigma 

Biochemicals. However, during the course of this project the supply o f retrorsine had 

been used up, and retrorsine has since been unavailable. The residual amount of
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retrorsine in our stocks was not sufficient to perform a full investigation into its effects; 

we could however perform one set o f engraftment experiments described in chapter 2 . 

The successful backcrossing of the MT'/_ strain onto the NOD/Scid background presents 

us with a new mouse model for studying regeneration o f liver tissue while providing a 

selective growth advantage for transplanted cells. The complete absence o f functional 

MT I or II in these animals confers a genetic distinction which can not be overcome by 

gene rearrangement like is the case in the alb-uPA model (Sandgren et al. 1991). 

Another problem in other established genetic defect models, namely the FAH'7' model 

and the alb-uPA model is neonatal death and very difficult upbringing o f pups. The MT' 

^/NOD/Scid mouse strain is very similar to the NOD/Scid strain in fertility and 

upbringing, so no special treatment o f pups is necessary for survival. At last, no other 

mouse strain with an inducible liver specific genetic defect allows the engraftment of 

xenogeneic cells. The procedures established in the NOD/Scid model for engrafting 

various populations of cells in a host animal can now be applied to a mouse model with 

an inducible genetic disadvantage in its hepatocytes.
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Chapter 2 Engraftment of human celis in the mouse 

Introduction

Bone marrow transplantation is an established methodology in the treatment o f diseases 

in human medicine. It can be used to cure haematopoietic disorders by replacing or 

supplementing the diseased bone marrow of a patient with healthy cells. To allow 

scientists to mimic these conditions in the clinic and to be able to conduct research on 

the potential of haematopoietic stem cells the Scid mouse model (Shultz et al. 1995; 

Lowry et a l 1996), and later the NOD/Scid model (Larochelle et a l 1996) were 

introduced. These animal models allow studying two aspects of bone marrow 

transplantation. The first aspect encompasses the intrinsic capabilities of cells o f the 

haematopoietic lineage, and the second aspect is the influence o f the environment into 

which these cells are transplanted.

In our model we use progenitor and stem cells purified from human cord blood. This 

population is readily available and thus is at the centre of research in many laboratories. 

The haematopoietic stem cells obtained from cord blood have been shown to repopulate 

the bone marrow of NOD/Scid animals, giving rise to multiple cell lineages of 

haematopoietic origin (Larochelle et a l 1996; Bhatia et a l 1997; Bhatia et a l 1998). 

More recently several publications suggested a broader spectrum of developmental 

possibilities for haematopoietic stem cells, with reports of hepatocyte generation from 

bone marrow being at the forefront of this research.

We aimed to investigate the engraftment capabilities o f human stem cells in an 

environment in which extensive damage of a non-haematopoietic organ is present, to 

elucidate if we can direct the development of non-haematopoietic cell types from bone 

marrow cells. The first step in this was to establish sufficient levels o f bone marrow 

engraftment which is readily detectable and can be enumerated by FACS analysis. In 

the second phase we concentrated on other organs of the murine organism to find out if  

progeny of the haematopoietic cells can be detected there.
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CCL4 treatment enhances bone marrow homing of human 

progenitor cells

Damage to liver tissue by CCI4  induces severe necrosis and cell death. The immediate 

reaction o f the surviving hepatocytes is to enter mitosis and divide. In this environment 

o f necrosis, inflammation and regeneration multiple homing molecules are upregulated 

and aide circulating cells in finding the site o f damage.

To investigate if  CCI4  damage increases homing to the liver or the bone marrow we 

labelled cells with the lipophilic dye PKH26 and traced their movement in the murine 

organism. Mice were injected with one 40pl injection o f  CCI4  i.p. and given 350 RAD 

irradiation on the following day. 48 hrs after CCI4  treatment 2x l0 6  human cord blood 

mononuclear cells stained with the dye PKH26 were administered via i.v. transfusion. 

PKH staining of mononuclear cells is very strong and complete as can be seen Figure 

19B. After 16 to 24 hours homing is finished and the animals were sacrificed. Bone 

marrow was harvested by flushing femurs and tibias, and livers were perfused by 

collagenase treatment. The experimental procedure is outlined in Figure 19A.

While the frequency o f PKH positive cells could be conveniently derived as percentage 

of total cells in the bone marrow, in the liver the large amount o f debris after liver 

perfusion made this impossible. As an alternative strategy the whole liver was perfused 

and dispersed in 5 ml of buffer and a fixed amount o f fluorescent beads (Sigma 

Aldrich) was added to an aliquot of cells. The fluorescent beads are clearly visible in 

the FACS plot (Figure 19C). The PKH positive cells were counted in a large FACS gate 

depicted in Figure 19C and put in relation to the number o f beads counted in a second 

gate.
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Figure 19 Tracking of cells to measure short term homing

a) Experimental setup b) PKH26 stained cells give a bright signal in FL2 (left 
unstained, right stained) c) Fluorescent beads form a distinct population in the FACS 
plot (left) and do not overlap with the gate used to count PKH positive cells (right). 
Empty channels (FL3 and FL4) were used to separate populations by autofluorescence.
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The effect o f CCI4  on stem cell homing can be derived by comparing the amount of 

cells resident in the respective organ after transplantation in mice treated with CCI4  to 

that o f mice which had received only oil. The relevant gates used in the FACS analysis 

are shown in Figure 20A. The top panels depict bone marrow cells, on the left the 

control group with little cells inside the gate and a marked increase in the right panel 

where CCI4  was administered. The gates used for analysis of liver material are shown 

beneath.

Figure 20B depicts the results of a homing experiment using 25 pi o f CCI4 . It is clearly 

visible that CCI4  treatment has a strong effect on homing in these animals. The amount 

of human cells residing in the bone marrow (red bars, left axis) is increased from 

-0.05% of total cells to -0.27%. A similar increase can be seen in the numbers of cells 

lodging in the liver (blue bars and axis, arbitrary numbers) albeit at a lower level. When 

multiple experiments were combined we could derive standard deviation and perform a 

statistical analysis using students T-test. Figure 20C illustrates the combination of three 

experiments with the calculated standard deviation. The p-value o f the increase o f bone 

marrow homing is 0 . 0 0 1 1  and the p-value of the increase o f liver homing is 0.018 

demonstrating statistical significance.

During the course of these studies another group also reported the increased homing of 

human progenitor cells to the liver after damage was induced. Kollet et al showed that a 

single injection of CCI4  could increase homing of human CD34+ cells to the liver of 

experimental animals. The increase in homing is sensitive to CXCR4 blocking antibody 

so the effect is most likely mediated via SDF-1 to CXCR4 interaction (Kollet et al. 

2003).
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Figure 20 Enhanced homing of human progenitors after CCI4  injury

a) Human progenitors home to bone marrow in greater numbers when CCI4  damage is 
present (top right) than without damage (top left). The same effect is visible in liver 
tissue (bottom panels), b) 25pl of CCI4  induce a clear increase in the homing to bone 
marrow (left) and liver (right) Statistical analysis of homing data shows a threefold 
increase in homing to bone marrow and a twofold increase in homing to the liver. 
Students T-test demonstrates statistical significance with a p-value < 0,02.
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Phenotype of cell engraftment in NOD/Scid bone marrow

The NOD/Scid repopulation assay system has become a powerful tool to characterise 

human HSCs. It allows analyzing the functional repopulation properties o f different 

classes o f HSC, their frequency, cell surface markers, cell cycle status, and response to 

in vitro cytokine stimulation (Guenechea et al. 2001; Lapidot et al. 2002). It also allows 

deducing the mechanism of migration and homing/adhesion of HSCs within the 

xenoenvironment. In our assays we use a lineage negative preparation o f  

stem/progenitor cells from human cord blood. These cells home to the bone marrow of 

irradiated NOD/Scid mice and then differentiate and give rise to multiple subsets o f the 

haematopoietic system. In our experiments we determined the bone marrow 

engraftment level by calculating the percentage of human cells of both the myeloid 

(CD33) and lymphoid (CD 19) lineage. Figure 20 depicts FACS results of an 

experimental animal that had received a conditioning regimen o f 40pl CCI4  48 hrs and 

375 RAD irradiation 24 hrs before transplantation of 105 lin" human cord blood 

progenitor cells. After 8  weeks the animal was sacrificed, the bone marrow was 

harvested and stained for human CD45, CD 19 and CD33.

Debris and dead cells were excluded by gating for DAPI negative cells with a size 

appropriate for cells. (Figure 21 A) To achieve the best possible separation o f the 

mutually exclusive lymphoid and myeloid compartments o f human cells we then gated 

on CD 19 negative cells and in this population on CD45+CD33+ cells. Likewise to 

obtain the lymphoid compartment we excluded CD33 positive cells determined the 

amount o f CD45+CD19+ cells.

As can be seen in Figure 2 ID the human lymphoid (27%) and myeloid (9%) 

compartments together make up 36% of the total bone marrow cell population o f this 

mouse.
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Figure 21 FACS analysis of human cell engraftment in the NOD/Scid mouse bone 

marrow

Bone marrow of a highly engrafted NOD/Scid mouse conditioned with CCI4  and 
irradiation before cell transplantation, sacrificed 8  weeks post transplantation. A) 
Removal of debris and dead cells by size and DAPI staining B) myeloid CD33 positive 
engraftment, C) lymphoid CD 19 positive engraftment, D) myeloid and lymphoid 
engraftment in side/forward scatter plot and overlay of both populations

forward scatter forw ard scatter

forw ard scatter
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Efficiency of bone marrow engraftment reflects homing

To determine if the increase in bone marrow homing o f human progenitors in mice with 

induced liver damage is also reflected in the amount of final bone marrow engraftment 

after 8  weeks we injected mice with 10 or 40pl CCI4  before engraftment and let the 

engraftment proceed until 8  weeks after transplantation (n=6 ). A cohort o f control 

animals (n=3 ) received injections o f pure oil, the carrier substance of CCI4 . After 8  

weeks the bone marrow was harvested and analyzed similar to the scheme in Figure 21. 

As is clearly visible in Figure 22a, the homing advantage described in the previous 

chapter in mice treated with CCI4  is directly reflected in the amount o f human cells 

found in the bone marrow of the experimental animals after 8  weeks. Engraftment 

levels of up to 49% human cells in the bone marrow have only been achieved in the 

CCI4  treatment group. However, in a separate experiment we omitted the preparatory 

irradiation from the protocol, and observed that even in the presence of damage induced 

with 40pl CCI4  no bone marrow engraftment is achieved (n=9).

To assess if  this advantage in engraftment can make a normally non engrafting 

population of human acute myeloid leukaemia cells engraft into the bone marrow of 

these animals we transplanted 2x l0 6 human AML mononuclear cells o f a cell 

population which does not readily engraft in NOD/Scid mice into animals with induced 

liver damage (n=4). No engraftment was observed in these animals, demonstrating that 

although CCI4  damage seems to increase the bone marrow engraftment of normal 

human lin‘ cord blood cells, it does not have the same effect on leukaemic AML cells.

Retrorsine has no discernible effect on bone marrow engraftment

As we used retrorsine to inhibit hepatocyte regrowth we also determined the possible 

influence of retrorsine on the regenerative potential of host bone marrow cells, and on 

the homing and engraftment success of transplanted human cord blood cells.

In this experiment animals were treated with two injections o f retrorsine 4 and 2 weeks 

before transplantation of human lin' cells. 3 different amounts of retrorsine were tested, 

namely 0, 30 and 70mg/kg body weight. One half o f the experimental animals received 

40pl CCI4  3 days before the transplantation. All animals were given 375 RAD 

irradiation 24 hrs before transplantation.
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The amount of bone marrow engraftment in all the experimental animals is shown in 

Figure 22b. Again it is clearly visible that the group of animals which has received CCI4  

has a much higher percentage of human cells in the bone marrow than the groups 

without CCI4 . There is however no statistically relevant difference in the two retrorsine 

treatment groups as the p-value of a students T-test is between 0.3 and 0.7 when 

comparing the group without retrorsine to the two groups having received retrorsine.
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Figure 22 Effect of CCI4  and retrorsine on bone marrow engraftment

A) Bone marrow engraftment of mice which had received 10 or 40pl CCI4  before 
transplantation of human cord blood lin- cells is significantly higher than in control 
animals (n=3 in each group) ( B) Additional treatment of animals with retrorsine does 
not have a significant influence on the engraftment levels. (p=0 .3 -0 .7 )
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Human DNA can be detected in several organs of experimental 

animals

Detection of human cell engraftment in multiple tissues can be performed by PCR for 

human genes. After DNA extraction from liver, lung, gut, spleen, kidney, muscle and 

lung we performed PCR for the human and mouse TNFa locus. Murine TNFa primers 

yield a 264bp product while human TNFa primers produce a 495 bp product. Figure 

23a shows an agarose gel o f a BamHl digest o f lpg o f DNA in the top panel. In the 

PCR reactions we used 500ng of undigested DNA as template. Experimental animals 

received 25pl CCI4  before transplantation, and/or 25pi CCI4  4 weeks after 

transplantation as indicated by the +/- signs in Figure 23. PCR reactions show the 

presence of substantial amounts of human DNA in the livers of experimental animals 

which had received CCI4 , and only very faint bands in mice which had not received 

CCI4  before transplantation (Figure 23A, middle panel). PCR for murine TNFa was 

used as a loading control. (Figure 23A bottom panel)

To detect the presence of human cells in other organs we also performed PCR on DNA 

extracted from other tissues. Figure 23B demonstrates PCR from gut, spleen, kidney 

muscle and lung o f experimental animals 2,4,5 and 8 . Human DNA could be detected in 

spleen and lung of all animals where DNA was available. In animal 8  no spleen tissue 

was available. Animal 8  is also the only sample which shows a positive PCR result in 

the kidney.

PCR for human DNA provides a method of verifying the presence of human cells in 

various murine tissues. However, due to the non-linear nature of PCR the simple 

method of visualization of PCR products on agarose gels does not provide a reliable 

estimate of the amount of human cells in these tissues.
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Figure 23 PCR reveals presence of human DNA in multiple tissues

DNA was extracted from several tissues of experimental animals. A) Quality of DNA 
preparation was confirmed by agarose gel electrophoresis of lpg BamHl digested 
DNA. PCR for human TNFa locus reveals presence of human DNA in livers of highly 
engrafted mice. Mouse TNFa PCR was used as a loading control. B) PCR on several 
other tissues (gut, spleen, kidney, muscle, lung) reveals presence of human DNA in 
spleen, lung and kidney. (No spleen tissue was available for mouse 8 ) of the same 
animals shown in A
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Real time PCR of tissue DNA allows estimation of engraftment level

To establish a method which would allow us to reliably and quickly estimate the 

percentage o f human cells in multiple samples we established real-time PCR for exon 

12 of the human albumin genomic locus. This genomic PCR uses the genomic locus of 

the albumin gene on the human chromosome to estimate the amount of human DNA in 

a sample. It is different from the Reverse Transcription-PCR shown later in this chapter. 

The standard curve for this reaction is linear in a range from 20% to 0.04% human 

DNA (Figure 24A). Samples from bone marrow cells and liver tissue of experimental 

animals were measured in triplicates. Figure 24B demonstrates that real-time PCR can 

reliably determine the percentage o f human cells in bone marrow. The values obtained 

are very similar to the values obtained by FACS analysis.

In the liver the amount of human cell engraftment is lower, but can still readily be 

detected by real-time PCR. Figure 24C demonstrates the percentage o f human cells in 

liver tissue of experimental animals ranging from 0.3 to 7% (blue bars, left axis). A 

correlation of human cells in the liver with the amount of bone marrow engraftment 

becomes obvious when these values are compared to the bone marrow engraftment (red 

bars, right axis). This is to be expected, as PCR from whole tissues can not discriminate 

the identity of cells, and will inevitably also measure the amount o f human 

haematopoietic cells in the tissue. Nevertheless, if substantial human liver engraftment 

in the form of hepatocytes is present it should still be detectable against the 

haematopoietic background.
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Figure 24 Real-time PCR can be used to estimate engraftment levels
A) Real-time PCR for exon 12 o f the human albumin locus was performed on 2pg o f DNA containing a 
mixture of human and mouse DNA ranging from 20% to 0.036% human DNA. The standard curve is 
linear over the whole range, and the slope of -4.3 indicates an efficient reaction. B) Real-Time PCR was 
performed on bone marrow samples of 8 experimental mice. Bone marrow engraftment estimated by real­
time PCR and FACS is shown. C) Real-time PCR was performed on liver tissue from the same 8 mice. 
Percentage human DNA in the liver (blue bar, left axis) is shown in comparison to bone marrow 
engraftment (red bars, right axis).
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Human liver specific RNA is expressed in livers of experimental 

animals

The presence of human cells in the livers of the experimental animals is not surprising 

when taking into account that the bone marrow of these animals contains a proportion 

of human cells which will join the blood circulation and thus be present in all organs to 

a varying degree. The transdifferentiation o f human bone marrow cells into hepatocytes 

however should be accompanied by the expression o f liver specific genes. Several 

methods exist to test for the expression of specific genes in samples. The first method 

which we investigated was western blotting which reveals the presence of protein. 

Testing several antibodies for human specific expression in control samples and 

experimental tissues we were unsuccessful in finding suitable antibodies which were 

able to highlight only human protein in the presence of an overwhelming amount of  

mouse protein.

The second reliable method to show expression of genes is RT-PCR. We extracted 

RNA from liver tissue, and produced c-DNA from it. We then used PCR to amplify 

human specific sequences of albumin, a-anti-trypsin, p-actin and sequences of GFP and 

GAPDH.

RNA was extracted from 25mg liver tissue with the trizol reagent (GibcoBRL). The 

RNA was examined on denaturing agarose gels to assess purity and verify 

concentration. Figure 25B displays an agarose gel loaded with 5pg o f RNA showing 

prominently the 16 and 18s rRNA. The specificity of the PCR reactions was confirmed 

on several control samples and reactions. Figure 25D shows that the human albumin 

and a-anti-trypsin expression is specific to human liver, and no expression can be seen 

in mouse liver or in mixtures of human haematopoietic cells with mouse liver RNA. 

3pg of RNA were reverse transcribed utilizing the Quiagen sensiscript kit and PCR was 

performed with the primers described in materials and methods. As can be seen in 

Figure 25A we could detect human albumin RNA in several of our experimental mice, 

transplanted with different populations of cells. Figure 25 A displays PCR on liver tissue 

from animals which had received either ~105 lin' or a similar amount of CD34+ GFP 

transduced cells. Pre-conditioning consisted of 40 or lOpl o f CCI4  and irradiation. In the 

top panel the bands show expression of human albumin mRNA in 5 animals, 4 in the 

CD34 group and one in the lin' group. The second panel shows human a-anti-trypsin 

expression in the same animals, and also in two additional samples. Controls consist o f
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PCR for GAPDH which is not species specific so it will give an estimate of the total 

RNA content of the PCR sample, and also PCR for human (3-actin which demonstrates 

the level of general human cell content. Cells in this panel have also been transduced 

with GFP via a lentiviral vector (except animal E8.3), so the expression of GFP is 

another indication of the presence of human cells.

Figure 25C demonstrates human albumin expression in several other experimental 

animals. The upper panel shows expression of human albumin in animals 8.4, 8.10 and 

8.17. These animals have already been shown to have substantial bone marrow 

engraftment in the previous chapter. It is interesting to note that the expression of  

albumin is not only present in animals with the highest levels of bone marrow 

engraftment (8.17), but also in intermediate (8.10) and lowly engrafted animals (8.4). In 

this experiment, as well as in the experiment shown in Figure 25A all animals which 

demonstrate human albumin expression in the liver have received CCI4  pre-treatment. 

The lower panel in Figure 25C shows albumin expression in animals which had 

received highly purified populations of human stem cells, either CD34+CD38' or CD34' 

CD38'. These animals had not received any CCI4  as conditioning. It is noteworthy that 

animals of the first group which had been transduced with only 2400 CD34+CD38' cells 

show very little albumin expression 8  weeks after transplantation, while at 1 2  weeks 

after transplantation both the amount of expression, and the number of animals positive 

for albumin have increased. The other group o f animals in this experiment has been 

transplanted with two doses of CD34 CD38' human stem cells. While in the group with 

the lower dose only one sample shows a faint band for human albumin, in the group 

transplanted with 8xl0 5 cells the albumin band is clearly present. In these two groups 

the level of bone marrow engraftment has only been determined approximately. 

Nevertheless it can be deduced that with a bone marrow engraftment level o f lower than

0.5% first signs of albumin expression appear in the liver.
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Figure 25 Expression of human liver specific RNA in experimental animals

RNA was prepared from frozen liver samples using the trizol reagent. 3pg RNA were 
then reverse transcribed and PCR was performed using 10% volume of the RT reaction. 
A) RT-PCR for albumin, a-anti-Trypsin, GFP, |3-actin and GAPDH of samples from 
animals which have been treated with CCI4, transplanted with GFP transduced stem 
cells and sacrificed 8 weeks after transplantation. B) RNA was prepared from 25mg of 
tissue. 5pg RNA was loaded on a denaturing agarose gel. C) Albumin RT-PCR in 
animals treated with CCI4 and retrorsine (upper panel) or without any toxic pre­
treatment (lower panel). Pre-treatment of animals is explained above the upper panel for 
retrorsine and CCI4, whereas in the lower panel the amount and nature of transplanted 
cells, the analysis timepoint and the average bone marrow engraftment are given. D) 
Control reactions to test for specificity of PCR.
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Summary

We have demonstrated that CCI4  has a profound influence on the ability of human 

progenitor cells to home to the murine bone marrow. This is most likely the 

consequence o f the activation o f signalling cascades like the SDF-1 CXCR4 system in 

response to damage induced by CCI4  (Kollet et al. 2003). The increased homing o f cells 

to the liver after liver damage is well explained by the excessive damage and repair 

occurring in this organ at the time o f cell transplant. We could however find an even 

greater increase in homing of bone marrow progenitors to the murine bone marrow 

possibly as a sign of overall distribution of homing and regeneration signals throughout 

the circulation of the animal.

The increased homing translates well into an increased proportion o f bone marrow 

engraftment after 8  weeks, which is a sign that true stem cells get recruited to the bone 

marrow by the homing mechanism. The cord blood stem cells contribute to both 

myeloid and lymphoid lineages in the murine organism demonstrating the 

multipotentiality of human haematopoietic stem cells.

The focus of this study however was not the bone marrow engraftment per se, but the 

developmental plasticity of human haematopoietic progenitors. We were able to detect 

substantial amounts of human DNA in non-haematopoietic organs of the experimental 

animals, and established a method for measuring the percentage o f human DNA in 

murine organs with specific focus on liver tissue. The fact that the liver DNA content is 

closely correlated to the bone marrow engraftment levels indicates that the circulating 

human blood cells will make it difficult to detect low level human engraftment in non- 

haematopoietic tissues over the background of haematopoietic cells. Nevertheless, the 

expression of hepatocyte specific genes like albumin and a-anti-Trypsin demonstrate 

that a proportion of the human cells detected in the liver are not of the haematopoietic 

lineage anymore.
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Chapter 3 HSA positive hepatocytes 

Introduction

Many of the recent results in human bone marrow to liver transdifferentiation have 

relied on a specific antibody against an unknown protein called HSA (hepatocyte 

specific antigen) or HepPar-1 (hepatocyte-paraffin). It was raised by immunization of a 

mouse with paraffin embedded human liver tissue. (Anti-hepatocyte, clone OCH1E5, 

DAKOM7158)

It has been previously used in the diagnosis of hepatocellular carcinomas in human 

medical diagnosis (Lamps et al. 2003). In recent publications it also has found 

widespread use to demonstrate the differentiation of mature human hepatocytes from 

transplanted cells in the murine liver. Danet et al. reported the occurrence of HSA 

positive hepatocytes after stem cell transplantation in the NOD/Scid model (Danet et al. 

2002). Additionally to the HSA staining in liver sections these animals also express 

RNA for human albumin and display staining for human c-met.

In the sheep model Zanjani et al. reported the emergence of a similar population o f cells 

of hepatocyte morphology strongly expressing the antigen recognised by this antibody 

(Almeida-Porada et al. 2004; Kogler et al. 2004). Again the authors succeed in 

demonstrating other markers of human hepatocyte differentiation, i.e. albumin 

expression and fluorescence-in-situ-hybridisation (FISH) for human ALU sequences. 

The authors also show dual FISH for human and sheep genomic DNA to exclude fusion 

of human and sheep cells.

HSA positive cells emerge in the murine liver after stem cell 

transplantation

In our experiments in mice transplanted with human lin' stem cells we observed HSA 

positive cells in several experimental animals. Figure 26 demonstrates several sections 

of mouse livers from experimental animals. Figure 26A shows HSA staining o f the liver 

of a mouse, which had 40% bone marrow engraftment, and had been treated with CCI4  

before transplantation. Very strong HSA staining was visible in cells surrounding the 

vessel. Dispersed cells in the parenchyme further away from the vessel also show HSA 

staining.
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Figure 26B demonstrates more HSA positive cells in higher magnification. Cells have 

been stained with HSA and visualised with DAB, anti-mouse-FITC or anti-mouse- 

Alexa488. In all examples the staining is clearly inside cells of hepatocyte morphology. 

These cells are also very similar in appearance to cells shown in pictures in the 

aforementioned publications.

One of several disadvantages of this antibody is that it is only producing signal on 

paraffin embedded tissue. This makes dual staining strategies very difficult, as most of 

the antibodies tested in our lab only work on frozen sections. Additionally the FISH 

protocols optimised in the course of this study produce poor results on paraffin sections 

with only the mouse Y chromosome paint working reliably on paraffin sections. It is 

also true that while the HSA staining is strong and clear in liver sections of  

experimental mice we could only obtain weak positive staining on the human liver 

paraffin sections available to us. No staining is detected without primary or secondary 

antibody.
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Figure 26 HSA positive cells present in experimental animals

Animals have received CCI4  before transplantation of human cells. A) HSA positive 
cells visualised with anti-mouse-HRP and DAB. Clearly visible single cells are stained 
in dark brown. B) Different detection methods highlight similar cells. DAB staining 
(top left), anti-mouse-FITC (top right) and anti-mouse-Alexa488 (bottom panels) all 
highlight similar cell populations. C) Control sections showing absence o f HSA staining 
in untreated animals

HSA positive cells do not express CD45

Although these cells exhibit clear hepatocyte morphology, their location so close to the 

vessels of the murine liver raised concerns that CD45 positive cells could be the source 

of the staining. Multiple human cells of haematopoietic origin, expressing the common 

leukocyte antigen CD45 can be found in these livers, due to the repopulation of the 

bone marrow with human cells. To exclude the possibility that these HSA positive cells 

are of the haematopoietic lineage we performed CD45 staining and HSA staining on 

consecutive liver sections. Figure 27A shows CD45 staining in the left panel and HSA 

staining in the right panel. Although the two populations o f cells are both located 

around the vessels, they are clearly distinct in morphology and identity. The CD45 

positive cells are small, round and have a big nucleus with little cytoplasm, whereas the 

HSA positive cells are of clear hepatocyte morphology.

The amount of HSA positive cells is not closely correlated with the 

degree of bone marrow engraftment

To assess the correlation of bone marrow engraftment and HSA positive cells in the 

liver we enumerated HSA positive cells on liver sections. On three different sections of 

liver tissue all HSA positive cells were counted under the microscope. Then the sections 

were scanned on a high resolution scanner to obtain an image o f the section. The total 

number of hepatocytes on several fields o f view was counted and the ratio of 

pixels/hepatocyte was determined. Then the number of pixels of the whole section was 

determined in Adobe Photoshop, allowing an estimation of the number o f hepatocytes 

per section and the percentage of HSA positive hepatocytes . In Figure 27B the amount 

of bone marrow engraftment and HSA positive cells are shown. It is evident from 

samples 8.4, 8.5 and 8.10 that the amount of bone marrow engraftment does not 

correlate with the number of HSA positive cells present in the liver.
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Figure 27 CD45 and HSA are mutually exclusive.

A) Serial sections of liver tissue were stained with anti-human-CD45 and anti-HSA 
both visualised with DAB. CD45 and HSA are expressed in cells of different 
morphology and different location. There is no overlap o f CD45 positive cells with 
HSA positive cells. B) Percentage of HSA positive cells and percentage of bone 
marrow engraftment. Percentage of HSA positive engraftment is shown in blue bars and 
corresponds to the blue axis on the left, BM engraftment is shown in red bars and 
corresponds to the red axis on the right. No statistically valid correlation of bone 
marrow engraftment with the amount of HSA positive in the liver could be derived.
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HSA positive cells appear in an untransplanted mouse

The HSA antibody clearly highlights single cells in the mice transplanted with human 

cells. We used several control mice which had not been transplanted to verify 

specificity and absence of staining. Figure 28d represents typical staining on a non­

engrafted control mouse. This absence o f staining is seen in all our control mice (n=4) 

and also in a large proportion of experimental mice. One control mouse liver however 

gives clear HSA staining similar to the staining seen in transplanted mice (Figure 26a- 

c). This staining was repeated several times with different detection methods and 

always yielded the same positive result.

There are two possible causes explaining the appearance o f this staining on sections of  

this mouse liver. The first possibility is that there was a mistake in sample processing,

i.e. the control mouse has indeed been transplanted with human cells, or the second 

possibility is that the HSA antibody recognises an antigen, which is present in normal 

murine liver cells under certain abnormal circumstances.
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I
Figure 28 HSA positive cells on non-engrafted mouse

a-c) Positive staining for HSA similar to experimental animals on a control mouse 
which has not been transplanted with human cells, d) Representative photograph of 
negative staining obtained on all other control mice used in this study.

HSA positive cells harbour a m ouse  Y c h ro m o so m e

As the HSA antibody seems to highlight cells in murine liver as well as in mice 

transplanted with human cells we attempted to gain further proof o f the human origin of 

these cells. Fluorescence In Situ Hybridisation is a method which allows determining 

the origin of cells by defining their genetic content. The difficulty faced in this study 

was to optimise the FISH protocol so we could obtain staining on paraffin embedded 

sections after performing HSA staining. We succeeded by using a combination of iso- 

thiocyanate treatment and protease digestion, however the efficiency of detection was 

reduced and the morphology of the cells was compromised. The only probe which 

could be used on paraffin embedded tissue sections was the mouse chromosome Y 

probe.
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Figure 29 demonstrates 4 different high magnification images of HSA positive cells 

obtained from a bright-field microscope (left) and from a fluorescence microscope 

(right).

In Figure 29a three cells contain murine Y chromosomes, two cells not stained by the 

HSA antibody on the top right o f the image, and also the HSA positive cell. Figure 29 

demonstrates three more HSA positive cells containing murine Y chromosome.

This result indicates that the information gained from HSA staining is not as clear as 

was previously thought. This result is inconsistent with the theory that human bone 

marrow cells give rise to these HSA positive hepatocytes by direct transdifferentiation. 

It is however still not clear if these cells could be the result of fusion of murine 

hepatocytes with human haematopoietic cells.
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Figure 29 HSA positive cells contain mouse Y chromosomes

Paraffin liver sections were first stained for HSA expression and subsequently FISH for 
the mouse Y chromosome was performed. HSA staining was captured in bright-field 
(left panels) while fluorescence of the FITC probe was captured using the appropriate 
filter setup showing only the green fluorescence in greyscale (right panels). In the top 
panels three cell nuclei contain Y-FISH spots (red arrows), two not stained by HSA and 
one stained by HSA. Three more cells from two different slides are shown.
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Summary

In this chapter we have demonstrated the detection o f HSA positive cells in mice which 

have received human haematopoietic stem cells. The HSA antibody highlights cells of 

hepatocyte morphology, located mostly close to vessels. It has been used in previous 

studies to show apparently trans-differentiated cells (Danet et al. 2002; Almeida-Porada 

et al. 2004). Staining for CD45 highlights cells o f the haematopoietic lineage present in 

the liver tissue of transplanted mice, and we have shown that these haematopoietic cells 

are different to the HSA positive cells, which do not express CD45. The enumeration of  

these cells revealed that the amount of HSA positive hepatocytes is not correlated to the 

amount of bone marrow engraftment or to the pre-conditioning given to animals.

We also report that we can detect HSA positive cells in one mouse which has never 

been transplanted with human cells. Even more remarkably we can show the presence 

of murine Y chromosome in HSA positive hepatocytes.

Analysis of the data we have gathered in these experiments suggests that the HSA 

antibody is not a reliable method for detection of human hepatocytes in the mouse 

model. It highlights a population of cells which in our experiments does not co-express 

any other human markers by immunostaining and the amount of these cells seems not to 

be correlated with bone marrow engraftment. The appearance of HSA positive cells in 

one of our control mice can not be explained easily, especially taking into account that 

we have failed to reproduce this result on any sections of our other control mouse 

tissues. The presence of murine Y chromosome in HSA positive hepatocytes excludes a 

pure human origin for these cells and could only be explained with a cellular fusion 

mechanism.

In summary, as this antibody does not produce a strong staining on normal human liver 

tissue, is directed against an unknown protein present only in paraffin fixed tissue and 

highlights cells of unclear origin we conclude that it is not a suitable means of detection 

for human cells in a murine model of transdifferentiation.



Karl Kashofer Page 104 PhD thesis, 2006

Chapter 4 Human stem cells transduced with GFP expressing 

lentivirus

Introduction

The detection of transplanted cells in a transplantation model is one o f the challenges in 

this field of research. In murine studies the availability o f genetically marked mouse 

models like the ROSA26 mouse which expresses (3-lactamase under a ubiquitous 

promoter (Soriano 1999) or the more recently introduced GFP mouse which expresses 

GFP in all tissues (Okabe et al. 1997) allow for a well controlled environment in which 

the distinction between host and donor cells is clear. Another method often used in 

murine and also in human studies is FISH analysis after sex-mismatched 

transplantations. The condensed nature of the Y chromosome makes it an ideal target 

for these studies and probes for the murine Y chromosome are readily available.

In the human system however, whole chromosome probes which have been optimised 

for the difficult conditions encountered in the course o f this study were not readily 

available. A further complication is that the gender of the cord blood cells used here 

was not always known.

To counter all these problems and to establish a method to detect human cells in murine 

tissues by immunohistochemistry we developed a system in which human stem cells are 

labelled with GFP. This method utilises a lentiviral construct which is introduced into 

human stem cells. The protocol involves production of the virus by combined 

transfection of three plasmids carrying the different parts o f the viral chromosome and 

active reverse transcriptase into a producer cell line. The virus is then harvested from 

the supernatant of the cells and concentrated by ultracentrifugation and frozen at -80° 

for future use. Human cord blood stem cells were purified by either lineage depletion or 

CD34 enrichment and transduced overnight with a multiplicity of infection of 35 in the 

presence of a cocktail of growth factors. After transduction the expression of GFP was 

confirmed by fluorescence microscopy and the cells were injected into host animals in 

aliquots o f ~ 1 0 5 cells per animal (in collaboration with a post-doctoral fellow in the 

laboratory, Dr Elena Siapati). Pre-treatment of NOD/Scid animals was performed by 

injection of CCI4  24 hrs before or on the day of transplantation as well as 375 RAD of 

gamma irradiation.
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Transplantation of human GFP marked haematopoietic stem cells 

leads to the emergence of GFP positive cells in multiple tissues
8  weeks after the transplantation the animals were sacrificed, bone marrow was 

harvested and analyzed for engraftment by FACS, and sections o f several tissues were 

prepared for analysis. Detection of GFP expression in various tissues was achieved by 

immunohistochemistry using a rabbit polyclonal anti-GFP antibody and various 

secondary antibodies for visualization.

Figure 30 demonstrates several different populations o f GFP positive cells seen in 

organs of these animals. Bone marrow engraftment levels were determined by FACS 

analysis, and spleen tissue was used for immunohistochemistry. The amount o f GFP 

positive cells in the spleen is directly related to the bone marrow engraftment level. 

Figure 30a demonstrates a typical example of a spleen section from a mouse with ~10% 

bone marrow engraftment. Dark stained, GFP positive haematopoietic cells are clearly 

visible in the tissue.

Another tissue of interest in the lab is the lung, and staining o f the lung for GFP positive 

cells revealed the presence of small single GFP positive cells (Figure 30b). These cells 

are embedded into the tissue and appear to be part of the lung epithelium. Their exact 

identity is the subject of a separate project in the lab.

GFP positive cells were also seen in the gut epithelium, demonstrated in Figure 30c. 

The dark stained GFP positive cells are enterocytes which form the gut epithelium.

In the liver tissue we could find substantial amounts of GFP positive, large cells (Figure 

30d-f). These cells are of clear hepatocyte morphology (Figure 30g-i). The GFP 

positive hepatocytes are clearly distinct from the much smaller haematopoietic cells 

(Figure 30e, arrow). The whole cytoplasm of these cells is positive for GFP and they 

are sometimes bi-nucleated. We can detect GFP in these cells with two different 

antibodies, and used either horseradish peroxidase and DAB for permanent staining, or 

fluorescence conjugated antibodies for fluorescent imaging (Figure 30g).
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Figure 30 GFP positive cells in tissues of experimental animals

~105 lin' or CD34+ cells were transplanted into CCI4  treated, irradiated hosts. After 8  

weeks animals were sacrificed and tissue sections were prepared. After staining with 
aGFP antibody GFP positive cells are visible in several organs. Paraffin sections (a-f,i) 
or frozen sections (g,h) were stained for GFP with a rabbit polyclonal antibody. 
Secondary antibodies bearing a horseradish peroxidase were used for DAB 
visualization (a-f,h,i) a) Small GFP positive cells in the spleen, b) Cells of a 
morphology reminiscent of lung epithelia in the lung, c) Cells of the mucus layer of the 
gut epithelia show specific GFP staining, d-f) DAB staining of liver cells with clear 
hepatocyte morphology. Natural fluorescence o f GFP is visible in the fluorescence 
microscope, (g)
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The amount of GFP positive hepatocyte-like cells is correlated to the 

CCI4 treatment

To find out if  the amount of GFP positive hepatocytes is correlated to bone marrow 

engraftment and/or CCI4  treatment we used the same technique which was employed to 

enumerate HSA positive hepatocytes. The results o f counting hepatocytes from liver 

slides from 23 different animals are summarised in Table 1. We were unable to find 

GFP positive hepatocytes in any of the animals which had been transplanted without 

preconditioning with CCI4 . These animals also have a smaller percentage o f bone 

marrow engraftment, but the lentiviral transduction efficiency was high. In the animals 

which received pre-treatment with 10 or 25 pi of CCI4  we could see a substantial 

increase in bone marrow engraftment as has been described earlier, and also the 

emergence o f small numbers of GFP positive hepatocytes (2-5 per 106  cells). In the 

group of animals which has received the highest dose of CCI4  we could see the highest 

amount of GFP positive cells although bone marrow engraftment was very variable in 

this group.

In two separate experiments we injected 1.5x10s GFP transduced cells into 6  NOD/Scid 

animals and sacrificed the animals after 2 weeks to elucidate if the GFP positive 

hepatocytes are already present at this early time-point. We could not find any GFP 

positive cells of clear hepatocyte morphology in these animals suggesting that GFP 

positive cells do not directly home to the liver to give rise to GFP positive hepatocytes 

but that either bone marrow repopulation is a prerequisite to the colonisation of the liver 

or the formation of GFP positive hepatocytes is a very slow process.
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% human CD45+ % eGFP+ cells eGFP+

CCL4 treatment cells in bone of human hepatocytes per

marrow CD45+ cells 105 cells

± SD ± SD ± SD

0 pi (n=3) 

10 pi (n=3) 

25 pi (n=6) 

40 pi (n=ll)

10.3 ±1.2

26.0 ±18.5

44.0 ±37.3  

21.2 ±15.2

48.7 ±21.4  

24.9 ± 12.4 

57.5 ±20.1

50.7 ± 15.1

0.0

0.2 ± 0.4 

0.5 ± 0.7 

11.9 ± 8.4

Table 1 Bone marrow and liver engraftment following CCI4 treatment.

Analysis was performed 8-11 weeks post haematopoietic stem cell transplantation 
Approximately 2xl0 5 cells were analyzed for each animal following 
immunohistochemical staining with anti-eGFP antibody. Two to three slides of 
different areas of the liver were analyzed. Linear regression analysis reveals weak 
correlation between CCI4  treatment and number o f GFP positive hepatocytes with an R2 
value of 0.346 which is due to the few timepoints available. The total liver area on the 
slide was measured in square millimetres and the number of total hepatocytes 
occupying the given area was calculated after counting the number o f hepatocytes per 
square millimetre on several different areas of multiple slides.

Potential isolation of GFP positive cells from the liver by FACS 

sorting

As the amount of GFP positive cells in the liver is very small we attempted to enrich the 

population of GFP positive hepatocytes by FACS sorting.

To obtain a single cell suspension of liver cells we used the liver perfusion method 

described by Seglen et al (Seglen 1973) with modifications. Figure 31 depicts the FACS 

gating strategy used. Figure 31a shows the whole cell population obtained from liver 

perfusion of an experimental animal. After removal of small dead DAPI positive debris 

(Figure 31b) we analysed several cell populations present in the plot of GFP versus an 

empty channel. Two populations (d and g) represent debris in the sample. This is to be 

expected, as a crude preparation of liver cells was used for analysis. The population 

shown in Figure 31h most probably represents haematopoietic and other non- 

parenchymal cells, while the large population of cells in gate e represents the 

hepatocytes. There are also two populations of cells (f, i) ,which seem to be GFP
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positive. While one of these populations (f) is very small and again is most probably 

debris, the other one (i) is in an area of the side scatter/forward scatter plot where one 

would expect haematopoietic cells, with a small proportion o f cells in the area of 

hepatocytes. (Figure 31 g-i)

The ultimate goal of this protocol was to attempt to sort the GFP positive population of 

cells from the vast majority o f non GFP expressing cells. We attempted to sort GFP 

positive cells from the original single cell suspension (Figure 3 lj) on the FACS 

Vantage Cell Sorting System (BD Biosystems). Cells were sorted in gates similar to 

Figure 31c and collected the cells directly onto glass slides. After sorting approximately 

20 million cells 5000 GFP positive events per slide were examined under the 

fluorescence microscope. Figure 31k demonstrates the small cell population (gate f), in 

which we find a substantial amount of hepatocytes with small fluorescent debris and 

occasional putative haematopoietic cells. The gate described in Figure 3 li yielded 

slightly bigger cells but no visible GFP positive hepatocytes.

Subsequent attempts to perform FISH analysis or immunostaining on these cells failed 

due to loss of the material from the slide.
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Figure 31 FACS analysis of liver cells

Single cell suspension was obtained from mouse livers of animals transplanted with 
GFP positive haematopoietic stem cells. FACS plots are side scatter vs. forward scatter 
unless indicated otherwise, c) Six different populations were analyzed. d,g) Small 
fragments and cell debris, e,h) hepatocytes and non-parenchymal cells, f,i) putative 
GFP positive cells, j) Initial cell preparation in bright-field. k,l) Sorted cell populations 
in GFP fluorescence channel. (k=f, l=i)
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GFP positive hepatocyte-like cells express albumin but not CD45

Immunohistochemical analysis of the GFP positive cells was performed using 

antibodies raised against human albumin and human CD45. To find out if  the albumin 

expression which was previously detected by RT-PCR is having its origin in the GFP 

positive hepatocytes we tested several different antibodies for human albumin, but only 

one (Anti-Human Albumin, Ascites (Clone HSA1/25.1.3) (mouse IgGl), Cedarlane 

Labs, Toronto Canada) produced a signal in GFP positive hepatocytes (Figure 32a-c). 

This antibody has been previously used to identify human hepatocytes after 

xenotransplantation by Kollet et al (Kollet et a l  2003).

Antibody raised against the human pan-leukocyte marker CD45 clearly labelled GFP 

positive haematopoietic cells (Figure 32g-i) while GFP positive hepatocytes were 

clearly negative for CD45 (Figure 32d-f). These results confirm the non-haematopoietic 

nature of the GFP positive hepatocytes. The difficulty to detect human liver specific 

proteins in these clearly GFP labelled cells did however raise concerns about the true 

nature of these cells.
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Figure 32 Albumin and CD45 expression on GFP positive cells

Liver sections from transplanted animals were stained with rabbit-anti-GFP antibody 
(green) and specific antibodies for human albumin and CD45 (red). Hepatocyte like 
GFP positive cells (a) express albumin (b) yielding yellow in the overlay (c), but do not 
express CD45 (d-f). Small GFP positive cells are CD45 positive, (g-i)
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GFP positive haematopoietic celis but not hepatocytes express 

human specific marker proteins

The difficulty to stain for cell specific markers in tissues to identify trans-differentiated 

human cells led us to explore other means for identification of human cells. 

Immunohistochemistry using two antibodies raised against human nuclear proteins and 

human mitochondria (Chemicon, Temecula CA) highlight all cells of human origin. 

The antibody against human mitochondria strongly labelled the cytoplasm of cells in all 

tissues. The nucleus remained unstained and presented blue DAPI staining. Figure 33a 

demonstrates staining on frozen human liver sections, whereas staining is completely 

absent in murine liver (Figure 33e). The second antibody, specific for human nuclear 

antigens highlighted only the nucleus of human cells, leaving the cytoplasm unstained. 

Figure 33i demonstrates staining on human liver, Figure 33m on murine liver. The 

specificity of these antibodies allowed us to do two-colour staining for the human 

antigen in conjunction with GFP.

As was expected the human specific antibodies clearly labelled all small GFP positive 

haematopoietic cells. The mitochondrial staining formed a ring of staining in the thin 

layer o f cytoplasm around the nucleus of haematopoietic cells, whereas the nuclear 

antibody presented clear staining in the centre o f the haematopoietic cell. To our 

surprise the hepatocyte-like cells where not stained by these antibodies. Figure 33b-d 

and f-h demonstrate GFP (green) and human mitochondrial (red) staining of a 

haematopoietic and a hepatocytic cell next to each other. It is evident that staining for 

human mitochondria was absent in the GFP positive hepatocyte and clearly present in 

the haematopoietic cell. The same pattern of staining was present in Figure 33j-l and n- 

p which depicts human nuclear staining.

This very clear-cut result raised further doubts about the nature of the GFP positive 

hepatocytes.
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Figure 33 GFP positive hepatocyte-like cells do not stain with anti-human- 

mitochondria or anti-human-nuclei antibody.

Anti-human-mitochondria antibody highlights human mitochondria in the cytoplasm of 
human cells (a) but no signal is obtained in mouse liver cells (e). eGFP positive 
hepatocyte-like cells in the liver of experimental animals (b, f) are negative for human 
mitochondria (c,g) whereas adjacent haematopoietic cells (arrows) are clearly labelled 
(d, h merge images) Likewise anti-human-nuclei antibody highlights human nuclei (i) 
but not mouse liver cell nuclei (m). eGFP positive hepatocyte-like cells (j,n) are 
negative for anti-human nuclei (k,o) whereas adjacent haematopoietic cells (arrows) are 
again labelled (l,p merge images).
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GFP positive hepatocytes harbour a murine Y chromosome, but no human 

chromosome I

To clarify the real origin of the GFP positive hepatocytes we performed FISH analysis 

in conjunction with GFP analysis. As the protease digestion for FISH analysis removes 

all of the GFP staining in the frozen sections we devised a two stage strategy to produce 

images of the same cell from GFP fluorescence and FISH staining.

In the first step we took images of GFP positive cells on a Zeiss LSM 510 confocal 

microscope. We designed software which read the x and y position of each picture 

taken from the microscope and stored it in digital format. After capturing images o f all 

GFP positive hepatocytes on the slide we then performed the FISH protocol to stain 

murine Y or human chromosome I. The accompanying protease digestion removes most 

protein from the slides and leaves only nuclei. After performing the FISH protocol the 

slides were re-inserted into the fluorescence microscope, and the aforementioned 

software was used to position the microscope lenses exactly at the same locations where 

GFP positive hepatocytes had been photographed earlier. We then captured images of 

the fluorescence signals and produced overlays in Adobe Photoshop. Figure 34 

demonstrates images of natural GFP fluorescence (a,d,g), FISH signal (b,e,h) and 

overlay images (c,f,i). GFP positive hepatocytes contain murine Y chromosomes (red 

signal) similar to the surrounding murine cells. When we performed dual FISH for 

murine Y and human chromosome 1 simultaneously we discovered that only the 

haematopoietic cells (h, lower left arrow) but not the GFP positive hepatocytes contain 

the human chromosome 1. Vice-versa we could only detect the murine Y chromosome 

(h, top right arrow) in the green hepatocytes, but not in the haematopoietic cells.

This result was incompatible with a hypothesis of transdifferentiation as the origin of 

the GFP positive hepatocytes. As we have performed rigorous tests on the lentiviral 

preparations used for transduction of the original stem cell population we felt confident 

to exclude the possibility of lentiviral contamination of the host animal.
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Figure 34 eGFP positive hepatocyte-like cells contain mouse Y and lack human 

chromosome 1 .

eGFP positive cells in liver sections were photographed, and the location of each cell 
was saved (a, d, native eGFP fluorescence). Subsequently fluorescence in situ 
hybridization for mouse Y chromosome (red) or human chromosome 1 (yellow) was 
performed. Pictures corresponding to the same area of the slide as the original eGFP 
positive cells were taken (b, e). Overlay images (c, f) demonstrate the presence of 
mouse Y chromosome in eGFP positive hepatocyte-like cells as well as in surrounding 
eGFP negative cells. Simultaneous detection of mouse Y and human chromosome 1 (h 
and i: overlay image) reveals absence of human chromosome 1 in eGFP positive 
hepatocyte-like cells but detection of human chromosome 1 in eGFP-positive 
haematopoietic donor-derived cells (left arrow image h and overlay image i).
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GFP positive celis contain genetic material of human and mouse 

origin

The difficulties o f obtaining human marker staining in the GFP positive hepatocytes by 

FISH and immunohistochemistry led us to establish another technique in the lab.

Laser capture microdissection and single cell PCR allows us to analyze the genetic 

content of single cells from tissue sections. The liver parenchyme is well suited for this 

approach as hepatocytes are large cells with cytoplasm clearly separating the nucleus 

from the surrounding tissue. Frozen sections o f liver tissue were stained for GFP using 

DAB as the visualising agent. We then used a PALM laser microdissection microscope 

to cut out single cells and collect them individually in PCR tubes. A typical GFP 

positive cell as seen in the PALM microscope is depicted in Figure 35a, with a picture 

of the remaining hole in the tissue after excision of the cell next to it. These images also 

demonstrate that no surrounding haematopoietic cells could have been inadvertently 

included into the sample as the GFP positive cell is clearly visible. When cutting the 

nucleus we also took care to not include surrounding tissue and to cut inside the cell 

wall of the hepatocyte. The laser pulse vaporises tissue in a trail o f approximately 5pm 

thickness further reducing the possibility of a haematopoietic cell closely associated to 

the hepatocytes being included in the sample. The single cell DNA in the PCR tube was 

amplified by random primed PCR and specific PCR for human and murine genomic 

targets and for GFP was performed. Figure 35b demonstrates that on control tissues 

from human and murine liver slides we could detect a positive band for the respective 

genome in -30% of samples. This is within the expected range taking into account the 

thickness of our sections (10pm), the size of a hepatocyte (~35pm) and technical 

limitations of cell capturing and PCR. We did not observe contaminating bands in 

control tissues or in non-GFP stained hepatocytes from experimental animals.

Figure 35c depicts the PCR result of 24 individual GFP positive hepatocytes in 

duplicates. We detect GFP in -30% of samples which is consistent with the genomic 

locus being present in all the samples. We also were able to detect the murine TNFa 

locus in 10 of 24 samples which demonstrates that these hepatocytes contain murine 

DNA in a proportion similar to murine control cells. The human TNFa locus on the 

other hand was only detected in a small percentage of GFP positive hepatocytes. 

Nevertheless we could also detect a second human genomic marker, human TCR in 

sample number 2 .
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As shown in Figure 35d the proportion of murine DNA in these GFP positive 

hepatocytes clearly demonstrates a murine origin of the cells. The presence o f GFP in 

all these cells is the result of the selection of cells by GFP expression. The amount o f 

human DNA in these GFP positive hepatocytes is not consistent with a model o f fusion 

with full maintenance of the whole genomic material o f the fused human cell.

We speculate that human DNA is introduced into these cells by a mechanism of fusion, 

but the foreign DNA is then subsequently removed from the cells. This mechanism 

would also explain the difficulty in finding other human marker in these cells.



Karl Kashofer Page 119 PhD thesis, 2006

human hepatocytes
Human TNFa 
M ouse TNFa

m ouse hepatocytes
Human TNFa 
M ouse TNFa

Human TNFa

M ouse TNFa

■  mouse TNFa
■  human TNFa Human TCR

mouse human GFP pos
hepatocytes hepatocytes hepatocytes

Figure 35 Presence of both human and mouse TNFa in single eGFP positive 

hepatocyte-like cells after single-cell PCR analysis.

Frozen tissue sections of experimental livers were stained with eGFP antibody. Single 
eGFP positive hepatocyte-like cells were cut from the section with a PALM laser 
microdissection microscope (a. before (left) and after (right) dissection) and captured 
into PCR tubes containing lx PCR buffer with 0.5% tween. After digestion with 
proteinase K overnight, 60 cycles of i-PEP PCR were performed (see detailed in 
methods). 3 pi of this reaction were then used as template in duplicate nested PCR for 
human TNFa, mouse TNFa and eGFP. Efficiency and specificity of PCR was 
determined by cutting cells from mouse liver or human liver (b and d: average of 3 
experiments). 24 single eGFP positive hepatocyte-like cells were cut out and processed. 
Human TNFa can only be detected in 2/24 samples, whereas mouse TNFa is present in 
10/24 and eGFP in 7/24.(c, panels show duplicate reactions) Cells 2 and 5 are positive 
for human and mouse TNFa. Samples 1-3 were additionally tested for presence of 
human TCR locus, which is detected only in sample 2 (e).
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Residual human DNA can be detected in GFP positive hepatocytes 

by FISH for human centromeres

Further proof for the hypothesis that fusion with subsequent loss of genomic material 

was provided by FISH for the centromeres of human chromosomes. We chose this 

FISH probe because it would allow us to detect the presence of all chromosomes of 

human origin in the nuclei of the GFP positive cells in a single experiment.

Figure 36 shows the detection of human chromosomes in human liver (a) and the 

absence of staining in murine liver (d). The probe stains the centromeres o f human 

chromosomes, and in metaphase spreads of haematopoietic cells it can be used for the 

enumeration of chromosomes. In tissue sections the DNA stays in the natural 

condensed state altering the signal to clusters of centromeres stained in bright red 

(Figure 36a). Utilizing the same two step process used before to demonstrate the 

presence of murine Y chromosomes in these cells we can here demonstrate residual 

human centromeres in GFP positive hepatocytes. (Figure 36b-c, e-f) These single dots 

are most likely remnants of human DNA left behind after fusion with subsequent 

removal of the bulk of human genetic material.
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Figure 36 eGFP positive hepatocyte-like cells contain few human centromeres.

FISH for human centromeres highlights multiple spots and clusters (red) in human 
hepatocytes (a) but not in mouse hepatocytes (d). eGFP positive hepatocyte-like cells in 
experimental animals (b-f) contain only few human centromeres (c, f: high 
magnification). Nuclei were counter-stained with DAPI (blue).
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GFP positive cells and HSA positive hepatocytes are different 

populations
The two populations of cells which have been described in this study in detail are HSA 

positive cells arising in mice which have been transplanted by human lin‘ stem cells, 

and GFP positive hepatocytes present in livers of animals transplanted with GFP 

marked cells. To find out if these two populations are related we performed 

simultaneous staining for HSA and GFP on livers of animals which had received GFP 

marked cells. Figure 37 demonstrates that both distinct populations of cells are present 

in the liver of these animals. (Figure 37a-c) The cells are clearly distinct and no cells 

expressing both markers are present. The two cells present in Figure 37c (white arrows) 

are shown in higher magnification in Figure 37d-i. Figure 37d-f demonstrates a HSA 

positive cell which is not exhibiting any GFP staining, and Figure 37g-i demonstrates 

the GFP positive cell lacking HSA expression.
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Figure 37 GFP and HSA are mutually exclusive

Liver sections of experimental animals were stained for GFP (green) and HSA (red), a- 
c) Low magnification images of liver tissue showing that GFP expressing and HSA 
expressing cells appear next to each other in the same tissue section. The HSA positive 
cell indicated by the white arrow in panel c demonstrates strong staining for HSA (e) 
but no staining for GFP (f). The GFP positive cell indicated by the white arrow in panel 
c does not stain with HSA, but is positive for GFP (i)
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Summary

We have demonstrated the occurrence of GFP positive cells of non-haematopoietic 

morphology in liver, lung and gut tissue in addition to haematopoietic cells visible in 

the spleen. The enumeration of GFP positive hepatocytes in the livers of these animals 

allowed us to find a correlation between the number o f GFP positive hepatocytes and 

the pre-treatment with CCI4 . As we have previously demonstrated that CCI4  also has an 

influence on bone marrow engraftment we can conclude that the overall engraftment 

level in bone marrow and liver is positively regulated by CCI4  intoxication. These 

results do however not allow us to deduce if the higher percentage of GFP positive 

hepatocytes in the liver stems from the tissue damage per se, or is a result of higher 

bone marrow engraftment induced by the CCI4  intoxication.

In an attempt to more closely characterise the GFP positive hepatocytes we pursued the 

isolation of GFP positive hepatocytes by FACS sorting, but were unable to obtain a cell 

population of enriched GFP positive cells. The low amount of GFP positive cells and 

the technical constraints of the experiment such as liver perfusion, FACS detection, 

sorting and collection are most likely the cause of this failure.

The expression of human liver specific mRNA in the livers of the experimental animals 

reported in an earlier chapter of this work prompted us to investigate numerous 

immunohistochemical methods and antibodies to demonstrate the expression of these 

proteins in the GFP positive hepatocytes. However we were only able to demonstrate 

albumin expression in some GFP positive hepatocytes. The lack of strong human 

antigen expression raised doubts about the true nature of these cells. These doubts were 

even more reinforced by the observation that these cells lack expression of pan-human 

immunological markers which are usually present on all cells o f human origin.

FISH analysis is a powerful tool to show the genetic content of cells. It is however also 

very difficult to achieve reliable FISH results on whole tissue sections. Nevertheless, 

the presence of murine Y chromosome in the GFP positive hepatocytes is a clear 

indicator of the non-human nature of these cells. When we probed for the presence of 

chromosome 1 , the largest human chromosome, we could not find any staining in the 

GFP positive hepatocytes while it was clearly present in haematopoietic cells.

Individual single chromosome paints displayed a very diverse efficiency on liver 

sections, so we turned to microdissection and single cell PCR. With this technique we 

can show the presence of human and murine genetic material in GFP positive
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hepatocytes. The murine genetic material is present at the rate o f detection in control 

tissues, while the human genetic material is clearly underrepresented.

We utilised the staining for the centrosomes of all human chromosomes to find out if  

residual human DNA is present in the GFP positive hepatocytes and can demonstrate 

single dispersed human centromeric fragments in the nuclei of these cells.

These results suggest a mechanism which has already been proposed by Wang et al 

(Wang et a l 2003) in the murine model. The fusion o f resident hepatocytes with donor 

derived haematopoietic cells produces hybrid cells with an unstable genome. Over time 

non-essential genetic material from the donor is removed leaving an incoherent 

genotype in the hybrid cells. This incoherent genotype could be the reason for the poor 

expression of human antigens by the cell hybrids.
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Chapter 5 Other models of transdifferentiation 

Introduction

Although the focus of this study was placed on the possible transdifferentiation of 

human cord blood progenitor cells into functional liver cells in the NOD/Scid mouse 

model we additionally investigated several other possible systems which could be used 

in this research.

The transdifferentiation of haematopoietic cells to hepatocytes was at the focus o f this 

study, but nevertheless the close developmental relationship between the 

haematopoietic system and the liver made it conceivable that cells from the liver could 

also give rise to haematopoietic cells. To test if human liver cells can give rise to blood 

cells in our model we obtained human liver tissue from surgical liver resections and 

transplanted these cells into NOD/Scid mice to see if  bone marrow engraftment can 

originate from a liver cell population.

One well known model of liver disease is the alb-uPA model (Sandgren et al. 1991). 

These transgenic mice over-express the urokinase plasminogen activator (uPA) under 

the control of the albumin (Alb) promoter. The animals die o f liver failure unless rare 

hepatocytes excise the transgene. These wild-type hepatocytes then proliferate, and they 

regenerate the entire liver within 8  weeks. During this interval the Alb-uPA mouse 

suffers chronic liver damage and long-term regeneration. The Alb-uPA mouse was 

back-crossed onto the RAG27' background to allow for the transplantation of 

xenogeneic cells (Petersen et a l 1998). We collaborated with the laboratory of Dr. 

Petersen at the Heinrich-Pette-Institute in Hamburg, Germany to conduct an experiment 

using human cord blood cells and RAG'7'Alb-uPA mice (RAG2-uPA).

The NOD/Scid model allows introduction of human cells into a murine environment 

without the adverse immune reaction associated with xenotransplantation. It is an 

efficient host for haematopoietic cell transplants that mimic a human bone marrow 

transplantation. In this study however the focus was on liver regeneration, and the 

NOD/Scid model does not allow for any selection specific for human liver cells per se.
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To overcome this limitation we have back-crossed the metallothionein knockout mouse 

(Masters et al. 1994) onto the NOD/Scid background as described in materials and 

methods and in chapter 1. We have then performed bone marrow transplantation, and 

multiple rounds of cadmium intoxication in these mice to specifically destroy host 

hepatocytes and give a selective advantage to prospective human transdifferentiated 

hepatocytes.

One of the main problems in cell replacement treatments is to obtain sufficient numbers 

of cells for transplantation. As non autologous cord blood stem cells can not be 

expanded in vitro and are not immunologically matched to prospective human 

recipients of cell transplants, much effort has been directed at finding other sources of 

cells capable of transdifferentiation. One of the most promising populations isolated to 

date are mesenchymal stem cells. These cells seem to be capable of differentiation 

along lines of all three germ layers (Pittenger et al. 1999; Jiang et al. 2002; Anjos- 

Afonso et al. 2004) and can be expanded in vitro. We tested if murine mesenchymal 

stem cells which had been pre-differentiated with conditions favouring the development 

of hepatocytes are able to integrate into the NOD/Scid liver and give rise to functional 

hepatocytes.
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Human liver cells do not give rise to hematopoietic cell engraftment

The close relationship of liver and haematopoietic system during development 

prompted us to investigate the developmental potential o f human hepatocytes in the 

NOD/Scid xenotransplantation model. We obtained human hepatocytes from the UK 

human tissue bank and transplanted 2xl06 human hepatocytes into 8 recipient mice. Of 

these animals 4 had received lOpl CCU 2 days before transplantation and all animals 

received 375 RAD irradiation on the day before transplantation. After 14 weeks the 

animals were sacrificed and bone marrow was harvested for FACS analysis. Figure 38a 

demonstrates a typical FACS plot from these animals showing no engraftment in the 

myeloid or lymphoid lineage. Figure 38d depicts an engrafted animal from a different 

experiment for comparison. None of the 8 animals in this experiment showed any 

human cells in the bone marrow. A repetition of this experiment with another set o f 6 

animals demonstrated the same result.

Many HSA positive, only few FISH positive hepatocytes after 

transplantation of human hepatocytes

In the livers of the animals that had been treated with CCI4  we could readily detect HSA 

positive hepatocytes. (Figure 38b,e) To confirm the human origin of these hepatocytes 

we performed FISH analysis for the human chromosome 1 on frozen sections, and can 

detect positive staining in large nuclei of hepatocyte morphology. However, the number 

of FISH positive cells present in the liver is much smaller than the number of HSA 

positive cells. Due to technical difficulties in performing human chromosome FISH and 

HSA staining on the same section we can not provide evidence that these two methods 

highlight the same cells.
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Figure 38 Engraftment from human hepatocytes

Transplantation of 2x l06 human hepatocytes did not lead to significant haematopoietic 
engraftment a) FACS plot of a mouse transplanted with 106 human hepatocytes after 
irradiation and CCU treatment, b,e) HSA staining of liver from the same animal, c,f) 
FISH for human chromosome 1. (positive nuclei marked by white arrows) d) FACS plot 
o f a mouse transplanted with 105 lin” cord blood cells.

Human cord blood stem  cells do not engraft in the  bone  marrow of 

RAG2-uPA anim als

RAG2-uPA animals are a model for the engraftment o f xenogeneic liver cells. To test 

the possibility of trans-differentiation of human haematopoietic progenitors in these 

animals we transplanted 12 animals with 105 human lin' cord blood cells after pre- 

treatment of half of the animals with 350 RAD irradiation. The animals were sacrificed 

at 6 and 12 weeks after transplantation, and bone marrow and livers were harvested for 

analysis. Analysis of the bone marrow by FACS revealed a complete absence of human 

cells in the bone marrow of these animals regardless of the timepoint and the pre­

treatment. Figure 39a demonstrates FACS analysis of one of these animals.
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Human lin* cells do not give rise to subs tan tia l  liver engraftm ent in 

RAG2-uPA anim als

Analysis of the livers of these animals revealed a small population of weakly HSA 

positive cells in only two of the animals. Figure 39b,c demonstrate some of these HSA 

positive cells in these animals. In addition to these few cells we could also observe 

nodules of cellular destruction in several animals, which could hypothetically be 

interpreted as loci o f immune response to lodging human cells. (Figure 39d-f) We do 

not have any other indication o f human cells in these animals.

Figure 39 Transplantation of human cells into RAG2-uPA animals

Animals were transplanted with 2 x l05 human cord blood lin' cells. After 6 or 12 weeks 
animals were sacrificed. Absence of cells positive for the human CD 19 or CD33 
antigen establishes that there is no engraftment in the bone marrow (a). Paraffin 
sections were stained with the HSA antibody and developed with DAB. Weakly HSA 
positive cells are visible in the liver (b,c). Nodules of debris possibly the remainder of 
tissue necrosis are present in several animals, (d-f)
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No E xpression  of hum an mRNA in livers of NOD/Scid anim als 

transp lan ted  with hum an hepa tocy tes  o r RAG2-uPA anim als 

transp lan ted  with hum an haem atopoietic  cells

We performed RT-PCR for human specific mRNA on livers o f NOD/Scid animals that 

had been transplanted with human liver cells and also from livers of RAG2-uPA 

animals transplanted with human cord blood lin' cells. As demonstrated in Figure 40 we 

could not detect any human albumin mRNA in any o f the animals of both sets of 

experiments. Furthermore we were unable to detect any human (3-Actin mRNA. PCR 

for GAPDH which is not species specific demonstrates the presence of sufficient 

amounts of RNA in the samples. Although this result could be due to sensitivity issues 

it is complicating the interpretation of data gained from immunohistochemistry and 

FISH analysis.
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Figure 40 No human mRNA expression in experimental animals

RNA was extracted from the liver of experimental animals which had been transplanted 
with human haematopoietic cells (RAG2-uPA) or human liver cells (NOD/Scid) 
Control samples consist o f RNA extracted from human hepatocytes mixed with murine 
liver cells. 3pg RNA were reverse transcribed, and 10% of that reaction were used for 
PCR.
Mice were either pretreated with 350 RAD irradiation (R) and/or 25pl CC14 (C) or left 
without pre-treatment (-).
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Cadmium treatment after bone marrow transplantation induces 

altered liver morphology in NOD/Scid/met animals

The metallothionein knockout model was established to give a selective growth 

advantage to transplanted cells by making the host cells vulnerable to cadmium 

intoxication.

Female NOD/Scid/met mice (n=20) were transplanted with 3x105 human lin- cord 

blood hematopoietic stem cells after receiving 375 RAD irradiation as pre-treatment. 

We did not use CCU in these experiments as we did not have enough mice to test the 

effect of CCI4 , and did not want to risk loosing mice. We also used only female mice to 

avoid problems associated with the extensive tissue destruction seen in the testis of 

males after cadmium treatment. The engraftment of the hematopoietic cells was allowed 

to proceed for 6  weeks, after which the animals were divided into three groups. The 

first group received mock injections o f PBS, the second group received 5pM/kg CdSC>4  

once at 6  weeks post transplant, and the last group received 5pM/kg CdSC>4 at 6  and at 

8  weeks post transplant. 11 weeks after transplantation of cells and 3 weeks after the 

last CdSC>4 injection the animals were sacrificed and tissue samples were taken. The 

bone marrow of the animals was harvested and analyzed by FACS analysis. Figure 41a 

demonstrates the FACS profile of bone marrow cells of one animal of the group that 

showed 28% bone marrow engraftment and had received two injections of cadmium. 

The two populations of myeloid CD33 positive cells (3.6%) and lymphoid CD 19 

positive cells (22%) are clearly visible. The bone marrow engraftment level of the 

animals in this experiment was very variable from 0 to 46% with no significant bias in 

any of the three treatment groups.

Upon extraction of the murine livers we immediately noticed strong morphological 

abnormalities of the livers, relative to the cadmium dose received by the animals. While 

the livers of animals without cadmium looked normal, albeit a bit pale, the livers o f  

animals that had received cadmium were hard, rigid, pale and had outgrowths on the 

outside of the lobes. Figure 41b demonstrates macroscopic images of a normal liver 

(left) and the liver of animal 25.14, the same animal used in the bone marrow analysis 

in Figure 41a. It is clearly visible that the liver is grossly abnormal, and protrusions are 

visible from the upper side shown in the middle o f Figure 41b, and also on the 

underside of the liver shown on the right. These morphological changes were seen in
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varying degree, being stronger in the mice that had received cadmium twice like this 

animal.

Hematoxylin and eosin staining of liver sections from these animals revealed the 

presence o f large amounts o f small cells. These small cells seem to present in a variety 

of shapes from very small and longitudinal to larger and round cells. Of special interest 

is that we can also see a large proportion of cells with clear hepatocyte morphology, 

albeit much smaller than normal hepatocytes. This is highly reminiscent of reports by 

Gordon et. al. about small hepatocyte progenitors emerging in livers after retrorsine 

treatment (Gordon et a l 2000). Although these cells could not be maintained in culture 

after isolation they nevertheless created fully functional hepatocytes when transplanted 

into recipient animals (Gordon et a l 2002). Figure 41c shows an hematoxylin/eosin 

staining of the protrusion of the liver indicated in Figure 41b. In the higher 

magnification we can clearly see many small cells occupying the space between the 

hepatocytes. In comparison to an animal that has not received cadmium (Figure 4 If) the 

liver o f animal 20.14 which had received two doses of cadmium contains two additional 

cell populations. One is a population of small cells o f non-hepatocyte morphology with 

elongated features reminiscent of inflammatory infiltration. However, the second 

population consists of hepatocyte-like cells which do exhibit clear hepatocyte features 

including large cytoplasm and large round nuclei with clearly visible nucleoli, but are 

much smaller than normal residual hepatocytes in the surrounding parenchyme. 

Although we have no data to support this hypothesis it is intriguing to speculate that the 

two populations represent two different stages o f  regeneration as a result o f the two 

cadmium treatments.
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Figure 41 Bone marrow engraftment and liver morphology of NOD/Scid/met mice

Bone marrow of a NOD/Scid/met animal transplanted with 105 lin’ cells. The animal 
was pretreated with 350 RAD irradiation and was given 2 injections of 5 pmol/kg 
CdS0 4  6 and 8 weeks after transplantation. Analysis was performed after 10 weeks. 
Engraftment of this animal was 28.2% (a). The liver o f the same animal demonstrates 
gross macroscopic abnormality (b). H&E staining of the liver at low (c) and higher 
magnification (d,e) reveals abnormal cell growth. In comparison to normal liver (f) the 
liver of experimental animals contains additional small cells of haematopoietic 
morphology (g) and small hepatocyte like cells (h).
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Additional cells in the livers of tran sp lan ted  NOD/Scid/met mice are 

not hum an

To determine the origin of these cells in the livers of transplanted animals we performed 

two stainings, immunohistochemistry using the human-nuclei antibody, and FISH for 

mouse X and human chromosome 1. Figure 42a-c shows FISH on a liver section of 

animal 21.14 with the human chromosome 1 probe in red (a) and the murine X probe in 

green (b). As is clear from these two images and Figure 42c (overlay) there are only 

very few human cells most probably of haematopoietic origin dispersed in the 

parenchyme as would be expected in any animal with 23% bone marrow engraftment. 

This result is similar to the one obtained by staining with the human-nuclei antibody 

demonstrated in Figure 42d-f.

These data lead to the conclusion that the abnormal cell growth in these livers in 

reaction to the cadmium treatment originates solely from the host cells.

a l b  I c

d I e f

Figure 42 Few human cells in livers of transplanted NOD/Scid/met animals

Frozen sections from the same liver as in Figure 41. FISH for human chromosome 1 (a, 
red) and mouse chromosome X (b, green) reveals the presence of only few single 
human cells (c, overlay) with a nuclear morphology o f haematopoietic cells. Staining 
with human nuclei antibody (red, d,e low magnification, f  high magnification) reveals 
the same low number o f human cells consistent with the presence o f haematopoietic 
cells after bone marrow engraftment.
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Possible engraftment of murine Mesenchymal Stem Cells in the 

mouse liver

In collaboration with Fernando Afonso, a colleague in the lab, murine mesenchymal 

stem cells were in vitro differentiated into the hepatocyte lineage, labelled with BrDU 

and introduced into NOD/Scid animals.

MSC were isolated from murine bone marrow of unspecified gender and grown in 

culture (Anjos-Afonso et a l 2004). After two doublings the cells were introduced into 

12 well plates at a density of 200-3000 cells/cm2  and labelled with BrDU by incubation 

with lOpM BrDU for 48 hours. FACS analysis reveals that about 30% of the cells are 

efficiently BrDU labelled after this procedure. The cells were then induced to 

differentiate along the hepatocyte lineage by switching the medium to DMEM 2%FCS 

supplemented with lOng/ml fibroblast growth factor 4 (FGF4) and 20pg/ml hepatocyte 

growth factor (HGF) changing medium every three days. After 7 and 14 days one 

million cells was transplanted into mice treated with CCL4 (n=3) or without CCI4 (n=3). 

After 4 weeks animals were sacrificed and liver sections were stained for BrDU.

Figure 43 a depicts a low magnification image of a liver section stained for BrDU with 

one hepatocyte nucleus clearly labelled. In the higher magnification (Figure 43b) it is 

evident that the nucleus is dark and the morphology of the cell is that of a hepatocytes. 

Several of these cells could be found in liver sections of mice treated with CCI4  but we 

were unable to detect any in mice not pre-treated with CCI4 . A more thorough analysis 

of these samples could provide more information about the amount of cells but was not 

conducted due to time constraints. We also had to consider that a repetition o f this 

experiment using GFP positive or ROSA26 MSC would make analysis of the results 

more efficient and reliable.
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Figure 43 BrDU staining of MSC in NOD/Scid animals

MSC differentiated along the hepatocytic lineage and labelled by BrDU were 
introduced into mice treated with CC14. Staining with rat-anti-BrDU antibody reveals 
several hepatocytes with dark, stained nuclei presumably originating from the 
transplanted population of MSC. a) low magnification showing single positive cell 
(arrow), b) the same cell in higher magnification c) another BrDU positive cell
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Summary

We have investigated several alternative directions of research into transdifferentiation 

in this chapter. The first approach was to investigate the possible reversal of the 

transdifferentiation seen in our model, i.e. the conversion of a cell of liver origin into a 

haematopoietic cell. We have introduced human hepatocytes into mice half of which 

were pretreated with CCI4. All animals have received preparatory total body irradiation, 

a prerequisite for bone marrow engraftment. In our experimental setup which 

encompassed 14 transplanted animals we could not find any human haematopoietic 

engraftment during the time span examined (12 weeks). This result indicates that 

mature human hepatocytes do not have the capability to give rise to bone marrow cells 

in this model. Despite the lack of bone marrow integration we can detect hepatocytes 

which are positive for the HSA antigen, and also some hepatocytes with apparent 

human genome by FISH analysis.

Another approach taken was the introduction of human haematopoietic stem cells into a 

well characterised model o f liver damage and regeneration, the RAG2-uPA model. 

After transplantation of human stem cells we could not see any bone marrow 

engraftment in any of the experimental animals. This is most likely explained by the 

residual components of the immune system in the RAG2 knockout mice. In HSA 

stained liver sections we could detect several single HSA positive cells with hepatocyte 

morphology, and nodules of cellular destruction were apparent.

RNA analysis of several animals from the experiments involving human hepatocyte 

transplantation or the RAG2-uPA model revealed no significant expression of human 

mRNA in any o f the samples. This result demonstrates that human hepatocytes do not 

give rise to haematopoietic engraftment in our model, and that the RAG2-uPA model 

does not support the haematopoietic to hepatocytic conversion of human 

haematopoietic stem cells.

The new model of hepatocyte damage established with the NOD/Scid/met animals 

opens very interesting possibilities in liver regeneration research. The specificity of the 

acute cadmium intoxication for the liver tissue allows the discrimination o f host and 

donor cells inside the regenerating organ. In contrast to the RAG2-uPA model excision 

of the transgene is not possible, and in contrast to the FAH'a model the mutation is not 

lethal and the strain supports xenogeneic cell engraftment. In our first experiments we 

could induce a severe liver defect during the course o f the study. The occurrence of
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small cells of both hepatocyte and non hepatocyte morphology indicates the utilization 

of a regenerative pathway different to the traditional regeneration by division of mature 

hepatocytes seen in the CCI4 damage model. Although in our preliminary experiments 

the regenerative tissue in this liver was constituted only o f murine host cells the use of 

different xenobiotic cell sources may make this inducible damage model a valuable 

contribution to the scientific community.

The acquisition of sufficient amounts of cells for transplantation remains a challenge in 

the field o f stem cell transplantation. One of the most promising populations of cells 

currently under investigation is the mesenchymal stem cell pool. We attempted to 

transplant cells which had been differentiated in vitro along the hepatocytic lineage to 

investigate the possibility of liver integration of these cells. Due to experimental 

constraints we had to resort to a labelling strategy to allow detection o f MSC progeny in 

the murine organism. Although we could find several hepatocytes with apparent BrDU 

labelling in the nucleus we are unable to investigate these samples any further as we can 

not distinguish between host and donor cells other than by the BrDU label. Future 

experiments will use a genetically distinguishable source of murine MSC cells or 

human MSCs to allow for careful analysis of the capabilities o f MSC in the damaged 

liver.
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Discussion

We have studied the capabilities of human haematopoietic stem cells to give rise to 

hepatocytes in a murine xenotransplantation model. To improve engraftment we have 

studied a variety of damage models in the NOD/Scid mouse strain. Only the CCU 

intoxication was capable of producing large scale tissue destruction in the liver (Figure 

14, 15) so it became the focus of our investigation. We tested the efficiency of 

retrorsine to inhibit hepatocyte regrowth in our animal model but found it to be 

inefficient. Additionally we established first dose-response data for a new model of 

liver damage, the metallothionein knockout mouse strain NOD/Scid/met. (Figure 18) 

After the initial report by Danet et al (Danet et al. 2002) about the occurrence of 

apparent human hepatocytes in transplantation studies without extensive tissue damage 

we attempted to find a good animal model that would allow us to investigate this result 

in more detail. We tried to establish a model that would allow us to study the influence 

of tissue damage on the quantity and quality of liver engraftment. The CCI4 model of 

tissue damage is an ideal tool for this as it induces acute liver damage and a controlled, 

well characterised repair mechanism. In addition to an acute damage model we also 

wanted to establish a model in which we could confer a selective advantage to the 

transdifferentiated human cells so an expansion would occur. Although this has been 

described to be the case with retrorsine in the rat model (Laconi et a l 1998; Laconi et 

al. 2 0 0 1 ) we have unfortunately been unable to see a similar effect of retrorsine in our 

mouse model. This and the unavailability of retrorsine from the supplier for the larger 

part of this study led us to develop a new mouse model system. In the NOD/Scid/met 

model a selective advantage can be conferred to xenobiotic hepatocytes by selectively 

destroying the native host hepatocytes with cadmium intoxication.

The homing of stem cells to the site of engraftment has received much attention 

recently (Lapidot et al. 2002; Kollet et al. 2003). We investigated if  tissue damage 

influences homing of human haematopoietic progenitors by utilizing the CCI4 damage 

model. In concordance with earlier reports we can detect a higher level o f liver homing 

in animals which have received liver damage, which is also accompanied with larger 

amounts of cells homing to the bone marrow. (Figure 20) This unexpected result



Karl Kashofer Page 141 PhD thesis, 2006

highlights that even though the damage induced by CCI4  is tissue specific, the effects of 

the damage are noticeable in the whole animal organism.

After the initial homing phase human hematopoietic cells engraft primarily into the 

bone marrow and give rise to sustained multi-lineage engraftment. (Figure 21) The 

amount of bone marrow engraftment is greatly influenced by CCI4 intoxication, 

consistent with a late effect of the homing advantage. (Figure 22) We then went to 

investigate human mRNA expression and could show detection of RNA for human 

Albumin, alpha-Anti-Trypsin and human beta-Actin. Animals transplanted with lin', 

CD34+, CD34+CD38‘ and even CD34 CD38' cells displayed expression of human 

albumin at very low levels. (Figure 25) We then report the detection of HSA positive 

cells in several of the experimental animals. HSA has been used in three other 

publications (Danet et a l 2002; Almeida-Porada et a l 2004; Kogler et a l 2004) to 

detect hepatocytes o f human origin. We demonstrate that we can see distinct typical 

HSA staining on a murine tissue sample of an animal that has not been transplanted 

with any human cells. (Figure 28) We also demonstrate that the HSA positive cells 

found in our experimental animals contain a murine Y chromosome (Figure 29). 

Although the murine Y chromosome in the HSA positive cells can theoretically be 

explained by a fusion event we have no explanation for the occurrence of HSA positive 

cells in one of our control mice. Based on these data we conclude that the HSA 

antibody is an unreliable tool for detection o f human cells in a murine environment. 

Genetically marked human primary cells are a powerful tool in elucidating the 

possibilities behind stem cell transplants. We used GFP marked human haematopoietic 

cells in transplantation experiments which allowed reliable detection o f cells of human 

origin in several organs of the experimental animals. (Figure 30) We demonstrate the 

detection of GFP positive hepatocytes, and show the correlation between CCI4 

treatment and amount of GFP positive hepatocytes. (Table 1) Using 

immunohistochemistry we can show that GFP positive hepatocytes are CD45 negative, 

and express albumin, in line with RT-PCR results. (Figures 32 and 25) Closer 

inspection o f the GFP positive hepatocytes did reveal that they were missing several 

other human antigens, like human-mitochondria and human-nuclei. (Figure 33) Using 

FISH analysis we show the lack of human chromosome 1 in GFP positive hepatocytes, 

although it is present in human derived haematopoietic cells. Single cell PCR analysis 

also paints a complex picture of the genetic composition of the GFP positive 

hepatocytes indicating that they are hybrid cells containing genomic material from both
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murine and human cells. (Figures 34,35 and 36) In summary we can conclude that 

these GFP positive cells are most likely derived from a fusion of a resident hepatocyte 

with a human haematopoietic cell which are abundant in highly engrafted animals. This 

mechanism has been described before (Vassilopoulos et a l  2003; Wang et al. 2003), 

and has also been shown in in vitro experiments (Terada et a l 2002; Ying et a l  2002). 

The hybrid cells have a selective advantage in the FAH’ ’ model by rescuing the 

biochemical pathway that splits fumarylacetoacetate into fumarate and acetoacetate so 

they expand and make up a large percentage o f the liver mass. In our model the fused 

cells do not have a selective advantage so no expansion occurs. The loss o f human 

genetic material in our model is also well explained by a lack of selection for human 

genes and has also been described before in the murine FAH model. While our results 

are well in line with earlier reports of fusion mechanisms in some animal models there 

are still two major publications which remain unchallenged. Jang et al demonstrated the 

generation o f hepatocytes from a very specific population of haematopoietic stem cells 

without any signs o f fusion both in vitro and in vivo (Jang et a l  2004) and Harris et al 

demonstrate the lack of fusion by using a Cre-Lox recombination system which should 

detect the occurrence of fusion in vivo (Harris et a l  2004).

In the final chapter we conducted experiments utilizing other murine models for 

xenotransplantation. We can show that human haematopoietic cells are not engrafting in 

the bone marrow or the hepatic parenchyme of RAG2-uPA animals. The murine 

metallothionein deficiency model NOD/Scid/met allows us to put selective pressure on 

host cells without detrimental effects on transplanted donor cells. Although we could 

not see any evidence of transdifferentiation of human cells in this model we could 

observe a strong regenerative stimulus exerted by the cadmium treatment in these 

animals. The lack of human hepatocytic transdifferentiation in these experiments could 

well be explained by an inability of the transplanted haematopoietic stem cell 

population to give rise to hepatocytes rendering the selective advantage ineffective.

A reversal o f our approach of generating hepatocytes from haematopoietic cells was 

attempted in experiments where we used human hepatocyte infusion to see if functional 

haematopoietic engraftment can be achieved. However, in none o f the experimental 

animals could we detect any human bone marrow engraftment. Additionally we can 

again detect abundant HSA positive cells but no accompanying liver specific RNA 

expression further reinforcing the difficulties encountered with this antibody. The 

amount of hepatocyte like cells which are positive for human chromosome 1 FISH is
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very low in these animals, and might well be below the detection threshold o f the RT- 

PCR.

The versatility of the mesenchymal stem cell populations prompted us to conduct 

preliminary experiments to investigate the potential of pre-differentiated MSC to 

engraft in the rodent liver. Although we do find cells o f apparent donor origin, the 

technical details o f the preliminary experiments do not allow a full characterization of 

these cells and further experiments will be necessary.

In conclusion in this work we have demonstrated the ability of human haematopoietic 

cells to fuse with murine resident hepatocytes to give rise to unstable heterokaryons. 

Although this result diminishes the possible use of haematopoietic stem cell 

transplantation for the treatment o f diseases other than haematological disorders it is an 

important step forward in defining the capabilities o f haematopoietic cell transplants. 

As it seems unlikely that haematopoietic stem cells can be therapeutically used for non- 

haematological disorders more research needs to be focused into alternative cell 

populations like MSC or tissue stem cells.
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Future work

The apparent inability of haematopoietic cells to give rise to hepatocytes by real 

transdifferentiation without fusion makes therapeutic use of HSC for treatment o f liver 

diseases unlikely. In our experiments we do not only see cells with human or GFP 

markers in the liver but also in other tissues, namely the kidneys and the lungs. 

Especially the cells incorporated into the parenchyme o f the lung appear to have non- 

haematopoietic morphology and are also consistently present in several experiments. 

Elucidating the true nature o f these cells, and conditions enhancing engraftment o f these 

cells in the lung tissue is work currently progressing in the lab. While there is evidence 

that bone marrow to lung transdifferentiation is possible both in humans (Spencer et al. 

2005) and in animal experiments (Kotton et al. 2001; Krause et a l 2001; Theise et a l 

2002; Anjos-Afonso et a l 2004; Harris et a l 2004; Krause 2005) we have to keep in 

mind that more recent research is more cautious on this subject (Beckett et a l 2005; 

Chang et a l  2005; Kotton et a l 2005).

All o f the work presented in this study was done with human haematopoietic stem cells 

purified from cord blood. As the results indicate, the transdifferentiation potential of 

this cell population is limited. An investigation of the transdifferentiative potential of 

MSC is under way in the lab (Anjos-Afonso et a l 2004). The advantage o f MSC are 

mainly that this population of cells can be derived from adult bone marrow, expanded 

in vitro and differentiation into several cell types has been shown reliably in vitro.

The NOD/Scid/met mouse model provides us with an entirely new environment in 

which to test the transdifferentiation capabilities of stem cells as well as the capabilities 

of pre-differentiated cells or even hepatic progenitor cell populations. It is one of the 

very few systems which allow transplantation of xenogeneic, human cells while at the 

same time allowing selection for transplanted hepatocytes. We need to further define 

the damage-repair pathway initiated in this model by cadmium administration as it 

seems to be different to the repair in partial hepatectomy or CCfi damage models. We 

also should test the possibilities of hepatocytes o f murine and human origin to integrate 

and repopulate the liver o f these animals to have a benchmark o f engraftment against 

which we can then compare other cell populations. Hepatic progenitor cells have been
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studied extensively in murine models, using the NOD/Scid/met model we can now 

employ a xenotransplantation model to define hepatic stem cells in the human liver. A 

study into the ability of MSC which have been pre-differentiated into hepatocytes in 

vitro to integrate into the liver o f NOD/Scid/met animals is currently under way in the 

lab.
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