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Abstract

Abstract

Activation of cytotoxic T cells in human requires specific binding of antigenic 

peptides to human leukocyte antigen (HLA) molecules. HLA is the most 

polymorphic protein in the human body, currently 1814 different alleles collected 

in the HLA sequence database at the European Bioinformatics Institute. Most of 

the HLA molecules recognise different peptides. Also, some peptides can be 

recognised by several of HLA molecules. In the present project, all available 

class I HLA alleles are classified into supertypes. Super -  binding motifs for 

peptides binding to some supertypes are defined where binding data are available.

A variety of chemometric techniques are used in the project, including 2D and 

3D QSAR techniques and different variable selection methods like SIMCA, 

GOLPE and genetic algorithm. Principal component analysis combined with 

molecular interaction fields calculation by the program GRID is used in the class 

I HLA classification.

This thesis defines an HLA-A3 supermotif using two QSAR methods: the 3D- 

QSAR method CoMSIA, and a recently developed 2D-QSAR method, which is 

named the additive method. Four alleles with high phenotype frequency were 

included in the study: HLA-A*0301, HLA-A*1101, HLA-A*3101 and HLA- 

A*6801. An A*0201 binding motif is also defined using amino acid descriptors 

and variable selection methods. Novel peptides have been designed according to 

the motifs and the binding affinity is tested experimentally. The results of the 

additive method are used in the online server, MHCPred, to predict binding 

affinity of unknown peptides. In HLA classification, the HLA-A, B and C 

molecules are classified into supertypes separately. A total of eight supertypes 

are observed for class I HLA, including A2, A3, A24, B7, B27, B44, Cl and C4 

supertype. Using the HLA classification, any newly discovered class I HLA 

molecule can be grouped into a supertype easily, thus simplifying the 

experimental function characterisation process.
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Non-polar

Glycine Gly G
Alanine Ala A
Valine Val V
Leucine Leu L
Isoleucine lie I
Methionine Met M
Phenylalanine Phe F
Tryptophan Tip W
Proline Pro P

Polar
Serine Ser s
Threonine Thr T
Cysteine Cys C
Tyrosine Tyr Y
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Introduction Chapter 1

Chapter 1 
Introduction

1.1 The major histocompatibility complex

1.1.1 Overview

Major histocompatibility complex (MHC) molecules are polymorphic membrane 

glycoproteins (Zinkemagel, 1986). Human MHC is also called human leukocyte 

antigen, often abbreviated as HLA (Clark and Forman, 1984). There are two 

classes of HLA, class I and class II. Class I HLA is present on most nucleated 

cells, in particular the surfaces of lymphocytes, which have 1000 to 10000 HLA 

molecules per cell (Goust, 1993). Class II HLA is mostly expressed on antigen 

presenting cells (APC). An APC is a cell that has the ability to present antigen to 

helper T cells to activate an immune response. Examples of APCs are 

macrophages, dendritic cells, B cells and thymic epithelium cells.

One of the principal functions of the immune system is to recognise and 

eliminate foreign antigens in the body, such as viruses, bacteria and parasites 

(Janeway, 2001). Extracellular antigens can be recognised and destroyed by 

macrophages, T cells and B cells. The intracellular antigens, however, do not 

have direct contact with the immune system, and they have to be eliminated with 

the help of MHC proteins. The MHC proteins take up degraded intracellular 

antigenic fragments and present them to T cells to induce an immune system 

response (Ljunggren and Thorpe, 1996; Madnaka and Yvonne Jones, 1999; Rau 

et al., 2001 ).

11



Introduction Chapter 1

Class I HLA molecules mainly bind to 8 -  11, but up to 15 amino acids long 

intracellular peptide fragments and present them to the cytotoxic T cells. Both 

self and viral peptides are degraded in the cell by proteasomes, and class I HLAs 

are able to bind to both. Under normal conditions, HLA molecules bind to 

fragments of self proteins degraded in the cell. In infected cells, HLA molecules 

bind to fragments of degraded foreign proteins (Haeney, 1995). Activated 

cytotoxic T cells release proteins such as perforin and granzymes to induce cell 

lysis. Fas ligand is expressed on the surfaces of cytotoxic T cells and this is 

recognised by Fas receptors on infected cells to induce apoptosis.

Class II HLA binds to 9 -  25 amino acids long peptides from extracellular 

bacteria and viruses ingested by APCs and present these peptides to helper T 

cells to activate humoral and cellular immunity in the host (Madden et al., 1993). 

Upon binding, T cells are stimulated and proliferate into either Thl or Th2 helper 

cells. Thl cells secrete interferon gamma receptor (IFN-y) and express CD40 

ligand or Fas ligand on their surface. CD40 ligands bind to and activate cells 

with CD40 on their surfaces. Fas ligand sends death signals to cells with Fas 

receptor on their surfaces. Th2 cells, on the other hand, activate B cells. Th2 cells 

secrete cytokins interleukin (II) -4 and 11-5, which are B cell growth factors. Th2 

cells also express CD40 ligand, which can bind to CD40 receptor on B cells and 

stimulate B cell proliferation.

Most peptides binding to class I and class II HLA alleles contain binding motifs, 

which is a combination of preferred residues at specific positions of the peptide. 

Most binding motifs are allele-specific. However, some alleles have similar

12



Introduction Chapter 1

binding motifs, and some peptides can be recognised by more than one allele. 

HLA alleles can be classified into superfamilies according to their similar 

binding motifs. The discovery of cross-reactive peptides is very important in 

epitope based vaccination, where epitopes restricted to the superfamilies can be 

used in a vaccine that is effective in the global population.

HLA molecules play an important role in the immune system. The binding of 

peptides to HLA molecules, and their subsequent presentation to T cells, is the 

initial step of the host adaptive immune system defence against infectious agents. 

Recent experimental evidence suggests that MHC molecules can interact with the 

natural killer (NK) cell receptors (Valiante and Parham, 1996; Yokoyama et al., 

1995). Also the HLA is important in non-self tissue transplantation, in which the 

donor and the host’s HLA type must match to avoid tissue rejection. At present, 

the interaction between peptides and HLA alleles is not fully understood. The 

present thesis focuses on class I HLA molecules, therefore in the following 

sections several aspects of class I HLA molecules are explored: MHC genetics, 

class I HLA structure, peptide-MHC interactions, laboratory and in silico 

techniques used to identify epitopes, protein degradation and MHC presentation 

pathway, HLA superfamilies and the application of epitopes in vaccine design.

1.1.2 HLA nomenclature

Since its initial discovery, 1814 different HLA alleles have been identified 

(Robinson et al., 2003). A nomenclature system is used by the WHO 

Nomenclature Committee to name alleles (Bodmer et al., 1990a; Bodmer et al., 

1990b; Marsh, 2003; Marsh, 2004). Allele names used in the thesis adopt the

13



Introduction Chapter 1

following style: HLA-locus*allele. For example, HLA-A*0101 means the 0101 

allele that is encoded by the A locus. HLA-DRB 1*0701 is the 0701 allele 

encoded by the DRB locus, etc. As many alleles can be encoded by the same 

locus, the allele number can vary from 0101 to 8001 excluding the mutants. The 

same applies to other class I and II alleles. There are also mutants of the alleles in 

the IMGT/HLA database containing silent mutations that do not affect the 

protein sequences. Two digits are added to the allele name to distinguish the 

mutants. For example, HLA-A*020101 is an allele that is a mutant of the HLA- 

A*0201. Mutants are not included in the present studies. Full information about 

HLA nomenclature can be found on the HLA informatics group web page URL: 

http://www.anthonvnolan.org.uk/HIG/.

1.1.3 MHC genetics

The MHC genes are located on chromosome 17 in mice and on the short arm of 

chromosome 6 in human (Koeller and Ozato, 1986). Mouse MHC is about 1.5 

centimorgans long and is divided into three loci: H-2K, D and L. Human MHC is 

about 2 centimorgans long and consists of about 4000 kilobases of DNA (Goust, 

1993). There are six loci encoding class I and II HLA alleles. The first three loci 

are HLA-DP, HLA-DR and HLA-DQ, which encode class II HLA alleles. The 

other three loci, HLA-A, HLA-B and HLA-C, are the three major loci encoding 

the class I HLA alleles (Fig. 1.1). Six minor loci have also been identified, which 

are HLA-E, HLA-F, HLA-G and HLA-H for class I and HLA-DN and HLA-DO 

for class II. Each class I loci is composed of eight exons divided by seven introns. 

Exon 1 encodes the leading sequence, which is cleaved during post-translation 

modification. The three extracellular domains a l a2 a3 are encoded by exons 2

14
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Introduction Chapter 1

to 4. Exon 5 encodes the transmembrane helices and exons 6 to 8 encode the 

cytoplasmic tail (Fig. 1.1) (Maloy, 1987). Genes on the minor loci produce so- 

called non-classical MHC proteins, which are not involved in CD4 and CD8 T 

cell activation. Experimental evidence shows that HLA-E and G can contact 

natural killer cells and may inhibit natural killer cell induced cell lysis (Borrego 

et al., 1998; Braud et al., 1998; Lopez-Botet and Bellon, 1999; Marchal-Bras- 

Goncalves et al., 2001; Matsunami et al., 2000a; Matsunami et al., 2000b; 

O'Callaghan, 2000; Pazmany et al., 1996; Posch et al., 1998; Rouas-Freiss et al., 

1997; Sasaki et al., 1999).

The DP, DR and DQ loci of class II MHC exist in pairs, which may come from 

gene duplication (Koskimies and Eklund, 1997). Each pair encodes one a and 

one p chain of the class II MHC protein (Janeway, 2001). Each major locus of 

class I MHC encodes a single polypeptide (a chain), which binds to p2- 

microglobulin in the ER and forms the HLA complex (Bouvier and Wiley, 

1998a). p2-microglobulin is encoded separately on chromosome 15 (Haeney, 

1995). Both class I and II loci are highly polymorphic and are able to express, 

within a population, hundreds of different alleles (Caiozzo et al., 2000). The 

most polymorphic region is found in the a chains o f both class I and II MHC and 

p chains of class II MHC (Koeller and Ozato, 1986).

Some of the proteins in the MHC assembly process are also encoded in the MHC 

region, such as TAP and LMP, both genes are arranged in pairs as the class II 

genes and the arrangement may be the result of gene duplication (Beck et al., 

1992). The function of the TAP protein is to transport peptides into the ER, and

15
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LMP proteins are subunits of the proteasome used for digesting proteins 

(Janeway, 2001). Some non-MHC proteins are encoded between the class I and 

class II regions, such as proteins of the complement system C2, C4 and factor B 

(Goust, 1993). These proteins have limited polymorphism and participate in the 

innate immune system responses.

Closely linked genes that are inherited together, like class I and class II MHCs, 

are also known as haplotypes (Zhao et al., 2003b). An individual inherits one 

haplotype from the mother and one from the father, each containing three class I 

(HLA-A, B and C) and class II (HLA-DP, DR and DQ) loci (Rhodes and 

Trowsdale, 1999). Therefore an individual will have a maximum of six different 

class I specificities (Goust, 1993). The situation is more complicated for class II 

HLA. Class II alleles consists of two chains named a and p, and an individual 

can have one a gene from one parent and one p gene from another (Janeway, 

2001). Hence, an individual may have a maximum of 12 different combinations. 

Occasionally a crossover occurs between the parental chromosomes and this 

generates new haplotypes, with mixed specificity from each locus, that also 

contributes to the HLA heterogenecity in the population (Koskimies and Eklund, 

1997).

Alleles that are specific for each locus can be recognised by serotyping or mixed 

leukocyte reaction (MLR). In serotyping, the patient haplotype is obtained by 

adding monoclonal antibodies to the serum (Festenstein and Oilier, 1987; 

Gefffotin et al., 1984; Welsh, 1989). MLR is often used to match class II HLA 

phenotypes by mixing lymphocytes from the two patients and testing whether the

16



Introduction Chapter 1

lymphocytes are stimulated to proliferate. If there is lymphocyte proliferation, 

then the phenotypes from the two individuals do not match (Mohler and Streilein, 

1989; Yoshizawa and Yano, 1984). With the advance in molecular genetics, the 

use of polymerase chain reaction (PCR) is now more common and is gradually 

replacing the traditional biochemical assays (Collins et al., 2003; Konnai et al., 

2003; Middleton, 1999; Welsh and Bunce, 1999; Westerdahl et al., 2004; Zheng 

et al., 1999)

17
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ClsstSS Cists I

□ □  □ -----------1—ii—i n  n n

Protein

TM  CYT

Figure 1.1. The arrangement of the HLA genes. Class I HLA is encoded on 

chromosome 6 and there are six loci: HLA-A, B and C that encode class I HLA 

alleles, and DP, DQ and DR that encode class II alleles. Class I HLA protein 

sequences are encoded on 8 exons. Exon 1 encodes the leading sequence which 

is cleaved during post-translation modification, al a2 a3 domains are encoded 

on exons 2, 3 and 4, respectively. Exon 5 encodes the transmembrane helices 

(TM) and exon 6 , 7 and 8 encode the cytoplasmic tail (CYT) (Duran and Pease, 

1986).
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1.1.4 Class I HLA structure

MHC Class I molecules were first discovered in 1916 as cell surface antigens 

that caused transplant rejection in mice (Little and Tyzzer, 1916), hence MHC 

molecules were initially called transplantation antigens. Twenty years later, 

Gorer identified MHC molecules in mice, which was later named the H-2 antigen 

(Gorer, 1936; Gorer, 1937). Human MHC was discovered later by the finding 

that blood taken from pregnant women contained antibodies that agglutinated 

leukocytes, i.e, the antibodies targeted the leukocytes (van Rood et al., 1958). 

The same situation was also found in people receiving blood transfusion even 

when the blood type was matched. H-2 molecules were purified for the first time 

in 1966 by Nathenson and Davies using gel filtration and ion exchange 

chromatography techniques. The molecular weight of the molecules was found to 

be 45,000 kD (Nathenson and Davis, 1966). The H-Kb protein was sequenced 

nearly fifteen years later by Coligan and his colleagues using a radiochemical 

assay (Coligan et al., 1981; Uehara et al., 1981a; Uehara et al., 1981b). Later on, 

the three-dimensional structures of several MHC molecules were crystallised, 

such as HLA- Aw68 (Garrett et al., 1989), A2 (Saper et al., 1991), B27 (Madden 

et al., 1991a), H-2Db (Young et al., 1994) and H-Kb (Ghendler et al., 1998). The 

MHC crystal structures are produced by removing the hydrophobic 

transmembrane region and cytoplasmic tail to make the molecules soluble or 

express mutated MHC molecules as soluble molecules (Graff et al., 1970; Mann 

et al., 1968). These structures are used as the prototypes for the study of all MHC 

molecules.

19
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The major part of a class I HLA molecule consists of a transmembrane heavy 

chain of 44 KD (Ploegh et al., 1981). The extracellular part of the heavy chain is 

divided into 3 domains a l, a2 and a3 (Krensky and Clayberger, 1996), each 

about 90 amino acids long. These domains have been defined by sequence 

analysis and do not correspond to the two structural domains apparent in the 

extracellular part of MHC crystal structures. We use this nomenclature to remain 

consistent with immunological literature. Sequence alignment of human, murine, 

pig and rabbit MHC molecules suggested that the three a domains are conserved 

between species, but the transmembrane and cytopolasmic tail vary greatly in 

different species (Maloy, 1987). The HLA-A2 structure solved by Bjorkman 

revealed that the a2 and a3 domains are connected to a short helix consisting of 

residue 177 to 181 (Bjorkman et al., 1987a). The a3 domain is linked to a 25 

amino acids long transmembrane region followed by a short intracellular 

cytoplasmic tail of 30-35 amino acids at the C terminal (Shields et al., 1999). 

The heavy chain is non-covalently attached to a 12 KD protein named p2- 

microglobulin (p2m) and forms the complete MHC complex (Willcox et al., 

2003).

Solved human and mouse MHC crystal structures revealed that the peptide 

binding site is formed by an eight-strand antiparallel p sheet with two a helices 

running parallel to each other over the top of the p sheet (Bjorkman et al., 1987a). 

This three-dimensional arrangement creates a long groove between the helices 

which is the peptide binding site (Bjorkman and Parham, 1990; Jones, 1997; 

Takiguchi, 1994), the P sheet forms the ‘floor’ of the binding site, (figure 1.2, 

figure 1.3). The binding of peptide to the MHC is confirmed by the observed
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extra electron density within the binding site of the crystallised MHC proteins 

(Saper etal., 1991).

The a3 domain and the have similar structures (Saper et al., 1991). 

Sequence analysis showed that the a3 domain and fam  are both immunoglobulin 

type domains (Gussow et al., 1987; Nathenson et al., 1986). Both the a3 domain 

and the p2m consist of two antiparallel (3 sheets linked by a disulphide bond 

(Gussow et al., 1987), one of the (3 sheets has four strands and the other has three. 

Conformational changes in fern can induce changes in the structure of the MHC 

complex and alter CTL recognition (Bjorkman et al., 1987b). The a l and a2 

domain are polymorphic, while the fam, a3 domain, the transmembrane and 

cytoplasmic regions are more conserved (Clark and Forman, 1984).
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p ep tide

m icroglob ulin

Figure 1.2. The crystal structure of human MHC class I allele A*0201 

complexed with human T cell receptor B7. A viral peptide Tax is bound inside 

the peptide binding groove (Ding et al., 1998).
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Figure 1.4. The major force for stabilising peptide is the hydrogen bond between 

the main chain atoms of the peptide and the A*0201 molecule. The hydrogen 

bonds are shown as dotted lines in the graph.

Figure 1.3. A spacefill graph of the peptide bound to the HLA-A*0201 binding 

site. The peptide is in green.
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1.1.5 Peptide-MHC binding

1.1.5.1 The binding site

The peptide binding site is about 25-30A long and 10A wide (Bjorkman et al., 

1987a). The two ends of the class I HLA binding site are closed by the contacts 

of the side chains between the two helices (Saper et al., 1991). The binding site is 

situated at the top of the MHC molecule and faces away from the cell, which 

facilitates recognition by T cell receptors (TCR) (Fig. 1.2). Most of the HLA 

residues that face the binding site are polymorphic (Saper et al., 1991). In crystal 

structures, the N and C termini of the peptide are buried in the binding site and 

form hydrogen bonds with the residues of the HLA molecule (Hillig et al., 2001). 

These hydrogen bonds are the main stabilisation force securing peptides in the 

binding site (Bouvier and Wiley, 1994) (Fig 1.4). It has been observed in thermal 

denaturation studies that substitution of the N and C terminal residues of the 

peptide accelerates the denaturation rate of the complex (Bouvier et al., 1998b; 

Khan et al., 2000). The centre of the peptide is more exposed to the solvent and 

has contact with the T cell receptor in some of the MHC-TCR structures (Ding et 

al., 1998; Garboczi et al., 1996).

1.1.5.2 T cell epitopes vs. MHC ligands

MHC molecules do not have the ability to distinguish between self and non-self 

peptides. As both self and antigenic proteins are degraded in the cytosol, a large 

proportion of MHC molecules bind to peptides from self proteins. Normally T 

cells that recognise self peptides are deleted by negative selection during 

maturation in the thymus (Janeway, 2001), therefore mature T cells only
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recognise foreign epitopes. A T cell epitope is a linear peptide that can both bind 

to MHC molecules and induce T cell mediated immune response (Madden, 1995). 

T cell-epitope recognition and subsequent immune responses play an important 

role in host immune defence, changes in this process can lead to serious 

problems. Some viruses escape immune recognition through mutations that 

change their protein sequences, such as HIV (Letvin and Walker, 2001). Also in 

the case of autoimmune diseases, T cells recognise self peptides and destroy 

tissues in the host. An important application of epitopes is their use in epitope 

based vaccines, in which engineered epitope strings are injected into the body so 

that they can be recognised by T cells and induce immune response in the 

recipient. Details of epitope based vaccines are discussed in section 1.7.

1.1.5.3 Binding pockets and binding motifs

The optimal length of peptide binding to class I HLA alleles is nine residues but 

the binding of peptides with 8 - 1 5  residues have also been found (Rammensee et 

al., 1995). In immunology, the residues of peptides are often denoted as PI,

P2 ...P8 , P9 , starting from the N terminus. Peptides with 8 or 9 residues are

bound to MHC in an extended conformation (Madden et al., 1991a) (Figure 1.5a, 

1.5b). Structural studies showed that nonamer peptides bind to class I HLA 

molecules with a similar structural conformation in the binding site (Madden, 

1995). The statistical pair-wise study of the structure of peptide in the MHC 

binding site and in native proteins confirmed that the structures of peptides in 

their native proteins vary from extended to helical, but this did not affect the 

peptide conformation in the binding site (Schueler-Furman et al., 2001). In the 

study, there was a slight preference for an extended conformation of residue 8
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and 9 in the native structures, which may facilitate the binding of the anchor 

residue in the pocket F.

The crystal structure of the A*0201/peptide complex defined six binding pockets 

in the binding site, termed A to F (Saper et a l , 1991) (Figure 1.6, 1.7). Binding 

pockets accommodate side chains of peptides and are important in both 

stabilising the peptide-MHC complex and determining peptide specificity. 

Pocket B, C, D and E are situated between the helices and the (3 sheet (Petrone 

and Garcia, 2004) (Fig. 1.6). The two pockets A and F, located at the two ends of 

the binding groove, are involved in the interactions with the side chains of the 

amino and carboxyl termini of the peptide, respectively (Carreno et al., 1993). 

This interaction provides a major source of binding energy (Fremont et al., 1992; 

Madden et al., 1991b; Madden et a l, 1992; Matsumura et a l, 1992a; Silver et a l, 

1992) and also decides the orientation of the peptide. Study of the HLA- 

A2/peptide complex identified 14 water molecules in the binding site (Petrone 

and Garcia, 2004). The water molecules are scattered in the binding pockets of 

the binding site, the water molecules both form the hydrogen bonds between the 

MHC and the peptide and fill the empty spaces in the binding groove.

Binding pockets also help determine the peptide specificity of the MHC 

molecules (Johansen et a l, 1997; Schaffoth and Floudas, 2004). The peptide 

specificity of H-2Kb was altered when the residues in the Pocket C Val9, Val97 

and Ser99 were changed to bulkier amino acids from A*0201 Phe9, Arg97 and 

Tyr99 (Johansen et a l, 1997). Analysis of peptides eluted from MHC complexes 

showed that peptides bound to the same MHC molecule often contain the same
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or chemically related amino acids at certain positions (Madden, 1995). These 

positions are called anchor positions (Deres et al., 1993). The combination of 

anchor positions is named the peptide binding motif (Sette et al., 2001). Most 

class I HLA motifs contain P2 and the carboxyl terminal residue (Sette and 

Sidney, 1999). The P2 residue for the class I HLA molecules is usually aliphatic: 

leucine, isoleucine, valine and methionine are the most commonly found anchor 

residues for alleles such as A*0101, A*0201, A*0202, etc (Altfeld et al., 2001; 

Cemy et al., 1995; Kurokohchi et al., 1996; Yoon et al., 1998). Basic amino 

acids (arginine, lysine) and aromatic amino acids (tyrosine, phenylalanine) have 

also been observed for alleles such as H-2Kd, H-2Kk, and A*24 (Burrows et al., 

1996; Jiang et al., 2002) (Parker et al., 1995). In the crystal structure of HLA- 

A2/peptide complex (Hillig et al., 2001), the P2 residue interacts with the side 

chains of the amino acids lining the pocket B and the P2 specificity is largely 

directed by the residues in the pocket (Altuvia et al., 1997).

Another common anchor position is the C terminal residue (Rammensee et al., 

1995). Substitution of the carboxyl terminus significantly lowered the binding 

affinity of the peptide (Elvin et al., 1991; Fahnestock et al., 1994; Parker et al., 

1992a; Rohren et al., 1993; Wettstein et al., 1993). The nature of the residue is 

influenced by the residues in pocket F, in particular amino acid 116 of the MHC 

molecule, which is situated at the bottom of the pocket F (Saper et al., 1991). For 

example, A*0201 has tyrosine at position 116 and the peptides bound to A*0201 

usually have aliphatic amino acids at the C termini (Madden et al., 1993).
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Apart from anchor residues, other positions have also been identified to be 

important in high affinity binding (Falk et a l, 1991b). These positions are termed 

secondary anchor positions (Jameson and Bevan, 1992; Ruppert et a l,  1993). 

Substitution of secondary anchor amino acids also reduces the binding affinity of 

the peptide (Boehncke et a l,  1993). An example is the peptide stabilisation assay 

by Chujoh et al., in which the binding affinity of the mutated peptides to HLA- 

A*1101 were tested (Chujoh et a l, 1998). Peptides with the anchor residues 

(hydrophobic residue at P2, and lys at C terminus) were able to form a stable 

complex with HLA-A*1101. Peptides with mutated amino acids at P9 (lys was 

substituted to Asp, Glu and Thr) were unable to bind to the MHC molecule, but 

those with arginine at P9 were still able to form the peptide-MHC complex, 

although with less stability. Similar results were found for the other anchor 

positions. Peptides with Val, leu and lie at P2 had higher affinity.

However, the binding motif can not fully explain the interactions between a 

peptide and an MHC molecule, as peptides with the same binding motif have 

different affinities, which indicates that the binding motif is not the only factor in 

peptide-MHC binding. In some experiments, H-2Db and H-2Kk binding peptides 

have been competitively inhibited by peptides that do not have the required 

motifs (Bodmer et a l, 1989). The interactions between anchor residues and the 

peptide binding site provide a stabilisation force to secure the peptide in the 

binding site. However, interactions between other residues and the binding site 

are also important and can influence binding affinity. In this thesis, the 

contributions of peptide residues to binding are further explored by two QSAR 

techniques: CoMSIA and the additive method.
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■
(a)

(b)

Figure 1.5. Backbone structure of peptide TLTSCNTSV in the HLA-A*0201 

binding site (Madden et al., 1993). Peptide is bound to the binding site in an 

extended conformation, (a) Side view, (b) View ffom the top of the binding site.
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Figure 1.6. Peptide is bound in the binding cleft of A*0201 MHC molecule. For 

simplicity, only the al and a2 domains are shown. The a  helices are shown in 

red, and /3 sheet is in brown. The peptide is in green. Six binding pockets, A to F, 

are indicated in the graph.
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Figure 1.7. A side view of the A*0201 binding cleft. . For simplicity, only al and 

oCL domains are shown. The a. helices are shown in red, and (3 sheet is in brown. 

The peptide is in green. The peptide binds to the MHC in an extended 

conformation. Most of the residues in the peptide interact with the binding cleft 

and stabilize the peptide inside the cleft, while side chains of other positions 

(position 5 in this graph) point towards the outside of the binding cleft and 

interact with the T cell receptor.
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1.2 Techniques used in identifying MHC binders 

Identification of peptides binding to MHC molecules is an important aspect of 

vaccinology. Techniques that have been used to identify eptiopes can be divided 

into two categories, experimental and computational.

1.2.1 Experimental methods

1.2.1.1 Pool sequencing

Traditionally, T cell epitopes are identified using pool sequencing (Falk et a l, 

1991b), in which the peptides bound to the MHC molecules are separated and 

sequenced (Buus et al., 1988). In the experiment carried out by Chicz et al., the 

MHC-peptide complexes were purified by immunoaffinity purification, and the 

purified complexes were then exposed to acidic conditions to elute bound 

peptides. The sequences of the peptides were analysed by Edman degradation. 

The percentage of peptides recovered from the experiment was estimated to be 

70% - 80% of those bound to the recovered MHC molecules (Chicz et a l,  1993). 

Pool sequencing is able to identify the position o f the primary anchor residues 

(Banks et a l, 1993; Cossins et a l, 1993; Falk et a l,  1991a; Pamer et a l, 1991). 

The process is good for examining peptide specificity of a particular MHC 

molecule and has been used for identifying tumour associated antigens presented 

by MHC class I molecules to specific CTLs (Traversari et a l,  1992).
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1.2.1.2 Mass spectrometry

In mass spectrometry, individual peptides are separated by reverse-phase high- 

performance liquid chromatography (HPLC) and are sequenced by mass 

spectroscopy using collision activated dissociation analysis (Flad et a l , 2003; 

Gallego et al., 2001; Hunt et a l,  1992; Hunt et a l, 1986; Papac et a l,  1994; 

Parker et a l, 1996; Peter and Tomer, 2001; Rotzschke et a l, 1991; Zhao and 

Chalt, 1994). Pascolo used mass spectrometry to test peptide binders predicted 

by computer programs. The peptide fragments are synthesised and incubated 

with the cells. A*0201 MHC-peptide complexes are isolated by adding HLA-A2 

specific antibodies. The complexes are then fractionated by HPLC and analysed 

by mass spectrometry (Pascolo et a l, 2001). Mass spectrometry has also been 

used in analysing protein digestion by proteasomes (Emmerich et a l,  2000; 

Nussbaum et a l, 1998). The limitation of the technique is the amount of peptides 

required for reverse HPLC isolation.

1.2.1.3 Peptide binding studies

The peptide-binding assay has been developed to study the physicochemical 

properties of the interactions between peptides and MHC molecules (Joyce and 

Nathenson, 1994). Testing sets of overlapping peptides generated from a given 

protein sequence is a popular way of identifying both B cell and T cell epitopes 

(Goulder et a l, 1997; Hosoyama et a l, 1996; Schneider et a l, 1998; Schol et a l,

1998). The assay includes direct binding and the quantitative measurement of 

radio- or fluorescence-labelled peptides bound to the MHC molecules (Cerottini 

and Luescher, 1991; Chen and Parham, 1989; Christinck et a l, 1991; Kast and 

Melief, 1991; Levitsky et a l, 2000; Mendez-Samperio and Jimenez-Zamudio,
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1991; Schumacher et al., 1990; Stuber et al., 1995; Wauben et al., 1997). The 

MHC molecules can be either expressed on the cell surface or soluble 

(Fahnestock et al., 1994; Matsumura et al., 1992b; Ojcius et al., 1992). Multiple 

steps of isolation and washing are required to isolate the bound peptides from the 

free ones (Manfredi et al., 1993; Nag et al., 1994). Binding affinity can be 

expressed as BL50 (concentration of peptides required for 50% of maximal 

binding) (Marshall et al., 1994; van der Burg et al., 1996), IC50 (concentration of 

peptides that is required for 50% inhibition of the standard peptide by the test 

peptide) (Chen et al., 1994; Kono et al., 1998; Kubo et al., 1994; Rongcun et al., 

1999) or EC50 (plasma concentration needed for obtaining 50% of the maximum 

effect in vivo) values (Holt et al., 2004; Monneret et al., 2004; Suzuki et al., 

2004).

Peptide binding assays are the most common way of identifying T cell epitopes 

and measuring peptide binding affinities. Several databases have been set up to 

store peptide binding affinity data, such as MHCPEP (Brusic et al., 1998a), 

MHCBN (Bhasin et al., 2003) and AntiJen (Blythe et al., 2002; McSparron et al., 

2003).

1.2.2 In silico methods

The experimental protocols for T cell epitope identification are both labour 

intensive and time consuming. Furthermore, they are often limited by the low 

quantity of peptides or the weak association between the peptide and the MHC 

molecules. Alternative non-experimental methods have been developed to
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accelerate the epitope identification process. Non-experimental methods can be 

divided into two categories: the sequence approach and the structure approach.

1.2.2.1 The sequence approach

1.2.2.1.1 Motif search

The most commonly used method of epitope prediction is the use of motif 

patterns (Joyce and Nathenson, 1994; Pamer et a l,  1991; Sette et al., 1989a; 

Suhrbier et a l, 1993). The concept of motif based algorithms is similar to that of 

the PROSITE database (Hulo et a l, 2004). PROSITE finds sequence regions in 

the test protein which are similar to conserved domains in protein families 

(Mondal et a l,  2003). The motif based prediction uses the motifs available in the 

literature and searches the input sequence against a library of known motifs 

(Rammensee et a l, 1999). Altuvia et al. identified class II mouse MHC binding 

motifs by studying binders and non-binders in the literature (Altuvia et a l,  1994). 

HLA-DR epitopes from Plasmodium falciparum  have been identified using motif 

searching (Doolan et a l, 2000). A motif based program, EPIPREDICT, has been 

applied to predict class II epitopes associated with celiac disease (Jung et a l, 

2001).

D ’Amaro et al. developed a computer program MOTIF, which contains a 

collection of available A*0201 motifs (D'Amaro et a l, 1995). The program 

divides the query protein sequence into nonamers. Each position of the nonamer 

is compared with the motif, and the corresponding coefficient is added to the
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total coefficient value. A higher coefficient indicates higher binding affinity. In 

the validation test, the program predicted 27 possible binders, 18 of which were 

identified as binders in an in vitro binding assay. The accuracy of the program 

was 61%. Another program EpiMer has been developed by the researchers of the 

TB/HIV laboratory in Brown University (De Groot et al., 2001) and has been 

used to predict HIV epitopes (Meister et al., 1995).

One of the most well known T cell epitope prediction algorithms, SYFPEITHI, is 

based on motif pattern searching (Dick et al., 1998). Each residue in the input 

peptide is evaluated using the motif library. Peptides with predicted binding 

affinities less than 500nM are identified as potential epitopes (Rammensee et al.,

1999). Many epitope predictions are made by identifying the peptides containing 

the correct motifs first, followed by laboratory testing of their affinities 

(Amicosante et al., 2002; Cossins et al., 1993; Dong et al., 2003; Hansson et al., 

2003; Liu et al., 2004b; Neumann et al., 2004; Pelte et al., 2004; Suhrbier et al., 

1993; Ullenhag et al., 2004; Wagner et al., 2003; Zehbe et al., 2003).

Motif based algorithms usually have a predictivity of 60-70%, as not all MHC 

binders contain the defined motif (Nussbaum et al., 2003). In some cases, the 

correlation between predicted and experimental high binders was poor. In the 

study carried out by Anderson, the binding affinities of oncogenic and viral 

peptides were tested experimentally, and the results were compared with the 

predictions from SYFPEITHI and BIMAS. It was found that the algorithm 

predicted many false positives. Also some high binders were predicted to be non

binders by the algorithm (Andersen et al., 2000)
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1.2.2.1.2 Scoring matrix

Peptide binding motifs only define amino acids at certain positions and do not 

include information for the other positions, which are also important in binding 

(Margalit and Altuvia, 2003). Scoring matrix methods are similar to an expanded 

binding motif with coefficients for amino acid at each position of the peptide 

(Gulukota et al., 1997). The method is based on the assumption that each amino 

acid contributes independently to the binding of the peptide, and the contribution 

is the same for a particular amino acid in different sequences (Brusic et al., 

1998b). Some studies also take into account interactions between amino acid side 

chains (Peters et al., 2003; Segal et al., 2001). Cano and Fan generated matrices 

for HLA-A and B alleles by the mathematical analysis of known MHC-peptide 

complexes (Cano and Fan, 2001). Another class I HLA prediction model was 

generated by defining the interactions between the peptide and residues of the 

MHC molecules in crystal structures. These residues formed the virtual binding 

pockets and binding of other peptides can be predicted by predicting the 

interactions between the peptide and residues in the virtual pockets (Zhao et al., 

2003a).

Matrix based predictions have been applied to class II alleles. Southwood et al. 

used the results from peptide binding studies to generate the DRB 1*0401 model 

(Southwood et a l,  1998). Hammer et al. constructed a matrix for class II MHC 

alleles by analysing the side chains of peptides in the training set and used it in 

their predictions (Hammer et al., 1994). Side chain scanning of combinatorial 

libraries has also been used to identify high affinity ligands (Dooley and 

Houghten, 1993; Pinilla et al., 1992). The proteasomal cleavage prediction
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program MAPPP is also based on quantitative matrices (Hakenberg et a l, 2003). 

Similar algorithms have been applied to predict linear B cell epitopes. Alix 

calculated the molecular properties such as hydrophilicity, side chain flexibility 

and surface accessibility for each of the twenty amino acids and used these scales 

to predict potential epitope regions in protein sequences (Alix, 1999).

The online prediction service BIMAS is probably the best known T cell epitope 

prediction algorithm based on quantitative matrices. BIMAS has been used in 

many experiments to identify potential epitopes (Hansson et al., 2003; Lu and 

Celis, 2000; Ullenhag et al., 2004; Vonderheide et a l, 1999). Developed by Park 

et al., BIMAS identifies potential epitopes by their predicted half-life dissociate 

rate of MHC-peptide complex (Parker et a l, 1992a; Parker et al., 1992b; Silver 

et a l, 1991). The half-life dissociate rate is measured by the rate at which 

radiolabeled p2m dissociates from the MHC-peptide complex at 37°C (Parker et 

a l, 1992b). However, only the A*0201 model in BIMAS is based on half-time 

dissociate binding studies by Park et al., while models of other alleles are derived 

from motifs published in literature. Laboratory tests showed that BIMAS and 

SYFPEITHI are good at predicting epitopes within known T cell targets, but are 

less efficient in screening random proteins, that is, proteins that are not known to 

be T cell targets (Pelte et a l,  2004).

Another matrix based algorithm EpiMatrix has been developed De Groot and 

colleagues. The program has been used to identify HIV-1 antigens (Meister et a l, 

1995; Schafer et a l, 1998). Two similar algorithms have also been developed. 

One is named ClustiMer, which searches for cross-presentation of peptides to
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HLA superfamilies. The other program, Conservatrix, was generated to search 

for conserved regions across the isolates of the pathogen (Sbai et al., 2001). 

Matrices have been generated using synthesised peptide libraries that reflect 

binding strengths of different amino acids at different positions (Lauemoller et 

al., 2001). Pascolo et al. have used similar programs to identify tumour antigens 

encoded by the MAGE-A1 gene. The results were verified by mass spectrometry 

(Pascolo et al., 2001). Sometimes models are obtained by aligning the known 

peptides and calculating the frequency of amino acid at each position, such as the 

position specific scoring matrices (PSSM) developed by Reche et al. (Reche et 

al., 2002). Another example is the Gibbs sampling approach for class I and class 

II epitopes by Nielsen (Nielsen et al., 2004).

A variation of the quantitative matrix algorithms, virtual matrices, has been 

generated by Stumiolo et al. Virtual matrices model the interactions of each 

amino acid and the binding pockets of the MHC binding site. Virtual matrices 

containing pocket specific binding information and can be applied to other alleles 

by MHC sequence comparison, while quantitative matrices have to be 

determined for individual alleles separately (Stumiolo et al., 1999). A 

commercial program, TEPITOPE, is based on virtual matrices for the prediction 

of HLA-DR alleles. TEPITOPE has been applied to predict epitopes in tumour 

antigen MAGE-3 (Cochlovius et al., 2000; Manici et al., 1999). A free web 

based application, ProPred, has been developed by Singh and Raghava (Singh 

and Raghava, 2001), using the HLA-DR matrices from the pocket profile 

database maintained by Stumiolo.
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Motif based predictions only consider the motif residues, while scoring matrices 

take into account the interactions between each residue of the peptide and the 

MHC binding site. The disadvantage of this approach is that a new matrix has to 

be generated every time new data is added. Also, the quality of the prediction is 

dependent on the number of peptides in the training set. Brusic et al. claimed that 

150 peptides were required to derive an allele specific matrix with acceptable 

prediction accuracy and the ideal number of peptides in the training set was 600 

(Brusic et al., 1997). In real situations, many alleles have only 50 or less peptides 

verified experimentally and some alleles have none. Therefore it is difficult to 

generate matrices for all the alleles.

1.2.2.1.3 Artificial neural network

Artificial neural networks (ANN) are good at dealing with nonlinear data (Beale 

and Jackson, 1990). ANN has been applied to solve many biological problems 

including asthma (Tomita et a l, 2004), heart disease (Stefaniak et al., 2004), 

drug solubility (Jouyban et al., 2004) and peptide prediction and analysis of 

MHC haplotypes (Bellgard et al., 1998). Because the length of the peptides 

varies, the training data used to build an ANN model is usually aligned by the 

anchor residues. The task is simple for MHC class I alleles as the length 

differences among the peptides is small, but it is more complicated for class II 

alleles where the length variation is much larger.

In ANN prediction, peptides with known binding affinities are used as the 

training set to train the ANN. The peptides are aligned in a matrix (Brusic et al., 

1998b). The ANN contains computer nodes (elements) that can extract and
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remember the patterns in the matrix and recognise them in the test set. ANN has 

been applied to predict A*0201 peptide binding affinities using 552 A*0201 

nonamers and 486 decamers as the training set. The network achieved a correct 

prediction rate of 0.78 (Adams and Koziol, 1995). Brusic and colleagues used 

ANN to predict MHC class I and II epitopes with an accuracy of 50-60% 

(Honeyman et a l,  1998). Other applications of ANN include class I MHC 

binding peptides prediction by Milik et al. (Milik et al., 1998) and HLA-DR 

models generated by Bisset and Fierz (Bisset and Fierz, 1993). Two online 

proteasome cleavage site prediction services, NetChop and ProPrac, also use 

ANN models in their prediction (Kesmir et al., 2002; Nussbaum et al., 2001).

Some applications combine ANN with other algorithms to build predictive 

models (Gulukota et al., 1997). The other algorithms are usually used in the 

selection of training data set which the ANN used to generate models, it is 

especially useful for alleles that have not been studied extensively. For example, 

Brusic et al. used an evolutionary algorithm and an ANN to predict HLA class II 

binding peptides (Brusic et a l, 1998b). The evolutionary algorithm generated 

alignment matrices using the training set and the aligned peptides were used to 

produce the final model. In another study, Buus et al. used previously defined 

peptide specificity matrices to scan the SWISS-PROT database and identified 

peptides that are potential binders for the A*0204 allele data set (Buus et a l,

2003).
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1.2.2.1.4 Hidden Markov model

The hidden Markov model (HMM) is one of the probabilistic discrete dynamic 

system models. It uses a set of defined states to describe possible states of the 

modelled system (Mamitsuka, 1998). Some of the states can be observed while 

some can not, therefore they are ‘hidden’. When dealing with biological 

problems, HMM usually generates a series of states that are in sequential order. 

Any state in a HMM is dependent on the previous ones. The probability of 

moving from one state to the next can be calculated. A variation of the HMM 

model, profile HMM (Eddy, 1998), has been applied to proteomics, such as 

prediction of coiled-coil domains (Delorenzi and Speed, 2002), transmembrane 

regions within protein sequences (Liu et a l, 2003; Martelli et a l,  2002) and 

protein homology analysis (Qian and Goldstein, 2004). HMM is extensively used 

in protein sequence alignments (Krogh et a l, 1994), examples of HMM 

applications are the online protein domain family identification service Pfam and 

the database SMART maintained at the EBI (Bateman and Haft, 2002). HMM is 

also used in genomics to study gene splicing (Cawley and Pachter, 2003), 

analysis of phelogenetic trees (Jojic et a l, 2004) and identifying genes in 

prokaryotic genomes (Azad and Borodovsky, 2004).

HMM has been applied in peptide predictions. Profile HMM has been used to 

build models for signal peptide predictions (Zhang and Wood, 2003). Mamitsuka 

built HMM models of A*0201, DR1 and DR1 alleles. The training data set was 

taken from the MHCPEP database and the model had high level of sensitivity 

(>90%) (Mamitsuka, 1998). Based on Mamitsuka’s approach, Udaka et al. used a 

committee based HMM model to predict peptides binding to class I MHC alleles
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(Udaka et a l , 2002). Brusic used HMM to predict peptides binding to the HLA- 

A2 family (Brusic et al., 2002). Only amino acids inside the binding site that 

contact the bound peptide were included in his study. An HMM model was built 

for each allele. Each model was trained using a peptide set that includes peptides 

binding to all other HLA-A2 alleles. For example, an A*0201 model was trained 

using peptides bound to A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, 

A*A0209 and A*0214 allele. The test for each model includes all peptides that 

are known to bind the allele, with both T cell ligands and epitopes included. The 

accuracy of the prediction is measured by ROC analysis. The A*0201, A*0204 

and A*0205 models have high predictivity (Aroc > 0.9), while the predictivity of 

some of the models is low, such as A*0202.

Schonback and his colleagues compared the performance of the machine learning 

methods (Schonbach et a l, 2000). In his work, scoring matrices, ANN and 

HMM models were used to screen more than 500 sequences of HIV-1, -2 protein 

(Gag, Env and Pol) for A*0201 and B*3501 epitopes. It was also found that the 

ANN model for A*0201 showed high accuracy, and the HMM model was good 

at predicting B*3501 peptides. Subsequent experiments showed that about 26% 

of epitopes were correctly predicted by both scoring matrices and ANN models. 

In the same experiment, scoring matrices techniques showed better performance 

than HMM model and predicted more epitopes.

1.2.2.1.5 Support vector machines

Support vector machines (SVM) were developed by Vapnik in the 1970s 

(Vapnik, 1998) and were originally used in pattern recognition and data
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classification (Ding and Dubchak, 2001). SVM belongs to the group of kernel 

based methods (Scholkopf et al., 1999). SVM classifies the data by creating a 

hyperplane in the space where the data is, and separates the data by calculating 

the distance between the data points and the plane (Fig 1.8). An implementation 

of SVM, the software SVM llght developed by Thorsten Joachims is widely used 

in SVM applications. SVMs have been used in many areas such as study of radio 

frequency fields (Maby et al., 2004), enzymes and protein binding sites, 

analysing digital images (Cai et al., 2004; Chen et al., 2004) and fluorescence 

spectra (Lin et al., 2004), etc.

SVM has been used to predict eukaryotic protein subcellular locations (Bhasin 

and Raghava, 2004b), subfamilies of G-proteins (Bhasin and Raghava, 2004c), 

membrane proteins (Wang et al., 2004), study gene functions (Vinayagam et al.,

2004) and DNA arrays (Williams et al., 2004), classifying nuclear receptors 

(Bhasin and Raghava, 2004d) and predicting T cell epitopes (Bhasin and 

Raghava, 2004f; Bhasin and Raghava, 2004e). Users of SVM claim that the 

method is especially suitable for multivariate data when the number of objects is 

small compared to the number of variables. Also SVM can avoid over-fitting the 

training data which often limits other machine learning methods (Zhao et al., 

2003c). SVM has been applied to generate models for 26 class I HLA molecules 

and given satisfactory results (Donnes and Elofsson, 2002; Zhao et al., 2003c). 

Machine learning methods have been used together with scoring matrices to 

predict T cell epitopes. Bhasin and Raghava used quantitative matrices, SVM 

and ANN to predict T cell epitopes, the accuracy of the three methods was over 

70% (Bhasin and Raghava, 2004a).
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Figure. 1.8 A schematic diagram of the SVM theory. SVM creates a hyperplane 

in the space where the data is, and separates the data according to the distance 

between each data point and the plane. For example, data points with positive 

values are separated from data points with negative values.

45



Introduction Chapter 1

SVM has been applied with other algorithms. Liu et al. built quantitative 

structure-property relationship (QSPR) models of 35 amino acids (Liu et al., 

2004a). The descriptors used in the analysis were selected by genetic algorithm 

coupled with partial least squares (GA-PLS), and were used as the input of the 

SVM calculation to predict activities (the isoelectric point) of the amino acids. 

The model had a prediction correlation coefficient of 0.970 with the root-mean- 

square error of 0.238. SVM has also been used with statistical methods such as 

least squares to generate QSPR models (Thissen et al., 2004) in other studies. 

SVM generated models had good predictivity compared with models generated 

by multiple linear regression and neural networks (Xue et al., 2004a; Xue et al., 

2004b; Xue et al., 2004c; Yao et al., 2004).

1.2.2.2 Structural approach

1.2.2.2.1 Threading

Adrian studied the atomic interactions at the interface between the crystallised 

MHC molecules and peptides and found that interactions between MHC side 

chains and peptide backbones contribute significantly to binding (Adrian et al.,

2002). His study also showed the importance of having correct peptide backbone 

conformations in prediction. Altuvia et al. used the threading technique to predict 

T cell epitopes. In their study, the input peptide is threaded through the backbone 

of the peptide template, which is taken from the crystal structure of peptides 

binding to the MHC binding site (Altuvia et al., 1995; Margalit and Altuvia,

2003). The binding energy is calculated for each residue of the peptide, that is, 

the sum of the interaction energy between the residue and all the surrounding
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MHC residues (Altuvia et al., 1997). The binding energy of the peptide equals 

the sum of binding energy of each amino acid, a lower binding energy indicates 

high affinity binding (Schueler-Furman et al., 2001; Schueler-Furman et al.,

1998). A drawback of the technique is that although the anchor residues of the 

template and the input peptide are super-imposable and some of the side chains 

were in the same orientation, there are still some side chains that point in 

different directions. Therefore further side chain modelling is required for precise 

measurement of peptide-MHC interactions (Schueler-Furman et al., 2000).

1.2 2 2 2  Binding energy and molecular dynamics 

A recent development in epitope prediction is the calculation of the binding free 

energy. Free energy is the difference between the free energy of the free peptide 

and the free energy of the peptide bound to the MHC (Sezerman et al., 1996; 

Zhang et al., 1997). Good binders can be found by directly comparing the free 

energy between two peptides, by estimating energy values using scoring 

functions, or by molecular dynamics (MD) simulations (Meng et al., 2000). 

Examples of MD simulations include studying the binding of synthetic peptides 

(Scapozza, 1995), MHC-peptide complexes (Mata et al., 1998; Rognan et al., 

1994), the contribution of water molecules to peptide binding (Petrone and 

Garcia, 2004), the interactions between A2 peptides and the binding site (Meng 

et al., 2000; Pohlmann et al., 2004), peptide dissociation (Binz et al., 2003), and 

interaction between TCR and MHC-peptide complex (Michielin and Karplus, 

2002). Rognan et al. simulated the binding of six peptides to B*2705 proteins 

and suggested the importance of secondary anchor residues in binding (Rognan 

et al., 1994). MD simulation has been used in A*0201 peptide binding prediction
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(Lim et al., 1996), in which the binding of peptides to MHC was modelled by 

MD using crystal structures as templates and good binders were validated by 

binding experiments. In another study, MD simulation was used to identify 

properties of each position of the peptide binding to A*0201 and the results used 

to generate a quantitative matrix for prediction (Zeng et al., 2001). Similar MD 

simulations were applied to search for the anchor amino acid preferences of the 

A*0217 molecule (Toh et al., 2000). MD simulations have also been used to 

study peptides bound to DRB1 alleles (Androulakis et al., 1997). Davies et al. 

built class II MHC peptide prediction models using a simulated annealing 

approach, in which the global energy minimum of existing crystallised class II 

MHC-peptide complex was obtained by increasing the temperature of the 

complex steeply and then gradually removing kinetic energy. After annealing, 

the interaction energy between the MHC binding site and the peptide was 

calculated and used to predict the binding affinities of other peptides (Davies et 

a l,  2003).

Another often used method in calculating the binding energy is the partitioning 

approach. Schapira obtained the ligand binding energy by calculating the 

difference between energy of the solvated complex and that of the solvated 

receptor and the ligand. The forms of energy considered were the hydrophobic 

and electrostatic forces, and the energy difference between the solvated and the 

reference state (Schapira et al., 1999).

Most of the MHC-peptide interaction predictions use energy scoring functions. 

The advantage of this method over other structural methods is that it can give a
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better description of the relationship between the peptide and the surrounding 

MHC residues (Logean et a l , 2001). Sezerman et al. generated free energy maps 

of the class I MHC binding sites using the electrostatic energy, the solvation free 

energy and the side-chain conformational entropy (Sezerman et al., 1996). 

Froloff et al. calculated the binding energy of eight class I MHC-peptide 

complexes based on electrostatic and non-electrostatic interactions (Froloff et a l,  

1997). Schapira et al. divided the total binding energy into three terms: the 

entropic, electrostatic and hydrophobic potentials and predicted the binding 

energy of small protein complexes (Schapira et a l, 1999).

Free energy calculation has been applied to predict HLA-A*0201 epitopes 

(Rognan et a l, 1999). In Rognan’s experiment, the total free energy comes from 

five sources: the contribution of hydrogen bonds between the peptide and the 

MHC molecule, the interaction of lipophilic atoms, the loss of entropy from 

freezing rotational bonds upon binding, the negative contribution from the 

contact between the lipophilic and polar atoms, and finally, the energy required 

for transferring the atom from one continuum dielectric to another, such as from 

vacuum to water. In another experiment, Rognan used a new method (Fresno) to 

predict the free energy of peptides. Five HLA-A*0201 restricted peptides with 

both crystal structure and experimental binding affinities known were used in the 

training set. The model was used to predict the binding energy of 26 peptides to a 

HLA-A*0201 related allele, A*0204. The performance test showed that it was 

more accurate when a crystal structure of the MHC molecule was available. The 

algorithm has also been applied to estimate the binding energy of A*0201 and 

B*2705 peptides using existing crystallised structures as templates (Logean et a l,
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2001). Later, Fresno was incorporated into the computational algorithm EpiDock, 

which builds the structure of a MHC-peptide complex by homology modelling 

and the scoring function Fresno was used to calculate the binding energy 

(Logean and Rognan, 2002).

However, a wide application of the binding energy method is hampered by the 

difficulty in predicting absolute binding free energy, also the intensive 

calculation it requires is a problem for wider applications, such as internet 

implementation.

1.2.2.2.3 Peptide docking and library screening

In the recent years many techniques used in the pharmaceutical industry have 

been used in biological research, such as combinatorial library screening and 

docking. Davenport et al. generated class II MHC models by scoring each amino 

acid according to the abundance of the amino acid at each position in the library 

in relation to the peptide binding affinity (Davenport et a l, 1995). New peptides 

binding to DRB 1*0101 have also been designed according to the amino acid 

specificities of the peptide library (Fleckenstein et a l, 1996). Library screening 

has also been applied to other MHC alleles. Stryhn et al. analysed amino acid 

specificity of peptides binding to class I MHC alleles using peptide libraries 

(Stryhn et a l, 1996). Stevens used random peptide libraries to study the preferred 

peptide length of mice MHC alleles (Stevens et a l,  1998). Udaka et al. 

characterised specificities of peptides binding to H-KB, Db and Ld alleles by 

positional scanning of combinatorial peptide libraries (Udaka et a l, 2000; Udaka 

et a l, 1995). The frequencies of amino acids with different chemical properties
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were obtained through scanning and the values were stored in a scoring matrix 

and were used in epitope prediction. Their prediction was 80% accurate within 

the test set. Similar studies has been carried out by Sung et al. (Sung et al., 2002) 

and Nino-Vasquez et al. (Nino-Vasquez et al., 2004).

Protein docking is often used in ligand design in the pharmaceutical industry 

(Vajda and Camacho, 2004). It has recently been applied to design peptides 

binding to MHC molecules. Early attempts focused on class I peptides 

(Rosenfeld et al., 1995; Sezerman et al., 1993). In the study by Zeng et al., 

chemical functional groups were used, each representing different properties 

(polar, non-polar, charged and so on). The chemical groups were docked into the 

peptide binding site to find the best property/residue favoured at each position of 

the peptide, generating estimated high binders for the HLA allele (Zeng et al., 

2001). In another study, Del Carpio used a genetic algorithm with peptide profile 

analysis to find the optimised matrix table for A2 and A24 alleles (Del Carpio et 

al., 2002). Predicted good binders enter the second phase of analysis, where their 

structures were modelled and the peptides were docked into the peptide binding 

site. The MHC-peptide binding interface was obtained and the electrostatic and 

hydrophobic energy was calculated. In the study, the predicted good binders 

relate well with their experimental affinity.

Docking has been applied to class II MHC binding peptides to identify anchor 

residues and solvent exposed residues in long peptide fragments (Tzakos et al.,

2004). TCR structures have been docked to the MHC complex in order to study 

TCR-MHC interactions (Buslepp et al., 2003; Wu et al., 2002b). Tong et al.
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developed a new docking technique which involved three steps: 1. docking of 

peptide terminal residues to the binding site. 2 . loop closure of the remaining 

peptide backbone. 3. refinement of the backbone and side chains. The method 

was reported to be more accurate in studying class I and II MHC molecules than 

existing methods (Tong et al., 2004). Liu et al. also took into account the MHC 

molecule flexibility in docking experiments (Liu et al., 2004c). However, it is 

difficult to apply docking on a wider scale such as online prediction services, 

since it is CPU intensive and can only analyse a few peptides at a time. Moreover, 

the prediction is dependent on the resolution of the peptide binding site structure, 

and the accuracy of the peptide structure prediction.

1.3 MHC-TCR interaction

T cells recognise epitopes through interactions between T cell receptors (TCR) 

and the MHC-peptide complex. TCR molecules are membrane bound 

glycoproteins. Most TCR molecules consist of two polypeptide chains a and p 

(de la Hera et al., 1991). A small percentage of TCR molecules have y and 8 

chains. The y8 T cells are expressed predominantly in the skin, intestinal 

epithelium and pulmonary epithelium (Hampl et al., 1999). The function of y8 T 

cells is different from ap T cells. The exact function of y5 T cells are not clear, 

but it is known that they are able to recognise antigens directly (Mukasa et al.,

1999). In this section, only ap T cells will be discussed. The ap T cells can be 

divided into two subsets depending on which of the two glycoproteins, CD8 and 

CD4, is expressed on their surface. The CD8 and CD4 T cells identify antigenic 

fragments presented by class I and II MHC molecules, respectively. TCR is 

associated with the CD3 complex, which consists of four invariant polypeptide
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chains two s, one 8 and one y (Feito et al., 2002). CD3 is synthesised co- 

ordinately with the TCR. The function of CD3 is to help transport TCR to the 

cell surface and sends activating signals to the T cell when the TCR recognises 

MHC-peptide complexes (Gouaillard et a l, 2001).

There are several TCR crystal structures available (Bentley et al., 1995; Fields et 

al., 1995; Garboczi et a l,  1996; Garcia et al., 1996a). The structure of a TCR 

binding to the A*0201/Tax peptide complex is shown in figure 1.9. The TCR is 

structurally similar to the immunoglobulin Fab fragments (Garcia et al., 1996a), 

each polypeptide chain has a variable (V) region at the N-terminus and a constant 

(C) region at the C-terminus (Wilson and Garcia, 1997). The TCR proteins are 

produced by gene rearrangement as are immunoglobulins (Arden et al., 1995). 

The a chain is formed by the rearrangement of the variable (V) to the joining (J) 

segment, and the (3 chain is produced by the rearrangement of the variable (V), 

diversity (D) and joining (J) genes (Krangel et al., 2000). The rearranged genes 

are attached to the constant (C) gene to form the complete a and (3 chains. The 

contact site between the TCR and the MHC complex is in the V region, formed 

by peptide loops (figure 1.10). There are four hypervariable regions on a and |3 

chains, three of which (CDR1, CDR2, CDR3) resemble the complementarity- 

determining regions (CDRs) of immunoglobulins (Garboczi et al., 1996). These 

hypervariable regions form the contact site between the TCR and the peptide- 

MHC complex. CDR3 is the most variable and is considered to be responsible 

for TCR specificity. CDR3 has contact with P5 to P8 of the peptide in the crystal 

structure (Garcia et al., 1996a). Mutations on the CDR3 loops can abolish MHC- 

peptide recognition (Engel and Hedrick, 1988). The crystal structure of the TCR
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recognising H-2Kb complex shows that CDR1 loops contact the N terminal 

residues of the peptide, and CDR2 loops cover the C terminus of the peptide 

(Garcia et al., 1996a). The same binding orientation is found in other TCR-A2 

complexes (Garboczi et a l, 1996). The constant region comprises the 

transmembrane region and the cytoplasmic tail that stabilises the TCR on the 

membrane (Wilson and Garcia, 1997). The two chains are linked by a disulphide 

bridge at the hinge region connecting the C region and the transmembrane region. 

Crystal structures of TCR showed that the V regions are similar to the Fab part of 

the antibody and adopt the immunoglobulin fold with two |3 sheets packed tightly 

against each other. (Wilson and Garcia, 1997). The crystallised structure of a 

TCR complex with class I MHC shows that the TCR-MHC binding surface is not 

parallel, but is about 20-30° towards diagonal (Garcia et al., 1996a) (figure 1.11). 

A hydrophobic pocket was formed above the binding site between residue 93- 

104 of the a chain and 95-107 of the p chain, which could accommodate a side 

chain of the peptide (Garcia et al., 1996a).

TCR recognises class I MHC-peptide complex with the help of several co

receptors (Bjorkman et al., 1987b). The co-receptors are invariant and are 

involved in the interactions between TCR and MHC-peptide complex, the so- 

called immunological synapse (IS) (Creusot et al., 2002; Dustin, 2002). An 

important co-receptor is the leukocyte function-associated antigen (LFA) -1, 

which recognises the intercellular adhesion molecule (ICAM) -1 (Goldstein et al.,

2000). In one experiment, MHC and ICAM-1 were put on a planar bilayer and 

the reactions between the TCR and MHC were monitored (Grakoui et al., 1999). 

The binding of LFA-1 and ICAM-1 was the stop signal for T cells, after which
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the T cell stopped migrating and attached itself to the MHC membrane bilayer, 

which marked the start of the IS (Dustin et al., 1997). The nature of the signal is 

not clear but may involve chemokines. The engaged TCRs were then 

translocated to the centre of the interaction area after several minutes, surrounded 

by bound LFA-1/ICAM-1 (Dustin, 2002). The situation could be stable for hours 

during which TCR recognised the peptide presented by the MHC molecule and 

transduced signals to trigger T cell activation.
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Figure 1.9. The crystal structure of TCR complexed with HLA-A*0201 and viral 

peptide Tax (Garboczi et a l, 1996). The TCR a  chain is in red, /3 chain is in 

green. The HLA a  chain is in yellow, /32-microglobulin is in orange. The peptide 

is in purple.
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Figure 1.10. The structure of TCR and co-receptor CD3 molecules. The TCR 

consists of two variable domains Va and V/3 which also contain the MHC binding 

site, and two constant domains Ca and C/3. A disulphide bond (in green) stabilises 

the TCR structure. The ^domains are involved in intracellular signal transmission. 

The CD3 complexes are co-expressed with the TCR molecules. CD3 helps 

transport the TCR molecules to the cell surface and sends activation signals to the 

T cells when the TCR recognises the MHC complex.
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Stable binding of TCR to class I MHC-peptide complexes requires the help of 

CD8 molecules (Davis et al., 1998). It has been demonstrated that the presence 

of CD8 on live T lymphotypes increased the affinity of TCR/MHC complex by 

10-fold (Garcia et al., 1996b; Luescher et a l, 1995). Crystal structure of the CD8 

and HLA-A2 complex demonstrated that CD8 mainly interacts with the a3 

domain of MHC, and some residues on a2 (Gao et al., 1997). The binding of 

TCR to MHC-peptide complexes activates a tyrosine kinase cascade, such as lck 

and fyn of the src family. The cascade activates other cellular processes leading 

to cell proliferation and differentiation (Dustin, 2002; Janeway Charles, 2001). 

For example, lck induces the phosphorylation of immunoreceptor tyrosine-based 

activation motifs (ITAM) on CD3 (Alonso et a l, 2004; Imbert et a l,  1996). 

Several accessory molecules are involved in signal transductions, such as CD28 

and CD45. CD28 molecules interact with signal molecules on the antigen 

presenting cell and activates the T cell (Beecham et a l,  2000; Hombach et a l,

2001). CD45 catalyses and activates tyrosine protein kinases by 

dephosphorylation (Koretzky et a l, 1993; Ross et a l,  1994; Stone et a l,  1997). 

For antigen presenting cells that express strong co-stimulatory molecules on their 

surfaces, such as dendritic cells, the bound T cell can be directly activated, 

producing 11-2 and other cytokines, which in turn activates the T cell itself to 

proliferate and differentiate into cytotoxic CD8 T cells, killing other infected 

cells (Dai et a l, 2000). The secretion of IL-2 has been shown to suppress the 

expression of TCR, CD3 and CD8 to avoid activation of non-specific T cells 

(Kambayashi et a l, 2001). For antigen presenting cells that only weakly express 

co-stimulatory molecules, the T cell will be activated if CD4 T cells bind to the 

same cell. The CD4 T cells either express co-stimulatory molecules to activate
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CD8 T cells, or they produce 11-2, which is required for CD8 T cell proliferation. 

The signals that turn off T cell activation are not well understood. Possible agents 

are phosphatases and attachment of ubiquitin and degradation o f the TCR a chain 

by the proteasome (Dittel et al., 1999; Liu et al., 2000).

1.4 Antigen degradation, transport and recognition 

Class I HLA molecules recognise degraded intracellular protein fragments. 

Intracellular peptide fragments are from two sources: self-peptides and antigenic 

peptides. Intracellular proteins are degraded at a fast rate, including some newly 

synthesised proteins, producing large amounts of short peptides. On the other 

hand, external agents such as viruses invade the body and produce viral proteins, 

which are degraded by the host in a similar way to self-proteins. Intracellular 

protein degradation is carried out by a complex called the proteasome. After 

peptides are generated, they are translocated into the ER lumen by the transporter 

associated with antigen processing (TAP). TAP also has the ability to interact 

with peptide-free class I HLA molecules in the ER. After peptides associate with 

class I HLA molecules, the HLA molecules are released from TAP and are 

transferred to the cell surface.
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Figure 1.11. The HLA class I allele A*0201 binds to the viral peptide (Tax) and 

presents it to the T cell receptor (Garboczi et al., 1996). The viral peptide is in 

light green, a. A detailed image showing the interaction between the peptide- 

MHC complex and the TCR. The peptide is coloured in green. The MHC a helix 

is shown in red, and (3 sheet is in brown. The TCR is in purple, b. Side view of 

TCR binding to peptide-MHC complex. T cell receptor consists of two 

polypeptide chains a and (3, which are coloured red and green in the graph. T cell 

receptor binds diagonally cross the peptide-binding groove. The Va domain 

contacts the amino terminus of the peptide, while the V|3 domain contacts the 

carboxy-terminus of the peptide and some surrounding MHC residues.
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1.4.1 Peptide generation

A small polypeptide called ubiquitin attaches to the protein before it can be 

recognised and degraded by the proteasome. ATP and ubiquitin-activating 

enzymes are required for attachment (Townsend et a l, 1990). Ubiquitin is 

attached to the protein by binding to an exposed lysine residue on the protein.

Several different forms of the proteasome are found in the cell. The important 

ones are the 20S core proteasome, the ATP-stimulated 26S proteasome and the 

immunoproteasome (Song and Harding, 1996). The most basic form is the 20S 

proteasome. The mammalian 20S proteasome is a large protein complex 

consisting of 28 copies of a and p sub-units, 14 each (Lowe et a l,  1995), and is 

responsible for protein degradation in both the cytosol and nucleus (Baumeister,

1998). The crystallised structure of the proteasome reveals that the sub-units are 

arranged in four rings stacked on top of each other, forming a cylindrical 

structure (figure 1.12). The sub-units are arranged in a7p7p7a7 order. The active 

sites are found on the inner surface of the cylinder on the p subunit (Unno et a l,

2002). The a rings form the gate through which unfolded polypeptides enter, 

they are also the binding site of proteasome activator 28 (PA28) (Sun et a l,  2002; 

Yamano et a l, 2002). The structure of proteasome is similar to the bacterial 

chaperonin GroEL, both have a cylinder like structure and both have active sites 

inside the cylinder (Chen and Sigler, 1999). However, the access to the inner 

compartment of the proteasome is guarded by a 19S regulator, allowing only 

completely unfolded and ubiquitin-bound protein to enter (Kloetzel and 

Ossendorp, 2004).
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The exact mechanism of proteasome cleavage is unclear. The position of the 

peptide in the protein and the adjacent sequences influence proteasome cleavage. 

In one experiment, the nonamer murine cytomegalovirus epitope failed to be 

cleaved when inserted into the hepatitis B virus protein, but was recognised when 

a poly-alanine peptide was inserted next to it (Del Val et a l,  1991). It has been 

discovered that the active sites have different specificities for the PI residue of 

the peptide. Some of the established activities are: trypsin like property 

(recognises and cleaves basic residues), chymotrypsin like activity (cleaves after 

hydrophobic residues) and peptidyl-glutamyl-peptide hydrolyzing activity 

(cleaves acidic residues) (Dick et al., 1998; Heinermeyer et al., 1997; Nussbaum 

et al., 1998). The mammalian proteasome also has specificities for cleavage after 

small neutral amino acids and after branched-chain amino acids. Statistical 

analysis of naturally cleaved peptides found that up to five residues flanking the 

N terminal and the residue on either side of the C-terminal are also related in 

proteasome cleavage (Altuvia and Margalit, 2000; Bergmann et al., 1996; 

Bergmann et al., 1994; Holzhutter et al., 1999; Nussbaum et al., 1998; Shastri et 

al., 1995; Vijh et al., 1998; Yellen-Shaw et al., 1997). Bioinformatians have used 

the proteasome cleavage patterns to predict potential T cell binding peptides. 

Several prediction algorithms are available online, such as PAProC 

(http://www.panroc.de) (Kuttler et al., 2000; Nussbaum et al., 2001), MAPPP 

(http://www.mpiib-berlin.mpg.de/) (Holzhutter et al., 1999) and NetChop 

(http://www.cbs.dtu.dk/services/NetChop/) (Kesmir et al., 2002). PAProcC 

predicts both human and yeast proteasome cleavage sites. MAPPP predicts 

proteasome cleavage using statistical analysis using existing motifs. NetChop is
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based on artificial neural network approach using known peptides as the training 

set.

Sources of proteins for proteasome degradation include self and antigenic 

proteins. Apart from being involved in the antigen presentation pathway, 

proteasomes can act as a quality control system for self-proteins. Non-functional 

proteins, or defective ribosomal products (DRiP), are defective proteins due to 

errors in translation. These proteins constitute a large part of newly synthesised 

proteins and are rapidly degraded by the proteasome. Incorrectly folded or 

assembled proteins are also degraded by proteasomes. For antigenic proteins, the 

proteasome seems to favour oxidised proteins as substrates (Teoh and Davies, 

2004). The hypothesis is supported by the finding that 70-80% of oxidised 

intracellular proteins are degraded by proteasomes, and the fact that the 20 S 

proteasome preferred hydrophobic groups of residues on the surface of partially 

denatured oxidised proteins.
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Figure 1.12. The three-dimensional structure of mammalian 20S proteasome at 

2.75A resolution (Unno et al., 2002).
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Peptides cleaved by the proteasome are 3 to 25 amino acids long, while most 

class I MHC epitopes are 8 to 11 amino acids long. It is estimated that only 15% 

of peptides degraded by the proteasomes are of the appropriate length for class I 

MHC binding. 70% of peptides are too short and 15% are too long. Long 

peptides can be trimmed to the correct size by various cellular peptidases. 

Peptides are digested in the cytosol by several peptidases such as leucine 

aminopeptidase (LAP) (Beninga et al., 1998), tripeptidyl peptidase II (TPPII) 

(Tomkinson, 1999), thimet oligopeptidease (TOP) (Saric et al., 2001), bleomycin 

hydrolase (BH) and puromycin-sensitive aminopeptidease (PSA) (Stoltze et al.,

2000). Inside the ER, longer peptides can be degraded by the aminopeptidases 

ERAAP or ERAP1 (Serwold et al., 2002; York et al., 2002).

1.4.2 Peptide translocation and class I MHC assembly 

Degraded peptides bind to TAP and are transported to the ER. The translocation 

process consumes ATP. TAP protein is a heterodimer consisting of TAPI and 

TAP2, both are part of a family of transporters known as the ABC transporters 

(ABC-binding cassette) (Ritz and Seliger, 2001). TAP is required for peptide 

translocation. Some viruses escape immune recognition by inhibition of TAP, 

such as Epstein-Barr virus , human cytomegalovirus (CMV) and herpes simplex 

virus (Ambagala et al., 2003; Ambagala et al., 2004; Khanna et al., 1996; 

Koppers-Lalic et al., 2003). The immediate early gene ICP47 of the herpes virus 

produces a short 88 amino acid polypeptide, which has high affinity for TAP and 

completely blocks the binding of peptides (Ambagala et al., 2004). CMV virus 

inhibits TAP through binding of the viral protein US6 to the TAP region inside
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the ER lumen. Another viral protein US3 binds newly synthesised MHC proteins 

and prevents MHC proteins from being transported to the cell surface (Ahn et al., 

1997; Bauer and Tampe, 2002; Hewitt et al., 2001; Ulbrecht et al., 2003).

TAPI and TAP2 associate in the ER and form the TAP heterodimer. The central 

region of the TAP protein is likely to be the binding site as polymorphic residues 

in rat TAP2 have been shown to contact the peptide and influence peptide 

selection and transport (Elliott, 1997; Nijenhuis et al., 1996). Binding of peptides 

to TAP proteins does not require ATP, while to transport peptide across the ER 

membrane consumes ATP.

Newly synthesised class I MHC molecules are unstable. They are retained in the 

ER in a partially folded state (Bouvier et al., 1998b). A series of chaperone 

proteins are needed for the MHC proteins to fold completely. Newly synthesised 

class I MHC a chain is associated with a chaperone protein named calnexin, 

which is a membrane protein and holds MHC molecules inside the ER (Suh et al.,

1996). Some evidence suggests that calnexin is not an absolute requirement for 

class I HLA assembly as HLA molecules are expressed in calnexin-negative cell 

lines (Balow et al., 1995; Scott and Dawson, 1995). The immunoglobulin 

binding protein (BiP) has a similar function to calnexin and may replace calnexin 

in the cell. Upon binding to P2-microglobulin, the MHC molecule is released 

from calnexin and binds to a complex consisting of two proteins. One is 

calreticulin, which is also a chaperone and has a similar function to calnexin. The 

other protein is tapasin. After the binding of peptide, tapasin and calreticulin 

dissociate from the MHC molecule; the MHC molecule is now folded completely.
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Some viruses escape the immune system by interfering with the MHC transport 

process. Adenovirus expresses the viral E l9 protein that can associate with the 

class I MHC molecule and retains it inside the ER (Andersson et al., 1987; Paabo 

et al., 1989). Human cytomegalovirus (HCMV) synthesises two viral proteins 

US2 and US11, which stimulate the MHC heavy chains to be transported from 

the ER into the cytosol where they are rapidly degraded by proteasomes (Wiertz 

et al., 1997).

TAP is able to associate with MHC proteins to facilitate peptide binding, 

although the interactions with TAP are not essential for peptide binding to the 

MHC proteins and the reason for the TAP-MHC attachment is unknown 

(Carreno et al., 1995). Mullbacher postulated that the MHC molecules were more 

actively involved in peptide generation and binding (Mullbacher, 1997). It has 

been observed that TAP is able to transport large polypeptides into the ER 

(Higgins, 1992). Mullbacher suggested that the MHC molecule non-covalently 

attaches to TAP in the ER, the polypeptide slides through TAP, move along the 

MHC binding groove until the anchor residues occupy the binding pockets of the 

MHC. The MHC molecule then acts as a peptidase and removes the two ends of 

the polypeptide (Falk et al., 1990). At present, there is no clear evidence to prove 

that MHC molecules have catalytic activities and more research is required to 

validate the hypothesis. After binding to peptides, the MHC protein leaves the 

ER and is transported to the cell surface (Townsend et al., 1989). The peptide 

binding process is considered as the rate limiting step of MHC protein assembly 

as only a fraction of the peptides are able to bind to MHC.
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1.5 HLA superfamily classification

HLA is one of the most polymorphic proteins in mammals. The IMGT/HLA 

database stores over 1800 different HLA class I and II alleles (Robinson et al., 

2003). The common way of finding whether a specific peptide will bind to one 

MHC allele is through binding assays. Many HLA alleles have been 

demonstrated to bind peptides with similar anchor residues (Sidney et a l,  1995). 

The experimental research process will be greatly shortened if  there is a set of 

rules to group HLA alleles with similar specificities together. Several research 

groups have tried to classify HLA alleles (Cano et a l, 1998; Chelvanayagam, 

1996; Lawlor et al., 1991; Lund et al., 2004; Sette and Sidney, 1998; Sidney et 

a l,  1996). The classification reduces the experimental workload as it is not 

necessary to study each HLA individually and it makes the design of epitope 

based vaccines and other immunological treatment targeted at multiple alleles 

more efficient.

1.5.1 Evolutionary analysis

Sequence alignment was often used in early classification. An early attempt to 

classify MHC molecules was from the evolutionary studies (Lawlor et al., 1991). 

As chimpanzee and gorillas are the most closely related to human species and 

possibly share a common ancestor 7-10 million years ago, Lawlor compared the 

sequences of 14 gorilla class I MHC alleles with HLA-A, B and C alleles in 

human and MHC in chimpanzees. Sequences of human, gorilla and chimpanzee 

MHC alleles are similar but not identical, as most of the polymorphic residues 

appear in the same region. Also genes at A, B and C locus of gorilla and
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chimpanzee MHCs are similar to HLA-A, HLA-B and HLA-C, respectively. 

Phylogenetic trees were generated for A, B and C genes and it was found that 

HLA-A alleles were divided into five families: A2, A3, A9, A10 and A19. Two 

divergent groups of HLA-C alleles were found, one containing Cw*0701 and 

Cw*0702, the other with Cw*0101-Cw*0601 and Cw*1201. HLA-B is the most 

polymorphic locus in the human HLA genes and no consensus group was found 

in the study. Based on Lawlor’s research, Jakobsen et al. aligned DNA and 

protein sequences of the HLA-A alleles. The DNA alignment showed that family 

signatures are not focused on one region but are distributed throughout the 

sequence. The protein sequence alignment revealed that three positions in the 

binding site, 62, 97 and 114 were important in classifying alleles within the 

families (Jakobsen et al., 1998).

Another HLA classification based on evolutionary analysis was done by 

McKenzie et al. in 1999 (McKenzie et a l , 1999). In their study, phylogenetic 

trees were constructed using three methods: maximum parsimony, distance- 

based minimum evolution and maximum likelihood. Different classifications 

were carried out, based on either whole protein/nucleotide sequence, sequence of 

the binding site, or sequence excluding the binding site. Two clusters were found 

for HLA-A class: one with A l, A3, A9, A l 1, A36, A*8001 and some of the A19 

and the other with A2, A10, A28, A4301 and the other A19 members. HLA-B 

and HLA-C did not form any consistent clusters.
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1.5.2 Structural analysis

The binding of peptides to MHC molecules is influenced by the interactions 

between side chains of peptides and the binding pockets in the peptide binding 

site. Kurata and Berzofsky studied the binding of peptide analogs to the MHC 

binding site and interactions with the TCR. It was identified that the same 

peptide can bind to I-Ed molecule in more than one conformation. Moreover, the 

change in peptide conformation did not affect the recognition by T cells, 

indicating that the TCR may interact with different positions of the peptide in 

different conformations (Kurata and Berzofsky, 1990). Similarly, 

Gopalakrishnan and Roques simulated the interactions between the peptide 

HLA-A2 170-180 and the H-2Kd binding site using the program AMBER. They 

found that the binding orientation of the peptide may be dependent on the 

sequence and structure of the peptide and may be allele specific (Gopalakrishnan 

and Roques, 1992).

In 1996, Chelvanayagam studied binding pockets and grouped HLA molecules 

according to the amino acid composition in each pocket (Chelvanayagam, 1996). 

HLA molecules within one group have the same amino acids or amino acids with 

similar chemical properties in a particular binding pocket and are expected to 

bind to the same peptide residue. The classification was used to classify HLA 

molecules that have not been studied experimentally and also predict their 

binding motif. Although classified separately, groups of HLA-B and C molecules 

share the same binding specificity with HLA-A if they have the same amino 

acids in the binding site. The drawback to this form of classification is that since 

the classification is done according to the residues surrounding one position of
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the peptide, for a nonamer peptide, the HLA alleles are classified nine times and 

the same allele is often found in different groups in different classifications. A 

similar study has been carried out by Zhang et al., in which the binding pockets 

of class I MHC are classified into families by modelling the structures of MHC- 

peptide complexes using crystal structures as templates. Five families were 

defined according to specificities in the pocket B, and three families were 

defined based on specificities inside pocket D. Three more families were also 

defined for alleles with a joint specificity of pocket C and D (Zhang et al., 1998).

1.5.3 Geometrical similarity matrix

Cano et al. clustered the HLA-A and HLA-B alleles by constructing similarity 

matrices (Cano et al., 1998). MHC molecules were compared in a geometric 

space, where each amino acid occupied one dimension. The similarities among 

chemical properties of the twenty amino acids such as polarity and charges were 

compared and the results were stored in an amino acid similarity matrix. Another 

reference matrix, the binding affinity matrix was generated by calculating the 

stability of each amino acid side-chain at each position of the peptide. The 

similarity among MHC alleles was measured using both experimental peptide 

elution data and by comparing the alleles using the similarity matrix. The method 

identified three clusters. Cluster 1 includes HLA-A3, HLA-A11, HLA-31, and 

HLA-33. Cluster 2 includes HLA-B7, HLA-B35, HLA-B51, HLA-B53 and 

HLA-B54. Cluster 3 includes HLA-A29, HLA-B44 and HLA-B61.
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1.5.4 Sequence and binding motif approach

The most common way of classifying HLA molecules is to group those with 

similar binding motifs. Class I HLA molecules have been classified into 

superfamilies by Sette and Sidney using motif based approaches. Sidney et al. 

defined four supertypes by examining reported cross-reactive epitopes, from 

which MHC alleles that can be possibly grouped into one supertype were 

identified (Sidney et al., 1996). They then compare the binding pockets for the 

anchor residues, pocket B and F. Experimentally confirmed binding motifs of the 

alleles were also examined, and those with similar motifs are grouped into one 

supertype (Sidney et a l , 1995). The supertypes identified in the paper are: A2 

(A*0201-06, A*6802, A*6901), A3 (A*0301, A*1101, A*3101, A*3301, 

A*6801), B7 (B*0702-5, B*3501-3, B*5101-5, B*5301, B*5401, B*5501-2, 

B*5601, B*6701and B*7801) and B44 (B37, B41, B44, B45, B47, B49, B50, 

B60, B61). The same group later published review papers in which the four 

supertypes were revised. A*0207 was added to the A2 supertype and B*1508 

and B*5602 were added to the B7 supertype (Sette and Sidney, 1998; Sette and 

Sidney, 1999). Sette and Sidney carried out further analysis in 1999 and defined 

a total of nine supertypes including the previously defined supertypes (Sette and 

Sidney, 1999). The nine supertypes were estimated to cover 99% of the world 

population (Sette et al., 2001).

The supertype definition can be applied in epitope based vaccine research. 

Epitopes taken from hepatitis B virus infected patients have been shown to cross 

react with alleles in the A2, A3 and B7 superfamilies (Bertoni et a l,  1997). 

Epitopes isolated from Epstein-Barr virus reacted with several alleles of the
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B*44 family (Khanna et al., 1997). Epitopes have been identified to cross-react 

with the A24 family (Burrows et al., 2003). Many viral and tumour antigen 

derived vaccine candidates have also been shown to be able to bind multiple 

alleles (Bertoletti et al., 1997; Fleischhauer et al., 1996; Kawashima et al., 1998; 

Wang et al., 1998). Sette et al. predicted 223 potential cancer peptides of CEA, 

Her-2/neu, P53 and MAGE antigens using T cell epitope prediction algorithm, 

among which 115 were cross-reactive peptides of the A2 supertype. 43 peptides 

were tested for immunogenecity and 73% were positive (Sette et al., 2002). 

Recently a protein sequence scan has been carried out to search T cell epitopes 

within the SARS virus based on the nine HLA supertypes in Sette’s analysis 

(Sylvester-Hvid et al., 2004). 15 predicted epitopes for each supertype were 

identified and tested experimentally. 75% of the predicted epitopes were found to 

be high affinity peptides (IC50 < 500nM) and about 112 vaccine candidates were 

obtained from the experiments. Table 1.1 lists the supertypes and alleles within 

each supertype.

Based on Sette’s study, Lund et al (Lund et al., 2004) classified HLA-A and B 

molecules using specificity matrix. The nonamer ligands of all HLA-A and B 

molecules were collected from SYFPEITHI and MHCPEP and aligned. The 

frequencies of each amino acid at each position were summarised into matrix. 

The matrix was used as the input for a clustering analysis and the HLA 

superfamilies were organised into a consensus tree. In their results, the A26 

alleles were separated from the A l cluster in Sette’s results, and a new B8 

superfamily was defined. The other superfamilies were the same as Sette’s.
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Supertype MHC alleles

Al 0101 2501 2601 02 3201

A l 0201-07 6802 6901

A24 2301 2402-04 3001-03

A3 0301 1101 3101 3301 6801

B44 37 40012 4006 41 44 45 47 49 50

m i 1401 -  02 1503, 09, 10, 18 2701 -  08 3801. 02 3901 -  04 4801, 02 

7301

B7 07 35 51 53 54 55 56 67 78

B58 1516, 17 5701,02 58

B62 1301 -  02 1501, 02, 06, 12, 13, 14, 19, 21 4601 52

Table 1.1. Nine supertypes defined by Sette and Sidney (Sette and Sidney, 1999).

It should be noted that class II HLA molecules have also been classified by 

sequence approach. Chelvanayagam defined the HLA-DR roadmap by allele 

binding specificities and the polymorphic residues inside the binding site that 

contact peptides. The important residues were identified by studying the crystal 

structures of known HLA-DR-peptide complexes (Chelvanayagam, 1997). HLA- 

DP (Castelli et al., 2002) and DQ (Baas et al., 1999) supertypes have been 

defined based on binding studies to define the motifs and structural modelling of 

the peptide-MHC complexes. Reche and Reinherz used multiple sequence 

alignment to find important residues in 774 class I and 485 II HLA molecules. 

Consensus sequence patterns were obtained for the binding sites of HLA-A, B, C, 

DP, DR and DQ groups (Reche and Reinherz, 2003).
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1.6 HLA and disease

The ultimate goal for T cell epitope research is to develop immuno-therapy and 

design vaccines that provide protection against pathogens or tumours. HLA can 

be either associated or linked to diseases (Thomsen et a l, 1979). An association 

is when affected individuals in a population are unrelated and have the same 

HLA allele. A linkage is when members of the same family have the disease and 

also have same HLA allele. MHC was first linked to disease by Lilly in 1964, 

when he observed that the H-2K mice were susceptible to the Gross leukaemia 

virus, while the H-2b mice were resistant (Lilly et a l, 1964). Later the disease 

was confirmed to be linked to the Rgv-1 gene encoded within the H-2 gene 

region (Lilly, 1971). Since then, the relationship between HLA and more than a 

hundred different diseases have been studied.

HLA is associated with many autoimmune diseases that affect 4% of the 

population (Merriman and Todd, 1995), many of which are long-term diseases 

and difficult to treat. Common ones are rheumatoid arthritis and HLA-DR4, 

insulin independent diabetes mellitus (IDDM) and HLA-DR/DQ alleles (Rani et 

a l,  1999), muscular sclerosis (Mehta et a l,  1986) and systemic lupus 

erythematosus and HLA-DR alleles (Gladman et a l,  1979; Jazwinska et a l, 

1989; Kampf et a l,  1979; Marchini et a l, 2003; Stephansson et a l,  1993; Yao et 

a l,  1993; Yao et a l,  1994). Autoimmune diseases are complicated, there are 12 

loci that are suspected to be linked to IDDM, in particular DR and DQ alleles 

(Choudhuri and Vergani, 1998; Femandez-Vina et a l, 1993; Kelly et a l,  1985; 

Kockum et a l,  1994; Maruyama et a l,  1994; Matsumoto and Awata, 1994;
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Pituch-Noworolska et al., 1991). Class I HLA alleles have also been detected in 

some IDDM patients (Anal et al., 1997; Faustman, 1995; Ono et al., 1988).

Apart from autoimmune diseases, HLA alleles have also been linked to many 

infectious diseases. HLA-DR2 was found to be associated with leprosy and 

tuberculosis in Asian populations (Brahmajothi et al., 1991; Singh et al., 1983; 

van Eden et al., 1980). B*5301 and DRB1*1302 alleles were associated with 

decreased risk of malaria in children in a study conducted in Gambia (Hill et al., 

1991). HLA-DRB1*1302 was also associated with clearance of hepatitis B 

infection (Hill, 1998). DRB1*1101 was reported to be associated with clearance 

of HCV infection in the UK (Tibbs et al., 1996). HLA-B35 has been associated 

with more severe HIV progression while B27 was found to be associated with 

slower disease progression (Kaslow et al., 1996; McNeil et al., 1996).

1.7 HLA and vaccine design

Vaccination is a cost-effective strategy for disease prevention (Hellstrom and 

Hellstrom, 2003). The goal of vaccination is to give recipients limited exposure 

to a pathogen, which generates host memory cells that can elicit a strong immune 

response when the pathogen invades the body later (Payette and Davis, 2001). 

Vaccine research started in the 18th century. The first vaccine was the smallpox 

vaccine produced by Edward Jenner in 1796, when he infected his gardener’s son 

with pus taken from a patient who had cowpox (cowpox is equivalent to 

smallpox in humans). The boy contracted mild cowpox but recovered and 

became immune to smallpox (Mayr, 1999). Smallpox vaccination was later used
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world-wide and by 1980 WHO reported that smallpox had been eradicated from 

the world.

Vaccines often contain live attenuated whole viruses, nucleic acids or fragments 

of viruses such as peptides or subunits of proteins (Moingeon, 2001). Live 

attenuated viruses were commonly used in vaccines since the development of the 

smallpox vaccine (Smith, 1999). Viruses are either killed or mutated to stop their 

replication thereby reducing virulence. Many well known vaccines use live 

attenuated viruses, examples of this type of vaccine are the influenza, measles, 

mumps, rubella, polio, yellow fever and hepatitis A vaccine (Payette and Davis,

2001). This form of vaccine uses whole pathogens in their native form and 

induce good immunity in the host, but they cannot be applied to viruses with 

high mutation rates or more lethal viruses like HIV for safety reasons (Newman 

et al., 2002). Purified protein sub-units have been tested for immunogenicity 

(Paschen et al., 2004). Often the polysaccharide coat of the pathogen is used as it 

is the part that is in direct contact with the immune system. DNA encoding the 

antigen is introduced into non-pathogenic bacteria or yeast and the antigen is 

produced in large amounts to be used as vaccines (Payette and Davis, 2001). One 

of the most successful subunit vaccines is the hepatitis B vaccine, in which 

purified hepatitis B surface antigen (HBsAg) was used (Szmuness et al., 1981a; 

Szmuness et al., 1981b). Alternatively, DNA can be inserted into attenuated 

bacteria or viruses and injected into the recipient, so that the bacteria or virus can 

replicate within the host and produce antigenic proteins. The vaccinia virus 

vaccine uses this technique (Smith, 1999).
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Introducing plasmid DNA directly into the recipient can stimulate a good 

immune response (Ciemik and Carbone, 1995). DNA encoded peptides are 

expressed and induce both B and T cell responses. DNA based HIV epitope 

vaccines have been developed by Bazhan et al., in which more than thirty T cell 

epitopes restricted by 10 different class I HLA alleles were inserted into plasmid 

vectors (Bazhan et al., 2004). Additional mouse MHC class I epitopes were 

inserted into the vector to test the immunogenicity. The vaccine induced specific 

CTL response in the immunised animals. DNA vaccine is safer as no bacteria or 

virus is required. However, the risk of DNA vaccine is that the immune system 

may target the DNA itself which can lead to auto-immunity.

Another rapidly developing area is the use of epitopes. Advances in cloning and 

sequencing technology make it possible to detect the antigenic region of the 

protein and synthesise corresponding peptide fragments (Moingeon, 2001). The 

first peptide immunisation experiment was carried out in 1985, when an epitope 

inserted in E. Coli induced immunity in mice against cholera toxin and E. Coli 

heat liable toxin (Jacob et al., 1985). Epitope based vaccines can be designed 

using either T cell epitopes or B cell epitopes (Dermime et al., 2004; Meloen et 

al., 2001). T cell epitopes are protein fragments that initiate cellular immune 

response while B cell epitopes can be from proteins, lipids, nucleic acids and 

carbohydrates and are recognised by antibodies and facilitate the humoral 

immune response (Dermime et al., 2004). B cell epitopes are divided into 

continuous and discontinuous epitopes (Sundaram et al., 2004). Continuous 

epitopes are linear protein fragments and discontinuous epitopes are formed from 

a surface area containing segments of different regions of proteins (Mahler et al.,
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2003). Antibody affinities against epitope fragments are generally lower than 

towards proteins in their native conformation (Meloen et a l, 2001). The three 

dimensional structures of the B cell epitopes are often required for function, 

sometimes a whole molecule containing the epitope is required to activate an 

immune response (Lehner et al., 1990). Because of the structural requirement, it 

is difficult to model and predict B cell epitopes. T cell epitopes are linear 

peptides, therefore they are easy to synthesise and to be inserted into plasmid 

vectors (van Endert, 2001). A major disadvantage of epitope vaccines is the 

difficulty in finding immunodominant epitopes and T cell epitopes are MHC 

restricted, therefore the effectiveness of the vaccine is dependent on the 

population having the required MHC haplotype.

Currently, several T cell epitope based vaccines are under development. 

Synthetic HIV peptide vaccine has been tested in mice and induced CTL 

responses against HIV (Belyakov et a l, 1998a; Belyakov et a l,  1998b). HIV 

Env and Gag epitopes have generated CTL responses in the recipients (Ferrari et 

a l,  2001). A 40mer synthetic peptide has stimulated immune responses in 

intestinal nematode infections (Robinson et a l,  1995). A phase I clinical trial has 

been carried out to test the effect of an Epstein Barr virus epitope vaccine 

(Bharadwaj and Moss, 2002). In another experiment, multiple tumour epitopes 

induced protective immunity in mice (Toes et a l,  1997). In the following section 

cancer vaccine development is explained as an example of epitope based vaccine 

research. Vaccines can be either prophylactic or therapeutic. Vaccines using 

tumour antigens have been considered as a possible cancer therapy. Tumour 

antigens have been observed in animal models to induce immune responses and
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prevent cancer progression. In a murine model, vaccination with a peptide 

derived from the HPV16 E7 oncoprotein in IFA prevented the growth of an 

HPV16 induced tumour in mice (Feltkamp et al., 1993). Vaccination with p53 

protein prevented chemically induced skin cancer in mice (Ben-Hur et al., 1998), 

and the injection of purified tumour antigen in mice could suppress chemically 

induced tumours (Ben-Hur et a l,  2000). Introducing mouse breast cancer antigen 

MUC1 into C3H/HeOuj mice reduced the incidence of breast cancer (Xing et a l, 

2001).

Tumour associated antigens can be discovered by peptide elution from the MHC- 

peptide complexes or by screening recombinant DNA libraries (van der Bmggen 

et a l,  1991). The first human tumour antigen was discovered in 1991 (van der 

Bruggen et a l,  1991), when a tumour related gene MAGE was identified by 

transfection of a genomic DNA library into a melanoma antigen loss variant 

(Robbins and Kawakami, 1996). Subsequent experiments found that the gene 

belongs to one family and other members of the family have been discovered. An 

important finding is that proteins encoded by the gene are present in many forms 

of tumour, such as melanoma, breast carcinoma and sarcoma, suggesting that it 

may be possible to design a single vaccine that will be effective against several 

forms of tumour. Since then, several other tumour antigens have been discovered 

and tested as vaccine candidates, such as NY-ESO-1 (Chen et a l,  2004; Korangy 

et a l,  2004; Sugita et a l, 2004), tyrosin kinase (Hung et a l, 2001; Topalian et a l,

1997), MUC-1 (Moore et a l,  2004; Pantuck et a l, 2004; Tsang et a l, 2004), 

Her-2/neu (Disis et a l,  1999), gplOO (Bakker et a l, 1994) and p53 (Vierboom et 

a l,  1997). To improve immunogenicity, structurally altered peptides such as
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cyclic and chimaeric HSV epitopes have been produced (Hudecz, 2001). 

Recently, an A*0201 tumour epitope has been shown to induce both CD8 and 

CD4 T cell responses in the recipients (Harada et al., 2004). The exact 

mechanism of the epitope induced response is not clear.

Clinical trials of potential vaccine candidates have been carried out (Jager et al.,

2002). HLA-A1 restricted MAGE-3 epitopes have been shown to induce tumour 

regression in patients with melanoma (Marchand et al., 1999). In another 

experiment, CTL were induced by peptides taken from an allogenic HLA- 

matched melanoma and these killed the autologous tumour in vivo (Imro et a l ,

1999). Later on, the MAGE-3 gene was linked to influenza protein and applied to 

35 patients; although no immune response was developed in the patients, two 

patients did show clinical remission (Marchand et al., 2003). HLA-A2 restricted 

NY-ESO-1 peptides were injected into 12 patients, with four patients developed 

CD8+ T cell response and regression (Jager et al., 2000). The results show that 

vaccination with tumour associated MHC binding peptides can be effective in 

inducing a tumour specific CTL response. One problem with tumour antigen 

based vaccination is to find a suitable antigen that can be presented by MHC 

molecules and is able to induce a CTL response (Bodey et al., 2000). There is 

evidence of impaired antigen processing and decreased antigen expression by 

tumour cells which is a main limitation in cancer vaccine development (Restifo 

et al., 1993a; Restifo et al., 1993b).

In recent years, multi-epitope vaccines have become more popular compared 

with single epitope vaccines. As the immune response generated by vaccines
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using a single epitope is usually less than vaccines using whole viruses, multi

epitope vaccines will be more broadly used to enhance the immune response 

(Amon et al., 2001). Also peptides that are restricted by different HLA alleles 

can be inserted into a carrying vector to increase population coverage. The 

simplest way of constructing a multi-epiope vaccine is to link all the epitopes 

together and insert the fragment into the vector (An and Whitton, 1997; Hanke et 

al., 1998; Ishioka et al., 1999). The strategy has been applied to cancer and HIV 

vaccines. Multi-epitope HIV and malaria vaccines have been constructed. The 

HIV epitope discovered from antigenic proteins like Env, Gag, Pol and N ef with 

murine epitopes for testing in mice were constructed. The malaria vaccine used 

epitopes from Plasmodium falciparum  restricted by human and murine MHC 

molecules. The DNA HIV/malaria vaccine was injected intramuscularly and 

shown to induce a CTL response to the two murine epitopes in mice after a 

single vaccination (Bazhan et al., 2004; Hanke et al., 1998).

1.8 QSAR

Quantitative structure - activity relationships (QSAR) are a group of quantitative 

methods used to relate the biological activity of small molecules to their 

structures. QSAR techniques have been applied in many areas including 

chemistry, biology, drug discovery and environmental toxicology. QSAR is 

considered a valuable tool for predicting the biological activities of untested 

molecules.

Research in QSAR can be traced to the beginning of the last century, when 

Meyer and Overton suggested that the toxicity of organic compounds could be
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related to their lipophilicity (oil-water partition coefficients) (Selassie, 2003). 

Two major experiments calculating molecular properties were carried out by 

Hammett and Taft. Hammett measured the electronic effect on benzoic acids and 

calculated the a constant, and Taft was the first to introduce the steric parameter 

Es. Based on their research, in 1963 Hansch and Fujita studied the relationship 

between the chemical compositions of plant growth regulators and their 

reactivity using the octanol-water partition system (Hansch and Fujita, 1963; 

Hansch and Fujita, 1964). A new molecular descriptor, the octanol-water 

coefficient, was calculated in their study. Later Hansch developed an equation 

which related biological activity to the electronic and hydrophobic properties of 

the compound structures (Eqn. 1.1).

where c is the minimum concentration for the compounds to be effective, P  is 

the octanol-water partition coefficient, a is the electronic properties derived by 

Hammett, and a, b, c and k are constants.

Apart from Hansch’s equation, other methods are also used in QSAR modelling. 

One widely used method was developed by Free and Wilson; their main theory 

is that each substituent of a molecule makes an additive and independent 

contribution to the biological activity (Free and Wilson, 1964).

1 , log(-) = alogP  ~b(\ogP) +ccr + k Eqn. 1.1
c

BA = '^ Jkix i + u Eqn. 1.2
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Equation 1.2 describes the Free and Wilson concept. BA is the biological 

activity, k  is the contribution of each subtituent, x  is the indicator variable which 

represents the presence or absence of a substituent (x=0 is absent and x=l is 

present) and u is the contribution of the parent molecule. Fujita and Ban later 

modified the equation by using the logarithm of biological activity: LogBA 

(Fujita and Ban, 1971).

Biological data is the basis of QSAR modelling. The training set is very 

important as the quality of the model is dependent on the training data. 

Biological data should be a measurable biological or physiological function, 

which can be enzyme reactions, ligand-receptor interactions, etc. Often the 

logarithm values of the biological activities are used. Ideally molecules included 

in the study are congeneric and both active and less active molecules are 

included to generate high quality QSAR models. Data are usually derived from 

the same experimental protocol to ensure data consistency. The number of 

compounds for a QSAR model training set should be 20 or more (Perkins et al.,

2003). In QSAR models, there are often a large number of descriptors in the 

model with a relatively small number of compounds, therefore multivariate 

methods are used to reduce the number of descriptors and group the most 

important ones into a few, uncorrelated variables called principal components. 

The most common methods used in multivariate analysis are multivariate linear 

regression (MLR) (Mielke and Berry, 2002; Saxena and Prathipati, 2003) and 

partial least squares (PLS) (Xing et al., 2003).
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Historically, inear regression analysis is the most often used technique in QSAR 

studies. Equation 1.3 represents the multiple linear regression (MLR) model.

y  = b + ^  clxi Eqn. 1.3

where b and c are constants and xj to x, are the calculated properties. The 

goodness of fit of the model is measured by the correlation coefficient r , which 

is an indication of how much variance in the data is explained by the model.

The partial least squares (PLS) method is developed from linear regression and is 

good at analysing multivariate data, especially when the number of variables are 

greater than the number of molecules. PLS simplifies the data by grouping 

variables that explain similar properties and replacing the variables with a few 

new, uncorrelated variables called latent variables (LV). The latent variables are 

used to explain the biological activity as in equation 1.4, where y  is the 

independent variable, or biological activity.

y  = axLVx + a2LV2 + a2LV3 +aiLVi Eqn. 1.4

Apart from MLR and PLS, other techniques are also used in QSAR analysis such 

as principal component analysis (PCA). MLR and PLS are useful in correlating 

biological activities to structures, while PCA is a classification method used to 

find similarities and difference in the molecules. The biological activities are not 

required in the classification. Similar to PLS, PCA produces several uncorrelated
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principal components which explain the maximum variance of the data. PLS and 

PCA will be further discussed in section 2.2.3.

Nearly all QSAR models have outliers, that is, molecules that are badly fitted by 

the model. These outliers may be the result of experimental errors, alternatively, 

the abnormal behaviour of the molecules may be the result of their chemical 

composition. The latter can provide valuable information and increase the 

explanative power of the model, although inclusion of these outliers can reduce 

the predictivity of the model. Also, removing too many outliers increases the 

predictivity but reduces the chemical diversity of the data set.

QSAR methods can be either 2D or 3D. 2D QSAR methods use descriptors to 

study molecular properties. Statistical methods are used to study the relationship 

between the structure and activities of the molecules. The 2D QSAR methods 

have been widely applied since the pioneering work by Hansch in 1969, when he 

found that the octanol-water partition coefficient logP value can be used to 

describe the hydrophobicity of compounds (Hansch, 1969). Since then, hundreds 

of descriptors have been measured or calculated, such as the molecular surface 

area, molecular connectivity, molecular density and so on. Because of the 

potentially large number of variables, variable selection programs such as a 

genetic algorithm and GOLPE are required.

3D QSAR methods are similar to 2D methods, however they correlate spatial 

structural properties, within a group of compounds, with activity. In 3D-QSAR, 

the alignment of the structures is important as in many programs, the descriptors
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are location dependent. Commonly used 3D QSAR techniques are CoMFA 

(comparative molecular field analysis) (Cramer et al., 1989), CoMSIA 

(comparative molecular similarity index analysis) (Klebe and Abraham, 1999) 

and GRID/GOLPE (Cruciani and Watson, 1994). 3D QSAR methods can take 

more calculation time but can offer a more specific analysis about interactions in 

3D space.

3D-QSAR is used widely in modelling ligand-receptor interactions, as it can 

provide good visualisation of potential energy surrounding the molecules. 

Comparative molecular field analysis (CoMFA) is one of the major tools in 3D- 

QSAR. CoMFA studies differences in target properties that relate to changes in 

activity. In CoMFA, molecules are aligned by their shared molecular features. 

The aligned molecules are fixed and placed in a 3D grid. A probe atom is placed 

at each point of the grid in turn and the interaction energy between the atoms of 

the molecules and the probe atom is calculated. The inter-molecular energy of 

the molecules is ignored. The two forms of energy studied by CoMFA are steric 

and electrostatic. Steric bulk is calculated by a Lennard-Jones potential, which 

describes the forces between two atoms that are dependent on the distance 

between their centres. Electrostatic energy represents the attraction of opposite 

charges and is calculated using Coulomb potentials. CoMFA is also used as a 

standard technique in modelling different ligand-receptor interactions (Barreca et 

al., 1999; Grunewald et al., 1999; Li et al., 1999; Newman et al., 1999; Xing et 

al., 1999), such as ion channel inhibitors and enzyme activity (Bhongade and 

Gadad, 2004; Buolamwini and Assefa, 2002; Ducrot et al., 2001; Khandelwal et
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al., 2003; Kuo et al., 2004; Murthy and Kulkami, 2002; Purushottamachar and 

Kulkami, 2003; Raichurkar and Kulkami, 2003)

Comparative molecular similarity index analysis (CoMSIA) (Klebe, 1998; Klebe 

et al., 1994) is a recently developed 3D-QSAR method and can be considered as 

an extension of CoMFA. CoMFA calculates energy fields of the molecules, 

while CoMSIA compares the similarities between the aligned molecules. Apart 

from steric and electrostatic, CoMSIA describes other molecular interactions: 

hydrophobic, hydrogen bond donor and acceptor. The hydrogen donor potential 

studies the ability of the molecule to form hydrogen bonds by donating a 

hydrogen atom, and the hydrogen acceptor describes the ability of the molecule 

to form hydrogen bonds by accepting a hydrogen atom. Similarities of the 

molecules in the data set are obtained by comparing the similarities between the 

molecules and a pre-defined probe atom. A disadvantage of CoMFA is that it 

uses a Lennard-Jones potential to calculate steric forces, which is distance 

dependent and can cause rapid changes in energy near the surface of the 

molecule. Therefore a cut off of 0.5 to 1A is set in the program. Unlike CoMFA, 

CoMSIA uses a Gaussian function instead of a Lennard-Jones potential and does 

not need a cut off (Klebe and Abraham, 1999).

Since its development, CoMSIA has been used in drug design to study the 

ligand-receptor interactions and has proved to be of good predictivity. Examples 

of CoMSIA studies include enzyme inhibitors such as cyclooxygenase inhibitors 

(Lee et al., 2004), kinase inhibitors (Sperandio Da Silva et al., 2004), HIV 

integrase (Buolamwini and Assefa, 2002) and urokinase inhibitors (Bhongade
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and Gadad, 2004). CoMSIA has also been used to study ion channel inhibitors 

(Doddareddy et a l, 2004; Ducrot et al., 2001; Pearlstein et a l, 2003) and various 

antagonists (Choo et a l, 2003; Dixit et a l, 2004; Islam et a l,  2003; Khandelwal 

et a l, 2003; Kunick et al., 2004; Kuo et al., 2004; Murthy and Kulkami, 2002; 

Purushottamachar and Kulkami, 2003; Raichurkar and Kulkami, 2003).

QSAR techniques have been applied to peptide-MHC interactions. Mallios 

calculated amino acid frequencies in the training data set and used discriminant 

analysis to build models for mouse alleles IAd and IEd (Mallios, 1993). Later, 

Mallios used Sette’s database of synthetic peptides and used a multiple 

regression method to re-calculate the mouse MHC models (Mallios, 1994). 

Mallios also developed an iterative stepwise discriminate analysis to align known 

class II MHC peptides and generated a quantitative matrix based on the 

sequences and binding motifs (Mallios, 1997; Mallios, 1998; Mallios, 1999; 

Mallios, 2001). The performance of the iterative stepwise discriminant analysis 

was compared with two other class II MHC prediction algorithms SYFPEITHI 

and ProPred. Four data sets were applied and it was found that the algorithms 

had different predictivity with different data sets and no one algorithm was better 

in all tests (Mallios, 2003). Bologa et al. applied QSAR techniques to A*0201 

peptides, the main properties studied were steric and side chain hydrophobicity 

(Bologa et al., 1995). Lipophilicity was found to be favoured by the anchor 

residues and amino acids at position 1, 3 and 6. Similar studies have been carried 

out by Chersi et al. (Chersi et al., 2000).
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Other 2D and 3D QSAR methods have been applied in MHC-peptide interaction 

studies and epitope predictions of the HLA-A2 alleles (Doytchinova and Flower, 

2003a; Doytchinova et al., 2002; Doytchinova and Flower, 2001; Doytchinova 

and Flower, 2002; Doytchinova et al., 2004). Initially 3D QSAR methods 

CoMFA and CoMSIA were applied to A*0201 binding peptides. The training set 

used peptides reported by previous publications and binding affinities measured 

by IC50 assays in the previous reports were used as experimental values. Partial 

least squares (PLS) was used to build both CoMFA and CoMSIA models. The 

quality of the models was determined by the predictivity q2 and the explained 

variance r2, i.e, the percentage of the properties in the training set explained by 

the model. In the experiment, the predictivity of the CoMSIA model was 0.542 

with f? value of 0.679, while both values of the CoMFA model were below 0.5. 

The CoMSIA contour maps highlighted hydrophobic regions that were the most 

important in peptide binding to A*0201 allele. Subsequently CoMSIA was 

applied to other HLA and mice alleles.

A 2D QSAR technique, the additive method, was developed to study peptide- 

MHC binding (Doytchinova and Flower, 2001). The additive method is based on 

the Free-Wilson concept (Free and Wilson, 1964; Kubinyi and Kehrhahn, 1976). 

Additional terms were added to the basic QSAR model to account for the 

adjacent and every second side-chain interactions. For a nonamer peptide the 

model could be presented by equation 1.5:

PIC 50 = const + £  />; + pfpM + Z  pip» 2 EcLn- 1 -5
/=i 1=1 1=1
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where pICso is the binding affinity expressed in p-units (negative decimal 

logarithm of IC50 values), the const accounts for the peptide backbone

9

contribution, is the sum of amino acid contributions at each position,

8 7
is the sum of adjacent peptide side-chain interactions, Y . p,p.* i is the

i=i 1=1

sum of every second side-chain interactions.

The additive method was first applied to HLA-A*0201, using the same training 

set as the CoMSIA study. The additive model generated a coefficient 

contribution for each of the amino acids in each position. An A*0201 nonamer 

model was derived from the regression equation, containing the favoured and 

disfavoured amino acids at each position. Using this model, affinities of other 

peptides can be predicted. The additive method has also been used to generate a 

binding motif for the A l  supertype (A*0201, A*0202, A*0203, A*0206 and 

A*6802) (Doytchinova and Flower, 2003a). The additive method has also been 

applied to some of the HLA class II DRB1 alleles (Doytchinova and Flower, 

2003b) and mouse alleles (Hattotuwagama et al., 2004).

GRID/CPCA has been used in studying structure -  activity relationships. GRID 

was developed by Goodford (Cruciani and Watson, 1994; Goodford, 1985). It is 

a computational program used to determine energetically favourable interactions 

between binding sites and ligands using pre-defined chemical probes (Kastenholz 

et al., 2000). Outputs from GRID can be used in other programs like GOLPE and 

SIMCA for further analysis. CPCA is used to define groups of similar molecules 

and outliers using interaction energy values calculated by GRID. GRID/CPCA is
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often used in enzyme -  substrate research and has been applied to differentiate 

specificities of matrix metalloproteinases MMP-3 and MMP-8 inhibitors (Matter 

and Schwab, 1999) and to test the substrate selectivities of ten enzymes in the 

matrix metalloproteinases family (Terp et al., 2002). Other examples of 

applications include a analysis of glycogen phosphorylase b inhibitors (Cmciani 

and Watson, 1994), a comparison of bacterial and human dihydrofolate reductase 

receptor selectivity (Pastor and Cruciani, 1995), study of the chyotrypsin family 

(Kastenholz et al.9 2000) and the kinase family (Naumann and Matter, 2002).

1.9 Aims

Although QSAR methods have been widely used in drug discovery and 

development, they have only recently been applied in immunology. The aim of 

this thesis was to apply 2D and 3D QSAR techniques to analyse the interactions 

between peptides and HLA molecules and to design new high affinity binding 

peptides. Various amino acid descriptors were applied to define a binding motif 

for the HLA-A*0201 allele. The descriptors used included the descriptors taken 

from the AAindex database, the three z and the five z descriptors. Variable 

selection techniques SIMCA, GOLPE and GA were used to remove irrelevant 

and redundant descriptors. The additive method and CoMSIA were used to 

define a binding motif for the HLA-A3 superfamily. Results of the models 

generated by the additive method were incorporated into a web server, MHCPred, 

to facilitate online T cell epitope prediction. The predictivity of the additive 

method was evaluated and compared with some of the other T cell epitope 

prediction servers. Finally, all class I HLA alleles were classified into supertypes
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using a combined GRID/CPCA approach, and the results were compared with 

HLA supertype definition by hierarchical clustering analysis.
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Chapter 2
Material and Methods

Both laboratory and in silico experiments were conducted during my research. A 

variety of in silico techniques were used for defining HLA binding motifs and 

class I HLA superfamilies. A 3D QSAR technique Comparative Molecular 

Similarity Indices Analysis (CoMSIA) and a 2D QSAR technique the additive 

method were used to define binding motifs for HLA-A*0201 and the HLA-A3 

supertype. GRID/CPCA was used to identify class I HLA superfamilies. High 

affinity peptides were predicted and synthesised, their binding affinities tested 

experimentally using a T2 stabilisation assay.

2.1 Experimental Material

Sections 2.1.1 to 2.1.5 describe material used in the T2 stabilisation assays. The 

remaining sections relate to in silico experiments.

2.1.1 Plastic Ware

Product__________________ Supplier____________ Catalogue Number
50ml Falcon Tubes Becton Dickinson Labwear, 352070

NJ, USA
96 Flat Bottom Plates Coming Costar, High 3595

Wycombe, UK
96 U Bottom Plates Coming Costar, High 3799

Wycombe, UK
Cluster Tubes (FACS) Abgene, Surrey, UK AB-0672
FACS Tubes (5ml Becton Dickinson Labwear, 352054
Round Bottom NJ, USA
Polystyrene)
Pipettes 5ml Bibby Sterilin, Stone, UK 40105

10ml 47110
25ml 18327

Reagent Reservoirs Coming Inc, NY, USA 4873
(100ml)
Tips 20ul Rainin Instruments Co Ltd, GPS25
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200ul Woburn, USA GPS250
lOOOul GPS 1000

2.1.2 Tissue Culture Reagents

_______Reagents__________________ Supplier Catalogue Number
AIMV medium Invitrogen Life Technologies, 12055-091

Paisley, UK

Foetal Bovine Serum Harlan Sear-Lab Ltd, Batch No. 0010502
(GFCS) Loughborough, UK
Geneticin (G418) Sigma Aldrich Company Ltd, A -1720

Poole, UK
Human beta 2- SCIPac, Kent, UK P122-1
microglobulin
Penicillin & IAH Media Supplies,
Streptomycin____________Compton, UK__________________________________

2.1.3 Peptides

________peptides____________________________ Supplier________
A2 and A3 peptides Mimotopes, Cheshire, UK
_________________________ Dr Lawrence Hunt, IAH, Compton, UK

2.1.4 Cell Lines

Cell Line____________________________ Supplier
TAP-deficient cell line T2 Dr P. Borrow, Compton, UK
T2 cells transfected with Prof Peter Cresswell, Yale University, USA.
an A3 plasmid___________________________________________________

2.1.5 Antibodies

Antibody Supplier Catalogue Clone Isotype
Anti-human Pharmingen, BD 551285 BB7.2 IgG2b
HLA-A2 FITC Biosciences,
conjugated Ab Oxford, UK
FITC conjugated Pharmingen, 555742 27-35 IgG2b
mouse Ab UK
FITC conjugated Startech Scientific 115-096-068 - IgG &
Affinpure F(ab)’ Ltd, IgM
fragment goat UK
anti-mouse Ab
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GAP A3 Ab LGC Promochem, HB-122 - IgG2a
UK (ATCC

_____________________________________number)_______________________

2.1.6 3D structural data of the HLA molecules

All class I HLA alleles (excluding those with silent mutations) in the IMGT/HLA 

database (Robinson et al., 2003) were included in the GRID/CPCA (Cruciani and 

Watson, 1994) study. A total of 229 HLA-A, 447 HLA-B and 107 HLA-C 

molecules were selected. As only a few HLA molecules have been crystallised, 

the 3D structures of most HLA molecules were obtained by homology modelling 

using existing structures as templates. The protein backbones of the crystal 

structures HLA-A*0201 -  1I4F (Hillig et a l , 2001), B*0801 -  1AGD (Reid et 

al., 1996) and Cw*0401 -  1IM9 (Fan et al., 2001) were taken from the RCSB 

protein databank (Westbrook et al., 2002) and were used to build the 3D 

structures of HLA-A, B and C, respectively. The p2-microglobulin and the a3 

domain were deleted from the static template structures, as they are not involved 

in peptide-MHC interactions. Water molecules, co-factors and ligands were also 

deleted before modelling. Side chains were added to the built HLA structures 

using the program SCRWL (Side-Chain Placement with a Rotamer Library) 

version 2.8 (Bower et al., 1997), which used rotamer libraries and protein main- 

chain coordinates to predict side-chain conformations.

2.1.7 The A3 peptides

Nonamer peptides binding to the HLA-A*0301, HLA-A*3101, HLA-A* 1101 

and HLA-A*6801 alleles were used to build the QSAR models. The additive and
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the CoMSIA models were generated using the same training data set. 

Information on peptide sequences and their binding affinities was obtained from 

the AntiJen database. AntiJen, originally named JenPep, is an immunological 

database maintained in house (http://www.ienner.ac.uk/Antijen) (Blythe et a l, 

2002; McSparron et a l , 2003). Only nonamers were included in the study. The 

HLA-A*0301 allele set included 72 peptides, the set for A* 1101 included 62, 

A*6801 included 38 and A*3101 included 31 (appendix 2). Among the selected 

peptides, some bound to more than one allele. IC50 measurements were used in 

the original experiments to quantify the interactions between the peptide and the 

MHC molecule (Chang et a l,  1999; Kast et a l, 1994; Kawashima et a l,  1999; 

Scognamiglio et a l, 1999; Threlkeld et a l, 1997; van der Burg et a l,  1995; 

Wang et a l ,  1998). The IC50 values were measured by a competition assay based 

on the inhibition of the binding of a radiolabeled standard peptide to detergent 

solubilised MHC molecules (Sidney et a l,  1996). In the assay, purified MHC 

molecules were incubated with radiolabeled probe peptide, human p2m and 

protease inhibitors. After incubation, the HLA-peptide complexes were separated 

from free peptides by gel filtration. The percentage of bound peptides was 

calculated as the ratio of peptide left in the solution to the total peptide recovered 

(Sette et a l,  1989b).

2.1.8 The A2 peptides

Two sets of A*0201 peptides were used in the project (appendix 1). 266 nonamer 

peptides were used as a training set in the binding motif analysis, all of which 

were from the AntiJen database. As with the A3 peptides, IC50 measurements 

were used in the original experiments to quantify peptide affinities (del Guercio
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et al., 1995; Kast et al., 1994; Parkhurst et a l, 1998; Parkhurst et al., 1996; 

Rivoltini et al., 1995; Rongcun et al., 1999; Sette et al., 1994; Tsai et al., 1997; 

Vitiello et al., 1997).

A separate A*0201 data set was used as a test set to assess the predictivity of the 

additive method. The set was a gift from Dr. Vladimir Brusic, which included 

181 T cell epitopes, 44 poly-alanine derived peptides, 56 naturally processed 

peptides and 245 non-binding peptides.

2.1.9 The epitopes

Epitopes used to compare the online T cell epitope prediction algorithms with the 

additive method were published within the last three years. The full list of 

epitopes and corresponding references can be found in appendix 4. The protein 

sequences that contained the epitopes were retrieved from either SWISS-PROT 

(Boeckmann et al., 2003) or Genbank (Benson et al., 2004).

2.1.10 Amino acid descriptors

Three sets of amino acid descriptors were used in A*0201 binding motif analysis: 

93 descriptors selected from the AAindex database (Kawashima and Kanehisa, 

2000), three z descriptors (Hellberg et al., 1987) and five z descriptors (Hellberg 

et al., 1987; Sandberg et al., 1998).

2.1.10.1 The AAindex descriptors

The descriptors used in the first section of the A*0201 analysis were taken from 

the amino acid descriptor database AAindex (Kawashima and Kanehisa, 2000).
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The database can be accessed from the following URL 

http://www.genome.ad.jp/dbget/aaindex.html. The AAindex contains descriptors 

explaining physico-chemical and biochemical properties of both single amino 

acids and interactions between amino acids. The properties are represented as 

numerical values. They can be properties like hydrophobicity, pKa, solubility, 

steric bulk, and surface area. Descriptors are either global descriptors, when 

describing the whole molecule, or local descriptors, when they describe single 

residues. The database is composed of two sections: AAindex 1 for amino acid 

indices (437 descriptors at the time of study) and AAindex 2 for the amino acid 

mutation indices (71 amino acid mutation matrices at the time of study). The 

descriptors used in the study were taken from index 1. An initial QSAR analysis 

was carried out using all the descriptors and those with correlation coefficients 

greater than 0.3 were selected and used in the final QSAR analysis. A total of 93 

descriptors were selected, covering four major areas: hydrophobicity, flexibility, 

steric bulk and electrostatic properties. A list of the chosen descriptors is 

included in appendix 3.

2.1.10.2 The z descriptors

The z descriptors were originally defined in a peptide QSAR study by Wold and 

colleagues (Hellberg et a l,  1987), in which 29 physico-chemical variables were 

used to describe the 20 natural amino acids. These variables were converted into 

three scales z l, z2 and z3 using principal component analysis (PCA). The zl 

scale is the hydrophobicity scale where negative values indicate hydrophobicity, 

and positive values indicate hydrophilicity. The z2 scale is useful in describing 

steric properties of the residue. A negative value in z2 corresponds to small
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amino acids with low molecular weight and small surface area, while a positive 

value corresponds to large, bulky amino acids with large surface area. The z3 

scale describes electronic properties. Amino acids with negative z3 values are 

polar and those with positive z3 values are non-polar.

In 1998, Sandberg re-examined Wold’s three z descriptors and added two other 

properties z4 and z5 to explain molecular properties for both natural and 

synthetic amino acids (Sandberg et al., 1998). The new scales were developed 

using partial least squares (PLS) and PC A. The zl - z5 scales can be used to 

describe the following properties of the peptides: hydrophobicity,

size/polarisability and electronic properties.

Both the three z and five z descriptors were used in the present study. Table 2.1 

includes the three z descriptors reported by Wold and the five z descriptors from 

Sandberg for the 20 naturally occurring amino acids.

2.1.11 Epitope prediction servers

A total of nine epitope prediction servers were used in the evaluation of T cell 

epitope prediction algorithms, including BIMAS, ComPred, netMHC, PREDEP, 

ProPred, RANKPEP, SMM, SVMHC and SYFPEITHI. The algorithms tested 

include motif based patterning searching, matrix based predictions, machine 

learning methods and peptide-MHC interaction energy estimation. In the first 

evaluation test, the predictivities o f the algorithms were tested using a ROC 

analysis of A*0201 binding peptides. In the second test, the ability o f the 

algorithms to identify T cell epitopes within protein sequences was tested. The
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results were compared with that of the additive method (MHCPred). A summary 

of the methods implemented by the servers is shown in table 2.2.

Z3 descriptors Z5 descriptors

z l z2 z3 z l z2 z3 z4 z5

A 0.07 -1.73 0.09 0.24 -2.32 0.60 -0.14 1.30

C 0.71 -0.97 4.13 0.84 -1.67 3.71 0.18 -2.65

D 3.64 1.13 2.36 3.98 0.93 1.93 -2.46 0.75

E 3.08 0.39 -0.07 3.11 0.26 -0.11 -3.04 -0.25

F -4.92 1.30 0.45 -4.22 1.94 1.06 0.54 -0.62

G 2.23 -5.36 0.30 2.05 -4.06 0.36 -0.82 -0.38

H 2.41 1.74 1.11 2.47 1.95 0.26 3.90 0.09

I -4.44 -1.68 -1.03 -3.89 -1.73 1.71 -0.84 0.26

K 2.84 1.41 -3.14 2.29 0.89 -2.49 1.49 0.31

L -4.19 -1.03 -0.98 -4.28 -1.30 -1.49 -0.72 0.84

M -2.49 -0.27 -0.41 -2.85 -0.22 0.47 1.94 -0.98

N 3.22 1.45 0.84 3.05 1.62 1.04 -1.15 1.61

P -1.22 0.88 2.23 -1.66 0.27 1.84 0.70 2.00

Q 2.18 0.53 -1.14 1.75 0.50 -1.44 -1.34 0.66

R 2.88 2.52 -3.44 3.52 2.50 -3.50 1.99 -0.17

S 1.96 -1.63 0.57 2.39 -1.07 1.15 -1.39 0.67

T 0.92 -2.09 -1.40 0.75 -2.18 -1.12 -1.46 -0.40

W -4.75 3.65 0.85 -4.36 3.94 0.59 3.44 -1.59

Table 2.1. The z descriptors. The three z descriptors developed by Wold, and the 

five z descriptors developed by Sandberg.



Prediction
server

URL Algorithm used by the 
server

MHC alleles 
predicted by the 

server
Motif SYFPEITHI httn://svfneithi.bmi- Motif based pattering Class I and II

searching (Rammensee 
et al., 1999)

heidelbere.com/ScriDts/MHCServer.dll/EoPredict.htm searching

BIMAS 
(Parker et 
a l , 1992b)

httD://bimas.dcrt.nih.eov/molbio/hla bind/ Amino acid matrix, 
evaluates the binding 
affinity of peptides to 
MHC alleles by their 
half-time
disassociation rates.

Class I

Matrix based 
algorithms

RANKPEP 
(Reche et a l , 
2002)

httD://mif.dfci.harvard.edu/Tools/rankoeo.html Position specific 
scoring matrix 
(PSSM), produced by 
ungapped block 
alignment of known 
peptides.

Class I and II

SMM
(Peters et a l , 
2003)

htto://zlab.bu.edu/SMM/ Matrix based 
prediction. Considers 
both amino acids and 
their interactions.

A2

ProPred 
(Singh and 
Raghava, 
2001)

httD://www.imtech.res.in/raehava/oroored/ Matrix based 
prediction

Class II

Machine
learning

netMHC 
(Buus et a l , 
2003)

htto://www.cbs.dtu.dk/services/NetMHC/ ANN HLA-A2 and H- 
Kk

http://www.imtech.res.in/raehava/oroored/
http://www.cbs.dtu.dk/services/NetMHC/


methods SVMHC htto ://www. sbc. su. se/ s vmhc/ne w .c gi Prediction using
(Donnes and support vector
Elofsson, machines
2002)

Structural PREDEP httD://bioinfo.md.huii.ac.il/mare/TeDDred/mhc-bind/ Structural based
based (Altuvia et approach using

algorithm al., 1995) binding energy
estimation.

ComPred httn://www.imtech.res.in/raehava/nhlaDred/comD.html Combines artificial Class I and II
Combined (Bhasin and neural network (ANN)
methods Raghava, and matrix prediction

2004) algorithm

Table 2.2. T cell epitope prediction servers used in the evaluation study.

http://www.imtech.res.in/raehava/nhlaDred/comD.html
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2.2 Methods

2.2.1 The T2 stabilisation assay

The binding of peptides to HLA alleles was measured by a quantitative T2 cell 

surface stabilisation assay (Mylntyre et al., 1996; Salter and Cresswell, 1986): 

Aliquots of 2 x 105 cells/well were incubated in 96-well flat bottom microtiter 

plates with lOOpl of test and control peptide (0.04 ~ 200pM) in the presence of 

AIMV and lOOnM p2-microglobulin. The plates were stored at 37°C with 5% 

CO2 overnight. The HBV specific peptide FLPSDFFPSV was used as a positive 

control for A*0201. HIV specific peptide HMYISKKAK was the positive 

control for A*0301. The HIV-nef peptide KAAVDLSHF was used as a negative 

control in both A*0201 and A*0301 experiments. A non-specific background 

control was used, i.e, wells with the same reagents as the others but with no 

peptides. This control was used to measure the level of background binding of 

the antibodies. After incubation, the cells were washed twice and re-suspended in 

HB2 buffer. FITC conjugated mouse anti-human HLA-A2 monoclonal antibody 

was added to the test peptides, the positive control and negative control peptides 

and half of the background control peptides at lpl/106 cells concentration. The 

mIgG2b-FITC isotype control antibody was added to the rest of the background 

control peptides at lOpl/106 cells concentration. The cells were incubated at 4°C 

in the dark for one hour and were fixed with 4% paraformaldehyde. The MHC- 

bound fluorescence level was measured by facscalibur analysis (FACS) and the 

results were analysed with the program Cellquest. The same procedure was used 

for the A*0301 binding experiments. Gap.A3 antibody (hybridoma) (ATCC) was
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used as the first antibody, and FITC-conjugated F(ab)2 fragment goat anti-mouse 

IgG + IgM was used as the secondary antibody at 1:100 concentration.

The fluorescence level of the peptides bound to HLA-A2 molecules was 

converted to fluorescence index (FI) values using the following equation (Yoon 

etal., 1998):

FI = s 8 x 100.00 Eqn. 2.1
Ft i - F b

where Fs is the mean fluorescence index (MFI) of the test peptides, Fb is the no 

peptide isotype antibody stained control MFI and F n  is the no peptide HLA-A2 

antibody stained control MFI.

2.2.2 BL5o calculation

The binding affinities of the test peptides to HLA-A2 and A3 alleles were 

obtained by converting their FI values to the half-maximal binding level (BL50), 

which was the peptide concentration yielding the half-maximal FI value. The 

program used for the BL50 calculation was ED50 plus 1.0, an Excel macro 

written by MH Yargas for conversion of FI values to BL50 values, and is freely 

available on the Internet (URL:http://www.winsite.com/bin/Info?5387). Peptides 

were classified into three groups according to the BL50 values: high binders (BL50 

< 10'5M), medium binders (10'5M < BLso< 10^M) and non-binders (BLso> 10" 

4M).
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2.2.3 Statistics

2.2.3.1 Principal component analysis (PCA)

PCA is commonly used in multivariate data analysis to reduce the number of 

variables. Data used in PCA are stored in a data matrix X (fig 2.1). There are N 

observations and K variables in the matrix. Each observation occupies one row, 

the variables are measurements of the observation and are stored in the columns.

PCA decomposes the matrix X into two smaller matrices: the scores matrix T 

and the loading matrix P’, which explain the overall variance of the X matrix. 

The scores matrix contains a few variables M (fig 2.1), that is, the principal 

components (PC), which can be used to describe the observations. The loading 

matrix reveals the relationship between the variables in the original matrix and 

the principal components. Plots of the observations in the multidimensional 

space are called the scores plot, which identifies similarities and differences 

within the observations and groups them accordingly, while the loading plot 

relates the original variables with the PCs and identifies variables that are 

important in distinguishing groups of observations.
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Variables

Observations Observations

Figure 2 . 1. The data in PCA analysis are stored in a matrix, with N  observations 

and K variables. The analysis builds a new m odel containing all the observations 

and the variables in the original data set are replaced by a few  new uncorrelated 

variables M, called principal com ponents (PC). B y reducing the number o f  

variables, the PCA m odel show s relationships between observations and 

variables and am ong observations them selves.
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Consensus PCA (CPCA)

Some multivariate data are organised in blocks, each block describes one 

molecular force. For example, in GRID, the interaction energy values are 

calculated using probes representing different chemical properties and data are 

separated into the corresponding blocks. However, the variance can be very 

different among the data blocks. The energy values generated by probes 

representing weak non-bonded interactions such as van der Waals force and 

hydrophobic attractions will be masked by those generated by stronger 

interactions like hydrogen bonds. Since the weak forces are equally important in 

molecular interaction, it is necessary that their effects are considered in the 

CPCA model. To overcome this problem, a scaling process is applied to the data 

to normalise their importance in the model. The scaling method used in GOLPE 

is named block unsealed weights (BUW) scaling, in which data generated by 

each probe are organised into one block and weighting coefficients are calculated 

for each block. The probes are scaled according to the weighting coefficients, 

which gives each probe the same importance in the model while the relative 

scales of variables within the block do not change. Figure 2.2 illustrates the 

BUW scaling. Figure 2.2a shows the initial variable distribution in each probe, 

and figure 2.2b shows the normalised variable distribution after the scaling.
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Figure 2 .2 . The distribution o f  the variables for each probe, a. before the block  

unsealed w eights (BU W ) scaling, and b. after the b lock unsealed w eights (B U W ) 

scaling.
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2.2.3.2 Partial least squares (PLS)

The partial least squares (PLS) method is an effective technique for finding the 

relationship between the properties of a molecule and its structure. In 

mathematical terms, PLS relates a matrix of dependent variables Y, in this case 

binding affinity data, to a matrix of molecular structure descriptors X (Wold, 

1995) (fig 2.2). The aim of PLS is to find a linear relationship between X and Y: 

Y = XB + E, where B is the regression coefficient and E is the residuals (noise), 

and Y can be predicted from X. However, the number of descriptors (X) is often 

greater than the number of objects (compounds, proteins) (Y) and a linear model 

cannot be built directly. PLS decomposes the matrix X into several latent 

variables that correlate best with the activity of the compounds. The latent 

variables are used to predict the activity (Y). The PLS method can be considered 

as a variation of the PCA based regression methods. PCA searches for variables 

that explain the X matrix best, in comparison, PLS calculates variables that 

explain both the X and the Y matrices best. The PLS method as implemented in 

Sybyl 6.7 was used in the calculation.

Experimental IC50 values (pICso) were used as the dependent variables in the 

study. Both the column filtering and the scaling were turned off. The optimal 

number of components was found by running cross-validation using SAMPLS 

(Bush and Nachbar, 1993).
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Variables

Objects

Figure 2 .3 . The PLS method finds the maximum covariance between the 

observation matrix X  and the biological activity Y . PLS is often used when the 

number o f  variables (descriptors) in X  is greater than that o f  the objects (Y). PLS 

decom poses the X  matrix into several latent variables that describe the variance 

in both X  and Y matrix. The latent variables can be used to predict the biological 

activity o f  the objects.
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2.2.3.3 Cross-validation (CV)

Models produced by PLS are validated using cross-validation. Cross-validation 

(CV) estimates the predictivity of the model (Wold, 1995). In cross-validation 

the data are randomly divided into groups, and the activities of the compounds in 

one group are predicted using the model generated by the rest of the data. The 

leave-one-out CV (LOO-CV) and CV in five groups incorporated in the program 

Sybyl 6.7 was used in model generation. In LOO-CV each peptide in the model 

is omitted once. In CV in five groups the data are randomly divided into five 

groups. The following parameters are generated by the calculation and are used 

to assess the predictive ability of the models: the cross-validated coefficient q2 

and the standard error o f prediction SEP:

i ( p i c 50 exp P ^ S Q p r e d  )

q2 = i_Jz!------------------------------------------  Eqn. 2.2

^ j ( P ^ ^ 50 exp p I C 'j q mean )
/=!

2 ] ( p i c 50 exp PlC50 pred )
SEP = 7=1 Eqn. 2.3

where n represents the number of the peptides included in the model (for LOO- 

CV, n equals the number of peptides-1), p i c k e d  and pICsoexp are the values 

predicted by LOO-CV for the binding affinity and from the binding experiments, 

respectively. The q2 represents the predictivity of the model, its value is between 

0 and 1. The SEP is the error in prediction and is usually lower than 1. A q2 value
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above 0.5 with small SEP indicates good predictivity of the model. However, the 

Rvalue is often lower than 0.5 and a q2 value of 0.3 or better is generally 

accepted as good predictivity.

After cross-validation, a non-cross-validated model is generated by PLS using 

the number of principal components (PC) derived in CV. Three values are 

obtained in the calculation: the variance explained by the model (/^), the standard 

error of estimate (SEE), and the F  ratio. An r2 value close to 0 shows that none of 

the biological activity is explained by the model, and r o f  1 indicates 100% 

explanation. An f 2 value of 0.7 or greater could be considered as a good fit to the 

model. The SEE is how confident the r is and usually is smaller than 1. The F, or 

Fisher ratio, is the ratio of r2 to 1- f 2 (explained to unexplained). It estimates how 

significant the regression equation is. A higher F ratio means more biological 

properties are explained by the model.

2.2.3.4 ROC analysis

Receiver operating characteristic (ROC) curve is a standard method used to 

analyse scientific and clinical data. The ROC curve gives a graphical 

representation of the level of the true positive rate (sensitivity) and the false 

positive rate (specificity) of the data at different levels of cut off. The sensitivity 

and the specificity can be calculated using the following equations:

TP
Sensitivity =   Eqn. 2.4

TP + FN

TNSpecificity = ------------ Eqn. 2.5
TN + FP
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where TP is the number of true positives, FN  is the number of false negatives, 

TN represents the number of true negatives and FP is the number of false 

positives. An example of the ROC curve is in figure 2.10.

Usually a ROC curve takes the shape of a plateau curve (fig 2.4). The area under 

the curve (Aroc) indicates the quality of the data. The larger the Aroc, the better 

the data. Usually, Aroc values between 0.6 and 0.8 are good and values higher 

than 0.8 are excellent.
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Figure 2.4. An example of an ROC curve. The red curve is a ROC curve. The 

blue line is when the data is random. The area under the curve indicates how 

good the data is. Aroc values between 0.6 and 0.8 are good and values higher 

than 0.8 are excellent.
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2.2.4 Modelling

2.2.4.1 The additive method

The additive method is based on the Free-Wilson approach (Free and Wilson, 

1964), which assumes that each constituent makes an additive and independent 

contribution to the biological activity of the molecule. The additive method 

considers three types of interactions that affect binding affinity: the interaction 

between each amino acid and the binding site, the interactions between adjacent 

(1-2 interactions) and every second (1-3 interactions) side-chain. Two types of 

models are generated by the additive method. One is the single amino acid model, 

which only accounts for the binding of each amino acid of the peptide. The other 

is the amino acid and interactions model, which considers both the contribution 

of individual amino acid and interactions between adjacent and every second 

amino acids. However, it should be noted that because the peptide is linear, when 

considering 1-3 interactions, the interactions of residues at the two ends of the 

peptide are considered only once (eg. PI only interacts with P3), while residues 

at other positions are considered twice (eg. P3 interacts with PI and P5). An 

illustration of the amino acids interactions is in figure 2.5.

For a nonamer peptide, the single amino acid model and the amino acid and 

interactions model are given by equation 2.6 and 2.7, respectively:

9

pIC 50 = const + Eqn.2.6
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pIC x  = const + Y ,P , + 'Z P,PM + Y j PiPm  Eqn.2.7
1=1 1=1 /= 1

where pICso is the binding affinity expressed in p-units (-loglCso), the const

9
accounts for the peptide backbone contribution, ^ P .  is the sum of amino acid

/ • = i

8

contributions at each position, ' ^ P iPM is the sum of adjacent peptide side-chain
i=i

7
interactions, ^ P iP i+2 is the sum of every second side-chain interactions. Note

)=i

that the term PiPi+i and PiPi+2 represent the interactions between neighbouring 

amino acids.

A flowchart for generating additive models is given in figure 2.6. The first step is 

to build a data matrix. The computer-generated matrix consisted of 6181 columns. 

The number of rows was equal to the number of peptides in the study, data from 

one peptide were stored in one row. The first column of the matrix represented 

the dependent variable pICso. The next 180 columns represented the single amino 

acid contributions, the following 3200 (20x20x8) columns represented the 

contributions of adjacent amino acid interactions, and the last 2800 (20x20x7) 

columns were for the side chain interactions of amino acids at every second 

position. The existence of each amino acid and each interaction were recorded in 

the matrix. If present, the matrix recorded 1 in the corresponding column, 

otherwise the element would be 0. Any column containing only zero values was 

deleted to reduce the time used in calculation. After the matrix was constructed, 

the additive model was generated and validated using PLS.
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1. The interactions 
between each amino 
acid and the binding

i  1  i  i  1 1  1  1  1

ooooooooo

3. The interactions 
between every other 
amino acid and the 
effect on binding

2. The interactions 
between adjacent 
amino acids and their 
effect on binding

OOOOOOOOOvvwvvw

Figure 2.5. An illustration of the interactions considered by the additive model. 

Each circle represents one amino acid of the peptide. Three types of interactions 

are taken into account by the additive model: 1. the interactions between each 

amino acid and the binding site, 2. the interactions between adjacent amino acids 

and their effect on peptide binding to the MHC binding site, 3. the interactions 

between every other amino acid and the effect on peptide binding.
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Collect peptide sets from AntiJen

Double check data in the original papers

Get the coefficient equation from .lis file

Build matrix in Sybyl using in house scripts

Generate an initial additive model using PLS

Check and delete outliers, peptides with residual > 11.00| 
are excluded from the model

Run cross-validated PLS to calculate model predictivity (q2) 
Get r1, SEE and F value from non-cross-validated PLS

Figure 2.6. Steps in generating the additive models.
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2.2.4.2 Molecular modelling and CoMSIA

No X-ray data were available for a peptide binding to the HLA-A3 alleles. As the 

A2 supertype is the closest to the A3 supertype, a crystallographic structure of 

the peptide TLTSCNTSV binding to the HLA-A*0201 allele was chosen as a 

starting conformation (Madden et al., 1993). All molecular modelling 

calculations were performed on a Silicon Graphics workstation using Sybyl 6.7 

as previously described (Doytchinova and Flower, 2001). A flow-chart of the 

CoMSIA calculation process is in figure 2.7. Peptide sequences and their binding 

affinities were collected from the AntiJen database. The X-ray structure of the 

peptide TLTSCNTSV backbone was used as a template to build all the peptides 

in the data set and CoMSIA models are generated using PLS.

The peptides were evaluated using the five CoMSIA physicochemical properties 

included in the QSAR module of Sybyl 6.7: steric, electrostatic, hydrophobic, 

hydrogen donor and hydrogen bond acceptor properties. The properties were 

evaluated using a probe atom placed at regular intervals within the grid. The 

probe had a radius of lA, charge, hydrophobicity, hydrogen bond donor and 

acceptor properties all equal to +1. Similarity indices were calculated using 

Gaussian-type distance dependence between the probe and the atoms of the 

peptides tested.

The CoMSIA models were built using PLS. The initial models were calibrated 

with respect to the grid spacing, attenuation factor and column filtering. The grid 

was extended 2.0A beyond the aligned molecules. Different values were tested 

for grid spacing: 1.0 to 2.5A in steps of 0.5A. Values for the attenuation factor
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varied from 0.3 to 0.7A in steps of 0.1 A. Column filtering from 0.5 to 1.5A in 

steps of 0.5A. The cross-validated models were assessed by q2, standard error of 

prediction (SEP) and the mean value of the residuals between experimental 

affinities and those predicted by leave-one-out cross-validation (LOO-CV), 

presented as negative logarithms of IC50. The non-cross-validated models used 

the optimal number o f components found by LOO-CV and were assessed by the 

non-cross-validated r2, standard error of estimate (SEE) and F-ratio. The ratio of 

the standard errors to the affinity range was used as a more effective measure of 

model predictivity and goodness of fit.

The results of the non-cross-validated CoMSIA models were displayed using 

contour maps. The contour maps highlighted whether changes in the peptide 

structure favour or disfavour binding to MHC molecule. The maps from the 

present study were generated using the StDev*Coeff option, using the actual 

values. Five maps for each of the four alleles were generated for each of the five 

physicochemical properties.

2.2.43 SIMCA

SIMCA (Soft Independent Modelling of Class Analogy) is useful in solving 

pattern recognition and classification problems. It is commonly used in 

multivariate data analysis because of its ability to group variables with similar 

properties into smaller groups and reduce descriptor redundancy before 

generating the QSAR models. The statistics package used to perform the 

calculations in the project was SIMCA-P 8.0. SIMCA uses PLS to build QSAR 

models.
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CoMSIA contour map generation

Align structures using template peptide

Peptide data set collected from AntiJen

Find the original papers and verify the data

Find a crystalised peptide 
structure in RSCB database

Predict IC50 values o f the excluded peptides

Build the 3D structures o f peptides in Sybyl using build CoMSIA option

Analysis o f peptide predictions: 
Residual<|0.5| very well predicted 
|0.5|<Residual<|1.0| well predicted 
Residual>| 1.0| poor predicted

Run cross-validated PLS to calculate model predictivity (q2) 
Get r2, SEE and F ratio from non-cross-validated PLS

Generate CoMSIA model using PLS (SAMPLS) 
Grid box dimension: X (-22, 22), Y(-15, 15) Z(-15, 15) 

grid spacing: 2.0 A

Model optimisation:
1. Optimise parameters: grid spacing, column filtering and the attenuation factor
2. Excluding outliers: peptides with residual > |1.00| are excluded

Figure 2.7. A flowchart of the CoMSIA model generation process.
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All the binding data and selected descriptors (see section 2.1.10) were organised 

into a matrix before calculation. The first column of the matrix contained the 

peptide sequences. The experimental value (pICso) was in the second column. 

The rest of the columns contained the descriptor variables. The matrix was stored 

in the Excel format and was imported into SIMCA.

The models generated in the project were fitted using the ‘Autofit’ option, which 

calculated the cross-validated coefficient q2 and the explained variance r2. The 

correlation between the individual variable and the data matrix was observed in 

the variable importance in the projection (VIP). VIP is the sum of the variable 

influence over all model dimensions. Equation 2.8 was used to calculate VIP 

values.

VIPk = Z (V IN ) l  Eqn.2.8
a

where a was a given PLS dimension, k was the number of variables and VIN was 

the individual variable influence. Higher VIP values (VIP > 0.7) indicated good 

correlation between the variable and the data. To improve the model quality, 

variables with low VIP values were excluded from the model in a stepwise 

manner.

2.2.4.4 The genetic algorithm (GA)

The genetic algorithm (GA) was developed by Holland (Holland, 1975). The GA 

is inspired by Darwin’s theory of evolution, which states that those individuals 

whose genetic composition fit best with their environment will survive and have
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a greater chance of reproduction. Also, the offspring produced from the more 

‘fit’ individuals contain the combination of their genomes and may have a higher 

chance of survival.

The procedure of the GA is summarised in figure 2.8. Briefly, the variables are 

randomly grouped into binary strings. Each string is called a chromosome and 

each variable is called a gene. Initially a random group of chromosomes is 

chosen as the starting population (Devillers, 1996). The fitness of the 

chromosomes is calculated by a fitness function. Different fitness functions can 

be used according to the nature of the problem. The population is then improved 

by introducing new variables, which are produced by chromosome crossover and 

gene mutation. In crossover, two chromosomes are randomly selected as the 

parents, and new chromosomes are produced by crossing over between the parent 

chromosomes (figure 2.9). The crossover point is selected randomly and the 

genes to the right of the crossover point are exchanged between the parents. The 

probability of crossover is often set to a high value, for example, 0.9. In point 

mutation, a random gene is selected. If the gene encoded 1 originally, then it will 

be changed to 0 and vice versa. The number of genes mutated can be set up at the 

beginning to control how similar the child is to the parent. If the number is big, 

many genes will be changed and the child will be very different from the parent. 

This is not good for population convergence and finding the optimal solution 

may be slowed down. Therefore the percentage of chromosomes that undergo 

mutation is usually set to a small value, such as 0.1.
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The quality of the new population is assessed by repeating the evaluation step, 

and the result is compared with that of the original population. If the new 

population is better than the original, then the original population is discarded, 

otherwise the original population will be kept. The evaluation, crossover and 

mutation steps are repeated until the quality of the population cannot be 

improved.

GA has been applied to generate QSAR models (Bangalore et a l, 1996; 

Hasegawa and Funatsu, 2000; Shaffer et al., 1996; Yamashita et al., 2002). As 

PLS is a standard statistical method used in QSAR modelling, most GA-QSAR 

studies combine GA and PLS to derive a new algorithm that is termed genetic 

partial least squares (GA-PLS). The fitness is usually measured by the predictive 

ability of the model, that is, q2. The GA-PLS used in this project was designed by 

Shun Jin Chou at the Laboratory for Molecular Modelling, School of Pharmacy, 

UNC (http://mmlinl.pha.unc.edu/~iin/QSAR/analvze.html).

1 -  ^ ^ E q n .  2. 9
n — c

Equation 2.9 was used as the fitness function in the web implemented GA-PLS 

calculation, q2 is the predictivity of the model, n is the number of compounds in 

the data set and c is the optimal number of components.
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Population initiation

Evaluation of the fitness of the chromosomes <

Crossover Mutation

New population

Figure 2.8. The flowchart of the genetic algorithm. A random chromosome 

population is defined at the start of the calculation. The fitness o f the 

chromosomes is evaluated by the fitness function, after which new members of 

the population are generated by point mutation and crossover between two 

chromosomes. The fitness of the new chromosomes are then evaluated using the 

fitness function, if the new chromosomes have a higher level of fitness, then the 

parent chromosomes are discarded, otherwise the parent chromosomes are kept 

in the population. The process continues until no new chromosomes with a 

higher level of fitness can be generated.
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Parent 1. 0001(|001100

X
Parent 2. 1100 000111

Child 1.00001000111

Child 2. 11010001100

Figure 2.9. Example of crossover between parents. Crossover point A is 

selected randomly. Values to the right of the crossover point are exchanged 

between the parents.
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2.2.4.5 GRID

The GRID program (version 21) finds the energetically favoured or disfavoured 

regions on molecules with known three-dimensional structures. Many molecules 

can be included in one calculation (Cruciani and Watson, 1994). A selection of 

chemical probes is included in the program, which represent atoms or functional 

groups with different properties. GRID calculates the interaction energy between 

selected chemical probes and each of the molecules.

A GRID box was defined to only include the peptide binding site in the 

calculation (figure 2.10). The dimensions of the GRID boxes used for each of 

the HLA classes are in table 2.3. The grid spacing was set to 2A.

X Y Z

HLA-A -9.44 13.43 -17.43 21.58 -19.16 15.21

HLA-B -26.82 11.54 -17.47 8.37 -26.97 -3.36

HLA-C -19.73 22.96 -13.13 11.23 -17.47 9.17

Table 2.3. The dimensions (A) of the GRID box for different HLA class

molecules.

GRID uses different probes placed at a regular interval throughout the grid box 

to calculate the interaction energy between the molecule and the probes. A total 

of 13 probes were used in the calculation, which covered the chemical 

functionality of the 20 naturally occurring amino acids (table 2.4). For other
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parameters, the MOVE was set to 1 to make protein side chains flexible. The 

LIST value was set to -2 , facilitating importing the results into GOLPE.

KtaievKSHBmsiaimmmr&zmmm

Figure 2.10. An illustration of the GRID box defined for the experiment. The 

molecule displayed in the graph is the a\ and o2 domain of HLA-A*0201. The 

grid box (shown in white) is defined to include only the peptide binding site of 

the MHC molecule.

130



Material and methods Chapter 2

Probe Chemical group Represented amino acids

OH2 Water Hydrophilic amino acids

Dry The hydrophobic probe Hydrophobic amino acids

H Hydrogen Hydrogen bond donor/accepter

C3 Methyl CH3 group Aliphatic amino acids

C l= sp2 CH aromatic or vinyl Phe, Tyr, Trp, His

N:* sp N with a lone pair His

N:= sp2 N with a lone pair Asn Gin

N1 Neutral flat NH eg. Amide Any amino acids

N2+ sp3 amine NH2 cation Arg Lys

01 Alkyl hydroxy OH group SerThr

OH Phenol or carboxy OH Tyr Asp Glu

0 sp2 carbonyl oxygen Asp Asn Glu Gin

SI Neutral SH Cys Met

Table 2.4. List of GRID probes used in the study. A total of 13 probes are 

selected from probes offered in GRID. These probes are chosen to represent 

different characteristics of the twenty amino acids.
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2.2.4.6 GOLPE

Generating Optimal Linear Partial least square Estimations (GOLPE) (Cruciani 

and Watson, 1994) improves the predictivity of the model by comparing the 

contributions of each variable, and excluding those that make very small or no 

contributions. In this way, the model generated by GOLPE has a higher level of 

predictivity than the one generated by PLS alone. The major steps in GOLPE 

calculation are summarised in figure 2.11 (Cruciani and Watson, 1994).

GOLPE also has one module for PCA calculation. The principal components are 

obtained by maximising the variance of linear functions of the matrix. The 

results of the GRID fields calculations were stored in files with .kont extension 

and were imported into GOLPE. The data were pre-treated before calculation, all 

the data with absolute values smaller than 0.01 or with standard deviation less 

than 0.01 were deleted. Positive interaction energy represented unfavourable 

steric repulsion between the probe and the molecule, therefore it was removed by 

setting the maximum cut off to 0 kcal/mol.

Additionally, when the scores plots failed to give well-defined clusters, a cut off 

option in GOLPE was used to reduce the number of non-significant interactions 

and improve the signal/noise ratio. In the GRID/CPCA study a cut off region of  

4A within the binding site was applied for HLA-B molecules.

After calculating GRID energy fields using each probe, the probes that gave the 

highest explained variance by the first three PCs were selected and a GRID
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calculation was run using all these probes. The results were used to build a 

consensus PCA (CPCA) model.

When more than one probe is used in the GRID calculation, the data generated 

by different probes are grouped into blocks, and they are often analysed by 

hierarchical PCA methods such as CPCA. The advantage of such methods over 

PCA is that they compare the relative importance of each block in the calculation 

and make a ‘consensus’ clustering of the objects. CPCA uses the same principle 

as PCA: a CPCA model tries to explain the overall variance of the original data 

matrix. The algorithm used in CPCA is an adaptation of the NIPALS algorithm 

used in PCA (Wold et al., 1987). Like PCA, CPCA calculates the principal 

components and gives the scores and loading matrix. In addition, CPCA also 

calculates the importance of each data block. It calculates the scores and the 

loading matrix for each probe used, and gives the weight matrix that illustrates 

the contribution of each probe in the overall scores.
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No uncertain 
variables

Uncertain variables

Calculate the equation of 
the model.

The contribution of each variable is calculated.

Evaluation o f the variables. The variables are 
divided into positive, negative and uncertain 

variables.

QSAR model is built by PLS. The 
predictivity o f the model and the standard error 

of prediction (SDEP) are calculated.

The construction of the design matrix. 
The presence o f a variable is indicated by +1, 
the absence of a variable is indicated by -1.

Figure 2.11. The flowchart of the GOLPE process.
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Chapter 3
HLA-A2 and A3 motif definition using 2D-QSAR methods

3.1 Introduction

Quantitative structure-activity relationships (QSAR) relate the biological activity 

of a molecule to its structure. The hypothesis behind QSAR is that the biological 

property of a molecule is determined by its chemical structure: changes in the 

structure lead to changes in the property (Sneath, 1966). QSAR techniques can 

be 2D or 3D, the former uses 2D or physico-chemical descriptors to study the 

molecules while the latter also takes the spatial features of the molecules into 

account (Collantes and Dunn, 1995; Fauchere et a l,  1988; Norinder, 1991). 

Statistical methods, such as partial least square (PLS) analysis, are used in QSAR 

methods to produce models that explain properties of the protein that lead to 

changes in the activity (Felipe-Sotelo et a l,  2003; Hasegawa and Funatsu, 2000).

Amino acid descriptors are often used in peptide QSAR studies (Cui et a l,  2002; 

Eriksson et a l,  1990; Gupta et a l,  2002; Nadasdi and Medzihradszky, 1981). 

They describe the physico-chemical properties o f the peptides quantitatively. 

Many of the properties are measured experimentally, such as pKa, 

hydrophobicity and logP, using methods such as TLC, HPLC, and 

spectroscopy(Sun, 2004; Xing and Glen, 2002; Zhao et a l, 2002). Other 

properties cannot be measured but can be calculated, such as the molecular 

surface area and atomic charges. The quality of the amino acid descriptors is an 

important factor in producing models with a good level of predictivity (Hunt, 

1999).
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The first study of amino acid descriptors was undertaken by Sneath (Sneath, 

1966), who used physico-chemical semi-quantative data to derive descriptors for 

the 20 naturally occurring amino acids. Since then, a number of studies have 

generated many new descriptors. Kidera et al. statistically analysed 188 amino 

acid indices and divided them into groups according to the properties they 

represent (Kidera et al., 1985). On the basis of Kidera’s data and some new 

additions, Nakai et al. carried out another cluster analysis of 222 amino acid 

indices, dividing them into four major groups: a and |3 turn propensities, p 

propensity, hydrophobicity and physico-chemical properties (Nakai et al., 1988). 

In the same year, Fauchere et al. chose a group of 15 physico-chemical 

descriptors and applied them to 20 natural and 26 synthetic amino acids 

(Fauchere et al., 1988). To facilitate public access to these descriptors, 

Kawashima collected most published descriptors and established a database 

named AAindex (Kawashima and Kanehisa, 2000).

One set of the amino acid descriptors commonly used in peptide QSAR studies is 

the z descriptors, which is obtained by applying principal component analysis to 

groups o f physico-chemical variables (Hellberg et al., 1987). z descriptors, which 

mainly explain hydrophilicity, size and polarity of the amino acids, have been 

used to characterise amino acids and synthetic peptides (Eriksson et al., 1989). 

Later Sandberg used the z descriptors to classify 89 synthetic elastase substrate 

and 29 neurotensin peptide analogues (Sandberg et al., 1998). The quantitative 

structure-activity modelling (QSAM) generated models with high predictivity 

and a high level of explained variance (q2 = 0.77 r2 = 0.83 for electase substrates 

and q2 = 0.78 r2 = 0.93 for neorotensin analogues. Later, the z descriptors were
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used to model the relationship between the functions of the peptides and their 

amino acid composition (Siebert, 2001).

The additive method is a 2D-QSAR method (Doytchinova et al., 2002). 

Previously the additive method was applied to build an A*0201 peptide-binding 

model and an A2 supermotif (Doytchinova and Flower, 2003). In the present 

study the method was applied to alleles of the A3 serotype to define an A3 

supermotif (Guan et al., 2003).

The additive method is based on the Free-Wilson concept (Craig, 1974; Kubinyi 

and Kehrhahn, 1976), whereby each constituent makes an additive and 

independent contribution to the biological activity (Free and Wilson, 1964). 

Additional terms were added to the basic QSAR model to account for the 

adjacent and every second side-chain interactions. For a nonamer peptide the 

model could be presented by equation 3.1 (Doytchinova et al., 2002):

p i c x  =const + Y ,P , + Y uP>Pm  + Y .PiPM  Eqn- 3->
i= 1 /=1 J=1

where pICso is the binding affinity expressed in p-units (negative decimal

logarithm of IC50 values), the const accounts for the peptide backbone

9

contribution, 7̂^Pt is the sum of amino acid contributions at each position,

8 7
is the sum of adjacent peptide side-chain interactions, and

1=1 (=i

the sum of every second side-chain interaction. Two types of models were 

created: one based solely on the amino-acid contributions (single amino acid
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model) and another based on both amino-acid contributions and the contributions 

of amino-acid interactions (amino acid and interaction model).

3.2 Results

A full protein sequence alignment of some HLA A, B and C alleles is shown in 

figure 3.1 to 3.3. The multiple sequence alignment was performed using the 

online protein sequence analysis server clustalw (Combet et al., 2000), URL: 

http://npsa-pbil.ibcp.fr/cgi-

bin/npsa automat.pl?page=/NPSA/npsa clustalw.html. The sequence alignment 

showed that most of the polymorphic residues were within the a l and a2 

domains. The crystal structure of the A*0201 allele revealed that the binding site 

was within the al/a2 domain (Saper et al., 1991). A total of 58 positions were 

polymorphic in the al/a2 domain alignment, among which 16 positions were 

inside the binding site: position 9, 24, 45, 63, 66, 70, 73, 77, 80 of al domain, 

and position 5, 7, 9, 24, 26, 62, 66 of a2 domain.
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1 0 20 30 40 50 60
AO201x1
A0202x2
A3101x5
AO 101x0
AO 301x3
A1101X4
A6801X6
B2704X7
B070201
Cw010201
Cw04 010101
Prim.cons.

GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW 
........................................... R .................

....... H .............. T ...... L ..........P.E...............

.............Y .............. S .................. P.E..........................
C  K ................. S .................. P.G......V ........
....... S. . . .W............................. P.G. . .E. .V........

* * * * * * *  * * * *  * * * * * * * * * . * * * * * * *  * * * * * * * * * *  * * *  * * . * * *  * * * *

GSHSMRYFFTSVSRPGRGEPRFIAVGYVDDTQFVRFDSDAASQRMEPRAPWIEQEGPEYW
70I 80 90I

A0 201x1 i i i DGETRKVKAHSQTHRVDLGTLRGYYNQSEA
A0 202x2
A3101x5 • Q . .N..... ID.....
AOlOlxO • Q. . .NM............ .D.AN... ....... D
AO301x3 • Q ..N...Q...D.....
All01x4 • Q ..N...0...D..... ....... D
A6 8 01x6 . RN . . N . . . Q . . .D.....
B2704x7 .R. .QIC..KA. .D.ES.R. LR......
B070201 .RN.QIY..QA. .D.ES.RN
Cw010201 .R. .Q.Y.RQA. .D..S .RN
CW04010101 .R. .Q.Y.RQA.AD..N.RK ....... D

* . ik . * . . * . * , * , * * * * * * *

Prim.cons . DRETRNVKAQSQTDRVDLGTLRGYYNQSEA

Figure 3.1. Multiple sequence alignment of a l domain using the clustalw 

program. All parameters are set to default. Sequences of the HLA-A, B and C 

molecules were taken from the IMGT/HLA database. Identical residues are in 

red. Non-identical residues are in black. The polymorphic residues are in blue or 

green.
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10 20 30 40 50 60
AO101x0 GSHTIQIMYGCDVGPDGRFLRGYRQDAYDGKDYIALNEDLRSWTAADMAAQITKRKWEAV
All01x4 ..............................................................A
AO301x3  S .......................................A
AO201x1  V.R.......S.W......H.Y.......... K ............. T.  .H___ A
AO202x2  L.R.......S.W......H.Y.......... K ............. T.  .H___ A
A6801X6  M....... S ..................... K .............. T.  .H A
A3101x5  M ....... S ....... Q .............................. Q  A
Cw010201 ___ L.W.C...L..... L  D.Y..................... T ....Q ..... A
Cw04010101 ___ L.R.F. . .L..... L. . . .N.F......................T....Q ..... A
B070201 ___ L.S........... L...HD.Y......................T....Q ..... A
B2704X7  L.N........... L  H ................ S ......T.... Q .... A

* * * * . *  *  * . * * * .  *  * * * * * * * * * * . * * *  * * * * * *  * * *  * . . * * * * _

Prim.cons. GSHT2Q2MYGCDVGPDGRFLRGYRQDAYDGKDYIALNEDLRSWTAADMAAQITKRKWEAA
70 80 90

A0101x0 HAAEQRRVYLEGRCVDGLRRYLENGKETLQRT
All01x4 .Q.A. .... .EW....
A0301x3 .E
A0201xl .V
A0202x2 .V. ,
A6801X6 .V. . . EW....
A3101x5 RV. . . EW....
Cw010201 RE .EW.... ........ A
Cw04010101 RE. .. . .A. . . .T. • EW.... ........ A
B070201 RE. .. . .A. . . .E. . EW.... --- DK.E.A
B2704X7 RE*** *_**.* **. *********.*.*.
Prim.cons. HEAEQ2RAYLEGTCVEWLRRYLENGKETLQRT

Figure 3.2. Multiple sequence alignment of o2 domain using clustalw program. 

Identical residues are in red. Non-identical residues are in black. The 

polymorphic residues are in blue or green.
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AO 2Olxl 
AO202x2 
A6801x6 
A3101x5 
AO301x3 
All01x4 
AO101x0 
B2704X7 
B070201 
Cw010201 
CW04010101

Prim.cons.

A0201xl 
A0202X2 
A6 8 01x6 
A3101x5 
AO301x3 
A1101x4 
AO101x0 
B2704X7 
B070201 
Cw010201 
Cw04010101
Prim.cons.

10 20 30 40 50 60

DAPKTHMTHHAVSDHEATLRCWALSFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQ

.P. , 

. p , .PI..... ............. G. .
• P . , ............. G. .
. p . .
. p . . . .V.  .. . P I .............
. p . . . . V.  ,, .PI............. ............. G. .
EH . .V.  .. . p ............... ............. G. . . . . . W.......................
EH . .V.  .. .p................ .............G. . . . . . W.......................

DPPKTHMTHHPVSDHEATLRCWALGFYPAEITLTWQRDGEDQTQDTELVETRPAGDGTFQ 
70 80 90

KWAAVWPSGQEQRYTCHVQHEGLPKPLTLRW 
. .V..............................

 M  E ..............E ......
......... E .............. E .....
** m
KWAAVWPSGEEQRYTCHVQHEGLPKPLTLRW

Figure 3.3. Multiple sequence alignment of a3 domain using clustalw program. 

Identical residues are in red. Non-identical residues are in black. The polymorphic 

residues are in blue or green.
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3.2.1 The additive HLA-A3 supermotif study

3.2.1.1 The additive models

The additive models were generated for 4 of the A3 supertype alleles: A* 1101, 

A*0301, A*3101 and A*6801. The statistical parameters of the models are given in 

table 3.1. The number of peptides included in the amino acid only and amino acid 

and interactions models was different for the A*0301 and A*6801 alleles, because 

some of the poorly predicted peptides by LOO-CV (peptides with residual value 

over 11.51) were excluded. The peptides were excluded in a stepwise fashion and q2 

was re-calculated after each exclusion. The process was repeated until q2 reached 

the highest value and started to decrease. Most of the excluded peptides had low 

experimental affinity due to the absence of anchor or secondary anchor residues.

In general, q2 of the single amino acid models were higher than that of the amino 

acid and interaction models. The difference ranged from about 3% for A* 1101 and 

A*3101 to 13% for A*0301 and 16% for A*6801. This was because some amino 

acid interactions occur only once in the data set. Such interactions created a column 

in the matrix with only one value and many zeros. They appeared as missing terms 

in the cross-validated equation used to predict the binding affinity of a peptide with 

such interactions. The prediction error was proportional to the number of missing 

terms. The number of missing terms in the single amino acid models was lower 

therefore their predictivity was higher. As more experimental data becomes 

available, more peptides will be included in the set and the number of unique amino 

acids and amino-acid interactions will be reduced. The percentage of well predicted 

peptides in the training set (with the absolute difference between predicted and
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experimental binding affinities less than 0.5) was more than 50% in all models, and 

the percentage of poorly predicted peptides (with the absolute difference between 

predicted and experimental binding affinities (pICso) more than 1) was between 6 

and 23% for most of the models.

In contrast, the r values were slightly lower for the single amino acid models than 

for the amino acid and interaction models. This showed that the amino acid side- 

chain interactions were important in explaining the variance of the peptides and 

should be included in the models. The r2bootstrap values are calculated by randomly 

choosing the sample rows repeatly and calculating the mean r* values. The present 

calculation is the mean r of 20 runs, and it was found that the values were slightly 

higher than the r2. If the number of runs were increased to 1000, then there is a 

slight drop in the mean r2.

The amino acid and interactions models were used to draw bar-charts for the amino 

acid contributions at each position of the peptide (figure 3.4). Amino acids with 

contributions greater than 0.2 were considered as preferred at the specific position 

and those with contributions less than -0.2 were considered as deleterious. 

Residues identified as preferred for two or more A3 alleles without being 

deleterious for any other alleles were considered as preferred for the A3 supermotif. 

Residues identified as deleterious for two or more alleles were considered as 

deleterious for the motif.
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A*1101 A *0301 A*3101 A *6801
Model S I S I S I S I
Na 62 62 72 70 30 31 38 37
q2 0.458 0.428 0.436 0.305 0.482 0.453 0.531 0.370
NCb 2 3 6 4 3 6 4 4
SEPC 0.572 0.593 0.680 0.699 0.710 0.727 0.594 0.664
n 2 d <7 cv5 0.433 0.397 0.360 0.294 0.453 0.401 0.510 0.326
r2 0.829 0.977 0.959 0.972 0.892 0.990 0.959 0.974
SEE' 0.321 0.119 0.181 0.136 0.325 0.098 0.175 0.136
J
'  bootstrap 0.988 0.997 0.976 0.975 0.986 0.994 0.987 0.993
F ratio 143.005 821.098 246.895 557.374 71.356 399.955 194.845 297.481
|res.|<|0.5 36 58.10% 39 62.90% 43 59.71% 44 62.88% 15 50% 16 51.61% 26 68.42% 21 56.76%
0.5 < |res.| < 1.0 16 25.80% 19 30.65% 20 27.70% 15 21.42% 8 26.6% 10 32.26% 8 21.05% 12 32.43%
|res.| > 1.0 10 16.10% 4 6.45% 9 12.50% 11 15.71% 7 23.3% 5 16.13% 4 10.53% 4 10.81%
Mean |residual| 0.507 0.467 0.504 0.527 0.602 0.502 0.418 0.485
Standard deviation 0.423 0.354 0.407 0.420 0.400 0.402 0.363 0.373
‘‘number o f peptides, optimal number of components. Standard error o f prediction.'q obtained by cross-validation in five groups 'standard error of estimate

Table 3.1. The A3 models generated by the additive method. A single amino acid model (S) and an amino acid with interaction model (I) were 

generated for each of the HLA-A3 alleles. The model predictivities were measured by the cross-validated (leave-one-out and cross-validation in 

5 groups) q2 and the standard error o f prediction (SEP). The r2 and the standard error of estimate (SEE) indicated how much variance in the 

training set was explained by the model. The F ratio was the ratio of r  to 1- r , and indicated how much biological activity was explained by the 

models. The peptide residual values (errors in the predictions) were divided into 3 groups, very well predicted (|res.|< 0.5), intermediate (0.5 < 

|res.| < 1.0) and badly predicted (|res.| > 1.0). The mean residual values and the standard deviation of the residual values were also calculated.
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Figure 3.4. The amino acid contributions at each position of the peptide binding to 

the HLA-A3 superfamily. Position 1 (a), position 2 (b), position 3 (c), position 4 (d), 

position 5 (e), position 6 (f), position 7 (g), position 8 (h), and position 9 (i).
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3.2.1.2 Primary anchor positions

P2 and P9 are considered to be the primary anchor positions for peptides bound to 

the A3 superfamily (Chujoh et al., 1998; Falk et a l, 1994; Garrett et a l ,  1989; 

Gavioli et a l,  1993; Matsumura et a l, 1992). The side chain of P2 falls into the 

pocket B and the C-terminal residue is buried in the pocket F of the MHC molecule 

(Colbert et a l, 1993; Madden et a l, 1991a; Rojo et a l, 1993; Saper et a l,  1991; 

Silver et a l, 1992; Vasmatzis et a l, 1996). The additive models identified a great 

variety of preferred amino acids at P2 (figure 3.4b). A*6801 prefers Ala and lie, 

A* 1101 prefers Thr and Val, A*0301 prefers Ala, lie, Leu and Thr, and A*3101 

prefers Leu and Ser. This variety may be due to the polymorphism at position 9 in 

the HLA binding site, which forms the bottom of the pocket B (table 3.2). Phe9 in 

A*0301 is substituted to Tyr9 in A*6801 and A* 1101, and to Thr9 in A*3101 

(Schonbach et a l,  2000). The hydroxyl group of Tyr9 points towards the inside of 

the pocket and prevents larger amino acids from reaching the bottom of the pocket. 

Because of this, larger residues like Leu are deleterious for A*6801 and A* 1101 

but are preferred for A*0301. The change from Glu63 to Asn63 in A*6801 and 

A* 1101 also changed the pocket B and stopped large amino acids from binding 

(Vasmatzis et a l, 1996). Additionally, a previous study of the pocket B revealed 

that the side chain orientation of Val67 was changed in the A*6801 allele and 

affected the amino acid selection (Guo et a l, 1993).

The side chain of P9 extended into pocket F. Most of the residues lining the pocket 

F were conserved among the HLA-A3 alleles (table 3.2). Positively charged amino 

acids like Arg and Lys were preferred at this position (figure 3.4i). Two negatively 

charged Aspartic acid residues, Asp77 and Asp 116, were inside the pocket F (table
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3.2). These residues provided a negatively charged environment that could make a 

favourable interaction with positively charged amino acids. Falk and Rotzschke 

postulated that Asp amino acids at position 77, 74 and 116 were absolutely required 

in all class I alleles that had an acidic C terminus in their binding motif (Falk and 

Rotzschke, 1993). This ability could be abolished by the absence of any of the Asps 

at these positions. The additive models showed that Tyr was deleterious at P9, 

which may be because of the bulky aromatic ring that could not fit into the narrow 

pocket.

There was a slight difference in the side chain preference at P9 among the A3 

alleles. A*6801 and A*3101 preferred Arg, A* 1101 favoured relatively smaller 

residue Lys and A*0301 accepted both. The difference seemed to be important in 

determining the binding affinity of the peptide.
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Pocket A

5 7 59 63 66 99 159 163 167 171

A*1101 M Y Y E N Y Y R W Y

A*0301 - - - - - - - T - -

A*3101 - - - - - - - T - -

A*6801 - - - N - - - T - -

Pocket B

7 9 24 34 45 63 66 67 70 99

A*1101 Y Y A V M E N V Q Y

A*0301 - F - - - - - - - -

A*3101 - T - - - - - - H -

A*6801 - Y - - - N - - - -

Pocket C

9 22 70 73 74 97 99 114 116

A*1101 Y F Q T D I Y R D

A*0301 F - - - - - - - -

A*3101 T - H I - M - Q -

A*6801 Y - - - - M - - -
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Pocket D

99 114 155 156 159 160

A*1101 Y R Q Q Y L

A*0301 - - - L - -

A*3101 - Q - L - -

A*6801 - - - W - -

Pocket E

97 114 116 147 152 155 156

A*1101 I R D W A Q Q
A*0301 - - - - E - L

A*3101 M Q - - V - L

A*6801 M - - - V - W

Pocket F

73 77 80 81 84 95 116 118 123 124 143

A*1101 T D T L Y I D Y Y I T

A*0301 - - - - - - - - - - -

A*3101 I - - - - - - - - - -

A*6801 - - - - - - - - - - -

Table 3.2. The alignment of the residues in the HLA-A3 binding pockets.
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3.2.1.3 Secondary anchor positions

The presence of the primary anchor residues alone does not guarantee high affinity 

peptide binding, several secondary anchor positions are also crucial (Zhang et al., 

1993). The presence of P3, together with the anchor residues facilitated high 

affinity binding in previous experiments (DiBrino et al., 1993). In the additive 

models, P3 preferred aromatic residue Phe (figure 3.4c). The side chain of Phe 

extended into pocket D (Matsumura et al., 1992), and contacted the side chains of 

the two conserved Tyr residues at position 99 and 159. Previous peptide binding 

experiments by Sidney et al. gave similar results (Sidney et al., 1996).

Another secondary anchor position was P7 (Rammensee et al., 1995). Hydrophobic 

residues were preferred at this position. Phe and lie were strongly preferred by 

A*0301 and A*1101. Peptide binding studies showed either P3 or P7, together with 

residues at P2 and P9, induced stable binding of the peptide (Sidney et al., 1996). 

Part of the side chain of P7 could contact with pocket E, which accepted residues 

with a variety of side chains (Madden, 1995).

3.2.1.4 Other positions

The study of the crystal structure of Aw68 (Silver et al., 1992) suggested that PI, 

P4 and P8 pointed away from the peptide-MHC complex and towards the T cell 

receptor. In the additive models, Ser and Met were preferred at PI, and Phe, Arg 

and Tyr were favoured at P4. Arg, Tyr and Leu were slightly favoured at P8, while 

Ser, Lys and Gin were deleterious. The variance of amino acids accepted at these 

positions showed that it was less likely that these positions contributed significantly
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to the binding to the MHC molecules, and that they may be more important in 

antigen recognition by T cells.

In the structure of Aw68 (A*6801), residues at P5 and P6 were found lying across 

the top of the binding groove and have contact with the T cell receptor. In the 

present study no amino acids were preferred at P5 and Ser was favoured at P6. 

Similarly to the discussion above, these positions were not particularly important in 

the binding of the peptide and they might participate in reactions with T cells. The 

summarised HLA-A3 supermotif is shown in table 3.3.

Preferred SM IT F FRQ - S FI RLY R
position 1 2 3 4 5 6 7 8 9
deleterious ALQ N L S GHS - - KSE Y

Table 3.3. HLA-A3 superfamily binding motif defined by the additive models.

3.2.1.5 Discussion

The present study defined an epitope-binding motif for the A3 superfamily using 

the additive method. The superfamily classification was based on the peptide 

binding specificities of the alleles. Class I HLA alleles A* 1101, A*0301, A*3101 

and A*6801 bound to similar peptides. Six pockets were present in the binding site 

of the HLA alleles, which interacted with the side chains of the peptides and 

determined the binding specificity. Sequence analysis showed that only 11 of the 

residues inside the binding pockets were polymorphic (table 3.2). A good, if 

incomplete, consensus was found for the preferences at the primary anchor 

positions P2 and P9. Thr and short hydrophobic residues like Ala and lie were
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favoured at P2, and nearly all the peptides bound to A3 alleles had positively 

charged residues Arg or Lys at the C terminus.

The amino acids involved in peptide binding were similar among the HLA-A2 and 

A3 alleles. Pocket B interacted with the side chain of P2, which was one of the 

anchor positions in nearly all the class I MHC alleles. Most of the amino acids in 

the pocket B were conserved in HLA-A2 and A3 families, and both families accept 

hydrophobic residues at P2. The amino acid at sequence position 9 of the HLA 

protein is important in peptide binding in the two families. Alleles with small to 

medium sized residues at position 9, such as Phe9 or Thr9, were able to accept 

peptides with long side chains at P2. Examples of such alleles were A*3101, 

A*0301 and A*0201. On the other hand, only small residues, like Ala and Val, 

could bind to A* 6801, A* 1101 and A*0206, all of which had the larger residue 

Tyr9 in the pocket B.

The five residues in pocket F that directly interacted with P9 are identical in both 

the A3 family and HLA-B27 (Leu81, A spll6, Tyrl23, Thrl43 and Trpl47). 

Positively charged residues bound in pocket F interact with negatively charged 

residues Aspl 16 or Asp77 in the A3 family and HLA-B27. B27 had been shown to 

accept hydrophobic residues like Leu, Ala and Tyr because they can interact with 

Leu81, Tyrl23, Thrl43 and Trpl47 in binding pocket F (Jardetzky et al., 1991). In 

the present study, the specificity at P9 was restricted to Arg and Lys; both Ala and 

Tyr had deleterious effects on peptide binding. This suggested a possible difference 

in the conformation of the binding pockets in different alleles in spite of their 

sequence similarity.
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A peptide binding motif for the HLA-A3 superfamily was previously defined by 

Sidney et al. (Sidney et al., 1996) and Rammensee et al. (Rammensee et al., 1995). 

Some similarities can be found by comparing the present motif with the ones 

defined by those two groups. The amino acid preferences for the primary anchor 

residues were similar. All the motifs had Arg and Lys at P9 and various 

hydrophobic residues at P2, such as lie and Thr. The preferences for secondary 

anchors P3 and P7 in the three motifs were for hydrophobic amino acids. The motif 

defined by the additive model, while in good agreement with previous motifs, is 

more extensive, covering all the 9 positions of the peptide.

To conclude, the supermotif of the HLA-A3 familiy can be found in table 3.3. 

Good binders of the A3-superfamily have a small to medium sized residue at P2, 

such as lie or Thr, and a positively charged residue Arg at P9. Phe at P3 and P7 is 

also required for stable binding. Ser is well accepted at PI and P6. Although P4 and 

P8 are more solvent-exposed than MHC-bound, they also had some well-defined 

preferences. P4 favours Phe, Arg and Gin, and P8 favours Arg, Leu and Tyr.

3.2.2 HLA-A*0201 study using amino acid descriptors 

The aim of this study is to use amino acid descriptors and 2D-QSAR techniques to 

describe the binding motif for the A*0201 allele. The class I allele A*0201 was 

chosen as it was the best studied HLA allele and had the most binding data 

available (266 nonamer peptides in Anti Jen at the time of the study). Two sets of 

descriptors were used: the AAindex descriptors and the z descriptors. The question 

was how to pick up only those that were relevant to the problem from a large
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selection of descriptors? To solve this problem, variable selection techniques were 

used. Three variable selection techniques were applied to the A*0201 peptides: 

SIMCA, genetic algorithm (GA) and GOLPE.

3.2.2.1 A*0201 models with AAindex descriptors 

There were 437 amino acid descriptors in the AAindex database at the time of the 

study, many of the descriptors described whole protein properties such as helix and 

P-sheet conformations. As the present study was focused on short peptides, 

therefore, descriptors that were used for amino acids and small peptides were 

collected from the database manually. A total of 93 descriptors was selected and 

were used to build the A*0201 model.

QSAR models were generated for the A*0201 data set using the SIMCA package. 

The training set includes 266 nonamer peptides, logarithm of the peptide IC50 

values range from 4.3 to 9. The 93 descriptors were applied to each position of the 

nonamer peptide, generating a total of (93 x 9) 837 columns in the matrix. Initially, 

the q2 value was low for both leave-one-out cross-validation (q2 = 0.259), and 

cross-validation in seven groups (q2 = 0.268). The VIP value of each variable was 

calculated and q was improved by excluding variables with VIP values lower than 

0.7. A list o f q2 values after variable exclusion was listed in table 3.4.
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    2     '""2"

Model Variable Number q Number o f  components r

1 837 0.268 0.458

2 440 0.305 0.358

3 337 0.317 0.361

4 276 0.323 0.363

5 260 0.324 0.364

6 237 0.327 0.365

7 229 0.329 0.368

8 223 0.332 0.370

9 216 0.329 0.366

10 206 0.324 0.361

Table 3.4. Changes in q2 of A*0201 models after variable selection in SIMCA.

Table 3.4 showed that there was a 4% improvement in q after excluding nearly half 

of the variables (model 2, q2= 0.305), there was no significant changes in q2 in the 

subsequent models. There was another slight increase in q2 when two-thirds of the 

variables were excluded (model 8, q2 = 0.332), after which q2 started to decrease 

(model 9 and 10). In contrast, was highest when all variables were included, and 

was decreased as the number of variables dropped (model 2, r2 = 0.358). The r 

values were generally low for all the models, which indicated that variables used in 

the study were not informative in describing properties of the peptides. The best q 

value was 0.332 from model 8, which indicated that the model has some 

predictivity but not high. Similar results were obtained when applying GOLPE and 

GA to the data set (q2 = 0.298, r2= 0.445 for GOLPE and q = 0.260 and r2 = 0.410
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2 2for GA). The low q and r values of the models suggested that the models 

generated using AAindex descriptors were not predictive, and were not appropriate 

for the analysis of peptide-MHC interactions.

3.2.2.2 A*0201 models with the z descriptors

One possible reason for the poor performance of the AAindex descriptors was the 

quality of descriptors. There were a total of 93 descriptors found in the database 

that described amino acids and short peptides. It is possible that some descriptors 

were redundant, therefore the signal to noise ratio was small and useful information 

was masked by noise. Hence in the second part of the experiment the three z and 

the five z descriptors were applied to peptides binding to HLA-A*0201. The z 

descriptors are a class of properties obtained by PCA analysis and are 

representative of large numbers of redundant, degenerate descriptors. The three z 

descriptors were used first. A total of 27 (3 x 9) descriptors were applied to the 

training set. QSAR models were built using SIMCA, GOLPE and GA. Results of 

the QSAR models are listed in table 3.5. q2 of the SIMCA model was the lowest 

among the three (q2 = 0.29). The predictivities of the GA and the GOLPE models 

were 0.396 and 0.424, respectively. The relative coefficients of the variables in 

each model were plotted in figure 3.5.
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QSAR models using z l-z3  descriptors

<■.r SEP NC r~ SEE

GOLPE 0.424 0.517 4 0.510 0.471

GA 0.396 0.534 3 0.528 0.472

SIMCA 0.292 - 2 0.383 -

Table 3.5. Results o f the three z descriptors models calculated by three methods: 

GOLPE, GA and SIMCA (SIMCA does not report SEP or SEE values).

The coefficients reflected the contributions of each variable (descriptor) at each 

position. A property was considered to be favoured if it had positive contributions, 

or coefficients, from all models, and was disfavoured if  it had negative coefficients 

from all three models.

Considering the individual properties, hydrophobic amino acids were favoured at 

P2, P3, P6 and P7 (with positive zl coefficients), and disfavoured at P4 and P8 

(with negative z l coefficients) (figure. 3.2). Large amino acids were favoured at P2, 

P3, P4 and P6 (with positive z2 coefficients), disfavoured at P5, P7 and P8 

(negative z2 coefficients). Polar residues were preferred at P4, P8 (with negative z3 

coefficients), and disfavoured at P2, P3, P6 and P7 (positive z3 coefficients).

The five z descriptors were then used to describe the A*0201 training set. The 

meanings of the first three z descriptors were similar to the three z descriptors. The
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zl descriptor represented the hydrophobicity scale. Large negative values indicated 

hydrophobic amino acid and positive values hydrophilic amino acid. The z2 

descriptor represented the steric bulk property. Amino acids with negative z2 value 

had small molecular weight and surface area. The z3 descriptor represented 

polarity. Negative z3 values indicated the ability to accept electrons, while positive 

z3 values described the ability to attract electrons. The property assigned to the last 

two z properties, z4 and z5, were more complicated, as the two properties took into 

account a mixture of polar and other chemical properties such as heat of formation 

(the heat absorbed during the formation of one mole of the substance from its 

component elements).

The five descriptors were applied to each of the nine positions of the peptide, 

giving a total of 45 variables. Results of the QSAR models were listed in table 3.6. 

Relative coefficients of each position were shown in figure 3.6.

QSAR models using z I -z5 descriptors

SEP NC
7r~ SEE

GOLPE 0.619 0.452 4 0.684 0.412

GA 0.606 0.464 4 0.732 0.383

SIMCA 0.702 - 2 0.897 -

Table 3.6. Results of the five z descriptors models calculated by three methods: 

GOLPE, GA and SIMCA (SIMCA does not include SEP or SEE values in the 

result).
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q values of the five z models ranged from 0.6 to 0.7, which indicated good 

predictivity of the models. The model built by SIMCA had the highest q2o f  0.702 

using the first two components, the r value was 0.897, which was also the highest.

■y
The q values of the GOLPE and the GA model were slightly lower: 0.619 and 

0.606, respectively. The r2 values of the two models were 0.684 and 0.732. The five 

z descriptors QSAR model gave the best results among all descriptors. The relative 

coefficients of the z5 descriptors revealed that hydrophilic amino acids are 

favoured at P4 and P8 (with positive zl coefficients), but disfavoured at PI, P2, P3, 

P5, P6 and P7 (with negative zl values) (figure 3.6). Large bulky amino acids were 

preferred at PI, P2, P3, P5, P6 and P8 (with positive z2 coefficients), while small 

amino acids were preferred at P4 and P9 (with negative z2 coefficients). Polar 

amino acids are likely to appear at PI and P4 (with positive z3 and z4 coefficients), 

but not at P2, P3, P5 and P7 (with negative z3 coefficients).

The QSAR models generated by the three z and five z descriptors gave similar 

results. Both the three and the five z descriptors model showed that P2 favoured 

bulky, non-polar amino acids. P9 preferred small amino acids in the five z 

descriptors model. No consensus was found at P9 in the three z descriptors model. 

Secondary anchor positions P3 and P7 favoured non-polar amino acids in both 

models. Bulky hydrophobic amino acids were identified at PI in the five z 

descriptors model. P4 and P8 accept hydrophilic amino acids. P6 favoured bulky 

amino acids in both models.
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Figure 3.5. The relative coefficients of the QSAR models built by GOLPE, GA and 

SIMCA using the three z descriptors
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Figure 3.6. The relative coefficients of the QSAR models built by GOLPE, GA and 

SIMCA using the five z descriptors.
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3.2.2.3 Peptide-MHC binding experiment

After defining the A*0201 binding motif, 15 high affinity peptides were designed 

and tested using the T2 stabilisation assay, the peptide binding affinities were 

present as BL50 values. As the A*0201 training set taken from Anti Jen was present 

as IC50 values, previously published binding data on H-2Db restricted peptides 

were collected to compare the IC50 and BL50 measurements (Gairin et al., 1995; 

Hudrisier et al., 1996; Hudrisier et al., 1995). This data, together with an A2 

peptide binding study (Doytchinova et al., 2004), showed that there was a good 

linear relationship between IC50 values and BL50 values in spite of the different 

techniques used (figure 3.7).

The presence of the anchor residues greatly influenced the binding affinity in the 

A*0201 analysis, therefore all of the designed peptides possess the anchor residues 

of A*0201 (table 3.7). Leu is present at P2 in all the peptides, and most peptides 

have Val or Ala at P9 (8  peptides have Ala at P9 and 7 have Val). For secondary 

anchor positions, aromatic amino acids are favoured both in previous and in the z 

descriptors analysis. Most of the peptides have Trp and Phe at P3, apart from 3 

peptides that have either alipatic or polar amino acids. The other secondary anchor 

position P7 is occupied by aliphatic or aromatic amino acids.

The BL50 values of the test peptides were plotted in figure 3.8. The binding 

affinities for all the peptides in the set were within the range of 4 ~ 6 .

For A*0201 peptides, those with pBLso values above 4 were considered as between 

intermediate and good binders, and those with pBLso values above 6 were very
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good binders. In this experiment, the BL50 values for all the peptides were above 4 

and the values o f  4 peptides were above 6 . The experiment results were in 

agreement with the findings from the 2D  descriptors analysis. The presence o f  

aliphatic amino acids Leu or M et at P2 and Gly, Val, A la or Tyr at P9 were 

important in peptide binding. A lso, the presence o f  Phe at P3 and Val at P7 

increased the binding affinity o f  the peptide. Tyr w as w ell accepted at P I, as w as 

Pro at P4. There are two poorly predicted peptides in the set, YLCPG PVTA and 

VLFN G PV TV , show ing that Val at PI or Cys at P3 result in a decrease o f  affinity. 

A lso  the presence o f  negatively charged residues Lys or Arg nearly abolishes the 

ability o f  the peptide to bind to A *0201, although the peptide has the preferred 

anchor residues, indicating that MHC-peptide binding is much more com plex than 

the sim ple m otif requirement.

Peptide 0!1 Experimental pBL$o
KLPQLCTEL 6.716 4.49
YM LDLQPET 7.59 * ,t‘‘' V ' " -  ? : 5.54
RLW PFYHNV 8.206 4.27
FLW PIYHNV 8.298 4.94
YLFPGPM TA 8.169 5.43
Y LFD G PV TA 7.838 4.5
YLFPGPFTA 8.276 4.72
YLFPPPVTA 7.863 5.25
YLCPG PVTA 7.143 5.84
Y LFPG V V TA 8.147 5.66
Y LFPCPVTA 7.902 5.81
Y LFPD PV TA 7.82 6.58
YLFPGPVTG 8.035 5.5
YLFPGPM TV 8.525 6.09
Y LFD G PV TV 8.194 5.38
YLFPGPFTV 8.632 5.98
YLFPPPVTV 8.224 6.34
V LFN G PV TV 4.662 6.06

Table 3.7. The A *0201 test peptides, their predicted and experimental binding  

affinities. The first three peptides are reference peptides.
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Figure 3.7. Comparison of IC50 and BL50 measurements. Peptides that had been 

measured by both experiments were used in the graph. Previously published H-2Db 

data (a), and A2 binding study (b) showed that there was a linear relationship
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between IC50 and BL50 values with correlation coefficient o f 0.837 and 0 .796, 

respectively.

3.2.2.4 Discussion

The crystal structure of HLA-A*0201 indicated that the antigen binding site was 

located in sequence domain a l/a 2  (Saper et al., 1991). The floor of the binding 

groove is formed by an eight stranded (3 sheet (Bjorkman et al., 1987b) and the two 

sides of the groove are formed by two a  helices: residue 59 -  84 and 143-171 .  Six 

binding pockets (named A to F) are present in the binding site to accommodate side 

chains of the antigenic peptide. In A*0201, all the pockets were either between the 

helices like pocket A and F, or at the junction of the (3 sheet and the helix, like 

pocket B, C, D and E (Saper et a l, 1991). The specificity of these pockets 

influenced the peptide specificity of A*0201.

Pocket A was located at the end of the binding groove and accommodated the side 

chain o f PI. The surface of pocket A was dominated by tyrosine residues: Tyr7, 

Tyr59, Tyr99, Tyrl59 and Tyrl71 (see table 3.8). Among the five residues, Tyr7, 

Tyr59 and Tyrl59 were conserved among the A2 alleles. The bottom of the pocket 

was occupied by Tyr7. The composition of the surface suggested a preference for 

aromatic residues in pocket A. The hydroxyl group on the side chain of tyrosine 

was a potential hydrogen bond acceptor, and could interact with amino acids with 

potential hydrogen donor side chains. The results of the present study confirmed 

that aromatic residues were favoured at PI. Met was also accepted at PI, the side 

chains of which could form hydrogen bonds with Tyr7.
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The side chain of P2 interacted with pocket B, which is positioned on one side of 

pocket A, between the a l  helix and (3 sheet (Young et a l,  1994). Residues lining 

inside the pocket were bulky and hydrophobic (Phe9, Met45 and Val67), which 

reduced the volume inside the pocket. Non-polar residues Ala24 and Val34 are 

located at the bottom of the pocket. Results of the z descriptors model showed 

medium size hydrophobic residues Leu and lie were preferred at P2. Side chains of 

these two amino acids are long and narrow and can extend to the bottom of the 

pocket B. This was confirmed in the binding experiment, in which all high binders 

of A*0201 possessed Leu at P2.

Aromatic residues such as Tyr and Trp were favoured at P3 and P7. The side chain 

of the residue extended into the pocket D and interacted with the hydrophobic 

residues inside the pocket, Leu 156, Tyr99 and Tyr 159. Pocket E accepted the side 

chain of the amino acid at P7, which may interact with the aromatic residues 

Trp 133 at the bottom of the pocket. Hydrophobic residues such as Val and Met 

were also accepted at P7. In the peptide binding experiment, the four high binders 

had Phe at P3 and Val or Met at P7 (YLFPDPVTA, YLFPGPMTV, VLFNGPVTV, 

YLFPPPVTV).

The side chain of P6 interacted with the pocket C, which was shallow with polar 

residues lining the inside (His70, Thr73, His74 and Arg97). The bottom of the 

pocket was defined by aromatic residue Phe9. In the present study, P6 

accommodated a variety of amino acids: aromatic residue Tyr, Trp and Phe,
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medium size hydrophobic residue Leu, lie and Pro were all accepted. Tyr and Trp 

were potential hydrogen bond donors that could interact with the polar residues 

inside the pocket, while Phe can reach the bottom of the pocket and stabilise the 

binding.

P9 was known to be an important anchor residue in HLA-A*0201. The side chain 

of P9 reached pocket F, which was relatively deep with side chains of Leu81, 

Tyrl23 and Tyrl 16 at the bottom. In the present study, P9 favoured medium size, 

non-polar residues such as Leu, lie and Met. Two small non-polar amino acids Ala 

and Val were also well accepted, as demonstrated in the peptide binding 

experiment. Thr was the only polar residue favoured at this position, which may 

form hydrogen bonds with Thr and Tyr residues in pocket F (Thr80, Tyr84, 

Thrl43).

Side chains of the other positions (4, 5, and 8) did not bind to the inside of the 

binding groove, they were orientated towards the outside of the groove and 

possibly interacted with the T cell receptor. The amino acids at these positions were 

more diverse. P4 preferred small amino acids and P5 preferred hydrophobic 

residues. In the peptide binding experiment, peptides with Pro at P4 and Gly at P5 

were well accepted. P8 favoured more hydrophilic residues.

Previously, A*0201 motifs have been defined by quantitative binding assays 

(Ruppert et al., 1993) and by the grouping of naturally occurring epitopes 

(Rammensee et al., 1995). For anchor residues, the five z descriptors study
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identified Leu, lie, Val, Ala and Met at P2 and P9, which were also the most 

preferred amino acid from other studies (Falk and Rotzschke, 1993). For non

anchor residues, some of the results overlapped. The present study identified 

aromatic residues at PI, small hydrophilic residues at P4 and hydrophobic amino 

acids at P5, while the binding study by Drijfhout suggested Lys, Tyr, Thr at PI, and 

that P4 and P5 accept both polar and non-polar residues (Drijfhout et al., 1995). As 

previous studies indicate (Falk et al., 1991) these positions are more involved with 

TCR interaction and the amino acids that occupy these positions may vary greatly 

between epitopes from different organisms. Furthermore, the differences at the 

positions may also be due to the peptide data set used. Results of the peptide 

binding experiments showed that peptides with the favoured residues identified 

from the 2D-QSAR study bound to A*0201 with high affinity. Overall, the five z 

amino acid descriptors seemed to be a promising tool in studying peptide-MHC 

interaction, and may be used in combination with other QSAR methods such as 

CoMSIA.
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Pocket Residues
A 5 1 59 63 66 99 159 163 167 171

M Y Y E K Y Y T W Y

B 7 9 24 34 45 63 66 67 70 99

Y F A V M E K V H Y

C 9 22 70 73 74 97 99 114 116

F F H T H R Y H Y

D 99 114 155 156 159 160

Y H Q L Y L

E 97 114 116 147 152 155 156

R H Y W V Q L

F 73 77 80 81 84 95 116 118 123 124 143

T D T L Y V Y Y Y I T

Table 3.8. The residues that form the peptide binding pockets of the HLA-A*0201 

molecule.
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Chapter 4
On-line application of the additive method -  MHCPred

4.1 Introduction

In the previous chapter, the theory of the additive method and its application to the 

generation of MHC-peptide interaction models were explained. Apart from the 

additive method, many other algorithms have been developed to predict T cell 

epitopes: motif search methods (Rammensee et al., 1999), quantitative matrices 

(Reche et al., 2002), structure-based approaches (Altuvia et al., 1997) and artificial 

neural networks (Del Carpio et al., 2002), etc. Many algorithms have been 

implemented as internet-based servers where users can predict T cell epitopes in 

protein sequences. The internet-based epitope prediction program is an effective 

way of applying Bioinformatics data on a wide scale, as it also helps laboratory- 

based scientists world-wide to use these methods in their work. For this purpose, an 

Internet application of the additive method, called MHCPred, was produced. 

MHCPred includes models for all human and mouse MHC alleles generated in the 

Bioinformatics lab so far, and users can predict potential T cell epitopes restricted to 

these alleles (Guan et al., 2003a; Guan et al., 2003d; Hattotuwagama et al., 2004).

In the first part of this chapter, the web interface, the underlying peri program, and 

the output of MHCPred are explained. In the second part of the chapter, the 

predictivity of MHCPred is evaluated using peptide data not used to construct its 

models. Two sets of peptide data are used: A*0201 binding peptides from Dr. 

Vladimir Brusic that includes peptides taken from the MHCPEP database (Brusic et 

al., 1998) together with some unpublished data, and the second data set contains 

recently published epitopes from the literature. The predictivities of other online T
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cell epitope prediction algorithms are also tested and compared with the additive 

method.

4.2 The MHCPred server

4.2.1 The MHCPred web interface

The MHCPred interface is shown in figure 4.1. Currently the server holds models 

for a total of 23 human and mouse MHC alleles (table 4.1). As the research 

continues, models for other alleles will be added. A summary of the model statistics 

is in table 4.1.

Two versions of MHCPred have been developed. The first version is available on

line and the user can access it through the following URL: 

http://www.ienner.ac.uk/MHCPred/ (Guan et al., 2003d). An improved version has 

been made and is currently on the intranet only. In this chapter the term ‘MHCPred 

server’ implies the second version, as it will soon become available online and 

replace the first one.
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Predicting the binding affinity for MHCI and 
II molecules

Model
selection

p . i:t a.

Cut off value

Preferred residues 
at given position

Figure 4.1. Graphical user interface (GUI) of MHCPred, from which the user can 

enter the query protein sequence, choose the allele and model used in the prediction. 

The IC50 threshold (nM) is used to restrict the output. If a value is entered, peptides 

with IC50 values higher than the value will not be listed in the output. Also the user 

can choose to have output with only peptides that have preferred residues at given 

positions. A total of four such positions can be selected.
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No. o f  
peptides

NCa /

A*0101 95 0.420 4 0.997
A*0201 335 0.377 6 0.731
A*0202 69 0.317 9 0.943
A*0203 62 0.327 6 0.963
A*0206 57 0.475 6 0.989

Human A*0301 70 0.305 4 0.972
A*1101 62 0.428 3 0.977

Class I A*3101 31 0.453 6 0.990
A*6801 37 0.370 4 0.974
A*6802 46 0.500 7 0.983
B*3501 52 0.435 6 0.984
H2-Db 73 0.493 5 0.948

Mouse H2-Kb 55 0.454 6 0.989
H2-Kk 152 0.456 6 0.933

DRB1*0101 90 0.808 8 0.994
Human DRB 1*0401 185 0.716 4 0.967

DRB 1*0701 84 0.649 7 0.999
I-Ab 44 0.850 6 0.994

Class II I-Ad 145 0.898 6 0.993
Mouse I-Ak 55 0.790 6 0.990

I-As 81 0.783 6 0.980
I-Ed 69 0.732 6 0.992
I-Ek 52 0.925 6 0.995

a. number of components

Table 4.1. Alleles included in the MHCPred server. The table lists the human and 

mouse models used in the server and statistics obtained for each model, q2 values 

indicated how good the ability of the models is to predict epitopes from sequences, 

and r2 values show the proportion of variance explained by the model, or, how good 

the models fitted the training data. NC is the number of components that gave the

y yoptimal q values. Note that the q values for class II models are higher than those of 

class I. This is because of the training set for class II models are generated by the 

iterative technique that involves pre-selection of data. A detailed expla nation is 

given in Dr. Doytchinova’s paper (Doytchinova and Flower, 2003b).
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4.2.2 The input

To keep the calculation time relatively short, the input protein sequence length is 

limited to 500 amino acids, this restriction will be relaxed in the future when 

MHCPred will be put on a faster server. The server interface is written in HTML, 

and the CGI program is written in Perl. The calculation procedure of the CGI 

program is summarised in figure 4.2. Only sequences in flat text format are accepted 

by the server. Both upper and lower cases are accepted and all the non-amino acid 

characters will be deleted during calculation. A pull-down box is used for the 

selection of the alleles, where the user can choose any of the alleles in table 4.1. In 

the first version of MHCPred only one allele can be chosen at a time. In the second 

version, multiple alleles can be selected. However it is not recommended to select 

more than three alleles at once, as it slows down the calculation and increases the 

result page loading time.

Two types of models are generated by the additive method. The user can choose to 

use the single amino acid model, which only considers the interaction between the 

peptide and the binding site. Alternatively, if the user wants to take into account the 

interactions between adjacent amino acids of the peptide, the amino acid with 

interactions model should be used. Later in this chapter the predictivity of the two 

models will be compared.

The query sequence is chopped into nonamer peptides except for the H-2Kd and H- 

2Kk model, which requires octamers. If the user enters preferred residues and 

positions, the program uses another subroutine to check the peptide to see whether 

the output peptide has these residues at these positions. If it does, the program starts
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the next step, if  it does not have the residue at the given position (figure. 4.2), then 

the subroutine runs again to get the next peptide and the process continues until a 

peptide with the preferred residue is found at the given position. After processing 

the input sequence, the program opens the file containing the coefficients and reads 

the file into a two-dimensional matrix. For each amino acid of the peptide, the 

program reads the corresponding value in the matrix and adds it to the constant 

value to give the final result. If amino acid and interactions model is selected, the 

adjacent and 1-3 amino acid interactions are taken into account and their 

contributions are added to the result.

176



MHCPred Chapter 4

User

f

Web Interface

Input sequence

Not present 
in the peptide

Present in the 
peptide

Less than 500 residues

Return error 
message and exit

More than 500 residues

Check for preferred residues

Cut the first nonamer 
peptide from position

Calculate single amino 
acid contributions

Delete non-amino acid 
characters

Calculate amino acid 
interaction contributions

Select the nonamer from the 
next position, ie, position 2

Figure 4.2. A flow chart of how the CGI program works in MHCPred.
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4.2.3 The output

A sample of the output page is shown in figure 4.3. The output is arranged in a table. 

The input sequence is printed at the beginning of the result table.

Three parameters can be used for formatting the output page: The cut off IC50 (nM) 

value (between 0.01 to 5000nM) where only peptides with predicted binding affinity 

lower than the cut off are listed. Usually peptides with predicted binding affinities 

less than 500nM are good binders, while those with binding affinities more than 

5000nM are classified as non-binders. If the user does not enter any value, all the 

peptides generated from the input sequence will be listed. The binding affinities of 

those with IC50 more than 5000nM are not shown, but replaced by The predicted 

-loglCso values are also shown in the table.

There are two ways to list the output peptides, they can be listed in ascending order 

of IC50 (nM) values, or they can be listed according to their position in the input 

sequences. When the user decides to list the output page according to the IC50 values, 

he/she can also choose preferred amino acids at defined positions. The user can 

define up to four positions of the peptide, and tick the box next to the amino acid to 

choose which amino acid to display.
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-loglCso values

Input sequence

- i-j ..

J®

Peptide
Predicted
values

SPVTKTPPR
WLGDGVQL
SPSSDEPPM
QLPPGDYST
RDLPTIPGV

Y DRKPIM EC

nrosK K M

M S G G S S C S Q T P S R A I P A T R R V V L G D G V Q L P P O D Y S / T P G G T L F S T T P G G T R I I Y D R K F L M E  
C R N  S P  V T K  T P P  R D L P T I P G V T S P  S S D E P P M E A S  Q S ^ i L R N S P E D K  R A G G E E  S Q f  E M B I

Amuu} arid groups Predicted ICM Vahu (nM)

To view die posAon o f die epitopes, click Vn the epitope and as position will be duplayed m a sep 

'- ‘ means non-binders \

IC50

Figure 4.3. An example of the MHCPred output. Peptides generated by the additive 

method are listed in the first column of the table, their predicted -loglCso values and 

IC50 (nM) values are listed in the second and third column. Peptides that are 

potential binders are listed at the top of the table, weak and non-binders are listed 

towards the end of the page.
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The predictivities of the single amino acid and amino acid with interactions models 

are largely dependent on the training data. When building the model, the algorithm 

scans all the amino acids that are present at one position and calculates the 

coefficients for each amino acid. Ideally each of the 20 amino acids should be 

present at every position, while in reality, some amino acids are missing at certain 

positions. This is especially true for amino acid interactions. For example, in the 

A*0201 training data set, each of the twenty amino acids are present at position 3 

and 4, but only six amino acids appear at the anchor position 9. As more data 

becomes available, more data will be added to the model and the number of missing 

values will be reduced. At present the missing amino acids or amino acid 

interactions are assigned zero values, therefore they do not have an impact on the 

peptide binding affinity. Alternatively, the user can give those amino acids other 

values. For example, the user may decide to give all the missing amino acids a 

minus value, such as -1.0, as a result all the peptides with amino acids that are not 

present in the model are penalised.

4.2.4 The peptide library

An added option in the second version of MHCPred is to calculate the effect on 

affinity of mono-amino acid mutations of the peptide. The program takes a single 

nonamer peptide as the input, substitutes the amino acid at a certain position with 

each of the twenty amino acids and calculates the binding affinities of the new 

peptides. This option is useful in comparing the binding affinities of heteroclitic 

analogues of the test peptide, and to test the effect of different amino acids at 

specific positions of the peptide. The interface is shown in figure 4.4.
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Like the MHCPred webpage, the user can also choose to use either the single amino 

acid model or the amino acid with interactions model. The user can change up to 

two positions within the peptide. If the user decides to choose one position, then 

each of the nine positions of the peptide are substituted with each of the 20 amino 

acids in turn, generating a total of 180 peptides. If the user wants to change two 

positions, then two random positions are selected by the server. Each of the 20 

amino acids will appear at each of the positions, and the total number of different 

peptides generated is 13680 (9x(9-l)/2!x20xl9). The output cut off has three 

options: the input peptide affinity, peptides with affinities 5% lower than the input 

peptide, or the user can select all and see all the output. A sample output is shown in 

figure 4.5.
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Allele
selectionInput

peptide Model
selection

•  J  A j  *  j j f w o r t w  ffMXfa , J  J

AdOea ;#  ■ c \Ii«tpii>(a<^M\pwUb.NM ”

[eteroclitic Peptides Binding Affinity Calculation

Cutoff

*  IC jo of thi mput peptide

*  one
r  5% tower dian the IC jj, of the mput peptide
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I” two

^MyCenputer

Output cut off How many positions
to change

Figure 4.4 The graphical user interface of the peptide library, where the user can 

enter the query sequence, choose which allele the peptide is restricted to and the 

additive model to use. For the output, the user can choose to modify one or two 

positions of the peptide and select the cut off so that peptides below the cut off will 

not be displayed.
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Echo inpi 
sequence

HLA allele: A0201 ______
Predicted -loglC^ (n M )!^  (nM) peptide

6.132 737.90 AAATAAAAA
6.075 841.40 AAYAAAAAA Predicted IC50
6.024 946.24 A A A A A IA A ^ ^ ^ ^ (nM)

Predicted 6.024 946.24 AAAQAA^AA
-log(IC50) ^011

6.004 990.83 AAAPAAA^A
5.986 1032.76 AAAAAAPAAX
5.972 1066.60 AAWAAAAAA Modified
5.965 1083.93 AMAAAAAAA peptides

A A A A A A

7.889 12.91 NIFQSSMTK
7.885 13.03 SIFKSSMTK
7.881 13.15 SIFCSSMTK
7.874 13.37 SIFSSSMTK
7.861 13.77 SIFQSSMDK
7.861 13.77 SIFQSSMWK
7.861 13.77 SIFQSSMCK
7.855 13.96 SIFQTSMTK
7.852 14.06 SIFQSSMHK
7.849 14.16 SZFQSFMTK
7.832 j f 14.72 SIFQSSMTK

Input peptide is in 
red

Figure 4.5. Part of the output page of the peptide library. Mutated peptides are listed 

in ascending order of their binding affinities. The input peptide is coloured in red.

183



MHCPred Chapter 4

4.3 Results

4.3.1 Evaluation of MHCPred using peptides in the database 

In the MHCPred evaluation test, the predictivity of the additive method was 

compared with that of other available online prediction algorithms. In the first 

evaluation test, the A*0201 data set received from Dr. Vladimir Brusic was used to 

test the predictivities of four different types of MHC-binding peptide prediction 

algorithms available on the Internet, including motif search, quantitative matrices, 

machine learning methods and structural prediction methods. Nine servers were 

included in the test: BIMAS (Parker et al., 1992b), SYFPEITHI (Rammensee et al., 

1999), RANKPEP (Reche et al., 2002), PREDEP (Altuvia et a l , 1995), ProPred 

(Singh and Raghava, 2001), Compred (Bhasin and Raghava, 2004), netMHC (Buus 

et al., 2003), SVMHC (Donnes and Elofsson, 2002), SMM (Peters et al., 2003) and 

MHCPred (Guan et al., 2003d). A detailed description of the servers and their 

underlying algorithms is in section 2.1.11. Among the servers, SYFPEITHI, 

RANKPEP and MHCPred predicted both human and mouse class I and II MHC 

alleles. SMM and netMHC were mainly for predicting A2 binding peptides and 

other servers were for human and mouse class I MHC alleles.

The A*0201 data set was separated into three groups: T cell epitopes, naturally 

processed peptides and poly-alanine peptides. T cell epitopes were peptides that had 

been proved to induce T cell responses. Naturally processed peptides were 

fragments eluted from cell surface MHC molecules. Poly-alanine peptides were 

synthetic peptides with mainly alanines and one or two other amino acids. Poly

alanine peptides are commonly used in MHC-peptide interaction research to define
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the binding ability of non-alanine amino acids at specific positions. Affinities of the 

three groups of peptides predicted by the nine servers were presented as ROC curves 

and compared by the area under the ROC curves (Aroc).

Average Aroc values of the test set were plotted in figure 4.6 and the ROC curves of 

the different test sets were in figure 4.7, 4.8 and 4.9. RANKPEP had the highest 

average Aroc value (0.955), and had exceptional good predictions with the poly

alanine peptide set (Aroc=0.999). The additive single amino acid model had the 

second highest predictivity in the test and with the Aroc value of 0.947. SYFPEITHI 

and BIMAS also had high scores of 0.937 and 0.935, respectively. The Aroc values 

of PREDEP, netMHC, SVMHC and the additive amino acid and interactions model 

were above 0.88. The Aroc values of COMPRED and SMM were about 0.85.

4.3.1.1 Comparing the predictivity of two additive models 

The additive method generates two types of models: the single amino acid model 

and the amino acid plus interactions model. The first model considers only the 

interaction between individual amino acids of the peptide and the binding site of the 

MHC, while the second model also takes into account the interactions between 

nearby residues of the peptide. In the evaluation test, the Aroc values of the single 

amino acid model were on average 5% higher than those of the amino acid plus 

interactions model. The single amino acid model had much higher Aroc values in 

predicting poly-alanine derivatives and naturally processed peptides. However, the 

difference in the prediction of T cell epitopes using the two models was small, in 

which the Aroc value of MHCPred with single amino acid model (Aroc = 0.929) is 

about 3% higher than the model with amino acid and interactions (Aroc = 0.901).
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Epitope prediction programs

Figure 4.6. The overall performance of the T cell epitope prediction servers. The 

Aroc values for the T cell epitopes (T), poly-alanine peptides (A) and naturally 

processed peptides (N) were in pink, red and cream, respectively. The average Aroc 

values of T+A were in blue, the average Aroc values of A+N were in green, and the 

average Aroc values of T+N were in orange.
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Figure 4.7. ROC curve of the T cell prediction. T cell epitopes data from Dr. Brusic 

was used as the input for the different algorithms. The ROC values of the prediction 

servers are (in descending order): SYFPEITHI (0.949), SVMHC (0.931), MHCPred 

single amino acid model (0.929), RANKPEP (0.927), BIMAS (0.924), PREDEP 

(0.912), MHCPred amino acid and interactions model (0.901), netMHC (0.873), 

SMM (0.866), and compred (0.853).
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Figure 4.8. The ROC curve of naturally processed peptide prediction. The ROC 

values of the prediction servers are (in descending order): SVMHC (0.966), 

SYFPEITHI (0.953), RANKPEP (0.94), MHCPred single amino acid model (0.932), 

BIMAS (0.921), PREDEP (0.88), MHCPred amino acid and interactions model 

(0.874), netMHC (0.873), compred (0.772) and SMM (0.768).
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Figure 4.9. ROC curve of the poly-alanine peptide prediction. The ROC values of 

the prediction servers are (in descending order): RANKPEP (0.999), MHCPred 

single amino acid model (0.98), netMHC (0.965), BIMAS (0.96), compred (0.94), 

MHCPred amino acid and interactions model (0.921), SYFPEITHI (0.91), SMM 

(0.904), PREDEP (0.856) and SVMHC (0.85).
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4.3.1.2 T cell epitope prediction

The ability to correctly identify T cell epitopes within a protein sequence is the 

ultimate goal of any MHC-peptide binding affinity prediction server. In the T cell 

epitope predictions (figure 4.7), matrix-based algorithms had good predictivity. 

SYFPEITHI had the highest predictivity in the list, with an Aroc value of 0.949. 

SVMHC and the additive single amino acid model were the second and third best 

prediction servers with the Aroc values of 0.931 and 0.929, respectively. The fourth 

and fifth best prediction servers were RANKPEP and BIMAS, with Aroc value of 

0.927 and 0.924, respectively. However, the test set may still be biased, as many of 

the peptides in the set were identified by motif searching first, and therefore cannot 

give a complete picture of the algorithm’s predictivity.

4.3.1.3 Naturally processed peptides prediction

The support vector machines based server SVMHC was the best server for the 

prediction of naturally processed peptides in the evaluation test (Aroc=0.966) 

(figure 4.8). Matrix based algorithms also had high levels of predictivity. 

SYFPEITHI was the second best in this category, with the Aroc value of 0.953. 

RANKPEP and the additive single amino acid model have similar Aroc values 

(RANKPEP Aroc = 0.94, the additive model Aroc = 0.932)

4.3.1.4 Poly-alanine peptides prediction

The Aroc values were relatively high (Aroc > 0.85 for all servers) in the prediction 

of poly-alanine peptides for all algorithms (figure 4.9). RANKPEP had the highest 

Aroc value of 0.999 in predicting poly-alanine derivatives, and was closely followed 

by the additive single amino acid model, which had the Aroc value of 0.98. netMHC
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is the third best server in predicting poly-alanine peptides with a Aroc value of 

0.965.

4.3.2 Evaluation using recently published epitopes

The evaluation test using Dr. Vladimir Brusic’s data examined the ability of the 

prediction servers to distinguish established T cell epitopes and ligands from non

binding peptides. All prediction algorithms showed good predictivity in the test with 

average Aroc values o f 75% or more. To test the predictivity of the algorithms in 

real world situations, the second part of the evaluation used recently published T 

cell epitopes. To avoid replicating data from existing databases, only epitopes that 

have been published within the last few years were used (2001-2004). However 

there was still a chance that a small part of epitopes may overlap with ones already 

present in the training set of the tested algorithms, yet as most of the epitopes were 

new and the set was less biased than using extant data.

In the first evaluation test, RANKPEP, BIMAS, SYFPEITHI, SVMHC and the 

additive amino acid only model were the top five servers, therefore they were 

chosen to be used in the second evaluation test. Both human and mouse epitopes 

were included in the data set. As BIMAS did not include any Class II human alleles, 

the Class II MHC prediction server, ProPred, was used for the prediction of Class II 

epitopes. As SVMHC did not have any mouse alleles, only RANKPEP, BIMAS, 

SYFPEITHI and the additive single amino acid model were used to predict mouse 

epitopes.
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A total of 83 epitopes from 60 protein sequences were collected from the literature, 

including 36 human class I HLA, 27 class II HLA and 20 mouse class I MHC 

epitopes. The class I epitopes mainly bind to A 1, A3 and A2 alleles. Class II alleles 

tested were restricted to DRB*0101, *0401 and *0701 alleles, and mouse alleles 

tested were restricted to H-2Kb and Db. The protein sequences were retrieved from 

either SWISS-PROT (Bairoch and Boeckmann, 1991; Boeckmann et al., 2003) or 

Genbank (Benson et al., 2004; Cassatt and Peterson, 1987), and were used as the 

input sequences for the prediction servers. The full list o f epitopes and 

corresponding protein sequences are given in appendix 4.

To test whether a server can predict the epitopes, a cut off threshold was set. If the 

predicted affinity or score (some servers did not directly predict the binding affinity, 

but gave scores for each peptide) of the epitope was above the cut off, then the 

server was able to predict the epitope. The cut off points were different for each 

server. SVMHC highlighted predicted epitopes. For RANKPEP and ProPred server, 

default thresholds were used, which were the top 2% and 3% of generated peptides, 

respectively. For SYFPEITHI and MHCPred, it was set to the top twenty peptides. 

For BIMAS, a peptide-MHC dissociation half-life of 5 minutes was used. The 

results of the predictions are summarised in figure 4.10, 4.11 and 4.12.

The overall predictivities of the servers for epitopes from real proteins were not as 

high as using peptides stored in the database. It should be noted that most prediction 

servers had models for more alleles than the ones tested. Due to restrictions on the 

available data, many alleles were not tested. Therefore the predictivity of other 

alleles may differ from the present results.
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The average predictivity of human class I epitopes was the highest for all the servers, 

followed by class II predictions. The mouse epitope predictions were the lowest in 

the test. The additive model was the best algorithm in the test with about 85% 

accuracy in all tests. For class I epitopes, RANKPEP, with a predictivity of 79%, 

was the second best server. BIMAS was also good at predicting class I HLA 

epitopes (66%), and SYFPEITHI and SVMHC had similar performance, with 74% 

and 64%, respectively. For Class II epitope predictions, MHCPred was the best 

among all the servers, with a predictivity of 74% followed by ProPred with a 

predictivity of 67% (figure 4.11). RANKPEP and SYFPEITHI had a similar level of 

predictivity, both were about 40% accurate. In mouse class I MHC epitope 

prediction (figure 4.12), MHCPred again was the best prediction server with a 

predictivity of 90%, followed by SYFPEITHI with 65% predictivity. BIMAS and 

RANKPEP had the lowest levels of predictivity at 0.3.
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MHCPred BIMAS SYFPEITHI SVMHC RANKPEP
Servers

Figure 4.10. Percentage of correct predictions for the five epitope prediction servers 

using Class I HLA epitopes. The MHCPred server had the best prediction rate of 

85%, followed by RANKPEP 79%, BIMAS 66%, SYFPEITHI 74% and SVMHC 

64%.
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MHCPred ProPred RANKPEP SYFPEITHI
Servers

Figure 4.11. The percentage of correct Class II epitope predictions for four on-line 

prediction servers. MHCPred had the highest predictivity of 74%, followed by 

ProPred 67%, SYFPEITHI 44% and RANKPEP 40%.
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MHCPred BIMAS RANKPEP SYFPEITHI

Figure 4.12. The percentage of correction mouse class I MHC epitope predictions 

for four servers. The correct prediction rate of MHCPred was 90%, followed by 

SYFPEITHI 65%. BIMAS and SYFPEITHI had the same prediction rate of 30%.
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4.4 Discussion

The online application of the additive method used allele-specific additive models to 

predict potential epitopes for MHC alleles within a given protein sequence. Both 

human and mouse MHC class I and II models were included in MHCPred.

The predictivities of other online T cell epitope prediction algorithms were 

compared with MHCPred. Two data sets were used in the tests: one was obtained 

from Dr. Vladimir Brusic, which contained peptides from MHCPEP and some 

unpublished data. The set was divided into three groups, T cell epitopes, naturally 

processed peptides and poly-alanine peptides. The other data set contained T cell 

epitopes collected from recent publications.

The matrix-based servers RANKPEP, the additive method, SYFPEITHI and 

BIMAS were the four best servers in the first evaluation test (section 4.3.1). The 

result suggested that, in spite of the disadvantage of having to produce specific 

models for each allele, the matrix-based methods were useful in predicting MHC 

ligands and epitopes. However, the training set of the RANKPEP models was taken 

from the MHCPEP database, which might be the explanation of the exceptionally 

high accuracy in predicting poly-alanine peptides (Aroc=0.999). The predictivity of 

the structure-based method was lower in this analysis, which may be due to the 

difficulties in predicting the structures of peptide-MHC complexes and the 

limitations in the availability and quality of the X-ray data.

The results of the present test also suggested that no algorithm was good in all the 

predictions. SYFPEITHI, SVMHC and the additive method were good for
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predicting T cell epitopes and naturally processed peptides, RANKPEP and the 

additive method was better at predicting the poly-alanine peptides. Since Dr. 

Brusic’s data set overlapped with the RANKPEP training data, the ability of 

RANKPEP in predicting peptides derived from other sources remains to be tested. 

As poly-alanine peptides are synthetic peptides used to aid MHC-peptide research, it 

has little value in the prediction of natural T cell epitopes. Therefore the ability of 

the algorithms to correctly predict naturally processed peptides and T cell epitopes 

is more important for vaccine research.

The performance of different algorithms was affected by their training sets. 

SYFPEITHI used only T cell epitopes as the training set, which explains why it was 

better at predicting T cell epitopes and naturally processed peptides but was less 

predictive when poly-alanine peptides were used.

The best performing algorithms from the first test were used in the second test, 

where their ability to find T cell epitopes in protein sequences was examined. The 

predictivity of the algorithms was about 10% lower than that of the first test. The 

additive method still maintained a high level of predictivity, with a correct 

prediction rate of over 70% in all three test sets. This slight decrease of performance 

was due to the test set used. In the first test, the binding data were from the database 

and non-binding data were laboratory tested non-binders, which meant that there 

was a clear difference between the two groups. However, in the second test, the 

difference in affinity between epitopes and other peptides may be less clear. There 

was more chance that some of the protein fragments did possess one or more of the 

ancillary anchor residues, or may even have one anchor residue. In this case, it
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required the server to have high sensitivity and specificity to be able to pick the 

epitope from the sequence. This is also the present bottleneck for not only MHC- 

binding prediction, but all proteomic prediction servers.

Previously, Kun Yu carried out a study to compare the predictivity of A*0201 

models of different algorithms (Yu et al., 2002). The A*0201 data set used in the 

first part of the present study was also used as part of his test set. In his work, the 

predictivity was compared between matrix based predictions (BIMAS, SYFPEITHI 

and their in house models) and machine learning algorithms ANN and hidden 

Markov models. There was a good correlation between the two experiments. In both 

experiments, SYFPEITHI had a high Aroc value for naturally processed peptides 

and T cell epitopes, and the predictivity of BIMAS was similar for both T cell 

epitopes and naturally processed peptides. In the two experiments Aroc values of 

poly-alanine peptides were both the highest among his predictions, with the average 

Aroc value above 0.9.

Among all the MHC alleles, A*0201 is the best studied and there are more than two 

hundred ligands in the AntiJen database alone, while some of the alleles have less 

than 30 binding peptides available. The large group of available data makes it easier 

to produce a good quality model for the A*0201 allele. This is reflected in the 

results of the second test, where the predictivity of A*0201 epitopes was 

significantly higher than that of class II and mice MHCs.

The cross-comparison of all the additive models (table 4.1) showed most models 

had q2 value higher than 0.3 and r2 values were higher than 0.9, which indicated
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good level of predictivity in QSAR studies. The level of predictivity was proved in 

the two validation tests. In the first test where database peptides were used, a 

prediction rate of more than 90% was observed in all peptide groups. In the second 

test, the additive method maintained a high level of accuracy of 70% or more, while 

the performance of other algorithms dropped. For epitope prediction servers, to be 

able to correctly predict epitopes is more important than predicting good binders. A 

T cell epitope can both bind to MHC and be recognised by the T cell receptor, 

whereas a good binder may not be recognised by the T cell receptor and the immune 

system will not be activated. In laboratories, a good binder is usually identified first, 

which is then tested for immunogenicity. The additive method has demonstrated the 

ability to not only predict high binders, but epitopes, therefore greatly shortening the 

epitope discovery process.

Epitopes used in the present study were mainly restricted to HLA-A2, A3, DRB1, 

H-2Kb and Db alleles, which was because they were the common alleles studied 

and most papers found in the literature focused on these alleles. In the future, more 

data will be collected and the predictivity of other models can be tested.

One of the options in the MHCPred interface is to choose a cut off threshold for the 

output. The problem remains as to what level of cut off the user should use? At 

present the default threshold for MHCPred is 5000nM ( I C 5 0 ) ,  as peptides with 

affinities lower than 5000nM are considered as non-binding peptides. A more 

specific cut off is required to help the user to identify epitopes. Sette et al. has 

defined a cut off of lOOOnM for epitope prediction (Sette et al., 1989a), later the cut 

off was reduced to 500nM (Sette et al., 1994). In the ROC plots, the plateaus start
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after pICso of 6.5 (equivalent to IC50 of 300nM), that is, the performance of the 

algorithm reaches the peak at 6.5. According to the analysis, a threshold of 300nM 

would be sufficient to identify the best MHC binders.

In all the predictions, the predictivity of the additive amino acid only model was 

higher than that of the amino acid and interactions model. Similar results have been 

observed in the evaluation of T cell epitope prediction algorithms by Peters et al. 

(Peters et al., 2003). This is because of the limitations in the size of the training data 

set. The additive method considers two types of interactions: the interactions 

between adjacent amino acid and the interactions between one amino acid and every 

second amino acid. The total number of possible amino acid pair combinations is 

6,000 (20x20x8+20x20x7). The biggest data set used for additive model generation 

was 335 (A*0201), which was not able to include all the amino acid combinations. 

Therefore the reason of the relatively lower predictivity of the amino acid and 

interaction model was due to lack of data. This finding was in agreement with the 

comparative study by Peters et al. (Peters et al., 2003). This can be improved as 

more peptide binding experiments become available in the literature.

To conclude, the evaluation tests showed that the additive method is a reliable 

algorithm for studying MHC-peptide interactions. There are a number of human and 

mouse class I and II models available and as the research carries on more models 

will be produced and put on-line.
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Chapter 5 

Definition of an HLA-A3 supermotif using CoMSIA

5.1 Introduction

In chapter three, a 2D QSAR technique - the additive method - was applied to the 

study of peptides binding to HLA-A3 alleles and the definition of a HLA-A3 

peptide binding motif. The additive method compared amino acids present at each 

position of the peptide and their effect on binding affinity, and derived a regression 

equation that can be used to predict the affinity of as yet untested peptides. In the 

present chapter, a 3D QSAR method, CoMSIA, was used to define the HLA-A3 

supermotif. Previously, CoMSIA was applied to peptides binding to the HLA- 

A*0201 allele and a good description of the peptide - binding site interaction was 

obtained (Doytchinova and Flower, 2001). More recently, the technique was applied 

to peptides binding to the HLA-A2 supertype and defined an A2 supermotif 

(Doytchinova and Flower, 2002). In this project, the CoMSIA technique is used to 

define the amino acid preferences of peptides binding to the HLA-A3 family 

A*0301, A*1101, A*3101 andA*6801 (Guan etal., 2003a).

5.2 Results

5.2.1 The CoMSIA models

The peptide training set for each allele was collected from the AntiJen database 

(McSparron et al., 2003). Only nonamers were included in the set since they are the 

most common peptides bound to HLA class I molecules. The data set used in
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CoMSIA was identical to the set used in the additive method (see section 2.1.7). 

Some peptides in the training set bound to more than one allele. The correlation 

coefficients between the affinity data for the common peptides ranged from 0.168 

for A*3101/A*6801 (n = 22) to 0.661 for A*0301/A*1101 (n = 50). The pIC50 

ranges were from 3.3 to 3.5 log units. As with the additive method, peptides with 

|residual values| larger than 1.5 were stepwisely excluded during QSAR model 

generation. The process was repeated until q2 started to drop. Because of the 

different techniques used in the experiments, the number of outliers was different 

between the additive method and CoMSIA. However, some of the outliers were 

identical in both calculations, which often did not possess preferred anchor residues 

and had low experimental activity.

The all-fields models for each of the four HLA-A3 alleles are presented in table 5.1. 

The model of A*3101 had the highest predictivity (q2 = 0.700). The predictivity of 

the models for A*6801, A*1101 and A*0301 was 0.570, 0.496 and 0.486, 

respectively. The models produced 56-90% of their affinity predictions with 

residuals less than 0.5 log units and the percentage of poorly predicted peptides 

(residuals > 1.0) was between 0 and 18%.

The values of r2 were greater than 0.9 for the four models, indicating a good 

correlation between peptide structures and binding affinities. The non-cross- 

validated analyses showed that the local hydrophobicity and hydrogen bond donor 

ability had the highest fractional values, followed by electrostatic, hydrogen-bond 

acceptor and steric properties. All the models provided a high level of peptide 

prediction, ranging from 50 to 90%, and the percentage of poorly predicted peptides
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was between 0 and 10%. As the affinity range for each allele was slightly different, 

the ratio of the SEP to affinity range and SEE to affinity range were used to assess 

the fitness and predictivity of the models. This ratio should generally be <10% for 

good QSAR models and as a rule the ratio SEP/affinity range is higher than the ratio 

SEE/affinity range. The present models had ratios from 16.5 to 18.6% for 

SEP/affinity range and from 2.8 to 8.4% for SEE/affinity range.

Five contour maps were generated for each allele, representing the five 

physicochemical properties: steric bulk, electrostatic potential, local hydrophobicity, 

and hydrogen donor and acceptor abilities. The maps were produced using non

cross-validated PLS (figure 5.1 to figure 5.5). The favoured and disfavoured areas 

for each property were highlighted in different colours in the map. A property that 

was favoured by two or more alleles without being disfavoured by any of them was 

considered a favoured property for the supertype. A property disfavoured for two or 

more alleles was defined as being disfavoured for the supertype.

Comparing the fractional values of the different properties in table 5.1, steric 

complementary was not the major property involved in peptide-MHC binding. 

Figure 5.1 showed that the contribution of steric bulk was very different among the 

alleles. Steric bulk was favoured at P5 for two of the alleles (A* 1101 and A*3101) 

without being deleterious for the other alleles. Electron density was favoured at P3, 

P4, P5, P8 and P9 (figure 5.2). Hydrophobicity was favoured at P7 and disfavoured 

at P6 (figure 5.3). Hydrogen-bond donor groups were favoured at PI, P4 and P6 and 

disfavoured at P5 (figure 5.4). As was evident from figure 5.5 hydrogen acceptors 

were well accepted at P6, but they were disfavoured at pP5.
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A *  1101 A *0301 A *3101 A *6801

Number of peptides 59 69 30 39
Grid spacing (A) 2 2 1.5 2
aa 0.6 0.6 0.6 0.5
Column filtering (kcal/mol) 0.5 0.5 0.5 0.5
r.2 b9 bo 0.496 0.486 0.700 0.570
Number o f  components 8 6 4 10
SEPC 0.588 0.629 0.551 0.655
SEP/affinity range (%) 17.3 18.1 16.5 19.1
q2cJ 0.416 0.424 0.640 0.349
r2 0.972 0.959 0.921 0.950
SEEe 0.141 0.177 0.282 0.119
SEE/affinity range (%) 4.1 5.1 8.4 3.4
J
' bootstrap 0.989 0.971 0.950 0.961
F ratio 167.666 241.818 73.177 126.217

Steric 0.114 0.104 0.071 0.126
Electrostatic 0.234 0.277 0.254 0.251

Fraction Hydrophobic 0.250 0.260 0.225 0.257
H donor 0.261 0.226 0.364 0.241
H acceptor 0.141 0.133 0.087 0.125

|res.|< 0.5 40 67.80% 42 60.87% 27 90% 22 56.41%
0.5 < |res.| < 1.0 15 25.42% 20 27.03% 3 10% 10 25.64%
|res.| > 1.0 4 6.78% 7 9.46% 0 0 7 17.95%
Mean |residual| 0.443 0.585 0.179 0.516
Standard deviation 0.343 0.500 0.188 0.377

“Attenuation factor.
bq2 factor obtained after leave-one-out crossvalidation. 
cStandard error of prediction. 
dq2 obtained by crossvalidation in five groups. 
eStandard error o f estimate

Table 5.1. CoMSIA models for A3 alleles A*1101, A*3101, A*0301 and A*6801.
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Figure 5.1. CoMSIA stdev*coeff contour maps displaying the steric bulk 

property surrounding the peptide. Peptide ALFFIIFNK is shown inside the fields. 

The peptide is positioned with the N-terminus and position 1 to the left. Green 

and yellow areas indicate where steric bulk will increase or decrease the affinity, 

respectivity. Upper left: A*0301. Upper right: A*3101. Lower left: A* 1101. 

Lower right: A*6801.
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Figure 5.2. Electrostatic potential. Peptide ALFFIIFNK is shown inside the 

fields. The peptide is positioned with the N-terminus and position 1 to the left. 

Blue and red areas indicate where negative electrostatic potential will increase or 

decrease the affinity, respectively. Upper left: A*0301. Upper right: A*3101. 

Lower left: A*1101. Lower right: A*6801.
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Figure 5.3. Local hydrophobicity contour map. Peptide ALFFIIFNK is shown 

inside the fields. The peptide is positioned with the N-terminus and position 1 to 

the left. Yellow and white areas indicate where hydrophobic amino acid residues 

will increase or decrease the affinity, respectively. Upper left: A*0301. Upper 

right: A*3101. Lower left: A* 1101. Lower right: A*6801.
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Figure 5.4. H ydrogen donor contour map. Peptide ALFFIIFNK is show n inside  

the fields. The peptide is positioned with the N-term inus and position  1 to the 

left. Cyan and purple areas indicate where hydrogen-bond donor group on the 

ligand w ill increase o f  decrease the affinity, resepectively. Upper left: A *0301. 

Upper right: A *3101 . Lower left: A * 1101. Lower right: A *6801.
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Figure 5.5. Hydrogen bond acceptor abilities. Peptide ALFFIIFNK is shown 

inside the fields. The peptide is positioned with the N-terminus and position 1 to 

the left. Magenta and red areas indicate where hydrogen-bond acceptor groups on 

the ligand will increase or decrease the affinity, respectively. Upper left: A*0301. 

Upper right: A*3101. Lower left: A* 1101. Lower right: A*6801.
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5.2.2 The peptide binding experiment

Using the results from the HLA-A2 additive model and CoMSIA contour maps, 

some high binders for A*0301 allele were designed and their binding affinities 

were tested experimentally. The experimental protocol is the same as for A*0201 

binding peptides, a T2 stabilisation assay. The binding affinities o f eleven 

already defined peptides from the literature were measured to ensure that the test 

was reliable and that there was a linear relationship between IC50 and BL50 

measurements (correlation coefficient of 0.778). The peptides selected include 

high, medium and low binders. Sequences of the reference peptides, their 

measured IC50 values in the original papers, and BL50 values measured in the 

present experiments were listed in table 5.2.

The experimental binding affinities o f the reference peptides and their predicted 

binding affinities were plotted in figure 5.6. The measured BL50 values 

(presented as -logBLso = pBLso) were plotted against the negative logarithm of 

the literature values (pICso). For A*0301 peptides used in the experiment, 

peptides with pBLso values below 4 (BL50 > 10"4) are medium or low binders and 

those above 4 (BL50 < 1C4) are high binders. A total of nine test peptides were 

designed and tested. Among the designed peptides, amino acids that occupy 

anchor position 2 and 9 were the preferred amino acids from the model, lie at 

position 2 and Lys/Arg at position 9. Similarly, the secondary anchor positions 3 

and 7 also had the preferred amino acid Phe. Other positions were more flexible 

and contained different amino acids. The BL50 values of all test peptides were 

above 4, indicating good binding to the MHC allele. The experimental and 

predicted binding affinities of the peptides were listed in table 5.3.
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Peptide Experimental IC50 BL50

RINEEKHEK 6.105 3.621

LLIFHINGK 6.321 3.550

GTGSGVSSK 6.9 4.234

VLSHNSYEK 7.102 4.592

AIFQSSMTR 7.301 4.612

LVKSPNHVK 7.64 5.028

SIFQSSMTK 7.921 5.580

ALNFPGSQK 8.071 5.383

GTMTTSLYK 8.469 5.322

HLFGYSWYK 8.658 5.420

ALFQRSMTR 7.432 4.166

Table 5.2. The reference peptides, their experimental binding affinities (IC50) 

recorded in the literature, and measured BL50 values in the present experiments.

Peptides Predicted binding affinity 

- log IC50 (M) by additive 

models

Experimental 

binding affinity 

(BL50)

GIFTYGFRK 8.53 5.030

GIFTYGFMK 8.44 4.600

VIFTYGFRK 8.129 5.054

GIFTYGFYK 8.241 4.514

GIFRYGFRK 8.327 5.078

VIFTYGFMK 8.084 4.274

HIFTYGFRK 8.135 5.010

Table 5.3. The designed peptides, their predicted binding affinities (pICso) using 

the additive model and their measured binding affinities.
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Figure 5.6 The correlation between literature values and experimental values of 

the peptides. The IC50 values (the logarithm values of the experimental IC50 

value) were on the X axis and the BL50 values (converted from experimentally 

measured fluorescence intensity values) were on the Y axis. The two values form 

a near-linear relationship with a correlation coefficient of 0.778.
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Figure 5.7. The predicted binding affinities of the designed peptides and the 

measured binding affinity BL50 values.
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5.3 Discussion

HLA-A3 alleles A*1101, A*0301, A*3101 and A*6801 bound peptides with 

similar anchor residues. Sequence analysis showed that only 11 of the residues 

inside the binding pockets were polymorphic. In chapter three, a HLA-A3 

supermotif was defined using a 2D-QSAR technique, the additive method. The 

present study defined the HLA-A3 supermotif using a 3D-QSAR method, 

CoMSIA. The superfamily classification performed by both methods was based 

on the peptide binding specificities of the alleles and used experimental binding 

data to characterise the binding peptide motif. The previously defined motif of 

HLA-A3 alleles included main anchor positions 2 and 9 (Zhang et al., 1993), 

which identified a positively charged residue - Arg or Lys - at the C terminus, 

and a variety of hydrophobic residues at P2.

Some differences in side chain preferences by the A3 alleles were found at P2. In 

the additive models, it was found that small residues were preferred by A*6801 

and A* 1101. A*0301 and A*3101 preferred medium or large hydrophobic 

residues. Similar results were found in the CoMSIA contour maps. Steric bulk 

was favoured at P2 for A*3101 and A*0301 but disfavoured in A*6801 and 

A* 1101 models. The study of crystal structures of MHC molecules showed that 

the side chain of the P2 residue bound in pocket B (Madden et al., 1991a). There 

are different residues lining pocket B in the different HLA-A3 molecules, Tyr9 

in A*1101 and A*6801, Phe9 in A*0301 and Thr9 in A*3101. The presence of 

Tyr9 in A* 1101 and A*6801 allows pocket B to accommodate lager side chains 

like Leu. Electrostatic potential, hydrophobicity and hydrogen bond acceptance 

maps varied at this position, which was in agreement with the broad spectrum of
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well-accommodated amino acids found here, from the bulky, hydrophobic Leu to 

the small polar amino acid Thr.

The most important property for the amino acid at position 9 is hydrogen-bond 

donor ability. It was favoured in A*6801 and A*3101, and was disfavoured in 

A* 1101. The side chains of A*0301 both favoured and disfavoured hydrogen 

bond donor potential. In some cases, the change of Lys to the larger residue Arg 

could affect the expression of the molecule (Sidney et al., 1996). Results from 

the present study suggested the interaction between residue 9 and the MHC 

molecule may play an important role. The side chain of larger basic residue Arg 

could extend to the bottom of pocket F in A*6801 and A*3101, forming 

hydrogen bonds with residues at the bottom of the pocket and thus stabilising the 

complex.

The five residues that directly interact with the peptide in the F pocket were 

identical in both the A3 family and HLA-B27 (Leu81, Asp 116, Tyrl23, Thr 143 

and Trpl47). Arg and Lys bound to pocket F by extending to the bottom of the 

pocket and interacting with negatively charged residues Aspl 16 or Asp77 in both 

the A3 family and HLA-B27. B27 had been shown to accept hydrophobic 

residues like Leu, Ala and Tyr because of their interaction with Leu81, Tyrl23, 

Thr 143 and Trpl47 (Jardetzky et al., 1991). In the present study, the specificity 

of residues at position 9 was restricted to Arg and Lys only; both Ala and Tyr 

were deleterious in the additive method. This suggests a possible difference in 

conformation of the binding pocket in spite of sequence similarity. Also, this
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could be the result of a change of conformation after the binding of other amino 

acids in the peptide.

Secondary anchor positions 1, 3, 5, 6 and 7 were also of great importance. The 

common favoured property for position 1 was hydrogen-bond donor ability. The 

electron density at position 3 was preferred for three of the alleles. Sidney and 

co-workers found that peptides with aromatic residue at P3, like Tyr, Phe and 

Trp had a 31 fold increase in binding affinity to A*0301 (Sidney et a l, 1996). 

Bulky side chains with high electron density were preferred at position 5. 

Hydrogen-bond donor and acceptors were disfavoured here. Hydrophilic amino 

acids capable of forming hydrogen bonds were well accommodated at position 6. 

Hydrophobic residues at P7 were preferred by both additive and CoMSIA 

models.

Positions 4 and 8 faced away towards the T-cell receptor (Silver et a l ,  1992), but 

still could contribute to affinity. Electron density was favoured at both positions. 

Additionally, hydrogen-bond ability was important for position 4 and steric bulk 

was disfavoured at position 8.

To conclude, in order to bind to members of the HLA-A3 superfamily, a peptide 

requires a small to medium sized residue at position 2, such as lie or Threonine, 

and a positively charged residue Arg at position 9. Phe at either position 3 or 7 

was required for stable binding (Guan et a l,  2003a).
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According to the supermotif derived from chapter 3, and the present CoMSIA 

results, nine high binders of the A*0301 allele were designed and their binding 

affinity tested. All o f the peptides had anchor amino acid Lys at position 9 and 

lie at position 2, which bind to pocket F and B, respectively. These are the most 

important amino acids of the peptide and are required for high level binding. 

Secondary anchor positions 3 and 7 of the peptides were occupied by Phe, which 

was identified as the preferred amino acid at these two positions by CoMSIA. All 

peptides displayed good binding to the A*0301 allele, the B L 5 0  values of all 

peptides were above 4, the average binding affinity is 4.7. Three peptides were 

found to be the best binders, with B L 5 0  values above 5 : VIFTYGFRK, 

GIFRYGFRK and HIFTYGFRK, none of them have been recorded previously in 

the AntiJen database.

In the present study, CoMSIA was applied to HLA-A3 alleles. Five contour maps 

were generated, describing the steric, electrostatic, hydrophobic, hydrogen bond 

donor and acceptor forces that were favoured or disfavoured by the A3 peptides. 

Besides the detailed explanatory ability, the results can also be used to design 

high affinity peptides of the A3 alleles. CoMSIA is an effective method for 

describing ligand-receptor interactions in drug design. The present study 

demonstrated that it could also be used in immunology to characterise binding 

motifs for MHC molecules. In the future, CoMSIA can be applied to other HLA 

alleles and can also be used in other immunology problems such as antibody- 

antigen reaction and modelling B cell epitopes.
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Chapter 6 
Class I HLA supertype classification by GRID/CPCA

6.1 Introduction

Sette et al. was the first to group class I HLA alleles into superfamilies according 

to their binding motifs (Sidney et al., 1996a). Several HLA supertypes were 

described - A2 (del Guercio et al., 1995; Sidney et al., 1996a), A3 (Sidney et al., 

1996b) and B44 (Sidney et al., 2003). Later the number of defined supertypes 

was extended to nine (Sette and Sidney, 1999), which were A l (A*0101, 

A*2501, A*2601, A*2601, A*3201), A2 (A*0201-07 A*6802 A*6901), A24 

(A*2301 A*2402-04 A*3001-03), A3 (A*0301 A*1101 A*3101 A*3301 

A*6801), B7 (B*07 B*35 B*51 B*53 B*54 B*55 B*56 B*67 B*78), B27 

(B*1401 -  02 B*1503 B*1509 B*1510 B*1518 B*2701 -  08 B*3801 B*3802 

B*3901 -  04 B*4801 B*4802 B*7301), B44 (B*37 B*4001 B*4002 B*4006 

B*41 B*44 B*45 B*47 B*49 B*50), B58 (B*1516 B*1517 B*5701 B*5702 

B*58) and B62 (B*1301 -  02 B*1501 B*1502 B*1506 B*1512 B*1513 B*1514 

B*1519 B*1521 B*4601 B*52). Sette’s classification was a motif-based 

approach and required binding motifs for each allele. However, most o f the 783 

known class I HLA alleles have not been studied experimentally. To characterise 

all HLA alleles using experimental binding assays is both expensive and time 

consuming.

In this chapter, I describe a chemometric strategy for classifying class I HLA 

molecules into supertypes, using information drawn solely from the protein 

sequences. The techniques used were GRID (Cruciani and Watson, 1994) and 

principal component analysis (PCA) (Inoue and Kajiya, 1976; van der Voet and
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Franke, 1985), in which the molecular interaction fields (MIFs) between the 

chemical probes and the HLA molecules were calculated in GRID and the MIFs 

were then used to build PCA/CPCA models. Results of the GRID/CPCA analysis 

were compared with the classification using hierarchical clustering analysis on 

CoMSIA fields; together the results were used to classify HLA molecules and 

generate ‘supertype fingerprints’, that is, the sequence features for supertype 

classification (Doytchinova et a l , 2004a).

In chemical or pharmacological analysis, often many drug targets are studied in 

one experiment and little information can be extracted from the data directly 

(Pate et al., 2004). PCA simplifies the data by replacing the large number of 

variables in the original data set with a few new, uncorrelated variables called 

principal components (PC) (Inoue and Kajiya, 1976). The principal components 

are calculated in the order o f importance, and most o f the variance in the data can 

be explained by the first few components. A variation o f the PCA, consensus 

PCA (CPCA) is also commonly used for calculations with multiple probes 

(Kastenholz et al., 2000). CPCA divides values generated by each probe into 

blocks and it is easier to see which property is the most important in the model 

(Myshkin and Wang, 2003; Terp et al., 2002).

Hierarchical clustering analysis is a statistical technique used in classifying large 

numbers of objects to reveal how closely the objects are related (Johnson, 1967). 

A common form of hierarchical clustering is the agglomerative algorithm, in 

which the calculation of hierarchical clusters starts by separating each object into 

a separate cluster (Guess and Wilson, 2002). The distance between two clusters
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is dependent on the similarities between the two objects. The clustering is then 

improved by merging clusters that have the shortest distance (Guess and Wilson, 

2002). The distance between the new clusters is recalculated. The steps are 

repeated until all clusters are clustered into a single cluster (Glazko and 

Mushegian, 2004). The result of the clustering is a binary tree with a root and 

many leaves, each leaf represents one object (Levenstien et al., 2003). The order 

of the leaves is arbitrary. An HLA classification was carried out by Dr. Irini 

Doytchinova using hierarchical clustering based on CoMSIA fields, in which the 

alleles were clustered by comparing the generated CoMSIA fields of each 

molecule (Doytchinova et al., 2004a).

6.2 Results

6.2.1 Peptide binding site

The structures of the peptide binding sites o f the HLA-A, B and C molecules 

were constructed using the homology modelling program SCRWL 2.8 (Bower et 

a l,  1997). The binding sites of the HLA-A*0201 (Ding et al., 1998), B*0801 

(Reid et al., 1996) and Cw*0401 (Fan et al., 2001) molecules were used as the 

templates to define the GRID box (fig. 6.1). The dimensions of HLA-A*0201 

and B*0801 binding sites were similar, the HLA-A*0201 binding site consisted 

of 35 residues and the HLA-B*0801 binding site had 37 residues. The binding 

site of the HLA-Cw*0401 molecules was smaller with 32 residues. Table 6.1 

listed the residues that formed the binding site of HLA-A*0201, B*0801 and 

Cw*0401.
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Positions inside the binding site 

HLA-A 5, 7, 9, 24, 25, 34, 45, 59, 63, 66, 67, 70, 74, 77, 80, 81, 84, 97, 99,

113, 114, 116, 123, 133, 143, 146, 147, 152, 155, 156, 159, 160, 

163, 167, 171

HLA-B 5, 7, 8, 9, 24, 45, 59, 62, 63, 65, 66, 67, 70, 73, 74, 76, 77, 80, 81,

84, 95, 97, 99, 114, 116, 123, 143, 146, 147, 152, 155, 156, 159, 

160, 163, 167, 171

HLA-C 5, 7, 9, 22, 59, 62, 63, 66, 67, 69, 70, 73, 74, 77, 80, 81, 84, 95, 97,

99, 116, 123, 124, 143, 146, 147, 156, 159, 163, 164, 167, 171

Table 6.1. List o f residues that formed the peptide binding site of HLA--A*0201, 

B*0801 and Cw*0401.
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c.

Figure 6.1. The 3D structures of the binding site: HLA-A*0201 (a), HLA- 

B*0801(b) and HLA-Cw*0401(c).
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6.2.2 The HLA-A classification

PC A models were built using the program GOLPE (Cruciani and Watson, 1994). 

A PCA model was built for each of the 13 probes listed in table 6.2. The 

structures of 229 HLA-A molecules were built by homology modelling using the 

program SCRWL. A GRID interaction box was defined to only include the 

peptide binding site in the calculation. The GRID program placed the probe at 

each point of the grid box, and calculated the interaction energy between the 

molecule and the probe (see section 2.2.4.5). The energy values were used to 

build the PCA models in GOLPE. The accumulated explained variance of the 

first three components (PCI, PC2 and PC3) of the PCA models was used as a 

criterion for comparing the models, as most of the variance in the PCA models 

was explained by the first three PCs. PC4 and PC5 explained less than 10% of 

the total variance and were not used. Ten probes that produced the best PCA 

models, that is, the models with the highest explained variance by the first three 

PCs, were used to build a final CPCA model. The probes were OH2, Dry, H, C3, 

Cl=, N:#, N:=, N2+, OH and O.

In the CPCA model, PCI explained 25% of the total variance and PC2 added a 

further 17%. The explained variance o f the CPCA model was slightly less than 

that of the PCA models, indicating that the molecular forces represented by the 

probes are complicated and do not follow a simple additive pattern. However, the 

CPCA model is more important because it includes different interactions like 

electrostatic, hydrogen bonding, etc. The 3D scores plot of the CPCA model was 

shown in figure 6.2, in which the X, Y and Z axes represented PCI, PC2 and 

PC3, respectively.
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Probes
Explained variance by the first three 
components o f  the PCA model (%)
PCI PC2 PC3

o h 2 23.02 41.19 52.82
Dry 34.96 55.09 67.55
C3 24.90 44.17 54.88
N:# 26.37 42.28 52.01
H 29.25 47.50 56.51

Single probe C l= 25.42 44.66 55.18
PCA N:= 25.42 42.21 54.01

model N1 25.59 41.06 51.18
OH 23.71 42.11 53.37
SI 22.48 41.66 52.32
01 22.66 38.81 50.70

N2+ 31.80 46.92 55.85
0 26.85 42.82 54.05

10 probes OH2, dry, H, C3,
model C1=,N:*, N:=, 24.98 41.56 51.60

CPCA model N2+, OH, 0

Table 6.2. The chemical probes used in the GRID calculation. The cumulative 

explained variance of the first three principal components (PCI, PC2 and PC3) 

by the corresponding PCA model was listed. The cumulative explained variance 

o f the final CPCA model using 10 probes is in the last row.

In the scores plot, each dot represented one HLA-A molecule, and each ellipse 

represented one cluster (figure 6.2). The first component of the CPCA model 

separated A23 and most of the A24 molecules on the left, with negative PCI 

scores, from the rest of the HLA-A molecules. The second principal component 

separated the HLA-A* 1, A * l l ,  A*25, A*26, A*29, A*03, A*31, A*32, A*33, 

A*34, A*36, A*66, A*68 and A*74 families with positive PC2 scores from the 

others. The CPCA analysis showed that the HLA-A molecules were grouped into
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three clusters as demonstrated in the 3D scores plot: the A3 cluster on the top 

right o f figure 6.2, including the alleles A*01, A*03, A * l l ,  A*25, A*26, A*29, 

A*30, A*31, A*32, A*33, A*34, A*36, A*4301, A*66, A*74 and A*8001. 

Most of the A*68 alleles (except A*6802 and A*6815, which were in the A2 

cluster) were also included in the A3 family. The A24 cluster is on the top left of 

the figure including the A*23 and A*24 alleles. The A2 cluster is at the bottom 

of the figure, with most o f the A*02 alleles. Other alleles in the A2 cluster were 

A*57, A*6802, A*6815, A*6823 and A*6901.

Figure 6.3 was the result of the hierarchical clustering analysis using CoMSIA 

fields (Doytchinova et al., 2004a). Three clusters were also defined using the 

hierarchical clustering method. The cluster on the left includes HLA alleles A*02, 

A*25, A*26, A*3401, A*3405, A*4301, A*66, A*6802, A*6815, A*6823 and 

A*6901. This cluster was called the A2 cluster. The A24 cluster was well 

distinguished and included A*23 and A*24. Finally, the A3 cluster included 

A*01, A*03, A*11, A*29, A*30, A*31, A*32, A*33, A*36. Some A*34 and 

A*68 alleles, A*74 and A*8001 were also in this cluster.
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Figure 6.2. The 3D  scores plot o f  the CPCA analysis for H LA -A  m olecules. The 

A 24 cluster is on the top left o f  the plot, the A3 cluster is on the top right o f  the 

plot and the A 2 cluster is below  the X  axis.
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A3 A24

Figure 6.3. The H LA -A  classification defined by hierarchical clustering 

(D oytchinova et al., 2004a). A  hierarchical tree w as built for the 229 H LA -A  

alleles. Each lea f represented one allele. The results o f  the clustering were similar 

to that o f  the G RID/CPCA analysis, the three clusters were defined in both 

experiments: A 2, A3 and A 24.
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In addition to the scores plot, the loading plot of the CPCA model was also 

generated. The scores plot showed the clustering of the HLA alleles, whereas the 

loading maps highlighted regions in the peptide binding site that contributed 

significantly in clustering different superfamilies. The plot in figure 6.4 is the 

PCI loading plot of the CPCA model using the C3 probe. Regions that 

contributed positively in the classification (positive scores values) are in yellow, 

and those contributing negatively (negative scores values) are in blue. The 

highlighted areas were around position 9, 97, 114 and position 116. The yellow 

area surrounding position 9 indicated that non-polar interactions were favoured 

by the A3 supertype. The blue area at position 97, 114 and 116 indicated regions 

where bulky and hydrophobic residues were disfavoured by the A24 family. 

Sequence alignment o f HLA-A molecules showed that most o f the A24 alleles 

had dominant polar amino acid Ser at position 9, while the A3 molecules had 

aromatic amino acids Tyr or Phe at position 9. Loading plots o f other probes 

highlighted the same residues, and are not shown. A summary of the molecules 

included in each cluster and the important amino acids for each cluster are in 

table 6.3.
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His114

(b)

Figure 6.4. The loading plot of the HLA-A CPCA model. The binding site of 

A*0201 is used in the plot to display the positions of the amino acids. There were 

two important interactions in the plot. The hydrophobic interaction is favoured at 

position 9 (a), and disfavoured around position 97, 114 and 116 (b).
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Supertype Consensus PCA Supertype fingerprint
A2 A*0201 -  60 without 04, 17, 57 Tyr9/Phe9

A*6802, 15, 23 Arg97
A*6901 H isll4  and Tyrl 16

A24 A*2301 -  09 Ser9
A*2402 -  38 Met97

A3 A*0101 -09  
A*0301 -  10 
A *1101 -  14 
A*2501 - 0 4  
A*2601 -  18 
A*2901 -  07 
A*3001 -  12 
A*3101 -  09 
A*3201 -07  
A*3301 -0 6  
A*3401 -0 5  
A*3601 -0 4  
A*4301 
A*6601 -04
A*6801 -2 3  without 02, 15
A*7401 -0 9
A*8001

Tyr9/Phe9/Ser9 
Ile97/Met97 
G lull4 and Aspl 16

Table 6.3. A list of HLA alleles included in each cluster in the scores plot. For 

simplicity only the beginning and the end of the alleles were listed. For example, 

A*0201 -  60 meant that all sixty alleles from A*0201, A*0202, A*0203 ... to 

A*0260 were included in the cluster, etc. The amino acids used to define each 

cluster are shown in the last column.
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6.2.3 The HLA-B classification

The structures o f the HLA-B molecules were modelled using SCRWL, with the 

B*0801 structure as a template. After comparing the PCA models generated 

using single probes in table 6.3, the 10 best probes were selected for the CPCA 

model, which were OH2, dry, C3, N:#, N l, H, N:=, OH, N2+ and O. Initially, 

when interactions within the whole binding site were considered in the CPCA 

model, no consensus pattern was found in the scores plot, which may be due to 

the slightly larger size of the HLA-B binding site and to the presence of 

irrelevant amino acids in the GRID interaction box. To increase the signal to 

noise ratio, a region o f 4A was applied so as to only include interactions within 

4A of the peptide binding site. Comparing the PCA models, the H probe model 

had the highest explained variance of nearly 100%, showing that hydrogen 

bonding is an important force in the HLA-B - peptide interaction. However, as 

the H probe only considers hydrogen bond donor and acceptor and cannot 

explain all molecular interactions of the HLA-peptide interaction, the CPCA 

model using the 10 best probes was used to classify HLA-B alleles. PCI o f the 

final CPCA model explained 18.40% of the total variance, and the second 

component explained a further 18.13% of the variance.

The scores plot o f the first three components (figure 6.5) reveals that the HLA-B 

molecules are divided into three clusters: B7 (B*07, B*08, B*14, some B*15, 

B*18, B*35, B*3705, B*3904, B*41, B*42, B*45, B*48, B*50, B*55, B*56, 

B*6701, B*6702, B*7301, B*78, B*81, B*82 and B*83), which is on the left of 

the Y axis, B27 (B*27, B*37, B*38, B*4013, B*4019 and B*4028) in the top 

right comer of the plot, and B44 (B13, B44, B*47, B*49, B*51, B*52, B*53,
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B*5607, B*57, B*58 and B*5901), lower right of the plot. The complete list of 

all the molecules included in each cluster is in the table 6.5. Similar clusters were 

found using hierarchical clustering method (figure 6.6), in which three clusters 

(B7, B27 and B44) were identified.

Explained variance by the first three 
Probes components o f  the PCA model (%)

PCI PC2 PC3
o h 2 35.14 51.28 66.96
Dry 42.02 65.31 76.70
C3 67.98 80.46 86.22
N:# 66.56 79.49 85.46
H 99.86 99.99 100.00

Single probe Cl= 23.09 39.29 52.12
PCA N:= 34.71 54.93 70.26

model N1 36.31 55.50 68.18
OH 25.01 44.64 61.89
SI 32.16 53.70 66.90
01 26.85 48.19 61.64

N2+ 47.07 62.21 74.79
0 28.19 48.47 65.53

10 probes OH2, dry, C3, N:*,
model N:=, N2+, OH, 0 , 18.40 36.53 50.50

CPCA model N1 andH

Table 6.4. The chemical probes used in HLA-B GRID/CPCA analysis.

The PCI loading plot (figure 6.6) showed that two areas were important in the 

classification. Position 63 and 66 (figure 6.6a) were inside pocket A and B. 

Position 66 was conserved while position 63 was polymorphic with two amino 

acid variations Glu and Asn. The other important area in the loading plot was 

around position 77 and 81 in the pocket F. Asn, Ser and Asp were found at 

position 77, and Leu and Ala at position 81.

235



Class I HLA classification Chapter 6

WOKIJ/.

8a9'.s..«i MW**mm:*

vv •

*B*w
K.VSJn

SJSiVt^<n 9JT,23.rt

Figure 6.5. The 3D scores plot o f  the CPCA analysis for HLA-B m olecules. 

Three clusters were identified in the plot: B7, B27 and B44.

236



Class I HLA classification Chapter 6

B44 B27

Figure 6.6. HLA clusters produced using hierarchical clustering (D oytchinova et 

al., 2004a). A hierarchical tree was produced for the 447 HLA-B alleles. Each 

lea f represents one allele.
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Supertype Consensus PCA Supertype fingerprint

B44 B*0802, B* 1301 -  1311 without 09
B*1513, 16, 17, 23, 24, 36, 67
B*1809, B*3805
B*4402 -  33 without 09
B*4701 -  04 without 02
B*4901 -  03, B*5101 -  34, B*5201 -  05
B*5301 -  09, B*5607
B*5701 -  09, B*5801 -  07
B*5901

Ala81

B27 B*0727 Glu63
B*2701 -  25 without 08, 12, 18 
B*3701 -  04, B*3801 -  09 
B*4013, 19, 28

Leu81

B7 B*0702 -  31 without 0727 Asn63
B*0801 -  17 without 02 Leu81
B*1309, B*1401 -  06
B* 1501 - 7 5  without 13, 16, 17, 23, 24,
36, B*67
B * 1 8 0 1 -18 without 09 
B*2708, 12, 18 
B*3501 - 4 5  
B*3705 
B*3904
B*4101 -  06 4201 -  04 4409 4501 -  06
B*4601, 02
B*4702
B*4801 - 0 7
B*5001 -  04
B*5401, 02
B*5501 -  10
B*5601 -  11 without 5607 
B*6701, 02 
B*7301 
B*7801 -  05
B*8101 8201,02 8301________________________

Table 6.5. A list of the HLA-B molecules in each dimension of the scores plot. 

For simplicity only the beginning and the end o f the alleles were listed. For 

example, B*4901 -  03 meant that alleles B*4901, B*4902 and B*4903 were 

included in the cluster, etc. The amino acid used to define each cluster is in the 

last column.
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Asn63

<4

Figure 6.7. Loading plot o f  the CPCA m odel for the HLA-B superfam ilies 

classification. Part o f  the B*0801 binding site is shown in the plot. The 

hydrophobic interaction is found around position 63 and 66 (a), 77 and 81 (b)
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6.2.4 The HLA-C classification

Like HLA-A and HLA-B, PCA models for HLA-C, using single probes, was 

generated. The results are in table 6.6.

Explained variance by the first three 
Probes components o f  the PCA model (%)

PCI PC2 PC3
OH2 20.91 38.85 50.45
Dry 29.91 45.06 54.15
C3 23.27 36.02 47.20
N:# 20.78 39.07 49.92
H 22.14 34.60 45.65

Single probe Cl= 19.57 37.04 47.33
PCA N:= 22.75 34.98 46.01

model N l 20.55 40.61 52.06
OH 22.90 35.72 49.69
SI 21.77 35.82 48.78
Ol 26.06 43.52 54.62

N2+ 17.06 32.42 45.04
O 30.99 47.34 58.08

8 probes model OH2, Dry, N:#, N l, 20.96 36.23 47.42
CPCA model OH, S l ,0 1  andO

Table 6.6. Probes used in the PCA and CPCA models and the cumulative 

variance explained by the first three principal components (PCI, PC2 and PC3).

Eight probes were used in the CPCA model (OH2, Dry, N:#, N l, OH, SI, Ol and 

O). The first two components explain 36.23% of the total variance. The scores 

plot o f the CPCA model is in figure 6.8, in which HLA-C molecules were 

divided into two clusters. Cw*01, 03, 07, 08, 12 and 16 are grouped above the X 

axis, and Cw*02, 03, 04, 05, 06, 15, 17 and 18 are clustered below the X axis. 

Some of the 03, 07 and 12 are also grouped into the second cluster. The first 

cluster is named Cl and the second cluster is named C4. The result from 

hierarchical clustering gave nearly identical groups (figure 6.9), with only eight
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amino acids mis-placed *0308, *0310, *0701, *0706, *0716, *0718, *1208 and 

*1404. The list o f molecules in the Cl and C4 clusters is in table 6.7.

It should be noted that the classification is based on the scores and the loading 

map of CPCA models and the hierarchical clustering trees, i.e, the clusters 

defined must be present in both analyses. The scores map of the HLA-C CPCA 

model showed that there might be smaller clusters within the Cl and C4 family, 

such as Cw*1502, *03, *05, *06, *08, *10, *11 and *0206 on the lower left of 

the C4 cluster. Some of the Cw*05 and 06 molecules are clustered on the right of 

the C4 cluster and many Cw*08 molecules are separated from the others in the 

Cl cluster. These small clusters could be small families and further analysis is 

required to define them.

The PC2 loading plots showed that positions 70, 74, 77 and 81 of the HLA-C 

molecules were involved in the classification (figure 6.10). Among the HLA-C 

molecules, only position 77 was polymorphic. The amino acids presented at this 

position were Ser and Asn. The molecules in the C4 class all have Asn at 

position 77. The ones in the Cl cluster, on the other hand, all have serine at this 

position. As Asn is more polar than serine, they are more favoured for interaction 

with polar probes and hydrogen-bond formation.
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Figure 6.8. The 3D  scores plot o f  the HLA-C CPCA analysis. Tw o clusters were  

displayed in the plot. The main cluster above the X  axis had many C l m olecules 

and was named the C l cluster. The cluster below  the X  axis had lots o f  C4 

m olecules and was named the C4 cluster.
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C4

Figure 6.9. The hierarchical tree obtained from hierarchical clustering, in which  

the HLA-C m olecules were classified into C l and C4 clusters (D oytchinova et 

al., 2004a). Each lea f represented one HLA-C allele. Results o f  the analysis were 

in accordance with the GRID/CPCA classification.
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Supertype Consensus PCA Supertype fingerprint

Cl Cw*0102 -  09 
Cw*0302 -  16 without 7, 15 
Cw*0701 -  18 without 07, 09 
Cw*0801 - 0 9
Cw*1202 -  08 without 04, 05 
Cw* 1402 - 0 5  
Cw*1601, 04

Ser77/Gly77

C4 Cw*0202 -  06 
Cw*0307, 15 
Cw*0401 -  10 
Cw*0501 -  06 
Cw*0602 -  09 
Cw*0707, 09 
Cw*1204, 05 
Cw*1404 
Cw* 1502- 11 
Cw*1602 
Cw* 1701-03  
Cw*1801, 02

Asn77

Table 6.7. A list o f the HLA-C molecules in each cluster. The important residues 

in defining the clusters were listed in the last column.
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A s n 7 7

A s n  74

Gln70

Figure 6.10. The loading plot of the HLA-C CPCA model for the water probe. 

The binding site of Cw*0401 is shown in the plot. The highlighted area is around 

position 70, 74 and 81.
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6.3 Discussion

In the present project, the HLA-A, B and C molecules were classified into 

superfamilies using the GRID/CPCA approach: molecular interaction fields 

(MIFs) between different chemical probes and the HLA proteins were calculated 

in GRID, and these were used to build PCA and CPCA models in GOLPE. A 

total o f 783 HLA sequences were found in the HLA database and were included 

in the study. The sequences were selected on the basis o f the differences at 

protein sequence level. Many other sequences in the HLA database have silent 

mutations, that is, mutations that did not change the protein sequences. Those 

sequences were not included in the present study. The scores and loading plots 

were generated by the CPCA models. The scores plot was a graphical 

presentation of the HLA classifications, and the loading plot highlighted areas 

upon which the classifications were based.

The analysis was compared with hierarchical clustering using CoMSIA fields, in 

which the HLA molecules were classified according to their five interaction 

potentials: steric bulk, electrostatic potential, hydrophobicity and hydrogen donor 

and acceptor abilities. Although based on different molecular interactions, the 

two analyses gave a 77% consensus. HLA-A classification by both methods was 

88% identical, some A*02, A*25, A*26, A*34, A*66 and A*68 alleles were 

classified into the A2 cluster by hierarchical clustering, but were in the A3 

cluster in the CPCA plot. Molecules in the A24 cluster were the same in both 

classifications. HLA-B classification by the two methods gave a slightly lower 

consensus (68%), which may be because the group had the largest number of 

molecules among the three (447 HLA-B alleles) and the binding site consisted of
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more amino acids. The classification of the cluster B27 was debatable, as most of 

the molecules in the B27 cluster, as defined by hierarchical clustering, were in 

the B7 cluster in the CPCA model. The HLA-C classification gave the best 

agreement using the two methods (93% consensus). Only 8 molecules were 

classified into different subtypes by the two methods. Molecules that have been 

classified into different clusters by the two methods were considered as outliers 

as it was not possible to classify them into clusters according the present results. 

They needed to be re-classified in the future using other techniques. A closer 

look at the protein sequence level showed that these outliers do not have 

significant resemblance to the classified alleles. For example, A*2501 - A*2503 

alleles had Tyr at 9 and Asp at 116, which were identical as A* 11 alleles, but 

they also had Glu at position 114 like the A*31 and A*32 alleles.

Also, the scores plot showed there may be smaller clusters within Cl and C4. For 

example, some o f the Cw*15 molecules and Cw*0206 formed a small cluster at 

the left bottom of the plot. Some Cw*05 and Cw*06 molecules were separated 

from other C4 molecules and formed a tight cluster near the X axis. Since the 

HLA-C group is the least studied HLA locus at present, and no other 

classification has been made, it was not possible to compare the results with 

other studies. Therefore these small clusters remained to be confirmed by other 

techniques.

Based on the CPCA model, HLA-A molecules were divided into three clusters: 

A2, A3 and A24. The loading plot showed that the classification of HLA-A was 

focused on residue differences at four positions of the HLA molecule: 9, 97, 114
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and 116. Molecules with small polar amino acid Ser at position 9 were clustered 

as the A24 superfamily and are separated from the other molecules with Tyr, Phe 

or Thr at this position (mainly A2 and A3 molecules). Position 9 is situated at the 

bottom of the pocket B, which accepts the anchor amino acid at P2. A2 and A3 

peptides have aliphatic amino acids Ala, Val, Leu, lie and Met at P2, while A24 

peptides have Tyr (figure 6.11). The A2 and A3 superfamily members are further 

separated by the differences at position 97, which is in pocket C and E and 

contacts P6 and P7 o f the peptide, respectively. Most of the A3 molecules accept 

non-polar lie or Met at 97 (figure 6.12b), while the A2 family has Met and also 

the polar amino acid Arg (figure 6.12a). Some A3 molecules also have Arg97, 

which overlaps with the A2 family. These are separated further by differences at 

position 114 in the pockets D and E, and position 116 in the pocket F. A2 

molecules have basic residue Hisl 14 and aromatic amino acid Tyr at position 

116 (figure 6.13), while A3 molecules have acidic amino acids at both positions 

(G lull4 and Asp 116). Tyr is a relatively large amino acid and restricts the size 

of the pocket, so that the pocket can only accept small hydrophobic amino acids 

at position 9. For A3 molecules, Asp and Glu are small therefore the pocket can 

hold large charged amino acids, often Arg, at P9.
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A2 supertype
A3 supertype

□ Phe/Tyr 
■ other

A24 supertype

□  Phe/Tyr 
■  Ser/Thr

□  Phe/Tyr 
■  Ser/Thr

c

Figure 6.11. Percentage of different amino acids occupying position 9 in a) A2, b) 

A3 and c) A24 clusters.
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A2 supertype A3 supertype

■  lie
■  Met 
■other

□Arg 
■  other

A24 supertype

■  lie
■  Met
■  other

Figure 6.12. Percentage of different amino acids occupying position 97 in a) A2, 

b) A3 and c) A24 clusters.
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A2 supertype A3 supertype

A24 supertype

c

Figure 6.13. Percentage of different amino acids occupying position 116 in a) A2, 

b) A3 and c) A24 clusters.
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HLA-B superfamilies were defined in the CPCA model scores plot: B7, B27 and 

B44. There were two highlighted positions - 63 and 81 - in the HLA-B loading 

plot, which are inside the binding pockets A and F, respectively. In the scores 

plot, most of the HLA-B molecules with Glu63 had negative values and were 

placed on the left of the graph. Compared with Glu, the side chain o f Asn is less 

polar and molecules with Asn63 are clustered on the right. Molecules in the B7 

family have Asn63 and are separated from the rest in the scores plot (figure 6.14). 

Most members of the B7 and B27 superfamilies have non-polar residue Leu at 

position 81, while molecules in the B44 superfamily have Ala81, which is 

smaller and relatively less hydrophobic compared to Leu (figure 6.15).
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B7 supertype

□Asn 
■ Glu/Asp

B27 supertype

□ Asn 
■ Glu

B44 supertype

□ Asn 
■ Glu

Figure 6.14. Percentage of different amino acids occupying position 63 in a) B7, 

b) B27 and c) B44 clusters.
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B27 supertype
B7 supertype

■ Leu 
□ Ala

B44 supertype

C

Figure 6.15. Percentage of different amino acids occupying position 81 in a) B7, 

b) B27 and c) B44 clusters.
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The HLA-C molecules have not been as extensively studied. Only two structures 

of HLA-C have been published: Cw3 and Cw4 molecules co-crystallised with a 

human natural killer cell inhibitory receptor (Boyington et al., 2000; Fan et al., 

2001). Compared with HLA-A and B, HLA-C has fewer molecules and a much 

smaller peptide binding site. In this study, the HLA-C class is separated into two 

superfamilies. The main difference between the two superfamilies comes from 

position 77 in binding pocket F, the Cl family has Ser at position 77, and 

molecules in the C4 cluster have Asn (figure 6.16). The crystal structure o f HLA- 

Cw3 indicates that Ser77 forms hydrogen bonds with the amino nitrogen of P9 

and secures the end o f the peptide in the binding groove.

The supertype classification by Sette and Sidney is based on binding studies, 

which is limited to alleles that have extensive binding data available. The 

GRID/CPCA classification overcomes this problem by requiring protein 

sequences only. The present classification also has advantages over previous 

structural approaches such as the modelling study carried out by Kangueane et al., 

where they classified some HLA-A and B alleles by simulating MHC-peptide 

complex structures (Kangueane et al., 2000). Like Sette’s classification, the 

study by Kangueane et al. also required binding data for each allele tested, which 

restricted a wide application of the classification The GRID/CPCA classification, 

on the other hand, only requires protein sequences of the alleles and can be 

applied to all available alleles. The other advantage of the present classification 

is that the interactions between peptides and the whole binding site are 

considered, while some other classifications only consider interactions between 

motif residues and the binding site.
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C1 supertype C4 supertype

Figure 6.16. Percentage of different amino acids occupying position 77 in a) C l, 

b) C4 clusters.
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To conclude, the HLA-A, B and C molecules can be classified into supertypes 

using only their sequence information. The present classification identifies 

crucial, cluster determining differences at several important positions in the 

binding site. These positions are the HLA ‘fingerprints’. The HLA-A fingerprint 

includes position Phe/Tyr9, Arg97, Hisl 14 for A2 supertype, Ser9 and Arg97 for 

A24 and Ser/Thr9, Ile/Arg97, Glul 14 and Aspl 16 for A3 supertype (figure 6.17). 

The HLA-B fingerprint is Asn63 and Leu81 for B7, Glu63 and Leu81 for B27 

and Ala81 for B44 (figure 6.18). The HLA-C fingerprint is Ser/Gly77 for Cl and 

Asn77 for C4 supertype (figure 6.19). The HLA fingerprints enable us to group 

any new HLA molecules into supertypes, accelerating HLA function 

characterisation and help to define the peptide binding motif for the molecule. 

Also, the HLA supertype classification allows immunologists to use similarities 

in sequence and structure to make educated guesses about peptide binding 

specificity which will help in identifying good MHC binders and potential 

epitopes to test.
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Fhe, T yr

A24 A3A2, A3

Met, IlBy 

A3

97 97

Arg II ej 

A 2 ^ 3  A3

■Arg —>-A*2414 
A*2616

Met

A24

114 or 116

His

A2

iGlu T yr7
A3 A2

Asp

A3

Figure 6.17. The HLA-A fingerprint.
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LeuAla

B7, B27B44

GluAsn

B27B7

Figure 6.18. The HLA-B fingerprint.

Asn

C4Cl

Figure 6.19. The HLA-C fingerprint.
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Chapter 7 
General discussion

MHC molecules are amongst the most polymorphic proteins in mammals. They 

recognise peptide fragments through interactions with their peptide binding site 

and present these fragments to T cells in order to initiate adaptive immune 

responses (Hauptmann and Bahram, 2004). A MHC molecule is able to 

recognise many different peptides. The interactions between the peptide and the 

binding site of the MHC molecules are not completely understood. Most research 

on peptide-MHC interactions focuses on peptide binding motifs obtained from 

mass spectrometry, pool sequencing and peptide binding assays.

Peptide binding assays have shown that most high affinity peptides for class I 

HLA molecules possess identical amino acids or amino acids with similar 

chemical properties at anchor positions 2 and 9 (Ruppert et al., 1993; Sidney et 

a l,  1995; Sidney et al., 1996b; Sidney et al., 2001). Crystal structures of peptide- 

MHC complexes indicate that the amino acids at the anchor positions interact 

with the binding pockets inside the peptide binding site and stabilise the complex 

(Saper et al., 1991). Apart from the anchor positions, amino acids at other 

positions also influence peptide binding, such as secondary anchors. These 

positions, together with the anchor positions, form an extended binding motif 

which is specific for each MHC molecule. However, the binding between peptide 

and MHC can not be explained by binding motifs alone and there is evidence that 

certain peptides may bind to MHC molecules in the absence of a binding motif 

(Jiang et al., 2002). Therefore, peptide-MHC binding is not dependent on anchor
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residues alone, but results from cumulative interactions between each amino acid 

and the binding site.

This thesis defined refined binding motifs for the HLA-A*0201 allele and the 

HLA-A3 superfamily using 2D and 3D QSAR techniques. In contrast to other 

motif studies, the contribution of each residue of the peptide to binding is 

analysed. The A*0201 binding motif was defined using different amino acid 

descriptors from the AAindex, and the three z and five z descriptors. Three 

variable selection methods SIMCA, GOLPE and GA were used to reduce the 

redundant variables. The HLA-A3 supermotif was defined by two QSAR 

techniques, the additive method (Guan et al., 2003b) and CoMSIA (Guan et a l, 

2003a). The coefficient equations generated by the additive method were used as 

the basis for the online T cell epitope prediction server MHCPred (Guan et al., 

2003c; Guan et al., 2003d), and the predictivity of the additive method was 

compared with other T cell epitope prediction algorithms. Also, a supertype 

classification was carried out for all available class I HLA molecules. As the 

number of known HLA molecules is very large (currently 1814 alleles in the 

HLA/IMGT database) and increasing, it is extremely labour intensive and time 

consuming to characterise motifs for each allele using binding assays. The 

GRID/CPCA supertype classification groups all class I HLA molecules into eight 

supertypes based on a structural analysis of the peptide binding site 

(Doytchinova et al., 2004a).

Previous studies observed that the A*0201 binding motif included two anchor 

positions P2 and P9 and two secondary anchor positions P3 and P7 (Doytchinova
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and Flower, 2003; Doytchinova et a l,  2002; Doytchinova and Flower, 2001; 

Falk and Rotzschke, 1993; Falk et al., 1991; Madden et a l, 1993; Parker et a l,  

1992a; Ruppert et a l ,  1993; Sidney et a l, 2001; Sudo et a l, 1995). In the 2D 

descriptor study (chapter 3), Leu was the most preferred residue at P2. lie was 

also preferred at P2 but to a lesser degree. Similarly, hydrophobic and non-polar 

amino acids were favoured at P9, Leu, lie and Ala were the most favoured 

residues, but Met, Val and Thr were also accepted. P3, P5 and P7 accepted 

aromatic residues like Phe, Trp and Tyr. In previous studies, aromatic residues 

were favoured at P3 and P5 and small hydrophobic residues were favoured at P7 

(Doytchinova et a l,  2004; Falk et a l,  1991; Madden et a l,  1993; Ruppert et a l,  

1993). The motif defined by the 2D descriptors study showed that aromatic 

residues could also be accepted at P7.

For the other positions, the 2D descriptor analysis identified aromatic residues, 

like Phe and Trp, were accepted at PI, although Cys, Gly and Met were also 

accepted. Serine was favoured at P4, and aliphatic residues like Ala, Leu and He 

were also accepted. Aliphatic amino acids Leu, He and Pro were favoured at P6 . 

P8 accepted hydrophilic amino acids such as Ser, Lys, Asn, Glu and His.

Four alleles classified into the HLA-A3 superfamily by Sette et al. were used in 

the HLA-A3 supermotif analysis: A* 1101, A*0301, A*3101 and A*6801 (Sette 

and Sidney, 1998). Two techniques were applied, the additive method (chapter 3) 

and CoMSIA (chapter 5). The additive method generated a matrix containing 

coefficients for each of the 20  amino acids at each position of the peptide, 

positive and negative coefficients corresponded to preferred and deleterious
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amino acids, respectively. The CoMSIA models generated contour maps that 

displayed favoured and disfavoured molecular forces surrounding the peptide. 

The results of the two models correlated well with each other. In the HLA-A3 

additive model, Arg was preferred by A*6801 and A*3101 at P9. In contrast, 

A* 1101 preferred Lys and A*0301 accepted both residues. The reason for this 

selection may be due to the larger side chain of Arg that could extend into and 

form hydrogen bonds with the bottom of the pocket F. Similar results were found 

in the CoMSIA contour maps where hydrogen bond donor groups were favoured 

at P9 by A*6801 and A*3101 and disfavoured by A* 1101. Both favoured and 

disfavoured areas have been observed in the A*0301 contour map. Steric bulk 

force was favoured at the other anchor position P2 in the A*0301 and A*3101 

CoMSIA models, but was disfavoured in the A* 1101 and A*6801 models. 

Similar results were found in the additive models. A*0301 and A*3101 accepted 

a variety of residues at P2, Ala, lie, Leu, Thr and Ser, whereas A*6801 and 

A*1101 preferred residues with smaller side chains such as Ala, Val and lie. In 

both CoMSIA and the additive models, aromatic residue Phe was preferred at 

secondary anchor position P3 and P7. In the CoMSIA model, P6 favoured 

hydrophilic amino acids, and in the additive models, Ser was the preferred 

residue at P6 . For the rest of the positions, polar amino acids were favoured at PI 

and P4, bulky hydrophilic amino acids were favoured at P8 by both models. The 

supermotif defined for the A3 superfamily is consistent with findings from other 

binding experiments (Falk et al., 1994; Sette and Sidney, 1998; Sette and Sidney, 

1999; Sidney et al., 1996b; Threlkeld et a l,  1997).
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Although based on different algorithms, both CoMSIA and the additive method 

were effective in characterising peptides bound to MHC molecules. The additive 

method was superior when predicting MHC binding peptides in a given protein 

sequence, as it only used protein sequences in the calculation whereas to build 

CoMSIA models the structures of the peptides were required therefore the 

calculation time was much longer. An online server - MHCPred - was able to 

predict T cell epitopes from protein sequences using the models generated by the 

additive method (Guan et al., 2003c; Guan et al., 2003d). A comparison of the 

additive method with other online T cell epitope prediction algorithms showed 

that the predictivity of MHCPred for human and mice epitopes was excellent, 

comparable with the very best of alternative servers, and that the additive method 

was able to correctly predict T cell epitopes within protein sequences.

One of the most obvious limitations of the present binding motif study is the 

availability of binding data. All the peptides and their binding affinity data used 

in this thesis were obtained from the AntiJen database. Although most of the 

original experiments followed the same protocol, factors such as different 

batches of antibodies and different cell lines used in the experiments and other 

sources of experimental errors can influence data quality and result in prediction 

error and inconsistency. These problems are unavoidable in most modeling 

exercises. Another problem is data selection bias. A large proportion o f the 

original experiments are focused on epitope identifications, thus peptides with 

anchor residues and/or secondary anchor residues are much more likely to be 

tested. Therefore, the impact of other amino acids at these positions is not 

investigated. For example, in the A3 data set, only five different amino acids
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appear at anchor position 2. This in particular affects the predictions by the 

additive method, which requires each of the 20  amino acids to be present in 

every position. At the moment, the influence of the ‘missing’ amino acids is set 

to zero in the additive coefficient equation. Also, most experiments tested 

peptides binding to several ‘popular’ alleles such as A*0201, A*0301 and B27, 

these alleles have sufficient binding data (60-200 peptides) to build reliable 

models while other alleles may have only 20-30 peptides or even less. The 

imbalance of data is reflected in the epitope prediction models. Most of the 

prediction algorithms produce good quality A*0201 models whereas the 

predictivity of other models is often much lower. An example is the additive 

model evaluation test (chapter 4), where the predictivity o f tested algorithms was 

about 80% for A*0201 peptide prediction, but was much lower in predicting 

class II alleles. The situation may be improved in the future when more data are 

available.

One practical application of T cell epitope prediction is to find high affinity 

epitopes from viruses and bacteria and use them in vaccine development. 1814 

different HLA alleles have been discovered to date (Robinson et al., 2003), and 

HLA alleles are expressed differently in each ethnic group. Vaccines using a 

single epitope will not be effective in the whole population. HLA superfamilies 

have good phenotype frequencies across ethnic groups (table 7.1). For example, 

vaccines using an epitope which binds the A3 superfamily will be effective in 

about 50% of the global population. Vaccines using epitopes from the A2, A3 

and B7 superfamily are predicted to be 90% effective in the population (Sette 

and Sidney, 1999).
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The GRID/CPCA study grouped all class I HLA-A, B and C alleles into several 

supertypes. Some of the HLA-A alleles had been classified previously into 

supertypes. A*0201, A*0202, A*0204, A*0206 and A*0207 had been grouped 

into the A2 supertype by binding studies (del Guercio et al., 1995; Sidney et a l, 

1995; Sidney et al., 1996a; Sidney et al., 1996b; Sudo et al., 1995) and motif 

studies (Rammensee et al., 1999). All these alleles were grouped into the A l  

supertype in the GRID/CPCA study with the exception of A*0204, which, like 

the A3 alleles, possessed Met at position 97 and was classified as belonging to 

the A3 family. A*0204 differed from A*0201 by having one amino acid 

mutation Arg -> Met at position 97. Met97 is inside pocket F. The side chain of 

Met97 is smaller compared with Arg, therefore increasing the volume of pocket 

F. However, the A*0204 binding motif (L2L9) was closer to A*0201, therefore it 

was possible that A*0204 was an outlier from the A3 superfamily. The 

previously classified A2 supertype also included A*6801 and A*6901, which 

were in the A2 superfamily in the present study.

Apart from the A2 supertype, other HLA-A supertypes are less well studied. 

There were three more HLA-A families in Sette’s classification, the A l 

superfamily (A*0101, A*2501, A*2601, A*2602 and A*3201), the A3 

superfamily (A*0301, A*1101, A*3301, A*3101 and A*6801) and A24 

superfamily (A*2301, A*2402, A*2403, A*2404, A*3001, A*3002, A*3003). 

The A l and A3 families were grouped into the A3 superfamily in the 

GRID/CPCA analysis. The A*23 and A*24 alleles were in the A24 superfamily, 

but A*3001, A*3002 and A*3003 were placed in the A3 superfamily. The 

classification was also compared with the classification by Lund et al., where he
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classified five HLA-A clusters (A l, A2, A3, A24, A26) using both motif 

information and binding site structure analysis (Lund et al., 2004). The A l, A3 

and A26 cluster in Lund’s classification were grouped into the A3 superfamily in 

the present classification, and the A2 and A24 families in the two analyses were 

in good agreement.

HLA-B7 (B*07, B*35, B*51, B*53,B*54, B*55, B*56, B*67, B*78), 

B27(B*1401-02, B*1503, B*1508, B*1509, B*1510, B*1518, B*2701-08, 

B*3801, B*3802, B*3901-04, 6*4801-02, B*7301 and B44 (B*37, B*4001-2, 

B*4006, B*41, B*44, B*47, B*49, B*50) families have been previously 

classified and tested in many binding experiments (Doolan et al., 1997; Lamas et 

al., 1998; Sidney et a l,  1995; Sidney et al., 1996a; Sidney et al., 2003). Most of 

the B7 alleles in Sette’s classification were in the B7 cluster defined by 

GRID/CPCA, apart from B*51 and B*53, which were in the B44 cluster. Alleles 

in the B7 and B44 family of Sette’s classification were scattered in B7, B27 and 

B44 superfamilies in the present analysis. In Sette’s classification two more 

clusters B58 (B *l516-17, B*5701-02, B*5702, B*5708) and B62 (B*1301, 

B*1302, B*1501, B*1502, B*1506, B*1512-14, B*1519, B*1521, B*4601, 

B*4652) were defined. Molecules in the B62 cluster of Sette’s classification 

were located in either B7 or B44 superfamilies in the GRID/CPCA analysis. The 

B58 cluster in Sette’s classification is in the B44 cluster in the present study. 

Compared with Lund’s classification (B7, B8 , B27, B44, B58, B62), the B8 

cluster was included in the B7 supertype and alleles in the in the B58 and B62 

cluster were in the B7 or B27 cluster in the current analysis.
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supertype Alleles

Predicted phenotype frequency 

Asian Black European North American Average

Caucasians Caucasians

A2 A*0201 A*0202A*0203 A*0206 A*6802 42.7 40.5 50.0 51.1 46.1

A3 A*0301 A*1101A*3101 A*3301A*6801 56.7 51.6 48.0 47.8 51.0

B7 B*0702 B*3501 B*5101 B*5301 B*5401 43.5 55.1 51.5 52.8 50.7

A2/A3/B7 90.3 90.2 91.1 91.6 90.8

A l A*0101 A*2601 A*2902 A*3002 A*3201 18.7 54.8 53.9 52.0 44.8

A24 A*2301 A*2402 A*2403 A*2405 A*2407 49.6 21.7 19.4 19.7 27.6

Total 100.0 100.0 100.0 100.0 100.0

Table 7.1. Phenotype frequencies of some HLA superfamilies defined by Sette, the table is adapted from Sette et al. (Sette and Sidney, 1999).
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Although there is no previous HLA-C classification available for comparison, 

there was an interesting observation that NK cell inhibitor receptor KIR2DL was 

divided into two groups based on their HLA-C specificity. KIR2DL1 recognised 

HLA-Cw2, Cw4, Cw5 and Cw6 , all of which possessed Asn77, whereas 

KIR2DL2 recognised HLA-Cwl, Cw3, Cw7 and Cw8 , which had Ser at position 

77 (Fan et a l , 2001). The specificity of KIR2DL was in agreement with our 

HLA-C classification, which suggested that position 77 was important in 

substrate specificity and HLA-C molecules with the same residue at position 77 

tend to share the same specificity.

In the study, HLA structures were built by homology modelling using the 

backbone of A*0201, B*0801 and Cw*0401 as templates. Although HLA 

molecules are structurally similar, there may be some differences in the binding 

site conformation, and this can be a limitation of the technique. However, 

compared with HLA classifications based on peptide binding motifs, the 

GRID/PC A method has many advantages. GRID/CPCA is more flexible as it 

only requires the sequence information of molecules, therefore all the HLA 

molecules available, whether or not they have been studied experimentally, can 

be classified. In contrast, the motif-based method can only identify a small 

number of HLA molecules that have enough binding data. Most of the motifs 

include only anchor residues of the peptide, which mainly interact with binding 

pocket B and F, therefore only part of the peptide binding site interaction is 

studied in motif based classification. In contrast, the GRID/CPCA method takes 

the whole binding site into consideration and identifies important positions 

involved in the classification. Also, motif based classifications use experimental
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binding data, which may be biased and contain experimental inconsistencies. On 

the other hand, GRID/CPCA classification uses sequence information, albeit 

manifest as homology modelled 3D structures, and minimise data inconsistency.

Possible future work is to apply GRID/CPCA and hierarchical clustering analysis 

to classify other MHC alleles such as class II HLA. Also some experimental 

work can be carried out to test alleles in some of the supertypes and confirm the 

classification. In this thesis, the binding motifs were characterised using 2D and 

3D QSAR methods. In the future, QSAR methods can be used in combination 

with machine learning methods. Recently, support vector machines have been 

used together with partial least squares to generate QSAR/QSPR models (Xue et 

al., 2004a; Xue et al., 2004b), in which PLS was used to select the input 

variables for SVM calculation. This method can also be applied to epitope 

prediction. Other structural based techniques such as virtual screening and 

docking can also be applied. Protein degradation, transport and presentation to 

the T cells is a complicated process involving proteasome degradation, peptide 

transportation by TAP and MHC presentation. At the moment the epitope 

prediction is focused on peptides that bind well to the MHC molecules. In the 

future models of proteasome cleavage and peptides binding to the TAP 

molecules can be generated and these models can be used together with the 

additive models for T cell epitope predictions.
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Chapter 8 
Conclusion

To conclude, this thesis focused on the interactions between peptides and the 

HLA binding site. The binding motifs for the HLA-A*0201 and A3 superfamily 

were derived using 2D and 3D QSAR techniques. Descriptor analysis coupled 

with variable selection methods was applied to define the A*0201 binding motif, 

and two QSAR techniques, CoMSIA and the additive method, were used to 

define a supermotif for the HLA-A3 superfamily. The predictivity of the additive 

method was evaluated and the results were compared with other T cell epitope 

prediction algorithms. An epitope prediction server, MHCPred, was set up to 

facilitate online T cell epitope prediction.

The class I HLA supertype classification by GRID/CPCA defined eight 

supertypes, alleles within each supertypes share the same or similar binding 

motifs. Epitopes that are restricted to one allele can be applied to the whole 

family. These results can be used to identify cross-reactive epitopes that are 

restricted to the superfamily, which can be used in epitope based vaccine 

development.

MHC molecules are polymorphic proteins with most of the polymorphism in the 

peptide binding site. Some of the polymorphic residues are in contact with the 

peptide, therefore directly affect the peptide specificity of the MHC molecule, 

while other residues may be the result of silent mutations and are not involved 

with peptide binding. The GRID/CPCA classification highlighted important 

residues on which the classification was based. These residues are conserved
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within each supertype which may come from convergent evolution. New alleles 

can be classified according to the differences in these residues.



Appendix 

Appendix 1.

A*0201 peptides used in the 2D-QSAR analysis. 

1) Peptides taken from the Anti Jen database.

Peptide pICso
AAAKAAAAV 6.398
AIAKAAAAV 6.176
AIIDPLIYA 6.623

AIYHPQQFV 6.504
ALAKAAAAA 6.947
ALAKAAAAI 6.211
ALAKAAAAL 6.511
ALAKAAAAM 7.398
ALAKAAAAV 6.597
ALCRWGLLL 7
ALIHHNTHL 6.623
ALLAGLVSL 7.117
ALLSDWLPA 7.025
ALMDKSLHV 7.767
ALMPLYACI 8
ALPYWNFAT 5.82
ALSTGLIHL 6.505

ALTWWLLV 6.893
ALVGLFVLL 7.553
ALVLLMLPV 7.506
ALYGALLLA 8.143

AMFQDPQER 5.74
AMKADIQHV 6.777
AMLQDMAIL 7.009
AMVGAVLTA 7.122
AVAKAAAAV 6.495
AVIGALLAV 7.747
CLALSDLLV 6.447
CLTSTVQLV 6.832
DLMGYIPLV 7.097

DMWEHAFYL 6.879
DPKVKQWPL 6.176
FAFRDLCIV 6.963
FLAGALLLA 6.223
FLCWGPFFL 7.415
FLDQVPFSV 8.658
FLEPGPVTA 6.898
FLGGTPVCL 6.623
FLLLADARV 7.747
FLLPDAQSI 6.415
FLLRWEQEI 7.592
FLLSLGIHL 8.053
FLLTRILTI 8.073

FLPWHRLFL 6.95



FLWGPRALV 7.215
FLYGAALLA 8.469
FLYGALALA 8.62
FLYGALLAA 8.201
FLYGALLLA 8.585
FLYGALRLA 8.149
FLYGALVLA 7.409
FLYGGLLLA 8.959
FLYNRPLSV 7.212
FMGAGSKAV 6.2
FTDQVPFSV 7.212
FVDYNFTIV 6.62
FVNHDFTW 6.523
FVNHRFTW 6.523
FVTWHRYHL 5.869
FWALIPLV 8.119

FVWLHYYSV 7.821
GIGILTVIL 6
GILTVILGV 8.342
GIRPYEILA 7.481

GLACHQLCA 6.38
GLCFFGVAL 5.38
GLFLTTEAV 7.509
GLGQVPLIV 6.301
GLIMVLSFL 7.658
GLLGNVSTV 7.62
GLLGWSPQA 8.027
GLMTAVYLV 8.051
GLQDCTMLV 7.638
GLSRYVARL 7.174
GLVDFVKHI 6.663

GLYGAQYDV 6.602
GLYLSQIAV 7.017

GLYRQWALA 6.733
GLYSSTVPV 7.577
GLYYLTTEV 7.682
GTLGIVCPI 6.666
HLAVIGALL 6.986
HLESLFTAV 5.301
HLLVGSSGL 5.792
HLYQGCQVV 6.832

HLYSHPIIL 7.131
HMWNFISGI 7.818
IAATYNFAV 7.032
IAGGVMAW 6.708
IIDQVPFSV 7.398
IISCTCPTV 6.58

ILAGYGAGV 6.937
ILAQVPFSV 7.939
ILDEAYVMA 6.623
ILDQVPFSV 7.284
ILFTFLHLA 8.268
ILHNGAYSL 7.127
ILLLCLIFL 6.845



ILLSIARVV 6.342
ILMQVPFSV 8.125
ILSPFMPLL 7.347
ILSQVPFSV 7.699
ILSSLGLPV 7.301
ILTVILGVL 6.419

ILWQVPFSV 8.77
ILYQVPFSV 8.31
IMDQVPFSV 7.719
IMPGQEAGL 7.188
ITAQVPFSV 7.02
ITDQVPFSV 6.947
ITFQVPFSV 7.179
ITMQVPFSV 7.398
ITSQVPFSV 6.196
ITWQVPFSV 7.457
ITYQVPFSV 7.48
IVGAETFYV 8.456
IVMGNGTLV 6.001
KIFGSLAFL 7.478
KILSVFFLA 8.301
KLAGGVAVI 6.447
KLFPEVIDL 6.693
KLTPLCVTL 6.991

KTWGQYWQV 7.957
LIGNESFAL 6.38
LLACAVIHA 6.602
LLAGLVSLL 7.021
LLAQFTSAI 7.301
LLAVGATKV 6.477
LLAVLYCLL 7.478
LLCLIFLLV 6.996

LLDVPTAAV 7.77
LLFGYPVYV 7.886
LLFLGVVFL 7.301
LLFLLLADA 6.663
LLFRFMRPL 7.447
LLGCAANWI 5.301
LLGRNSFEV 6.447
LLLCLIFLL 7.585

LLLEAGALV 8.174
LLLLGLWGL 7.658
LLPLGYPFV 6.477
LLPSLFLLL 6.903
LLSCLGCKI 5.342
LLSSNLSWL 6.342
LLVFACSAV 6.342
LLVVMGTLV 5.869
LLWFHISCL 6.682

LLWQDPVPA 7.343
LLWSFQTSA 7.818
LMAVVLASL 6.954
LMIGTAAAV 7.102
LMLPGMNGI 6.623



LQTTIHDII 5.501
LTVILGVLL 5.58
LVSLLTFMI 5.716
MALLRLPLV 7.279
MLASTLTDA 6.602
MLGNAPSVV 6.644
MLGTHTMEV 7.845
MLLAVLYCL 6.478
MLQDMAILT 6.777

MMWYWGPSL 7.921
MTYAAPLFV 7.86
NLGNLNVSI 7.119
NLQSLTNLL 6
NLYVSLLLL 7.114

NMVPFFPPV 8.403
PLLPIFFCL 6.926

QLFEDNYAL 7.764
QLFHLCLII 6.886

QMTFHLFIA 5.778
QVMSLHNLV 6.025
RIWSWLLGA 7
RLLDDTPEV 7.017
RLLGSLNST 6.778
RLLQETELV 7.682
RLMIGTAAA 6.644
RLMKQDFSV 7.338
RLPLVLPAV 8.292
RLTEELNTI 6.06

RLVSGLVGA 6.818
RMFAANLGV 7.447
RMPAVTDLV 6.903
RMYGVLPWI 7.538
SAANDPIFV 5.342
SIIDPLIYA 6.342
SIISAW GI 7.159

SLADTNSLA 6.342
SLAGFVRML 6.954
SLDDYNHLV 7.583
SLHVGTQCA 5.842
SLLEIGEGV 7.009
SLLPAIVEL 7.62
SLLTFMIAA 8.027
SLNFMGYVI 5.881
SLSRFSWGA 6.041
SLYADSPSV 7.658
SLYFGGICV 7.975
SVMDPLIYA 7.079
SVYDFFVWL 7.289
SVYVDAKLV 6.991
TLDSQVMSL 6.58
TLGIVCPIC 6.964

TLLVVMGTL 5.58
TTAEEAAGI 5.38
TVILGVLLL 6.072



TVLRFVPPL 7.114
VALVGLFVL 5.079
VCMTVDSLV 5.146
VIHAFQYVI 5.914
VILGVLLLI 6.785

VLAGLLGNV 7.721
VLAKDGTEV 7.174
VLHSFTDAI 6.17
VLIQRNPQL 7.644
VLLDYQGML 7.095
VLLLDVTPL 7.301
VLLPSLFLL 7.444
VLTALLAGL 7.086
VLVGGVLAA 6.732
VMGTLVALV 7.547
W HFFKNIV 4.301
W LGVVFGI 7.845
WMGTLVAL 7.069
WILRGTSFV 6.556
WLDQVPFSV 7.939
WLEPGPVTA 6.082
WLLIDTSNA 6.447
WLSLLVPFV 8.164
WMNRLIAFA 6.914
WTDQVPFSV 6.145
YAIDLPVSV 7.801
YALTVVWLL 6.924
YLAPGPVTA 8.032
YLAPGPVTV 7.818
YLDLALMSV 8.26
YLDQVPFSV 8.638
YLEPGPVTI 7.187
YLEPGPVTL 7.058
YLEPGPVTV 7.342
YLFPGPVTA 8.495
YLFPGPVTV 8.237
YLLALRYLA 8
YLLPAIVHI 7.745

YLMPGPVTA 8.367
YLMPGPVTV 7.932
YLSEGDMAA 6.532
YLSPGPVTA 7.383
YLSPGPVTV 7.642
YLSQIAVLL 7.917

YLVAYQATV 7.304
YLVSFGVWI 8.721
YLVTRHADV 6.342
YLWPGPVTA 8.495
YLWPGPVTV 8.125
YLYPGPVTA 7.772
YLYPGPVTV 8.051
YLYVHSPAL 8.268
YMDDVVLGA 6.699
YMDDVVLGV 8.301



YMIMVKCWM 6.663
YMLDLQPET 7.373
YMNGTMSQV 7.398
YTDQVPFSV 7.066
YTYKWETFL 7.538
YVITTQHWL 6.877

2) Dr. Brusic’s data set. (NPP -  naturally processed peptides)

Poly-alanine NPP T cell e ip topes N on-binder

AAAKAAAAV ALIVGINDD AAGIGIIQI DSRSGSPMA
AIAKAAAAV ALIVGLNDD AAGIGILTV AHKGFKGVD
ALACAAAAV ALNELLQHV AAPTPAAPA AIYKQSQHM
ALADAAAAV ALSNLEVKL AFHHVAREL GPGRAFVTI
ALAKAAAAA FLLWATAEA AIMDKNIIL RLVTLKDIV
ALAKAAAAI GIVPFIVSV ALGLGLLPV DSIGRFFGG
ALAKAAAAL GIVPFLVSV ALGRNSFEV GRTQDENPV
ALAKAAAAM GLDVLTAKV ALMDKSLHV PGSTAPPAH
ALAKAAAAT GLVPFIVSV ALMPLYACI APRLPITGL
ALAKAAAAV GLVPFLVSV ALQDSGLEV LLRRNSFEV
ALAKAAAEV ILDQKINEV ALSTGLIHL RPSGPGPEL
ALAKAAAFV ILFGHENRV AMFQDPQER VLASTAKAM
ALAKAAAGV ILIDFALYL AVGIGIAW NPVVHFFKN
ALAKAAALV ILKEPVHGV CINGVCWTV ALAKAAAAS
ALAKAAAPV ILMEHIHKL CLGGLITMV QIAKGMSYL
ALAKAAEAV ISKKFDQSQ CLGGLLTMV PLERFAELV
ALAKAALAV KINEPVIII CLTSTVQLV PSLKIFIAG
ALAKAANAV KINEPVIIL DLCGSVFLV DIQKLVGKL
ALAKAAPAV KINEPVILI DLMGYIPLV KIFIAGNSA
ALAKAAYAV KINEPVILL ELVSEFSRM PGFGYGGRA
ALAKAGAAV KINEPVLII FAFRDLCIV KGRGLSLSR
ALAKAIAAV KINEPVLIL FIDSYICQV DYKSAHKGF
ALAKAPAAV KINEPVLLI FLDQVPFSV APRLPITGI
ALAKARAAV KINEPVLLL FLGAAGSTM DLAARNVLV
ALAKAYAAV KKREEAPSL FLGGTPVCL RPSGPGPEI
ALAKEAAAV KLLEPVLLL FLKEPVHGV FLPRHRDTG
ALAKGAAAV KLNEPVIII FLLLADARV SRHKKLMFK
ALAKLAAAV KLNEPVIIL FLLSLGIHL APRLPLTGL
ALAKNAAAV KLNEPVILI FLLTRILTI RRIKEIVKK
ALAKYAAAV KLNEPVILL FLWGPRAYA LLDDEAGPL
ALAPAAAAV KLNEPVLII FLYGALLLA PPAHGVTSA
ALATAAAAV KLNEPVLIL GAGIGVAVL PQKSHGRTQ
ALAVAAAAV KLNEPVLLI GAGIGVLTA LLGRNSFEA
ALEKAAAAV KLNEPVLLL GELGFVFTL TLQEQIGWM
ALFKAAAAV LERPGGNEI GIAGGLALL ARTAHYGSL
ALKKAAAAV LLDVPIAAV GIGIGVLAA EIAQRLEDV
ALMKAAAAV LLDVPTAAV GILGFVFTL PLPIHTAEL
ALSKAAAAV LLIDFALYL GILGFVFTM LRVEYLDDR
AMAKAAAAV LLIENVASL GILGFVFTV NNMDKAVKL
ATAKAAAAV LSKKFDQSQ GLAPPQHLI VFAGKNTDL
AVAKAAAAV MVDGTLLLL GLCTLVAML NAPPAYEKL
FLAKAAAAV QVCERIPTI GLHCYEQLV SGKDSHHPA
KLAKAAAAV RILGAVAKV GLIMVLSFL TSAPDTRPA
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VLAKAAAAV SIIVRALEV GLLGFVFTL MVLASTAKA
SILVRALEV GLLGNVSTV EGQRPGFGY
SIPSGGIGV GLLGWSPQA APRLPLTGI
SIPSGGLGV GLQDCTMLV KPIVQYDNF
SLAGGIIGV GLSRYVARL RDTGILDSI
SLIVRALEV GLVPFLVSV LRGRNSFEV
SLLPAIVEL GLYSSTVPV EMFRELNEA
SLLVRALEV GMLGFVFTL FGGDRGAPK
SLPSGGIGV GQLGFVFTL DLMLSPDDI
SLPSGGLGV GTLGFVFTL ALAAAAAAK
STNRQSGRQ GTLGIVCPI KNIVTPRTP
TLWVDPYEV GVALQTMKQ QGKGRGLSL
YLLPAIVHI GVLGFVFTL PLIRHENRM

HLGNVKYLV LLGLPAAEY
HLHQNIVDV ENPVVHFFK
HLLVGSSGL PW HFFKNI
HLYQGCQVV GRLTKHTKF
HLYSHPIIL AHGVTSAPD
HMWNFISGI GKGRGLSLS
IAGIGILAI LIKKEKVYL
IISCTCPTV GIGILTVIL
IISLWDQSL PSQGKGRGL
ILAGYGAGV RHGSKYLAT
ILAKFLHWL HGSKYLATA
ILDSFDPLV IFIAGNSAY
ILFEPVHGV NLQAYQKRM
ILGFVFTLT GSGKDSHHP
ILHNGAYSL GRERFEMFR
ILKEYVHGV ITFHGAKEI
ILKSPVHGV LLGRNSREV
ILLLCLIFL VLVKSPNHV
ILSPFMPLL APRIPITGL
ILWEPVHGV AYAKAAAAF
ILYEPVHGV KDSHHPART
ITDQVPFSV VHFFKNIVT
KIFGSLAFL ELAENREIL
KILSVFFLA AADKAAAAY
KLHLYSHPI GGDRGAPKR
KLPQLCTEL DLEVLMEWL
KLTPLCVTL SRAHSSHLK
KLTSLCNTV GILDSIGRF
KTWGQYWQV AVDLSHFLK
LAGIGLIAA APRIPITGI
LIVIGILIL NIVTPRTPP
LLAQFTSAI APRASRPSL
LLARNSFEV LAGRNSFEV
LLCLIFLLV AQGTLSKIF
LLCPAGHAV PRTPPPSQG
LLGANSFEV CLTFGRETV
LLGATCMFV ELRSRYWAI
LLGRASFEV HRDTGILDS
LLGRDSFEV APRIPLTGL
LLGRNAFEV YGGRASDYK
LLGRNSAEV LLGRNSFER
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LLGRNSFAV
LLGRNSFEV
LLGRRSFEV
LLLCLIFLL
LLLLTVLTV
LLMDCSGSI
LLMGTLGIV
LLNATAIAV
LLNATDIAV
LLPENNVLS
LLQYWSQEL
LLSSNLSWL
LLWAARPRL
LLWFHISCL
LLWTLVVLL
LMIIPLiNV
LMWAKIGPV
LQTTIHDII
LWLGLLAV
MLDLQPETT
MLGTHTMEV
MLLAVLYCL
MMWYWGPSL
NLQSLTNLL
NLSWLSLDV
NMFTPYIGV
PLDGEYFTL
PLKQHFQIV
PLLPIFFCL
PLSSSVPSQ
QAGIGILLA
QLFHLCLII
QLSLLMWIT
RLGRNSFEV
RLMKQDFSV
RLNMFTPYI
RLPRIFCSC
RLTRFLRSV
RVIEVLQRA
SLDQSVVEL
SLFNTVATL
SLGGLLTMV
SLLLELEEV
SLLMWITQC
SLVIVTTFV
SLYADSPSV
SLYNTIAVL
SLYNTVATL
SMVGNWAKV
STAPPAHGV
STAPPHVNV
STPPPGTRV
SVRDRLARL
SVYDFFVWL

GSLPQKSHG
WGAEGQRPG
LIYNRMGAV
ASDYKSAHK
SLHVGTQCA
PAPGSTAPP
APRASRPSI
DAQGTLSKI
GDRGAPKRG
APRIPLTGI
LSLSRFSWG
GRFFGGDRG
YGSLPQKSH
KRPSQRHGS
RTAHYGSLP
CMGLIYNRM
IVTDFSVIK
PIETVPVKL
LIRHENRMV
KGVDAQGTL
VTPRTPPPS
GVTSAPDTR
YKSAHKGFK
GQRPGFGYG
ATDKAAAAY
FKGVDAQGT
APAAAAAAA
QRRRFVQNA
RVMAPRALL
ATAKAAAAY
ATAKAAAAK
GLSLSRFSW
TVQLVTQLM
TQDENPVVH
PDTRPAPGS
QRHGSKYLA
PARTAHYGS
RGLSLSRFS
AAAAAAAAL
RVMAPRALI
KLGGRDSRS
RPAPGSTAP
RFSWGAEGQ
FFGGDRGAP
EPRGSDIAG
LYRKLKREI
SVTCTYSPA
APPAHGVTS
PSQRHGSKY
HARHGFLPR
AEGQRPGFG
LKAEIAQRL
APKRGSGKD
APRAAAAAL
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TLFIG SHW  RHRDTGILD
TLGIVCPIC RSGSPMARR
TLGIVVPIC AAAAAAAAA
TLHEYMLDL STMDHARHG
TLNAW VKW GSKYLATAS
VDGIGILTI PAHGVTSAP
VIYQYMDDL GSSEQAAEA
VLAGLLGNV VRRCPHHER
VLFSSDFRI ASQKRPSQR
VLHDDLLEA Rl AW ARTEL
VLLDYQGML GRGLSLSRF
VLPDVFIRC IAGNSAYEY
VLQAGFFLL GFGYGGRAS
VLQWASLAV LQTTIHDII
VLSPLPSQA IRHENRMVL
VLVKSPNHV QKSHGRTQD
W LGVVFGI SQRHGSKYL
WILRGTSFV LVMAPRTVL
WLSLLVPFV APRAAAAAA
WLWYIKIFI PPPSQGKGR
YIGEVLVSV GSTAPPAHG
YLEPGPVTA HGFLPRHRD
YLGEVIVSV LDSIGRFFG
YLGEVLVSV LGGRDSRSG
YLKEPVHGV GAEGQRPGF
YLVSFGVWI TTAEEAAGI
YMDDW LGA DTRPAPGST
YMDGTMSQV EVHAADLLR
YMLDLQPET TAHYGSLPQ
YMNGTMSQV IFKLGGRDS

ATASTMDHA 
ASTMDHARH 
TASTMDHAR 
SAPDTRPAP 
VAPAPAAPT 
SRSGSPMAR 
QGTLSKIFK 
AARAAAAAA 
RGAPKRGSG 
GDPNNMDKA 
RPGFGYGGR 
SQGKGRGLS 
GVDAQGTLS 
HGVTSAPDT 
TGILDSIGR 
LPRHRDTGI 
DSHHPARTA 
GTAKSVTCT 
HGRTQDENP 
RVMAPRAIL 
GRDSRSGSP 
RASDYKSAH 
QKRPSQRHG 
HYGSLPQKS
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RRTEEENLR
QDENPVVHF
LATASTMDH
RVMAPRAII
SLSYSAGAL
RGSGKDSHH
PPSQGKGRG
DRGAPKRGS
HPARTAHYG
SHGRTQDEN
GAPKRGSGK
DVRLVHRDL
LPQKSHGRT
TRPAPGSTA
SWGAEGQRP
DTGILDSIG
KSHGRTQDE
GFLPRHRDT
CTTIHYNYM
RHGFLPRHR
RTPPPSQGK
GYGGRASDY
GGRASDYKS
PRHRDTGIL
PKRGSGKDS
VTSAPDTRP
HVDIRTLED
IGRFFGGDR
GGRDSRSGS
KAEIAQRLE
HKGFKGVDA
ERELVRKTR
RPSQRHGSK
TAPPAHGVT
TPPPSQGKG
DGETRKVKA
RGPGRAFVT
HHPARTAHY
LKIFIAGNS
LSRFSWGAE
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Appendix 2

Peptides bound to the HLA-A3 superfamily.

A *0301 peptide pIC 50 A* 1101 peptide pIC 50

AAFQSSMTK 7.8 AAFQSSMTK 8.292
AIAQSSMTK 7.432 AIAQSSMTK 7.921
AIFASSMTK 7.77 AIFASSMTK 8.367
AIFQASMTK 8.201 AIFQASMTK 8
AIFQCSMTK 7.854 AIFQCSMTK 8.678
AIFQRSMTR 7.432 AIFQRSMTR 8.032
AIFQSAMTK 7.886 AIFQSAMTK 8.041
AIFQSSATK 7.959 AIFQSSATK 8.367
AIFQSSMAK 7.721 AIFQSSMAK 8.167
AIFQSSMTA 5.963 AIFQSSMTA 6.417
AIFQSSMTK 8.06 AIFQSSMTK 8.174
AIFQSSMTR 7.301 AIFQSSMTR 7.796
AIFQSSMTY 7.509 AIFQSSMTY 8.301
AILQSSMTR 6.162 AILQSSMTR 7.569
ALFFIIFNK 8.036 AKFQSSMTK 5.046

ALLAVGATK 7.421 ALAETSYVK 7.785
ALNFPGSQK 8.071 ALFFIIFNK 8.658
AMFQDPQER 6.538 ALLAVGATK 7.398
AMSAARSSR 5.18 ALNFPGSQK 8.337
ANFQSSMTK 5.781 AMFQDPQER 7.921
ASFDKAKLK 7.377 ANFQSSMTK 7.658
AVDLSHFLK 6.8267 ASFDKAKLK 7.821
AYFQSSMTK 5.718 AVDLSHFLK 8.268
FIFQSSMTK 7.824 AYFQSSMTK 6.13
FLKENKLNK 6.839 FIFQSSMTK 8.387
GIFQSSMTK 8.071 FLKENKLNK 5.426
GTATLRLVK 8.161 GIFQSSMTK 8.276

GTGSGVSSK 6.9 GTGSGVSSK 7.398
GTMTTSIYK 8.469 GTMTTSIYK 8.377
GTMTTSLYK 8.469 GTMTTSLYK 8.377
GVSENIFLK 6.821 GVSENIFLK 8.301

HLDKKQRFH 7.167 IILECVYCK 6.903
HLFGYSWYK 8.658 ISEYRHYCY 6.78

IILECVYCK 5.431 IVCPICSQK 6.146
ILIKRRQQK 7.539 IVTDFSVIK 7.658
ILWKDIFHK 7.406 IVYRDGNPY 7.678
IVCPICSQK 5.954 KILSVFFLA 8.495
IVTDFSVIK 6.503 KSLYDEHIK 6.636

IVYRDGNPY 6.18 KTSERSQPR 7.028
KFYSKISEY 5.523 KVVNPLFEK 8.092
KILSVFFLA 7.745 LACAGLAYK 6.845

KIRKYTMRR 7.839 LGFGAYMSK 7.13
KLRKPKHKK 6.602 LIFCHSKKK 7.955
KTSERSQPR 7.162 LLACAGLAY 5.301
KVVNPLFEK 7.071 LLGPGRPYK 8.056
LACAGLAYK 6.374 LLGPGRPYR 6.183
LGFGAYMSK 6.867 LLIFHINGK 6.213
LIFCHSKKK 7.69 LTQDLVQEK 7.81



LIYRRRLMK 8.26 LVQEKYLEY 6.955
LLACAGLAY 6.721 MSLQRQFLR 8.081
LLGPGRPYK 8.301 QLFTFSPRR 8.097
LLGPGRPYR 6.244 QQLLRREVY 5.924
LLIFHINGK 6.321 QTNFKSLLR 7.854

LVKSPNHVK 7.64 RGDNFAVEK 6.979
MSLQRQFLR 7.268 RINEEKHEK 7.398
QLFTFSPRR 7.833 RLGVRATRK 8.194
QLVLHQILK 7.281 RTQNVLGEK 7.509

QQLLRREVY 5.301 SIFQSSMTK 8.699
QTNFKSLLR 7.301 SLFRAVITK 8.638
RINEEKHEK 6.105 SLLSTNLPY 6.452
RINGIPQQH 6.959 SLYDEHIKK 8.066
RLGVRATRK 7.932 SVLNLVIVK 8.159
RLQLSNGNR 6.39 SVMEVYDGR 8.347
SIFQSSMTK 7.921 TSYVKVLEY 6.34
SLFRAVITK 8.553 TTINFTRQR 8.229
SLLSTNLPY 5.941 TTLEQQYNK 8.222
SLYDEHIKK 7.553 VAGALVAFK 7.602
SLYGTTLEQ 5.426 VLSHNSYEK 7.721
SVLNLVIVK 6.893 VLYNTEKGR 5.501

TTLEQQYNK 6.416
VAGALVAFK 7.339
VLRENTSPK 7.561
VLSHNSYEK 7.102
VLYNTEKGR 6.55

A*3101 peptide pICso A *6801 peptide pICso

AIFASSMTK 5.313 AAFQSSMTK 7.276
AIFQASMTK 5.119 AIAQSSMTK 6.495
AIFQCSMTK 5.743 AIFASSMTK 7.06
AIFQRSMTR 7.959 AIFQASMTK 6.896
AIFQSSATK 5.407 AIFQCSMTK 7.444
AIFQSSMTK 5.038 AIFQRSMTR 7.319
AIFQSSMTR 6.539 AIFQSAMTK 6.979
AILQSSMTR 5.906 AIFQSSATK 7.367
ALFFIIFNK 6.143 AIFQSSMAK 7.018

ALLAVGATK 5.477 AIFQSSMTK 6.842
AYFQSSMTK 5.906 AIFQSSMTR 7.796
GIFQSSMTK 6.327 AILQSSMTR 5.903
GVSENIFLK 5.648 ALFFIIFNK 7.137
KILSVFFLA 5.106 ALLAVGATK 5.512

KLRKPKHKK 5.648 ANFQSSMTK 6.108
KTSERSQPR 7.176 FIFQSSMTK 8.097
LACAGLAYK 5.276 FLKENKLNK 6.353
LGFGAYMSK 5.53 GTGSGVSSK 5.459
LIFCHSKKK 5.596 GVSENIFLK 8
LLGPGRPYK 7.959 KILSVFFLA 5.051
LLGPGRPYR 7.959 KTSERSQPR 6.837
MSLQRQFLR 8.081 LACAGLAYK 7.495
QAFTSPTYK 4.745 LGFGAYMSK 6.653
QLFTFSPRR 6.207 LIFCHSKKK 6.477
QTNFKSLLR 6.745 LLACAGLAY 5.602



RINEEKHEK 6.313 LLGPGRPYK 5.804
RLGVRATRK 6.368 LLGPGRPYR 5.964
SAICSW RR 5.921 LLIFHINGK 6.777
SLFRAVITK 5.516 MSLQRQFLR 8.071

VAGALVAFK 5.426 NVSIPWTHK 6.602
VLYNTEKGR 5.067 PVNRPIDWK 5.051
W DFSQ FSR 4.859 QAFTSPTYK 8.174

QLFTFSPRR 8.585
QTNFKSLLR 8.357
RLGVRATRK 4.097
SAICSW RR 7.678
SIFQSSMTK 7.62
SLFRAVITK 7.174
SLYDEHIKK 6.211
VAGALVAFK 6.588
VLSHNSYEK 5.544
VLYNTEKGR 5.91
W DFSQ FSR 6.616



Appendix 3

List of amino acid descriptors and references as taken from the AAindex 
database.

No Amino acid descriptors Reference
1 Hydrophobicity index

2 Retention coefficient in 
TFA

3 Retention coefficient in 
HFBA

4 Normalized average 
hydrophobicity scales

5 Consensus normalized 
hydrophobicity scale

6 Atom-based hydrophobic 
moment

7 Direction of hydrophobic 
moment

8 Hydrophobic parameter
Pi

9 Partition coefficient

10 Hydrophobicity factor

11 Hydration number

12 Entropy of formation

13 Hydrophobicity
14 Hydropathy index

15 Hydrophobic parameter
16 Average surrounding 

hydrophobicity
17 Retention coefficient in 

HPLC, pH7.4
18 HPLC parameter

19 Partition coefficient

20 Hydrophobicity
21 Side chain hydropathy,

Argos, P., Rao, J.K.M. and Hargrave, P.A. Eur. J. 
Biochem. 128, 565-575 (1982)
Browne, C.A., Bennett, H.P.J., and Solomon, S. Anal. 
Biochem. 124, 201-208 (1982)
Browne, C.A., Bennett, H.P.J., and Solomon, S. Anal. 
Biochem. 124, 201-208 (1982)
Cid, H., Bunster, M., Canales, M. and Gazitua, F. 
Protein Engineering 5, 373-375 (1992)
Eisenberg, D. Ann. Rev. Biochem. 53, 595-623 
(1984)
Eisenberg, D. and McLachlan, A.D. Nature 319, 199- 
203 (1986)
Eisenberg, D. and McLachlan, A.D. Nature 319, 199- 
203 (1986)
Fauchere, J.L. and Pliska, V. Eur. J. Med. Chem. 18, 
369-375 (1983)
Garel, J.P., Filliol, D., and Mandel, P. J. Chromatogr. 
78, 381-391 (1973)
Goldsack, D.E. and Chalifoux, R.C. J. Theor. Biol. 
39, 645-651 (1973)
Hopfinger, A.J. "Intermolecular Interactions and 
Biomolecular Organizations", Wiley,

New York (1977)
Hutchens, J.O. In "Handbook of Biochemistry", 2nd 
ed. (Sober, H.A., ed.), Chemical 

Rubber Co., Cleveland, Ohio, pp. B60-B61 (1970) 
Jones, D.D. J. Theor. Biol. 50, 167-183 (1975)
Kyte, J. and Doolittle, R.F. J. Mol. Biol. 157, 105-132 
(1982)
Levitt, M. J. Mol. Biol. 104, 59-107 (1976) 
Manavalan, P. and Ponnuswamy, P.K. Nature 275, 
673-674 (1978)
Meek, J.L. Proc. Natl. Acad. Sci. USA 77, 1632-1636 
(1980)
Parker, J.M.R., Guo, D., and Hodges, R.S. 
Biochemistry 25, 5425-5432 (1986)
Pliska, V., Schmidt, M., and Fauchere, J.L. J. 
Chromatogr. 216, 79-92 (1981)
Prabhakaran, M. Biochem. J. 269, 691-696 (1990) 
Roseman, M.A. J. Mol. Biol. 200, 513-522 (1988)
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22

23

24

25

26

27

28

29

30
31

32
33

34

35

36

37

38

39

40

41

42

43

uncorrected for solvation 
Side chain hydropathy, 
corrected for solvation 
Hydration potential

Hydrophobicity

Average flexibility 
indices
Flexibility parameter for 
no rigid neighbors 
Flexibility parameter for 
one rigid neighbor 
Flexibility parameter for 
two rigid neighbors 
Side chain orientational 
preference 
Residue volume 
Apparent partial specific 
volume
Steric parameter 
The number of bonds in 
the longest chain 
Partial specific volume

Size

Molecular weight

Optical rotation

Graph shape index

Smoothed upsilon steric 
parameter

Normalized van der 
Waals volume

STERIMOL length of the 
side chain

STERIMOL minimum 
width of the side chain

STERIMOL maximum

Roseman, M.A. J. Mol. Biol. 200, 513-522 (1988)

Wolfenden, R., Andersson, L., Cullis, P.M., and 
Southgate, C.C.B. Biochemistry 20, 849-855 (1981) 
Zimmerman, J.M., Eliezer, N., and Simha, R. J. 
Theor. Biol. 21, 170-201 (1968) 
Bhaskaran-Ponnuswamy, 1988 Int. J. Peptide Protein 
Res. 32, 241-255
Karplus, P.A. and Schulz, G.E. Naturwiss. 72, 212- 
213 (1985)
Karplus, P.A. and Schulz, G.E. Naturwiss. 72, 212- 
213 (1985)
Karplus, P.A. and Schulz, G.E. Naturwiss. 72, 212- 
213 (1985)
Rackovsky, S. and Scheraga, H.A. Proc. Natl. Acad. 
Sci. USA 74, 5248-5251 (1977)
Bigelow, 1967 J. Theor. Biol. 16, 187-211 (1967)
Bull, H.B. and Breese, K. Arch. Biochem. Biophys.
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Appendix 4

The peptide test set used in evaluation o f the MHCPred server.

Protein Allele Accession
No.

Epitopes Sequences Reference

MAGE-3 A0101

A0201

P43357 EVDPIGHLY

FLWGPRALV
KVAELVHFL

MPLEQRSQHCKPEEGLEARGEALGLVGAQAPATEEQEAASSSSTLV
EVTLGEVPAAESPDPPQSPQGASSLPTTMNYPLWSQSYEDSSNQEEE
GPSTFPDLESEFQAALSRKVAELVHFLLLKYRAREPVTKAEMLGSVV
GNWQYFFPVIFSKASSSLQLVFGIELMEVDPIGHLYIFATCLGLSYDG
LLGDNQIMPKAGLLIIVLAIIAREGDCAPEEKIWEELSVLEVFEGREDS
ILGDPKKLLTQHFVQENYLEYRQVPGSDPACYEFLWGPRALVETSY
VKVLHHMVKISGGPHISYPPLHEWVLREGEE

(Zerbini et al., 2004)

CH62 MYCT 
U hsp65

A0201 P06806 KLAGGVAVI AKTIAYDEEARRGLERGLNALADAVKVTLGPKGRNVVLEKKWGAPTITNDG
VSIAKEIELEDPYEKIGAELVKEVAKKTDDVAGDGTTTATVLAQALVREGL
RNVAAGANPLGLKRGIEKAVEKVTETLLKGAKEVETKEQIAATAAISAGDQ
SIGDLIAEAMDKVGNEGVITVEESNTFGLQLELTEGMRFDKGYISGYFVTD
PERQEAVLEDPYILLVSSKVSTVKDLLPLLEKVIGAGKPLLIIAEDVEGEA
LSTLVVNKIRGTFKSVAVKAPGFGDRRKAMLQDMAILTGGQVISEEVGLTL
ENADLSLLGKARKVVVTKDETTIVEGAGDTDAIAGRVAQIRQEIENSDSDY
DREKLQERLAKLAGGVAVIKAGAATEVELKERKHRIEDAVRNAKAAVEEGI
VAGGGVTLLQAAPTLDELKLEGDEATGANIVKVALEAPLKQIAFNSGLEPG
VVAEKVRNLPAGHGLNAQTGVYEDLLAAGVADPVKVTRSALQNAASIAGLF
LTTEAVVADKPEKEKASVPGGGDMGGMDF

(Charo et al., 2001)

TRP2
Residue 1-400

A0201 P40126 SVYDFFVW L MSPLWWGFLL SCLGCKILPG AQGQFPRVCM TVDSLVNKEC  
CPRLGAESAN VCGSQQGRGQ CTEVRADTRP WSGPYILRNQ  
DDRELWPRKFFHRTCKCTGN FAGYNCGDCK FGWTGPNCER 
KKPPVIRQNI HSLSPQEREQ FLGALDLAKK RVHPDYVITT  
QHWLGLLGPN GTQPQFANCS VYDFFVW LHYYSVRDTLLGP  
GRPYRAIDFS HQGPAFVTWH RYHLLCLERD LQRLIGNESF 
ALPYWNFATG RNECDVCTDQ LFGAARPDDP TLISRNSRFS 
SWETVCDSLD DYNHLVTLCN GTYEGLLRRN QMGRNSMKLP 
TLKDIRDCLS LQKFDNPPFF QNSTFSFRNA LEGFDKADGT  
LDSQVMSLHN LVHSFLNGTN ALPHSAANDP IFVVLHSFTD

(Schreurs et al., 2000)



M ucl HUM 
AN
Residue 1-420

A0201 TLAPATEPA
ALGSTTPPA

MTPGTQSPFF LLLLLTVLTV VTGSGHASST  
PGGEKETSATQRSSVPSSTE
KNAVSM TSSVLSSHSPGSGSSTTQGQDVTLAPATEPASGSAATW GQ
DVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPGSTAPPAHGVTS
APDTRPAPGS
TAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHG  
VTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDT  
RPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTS APDTRPAPGS 
TAPPAHGVTS APDTRPAPGS TAPPAHGVTS APDTRPAPGS  
TAPPAHGVTSAPDTRPAPGS TAPPAHGVTS APDTRPAPGS  
TAPPAHGVTS APDTRPAPGS TAPPAHGVTS APDTRPAPGS  
APPAHGVTS

(Heukamp et al., 2001)

CEA5 HUM  
AN

A2 ATVGIMIGV LP V SPRLQLSNGNRTLTLFN VTRNDARA Y V CGIQN S V SANRSDPVTL  
DVLYGPDTPIISPPDSSYLSGANLNVSCHSASNPSPQYSW RINGIPQQ  
HTQVLFIAKITPNNNGTYACFVSNLATGRNNSIVKSITVSASGTSPGL  
SAGATVGIMIGVLVGVALI

(Keogh et a l ,  2001)

NY-ESO-1 A0201 P78358 SLLWITQC MQAEGRGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT  
GGRGPRGAGAARASGPGGGA PRGPHGGAAS GLNGCCRCGA  
RGPESRLLEF YLAMPFATPMEAELARRSLA QDAPPLPVPG  
VLLKEFTVSG NILTIRLTAA DHRQLQLSIS SCLQQLSLLM  
WITQCFLPVF LAQPPSGQRR

(Zeng et al., 2002)

HCV NS5 
Fragment 
R es1020-1200

A0201 CINGVCWTV KGWRLLAPIT AYAQQTRGLL GCIITSLTGR DKNQVEGEVQ  
IVSTAAQTFL ATCINGVCW TVYHGAGTRTIASPKGPVIQM  
YTNVDQDLVG WPAPQGSRSL TPCTCGSSDL 
YLVTRHADVIPVRRRGDSRG SLLSPRPISY LKGSSGGPLL 
CPAGHAVGIF RAAVCTRGVA KAVDFIPVEN

(Urbani et al., 2001)

FETA HUM  
AN
Residue 1-360

A0201 P02771 PLFQVPEPV
FMNKFIYEI

MKWVESIFLIFLLNFTESRTLHRNEYGIASILDSYQCTAEISLADLATI
FFAQFVQEATYKEVSKMVKDALTAIEKPTGDEQSSGCLENQLPAFLE
ELCHEKEILEKYGHSDCCSQSEEGRHNCFLAHKKPTPASIPLFQVPEP
VTSCEAYEEDRETFMNKFIYEIARRHPFLYAPTILLWAARYDKIIPSC
CKAENAVECFQTKAATVTKELRESSLLNQHACAVMKNFGTRTFQAI
TVTKLSQKFTKVNFTEIQKLVLDVAHVHEHCCRGDVLDCLQDGEKI
MSYICSQQDTLSNKITECCKLTTLERGQCIIHAENDEKPEGLSPNLNR
FLGDRDFNQFSSGEKNIFLASFVHEY SR

(Butterfield et a l ,  
2001)

RVS A0201 P22677 VMLRWGVLA MALSKVKLND TFNKDQLLST SKYTIQRSTG DNIDIPNYDV (Venter et al., 2003)



NCAP BRSV  
A

QKHLNKLCGM LLITEDANHKFTGLIGILYA MSRLGREDTL 
KILKDAGYQV RANGVDVITH RQDVNGKEMK  
FEVLTLVSLTSEVQGNIEIE SRKSYKKMLK EMGEVAPEYR  
HDSPDCGMIV LCVAALVITK LAAGDRSGLTAVIRRANNVL  
RNEMKRYKGL IPKDIANSFY EVIEKYPHYI DVFVHFGIAQ  
SSTRGGSRVEGIFAGLFMNA
YGAGQVM LRW GVLAKSVKNIMLGHASVQAEMEQVVEVYEYAQK  
LGGEAGF YHILNNPKAS LLSLTQFPNF SSVVLGNAAG  
LGIMGEYRGTPRNQDLYDAA KAYAEQLKEN GVINYSVLDL  
TTEELEAIKN QLNPKDNDVE L

PDC-E2 A0201 P10515 GDLLAEIETDK
ATI

RYYSLPPHQK VPLPSLSPTM QAGTIARWEK KEGDKINEGD  
LIAEVETDKA TVGFESLEECYMAKILVAEG TRDVPIGAII 
CITVGKPEDI EAFKNYTLDS SAAPTPQAAP APTPAATASP  
PTPSAQAPGS SYPPHMQVLL PALSPTMTMG TVQRWEKKVG  
EKLSEGDLLA EIETDKATIG FEVQEEGYLAKILVPEGTRD  
VPLGTPLCII VEKEADISAF ADYRPTEVTD LKPQVPPPTP 
PPVAAVPPTP (Residue50-300)

(Shigematsu et al., 
2000)

VIE1 HCMV 
T
RES 1-360

A0201 P03169 YVLEETSVM MESSAKRKMD PDNPDEGPSS KVPRPETPVT KATTFLQTML 
RKEVNSQLSL GDPLFPELAEESLKTFEQVT EDCNENPEKD  
VLAELVKQIK VRVDMVRHRI KEHMLKKYTQ TEEKFTGAFN 
MMGGCLQNAL DILDKVHEPF EEMKCIGLTM QSMYENYIVP  
EDKREMWMAC ELHDVSKG AANKLGGALQ AKARAKKDEL  
RRKMMYMCYR NIEFFTKNSA FPKTTNGCSQMAALQNLPQ  
CSPDEIMAYA QKIFKILDEE RDKVLTHIDH IFMDILTTCV 
ETMCNEYKVT SDACMMTMYGGISLLSEFCR VLCCYVLEET  
SVMLAKRPLI TKPEVISVMK RRIEEICMKV FAQYILGADP

(Prod'homme et al., 
2003)

14KD MYCT
U

A0201 P30223 LFAAFPSFA
GILTVSVAV

ATTLPVQRHP RSLFPEFSEL FAAFPSFAGL RPTFDTRLMR 
LEDEMKEGRY EVRAELPGVDPDKDVDIMVR DGQLTIKAER  
TEQKDFDGRS EFAYGSFVRT VSLPVGADED DIKATYDKGI 
LTVSVAVSEG KPTEKHIQIR STN

(Caccamo et al., 2002)

Mce2
Q7uip7

DRB1*0
101

163-175
278-290

DPIELNATLSA
VA
(PIELNATLS)
ADLVPTATLLD
TY

MPTLVTRKNR RAW LYVEGVV LLLVGALVLV LVYKQFRGE 
TPKTELTMVASRAGLVMEAGSKVTYNGVEI GRVGSISEIE 
RDGRPAAKLV LDVNPRYISL IPVNVVADIE AATLFGNKYV  
ALSAPKIPQQ QRISSHDVID VGSVTTEFNT LFETITSIAE 
KVDPIELNAT LSAVAQAPDGLGGKFGESIV NGNQILAQLN

(Panigada et a l ,  2002)



(DLVPTATLL) PRLPQLGYDV RRLADLGEVY VDASPDLW SF LQNALTTART  
LTSQQRDLDA ALLAATGAGN TGEDVFARGG PYLARAAADL  
VPTATLLDTY SPELFCMIRNFHDAAPKVAD AVGGNGYSLA  
AAGTILGAPN PYVYPDNLPR VNAHGGPGGR PGCWQTITRE 
LWPAPYLVMD TGASLAPYNH VELGQPMFTE YVWGRQYGEN  
TINP

Mce2
Q7uip7

DRB1*0
701

EG V VLLL V GAL 
VL
(GV VLLL VGA)
PRYISLIPVNVV
AD
(YISLIPVNV)

MPTLVTRKNR RAW LYVEGVV LLLVGALVLV LVYKQFRGE 
TPKTELTMVASRAGLVMEAGSKVTYNGVEI GRVGSISEIE 
RDGRPAAKLV LDVNPRYISL IPVNVVADIE AATLFGNKYV  
ALSAPKIPQQ QRISSHDVID VGSVTTEFNT LFETITSIAE 
KVDPIELNAT LSAVAQAPDGLGGKFGESIV NGNQILAQLN  
PRLPQLGYDV RRLADLGEVY VDASPDLW SF LQNALTTART  
LTSQQRDLDA ALLAATGAGN TGEDVFARGG PYLARAAADL  
VPTATLLDTY SPELFCMIRNFHDAAPKVAD AVGGNGYSLA  
AAGTILGAPN PYVYPDNLPR VNAHGGPGGR PGCWQTITRE 
LWPAPYLVMD TGASLAPYNH VELGQPMFTE YVWGRQYGEN  
TINP

(Panigada e t a l., 2002)

Mage6_huma
n

DRB1*0
401

P43360 ESEFQAALSRK
VAKL
LLKYRAREPVTK
MLGSVVGNWQ

MPLEQRSQHC KPEEGLEARG EALGLVGAQA PATEEQEAAS 
SSSTLVEVTL GEVPAAESPDPPQSPQGASS LPTTMNYPLW  
SQSYEDSSNQ EEEGPSTFPD LESEFQAALS RKVAKLVHFL  
LLKYRAREPV TKAEMLGSVV GNWQYFFPVI FSKASDSLQL  
VFGIELMEVD PIGHVYIFATCLGLSYDGLL GDNQIMPKTG  
FLIIILAIIA KEGDCAPEEKIW EELSVLEV FEGREDSIFG 
DPKKLLTQYF VQENYLEYRQ VPGSDPACYE FLWGPRALIE 
TSYVKVLHHM VKISGGPRISYPLLHEWALR EGEE

(Tatsumi et a l ,  2003)

Leishmania
panamensis

DRB1*0
401

043971 FKHKFAELLEQ
QKAAQYPSK

MATTYEEFAA KLDRLDEEFN KKMQEQNAKF FADKPDESTL  
SPEMKEHYEK FERMIKEHTE KFNKKMHEHS EHFKHKFAEL 
LEQQKAAQYP SK (Res 1-200)

(Delgado et al., 2003)

VS06 ROTB 
R

H-2Db P04509 RLSFQLMRPPN
MTP
(FQLMRPPNM)

APANTQQFEH IVQLRRVLTT ATITLLPDAE RFSFPRVITS 
ADGATTW YFN PVILRPNNVE IEFLLNGQIINTYQARFGTI 
IARNFDTIRL S FQLMRPPNM TPAVAALFPN AQPFEHHATV  
GLTLRIESAV CESVLADASE TM LANVTSVR QEYAIPVGPV  
FPPGMNWTDL ITNYSPSRED NLQRVFTVAS IRSMLVK

(Choi et al., 2003)

VS06 ROTB 
R

H-2Db P04509 RLSFQLMRPPN
MTP

APANTQQFEH IVQLRRVLTT ATITLLPDAE RFSFPRVITS 
ADGATTW YFN PVILRPNNVE IEFLLNGQII NTYQARFGTI

(Choi et al., 2003)



(FQLMRPPNM) IARNFDTIRL SFQLMRPPNM TPAVAALFPN AQPFEHHATV  
GLTLRIESAV CESVLADASE TM LANVTSVR QEYAIPVGPV  
FPPGMNWTDL ITNYSPSRED NLQRVFTVAS IRSMLVK

Ag85A H-2Db P I7944 LTSELPGWLQA
NRHVKPTGS

FSRPGLP VEYLQVPSPS MGRDIKVQFQ SGGANSPALY  
LLDGLRAQDD FSGWDINTPA FEWYDQSGLS VVMPVGGQSS 
FYSDW YQPAC GKAGCQTYKW ETFLTSELPG WLQANRHVKP 
TGSAVVGLSM  AASSALTLAI YHPQQFVYAG AMSGLLDPSQ  
AMGPTLIGLAMGDAGGYKASDMWGPKEDPAWQRNDPLLNVGKLI 
ANNTRV WV Y CGNGKPSDLGGNNLPAK FLEGFVRTSN  
IKFQDAYNAG GGHNGVFDFPDSGTHSWEYW GAQLNAMKPD  
LQRALGATPN TGPAPQGA

(D'Souza et al., 2003)

Ag85B H-2Kb P31952 QDAYNAAGGH
NAVFNFPNG
(DAYNAAGG)

LTSELPQWLS ANRAVKPTGS AAIGLSMAGS SAMILAAYHP  
QQFIYAGSLS ALLDPSQGMG PSLIGLAMGD AGGYKAADMW  
GPSSDPAW ER NDPTQQIPKLVANNTRLWVY CGNGTPNELG 
GANIPAEFLE NFVRSSNLKF QDAYNAAGGH NAVFNFPPNG  
THSWEYWGAQ LNAMKGDLQS SLGAG

(D'Souza et al., 2003)

HCV NS3 A0201
DRB1*0
401

DRB1*0
101
(2
peptides)

P26664 KLVALGINA
DECHSTDATSIL
IG
(STDATSILG)
DLYLVTRHADVI
PVR
YLVTRHADV)
(IIICDECHS)

KGWRLLAPITAYAQQTRGLLGCIITSLTGRDKNQVEGEVQIVSTAAQ
TFLATCINGVCWTVYHGAGTRTIASPKGPVIQMYTNVDQDLVGWPA
PQGSRSLTPCTCGSSDLYLVTRHADVIPVRRRGDSRGSLLSPRPISYL
KGSSGGPLLCPAGHAVGIFRAAVCTRGVAKAVDFIPVENLETTMRSP
VFTDNSSPPVVPQSFQVAHLHAPTGSGKSTKVPAAYAAQGYKVLVL
NPSVAATLGFGAYMSKAHGIDPNIRTGVRTITTGSPITYSTYGKFLAD
GGCSGGAYDIIICDECHSTDATSILGIGTVLDQAETAGARLVVLATAT
PPGSVTVPHPNIEEVALSTTGEIPFYGKAIPLEVIKGGRHLIFCHSKKK
CDELAAKLVALGINAVAYYRGLDVSVIPTSGDVW VATDALM TGY
TGDFDSVIDCNTCVTQ

(Wertheimer et al., 
2003)

Streptococcus
pyogenes

H-2Db
H-2Kb

Q01924 TTPQVETED
SGQTTPQV

VETEDTKEP GVLMGGQSES VEFTKDTQTG MSGQTTPQVE 
TEDTKEPGVLMGGQSESVEFTKDTQTGMSG QTASQ

(Schulze et 
a l . ,  2 0 0 3 )

R S V G
protein

H-2Db

H-2Kb

Q01929 FNFVPCSICSNN
PT
(FVPCSICSN)

PNNDFHFEVFN

MSKNKDQRTA KTLEKTWDTL NYLLFISSGL YKLNLKSIAQ  
1TLSILAMII STSLIITAII FIASANHKVT LTTAIIQDAT SQIKNTTPTY 
LTQDPQLGIS FSNLSEITSQ TTTILASTTP 
GVKSNLQPTT VKTKNTTTTQ TQPSKPTTKQ RQNKPPNKPN  
NDFHFEVFNF VPCSICSNNPTCWAICKRIP NKKPGKKTTT

(Hancock e t al., 2003)



FVPC
(FHFEVFNFV)

(SICSNNPT)

KPTKKPTFKT TKKDLKPQTT KPKEVPTTKP TEEPTINTTK 
TNITTTLLTN NTTGNPKLTS QMETFHSTSS EGNLSPSQVS  
TTSEHPSQPS SPPNTTRQ

Chicken
OVM

H-2Kb

H-2Kk

P01005 DNKTYGNKCN
FCNAV

D CLLCAYSIEF
GTNISKEHDGE
CKETVPMNCSS
YANTTSEDGK
VMVLCNRAFN
P
TDGVTYDNEC
LLCAHKV

AAFGAEVDCSRFPNATDKEGKDVLVCNKDLRPICGTDGVTYTNDCL  
LCAY SIEFGTNISK EHDGECKETV PM NCSSYANT TSEDGKVMVL  
CNRAFNPVCGTDGVTYDNEC LLCAHKVEQG ASVDKRHDGG  
CRKELAAVSV DCSEYPKPDC TAEDRPLCGS DNKTYGNKCN  
FCNAVVESNG TLTLSHFGKC

(Mizumachi and 
Kurisaki, 2003)

SOX 10 
human

A0201 P56693 AWISKPPGV PGGEAEQGGT AAIQAHYKSA HLDHRHPGEG SPMSDGNPEH  
PSGQSHGPPT PPTTPKTELQ SGKADPKRDG RSMGEGGKPH 
IDFGNVDIGE ISHEVMSNME TFDVAELDQY LPPNGHPGHV  
SSYSAAGYGL GSALAVASGH SAWISKPPGV ALPTVSPPGV  
DAKAQVKTET AGPQGPPHYT DQPSTSQIAY TSLSLPHYGS 
AFPSISRPQF DYSDHQPSGP YYGHSGQASG LYSAFSYMGP  
SQRPLYTAIS DPSPSGPQSH SPTHWEQPVY TTLSRP

(Khong and Rosenberg, 
2002)

OSA1 BORB 
U

DRB1*0
401

P14013 KSYVLEGTLTA
EK
(YVLEGTLTA)

MKKYLLGIGL ILALIACKQN VSSLDEKNSV SVDLPGEMNV  
LVSKEKNKDG KYDLIATVDKLELKGTSDKN NGSGVLEGVK  
ADKSKVKLTI SDDLGQTTLE VFKEDGKTLV SKKVTSKDKS  
STEEKFNEKG EVSEKIITRA DGTRLEYTEI KSDGSGKAKE  
VLKSYVLEGT LTAEKTTLVVKEGTVTLSKN ISKSGEVSVE  
LNDTDSSAAT KKTAAW NSGT STLTITVNSK KTKDLVFTKE 
NTITVQQYDS NGTKLEGSAV EITKLDEIKN ALK

(Steere et al., 2003)

ALK human 
Res 1200- 
MOO

A0201 Q9UM7 GVLLWEIFSL GGDLKSFLRE TRPRPSQPSS LAMLDLLHVA RDIACGCQYL  
EENHFIHRDIAARNCLLTCP GPGRVAKIGD FGMARDIYRA  
SYYRKGGCAM LPVKWMPPEA FMEGIFTSKT DTWSFGVLLW  
EIFSLGYMPY PSKSNQEVLE FVTSGGRMDP PKNCPGPVYR  
IMTQCWQHQP EDRPNFAIIL ERIEYCTQDP DVINTALPIE

(Passoni et al., 2002)

MAG3 huma DRB1*0 P43357 GNWQYFFPVIF MPLEQRSQHC KPEEGLEARG EALGLVGAQA PATEEQEAAS (Consogno et al., 2003)



n 401 SKAS
(QYFFPVIFS)
FFPVIFSKASSS
LQL
(FSKASSSLQ)
TSYVKVLHHM
VKISG
(KVLHHMVKI)

SSSTLVEVTL GEVPAAESPD PPQSPQGASS LPTTMNYPLW  
SQSYEDSSNQ EEEGPSTFPD LESEFQAALS RKVAELVHFL  
LLKYRAREPV TKAEMLGSVV GNWQYFFPVI FSKASSSLQL  
VFGIELMEVD PIGHLYIFAT CLGLSYDGLL GDNQIMPKAG  
LLIIVLAIIA REGDCAPEEKIWEELSVLEV FEGREDSILG 
DPKKLLTQHF VQENYLEYRQ VPGSDPACYE FLWGPRALVE 
TSYVKVLHHM VKISGGPHIS YPPLHEWVLR EGEE

Tyrosinase 
related 
protein-1 
Residue 1-400

DRB1*0
401

P I7643 ISPNSVFSQWR
VVCDSLEDYD
0

MSAPKLLSLG CIFFPLLLFQ QARAQFPRQC ATVEALRSGM  
CCPDLSPVSG PGTDRCGSSS GRGRCEAVTA DSRPHSPQYP  
HDGRDDREVW  PLRFFNRTCH CNGNFSGHNC GTCRPGWRGA 
ACDQRVLIVR RNLLDLSKEE KNHFVRALDM AKRTTHPLFV  
IATRRSEEIL GPDGNTPQFE NISIYNYFVW  THYYSVKKTF  
LGVGQESFGE VDFSHEGPAF LTWHRYHLLR LEKDMQEMLQ 
EPSFSLPYWN FATGKNVCDI CTDDLMGSRS NFDSTLISPN  
SVFSQW RVVC DSLEDYDTLG TLCNSTEDGP IRRNPAGNVA  
RPMVQRLPEP QDVAQCLEVG LFDTPPFYSN STNSFRNTVE  
GYSDPTGKYD PAVRSLHNLA HLFLNGTGGQ THLSPNDPIF

(Touloukian et al., 
2002)

CGHB HUM  
AN

A*0201

0701

P01233 VLQVGLPAL
TMTRVLQGV
LPQVVCNYRD
VRFESI
(QVVCNYRDV)

MEMFQGLLLL LLLSMGGTWA SKEPLRPRCR PINATLAVEK 
EGCPVCITVN TTICAGYCPT MTRVLQGVLP ALPQVVCNYR 
DVRFESIRLP GCPRGVNPVV SYAVALSCQC ALCRRSTTDC 
GGPKDHPLTC DDPRFQDSSS SKAPPPSLPS PSRLPGPSDT PILPQ

(Dangles et al., 2002)

CEA5_human 
Residue 300- 
700

0401
0701

P06731 YACFVSNLATG
RNNS

AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA  
VALTCEPEIQ NTTYLW W VNN QSLPVSPRLQ LSNDNRTLTL  
LSVTRNDVGP YECGIQNELS VDHSDPVILN VLYGPDDPTI 
SPSYTYYRPG VNLSLSCHAA SNPPAQYSW L IDGNIQQHTQ 
ELFISNITEK NSGLYTCQAN NSASGHSRTT VKTITVSAEL  
PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS 
LPVSPRLQLS NGNRTLTLFN VTRNDARAYV CGIQNSVSAN  
RSDPVTLDVL YGPDTPIISP PDSSYLSGAN LNLSCHSASN  
PSPQYSWRIN GIPQQHTQVL FIAKITPNNN GTYACFVSNL  
ATGRNNSIVK SITVSASGTS PGLSAGATVG IMIGVLVGVA LI

(Kubayashi et al., 
2002)

M A G E 6 0101
0701

P43360 ESEFQAALSRK
VAKL

MPLEQRSQHC KPEEGLEARG EALGLVGAQA PATEEQEAAS 
SSSTLVEVTL GEVPAAESPD PPQSPQGASS LPTTMNYPLW

(Tatsumi et al., 2003)



(the same 
epitopes)

YFFPVIFSKASD
SLQL

SQSYEDSSNQ EEEGPSTFPD LESEFQAALS RKVAKLVHFL  
LLKYRAREPV TKAEMLGSVV GNWQYFFPVI FSKASDSLQL  
VFGIELMEVD PIGHVYIFAT CLGLSYDGLL GDNQIMPKTG  
FLIIILAIIA KEGDCAPEEK IWEELSVLEV FEGREDSIFG 
DPKKLLTQYF VQENYLEYRQ VPGSDPACYE FLWGPRALIE 
TSYVKVLHHM VKISGGPRISYPLLHEWALR EGEE

MOG 35-55 H2Db 44-53 FSRVVHLYRN MEVGW YRSPFSRVVHLYRNGK (Sun et a l ,  2003)
P.vivax 0401 M 60807 NFVGKFLELQI

PGHTDLLHL
(FVGKFLELQ)
LDMLKKVVLG
LWKPLDNIKD
(DMLKKVVL)

MKALLFFFSFIFFVTKCQCETESYKQLVANVDKLEALVVDGYEL
FHKKKLGENDIKVDANANNNNNNQVSVLTSKIRNFVGKFLELQIPGHTDLL
HLIRELAFEPNGIKYLVESYEEFNQLMHVINFHYDLLRANVHDMCAHDYCK
IPEHLKISDKELDMLKKVVLGLWKPLDNIKDDIGKLETFITKNKETISNIN
KLISDENAKRGGQSTNTTNGPGAQNNAAQGSTGNTETGTRSSASSNTLSGG
DGTTVVGTSSPAPAAPSSTNEDYDEKKKIYQAMYNGIFYTSQLEEAQKLIE
VLEKRVKVLKEHKGIKALLEQVEAEKKKLPKDNTTNRPLTDEQQKAAQKKI
ADLESQIVANAKTVNFDLDGLFTDAEELEYYLREKAKMAGTL

(Caro-Aguilar et al., 
2002)

OMLK CHL 
PN

H2Kb Q9X8F4 GDYVFDRI AGDPCDPCAT WCDAISLRAG FYGDYVFDRI LKVDAPKTFS 
MGAKPTGSAT ANYTTAVDRP NPAYNKHLHD AEWFTNAGFI 
ALNIW DRFDV FCTLGASNGY IKGNSTAFNL VGLFGVKGTS 
VAANELPNVS LSNGVVELYT DTSFSW SVGA RGALWECGCA 
TLGAEFQYAQ SKPKVEELNVICNVAQFSVN KPKGYKGVAF 
PLPTDAGVAT ATGTKSATIN YHEWQVGASL SYRLNSLVPY  
IGVQWSRATF DADNIRIAQP KLPTAVLNLT AWNPSLLGNT  
TTLPTSDSFS DFMQIVSCQINKFKSRKACG VTVGATLVDA  
DKWSLTAEAR LIN

(Saren et al., 2002)

Vaccinia virus A0201 KVDDTFYYV MGIQHEFDIIINGDIALRNLQLHKGDNYGCKLKIISNDYKKLKF
RFIIRPDW SEIDEVKGLTVFANNYAVKVNKVDDTFYYVIYEAVIHLY
NKKTEILIYSDDENELFKHYYPYISLNMISKKYKVKEENYSSPYIEHP
LIPYRDYESMD

(Terajima et al., 2003)

Vaccinia virus A0201 CLTEYILWV MKPKVNNIGNTPLHNYVSQYDITLIPHPQPIKKWKLKPSISINGYRST
FTMAFPCAQFRPCHCHATKDSLNTVADVRHCLTEYILWVSHRWTH
RESAGSLYRLLISFRTDATELFGGELKDSLPWRSLNDSMKTAEELRAI
IGLCTQSAIVSGRVFNDKYIDILLMLRKILNENDYLTLLDHIRTAKY

(Terajima et al., 2003)

M UCl_huma
n
Residue 1-300

A0201 P15941 TLAPATEPA MTPGTQSPFF LLLLLTVLTV VTGSGHASST PGGEKETSAT 
QRSSVPSSTE KNAVSM TSSV LSSHSPGSGS STTQGQDVTL 
APATEPASGS AATW GQDVTS VPVTRPALGS TTPPAHDVTS

(Heukamp et al., 2001)



APDNKPAPGS TAPPAHGVTS APDTRPAPGS TAPPAHGVTS 
APDTRPAPGS TAPPAHGVTS APDTRPAPGS TAPPAHGVTS 
APDTRPAPGS TAPPAHGVTS APDTRPAPGS TAPPAHGVTS 
APDTRPAPGS TAPPAHGVTS APDTRPAPGS TAPPAHGVTS 
APDTRPAPGS TAPPAHGVTS

M U C l h u m a
n
Residue 900- 
1100

A0201 P15941 ALGSTAPPV APDTRPAPGS TAPPAHGVTS APDTRPAPGS TAPPAHGVTS 
APDNRPALGS TAPPVHNVTS ASGSASGSAS TLVHNGTSAR  
ATTTPASKST PFSIPSHHSD TPTTLASHST KTDASSTHHS 
SVPPLTSSNH STSPQLSTGV SFFFLSFHIS NLQFNSSLED  
PSTDYYQELQ RDISEMFLQI YKQGGFLGLS NIKFRPGSVV

(Heukamp et al., 2001)

H-2Kb al 
domain

H2Db QEGPEYWERET
QK

SDAENPRYEP RARWMEQEGP EYWERETQKA KGNEQSFRVE 
LRTLLGYYNQSKGGSHTIQV ISGCEVGSDG RLLRG

(Honjo et al., 2000)

GAG_HV1A2
Res.300-501

A0201 P03349 VLAEAMSQV
EMMTACQGV

FYKTLRAEQA SQDVKNWMTE TLLVQNANPD CKTILKALGP 
AATLEEMMTA CQGVGGPGHK ARVLAEAM SQ VTNPANIMMQ  
RGNFRNQRKT VKCFNCGKEG HIAKNCRAPR KKGCWRCGRE 
GHQMKDCTER QANFLGKIWP SYKGRPGNFL QSRPEPTAPP 
EESFRFGEEK TTPSQKQEPI DKELYPLTSL RSLFGNDPSS Q

(Corbet e t al., 2003)

env HV1A2 
Res.500-700

A0201 P03378 YIKIFIMIV RRVVQREKRA VGIVGAMFLG FLGAAGSTMG AVSLTLTVQA  
RQLLSGIVQQ QNNLLRAIEA QQHLLQLTVW GIKQLQARVL 
AVERYLRDQQ LLGIWGCSGK LICTTAVPWN ASW SNKSLED  
IWDNMTWMQW EREIDNYTNT IYTLLEESQN QQEKNEQELL 
ELDKWASLWN WFSITNWLWY IKIFIMIVGG LVGLRIVFAV

(Corbet et al., 2003)

V I F H V 1 A 2 A0201 P03402 ALAALITPK MENRWQVMIV WQVDRMRIRT WKSLVKHHMY ISKKAKGWFY  
RHHYESTHPR VSSEVHIPLG DAKLVITTYW GLHTGEREWH 
LGQGVAIEWR KKKYSTQVDP GLADQLIHLH YFDCFSESAI 
KNAILGYRVS PRCEYQAGHN KVGSLQYLAL AALITPKKTK 
PPLPSVKKLT EDRWNKPQKT KGHRGSHTMN GH

(Corbet et al., 2003)

POLG HCV 
BK
Residue 600- 
800

A0201 P26663 RLWHYPCTV PWLTPRCMVD YPYRLWHYPC TVNFTIFKVR MYVGGVEHRL 
NAACNW TRGE RCDLEDRDRP ELSPLLLSTT EWQVLPCSFT  
TLPALSTGLI HLHQNIVDVQ YLYGIGSAVV SFAIKWEYVL 
LLFLLLADAR VCACLWMMLL IAQAEAALEN LVVLNSASVA  
GAHGILSFLV FFCAAWYIKG RLVPGATYAL YGVWPLLLLL

(Sarobe et al., 2001)

CEA5 HUM  
AN
Residue 600-

A0201 P06731 YLSGANLNL
VLYGPDTPI

LP V SPRLQLSN GNRTLTLFN VTRND ARA Y VCGIQN S V S ANRSDP VTL
DVLYGPDTPIISPPDSSYLSGANLNVSCHSASNPSPQYSW RINGIPQQ
HTQVLFIAKITPNNNGTYACFVSNLATGRNNSIVKSITVSASGTSPGL

(Keogh et al., 2001)



700 SAGATVGIMIGVLVGVALI
ERB2 human A0201 P04626 KIFGSLAFL MELAALCRWG LLLALLPPGA ASTQVCTGTD MKLRLPASPE (Keogh et a l ,  2001)
(Her2/neu) 
Res. 1-450

THLDMLRHLY QGCQVVQGNL ELTYLPTNAS LSFLQDIQEV  
QGYVLIAHNQ VRQVPLQRLRIVRGTQLFED NYALAVLDNG  
DPLNNTTPVT GASPGGLREL QLRSLTEILK GGVLIQRNPQ  
LCYQDTILWK DIFHKNNQLA LTLIDTNRSR ACHPCSPMCK  
GSRCWGESSE DCQSLTRTVC AGGCARCKGP LPTDCCHEQC  
AAGCTGPKHS DCLACLHFNH SGICELHCPA LVTYNTDTFE  
SMPNPEGRYT FGASCVTACP YNYLSTDVGS CTLVCPLHNQ 
EVTAEDGTQR CEKCSKPCAR VCYGLGMEHL REVRAVTSAN  
IQEFAGCKKI FGSLAFLPES FDGDPASNTA PLQPEQLQVF 
ETLEEITGYL YISAW PDSLP DLSVFQNLQV IRGRILHNGA  
YSLTLQGLGI

FGF5 A0301 AF535149 NTYASPRFK K F R E R F Q E N S Y N T Y A S P R F K (Hanada et al., 2004)
LPPX MYCT 
U

DRB1*0
401

P96286 SARPATVWIAQ
DGSHHLVRASI
DLGSGSIQ
(TVW IAQDGS)

MNDGKRAVTS AVLVVLGACL ALWLSGCSSP KPDAEEQGVP 
VSPTASDPAL LAEIRQSLDATKGLTSVHVA VRTTGKVDSL  
LGITSADVDV RANPLAAKGV CTYNDEQGVP FRVQGDNISV  
KLFDDWSNLG SISELSTSRV LDPAAGVTQL LSGVTNLQAQ  
GTEVIDGIST TKITGTIPAS SVKMLDPGAK SARPATVWIA  
QDGSHHLVRA SIDLGSGSIQ LTQSKWNEPV NVD

(Al-Attiyah and 
Mustafa, 2004)

Major pollen 
allergen Art v 
1

0101 Q84ZX5 CDKKCIEWEK
AQHGA
(CIEWEKAQK)

MAKCSYVFCA VLLIFIVAIG EMEAAGSKLC EKTSKTYSGK  
CDNKKCDKKC IEWEKAQHGA CHKREAGKES CFCYFDCSKS 
PPGATPAPPG AAPPPAAGGS PSPPADGGSP PPPADGGSPP 
VDGGSPPPPS TH

(Jahn-Schmid et al., 
2002)

ALL2 DERP 
T

H-kb P49278 CHGSEPCIIHRG
KPF
(SEPCIIHRG)

MMYKILCLSL LVAAVARDQV DVKDCANHEI KKVLVPGCHG  
SEPCIIHRGKPFQLEAVFEA NQNTKTAKIE IKASIDGLEV  
DVPGIDPNAC HYMKCPLVKGQQYDIKYTWN VPKIAPKSEN  
VVVTVKVM GD DGVLACAIAT HAKIRD

(Wu et al., 2002a)

IAPP HUMA  
N

A0201 P I0997 KLQVFLIVL MGILKLQVFLIVLSVALNHLKATPIESHQVEKRKCNTATCATQRLAN  
FLV HSSNNFGAILSSTNVGSNTY GKRNAVEVLKREPLNYLPL

(Panagiotopoulos et al., 
2003)

DMD_HUM
AN
(1000-1300)

A0201 PI 1532 WLNEVEFKL TTVKEMSKKA PSEISRKYQSEFEEIEGRWK KLSSQLVEHC  
QKLEEQMNKL RKIQNHIQTL KKWMAEVDVF LKEEWPALGD  
SEILKKQLKQ CRLLVSDIQTIQPSLNSVNE GGQKIKNEAE  
PEFASRLETE LKELNTQWDHMCQQVYARKE ALKGGLEKTV  
SLQKDLSEMH EWMTQAEEEY LERDFEYKTP DELQKAVEEM

(Ginhoux et al., 2003)



KRAKEEAQQK EAKVKLLTES VNSVIAQAPP VAQEALKKEL 
ETLTTNYQWL CTRLNGKCKTLEEVWACWHE LLSYLEKANK  
WLNEVEFKLK TTENIPGGAE

CTG1 HUM  
AN

DRB1*0
401

P78358 QDAPPLPVPGVL 
LKEFTV SGNILT 
IRLTAA DHR

MQAEGRGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT  
GGRGPRGAGA ARASGPGGGAPRGPHGGAAS GLNGCCRCGA  
RGPESRLLEF YLAMPFATPM EAELARRSLA QDAPPLPVPG  
VLLKEFTVSG NILTIRLTAA DHRQLQLSIS SCLQQLSLLM  
WITQCFLPVF LAQPPSGQRR

(Zarour et al., 2002)

POLG HCV1 
1200-1500

A l P26664 ATDALMTGY LETTMRSPVF TDNSSPPVVP QSFQVAHLHA PTGSGKSTKV  
PAAYAAQGYK VLVLNPSVAA TLGFGAYMSK AHGIDPNIRT 
GVRTITTGSP ITYSTYGKFL ADGGCSGGAY DIIICDECHS 
TDATSILGIG TVLDQAETAG ARLVVLATAT PPGSVTVPHP 
NIEEVALSTT GEIPFYGKAI PLEVIKGGRH LIFCHSKKKC 
DELAAKLVAL GINAVAYYRG LDVSVIPTSG DVVVVATDAL  
MTGYTGDFDS VIDCNTCVTQ TVDFSLDPTF TIETITLPQD 
AVSRTQRRGR TGRGKPGIYR

(Lauer et al., 2002)

POLG TME 
VB
200-400
VP2

H-2Db
H-2Kb

P08544 Db(RVQVQCNA
SQFHAGSLLVF
M)
(RVQVQCNA)
Kb(TGYRYDSR
T)
(TGYRYDSR)

DKVLAAERYY TIDLASWTTS QEAFSHIRIP LPHVLAGEDG  
GVFGATLRRH YLCKTGWRVQ VQCNASQFHA GSLLVFMAPE  
FYTGKGTKTG TMEPSDPFTM DTEWRSPQGA PTGYRYDSRT  
GFFATNHQNQ WQWTVYPHQI LNLRTNTTVD LEVPYVNVAP  
SSSW TQHANW  TLVVAVLSPL QYATGSSPDV QITASLQPVN

(Lyman e t al., 2002)

Ssx2_human A0201 Q16385 KASEKIFYV M NGDDAFARR PTVGAQIPEKIQKAFDDIAK YFSKEEWEKM  
KASEKIFYVY MKRKYEAMTK LGFKATLPPF MCNKRAEDFQ  
GNDLDNDPNR GNQVERPQMT FGRLQGISPKIMPKKPAEEG  
NDSEEVPEAS GPQNDGKELC PPGKPTTSEKIHERSGPKRG  
EHAWTHRLRE RKQLVIYEEI SDPEEDDE

(Ayyoub et a l . ,  
2002)

Spl7_human A0101 Q15506 ILDSSEEDK MSIPFSNTHY RIPQGFGNLL EGLTREILRE QPDNIPAFAA 
AYFESLLEKR EKTNFDPAEW GSKVEDRFYN NHAFEEQEPP 
EKSDPKQEES QISGKEEETS VTILDSSEED KEKEEVAAVK 
IQAAFRGHIA REEAKKMKTN SLQNEEKEEN K

(Chiriva-Intemati et 
al., 2003)

EBNA-1
nuclear
protein

DRB1*0
401
DRB1*0

P03211 AEGLRALLARS
HVER
(EGLRALLAR)

aggagaggga gagggaggag gagagggaga gggaggagag 
ggaggaggag agggagagggaggagaggga ggaggagagg 
gagaggagga ggagaggaga gggaggagga gaggagagga

(Kruger et al., 2003)



Res. 121-540 701 gaggagagga ggagaggagg agaggaggag agggaggaga
gggaggagag gaggagaggaggagaggagg agagggagag 
gagaggggrg rggsggrgrg gsggrgrggs ggrrgrgrer 
arggsrerar grgrgrgekr prspssqsss sgspprrppp 
grrpffhpvg eadyfeyhqeggpdgepdvp pgaieqgpad 
dpgegpstgp rgqgdggrrk kggwfgkhrg qggsnpkfen 
iaeglralla rshverttde gtwvagvfvy ggsktslynl 

________   rrgtalaipq crltplsrlp______________________ _
Influenza A0301 Q67152 RLEDVFAGK MSLLTEVETY VLSIVPSGPL KAEIAQRLED VFAGKNTDLE (Trojan et  al., 2003)
matrix protein ALMEWLKTRP ILSPLTKGIL GFVFTLTVPS ERGLQRRRFV 

QNALNGNGDP NNMDKAVRLY RKLKREITFH GAKEVALSYS 
AGALASCMGL IYNRMGTVTT EVAFGLVCAT CEQIADSQHR 
SHRQMVTTTN PLIRHENRMV LASTTAKAME QIAGSSEQAA 
EAMEVASQAR QMVQAMRTIG THPSSSAGLK DDLLENLQAY 
QRRMGVQMQR FK

KFHU H2Kb 268-282 CVETGVKITVV mqrvnmimae spgliticll gyllsaectv fldhenanki (Greenwood et al.,
Coagulation 
factor IXa

AGEH
(KITVVAGE)

lnrpkrynsg kleefvqgnlerecmeekcs feearevfen 
terttefwkq yvdgdqcesnpclnggsckddinsyecwcpfgfegkncel 
dvtcnikngr ceqfcknsad nkvvcscteg yrlaenqksc 
epavpfpcgrvsvsqtsklt raeavfpdvd yvnsteaeti 
ldnitqstqsfndftrvvggedakpgqfpwqvvlngkvdafcggsivnekw 
ivtaahcvegvkitvvagehnieetehteqkrnviriiphhnynaain 
kynhdialle ldeplvlnsy vtpiciadke ytniflkfgs 
gyvsgwgrvfhkgrsalvlq ylrvplvdra tclrstkfti 
ynmnfcagfh eggrdscqgd sggphvtevegtsfltgiis wgeecamkgk  
ygiytkvsry vnwikektkl t

2003)

Superoxide A0201 Q7TVI9 DMWEHAFYL MAEYTLPDLD WDYGALEPHI SGQINELHHS KHHATYVKGA (Dong et a l., 2004)
dismutase NDAVAKLEEA RAKEDHSAIL LNEKNLAFNL AGHVNHTIWW 

KNLSPNGGDK PTGELAAAIA DAFGSFDKFR AQFHAAATTV 
QGSGWAALGW DTLGNKLLIF QVYDHQTNFP LGIVPLLLLD 
MWEHAFYLQY KNVKVDFAKA FWNVVNWADV QSRYAAATSQ TKGLTFG

L-alanine A0201 Q7TXW2 VLMGGVPGVE MSEVAGRLAA QVGAYHLMRT QGGRGVLMGG VPGVEPADVV (Dong et al., 2004)
dehydrogenas VIGAGTAGYN AARIANGMGA TVTVLDINID KLRQLDAEFC
e GRIHTRYSSA YELEGAVKRA DLVIGAVLVP GAKAPKLVSN 

SLVAHMKPGA VLVDIAIDQG GCFEGSRPTT YDHPTFAVHD 
TLFYCVANMP ASVPKTSTYA LTNATMPYVL ELADHGWRAA



CRSNPALAKG LSTHEGALLS ERVATDLGVP FTEPASVLA
Coronavirus A0201 AY278488 RLNEVAKNL FIEDLLFNKVTLADAGFMKQYGECLGDINARDLICAQKFNGLTVLPPLLTD (Wang et al., 2004)

DMIAAYTAALVSGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYE 
NQKQIANQFNKAISQIQESLTTTSTALGKLQDVVNQNAQALNTLVKQLSSN 
FGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRA 
SANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQAAPHGWFLHVTYVPSQ 
ERNFTTAPAICHEGKAYFPREGVFVFNGTSWFITQRNFFSPQIITTDNTFV 
SGNCDVVIGIINNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGIN 
ASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPWYVWLGFIAGL 
IAIVMVTILLCCMTSCCSCLKGACSCGSCCKFDEDDSEPVLKGVKLHYT 

Salmonella H-2Kb 052503  TRVAFAGL MKVKVLSLLV PALLVAGAAN AAEIYNKDGN KLDLFGKVDG (Diaz-Quinonez et a l.,
OmpC RNTDFFGL LHYFSDDKGS DGDQTYMRIG FKGETQVNDQ LTGYGQWEYQ 2004)

IQGNQTEGSN DSWTRVAFAG LKFADAGSFD YGRNYGVTYD
VTSWTDVLPE FGGDTYGADN FMQQRGNGYA TYRNTDFFGL
VDGLDFALQY QGKNGSVSGE NTNGRSLLNQ NGDGYGGSLT
YAIGEGFSVG GAITTSKRTA DQNNTANARL YGNGDRATVY
TGGLKYDANN IYLAAQYSQT YNATRFGTSN GSNPSTSYGF
ANKAQNFEVV AQYQFDFGLR PSVAYLQSKG KDISNGYGAS
YGDQDIVKYV DVGATYYFNK NMSTYVDYKI NLLDKNDFTR

______________________________________________DAGINTDDIV ALGLVYQF__________________________________________________________
murine H-2Kb P08544 FHAGSLLVFMA DKVLAAERYY TIDLASWTTS QEAFSHIRIP LPHVLAGEDG (Lyman et a l., 2002)
encephalomye PEFYTGKGT GVFGATLRRH YLCKTGWRVQ VQCNASQFHA GSLLVFMAPE
litis virus (GSLLVFMAP) FYTGKGTKTG TMEPSDPFTM DTEWRSPQGA PTGYRYDSRT
vp2 NFNQYFGSLNF GFFATNHQNQ WQWTVYPHQI LNLRTNTTVD LEVPYVNVAP

LFVFTGAAM SSSWTQHANW TLVVAVLSPL QYATGSSPDV QITASLQPVN
PVFNGLRHET VIAQSPIPVT VREHKGCFYS TNPDTTVPIY
GKTISTPSDY MCGEFSDLLE LCKLPTFLGN PNTNNKRYPY
FSATNSVPAT SMVDYQVALS CSCMANSMLA AVARNFNQYR
GSLNFLFVFT GAAMVKGKFL IAYTPPGAGK PTTRDQAMQS
TYAIWDLGLN SSFNFTAPFI SPTHYRQTSY TSPTITSVDG
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