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ABSTRACT

Neurulation is the embryonic event that results in formation of the neural tube, 

the primordium of the central nervous system. Impairment of this process leads to 

neural tube defects (NTDs), which are among the commonest congenital malformations 

in humans. Zicl, 2, 3 and 4 encode a family of 2C2H-like zinc finger transcription 

factors of which two members, Zic2 and Zic3, have been implicated in the causation of 

NTDs. The aim of this thesis was to investigate the function of Zic genes during neural 

tube closure in the mouse embryo.

The expression of Zic genes was examined at the time of neurulation by in situ 

hybridisation. All 4 Zic genes have partially overlapping but distinct expression 

domains, with Zic2 and Zic3 mRNA detected at the posterior neuropore region, 

consistent with the occurrence of spina bifida and sacral agenesis in Zic2 and Zic3 

mutants. Expression of Zic2 was not altered during abnormal neurulation in the mouse 

mutants ct, Lp and Sp2H, indicating that Zic2 does not act downstream of these mutant 

genes in the production of NTDs. Zic3 expression was also unaffected in the ct and Sp2H 

mutants but showed downregulation in Lp homozygous embryos, suggesting that Zic3 

may be regulated downstream of the Lp gene.

A novel ENU-generated mouse model of spina bifida, the Kumba mouse 

carries a mutation in the zinc finger domain region of Zic2. Morphological 

analysis of neurulation in Zic2Ku/Ku embryos showed that Zic2 is required for normal 

bending of the neural plate. Absence of dorsolateral bending during neural tube closure 

can explain the subsequent development of spina bifida in Zic2Ku/Ku embryos.

In order to understand the molecular pathway by which Zic2 mediates its 

function, the yeast two-hybrid system was used to identify protein-binding partners. 

Capicua, p53 binding protein 1, Glis2 and Krox20 were among a series of genes whose 

protein products were found to interact with Zic2. These protein-protein interactions 

were confirmed by co-immunolocalisation studies of cultured transfected cells and by 

glutathione-S-transferase pull-down assays. In situ hybridisation studies demonstrated 

that Capicua is expressed in the posterior neuropore region of E9.5 embryos consistent 

with a role of these proteins in Zic2-dependent spina bifida.

In conclusion, this thesis has established an early embryonic role for Zic2 in low 

spinal neurulation and has identified several binding proteins that may participate with 

Zic2 in the regulation of neural tube closure.
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1.1 INTRODUCTION

The formation of the vertebrate nervous system begins at gastrulation when, 

during neural induction, a subset of ectodermal cells segregates and thickens to form the 

neural plate. Soon afterwards, the neural plate undergoes a series of morphogenetic 

events that ends with the formation of a hollow neural tube characteristic of the chordate 

phylum, this process being known as neurulation. Impairment of neurulation leads to a 

range of anomalies known as neural tube defects (NTDs) that are among the commonest 

congenital malformations in humans.

The embryonic process of neurulation has been well characterised 

morphologically in different animals models (Colas and Schoenwolf, 

2001;Schoenwolf, 1985;Shum and Copp, 1996). Some of the genetic pathways 

controlling this programme have been identified from the large number of mouse 

mutants that display NTDs (Juriloff and Harris, 2000;Copp et al., 2003b). However, the 

underlying molecular mechanisms are still largely unknown. The aim of the work 

presented in this thesis is to elucidate the function of Zic genes, in particular Zic2, in the 

process of neural tube closure. In order to be able to understand the involvement of Zic2 

in the causation of NTDs it is necessary first to consider what is currently known about 

the normal process of neurulation and the Zic gene family.

1.2 THE NORMAL PROCESS OF NEURULATION

Neurulation is divided into two parts: primary and secondary neurulation. Primary 

neurulation results in the formation of the cranial neural tube and the upper spinal cord 

rostral to the mid-sacral region, through a process that involves the specification and 

shaping of the neural plate, followed by the elevation and fusion of the neural folds 

(Criley, 1969). Initially, the neural plate becomes specified by the underlying mesoderm
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and is transformed into a pseudo-stratified columnar epithelium that thickens

apicobasally. The edges of the columnar epithelium elevate to form the neural folds that

converge in the dorsal midline and fuse, forming the neural tube. Once primary

neurulation has occurred and the neural tube has closed, secondary neurulation takes

place caudally to the mid-sacral region. At this axial level, the neural tube forms by

condensation of mesenchymal cells within the tail bud region which forms an
(Criley, 1969)

epithelium that subsequently cavitates, forming the secondary neural tube (Schoenwolf, 

1984;Copp and Brook, 1989). Secondary neurulation is a separate autonomous process 

in relation to primary neurulation, at least in the chick embryo, where if primary 

neurulation is disrupted experimentally secondary neurulation still occurs normally 

(Costanzo et al., 1982).

1.2.1 Primary neurulation occurs in a cranio-caudal sequence

During primary neurulation in the mouse embryo, closure of the neural tube

starts at three different initiation sites, in a cranio-caudal sequence along the body axis

(Fig 1.1) (MacDonald et al., 1989;Copp et al., 1990;Golden and Chemoff, 1993). The

first initiation site, Closure 1, occurs in the mouse embryo at the 4-6 somite stage with

closure occurring at the cervical/hindbrain region and continuing in a zippering-like

fashion caudally along the future spine and rostrally into the hindbrain. By the 12

somite stage, a second site of closure, Closure 2, occurs at the forebrain/midbrain

boundary and proceeds caudally into the midbrain and rostrally into the forebrain. At

about the same somite stage, a third site of closure, Closure 3, occurs at the rostral

extremity of the prosencephalon, and proceeds caudally towards the midbrain. As a

result of these three de novo sites of closure, three neuropores become apparent. The

anterior neuropore (within the forebrain, formed by closure progression from Closures 2

and 3) closes at approximately the 17 somite stage. Soon afterwards, the hindbrain

neuropore (formed by progression from Closures 1 and 2) closes, and the zippering
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mechanism initiated at Closure 1 spreads caudally, resulting in the closure of the 

posterior neuropore at the 29 somite stage.

Closure: Hindbrain
neuropore

Anterior neisopore

Posterior Closurel
neuropore

Figure 1.1 Initiation sites of neural tube closure

Diagram to illustrate the three sites of de novo initiation of neural tube closure and the 

three neuropores during primary neurulation. From Copp ( 1994)

The developmental stage and exact position in which the events of neurulation take 

place vary between mouse strains (Juriloff et al., 1991). Hence, the site of Closure 2 is 

polymorphic between mouse strains and its position confers susceptibility to cranial 

neural tube defects (Fleming and Copp, 2000).

1.2.2 The spectrum of NTDs depends on which of the events of neurulation fail to 

be completed

The spectrum of NTDs depends on which of de novo closure sites or neuropore 

closures fail to be completed (Fig. 1.2)(Copp and Bemfield, 1994). Hence, failure of 

initiation of Closures 2 and 3 or incomplete closure of the anterior or hindbrain
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neuropores leads to an open cranial neural tube termed exencephaly. The second type of 

NTD, lumbosacral spina bifida results from failure of the posterior neuropore to 

complete closure. The size and severity of the lesion depends upon the axial level where 

closure failed. Hence if closure stops at a more rostral level this results in a more severe 

phenotype. Cranial NTDs and spina bifida can occur independently or in combination, 

in humans and in mouse. Failure of initiation of Closure 1 causes craniorachischisis, the 

most severe form of NTD, in which the hindbrain and spinal neural tube remain open 

(Fig. 1.2). In the mouse models that display craniorachischisis, Closures 2 and 3 occur, 

and development of the forebrain and rostral midbrain appear normal (Greene et al., 

1998;Murdoch et al., 2001). These observations indicate that the genetic regulation of 

Closure 1 differs from that of Closures 2 and 3.

Exencephaly

Closure. Hindbrain
neuropore

Anterior neiftopore

Posterior Closurel
neuropore

Lumbosacral spina Craniorachischisis
bifida

Figure 1.2 The three main subtypes of NTDs

Diagram to illustrate exencephaly, craniorachischisis and lumbosacral spina bifida, 

which result from failure of closure initiation events or from failure of each neuropore 

to complete closure. The embryo on the left shows exencephaly and lumbosacral spina 

bifida whilst the embryo on the right shows craniorachischisis (diagram modified from 

A. Copp, 1994, note that the black arrowhead shows curled tail).
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1.2.3 Morphological changes during primary neurulation: convergent-extension, 

elevation, bending and apposition

Immediately after its formation, the neural plate elongates rostro-caudally, 

thickens apico-basally and narrows medio-laterally (Schoenwolf, 1985). Several cellular 

processes have been implicated in the initial remodelling of the neural plate, including 

caudal migration of midline cells as the primitive streak regresses, intercalation of 

neuroepithelial cells in the midline due to convergent-extension movements, and 

microfilament constriction of neuroepithelial cells (Detrick et al., 1990). As I will 

describe later, disruption of these initial processes leads to failure of Closure 1 and the 

most severe form of NTD, craniorachischisis.

The neural folds appear by elevation and bending o f the lateral edges of the 

neural plate at either side of the midline. The morphology that the neural plate acquires 

during closure differs in the cranial and spinal neural tube. In the midbrain region of the 

cranial neural tube, the neural folds initially adopt a biconvex shape as they elevate. 

Subsequently, the lateral edges bend inwards to form the dorsolateral hinge points 

(DLHPs), which bring the apices of the neural folds into apposition at the dorsal midline 

(Morriss-Kay, 1981;Morriss-Kay et al., 1994).

As the wave of spinal neural tube closure spreads down the body axis, the 

morphology of the neural plate at the spinal cord region changes in a stereotypic fashion 

(Shum et al., 1996). Three distinct morphologies (named Modes of neurulation) have 

been reported, from the cross-sectional appearance of the neural plate at different axial 

levels (Fig. 1.3). In Mode 1 spinal neurulation, which is seen in the closing posterior 

neuropore at the 7-15 somite stage, the neural plate bends medially forming the median 

hinge point (MHP), whilst the lateral edges elevate with straight sides and the neural 

folds approach each other in the dorsal midline, closing the neural tube to form a slit­

like lumen.
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spine

Low
spine

0  o  °

A  MHP t >  DLHP

Mode Mode Mode
1 2 3

Figure 1.3 Diagram to illustrate the morphology of the neural plate during 

progressive closure of the posterior neuropore

Mode 1 is characterised by formation of a MHP with straight neural folds apposing each 

other. In Mode 2 of neurulation the neural plate bends medially to form the MHP and 

dorsally the neural folds bend bilaterally to form the DLHPs. In Mode 3 of neurulation, 

closure is solely dependent on DLHPs. Diagram modified from Ybot-Gonzalez (2001)

At the 16-24 somite stage, when Mode 2 spinal neurulation occurs, the neural plate 

bends not only at the midline, forming the MHP, as in Mode 1, but the dorsal region of 

each neural fold also bends forming the dorso-lateral hinge points (DLHPs). DLHPs 

cause the tips of the neural folds to appose in the dorsal midline yielding a closed neural 

tube with a diamond shaped lumen. At the 25-30 somite stage, in Mode 3 of spinal 

neurulation, the neural plate does not form a MHP, whereas DLHPs are prominent, 

closing the neural tube to form a circular shaped lumen. These stereotypical changes in 

morphology of the spinal neuroepithelium as it closes to form the neural tube have been 

observed in mouse neurulation. In other models, such as the chick, DLHP formation
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occurs in the hindbrain region, and in the spinal level in the most caudal end, 

although DLHPs are not as prominent as in mouse (Schoenwolf, 1985).

1.3 NTDS IN HUMANS

1.3.1 Types of neural tube defects in humans

NTDs are among the commonest congenital malformation in humans with an

average prevalence of 1:1000 live births worldwide (Edmonds and James, 1993).

Human NTDs can be divided into open and closed defects. Open NTDs result from

failure of the neural tube to close during primary neurulation, whilst closed NTDs

results from aberrant secondary neurulation and abnormal axial skeleton development

(Lemire, 1988). As in mouse, open NTDs can be grouped depending on which event of

closure fails to occur (Van Allen et al., 1993). Exencephaly, open neural tube in the

cranial region, can be sub-grouped into three classes. Rostrally, failure of closure 3 at

the forebrain region with facial clefting leads to anencephaly. Failure of Closure 2,

results in an open midbrain-hindbrain and is named holocrania, whilst failure of closure

of the hindbrain neuropore results in merocrania.

As in mouse, spina bifida results from failure of closure of the PNP resulting in

an open caudal neural tube that can be exposed (myelocele) or covered by meninges

(myelomeningocele). Craniorachischisis is the most severe NTD, and the neural tube

remains open along almost the entire rostro-caudal axis.

Neurulation in humans starts at 17-18 days post fertilisation and ends by 26-28

days after fertilisation with closure of the PNP (Campbell et al., 1986). In humans, as in

mouse, the initiation of neural tube closure is discontinuous (Van Allen et al., 1993),

and sites of initiation equivalent to Closure 1 and Closure 3 have been described

(Golden and Chemoff, 1995;Juriloff et al., 2000), although some studies do not identify 
(Nakatsu et al., 2000)

Closure 2 (O’Rahilly and Muller, 2002). Humans undergo secondary neurulation in the
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low sacral and coccygeal region. Despite failure in neural tube closure, neural 

differentiation and nerve connections can occur (Campbell et al., 1986). However tissue 

exposure to the amniotic fluid results in degeneration of the open neural tube leading to

musculoskeletal, gastrointestinal and urinary dysfunction often associated in NTDs

patients (Stark 1977) has also been observed in culry tail and Splotch delayed NTDs mutant 

mice, were neuronal differentiation occurs normally whilst degeneration occurs at later stages of 

gestation due to exposure to the environment (Keller-Peck CR, 1996).

1.3.2 Multifactorial aetiology of human NTDs

Human NTDs have multi factorial aetiology, involving genetic and

environmental factors (Campbell et al., 1986;Copp et al., 1994;Juriloff et al., 2001).

The most important environmental factors are geography, maternal age, socio-economic
*

class, maternal diet and illness t

The relationship between prevalence of NTDs and geography is noticeable. For

instance, prevalence of NTDs is higher in the north west of England than in the south

east (Carter, 1974). A correlation has also been found between the month of conception
(Dallaire eta l., 1984)

and prevalence of NTDs. Maternal age is also important in prevalence of NTDs since

the majority of affected children are bom to mothers under 20 years or over 35 years of 
(Bound et al., 1991; Buccimazza et al., 1994)

age. Several studies have shown an association between socio-economic class and the 

prevalence of NTDs, the prevalence being higher in poor socio-economic backgrounds.

This observation prompted investigation on the effects of the diet in prevalence of 

NTDs. Indeed, supplementing mothers with folic acid or multivitamins has shown a 

reduction in the prevalence of NTDs (Wald et al., 1991;Czeizel and Dudas, 1992). A

correlation has also been found between maternal illness, including higher fever, during
(Soler et al., 1976; Hunter et al., 1986) 

the first month of pregnancy and an increase in the risk of NTDs.

The genetic component of NTDs is supported by family studies showing that

siblings of affected individuals have a ten times greater risk of NTDs than the

background prevalence (Campbell et al., 1986). In addition, an increased risk is

observed in offspring of affected parents (Blatter et al., 1997). However, the inheritance
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of NTDs does not follow a pattern of single-gene inheritance, but rather follows a 

pattern of a multigenic inheritance with strong environmental influence (Campbell et 

al., 1984;Juriloff et al., 2000). These factors have made the identification of genes for 

human NTDs difficult. In some cases a mutation in a gene that could be responsible for 

the NTD phenotype has been found in a patient but also in unaffected relatives, 

indicating that the mutation may confer susceptibility but is not causative for NTDs. 

Moreover some of the genetic studies do not take into consideration the phenotypical 

spectrum of NTDs, and look for linkage or causative mutations within a group of 

heterogeneous NTDs: spina bifida, exencephaly and craniorachischisis without 

considering that specific genes may regulate just one aspect of neural tube closure. For 

instance, targeted disruption of Msx2 has been shown to cause exencephaly in mouse 

(Liu et al., 1995) and this prompted an investigation to determine whether mutations in 

MSX2 in humans could also cause NTDs (Stegmann et al., 2001). The study concluded 

that, despite identifying one deletion in one patient from 204 NTD cases, there was no 

statistical significance for the implication of MSX2 in human NTDs. However from the 

204 patients with NTD analysed, only 13 displayed cranial NTDs (also including 

craniorachischisis). Hence, this study included only a very small cranial NTD sample 

(Stegmann et al., 2001), despite this phenotype being most likely Msx2-related based on 

the mouse studies.

Mutations in the PAX3 gene have been found in patients with NTDs (Hoi et al., 

1995). However, a second population study using 194 people among 50 NTD cases 

failed to find an association between the PAX3 and NTD (Chatkupt et al., 1995). A 

mutation in SLUG, a zinc finger transcription factor involved in neural crest 

development, was found in a human patient with NTD. Moreover, the mutation was not 

present in unaffected individuals raising the possibility that SLUG could be causative of 

the NTD observed in this patient (Stegmann et al., 1999). A mutation in PAX1 was
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detected in a single patient with spina bifida, suggesting that this gene can also act as 

susceptibility factor (Joosten et al., 1998).

Further genetic studies have centred on identifying mutations in enzymes that 

act in the folic acid pathway. The importance of folic acid in NTDs comes from studies 

indicating a protective effect of folic acid administration during the periconceptional 

period (Wald et al., 1991). This prompted studies to identify mutations in genes that 

participate in the biochemical pathways involving folic acid, which may confer 

susceptibility to NTDs. A polymorphism in the 5,10-methylene-tetrahydrofolate 

reductase gene (MTHFR) has been found to confer a two-fold increased risk of NTDs in 

some populations (Van der Put et al., 1995; Botto and Mastroiacovo, 1998), although 

there is no association with NTDs in other populations. MTHFR encodes an enzyme 

that catalyses the conversion of 5,10-methyl-tetrahydrofolate to 5-methylene- 

tetrahydrofolate. Homozygous individuals for the C677T polymorphism are predisposed 

to mild hyperhomocysteinemia when their folate status is low. The precise mechanism 

that confers susceptibility to NTDs in individuals homozygous for the C677T is 

unknown.

1.4 THE EMBRYONIC PROCESS OF SPINAL NEURULATION

After Closure 1 has occurred at the cervical-hindbrain region, closure of the 

spinal neural tube continues caudally forming the posterior neuropore. Failure of the 

posterior neuropore to complete closure leads to spina bifida. The embryonic 

mechanism that control closure of the posterior neuropore can be autonomous to the 

neural plate (intrinsic forces) or non-autonomous to the neural plate (extrinsic forces) 

(Colas et al., 2001;Smith and Schoenwolf, 1997;Copp et al., 2003b).
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1.4.1 Intrinsic forces control morphogenesis of the neural plate

As spinal neurulation progresses along the body axis the neural plate bends in 

specific dorsoventral locations (Fig. 1.3). The MHP forms in contact with the notochord 

and the DLHPs form bilaterally in contact with the surface ectoderm (Shum et al., 

1996; Ybot-Gonzalez et al., 2002). Bending in these regions has been suggested to be 

mediated by intrinsic forces so that the behaviour of neuroepithelial cells changes 

compared to those in the non-bending regions. Indeed, morphological studies in chick 

revealed that in the neuroepithelial cells can adopt one of three types of morphology: 

spindle-shape, wedge-shape and inverted wedge-shape cells (Smith et al., 1994). In the 

MHP and DLHP the majority of the cells acquire a wedge-shape morphology which 

results from an expansion of the basal surface of the cell compared to its apical surface. 

In contrast, in the non bending regions, spindle-shape cells and inverse-wedge cells are 

in the majority (Smith et a l, 1994). Two different mechanisms have been proposed that 

result in cell wedging: constriction of apical microfilaments and changes in the cell 

cycle.

1.4.1.1 Constriction of apical microfilaments

A pseudostratified epithelium bends if its apical surface area is reduced with 

respect to its basal surface area. The reduction in apical surface area has been proposed 

to be mediated through the constriction of apical containing microfilaments in a purse- 

string fashion (see Fig. L4)(Karfunkel, 1974;Nagele and Lee, 1980;Sadler et al., 1982). 

Indeed, microfilaments and cytoskeleton-associated proteins, such as actin, MARCKS, 

vinculin, spectrin and Shroom are localised apically during neural plate morphogenesis 

(Hildebrand and Soriano, 1999;Nagele et al., 1980;Sadler et al., 1982;Stumpo et al., 

1995;Xu et al., 1998;Ybot-Gonzalez and Copp, 1999;Haigo et al., 2003).

To test the function of the cytoskeleton in neurulation experimentally, actin

microfilaments polymerisation has been disrupted in embryo culture using cytochalasins
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and calcium chelating agents (Morriss-Kay and Tuckett, 1985;Ybot-Gonzalez et a l , 

1999). In these experiments cranial neural tube closure was inhibited, whilst spinal 

neural tube closure occurred normally, indicating that cytoskeleton integrity is required 

for cranial neurulation whilst its loss is not detrimental for spinal neural tube closure 

(Ybot-Gonzalez et a l , 1999). However treatment of embryos with cytochalasin D prior 

to Closure 1 inhibited this closure site, resulting in a craniorachischisis-like phenotype 

(Ybot-Gonzalez et a l , 1999). It appears then that initiation of closure is dependent on 

the actin cytoskeleton but once Closure 1 has occurred, disruption of the actin 

cytoskeleton does not affect the continuation and completion of spinal neural tube 

closure.

A

0 0 0 0 0

Constriction of apical 
microfilaments

> r
B

Figure 1.4 Constriction of apical filaments and bending of neural plate

Diagram to illustrate how constriction of apical microfilaments could generate bending 

of the neuroepithelium by reducing the apical surface area respective to the basal 

surface area.

This observation is partially supported by the findings that mouse mutants for 

cystokeletal or putative cytoskeletal dynamics proteins exhibit exencephaly but
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generally not spina bifida (Copp et a l , 2003b). For instance, null embryos for 

MARCKS, the actin-binding protein vinculin, compound mutants for the Abl and Arg 

tyrosine kinases or for the protein kinase a subunits Cc^C/31 all display exencephaly but 

not spina bifida (Stumpo et al., 1995;Koleske et al., 1998;Xu et a l , 1998;Huang et a l , 

2002). This supports the idea that cytoskeleton integrity is more important for cranial 

neurulation than spinal neurulation. However, it could also indicate that these genes are 

not expressed in the lower spinal regions, which would explain the lack of spina bifida 

in these mutants. Indeed, two mutants for cytoskeleton-related proteins, Shroom and 

MARKS-related (also called MacMARCKS) protein, develop spina bifida at low 

frequency (Hildebrand et a l , 1999;Wu et al., 1996). Interestingly, Shroom has been 

shown to be required for apical microfilament constriction in polarised epithelial cells 

and to regulate hinge point formation in Xenopus (Haigo et a l , 2003). More studies are 

required to rule out a critical role for the actin cytoskeleton during mouse spinal 

neurulation and to establish whether the cytoskeleton functions simply to stabilise the 

neural plate once the bending has occurred.

1.4.1.2 Cell wedging mediated through changes in the cell cycle

The neuroepithelium is formed by a single pseudostratified cell layer in which

the nucleus of each cell migrates from the basal surface to the apical surface and back to
(Sauer, 1935)

the basal surface, a phenomenon known as interkinetic nuclear cell migration (Langman

et a l , 1967). Studies in chick embryos have shown that the positioning of the nucleus

from basal to apical position is linked to the cell cycle (Smith and Schoenwolf, 1987)

such that, during mitosis, nuclei are localised at the apical surface generating inverse

wedge-shape cells, during G1 and G2 phases nuclei are located between apical and

basal surfaces, creating a spindle-shape, and in S phase, nuclei are located basally,

generating wedge-shape cells. If a subset of cells have their nuclei in a basal position,

this can potentially generate wedge-shape cells by increasing the basal surface area
33



respective to the apical surface area. Indeed, cells that form the MHP are mostly wedge- 

shaped and have longer S phase of the cell cycle and shorter M phase (Smith et al., 

1987;Smith and Schoenwolf, 1988). Hence, localised changes in the neuroepithelial cell 

cycle can generate specific sites of bending of the neural plate (see Fig. 1.6). These 

observations have been shown for the MHP in chick and mouse embryos. A similar 

mechanism could account for bending at the DLHP, although this has not been proven 

yet.

1.4.2 Extrinsic forces drive spinal neurulation

During neurulation the neuroepithelium is in contact with the surface ectoderm, 

the endoderm and the mesoderm. Changes in cell shape and/or cell number in these 

tissues can provide extrinsic forces that could assist neural plate folding (Schoenwolf, 

1985). To test this hypothesis tissue isolation experiments in chick and mouse embryos, 

where the lateral mesoderm and endoderm tissues are removed, have been performed 

and result in normal folding of the spinal neural plate (Alvarez and Schoenwolf, 

1992;Van Straaten et al., 1993;Ybot-Gonzalez et al., 2002). However, if the surface 

ectoderm is removed, the neural plate fails to bend dorsolaterally in both chick and 

mouse resulting in an open neural tube (Alvarez et al., 1992;Ybot-Gonzalez et al., 

2002). This indicates that, of all the lateral tissues, only the surface ectoderm is 

sufficient and necessary for formation of DLHPs. One hypothesis to explain the 

extrinsic role of the surface ectoderm has been formulated from experiments in chick 

embryos, suggesting that medial expansion of the surface ectoderm through convergent 

extension movements could potentially provide the force that brings the paired neural 

folds together (Alvarez et al., 1992).
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Figure 1.5. Diagram to illustrate the cell cycle-dependent position of the nucleus in 

formation of bending regions in a transverse section through the PNP

In the neural plate, cells undergo interkinetic nuclear migration, such that the nucleus is 

located apically during mitosis and basally during S-phase. When the nucleus is in a 

basal or apical position the cell acquires a wedge or inverted wedge shape respectively. 

In the median hinge point (MHP), an increased proportion of cells is in S-phase with 

basally located nuclei. The increase in number of wedge shaped cells in the ventral 

midline of the neural plate creates the MHP. Cell cycle variations resulting in cell 

wedging could also regulate DLHPs, although this has not studied in detail.

However, if  the neural folds are dissected from the mesoderm and endoderm and only a 

small fragment of the surface ectoderm in contact with the neural fold is left intact, 

closure of the neural tube still occurs with the presence of DLHPs (Ybot-Gonzalez et 

al., 2002). Therefore, whilst surface ectoderm could mediate a pushing force at early 

stages, it seems unlikely that this process functions during Mode 2 and Mode 3 of
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neurulation, and rather the surface ectoderm may be required to signal to the underlying 

neural folds to form the DLHPs.

Whilst the mesoderm and endoderm are not required for DLHP formation, these 

tissues are nevertheless important for neurulation, since an imbalance of cell 

proliferation within these tissues can affect spinal neural tube closure. For example, an 

increase in axial curvature is seen in affected curly tail mutant embryos due to an 

imbalance in cell proliferation in the hindgut endoderm and notochord, which results in 

increased axial curvature and delay or failure of posterior neuropore closure (Brook et 

al., 1991 ;Van Straaten et al., 1993). In curly tail, bending at the DLHPs and MHP 

occurs normally, whereas the increase in axial curvature results in strain on the neural 

folds that impedes meeting at the dorsal midline. This has also been observed in chick, 

where delay in closure occurs by culturing embryos on a convex surface due to an 

increase in axial curvature (Van Straaten et al., 1993).

1.4.3 Fusion of the neural folds

After apposition, the neural folds fuse in the dorsal midline to form the neural

tube and surface ectoderm from each neural fold loses its continuity with the

neuroepithelium to form the epidermis. Fusion of the neural folds has been proposed to

be mediated by cell protrusions, lamelipodia, extending from the apposing cells (Geelen

and Langman, 1979). Lamelipodia structures have been observed by scanning electron

microscopy on the luminal surface of the neural plate and at the edges of the surface

ectoderm (Geelen et al., 1979). However, the molecules involved in cell to cell

recognition have not been studied during closure of the spinal neural tube.

Carbohydrate-rich material localised in the tips of the neural folds has been suggested to

assist fusion by increasing the adhesiveness of the neural folds (Moran and Rice, 1975)

(Sadler, 1978). Indeed, embryos cultured with phospholipase C to remove carbohydrate

material exhibit delayed neural tube closure (O’Shea and Kaufman, 1980). However, the
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observed phenotype could be due to enzymatic removal of glycosylphophatidylinositol- 

anchored (GPI) proteins, including cell adhesion molecules such as ephrins. GPI- 

anchored ephrinAl and ephrinA3 have been recently shown to be expressed in the 

posterior neuropore (Abdul-Aziz and Copp, preliminary data). More studies are needed 

to understand the role of adhesion molecules in spinal neurulation.

1.5 MOUSE GENETIC MODELS OF NEURAL TUBE DEFECTS

To date more than 80 genes that cause NTDs in mouse have been identified by 

positional cloning, gene targeting or gene trap screens (Juriloff et al., 2000;Copp et al., 

2003b). Despite the identification of a large number of genes required for neurulation, 

in most cases the embryonic mechanisms leading to NTDs in each individual mutant are 

not well characterised. The number of mouse mutants that display exencephaly is 

greater than the number with spina bifida, perhaps indicating greater complexity of 

genetic regulation of cranial tube closure. The identification of these “NTDs genes” 

provides a tool to determine the molecular pathways that regulate neurulation. Thus, 

some pathways are starting to emerge. For instance, the planar cell polarity pathway is 

now known to regulate Closure 1. In this section I will explain the importance of using 

mouse models for the study of NTDs and I will concentrate on some pathways for 

which information is available from mouse mutants that display spina bifida.

1.5.1 Use of mouse models to investigate NTDs

Mouse models offer an alternative to direct study of human NTDs, which is 

hampered by several factors. Human NTDs appear to have a multigenic complex 

aetiology, with strong influence of environmental factors, such as lifestyle and diet 

(Campbell et a l , 1986;Copp et al., 1994). Moreover, the identification of causative 

genes for NTDs by linkage analysis requires large families, and this represents a

37



difficulty since families with large number of NTDs are rare. In addition to this, 

embryological studies using human embryos can raise serious ethical issues.

The use of the mouse represents an excellent model to elucidate the genetic 

programmes controlling NTDs. With the sequence of the mouse genome completed and 

the availability of microsatellite markers for genetic mapping, the identification of the 

mutated genes responsible for NTD phenotypes has become quicker. Moreover, several 

mutagenesis strategies, particularly using chemical mutagenesis, gene trap strategies or 

gene targeting, have begun to make a major contribution to the list of known NTDs 

genes. Phenotype-driven mutagenesis programmes using chemical mutagens such as 

ethylnitrosourea (ENU) or chlorambucil are available to the scientific community 

(Nolan et al., 2000;Justice et al., 1999;Justice, 2000). This approach, allows the 

identification of new mouse mutations that have a particular phenotype, for instance 

NTDs. The mutated gene must then be identified by positional cloning.

Another type of mutagenesis is the “gene-trap” strategy, where genes are 

disrupted by vector insertion in ES cells, generating ES-cell clones containing a 

disrupted gene. This strategy has the advantages that large numbers of genes can be 

disrupted and then identified by a forward-genetic strategy, prior to implantation of ES 

cells to generate the mouse mutant (Mitchell et al., 2001;Skames et al., 1992). The 

disadvantages of this technique include the unpredictable nature of the phenotype 

caused by the gene trap and the necessity for germ-line transmission of the mutated 

gene in order to generate a mouse mutant line.

A further mutagenesis approach is gene targeting that allows precision design of 

the type of mutation. Hence, deletions, point mutations or insertions can all be achieved. 

The advantage of gene targeting is that mapping of the mutated gene is not required. 

However the resulting phenotype is unpredictable and knowledge of the gene structure 

is required to generate the targeted mutant mouse.
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The mouse also represents a good experimental tool to investigate the cellular 

and embryological bases of neurulation. Mouse embryos are easily accessible and can 

be cultured for up to 48 hours in vitro (Copp et al., 1999). Neurulation in mouse takes 

place from the 5-somite stage to the 29 somite stage during a 48 hour period. Therefore, 

mouse embryos can be cultured throughout the entire neurulation process, allowing 

experimental manipulation. This is important in the study of the effects of teratogenic 

substances on closure of the neural tube as well as the analysis of vitamin 

supplementation to prevent NTDs.

1.5.2 Genes in the planar cell polarity pathway regulate Closure 1

Recently, mutations in the planar cell polarity (PCP) pathway genes have been 

found to be responsible for the craniorachischisis phenotype observed in three different 

mouse mutants, loop tail, circletail and crash (Kibar et al., 2001;Murdoch et al., 

2001;Curtin et al., 2003;Murdoch et al., 2003). Embryos that are homozygous for 

mutation in Vangl2 {loop-tail), Scribble {circletail) and Celsrl {crash) display failure of 

Closure 1 leading to craniorachischisis. The other mouse mutant known to display 

craniorachischisis is the Dishevelled 1/2 double knockout {Dshl/2) (Hamblet et al., 

2002). Embryonic examination shows that at least three of these mutants, loop-tail, 

circletail and Dshl/2  have a similar phenotype to that of Xenopus embryos where 

convergent-extension has been disrupted (Wallingford et al., 2000;Wallingford and 

Harland, 2002). Embryos display shorter body axis, with a broad floor plate and failure 

of the neural tube to close.

Convergent extension movements occur during gastrulation and consist of the

migration of cells from a lateral position towards the midline, where they intercalate,

resulting in lengthening of the anterior-posterior axis and extension of midline cells

anteriorly (Davidson and Keller, 1999;Keller et al., 1992). Disruption of convergent-

extension movements has not yet been reported in mouse mutants with
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craniorachischisis but initial studies using Dil labelling suggest that convergent 

extension is disrupted in homozygous loop-tail (Lp) embryos (Savery, D. and Copp, 

unpublished results). The embryonic mechanism of convergent-extension has been 

studied in Xenopus, where disruption in the PCP pathway in the midline results in a 

broader floor plate or MHP, with formation of the neural folds far apart that prevent 

fusion (Wallingford et a l , 2002).

Genes that control the PCP pathway, also referred to as the non canonical-Wnt 

pathway, have been identified in Drosophila to control the polarisation of cells in the 

plane of the epithelium. This is required for example, for unidirectional array of bristles 

on the wing and for the arrangement of ommatidia in the compound eye (Kiihl et al., 

2000;Mlodzik, 2002). The PCP pathway shares components of the Wnt pathway, such 

as the transmembrane receptor Frizzled and the downstream effector Dishevelled. 

However, unlike the Wnt pathway, the PCP pathway does not result in stabilisation and 

nuclear translocation of /3-catenin by Dishevelled to control cell proliferation and cell 

fate decisions. Rather, Dishevelled is thought to signal through small GTPases such as 

RhoA and Rac to regulate cytoskeleton assembly and cell motility (Mlodzik, 2002; 

Keller, 2002). In support of this idea are the experiments in which mouse embryos 

treated with cytochalasin D before the onset of Closure 1 resulted in failure of this 

closure site, indicating that cell rearrangements that control Closure 1 are cytoskeleton- 

dependent. It is unknown how Vangl2, Scribble and Celsrl are related to each other 

within the PCP pathway.

1.5.3 Sonic hedgehog (Shh) pathway and neural tube closure

The Shh pathway has been implicated in neural tube closure, specifically in 

regulating the formation of DLHPs (Ybot-Gonzalez et a l , 2002). Shh is an extracellular 

signalling protein that regulates a number of embryological processes, such as

patterning of the neural tube and limbs, cell proliferation and cell-fate determination.
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Postnatally, aberrant Shh signalling pathway has been linked to basal cell carcinomas 

and medulloblastoma tumours (Chiang e t  al., 1996;Goodrich e t  al., 1997;Fan et al., 

1997;Wechsler-Reya and Scott, 1999). The molecular mechanisms underlying the Shh 

signalling pathway have been principally determined by studies in Drosophila (Ruiz i 

Altaba, 1999). The preliminary pathway involves binding of HH to its transmembrane 

receptor Patched (Ptc), which prevents the inhibition of Smoothened (Smo), a 

transmembrane protein that forms part of the HH receptor complex. De-inhibtion of 

Smo allows signalling to a cytoplasmatic protein complex formed by Fused, Costal-2 

and Cubitus Interruptus (Cl) (Tabin and McMahon, 1997). When Shh is not present, 

proteolytic processing of Cl results in the generation of the shorter Cl N-terminal form 

that functions as a transcriptional repressor of HH downstream genes. Binding of HH to 

its receptor inhibits the Cl proteolysis resulting in the stable full length Cl that functions 

as a transcriptional activator of HH downstream genes. In mouse, Shh, Patched and Gli 

are the vertebrate homologues of Drosophila HH, Patched and Cl. In mouse three Gli 

proteins have been identified, Glil, Gli2 and Gli3 that code for zinc finger domain 

(ZFD) transcription factors closely related to the Zic family of transcription factors. In 

mouse Glil and Gli2 displays a similar function to the full length Cl, and acts as a 

transcriptional activator of Shh downstream genes. However, Gli3 has a repressive 

function similar to that of the N-terminal Cl (Marigo et al., 1996).

During neurulation, Shh emanating from the notochord functions as a

morphogen, to pattern the neural tube so that progenitor cells in the ventral region

acquire ventral fates and become ventral neural types including motor neurons. Mice

that are null for Shh display a dorsalised neural tube, and dorsal markers such as Pax3
*

become expressed in ventral regions (Chiang e t  al., 1996). In contrast over-expression 

of Shh results in loss of dorsal fates and a ventralised neural tube.

* Moreover, Shh'A embryos exhibit holoprosencephaly, an embryonic malformation in which the 

telencephalic vesicles fail to divide resulting, in the most severe cases, in a unique hemisphere and 

cyclopia, suggesting a role for Shh and notochord in bilateralisation. a i



Several mice that carry mutations in Shh pathway genes display NTDs. Two 

mutant alleles of Open brain (<opb), one spontaneous and the second ENU-induced, 

display NTDs. Embryos homozygous for either mutant allele display exencephaly, 

spina bifida, polydactyly and poorly developed eyes (Sporle et al., 1996). Analysis of 

opb'A mutant embryos shows a lack of dorsal neuronal cell types, a phenotype that 

resembles mice with partial loss of function of Patched or over-expression of Shh 

(Milenkovic et al., 1999). The gene mutated in opb was identified as Rab23, encoding a 

member of the Rab family of GTPases, which controls vesicle transport. How this 

protein participates in Shh signalling remains unknown but, since opb phenocopies Gli3 

and Patchedl mutant embryos, Rab23 may antagonistically regulate the Shh pathway.

Interestingly, null embryos for Patchedl (Ptchl) and double homozygotes for 

protein kinase a subunit CalC[31 (Prkaca,Prkacb), display cranial NTDs that may be 

caused by excessive Shh signalling. In Drosophila, protein kinase A phosphorylates Cl, 

a process that is required for protein cleavage to yield the N-terminal transcriptional 

repressor form of Cl (Chen et al., 1999). In vertebrates, a similar mechanism has been 

proposed (Ruiz i Altaba, 1999). Double homozygote embryos for Prkaca and Prkacb 

have excess Shh signalling, possibly because pKA cannot phosphorylate Gli proteins 

(Huang et al., 2002).

Further evidence for the importance of regulation of the Shh pathway in 

neurulation comes from the Extra-toesJ mouse (XtJ), that carries a deletion in Gli3, and 

also displays cranial NTDs (Hui and Joyner, 1993). Lack of Gli3, which acts as a 

repressor of Shh downstream targets, results in excessive Shh signalling and 

exencephaly.

The information obtained from mouse mutants indicates that the Shh pathway is 

necessary for cranial and spinal neurulation. However, the embryonic mechanisms 

leading to NTDs in these mutants have not been characterised. One hypothesis to
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explain the exencephalic phenotype could be the loss of dorsal structures due to 

excessive Shh signalling resulting in a ventralised neural tube. In the spinal neural tube, 

the role of Shh has been studied in more detail (Ybot-Gonzalez et a l , 2002). Shh 

signalling was found to inhibit DLHP formation. Indeed, homozygous null embryos for 

Shh develop DLHPs at an earlier stage of neurulation, during Mode 1, compared to the 

wild type embryos. DLHP formation can also be inhibited by local release of Shh 

peptide using implanted beads next to the neural folds, resulting in straight neural folds. 

In normal development, the inhibitory action of Shh on DLHPs formation declines at 

more caudal levels. Shh is expressed in the notochord at progressively lower intensity as 

spinal neurulation progresses, allowing DLHPs to appear and so enabling the transition 

to Mode 2 and Mode 3. Therefore, Shh controls the timing of DLHP development by 

inhibiting its formation.

A hypothetical model of DLHP regulation has been postulated (see Fig. 

1.6)(Ybot-Gonzalez et a l , 2002). In this model, the balance between positive (inducing) 

and negative (inhibiting) signals regulates DLHP formation. An unknown inducing 

signal from the surface ectoderm stimulates bending of the neural plate, perhaps through 

regulation of the cell cycle of the adjacent tissue. Early in neurulation, at Mode 1, Shh is 

expressed at high levels in the notochord and antagonises the positive signal from the 

surface ectoderm resulting in straight neural folds. However, as neurulation progresses 

(Mode 2 and Mode 3 of neurulation) the expression of Shh decreases, reducing the 

inhibitory effect and resulting in bending of the neural folds that are under the influence 

of the inducing signal.

This model is supported by experimental observations and the analysis of mouse 

mutants. Once Closure 1 has occurred, the MHP is not required for closure of the neural 

tube. Thus, mouse mutants for HNF3(3, Gli2, Shh and GU1/GU2 double mutants do not 

form a floor plate (MHP) and yet close their neural tube successfully in a Mode 3
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morphology (Park et al., 2000; Ang and Rossant, 1994;Chiang et al., 1996;Motoyama et 

al., 1998;Matise et al., 1998).

DLHP inducing 
^igna^

DLHP inducing 
signalSurface

ectoderm

Neural

folds

Shh Shh
Notochord

Mode 1 Mode 2 Mode 3

Figure 1.6 Diagram to illustrate the proposed regulation of DLHPs in three 

progressive stages of mouse neurulation

Strong expression of Shh from the notochord in Mode 1 of neurulation inhibits DLHPs, 

whilst an unknown signal from the notochord induces the MHP (orange arrow). In 

Mode 2, Shh expression declines and its inhibitory action is lost. An unknown inducing 

signal from the surface ectoderm (red arrows) induces bending of the underlying neural 

fold (green arrows). In Mode 3, the MHP inducing signal is lost and closure of the 

neural tube depends only on DLHPs. Diagram modified from Ybot-Gonzales ( 2002).

Removal of the surface ectoderm abolishes DLHPs formation (Ybot-Gonzalez et al.,

2002) showing that the surface ectoderm must signal to the underlying neural folds to 

induce the formation of DHLPs. Initially, BMP2 expressed from the surface ectoderm, 

was thought to be a good candidate molecule to induce DLHP. However recent 

examination of embryos that lack BMP2 revealed that DLHP are formed normally in 

these embryos (Ybot-Gonzalez and Copp A, unpublished results). Hence the nature of 

the DLHP-inducing signal remains unknown.
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Bending of the neural plate at the DLHPs regions ensures apposition of the 

neural folds prior to their fusion in the dorsal midline. However, determining how 

DLHPs are regulated has been hampered by the lack of mouse mutants that fail to 

develop DLHPs. A mouse mutant that lacked DLHPs would provide an opportunity to 

understand the molecular mechanisms required for DLPHs formation and neural tube 

closure in the low spinal region.

1.5.4 Wnt signalling pathway

Wnt are a family of secreted glycoproteins that control cell-fate determination, 

cell proliferation and morphogenesis during development (Cadigan and Nusse, 1997). 

The canonical Wnt signalling pathway has been extensively studied in different 

organisms and its components have emerged mostly from genetics in Drosophila. 

Extracellular secreted Wnts bind to the extracellular domain of Frizzled receptors, 

generating signals downstream to the cytoplasmatic protein Dishevelled. Dishevelled in 

turn stabilises jS-catenin, which prevents its degradation and results in its cytoplasmatic 

accumulation. /5-catenin binds to TCF/LEF transcription factors and translocates to the 

nucleus where it regulates Wnt signalling downstream targets (Nusse, 1999).

Arrow (LRP6 in mouse) is a low-density lipoprotein (LDL)-receptor related 

protein that acts as a single pass transmembrane receptor. Drospophila null embryos for 

arrow (arrnull) phenocopies the wingless (wg) null mutations, which display defects in 

parasegment identity, indicating that arrow could be involved in Wnt signalling (Wehrli 

et al., 2000). Indeed, the extracellular domain of LRP6 binds to Wntl and forms a 

complex in Drosophila with the receptor Frizzled (Fz), demonstrating that LRP6 is 

required for Wnt signalling, by acting as a co-receptor for Fz (Tamai et al., 2000). The 

LRP6 mutant mouse was generated in a screen for lethal gene trap insertions in cell 

surface proteins (Skames et al., 1992). A proportion of LRP6'A embryos display spinal

NTDs with a phenotype that resembles the vestigal tail homozygous mutant (vfA).
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Vestigial tail results from a mutation in the Wnt3a gene, exhibiting excess neural tissue 

and loss of paraxial mesoderm resulting in caudal truncation with in some cases spina 

bifida (Pinson et al., 2000).

1.6 Members of the Zic gene family are implicated in neurulation

Zic (zinc finger protein of the cerebellum) genes were firstly identified in the 

mouse for their specific restricted expression in the granule cell neurons of the 

cerebellum (Aruga et al., 1994). To date, four members of the Zic gene family have 

been identified in mouse, named Zic 1-4 (Aruga et al., 1994;Aruga et al., 1996a;Aruga 

et al., 1996b), with a fifth gene in amphibian, Xzic5 (Nakata et al., 2000). Zic genes 

have recently been implicated in the production of NTDs through positional cloning and 

gene targeting studies. Zic2 is downregulated in the gene-targeted Zic2 knock down 

mouse (Zic2Kd) (Nagai et al., 2000), while a second ENU-induced allele, Kumba 

(,Zic2Ku), carries a point mutation in the zinc finger DNA binding domain (Elms et al.,

2003). Homozygous embryos for either mutant allele develop spina bifida as a result of 

failure of PNP closure. A second member of the Zic gene family, Zic3, has also been 

shown to be essential for neurulation. Positional cloning of the Bent tail mutant mouse 

identified a deletion that comprises the entire Zic3 locus as well as neighbouring genes 

(Klootwijk et al., 2000;Carrel et al., 2000). Direct targeting of Zic3 generated a Zic3 

null mutant, allowing confirmation that the Bent tail phenotype results from the deletion 

of Zic3 gene (Purandare et al., 2002) and not from loss of an unknown neighbouring 

gene. Both Bent tail and Zic3, null embryos exhibit cranial NTDs together with a low 

frequency of lumbosacral NTDs with sacral agenesis and tail defects. Therefore, the 

phenotypes of mouse mutants for Zic2 and Zic3 indicate that these genes are required 

for neural tube closure.
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1.6.1 Zic genes encode Zinc Finger Domain (ZFD) transcription factors

Mapping studies have located Zicl and Zic4 to mouse chromosome 9, Zic2 to 

chromosome 14 and Zic3 to the X chromosome (Aruga et a l , 1994;Aruga et al., 1996a). 

The genomic structure of Zicl-3 comprises three exons and two introns whilst Zic4 has 

two exons and a single intron (Fig. 1.7 A).

A

z id  — m - i — ■ t-

Zic2  1 ■------------ M , , . .  -  ,1

Zic3 ------- □  1 — ■—1  I—

Zic4  L . ■--------■ I------

lkb

Figure 1.7 Genomic organisation of members of the Zic gene family, chromosomal 

localization and structure of the ZFD region

(A) Boxes represent exons and filled boxes represent the coding regions of the zinc 

finger DNA binding domain. B) Zinc finger domain structure showing the consensus 

sequences Cys-X2 ,4 -Cys-Xi2,i5-His-X3,4 -His characteristic of this domain. Each Zic gene 

contains five zinc finger domains. Modified from Aruga ( 1996a)

The Zic genes form a subfamily of one of the largest gene families: the Kruppel-

like transcription factors, which are characterised by the presence of zinc finger

domains (ZFD) (Dang et al., 2000). The Kruppel-like family is divided into subfamilies

depending on the structure and the number of ZFD present in the protein. Thus, the ZFD

of the Zic subfamily typically contains two cysteines and two histidines (C2-H2) that

fold in a tetrahedral configuration around the central zinc ion (Fig. 1.4B) (Pavletich and
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Pabo, 1993;Wolfe et al., 2000). Zicl-4  contain five tandem repeats of each ZFD unit, 

which have high degree of homology to the Gli and Glis genes subfamilies (Aruga et 

al., 1994; Aruga et al., 1996a;Zhang et al., 2002)

Until recently the ZFD region was considered to function as a sequence-specific 

DNA binding domain only (Pavletich et al., 1993). However, several studies have 

indicated that ZFDs participate in both DNA-protein and protein-protein interactions 

(Weatherall, 1991;Mackay and Crossley, 1998). An example of a protein-protein 

interaction mediated through ZFD is the interaction between FOG-1 and the erythroid 

transcription factor GATA-1 (Tsang et al., 1998). FOG-1 cooperates with GATA-1 to 

drive erythroid and megakaryocytic differentiation. Similarly, the C2-H2 zinc finger 

domain of the Ikaros transcription factor mediates homodimerisation involved in 

haematopoietic development (McCarty et al., 2003). Yeast two-hybrid screens and co- 

immunoprecipitation assays have shown that Ikaros interacts with Ikaros family 

members through the ZFD (Hahm et al., 1998; Perdomo et al., 2000). Similarly, Zic 

proteins interact with Gli proteins through the 3rd, 4th and 5th ZF of each protein 

(Koyabu et al., 2001b). The Zic-Gli interaction suggests that there may be a functional 

role for Zic proteins in the Shh signalling pathway (see section 1.5.3). However, Zic 

mutants display different specific phenotypes from Shh and Gli mutants, suggesting that 

Zic proteins do not solely function in the Shh downstream pathway.

The Kumba (Zic2Ku) mutation affects the 4th ZFD of Zic2 and has been proposed 

to disrupt the function of this domain (Elms et al., 2003). This raises two questions, 

first, whether transcriptional activity is disrupted due to abnormal DNA binding, and/or 

whether the binding of co-factors is hampered by the Zic2^“ mutation. The identification 

of Zic-interacting proteins will help to elucidate in which signalling pathways Zic 

proteins participate and will provide new proteins to establish whether protein-protein 

interactions are affected by the Kumba mutation.
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1.6.2 Role of Zic genes during embryonic development

The role of Zic genes during development has been studied in a variety of 

animal systems, including Drosophila, Xenopus, chick and mouse. The Drosophila 

homologue of Zic genes is the pair-rule gene odd-paired (Opa). Opa functions in the 

segmentation of the Drosophila embryo by conferring parasegment identity through the 

timely activation of wingless (wg) and engrailed {en) (Benedyk et al., 1994). In the 

Drosophila embryo the anterior-posterior axis is divided into segmented units, the 

parasegments that are further subdivided into an anterior and posterior part (Martinez- 

Arias and Lawrence, 1985). Wg is expressed in a single row of cells at the posterior end 

of the parasegments, whilst en is expressed in the anterior end of the parasegments 

conferring boundary identity. Opa null embryos show anterior-posterior segmented 

pattern abnormalities with delayed expression of wg and en. However, unlike other pair- 

rule genes, such as fushi tarazu (ftz), which regulate segmental identity and are 

expressed in a restricted manner (Carroll and Scott, 1985), opa was found expressed 

ubiquitously in the segmented region of the embryo. This study hypothesises that opa 

may interact with co-factors of restricted expression to regulate the expression of wg 

and en in order to maintain parasegment identity.

Studies in lower vertebrates such as Xenopus and zebrafish have provided 

additional insights into the function of Zic genes during development. In Xenopus, Zic2 

has been shown to mediate a strong anti-neurogenic effect, whilst promoting neural 

crest formation (Brewster et al., 1998). Unilateral over-expression of Zic2 results in loss 

of cells expressing the neuronal markers n-tubulin and neurogenin on the injected side. 

Moreover, ectopic expression of Zic2 results in the induction of neural crest markers 

such as Xslug and Xsnail, indicating a neural crest-inducing function for Zic2. The 

neural crest inducing activity could be mediated through repression of pro-neurogenic 

genes, since injection of a fusion protein in which Zic2 is bound to the strong activation
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domain VP 16, resulted in ectopic neurogenesis. Similar experiments using ectopic 

expression of Xzicl, 3 and 5 have also been shown to promote neural crest formation 

leading to ectopic expression of neural crest markers Xslug, Xsnail and Xtwi (Kitaguchi 

et al., 2000;Nakata et al., 1997;Nakata et al., 1998). In addition, XZic3 regulates right- 

left asymmetry and looping of the heart (Kitaguchi et al., 2000;Kitaguchi et al., 2002).

In zebrafish, the Zicl domain of expression appears to be inhibited by bone 

morphogenetic proteins (BMPs) as indicated by a study in which the expression domain 

of Zicl was found to be extended in swirl homozygous embryos, which carry mutation 

in the BMP2 gene (Grinblat and Sive, 2001). Similarly blocking BMP4 in Xenopus, by 

over expression of either a dominant negative form of BMP receptor or noggin, results 

in induction of Zic3. In summary, in lower vertebrates, Zic genes have a role in 

promoting neural crest formation by antagonising neurogenesis and appear to be 

inhibited by BMP signalling.

The role of Zic in higher vertebrates has been revealed by over-expression 

studies in chick and through phenotypic study of mutant mice. Targeted disruption of 

Zicl in the mouse has revealed a requirement for this gene in formation of the 

cerebellum (Aruga et al., 1998b). Mice homozygous for a null Zicl allele show a 

hypoplastic and abnormal foliation of the cerebellum, together with skeletal 

malformations (Aruga et al., 1999;Aruga et al., 1998b). As in Xenopus, overexpression 

studies in chick revealed an antineurogenic effect of Zicl. The mechanism appears to 

involve Notch-mediated inhibition, since Zicl over-expression results in upregulation of 

Notch 1 and Hesl (Aruga et al., 2002). Similarly, transgenic mice that overexpress Zicl 

exhibit decreased number of cells expressing neuronal markers and upregulation of 

Notchl and Hesl expression. However, contrary to Xenopus and zebrafish, Zicl 

expression in the mouse neural tube has been suggested to be positively regulated by 

BMP4/7 and negatively regulated by Shh signalling (Aruga et al., 2002). Ectopic
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expression of BMP4/7 results in activation of Z ic l, whilst notochord transplantation and 

Shh overexpression inhibits Zicl expression in the underlying tissue.

Zic2 knock down (Zic2Kd) and Kumba (Zic2Ku) mice display spina bifida and 

exencephaly, indicating that Zic2 is required for neurulation (Nagai et al., 2000;Elms et 

al., 2003). Further phenotypic analysis has shown that Zic2 also regulates other 

developmental processes. Zic2Ku/Ku embryos display delayed production and reduced 

numbers of neural crest cells, in accordance with the Xenopus overexpression studies 

which showed that Zic proteins promote neural crest formation. Interestingly, Zic2Ku/Ku 

embryos have aberrant hindbrain segmentation with smaller rhombomeres 3 and 5 

(r3/5). Indeed, expression offollistatin, which is normally seen only in r2/4/6, expands 

into r3/5 in Zic2Ku/Ku embryos. Another study has shown that Zic2 is important for 

patterning binocular vision by specifying a subtype of retinal ganglion cells that have 

uncrossed axon projections in the midline (Herrera et al., 2003). Zic2Kd/Kd mice had 

fewer ipsilateral projections compared to the wild type and Zic2 was found to be 

expressed only in the uncrossed retinal ganglion cells. This prompted an investigation of 

the role of Zic2 in regulating retinal ganglion projection in the midline. Indeed, ectopic 

expression of Zic2 in dorso-temporal cells, which normally do not express Zic2, 

changes the behaviours of these cells so that they are repelled by midline chiasm cells 

that express cues responsible for regulating the crossing in the midline. Therefore, Zic2 

appears to control the behaviour of retinal ganglion cells to encourage ipsilateral 

(uncrossed) projections of their fibres. In summary, Zic2 is a key regulator of several 

different developmental processes: neurulation, neural crest production, hindbrain 

segmentation and innervation of the retina.

Zic3 has been implicated in several developmental processes. Embryos 

homozygous for either of the mutant alleles, the Bent tail and targeted Zic3 mutations, 

develop left-right asymmetry defects, vertebral and rib abnormalities, tail defects and
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NTDs (Klootwijk et al., 2000;Carrel et al., 2000;Purandare et al., 2002). The left-right 

asymmetry defects include aberrant positioning of the organs with respect to each other 

(situs ambiguous), or mirror-image reversal of the structures (situs inversus). 

Homozygous null embryos for Zic3 display abnormal Nodal and Pitx2 expression, 

which could account for the observed laterality defects. Null embryos also show severe 

heart defects comprising transposition of the great arteries, interrupted aortic arch and 

atrio-ventricular septal defects (Klootwijk et al., 2000;Carrel et al., 2000;Purandare et 

al., 2002). In addition to heart defects, some null embryos show hypoplastic spleen and 

reversed position of the lungs. The central nervous system (CNS) is also affected in 

Zic3 null embryos, which display excencephaly, together with low frequency of 

lumbosacral spina bifida. Hence, Zic3 is required for the establishment of the embryonic 

right-left axes and for normal neurulation.

The function of Zic4 during development remains unknown, as it has not been 

studied in any animal system to date.

1.6.3 Clinical relevance of Zic genes

The importance of Zic genes in humans has become evident with the

identification of mutations in ZIC2 and ZIC3. Mutations in human ZIC2 have been

linked to holoprosencephaly (HPE) in several human genetic studies (Brown et al.,

2001;Brown et al., 1998;Nanni et al., 2000). HPE is a common birth defect with a

prevalence of 1:10,000 live births but at a higher frequency among embryos and

foetuses dying in utero (Roach et al., 1975;Croen et al., 1996). During brain

development the prosencephalon forms a single fluid-filled chamber that divides to

form the two telencephalic vesicles, which will later become the cerebral hemispheres.

HPE results from partial or complete failure of the bifurcation of the telencephalic

vesicles, resulting in the fusion of the two cerebral hemispheres (Hayhurst and

McConnell, 2003). Mutations in three other human genes have been reported to cause

52



HPE: SHH, SIX3 and TIGF (Gripp et al., 2000;Hayhurst et al., 2003). This argues that 

ZIC2 and SHH  function in the same pathway, which is in accordance with the Zic-Gli 

interaction identified by Aruga (2001b). However, patients with mutations in ZIC2 do 

not display facial abnormalities, whilst patients with mutations in SHH display facial 

abnormalities and in severe cases cyclopia. Hence the two genes must regulate distinct 

as well as overlapping functions.

Zic2 was initially considered as a good candidate for human NTDs because it 

mapped in the critical region of the 13q32 deletion syndrome, which results in HPE and 

exencephaly (Brown et al., 1998). This, together with the neurulation phenotype 

observed in Zic2Ku, prompted an investigation of a possible association of ZIC2 with 

NTDs including exencephaly and spina bifida (Brown et al., 2002). Among 192 NTDs 

patients screened, only one mutation was found consisting of an insertion in the first 

intron. However this mutation was also present in unaffected individuals in the same 

family. Single stranded conformation polymorphisms (SSCP) failed to show any 

mutation in ZIC2 in NTD patients, indicating that the NTDs observed in the 13q32 

deletion syndrome could be caused by another gene within the deletion rather than by 

the loss of function of ZIC2 (Brown et al., 2002). However, this report identified a 

polyhistidine tract polymorphism in ZIC2 in non-Caucasian-Hispanic population that 

could confer susceptibility to NTDs. A second study, in a Dutch population, has also 

failed to identify mutations in ZIC2 in NTD patients (Klootwijk et al., 2004).

Lack of identification of mutations in ZIC1 and ZIC4 has not been informative 

on the role of these genes in humans. However, mutations in ZIC3 have been shown to 

be responsible for X-linked heterotaxy (HTX1) (Gebbia et al., 1997). The affected 

males exhibit situs inversus, heart malformations, abnormal lung lobulation and 

gastrointestinal malformations. These phenotypes correlate with those of embryos 

homozygous for the Bent tail and Zic3 KnockoutlaUeles (see section 1.6.2). Other
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malformations observed in humans carrying mutations in the ZIC3 gene, include 

lumbosacral NTDs with anal abnormalities and sacral agenesis. The phenotypic 

resemblance between the mouse mutants and the human abnormalities makes Bent tail 

and the Zic3 knockout a good model for the study of right-left asymmetry defects and 

heart defects. Other studies have found no association between human NTDs and ZIC3 

(Carrel et al., 2001;Klootwijk et al., 2004).

Despite the importance of Zic2 and Zic3 during development, little is known 

about the function of these genes during neurulation. Several fundamental questions 

remain to be answered: where are Zic genes expressed at the time of neural tube 

closure? How does Zic2 affect the morphogenesis of the neural tube leading to spina 

bifida? Which aspects of neurulation does Zic2 regulate? These questions will be 

addressed in this thesis.

1.7 OVERVIEW OF THE THESIS

This thesis describes a number of studies that aim to elucidate the function of 

Zic genes during neurulation. Chapter 3 includes a detailed expression analysis of the 

Zic genes at the time of neural tube closure in the mouse. Expression of Zic2 and Zic3, 

genes implicated previously in the causation of spina bifida, are reported during normal 

neurulation and in the mouse mutants curly tail (ct), loop tail (Lp) and Splotch (Sp2H) 

which develop NTDs. Chapter 4 presents a morphological analysis of the neurulation 

defect observed in the Kumba mouse, Zic2Ku, and provides the first evidence for a gene 

directly involved in DLHP formation. The final two chapters are concerned with the 

identification of Zic2 interacting proteins in the neurulation stage embryo. The aim is to 

identify proteins that regulate Zic2 transcriptional activity and thereby discover 

pathways by which Zic2 regulates neurulation. Chapter 5 reports the identification of 

Zic2 interacting proteins using the yeast two-hybrid assay, while Chapter 6  contains
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further analysis of the Zic2 interacting proteins identified in the previous chapter, using 

co-expression studies, co-immunolocalisation and biochemical assays. It is hoped that 

the work in this thesis significantly improves our understanding of the role of Zic genes 

in mouse neurulation.
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CHAPTER 2: GENERAL METHODS
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2.1 INTRODUCTION

In this chapter I describe the common experimental procedures used throughout 

the thesis. I have divided this chapter into 6  areas: 1) Mouse embryology and histology 

methods, 2) DNA methods, 3) RNA methods, 4) Yeast methods, 5) Protein methods, 

and 6 ) Tissue culture methods. Those methods that are specific to one particular 

chapter, such as primer sequences, cloning of constructs or optimisation of the standard 

conditions explained in this chapter, will be reported under the methods section of each 

corresponding chapter. All reagents were obtained from Sigma unless otherwise stated.

2.2 MOUSE EMBRYOLOGY AND HISTOLOGY METHODS

2.2.1 Embryo collection and dissection

Mice were maintained under light/dark conditions consisting of a 24 hour cycle 

consisting of 12 hours light, from 7 a.m. to 7 p.m, and 12 hours darkness. Adults were 

paired overnight and females were checked for the presence of a copulation plug in the 

morning. At midday, females with a copulation plug were considered to be 0.5-days 

post coitum or embryonic day 0.5 (E0.5). Pregnant females of the appropriate 

gestational age were culled by cervical dislocation and the uterus was placed for further 

dissection in pre-warmed Dulbecco’s Modified Eagle’s Medium (DMEM) containing 

1 0 % fetal calf serum.

Dissection was carried out using a dissecting microscope (ZEISS, Stemi SV6 ) 

and using flame-sterilised Number 5 watchmaker’s forceps following the method 

described by Copp ( 1990). A hole was made in the uterine wall and enlarged until the 

decidual swelling could be removed from the uterus. This process was started at one end 

of the uterine horn and repeated along the uterus until all the decidual swellings had 

been removed. The conceptus was removed from each decidua and the embryo and 

extra embryonic membranes were dissected apart. Embryos were rinsed in cold
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phosphate buffered saline (PBS) and fixed overnight (E8.5-9) or for 48 hours (older 

embryos) in 4% paraformaldehyde (PFA) in PBS. If embryos were needed for whole 

mount in situ hybridisation, all the solutions were treated with diethyl pyrocarbonate, 

DEPC (see section 2.4.4). After fixation, embryos for whole mount in situ hybridisation 

were dehydrated through a series of 25%, 50%, 75%, 90% and 100% methanol in 

DEPC-treated PBS and stored at -20°C until further use. Embryos used for histological 

analysis requiring wax embedding were dehydrated to 1 0 0 % ethanol following the same 

series as above and kept at 4°C.

2.2.2 Embedding of embryos and sectioning

Embryos requiring wax embedding were cleared by two 30 minute incubations 

in HistoClear (National Diagnostics). After treatment with HistoClear, samples were 

placed in a pre-warmed HistoClear:paraffin (1:1) mixture at 60°C for 20 minutes and 

the mixture was changed to pre-warmed paraffin wax for another 20 minutes at 60°C. 

Embryos were then placed in warm glass moulds filled with warm paraffin wax and 

orientated using heated needles. Wax was left to set overnight at room temperature until 

sectioning. Sectioning was carried out on a rotary microtome (microtome, MICROM 

HM 325) and 7-10 /mi sections were floated on distilled water on slides and heated to 

40°C until the creases disappeared. The excess water was removed by suction and 

samples were left to dry at 37°C overnight. Tissue samples were kept at 4°C until used.

Vibratome sectioning was used to obtain thick sections (30-50 /mi) of embryos 

after whole mount in situ hybridisation. Due to the thickness of the section, staining 

appears stronger allowing better visualisation of the signal compared to the 5 - 7  /mi 

sections of the wax embedded embryos. Moreover, this technique allows differential 

interference contrast (DIC) in transmitted light microscopy, thereby avoiding the need 

for counterstaining.
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After whole mount in situ hybridisation, embryos requiring vibratome sectioning 

were equilibrated in a gelatin-albumin solution (27 g of chicken egg albumin grade II, 

18 g of sucrose and 0.45 g of gelatin 300 Bloom) for a minimum of one hour for E8.5 

embryos, increasing to overnight for E l0.5. Embryos were orientated and embedded by 

addition of glutaraldehyde to 2.5% (v/v). Once orientated, the gelatin-albumin- 

glutaraldehyde mixture was left to set for a maximum of one hour, after which cubes 

were stored in PBS at 4°C prior to sectioning. Three microlitres of thimerosal (10% 

w/v) were added to prevent growth of bacteria and yeast. Embedded embryos were 

sectioned at 50 /xm thickness with a Series 1000 vibratome (Agar Scientific). Sections 

were mounted on slides in a 50% glycerol-PBS solution.

2.2.3 Haematoxylin and eosin staining

This is a histological method in which haematoxylin, a basic dye, stains nuclei a 

dark blue colour, while eosin, an acidic dye, stains the cytoplasm pink.

Before staining, paraffin sections were de-waxed by dipping the slides in two 

changes of HistoClear for 10 minutes each. Sections were re-hydrated by placing slides 

in an ethanol series of 100%, 90%, 75%, 50%, 25%, followed by PBS for 5 minutes 

each. Slides were then immersed in haematoxylin (BDH) for 1-2 minutes, rinsed in 

distilled water to clear the excess dye and briefly dipped in acid-alcohol (1% HC1 in 

70% ethanol). Slides were then left for 5 minutes in 250 mM sodium bicarbonate 

solution and rinsed with water before staining with 1% aqueous eosin (Raymond Lamb) 

for 2 minutes. The slides were then dehydrated using an ethanol series and treated with 

two changes of HistoClear for 5 minutes each. Sections were mounted with DPX 

mounting medium (Fisher Chemicals).
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2.2.4 Microscopy and image analysis

Images from whole embryos were obtained using a microscope fitted with 

digital camera (LEICA MZFL III) and the Image Manager (EM LEICA1000 V I.20) 

software. Subsequent image processing was carried out using the Adobe Photoshop 6.0 

software. Images from sections were generated with a ZEISS Axiophot 2 microscope, 

fitted with a digital camera (Kontron Electronik) using the Openlab 3.11 software 

(Improvision LTD) for immuno-fluorescence. For other purposes, photographs were 

taken manually using Ektachrome 160T film (Kodak). After processing, films were 

scanned using a Microtex Film Scan 1800 scanner and images imported into Adobe 

Photoshop.

2.3 DNA METHODS

2.3.1 Genomic DNA extraction from adult tissue

This method was used for extraction of genomic DNA from tail tips to be used 

for genotyping of the mutant mouse colonies by PCR amplification. Small lengths of 

mouse tail, about 0.5 cm, were digested with 1 mg/ml of proteinase K (PK) in 200 /d of 

lysis buffer (5 mM ethylenediaminetetraacetic acid [EDTA] pH 8.2; 50 mM 

Tris(hydroxymethyl)aminomethane [Tris]-HCl pH 8.5; 1% sodium dodecyl sulphate 

[SDS], 100 mM NaCl) at 55°C overnight. After incubation, PK enzymatic activity was 

stopped by heat inactivation at 95°C for 5 minutes and cell debris pelleted by 

centrifugation at 13,000 rpm. The supernatant was collected and placed in a clean 

eppendorf tube, 100 /zl of saturated NaCl were added and samples were incubated on ice 

for 20 minutes to precipitate the proteins. Samples were centrifuged at high speed 

(13,000 rpm) to pellet the protein and the supernatant was transferred to a new 

eppendorf tube. To precipitate the DNA, 750 fil of ethanol were added to the samples 

followed by thorough mixing and centrifugation for 10 minutes at 13,000 rpm. The

60



pelleted DNA was then washed with 75% ethanol, air dried for 5 minutes, dissolved in 

100 [il of distilled deionised H20 (dd H2 0) and 1 /d was used as a template for PCR.

2.3.2 DNA extraction from yolk sacs for genotyping of embryos

The yolk sac was carefully dissected from the embryo taking care to avoid 

contamination with maternal tissue, such as the decidua or maternal blood cells on the 

ectoplacental cone, which could contaminate the DNA giving an incorrect genotype. 

Yolk sacs were kept at -20°C until further use. The method to extract the DNA was as 

described above, but with a shorter digestion with PK, 3-5 hours. The DNA pellet was 

resuspended in 20 /d ddH20 and 1 jtd of DNA was used in the genotyping PCR reaction.

2.3.3 Polymerase chain reaction for DNA amplification

2.3.3.1 Standard PCR method

A reaction mix was prepared containing lx NH4 buffer (Bioline), 1.0 to 4.0 mM 

Mg2+ (optimised depending on the primers used in the PCR, see section 2.5.1), 0.16 mM 

of each deoxynucleoside triphosphate (dNTP), 0.48 /zM reverse and forward primer and 

0.17 Units of Taq or Biopro polymerase (Bioline). The reaction mix was kept on ice and 

24 /d of the reaction mix was carefully added to 1 /d of sample containing 20-100 ng of 

DNA template, trying not to contaminate the mix. In all reactions a negative control 

reaction was included without template DNA, in order to check for the presence of 

contaminating DNA. If possible, a positive control was used with a known good quality 

template DNA to check the quality of new samples and the components of the reaction 

mix. The cycling reaction involved an initial step of denaturation at 94°C for 1 minute; 

followed by 30-35 amplification cycles each consisting of a denaturation step for 1 

minute at 94°C, primer annealing for 1 minute at 50-68°C, and primer elongation for 1 

minute at 72°C. To ensure that all the PCR amplified products were full length, a final
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elongation step at 72°C for 10 minutes was included. PCR products were resolved by 

agarose gel electrophoresis (see section 2.3.6) and visualised under UV light 

(Multiimage Light Cabinet).

2.3.3.2 PCR optimisation

The primer annealing temperature and concentration of Mg were modified 

empirically for each set of primers, in order to achieve specificity in the amplification 

process. For each new reaction, a 1.5 mM final concentration of Mg2+ and 55°C 

annealing temperature was assayed. If the PCR yielded non-specific products, the 

annealing temperature was increased by 2°C and the Mg2+ was decreased until only the 

expected PCR product was amplified. Alternatively, if the initial PCR did not yield the

9 +expected product, the concentration of Mg was increased by 0.5 mM and the 

temperature decreased by 2°C, to decrease specificity until the product of the expected 

size was obtained.

To amplify cDNA fragments for cloning in the generation of constructs, 

ACCUZYME DNA polymerase (Bioline) was used, which has a proof reading activity 

that yields fewer mutations in the amplification cycles. The reaction mix was prepared 

as described above and the number of cycles was decreased to 25 in order to reduce 

possible PCR generated mutations.

2.3.3.3 Primer design

To design primers, three basic considerations were taken into account: 

avoidance of palindromic regions within each primer sequence, complementarity at the 

3’ end between a pair of primers and runs of Gs or Cs at the 3’ end of the primer 

(Kawasaki, 1990). Palindromic regions within the primer can lead to hairpin formation, 

making the primer unable to anneal to the DNA template. Complementarity between the 

3’ end of a primer pair can result in dimerisation of a primer and long runs of Gs and Cs
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in the 3’ end of the primer can result in misspriming to G/C rich regions. Primers were 

designed to be 18 to 23 bases long and to contain 50-60% G/C within its sequence, in 

order to have the same melting temperature for each primer pair. Primers were ordered 

from Qiagen and rendered salt free by HPLC purification.

2.3.4 Restriction enzyme digestion of DNA

Restriction digestion of DNA samples was carried out according to the 

manufacturer’s recommended conditions (Promega, Gibco BRL or New England 

Biolabs). Normally, restriction digestions were carried out in a 50 /d total volume 

containing 5 /xl of the enzyme-specific lOx buffer, 5 /d of lOx BSA acetylated bovine 

serum albumin (Promega), 2 fig of template DNA and 1 /d (12 Units) of the appropriate 

enzyme. The solution was mixed well and left to incubate for 2 hours. The optimal 

temperature for the digestion was modified according to the manufacturer’s 

recommendations for that enzyme.

Restriction enzyme digestion varied depending on the purpose of the 

experiment. Those digestions to linearise plasmid for in vitro transcription of RNA 

probes were scaled up in order to obtain large amounts of linearised plasmid. Those 

restriction digestions to check the orientation of a particular cloned insert, or to check 

for the presence of insert in a recombinant plasmid, were carried out with small amounts 

of DNA, 500 ng, and shorter incubation times, 1 hour. This was sufficient as complete 

digestion of the plasmid was not required. For other purposes such as cloning of PCR 

generated fragments the conditions were also modified (see section 2.3.6.1).

2.3.5 Agarose gel electrophoresis

The size of the DNA sample was checked by horizontal gel electrophoresis in a 

Horizon gel tank (Gibco BRL) using agarose gels prepared with TAE buffer (40 mM 

Tris, pH 7.2; 0.114% v/v glacial acetic acid; 1 mM EDTA). The percentage of each
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agarose gel depended upon the size of the DNA samples and the resolution required to 

visualise DNA products. For high resolution of small DNA fragments in order to 

distinguish alleles of 10-30 bases difference, used in the genotyping of Kumba mice 

(Z/c2^“) or loop tail (.Lp), 4% (w/v) agarose gel were used. For larger fragments, 100- 

300 base pairs (bp), used in splotch (Sp2H) or Shh genotyping, a 2% gel was sufficient to 

resolve the bands. Agarose gels (4-2%) were prepared using a 1:1 mixture of normal 

and low melting points (LMP) agarose in TAE. A 1% agarose gel was used for high 

molecular weight DNA samples such as linearised plasmids or to check the quality of 

the purified plasmid DNA. The agarose mixture was heated in a microwave oven with 

intermittent agitation until the agarose was melted. The mixture was then left to cool 

down at room temperature or on ice. At this point 2.5 p\ of ethidium bromide (10 mg/ml 

stock solution) were added and the agarose was left to solidify at room temperature in a 

casting tray with combs. Ethidium bromide intercalates into the DNA and fluoresces in 

long wave UV light. Product sizes were determined by running DNA markers alongside 

the DNA samples, normally 1 kb ladder or Hyperladder 1 (Bioline). After 

electrophoresis at 80-120 V for 1-3 hours DNA gels were photographed under UV light 

using a video-documentation system (Multilmage™ Light Cabinet).

2.3.5.1 Purification of DNA fragments from agarose gels

The DNA bands were excised from 1% LMP agarose gels, after staining with 

ethidium bromide. Three volumes of 6 M Nal were added, and incubation was 

performed at 55°C until the agarose had melted. Then, 5 fi\ of 10% silica were added for 

each fig of DNA. Samples were left on ice for 10 minutes with consecutive inversions to 

allow the DNA to bind to the silica. Silica was pelleted by centrifugation at 13,000 rpm 

for 30 seconds and washed three times with 500 fi\ of wash solution (50 mM NaCl; 10 

mM Tris.HCl, pH 7.5; 2.5 mM EDTA; 50% v/v ethanol). DNA was recovered by 

addition of 1 volume of ddH20 to the volume of silica and the slurry was heated at 55°C
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in a heated block for 5 minutes. The slurry was cleaned of silica by centrifugation and 

the supernatant containing the purified DNA was kept at -20°C until further use.

2.3.5.2 Purification of DNA fragments using spin columns

QIAquicK Spin columns (QIAGEN) were used for direct purification of double 

or single-stranded PCR products of size, 100 bp to 10 kilo bases (kb). This method has 

the advantage that a large number of PCR products can be purified quickly and 

simultaneously, yielding good quality DNA fragments that can be used for sequencing 

and cloning into vectors. For the purification, 50-100 /d of QIAGEN PB buffer was 

added to 10-20 fi\ of PCR reaction and mixed thoroughly by vortexing. The sample was 

then loaded onto the column, which contains a silica-membrane to which the DNA can 

bind in the presence of high concentrations of salt. Impurities were eluted from the 

column by centrifugation at 13,000 rpm for 30 seconds. The membrane was further 

washed by addition of 750 /d of QIAGEN washing solution PE and by centrifugation at 

high speed for 1 minute. The column was left to air dry and the DNA was eluted with 

30 /d of ddt^O or TE buffer.

2.3.6 Procedures for cloning of DNA fragments

Unless otherwise specified, constructs used throughout this thesis were 

generated using the following protocols.

2.3.6.1 Ligation

When cloning cDNA into vectors, if possible, gel purification was avoided in 

order to prevent contamination of the DNA. Moreover, whenever possible, directional 

cloning was designed to insert the cDNA into two different restriction sites so that the 

insert could be ligated in the vector in the required orientation. Directional cloning saves 

time when screening recombinant clones after ligation and transformation into bacteria,
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compared with cloning into a single restriction site where the insert can be ligated in 

either a 5’-3’ or 3’-5’ direction with a 50% chance of a particular clone having the insert 

in the correct orientation. Finally, restriction enzyme digestions were performed for no 

more than 2 hours and if the incubation temperature and buffer for two different 

enzymes were the same, simultaneous digestions using both enzymes were performed.

To generate complementary overhanging (“sticky”) ends, 2 /zg of midiprep 

purified DNA (see section 2.3.12) vector was digested with the appropriate enzyme (see 

section 2.3.4) for 2 hours in a total volume of 50 /zl. After digestion, 3 /d were 

electrophoresed to check that digestion had been successful and enzyme activity was 

stopped by heat inactivation. The vector was then treated with 1 /zl (20 units) of calf 

intestine phosphatase (CIP) (Roche), by scaling up the reaction to 100 /zl total volume 

and including 10 /zl of lOx CIP buffer. The reaction mix was incubated at 37°C for 1 

hour. CIP catalyses the hydrolysis of 5’ phosphate residues, which are needed to 

covalently join the DNA. Hence, CIP prevents self re-ligation of the vector. Enzyme 

and buffer were then removed from the linearised DNA sample using the QIAquick 

columns (see section 2.3.5.2) and the vector was used immediately or stored at -20°C.

Insert cDNA was prepared in two different ways depending on whether it had 

been generated by PCR amplification (see section 2.3.3) or was already cloned into a 

plasmid. Inserts cloned into plasmids were released by restriction digestion and, 

following electrophoresis in a 1% low melting point agarose gel (see section 2.3.5), the 

insert was gel purified (see section 2.3.5.1). For inserts generated by PCR, 25% of the 

product (5 /zl of the total reaction) was digested with the appropriate restriction enzyme 

but the digestion time was increased to 4 hours. The PCR product was then purified 

using QIAquick columns (see section 2.3.5.2).

Once the insert and vector had been prepared, 2 /zl of linearised vector and insert 

were electrophoresed and quantified by comparison with a DNA marker. The ligation
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reaction was prepared in a 15 /zl volume containing 50 ng of vector and with the 

appropriate mass of insert DNA to give a 3:1 molar ratio of insert: space vector. Three 

units of T4 DNA ligase (1 /d) and 1.5 /zl of lOx T4 DNA ligase buffer (Gibco BRL) 

were added and the reaction was left at 16°C for 4 to 5 hours. A reaction control 

containing only vector, ligase enzyme and ligase buffer, but without insert was 

performed in parallel to determine whether the colonies obtained after transformation 

were products of self re-ligation of plasmid due to unsuccessful CIP treatment or partial 

restriction enzyme digestion. At this point 5 /zl of the ligation reaction was used to 

chemically transform E. coli DH5a cells (see section 2.3.10). Cells were plated on agar 

culture plates containing 50 /zg/ml of ampicillin and placed in a bacterial incubator at 

37°C overnight.

2.3.7 Identification of recombinant plasmids

After transformation, recombinant plasmids were identified in different ways 

depending on the size of the insert cloned, the type of vector used in the cloning and 

number of colonies to be screened.

2.3.7.1 DNA shift assay

Vectors containing inserts bigger than 600 bp can be distinguished by gel 

electrophoresis due to a size shift compared to the empty vector. This method was used 

when large numbers of colonies had to be screened. Typically, clones were picked and 

grown for 5 hours in 1 ml of LB with antibiotic selection. After growth, 150 /zl of each 

culture was pelleted by centrifugation at 13,000 rpm to harvest cells and the 

supernatants were discarded. Cells were then lysed in 150 /zl of lysis buffer (0.5 mM of 

EDTA, 10% sucrose, 0.25% w/v SDS, 100 mM NaOH, 60 mM KC1 and 0.025% 

Briliant Blue dye), at 65 °C for 5 minutes, followed by 5 minutes incubation on ice. 

Samples were centrifuged at high speed for 5 minutes and 10 /zl of supernatant was
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carefully removed and loaded onto an agarose gel for electrophoresis. Recombinant 

clones appeared as higher molecular weight compared to the empty vectors.

23.1.2 Restriction enzyme digest

Restriction digest was the most frequently used method for identification of 

recombinant plasmids. Colonies were grown overnight with the appropriate antibiotic 

selection and the plasmid purified using the small-scale plasmids isolation method (see 

section 2.3.11). Purified plasmid was digested with the same restriction enzymes used to 

insert the cDNA into the vector, then 10 /xl of the reaction was electrophoresed, 

visualised under UV light and photographed. Recombinant plasmids were identified by 

the presence of two bands, one corresponding to the plasmid DNA and the other to the 

insert. Non-recombinant plasmids were identified as a single band.

23 .1 3  White and blue selection

When the pGEM-T vector (Promega) was used in the cloning of cDNA, for 

example to generate probes for whole mount in situ hybridisation, recombinants were 

selected by white and blue colony selection. The pGEM-T vector contains a functional 

/3-galactosidase gene within the multi-cloning site. In the presence of isopropyl-1-thio- 

/3-D-galactosidase (LPTG), /3-galactosidase acts on the chromogenic substrate 5-bromo- 

4-chloro-3-indolyl-/3-D-galactosidase (X-gal) to produce a blue product resulting in blue 

colonies. When a cDNA is inserted into the multi-cloning site of the vector, the (3- 

galactosidase gene is disrupted and colonies appear white in the presence of IPTG and 

X-gal. This method provides a useful and quick way to screen for recombinants.

2.3.7.4 Colony PCR

In cases where a large number of colonies needed to be screened for the 

presence of recombinant plasmids with inserts smaller than 600 bp the colony PCR
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method was used. Colonies were streaked onto an agar culture plate, carefully numbered 

and left to grow overnight. After overnight culture each colony was picked gently with a 

plastic tip and immersed in PCR mix-containing primers designed to flank the 

multicloning site. The PCR product was electrophoresed and photographed under UV 

light. Clones with an insert were visualised due to the presence of a PCR-generated 

band with molecular weight corresponding to the size of the insert.

2.3.8 Preparation of competent Escherichia coli DH5a cells

The calcium chloride method (Sambrook et al., 1989) was used to make E. coli 

DH5a cells competent for transformation. This method yielded large amounts of 

competent cells with poor efficiency of transformation. However, their competence was 

sufficient to carry out routine transformation of plasmids. All the procedures involving 

bacteria were carried out while observing standard sterile practice.

A colony was picked from a non-selective agar plate (containing no antibiotic) 

and grown overnight at 37°C in 5-10 ml of non-selective L-broth (LB) medium. A 1-2 

ml aliquot of the overnight culture was then used to inoculate 50 ml of LB without 

antibiotic selection at 37°C for 2 hours. Optical density (OD) was measured using an 

UVminil240 spectrophotometer (Shimadzu) and when an OD of 0.5-0.7 was reached, 

indicating exponential growth, cells were then pelleted by centrifugation at 1,300 rpm at 

4°C. The pellet was then resuspended in 20 ml sterile ice-cold 50 mM CaCU by 

carefully pipetting the solution. This centrifugation/resuspension step was repeated 

twice, after which the pellet was resuspended in 4 ml of sterile ice-cold 50 mM CaCU 

and left overnight at 4°C. Cells were then ready to be used for transformation. For long­

term storage, 140 /z 1 of dimethyl sulfoxide (DMSO) was added to the 4 ml cell 

suspension and left on ice for 15 minutes. After the incubation, another 140 /zl of 

DMSO was added to the cells and mixed gently. Aliquots of 50 /zl were snap-frozen by 

immersion in liquid nitrogen and stored at -80°C until further use.
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For expression of recombinant proteins, as used in the glutathione-S-transferase 

(GST) pull-down experiments, BL21 E. coli cells (Promega) were used (see section 

2.6.1.1). The BL21 strain has been genetically modified to eliminate proteases so that 

the expression of large foreign proteins can be achieved with minimal degradation. The 

calcium chloride method described above was used to make BL21 cells competent.

For those cases in which high efficiency transformation was needed, such as 

transformation of low amounts of plasmid DNA or unfavourable ligations, 

commercially available ultra competent XL1 Blue or Ultracompetent XL2 Blue cells 

(Stratagene) were used.

2.3.9 Preparation of electro-competent cells

In cases where plasmid recovery was very low, such as in the recovery of “bait” 

or “prey” plasmids from the host yeast strain PJ69-4A (see section 2.5.3), or following 

ligations that yielded low amounts of DNA, electroporation was used as a means of 

introducing plasmid DNA into bacterial cells.

The XL-10 E. coli (Stratagene) strain was used to make stocks of electro- 

competent cells. A 50 ml overnight culture, grown at 37°C without antibiotic selection, 

was used to inoculate 1 L of LB and grown for 1 -2 hours monitoring the optical density 

(OD) reading at 550 nm until it reached an OD of 0.5-0.6. The bacteria were placed on 

ice for 15 minutes before harvesting by centrifugation at 4,000 rpm for 15 minutes at 

4°C. The pelleted cells were then washed free of salts by re-suspension in 1 L of ice- 

cold water and re-centrifugation at 4,000 rpm for 15 minutes at 4°C. Cells were then 

washed twice with 500 ml of sterile ice-cold water each time harvesting the cells by 

centrifugation. The pellet was re-suspended in 40 ml of sterile ice-cold 10% v/v sterile 

glycerol and then centrifuged again. The pellet was resuspended in 2 ml of ice-cold 10% 

v/v sterile glycerol and the cell suspension was snap-frozen in 50 /d aliquots by 

immersion in liquid nitrogen and the aliquots were stored at -80°C.
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2.3.10 Transformation of foreign DNA into bacterial cells

Transformation of plasmid DNA into bacteria was achieved by heat-shock or 

electroporation. The recombinant E. coli strains used throughout this thesis were 

selected on the basis of acquired antibiotic resistance to ampicillin. All plasmids used in 

the present study had ampicillin as the antibiotic-resistance gene.

2.3.10.1 Chemical transformation by heat-shock

A 50 ill aliquot of competent DH5a E. coli cells was thawed on ice for 10 

minutes and placed into a pre-chilled falcon polypropylene tube and 50 ng of plasmid 

DNA was added and gently pipetted up and down. Cells were left on ice for 30 minutes 

before heat-shocking at 42°C for 45 seconds in a water bath. The duration of heat-shock 

was according to the manufacturers instructions for commercially available cells. After 

the heat-shock, cells were placed back on ice for 1-2 minutes. At this point, 1 ml of LB 

containing 20 mM glucose, 2.5 mM KC1 and 10 mM MgCb was added and the bacteria 

were placed at 37°C with vigorous shaking for 1 hour to allow the expression of 

antibiotic resistance proteins. For routine plasmid transformation, 100 ill were plated 

onto an agar culture plate containing 50 /xg/ml of ampicillin. Plates were inverted and 

incubated overnight at 37°C.

2.3.10.2 Transformation by electroporation

A 50 ill aliquot of electrocompetent cells was thawed on ice for 10 minutes, and 

1 fil of ligation or 5 fil of yeast miniprep was added to the bacteria and gently mixed by 

pipetting. The mixture was then transferred to a pre-chilled 1 mm gap electroporation 

cuvette (Invitrogen) and placed in an electroporation machine (Invitrogen 

Electroporator II) set to 1,800 V and 150 Q and connected to a power supply of 1,500 

V, 25 mA and 25W. A pulse current was applied and the cuvette was then placed on ice 

for 1 to 2 minutes. Cells were allowed to recover by adding 1 ml of LB containing 20
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mM glucose, 2.5 mM KC1 and 10 mM MgCb and incubating at 37°C for 1 hour to allow 

the expression of antibiotic resistance proteins. Since this method was used for difficult 

transformations, all the bacterial cells were harvested by centrifugation at 3,000 rpm and 

pellet was resupended in 100 /x 1 of LB. The entire volume was then plated out onto agar 

cultures plates containing 50 /xg/ml ampicillin and incubated at 37°C overnight.

2.3.10.3 Small-scale isolation of plasmid DNA: miniprep

Small-scale isolation of plasmid DNA yielded up to 5-6 /xg of template DNA. 

This technique was used for the identification of recombinant plasmids after ligation, 

for sequencing to verify identity of the insert after cloning, or as a quick method to 

prepare plasmid stocks. The small-scale isolation of plasmid DNA is a quick protocol 

but yields poor quality DNA, with the possibility of endonucleases being co-purified 

with the plasmid. For those experiments that required high quality DNA such as 

transfection of the plasmid DNA into yeast or mammalian cells (see chapter 5/6), or for 

in vitro translation/transcription methods, where purity of the template DNA was 

critical, a large scale isolation of plasmid DNA was performed.

The GFX MicroPlasmid Kit was used (Amersham Pharmacia Biotech) 

according to the manufacturer’s protocol. One colony was picked and grown overnight 

at 37°C in 5 ml of LB with the appropriate selective antibiotic, after which 1.5 ml of 

culture was centrifuged at 13,000 rpm for 2 minutes. The supernatant was discarded and 

the cells were resuspended in 150 /xl of solution 1 (100 mM Tris.HCl, pH 7.5; 10 mM 

EDTA; 400 /xg/ml RNase I). Cells were ruptured by alkaline lysis using 150 /xl of 

solution II (190 mM NaOH; 1% w/v SDS) and gently inverting the tube 10 times. A 

viscous solution was formed containing cell debris, protein, genomic and plasmid DNA. 

In order to precipitate cellular debris and protein, solution III (acetate-buffered solution 

containing chaotropic salt) was added to the mixture and the tube was gently inverted 

10 times. The precipitate was then pelleted twice by centrifugation at 13,000 rpm for 5
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minutes. The supernatant containing the plasmid DNA was loaded onto a GFX glass 

fibre matrix column, incubated at room temperature for 1 minute, and centrifuged for 30 

seconds at 13,000 rpm. Genomic DNA and protein were removed by addition of 750 pi 

of wash solution (10 mM Tris.HCl, pH 8.0; 1 mM EDTA; 80% v/v of ethanol) followed 

by centrifugation. To elute the DNA, the column was placed in a fresh eppendorf tube 

and 100 pi of TE buffer or ddH20  was added to the column, and incubated at room 

temperature for 3 minutes. The DNA was recovered by centrifugation at 13,000 rpm for 

1 minute. The plasmid DNA sample was stored at -20°C

2.3.11 Large-scale isolation of plasmid DNA: midi/maxiprep

Large-scale isolation of plasmid DNA was carried out according to the QIAGEN 

manufacturer’s instructions. This method typically yielded 100 to 500 pg of good 

quality DNA that could be used for transfection or for in vitro transcription-translation. 

Midi and maxi-prep followed the same basic protocol with changes in volumes and 

times as indicated by midi/maxi.

A colony was picked and grown overnight in 5 ml of LB with the appropriate 

selection antibiotic. The overnight culture was used to inoculate 50/500 ml by diluting 

the culture 1:1000. Bacteria cells were then harvested by centrifugation at 6,000 g for 15 

minutes at 4°C and the supernatant was discarded. The pellet was resuspended in 4/10 

ml of solution PI (50 mM Tris.HCL, pH 8.0; 10 mM EDTA; 100 pg/ml of Rnase A). 

Bacteria were lysed by addition of 4/10 ml of P2 (200 mM NaOH, 1% w/v SDS), 

followed by inversion 4 times and left at room temperature for 5 minutes. Cell debris 

was precipitated by addition of 4/10 ml of ice-cold P3 solution (3 M potassium acetate, 

pH 5.5) followed by gentle inversion of the solution 5 times, incubation on ice for 15/20 

minutes and centrifugation at 20,000 g for 30 minutes at 4°C. Meanwhile, an anion- 

exchange resin column (QIAGEN-tip 100/500), equilibrated by addition of 4/10 ml of 

buffer QBT (750 mM NaCl; 50 mM MOPS, pH 7.0; 15% v/v isopropanol; 0.15% v/v
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Triton X-100), was allowed to empty by gravity. The supernatant was loaded and the 

column was allowed to empty by gravity. The column was then washed twice by 

addition of 10/30 ml of buffer QC (1 M NaCl; 50 mM MOPS, pH 7.0; 15% v/v 

isopropanol) and allowed to drain by gravity. The DNA was eluted from the column 

with 5/10 ml of Buffer QF (1.25 M NaCl; 50 mM Tris.HCl, pH 8.5; 15% v/v 

isopropanol) and precipitated by addition of 0.7 volumes of isopropanol followed by 

centrifugation at 15,000 g for 30 minutes at 4°C. The DNA pellet was washed with 70% 

ethanol, and air-dried at room temperature for 5 minutes, before being redissolved in TE 

(10 mM Tri.HCl, pH 8.0; 1 mM EDTA). The quantity of DNA recovered was estimated 

by gel electrophoresis (see section 2.3.5), compared with known concentration of a 

DNA marker run alongside. Further quantification was achieved spectrophotometrically 

by measuring absorption at 260 nm (A260). The purity of the DNA was assessed by 

measuring the absorption at 280 nm (A28o), the ratio A26o • A28o should be 1.8-2.0 for 

good quality DNA.

2.3.12 Automated DNA sequencing

DNA sequences were obtained using a MegaBACE 1000 capillary sequencing 

machine (Amersham Bioscience). Each sequencing reaction (20 /d) typically contained 

0.5 jug of plasmid DNA or 0.1-0.2 fig of cleaned PCR product, 8 fi\ of fluorescent dye 

ET terminator mix (Amersham Bioscience) and 1 /d of sequencing primer at 5 fiM final 

concentration. The PCR sequencing reaction included three steps: denaturation at 94°C 

for 30 seconds, annealing of the sequencing primer at 50°C for 20 seconds and 

extension at 60°C for 1 minute. These series were repeated for 20 to 25 cycles.

The sequencing PCR products were cleaned of unincorporated ET terminators 

by addition of 55 /d of 100% ethanol and 2 /d of 7.5M sodium acetate, mixed by 

vortexing . Samples were then centrifuged at 13,000 rpm for 15 minutes, the pellet was 

washed with 100 /d of 75 % ethanol, left to air dry for 5 minutes and stored at -20°C.
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Before loading in the MegaBACE capillary sequencing machine, reactions were 

dissolved in 10 ju.1 of loading buffer (Amersham Biosciences).

2.3.13 Sequence analysis

Sequence analysis was performed using BioEdit software, which allowed 

reading of the electropherogram, as well as giving the sequence in FAST A format. To 

verify the identity or correct sequence of a cDNA, sequences were analysed for 

homology to other cDNAs using the Basic Local Alignment Search Tool (BLAST) on 

the National Centre for Biotechnology Information (NCBI) web site 

(http://www.ncbi.nlm.nih. go v/bl asth using the Mouse Genome Database.

Sequences that display no homology to any known cDNA, were analysed for 

homology to an expressed sequence tag (EST) database. The sequence of the EST was 

then analysed using the Sanger Centre Mouse Genome Database to identify the 

chromosomal location, genomic organisation and related sequences 

(http ://www. ensembl .org/Multi/blastview).

2.4 RNA METHODS

2.4.1 General considerations when working with RNA

Solutions were treated with diethyl pyrocarbonate (DEPC), a potent inhibitor of 

ribonucleases (Ehrenberg et al., 1976) in order to avoid degradation of cellular or newly 

synthesised RNA. Only solutions containing Tris and EDTA or those solutions that 

could not be autoclaved, such as SDS, were not DEPC-treated. However, in these cases, 

DEPC-treated H20  was used to make up these solutions. DEPC was added to 0.05% v/v 

and shaken vigorously before being left overnight at room temperature and then 

autoclaved. The bench and pipettes were wiped with 70% ethanol to make sure that the 

area of work was dust free and gloves were worn at all times. Filtered RNAse-free
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pipette tips were used throughout. Glassware and metal racks were rinsed with MilliQ 

water and cleaned with acetic acid before being baked at 280°C for 5 hours. All reagents 

were freshly prepared and were used only for RNAse-ffee work.

2.4.2 Extraction of total RNA from mouse embryos

The guanidine isothiocyanate/phenol method developed by Chomezynski and 

Sacchi ( 1987) was used to extract total RNA from mouse embryos. This method uses 

the TRIzol Reagent (Gibco BRL), which induces formation of RNA complexes with 

guanidine and water molecules, excluding proteins and DNA from the aqueous phase by 

inhibiting hydrophilic interactions.

After dissection (see section 2.2.1) embryos were homogenised in TRIzol by 

sucking the embryos through syringe needles, of successively smaller gauge (12G- 

19G). For a single E8.5 embryo, 200 /d TRIzol was used, whereas for E9.5-10.5 

embryos 0.5 to 1 ml were used respectively. After homogenisation, samples were 

incubated at room temperature for 5 minutes to allow complete dissociation of 

nucleoprotein complexes. Cellular debris was then pelleted by centrifugation at 13,000 

rpm for 5 minutes at 4°C. The supernatant was collected and a one-fifth volume of 

chloroform was added followed by vigorous shaking and incubation at room 

temperature for 2 minutes. In order to separate the solution into two phases, samples 

were centrifuged at 13,000 rpm for 15 minutes at 4°C. The upper colourless phase was 

removed and the RNA precipitated by addition of one volume of isopropanol followed 

by incubation at room temperature for 10 minutes. The sample was centrifuged at

13,000 rpm for 15 minutes at 4°C to pellet the RNA, which was washed with 75% 

ethanol, re-centrifuged for 5 minutes at 13,000 rpm and the pellet left to air dry. The 

RNA was then resuspended in 10-300 /d of DEPC-ddH20  depending on the number of 

embryos used in the sample and the size of the pellet. The RNA was stored at -20°C.
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2.4.3 Reverse transcription to generate cDNA

First strand cDNA was generated by reverse transcription using RNA purified 

from embryos. The first cDNA strand was used as template to amplify cDNA fragments 

for cloning of probes and constructs.

In preparation for the reverse transcription reaction, 300-500 ng of total RNA 

was mixed with 0.2 jUg of hexanucleotides (Gibco BRL) in a volume of 9.5 /d. The 

mixture was denatured at 70°C for 7 minutes followed by annealing at 37°C for 10 

minutes. This step allowed the hexanucleotides to anneal to the RNA. After the 

incubation, 9.5 /d of the annealed RNA/hexanucleotide mixture was used for the reverse 

transcription reaction that contained 1 x first strand RT reaction buffer, 0.25 mM each 

dNTP, 10 mM DTT, 0.5 /d RNase inhibitor (Pharmacia) and 1 /d (200 units) Moloney 

murine leukaemia virus (MMLV) reverse transcriptase (Gibco BRL). A control, NO- 

RT, was also prepared following the above procedure but without adding the reverse 

transcriptase. The RT and the NO-RT samples were incubated at 37°C for 1 hour. To 

stop the reaction samples were heated to 95 °C for 5 minutes and the samples diluted 

with 40 /d of ddfLO and stored at -20°C.

2.4.3.1 PCR to amplify first cDNA strand

To amplify cDNA for production of constructs, 1 /d of first strand cDNA was 

used as template in a standard PCR reaction (section 2.3.3). Simultaneously, a second 

PCR was performed with the NO-RT control sample to verify that the PCR amplified 

only cDNA and not contaminating genomic DNA. To verify the quality of the cDNA, 

PCR was carried out with primers specific for hypoxanthine-guanine 

phosphoribosyltransferase (HPRT), which is a ubiquitously expressed house keeping 

gene (Melton et al., 1984).
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2.4.4 Whole mount in situ hybridisation

Whole mount in situ hybridisation was performed using the methodology of (

1992).

2.4.4.1 Preparation of template DNA

In order to obtain single stranded RNA probes, in vitro transcription was performed 

using cDNA cloned into the pGEM-T vector (Promega, UK) (see appendix 1). To 

obtain DNA template, plasmids were purified using the midiprep method (see section 

2.3.9). Then, 10 jUg of the template was digested in a 50 fi\ volume with appropriate 

restriction enzyme (see section 2.3.4), after which the linearised plasmid was treated 

with 10 fi\ of PK (10 mg/ml) and 40/ri of H2O. The linearised template DNA was further 

purified by adding 1 volume of phenol-chloroform (100 fi\), followed by vigorous 

shaking until a white homogenous solution was formed. Centrifugation at 13,000 rpm 

for 20 minutes produced two layers with the top aqueous phase containing the DNA and 

the bottom, non-aqueous layer containing proteins. The aqueous layer was collected and 

DNA was precipitated by addition of 2.5 volumes of 100% ethanol and 1/10 initial 

volume of sodium acetate, followed by incubation at -20°C for 2 hours, or -80°C for 30 

minutes, and centrifugation at 13,000 rpm for 20 minutes. Pelleted DNA was cleaned 

free of salts by resuspension in 75% ice-cold ethanol and pelleted by centrifugation at

13,000 rpm. The DNA pellet was then dissolved in 10 /zl DEPC-treated ddlUO. For in 

vitro transcription, 1 /xl of the linearised plasmid containing 1 fig of template DNA was 

used.

2.4.4.2 Synthesis of digoxigenin-labelled probes

In vitro transcription using Sp6 or T7 RNA polymerases (Roche), produced an 

antisense or sense probe depending on the orientation of the cDNA with respect to the 

location of the flanking promoters in the vector. The following reagents were added in
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sequence to a total volume of 20 /xl: 2 /xl of 100 mM DTT, 1 /x 1 of RNAse inhibitor, 2 /xl 

of digoxigenin-labelling mix (10 mM each of ATP, CTP, and GTP; 6.5 mM UTP; 3.5 

mM digoxigenin-labelled-UTP), 1 /xl of RNA polymerase (Sp6 or T7) and 1 /xl of 

linearised plasmid DNA. The reaction was vortexed and centrifuged for 3 seconds to 

ensure that all reagents were well mixed. The reaction was incubated at 37 °C for 2 

hours.

An optimal in vitro transcription reaction yielded 10 /xg of single stranded RNA 

that could be visualised by electrophoresis on an agarose gel (see section 2.3.5) by the 

presence of two bands, one of high molecular weight corresponding to the linearised 

template DNA, and a second of low molecular weight (which was normally ten times 

brighter) corresponding to the newly synthesised RNA. Newly in vitro transcribed 

probe was precipitated, and purified from unincorporated nucleotides that could lead to 

a high background in the detection of the signal. Precipitation was performed by 

addition of 70 /xl of DEPC-treated H2O, 300 /xl of 100% ice-cold ethanol and 10 /xl of 3 

M lithium chloride, followed by vortexing and incubation at -20°C for 2 hours. The 

probe was pelleted by centrifugation at 13,000 rpm at 4°C for 30 minutes, then washed 

free of salts with 100 /xl of 70% ethanol and air-dried, before being dissolved in 75 /xl of 

DEPC-treated H2 O and 25 /xl of formamide. The labelled probe was visualised on an 

agarose electrophoresis gel to check that no degradation had occurred during the 

precipitation step. Probes were stored at -20°C.

2.4.4.3 Pre-treatment of embryos and hybridisation

Embryos stored in 100% methanol at -20°C were hydrated through a series of 

90, 75, 50 and 25% methanol in PBT (DEPC-treated PBS containing 1% Tween) for 15 

to 20 minutes and then washed twice in PBT for ten minutes. Embryos were then 

incubated for 1 hour in 6% hydrogen peroxide in PBT in order to inhibit endogenous 

peroxidase. The reaction was stopped by three washes in PBT for 10 minutes each.
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Embryos were permeabilised by treatment with 5 /xg/ml of PK to allow penetration of 

the labelled probe into the tissue. The PK treatment varied depending upon the size and 

age of the embryos; E8.5 were treated for 1 minute, E9.5 for 2 minutes and E l0.5 

embryos for 5 minutes. The PK enzymatic activity was inhibited by incubating the 

embryos in 2 mg/ml glycine in PBT for 10 minutes followed by three consecutive 

washes of PBT. At this stage, embryos were re-fixed in 4% PFA/0.2% glutaraldehyde in 

PBS for 20 minutes followed by three PBT washes of 5 minutes each. Embryos were 

prehybridised for at least 2 hours at 70°C using freshly prepared pre-hybridisation 

mixture containing: 50% formamide, 5x sodium chloride/sodium citrate buffer (SSC) 

pH 4.5, 50 fig/ml heparin, 50 /zg/ml yeast transfer RNA and 1% sodium dodecyl 

sulphate (SDS). After pre-hybridisation, embryos were stored at -20°C in some cases. 

Embryos were then transferred to a 1 ml tube containing fresh pre-hybridisation 

solution and 1 jLtg/ml of digoxigenin-labelled probe was added followed by an overnight 

incubation at 70°C. The hybridisation temperature varied depending on the probe, and 

this was optimised empirically. For probes designed in conserved regions of a gene 

family, the starting hybridisation temperature was 70°C to avoid cross-hybridisation. If 

no specific signal was observed, or the signal was of low intensity the hybridisation 

temperature was decreased to 67-65°C.

2.4.4.4 Washes and detection of digoxigenin-labelled probes

After overnight hybridisation, embryos were washed free of unbound probe by 

high stringency washes. Solution 1 (50% formamide, 5x SSC pH 4.5, 1% SDS) and 

solution 2 (50% formamide, 2x SSC) were heated to the same temperature as the 

hybridisation mixture. Embryos were transferred to 15 ml falcon tubes and washed 

twice for 45 minutes each with 5-10 ml of solution 1 and 2. At this stage the embryos 

were very delicate and damage was avoided by letting the embryos settle to the bottom 

of the tube and leaving liquid above them in each of the washing steps. All washes were
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carried out in a water bath with regular but gentle agitation of the tubes. Embryos were 

washed with TBST (137 mM NaCl, 2.7 mM KC1, 25 Tris HC1 pH 7.5, 1% Tween-20, 

0.48 mg/ml levamisol) and then blocked for 1 hour at 4°C with 10% sheep serum in 

TBST to prevent non-specific binding of the antibody. During blocking o f the embryos, 

the anti-digoxigenin antibody conjugated to alkaline phosphatase (Boehringer 

Manheim) was diluted 1 in 1000 in TBTS and preabsorbed by incubating for 90 minutes 

in the presence of embryo powder (homogenised E9.5-12.5 mouse embryos, washed 

with acetone and dried at room temperature to form a powder). Preabsorbed antibody 

was separated from the embryo powder by centrifugation and the supernatant was 

filtered through a 0.45 /mi Millipore filter. Embryos were incubated with the 

preabsorbed antibody at 4°C overnight in a 2 ml volume. Excess of unbound antibody 

was removed by ten TBST washes of 30 minutes each at room temperature and left 

overnight rocking at 4°C. The following day, embryos were washed three times for 20 

minutes in NTMT (100 mM sodium chloride; 50 mM magnesium chloride; 1 mM 

levamisol; 0.1% Tween-20; 100 mM Tris, pH9.5). Colour development was achieved 

by incubating the embryos in NBT/BCIP (4.5 /d of 100 mg/ml nitroblue tetrazolium;

3.5 /d of 50 mg/ml of 5-bromo-4-chloro-3-indolylphosphate; 1 ml NTMT), within a 

dark box. The length of time that development was continued varied with the probe. 

Once signal was present, at the required intensity, the reaction was stopped, in order to 

avoid background staining, by washing the embryos with PBT three times. Embryos 

were kept in PBT with 0.05 % thimerazol until photographed. Some embryos were 

embedded in albumin gelatin and sectioned using a vibratome (see section 2.2.2).
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2.5 YEAST METHODS

2.5.1 Growth and maintenance of the host yeast strain

In the yeast two-hybrid analysis for the identification of Zic2 protein partners 

(chapter 5), the PJ69-4A host yeast strain (James et al., 1996) was used. When working 

with yeast, extra care was taken, to avoid contamination with bacteria, by working in a 

sterile hood used only for yeast.

2.5.1.1 Preparation of the non-selective rich medium YPAD

For routine growth, the host yeast strain was grown on a non-selective rich 

medium either in liquid or on the surface of a solid agar plate. Rich medium contained 

yeast extract, peptone, adenine and dextrose (YPAD), which provides the yeast with 

amino acids, nucleotide precursors, vitamins and essential metabolites needed for 

optimal cell growth. The rich medium YPAD was prepared following the 

concentrations given in Table 2.1 and sterilised by autoclaving. A 40% w/v stock 

solution of glucose was prepared separately, filter sterilized and 50 ml added tol L of 

YPAD.

2.5.1.2 Preparation of selective SD minimal medium

To provide selective conditions, the host yeast strain was grown on a minimal 

medium known as synthetic defined (SD) medium, which contained yeast nitrogen base, 

ammonium sulphate and dextrose. SD medium was used as a basal medium to which 

amino acids and nucleoside precursors were added to produce the SD-drop out medium, 

which lacked one or several amino acids allowing the selection or maintenance of a 

particular plasmid, or selection based on transcriptional activation of a reporter gene.
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Table 2.1 Components of YPAD medium for growth of PJ69-4A yeast without selection

Constituent Concentration Supplier

Bacto yeast extract 1 % Difco

Bacto peptone 2% Difco

Glucose 2% Sigma

Bacto- agar 2 % Difco

Adenine sulfate 0.004 % Sigma

Distilled water 1000 ml

Minimal SD medium was prepared following the concentrations given in Table 

2.2, while SD-drop out medium was prepared as described in Table 2.3. Solutions were 

filter-sterilised using a 0.2 jum Millipore filter and kept at 4°C until required. Stock 

solutions were kept for 4-5 months.

Table 2.2 Components of SD minimal medium for growth of PJ69-4A yeast

Constituent Concentration Supplier

Bacto yeast nitrogen without amino acids 0.67 % Difco

Glucose 2% Sigma

Bacto agar 2 % Difco

Distilled water 1000 ml

Table 2.3 Components of the drop out medium for PJ69-4A used for genotyping the host yeast strain, selection of
the recombinants and interactions from the library screen.

Constituent

Stock 
concentration 

(g/100 ml)

Volume of 
stock for 500 

ml of SD 
medium (ml)

Final concentration in 
medium (mg/1) Supplier

Adenine sulfate 0.2 5 20 Sigma
Uracil 0.2 5 20 Sigma
L-Tryptophan 1 1 20 Sigma
L-Histidine 1 1 20 Fluka
L-Methionine 1 1 20 Sigma
L-Leucine 1 3 60 Fluka

L-Lysine 1 1.5 30 Fluka
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2.5.1.3 Preparation of PJ69-4A glycerol stocks

To make glycerol stocks from the PJ69-4A strain, yeast were plated out on 

YPAD-agar plates and grown for 48-72 hours at 30°C until colonies were visible. One 

colony was then picked and grown overnight in 5 ml YPAD liquid medium (without 

adding bacto-agar to the solution) in a shaking incubator at 30°C. Growth was assessed 

by measuring the optical density (OD) at 600 nm using an Uvminil240 

spectrophotometer (Shimadzu). 1-3 ml of the overnight culture was used to inoculate 25 

ml of pre-warmed YPAD medium, and once the OD600 reached 0.5-0.7, the yeast 

culture was considered to be in exponential growth. Glycerol stocks were made by 

adding 30% v/v of glycerol to 1 ml of culture and stored at -80°C. The same procedure 

was used to produce glycerol stocks of recombinant PJ69-4A containing either Gal4- 

Zic2 bait plasmid or VP 16 library plasmid but in these cases the recombinant PJ69-4A 

was grown in SD medium lacking the selective amino acid.

2.5.2 High efficiency transformation of PJ69-4A with foreign DNA

Transformation of the host yeast strain, PJ69-4A, was performed to generate a 

recombinant strain that expressed the bait protein of interest and to allow potential 

interactions between the bait protein and the library plasmid. Co-transformation was 

avoided as it yielded very few double recombinants compared with serial 

transformation. Transformation was accomplished by the high-efficiency lithium 

acetate/ single-stranded carrier DNA/polyethylene glycol (LiAc/ssDNA/PEG) protocol 

(Gietz and Schiestl, 1991).

2.5.2.1 Quick yeast transformation

The transformation procedure typically involved the growth of JP69-4A 

overnight in 5 ml pre-warmed YPAD at 30°C with vigorous shaking. An appropriate 

volume of the overnight culture was used to inoculate 60 ml of YPAD to produce an
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OD6oo of 0.1. At this OD, PJ69-4A required 4-5 hours of further growth to reach the cell 

density needed for transformation (i.e. an OD600 of 0.5-0.7). The optical density was 

checked in all transformations since a culture at incorrect OD led to poor efficiency of 

transformation. Cells in the 60 ml culture were pelleted by centrifugation at 2,500 rpm 

for 5 minutes, the pellet was resuspended in 20 ml of sterile distilled H2O and spun again 

at 2,500 rpm to make sure that no traces of YPAD medium were left. The cleaned pellet 

containing only PJ69-4A cells was resuspended in 0.3 ml of lXTE/LiOAC (0.5 ml of 

lOxTE, 0.5 ml of lOxLiOAc, 4 ml of ddt^O).

Carrier DNA was denatured by boiling 150 pi of salmon testis DNA at 105°C 

for 5 minutes. Then, 100 ng of purified plasmid DNA from a midiprep (see section 

2.3.11) was added to 100 pi PJ69-A4 in lXTE/LiOAc along with 50 pi of the denatured 

carrier DNA and mixed by inversion. After thorough mixing, 300 pi of 

lxTE/LiOAc/polyethylene glycol (Fluka) (0.5 ml of lOxTE, 0.5 ml of lOxLiOAc, 4 ml 

of PEG) was added to each tube and the mixtures were incubated at 30°C with shaking 

for 30 minutes.

To carry out the transformations, 70 pi of DMSO was added to each tube and 

the PJ69-4A cells were heat shocked at 45°C for 5-6 minutes. The PJ69-4A cells were 

then pelleted, washed with ddF^O, to make sure that no traces of DMSO were left. The 

transformed PJ69-4A cells were then plated on SD-uracil. Only recombinant colonies 

were able to grow on the selection medium 48-72 hours after being plated.

2.5.2.2 High efficiency transformation of VP16 mouse E9.5-10.5 library

Recombinant PJ69-4A was plated out on SD-uracil to select for the bait plasmid. 

After 72 hours growth at 30°C a whole colony was inoculated into 20 ml of SD-uracil 

medium and grown for 24 hours at 30°C. This step was important to get high efficiency 

transformation and use of old yeast cells was avoided. An aliquot of this overnight 

culture was inoculated into 1000 ml of SD-uracil to produce an OD6oo 0.1-0.2. After 5
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hours, the OD6oo of the culture reached 0.7. Yeast cells were pelleted by centrifugation 

using 250 ml bottles at 2,500 rpm for 5 minutes. Pellets were washed with TE several 

times by resuspending the pellet and centrifugation, and the pelleted cells were then 

resuspended in 1.2 ml of denatured carrier DNA, plus 20 ml of lxTE/LiOAC. After 

shaking, 140 ml of lxTE/LiOAC/PEG was added together with 250 /xg VP 16 E9.5-10.5 

mouse library provided by Professor Peter Scambler, Molecular Medicine Unit, Institute 

of Child Health, UCL.

The mixture was incubated for 30 minutes at 30°C with vigorous shaking. Cells 

were then heat-shocked at 45°C in the presence of DMSO for 5-7 minutes and rinsed to 

get rid of the DMSO by pelleting the yeast cells, resuspending in distilled water and re­

centrifuging. After transformation, pellets were resuspended in 2 L of pre-warmed 

YPAD media and left to recover for one hour. Cells were then pelleted by centrifugation 

and washed with SD-uracil-leucine several times to make sure no traces of YPAD 

remained. Pellets were then resuspended in 2 ml SD -uracil-leucine and recovery was 

allowed for no more than 9 hours. Cells were then pelleted by centrifugation and 

resuspended in 30 aliquots of 0.5 ml each. Each aliquot was then plated onto SD-uracil- 

leucine-histidine-adenine plates.

After 72 hours, clones were re-streaked onto SD -uracil-leucine-histidine- 

adenine containing 2 mg/ml final concentration of X-a-Gal (BD Biosciences). Only 

colonies that grew on the selection medium (SD -uracil-leucine-histidine-adenine), and 

turned blue in the presence of X-a-gal, were considered as possible interactors. For the 

low scale transformation the same procedure was followed but using ten times lower 

volumes of each reagent.

2.5.3 Identification of interacting clones and rescue of plasmid

This method was used in the identification of interacting clones that were able to 

grown on the appropriate SD selection medium. Clones were grown for 48 hours in SD
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-leucine medium, which selects only for the VP 16 library plasmids, in order to eliminate 

the bait plasmid from the double PJ69-4A recombinants. Cultures were centrifuged at 

2,500 rpm for 5 minutes to harvest the yeast cells containing the plasmid of interest and 

the supernatant was discarded. Pellets were kept at -20°C until further use.

To purify the plasmid of interest, pellets were rapidly thawed, resuspended in lysis 

buffer (50 mM Tris-HCl, pH 7.5; 1.2 M sorbitol, 10 mM EDTA, 10 mM 

mercaptoethanol) and treated with Lyticase enzyme (30 units/ pi) overnight at 37°C in 

order to digest the yeast cell walls. After digestion, cells were harvested by 

centrifugation and the supernatant was discarded. The GFX microplasmid Kit was then 

used to purify plasmid DNA (see section 2.3.11). After purification, 1 pi of the final 

miniprep was used in a PCR reaction (see section 2.3.3.1) to amplify the insert of the 

VP 16 library plasmid. The PCR product was cleaned using QIAGEN spin columns (see 

section 2.3.5.2) and then sequenced.

To verify the identity of each interacting clone, the resulting sequence was analysed 

for homology to other cDNAs using the BLAST search on the NCBI mouse genome 

database (http://www.ncbi.nlm.nih.gov/blast). Only in-frame inserts that did not appear 

on the list of false positives (http://www.fccc.edu/research/labs/golemis) were 

considered as possible interactors.

Interacting clones from the VP 16 library considered to be potential true 

physiological interactors were transformed by electroporation (see section 2.3.10.2) and 

recombinant clones were identified by colony-PCR (see section 2.3.7.4) using primers 

flanking the VP 16 plasmid (see methods in chapter 5 for primer sequences). Only 

clones containing the VP 16 library plasmids were grown and the plasmids were purified 

using the GFX microplasmid kit (see section 2.3.11).
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2.6 PROTEIN METHODS

2.6.1 In vitro glutathione-S-transferase (GST) pulldown assay

The glutathione-S-transferase pull-down assay (GST pull-down) is the most 

widely used method for evaluation of protein interactions found in a yeast two-hybrid 

experiment. In this assay, either the protein of interest (prey) or bait protein used in the 

library screen, is expressed as a fusion protein with GST. The GST-fusion protein is 

immobilised on sepharose beads and incubated with in vitro transcribed and translated 

candidate interacting protein labelled with [35S]-methionine. After several washes 

protein-protein complexes are separated by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and bands visualised by autoradiography.

2.6.1.1 Expression and purification of GST fusion protein

Fusion proteins were generated using pGEX  constructs (see methods chapter 6 

and section 2.8), which allowed high-level bacterial protein expression. Constructs were 

transformed into BL21 cells (see section 2.3.10.1) and plated on agar plates with 

ampicillin selection. One colony was picked and grown overnight in 50 ml of LB at 

37°C with vigorous shaking. The culture was then diluted 10 times by addition of 450 

ml of LB and grown with antibiotic selection for 1 hour at 37°C. One aliquot was kept 

to serve as an uninduced fraction. Induction of protein expression was then achieved by 

addition of LPTG to a final concentration of 0.1 mM and incubation at 30°C for 3-5 

hours. The pGEX vector contains the lac repressor gene, which binds to the tac 

promoter and suppresses the expression of the GST fusion protein. In presence of EPTG, 

which acts as a lac analog, derepression of the tac promoter occurs, leading to 

expression of the GST fusion protein.

Cultures were chilled on ice and phenylmethane sulphonyl fluoride (PMSF) was 

added to a final concentration of 0.1 mM. Bacterial cells were harvested by
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centrifugation at 5,000 g for 5 minutes at 4°C. The cell pellet was snap-frozen by 

dipping in liquid nitrogen, followed by storage at -70°C. Snap-freezing helped improve 

subsequent lysis of the cells.

To purify the GST fusion protein, cell pellets were quickly thawed at 37°C in a 

water bath and resuspended in 10 ml of ice-cold sterilised NETN buffer (20 mM Tris- 

HC1, pH8; 100 mM NaCl; 1 mM EDTA; 0.5% NP-40). Protease inhibitor Complete 

(Roche Diagnostics GmbH: 1 tablet in 50 ml) was prepared and DTT was added at 1 

mM. Lysozyme (2 mg/ml) was added to the cell suspension in order to lyse the cells and 

the reaction was incubated on ice for 10 minutes with occasional shaking. To ensure 

disruption of cells and to shear DNA, samples were sonicated three times for 15 seconds 

at 4°C. Cell debris was pelleted by centrifugation at 12,000 rpm for 15 minutes at 4°C 

and an aliquot was kept for further analysis. The supernatant was placed in a chilled 

eppendorf tube and centrifuged at 12,000 rpm for 15 minutes at 4°C and the pellet was 

kept for further analysis to check for the presence of GST fusion protein in the insoluble 

fraction by SDS-PAGE electrophoresis. The supernatant was carefully removed, KC1 

was added to a final concentration of 200 mM to improve the binding capacity of the 

affinity resin and placed at 4°C.

Meanwhile, 250 fil of glutathione-sepharose beads were washed 4 times with 10 

volumes of NETN buffer by centrifugation at 13,000 rpm, resuspended as a 50% slurry 

in NETN, and stored at 4°C. To improve blocking of non-specific binding, the beads 

were incubated at room temperature with 100 fig/ml of BSA for 15 minutes. Unbound 

BSA was removed by washing 3 times in NETN prior to storage as a 50 % slurry.

To immobilise the GST fusion protein on the beads, the supernatant kept at 4 °C 

was mixed with beads and left incubating for 2-3 hours on an a rotating wheel at 4 °C. 

Beads were then collected by pulse spinning for 30 seconds at 4,000 rpm, and the 

supernatant was discarded. The beads with GST fusion protein bound, were further
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washed with three changes of 10 ml NETN at 4°C by pulse spinning at 4,000 rpm, and 

then stored as 50% slurry at -70°C.

2.6.1.2 In vitro transcription and translation of candidate proteins

In vitro translation/transcription (IVT) was used to produce [35S]-methionine 

labelled proteins that were candidates for interaction with Zic2. This method was 

performed using the TNT-coupled reticulocyte lysate system (Promega), following the 

manufacturer’s protocol. The success of the IVT reaction depends on the purity of the 

DNA (template DNA was purified by midiprep; see section 2.3.12). The IVT requires 

an uninterrupted cDNA sequence that must contain the initiation methionine codon 

(AUG) in the correct frame relative to the T7 promoter.

The TNT-coupled transcription/translation system includes a reaction mix that 

contains RNA polymerase, salts, nucleotides and ribonuclease inhibitor. An in vitro 

transcription/ translation IVT reaction was prepared by mixing 20 /d of TNT reaction 

mix, 3 /d of [35S]-methionine (Amersham Biosciences), 1 /xg of template plasmid DNA, 

and ddlUO to 25 /x 1 total volume. The reaction was mixed thoroughly and left incubating 

at 30°C for 90 minutes. Then, 2 /xl of the reaction was run on an SDS-PAGE gel to 

check that the IVT had been successful. Samples were stored at -70°C.

2.6.1.3 In vitro protein interaction assay

GST-fusion protein bound to glutathione-sepharose beads (section 2.6.1.1) was 

thawed and 500 ng of beads were washed twice with 1 ml of ice cold NETN, without 

DTT, by centrifugation at 4,000 rpm. DTT was not added to the NETN since it can 

inhibit weak interactions. Then, 2-10 /xl of IVT was added together with 1 ml of fresh 

NETN and the reaction was incubated at 4°C between 6 hours and overnight on a 

rotating wheel to allow protein complexes to form. After incubation, protein complexes 

bound to the beads were pelleted by pulse spinning at 4,000 rpm for 1 minute followed
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by four consecutive washes with NETN. Supernatant containing unbound protein was 

discarded and pellets were kept at -70°C prior to electrophoresis.

2.6.1.4 SDS-PAGE electrophoresis

Pellets containing the complex between the GST-fusion protein (bound to beads) 

and the in vitro translated/transcribed protein were thawed on ice. Two volumes of 

Laemmli gel loading buffer (192 mM glycine; 25 mM Tris; 0.1% w/v SDS) was added 

to the beads and boiled at 95 °C for 3 minutes to release the protein complex from the 

beads. Samples were then incubated on ice for 5 minutes and centrifuged at high speed 

for 1 minute. A 10 /xl volume of each sample was loaded onto a 12% sodium dodecyl 

sulfate polyacrylamide (SDS-PAGE) gel. The gel mix (12% acrylamide; 375 mM Tris, 

pH 8; 0.1% w/v SDS; 0.1% w/v ammonium persulphate; 0.1% v/v TEMED) was 

poured into the cassette until the meniscus reached 2.5 cm from the top of the glass 

plates. An overlay of water-saturated butanol was added in order to avoid oxygen 

contact with the solution to speed the polymerisation of the acrylamide. Once the 

acrylamide had set, the overlay was poured off and the acrylamide solution for the 

stacking gel (5.1% acrylamide; 130 mM Tris, pH 6.8; 0.1% w/v SDS; 0.1% w/v 

ammonium persulphate; 0.1% v/v TEMED) was added and the comb placed into the gel 

solution. Once the stacking gel had set, the comb was removed, the wells were washed 

with ddH20 and the gel was placed in a running tank containing running buffer (43 mM 

Tris, 192 mM glycine, 0.1% (w/v) SDS). Electrophoresis was carried out at 25 mA until 

the dye front had reached the bottom of the gel. The gel was stained by immersion in 

Coomassie Blue stain for 15 minutes, destained with 25% v/v methanol, 7.5% v/v acetic 

acid, then dried for 30 minutes and exposed to Biomax-MR autoradiography film 

overnight to determine the presence or absence of the in vitro translated protein.
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2.7 TISSUE CULTURE

2.7.1 Transient transfection of 293T cells

The 293T fibroblast cell line was used in co-immunolocalisation experiments. 

293T cells were seeded onto glass cover slips in 2 ml of medium (DMEM, 100 units/ml 

of penicillin, 100 /xg /ml streptomycin, 10% v/v FCS) and cultured at 37°C in 5% CO2 . 

Approximately 104 cells were used in each experiment and left to grow for 16-24 hours 

until the culture reached 60-70% confluency.

The CaCh method was used for transformation. A 5-7 /xg aliquot of DNA 

construct was diluted in 450 /xl of d d ^ O  with 50 /xl of 2.5 M CaCh. After mixing, 500 

/xl of 2x Hepes buffer (20 g HEPES, 0.54 g Na2H P04.2H20 , 32 g NaCl, 1.48 g KC1 

diluted in 2 L of ddH20, pH 7.05 and filter sterilised using 0.22 /xm Millipore filter) was 

placed in a sterile 1.5 ml eppendorf tube and the mixture containing the construct DNA 

was added dropwise followed by vortexing. Gradual addition of DNA was crucial to 

avoid the DNA coming out of solution. The mixture was incubated at room temperature 

for 10 minutes. Meanwhile, cells were washed with PBS once and new pre-warmed 

medium was added. The DNA construct solution was added to the culture cells 

dropwise, making sure to cover the entire surface by gently swirling the culture dish. 

Cells were incubated at 37°C in 5% CO2 for 4 to 5 hours, washed with pre-warm sterile 

PBS and fresh medium was added. Cells were left to grow for 24 to 48 hours.

2.7.2 Immunohistochemistry

Immunohistochemistry was used to detect expression of epitope tagged proteins 

in 293T fibroblast cells. This method allowed coimmuno-localisation using 

fluorescence microscopy of candidate proteins identified in the yeast two-hybrid screen.

After transformation with the appropriate construct, 293T cells were washed 

with PBS twice and the cells were fixed with 1-2 ml of 3% PFA for 15 minutes. After
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fixation, PFA was washed off with two changes of PBS. Cells were permeabilised, by 

addition of 1 ml 0.5% Triton detergent in PBS at room temperature for 15 minutes. The 

cells were blocked with DMEM containing 10% FCS (v/v) for at least one hour, at 

room temperature, or overnight at 4°C in cases of high background. Cells were then 

washed thoroughly with PBS. The first antibody, either mouse anti-Flag (Santa Cruz) or 

rabbit anti-Myc (Jackson Research) were diluted 1:200 and 1:500 in DMEM 

respectively and 50 /xl was used to flood each cover slip. After incubation at room 

temperature, unbound antibody was washed off with 4 changes of PBS. The secondary 

antibodies, Cy2-conjugated goat anti-mouse and Cy3-conjugated goat anti-rabbit, were 

prepared by diluting 1:100 in DMEM and 50 /xl were placed on each cover slip for 1 

hour at room temperature. Samples were washed with PBS and the cell nuclei were 

stained using 4'-6-Diamidino-2-phenylindole (DAPI) and left to incubate for 2 minutes. 

Excess of DAPI was washed off with 4 changes of PBS and cover slips mounted with 

Mowiol and left at 4°C in a dark box. Fluorescence microscopy was performed as 

described in section 2.2.4.
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CHAPTER 3: EXPRESSION OF ZIC GENES 

DURING NEURULATION
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3.1 INTRODUCTION

Despite strong evidence for a role of the Zic genes during embryonic neurulation 

in humans and mice (Klootwijk et al., 2000;Brown et al., 2001;Carrel et al., 2000;Nagai 

et al., 2000;Brown et a l, 1998;Copp et al., 2003a), the expression pattern of the Zic 

genes at the time of neurulation is poorly characterised. The mRNA expression patterns 

of Zicl-3 have been described in the recently closed neural tube (Nagai et al., 1997), but 

there is no information on their expression in the posterior neuropore region at the stage 

of closure of the spinal neural tube (E9.5). Moreover, no expression data have been 

reported for Zic4. This prompted an investigation of the distribution of Zicl-4 mRNA at 

the stage of neurulation by whole mount in situ hybridisation, in order to understand 

how these genes can affect neurulation. The non-mutant mouse strain CD1 was used for 

the expression analysis of Zic genes during neurulation.

3.1.1 The curly tail (ct), loop tail {Lp) and splotch {Sp2H) mouse models of NTD

Genes that produce NTDs in the mouse mutants have been identified by 

positional cloning, gene trap or gene targeting strategies (Copp et a l, 1990;Juriloff et 

al., 2000) (Copp et al., 2003b). The function of these genes varies from transcription 

factors such as Gli3 or Pax3 (Hui et al., 1993), transmembrane receptors such as Fgfrl 

(Xu et a l, 1999) and actin binding proteins such as Shroom (Hildebrand et al., 1999). A 

speculative idea would be that the genes that produce NTDs in the mouse and in 

humans interact genetically by sharing a common or a few genetic pathways, all leading 

to NTDs. To test the hypothesis that mutant genes that produce NTD in the mouse share 

the same genetic pathway as Zic2 and Zic3, the expression patterns of Zic2 and Zic3 

have been studied by whole mount in situ hybridisation at the time of neurulation in 

three unrelated mouse mutants that exhibit NTDs: curly tail {ct), loop tail {Lp) and 

splotch {Sp2H).
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Homozygous ct embryos exhibit a delay of posterior neuropore closure, which 

can lead to spina bifida and/or tail flexion defects. The embryonic mechanism leading to 

NTDs in ct/ct embryos has been reported in several studies (Brook et a l, 1991;Peeters 

et al., 1996; Van Straaten and Copp, 2001). A subset of ct/ct embryos has an imbalance 

in cell proliferation, such that the ventral tissues in the caudal region, the hindgut 

endoderm and the notochord, proliferate more slowly than dorsal tissues (especially the 

neuroepithelium), creating an increase in the axial curvature of the posterior neuropore 

region. The increase in axial curvature creates strain in the apposing neural folds that, 

when severe, causes the neural tube to remain open. The gene responsible for the ct 

phenotype has recently been proposed to be grainyhead-like-3 (Grhl3), since Grhl3 null 

mice exhibit a similar phenotype to ct/ct embryos and the gene maps in the critical 

region of the ct locus on chromosome 4 (Ting et al., 2003). However, no mutations in 

the Grhl3 coding sequence have been identified in ct/ct mouse, although Grhl3 

expression levels were found to be reduced in affected embryos. This study indicated 

that ct might be a hypomorphic allele of Grhl3, an idea that is supported by the 

observation of genetic non-complementation between the Grhl3 null and ct mutation. 

NTDs in the curly tail mouse are insensitive to folate treatment, whereas the frequency 

and severity of NTDs can be significantly reduced by maternal inositol supplementation 

(Greene and Copp, 1997). Surprisingly, Grhl3 null mice where found to be insensitive 

to inositol, calling into question the candidacy of Grhl3 as the ct gene.

The loop tail mouse (Lp) develops the severe form of NTD, craniorachischisis. 

Positional cloning identified the Lp gene as Strabismus/Vangl2 (Kibar et al., 

2001;Murdoch et al., 2001). In amphibia (Goto and Keller, 2002) and zebrafish (Park 

and Moon, 2001;Goto et al., 2002) Strabismus has been functionally linked to the 

planar cell polarity (PCP) pathway that regulates convergent extension cell movements 

during gastrulation, while studies in Drosophila have linked this pathway to
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specification of the unidirectional array of bristles in the wing. In the mouse, 

Strabismus/Vangl2 has been shown to affect the orientation of hair cells of the inner ear, 

indicating that Strabismus/Vangl2 is involved in the PCP pathway (Montcouquioi et al., 

2003). However, it is unknown whether convergent extension movements are disrupted 

in Lp/Lp embryos.

The Sp2H allele of splotch results from a 32 bp deletion in the homoedomain 

region of the gene encoding the Pax3 transcription factor (Epstein et al., 1991). 

Homozygous mutant embryos (Sp2H/Sp2H) exhibit exencephaly and/or spina bifida. The 

Sp2H mouse is a model of folate-responsive NTDs since the incidence of NTDs is 

reduced by treatment with folic acid (Fleming et al., 2000). Excessive incorporation of 

[3H] thymidine in Sp2H/Sp2H embryos suggests that there is a deficiency in folate-cycle 

intermediates for the biosynthesis of pyrimidines. The embryonic basis of neural tube 

defects in splotch mice has not been determined. However excess apoptosis has been 

suggested to play a role in the pathogenesis of NTDs (Pani et al., 2002) based on the 

finding that double mutants of p53 and Sp2H have diminished apoptosis and reduced 

NTD frequency.

The aim of this chapter is to provide a description of the expression of Zic genes 

during normal neurulation and during failure of the neural tube closure in the ct, Sp2H 

and Lp mutants.
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3.2 METHODS

3.2.1 Mouse strains and embryos

Four different mouse strains were used: one non-mutant, CD1, and three mutants 

loop tail (Lp), splotch (Sp2H) and curly tail (ct) (see Table 3.1). Embryo collection and 

dissection were performed as described in section 2.2.1.

Table 3.1. Mouse strains used in the present study

Mouse mutant
Gene and 

chromosome 
localisation

Source Protein function
Homozygous
phenotype Reference

Loop tail (Lp) Vangl2, Chr 1 Spontaneous Transmembrane

protein

cm (Murdoch et a t, 

2001)

Splotch (Sp2H) Pax3, Chr 1
X-ray

generated

Transcription

factor

sb+ex (Epstein et al.y 

1991)

Curly tail (ct) Grhl3?, Chr 

4

Spontaneous Transcription

factor

sb+(ex

occasionally)

(Gruneberg,

1954)

Only the neural tube phenotype is described in this table. Abbreviations: cm, craniorachischisis; ex,

exencephaly; sb, spina bifida.

DNA extraction from yolk sacs was performed as described in section 2.3.2. The 

PCR conditions used to genotype Sp2H and Lp mice (the Crp microsatellite 

polymorphism) are summarised in Table 3.2.

Table 3.2 PCR conditions for genotyping Sp2H and Lp  mice

PCR conditions SpiH Lp

MgCl2 1.5 mM 1.5 mM

Primer sequence
F 5 ’CCTCGGTAAGCTTCGCCCTCTG 3 ’

R 5 ’CAGCGCAGGAGCAGAACCACCTTC 3 ’

F 5 ’AGAATCTGACTTACCCATGGT 3 ’ 

R 5 ’GAGGGAGAAGAATTATGTCT G 3’

Annealing temperature 58 °C 30 cycles 58 °C 30 cycles

PCR product size Wild type allele 122 bp 

Mutant allele 90 bp

Wild type allele 150 bp 

Mutant allele 140 bp
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All mice in the curly tail colony are homozygous (ct/ct). Those destined to 

develop spinal NTDs (approximately 20%) were identified by measuring the PNP at the 

30 somite stage. Embryos with large PNPs (0.5 mm or more in length) were considered 

to be affected, while embryos with small PNPs (0.1-0.2 mm) were considered 

unaffected. Embryos with intermediate length PNPs (0.2-0.5 mm) were not studied 

further.

3.2.2 Generation of mRNA riboprobes and whole mount in situ hybridisation

To generate probes for Zicl-4y the 3’ untranslated region of Zicl-3  and the 5’ 

untranslated region of Zic4 were chosen, as no significant homology to other cDNAs 

was found by BLAST searching. Primers were designed to specifically amplify these 

regions (Table 3.3). In each case, the PCR product was gel purified and subcloned into a 

pGEM-T vector (see Fig. 3.1 for map). The identity of each probe was verified by DNA 

sequencing. Labelling of Zicl-4 probes and in situ hybridisation were performed as 

described in section 2.4.4.
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Figure 3.1 pGEM-T Easy vector map used to generate Zicl-4  probes for whole 

mount in situ hybridisation.

pGEM-T Easy has 3’T overhangs that allow insertion of PCR products without the 

need for restriction enzyme digestion. Cloning of the cDNA disrupts the lacZ gene 

allowing identification of recombinants by white and blue selection. The cDNA is 

flanked by a T7 and a SP6 promoter allowing transcription of the sense or antisense 

probes by the T7 or SP6 polymerase, depending on the orientation of the inserted cDNA 

(diagram obtained from PROMEGA)
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Table 3.3 Primers to generate Zicl-4 probes, together with the Genbank accession 

numbers, the amplified region and the enzymes to generate antisense probes

Gene Primer sequence

NCBI

accession

number

Amplified

region

Labelling

Zicl

F 5’ CACCCCTTGGTGTTGGTGGA 3’

R 5’ GTC ATCCCCTAGCC ACTTGC A 3’

NM_009573

642 bp 

from 2244 to 

2886*

Antisense

Apal

Sp6

Zic2

F 5’ GGCCAGGCCTTTCTCCCATT 3’

R 5’ GTGGAAAAGGAAGGCGTCCG 3’
D70848 354 bp 

From 1838-2192*

Anti sense 

Sail 

T7

Zic3

F 5’TCTAGATTCCTTACAATGTCAG 3’ 

R 5’ AAGAAGCACTTTAACCATGAG 3’
D70849 471 bp 

From 2825-3296*

Anti sense 

Notl 

T7

Zic4

F 5’ CACCCCTTGGTGTTGGTGGA 3’

R 5’ GTCATCCCCTAGCCACTTGCA 3’
D78174 706 bp 

From 225-931*

Antisense

Sacll

Sp6

*Note that the base number corresponds only to the Genbank accession numbers given.
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3.3 RESULTS

3.3.1 Expression patterns of Zicl-4 immediately following neurulation

Zicl-4 belong to the same family of transcription factors genes, with closely 

related nucleotide sequences. However, by designing RNA probes specific for each 

mRNA transcript, expression of each of the Zic genes was detected in distinct but 

partially overlapping locations at the time of neurulation (Fig. 3.2).

3.3.1.1 Expression of Zic genes in the neural tube

Zic I, Zic2 and Zic4 mRNA transcripts were detected in the prospective central 

nervous system at the dorsal midline of the cranial neural tube and spinal neural tube 

(Fig. 3.2 A-D). Examination of transverse sections through the already closed neural 

tube at the level of the heart (Fig. 3.2 E, G, I and K) illustrates the differential domains 

of expression of the Zic genes. Zic I mRNA is localised to the dorsal one third of the 

neural tube including the roof plate (arrows in Fig. 3.2 E). Similarly, Zic2 and Zic4 are 

expressed in the dorsal neural tube (arrows in Fig. 3.2 G and K), but Zic2 expression is 

restricted to the roof plate and dorsal quarter of the neural tube, whereas Zic4 is absent 

from the roof plate and is expressed in a domain restricted to a dorsal stripe (arrows in 

Fig. 3.2 K). These different domains of expression of the Zic genes in the neural tube at 

the level of the heart persist in the more caudal spinal neural tube (Fig. 3.2 F, H and L). 

Low levels of expression of Zic3 have been reported at E l2.5 in the neural tube (Nagai 

et al., 1997), but unlike Zicl, 2 and 4, Zic3 transcripts were undetectable in the neural 

tube at E9.5 (Fig. 3.2 I and J).
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Figure 3.2 Localisation of Zicl-4  mRNA at E9.5 by whole mount in situ 

hybridisation

(E-L) show 50 jim vibratome sections taken at the level of the dotted lines in A-D. Zicl 

mRNA transcripts are localised at the dorsal midline of the cranial neural tube (asterisks
(and in sections, data not shown) 

in A), dorsal part of the spinal neural tube along the majority of the body axis (white

arrowheads in A), and dorsal part of the somites (black arrowheads in A). Sections

through the neural tube at the level of the heart (E) or mid-trunk spinal neural tube (F)

reveal that Zicl mRNA transcripts are localised in the dorsal 1/3 of the neural tube

(arrows in E and F), the dorsal part of the somite (arrowheads in E and F) and dorsal

sclerotome (asterisks in E and F).

(B) Zic2 mRNA transcripts are expressed in the midbrain and hindbrain (white arrows in B),

the telencephalon (white asterisk in B), spinal neural tube (black arrows in B) and at the

posterior neuropore (black arrowheads in B). Sections through the embryo (G and H)

show that Zic2 transcripts are localised to the dorsal quarter of neural tube (arrows in G
and in the myotome (arrowhead in H) 

and H) and to the sclerotome lateral to the neural tube (asterisks in G).

(C) Zic2 mRNA transcripts are detected in the rostral telencephalon (white arrowhead in 
and rostral mesencephalon

C), dorsal somites (white arrows in C) and the PNP region (black arrowheads in C). 

Sections (I and J) show that Zic3 transcripts are localised to the dorsal part of the somite 

and more caudally to the dorsal lip of the dermomyotome (arrowheads in I and J).

(D) Zic4 mRNA transcripts are localised in the dorsal midline of the cranial neural tube 

(black arrows) and the dorsal sclerotome (arrowheads). Sections (K and L) reveal that 

the expression domain of Zic4 is restricted to a dorsal stripe in the neural tube with the 

roof plate being negative (arrows in K and L). The sclerotome adjacent to the ventral 

neural tube (asterisks in K and L) and the dorsal lip of the dermomyotome (arrowheads 

in L) are positive for Zic4. Abbreviations: nt, neural tube; pnp, posterior neuropore; rp, 

roof plate. Scale bar in A represents 1 mm (A-D); scale bar in E represents 200 pm.
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Figure 3.2
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3.3.1.2 Expression of Zic genes in the somites

At E9.5, the developing somites can be subdivided into sclerotome and 

dermomyotome. Cells that are located in the lateral and dorsal parts of the newly 

formed somite develop into the dermomyotome, which gives rise to the future muscle 

and dermal derivatives. The medial part of the somite forms the sclerotome, which will 

develop into the future vertebrae (Cossu et al., 1996). Zicl, Zic2 and Zic4 mRNA 

transcripts can be detected in a population of sclerotomal cells adjacent to the neural 

tube (Fig. 3.2 asterisks in E-L), although the precise domain of sclerotomal expression 

differs between the three genes. Zicl is expressed in the dorsal sclerotome (Fig. 3.2 

asterisk in E) whereas Zic2 and Zic4 are not expressed in this dorsal zone, but 

transcripts are present only in the ventral domain adjacent to the ventral part of the 

neural tube. The perinotochordal region is negative for all Zic genes. Zic3 is not 

expressed in the sclerotome whereas the dermomyotome shows strong Zic3 expression

(Fig. 3.2 I and J). At more caudal levels Zic2 and Zic4 are also expressed in the 

dermamyotome (arrowheads in Fig 3.2 H and L respectively).

3.3.2 Zic2 and Zic3 show a dynamic pattern of expression at the PNP

Only Zic2 and Zic3 are expressed in the posterior neuropore region at E9.5 (Fig.

3.2 B and C, black arrowheads). Given the relationship between loss of function 

mutations of Zic2 and Zic3 and spinal NTDs, the expression of these genes at the 

posterior neuropore was examined in greater detail at both E9 and E9.5.

Zic2 mRNA transcripts localise strongly to the posterior neuropore region at E9 

and E9.5 (Fig. 3.3 A and E). Sections through the posterior neuropore reveal that Zic2 

transcripts are present throughout almost the entire neural plate before the neural folds 

converge in the dorsal midline (Fig. 3.3 B and F). The surface ectoderm does not 

express Zic2 (arrows in Fig. 3.3 B and F). Immediately after the neural folds have fused 

dorsally forming the neural tube, the expression of Zic2 continues throughout the neural
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tube (Fig. 3.3 C and G). However, in the more mature neural tube, Zic2 becomes 

dorsalised, so that expression is seen only in the roof plate. The dorsalisation of the 

neural tube expression is first noticeable at the level of the rostral presomitic mesoderm, 

corresponding to the incipient somite, which is also Z/c2-positive (Fig. 3.3 D and H). 

Hence, during closure of the neural tube at the posterior neuropore region, Zic2 is 

expressed throughout the entire neural plate but not in adjacent tissues including the 

surface ectoderm, notochord and paraxial mesoderm.

Next, the expression pattern of Zic3 was determined in the posterior neuropore 

region at E9 and E9.5. The domain of expression of Zic3 differs radically from that of 

Zic2 (compare Fig. 3.3 with Fig. 3.4). Zic3 is absent from the neural tube at E9 and 

E9.5, although transcripts are present in the notochord and, at lower intensity, in the 

mesenchyme surrounding the ventral hindgut (Fig. 3.4 B and C). At more rostral levels, 

where the neural tube is closed, Zic3 is expressed in the presomitic mesoderm in the 

same fashion as Zic2 although Zic3 expression is also detected in the notochord at this 

level (Fig. 3.4 D). At later stages (E9.5), strong expression becomes apparent in the tail 

bud, in the mesenchyme surrounding the secondary neural tube, in the notochord, and in 

the presomitic mesoderm (Fig. 3.4 F, G and H).

3.3.3 Expression of Zic2 and Zic3 in ct, Lp and Sp2H mutant embryos

The expression of Zic2 and Zic3 was studied in embryos with delayed (ct, Sp2H) 

or absent {Lp, craniorachischisis) neural tube closure (between the arrowheads in A, E, 

I, M in Fig. 3.5 and Fig. 3.6). Embryos of the non-mutant strain, CD1 served as normal 

controls. Zic2 and Zic3 mRNA expression in ct/ct embryos (Fig. 3.5 E-H and Fig. 3.6 E- 

H) does not show any major difference in distribution compared with the pattern seen in 

CD1 embryos (Fig. 3.5 and 3.6 A-D). In ct/ct embryos Zic2 expression is detected 

throughout the neural plate before closure of the neural tube (Fig. 3.5 B and F). At the 

level where the rostral presomitic mesoderm first becomes positive for Zic2, transcripts
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Figure 3.3 Localisation of Zic2 mRNA in the posterior neuropore by whole mount 

in situ hybridisation at E9-9.5

A and E show Zic2 mRNA expression in the posterior neuropore at E9 and 9.5 

respectively.B-D and F-H show 50 pm vibratome sections through the posterior 

neuropore at the level of the dotted lines in A and E respectively. Zic2 mRNA is 

expressed in the posterior neuropore region with a dynamic pattern at early E9 (B-D) 

and E9.5 (F-H). Zic2 is expressed throughout the neural plate during neural fold 

elevation and fusion (arrowheads in B and F), until just after the neural tube closure is 

complete (arrowhead in C and G). More rostrally, Zic2 transcripts become confined to 

the roof plate of the more mature neural tube (arrowheads in D and H). At the axial 

levels where this dorsalisation first becomes apparent, transcripts can also be detected in 

the rostral presomitic mesoderm marking the incipient somite (arrows in D and H). 

Abbreviations: nc, notochord; nf: neural fold, pm, presomitic mesoderm; rp, roof plate. 

Scale bars in A represents 500 pm. Scale bar in E represents 1 mm and in B represents 

200 pm

Figure 3.4 Localisation of Zic3 mRNA in the posterior neuropore by whole mount 

in situ hybridisation at E9-E9.5

A and E show Zic3 mRNA expression in the posterior neurore at E9 and 9.5 

respectively. B-D and F-H show 50 pm vibratome sections at the level o f the dotted 

lines in A and E respectively. Zic3 mRNA transcripts show a quite different distribution 

from Zic2 (Fig. 3.3). Sections through the posterior neuropore at early E9 and E9.5 

confirm that Zic3 is absent from the neural plate and neural tube (B-D and F-H), 

whereas it is expressed in the notochord underlying the neural tube (arrowheads in C 

and D). Transcripts are also detected at low intensity in the mesenchyme surrounding 

the ventral hindgut (asterisks in C). Like Zic2, Zic3 mRNA transcripts are present in the 

rostral presomitic mesoderm (arrow in D). Unlike Zic2, Zic3 transcripts are also present 

in the notochord at this level (arrowhead in D). At E9.5, Zic3 transcripts are present in 

the tail bud region (arrow in F) as well as, more rostrally, in the mesenchyme 

surrounding the neural tube, which is emerging through the process of secondary 

neurulation (nt in G). Zic3 transcripts are also present in the presomitic mesoderm 

(arrow in H) and in the notochord (arrowheads in G and H). Abbreviations: hg, hindgut; 

nc, notochord; nf, neural fold; nt, neural tube; pm, presomitic mesoderm. Scale bars 

represent: A, 500 pm; B, 300 pm; E, 1 mm.
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start to become dorsalised in the neural plate even though the neural tube is still open 

(Fig. 3.5 G). At the axial level where the “closed” neural tube is first visible, Zic2 shows 

two loci of expression in the roof plate, separated by a gap (Fig. 3.5 arrowheads), which 

appears to result from the neural tube having failed to fuse. The surface ectoderm, 

negative for Zicl, appears to be growing across the gap between the open neural folds.

The expression of Zicl is strong in the tail bud region ct/ct embryos (Fig. 3.6 B 

and F). Further rostrally, Zic3 expression is strong in the mesenchyme surrounding the 

neural tube with the notochord being positive (arrow and arrowhead in Fig. 3.6 G 

respectively).

In Lp/Lp homozygous embryos, Zic2 mRNA is localised in the same fashion as 

in CD1 embryos (compare Fig. 3.5 I-L to A-D). The caudal end of E9.5 Lp/Lp embryos 

shows expression of Zic2 throughout the neural plate, with expression becoming 

dorsalised to the tips of the neural folds at the level where the presomitic mesoderm 

becomes positive for Zic2 (Fig. 3.5 J and K). Rostrally, Zic2 is expressed solely in the 

lateral edges of the Lp/Lp neural plate, which, although wide open, appear to have 

undergone the same specification as the roof plate of normal embryos. Interestingly, 

unlike Zicl, Z icl expression is absent from both the caudal end and the cranial neural 

tube of the Lp/Lp embryos (Fig. 3.6 I-L). Expression of Zicl is observed only in the 

somites of the upper trunk of Lp/Lp embryos. Zicl is absent from the notochord and the 

tail bud regions compared to the CD1 and the other mouse mutant strains.

• • 2 H  2 HZic2 expression m Sp /  Sp embryos does not show any obvious differences in 

distribution (Fig. 3.5 M-P) compared with CD1 (Fig. 3.5 A-D) embryos. Zic2 is 

expressed throughout the neural plate at caudal levels and becomes dorsalised to the 

roof plate more rostrally. Similarly, Zic3 is expressed in the same fashion as in CD1, 

Sp2H/  Sp2H and ct/ct embryos
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Figure 3.5 Expression of Zic2 is not altered in the posterior neuropore region of the 

mouse NTD mutants ct, Lp and Sp2H

Localisation of Zic2 mRNA in the posterior neuropore region of CD1 (A), ct/ct (E), 

Lp/Lp (I) and Sp2H/Sp2H (M) embryos at E9.5. Vibratome sections through the posterior 

neuropore of CD1 (B-D), ct/ct (F-H), Lp/Lp (J-L) and Sp2H/Sp2H (N-Q) embryos are also 

shown. Note that ct/ct (E) and Sp2H/Sp2H (M) embryos exhibit an enlarged posterior 

neuropore (arrowheads in E and M) that will develop into spina bifida. In Lp/Lp 

embryos closure fails from the hindbrain down the entire length of the spinal cord 

(arrowheads in E). Sections through these embryos reveal that Zic2 mRNA transcripts 

are localised throughout the caudal neural plate in each mutant (arrows in B, F, J and 

N). More rostrally where the presomitic mesoderm becomes positive for Zic2 (arrows in 

G, K and O), Zic2 transcripts can be seen dorsalised to the tips of the persistently open 

neural folds (arrowheads in G, K and O). Thus, dorsalisation of Zic2 is independent of 

closure of the neural tube. Further rostrally, Zic2 becomes restricted to the roof plate of 

the closed neural tube in ct/ct and Sp2H/Sp2H embryos (arrowheads in H and P) as in 

CD1 embryos (D). Lp/Lp embryos, in which the entire spinal neural tube is open, 

nevertheless show dorsalised Zic2 expression in the neuroepithelium (L). Sections are 

representative of four embryos for each of the genotypes. Abbreviations: nf, neural 

folds; np, neural plate; nt, neural tube; pm, presomitic mesoderm; rf, roof plate. Scale 

bar in M represents 500 pm (A, E, I and M) and in P represents 200 pm (B-D, F-H, J-L, 

N-P).
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Figure 3.6 Localisation of Zic3 mRNA in the posterior neuropore region of CD1, 

ct/ct, Lp/Lp and Sp2H/Sp2H embryos at E9.5 by whole mount in situ hybridisation

Localisation of Zic3 mRNA in CD1 (A), ct/ct (E), Lp/Lp (I) and Sp2H/Sp2H (M) embryos 

Vibratome sections through the posterior neuropore of CD1 (B-D), ct/ct (F-H), Lp/Lp 

(I-L) and Sp2H/Sp2H (M-P). Note that ct/ct (E) and Sp2H/Sp2H (M) embryos exhibit an 

enlarged posterior neuropore (between arrowheads in E and M) that will develop into 

spina bifida. In Lp/Lp embryos, closure fails from the hindbrain throughout the entire 

length of the spinal cord (between arrowheads in I), termed craniorachischisis. Zic3 is 

similarly expressed in CD1 embryos (A) and in the ct/ct (E) and Sp2H/Sp2H (M) mutants. 

Sections through the embryos reveal that Zic3 mRNA transcripts are present in the tail 

bud region (arrows in B, F and N), and more rostrally become localised to the 

mesenchyme surrounding the neural tube. The notochord is also positive (arrowheads in 

C, G and O respectively). In CD1 embryos, once the neural tube has closed, transcripts 

persist in the presomitic mesoderm (arrowhead in D). In the ct/ct and Sp2H/Sp2H mutants 

with large posterior neuropores, Zic3 transcripts are apparent in the presomitic 

mesoderm lateral to the persistently open neural tube (arrows G and O). Zic3 is also 

expressed in the dermomyotome (arrows in H and P). In contrast to the ct and Sp2H 

mutants, Zic3 expression is absent from Lp/Lp embryos in both cranial and caudal 

regions of the neural tube although the somites are positive in the upper trunk region (I). 

Sections through Lp/Lp embryos reveal a lack of expression of Zic3 including a notable 

absence of tail bud expression (J-L). Sections are representative of three embryos for 

each of the genotypes. Abbreviations: np, neural plate; nt, neural tube; pm, presomitic 

mesoderm. Scale bar in M represent 500 pm and in P represents 200 pm.
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Figure 3,6
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* For instance, in contrast to the distinct specific functions mentioned above, 

Zic2Ku/Ku, Zic2Kd/Kd and Zic3'A embryos exhibit excencephaly (Nagai et al., 2000; Elms 

et al., 2000; Klootwijk et al., 2000; Carrel et al, 2000) suggesting that Zic2 and Zic3 

both act during cranial neurulation. As will be shown in Chapter4 the excencephlay 

phenotype in Zic2Kd/Kd is not completely penetrant suggesting that Zic3 could 

compensate. In addition, Zicl and Zic2 have been shown to have redundant functions 

in the formation of the cerebellum, such that compound heterozygous Z icl'/+; Zic2Kd/+ 

exhibit cerebellar abnormalities consisting of reduced proliferation of the external 

granule cell layer similar to the homozygous Zicl mutant (Z /c/'A) (Aruga et al., 

2002).



3.4 DISCUSSION

3.4.1 Distinct patterns of Zic gene expression at the time of neural tube closure

The expression pattern of Zicl-4 overlap in the neural tube and somites, 

although each gene has a distinct pattern of expression. Moreover, Ziclv', Zic2 Ku/Ku9 

Zic2 Kd/Kd and Zic3'f' each exhibit specific phenotypes. Z ic lA mice exhibit hypoplastic 

cerebellum but survive to birth and are viable (Aruga et al., 1998a). Zic2 Ku/Ku mice die 

at E l3.5 exhibiting NTD and forebrain malformations (Elms et al., 2003). Zic3~~ 

embryos develops right-left asymmetry defects with a low frequency of NTD 

(Purandare et al., 2002). The existence of these phenotypes demonstrates a specific 

individual function for each member of the Zic gene family. Nevertheless, a degree of 

functional redundancy or compensation for loss of function of one of the Zic genes by 

other family members may also be possible in tissues where Zic genes are co-expressed. 

As an example, Gli2 and Gli3 have been shown to have specific as well as redundant 

functions. GU2 and Gli3 show functional redundancy in the formation of the skeleton 

since Gli2zfii/zfil; Gli3XtJ/+ compound mutants show an exacerbated phenotype with regard 

to various skeletal elements (Mo et al., 1997). In contrast, GU2 mediates the induction 

of motor neurons, whilst Gli3 inhibits motor neuron differentiation (Altaba, 1998). 

Hence, closely related genes can mediate different specific functions, as well as 

exhibiting functional redundancy, and this may well be true for Zicl-4.

3.4.2 The expression of Zicl-3  parallels the skeletal defects seen in mouse mutants 

for these genes

The differential domains of expression of Zicl, 2 and 3 also extend to the 

somites. Zicl and Zic2 are expressed in the sclerotome whereas Zic3 is expressed in the 

dermomyotome. The medial part of the newly formed somite forms the sclerotome,

114



from which the vertebral bodies arise (Cossu et al., 1996). Skeletal malformations, in 

which the vertebrae are severely affected, occur in Zicl ^ mice, Z ic l1'; Gli3XtJ/XtJ 

compound mutants (Aruga et al., 1999) and Zic2Kd/Kd(Nagai et al., 2000). These 

observations fit well with the finding of expression of Zicl and Zicl in the sclerotome.

Some studies have suggested that the dermomyotome can give rise to the ribs 

(Kato and Aoyama, 1998). In support of this idea, Zicl null mice show rib 

malformations in keeping with the dermomyotome expression of Zic3. Compared to 

Zicl and Zic2, Zic3 is not expressed in the sclerotome, which explains the milder 

phenotype seen in the vertebrae of Zic3'f' mutant.

3.4.3 NTDs caused by mutations in Zic2 and Zic3 parallel the gene expression 

pattern

The main abnormality seen in Zic2Ku/Ku and Zic2Kd/Kd embryos is spina bifida, an

abnormality that can be traced back to E9, when primary neurulation is underway. Since

Zic2 is expressed solely in the neural plate, the cause of the neurulation phenotype
45-

observed in Zic2 mutant mice is most probably intrinsic to the neural plate.

The expression pattern of Zic3 at the posterior neuropore region parallels the 

defects reported in studies of the Bent tail and Zic3 knockout mice (Gruneberg, 1955) 

(Klootwijk et al., 2000;Purandare et al., 2002). Mice that carry a null mutation in Zic3 

do not show spina bifida as the main malformation. Rather, primary neurulation in the 

prospective spinal cord region occurs normally in most cases, in agreement with the 

absence of Zic3 expression from the neural tube, as observed in the present study. 

However, delay in the posterior neuropore closure has been observed at low frequency 

in these mutants and this can lead to mild spina bifida at very caudal levels. Since Zic3 

is expressed in the notochord, this delay in neuropore closure could be explained by an 

extrinsic mechanism rather than an intrinsic abnormality within the neural tube. An 

example of such an extrinsic mechanism is provided by the curly tail mutant in which
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decreased proliferation in the notochord and hindgut causes an increased angle of 

curvature of the caudal region, creating strain on the neural folds that inhibits closure in 

the dorsal midline (Copp et al., 1988;Brook et al., 1991).

Other defects reported in Zic3 mutants, at more caudal levels of the spinal cord, 

include as asymmetric growth of caudal vertebrae leading to kinked tails and sacral 

agenesis. These defects probably result from abnormal secondary neurulation, as Zic3 is 

strongly expressed in the tail bud region, perhaps regulating the proliferation, survival 

or differentiation of cells required for secondary body development. Mutations in 

human Zic3 can cause sacral agenesis (Gebbia et al., 1997). This defects likely also 

reflects the expression of Zic3 in the tail bud, notochord and mesenchyme surrounding 

the gut, as seen in the present expression studies.

The mechanism by which Zic3 regulates right-left asymmetry is unknown. Zic3 

is expressed symmetrically unlike other genes involved in right-left specification, such 

as Nodal (Lowe et al., 2001)or Pitx2 (Kitamura et al., 1999), whose mRNAs are 

localised asymmetrically at the 2-somite stage. Nodal and Pitx2 appear to be expressed 

normally in 2-somite stage Zic3 null embryos, although after the 2 somite stage, 

homozygous Zic3'f' embryos fail to express Nodal, while Pitx2 expression is randomised 

with regards to left and right sides. This places Zic3 upstream of Nodal and Pitx2 

expression (Purandare et al., 2002). It has been hypothesised from experiments in 

Xenopus that the Zic3 protein may bind to an unknown asymmetrically expressed 

protein to activate downstream targets in the right/left asymmetry pathway (Kitaguchi et 

al., 2002). It is probable that Zic3 function in right/left asymmetry occurs early during 

gastrulation when the initial right/left axes are specified.

3.4.4 Expression of Zic2 and Zic3 in ct, Lp and Sp2H mutants

Expression of Zic2 is normal in ct, Lp and Sp2H homozygous embryos, with no 

marked differences from non-mutant embryos. It seems very unlikely, therefore that
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* Although the present results suggest that Zic3 is downstream of Vangl2 at the 

neurulation stage embryo, the right and left asymmetry defects observed in the Bent 

tail or Zic3'f' are not present in Lp/Lp homozygous embryos. This difference could be 

explained by the non-overlapping expression of Zic3 and Vangl2 in tissues in which 

the initial right and left asymmetry is specified during early gastrulation. Zic3 is 

expressed in the primitive streak during head fold formation and in the node at later 

stages of gastrulation, structures that have been shown to be important in the 

establishment of the initial right and left asymmetry (Elms, P et al, 2004). The 

expression of Vangl2 during early gastrulation has not been reported and it is 

therefore difficult to conclude whether these two genes are co-expressed at this stage. 

However, the absence of asymmetry defects in Lp/Lp embryos suggests that the 

Vangl2 is not required for initial establishment of right and left axis. Therefore Zic3 

may function independently of Vangl2 in left-right determination.



Zic2 is downstream of these mutated genes. An alternative possibility is that Zic2 could 

lie upstream of the Lp, ct, or Sp2H genes. Since Zic2 is a transcription factor, it could

2H  * •directly regulate the expression of the genes mutated in the Lp, ct, or Sp mice (i.e. the 

Vangl2, Grhl3 or Pax3 genes). Alternatively these genes may mediate independent 

functions such that when mutated, completely unrelated pathways lead to development 

ofNTDs.

Another observation from the present study is that Zic2 expression in the roof 

plate is independent of neural tube closure, as Zic2 mRNA was seen to become dorsally 

restricted even when the neural tube was wide open, as seen particularly in the Lp/Lp 

embryos.

Zic3 expression is localised apparently normally in ct/ct and Sp2H/Sp2H embryos,

whereas the expression of Zic3 is absent from Lp/Lp embryos. Vangl2 the gene mutated

in Lp, has been implicated in the planar cell polarity pathway (Montcouquioi et al.,

2003). There have been no suggestions, to date, of abnormalities in the PCP pathway in

Bent tail or Zic3 mutants. On the other hand, down-regulation of Zic3 in homozygous

Lp/Lp embryos suggests that Zic3 may be regulated downstream of Vangl2 signalling.

Heterozygous Lp/+ mice display tail defects, which could be linked to downregulation

of Zic3. Moreover, the absence of Zic3 expression from the caudal end of Lp/Lp

embryos may suggest that the tail bud is not correclty formed. However, Lp/Lp embryos

undergo secondary neurulation and develop looped tails (Strong and Hollander, 1949)

ruling out this hypothesis. It is tempting to speculate that the origin of the tail defects in

the Lp/+ and Lp/Lp is related to reduced or absent Zic3 expression downstream of
*

Vangl2 gene mutation.

The present study represents a qualitative analysis of the expression of Zic2 and 

Zic3 in several mutant strains with NTDs. Further work could involve a quantitative 

assay, perhaps using RT-PCR or real time RT-PCR, which could give an accurate
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quantitative measurement of the levels of Zic2 and Zic3 mRNA in the mutants ct, Lp 

and Sp2H.
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CHAPTER 4: ANALYSIS OF KUMBA, A NEW 

MUTANT ALLELE OF ZIC2
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4.1 INTRODUCTION

In Chapter 3 ,1 have shown that the expression of Zic2 is restricted to the neural 

plate at the time of closure of the neural tube in the posterior neuropore region. This 

expression pattern suggests that the function of Zicl in neural tube closure is probably 

intrinsic to the neural plate, and therefore Zic2 activity could affect the morphogenesis 

of the neural tube. Although homozygous embryos for the hypomorphic alleles Zic2Kd/Kd 

and the Zic2Ku/Ku have been shown to exhibit spina bifida and exencephaly, a study of 

the morphology and timing of the NTDs in these embryos has not been reported. The 

aim of this chapter was to perform a morphological analysis of the spina bifida observed 

in Zic'f", in order to understand the embryonic mechanism by which disruption of Zic2 

leads to spina bifida.

4.1.1 Kumba carries a mutation in the fourth zinc finger domain of Zic2

The Kumba mouse was recovered from a phenotype-driven ENU screen for 

dominant mutations. Its heterozygous phenotype consists of a curly tail, belly spot and 

low frequency of spina bifida (Nolan et al., 2000). The mutation arose in a male of the 

BALB/c genetic background, and the mutation was maintained by successive 

backcrosses to C3H/He inbred mice. Initial mapping located the mutation on 

chromosome 14 between D14Mitl37 (6.5 cM)-D14Mit239 (42.5 cM) (Nolan et al., 

2000). Further refinement of the critical region containing the mutation was performed 

using simple sequence length polymorphisms (SSLP), and the mutation was identified 

by sequencing of candidate genes within the critical region. A base pair transversion, A 

to T, was identified in the Zic2 gene that results in a missense mutation changing a 

cysteine to a serine, C370S, in the fourth ZFD (Elms et al., 2003). The mutation 

changes the cysteine that chelates the central zinc ion of the ZFD and is thought to 

disrupt the function of this domain (see Fig.l).



Zic2 r ~ j\— oq;

Z F l ZF2 ZF3 ZF4 ZF5

C to S

X X  X X X X XXX

Figure 4.1 Schematic representation of the mutation identified in Kumba mice

Zic2 consists of three exons; the ZFD region is shown in red and involves all three 

exon. The ZFD region encodes five tandem repeats of the zinc finger unit: Z F l-5. The 

base pair transversion, A to T, results in a missense mutation that changes the second 

cysteine of the fourth ZF to a serine.
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4.2 METHODS

4.2.1 Maintenance of the colony and generation of experimental litters

The Zic2^u allele was provided originally by Dr. Ruth Arkell, MRC Mammalian 

Genetics Unit, Harwell, Oxon and is maintained by successive backcrosses of 

heterozygous Zic2Ku/+ males with inbred C3H/He strain females. To obtain experimental 

litters, Zic2Ku/+ male and female offsprings were mated. Mice used in this study have 

been backcrossed to C3H/He for at least 11 generations.

4.2.2 Genotyping of adults and experimental litters

Genotyping of adult mice and experimental litters was performed by SSLP using 

the microsatellite marker D14Mitl07. The Zic2Ku mutation arose on the BALB/c genetic 

background and has been backcrossed onto a C3H/He background. D14Mitl07 was 

found to be informative on this hybrid genetic background, generating different sized 

PCR products for the BALB/c (mutant-linked) and C3H/He (wildtype-linked) alleles 

(see Fig. 4.2). PCR conditions and primer sequences are provided in Table 4.1.

Table 4.1 PCR conditions for genotyping Z i c ^ u mice using D14Mitl07

PCR conditions Z ic2 Ku

MgCl2 1.5 mM

Primer sequence F5’ AAATGGTCATCCCTGAAAAGA 3’ 

R 5’ CAGGCCTCTCCAAAGTACCA 3”

Annealing temperature 58 °C

Number of cycles 35 cycles

PCR product size Wild type C3H/He allele 150 bp 

Mutant BALBc allele 176 bp
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M WT HET HET WT H H H H

Figure 4.2 Agarose gel illustrating the polymorphism for the microsatellite marker 

D14Mitl07

PCR for D14Mitl07 was found to generate two different sized products: a band of 150 

bp, linked to the wild type allele (Zic2+; C3H/He) (WT) and a 176 bp band linked to the 

mutant (Zic2^"; BALB/c) allele (H). Note that heterozygotes (HET) have both 150 and 

176 bp alleles whilst homozygotes (H) have only the 176 bp band, corresponding to the 

BALB/c allele.
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4.3 RESULTS

4.3.1 The Kumba phenotype is partially penetrant in heterozygotes

On a predominantly C3H/He genetic background, the Zic2Ku allele shows 

incomplete penetrance in heterozygotes. In this study, 30% of the Zic2Ku/+ mice

displayed a phenotype, with 16% exhibiting a curled tail, 10% a white belly spot and

6% displaying both phenotypes (Fig. 4.3 and Table 4.2). A low frequency of spina 

bifida was observed in Zic2Ku/+ newborn pups but the precise frequency was difficult to 

establish due to cannibalization of affected pups by their mothers.

Table 4.2 Phenotypes observed in Zic2*'</+ mice 

Phenotype No of mice (% total)

Normal 115(70%)

Tail curled only 24 (16%)

Belly spot only 15(10%)

Tail curled and belly spot 6 (4%)

Total 150

To determine whether the Zic2Ku allele is transmitted in a Mendelian fashion, 

embryos from crosses between Zic2Ku/+ males and females were genotyped and the 

proportion of embryos with each genotype (Zic2+/+, Zic2Ku/+ and Zic2Ku/Ku) was 

compared with the expected Mendelian ratio of 1:2:1 using the X2 statistical test. The 

finding of p  = 0.96 shows that there was no statistically significant difference from a 

1:2:1 ratio, and therefore the observed genotype ratios were as expected from 

Mendelian inheritance. Hence, there appears to be no early embryonic lethality in 

Zic2Ku/Ku or Zic2Ku/+ embryos.
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Table 4.3 Zic2^u allele shows Mendelian inheritance in heterozygote matings

Genotype Zic2f/* ..Zic2™+ - ~ ^ K u

Number of embryos (observed) 29 57 28

Percentage (observed) 25.4% 50.9% 24.5%

Expected Mendelian ratios 25% 50% 25%

4.3.2 Neurulation phenotype o f embryos

To assess the effect of the Z ic ^ u allele on neurulation, homozygous embryos 

were collected at different gestational ages between E9.5 and E l2. The main 

abnormalities observed in Z ic ^ u/Ku are an open neural tube in the cranial and caudal 

regions of the embryo, resulting in exencephaly and spina bifida respectively (Fig. 4.4). 

In order to determine the penetrance of the phenotype, embryos that had reached the 20 

somite stage or beyond were analysed for the presence of spina bifida and/or 

exencephaly. Cranial neural tube closure is completed at 17 somites and, therefore, 

normal embryos with 20 or more somites are expected to have a closed neural tube in 

the cranial region. Exencephaly of the midbrain and hindbrain was observed in 76.9% 

of Zic2Ku/Ku embryos whilst spina bifida was observed in all homozygous embryos (i.e. 

100% penetrant). Therefore exencephaly was always accompanied by spina bifida (see 

Table 4.4). In Z ic ^ u/Ku embryos that completed cranial neural tube closure, a reduction 

in forebrain size was observed, compared to the appearance of wild type littermates 

(white arrow in Fig. 4.4 C). This phenotype suggests that Zic2 is required for forebrain 

development subsequent to neural tube closure as well as for neural tube closure itself.
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Figure 4.3 Zic2Ku phenotype is not fully penetrant in heterozygotes

On the C3H/He background, a proportion of Zic2Ku/+ mice display a curled tail (A) and 

or a white belly spot (B)

Figure 4.4 Zic2 Ku/Ku embryos display NTDs

Comparison between Zic2+/+, (A and D) and Zic2Ku/Ku embryos (B, C and E) at E9.5 (A- 

C) and E l2 (D-E). In homozygous embryos the neural tube fails to close in the spinal 

region (between the black and red arrowheads in B and C). A proportion of 

homozygous embryos also exhibit an open cranial neural tube, exencephaly (between 

the white arrowheads in B and E). Zic2Ku/Ku embryos that undergo successful cranial 

neural tube closure display a reduced forebrain size (white arrow in C: compare with 

wild type littermate in A). Scale bars represent 500 pm (A to C) and 1 mm (D, E).
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Figure 4.3

Zic2Ku/+ Zic2Ku/+

Figure 4.4

Zic2*/+ Zic2Ku/Ku Zic2Ku/Ku

Zic2+/+ Zic2Ku/Ku
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Table 4.4 Penetrance of the NTD phenotype observed in Zic2Ku/Ku embryos

Phenotype Sb alone Ex alone Sb + Ex Total

Number of Zic2Ku/̂ u embryos 4 0 9 13

Percentage 30.7% 0% 69.2% 100%

Abbreviations: Ex, exencephaly; sb, spina bifida.

To establish the embryonic stage at which the spinal neural tube failed to close 

in homozygotes, the somite level of the most rostral point at which the neural tube was 

open was determined (shown in Fig. 4.5 B, C and E by red arrowheads). This somite 

level varied from 12 to 14 with most embryos failing to close their neural tube beyond 

the 13thorl4th somite (see Figure 4.5).

16  --------------------------------------------------------------------------------------------------------------

Somite number

Figure 4.5 Somite number at neural tube closure in ZicKu/Ku embryos 

Graphic representation of the somite number at which the neural tube fails to close in 

embryos. Most homozygous embryos fail to close the neural tube caudal to the 

13 th-14th somites.
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4.3.3 Zic2Ku/Ku embryos lack dorsolateral hinge points (DLHPs)

The finding of an open neural tube in Zic2?m/Ku embryos caudal to somites 13-14 

suggested that the transition of spinal neurulation from Mode 1 to Mode 2 could be 

compromised in Zic2Ku/Ku embryos (see section 4.4.1). To investigate this further, 

histological sections through the PNP of Zic2Ku/Ku embryos were compared with 

sections through the PNP of wild type littermates. Care was taken to ensure that similar 

levels of the body axis were compared. For this reason, embryos with 15 somites were 

studied (Fig. 4.6) in which the PNP of the Zic2Ku/Ku embryos was only slightly enlarged 

compared with wild type littermates. Zic2Ku/Ku embryos were found to exhibit abnormal 

spinal neural tube morphogenesis with a striking lack of DLHP formation (arrowheads 

Fig. 4.6 B-E) compared with wild type controls (arrowheads Fig. 4.6 G-J). The neural 

plate of Zic2Ku/Ku embryos also appeared thicker compared to wild type littermates 

(arrows in Fig. 4.6 D-E, compared with J). DLHPs are proposed to facilitate apposition 

of the neural folds at the dorsal midline prior to fusion of the neural folds (Fig. 4.6 F-I). 

One possibility to be considered was that the lack of DLHPs in 15 somite Zic2^“̂ “ 

embryos reflected a delay in their appearance rather than complete absence. To test this 

idea, more advanced Zic2Ku/Ku embryos, at the 20 and 21 somite stage, were studied 

(Figure 4.7). The mutant PNP in this case was much longer than the wild-type 

littermates, reflecting the cessation of neural tube closure at an earlier stage. Sections of 

the enlarged PNP revealed a thickened neural plate with lack of DLHPs, as at the 15 

somite stage, confirming that Zic2Ku/Ku embryos totally lack DLHPs.
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Figure 4.6 DLHPs are absent in Zic2Ku/Ku embryos

A-J show 8 jam consecutive sections through the posterior neuropore of a Z ic '/'u/Ku 

embryo (A-E) and a Zic2+/+ embryo (F-J) stained with haematoxylin and eosin. In each 

sequence (A to E, and F to J) the top section is the most rostral, passing through the 

recently closed neural tube of the Zic2^u/Ku (A) or wild type (F) embryos respectively. 

Successive sections then progress caudally through the open PNP. Sections through the 

PNP of the wild type embryos reveal the presence of DLHPs that are bringing the tips 

of the neural folds in apposition in the dorsal midline (i.e. Mode 2 morphology; 

arrowheads in G-J). In contrast, DLHPs are not formed in any sections through the 

Zic2Ku/Ku embryo (arrowheads in B-E) and the neural folds appear straight (i.e. Mode 1 

morphology). The tips o f the neural folds do not converge towards the midline (B-E) in 

Zic2Ku/Ku, indicative of an incipient spina bifida. Moreover the neural folds of Zic2Ku/Ku 

embryos appear thicker than in the wild type littermate (arrows in D-E and J 

respectively). Note that the open PNP of the Zic2Ku/Ku embryos (sections B-D) are 

flanked by epithelial somites (s) in contrast to those of the wild type embryo which are 

flanked by presomitic mesoderm. This reflects the longer PNP in the mutant embryo, 

which extends as far rostrally as the somites. Abbreviations: DLHP, dorsolateral hinge 

point; nc, notochord; nf, neural folds; nt, neural tube. Sections are representative of 4 

embryos per genotype. Scale bar in A represents 400 pm for all sections.
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Figure 4.6

Zic2Ku/Ku Zic2*/+

15 somites 15 somites
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Figure 4.7 The Kumba mutation results in failure of neural tube closure with 

abnormal bending of the neural plate

Haematoxylin/eosin stained sections through the rostral end of the posterior neuropore 

of E9 (20-21 somites) wild type (A: Zic2+/+)  and homozygous (B: Zic2Ku/Ku) embryos. 

(A) Sections through the Zic2+/+ littermate show neural folds approaching each other 

dorsally to form a lumen with a diamond like shape. The median hinge point (MHP) 

and paired dorsolateral hinge points (DLHPs arrowheads) are both visible. (B) In the 

Zic2Ku/Ku embryos the neural plate is thicker than in wild type and fails to bend dorsally 

so that DLHPs are absent (arrowheads in B). Absence of DLHPs may result in the 

failure of the neural plate to bend dorsally, leading to an open neural tube phenotype, as 

observed in Zic2Ku/Ku. Note that a MHP is present in the Zic2Ku/Ku embryos. Contact 

between the surface ectoderm and dorsal neural tube, essential for DLHPs formation, is 

present in Zic2Ku/Ku and wild type embryos (red arrowheads in A and B). Sections are 

representative of 2 embryos per genotype. Abbreviations: DLHP, dorsolateral hinge 

point; nc, notochord; nf, neural fold; MHP, median hinge point.
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Figure 4.7

A 20 somites

Z ic 2 +/+

B 21 somites

Zic2Ku/Ku
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* Although the presence of DLHP in ct/ct can be explained because the neural tube 

stopped closing when Mode2 was initiated.



4.4 DISCUSSION

In the present chapter, the frequency of neural tube defects and the precise 

morphology of spinal neurulation were studied in the Zic2Ku embryos. This analysis 

provided possible insights into the specific requirement for Zic2 during neural tube 

closure.

4.4.1 Zic2 is required for formation of DLHPs

Closure of the spinal neural tube in the mouse follows a pattern that is

characterised by changes in morphology of the neural plate from midline bending

(Mode 1) to DLHP-mediated bending (Mode 3), via an intermediate stage of combined

midline and dorsolateral bending (Mode 2). Although the timing of the transition

between modes varies between strains, the three modes of spinal neurulation have been

observed in all normal strains studied (Shum et al., 1996). Several mutants develop

spina bifida, but in no case (prior to the present study) have DLHPs been found to be

absent in such mutants. For example, in the curly tail mouse DLHPs are delayed in
%

appearance but are clearly formed during low spinal neurulation (Shum et a l , 1996).

• J  f - fMoreover, in the splotch (Sp ) mutant where a large spina bifida occurs, DHLPs are 

also seen during spinal neurulation (AJ Copp, unpublished).

The data presented in this chapter demonstrate that the Zic2 transcription factor 

is required for formation of DLHPs in spinal neurulation. DLHPs are proposed to 

facilitate apposition of the neural folds at the midline prior to fusion of the neural folds. 

In Mode 1 of neurulation, DLHPs are absent in normal embryos, demonstrating that 

dorsolateral bending is not essential for the closure at high spinal levels. However, in 

the mouse, Mode 1 of neurulation occurs in the pre-turning embryo when the dorsal 

surface is concave. It seems likely that neural tube closure is mechanically facilitated by 

the concave morphology, as has been demonstrated in chick embryos cultured on
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substrates with different curvatures (Van Straaten et a l, 1993). Once axial rotation 

(turning) occurs in the mouse, around the 12 somite stage, there is a transition from 

Mode 1 to Mode 2 in normal embryos. This suggests that dorsolateral bending is 

necessary to ensure closure of the neural folds in the more mechanically unfavourable 

convex morphology of the turned embryo. Homozygous Z i c embryos undergo axial 

rotation normally but do not exhibit DLHPs, and fail in all subsequent stages of spinal 

neurulation. The extremely consistent somite level at which neural tube closes (level of 

13th-14th somites) is strongly suggestive of a failure of Zic2Ku/Ku embryos to make the 

transition from Mode 1 to Mode 2 of neurulation. Moreover the neural plate is 

thickened and remains in the V-shape characteristic of Mode 1, with no apposition of 

the neural folds in the dorsal midline. Thus, represents the first mouse mutant

identified in which DLHPs fail to form. Zic2Ku offers an opportunity to gain insight into 

the molecular mechanisms of DLHPs formation in mouse neurulation.

4.4.2 Possible mechanisms underlying failure of DLHP formation in Zic2*M

At least two distinct mechanisms should be considered as possibly underlying 

the failure of Zic2^“̂ “ embryos to undergo normal low spinal neurulation. First, the 

thickened neural plate may suggest a change in Z i c embryos in the strength of 

intracellular adhesion between neighbouring neuroepithelial cells. The neural plate is a 

single-layered pseudostratified epithelium in which cell morphology varies with phase 

of the cell cycle (see Introduction). An increase in cell-cell adhesion would be expected 

to lead to adjacent cells maximising their area of contact, leading to an apparent 

thickening of the neural plate. Whatever the mechanism, the thickened neural plate is 

likely to be resistant to bending and this could underlie the lack of DLHPs in the 

Zic2Ku/Ku embryos. It is noticeable, however, that midline (MHP) bending of the neural 

plate (in Mode 1) does not appear to be compromised in Zic2Ku/Ku9 perhaps arguing 

against a model based on mechanical resistance to bending.
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The second potential mechanism views the Zic2 transcription factor as an 

essential participant in the DLHP formation process. According to this idea, the lack of 

DLHPs in Zic2Ku/Ku reflects an abnormality in the specific regulatory mechanism 

governing DLHP regulation. It is known that different mechanisms underlie MHP and 

DLHP regulation (Ybot-Gonzalez et a l , 2002) consistent with a lack of DLHPs but 

normal formation of MHP in Zic2Ku/Ku embryos. Shh is both necessary and sufficient for 

negative regulation of DLHPs suggesting that Shh and Zic2 may participate in a 

mutually antagonistic interaction in regulating DLHP formation. This speculative topic 

is considered further in Chapter 7.

4.4.3 Zic2 is required for cranial neurulation and forebrain development

Homozygous Zic2Ku embryos display exencephaly as result of failure of the 

midbrain and hindbrain neural tube to close. Unlike spina bifida, exencephaly is not 

fully penetrant with only around three quarters of Zic2Ku/Ku embryos displaying this 

phenotype. Closure 1, at the hindbrain-cervical boundary, and Closure 3, at the rostral 

extremity of the prosencephalon, both occur normally in Zic2Ku/Ku embryos, whereas 

Closure 2 at the forebrain/midbrain boundary does not occur, resulting in a persistently 

open midbrain and hindbrain.

Interestingly, Zic2Ku/Ku embryos also exhibit a reduction in size of the forebrain. 

This phenotype was easiest to detect in embryos that complete cranial neurulation, 

where exencephaly is not a complicating factor. Hence, Zic2 is required for forebrain 

development. In support of this idea, ZIC2 mutations in humans have been shown to 

cause holoprosencephaly (HPE) (Brown et al., 1998), a forebrain malformation that 

arises due to failure of forebrain development and formation of the distinct telencephalic 

vesicles. More studies are needed to determine whether the abnormal forebrain observed 

in homozygous Zic2Ku embryos may be related to the human HPE phenotype.

136



4.4.4 The Zic2Ku mutation

It is not known whether Zic2Ku is a hypomorphic or a null allele of Zic2. The 

Zic2 knockdown mouse, Zic2Kd, generated by gene targeting, is a hypomorphic allele of 

Zic2 such that western blot detects only 21% of the normal level of Zic2 protein in 

homozygous embryos (Nagai et al., 2000). Zic2Kd/Kd have a milder phenotype than 

Zic2Ku/Ku embryos and survive to birth. Since Zic2Ku/Ku die between E12 and E l3, this 

suggests that Zic2Ku is a more severe allele than Zic2Kd. Indeed, homozygous Zic2Ku 

embryos exhibit abnormal heart looping and outflow tract defects, a phenotype that has 

not been described in Zic2Kd allele, but which could account for the embryonic death of 

Zic2Ku/Ku embryos (Elms, P. and Gaston-Massuet, C. preliminary data). This argues that 

Zic2Ku could be a null allele of Zic2 or that Zic2 function is more severely compromised 

in Zic2Ku than in Zic2Kd.

The change of a cysteine to a serine in the fourth finger domain of Zic2 is likely 

to adversely affect chelation of the zinc ion in the zinc finger domain. The nature of the 

mutation in Zic2Ku raises the possibility that the function of the 4th ZFD is disrupted 

such that the DNA-binding of Zic2 is hampered, which a consequent disruption of 

transcriptional activity. A second possibility is that the mutation affects the binding of 

Zic2 to protein partners that could affect transcriptional regulatory activity. Indeed, the 

4th ZF of Zic2 has been shown to mediate protein-protein interactions (Koyabu et al., 

2001b) suggesting that this second possibility is quite likely. Without biochemical 

information on the identity of Zic2 protein partners, or how the Zic2Ku mutation affects 

protein-protein interactions, it is impossible to determine the likely mechanism of the 

Zic2Ku mutation in causing NTDs. Moreover, identification of Zic2 protein partners will 

indicate which proteins are likely to regulate Zic2 transcriptional activity and, thereby, 

provide information on the signalling pathways by which Zic2 mediates its function.
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The next two chapters describe yeast two-hybrid and related studies aimed at 

identification of Zic2 interacting proteins.
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CHAPTER 5: IDENTIFICATION OF ZIC2 

PROTEIN PARTNERS USING THE YEAST 

TWO-HYBRID SYSTEM
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5.1 INTRODUCTION

Protein-protein interactions form the basis of most biological processes, 

including signal transduction and transcriptional regulation of developmental genetic 

programmes. Therefore, the identification of protein binding partners for a protein of 

interest is crucial to elucidate the molecular basis of a biological system.

As has been shown in the previous chapter, Zic2 is a key regulator of 

neurulation. Disruption of Zic2 produces exencephaly and spina bifida as observed in 

Zic2Ku/Ku embryos, which show an open cranial and spinal neural tube with the absence 

of DLHPs. Moreover, the clinical relevance of Zic2 has been shown by the 

identification of mutations in humans that display HPE (Brown et al., 2001;Brown et 

al., 1998). Despite its importance, little is known about the proteins that interact with 

Zic2. One study has shown that Zic2 can be immunoprecipitated with all three Gli 

proteins (Gli 1-3) suggesting that Zic2 is involved in the Shh signalling pathway 

(Koyabu et al., 2001a). However the identification of other additional co-factors 

remains to be achieved. Therefore, it was the aim of this chapter to identify possible 

Zic2 protein partners, and thereby reveal aspects of the transcriptional regulation of 

Zic2 and the pathways by which Zic2 could mediate its function.

5.1.1 The yeast two-hybrid system to identify protein-protein interactions

In the 1980s, two major discoveries on the nature of transcriptional regulation 

provided the basis for the development of the two-hybrid system as a genetic tool for 

identification of protein-protein interactions. Brent and Ptashne, discovered that a 

hybrid transcription factor could be generated by combining two domains from two 

different proteins, while preserving the transcriptional activation function (Brent and 

Ptashne, 1985). In this experiment, the E. coli LexA repressor DNA binding domain 

was fused to the yeast Gal4 transcriptional activation domain creating a chimeric protein
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that, when expressed in yeast containing LexA operator sites, was able to activate 

transcription. This experiment identified the presence of two separable modules in a 

transcription factor: the DNA binding and the activator domains. Moreover, this study 

showed that these modules could fold independently into two functional units that are 

not influenced by the rest of the protein (see Fig. 5.1).

B

Gal4 AD

al4 DBD Transcription
1 Gal4 ODerator 1 1

LexA AD

LexA DBD X
1 LexA ODerator 1 1

D

,GaL4 AD,

LexA DBi

X
Gal4 operator I

LexA operator I

X

LexA DB Transcription

Figure 5.1 Diagram representation of the Brent and Ptashne experiment

A and B show the yeast transcription factor Gal4 and the bacterial repressor LexA 

activating and inhibiting transcription respectively in the presence of the appropriate 

operator. (C) A chimeric protein containing the LexA DNA binding and the Gal4 

activation domain will not activate transcription of genes under the Gal4 operator, but 

can function as a transcriptional activator if  the LexA operator is present (D). Therefore 

the ability of Gal4 to activate transcription is independent of the DNA binding domain.

The second important discovery came from experiments showing that 

transcriptional activators, such as VP 16 from herpes simplex virus, do not need to bind 

directly to DNA; rather they are able to activate transcription through specific binding 

to DNA-binding proteins (Triezenberg et al., 1988). Based on these studies, the two- 

hybrid system was developed by Fields and Song (Fields and Song, 1989). In this
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system, two hybrid proteins are generated that can reconstitute the function of a 

transcriptional activator. The first hybrid protein is generated as a fusion protein 

between a DNA binding domain (DBD) protein and the protein of interest whose 

partners are to be identified. This hybrid protein is commonly referred to as the “bait” 

protein. The second hybrid protein contains polypeptides encoded by a cDNA library 

fused to an activator domain (AD) and is referred to as the “prey” (see Fig. 5.2). When 

these proteins are transformed into yeast separately, neither is able to activate 

transcription of a reporter. However, if the proteins interact, when co-transformed, the 

interaction brings together the DBD with the AD and activation of transcription occurs 

for those genes that contain the binding site for the DBD in their promoter. In the initial 

two-hybrid approach, the yeast strain was modified by transformation with the 

colorimetric reporter LacZ, encoding a /3-galactosidase gene, which cleaves the 

substrate X-Gal to produce a blue colour that allows identification of the interacting 

clones.

5.1.2 Two-hybrid components used to identify Zic2 protein interactions

Since the first description of the yeast two-hybrid system by Fields and Song 

(Fields et al., 1989), and with the advances in yeast genetics and molecular biology, the 

components of the yeast two-hybrid method have been optimised to generate a plethora 

of host yeast strains, plasmids and libraries (Mendelsohn and Brent, 1999;Vidal and 

Legrain, 1999). Nevertheless, with all these options, one has to be careful in choosing 

which yeast strain, type of DBD and library to use, since this choice is important for the 

outcome of the experiment. It is important to know that the three components are not 

always exchangeable and one should plan which library and yeast strain are compatible 

with the AD and DBD, before designing constructs.

Two main systems have been designed for use in yeast two-hybrid. The first 

system uses the yeast transcription factor Gal4 (Chien et al., 1991) and the second uses
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the bacterial operator binding protein LexA (Golemis and Khazak, 1997). While Gal4 

plasmids contain a nuclear localisation signal (NLS), directing the expressed hybrid 

protein to the nucleus, LexA plasmids do not contain the NLS and the baits enter the 

nucleus provided they are below the size exclusion limit of the nuclear pore (Brent and 

Finley, Jr., 1997). It is not recommended, therefore, to use the LexA DBD with large 

full-length constructs unless the NLS signal is also introduced. A second difference 

between the systems is that the Gal4 DBD can utilise multiple reporter genes that 

contain different promoter sequences, such as G all, Gal2 and Gal7 (James et al., 1996) 

(Corrick et al., 1996). The LexA DBD, on the other hand, has only the LexA operator 

driving the expression of the reporter gene making this system prone to false positives. 

Recently, two new DBDs have been introduced: the bacteriophage X repressor protein 

(Serebriiskii et al., 1999) and the DBD of the estrogen receptor (ER) protein (Le 

Douarin et al., 1995). Neither has been used widely so far.

The Gal4 yeast DBD was chosen in the present study to generate the chimaeric 

protein Zic2-DBD for two main reasons. Firstly, the Gal4 DBD is compatible with the 

host yeast strain PJ69-4A which contains Gal4 specific promoters that drive the 

expression of the selectable genes. Moreover, the plasmid (see section 5.2.3) contains 

the URA2 gene, which can complement the minus uracil {ura~) genotype of the host 

yeast strain allowing selection and maintenance of the recombinant clones.

5.1.2.1 PJ69-4A host yeast strain

When screening for protein interactions, the host yeast strain is the most 

important component in order to avoid false positives. The yeast must have selectable 

reporter/s, such as histidine, driven by a promoter that is compatible with the DBD used 

to generate the bait fusion protein. For instance, if  the Gal4 DBD is used, the selectable 

reporter needs to be under control of a promoter specific to Gal4, such as the Gall 

promoter, so that reporter transcription-based selection of an interaction can be
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achieved. Moreover, if  the Gal4 system is used, the yeast strain must contain mutations 

in the endogenous Gal4 and its repressor Gal80 to avoid interference with the fusion 

proteins (Brent et al., 1997). In addition, the host yeast strain must have auxotropic 

mutations, which allow selection and maintenance of the bait/prey plasmids by 

complementation of the yeast strain genotype.
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Figure 5.2 Diagrammatic representation of the two-hybrid components

(A) The first hybrid protein contains the protein of interest (X) fused to the DNA 

binding domain (DBD). This bait can bind to the promoter (P) but needs the activation 

domain to activate transcription. (B) The second hybrid, prey, consists of the library- 

encoded proteins (Y) fused to the activation domain (AD). When prey and bait are co­

transformed into yeast cells, an interaction can occur between the protein o f interest (X) 

and the library-encoding protein (Y). This interaction brings the activator domain into 

close proximity with the DNA binding domain, leading to the activation of the 

selectable reporter. The selectable reporter complements the auxotrophic mutation in the 

yeast strain, allowing growth of the yeast on a selection medium.
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To identify Zic2 protein-binding partners the PJ69-4A host yeast strain was used (James 

et al., 1996). PJ69-4A has been genetically modified to contain the histidine (his), 

adenine (ade) and LacZ reporter genes driven by three Gal4-specific promoters. These 

promoters, Gall, Gal2 and Gal7 respond to the same Gal4 DBD and can be activated to 

induce high levels of expression (Bram et al., 1986). In this chapter, I will refer to the 

histidine reporter as GAL1-HIS3, the adenine reporter as GAL2-ADE2 and the LacZ 

reporter as GAL7-lacZ.

The PJ69-4A yeast strain has auxotropic mutations for histidine and adenine 

allowing, in the case of an interaction, complementation of the his' and ade' genotype 

by the transcriptional activation of the selectable reporters GAL1-HIS3 and GAL2-ADE2 

(James et al., 1996). Two more auxotropic mutations are found in PJ69-4A, URA3 and 

LEU2, that can be complemented by the presence of the bait and prey plasmids which 

express uracil and leucine respectively, allowing the selection of recombinants after 

transformation (see Figure 5.3 for constructs).

5.1.2.2 Mouse E9.5-10.5 embryonic library

To identify protein partners for Zic2 that have a potential role in the regulation 

of neurulation, a mouse embryonic library prepared from neurulation stage cDNA was 

required. For this reason a VP 16-mouse E9.5-10.5 cDNA library was used to screen for 

Zic2 protein partners.

Unlike the DBD and host yeast strain, the AD is exchangeable. The only 

requirement is that the selectable amino acid for maintenance of the plasmid has to be 

different from that of both the bait plasmid and the selectable reporters of the host yeast 

strain. Three different ADs are commonly used, the difference between them being the 

strength of activation provided: B42 is a weak activator, Gal4 is moderate whereas 

VP 16 is a very strong activator (Brent et al., 1997).
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The VP 16 E9.5-10.5 mouse library was originally designed to be used for 

identification of novel bHLH proteins that are capable of interacting with E proteins 

(Hollenberg et al., 1995). The library was prepared using the random priming approach, 

which allows amplification of the primary cDNA pool with primers containing one 

restriction enzyme site (Wang and Brown, 1991). After amplification, the cDNA can be 

digested with the appropriate restriction enzyme and cloned into the AD vector, creating 

prey clones representing the expressed genes at this particular gestational stage. The 

initial library contained 5 x 106 clones with cDNA fragments of 350 to 700 nucleotides 

in length.

The VP 16 mouse embryonic library was kindly provided by Professor Peter 

Scambler, Molecular Medicine Unit at the Institute of Child Health, UCL, whose 

laboratory had used it successfully in yeast two-hybrid analysis in the past (Hollenberg 

et al., 1995;Magnaghi et al., 1998)
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5.2 METHODS

5.2.1 Cloning oiZic2 constructs for yeast two-hybrid analysis

Constructs were designed to contain either the entire open reading frame, or only 

the zinc finger DNA binding domain of Zic2. Both coding sequences were cloned in 

frame with the cassette encoding the Gal4 DNA binding domain (see Fig. 5.3 for vector 

map) in order to generate Zic2-Gal4 fusion proteins.

Full-length Zic2 was amplified from a PEBOS-Zic2 plasmid kindly donated by 

Jun Aruga (Mizugishi et al., 2001b). However, after checking the identity of the 

fragment by sequencing, the last coding codon and the stop codon were found to be 

missing from the plasmid. Moreover, the restriction sites where Zic2 was cloned into 

PEBOS-Zic2 were not compatible for cloning full length Zic2 in frame with the Gal4 

pGBDU-C plasmid. Therefore, primers (see Table 5.1 for primer sequence) containing 

the Sail and BamHI sites were designed to amplify the entire open reading frame of the 

Zic2 gene using Accuzyme DNA polymerase (see section 2.3.3.2). The PCR conditions 

used to amplify Zic2 were as follows: denaturation at 94°C for 1 minute, followed by 25 

cycles consisting of: denaturation step at 94°C for 1 minute, primer annealing at 58°C 

for 1 minute, elongation at 72°C for 2 minutes; and a final elongation step at 72°C for 

10 minutes. The PCR product was gel-purified (see section 2.3.5.1) and ligated into the 

Gal4 pGBDU-C plasmid (see section 2.3.6.1).

Of several recombinant clones identified by blue and white selection, only one 

clone failed to show PCR-induced mutations after sequencing (see Table 5.2 for primer 

sequence). This clone, pGEMt-Zic2FL was grown overnight and plasmid DNA was 

purified using a midiprep Kit (see section 2.3.12). The plasmid was then double 

digested with Sail and BamHI, and following gel purification, the digested fragment 

was cloned into the pGBDU-C plasmid (Genbank accession number U70020).
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Recombinants were identified using the DNA shift assay technique. The recombinant 

plasmid was sequenced to check that Zic2 was in frame with the Gal4 activation domain 

and that no mutations were present. This construct was named Gal4-Zic2FL.

To clone the zinc-finger DNA-binding domain into the Gal4 pGBDU-C plasmid, 

primers were designed with EcoRI and Sail sites (see Table 5.1 for primer sequence) 

using the Gal4-Zic2FL as a template for the PCR amplification. The PCR cycling 

reaction was performed as described above, but the elongation step was reduced to 30 

seconds because the DNA fragment to be amplified was shorter. The DNA fragment 

was digested with EcoRI and Sail, purified and ligated. Identification of recombinants 

was performed by colony PCR using PGBD-F and PGBD-R primers flanking the 

muticloning site (see Table 5.3 for primer sequence). Recombinants were sequenced to 

verify identity. The construct was named Gal4-Zic2FD.

5.2.2 Identification of VP16 library interacting clones

Interacting clones that grew on the selection medium were purified as described 

in section 2.5.3. A map of the pVP16 plasmid is provided in Figure 5.3. To obtain the 

inserts for sequencing, PCR amplification was performed using pVP16-F and pVP16-R 

primers flanking the multicloning site of the pVP16 plasmid (see Table 5.3). The PCR 

reaction was performed as follows: denaturation at 94°C for 1 minutes, followed by 35 

cycles consisting of: denaturation at 94°C for 1 minute, primer annealing at 68°C for 1 

minute, elongation at 72°C for 1 minute and a final elongation step at 72°C for 10 

minutes. PCR products were purified using Qiagen spin columns and the pVP16R 

primer was used for sequencing the inserts.
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Figure 5.3 Plasmid maps and restriction enzyme sites of the bait, pGBDU-C and 

prey pVP16

(A) pGBDU-C contains a Gal4 DNA binding cassette followed by a multicloning site 

for cloning cDNAs under the control of the alcohol dehydrogenase 1 (.ADH1) promoter. 

The Gal4 cassette encodes amino acids 1-147 of the GAL4 DBD. For selection in yeast 

the plasmid contains the URA3 gene that complements the ura genotype of the PJ69-4A 

yeast host strain. (B) pVP16 contains the VP 16 activation domain of the herpes simplex 

virus, followed by a multicloning site to insert library cDNAs under control of the 

ADH1 promoter. To allow selection of yeast containing the plasmid, pVP16 contains 

the LEU2 gene that complements the leu genotype of PJ69-4A. Both plasmids have the 

yeast 2p origin of replication and B-lactamase that confers resistance to ampicillin, to 

select for recombinant colonies in bacteria. Maps obtained from (Hollenberg et al., 

1995) and (James et al., 1996).
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Table 5.1 Primers designed to generate Gal4-Zic2FL and Gal4-Zic2FD. Genbank accession number

and the region amplified

Construct Primer sequence

Genbank

accession

number

Amplified

region

(bp)

Zic2FL

F 5’ TCAGGATCCCATGCTTCTGGACGCGGGGCGA3’ 

R 5’ AT CGTCG AGT C AC AC ACGT ACC ATT C ATTGA3 ’

D70848 1592

Zic2FD

F5 ’ GT AG A ATT C A AGC A AG AGCT CAT CT GC A AGT G3 ’ 

R5 ’ CT AGTCG ACTC A AT GGACCTT CAT GT GCTTCCG3 ’

D70848 490

Table 5.2. Primers used in the sequencing of the Gal4-Zic2FL and Gal4-Zic2FD constructs.

Primer Primer sequence

name

2SF1 5 ’ -GG ATCCT GGCC AT GCTT CT GG A-3 ’

2SF2 5 ’-TCAGAACGGCTTCGTGGACT-3 ’

2SF3 5 ’-GCGTGTGCAACCGAGGATAA-3 ’

2SF4 5 ’ -C ACCTT CTTTT CCCT GGCCTT-3 ’

2SF5 5 ’-TACATGCGGCAGCAGTGCAT-3 ’

2SF6 5 ’ -T GGT C AACC AC ATCCGCGT GC A-3 ’

2SF7 5 ’ -GC A AG AT GT GT GAC AAGT CC-3 ’

2SF8 5 ACAAAGCAGCTCCAACCTGT-3 ’

2SF9 5 ’-CCTCCAACTTCAATGAATGG-3 ’

2SR1 5 ’-AATAGGAGCCAACGTGTGCG-3 ’

2SR2 5 ’ -CCCT AGGCGC ATTT GCCC ATT-3 ’

2SR3 5 ’-TTCATAGGGCCGTACTGGTT-3 ’

2SR4 5 ’ - AGCTCGT GC AT GGT GCT G AA A-3 ’

2SR5 5’-GGTTTCTCCCCTGTATGAGTTC-S ’

2SR6 5 ’-TGTGGACGACTCGTAGCCAGA-3 ’

2SR7 5 ’-TATGGCCTCCGGTTGTCCCT-3 ’

2SR8 5 ’ -T GCCCTCG AT GGGTTTT GGGA-3 ’

2SR9 5 ’-GTTTCAGACATACAGAGAG-3 ’
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Table 5.3. Primers flanking the multicloning site of pVP16 and pGBDU-C

Primer

name Prim er sequence

pVP16-F 

p VP 16-R 

PGBD-F 

PGBD-R

5 ’-GAGTTTGAGCAGATGTTT -3’ 

5’- GTTGTAAAACGACGGCCAGT -3’ 

5’-TGCCTCTAACATTGAGACAG -3’ 

5 ’-CACAGTTGAAGTGAACTTGC -3’
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5.3 RESULTS

5.3.1 Genotyping of the host yeast strain

Before starting the screening of the VP 16 mouse embryonic library using Zic2 

constructs, the host yeast strain was genotyped by assessing its growth restriction. PJ69- 

4A has been genetically modified such that growth will occur only in the presence of 

specific amino acids. Three reporter genes Gall-HIS3, Gal2-ADE and Gal7-LacZ allow 

transcriptional activation in the presence of protein interactions that lead to reporter 

gene expression which complement the his' and ade genotype. To select for the 

presence of bait and prey plasmids, the host yeast strain also has the ura~ and leu 

genotypes, which are rescued by expression of the URA3 and LEU2 from the bait and 

prey plasmids respectively.

It was crucial at the start of the study to check that the host yeast strain had not 

mutated and reversed its phenotype enabling it to grow on any of the selectable markers. 

The yeast genotype was assessed by determining the capacity of the PJ69-4A to grow 

on SD “drop out medium”, in which one of the amino acids had been excluded (Fig.

5.4). PJ69-4A yeast was streaked onto a SD plate containing all the amino acids. After 

72 hours in culture colonies became apparent. Four individual colonies were then 

streaked onto each SD-drop out medium and left to grow for 72 hours. PJ69-4A was not 

able to grow on SD-adenine, SD-uracil, SD-methionine, SD-histidine, SD-tryptophan 

and SD-leucine plates, but grew normally on SD-lysine medium, which was used as a 

control (Fig. 5.4). Some growth was detected on the SD-histidine plates due to the leaky 

expression of the Gall-HIS3 reporter gene. This was overcome by addition of 3 mM 3- 

amino-l,2,4-triazole (3AT) to the SD-histidine medium (data not shown). Hence, PJ69- 

4A had the expected genotype {ade, ura~, m et, his', trp , leu ) and therefore was suitable 

for screening the cDNA library.
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5.3.2 Auto-activation of the selectable reporter

Successful two-hybrid selection requires a library that contains clones 

representing a high level of coverage of the genome, a host yeast strain that yields low 

levels of background false positives and, importantly, a bait protein suitable for 

screening (Fields and Stemglanz, 1994). Two problems can arise from using a fusion 

protein as bait. First, the bait protein may not be expressed at sufficient levels, and 

second, the bait protein may have the capacity to activate the selectable reporter on its 

own without the presence of the library plasmid, a phenomenon known as auto­

activation.

To verify that the Gal4-Zic2FL and Gal4-Zic2FD bait constructs did not auto- 

activate the Gall-HIS3 and the Gal2-ADE2 reporters in the absence of VP 16-prey 

constructs, bait constructs were transformed into the PJ69-4A host strain and grown on 

SD-uracil to select recombinants. Four colonies were picked and re-streaked onto SD- 

uracil-histidine containing 3 mM 3AT, or onto SD-uracil-adenine. Growth was 

detectable for both bait proteins, Gal4-Zic2FL and Gal4-Zic2FD, on the SD-uracil- 

histidine with 3 mM 3AT (Fig. 5.5 A), whereas no growth was detected on the SD- 

uracil-adenine for either of the bait constructs (Fig. 5.5 B). Therefore, Gal4-Zic2FL and 

Gal4-Zic2FD baits have the capacity to auto-activate the Gall-HIS3 reporter but not the 

Gal2-ADE2 reporter. Hence, in subsequent screens to identify interacting proteins, only 

the Gal2-ADE2 reporter was used, and positive interactions were detected by growth on 

SD-uracil-leucine-adenine and by activation of Gal7-LacZ, as detected by colour 

change.

5.3.3 Interacting clones from the small-scale transformation of the VP16 library

In order to identify potential Zic2 interacting proteins, the Gal4-Zic2FL was 

used to screen the E9.5-E10.5 mouse VP 16 cDNA library. Gal4-Zic2FL was used for 

the initial screening for two reasons. Firstly, use of the zinc finger DNA binding domain
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Figure 5.4 Genotyping of the host yeast strain PJ69-4A to verify auxotrophic 

mutations

PJ69-4A grows on a SD minimal medium that contains adenine, uracil, histidine, 

methionine, tryptophan, leucine and lysine. (B-H). SD medium plates where one of the 

constituents has been excluded (“dropped out”). Growth o f PJ69-4A requires 

supplementation with adenine (B), uracil (C), histidine (D), methionine (E), tryptophan 

(F) and leucine (G) to grow, but not lysine (arrows in H). Some growth can be seen on 

the SD-HIS plates (arrowheads in D) due to leaky expression of the histidine reporter.

Figure 5.5 Gal4-Zic2FL and Gal4-Zic2FD auto-activate the GAL1-HIS3 selectable 

reporter but not the GAL2-ADE2 reporter

Bait constructs Gal4-Zic2FL (A) and Gal4-Zic2FD (B) were transformed into PJ69-4A 

and recombinants were grown on either SD minus uracil-histidine containing 3 mM 

3AT, or on SD minus uracil-adenine. Note that both constructs are able to complement 

the his' phenotype of PJ69-4A (as shown by growth on SD-ura-his + 3 mM 3AT) 

indicating that the histidine reporter has been activated (arrows in A and B). In contrast, 

the PJ69-4A ade phenotype is not rescued after transformation with either bait 

construct.
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Fig. 5.4
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alone could have caused important interacting partners to be missed, if  they interacted 

with Zic2 through a domain other than the zinc finger. Secondly, small baits that 

represent only one domain of a protein can exhibit large numbers of interactions that do 

not necessarily represent true physiological interactions involving the full length 

protein. Use of the full length Zic2 as bait was more likely to yield a normally folded 

protein similar to the wild type protein, thereby reducing the chance of possible false 

positive interactions.

To initiate the screen a tenth of the volume of the library was transformed to 

assess the number of interacting clones that could be identified. Some baits function as 

strong activators resulting in a large number of positive clones, many of which are 

shown to be false positives on further analysis. If small-scale transformation 

experiments reveal a large number of interacting clones, for example more than 150 

clones, it is advisable not to continue the screening with that particular bait, as ten times 

more clones are likely to require analysis when transforming the whole library.

After co-transformation of the VP 16 mouse embryonic library with Gal4- 

Zic2FL, 45 clones were rescued from growth on SD-uracil-leucine-histidine-adenine 

from 7 x 104 double recombinants. These clones were re-streaked onto SD-uracil- 

leucine-histidine-adenine containing X-a-gal. From the 45 initials clones only 39 were 

Ade+ /3-galactosidase+ (grew on an adenine deficient medium and exhibited /3- 

galactosidase activity). VP 16 library plasmids were purified and sequenced to determine 

their identity. Only in-frame plasmids were considered as possible interactors (Table

5.4). Of the 10 clones that were out of frame, 8 were cloned in the wrong orientation. 

The presence of a cDNA cloned in a 3’-5’ direction can be attributed to the nature of the 

amplification/cloning procedure to generate the VP16 library (see section 5.1.2.1.2).
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5.3.4 Identification of interacting clones from the large-scale transformation

Since a relatively small number of clones resulted from the small-scale 

transformation, the Gal4-Zic2FL construct was next used to screen the whole VP 16 

library (see section 2.5.2.2). After transformation, 800 ade+ fi-galactosidase+ clones 

were recovered that were able to grow on SD-uracil-leucine-histidine-adenine from a 

total of 1 x 106 double recombinants. Plasmids from 250 these clones were recovered 

and purified. Inserts were amplified by PCR and sequenced. Only in frame clones are 

represented in Table 5.5.

5.3.5 Analysis of the VP16 interacting clones

The small and large-scale transformations yielded several candidate genes 

whose protein products appear to interact with Zic2. On the other hand, some of the 

identified clones are predicted to be “false positives”. Because the two-hybrid screen 

identifies interacting clones by transcriptional activation of reporter genes, this makes 

the system prone to identification of artefacts that are not true interactions. The term 

false positive refers to prey proteins that interact with bait protein in the yeast two- 

hybrid system but this interaction fails to be reproduced when clones are further 

analysed biochemically. Genes identified in the screen were compared to a database of 

known false positives (http://www.fccc.edu/research/labs/golemis). RNA binding 

proteins, mitochondrial proteins, cytoskeletal proteins, and heat shock proteins are 

known to commonly give false positive results. From the screening clones, Poly (rC), 

ZFR, Glutaminyl-tRNA, Lysyl-tRNA, all of which encode RNA binding proteins, and 

Hsp70, that encodes a heat shock protein (shown in blue in Tables 5.4 and 5.5), were 

considered as false positives.
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A second approach to focus on the likely proteins of interest was to discard 

those proteins that are not co-expressed or co-localised with Zic2 and are therefore 

unlikely to represent biologically relevant interactions. This type of false positive arises 

from the nature o f the two-hybrid system, in which both bait and prey proteins, are 

directed to the yeast nucleus by nuclear localisation signals within the plasmid 

construct.

Table 5.4. Interacting clones from the small scale transformation of the VP16 E9.5-10.5 mouse

library using Gal4-Zic2FL

Interacting clones
P-gal

activity3

Number of 

clones Nature of the encoded protein

Capicua (Cic) *** 3 HMG box transcription factor

LOC210444 ** 3 EST

Acetylcholinesterase ** 3 Enzyme

Poly(rC) * 3 RNA binding protein

ZFR *** 1 Zinc finger protein

WSB-1 *** 1 SOCS box containing protein

CCR4 ** 1 Transcription factor

NDAP7 *** 3 Neural development associated protein

Glut a rn inyl-1 RNA * 2 RNA binding protein

Lysyl-tRNA ** 1 RNA binding protein

LEKl ** 2 Transcription factor/mitosis

Foxp4 *** 2 Similar to forkhead protein Foxpl

Nidogen 1 *** 2 Transmembrane protein

TCF20 ** 1 Transcription factor

Heat shock cognate *** 1 Heat shock protein

Genes in blue: listed on a database of known false positives 

(http://www.fccc.edu/research/labs/golemisf 

Genes in green: ESTs representing unknown genes 

a (3-gal activity: *** = strong; **= moderate; * = weak
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Table 5.5. Interacting clones from the large scale transformation of the VP16 E9.5-10.5 mouse

library using Gal4-Zic2FL

Interacting clones
P-gal

activity3

Number of 

clones Nature of the encoded protein

T1F9 * 3 Translation initiation factor

Ubiquilin 1 ** 6 Cytoplasmic protein

Hnrpa3 ** 3 Nuclear heteroprotein 3

P 53bpl *** 6 P53 binding protein 1

Midkine *** 5 Growth factor

Similar to P I30 * 3 Unknown

Ncor2 ** 1 Transcription factor

BC023 767.1 *** 4 Unknown

Twisted gastrulation * 4 Signalling molecule

Itgb5 * 1 Transmembrane protein

Fibulin I *** 6 Extracellular matrix protein

Matrin * 4 Extracellular matrix protein

Loc218747 *** 5 Unknown

FIJI 3855 ** 3 Unknown

HSP70 *** 2 Heat shock protein

Kielin ** 5 Signalling molecule

Glis2 *** 4 Zinc finger transcription factor

TIF4 ** 2 Translation initiation factor

Glu tarn i nyl- tRNA * 5 RNA binding protein

Laminin * 3 Extracellular matrix protein

Suppressorof
Variegation **

3 Transcription factor

Notch 3
** 4 Transmembrane protein/ transcription factor

Krox20 *** 5 Transcription factor

Genes in blue: listed on a database of known false positives 

('http://www.fccc.edu/research/labs/golemis)

Genes in green: ESTs rpresenting unknown genes 

a (3-gal activity: *** = strong; **= moderate; * = weak
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Table 5.5 (continued) Interacting clones from the large scale transformation of the VP16 E9.5-10.5

mouse library using Gal4-Zic2FL

Interacting clones p-gal

activity3

Number of 

clones

Nature of the encoded protein

Notch 1 ** 6 HMG box transcription factor

Acetylcholinesterase ** 2 Enzyme

Poly(rC) * 3 RNA binding protein

Jumonji *** 3 Zinc finger protein

Usp5 *** 5 Ubiquitin specific protease

AKO30766.1 4 Unknown

BC003244. / ** 6 Similar to nuclear phosphoprotein

Fibrillin2 * 3 Extracellular matrix protein

PluJ *** 6 Transcription factor

BC03882. / * 2 Zn-finger, C-x8-C-x5-C-x3-H type protein

XM 133779 ** 2 Similar to ATP-binding cassette

X M 013509. 1 *** 5 Unknown

A KOI 7880.1 *** 3 Unknown

BC004063. / *** 4 Unknown

Lysyl-tRNA *** 3 RNA binding protein

Foxp4 *** 4 Transcription factor

A T-hookl *** 5 Transcription factor

Genes in blue: listed on a database of known false positives 

(http://www.fccc.edu/research/labs/golemis)

Genes in green: ESTs representing unknown genes 

a p-gal activity: *** = strong; **= moderate; * = weak
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Therefore, even though a particular interaction may occur between the protein domain 

identified and the bait under experimental conditions, this may not reflect the 

physiological situation. To avoid analysis of such clones, proteins of known function 

such as extracellular matrix proteins, signalling molecules, growth factors or 

extracellular domains of receptors were not further characterised, as they were 

considered unlikely to interact physiologically with the Zic2 transcription factor. Genes 

identified in the library screen that code for extracellular matrix proteins were nidogenl, 

fibu lin l, matrin, laminin, and fibrillin2 and these were not further analysed. Similarly, 

the extracellular-EGF-like domains of the transmembrane receptors Notch3 and Notchl 

that were identified in the screen (see Table 5.5) as well as the extracellular domain of 

integrin beta 5 were considered unlikely to have a physiological interaction with the 

transcription factor Zic2. Finally, two genes that code for the secreted signalling 

molecules, twisted gastrulation and kielin, and a third gene midkine that codes for a 

growth factor that promotes neurite outgrowth, were not analysed, for similar reasons.

The translation imitation factors, TIF9 and TIF4, that bind to RNA polymerase 

to initiate translation, were considered to be likely false positives, since Zic2 functions 

in regulation of transcription, not translation.

Several ESTs that code for unknown genes were identified in the library screen 

(represented in green colour in Tables 5.4 and 5.5). These include LOC210444, 

1200010k03, BC023767.1, LOC218747, FU 13855, AK030766.1, BC003244.1, 

BC03882.1, XM_ 133779, NM_013509.1, AK017880.1, BC004063.1. As the encoded 

proteins have not been characterised, they could fall into any of the false positive 

categories described above. Hence, these clones were not analysed in this thesis 

although functional interactions with Zic2 cannot be ruled out.

From the list of remaining interacting clones, VP16-p53bpl, VP16-Foxp4, 

Vpl6-Glis2, VP16-Krox20, VP16-Jmj, VP16-Athookl, VP16-Capicua and VP16-Plul
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were chosen for further analysis. These genes encode transcription factors that could 

have a physiological role as co-activators or co-repressors of Zic2 function. Several 

clones representing each of the proteins were identified and the 6-galactosidase activity 

was strong in each case (see Tables 5.4 and 5.5), suggesting that these proteins may 

represent genuine Zic2 interacting proteins.

5.3.6 Further analysis of candidate interacting proteins

5.3.6.1 Auto-activation of the selectable reporter by VP16 candidate clones

One type of false positive that can arise from the yeast two-hybrid screen is the 

situation where library proteins bind to the upstream promoter sequence and activate the 

transcription of the selectable reporter, in the absence of the bait. This phenomenon is 

known as auto-activation of the selectable reporter by the prey. Therefore, prior to 

biochemical characterisation of the interacting proteins, clones obtained in the screen 

were tested for their ability to activate the selectable reporter in the absence of Gal4- 

Zic2FL.

C lon es V P 16-F 0 Xp4 (7i-2l6AA), V P 16-G lis2 (i75_3i8AA), V P 16-KrOx2 0 (270-423AA), 

VP 16-CiC(927-11 o o a a ) ,  VP 16-Jumonj i( 1 1 0 2 -1 3 0 0 a a ) ,  VP 16-PLU1 (6 9 2 -7 4 5 a a ) ,  VP16-Athookl(6_ 

107AA) and VP16-p53bpl(i535_i750AA) were purified and transformed into the host yeast 

strain PJ69-4A. The amino acid numbers in brackets for each clone correspond to the 

region of the protein coded for the cDNA identified in the screen. Recombinants were 

grown on SD-leucine plates for 72 hours at 30°C to select for the presence of the pVP16 

library plasmid. Once colonies were apparent, each clone was re-streaked onto a SD- 

leucine-histidine-adenine plate and incubated for 4 days (Fig. 5.6). If auto-activation of 

the selectable reporter occurred, the protein encoded by the library plasmid would 

activate Gall-HIS3 and Gal2-ADE2 producing histidine and adenine, allowing growth 

of the his", ade PJ69-4A yeast strain on the selective medium.
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Figure 5.6 Auto-activation of the selectable reporter by VP16 library proteins

VP16-p53bpl (A, B), VP16-Foxp4 (C, D), VP16-Glis2 (E, F), VP16-Krox20 (G, H), 

VP16-Cic (I, J), VP16-Athookl (K, L), VP16-Jumonji (M, N), VP16-Plul (O, P), were 

transformed into the PJ69-4A and recombinants grown on SD minus leucine selective 

medium (A, C, E, G, I, K, M, O). Recombinant colonies containing VP 16 library 

plasmids were re-streaked onto SD-leucine-histidine-adenine selection medium (B, D, 

F, H, J, L, N, P). VP16-p53bpl (B), VP16-Glis2 (F), VP16-Krox20 (H), VP16-Cic (J), 

VP16-Athookl (L), VP16-Jumonji (N), VP16-Plul (P) did not grow on the SD-leucine- 

histidine-adenine selection medium indicating that they are not able to auto-activate the 

selectable reporters. In contrast, VP16-Foxp4 (D) is able to auto-activate the Gall-HISS 

and Gal2-ADE2 selectable reporters in the absence o f the Gal4-Zic2FL plasmid, as 

shown by its ability to grow on the selection medium lacking histidine and adenine.
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VP16-Glis2, VP16-Krox20, VP16-Capicua, VP16-Jumonji, VP16-PLU1, VP16- 

Athookl and VP16-p53bpl were unable to auto-activate the selectable reporters in these 

assays (Fig. 5.6). Therefore, the interaction obtained in the library screen could not had 

been mediated by self-activation of the reporters, but rather by the interaction with 

Gal4-Zic2FL. One clone, VP16-Foxp4, did grow on SD-leucine-histidine-adenine (Fig. 

5.6) indicating that VP16-Foxp4 can activate the selectable reporters without interacting 

with Gal4-Zic2FL. VP16-Foxp4 was considered to be a false positive and was not 

analysed further.

5.3.6.2 Reproduction of the interaction by re-co-transformation

For library-encoded proteins that did not auto-activate the selectable reporter, it 

was next important to test whether the interaction obtained in the two-hybrid screen was 

reproducible, by co-transformation of the bait and prey into the host yeast strain. 

Interactions could occur between the protein under study and the library-encoding 

protein, but might alternatively be mediated through the direct interaction of the Gal4 

DBD and the prey, or the VP 16 AD with the Zic2 protein. These possibilities can be 

checked by the co-transformation of an empty VP16-AD expressing vector with the 

bait, or the Gal4-DBD empty vector with the prey. If growth occurs on the SD-selection 

medium this clone can be considered as a false positive.

To check whether the interactions were reproducible, the PJ69-4A was co­

transformed with Gal4-Zic2FL and with one of the interacting clones VP16-p53bpl, 

VP16-Cic, VP16-Krox20, VP16-Glis2, VP16-Plul, VP16-Jmj or VP16-At-hookl. After 

transformation, double recombinants were selected by growth on SD-uracil-leucine to 

select for presence of the plasmid and colonies where then re-streaked onto SD-uracil- 

leucine-histidine-adenine to test for the interaction (see Fig. 5.7). The interaction 

between Gal4-Zic2FL and all of the VP 16-fusion proteins was reproducible as seen by
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growth of the double recombinants on the SD-uracil-leucine-histidine-adenine + X-Gal 

selection medium that yielded blue staining, indicating strong /3-galactosidase activity.

To map the region of Zic2 required for the interaction with the library-encoding 

proteins, the Gal4-Zic2FD, which contained only the zinc finger DNA binding domain, 

was co-transformed with the VP 16-interacting clones as above. After transformation, 

double recombinants were grown on SD-uracil-leucine-histidine-adenine medium. Co­

transformation of the Gal4-Zic2FD with VP16-Krox20 or VP16-Glis2 allowed growth 

on the selection medium (Fig. 5.7 E-F and G-H) indicating that these proteins can 

interact with Zic2 through its zinc finger DNA binding domain alone. In contrast, the 

other library clones did not interact with the Gal4-Zic2FD indicating that these 

interactions occurred through other regions of Zic2 protein.

In order to check that the interaction was mediated by contact of Zic2 with the 

library-encoded protein, rather than with VP 16-AD, a plasmid containing only the 

VP16-AD cassette was co-transformed with Gal4-Zic2FL. In this case, the co­

transformed PJ69-4A was not able to grow on the selection medium indicating that 

Gal4-Zic2FL and VP 16 do not interact with each other (Fig 5.7 upper left quadrants). 

However, interaction could also occur by physical contact between the VP 16 library- 

encoded protein and Gal4-DBD, rather than with the Zic2 protein. To assess this 

possibility, VP16-p53bpl, VP16-Cic, VP16-Krox20, VP16-Glis2, VP16-Plul, VP16- 

Jmj and VP16-At-hookl were co-transformed with a plasmid encoding only the Gal4- 

DBD cassette. Double recombinants were selected by growth on SD-uracil-leucine (Fig 

5.7, lower left quadrants) and then tested for the ability to grow on the SD-uracil- 

leucine-histidine-adenine selection medium. None of the double recombinants grew on 

the selection medium indicating that the reporter was not activated and that the VP 16- 

fusion proteins do not interact directly with the Gal4-DBD. These experiments 

demonstrate that the interactions of Glis2, Krox20, Capicua, Jumonji, Plul, VP16-At-
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hookl and p53bpl with Zic2 are reproducible and do not occur through contact with 

VP16-AD or Gal4-DBD. Moreover, the region of interaction of Zic2 with Krox20 and 

Glis2 maps to the zinc finger DNA binding domain of Zic2.
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Figure 5.7 Reproduction of interactions by co-transformation

VP16-p53bpl (A, B), VP16-Cic (C, D), VP16-Krox20 (E, F), VP16-Glis2 (G, H), 

VP16-Plul (I, J), VP16-Jmj (K, L), VP16-Athookl (M, N) were co-transformed with 

either Gal4-Zic2FL (upper right quadrant), Gal4-Zic2FD (lower right quadrant) or Gal4 

(lower left quadrant) constructs into PJ69-4A, and double recombinants selected by 

growth on SD minus uracil-leucine (A, C, E, G, I, K, M). Gal4-Zic2FL was also co­

transformed with empty VP 16 vector (upper left quadrant). Colonies were re-streaked 

onto SD-uracil-leucine-histidine-adenine+XGal (B, D, F, H, J, L, N). Double 

recombinants containing Gal4-Zic2FL and VP16-p53bpl (B), VP16-Cic (D), VP 16- 

Krox20 (F), VP16-Glis2 (H), VP16-Plul (J), VP16-Jmj (L) and VP16-Athookl were 

able to grow on the selective medium and turned blue in the presence of X-Gal (upper 

right quadrant) indicating that the interaction can be reproduced. Moreover, VP 16- 

Krox20 and VP16-Glis2 interacted with Gal4-Zic2FD (F and H) as seen by growth and 

blue colour of the double recombinants (lower right quadrants). This indicates that the 

region of Zic2 required for the interaction with Krox20 and Glis2 is the zinc finger 

DNA binding domain. The Gal4 empty plasmid alone was unable to activate 

transcription of the selectable reporters in the presence o f any of the prey plasmids 

(lower left quadrant in B, D, F, H, J, L, N) indicating that the interaction observed is not 

due to the Gal4 cassette, but rather to the library- encoded protein. Double recombinants 

Gal4-Zic2FL and VP 16 were not able to grow on the selection medium (upper left 

quadrant in B, D, F, H, J, L, N) indicating that the observed interactions did not depend 

on the VP 16 activation domain cassette.
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Fig. 5.7
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Fig. 5.7 continued
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5.4 DISCUSSION

5.4.1 Yeast two-hybrid components used to identify Zic2 protein partners: why so 

many clones?

In the large scale screen to identify potential Zic2 protein partners, 800 clones 

were able to grow on the SD-adenine medium and were /3-galactosidase positive. This 

represents a large number of positive interacting clones, which can be attributed to the 

components of the two-hybrids used in this chapter, such as the VP 16 activation 

domain, the PJ69-4A yeast strain and the nature of the mouse embryonic cDNA library.

Firstly, the library used in the screening for Zic2 was chosen because it contains 

cDNAs from the neurulation stage mouse embryo, within which Zic2 interactions are of 

particular interest for the neurulation phenotype observed in Zic2^u/Ku. However, the 

library encodes fusion proteins with the VP 16 herpes simplex virus activation domain, 

which is a very strong activator compared to the E. coli B42 (Gyuris et al., 1993) and S. 

cerevisiae Gal4 (Brent et al., 1997). This can lead to a large number of interacting 

clones since even a small affinity between bait and prey can trigger transcription of the 

selectable reporters. In those cases where large numbers of interacting clones are 

identified, one way to overcome the strong activation activity of VP 16 is by using a 

library that contains a milder activation domain, such as B42 or Gal4 (Brent et al., 

1997).

Another possible explanation for the large number of interactions is that the 

VP 16 mouse library contains 500 bp inserts that may encode domains that can interact 

with Zic2 even though the full length protein does not interact due to inaccessibility of 

that particular domain. This is probably true for clones identified in the screen such as 

the EGF-like extracellular domains of Notch 1 and Notch3. One approach to address this 

issue is to screen two libraries in parallel, one containing the small fragments like the
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VP 16 mouse embryonic library and a second library containing large fragments of 

cDNA such as a Hela cell library (Gyuris et al., 1993;Lorain et al., 1998). In this case 

those clones identified in both screens are more likely to be true physiological 

interactors.

It is important to notice that each individual clone isolated from the large-scale 

screen appeared on average 3-4 times. Some clones had higher representation such as 

p53bpl,fibulin l or Plul with 6 clones each. This could indicate a higher representation 

of that particular clone in the VP 16 library, which can probably be attributed to the PCR 

amplification step used in the generation of the cDNA library. Those clones that are 

expressed at high levels will have more representation than those which are expressed at 

very low level or which expression is very restricted in the embryo.

5.4.2 Identification of false positives from the VP16 library screen

Clones obtained from the screen can be divided into potential Zic2 candidate 

partners or false positives. False positives are those interactions that, even though they 

can occur in a yeast two-hybrid system, would never occur in nature. This can arise 

from proteins that are not co-expressed, proteins that are not properly folded, “sticky” 

proteins and prey proteins that can auto-activate the selectable reporter.

The PJ69-4A yeast strain has three reporters that are integrated into the genome, 

G all, Gal2 and Gal7. These reporters are different in sequence but all can be activated 

by Gal4. This reduces one type of false positive: preys that are able to auto-activate a 

selectable reporter without the presence of the bait protein. For instance, a prey protein 

could activate Gall reporter alone, but it is less likely to have the potential to activate 

the Gal2 and the Gal7 reporters as the sequences vary from each other. Therefore, 

having 3 different reporters should reduce this type of prey auto-activation. However, it 

was found that the Gal4-Zic2FL and Gal4-Zic2FD fusion proteins had the ability to 

auto-activate the Gall-HIS3 selectable reporter, leaving only the Gal2-ADE2 and the
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Gal7-LacZ to be used as selectable reporters in the screen to identify Zic2 protein 

partners. Since it was not possible to use all three selectable reporters in the screening, 

an increased number of false positives were expected. One example of this type of false 

positive is VP16-Foxp4, which activated the selectable reporter in the absence of Gal4- 

Zic2, indicating that growth on the selective medium was not due to an interaction with 

Zic2.

5.4.3 Candidate Zic2 protein partners

In this chapter I have identified genes whose protein products are potential Zic2 

interactors. In the yeast two-hybrid screen using a mouse embryonic VP 16 cDNA- 

library, p53bpl, Glis2, Krox20, Capicua, Jumonji, Plul and At-hookl were all able to 

interact with Zic2, and these interactions could be reproduced in co-transformation 

experiments.

In addition, I have shown that the region of Zic2 required for interaction with 

Glis2 and Krox20 maps to nucleotides 258-416 of Zic2. This region contains the five 

tandem repeats of the Cys2 -His2 (C2H2) zinc finger domain (ZFD), indicating that Zic2 

interacts with Krox2 and Glis2 through its finger domain region. The domain of Krox20 

and Glis2 in the screen corresponded to the C2H2 ZFD motif ( V P 1 6 - K t o x 2 0 (27o-423a a ) 

and V P 1 6 -G lis 2 (i75-3i8AA)), which is similar in sequence to that of the Gli and Zic 

families of transcription factors. Therefore, the interaction of Zic2 with Krox20 and 

Glis2 appears to be mediated through the ZFD of both proteins, indicating that this 

domain is important not only for DNA binding but also for protein-protein interactions. 

It is notable, that a previous study has shown that Gli3 interacts with Zicl through the 

3rd, 4th and 5th zinc fingers of the ZFD of Zicl (Koyabu et a l , 2001a). Since Krox20 and 

Glis2 contain 3 and 5 tandem repeats of C2H2 zinc fingers respectively, closely related 

to the Gli and Zic family of transcription factors, one could hypothesise that the 

interaction could also be mediated through the 3rd-5th zinc fingers of Zic2. Interestingly,
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the mutation responsible for the Zic2^" phenotype changes a cysteine to serine in the 4th 

zinc finger, presumably abolishing the function of this domain (Elms et al., 2003). This 

mutation might affect the binding of Zic2 to Glis2 and Krox20. Indeed, Sun and co­

workers have shown that mutations of the cysteines or histidines, that chelate the zinc 

ion in the transcription factor Ikaros ZFD, are sufficient to disrupt protein-protein 

interactions (Sun et al., 1996).

5.4.3.1 Do interactions mediated through ZFD represent “true”-interactions?

Similarly to Glis2 and Krox20, the region of Plul and Jmj that interacted with 

Zic2 in the screen contains a ZFD. In these cases, however the ZFD of the Zic2 did not 

appear to be implicated in the interaction, as VP16-Plul and VP16-Jmj did not interact 

with the Gal4-Zic2FD. One could argue that the interactions observed between zinc 

finger domain-containing proteins and Zic2 are the result of non-specific interactions 

between such domains. However, in this case, Jmj and Plul would be expected to 

interact with the ZFD region of Zic2, but instead this interaction appears to occur 

through another domain of the Zic2 protein. Moreover, it has been shown that the 

interaction between ZFD of transcription factors is highly specific. For instance, the 

C2H2 ZFDs of Ikaros and Hunchback have been shown to form homodimers but fail to 

form heterodimers even though the C2H2 ZFD regions are highly similar (McCarty et 

a l , 2003). If interactions mediated through ZFD were non-specific, Ikaros would bind 

to Hunchback but in this particular case Ikaros interacts only with other Ikaros family 

members.

The ZFDs are among the commonest protein motifs in the mammalian 

proteome, with the C2H2 ZFD domain estimated to be present in around 5000 

mammalian genes (Lander, 1996) (Venter et al., 2001). If interactions between ZFDs 

were non-specific, a larger number of positive clones containing this domain would be 

expected. Although Zic2 was found to interact with the ZFD of several proteins,
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interactions with different domains of other proteins were also detected. At-hookl is a 

small transcription factor of only 107 amino acid residues. The clones obtained 

contained almost the full-length protein At-hookl (6-107) including the HMG-box DNA 

binding domain that has been shown, in other proteins, to function in protein-protein 

interactions. For instance, this motif is required in the interaction between the HMG- 

box protein Sox 10 and the Pax3 transcription factor (Lang and Epstein, 2003).

5.4.3.2 Two independent clones from Plul and Cic interact with Zic2

Proteins identified in the screen for which two independent clones were isolated 

were Plul and Cic (VP16-Plul(607-7i2), VP 16-Plul(6 9 2-7 4 5), and VP16-CiC(927-noo) and 

VP16-Cic(982-noo)). Therefore, the interaction of Plul and Cic with Zic2 is not only 

reproducible but can occur independently using partially overlapping sequences. This 

gives importance to the putative Cic-Zic2 and Plul-Zic2 interaction as two different 

VP16-Cic and VP 16-Plul fusion proteins show interaction with Zic2.

5.4.4 Other candidate proteins not analysed in this chapter

In this chapter other possible Zic2-interacting were identified proteins that do 

not fall into the category of false positives. These proteins, CCR4, LEK1, TCF20, 

Ncor2, and Suppressor of Variegation could be potential Zic2 interactors as they encode 

transcription factors. CCR4, LEK1, Ncor2 have been shown to have a role in 

transcriptional regulation (Liu et al., 1998;Denis et al., 2001; Goodwin et al., 1999), 

whereas the functions of TCF20 and suppressor of Variegation are unknown 

(Rajadhyaksha et al., 1998). All five clones showed only moderate /3-galactosidase 

activity compared to p53bpl, Glis2, Krox20, Capicua, Jumonji, Plul and At-hookl, and 

therefore, were not considered for further analysis. However, their possible 

physiological importance as Zic2 interactors cannot be excluded. A moderate /5- 

galactosidase activity could indicate a weak interaction that is still functionally
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important. The next chapter aims to analyse biochemically some of the putative 

interactions identified in the yeast two-hybrid screen.
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CHAPTER 6: ANALYSIS OF CANDIDATE 

ZIC2 INTERACTING PROTEINS
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6.1 INTRODUCTION

The yeast two-hybrid system used in the previous chapter represents a genetic 

tool to identify protein interactions in vivo. However, the system does not represent a 

physiological situation. The yeast two-hybrid is a transcription-based system that 

requires localisation of both interacting proteins to the nucleus; this is accomplished by 

insertion of nuclear localisation signals into the expression plasmids. This could lead to 

localisation of two proteins in the nucleus, which would never be localised to the 

nucleus in a physiological situation. Therefore, if  an observed interaction is 

physiologically relevant, bait and prey proteins should be found to be co-expressed in a 

tissue-specific and subcellular manner.

A further possibility is that protein interactions identified in the yeast two-hybrid 

system are mediated through an endogenous yeast protein that functions as a bridge, 

linking both prey and bait. Therefore, a direct protein interaction between Zic2 and 

potential candidate interacting proteins needs to be demonstrated.

In this chapter, these queries will be addressed by expression analysis of Zic2 

interacting proteins in the neurulation stage mouse embryo, co-immunolocalisation of 

Zic2 and candidate interacting proteins in 293T cells and glutathione-S-transferase pull­

down assays.

6.1.1 Candidate Zic2 interacting proteins analysed in this chapter

Plul, Jumonji and At-hookl represent putative Zic2 interacting proteins, and 

thereby, might regulate Zic2 function. However they were not further analysed in this 

thesis for time reasons. Capicua, Glis2, Krox20 and p53bpl identified from the yeast 

two-hybrid screen were selected for expression and biochemical analysis. Schematic 

representation and putative regions of interaction with Zic2 are shown in Figure 6.1.

180



982 1100
Cic

HMG 1608

175 318
Glis2

ZFD 520

270 423
Krox20

ZFD 470

1535 1750

p53bp1
BCRT 1957

Figure 6.1 Schematic representation of Cic(i.i6 0 8)? GIis2(i-520)> Krox20(i_470) and 

p53bpl(1.1957) proteins

The blue line represents the region of interaction identified in the yeast two-hybrid 

screen (Chapter 5). Red boxes represent: in Cic the HMG box DNA binding domain; in 

Glis2 and Krox20, the ZFD which consists of five and three tandem repeats of C2H2 

ZFD respectively; in p53bpl the BRCT domain involved in the interaction with the p53 

protein. Note that the region of interaction of Glis2 and Krox20 identified in the yeast 

two-hybrid screen corresponds to the zinc finger domain region.

6.1.1.1 Capicua, Cic

Capicua, Cic, encodes a protein of 164 kilo Daltons (kD), which is known to be 

an HMG-box (high mobility group box) transcription factor. Cic is located on mouse 

chromosome 7, spanning 4820 bp, and contains 20 exons. The region of putative 

interaction between Cic and Zic2 identified in the yeast two-hybrid screen was between 

amino acids 982-1100 of Cic. This region lies outside the HMG box DNA binding 

domain. Cic was first identified in Drosophila melanogaster in a transposon P-element
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screen for mutations affecting anterior-posterior and dorso-ventral patterning of the 

embryo (Jimenez et al., 2000). Embryos homozygous for the cic mutation failed to 

develop a segmented trunk whilst developing head and tail structures. In Drosophila Cic 

has been shown to function as a transcriptional repressor downstream of torso (Tor), a 

receptor tyrosine kinase (TRK). Cic interacts with the co-repressor Groucho (Gro) 

(Jimenez et a l, 2000).

The embryonic expression of mouse Cic has not been reported. At postnatal 

stages, Cic is expressed in the CNS, specifically in the granule cell neurons of the 

cerebellum, hippocampus and olfactory bulb (Lee et al., 2002).

6.1.1.2 Glis2

Glis2 (Gli-similar 2), also named NKL, encodes a Kruppel-like zinc finger 

transcription factor that contains five tandem repeats of the C2H2 ZFD homologous to 

the Gli and Zic family of transcription factors (Zhang and Jetten, 2001;Zhang et al., 

2002). Glis2 is composed of six exons and five introns, maps to mouse chromosome 16 

and encodes a 55 kD protein. The region of Glis2 required for interaction with Zic2 

encompassed the ZFD region from amino acids 175 to 318. Glis2 has been shown to be 

expressed in the neural tube, caudal somites, forebrain and limbs (Lamar et al., 

2001;Zhang et al., 2002). The role of Glis2 during mouse development remains 

unknown and a null allele for Glis2 has not yet been described.

Glis2 was identified in two independent studies in different animal systems. The 

first study identified Glis2 in a yeast two-hybrid system to identify proteins that can 

interact with Pax3, although subsequent studies failed to show a physiological 

interaction (Lamar et al., 2001). In a second study Glis2 was identified in a kidney 

cDNA library screen for genes that are homologous to Glisl. So far three members of 

the Glis family of transcription factors have been identified, Glisl-Glis3. The function 

of Glis2 has been studied in chick and frog, where ectopic expression promotes
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neurogenesis as shown by an increase in N-tubulin positive cells (Lamar et al., 2001). 

Interestingly, Glis2 and the other two members, Glisl and Glis3, have been shown to 

bind to the DNA Gli binding sequences (Gli-BS) in electro-mobility shift assay 

(EMSA) experiments (Kim et al., 2003). Likewise, Zic family members have also been 

shown to be able to bind to Gli-BS (Mizugishi et al., 2001a), indicating that these 

transcription factors can bind to similar promoter regions.

6.1.1.3 Krox20

Krox20/EGR2 encodes a zinc finger transcription factor that contains three 

tandem repeats of C2H2 ZFD. Krox20 was initially isolated as an immediate serum 

response gene (Chavrier et al., 1988), and was subsequently found to be expressed in a 

restricted fashion in rhombomeres 3 and 5 (r3/r5) during segmental patterning of the 

hindbrain (Wilkinson et al., 1989). Targeted disruption revealed that Krox20 is required 

for specifying r3/r5 identity (Schneider-Maunoury et al., 1993) (Swiatek and Gridley, 

1993). Further molecular studies have shown that Krox20 directly regulates the 

expression o f the Hoxa-2, Hoxb2 and Eph4 genes, highlighting its importance in the 

specification of r3/r5 identity (Sham et al., 1993) (Theil et al., 1998).

In addition to regulating hindbrain segmentation, Krox20 has also been shown to 

have other roles during mammalian development. Krox20 null mouse embryos display 

severely defective myelination of peripheral nerves (Topilko et al., 1994). This 

phenotype also occurs in humans that harbour mutations in Krox20, resulting in 

peripheral neuropathies (Warner et al., 1998;Bellone et al., 1999). Further analysis of 

Krox20 homozygous mutant embryos has revealed defects in endochondral ossification 

and bone formation suggesting that Krox20 normally has a role in this process (Levi et 

al., 1996). Krox20 is a marker for boundary cap cells which are neural crest derived 

cells that cluster in the spinal nerve entry and exit points (Wilkinson et al., 1989). 

However Krox20 null mice do not show a boundary cap cell phenotype (Schneider-
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Maunoury et al., 1993;Topilko et a l, 1994). The Krox20 protein contains 470 amino 

acids and the region of interaction with Zic2 in this study corresponds to the ZFD 

between amino acids 270-423.

6.1.1.4 p53 binding protein 1

p53 binding protein 1 is a member of the BRCA1 carboxy terminal (BRCT) 

repeat family (Bork et al., 1997). This family includes the BRCA1 and BARD1 

proteins, mutations in which have been associated with breast and ovarian cancer 

respectively (Scully and Livingston, 2000). p53bpl was identified in a yeast two-hybrid 

screen to find proteins that interact with the p53 tumour-suppressor protein (Franzen et 

al., 1991) and was subsequently shown to function as a transcriptional activator of p53. 

The role of p53bpl in DNA damage response after irradiation has been focus of several 

studies (Abraham, 2002). After DNA damage, p53bpl is activated by phosphorylation 

and binds to p53 that in turn activates transcription of genes required for cell cycle 

arrest and p53-mediated apoptosis. The role of p53bpl in tumorigenesis has been shown 

in vivo by targeted disruption ofp53bpl in mouse. p53bpl null mice are viable, immune 

deficient and cancer prone but do not exhibit NTDs (Ward et a l, 2003). The putative 

region of interaction of p53bpl with Zic2 encompasses amino acids 1535 to 1750, a 

region that lies next to the BCRT domain known to interact with p53.
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6.2 METHODS

6.2.1 Generation of Cic and p53bpl mRNA riboprobes

Primers were designed to specifically amplify Cic and p53bpl cDNA regions by 

PCR. Table 6.1 shows the PCR conditions and Table 6.2 shows the primer sequences, 

cDNA region, and method for generating sense and antisense probes. PCR products 

were gel purified and cloned into a pGEM-T vector.

Table 6.1 The PCR conditions to amplify Cic and p 53bp l cDNA

Cic pS3bpl

MgCl2 1.5 mM 1.0 mM

Annealing temp and 58 C 61 C

number o f cycles 25 cycles 25 cycles

Table 6.2 Primers designed to generate Cic and p53bp l probes

Probe Primer sequence

NCBI

accession

number

Amplified

region

Sense and 

antisense

p53bp

1

F 5 ’AGAATGCCAGCTTCGAGCAGG 3’

R 5 ’ATACCACAGGCAGTTGCAAGG 3’

MMU414734

500 bp 

From 5291 - 

5791*

Notl (sense) 
T7polymerase; 
Apal (antisense) 
Sp6 polymerase

Cic F 5 ’ TTCCAGTTCGGCGCGGAATGT 3’

R 5 ’ ATCTCGGTCATTGCGGCTTCTC 3 ’

AF363690

442 bp 

From 4988- 

5430*

Notl (sense)
T7polymerase; 
Apal (antisense) 
Sp6 polymerase

*Note t iat the base number corresponds only to the Genbank accession numbers given.

6.2.2 Plasmids used to generate constructs

Due to the lack of available antibodies to the native proteins, Zic2, Krox20, 

Glis2, Cic and p53bpl were epitope-tagged using either pcDNA-flag or pcDNA-myc 

vectors (Invitrogen) in order to be able to co-immunolocalise Zic2 with the candidate 

interacting proteins. The vector was modified to contain the flag or myc epitope 

inserted into a KpnI-BamHI site.
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6.2.3 Cloning and generation of flag and myc epitope tag proteins

To generate flag-Zic2, the Gal4-Zic2FL construct (section 5.2.1) was digested 

with EcoRI and Sail restriction enzymes to release Zic2 full-length cDNA and the 

fragment was gel purified. The Zic2 cDNA fragment was cloned into the EcoRI and 

Xhol sites of the pcDNA3.1-flag plasmid.

The full length myc-Cic, myc-Cic59 8-i608 and the empty pcDNA3.1-myc vector 

were gifts from Dr. Paul Scotting, Children’s Brain Tumour Research Centre, Institute 

of Genetics, University of Nottingham, Queen’s Medical Centre. The pcDNA3.1 vector 

was modified by insertion of the myc cassette into a Kpnl and BamHI site.

To generate myc-tagged Glis2, Krox20 and p53bpl, primers were designed to 

contain the restriction site required for cloning and amplify Glis2, Krox20 and P53bpl 

cDNAs by PCR (see Table 6.3 for PCR conditions and Table 6.4 for primers and 

restriction sites used for cloning). The amplified cDNAs and pcDNA3.1 myc plasmid 

were restriction enzyme digested with the appropriate enzymes and ligated to generate 

the myc-tagged proteins.

A myc-Calmin(i_4 5 5) construct was used as a negative control in the GST pull­

down assay and was provided by Dr. Annia Koziell, Molecular Medicine Unit, Institute 

of Child Health , UCL. The HA-Glil(2 4 i-7 8 i) construct was used as a positive control in 

the GST pull-down assay and was provided by Dr. Fujita, Laboratory for Molecular 

Cell Biology, UCL.

6.2.4 Cloning and generation of constructs used in GST pull-down assays

To generate fusion proteins between Zic2 and glutathione S-transferase (GST), 

the Zic2FL cDNA was cloned into an EcoRI-Sall site of the pGEX-4T plasmid 

(Amershambiosciences). The GST-Krox20 construct was kindly donated by Dr. Patrick 

Chamay, Laboratoire de Biologie Moleculaire du Developpement, INSERM, Ecole 

Normale Superieure, Paris.
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Table 6.3 PCR conditions to amplify Glis2, Krox20 and p53bpl to generate myc epitope tagged

proteins

Glis2 Krox20 P53bpl

MgCl2 1.5 mM 1.5 mM 1.0 mM

Annealing temp and 58 °C 55 °C 61 °C

number o f cycles 25 cycles 25 cycles 25 cycles

Table 6.4 Primers designed to generate myc-Glis2, myc-Krox20, myc-p53bpl

Construct Primer sequence Genbank

accession

number

Amplified

region

(bp)

Glis2

F 5 ’-GACGCGGCCGCTGCACTCCTTGGACGAGCCCCT-3 ’ 

Notl

R 5 ’ -GCGCT CG AGTC AGTTT ACC AC AGCTGGTTTG-3 ’ 

Xhol

AF325913

1565 bp

(from

25-1590)

Krox20

F 5 ’ -GGCG A ATT CAT G A ACGG AGT GGCGGG AG AT GG3 ’ 

EcoRI

R 5 ’ GGCCTCGAGTCAGTGTTCCTGGTTCGAGAGGTG3 ’ 

Xhol

D70848

1262 bp

(from

393-1655)

p53bpl

F 5 ’-GGCGG ATCCAGAATGCCAGCTTCGAGCAG-3 ’ 

BamHI

F 5 ’-GGCCTCGAGTCAATACCACAGGCAGTTGC-3 ’ 

Xhol

MMU414

734

500 bp 

(from 

5291- 

5791)

Sequences in blue correspond to the restriction enzyme sites used for cloning.
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Table 6.5 Primers used in the sequencing of the constructs

Primer Primer sequence
name

Glis2Fl 5 ’-CCTTGGACGAGCCCCTCGACC- 3’

Glis2F2 5 ’-CTGAGAAGGTGGACGGACGC- 3 ’

Glis2F3 5 ’-CTCATTCACATCCGGACACACA- 3’

Glis2F4 5’- GACAGTGGCTCCTATGTCAG- 3’

Glis2Rl 5 ’-GCCCAGCTCTCGATGCAAAGC- 3’

Glis2R2 5 ’-ATAGCGAAGTGGCTGGAAATCC- 3’

Glis2R3 5 ’-CTTCTCACCTGTGTGGGAGCG- 3’

Glis2R4 5 ’-GGCAGAACAGCCTGGCAGC- 3’

Glis2R5 5 ’-CACAGCTGGTTTGAGCAGCAC- 3’

Krox20Fl 5 ’ -GG AG AG AAG AG ACCCT GGATCT - 3’

Krox20F2 5 ’ -CG A A AGCCGTTTCCCTGT CCTCT - 3’

Krox20F3 5 ’ -CC AC AC AAGCCCTTCC AGT GT C- 3’

Krox20Rl 5 ’-AGGGGTGACCCCTTGCAAGA- 3’

Krox20R2 5 ’ -GGC AGGT GGT GCGG ATT AT A- 3 ’

Krox20R3 5 ’-GTGTCCTGGTTCGAGAGGTGC- 3’

p53bplFl 5 ’ -T AT CCTT G A AG ACTT C A AT G- 3’

p53bplR l 5 ’-CTTGAATGGTGCTGCTTCAC- 3’



6.3 RESULTS

6.3.1 Co-expression of Zic2 with p53bpl and Cic

To determine whether the candidate Zic2 interacting proteins identified in the 

yeast two-hybrid system were co-expressed with Zic2, whole mount in situ 

hybridisation was performed for those genes whose pattern of expression had not been 

reported previously. Expression of Cic and p53bpl was found to be widespread 

throughout the E8.5-9.5 neurulation-stage embryo. Both genes were expressed in the 

forebrain, hindbrain and spinal neural tube (Fig. 6.3 A, D and B, E respectively), with 

expression o f p53bpl being more intense and widespread than Cic. Compared with the 

generalised expression patterns of Cic and p53bpl, Zic2 is expressed in quite specific 

domains (Fig. 6.3 C, F) in the brain, dorsal spinal cord and somites. Zic2 expression 

overlapped with Cic and p53bpl in the forebrain, hindbrain and upper spinal neural 

tube, at the level o f the heart. In the PNP region, Cic was not expressed at E8.5 (Fig. 6.3 

A), but expression became visible at E9.5 (Fig. 6.3 D). Towards the stage of PNP 

closure p53bpl was already expressed in the PNP at E8.5 (Fig. 6.3 B) and this 

expression continued at E 9.5 (Fig. 6.3 E). Therefore, Cic and p53bpl have overlapping 

expression patterns during neurulation and are co-expressed with Zic2, particularly in 

the PNP region.

Glis2 has been shown to be expressed in the forebrain, dorsal neural tube and 

limbs (Lamar et al., 2001;Zhang et al., 2001) which overlaps with the expression 

pattern of Zic2 reported in Chapter 3 and Fig. 6.3 C and F. Similarly, Krox20 has been 

shown to be expressed in the rhombomeres 3 and 5 o f the hindbrain in the neurulation 

stage embryo (Wilkinson et al., 1989), pattern that overlaps with Zic2. Hence, Zic2 is 

co-expressed with Glis2 and Krox20 during neurulation.
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Figure 6.3

p53bp1

G I  H

■>

Cic-sense P53bp1 -sense

Figure 6.3 Localisation of Cic (A, D), p53bpl (B, E) and Zic2 (C, F) mRNA by 

whole mount in situ hybridisation during neurulation stages (E8.5-9.5) in CD1 

mouse embryos

Cic is expressed in the forebrain and midbrain (asterisks in A and B), hindbrain and 

upper spinal neural tube (white arrowheads in A and D). Expression also becomes 

apparent in the PNP at E9.5 (black arrowheads in D).p53bpl expression is stronger and 

more widespread than Cic, with all tissues except the heart showing mRNA transcripts.

As described in Chapter 3, Zic2 (C, F) is expressed in the forebrain and midbrain (white 

asterisks in C-F), in the hindbrain and spinal neural tube at the level of the heart (white 

arrowheads) and in the PNP region (black arrowheads). Therefore Zic2 co-localises with Cic and 

p51 bpl, although Cic and p53bpl are also expressed in Zic2 negative areas Sense probes for Cic 

and p53bpl (G and H respectively) did not give any specific signal.
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6.3.2 Zic2 co-localises with p53bpl, Cic, Glis2 and Krox20 in 293T cells

To analyse the subcellular localisation of Zic2 and candidate interacting 

proteins, immunolocalisation was performed using flag or myc epitope-tagged proteins 

which were transiently co-expressed into 293T cells. Immunohistochemical analysis 

using anti-flag and anti-myc antibodies revealed that flag-Zic2 (green) and the myc- 

tagged interacting proteins (myc-Cic, myc-Krox20, myc-Glis2 and myc-p53bpl (red)), 

all localise to the nucleus as confirmed by 4’-6-diamidino-2-phenylindole (DAPI) 

staining (see Fig. 6.4). DAPI forms fluorescent complexes with double stranded DNA 

and stains the nucleus (Fig. 6.4 D, H, L, P). When flag-Zic2 is co-expressed with myc- 

Cic, myc-Krox20, myc-Glis2 or myc-p53bpl in the same cell (Fig. 6.4 A-D, E-H, I-L, 

M-P respectively), both proteins are localised to the nucleus, which can be seen in the 

merged image (Fig. 6.3 C, G, K, O white arrowheads). Therefore, Zic2 co-localises to 

the nucleus with Cic, Krox20, Glis2 and p53bpl when expressed in 293T cells.

6.3.3 GSTpull-down assay to verify interactions found in the yeast two-hybrid 

screen

In order to examine whether the interaction observed in the yeast two-hybrid 

screen represented a direct interaction between Zic2 and Glis2, Krox20, Cic or p53bpl, 

the glutathione-s-transferase pull-down assay was performed. In this assay, candidate 

proteins generated by in vitro transcription/translation, are tested for the ability to bind 

directly to the GST-fusion protein, which is immobilised on glutathione sepharose 

beads.
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6.3.3.1 Purification of GST-Zic2 fusion protein and GST

To obtain the GST and GST-Zic2 fusion proteins, pGEX and pGEX-Zic2 

plasmids were transformed into BL21 cells. Protein induction was achieved by addition 

of LPTG to a final concentration of 0.1 mM to the BL21 cell culture.

Figure 6.4
Flag Myc Merged DAPI

A I

Flag-Zic2 Myc-Kro

I

Flag-Zic2

M |M yc-p53bp1 N

% %

Figure 6.4 Co-immunolocalisation of Zic2 with Cic, Krox20, Glis2 and p53bpl

293T cells were co-transfected with flag-Zic2 (green; A, E, I, M) and either myc-Cic 

(B), myc-Krox20 (F), myc-Glis2 (J) or myc-p53bpl (N) (red). White arrow-heads in 

merged images indicate that Zic2 co-localises to the nucleus with Cic (C), Krox20 (G), 

Glis2 (K) and p53bpl (O) as compared to the DAPI staining of the same field (white 

arrows in D, H, L, P). Scale bar in M represents 20 /mi.
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Two problems can arise when expressing proteins in bacteria. First, the induction of 

protein expression by addition of IPTG may not be successful. Second, the induced 

bacterial expressed protein may be insoluble and therefore cannot be bound to the 

glutathione sepharose beads. To verify that the induction of the protein was successful, 

an aliquot of the BL21-pGEX-Zic2 culture prior to (uninduced fraction) and following 

IPTG induction (induced fraction) were subject to SDS-PAGE and the proteins were 

stained with Coomassie Blue (see Fig. 6.5 A lane U for uninduced and I for induced 

fractions). A band of 80 kD corresponding to the GST-Zic2 fusion protein was seen in 

the induced fraction but was absent from the uninduced fraction. To check if  GST-Zic2 

was insoluble, pellets from the purification step (see section 2.6.1) were electrophoresed 

to visualise the presence of the GST-Zic2 protein (see Fig. 6.5 lanes PI and P2 insoluble 

fractions). The GST-Zic2 fusion protein was present in both the insoluble and the 

soluble fractions (supernatant, S, in Fig. 6.5). The supernatant was incubated with 

glutathinone sepharose beads in order to immobilise GST-Zic2 on the beads and, after 

incubation, a sample was electrophoresed (see Fig. 6.5. 7th lane, bead capture GST- 

Zic2). The GST-Zic2 fusion protein could be seen as a band of 80 kD confirming that 

GST-Zic2 had bound to the sepharose beads.

To obtain GST bound to sepharose beads the same procedure was followed and 

an aliquot was electrophoresed to check for the presence of the GST protein, which has 

a molecular weight of 25 kD (Fig. 6.5, 8th lane, bead capture GST). This experiment 

showed that GST could be immobilised on the glutathione sepharose beads after 

incubation.
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Figure 6.5 Purification of GST and GST-Zic2 fusion protein and in vitro 

translation of proteins used in GST pull-down assays

(A) SDS-PAGE gel stained with Coomassie Blue to show relative amounts o f the IPTG- 

induced GST-Zic2 fusion protein and capture o f the GST-Zic2 fusion protein by 

glutathione-sepharose beads. Lane M corresponds to the protein marker; U: uninduced 

BL21 cell culture; I: IPTG-inducted BL21 cell culture; PI: first pellet corresponding to 

the first insoluble fraction; P2: second pellet corresponding to the second insoluble 

fraction, S: supernatant corresponding to the soluble fraction. Gutathione sepharose 

bead capture of the GST-Zic2 fusion protein can be seen as a band o f 80 kD (arrow). 

Right hand lane corresponds to the glutathione sepharose bead capture of the GST 

protein that yields a band of 25 kD, the expected size of GST. (B) Auto-radiographic 

exposure of [35S]-methionine labeled Glil (61 kD), Zic2 (55 kD), Glis2 (54 kD), 

Krox20 (50 kD), Cic (163 kD), Calmin (41 kD), and p53bpl (30 kD), generated by in 

vitro translation.
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6.3.3.2 In vitro transcription/translation of candidate interacting proteins

To generate [35S]-methionine labelled candidate interacting proteins, flag-Zic2, 

myc-CiC(5 9 8-i6 0 8), myc-p53bpl(i535-i750), myc-Krox20, myc-Glis2, myc-Calmin(i.36i) and 

HA-Gli 1(24i-7 8 i) were used in the in vitro transcription/translation (IVT) reactions. After 

IVT, the candidate proteins were resolved on 10% SDS-PAGE gels and the [35S]- 

methionine labelled proteins were visualised by overnight exposure to autoradiography 

film. Gli 1(24i-78i> Zic2, Glis2, Krox20, Cic(598_i6o8), Calmin(i.36i) and p53bpl(i535.i750) 

proteins were successfully in vitro translated and radioactively labelled, migrating to the 

expected position on SDS-PAGE gels (Fig. 6.5 B).

6.3.3.3 GST-Zic2 co-precipitates with G lil, Glis2, Krox20, Cic and p53bpl

IVT-Glis2, IVT-Krox20, IVT-Cic and IVT-p53bpl were tested for their ability 

to co-precipitate with either the GST or GST-Zic2FL fusion proteins bound to 

sepharose beads (Fig 6.6 A and B). A known Zic2 interacting protein, Glil, was used as 

a positive control in the pull-down assay. In vitro translated Glil interacted directly with 

GST-Zic2 as shown by its ability to co-precipitate with GST-Zic2 bound to beads but 

not with GST alone. In vitro translated Glis2, Krox20, Cic and p53bpl were also able to 

precipitate with GST-Zic2 bound to beads but not with the GST alone, indicating that 

these proteins directly interact with Zic2 like Glil. To test whether the co-precipitation 

of proteins with Zic2 was non-specific, or might have occurred through an interaction 

between the myc tag and Zic2, myc-Calmin(i_36i) was used as a negative control in the 

pull-down assays. Calmin is a novel transmembrane protein that is expressed in testis 

and kidney during mouse development. Calmin has two calponin homology (CH) 

intracellular domain, shared with proteins such as a-actinin, /3-spectrin and dystrophin 

and is thought to bind to cytoskeleton components (Ishisaki et al., 2001). Therefore, 

calmin was predicted to be highly unlikely to interact with Zic2. In vitro translated myc-
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Calmin(i_3 6 i) was incubated with GST-Zic2 or GST bound to beads and no interactions 

were detected. These data suggest that the myc tag is not responsible for the observed 

interactions of Zic2 with myc-Glis2, myc-Krox20, myc-Cic and myc-p53bpl. In all the 

pull-down experiments a tenth of the volume of the IVT generated protein was loaded 

on the SDS-PAGE gel to be able to compare with the amount pulled down by the GST- 

Zic2 (see Fig. 6.6 INPUT 10 % lane in A and B). The intensity of the bands generated 

by binding to GST-Zic2 were approximately the same as the 10% input, suggesting that

T Saround one tenth of the total [ S]-methionine labelled protein had been immobilised on 

the GST-Zic2-sepharose beads.
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Figure 6.6 Interaction between Zic2 and in vitro radioactively labelled G lil, Glis2, 

Krox20, Cic and p53bpl proteins

(A) [35S]-methionine labelled G lil, Glis2, Krox20, and (B) [35S]-methionine labeled 

Cic, Calmin and p53bpl were tested for interaction with GST or GST-Zic2 immobilised 

on glutathione-agarose beads. The top gel image in A and B represents the

35autoradiographic detection of the [ S]-methionine labeled proteins after SDS-PAGE 

and the lower image is the same gel stained with Coomassie Blue. A tenth o f the 

amount of the labelled proteins used in the experiment was loaded as a control (input 

10%) for each protein. Glis2, Krox20, Cic and p53bpl were bound by the GST-Zic2 

fusion protein (band in lanes 6 and 9 in A and lanes 3 and 9 in B) but not by GST alone 

(lanes 2, 5 and 8 in both A and B). Glil was used as a positive control since it has been 

shown to interact with Zic2 and it bound to GST-Zic2 (lane 3 in A). Calmin was used as 

a negative control since this protein has not been functionally associated nor is it co­

expressed with Zic2. Calmin did not bind to either GST or GST-Zic2 (lanes 5 and 6 in 

B).
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6.4 DISCUSSION

6.4.1 Zic2 interacts directly with Glis2, Krox20, Cic and p53bpl in vitro

In this chapter I have shown that the interactions identified in the yeast two- 

hybrid screen between Zic2 and Glis2, Krox20, Cic and p53bpl can also be detected by 

biochemical methods in vitro. The detection of interactions between proteins using the 

GST pull-down assay indicates that there is direct physical interaction, rather than an 

interaction mediated by a third protein that functions as a bridge. As a positive control, 

the Glil protein containing the ZFD was used in the experiment as it has been shown 

previously to interact with Zic2 (Koyabu et al., 2001a). The interaction observed in the 

GST pull-down assay is unlikely to be due to the myc epitope binding to the GST-Zic2 

fusion protein, since a negative control protein, myc-calmin failed to interact with GST- 

Zic2.

Further evidence that the observed binding represents a true physiological 

interaction is provided by the observation that Zic2 is expressed in overlapping domains 

with p53bpl, Cic, Glis2 and Krox20 during embryogenesis. The expression of Krox20 

in the neurulation stage mouse embryos is segment-specific (Wilkinson et a l, 1989), 

with expression in rhombomeres 3 and 5 of the developing hindbrain. Glis2 on the other 

hand, has been shown to be expressed in the limb bud, caudal somites, neural tube and 

telencephalon (Zhang et al., 2002). These sites of expression correlate with the 

embryonic expression of Zic2 in the telencephalon, dorsal somites, dorsal neural tube 

and limb buds. I also found that the expression of Cic and p53bpl is expressed in 

overlapping domains with Zic2.

At the cellular level, Zic2 co-localises with the candidate interacting proteins in 

the nucleus, when they are co-expressed in 293T cells. Taken together, the GST-pull 

down, in situ hybridisation and co-transfection experiments suggest strongly that Zic2
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interacts physiologically with Cic, Glis2, Krox20 and p53bpl, as shown by the yeast 

two-hybrid study.

6.4.2 Does Zic2 interact with Cic, Glis2, Krox20 and p53bpl in vivo?

The results presented in this chapter, and in Chapter 5, do not allow a definitive 

conclusion that the proteins interact in vivo. GST-pull down is an in vitro assay in which 

one of the proteins, in this case Zic2, is expressed and purified in large amounts as a 

GST-fusion protein in bacteria. It is theoretically possible that spurious binding can 

occur owing to abnormal folding of Zic2 in vitro. This could have resulted from 

conformational changes caused by the expression in bacteria, the presence of the GST 

fusion, and/or the process of in vitro transcription/translation which may not produce a 

native folding or correct post-translational modification of proteins. Hence, the binding 

properties of the GST-Zic2 protein in the present study could have been abnormal. On 

the other hand, the similar results obtained in the yeast two-hybrid study and the pull­

down assay are strongly suggestive of a true interaction.

One possible additional approach to investigate the in vivo interaction of Zic2 

with its putative binding proteins is co-immunoprecipitation of the epitope-tagged 

proteins. In this assay, the protein under study is co-expressed in mammalian cells with 

the candidate interacting protein. Cellular lysates are prepared and protein is 

immobilised on beads bearing covalently bound antibody against the protein or its tag. 

As in the GST pull-down assay, the candidate interacting protein is tested for its ability 

to co-precipitate with the complex bound to the beads. Detection of binding is carried 

out by SDS-PAGE and western blotting using an antibody against the second protein or 

its tag. This method has several advantages compared to the GST pull-down assay. 

Firstly, in the co-immunoprecipitation strategy, both proteins are produced in 

mammalian cells, which ensures correct protein folding. Secondly, the interaction 

occurs in vivo rather than in vitro where experimental conditions can affect the
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interaction. The disadvantage of co-immunoprecipitation is that, unlike the in vitro GST 

pull-down assay it does not prove that an interaction is direct, since other binding 

proteins may participate, but will not be detected.

6.4.3 Do Cic, Glis2, Krox20 and p53bpl play a role in the NTD phenotype of Zic2 

mutants?

In Chapter 4, I showed that Zic2 is required for normal morphogenesis of the 

neural tube and when disrupted leads to NTDs. One hypothesis is that the Zic2 

candidate interacting proteins analysed in this chapter could have a direct role in the 

production of the NTD phenotype.

6.4.3.1 Krox20

Knockout mice for Krox20 have been generated by gene targeting (Schneider- 

Maunoury et al., 1993). Homozygous null embryos do not show an NTD phenotype, 

demonstrating a lack of a direct role of Krox20 in the production of the NTDs observed 

in Zic2Ku/Ku embryos. This is not surprising, since the NTDs in Zic2Ku are mainly in the 

lower spine and Krox20 is not expressed in this embryonic region. On the other hand, 

the Krox20-Zic2 interaction suggests a novel physiological role for Zic2 in hindbrain 

development. Indeed aberrant hindbrain patterning has been observed in Zic2Ku/Ku 

embryos (Elms et al., 2003). This study showed that follistatin, which is normally 

expressed specifically in rhombomeres (r) 2, 4 and 6, extends its domain into r3 and r5 

in Zic2Ku/Ku embryos. Moreover, r3 and r5 appear significantly smaller in Zic2Ku/Ku 

embryos compared with wild-type littermates, as shown by the smaller domains of 

Krox20-expressing cells. Therefore, the hindbrain patterning defect observed in 

Zic2Ku/Ku mutant embryos phenocopies embryos null for Krox20, strongly suggesting 

that Zic2 and Krox20 co-operate in embryonic hindbrain patterning and that the 

interaction identified by the yeast two-hybrid assay is indeed physiological. Further
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experiments could be performed to elucidate the involvement of a Krox20-Zic2 

interaction in the specification of r3/r5 identity. Zic2 could act as co-factor that 

represses or activates some of the Krox20 downstream targets. Therefore, it will be 

important to study the expression pattern and levels of mRNA of known Krox20 

downstream targets, such as Eph4 and Hoxb2 in Zic2Ku/Ku embryos. The Krox20-Zic2 

interaction could also be investigated by epistatic analysis, since it would be predicted 

that the hindbrain phenotype of Krox20+/~, Zic2Ku/+ compound heterozygotes should 

phenocopy the hindbrain patterning of Zic2Ku/Ku.

The Drosophila homologue of Zic genes, Opa, has been shown to play a role in 

segmentation of the embryo, controlling parasegment identity by activating the 

expression of wingless (wg) and engrailed (en) (Benedyk et al., 1994). Opa, in contrast 

to other pair-rule genes that specify segment identity, is expressed in a non-restricted 

fashion, and therefore a model has been proposed where Opa specifies boundary 

identity by interacting with spatially restricted transcription factors (Benedyk et al., 

1994). A parallel could be drawn between the segmentation patterning of the 

Drosophila embryos and mouse hindbrain rhombomeres, which are transient, 

segmented structures. Zic2 could mediate rhombomere boundary identity by interacting 

with the transcription factor Krox20, which has a restricted expression domain.

6.4.3.2 p53bpl

Gene targeted mice that are null for p53bpl are viable, immune-deficient and 

cancer prone (Ward et al., 2003). This study suggests that p53bpl is not essential for 

nervous system development. However, the phenotype of p53bpl~/~ embryos in utero 

was not analysed in the knockout mouse and a proportion of embryos dying perinatally 

with NTDs could have been overlooked as in the first description of the p53 knockout 

mice (Donehower et al., 1992;Jacks et al., 1994). The original study of p53 null mice 

showed that mice deficient for p53 protein were developmentally normal and viable, but
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were susceptible to spontaneous tumours. Therefore, it was suggested that p53 did not 

have a role in neural development (Donehower et al., 1992). However, a second study 

showed that a small proportion of homozygous mutant offspring did not survive 

postnatally (Sah et al., 1995). Analysis of p53'/ embryos at E13.5 revealed that a 

proportion of embryos developed exencephaly indicating a role for p53 in cranial 

neurulation. The strong effect of genetic background on the proportion of affected p 5 3 f~ 

embryos indicates an important role for genetic modifier (Sah et al., 1995).

The data implicating p53 in the development of NTDs suggest that a p53bpl- 

Zic2 interaction could have an important role in the exencephaly phenotype of Zic2Ku/Ku 

embryos, as described in Chapter 4. By interacting with p53bpl, Zic2 could regulate its 

binding to p53 and in turn affect p53-mediated cell cycle arrest or apoptosis. Apoptosis 

was studied by TUNEL (terminal deoxynucleotidyltransferase-mediated UTP end 

labelling) staining in mice carrying the knockdown allele of Zic2 (Aruga et al., 1996a). 

Z ic ^ d/Kd embryos exhibited abnormally low levels of apoptosis in the telencephalic roof 

plate, which might account for the abnormal forebrain observed in Zic2Kd/Kd embryos. 

Knockout mice for genes involved in apoptosis such as caspase 9 (Casp9) and Apafl 

display exencephaly attributed to reduced apoptotic cell death in the cranial neural folds 

(Kuida et al., 1998;Cecconi et al., 1998;Hakem et al., 1998). However, increased 

apoptosis can also lead to exencephaly as seen in knockout mice for ApoB, Bel 10 or 

Mdm4, which show increased apoptosis in the cranial neural folds (Farese, Jr. et al., 

1995;Migliorini et al., 2002). Hence, the level of apoptosis must be precisely regulated 

to allow normal completion of cranial neurulation. Further analysis will be necessary to 

investigate the role of a Zic2-p53bpl interaction in the regulation of neural plate 

morphogenesis.
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6.4.3.3 Cic and Glis2

Cic and Glis2 could act as transcriptional repressors or co-activators with Zic2 

and, therefore might be involved in the observed Zic2Ku/Ku NTD phenotype. However, 

because mouse mutants for Cic and Glis2 have not yet been reported, it is difficult at 

present to determine whether these genes play a role in the production of NTDs. It will 

be interesting to determine the phenotype of mice in which these genes are disrupted. In 

Drosophila, Cic has been shown to repress downstream genes of receptor tyrosine 

kinases (RTKs) by interacting with the co-repressor Groucho (Gro)(Jimenez et al., 

2000). If such a repressive interaction was also reproduced in mammals, Cic could 

possibly function as a transcriptional repressor of Zic2. Whatever the mechanism of its 

interaction with Zic2, the co-expression of Cic and Zic2 in the PNP region at E9.5 

makes Cic the best candidate to emerge from the yeast two-hybrid study as a possible 

co-regulator of spinal neurulation, and potential contributor to the spinal NTD 

phenotype of Zic2Ku/Ku. Glis2, on the other hand, is expressed in the cranial neural tube 

and dorsal spinal neural tube, which could indicate a role in regulating the exencephaly 

phenotype of Zic2Ku/Ku.
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CHAPTER 7: GENERAL DISCUSSION
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The overall aim of this thesis was to further understand the role of Zic2 during 

mouse spinal neurulation. To achieve this goal the initial approach was to study the 

expression pattern of Zic genes at the time of neural tube closure (Chapter 3). The 

description of when and where Zic genes are expressed during neurulation was a 

prerequisite in understanding the role of Zic genes in neurulation.

Zic 1-4 are expressed at the time of neural tube closure in distinct but partially 

overlapping domains. Among the four Zic genes examined, only Zic2 and Zic3 were 

found to be expressed in the posterior neuropore region at the time of neural tube 

closure. This observation is in accordance with the spina bifida phenotype reported in 

mouse mutants for these genes. Interestingly, at the time of neural tube closure, Zic2 

was found to be expressed solely in the neural plate, in the region where the neural folds 

are open. This expression pattern suggests that the function of Zic2 during neurulation is 

probably intrinsic to the neural plate. Conversely, Zic3 was found not to be expressed in 

the neural tube indicating an extrinsic mechanism in the production of the neural tube 

defects observed in the Bent tail and Zic3 Knockoutlmut&nt mice. Zicl and Zic4 are not 

expressed in the PNP or caudal region of the embryos suggesting that these genes are 

not involved in regulating closure of the low spinal neural tube. Accordingly, Zicl null 

embryos do not exhibit NTDs. A null mouse for Zic4 has not been reported yet, but 

based on the expression pattern described in Chapter 1 it is unlikely that Zic4 plays a 

role in closure of the lower spinal neural tube.

The requirement for Zic2 in neural tube closure has been reported previously in 

the hypomorphic allele, Zic2Kd. However, similarly to other mouse mutants that exhibit 

neural tube defects, the embryonic basis of the neurulation phenotype is poorly 

described. The next question to be addressed was the direct role of Zic2 in the causation 

of spinal neural tube closure defects. To answer this question the phenotype of a new 

allele, Zic2Ku was studied morphologically (Chapter 4). Interestingly, Zic2Ku/Ku embryos
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were found to lack DLHPs, indicating that Zic2 regulates the morphogenesis of the 

neural tube and could be required for the formation of bending points.

7.1 HYPOTHESIS TO EXPLAIN HOW ZIC2 COULD REGULATE 

DLHP FORMATION

Formation of DLHPs during mouse spinal neurulation is negatively regulated by 

Shh (Ybot-Gonzalez et al., 2002). This has been shown in Shh null embryos where 

DLHPs form during Mode 1 of neurulation compared to the straight neural folds 

characteristic of Mode 1 in wild type embryos. Conversely, DLHPs are inhibited by 

local release of Shh peptide next to the site of bending. In fact, Shh emanating from the 

notochord appears to control the timing of DLHP formation. During Mode 1, Shh is 

strongly expressed and its inhibitory function on DLHP is strong, impeding formation 

of DLHP. As expression of Shh declines along the body axis during the progression of 

neurulation from Mode 2 to Mode 3, the inhibitory action of Shh weakens, allowing 

formation of DLHPs (see Chapter 1 section 1.5.3 and Fig. 1.6).

Interestingly, the surface ectoderm has been shown to be necessary for the 

formation of DLHPs, such that unilateral removal of this embryonic structure leads to 

absence of bending on the operated side (Ybot-Gonzalez et al., 2002). This observation 

suggests that the surface ectoderm signals to the underlying tissue to form DLHPs. This 

led to the hypothesis that Shh emanating from the notochord inhibits DLHP-inducing 

signals during Mode 1 of neurulation. However as neurulation progresses to Mode 2 

and Mode 3, Shh signalling weakens its inhibitory effect on the surface ectoderm- 

derived signals and formation of DLHPs can occur.

How could Zic2 function as part of the molecular mechanism regulating 

DLHPs? Three hypothetical models arise from the morphological data that I have 

presented. In the first model (Fig. 7.1), Zic2 expressed in the neural plate, functions to
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inhibit Shh signalling. During Mode 1 of neurulation Shh expression levels are high and 

Zic2 cannot fully inhibit Shh signalling, leading to inhibition of the DLHP-inducing

Zic2*/+

Model Mode2 Model Mode2

Zic2

Shh

Shh expression levels Shh expression levels

Figure 7.1 Diagram representing a hypothetical model 1 of the function of Zic2 in 

the formation of DLHPs

In this model Zic2 is required during Mode 2 of neurulation to block the Shh inhibition 

of the DLHPs-inducing signals from the surface ectoderm. During Mode 1 of 

neurulation, in Zic2+/+ embryos, Shh influence is strong and can not be overcome by 

Zic2. Hence, Shh inhibits signals from the surface ectoderm that are required for DLHP 

formation. During Mode 2 of neurulation, Shh expression weakens, and Zic2 functions 

to block the inhibitory effect on the DLHPs-inducing signal from the surface ectoderm, 

leading to formation of DLHPs. This mechanism is impaired in Zic2Ku/K* embryos 

where, during Mode 2 of neurulation, signals from the surface ectoderm are still 

inhibited by Shh signalling due to the failure of Zic2 to block its inhibitory effect.
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signals from the surface ectoderm. During Mode 2 of neurulation Shh levels are lower 

and Zic2 is now able to block Shh signalling. In homozygous Z i c embryos 

inhibition of Shh signalling does not occur because the mutation abolishes the ability of 

Zic2 to inhibit Shh signalling. Hence during Mode 2 of neurulation, in Zic2Ku/Ku 

embryos, Shh is still able to inhibit the surface ectoderm DLHP-inducing signal, leading 

to absence of DLHPs and the appearance of Mode 1 morphology. In this model, the 

blocking effect of Zic2 on Shh signalling could be direct, or else mediated by binding of 

Zic2 to a co-factor, which is not present during Mode 1 of neurulation. Although 

speculative, Cic has been shown to interact with Zic2, and interestingly is not expressed 

during Mode 1 of neurulation in the PNP region (Chapter 6). Cic expression in the PNP 

starts during Mode 2 of neurulation and could act as a co-factor required for the 

inhibition of Shh.

A second hypothetical (Figure 7.2) model places Zic2 as a transcription factor 

required to transduce the DLHP-inducing signals from the surface ectoderm to the 

neural plate. In this model, Shh signalling inhibits the action of DLHP-inducing signals 

from the surface ectoderm during Mode 1 of neurulation. This inhibition results in 

impairment of the ability of Zic2 to activate DLHPs at this stage of neurulation. 

However, as the strength of Shh influence decreases in Mode 2, its inhibitory function is 

abolished, so that the signals from the surface ectoderm can act upon the underlying 

neural fold, via Zic2 function, resulting in a Mode 2 morphology with formation of 

DLHPs. In Zic2Ku/Ku embryos, where Zic2 function is impaired, formation of DLHPs 

does not occur because the signals from the surface ectoderm cannot be transduced in 

the neural plate, so that the transition from Mode 1 to Mode 2 does not occur.

A third model (Figure 7.3) envisages that the function of Zic2 is to transduce the 

inhibitory effect of Shh signalling on DLHP-inducing signals from the surface 

ectoderm. During Mode 1 of neurulation, Shh expression is strong and its signalling, via
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Zic2, inhibits the DLHP-inducing signals from the surface ectoderm. As neurulation 

progresses Shh expression decreases and the inhibitory effect on DLHP-inducing 

signals weakens, so that the surface ectoderm can signal to the underlying neural folds 

and induce DLHPs characteristic of Mode 2 of neurulation.

D L H P ^ ii

Z/c2+/+ Zic2Ku/Ku

Model Mode2 Model Mode2

Shh expression levels Shh expression levels

Figure 7.2 Diagram representing a hypothetical model 2 on the function of Zic2 in 

the formation of DLHPs

In this model Zic2 activates DLHPs by transducing the DLHP-inducing signals from the 

surface ectoderm. During Mode 1 of neurulation in Zic2+/+ embryos, Shh inhibits 

signals from the surface ectoderm that are required for DLHPs formation. Zic2 cannot 

act to transduce the signal for formation of DLHPs. During Mode 2 of neurulation, Shh 

expression weakens so that DLHP-inducing signals from the surface ectoderm can be 

transduced by Zic2, leading to formation of DLHPs. This mechanism is impaired in 

Zic2f£y/Ku embryos, where DLHP-inducing signals from the surface ectoderm cannot be 

transduced within the neural folds by Zic2, so DLHPs are not formed.
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However, in Zic2Ku/Ku embryos, where the Zic2 mutation acts as a gain-of- 

function, the decrease of Shh signalling is not recognised and the inhibitory function of 

Zic2 on DLHP-inducing signals from the surface ectoderm persists. Hence, DLHPs are 

absent and a Mode 1 morphology persists.

Z/c2+/+ Zic2Ku/Ku

Model Mode2 Model Mode2

/ f t
DLHP DLHP

DLHP

Zic2 Zic2 Zic2 Zic2

Shh expression levels §hh expression levels

Figure 7.3 Diagram representing a hypothetical model 3 of the function of Zic2 in 

the formation of DLHPs

In this model the inhibitory effect of Shh signalling on DLHP-inducing signals from 

the surface ectoderm is mediated through Zic2. During Mode 1 of neurulation, in wild 

type embryos, Shh is expressed at high levels and inhibits DLHP-inducing signals from 

the surface ectoderm, resulting in straight neural folds. In Mode 2 of neurulation Shh 

weakens and its inhibitory function, mediated through Zic2, is reduced so that DLHP- 

inducing signals from the surface ectoderm result in bending of the neural folds. In this 

model in Zic2Ku/Ku embryos, the mutation acts as a gain-of-function and the inhibition 

becomes constitutively active irrespective of the levels of Shh present. Hence, the neural 

folds in Zic2Ku/Ku embryos do not progress into Mode 2 morphology.
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Further research is required to reveal whether the requirement for Zic2 in DLHP 

formation is mediated through one of the models described above. An approach that has 

been initiated during my research time, but has not yet yielded enough conclusive data, 

is the generation of compound homozygous mutant embryos for Zic2 and Shh. 

Zic2Ku/Ku/ShKf~ embryos were generated from crosses between compound heterozygotes, 

Z ic 2 ^ +/Shh+/-. To obtain Z ic f^ /S h h ^ '  mice, Z i c ^  males were mated to Shh+/' 

females resulting in a quarter of the offspring being Zic2>‘:u */Shh /\  In a second 

generation, crosses between compound heterozygotes produced litters in which one in 

sixteen embryos were expected to be double homozygote. So far, two double 

homozygous embryos have been obtained. Interestingly, both of these embryos exhibit 

spina bifida similar to Zic2Ku/Ku embryos. If this phenotype is observed in further 

Zic2Ku/Ku/Shh'/' embryos, and no DLHPs are found to be present preceding development 

of spina bifida, it may be possible to distinguish between the three models presented 

above.

The first model predicts that abrogation of Shh should lead to rescue of DLHPs 

in double homozygotes, since the absence of Shh, in the presence of disrupted Zic2, 

would allow signals from the surface ectoderm to induce DLHPs. In contrast, models 2 

and 3 both predict that removal of Shh and disruption of Zic2 will be associated with 

persistent absence of DLHPs. In model 2, this is because DLHP-inducing signals from 

the surface ectoderm are not transduced within the neural plate owing to the disruption 

of Zic2 function, irrespective of the simultaneous loss of the Shh inhibition. Moreover, 

in model 3, the mutant form of Zic2 functions as a constitutive inhibitor of DLHPs 

formation, regardless of Shh concentration, so that Zic2Ku/Ku/Shh~/~ compound 

homozygotes lack DLHPs like Zic2Ku/Ku embryos.

At first sight therefore, the Shh/Zic2 double mutant experiment favours models 2 

and 3 over model 1. How can model 2 and model 3 be distinguished? To be able to
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answer this question, we need to know something about the nature of the Kumba 

mutation and whether it leads to a loss of function or gain of function, since model 2 

predicts that Zic2 functions as an activator of downstream signalling and model 3 views 

Zic2 as an inhibitor of downstream events.

The mutation identified in the Kumba mouse lies in the fourth zinc finger of 

Zic2. The zinc finger domain region is known to function in both DNA binding and 

protein-protein interactions. Therefore, the transcriptional activity of Z/c2^M could be 

hampered by the impairment of mutant Zic2Ku protein to directly bind either to the DNA 

or to protein co-factors. Two complementary avenues of research can be followed in the 

future to investigate whether the ZicKu allele affects DNA binding. Firstly, since it has 

recently been shown that Zic2 binds to Gli-binding sequences and to the ApoE promoter 

(Mizugishi et a l , 2001a;Salero et al., 2001), an electro-mobility shift assay (EMSA) 

could be performed to compare the DNA-binding activity of the wild type protein with 

the mutant Zic2Ku protein. In parallel, a reporter assay using the luciferase gene under 

control of the Gli-BS or ApoE promoters could also be used to test whether the 

transcriptional activity of Zic2 is affected by the Kumba mutation. These experiments 

should answer the unresolved question of whether Zic2*“ is a null (loss-of-function) 

allele of Zic2, or whether a constitutive functional change (gain-of-function) is caused 

by the Kumba mutation. At the present, it is unclear whether model 2 or model 3 best fit 

the biology of the Zic2 function in mouse neurulation.

During the course of my research Zic2 has been shown to interact with Gli 

proteins through an interaction that involves the 3rd, 4th and 5th zinc fingers. Since the 

mutation in Kumba lies in the 4th zinc finger, the Gli-Zic2 interaction could be disrupted 

by the mutation. A speculative idea is that the mutation in Zic2 may affect interactions 

with other protein co-factors. However, at the beginning of my research, the proteins 

that interact with Zic2 were not known. To address this question I used the yeast two-
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hybrid approach in order to identify several proteins that bind to Zic2 and could be 

important in mediating Zic2 transcriptional activity. Cic, Glis2, Krox20 and p53bpl 

were all shown to interact with Zic2 in the yeast two-hybrid assay (Chapter 5) and in the 

GST pull- down assay (Chapter 6), providing strong evidence that these interactions 

might also occur in vivo. The identification of these proteins as binding partners 

provides information on the possible physiological functions of Zic2. For instance, the 

Krox20-Zic2 interaction although unrelated to neural tube defects could play a role in 

the regulation of hindbrain segmentation. Cic and Glis2 could directly 

regulate neurulation and therefore obtaining mutant mouse lines for these genes will be 

important. To date, no mutant lines or gene trap ES cells lines have been reported.

In the yeast two-hybrid screen I also identified jumonji, Jmj, as a Zic2 

interacting protein. Although I have not followed up this protein in subsequent 

biochemical assays, because of the lack of time, this protein may be of interest in future 

studies, particularly since the mouse mutant for Jmj exhibits cranial neural tube defects 

(Takeuchi et al., 1999). Therefore, a Zic2-Jmj interaction could be required for cranial 

neural tube closure. One way to further test the functional relevance of this interaction 

would be to generate compound heterozygotes for Zic2Ku and Jmj. If the interaction 

occurs physiologically in the embryo, double heterozygous Zic2Ku/+/Jmj+/~ embryos 

might be expected to exhibit NTDs. Hence, the protein interactions identified in this 

thesis will be useful in designing new experiments to further elucidate the regulation of 

neurulation by Zic2.

In conclusion, this thesis has strengthened our understanding of the role of Zic2 

during neurulation. I have shown that Zic2 is required for the formation of DLHPs at 

lower spinal levels and that this may be the cause of the neurulation phenotype observed 

in Zic2Ku mice. At the molecular level, I have identified putative Zic2-interacting
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partners that may be involved directly in neurulation. Subsequent studies will be able to 

build upon these data and further establish the molecular mechanisms by which Zic2 

regulates neurulation.
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APPENDIX



Possible role of Zic2 in the somite segmentation clock

As shown in Figure 3.3 Zic2 is expressed in the most rostral presomitic (paraxial) 

mesoderm that will give rise to the somites. The presomitic mesoderm (PSM) is the 

unsegmented tissue posterior to the somites, which through gene patterning and changes in 

cell organisation, buds to form the somites at regular intervals of the body axes. The precise 

timing, periodicity and positioning of the somites is controlled by the segmentation clock, 

such that cyclic gene expression in the PSM moves from anterior to posterior axes like a 

wave keeping the timing of maturation of the most anterior cells (reviewed by Giudicelly, 

F. et al., 2004; Kiefer, JC. et al. 2005). Hence cells that are situated in a most anterior 

position express genes of somite boundary and differentiation, maturing and developing 

into the new somites. Genes that control the segmentation clock are characterised by cyclic 

expression within the PSM. Hence Axin2 and lunatic fringe are strongly expressed in the 

anterior PSM and their expression is reduced in the most posterior PSM and this domain 

moves anteriorly with time regulating waves of cell maturation (Aulehla, A. et al., 2003). 

Since expression of Zic2 did not show cyclic expression in the PSM, rather the expression 

was always in the two newly undifferentiated somites, it is possible to hypothisise that Zic2 

does not play a role in regulating the segmentation clock itself. However the possibility that 

Zic2 may be downstream of the genes regulating the segmentation clock is possible and 

intriguing. Zic2 could specify the domain where somite-differentiating genes are activated. 

A second hypothetical possibility could be that Zic2 specifies boundary identity of the 

newly formed somites by binding to spatially restricted co-factors as has been suggested in 

the parasegment boundary formation of the Drosophila body axis (Benedyk, MJ et al., 

1994).



Figure 4.8 Zic2Ku/Ku fails to form DLHPs at any axial level

Sections through the posterior neuropore of a 15 somite wild type embryo (A-D) and a 

Zic2Ku/Ku embryo (E-H) at the level of the dotted lines indicated in the schematic drawing of 

the posterior neuropore. (A-B) Show the presence o f DLHPs (arrows). (E-F) Sections 

through the PNP show that the neural folds have a different morphology compared to 

equivalent axial levels o f the wild type embryos (A, B). The neural folds appear thicker and 

fail to bend dorso-laterally (arrowhead in E). (F) Further caudally the neural folds o f the 

Zic2Ku/Ku embryo appear straight in a V shape (arrowheads in F) in contrast to the wild type 

neural folds, which start to develop DLHPs (arrows in B). At more caudal axial levels no 

significant difference in the neural plate is seen between the wild type PNP (C-D) and the 

Zic2ku/Ku PNP (G-F). Abbreviations: nf, neural folds; np, neural plate; pnp, posterior 

neuropore. Scale bar in A, B, E and F represents 200 pm and in C, D, G, H represents 

100pm. The schematic drawing has been modified from A. Copp 1988.
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