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As part of the diagnosis of liver disease, a Computerised Tomography (CT) scan is 

taken of the patient, which the clinician then uses for assistance in determining the 

presence and extent of the disease. This thesis presents the background, methodology, 

results and future work of a project that employs automated methods to segment liver 

tissue. The clinical motivation behind this work is the desire to facilitate the diagnosis 

of liver disease such as cirrhosis or cancer, assist in volume determination for liver 

transplantation, and possibly assist in measuring the effect of any treatment given to the 

liver.

Previous attempts at automatic segmentation of liver tissue have relied on 2D, low-level 

segmentation techniques, such as thresholding and mathematical morphology, to obtain 

the basic liver structure. The derived boundary can then be smoothed or refined using 

more advanced methods. The 2D results presented in this thesis improve greatly on this 

previous work by using a topology adaptive active contour model to accurately segment 

liver tissue from CT images. The use of conventional snakes for liver segmentation is 

difficult due to the presence of other organs closely surrounding the liver; this new 

technique avoids this problem by adding an inflationary force to the basic snake 

equation, and initialising the snake inside the liver.

The concepts underlying the 2D technique are extended to 3D, and results of full 3D 

segmentation of the liver are presented. The 3D technique makes use of an inflationary 

active surface model which is adaptively reparameterised, according to its size and local 

curvature, in order that it may more accurately segment the organ. Statistical analysis of 

the accuracy of the segmentation is presented for 18 healthy liver datasets, and results of 

the segmentation of unhealthy livers are also shown. The novel work developed during 

the course of this project has possibilities for use in other areas of medical imaging 

research, for example the segmentation of internal liver structures, and the segmentation 

and classification of unhealthy tissue. The possibilities of this future work are discussed 

towards the end of the report.
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1. Introduction

This chapter gives an overview o f the research presented in the thesis. Section 1.1 

provides an overview o f the issues facing liver disease and the technology used in its 

diagnosis and treatment. Section 1.2 details the motivation and purpose behind the 

project. Section 1.3 lists the goals o f the project, defining its scope, and Section 1.4 

provides an outline fo r  the structure to the thesis, along with a brief introduction to the 

content o f  every chapter.

1.1. Context

The liver is the body’s largest internal organ and it is involved with almost all of the 

biochemical pathways that allow growth, fight disease, supply nutrients, provide 

energy, and aid reproduction. It is not surprising, therefore, that several different 

diseases can affect the liver. Cirrhosis is a serious disease, with causes that include 

alcohol consumption and viral hepatitis; while the many different classes of cells that 

form the structure of the liver means that several different cancers can affect the organ, 

primary liver cancer being associated with cirrhosis 60-80% of the time 

(www.livertumour.org)

The incidence of liver disease differs greatly between countries and regions (Seo and 

Park, 2005), and is linked to the consumption of alcohol and other carcinogens. In 

Britain, despite liver cancer not being among the most prevalent of cancers, the 

incidence rate has been steadily increasing in the last 30 years, as Figure 1.1 

demonstrates.

http://www.livertumour.org
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Figure 1.1: Cancer incidence. Number of new cases and age specific incidence rate per 100,000 
population, liver cancer, by sex, UK, 2001 

(http://info, cancerresearchuk. org/cancerstats/types/liver/incidence/)

As part o f  the diagnosis process, a Computerised Tomography (CT) or Magnetic 

Resonance Imaging (MRI) scan may be taken o f  the patient, which the clinician then 

uses to assist in determining the presence or extent of the disease. CT and MRI are 

imaging techniques that are particularly useful for the abdomen as they produce a series 

o f  images representing cross-sectional slices of a patient’s body. CT scans of the 

abdomen are more common due to the increased resolution of the resulting images, 

compared with the equivalent MRI images. A further advantage of CT (with respect to 

image processing) is that the grey values of the images produced are standardised (the 

unit being the Hounsfield unit) so that the same organs/tissues in images taken from 

different patients and different machines have similar grey level values. A disadvantage 

of CT is that the patient is exposed to x-ray radiation during each scan.

Based on C T  images, computer aided diagnostic (CAD) systems have been developed 

that assist clinicians in the diagnosis and treatment of liver disease. However, these 

systems still require a large amount of  user input as the liver needs to be manually 

highlighted, usually by tracing around the boundary using a mouse or mouse-pen. Given

http://info
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that 150 image slices is a normal am ount for a detailed scan, this procedure is invariably 

slow and laborious. For this reason an autom ated tool to achieve the same goal would 

be very useful as it would save a clinician significant am ounts o f time -  time that could 

be spent more productively elsewhere.

1.2. Motivation

1.2.1. Liver segmentation

Im age segm enta tion  is the process o f  delineating an image into two or more distinct 

regions, which are uniform with respect to certain desired properties. Liver 

segm entation refers to the process o f  isolating and highlighting the areas within an 

image (e.g. taken from a C T  scan) that represent liver tissue. While segmentation is 

usually carried out in 2D, a series o f  2D slices may be am algam ated into a 3D dataset, 

thus the entire region that represents the liver in a CT dataset is segmented.

L iver segm entation is useful for several reasons (Seo and Park, 2005; Hermoye, 

Laam ari-Azjal et al.. 2005):

Assistance in the diagnosis o f disease.

Planning o f the pre-surgical operations for hepatic resection.

Assessm ent o f  suitability for transplantation.

Assessing therapy response.

A utom atic detection and definition o f focal lesions.

As m entioned above, manual segm entation o f the liver is a slow process, with a mean 

interaction time o f  25 minutes (Herm oye, Laamari-Azjal, et a l ., 2005) per dataset. As a 

result, an automatic liver segm entation  system has immediate benefits in terms of 

saving time. Furthermore, there is some evidence to suggest that com puter processing



m ay even assist in the detection o f  lesions that manual operators miss (Soler, Delingette 

et al.. 2001).

For many o f the issues listed above, knowledge o f  the volum e  o f  the liver is an 

important factor. As such, an automatic segm entation tool must be able to accurately 

measure liver volume, and this can be considered an important goal for this project.

Previous research has shown that liver segmentation, whether manual or automatic, is 

difficult to carry out with pinpoint accuracy (Lim, Jeong and Ho, 2005). This is largely 

due to three reasons:

The proximity o f  the liver to other abdominal organs that can have similar 

intensity values in a C T  image, such as the pancreas, spleen, heart and 

muscles.

The partial volume effect, where voxels at the boundary between tissues do 

not clearly belong to the region o f either tissue.

The lack o f  a “true' gold-standard for segmentation accuracy. An actual 

volum e value is not available - even if an entire liver removed from the 

patient, the loss o f  fluid and transfer to a different environm ent will greatly 

affect any m easurem ent o f  volume. Furthermore, the am orphous structure o f 

the liver means that the precise location o f its boundary changes with the 

m ovem ent o f  the patient.

T he issues regarding the validation o f automatic segmentation are discussed in further 

detail in C hapter 5; how ever it is worth noting at this point that it may be misleading to 

rely on manual segmentation by a single operator as the gold standard for the validation



19
o f any automatic technique, as there is no guarantee o f  the accuracy o f  the manual 

segmentation.

The specific motivation for the work conducted  in this thesis arose from discussion with 

clinicians at the Radiology departm ent o f University College Hospital (UCH), who 

expressed an interest in the developm ent o f  an algorithm for the automatic segm entation 

o f  liver. The specific requirement in this case is a system that can measure the volume 

o f  functioning liver, as this inform ation can be used to assist both diagnosis and 

treatment o f  disease, and be o f use in o ther situations such as when assessing the 

suitability o f  different livers for their use in transplant operations. After conducting 

literature reviews and discussing the situation with radiologists at UCH, there does not 

appear to be agreem ent as to what level o f  accuracy is required for an automatic 

segm entation algorithm to be o f clinical use -  though the figure o f  ±109f volume has 

been suggested by UCH clinicians.

W hile it is possible that such a system of automatic segmentation may not be deem ed 

suitable to be used directly in terms o f  patient diagnosis and treatment, it may be o f  use 

as a part o f  clinical research into liver disease, as it can reduce the time taken to analyse 

large am ounts o f  data which are used in clinical studies. Other possible uses o f  an 

automatic segm entation  algorithm include the ability to recreate the structure o f the liver 

using 3D com pu ter  graphics, and the use of this structure information to assist with 

treatment planning (for example to plan RF ablation o f  cancerous tissue) and possibly 

even image guided surgery.
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1.2.2. Automatic segmentation

The bulk o f the work in this thesis is concerned with medical image segmentation, and 

Section 2.1 below com prises an in-depth review o f  the literature concerning the subject. 

Pure segm entation techniques usually m ake no assumptions o f  shape or use any a p rio ri 

know ledge o f  the object to be segm ented, how ever it is worth briefly discussing other 

im age processing techniques that have been extensively used in medical im aging to 

achieve segmentation.

Im age registration  is defined as the determ ination o f a geometrical transform that aligns 

two or more images o f the sam e or similar object, occasionally using a series of 

reference points on that object. Registration can be carried out in either 2D, or more 

usually in 3D using volumetric datasets. Registration algorithms can be broadly 

classified into two groups, rigid  and non-rig id . R igid-registration maintains all the 

d istances between points, and usually consists o f  a two-stage process involving a 

translation and a rotation o f the dataset. Non-rigid registration techniques allow changes 

in the ratios o f  distances between points. They are more complex, therefore, yet they 

have greater functionality, especially in the field o f  medical imaging. For example, 

registration o f  non-rigid anatomy both inter- and intra-patient may be impossible using 

only rigid registration, and non-rigid transform ations can be useful to rectify images that 

have been distorted in the acquisition process.

Another m ethod o f  isolating structures within an image is to use a sta tistica l shape  

m odel. These enable segmentation o f  the image with reference to a-priori know ledge of 

the shape o f the object(s) that is (are) to be segmented. They are constructed by 

establishing a set o f  labelled landm ark features using a class of images to be processed. 

This set is known as the ‘training set ' and points are manually selected for each image.



Following this selection, the set o f  points for each image is aligned to one another with 

respect to translation, rotation and scaling, using an iterative algorithm. The variability 

in this model is described using a P oin t D istribution M odel (PDM ) (Cootes, C ooper et 

al., 1992), which is used to constrain the behaviour o f  deformable models that are used 

for segmentation o f  the object in a new  dataset.

During the planning phases o f  the project, it was decided to focus research on pure 

segm entation o f  the liver without the use o f  registration or statistical shape modelling. 

T he liver is a soft tissue, am orphous, organ whose structure varies greatly both inter­

patient and even intra-patient, depending  on the scanning conditions. As a result, the 

correct labelling o f  significant points o f  the liver can be difficult even for a trained 

manual operator. This lack o f shape information propelled early research into seeking a 

m ethod o f autom atic liver segm entation that does not rely on using a p rio ri structural 

know ledge, nor the location o f  significant points either within or on the boundary o f  the 

structure. It is important to note however, that there have been efforts to apply both 

registration and shape modelling algorithms to liver data, and these are d iscussed in 

Section 2.3.

Pure automatic segmentation o f  the liver avoids the inherent problems that face 

registration and shape modelling approaches, but in turn it has several issues that 

require consideration:

Irregular boundary intra patient

Irregular shape inter-patient

The presence o f  contrast enhanced  vascular structure (see Section 5.2)
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Thus, for an automatic segmentation technique to be successful, it is required to 

accurately find the complex boundary of the liver, irrespective of its actual shape.

1.2.3. Validation

A key factor to be considered alongside the development of any segmentation algorithm 

is that of the validation of the algorithm's performance. The 'performance' of an 

algorithm can be split into three aspects: its accuracy, reliability' and efficiency. The 

accuracy of an algorithm is a measure of how successfully it has segmented the desired 

region of the image/dataset, though this is entirely dependent on the reference used to 

determine the accuracy, the gold standard. In many segmentation procedures, the gold 

standard can be defined as 'manual segmentation by an expert', yet this leaves the 

possibility that a manual operator will perform an inaccurate segmentation, thus 

affecting the accuracy results of any automatic technique. Comparing automatic 

techniques to multiple manual segmentations makes some effort to reduce this error, and 

it then becomes possible to use statistical measures of rater reliability (see Chapter 5).

The reliability of an algorithm is equally as important as its accuracy; a segmentation 

technique may give highly accurate results on one dataset yet fail on all others. As a 

result, the more datasets that the algorithm has been tested on, the better the validation. 

In addition, if an algorithm contains adjustable parameters, any effort should be made to 

demonstrate the effect of the changing those parameters can increase its reliability.

Finally, the efficiency of the algorithm should be considered as part of the validation. 

Efficiency can be measured by calculating the time taken and computational resources 

required to obtain segmentation results. While efficiency may be of lesser importance
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when compared with accuracy and reliability, it is important to take it into consideration 

and it can provide an additional measure to compare segmentation algorithms.

1.3. Computerised tomography

In traditional x-ray imaging, the linear attenuation coefficient between the x-ray tube 

and a detector is the measure of the fraction of x-ray that is absorbed by the intervening 

material. At its most basic level, CT involves rotating a tube and detector around an 

object in a fixed plane and sampling the coefficient for each rotation angle, thus 

acquiring a series of projections. By 'smearing' each projection back along it's path, it is 

possible to reconstruct the structure of the material in the plane of the x-rays, and 

generate an image of that slice. CT technology has undergone several generational 

changes since its inception 30 years ago, with the latest spiral-CT techniques capable of 

sampling multiple slices simultaneously (up to 64 on the most modem machines), vastly 

reducing acquisition time and capable of producing clearer images.

Sahani and Kalva (2004), in their review of liver imaging, conclude that "CT suffices 

for most clinical indications", indicating that the use of CT over MRI in liver imaging is 

a compromise between scan resolution, radiation and lesion characterisation. MRI has 

particular advantages over CT; the radiation dose for a CT varies with the mass of the 

patient, but the typical dose of an abdominal scan of a person weighing 75kg is 4mSv 

(Huda, Scalzetti, Roskopf; 2000), whereas the radiation dose of MRI is zero. 

Furthermore, while contrast-enhanced CT (see below) allows the characterisation of 

lesions, it has a lower sensitivity than MRI in characterising those smaller than 1cm 

(Sahani and Kalva, 2004). Yet the main advantage CT has over MRI is the best spatial 

resolution, a lower cost, shorter procedure time, and allowing the patient to hold their
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breath for shorter periods, leading Sahani and Kalva to conclude that "it serves as an 

ideal screening examination for the entire abdomen and pelvis".

Intravenous iodinated contrast media are routinely used in the imaging of the liver. In

the CT modality, by injecting a contrast medium into the blood-stream the linear 

attenuation coefficient of the vascular system is temporarily increased, and a series of 

scans can be carried out during the time that the contrast-enhanced blood flows through 

the body. During these contrast phases (the time-windows in which contrast is present 

in different areas of the vascular system) the intensity of the liver parenchyma in CT 

images differs. For example, in the arterial phase of contrast, the contrast-enhanced 

blood is imaged while still within the arteries of the body, enabling the vascular tree of 

the liver to be visualised while the liver parenchyma remains indistinguishable from 

much of the surrounding connective tissue. During the venous contrast phase, the 

contrast-enhanced blood has perfused into the smaller vessels and capillaries of the 

liver, so raising the mean intensity value of the liver parenchyma. The difference in 

appearance of the liver in the different contrast phases has obvious effects on the

segmentation of the organ, and further discussion on which of the contrast phases is

used for segmentation in this work can be found in Chapter 5.

All the data used within this project was CT in modality and acquired from the 

University College Hospital Radiology department. At the time of each scan, the 

resulting data is tagged with the physical dimensions of the voxels in the three major 

axes (in .r, v and z, measured in millimetres), the duration of the scan, the voltage (kVp), 

the machine model, and other metadata. For each of the datasets used in the project, this 

data is presented in Table 5.3 in Chapter 5. It should be noted at this point that this data 

was different for all of the datasets used; thus, with the notable exception of the choice
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of contrast phase, the source of the data was independent from the segmentation 

procedure i.e. the information presented in Table 5.3 was not used to affect the results of 

the segmentation.

1.4. Liver anatomy

The liver is the body's largest internal organ and largest gland, its actual size depending 

on each individual's height, weight and health. It possesses three surfaces, superior, 

inferior and posterior -  the anterior side represents a sharp boundary dividing the 

superior from the inferior surface. The liver is divided into two major parts, the right 

and left lobe, by the falciform ligament which connects the organ to the diaphragm and 

abdominal wall. The right lobe is up to six times larger than the left lobe, and its left 

inferior part is separated into two 'sub-lobes', the quadrate and caudate, in the area of the 

gall-bladder and inferior vena cava.

The major vessels connected to the liver are the hepatic artery, the portal vein, and the 

hepatic veins. The hepatic artery supplies the liver with oxygenated blood and the 

hepatic veins carry it away, while the hepatic portal vein supplies blood directly from 

the digestive tract (thus allowing the liver to metabolise both nitrogenous and 

carbohydrate materials absorbed from the intestine before they enter the main 

circulation). The arterial tree of the liver is highly complex, as the artery splits into 

several branches, (vaginal, capsular and interlobular) to supply oxygenated blood to the 

various sections and lobes of the organ. The other major vessel pathway in the liver is 

the secretory pathway, which removes secreted bile to either the gall-bladder via the 

cystic duct, or the duodenum via the bile duct. Figure 1.2 shows two drawing of the 

liver.
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J t i f J u  J,*,

Figure 1.2: Anatomy of the liver. Figure (a) shows the superior surface of the liver, figure (b) shows the 
inferior surface of the liver, (http://www.bartleby.com/107/250.html)

1.5. Scope and aims

The goals o f  the projects are defined as:

To develop a 2D automatic segmentation algorithm that segments healthy 

liver tissue from CT image slices with minimum user interaction.

- To  expand the 2D technique so that it may deal with series’ o f  images that 

form the dataset o f  one patient.

- To develop a fully 3D automatic segmentation procedure that segments 

healthy liver tissue from 3D CT datasets, again with minimal user 

interaction.

- To develop validation techniques that allow the comparison of the accuracy 

of  the 2D and 3D techniques.

http://www.bartleby.com/107/250.html
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To make preliminary steps into applying the developed algorithms to the 

segmentation of unhealthy or abnormal liver tissue such as tumours or 

lesions.

1.6. Outline

This section briefly provides an outline for the structure of the thesis.

Chapter 2 is a comprehensive review of the literature that is relevant to the 

scope of the project as defined in Section 1.3. It commences with analysis of 

the literature concerning image processing and segmentation, before 

gradually increasing focus towards areas that are relevant to the research 

carried out in this project.

Chapter 3 introduces the methodology and research carried out during this 

project on using 2D active contour models to segment the liver. The basic 

formation of the active contour is described, along with several novel 

research elements that allow greater functionality for the purposes of the 

segmentation of liver and other structures.

Chapter 4 discusses the methodology of the development of a 3D active 

surface model. The model is a partial extension of the 2D model, yet several 

aspects of novel research work were implemented to ensure its ability to 

accurately segment objects represented in 3D data arrays.

Chapter 5 presents results and discussion of the use of both the 2D and 3D 

techniques to segment both healthy and unhealthy liver tissue. It contains 

details of the techniques used to validate the accuracy of the segmentation, 

as well as numerous charts and figures to demonstrate the success of both 2D 

and 3D algorithms in segmenting the liver. The results are comparable with 

those obtained by other researchers, and several aspects regarding validation
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(an important issue which has been largely ignored by other researchers) are 

discussed.

Chapter 6 concludes the thesis by discussing the results and the possible use 

of the developed techniques in future projects and applications.
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This chapter provides a comprehensive review o f previous research that has bearing 

upon the work carried out in this thesis. It begins by reviewing the literature concerning 

image processing in general, gradually focusing in on the areas that are more relevant 

to this project. There then follows an introduction to the previous research into liver 

segmentation, including recent state-of-the-art publications. The chapter then concludes 

with a brief review o f segmentation work carried out on other organs o f the body.

2.1. Image segmentation

One of the most important stages in the analysis of any sort of image is the intermediary 

step of segmentation. The aim of image segmentation is the domain-independent 

partition of the image into a set of regions, which are visually distinct and uniform with 

respect to certain properties, such as grey level, texture or colour (Sonka and 

Fitzpatrick, 2000). When analysing medical images, such as CT or MR1 scans, 

segmentation techniques are used to isolate specific organs, or regions of organs, within 

the image. Accurate segmentation is of fundamental importance in such applications, as 

any errors to could lead to misdiagnosis and complications in a patient’s treatment.

Segmenting images manually is the most basic method of image segmentation, and is an 

extremely laborious process which requires a trained individual to isolate the features of 

interest by hand. Therefore automatic or semi-automatic segmentation is an important 

goal in medical imaging; research into the subject has seen much activity in the past 

decade, on which this section will elaborate.
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The literature on image segmentation (both for medical images and general, non­

medical images) is extensive, and different techniques have been proposed and proved 

to be effective. The most commonly used segmentation techniques can be broadly 

classified into two groups:

(1) Region-based segmentation techniques use the homogeneity of features in an 

image to classify them as one region or another.

(2) Edge-based segmentation techniques attempt to highlight the boundaries 

between regions with different characteristics.

2.1.1. Region based segmentation

2.1.1.1. Thresholding

The most basic example of region-based segmentation is that of global thresholding 

(Jain, 1988). This technique, given a value somewhere within the range of intensity 

values of an image, simply separates the intensity values of that image into two sets, 

based on whether the intensity is above or below the given value (the threshold). This 

technique, though simple, can be remarkably effective if the image histogram is 

dominantly bimodal. It can also be used to isolate a ‘peak’ of values within an image, 

by applying an upper and lower threshold.

Thresholding is a fast and simple way to segment an image, and it is particularly useful 

in such images where the intensity range of objects that are to be segmented are known 

beforehand. However in most imaging fields (not just medical imaging) the situation 

whereby an entire group of images can be segmented using the same global threshold is 

very rare. For example while, in general, livers from different images will have similar 

Hounsfield unit values (Gao, Heath et al. 1996), applying a standard global threshold 

does not result in effective segmentation of the liver (see Section 5.3.1).
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As a result, if global thresholding is to be used, the threshold values need to be set 

adaptively based on the properties of the image. An early technique proposed involves 

setting the threshold based on a classification model that minimises the probability of 

error (Sonka and Fitzpatrick, 2000); more recent techniques are based on fuzzy logic, 

which assigns a particular object to a particular set based on the object’s similarity' to a 

set. A fuzzy set is a class of points that possesses a continuum of membership grades, 

where there is no sharp boundary between elements that belong to a class and those that 

do not. The membership grade is usually expressed by a membership or characteristic 

function, which assigns to each element in the set a membership grade in the interval 

[0,1] (Li, Zhoa and Cheng, 1995; Tobias and Seara, 2002). In the case of setting global 

thresholds for images, the pixels of the images are the elements in a fuzzy set, and the 

sets themselves are ranges of grey level values. By applying different membership 

functions, different characteristics of an image can be used to assign grey level values to 

one set or another, and thus segment the image into regions based upon the grey level 

value of individual pixels.

While global thresholding is simple and computationally fast, it fails when there is low 

contrast between objects and the surrounding background, if the image is noisy, or if 

background intensity varies significantly across the image. There are a variety of ways 

of combating these effects: applying local thresholds across an image or applying some 

form of pre-processing to the image to improve segmentation (for example applying a 

Gaussian smoothing filter and attempting to reduce image noise).

Ultimately, no matter how carefully a threshold is set it is unlikely that the segmentation 

will be consistently reliable for medical applications, and therefore must be augmented
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with other, higher level techniques. In imaging modalities such as MRI and ultrasound, 

thresholding becomes even less reliable due to shading artifacts and issues of noise. 

However it can provide a quick, simple ‘first guess’ at segmenting an image, which in 

some cases can be used as a base for further analysis.

2.1.1.2. Region growing

Region growing is the opposite of thresholding in that, rather than isolating distinct 

regions immediately, it focuses on adding pixels to a region based on a homogeneity 

criterion (Sonka and Fitzpatrick, 2000). The basic algorithm starts as the user selects a 

seed point for a region, to which neighbouring pixels are added depending on their 

similarity to that region. Therefore, the key point is the criterion by which pixels are 

added to the region -  too weak a criterion and regions will ‘leak’ out and result in 

incorrect segmentation, too strong a criterion and the regions may not grow to their ‘full 

potential’. The basic region growing technique is expanded on by 'split and merge' 

algorithms. Firstly an image is taken as the frame of interest and analysed to decide 

whether all the pixels satisfy a region-similarity constraint. If there are differences, the 

frame of interest is split into (usually) four equal sub-frames, which are then analysed 

recursively using the same techniques, until all of the pixels in a region satisfy the 

similarity test. As the splitting of the frames is arbitrary it is not unusual to find several 

homogenous neighbouring regions; to counter this a merging algorithm is applied after 

each split. Section 2.1.3.2 below describes how region growing can be quite effectively 

combined with edge detection techniques to create very powerful segmentation 

algorithms.

Watershed algorithms (Jain, 1988) simulate a flooding process. An image is identified 

with a topological surface in which the altitude of each point corresponds to the gradient
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value (see Section 2.1.2 below) of the pixel in the image. Holes are pierced in the 

regional minima, and the algorithm simulates the gradual submerging of this relief into 

a body of water. Water flows into the valleys of the image from the holes, and where 

separate areas of water meet a solid boundary is imposed on the image. Once the relief 

is completely covered with water, this comprises the watershed image. The watershed is 

a powerful segmentation tool but its overall performance relies greatly on the algorithm 

used to compute the gradient of the image (Munoz, Freixenet et al., 2003). A 

conventional gradient operator usually produces an over-segmented image, so a region 

merging algorithm must then be deployed to correct the image. Like the thresholding 

technique, watershed algorithms are useful when combined with other algorithms, but 

on their own they require a significant amount of user interaction to obtain consistently 

good results.

2.1.1.3. Texture

Image segmentation by texture is usually a region based procedure that, compared to the 

previous techniques described, is newer, more complex but generally more effective in 

segmenting images that are particularly difficult to segment otherwise (Reed and Hans 

du Buf, 1993). For example, the algorithms are particularly effective in dealing with 

cloud fields in meteorological images, which have long been a source of frustration in 

image processing because of their difficulty to segment. The main purpose of texture 

feature extraction techniques is to map differences in image structures, either stochastic 

or geometric, into differences in grey level value -  these can then be segmented in order 

to extract homogenous regions. The methods to achieve this can be arbitrarily classified 

as region-based and boundary-based, or some a combination of the two.
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2.1.2. Edge based segmentation

The key difference in segmenting an image by its edges is that the gradient of pixel 

intensity is usually the deciding factor in the segmentation. A gradient is an 

approximation of the first order derivative of the image function, and both the 

magnitude and direction of a gradient can be displayed as images.

The simplest method of highlighting the edges in an image, based on the pixel gradient, 

is by applying a convolution filter across the image. In the time (or spatial) domain, 

convolution filters simply apply weighted summations of the pixel intensities in local 

neighbourhoods, and are frequently represented as a numerical array representing a 

kernel, mask, or window. The frequency response of a convolution filter i.e. its effect on 

different spatial frequencies, can be seen by taking the Fourier transform of the filter.

As an example, the Sobel edge detector (Jain, 1988) employs two such 3x3 convolution 

filters, one each in the direction of the x and y axes, see Figure 2.1.

- 1 0 + f ' +1 +  2 + r

Gx = - 2 0 + 2 Gy = 0 0 0

- 1 0 +  1 - 1 - 2 - i

Figure 2.1: The Sobel edge detector. 3x3 convolution kernels are used, 
one is simply the other rotated by 90 °

These kernels are designed to respond maximally to edges running vertically and 

horizontally relative to the pixel grid, one kernel for each of the two perpendicular 

orientations. The kernels can be applied separately to the input image, to produce 

separate measurements of the gradient component in each orientation (call these Gx and 

Gv). These can then be combined together to find the absolute magnitude of the gradient 

at each point. The gradient magnitude is given by
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|G| = ^ G x 2 + G y2 (2 . 1)

which is typically approximated by

|G| = |Gx| + |Gy| (2 .2)

which is much faster to compute.

The result of the edge detector is a largely dark image with the edges highlighted in 

increasing intensity, based upon their strength (i.e. the strength of the image gradient) - 

in frequency terms, the filter has the effect of magnifying high frequencies relative to 

low frequencies.

A similar method to the Sobel operator is the Kirsch compass operator, which applies a 

gradient filter in eight different directions for each pixel and selecting the largest result 

(Russ, 1999). This allows gradients in all eight directions to be used in generating the 

edged image, which improves on the Sobel operator as it better represents edges that are 

not perpendicular to the x and y axes. Another technique is to use the Laplacian 

operator, where an approximation of the second order derivative can also be used to 

detect edges, since the peaks in the first order derivative correspond to the zeros in the 

second order derivative.

Unfortunately the use of edge detectors has its drawbacks. They are extremely sensitive 

to noise, so it is often necessary to apply some sort of smoothing to the image prior to 

detecting edges. There are several methods of reducing image noise; the Marr-Hildreth 

filter (Marr and Hildreth, 1980) smoothes the image with a Gaussian mask before
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calculating the second derivative to detect edges. More advanced smoothing techniques 

are particularly effective at retaining the boundaries of the structure of interest, such as 

wavelets (Mallat, 1999) and anisotropic diffusion (McCool, 1999). However, even with 

non-noisy images, detected edges may not link up into contours, and extending these 

edges to match correctly has proved a difficult problem (Munoz, Freixenet et al., 2003). 

Section 2.4 below describes how combining simple edge-detection with region growing 

has provided more robust segmentation techniques.

Other edge detectors, such as the Canny technique (Jain, 1988) exist, yet the greatest 

problem with simple edge detectors is that they are entirely local and make no 

assumptions about the shape of interest. To this extent, much work has been done on 

higher level, more mathematical techniques.

2.1.2.1. Explicit contour models

Kass et al. first proposed Active Contour Models, or snakes, in 1987 (Kass, Witkin and 

Terzopoulos, 1987). A snake consists of a curve, defined within an image domain, and 

represented by a set of interconnected vertices. It can move under the influence of 

internal forces, derived from within the curve itself, and external forces derived from 

the image data. Research involving snakes has been vigorously pursued since they were 

first proposed and they are used in a wide variety of image processing applications.

Explicitly defined, parametric snakes are the most commonly used active contour 

models, and they allow parametric curves to move towards certain features in an image, 

for example edges. The forces acting on the snake can be split into two varieties:
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1) Internal Forces -  consist of elasticity forces to keep the curve together, and 

bending forces to add stiffness to the curve.

2) External Forces -  can vary greatly depending on the implementation of the 

snake. The most basic force that draws the snake to an edge is a potential force, 

derived from the local pixel gradient.

These energies can be represented by:

E t o t a l  ~  ^mt +  x t  (2-3)

A third type of force exists in the form of attractor and repulsor forces that have the 

effect of pulling the contour towards pre-detected edges within the image, and can be 

calculated as a function of the distance of the curve to an edge. However these forces 

can be cumbersome to implement and as a result are rarely used in modem snake 

algorithms. Further discussion of the implementational details of active contour models 

can be found in Chapter 3.

Despite being a major development in image segmentation and edge detection, the basic 

snake algorithm has several well-documented drawbacks (Mclnemey and Terzopoulos, 

2000).

i. It is quite sensitive to noise, in that a snake vertex may get ‘trapped’ on a noisy 

local edge, which is not the edge of the desired object.

ii. For this reason, traditional snakes have a small capture range i.e. they must be 

initialised quite closely to the boundary of the target object to capture it 

correctly, especially in images that have large amounts of unwanted edges.
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iii. A snake element can move too far across the desired minimum and never come 

back i.e. the snake passes straight through a desired edge.

iv. The fixed geometric parameterisation of a standard snake, in conjunction with 

the internal deformation energy constraints, limits flexibility. This prevents the 

snake from conforming to long tubular shapes, or shapes with significant 

branches.

As a result, several researchers have tried to overcome these limitations. Cohen (1991) 

introduced an inflationary force (or a balloon effect) which, to some extent, reduces 

problems (i), (ii) and (iii) above. The algorithm introduces a second external force, 

which pushes outwards in the direction of the normal vector to the curve at each snake 

element. The parameter of the force I set so that a strong edge can still stop the inflation 

force, but the existence of a pressure force means that the snake can move through 

weak, noisy edges. This force inherently balances the elasticity internal energy term, 

which has the effect of drawing control points closer together and thus 'deflating' the 

contour.

Though Cohen’s technique was an improvement on the basic snake, a more robust 

solution was proposed by Xu and Prince (1998), almost a decade after the original snake 

was published. They introduced a new class of external forces called Gradient Vector 

Flow ( G ^ F )  fields, dense vector fields that are derived from images by minimising an 

energy functional in a variational framework.

The GVF field essentially consists of a field V / that has vectors pointing to gradient- 

derived edges in an image, with the magnitude of the vector increasing as it nears the 

edge. Thus the field points strongly towards object boundaries when very near to those
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boundaries, but dissipates smoothly over homogenous image regions, extending to the 

image border. The GVF field is then used to replace the potential force in the traditional 

snake.

This method successfully addresses several of the problems associated with traditional 

snakes, especially problems (ii) and (iii) above. The GVF field can capture a snake a 

long way from an object boundary and crucially from either side of the object boundary, 

so a GVF snake will never ‘overshoot’ an edge.

While the field enables a snake to be able to deal with concave regions in a much 

improved fashion, it still falls short of solving problem (iv) above. Research by 

Mclnemey and Terzopoulos (2000) proposes a class of deformable contour that 

addresses the topological inflexibility highlighted in problem (iv), while still retaining 

an easily modifiable, explicit parametric framework. Called T-snakes (for ‘topological 

adaptive’ snakes), the model is a discrete approximation to a conventional parametric 

snake model, with internal spring forces, an inflationary balloon-type force and external 

image forces all acting upon control points of the contour. The key difference is that the 

set of vertices and interconnecting elements that describe a T-snake does not remain 

constant during its evolution. As the snake moves under energy forces and after each 

iteration, it is reparameterised with a new set of vertices.

This reparameterisation is achieved first by separating an image into a set of cells by 

using a grid of regular size and shape. At specified stages of the contour's evolution, the 

algorithm removes all references to its current vertices, and creates new vertices at each 

intersection of the contour with the boundaries of the cells. Regional information is 

further enhanced by ‘activating’ grid intersection points as the snake contour passes
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them -  thus the cell data structure maintains a reduced-resolution area representation of 

the region bounded by the contour. This regional information is then used further to 

split and merge two contours by detecting if two separate areas of a contour are sharing 

the same cell. Thus, the T-snake technique directly addresses some of the intrinsic 

internal problems that affect active contour models.

2.1.2.2. Implicit contour models

Implicit active contours have been developed by applying Osher and Sethian’s level set 

evolution technique (Osher and Sethian, 1988) to the segmentation problem. Level set 

models are deformable implicit surfaces where the deformation of a curve is controlled 

by embedding the curve inside a higher dimensional function. For example, in 2D, 

rather than follow the propagation of the curve itself, a level set approach instead takes 

the original curve and builds it into a 3D hyper-surface, which intersects the x-y plane at 

the exact location of the curve. A formulation of the temporal evolution of the level set 

equation is given by

lvH + F (2.4)

where y/(x,y,t) is a multidimensional function of the curve in time, F is a function that 

can depend on external factors such as curvature, normal direction etc., and <f> (in this 

equation) is an image-based speed function that slows the curve at salient edges. Figure 

2.2 shows a diagrammatic representation of a standard stationary level set function.
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T=2

T=1

T=0

Figure 2.2: Level sets. The original (green) front moves outwards and it's position at time T is determined
by slicing the surface at time T.

(http://math.berkeley.edu/~sethian/Semiconductors/ieee_level_set_explain.html)

The main advantage of the level set method is that topology of the curve can change, 

because the curve merely represents the intersection of the plane with the level set 

function at a given time. The main disadvantage to this method is that to actually move 

the curve, it requires the tracking of all the level sets, not just the zero level set 

corresponding to the intersection which requires a high level of computational power. 

To combat this, the narrow band method (Sethian, 1996) focuses only on those grid 

points which are located in a narrow band around the zero level set. So-called fa st 

marching methods (Sethian, 1996) reduce the computational cost even further by only 

considering a front that moves in one direction, and build the level set function one 

section at a time, as the curve propagates.

There are several advantages and disadvantages to using a level set formulation to 

model a curve that could be used as a segmentation tool (Museth, Breen et al., 2002). 

They always produce closed, non-self intersecting surfaces, and as such are free of the 

contour or mesh connectivity issues that can plague explicit models. However, the 

computational power required to model the level set function, even using the narrow 

banding method, is higher than for explicitly defined contours. Also in some situations 

the ability to take exact control over the topology of the curve is preferable -  for

http://math.berkeley.edu/~sethian/Semiconductors/ieee_level_set_explain.html
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example to reverse the direction of movement if over-segmentation has been detected. 

Furthermore, level sets are also disadvantaged by their inability to represent fine, sharp 

features, or long narrow features, such as blood vessels (Museth, Breen et al., 2002).

Another implicit model that can be used for segmentation is the m-rep. M-reps describe 

2D or 3D geometrical shapes through a more unconventional method, by using a 

multiscale medial technique for modelling and rendering. Pizer et a l  (2003) claim their 

method is particularly well suited to modelling anatomical objects, and capturing 

geometric information effectively. The basic premise of an m-rep is that an object is not 

described by a set of points on its surface, but by a set of atoms located along the medial 

axis of a shape, each of which is associated with parameters that describe the surface of 

the object in relation to the medial axis. Segmentation of objects, in both 2D and 3D, is 

achieved by creating the m-rep manually to fit a small scale representation of the image 

dataset. The segmentation process then follows a number of stages at successively 

larger levels of scale, the m-rep deforming to more accurately track the object's 

boundary at each level of scale.

While m-reps are an interesting method of object representation, the advantages over 

using this method over more conventional methods of representation (such as explicit 

definitions of a surface, or implicit level sets) are not clear. When the object to be 

segmented has clear and defined edges that facilitate the discovery of its medial axis, 

the technique has the advantage of simplicity; however for more complex objects, 

where more than one medial axis is taken into consideration, the complexity increases 

as multiple medial axis branches must be used.
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One clear advantage of m-rep segmentation is that, due to the multiscale nature of the 

technique, internal structures can be effectively dismissed, as the boundary of the m-rep 

remains near the boundary of the object to be segmented. However this applies to many 

(if not all) multi-scale segmentation techniques (including other contour models), and 

m-reps maintain a distinct disadvantage of having to be manually, and relatively 

accurately, initialised before segmentation can begin.

2.1.2.3. 3D edge detection

In a parametric 3D model, the internal energy of the contour, which is now a surface, 

has to be calculated in a slightly different way to 2D (Bulpitt and Efford, 1996). Yet the 

basic principles, whereby the movement of a set of control points, representing a 

surface, is determined by a set of equations defining internal and external energies, 

remain the same.

There are a variety of different methods of estimating the energies used to move the 

surface (Cohen and Cohen; 1993; Mclnemey and Terzopoulos, 1996), many of which 

move the surface in a manner that can be encapsulated by equation (2.5).

E = (^< Erhiu + PtE rif(ld + + Eev)
(2.5)

where E  is the force moving the contour, the a  and p  parameters control the internal 

elasticity and rigidity (Eeius, and ) forces, ^controls the strength of forces derived 

from the image dataset (for example, energy derived from the grey value gradient), Eex, 

takes the form of an inflationary force that is calculated using the normal vector for each 

vertex on the surface, and N  is the number of vertices that describe the surface. Its
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internal energies are calculated using the set of vertices surrounding the vertex in 

question (see Section 3.4.2 for more information as to how the energies are calculated at 

each point). It should be noted that in some implementations, Eex, may be calculated in a 

different manner, or may not be present at all, depending on the desired application of 

the surface.

Non-parametric models, such as level set-based models and m-reps, can also be 

extended to a third dimension due to their implicit nature (Osher and Sethian, 1988;

Pizer et al., 2003), and in this case the surface of the model does not need to be 

explicitly described.

2.1.3. Combining region-based and edge-based methods

Both region-based and edge-based methods have advantages and disadvantages and, as 

a result, there have been significant efforts to combine the two and make use of the 

advantages of both techniques. The integration of both groups of segmentation 

techniques can itself be split into two separate strategies (Munoz et. al., 2003):

i. Post-processing integration, where an image is subjected to both region-based 

and edge-based processing separately, and a posteriori attempts are made to fuse 

or integrate the results.

ii. Embedded integration, which attempts to integrate segmentation through the 

definition of new parameters or new decision criterion. For example, previously 

extracted edge information can be used as an active part of a region growing 

technique, thus using boundary information as a means of avoiding the problems 

inherent to region-based techniques.
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2.1.3.1. Post-processing integration

There are three separate approaches to post-processing integration, over-segmentation, 

boundary refinement and selection-evaluation.

Pavlidis and Liow (1990) suggest that the major reason that the region-growing 

technique produces false boundaries is that the definition of region uniformity is too 

strict. Thus they conclude that the results could be significantly improved by checking 

all the region boundaries that could qualify as edges. To achieve this, an image is over­

segmented by setting parameters to specific values that increase the strength of the 

segmentation; both region-based and edge-based techniques are used separately to 

create a large number of boundaries/edges. The results can then be compared and, 

where correspondence exists between the two methods, an edge is preserved; edges 

where no correspondence is recorded are discarded.

The boundary refinement approach considers region-based segmentation as an initial 

approximation -  an initial boundary is obtained usually by region growing or 

thresholding, which is then modified and refined by a higher-level technique. One 

method of doing this is by analysing the image at different resolutions or scales, using a 

pyramid or quad-tree structure, or Gaussian scale space (Spann and Wilson, 1985). The 

basic algorithm usually consists of an upward path which smoothes the image at the 

expense of reducing spatial resolution. This is then counted-balanced by a downward 

path that attempts to increase the resolution while preserving any information obtained 

at the lower resolution. Important work by Spann and Wilson (1985) in the late eighties 

was done in this field, and it has been extended by other researchers including Kim and 

Kim (2003), who use wavelets to lower the resolution of the image in the hope that 

noisy edges are discarded while valid edges are maintained. A watershed algorithm is
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applied to segment the images at low resolution, before wavelets are again used to 

increase the resolution of the image (and segmented region) back to it's native size.

One method of boundary refinement is to use active contour models. Using a low-level 

region technique to obtain a starting contour for a snake avoids one of the technique’s 

major problems, that of initial placement. Work has been done on this technique in the 

medical field; for example, several researchers use active contour models to refine 

initially obtained boundaries for segmentation of the liver (Gao, Heath, Kuszyk and 

Fishman, 1996; Qatameh, Noz, Hyodynmaa, Maguire, Kramer and Crafoord, 2003).

The third approach to post-processing integration is selection-evaluation, which 

involves using different parameters to several distinct region-based results, and using an 

evaluation criterion based on edge-based results to select the best segmentation (Munoz 

et. al., 2003).

2.1.3.2. Embedded integration

There are many ways to integrate edge information into region-based segmentation. At 

the most basic level, edge information can be integrated into a region growing algorithm 

by stopping it from growing when it reaches a pixel that has been previously defined as 

an edge, for example using an edged-image derived from a Sobel or Kirsch filter. 

However there are more advanced techniques to decide which pixel is an edge. Xiaohan 

et al. (1992) propose a homogeneity criterion consisting of the weighted sum of the 

contrast between region and pixel, and the value of the modulus of the gradient of the 

pixel. If the result of this gradient (therefore edge)-based calculation is below a 

threshold, the pixel is included in the growing region. Another method developed by
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Steudel and Glesner (1999) is to use fuzzy logic to detect edges and as a rule for region 

growing.

Similar criterion-based techniques can be applied to watershed algorithms, which due 

their gradient-based nature are a natural combination of region and edge segmentation 

(Munoz, Freixenet et al., 2003). However the major problem with watershed techniques 

remains the exact algorithm that computes the gradient of the image, and the fact that 

noisy images are very difficult to segment correctly - additional noise in the image 

creates incorrect edges which results in the creation of too many separate regions.

One of the most effective embedded integration techniques involves combining active 

contour models with region growing, which results in active region models. The 

external energy term of the snake equation is replaced by a term derived from local 

region information, and the snake elements are allowed to expand or contract according 

to the match between local region information and global model of the region. This 

region-based energy term is derived from all the pixels enclosed by the snake contour, 

and is defined by some evaluation function that measures the ‘goodness’ of the image 

data. Ivins and Porrill (1994) state that the ‘goodness’ function can be any function that 

can be used to assess the pixels within the snake region, which determines the value of 

the function for each particular snake element. One example is a simple binary function 

that is calculated using the mean intensity value of each pixel within the region:

G(I(x,y)) = +1 (l(7(*,y) - pi < ko)

G(I(x,y)) = -1 0(I(x,y) - pi > ko)

(2.6)

(2.7)
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Where G(/(jc,v)) is a parameter to control the region force at pixel (jc, y) in the image /; fi 

is the mean intensity and a  the standard deviation of pixel values computed from a seed 

region that can be selected manually, k is a constant. This functional links a pressure, or 

inflationary, force to the image data, and reverses it to make the region model contract if 

statistical limits are violated.

The result of this is a model that retains the desirable features of both region growing 

and active contour techniques, and is particularly effective at ensuring an active contour 

does not get ‘trapped’ on weak edges which prevent the correct edge from being found. 

Alexander and Buxton (1997) furthered this work with several implementational 

improvements, and compared the performance of several active region model 

implementations which differed with respect the measurements of goodness and the 

method of energy minimisation.

2.2. Meshing and collision detection

For the correct implementation of explicitly defined active surfaces in 3D (see Section 

2.2.2.3), a surface mesh can be used to connect the vertices that describe the surface. A 

mesh can be defined as a set of vertices that are inter-connected by a set of edges, and 

can exist either in:

2D. All vertices and edges lying on the same plane.

3D (surface). The vertices are located at any point in 3D Euclidean space, but 

connecting edges are arranged to form triangular faces to represent a surface.

3D (volume). The vertices are located at any point in 3D Euclidean space, and 

edges connect each vertex to form tetrahedra. Thus the inner volume of the 

structure is represented as well as its surface.
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A mesh can exist in two basic forms, structured and unstructured (Paloc, 2003), see 

Figure 4.1 in Chapter 4. A structured mesh has a relatively rigid vertex-edge 

connectivity paradigm, where each vertex has the same number of connecting edges 

attaching it to its surrounding vertices. Structured meshes are beneficial in situations 

where the mesh is unlikely to deform greatly (such as describing a cylindrical shape or 

other regular, rigid body), as the constraints on their structure facilitate many 

calculations that may involve the mesh. In other situations, however, (such as describing 

the shape of a highly irregular structure, which may alter its shape over time) the 

inability to alter the structure of mesh becomes a hindrance. In the latter situation an 

unstructured mesh is preferable, where the list of connecting edges is unique to each 

vertex, and a wide variety of connectivity paradigms is allowed.

2.2.1. Segmentation using adaptive remeshing

During the movement and evolution (through time) of a surface mesh, such as the 

movement of the vertices used to implement an active surface model, the topology of 

the mesh may change to an extent where it is hindering any further correct movement of 

the vertices. Alternatively, aliasing problems may arise as the distance between the 

vertices of the mesh is so large that the representation of the actual surface is inaccurate. 

These factors can be encapsulated in a concept termed mesh quality\ where a good 

quality mesh is one that has an arbitrary (depending on the application) maximum 

distance between each of its vertices, and a minimum angle (usually 30°) between each 

of its edges.

To ensure good quality, a surface may be remeshed, where the vertices and edges of the 

mesh are reorganised and reparameterised. There are several examples of self- 

reparameterising surface meshes being used for the purposes of segmentation.



50

Mclnemey and Terzopoulos (2000) extend their T-snake into 3D by using T-surfaces. 

The cellular image decomposition is extended into 3D, and intersection points of the 

surface and this grid are deduced. By ‘turning on’ grid intersection vertices as the 

surface boundary passes over them, they use the regional information thus obtained to 

determine locations where the surface intersects, and at each reparameterisation a 

completely new surface is constructed using the structure of the cellular grid.

Park et al. (2001) propose a 3D deformable mesh that employs a non-self-intersection 

force which increases with inverse proportion as the vertices of a mesh approach each 

other, which effectively avoids all problems regarding remeshing. Finally Lachaud and 

Montanvert (1999) implement a fully topologically adaptive model for surface 

intersection and remeshing, which is able to segment medical image datasets in 3D.

2.3. Liver segmentation

Segmentation of the liver is of particular use when computing a three-dimensional (3D) 

rendering of the organ, which has been shown to be helpful for surgical planning prior 

to hepatic resection (Woodhouse, Ney et al., 1994; Soyer, 1991). Currently, 

commercially available 3D rendering packages require a significant amount of manual 

input (Ney, Fishman et al., 1990, Hermoye, Laamari-Azjal et al, 2005) (which is time 

consuming as described above).

Some of the first research done on liver segmentation was by Bae et al. (1993). Their 

technique used simple thresholding to isolate the liver from CT images, using a scheme 

to automatically detect threshold values. Their method was to first detect the abdomen 

boundary using thresholding, and then create a 20x20 pixel region of interest (ROI), 

placing it by essentially guessing where the liver was in relation to the abdomen. Once
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the ROI had been detected, the liver was segmented by applying thresholds within 95% 

of the ROI average value, and the contours obtained were smoothed using B-splines. To 

segment the entire liver, the operator has to choose a slice from the middle of the liver 

so that the ROI will fall within the correct area. From this central slice it is possible to 

segment other slices without operator interaction.

In 1996 there was a further breakthrough in actual segmentation of the liver, presented 

by Gao et al. (1996). They used thresholding, along with morphological opening and 

closing to create an initial contour, which was then modified by a snake-like active 

contour model, based on Fourier ellipses (Staib and Duncan, 1992). The technique 

appears to work fairly well on clear liver images, though no results are presented where 

the liver boundary is less marked. Though the Fourier-based active contour model is 

effective, it is also a more complicated and less adaptable model than the traditional 

energy minimising snake.

More recent work on the segmentation of the liver was published by Qatameh et al. 

(2003). The specific interest of these researchers is the implementation of a ‘whole body 

atlas’ for fast segmentation of future images. In their segmentation scheme, an initial 

‘first guess’ contour for the liver is obtained from a whole body atlas (an average of 

previous segmentation results). A traditional snake is then used to modify the contour to 

fit the liver in the new image, and the result of this segmentation is stored in the body 

atlas.

While this is a usable and robust liver segmentation technique, it suffers from several 

flaws. The first is that it relies on a complex outside source to initialise the snake near 

the liver boundary, neatly circumnavigating but not solving one of the major problems
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associated with snakes. Secondly the basic snake algorithm is very sensitive to its initial 

location, and there false contours exist outside the liver boundary that can cause serious 

problems, especially with an unclear image.

One other effective method of obtaining a rough contour to the liver was developed by 

Shimizu et al. (2003). They used the corresponding CT values from four different input 

images of the same liver (each at a different stage of contrast treatment) to obtain the 

rough contour. The main limitation of this technique is that four complete datasets are 

required for effective segmentation of one liver, computationally it involves four times 

the memory and processing power that is used when analysing a single dataset, and it is 

heavily dependent on the timing of the scans as the contrast agent flows through the 

liver and circulatory system (see Section 5.2).

Hong et. al. (2001) use thresholding and morphology to segment the liver and detect 

tumours wholly encompassed by liver tissue; however they also propose an interesting 

technique to cater for situations where a tumour exists on the edge of the liver i.e. where 

the liver boundary is represented by a tumour. Using their standard thresholding 

methods, this situation results in incorrect segmentation of liver and tumour, however 

by using morphological opening and closing techniques to detect and connect the 

boundaries of the tumour, the boundary of the liver is effectively rebuilt using 

guesswork. The technique certainly addresses a problem not discussed in similar 

literature, and should form the basis of more research.

A level-set approach to liver segmentation was used by Pan and Dawant (2001) to 

segment a total of five livers (a mixture of normal and abnormal) in both 2D and 3D. 

While the topological adaptivity of the level-set snake avoids problems of



53

parameterisation, the selection and usage of a suitable speed function proved a difficult 

problem to overcome, to the extent that a priori knowledge (in the form of detection of 

the skin surface) had to be used to ensure correct segmentation. Although this is the 

only published work that attempts pure 3D segmentation of the liver, the researchers 

had difficulty in constraining the propagation of the front in the third dimension, despite 

the use of a priori information.

There have been some efforts to use other image processing techniques, such as 

registration and statistical shape modeling (Lamecker, Lange and Seebap, 2002) to 

segment the liver. Soler et al. (2001) first use a thresholding and mathematical 

morphology step to segment several significant organs and areas of the abdomen, such 

as the skin, bones and lungs, before registering a liver model with reference to the 

location of other organs. The work makes further effort to use voxel intensity 

information to isolate vascular structure and potentially identify abnormalities, yet its 

reliance on a reference liver model makes it unsuitable for livers that are abnormally 

shaped.

In 2005, several more papers were published on liver segmentation, yet much of the 

work did not expand on the previous research described above. Seo and Park (2005) 

developed several algorithms that allow multiple use of thresholding and masking 

techniques to segment the liver. Lim, Jeong and Ho (2005) use a 2D deformable contour 

model, relying again on thresholding and morphological operators for its initial 

placement. Liu, Zhao and Kijewski (2005) use a Gradient Vector Flow snake to 

segment the healthy and unhealthy liver in 2D, their technique relying on a 

preprocessing thresholding step to obtain the initial contour; to date, this is the most 

comprehensive research on liver segmentation, yet it is still constrained to 2D. In all of
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this recent research, the only method used to measure the success of the segmentation is 

by area/volume comparison of the results of the automatic segmentation and those 

obtained by manual segmentation by a single expert.

Table 2.1 and 2.2 summarise, where quantitative data exists, the liver segmentation 

results of the methods reviewed in this section, in addition to results from papers 

published in late 2006 after the completion of the work presented in this thesis. The 

results must be viewed carefully to ascertain the relative success of each technique, as 

the validation methods used to judge accuracy are not always the same for each research 

group. Table 2.1 presents the results of 2D automatic segmentation to a single manual 

segmentation, and Table 2.2 presents results from 3D automatic segmentation, including 

those obtained by active shape models. Both tables list the method used to validate the 

segmentation accuracy for each result. Chapter 6 critically analyses these results and 

compares them with the results of the work presented in this thesis.

Author Seo & 
Park

Liu & 
Zhao

Bae et 
al.

Lim et 
al.

Pan & 
Dawant

Number of 
Datasets 12 20 4 6 5

Measurement
method Area Area Area Area Overlap

Result 8.28% 5.30% 6.50% 3.00% 0.95

Table 2.1: 2D segmentation accuracy. The units for the area results are percentage error compared to 
manual segmentation. The overlap is measured where a value of one equals perfect overlap.
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Author Pan & 
Dawant

Soler & 
Delinguette Lamecker et al Heimann et al.

Number of 
Datasets 5 5 33 59

Measurement
method Overlap

One sided 
mean 

surface 
distance

Volume Mean
distance

Median
volume

Mean
distance

Result 0.92 2mm 1% 2.3mm 11% 1.3mm

Table 2.2: 3D segmentation accuracy. The units for the volume result are percentage error compared to 
manual segmentation, the units for distance measurement are mm. The overlap is measured where a 
value of one equals perfect overlap.

2.3.1. Relevant work on other organs

There has been significant research into segmentation of other organs from CT images, 

particularly the brain and bone structure; although most work regarding the brain is 

done using Magnetic Resonance Imaging (MRI) as this is potentially less damaging to 

the patient (Bezdek, Hall and Clarke, 1993). In the field of abdominal organ research, 

much work has been done on the colon, especially on automatic detection of polyps 

(Nappi, Dachman et al., 2002). Recent research on lung segmentation has been carried 

out by Hu et al. (2001) and again by Qatameh et al. (2003). However developments in 

the actual segmentation techniques used have not proceeded far beyond simple 

thresholding. This is partially due to the technique achieving satisfactory results as it is 

(both lung and colon can be cleared and filled with air; this appears black in CT images 

and as such is relatively straightforward to segment using thresholding), but mostly 

because there are more interesting challenges to be found post-segmentation (for 

example polyp detection as mentioned above, mapping the path through the colon, or 

through the brachea to the lungs etc). As a result there is a disappointing lack of 

techniques developed that might be directly applied to liver segmentation.
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Due to the wide variety o f object shapes and the variability o f image quality, 

deformable models can consistently produce more accurate results than those that 

would be obtained using classic image processing techniques, such as thresholding and 

edge detection. For the segmentation o f abdominal tissue from  large CT datasets, a 

parametric deformable model is suitable due to its speed, the flexibility o f its 

implementation, and robustness. Nonetheless, several problems exist i f  such a model is 

to be used in such a way as to extract accurate boundary information. This chapter 

presents details o f  the implementation o f established two-dimensional active contour 

models as well as describing several modifications and improvements that enhance 

accuracy and allow greater flexibility o f use.

Section 3.1 provides background implementational detail on active contour models, 

Section 3.2 describes the benefits and details o f using topology adaptive models, while 

Section 3.3 presents novel work that improves upon the performance o f existing models 

fo r  the purposes o f segmentation o f  liver and other abdominal structures. Section 3.4 

briefly describes what influence the correct setting o f parameters has on the 

segmentation results; finally, Section 3.5 contains figures and descriptions fo r  examples 

o f results that can be obtained using active contour models. Sections 3.7 summarise the 

work in the chapter and the novel contribution.

3.1. Background

3.1.1. Contour structure

The basic composition of the active contour model (or snake) implemented in the work 

presented in this thesis is closely related to the dynamic force  formulation of active
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contour movement, which is described in detail by Xu, Pham and Prince in Sonka and 

Fitzpatrick (2000). The main difference between a force-based model and the classic 

energy minimising formulation (see Chapter 2) is that the latter calculates the movement 

of each vertex describing the contour by calculating the energy for the entire curve, so 

that the movement of each vertex can be affected by all the vertices describing the 

curve. By contrast, the force-based model calculates and applies a force at each location 

of each individual vertex, thus the vertices are more independent.

The decision on whether to use an energy-based or force-based model depends on its 

intended application - whether it is beneficial for the curve to be treated as a single 

entity, encompassing an entire region; or whether it is suitable for the curve to move 

according to a series of forces applied at the points that describe it. Importantly, a force- 

based method allows the use of external forces that are not potential forces i.e. those 

that cannot be written as the negative gradient of potential energy functions, for 

example an inflationary force. It is this benefit, along with greater flexibility allowed 

applying independent forces at each point, which led to the decision to use a force-based 

model in this work.

The snake is represented as a contour, V, defined as a sequential set of connected 

vertices

V={v,},

where each node v, is associated with time (t) varying locations, x „ in the image plane, 

where

Xi(t) = [Xi(t), y,(r)]
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as well as internal elastic forces a ft) , internal bending forces fift), inflationary forces y,- 

(/) and external forces 6ft). The movement behaviour of each vertex in the contour is 

governed by equation (3.1):

xX , = aa i + + cyt + dSt (3.1)

where X i is the velocity of vertex v„ x  is a damping coefficient that controls the rate of 

dissipation of the kinetic energy of the nodes that is calculated by equations (3.2) and

(3.3) below, and a, b, c and d  are weighting parameters that control the relative strength 

of each force. The equation is applied iteratively to each vertex, continuing until there is 

no movement of any vertex in V.

The implementation of the active contour model involves use of a circular double 

linked-list, where each node represents a vertex and contains references to the vertices 

immediately adjacent to it. The circular nature of the list allows the vertex at the end of 

the list to refer to the vertex at the start of the list, as demonstrated in Figure 3.1. 

Mathematically this concept is expressed by applying a periodic boundary condition to 

V so that jci(/) = xj (/), thus ensuring that V is always produces a closed contour model.

V , / - /

Figure 3.1: Circular double linked list. The implementation of the active contour involves the use of a 
circular double linked list, where each vertex object references both the previous and subsequent

adjacent vertex.
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3.1.2. Vertex movement

Equation (3.2) controls the movement of each vertex and is a balance of internal forces 

(elastic a,-(f), bending /?,(/)) and external forces (inflationary pressure y,(f), image Sj(t)). 

The internal elastic force is controlled by equation (3.2):

a ft)  = 2r,-(f) - *,./(/) - x i+1(t) (3.2)

and will have larger values when there is a large gap between successive points on the 

contour (larger still if the gap sizes are uneven). Thus it acts to maintain a uniform 

spacing between vertices, as demonstrated in Figure 3.2.

Figure 3.2: The elasticity force. Drags the control point v, towards the average location of the control
points v,_i and v,+/

The internal bending force is a controlled by equation (3.3):

P i ( t )  =  Xj .2  -  4Xi. i  +  6Xi - 4xi+i + x i +2 (3.3)

and will have larger values at areas of higher contour curvature, thus it acts to smooth 

the contour and reduce areas of high curvature, as shown in Figure 3.3.

Figure 3.3: The bending force. Drags the control point v, towards the position predicted by the control 
points \’j_2 and v(_;. The control points v(+2 and v,+/ create a similar force.
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An inflationary force y,{t) is used at each vertex to expand the contour from an initial 

starting point, and is calculated using equation (3.4). The direction and magnitude of the 

force for each vertex is calculated using the unit Normal vector to the contour at each 

vertices’ location.

where n,(/) is the unit Normal vector to the contour at vertex v,(/). The binary function 

f{l(vj(t))) provides basic region information which is used to control the deformation of 

the contour over time. It is based upon image intensity data and is slightly modified 

from the similar function described by Mclnemey and Terzopoulos (2000) in that it uses 

two threshold levels, an upper and a lower threshold, instead of a single value:

where Ti„ and 7*,- are upper and lower grey-level thresholds and 7(jc,(0) represents the 

average pixel grey-level in a 3x3 square centred upon x ,(/)• This prevents the snake from 

leaking into other organs in the abdomen at locations where the external image energy is 

not sufficient to stop the snake. To prevent the normal force from oscillating 

indefinitely between areas of intensity within/without the threshold levels, the constant 

c (in equation (3.1)) acts as a relaxation parameter which is gradually lowered towards 

zero as soon as any oscillation in the sign of / i s  detected.

(3.4)

+ 1, i f r /t>< / ( x f.( r ) )< rw, 
-1 , otherwise,

(3.5)

The external force image-based force, £,•(/), is not calculated as a potential force as it is 

in the traditional energy minimising active contour model. Instead, the relative strength 

of edges present within the image is calculated using the Kirsch compass filter (Russ,
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1999). The operator works by convolving the image data surrounding a given pixel with 

an edge detecting kernel (see Figure 3.4), before rotating the kernel and moving each 

value clockwise one stage. By rotating the kernel eight times, convolving with the 

image each time, the mean value of the results of these convolutions represents the 

strength of a gradient-based edge for eight different gradient directions.

" 3  3 3 '  3 3 3'

i
l U
)

u> U
)|

3 0 3 h2 = - 5  0 3 *3 = - 5  0 3

i
I 1 1 U
i

1 - 5  - 5  3 - 5  3 3

Figure 3.4: Kirsch edge detector. The first three convolution filters used in a Kirsch edge detecting 
algorithm, h represents one instance of the rotated kernel.

The filter is applied for each pixel in the entire image, resulting in an edge map. The 

values of the relative strength of edges at each pixel are then used in equation (3.1).

3.2. Topological adaptive active contour models

3.2.1. Reparameterisation

As described in Chapter 2, a topology adaptive snake, or T-Snake, is one technique that 

can be used to avoid the problems associated with traditional active contour models. 

The key difference between a topology adaptive model and a conventional snake is that 

the set of vertices in a T-snake does not remain constant. As the contour moves due to 

internal and external forces, it is reparameterised, at regular intervals, to a grid 

superimposed upon the image. At each reparameterisation step, the previous set of 

vertices is removed and a new vertex added at each point where the contour intersects 

with the superimposed grid. Figure 3.5 shows a simple, diagrammatic representation of 

the concept. Here, the use of a circular double linked-list (illustrated in Figure 3.1) to 

implement the contour demonstrates its advantages. Addition or subtraction of a vertex 

from the list merely requires the modification of only two existing references, one each
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in the vertices that sandwich the newly created vertex. Unlike a standard array 

implementation, there is no movement of objects in physical memory, and thus the 

reparameterisation is fast and memory efficient (see Chapter 4 for more details on 

algorithm speed).

This reparameterisation overcomes aliasing problems that naturally occur with 

inflationary contours, as the creation of new points reduces the average distance 

between each point. At each reparameterisation the resolution of the contour is 

effectively reset. This method allows the addition of an inflationary force to the basic 

equations while avoiding any aliasing issues. A contour can now be initialised at any 

point within the structure that is to be segmented, thus one of the traditional snake’s 

largest problems, that of accurate initial placement, is avoided.

(a) An example contour. The blue dots represent (b) A grid (black) is superimposed on the image, and
the vertices of V. new vertices (red dots) are added to V at the points at

which the lines that connect the existing vertices (blue 
dots) intersect with the grid.

Figure 3.5: Simple reparameterisation of a contour.

3.2.2. Splitting and merging

One disadvantage of using an inflationary active contour model is that, unless the image 

data representing the object that is to be segmented is relatively homogenous, it is
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possible for the contour to get trapped on unwanted edges, and thus not find the correct 

boundary. While the tissue of the liver is relatively homogenous (see Chapter 5 for more 

details on specific issues regarding liver segmentation) a true topological adaptive 

model should be able to split (separate into multiple distinct, contours), and merge (join 

two separate regions of the contour that have moved to contact each other). Mclnemey 

and Terzopoulos (2000) incorporate region information (based on the grid cells 

within/outside the snake) to determine whether the snake has merged with itself, and 

use this to split the contour into two separate contours, the original and a new, separate, 

set of vertices. Yet the details of this technique was deemed unsuitable during the 

development of the model described in this work, due a more efficient method of

contour merging and splitting being developed.

The technique detects 'crossing points' for the snake by following the contour around in 

a clockwise direction, testing each pixel to see whether the contour has looped such that 

it crosses itself. This has been abstracted to a simple array implementation and, as a 

result, multiple crossing points are detected and dealt with quickly and efficiently. Once 

an intersection is detected it can be processed in one of two ways. The first is to 

completely remove the inner loop, deleting it from the data structure; while the second 

is to treat the inner loop as a ‘daughter’ snake -  a completely separate active contour to 

the initial snake. While the latter option is useful for wrapping around internal structures 

that the user may not desire to be part of the final segmentation, it also raised the 

possibility of the creation of unwanted ‘noisy’ daughter snakes, as noisy edges within 

the image prevent the contour from expanding correctly. Figure 3.9 shows an example

of the two possible methods of dealing with intersections.
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3.3. Novel improvements

3.3.1. Reparameterisation based on curvature

A novel method of reparameterisation has been developed during the course of this 

project which improves upon both the final accuracy and efficiency of the segmentation 

procedure. The reparameterisation of the snake is different from that presented by 

Mclnemey and Terzopoulos (2000) in that a rectangular grid is used for 

reparameterisation (as opposed to a triangulated simplicial cell structure) and the 

resolution of this grid changes depending on the local curvature of the contour at each 

individual vertex. In fact, the data structure consists of three separate grids of decreasing 

cell size (increasing resolution). These are deduced experimentally and can be set to any 

values; in tests, however, it was found that resolutions of 8, 5 and 2 pixels provided 

accurate results. Depending on the curvature of the contour, it is reparameterised on a 

specific grid; if the curvature is high, the contour is reparameterised on a smaller grid 

size, otherwise it is reparameterised on a larger grid size. The technique is illustrated 

hypothetically in Figure 3.6. The method used to deduce the curvature *,(/) at each 

vertex v,-(f) is a simple analysis of the average magnitude of the inner angles of the 

contour between the Euclidean lines connecting the set of four vertices either side of v,. 

The angle between two lines is calculated by converting the lines into vectors and 

taking the inverse cosine of the dot product of the normalised vectors. Thus jc(( / )  can be 

calculated using equation 3.6:

where u and w represent the normalised vectors of the two lines forming the angle at 

each vertex.

(3.6)
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Figure 3.6: Changing grid resolution. A modified version Figure 3.5, showing the effect of increasing the 
resolution of the grid in areas of higher curvature. The red dots represent new controls points that are 

created where the contour intersects the grid.

The major advantage of this original technique is that the resolution of the snake 

increases at complex and highly irregular areas of the shape to be segmented, thus 

enabling the inflating contour to push itself into sharp comers and avoid aliasing effects 

that might otherwise cause a false segmentation result. In areas where the contour is 

relatively straight a larger grid size is used for reparameterisation and less points are 

required to accurately represent the shape, reducing the number of unnecessary 

calculations and improving the performance of the snake. Furthermore, the increased 

inherent stiffness in areas of lower resolution decreases the probability of the contour 

’leaking' through weak edges (see Section 3.3.2 below).

This method sees improved segmentation results compared to those obtained with a 

single, uniform grid (see Chapter 5), as the snake is able to push into sharp comers and
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wrap around complex structures that are common within the liver, particularly around 

the area where the portal vein leaves the organ.

3.3.2. Flexibility and curvature

To take advantage of the flexibility provided by the reparameterisation scheme, the 

magnitude of the local curvature of the contour, *,-(/), is used to influence /?,•(/), the 

bending energy force, where / represents the vertex of the contour, and t is the time step 

as before. By allowing the value of parameter b in equation (3.1) change proportionally 

to the curvature of the surface, the contour’s flexibility in curved areas is increased; 

conversely it is set to act stiffer in areas of lower curvature. The method used to deduce 

the curvature is identical to that presented in Section 3.3.1 above, and thus

*,(/) oc*—L -  (3.7)
**,(0

where it is a constant used to control the influence of b. The result of this modification is 

particularly useful in liver segmentation -in  a typical image of one of the central slices 

from a CT abdominal scan focusing on the liver, one of the areas in which the Kirsch 

edge detector frequently does not highlight a desired edge is the boundary between the 

liver and the intercostal muscles, as demonstrated in Figure 3.7. As the curvature of the 

boundary is relatively low in this area, the added stiffness of a segmenting contour (due 

to the use of equation (3.7) in deciding the value of parameter /?,) minimises the chances 

of the contour ‘leaking’ outwards through the weak edge (thus over-segmenting the 

image and including intercostal muscle in the segmentation of the liver). However, on 

the opposite side of the image the liver has a sharp, acute boundary with well defined 

edges; in this situation the higher curvature of a contour ensures that the value of b is
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lower, and thus it has extra flexibility to enable it to better segment this highly curved

area.

Sharp comer

Weak edge between liver and intercostal muscle

Figure 3.7: Liver segmentation challenges. A CT image of the abdomen, (a), that has been convolved 
with the Kirsch compass edge detector, (b). The weakness of the boundary between the liver and 

intercostal muscles is highlighted on the right o f the image, as is the sharp comer of the upper left area of
the liver.

3.4. Param eters

The movement of the contour is affected by the values of the parameters used to control 

the relative effect of each term of equation 3.1. The values of the parameters were set by 

analysing the results of applying the algorithm to subset of images from the datasets 

used in Chapter 5 (5-10 images each from a subset of 8 datasets). The images for this 

subset were chosen at random from the middle 25% of slices in the datasets as, in 

general, it is in this area that the liver's boundary is more complex, thus presenting a 

more difficult segmentation challenge. The decision as to whether a given set of 

parameters gave accurate segmentation was determined by visual analysis of the results 

and by comparison of the area of the automatically segmented region with that obtained 

by manual segmentation (see Chapter 5 for more details of the manual segmentation 

procedure).
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The values of the parameters used for all the 2D work in this thesis are presented in 

Table 3.1. Note that parameter c, controlling the strength of the inflationary force, has a 

much larger value than the other parameters as it is used to scale-up the unit vector 

value of y to enable the surface to expand. The parameters 7/,, and 7/„ were set to be 'SD' 

standard deviations above and below the mean intensity value of the pixels enclosed 

within the contour at the time of its initialisation, thus the value SD directly controls the 

values of 7/,, and 7/„.

Parameter X a b c d SD

Value 1 0.5 0.3 5.0 0.4 1.5

Table 3.1: Parameter value for 2D algorithm

It should be noted that this method is not a particularly robust way of setting 

parameters, and while it was not considered practical to undertake a full parameter 

optimisation study, a small experiment was run to discover which of the six parameters 

was the most sensitive (i.e. which had the greatest effect on the segmentation results 

after being changed by the smallest amount). Furthermore, once the two most sensitive 

parameters were discovered, they were subject to further analysis to see how changing 

both of them simultaneously affected their sensitivity. Full details and results of this 

study are presented in Section 5.6.
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3.5. Examples and test images

Segmentation tests involving a variety of grey-scale images were carried out during the 

development of the active contour model, and this section presents several figures 

relating to those tests that demonstrate the functionality of the model. The signal to 

noise ratio of the images was calculated by dividing the mean intensity value of the 

image by the standard deviation of the pixel values. Full results for the segmentation of 

liver from CT images are presented in Chapter 5.

Figure 3.8 shows the segmentation of the circular object (the back of a clock) in a 

greyscale photograph. The image was chosen a simple, real-world example of how the 

inflationary model deals with edges in digital images. It is important to note that, as 

long as the contour is initialised at some point within the structure to be segmented, 

functionally identical results are achieved irrespective of the precise starting location of 

the contour. In natural images such as this one, the presence of directional light creates 

shadows which appear as strong edges when the image is processed using an edge 

detector, such as the Kirsch compass filter used in this case. As a result, the ‘correct’ 

edge of the object may not always be found. Figure 3.8(c) shows the result of 

weakening parameter d , which controls the influence of the image-based force on the 

movement of the contour. If d  is lowered, the contour may leak through the desired 

edge.

Figure 3.9 shows several synthesised images designed to test to functionality of the 

contour in an artificial environment that is similar to the intended use of the contour on 

clinical data. They were synthesised by drawing a foreground shape of consistent grey- 

level value against a background that varies in intensity according to a gradient mask 

over the image; this non-uniform background results in foreground-background edges
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that vary in their prominence over the image. The benefit of a self-reparameterising, 

inflationary contour is evident here as most areas of the shape are well segmented, 

although the final result on the ‘torture test’ star-shaped structure on the right of the 

image presents too great a challenge for contour to segment with 100% accuracy. One 

important point to note is that, because the forces that act upon each vertex are entirely 

local, the segmentation of complex boundaries in one area of the image has no effect on 

the segmentation of more simple boundaries in other areas of the image. Subsequent 

images in Figure 3.9 show the effect that adding increasing levels of artificial noise has 

on the accuracy of the segmentation. Gaussian noise was added, using a standard 

algorithm presented by Press et al. (2002), in increasing amounts. The greatest effect 

that increased noise has is the proliferation of small, noisy edges, which prevent the 

contour from reaching the ‘correct’ edges. Figure 3.9(b) shows that a small level of 

noise does not greatly affect the final result, while (c) and (d) show that as noise 

increases, the contour is increasingly unable to detect the correct boundaries.



Figure 3.8: Segmentation of an object from a natural photograph. Figure (a) shows the contour at the 
point of its initialisation, Figure (b) shows the result of the segmentation procedure, and Figure (c) shows 

'leakage ’ through a weak edge which occurs when external force parameter d is lowered. The signal-to-
noise ratio of the image is 1.95.



(a) (b)
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Figure 3.9: Effect of noise. Four images showing the effect that adding Gaussian noise has on the 
accuracy of the segmentation of a complex shape. The image (a) contains no noise, whereas the 

images in figures (b), (c) and (d) contain increasing levels of noise. The signal to noise ratios of the 
images are as follows: fa) 3.66; (b) 3.65; (c) 3.42; (d) 2.80.
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(a) (b)

(e) Result allowing only a single contour (0  Result allowing multiple contours

Figure 3.10: Split and merge. Six images demonstrating the model’s ability to split and merge. No noise 
was added to the image and thus the contrast-to-noise ratio between the grey area (to be segmented) and

the black/white areas is infinite.

Figure 3.10 demonstrates the behaviour of the contour when faced with objects fully 

contained within the area that is to be segmented. The figure shows images of the 

evolution of the contour during its movement, and demonstrates its capability to merge 

with itself after wrapping around extraneous structures. The first five images ((a) to (e)) 

show the segmentation proceeding with the option of creating daughter snakes -  when
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the contour merges with itself -  set to off. The model wraps around the blocking 

structures as it inflates, and merges with itself as soon as it self-intersects. The final 

image (0  shows the result of the segmentation, under identical conditions, with the 

option to create daughter snakes turned on. In this case, when the initial contour self- 

intersects, it executes a split-and-merge function to create two separate snakes -  the 

‘original’ contour that continues inflating, and a daughter snake which constricts around 

the extraneous object. Not considering the boundaries of computer memory, an 

unlimited number of such daughter snakes can be created.

Figure 3.11 shows example segmentation results of two abdominal structures using the 

active contour. Figure 3.11(a) shows segmentation of the liver, and 3.11(b) of the 

kidney. Further examples and full results of segmentation of such abdominal structures 

are shown in Chapter 5.

Figure 3.11: Successful segmentation. Two sample images of successful segmentation of abdominal 
organs from a CT image slice. Figure (a) shows liver segmentation, (b) shows kidney segmentation.
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3.6. Summary

This chapter has described the methodology and implementation of an active contour 

model that allows the automatic detection of boundaries of objects that exist in a two- 

dimensional image. The model described is an inflationary parametric model that is 

similar in its basic details to a T-snake developed by Mclnemey and Terzopoulos 

(2000), however several unique and novel improvements have been proposed; in 

particular the ability to reparameterise the contour to a higher resolution at areas of 

higher curvature, the linking of contour flexibility to local curvature, and a more 

efficient manner of detecting and dealing with self-intersection.

Section 3.1 described the basic concept of an active contour and the data structure used 

for its implementation. It demonstrated that the basic principles of movement of the 

developed model are similar to the dynamic force formulation type of model.

Section 3.2 introduced the concept of a topologically adaptive active contour model. 

This technique avoids three problems that face standard active contour models (initial 

placement, topological adaptivity, and aliasing problems using inflationary forces) by 

reparameterising the contour, at specific time-steps during its evolution, to a grid 

superimposed upon the image.

Section 3.3 describes a series of novel techniques that improve upon topologically 

adaptive models previously described in the literature (Mclnemey and Terzopoulos, 

2000; Giraldi, Strauss and Oliveira, 2003). The two main novel contributions of this 

chapter are the implementation of a model that reparameterises to a higher resolution 

grid at areas of higher contour curvature, thus allowing greater accuracy of the 

segmentation of objects with complex boundaries while maintaining efficiency of the
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segmentation procedure; and the linking of the contour’s flexibility to its local 

curvature, ensuring increased flexibility to correctly locate a complex boundary, yet 

increased stiffness to prevent the contour from leaking through perceived ‘holes’ in a 

relatively even boundary.

Section 3.4 briefly describes the effects that the correct or incorrect setting of 

parameters can have on the accuracy on the segmentation, and this topic is further 

discussed in Chapters 5 and 7. Finally, Section 3.5 shows some examples of the 

topologically adaptive active contour model in action.

3.7. Novel contributions

Reparame ten sing an inflationary active contour to a greater level of detail in 

areas where the local curvature of the contour is greater. As a result, objects with 

complex boundaries can be efficiently segmented with greater accuracy.

Linking an inflationary active contour's local flexibility to its local curvature, 

allowing the contour to deform correctly into complex structures, yet increasing 

its stiffness to prevent it from leaking through weak edges in other areas of the 

object boundary.
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Segmentation o f two dimensional images is a powerful method o f extracting information 

from  the raw data. Yet when the available data is extended to a third dimension, it can 

be unproductive to treat it as merely a set o f unconnected 2D slices. In the case o f liver 

segmentation, fo r  example, the organ is obviously a 3D structure, and a CT dataset 

showing the liver can be considered as a 3D dataset. By analysing and segmenting the 

dataset in its entirety in a single instance (as opposed to separating it and segmenting 

different parts o f it over many instances) it is possible to maximise the information 

acquired from  the dataset as a whole, resulting in topologically more robust 

segmentation.

Section 4.1 describes some background information regarding deformable surfaces. 

Section 4.2 and 4.3 describe the data structure o f the surface implemented in this work, 

and the equations and information that govern the movement o f the vertices o f the 

model. Section 4.4 presents novel work on the reparameterisation o f the surface, 

explaining how the active surface is described by a greater number o f vertices at areas 

o f higher curvature. Section 4.5 details how surface self-intersection is detected and 

handled, while Section 4.6 concludes with an example o f the segmentation procedure on 

an artificial shape. Section 4.7 and 4.8 summarise the work and novel contribution o f 

the chapter.

4.1. Background

The discussion and images in Chapters 3 demonstrate that, in many instances, the 

described 2D active contour model described in Chapter 3 is effective at segmenting 

structures from different types of image. However when applied to a series of images
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representing a three dimensional dataset, it is immediately apparent that segmenting in 

one plane, at regular repeated samples of the dataset, merely creates a set of contours 

that must be layered together to reconstruct the actual shape of the object of interest. 

Furthermore, each segmentation instance in 2D inherently ignores the adjacent data in 

the third dimension.

To overcome these disadvantages, one method of true 3D segmentation extends the 

concept of a contour to a third dimension by creating a surface. For segmentation 

purposes, the surface can be initialised within the 3D object to be segmented, and 

inflated (in a manner analogous to air filling a balloon) until it reaches the boundaries of 

that object. This overcomes problems that affect 2D segmentation, such as the effects of 

local noise in a single slice, segmentation of intricate shapes that vary continuously in 

the third (z) axis of the dataset, and 3D reconstruction of objects following 

segmentation. Nonetheless it also generates its own set of problems, such as surface 

movement, the accurate description of the structure of the surface, and collision 

detection.

Chapter 2 described several approaches to segmentation using 3D surfaces, including 

active surface models, 3D levels sets, and 3D deformable m-reps. The 3D segmentation 

method developed during this project is closely related to an active surface model. 

Following the development of the 2D segmentation technique, there existed several 

possibilities to extend the novel schemes established during the development of that 

work to 3D, and for this reason work on active surface models was begun in favour of 

studying the two methods of implicit surface segmentation cited above.



79

Chapter 2 also reviewed previous work in the active surface field, in particular that 

which has been done using discrete deformable models. Bulpitt and Effort (1996) and 

Ahlberg (1996) present an extension of the basic active contour model energies to three 

dimensions, while Park et al. (2001), and Lachaud and Montanvert (1999) describe 

using similar energy formulations in conjunction with adaptive remeshing systems that 

increasing surface flexibility. The work presented in this chapter draws on aspects of 

this previous work while implementing several novel initiatives to improve 

segmentation accuracy, in particular the use of curvature to affect surface movement 

and mesh detail, and making use of region information to assist in correct boundary 

detection. As such the developed model can be associated with a 3D version of the 

Active Region Model developed by Ivins and Porrell (1994).

4.2. Mesh data structure and movement

4.2.1. Basic mesh structure

The model developed in this work for segmentation is based on a closed, orientated, 

triangular surface mesh. Meshes can be classified as either structured or unstructured. A 

structured mesh has a uniform topological structure and can be defined by the fact that 

the indices of the neighbours of any vertex can be calculated using simple addition. An 

unstructured mesh, however, requires each vertex to store a list of its neighbours, and 

the size of this list may vary in between vertices. Figure 4.1 shows and example of the 

two types of mesh, showing how links between vertices are represented by a set of 

edges. Note how, in a structured mesh, each vertex is associated with a fixed number of 

edges (disregarding boundary vertices), whereas vertices in an unstructured mesh may 

be associated with varying quantities of edges.
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(a) A structured mesh (b) An unstructured mesh

Figure 4.1: Structured and unstructured meshes. The black dots represent the vertices of each mesh, 
while the black lines show the edges connecting them.

Structured meshes have the advantage of being straightforward and efficient to use, 

however their inherent inflexibility is a limiting factor if the mesh is to be modified due 

to the movement of its vertices. In this work, an unstructured mesh is used and the 

reasons for this are elaborated upon in Section 4.4.

4.2.2. Mesh representation

The data structure for the surface comprises a non-directional graph-like structure, 

comprising two complementary lists. The first consists of a base set of vertices

V = {V/}, / = 1........ /,

representing the surface itself, where each vertex v, is associated with time varying 

locations, x ft) ,  in three-dimensional space.

Xi(t) = [*/(/), >’;(/), Zi(t)] (4.1)
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The second list consists of a set of faces, triangles in 3D space. Each face consists of 

references to three vertices, and each vertex has associated with it references to the 

faces which it is a part of. The list of faces is an important modification to the basic 

graph structure of the surface. Not only does it facilitate display of the surface (the 

rendering algorithm requires a list of triangles, and their normal vectors, to create the 

display on the screen), but also facilitates implementation of 3D meshing algorithms, 

such as reparameterisation and collision detection, which will be described in detail in 

Sections 4.4 and 4.5.

To create an initial surface with a suitable amount of points for accurate representation 

of a contour, a quasi-regular polyhedron is created, connected by edges to form 

triangles. Using a 20-vertex polyhedron as a base structure, with equal distances 

between each vertex, a new vertex is placed at the mid-point between every two 

vertices. This process can be iterated Until the required number of starting vertices is 

obtained.

4.2.3. Vertex movement

The movement of the vertices o f the surface is governed by the same basic equation as 

the 2D active contour model, with internal elastic forces a,(/), internal bending forces

fli(t), inflationary forces y,(/) and external forces <$,(/) all governing the velocity, X t , of

each vertex v„ which is weighted by parameter x.

xX , = a a i +bfit +cyt + dd, (4.2)

The parameters a, b, c, and d  again control the effect that each of these forces has on the 

movement of each vertex. The equation is applied iteratively to the vertices of the
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surface, each iteration representing a single time step. Once a situation has been reached 

where no vertices are moving ( X,, < 0 for each vertex), the algorithm terminates.

The calculations for each of the components of equation (4.2), however, are very 

different to their equivalent in 2D. As demonstrated in Figure 3.2, elasticity can be 

regarded as a force pulling a vertex to the average location of its neighbouring vertices, 

while resistance to surface bending can be regarded as the force from a vertex to a point 

linearly ‘predicted’ by surrounding points (see Figure 3.3). In 2-D these calculations 

only involve the two surrounding points on the contour, in 3D the set of surrounding 

points has to be considered to calculate the average.

Consider a vertex v, within V, and let

Si.d ~ { Su.j ) ■> j  ~ 1 •> — i Ji

be the set of J  vertices connected at a distance d  edges from v,. For example, if d  = 1 ,5  

would be the set of vertices connected by one edge to v,; if d -  n, S is the set of vertices 

connected to v, by n edges. Figure 4.2 shows a diagrammatic representation of which 

vertices are considered part of which set. It should be reiterated that the mesh is a 

surface mesh, and thus edges are only present across the surface; edges that would form 

tetrahedral are not permitted.



(a)
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(b)

Figure 4.2: A diagrammatical representation of a surface mesh. The black dot represents vertex Vj, the 
red dots the set of vertices at distance d = /, and the blue dots the set of vertices at distance d = 2. Figure 
(a) shows a representation of the surface in 2D. whereas Figure (b) shows a pseudo-3D recreation of the 
surface. The shaded rectangles represent the average plane of the d= / vertices (red) and d=2 vertices.
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Let c/.j be the average coordinate location of the vertices in the set 5,-j (the vertices at 

distance d  around v,), where d -  1 or d  = 2. This location can be calculated using:

(4.3)

where Xj (see equation 4.1) is the location of the vertex v, (one of the vertices of set S,.d), 

and J  is the total number of vertices in 5,-.d-

The elasticity, ait), and bending, p it) ,  forces in the point v; can now be expressed as:

Equations (4.4) and (4.5) can now be substituted into equation (4.2). Note that equations

(4.4) and (4.5) can be derived from the 2D equations of motion presented by Kass, 

Witkin and Terzopoulos (1987), using equation (4.3).

As in 2D, parameter b in equation (4.2), which controls the bending force /?„ is set to be 

inversely proportional to the local curvature of the surface, Kit), at each vertex location 

(see Section 3.3.2 and equation 3.5)). Stokely and Wu (1992) present five different 

methods of estimating the curvature of an arbitrary 3D surface, and evaluate each 

method's performance by calculating the surface curvature of a variety of spheres of 

known dimensions. The majority of the methods they present are based on building 

local coordinate systems on the surface at the point of analysis i.e. transform all surface 

points (jc, y, z), within a set distance of the central point of interest, to a local (u, v)

a it)  = x i t )  -  ciA (4.4)

P it)  = 3*,-(/) + c(,2 -  4c,, 1 (4.5)
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coordinate system, and estimate the curvature by applying equations in the local 

coordinate dimension. Yet one of their methods, termed the surface triangulation 

method, computes curvature, using (jc, y, z) coordinates, from a series of adjacent flat 

triangles adjacent that project from the inspection point. Stokely and Wu's analysis 

shows that, for a noise free sphere, the graphs for the calculated sphere radii using the 

surface triangulation method closely match those for other techniques.

Due to the fact that an adaptation of this triangulation technique can be rapidly applied 

to the vertices in the surface described in this work (which are all associated with a set 

of triangular faces by default) and that this removes the requirement for the complicated 

and time-consuming processes of transforming ( j c ,  y, z )  coordinates to local geometry 

coordinates for each vertex, an adaptation of the surface triangulation method was used 

to calculate the curvature for the points of the surface. The curvature is calculated for 

each vertex, v„ by first calculating the sum of the angles, 1 0  (expressed in radians), 

between the edges projecting from v,. This is then used to calculate the curvature, k,  

according to the following equation (Stokely and Wu, 1992):

K - 2 n  - 1 0  (4.6)

The curvature will be zero when the surface is completely flat (i.e. when 1 0  -  In  

radians).

4.3. External forces

Two external forces also affect the movement of each vertex of the surface, an 

inflationary or pressure force (y,j, and an image force (Si). Both are affected by basic 

statistical region information obtained from the surrounding voxels.
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4.3.1. Inflationary force

This force used to ‘inflate’ the surface from its starting location and shape acts in the 

direction of the normal vector for each vertex, v,. The normal is calculated using the 

sum of the cross products of the vectors that exist to form each face  of the surface which 

v, is a part of. It is normalised to unit length and used in equation (4.6) to calculate the 

inflationary force.

where n, is the unit normal at v,-. The binary function /(/(*,(/))) is based upon region 

information and is used to prevent the surface from ‘leaking’ into area that surround the 

object that is to be segmented, where the boundary between these regions is not clearly 

defined. In its most basic form this function is identical to the one presented in equation

(3.5) (reprinted below), considering that in this case 7(jc,(0) is the mean voxel intensity 

in a 5x5x5 (see Section 4.3.2) voxel cube surrounding *,(/); again Tu, and 7),/ are low 

and high voxel threshold values respectively.

In tests during the implementation of the surface for the purpose of the segmentation of 

liver, a more sophisticated version of equation (3.5) was found to prevent the surface 

‘getting caught’ on noisy voxel areas that fell outside the threshold values. It was found 

during tests that, on certain datasets, the threshold values Tu, and 7/,, could not be set to 

any value that would prevent the surface leaking into unwanted regions and allow the 

surface not to get caught on anomalous areas within the region to be segmented. In liver 

segmentation, if Tu was set at a level low enough to prevent leakage into the heart or the

nit) (4.7)

+ i, if7-„ < /< * ,((»  <7;„ 

-1 , otherwise,
(3.5)



87

kidneys, vascular structures within the bulk of the liver would prevent the accurate 

segmentation of the organ.

To counter this effect, a modified version of equation (3.5), using the standard deviation 

of voxels surrounding a vertex, is used to govern /(/(x,)), and thus y,(/).

o x (J) is the standard deviation of the voxel intensity values in the area surrounding x,-(/),

and Gorig is the standard deviation of the voxel intensity of the volume of the dataset that 

is contained ‘inside’ the surface at the time of its initialisation.

The effect of applying equation (4.7) can be summarised as follows. If the mean voxel 

intensity surrounding a given vertex, 7(x,•(/)), is within the threshold values, the surface 

expands. If 7(x,-(f)) is outside the threshold values, but the surrounding voxels have a 

relatively high intensity variation, the surface will still expand. Yet if 7(x,-(f)) is outside 

the threshold values and the surrounding voxels have a relatively low intensity 

variation, the normal force is reversed, and the surface contracts. 'High' and 'low' local 

voxel variation is determined by comparison with the voxels that were contained 

‘inside’ the surface at the time of its initialisation.

It should be noted that the actual size of the voxels, recorded as metadata when the CT 

scan is conducted, will affect the results of using local region information. In this 

implementation, local region information is gathered by using a volume of voxels of a 

pre-specified size (a 5x5x5 cube, as noted earlier). Thus, as the voxel dimensions differ,

+ 1, if 7;, < <Thl,

- 1, otherwise,
(4.8)
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so does the actual volume used to obtain region information. To guarantee that the same 

volume is used for each dataset, the voxel size metadata could be used at the time of 

segmentation to calculate the precise size of the local region. However, all the results 

presented in this thesis make use of a region measured in voxels, thus the actual region 

size used differs between datasets.

Figure 4.3 shows three examples of liver tissue where the value of the function/(/(*,)) 

can affect the movement of the surface (the images are 2D but the concept extends to 

3D). Table 4.1 shows the average values and the standard deviation of the pixels in each 

sample image.

Figure 4.3: Three 5x5 squares taken from 2D image slices of a CT dataset of the abdomen. Figure (a) 
shows an area of parenchymal liver tissue, figure (b) shows an area of liver tissue containing vascular 

structure, and figure (c) shows an area of parenchymal kidney tissue. All figures are taken from a single 
256-level greyscale image slice, in the post-arterial contrast phase.

Image from Figure 4.3 (a) (b) (c)

Average voxel value 169 213 212

Standard Deviation 15.74 30.2 12.71

Table 4.1: Pixel and SD values. The average pixel values and standard deviation of the pixel values of the
images in Figure 4.3.

Figures 4.3(b) and (c) show that regions that possess similar average intensity values 

can have very different standard deviation values, and equation (4.7) exploits this to 

allow thresholds 7/0 and 7),, to be set without the worry that irregular regions of an
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object to be segmented (such as in Figure 4.3(b)) will force the incorrect movement of 

the surface.

4.3.2. Image forces

As in the 2D case, a Kirsch compass filter is used to calculate the strength of edges 

within the dataset, represented in equation (4.2) by term <5,. The convolution filter is a 

3D extension of the one presented in section 3.1.2 (see also Figure 3.4). The extension 

to 3D involves rotating a kernel in the three primary axes of the dataset, thus the filter 

calculates edge gradient in 24 separate 3D vectors. As in 2D, the gradient of the largest 

magnitude is used for the equations of vertex movement.

Region information is used to automatically control the strength of the image force. 

Once again the standard deviation, er, of a 5x5x5 cube of voxel intensity values centred 

around jc ,(/) is calculated and thus

(4.9)

where e represents the result of convolution with the 3D Kirsch compass edge detector 

centred upon the jc ,. The size of the cube used to consider voxel intensity is chosen as a 

balance between obtaining local information while ensuring sufficient size to obtain 

meaningful region statistics. For example, if the region is too large then individual 

voxels could affect the movement of more than one vertex, if the vertices are closely 

spaced. Yet too small a region may not yield meaningful statistics.

The effect of equation (4.8) is to enable the vertices of the surface to ‘push through’ 

weak or noisy edges that may be given undue prominence by simply using the detector
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alone. This enables more flexibility when setting parameter d  in equation (4.1) and 

decreases the likelihood of the surface folding in upon itself and self intersecting.

4.4. Parameters

The parameters controlling the algorithm are different to those used for the 2D 

algorithm, due to the difference in the computation of several of the forces (for example, 

the local region data is used to greater effect in the 3D algorithm) and the differences 

that arise from using a greater number of surrounding vertices to calculate the internal 

forces. The method used to deduce the parameters, however, was analogous to the 2D 

case, in that the accuracy of using different parameter values was measured in a subset 

of 8 datasets by visual analysis of the segmentation and by comparison of automatically 

measured volume with that estimated by manual segmentation.

The values of the parameters used for all the 3D work in this thesis are presented in 

Table 4.2. Note again that parameter c, controlling the strength of the force in the 

normal direction, has a much larger value than the other parameters as it is used to 

scale-up the unit vector value of y to enable the surface to expand. The parameters 7*/ 

and Tu, were set to be 'SD' standard deviations above and below the mean intensity value 

of the pixels enclosed within the contour at the time of its initialisation, thus the value 

SD directly controls the values of 7*,- and 7/„.

Parameter JC a b c D SD

Value 1 0.1 0.3 6.0 0.1 1.5

Table 4.2: Parameter value for 3D algorithm
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As for the 2D case, a study was carried out to investigate which of the six parameters 

has the most effect on the segmentation when changed, and the two most sensitive 

parameters were subject to further analysis to establish how their sensitivity was altered 

when both were changed simultaneously. Further details and results of this study are 

presented in Section 5.6.

4.5. Reparameterisation

The net effect of applying equation (4.1) iteratively to all vertices is the expansion, or 

inflation, of the surface, in a manner analogous to air filling a balloon. This creates two 

immediate problems. The first is that, as the spacing between each vertex increases, the 

strength of the internal forces, a, and /?„ also increases; once the vertex spacing reaches 

a certain point, a, and /?, will override the other terms of the equation and prevent the 

surface from expanding further. The second difficulty is the appearance of aliasing 

issues - the accuracy with which the vertices of the model represent the actual boundary 

of the object that it is segmenting decreases as the distances between vertices increase.

To combat these effects it is clear that some form of reparameterisation of the surface is 

required. Reparameterisation of inflationary active surface models has been previously 

addressed in different manners. Park et al. (2001), and Lachaud and Montanvert (1999), 

both use techniques such as direct point insertion, edge melting, splitting and flipping; 

whereas Mclnemey and Terzopoulos (2000) track the movement of the surface over a 

simplicial decomposition of the dataset, partitioning the dataset into a set of tetrahedra, 

and extracting the ‘surface’ at each new time step from the set of tetrahedra that are 

covered by the existing surface.
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The reparameterisation scheme developed for this work involves the monitoring of the 

size of the faces of the mesh that represents the surface, and adding new points to the 

mesh when their sizes exceed a threshold. The main novel contribution of this technique 

is that it is possible to link the threshold directly to local curvature information and thus 

reparameterise the surface to a greater level of detail at higher areas of local curvature, 

thus ensuring better segmentation of objects with complex boundaries.

4.5.1. Local mesh refinement

A 2D Delaunay triangulation, illustrated in Figure 4.4, has the property that the 

circumcircle of every triangle in a 2D mesh does not contain any other points of the 

triangulation (Lawson, 1972).

Figure 4.4: Delaunay triangulation. The circumcircle (red) of every triangle (black) does not contain any
other points of the mesh.

The quality of a mesh, or how regular the shape of a mesh's constituent faces are, is a 

judgement on the shape and structure of a 3D mesh's maximum triangle area and 

minimum angle between edges. A mesh can be described as ‘good quality’ if the areas 

of its triangles and angles between its edges fall between specific, user-specified values. 

Usually these values specify that a triangle should not have any angle smaller than 30°,
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and that the area of the triangles should be as close to a user defined value as possible. 

One of the most valuable properties of using the Delaunay criterion is that it can 

guarantees mesh quality (Paloc, 2003). To achieve Delaunay triangulation in a mesh, 

Lawson’s (1972) flip algorithm, which is illustrated in Figure 4.5, can be used.

(a) The circumcircle of edge e encloses vertices (b) e is ‘flipped’ and its circumcircle no longer
other than those part of the edge encloses any other vertices.

Figure 4.5: Edge flips. Two triangulations of the same shape, after flipping edge e becomes locally
Delaunay

Several procedures to guarantee mesh quality of 3D surface mesh have been developed, 

as reviewed in Chapter 2. The work presented in this thesis uses a similar method to that 

proposed by Chew (1993) to extend the edge flip algorithm directly into 3D. The benefit 

of using this technique is that it inserts new points into the mesh (known as Steiner 

points) where faces have areas that are greater than a certain threshold; this ensures that 

the distance between each point in the mesh will never exceed a certain value and thus 

problems of aliasing and force balancing outlined above are eliminated.

The algorithm, illustrated in Figure 4.6, works as follows. An area threshold AK is set as 

the maximum allowed area for any face of the surface mesh. The area for each face is
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trivially calculated due to the existence of the separate list of faces, as detailed in section

4.2.2 above. For each face that has an area greater than Ag, a Steiner point is inserted 

and connected at the location of the centre of gravity of that face, creating three new 

faces in place of the original. Once all faces have been tested for area, an edge-flipping 

algorithm is run, whereby an edge is flipped if the location of the discrete vertex, vjis, of 

a face adjacent to the control face is enclosed by the control face’s circumcircle as 

projected onto the surface o f the mesh (see Figure 4.6(b)).

(b) f\ is deleted and three new faces are created to
connect the Steiner point to the old vertices of/;. 
The circumsphere (dotted circle) of face/„,* (red) 

encloses the discrete vertex of f 2, vd„.

(d) Other edges are flipped in turn.(c) The edge marking the boundary between fnrw
and f 2 (dotted blue line) is flipped (red line) to 

connect the Steiner point and vdis.

Figure 4.6: New point insertion and edge flipping.

This last point is a significant theoretical stumbling block to any such surface meshing 

algorithm, as the projection and warping of the circumcircle of a planar face onto the 

(likely different) planes of several surrounding faces is not trivial.

(a) Area of face//  (red) is greater than threshold 
Ak. A Steiner point is inserted at the centre of 

gravity offj. Face f2 is highlighted in blue.
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The method used to achieve this goal in this work is to find the smallest circumsphere 

who’s boundary intersects all three vertices of a given face, and use the intersection of 

the circumsphere with the surrounding faces of the surface to mark the ‘boundary’ of 

the circumcircle used in the algorithm illustrated in Figure 4.6. Note that for this 

calculation, all that is required is to find the coordinates of the circumcentre of the 

control face, and calculate the Euclidean distance, dven from this point to any of the 

three vertices of the control face. To test whether a given point, p, is within the 

boundary of the circumsphere, all that is needed is to measure the distance from p  to the 

coordinates of the face circumcentre and compare this distance, dp, with dven. If dp < 

C i ,  p  lies within the boundary of the circumsphere.

The algorithm iterates repetitively through the faces of the mesh until there are no face 

areas larger than A k, and no circumcircles that contain discrete vertices. It has been 

noted (Chen and Bishop, 1997) that the use of smallest circumspheres to map the 

circumcircles and the use of an iterative procedure may result in the algorithm not 

converging in highly curved surfaces. While this is theoretically true -  a pair of edges in 

a highly curved region may flip back and forth continually - in practice it is trivial to 

prevent the algorithm from oscillating in such a manner. Figure 4.7 illustrates the result 

of the basic reparameterisation algorithm on a simple shape.

This technique is advantageous in that the threshold A K can be set locally. As a result it 

is possible to have an irregular mesh where average face area (thus number of vertices) 

in some regions of the mesh is higher than in others. For segmentation purposes this can 

be used to increase accuracy at areas of higher curvature, as illustrated in Figure 4.8. 

This concept, which is novel in its application to active surface models, is of great 

benefit to 3D segmentation, as it allows the computing resources required to calculate
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the movement of the vertices of the mesh to be concentrated in regions where a high 

level of detail is required. Furthermore, the greater distance between vertices in areas of 

lower curvature inherently increases stiffness and therefore reduces the probability of a 

surface 'leaking' through weak edges.

«b) u)

Figure 4.7: The reparameterisation algorithm. Figure (a) shows an unreparameterised 3D surface mesh. 
Figure (b) shows the same mesh reparameterised with AK =250 voxels. Figure (c) shows 

reparameterisation with AK =100 voxels.

The algorithm used to calculate the curvature is the surface triangulation algorithm 

presented by Stokely and Wu (1992), which is also used to calculate the curvature to 

control the bending energy (see section 4.2.3). Section 4.6 and Chapter 5 show 

examples of how this procedure improves segmentation accuracy, while also increasing 

computing efficiency.

Figure 4.8: Curvature at higher resolution. The ability of a sample mesh (a) to reparameterise to a 
higher resolution at areas of greater curvature (b).
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4.6. Collision detection

As the surface expands and moulds itself to the boundaries of the object that it is 

segmenting, there exists a strong possibility that the surface will intersect with itself. 

This may occur naturally if the object to be segmented has a complex topology, or 

otherwise if noise within the bulk of the object ‘catches’ the vertices of the surface, may 

cause the surface to fold in upon itself. As a result, a procedure must be set in place to 

detect any surface collisions, and deal with them in an effective manner.

The detection of surface collision can be separated into two distinct challenges. The first 

is to actually detect any intersection between the primitives (the faces, edges, and 

vertices) of the surface, and the second is to abstract this technique to avoid attempting 

to detect intersections between primitives that are so far apart that it would be 

impossible for them to intersect at a given time of testing. It should be noted that the 

techniques used for collision detection are well-established and are widely used in 

several polygon-based graphics applications, both in the academic and commercial 

domains. The details of their implementation in this work are presented here for clarity.

4.6.1. Primitive intersection

Ericson (2005) presents a comprehensive discussion of the standard methods of 

detecting the intersection of primitives. The structure of the surface described in section

4.2 consists of a set of vertices organised by triangular faces, and thus a triangle-triangle 

intersection test was considered to be suitable to use in this work.

The most straightforward method of detecting triangle-triangle intersection is based on 

the fact that, in general, two triangles are intersecting when either two edges of one 

triangle pierce the interior of the other, or one edge from each triangle pierces the
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interior of the other triangle. By testing the edges of each triangle with the face of the 

other (i.e. testing whether a line (representing an edge) intersects the plane of a triangle 

at a point located within the region enclosed by its constituent vertices) it is possible to 

deduce whether the triangles are intersecting. If all six possible edge-triangle tests fail, 

there is no intersection.

A much faster method of intersection-testing, known as the interval overlap method was 

developed by Moller (1997). The technique finds, where it exists, a line, L, that 

represents the intersection of the two planes of the triangles. It then proceeds to 

calculate the scalar intersection intervals between each triangle and L, if the intervals for 

both triangles overlap, then the triangles are intersecting. Figure 4.9 illustrates the 

method, which is used in this work to detect self-intersection of the surface at primitive 

level.

Figure 4.9: The interval overlap method (adapted from Eric son, 2005)

4.6.2. Abstraction

The Moller fast triangle-triangle intersection algorithm is one of the fastest tests for the 

detection of collisions of surfaces that consist of triangular primitives. However, 

depending on the resolution and accuracy of the required segmentation, surfaces may 

exceed 3000 separate faces, necessitating over 4.5 million face-pair tests per movement
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iteration. This creates a significant time penalty for any surface movement, much of 

which is wasted as it is unnecessary to test a pair of faces if they are separated by a 

significant Euclidean distance. Fortunately, several methods exist to abstract the 

collision detection procedure and minimise the number of primitive tests, only testing 

where there is a reasonable possibility of intersection.

There are two broad approaches to the abstraction of primitive collision detection, 

although they are not mutually exclusive. The first is to use bounding volumes -  a single 

simple volume used to encapsulate objects of a more complex nature. The intersection 

tests for simple volumes, such as boxes or spheres, are easy and fast to compute, thus 

crucially the non-intersection of two large (and possibly very complex) areas of 

primitives can be calculated in a fraction of the time that it would take to achieve the 

same result using pair-wise primitive tests alone. Bounding volumes can be organised 

hierarchically, so that an intersection can be tracked through a tree of several bounding 

volumes of increasing resolution, eliminating large numbers of primitives, before finally 

reaching the stage where primitive testing is necessary.

The second broad approach to abstraction is spatial partitioning. By dividing space into 

regions and testing whether objects exist within the same region, it is possible to rapidly 

deduce whether two objects are near enough to possibly intersect. As with bounding 

volumes, trees can be used to hierarchically partition space into regions of increasing 

resolution, drastically reducing the number of pair-wise primitive tests. Note that is 

perfectly possible, and indeed highly beneficial, to combine bounding volumes with 

spatial partitioning to create very powerful collision detection algorithms, and such 

systems are used in highly sophisticated commercial 3D graphics applications.
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A key factor in deciding a suitable method to abstract the collision detection of the 

surface described in this thesis was that, in the majority of cases, the surface exists as a 

single, closed, object; thus the only collisions that occur would arise due to self­

intersection. For this reason, the use of bounding volumes was not considered suitable 

as it would require complex and static methods to define which faces of the surface 

belonged to which bounding volume.

By contrast, partitioning the space in which the surface sits can be considered an ideal 

method of abstracting collision detection in this specific case, as it avoids artificially 

partitioning the surface itself. By classifying the location of the primitives of the surface 

using a hierarchical tree structure it is possible to rapidly eliminate large areas of 

primitives that will not be intersecting. The archetypal tree-based spatial partitioning 

system is the octree (Ericson, 2005), an axis-aligned hierarchical partitioning of the 

volume of a 3D world space. Each parent node of the tree is associated with a finite 

volume of space, and each is subdivided into eight equal child nodes, created by 

simultaneously dividing the volume of the parent node in half along the x, y, and z axes. 

Figure 4.10 illustrates the spatial partitioning of the octree; in the figure only the nodes 

encompassing the prominent comer are shown.
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Figure 4.10: Octree spatial partitioning

It is the octree system which is used in the work presented in this thesis. The tree is 

constructed at the same time as the initialisation of the surface, and each face object is 

added to the octree hierarchy. As the vertices of the surface move, the locations of the 

faces within the octree are updated, and during reparameterisation faces are inserted or 

deleted as appropriate. After each movement iteration of the surface, a collision 

detection algorithm is run that uses the octree to ensure that only faces that are located 

within the same volume at the bottom node of the octree are tested using the triangle- 

triangle intersection test described in section 4.5.1.
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4.6.3. Collision response

The surface responds to detected collisions by halting movement and collided locking 

vertices in place. This ensures that there is no possibility of the surface ever intersecting. 

Further collision response possibilities are discussed in section 6.

4.7. Examples and test datasets

Figure 4.11 demonstrates the segmentation of an artificial 3D liver shape in a binary 3D 

dataset. The surface is initialised at any point within the bulk of the object to be 

segmented, and immediately begins expanding. The first four screenshots show the 

expansion of the surface at different iterations, while the final two screenshots show the 

final result of the segmentation from two different angles.
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(a) (b)

(c) (d)

Figure 4.11: Screenshots of the segmentation of an artificial liver shape. Figures (e) and (f) show the 
final segmentation from two different angles.
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4.8. Summary

This chapter has described the development and implementation of an inflationary, 

discrete, deformable surface model that incorporates region information and local 

curvature to extract the boundaries of objects present in 3D datasets. The movement of 

the vertices of the model is a direct extension to 3D of the methodology introduced in 

chapter 3, yet the reparameterisation of the surface occurs by a very different procedure. 

Several aspects of novel work has been proposed in this chapter, such as the ability of 

the reparameterisation algorithm to increase the resolution of the active surface at areas 

of higher local curvature, the modification of the bending force in response to local 

curvature, and the use of region information to influence both the inflationary and edge- 

based external forces that act upon the vertices of the surface.

Section 4.1 provided important background information as to why true 3D segmentation 

is widely held to be preferable to 2D segmentation, and reviewed work carried out by 

other researchers in the field.

Sections 4.2 and 4.3 described the structure of the mesh, and defined the forces, both 

internal and external, that affect the movement of the vertices. Novel work included the 

use of local curvature to influence the inflationary force, and use of regional information 

to influence both the inflationary force and the image force derived from significant 

edges.

Section 4.4 detailed the requirements and procedures for reparameterisation of the 

surface. As this surface expands the area of the faces of the surface is used to determine 

whether extra vertices should be added to the data structure. The novel contribution in
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this area was to use increase the number of vertices and faces at areas of higher local 

curvature, thus ensuring more accurate and more efficient segmentation.

Section 4.5 described the work that was required to ensure that any self-intersection of 

the surface is effectively and efficiently dealt with, and the chapter concludes with 

Section 4.6 showing some examples of the segmentation of sample 3D shape.

4.9. Novel contributions

Reparameterising an inflationary active surface to a greater level of detail in 

areas of high local surface curvature. This ensures that the surface is capable of 

finding complex boundaries of 3D structures, yet does so in an efficient manner. 

Furthermore, the reduced resolution in areas of low curvature prevents the 

surface from leaking through weak edges, and minimises the effect of noise. 

Linking the local curvature of a surface to the internal bending force that affects 

the movement of the vertices, reducing the probability of the surface leaking yet 

allowing it to deform correctly where an object's boundary is more complex.

The combination of the two factors above with the use of region-based image 

information, which influences both inflationary and edge-based forces, to create 

a flexible, fast, accurate discrete deformable model that is capable of segmenting 

complex 3D structures with accuracy.
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In this chapter, the results o f the automatic segmentation o f liver from  CT datasets are 

presented, along with the specific procedures used to achieve the results. The relevance 

o f these results is discussed in Chapter 6. 18 healthy liver datasets were used to validate 

the segmentation procedure, and the final sections o f the chapter discuss the 

segmentation o f abnormal liver tissue, and o f other abdominal organs.

Section 5.1 introduces the methods and techniques by which the segmentation results 

are validated to ascertain their accuracy. Section 5.2 briefly discusses dataset pre­

processing and ideal contrast agent phase. Sections 5.3 and 5.4 present results from  the 

automatic segmentation o f healthy liver tissue, using 2D and 3D techniques 

respectively. Section 5.5 compares and contrasts the results obtained by the 2D and 3D 

techniques. Section 5.6 presents the result o f preliminary investigation into abnormal 

liver segmentation, and Section 5.7 discusses the possibilities o f using the developed 

algorithms to segment abdominal structures other than the liver. Sections 5.8 and 5.9 

summarise the work and novel contribution o f the chapter.

5.1. Validation of segmentation

5.1.1. Gold standard

One of the most important issues facing any automatic segmentation procedure is the 

validation of its accuracy. Ideally, a variety of phantoms of known dimensions and 

volume should be scanned, and the segmentation procedure carried out on the resulting 

data. The results of the segmentation can then be compared with the actual physical 

measurements of the phantom, which can be considered as the gold standard.
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Unfortunately, during the course of this project it was not possible to conduct such a 

study, nor was it possible to obtain real liver volume data (from transplantation, for 

example) and thus the only method available to validate both the 2D and 3D 

segmentation algorithms was to compare the segmented regions with those obtained 

from manual segmentation.

Using manual segmentation as the sole method of validation is not ideal due the 

differences between the result of segmentation by different human operators. Hermoye 

et al. (2005) conducted a study comparing the actual volume (obtained during the 

course of transplantation) of 18 livers with the volumes estimated by both manual and 

semi-automatic segmentation. The differences between the actual volume and the 

estimated volume ranged from -15% to +8% for manual segmentation, and from -15% 

to +6% for semiautomatic segmentation. The mean difference was greater for manual 

segmentation than for semiautomatic segmentation. It should be noted also that even 

volume measurements obtained from transplanted livers are not perfect measurements 

of in vivo liver volume, as the loss of blood and other fluids from a liver during its 

transplantation will affect its volume.

The likely causes for such inaccuracies in the manual segmentation are varied. Firstly, 

the nature of images produced by CT scanning forces the operator to segment the 

dataset as a series of 2D slices, thus minimising any useful information that is present in 

the third dimension. Secondly, the partial volume effect may cause one operator to 

exclude an area in a particular slice, which is included by a different operator. Finally, 

major differences may appear between operators when segmenting the vascular 

structure of the liver, a problem compounded by the use of intravenous contrast agent 

during the scan.
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Taking this into consideration, the results presented in this thesis make use of manual 

segmentation carried out independently by two separate clinical or trained medical 

imaging experts, rather than relying on a single manual segmentation. While a greater 

number of manual operators would be desirable, using more than one makes some effort 

to minimise the error inherent in using manual segmentation as a gold standard. This 

issue of validation via manual segmentation is discussed further in Chapter 6.

5.1.2. Volumetric comparison

By comparing the liver volume obtained by automatic segmentation with the volume of 

the same liver segmented manually, it is possible to obtain a simple, fast estimate of the 

accuracy of the automatic segmentation. Volumetric analysis is appropriate as this is 

one of the most important results of segmentation that is desired by clinicians, as 

discussed in Chapter 1. The actual volume of each liver, as measured in mL, can be 

calculated from the scaling information stored with each DICOM 

(http://medical.nema.org) dataset. While this information is clinically useful, it is 

misleading to use it as judge of algorithm accuracy, as the scaling data for the datasets 

used to test the algorithms have different scaling values. Both the 2D and 3D algorithms 

were run on the raw data of each scan, and so the volume as measured in voxels is used 

to judge segmentation accuracy.

2D and 3D automatic segmentation require different methods of analysis. In 2D the 

area of corresponding image slices are compared; these areas may be combined to 

obtain a value for the volume of the whole liver, yet it is important to remember that 

each slice has been treated as an individual instance in two dimensions. In 3D, the entire 

liver dataset is compared at once, and thus it is appropriate to compare the overall 

volume directly.

http://medical.nema.org
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A variety of statistical techniques can be used to ascertain the accuracy of the 

segmentation, yet it is important to bear in mind each test’s suitability when assessing 

the significance of its result. The goal of the statistical analysis in this work is to find a 

method to measure how reliable, or how valid the results are from both (2D and 3D) 

automatic segmentation algorithms, by comparison with manual segmentation. There is 

little consensus about which statistical methods are best to analyse such data (Uebersax, 

2006), and several techniques exist, varying from established methods such as the 

ANOVA (Hayslett, 1974) to tests of marginal homogeneity, tetrachoric and polychoric 

correlation, latent trait/class models, and kappa statistics (Uebersax, 2006). For this 

case, where the task is to assess the validity of a test (automatic segmentation) where 

there is no true gold standard, the accuracy of the measurement is assessed by 

comparing its results with existing raters (the manual segmentations).

The method chosen as a suitable means of discovering the validity of the segmentation 

procedures is to use inter-rater-reliability, which assesses unsystematic variation due 

simply to which ‘rater’ carries out the test (Shrout and Fleiss, 1979). In this case, there 

are four raters: two manual segmentation operators (see Section 5.1.1 above), the 2D 

algorithm, and the 3D algorithm. To measure the inter-rater-reliability, the intraclass 

correlation coefficient (ICC) is used, as suggested by Gerig, Jomier and Chakos (2001):

m s B —  m s w
ICC  = -------- 2 ^----- (5.1)

msB + (n - \)m s w

where msB is the mean squares between groups, and msw is the mean squares within 

groups, both developed during an ANOVA. The ICC  assesses rater reliability by 

comparing the variability of different ratings of the same subject to the total variation 

across all ratings and all subjects. It will approach 1.0 when there is no variance within
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target variables (i.e. each individual target is given the same value by all raters), 

indicating that total variation in measurements is due solely to the natural variation of 

the target variable. Applied to this situation, the ICC  will be high when the respective 

liver volumes (the target variable) tend to have the same value estimated by each of the 

four segmenting operators. This indicates that the total variation in the measure of the 

volume depends solely on the natural variability in liver volumes across a population, 

thus there is perfect intra-rater reliability.

An alternative to the ICC for this situation is to calculate the Pearson correlation 

between all pairs of rater (Uebersax, 2006). The Pearson correlation measures 

association between raters, but is insensitive to rater mean differences (bias). Yet the 

ICC decreases in response to both lower correlation between raters and larger rater 

mean differences, and thus it is used in preference.

Along with the ICC, an ANOVA test is also carried out of the volume data. The 

ANOVA measures the difference between the means of two or more groups and, unlike 

the ICC, makes no attempt to compare the variability of different ratings of the same 

subject to the total variation across all ratings and all subjects. Nonetheless the F  values 

developed by an ANOVA for each group of volumes are presented for completeness.

Figure 5.1 shows a Bland-Altman plot comparing the two manual segmentations. The 

Bland-Altman plot is a statistical method to compare two measurement techniques, the 

difference between them are plotted against their averages. Horizontal lines are drawn at 

the mean difference and at mean difference ±1.96 standard deviations. Differences 

plotted within the +1.96SD boundary suggest that the two methods may be used 

interchangeably. The Bland-Altman plot is useful to check for systematic bias and to
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identify outliers. Figure 5.1 shows that, while all but one of the datasets lie within the 

±1.96SD boundary, there is systematic bias between the observers; the fact that the 

mean line of the graph does not go through zero (its value is -21675.2) shows that one 

observer consistently gives lower values than the other. Figure 5.9 and 5.18 below show 

the Bland-Altman plots for the 2D and 3D segmentation results respectively, and it is 

possible to see the difference in the magnitude of the bias between the two manual 

observers and the automatic segmentation techniques.
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Figure 5.1: Bland-Altman plot comparing the manually segmented liver datasets.

5.1.3. Volumetric overlap

The simple comparison of area or volume described above, while providing a good 

overview, is unacceptable as a sole measure of difference between segmentations. It is 

possible to obtain a false positive volume result if the automatic segmentation has over­

segmented in one region of the liver, yet under-segmented in another. Measurement of 

the overlap of the segmented volumes is affected by such an over/under-segmentation, 

and as such is an excellent measure of segmentation accuracy. Datasets can be analysed
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voxel by voxel to calculate false positive, false negative, true positive and true negative 

voxels. Gerig, Jomier and Chakos (2001) suggest two methods for estimating the 

overlap, the intersection (V/) of the volume of the automatic segmentation (A) and 

manual segmentation (M) divided by the manual segmentation,

V / ' = ( A n M ) / M  (5.2)

and the intersection divided by the union,

Vr = ( A n M ) / ( A  u M )  (5.3)

Both measures give scores of 1 for perfect alignment and 0 for complete disagreement. 

Equation (5.2) penalises under-segmentation, but over-segmentation is effectively 

ignored; if A is greater than M (i.e. if over-segmentation has occurred), (A n  M)  cannot 

be less than M  alone. Equation (5.3) penalises both under-segmentation and over­

segmentation, but is more sensitive to any differences since both denominator and 

numerator change with increasing or decreasing overlap. In practice, neither equation is 

ideal; a high score using equation (5.2) is effectively meaningless (as it is unaffected by 

oversegmentation), and while a high score using equation (5.3) signifies an excellent 

match, poorer matches may achieve disproportionately lower scores as any mismatch is 

doubly penalised.

Lamecker, Lange and Seeba|3 (2002) define the volumetric overlap in a manner that 

takes into account more information than equation (5.2), yet does not penalise errors so 

harshly as equation (5.3). Here, their definition is modified to fit in with the scoring 

paradigm used for equations (5.2) and (5.3), to give a third measure (VV;) of volume
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overlap. It is this equation that is used to score the volumetric overlap for all the results 

obtained in this work.

A n M
Vo = ---------------  (5.4)

(A + M ) / 2

In the 2D case, comparing segmented areas is trivial as there is a direct correspondence 

with slices that have been manually segmented in two dimensions. In 3D, comparison is 

more complicated because the liver is not directly represented by a set of points lying on 

the same regular planes as the manually-segmented slices. As a result, it is necessary to 

interpolate between the vertices of the surface to obtain the boundary location for each 

slice in the z-axis (i.e. the Jt-y plane, the usual plane of manual segmentation). Due to the 

large number of vertices, the fact that the distances between vertices are rarely large, 

and the fact that the inter-vertex space is already interpolated in a linear fashion of sorts 

due to the triangular organisation of the surface structure, it was decided that 

straightforward linear interpolation would be the most appropriate approach. The 

technique used to obtain the boundary is a scan conversion on each slice in the z-axis. 

The location at which the scan lines intersect a face of the surface is marked as a 

boundary, resulting in a binary image containing the boundary of the surface in that 

plane. Thus, a set of binary images is created with direct correspondence to the manual 

segmentation images.

Due to the nature of the results, the overlap between any automatic segmentation must 

be measured separately against the two manual segmentations. Yet it is important to 

note that the two manual segmentations do not overlap perfectly, as Table 5.1 shows. 

The table shows the result of applying equation (5.4) to the two sets of manually 

segmented datasets.
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Dataset Vo
1 0.98
2 0.97
3 0.97
4 0.98
5 0.97
6 0.98
7 0.96
8 0.98
9 0.97
10 0.97
11 0.96
12 0.97
13 0.98
14 0.98
15 0.97
16 0.98
17 0.98
18 0.97

Mean 0.97
SD 0.006

Table 5.1: Overlap between the manual segmentations

As expected, the results indicate a very close alignment between each dataset, yet it is 

important to note that the mean value of 0.97 indicates that there is a 3% mean 

difference in the overlap measures between the manual segmentations, and this must be 

taken into consideration when analysing the results of the automatic segmentation.

5.1.4. Boundary distance measures

A further method of comparing segmentation results is direct measurement of the 

distance between boundaries. The distance in this case can be defined as the number of 

voxels between any given point on one surface and the nearest boundary region of a 

second surface (see further discussion below). This distance is relatively easy to 

measure, as both the 2D active contour and 3D active surface consist of a set of vertices 

at defined points in space, thus it is trivial to measure the Euclidean distance to the 

nearest area of ‘liver’ labelled as such in a manual segmentation of the dataset. 

Nonetheless, boundary distance measurement should be treated with caution if it is to be
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used to judge segmentation accuracy. The reasons for this are two-fold; firstly, in this 

situation there exists no correspondence between measurement points -  the 

measurement records merely the location of the nearest point of the equivalent surface, 

thus false positive measurements can be common. Secondly, the two diagrams in 

Figure 5.2 show how it is possible for distance measurements to incorrectly measure the 

accuracy of the segmentation; for example, a volumetric overlap test would rate Figure 

5.2(b) as a more accurate segmentation than Figure 5.2(a), yet a distance measurement 

using the vertices of the automatic segmentation might rate them as similar in standard.

As a result, when measuring contour distances it is necessary to consider the reverse 

case i.e. measure the distance from the manual contour to the automatic contour. As the 

manual contours are not described by sets of vertices (in the same manner as the 

automatic contours), a scan grid with a resolution of 10 pixels is used to obtain a set of 

points on each (2D) manually segmented boundary. The distance between these points 

and the nearest voxel of the equivalent automatically segmented volume is used as a 

distance measure.

Figure 5.2: How surface distance can give misleading results. In both figures, the blue continuous line 
represents the boundary of a manual segmentation, the red line represents the boundary of an automatic 
segmentation. In figure (a), the nearest vertex to point x2 is vertex v. Yet the nearest point on the manual 

boundary to v is point x1; thus the blue line could represent an incorrect segmentation, yet this will not be 
accurately reflected in any measure of distance. The reverse case exists in Figure (b), where vertex v is 
some distance from the manual boundary and thus any measurement of distance will be high, and may 

not truly represent the accuracy of the segmentation.



It is also necessary to consider the differences between 2D and 3D; in 2D only a single 

image slice can be used to obtain distance information (as the segmentations for each 

slice occurred as separate instances), yet in 3D the data from surrounding slices can be 

used as each segmentation instance considers the full 3D dataset at once.

The actual distances between contours (i.e. measured in millimetres) can be calculated 

using the scaling data stored in the DICOM file format at the time the scan was carried 

out. These distances are unique for each scan, though they usually lie between 0.5mm 

and 0.8mm per voxel for the x  and y  dimensions, and varying between 1 and 5 voxels in 

the z dimension. These scaled distances between the contours for each dataset may be of 

clinical interest, yet the voxel-distance (d) is considered the more relevant value to 

measure the accuracy of the algorithm as it is independent of individual scan scaling 

values.

Dataset d
1 1.18
2 1.28
3 1.16
4 1.25
5 1.27
6 1.15
7 1.29
8 1.26
9 1.20
10 1.31
11 1.32
12 1.25
13 1.29
14 1.19
15 1.15
16 1.13
17 1.23
18 1.19

Mean 1.22
SD 0.060

Table 5.2: Distances between the manually segmented datasets
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In a similar manner to the volumetric overlap comparison method, it is important to 

recall that there are likely to be differences between manually segmented contours. 

Table 5.2 demonstrates this difference as measured in boundary distance. The mean 

distance between the contours is 1.22 pixels.

5.2. Data source, pre-processing and contrast phase

Data from CT scans is stored in the DICOM file format. Prior to its use with any of the 

procedures detailed within this report, the OSIRIS medical image processing software 

(http://www.sim.hcuge.ch/uin) was used to window the appearance of the each image 

slice, which was then directly saved as 8-bit uncompressed greyscale image data. This 

pre-processing was useful, both to facilitate the handling of the data, and to maximise 

the differences in appearance of soft tissue while eliminating surplus data at the higher 

and lower end of the Hounsfield scale. The windowing of the data was identical for each 

dataset and was set to the standard CT Abdomen window of the OSIRIS software (a 

freeware DICOM/Papyrus viewer developed by the Digital Imaging Unit of the 

Radiology department, University Hospitals of Geneva http://www.sim.hcuge.ch/uin/). 

This is a linear window between 30-300 Hounsfield Units.

Table 5.3 shows the metadata for all the CT datasets used in this work. It can be seen 

from the table that a variety of different datasets were used, scanned on different 

machines, using different reconstruction software, and with different voxel dimensions. 

The x, y  and z dimensions are given in mm, kVp is the voltage measured in volts and the 

tube current is measured in milliamps. The acquisition time stated in the DICOM header 

files, for all scans of all datasets and regardless of contrast phase, was 500ms.

http://www.sim.hcuge.ch/uin
http://www.sim.hcuge.ch/uin/
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Dataset X y z kVp
X-Ray
Tube

Current
Make Model Software

1 0 .63 0.63 1 120 300 SIEMENS VOLUME ZOOM VA20Q

2 0.50 0.50 1 120 300 SIEMENS VOLUME ZOOM VA20Q

3 0.74 0.74 1.5 120 280 SIEMENS VOLUME ZOOM VA40C

4 0.49 0.49 1 120 300 SIEMENS VOLUME ZOOM VA40C

5 0.71 0.71 1.5 120 350 SIEMENS VOLUME ZOOM VA40C

6 0.72 0.72 1.5 120 500 SIEMENS VOLUME ZOOM VA47C

7 0.66 0.66 1.5 120 350 SIEMENS VOLUME ZOOM VA47C

8 0.74 0.74 1.5 140 337 SIEMENS SENSATION 4 VA47C

9 0.75 0.75 1.5 120 367 SIEMENS SENSATION 5 VA47C

10 0.62 0.62 1 120 350 SIEMENS VOLUME ZOOM VA47C

11 0.68 0.68 1.5 120 325 SIEMENS VOLUME ZOOM VA47C

12 0.65 0.65 1.5 120 325 SIEMENS VOLUME ZOOM VA47C

13 0.61 0.61 1 120 196 SIEMENS SENSATION 64 SYNGO CT 2006 A

14 0.78 0.78 1 120 350 SIEMENS VOLUME ZOOM VA47C

15 0.86 0.86 0.75 120 523 SIEMENS SENSATION 64 SYNGO CT 2006 A

16 0.65 0.65 3 120 286 SIEMENS SENSATION 64 SYNGO CT 2006 A

17 0.65 0.65 1.5 120 327 SIEMENS SENSATION 4 VA47C

18 0.74 0.74 1 120 480 SIEMENS SENSATION 64 SYNGO CT 2006 A

* see note in text

Table 5.3: Metadata for all CT datasets used in the thesis.

Due to the relatively short total acquisition time of spiral CT, imaging of the liver is 

possible in different contrast enhancement phases. These multi-phase studies offer 

clinicians the chance to view the interaction of the liver with its blood supply, and thus 

aid in the detection of abnormalities. With no contrast enhancement, the liver has the 

same appearance as much of its surrounding tissue, which creates difficulty for any 

segmentation algorithm. During the arterial phase of contrast enhancement, the heart 

and blood vessels appear as bright white in the images, while the liver usually remains 

relatively dark. Again, this is awkward for segmentation purposes, as the bulk of liver 

remains the same shade as surrounding tissue, yet its blood supply is highlighted. The 

venous phase is most suitable for use with segmentation, as the contrast has perfused 

into the tissue of the liver, raising the mean pixel value of the liver to a greater value 

than much of the surrounding tissues.
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Figure 5.3 contains two images showing examples of the different stages of contrast, 

where parenchymal liver tissue in 5.2(a) has a lower average pixel value than 

parenchymal tissue in 5.2(b).

Figure 5.3: Contrast phases of liver during CT scans. Figure (a) shows arterial phase, Figure (b) shows
venous phase.
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5.3. Two dimensions

5.3.1. Initial studies

Prior to using an active contour model, attempts were made to repeat previous work and 

segment the liver using low level techniques. Thresholding is used for liver 

segmentation by several authors (Bae et al., 1993; Gao et al., 1996; Hong et al. 2001; 

Seo and Park, 2005), yet the results of initial efforts to repeat such techniques suggested 

that, as a segmentation tool for the liver, it is not at all robust. Automatic segmentation 

is possible by manually selecting an area of parenchymal tissue and using some simple 

measures such as mean pixel value and standard deviation to obtain threshold level 

estimates. Yet, while there is significant amount of research into automatic thresholding 

(Sonka and Fitzpatrick, 2000), initial tests revealed that, for the liver, it is difficult to 

achieve reproducible results even when setting thresholds manually. Thus, after these 

initial studies, no further research into automatic thresholding assignment was carried 

out.

5.3.2. Active contour model

The results in Sections 5.3.3 and 5.5 were obtained by segmentation with the active 

contour model described in detail in Chapter 3. The model was developed to be 

initialised within the bulk of the liver and expand outwards until the liver’s boundary is 

met. There are two major benefits of using an inflationary model to segment the liver. 

The first is that the interior of a healthy liver is more uniform than the exterior, thus 

there are less noisy edges that can trap vertices as they move outwards towards the edge 

of the liver. The second is that the snake can be initialised at almost any point within the 

liver, without greatly affecting the final segmentation result. The importance of the 

these two points should not be underestimated as they completely avoid the major 

stumbling block of previous liver segmentation algorithms, that of correct initialisation, 

and thus provide a faster and more robust segmentation.
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One major factor that affected the accuracy of the final segmentation was the setting of 

the parameters. To recap the information presented in Chapter 3, there are 6 parameters 

that affect the movement of the contour: four of these control the relative strength of the 

elasticity force, bending force, inflationary force and image force; and two further 

parameters represent low and high pixel threshold values. For all segmentation 

instances, the contour was reparameterised after every five movement iterations; this 

value was again arbitrarily determined with reference to the literature (Mclnemey and 

Terzopoulos, 2000).

The two threshold parameters were set via a semi-automatic method. The contour was 

initialised in a 10x10 pixel area of parenchymal liver tissue chosen by an operator, and 

the mean and standard deviation of the pixel values in this region were measured. The 

threshold values 77, and 77,/ (see equation (3.5)) were set to be 1.5 standard deviations 

(SD) below and above the mean value respectively. In practice the mean grey level 

value of the parenchymal liver for each dataset varied between 160 and 200, and the 

mean SD varied between 10 and 20, thus 77, and 77, varied accordingly.

Chapter 3 discussed and demonstrated the developed active contour model’s capability 

to split and merge, allowing the contour to fold around structures within the bulk of the 

liver. In healthy liver, there are no interior structures that require segmentation, yet 

‘noisy’ edges within the dataset (frequently caused by contrast enhanced vascular 

structure) occasionally cause the contour to fold in on itself. For this reason, the ‘merge’ 

capability of the contour was enabled when segmenting the liver, but the ‘split’ function 

was disabled to prevent incorrect looping and the proliferation of ‘noisy’ daughter 

contours.
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The criterion used to terminate the algorithm (i.e. the final segmentation) is deduced 

with reference to the reparameterisation algorithm. The primary termination condition 

is: ‘‘if, at a reparameterisation stage, no further vertices have been added to the contour 

(thus the contour has not expanded since the last reparameterisation) the algorithm 

should terminate

The biggest disadvantage to the 2D segmentation technique is its inherent inability to 

deal with areas of the liver that are completely separate from the main bulk of the organ. 

Figure 5.4 shows an example of such a situation. As the segmentation algorithm is 

entirely 2D, a single contour has no way of extending beyond the boundaries of the area 

that it has segmented. Thus, if separate areas are to be included in the segmentation, it is 

necessary for multiple contours to be manually initialised within a single slice.

Figure 5.4: Separate areas of the liver in a single slice. The area indicated by arrow (a) is the main bulk
of the liver, yet area (b) is completely separate.
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For the results presented below, the segmentation procedure for an entire liver dataset 

proceeded as follows:

Operator selects an image slice from the middle of the dataset.

Operator selects 10x10 area of parenchymal liver. This area determines 

threshold values for all the images in the liver dataset, and acts as the 

initialisation point for the active contour model.

The segmentation algorithm is started. The contour inflates to segment the 

selected liver slice. Once the termination condition has been met, the centre of 

gravity of the area enclosed by the final position of the contour is calculated and 

stored, and this is used as the seed point for the subsequent slice in the dataset. 

This process is iterated (the centre of gravity for each segmentation acting as a 

seed point for the next slice) until the end of the dataset.

The focus moves to the image slice that precedes the initial slice. The stored 

centre of gravity from the initial segmentation area is recalled and used as a seed 

point for the segmentation of the preceding slice. This process is iterated in 

reverse order up the dataset in a mirrored fashion to the previous step, until the 

start of the dataset is reached.

The operator checks the segmented area and begins similar iterations by 

initialising a contour within the bulk of any separate lobes of the liver.
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5.3.3. Two dimensional results

a)

b)

Figure 5.5: Sample images of automatic 2D segmentation
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Figure 5.5 shows two sample images of results obtained by automatic segmentation of 

the liver by the 2D active contour model. The images are from two separate datasets, 

and the contour model has found successfully the boundary of the liver in all areas, 

except for minor errors in the sharp upper right comer of the liver in the image. Figure 

5.6 consists of several images showing the progression of the active contour model, 

from its initialisation to the final boundary.

Figure 5.6: Four images showing the development of the contour during segmentation
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5.3.3.1. Volume estimation

Figure 5.7 is a bar chart that compares the measured volumes of two manual 

segmentations and the automatic 2D segmentation of 18 liver datasets. Table 5.4 shows 

the raw data. The units used are voxels, as explained in Section 5.1.2 above.

Using equation (5.1), the relevant intraclass correlation (ICC) value calculated for the 

data presented in Table 5.4 is 0.992 (to three significant figures). As presented in 

section 5.1.2 above, an ICC value of 1 means there is no difference in the variance 

between raters, and thus with a value of 0.992 it is possible to conclude that the 

differing values of the volumes in Table 5.4 depend solely on the natural variability in 

liver volumes across a population (Gerig, Jomier and Chakos, 2001).

An ANOVA test on the data produces an F value of 0.036 (to three significant figures), 

which is less than the F-critical value of 3.178, as given by the data tables. Thus, it is 

possible to conclude from the ANOVA that there is no significant difference between 

the groups.
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Dataset Manual 1 Manual 2 2D
1 3438874 3401530 3692620
2 3676325 3643133 3921864
3 2047119 2041405 2179866
4 4220236 4282390 4220236
5 1942143 1965896 2173264
6 1986030 1979839 2175173
7 2253491 2308419 2582051
8 4211000 4211511 4322497
9 2342679 2353009 2508978
10 3005896 3016371 3041173
11 1088956 1097179 1079586
12 2376157 2440348 2512034
13 4133606 4237067 4094168
14 1197437 1237001 1269585
15 1884221 1891053 1786347
16 848182 877761 876575
17 2282859 2296545 2302583
18 2420211 2465118 2253719

Table 5.4: Raw data of volumes measured by manual and 2D automatic segmentation. The ICC value
applied to this data is 0.992.
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Figure 5.8 shows the correlation between the mean manual segmentation volumes and 

the 2D automatic segmentation volumes; it also shows the line of best fit for the series. 

The figure shows that the points from the 18 datasets cluster closely around the line; the 

equation of which, y = 1.0067x + 63052, shows that its slope lies only 0.0067 from a 

perfect gradient of 1. The R2 value is 0.9831 which indicates a very high correlation.

Finally, Figure 5.9 shows a Bland-Altman plot of the data. The Bland Altman plot is 

useful to reveal a relationship between the differences and the averages, to look for any 

systematic bias, and to identify possible outliers (Bland and Altman, 1986). The plot in 

Figure 5.9 shows good agreement between the mean-manual and 2D segmentation 

methods, as all the measured points lie within 1.96 standard deviations. However, the 

mean value on the y-axis (mean manual result minus 2D result) of -80101.1 suggests 

that the 2D technique systematically over-segments the liver. As might be expected, this 

bias is more than that seen between the two manual observers (see Figure 5.1).

5.3.3.2. Volumetric overlap

The overlap between the 2D results and the manual segmentations is shown in Figure 

5.10 and Table 5.5. The results show that the overlap V(), calculated using equation (5.4) 

is consistently greater than 0.9, indicating good correlation between the segmentation of 

the majority of image slices. As mentioned in Section 5.1.3, volumetric overlap is 

perhaps the most reliable measure of the success of the segmentation algorithm, and the 

mean value of 0.93 is only 0.04 less than the mean value for the overlap between the 

two sets of manually segmented livers (see Table 5.1).
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Dataset Vo
1 0.96
2 0.91
3 0.94
4 0.93
5 0.93
6 0.94
7 0.91
8 0.93
9 0.92
10 0.94
11 0.93
12 0.94
13 0.95
14 0.95
15 0.93
16 0.96
17 0.95
18 0.89

Mean 0.93
SD 0.018

Table 5.5: Raw data of the volumetric overlap of 2D automatic segmentation with manual segmentation
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5.3.3.3. Contour distance

The mean results for the average distance between the automatic segmented contour, A, 

and the manually segmented contours, M l and M2, are presented below. As discussed 

above, the distances d(A, M1\M2) are not the same as d(Ml\M2, A). In order to present 

results in the clearest fashion, means have been taken of results so that the actual 

accuracy can be better judged (Lamecker, Lange and Seebap, 2004). Thus, Table 5.6 

shows the raw data, where the values represent the average of d(A, M1\M2) and 

d(Ml\M2, A). Figure 5.11 presents the results graphically.

Dataset Mean distance (pixels)
1 2.85
2 3.15
3 3.22
4 2.98
5 4.72
6 2.96
7 3.72
8 3.02
9 3.36
10 2.88
11 2.65
12 2.74
13 2.93
14 2.62
15 2.73
16 2.40
17 2.73
18 3.21

Mean 3.05
SD 0.518

Table 5.6: Raw data of 2D segmentation distances between contours
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5.3.3.4. Effects of increased resolution at areas of higher curvature

One of the major novel contributions of the developed 2D segmentation is the ability to 

increase the accuracy of the segmentation result by increasing the resolution of the 

contour at areas of higher curvature. Figure 5.12 demonstrates how using a smaller grid 

resolution can prevent significant segmentation errors. In both the images in the figure, 

the active contour was initialised within the bulk of the liver. In Figure 5.12(a), the 

resolution of the grid has been set to 8 pixels, and it is clear that the contour has not 

segmented the liver correctly as it has not inflated into the lobe in the upper right hand 

side of the liver in the image. In Figure 5.12(b) the resolution of the grid is set to 

increase at areas of higher curvature (to a smallest grid resolution of two pixels), and the 

image shows more accurate segmentation of the liver.

Figure 5.12: Demonstration of increased segmentation accuracy with increased curvature.

It is possible merely to set the resolution of the grid to a constant smaller size (e.g. two 

pixels). There are several disadvantages to doing this, however; one is that the 

computational power required for algorithm increases along with number of control 

points, which naturally decreases the algorithm's speed. Another is the fact that the 

presence of more control points greatly increases the frequency of the contour looping
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around itself, as individual elements get trapped on ‘noisy’ edges, and the strength of 

the internal forces between closely spaced elements is insufficient to pull the trapped 

element ‘through’ the edge. Finally, a constant smaller grid size may allow the contour 

to ‘leak’ and cause incorrect segmentation, especially where there are breaks in 

significant edges, as demonstrated in Figure 3.7 in Chapter 3. These leakages and their 

direct causes are difficult to quantify as they may differ in their exact location and 

frequency. The robustness and repeatability of the main bulk of the results presented 

above are a testament to the developed algorithm’s ability to change the contour’s 

resolution and behaviour in areas of greater or lesser curvature.

Further statistics, discussion, and comparison with the 3D results are presented in 

Section 5.5 below.
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5.4. Three dimensions

5.4.1. Active surface model

The 3D segmentation procedure addresses, in theory, several of the weaknesses of the 

2D technique. In particular, the inherent nature of 3D segmentation is that each instance 

uses all the available data in a dataset, whereas in 2D only one slice of data can be used 

at a time. This means that 3D segmentation would be considered to be topologically 

more robust, and does not require additional segmentation procedures (which are 

required in 2D to segment liver tissue that appears separate from the main bulk of the 

liver in individual slices).

Nevertheless, 3D liver segmentation also has its disadvantages with respect to 2D 

segmentation. The desired topological robustness becomes a hindrance as the 

inflationary surface can ‘leak’ in a third dimension, and this is a particular problem in 

the liver. The inferior vena cava is a vein that returns deoxygenated blood from the 

lower half of the body to the heart. It travels very closely alongside the liver and, for a 

short distance, it is usually almost completely surrounded by liver tissue. During this 

distance it becomes visually indistinct from parenchymal liver tissue, and as a result it is 

invariably included in both manual and automatic segmentation -  in such image slices it 

is frequently impossible for manual observers to identify its location within the liver.

At the superior and inferior ends of the liver, the inferior vena cava eventually becomes 

visually distinct, yet its average Hounsfield values (and thus appearance in images) and 

texture remain similar to those of the liver. Figure 5.13 contains four images, from the 

same dataset, that illustrate the locational relationship of the inferior vena cava and the 

liver. In Figure 5.13(a) and (d), the inferior vena cava is visually distinct from the liver. 

In Figure 5.13(c) the vein is beginning to become more apparent (when viewing slices



139

sequentially in a superior to inferior direction), yet in Figure 5.13(b) the vein is very 

difficult to distinguish.

Inferior vena cava

Figure 5.13: The passage of the inferior vena cava through the liver, as viewed in CT images. Figures (a) 
to (d) are image slices from the same CT dataset and progress from the superior to inferior body 

direction. The arrow for figure (b) shows only the likely area of the vena cava.

The net effect is that, as it inflates in some cases, the active surface may leak along the 

vena cava, in both superior and inferior directions. In the superior direction in particular, 

any leakage is catastrophic as the surface begins to expand into the heart. This problem 

is completely avoided in 2D due to the dataset being treated in only two dimensions -  

once the vessel is distinct from the liver, there is no probability that the 2D contour will
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segment it. To counter this unwanted effect, unfortunately the level of automation must 

be reduced. Prior to initialising the algorithm, the operator may scroll through the 

images of the dataset and mark the points (superior and inferior of the liver) at which 

the vena cava becomes obviously separate from the liver. These markers are then used 

as restrictions for the algorithm, and the surface may not pass these markers. It is 

unfortunate that such steps are necessary, yet without them the segmentation results are 

not sufficiently robust.

The parameters for the surface model are set in a manner analogous to the 2D case. An 

operator selects an area of parenchymal liver tissue and the statistics of the data values 

in this area are used to set the high and low threshold values (1.5 standard deviations 

above and below the mean voxel value). The values of other parameters were set 

empirically and remained constant for each dataset. The surface was reparameterised 

after each 25 iterations of movement, the value is greater than that used in 2D as the 

volume of data being considered by the algorithm is much larger. Again, as in the 2D 

case, it was considered outside the scope of the project to investigate any possible 

parameter optimisation algorithms. The scope for future work in this area is discussed in 

Chapter 6.

The termination condition used for the segmentation was identical to that used in the 2D 

case: ‘i f  at a reparameterisation stage, no further vertices have been added to the 

surface data structure (thus the surface has not expanded since the last 

reparameterisation) the algorithm should terminate’.
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5.4.2. Three dimensional results

a)

b)

Figure 5.14: Rendering of two separate livers segmented by the 3D active surface model
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Figure 5.15: Sample images of automatic 3D liver segmentation. The red contour represents the 
intersection of the surface with the plane of the image.
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Figure 5.14 contains two images showing 3D rendering examples of the final 

segmentation of two livers, using the active surface model. Figure 5.15 shows sample 

overlays of the segmentation results in 2D, where the 3D surface has been artificially 

‘sliced’ by scan conversion.

5.4.2.1. Volume estimation

Figure 5.16 shows a graph comparing the measured volumes with segmentation carried 

out by two manual operators. Table 5.7 shows the raw data used for the graph. Using 

equation (5.1) the relevant intraclass correlation (ICC) value is calculated from the data 

presented in Table 5.7 is 0.995 (to three significant figures). According to this result is it 

possible to conclude (Gerig, Jomier and Chakos, 2001) that the variability in the data is 

solely due to the natural variation of liver volume among the population, and thus there 

is no significant difference between the values assigned by each rater.

The F  value produced by an ANOVA for the data is 0.002 (to three significant figures). 

This is less than the relevant F-critical value of 3.178 that is presented in the data 

tables, and we can conclude from the ANOVA that there is no significant difference 

between the groups.
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Dataset Manual 1 Manual 2 3D
1 3438874 3401530 3335657
2 3676325 3643133 3892620
3 2047119 2041405 2093829
4 4220236 4282390 4217115
5 1942143 1965896 2115042
6 1986030 1979839 1841427
7 2253491 2308419 2381895
8 4211000 4211511 4323284
9 2342679 2353009 2451048
10 3005896 3016371 2979038
11 1088956 1097179 1037034
12 2376157 2440348 2360554
13 4133606 4237067 3908039
14 1197437 1237001 1100764
15 1884221 1891053 1878408
16 848182 877761 779870
17 2282859 2296545 2282626
18 2420211 2465118 2378448

Table 5.7: Raw data of volumes measured by manual and 3D automatic segmentation



Figure 
5.16: M

easured 
volumes 

of 
m

anual and 
3D 

automatic 
segm

entation

5000000

4500000

4000000

3500000

j» 3000000 
a> x  o

2500000
E
3

>  2000000 

1500000 

1000000 

500000 

0

Volumetric comparison of automatic 3D segmentation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Dataset

■ Manual 1
■ Manual 2
■ 3D



Figure 
5.17: Correlation 

between 
volumes 

of 
manual and 

3D 
automatic 

segm
entations

Correlation betw een mean manually segm ented  volum es and 3D autom atically segm en ted  volum es

5000000

4500000

4000000

3500000
a>xo
~  3000000
<D
E
3

5 2500000
ro
3

|  2000000
cra
S  1500000

1000000

500000 

0
0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000

Automatic volume (voxels) ^

y = 1.008x - 30983 
R2 = 0.9872 ^



Figure 
5.18: Bland-Altm

an 
plot between 

mean 
m

anual and 
3D 

autom
atic 

segm
entations

300000 —
D +1.96 SD

248610.5
200000

□

100000
□

□
□ □

□
□

□ D Mean
0

_ □
10766.7

-100000 — □□

□

□

-200000 — -1.96 SD
- B -227077.1

-300000 n -«----- i --------1—  ■ - i - J-----------,-----------L1 1 1 1 1 ■ i  ■ 1 ■ 11

0 1000000 2000000 3000000 4000000 5000000
AVERAGE of Mean and 3D



148

Figure 5.17 shows the correlation between the mean manual segmentation volumes and 

the 3D automatic segmentation volumes; it also shows the line of best fit for the series. 

The figure shows that the points from the 18 datasets cluster closely around the line; the 

equation of which, y = 1.008x - 30983, shows that its slope lies only 0.008 from a 

perfect gradient of 1. The R2 value is 0.9872 which indicates a very high correlation.

Finally Figure 5.18 shows a Bland-Altman plot of the data, described above in Section 

5.3.3.1 (Bland and Altman, 1986). The plot shows good agreement between the mean- 

manual and 3D segmentation methods, as all but two of the measured points lie within 

1.96 standard deviations. The mean value on the y-axis (mean manual result minus 3D 

result) of +10766.7 suggests that the 3D technique systematically under-segments the 

liver. In contrast to the 2D case, this value is less than the bias observed in between the 

two manual observers (see Figure 5.1).

5.4.2.2. Volumetric overlap

The overlap between the 3D results and the manual segmentations is shown in Figure 

5.19 and Table 5.8. The results show that the mean overlap, Vo, calculated using 

equation (5.4) is consistently greater than 0.9, indicating good correlation between the 

segmentation of the majority of image slices. Further discussion of the overlap results is 

present in section 5.5 below.
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Dataset Vo
1 0.93
2 0.92
3 0.93
4 0.91
5 0.91
6 0.93
7 0.91
8 0.91
9 0.92
10 0.92
11 0.94
12 0.93
13 0.91
14 0.87
15 0.94
16 0.89
17 0.94
18 0.92

Mean 0.91
SD 0.018

Table 5.8: Raw data of the volumetric overlap of 3D automatic segmentation with manual segmentation
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Figure 5.19: Mean overlap of 3D automatic liver segmentation with two separate manual segmentations



5.4.2.3. Contour distance

As for the 2D results, the means of the results for the average distance, d, between the 

automatic segmented contour, A, and the manually segmented contours, M l and M2, are 

presented below. Figure 5.20 presents the result graphically, while Table 5.9 shows the 

raw data.

Dataset d
1 2.69
2 3.60
3 2.65
4 3.41
5 2.67
6 2.44
7 3.46
8 3.02
9 3.36
10 3.27
11 2.92
12 3.09
13 4.05
14 3.81
15 2.71
16 3.53
17 2.98
18 2.98

Mean 3.15
SD 0.443

Table 5.9: Raw data of 3D segmentation distances between surfaces



Mean distance of 3D automatic to manual contours and vice versa
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Figure 5.21 shows 3D renderings of liver segmentation of a single dataset. The surface 

has been colour coded in order to show the location of the greatest segmentation error; 

blue indicates a surface distance less than the mean contour distance (presented in Table 

5.9 as 3.15 voxels), green indicates a greater distance that is still less than twice the 

mean contour distance (6.30 voxels) and red indicates a distance value greater than 

twice the mean contour distance. Visual analysis of the results of segmenting other 

datasets shows that error distribution in the figure demonstrates the typical pattern of 

error that is observed for the segmentation results. The images show that, as might be 

expected, the greatest distance values occur in complex areas of the liver, whereas the 

distance measure in more uniform areas of the organ is below the mean distance.

Figure 5.21: Two 3D rendered views of the same 3D segmented liver, colour coded to show the areas of 
largest segmentation error. Blue indicates a distance value < mean contour distance for all datasets, 
green indicates a distance < twice mean contour distance, and red indicates a distance > twice mean

contour distance.

S.4.2.4. Effects of increased resolution at areas of higher curvature

As with the 2D algorithm, the curvature of the surface determines the resolution at 

which it is reparameterised, and Figure 5.22 shows three screenshots of a surface in the 

process of segmenting the liver, which has been colour coded so that blue-green-red 

represents increasing levels of curvature.



Figure 5.22: Curvature of the 3D surface in its evolution during liver segmentation. The surface has been 
colour coded blue-green-red to represent increasing levels of curvature.

As discussed in Section 5.3.3, it is possible merely to keep the resolution of the 

reparameterisation algorithm as high as possible, thus ensuring small distances between 

each vertex of the surface. The same arguments against implementing this in 2D bear 

particular relevance to the 3D algorithm. The 3D surface cannot deal with self-looping 

as effectively as the 2D case, and despite implementation efforts to prevent this (see 

Chapter 4), ensuring a low resolution surface at areas of lower curvature reduces further 

the risk of the surface becoming trapped on a noisy dataset ‘edge’ and looping. 

Furthermore, a small decrease in the value of A* (the value controlling the maximum 

allowed face area in the surface, see Chapter 4) has an exponential increase in the 

number of vertices that comprise the model, resulting in the model becoming extremely 

slow and unwieldy to use. Maintaining high levels of surface accuracy only at the 

locations where it is required drastically reduces the computational power required to 

segment a single liver dataset.

5.5. Comparison of 2D and 3D

The purpose of this section is present the result of sections 5.3 and 5.4 side by side, so 

that the 2D and 3D techniques may be judged in comparison with each other.



5.5.1. Volume estimation

Table 5.10 reproduces the volumes estimated by both manual segmentations, and both 

the 2D and 3D automatic segmentation algorithms. Figure 5.23 contains a bar chart that 

represents the data in Table 5.10. The relevant ICC value calculated using equation (5.1) 

is 0.992, from which is possible to conclude that the variation in the data is solely due to 

the natural variation in liver volume (Gerig, Jomier and Chakos, 2001).

An ANOVA analysis of the data produces an F  ratio of 0.030 (to three significant 

figures). This is less than the F-critical value of 2.740, as given in the data tables, a 

result that states that the differences between the sets of data are not statistically 

significant.

Dataset Manual 1 Manual 2 2D 3D
1 3438874 3401530 3692620 3335657
2 3676325 3643133 3921864 3892620
3 2047119 2041405 2179866 2093829
4 4220236 4282390 4220236 4217115
5 1942143 1965896 2173264 2115042
6 1986030 1979839 2175173 1841427
7 2253491 2308419 2582051 2381895
8 4211000 4211511 4322497 4323284
9 2342679 2353009 2508978 2451048
10 3005896 3016371 3041173 2979038
11 1088956 1097179 1079586 1037034
12 2376157 2440348 2512034 2360554
13 4133606 4237067 4094168 3908039
14 1197437 1237001 1269585 1100764
15 1884221 1891053 1786347 1878408
16 848182 877761 876575 779870
17 2282859 2296545 2302583 2282626
18 2420211 2465118 2253719 2378448

Table 5.10: Raw data of volumes measured by manual, 2D automatic and 3D automatic segmentation
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Figure 5.24 contains a bar chart that demonstrates the absolute percentage difference 

between the automatic segmentation volumes and the mean of the two manually 

segmented volumes. Due to the absence of an absolute gold standard, this graph is not 

wholly representative of the actual accuracy of either algorithm; however it is 

reproduced here as a method of comparing the performance of the 2D and 3D 

algorithms.

The pale red-band in the figure demonstrates the ± mean difference between the results 

of the two manual operators. For three datasets (4, 10 and 17) the automatic error is 

within the mean distance boundaries, the vast majority of automatic segmentation 

results like outside this boundary. The graph suggests that neither of the automatic 

segmentation techniques are as robust (i.e. they cannot repeatably provide accurate 

results) as manual segmentation.
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Table 5.11 shows the mean absolute difference of the volumes of all the datasets in the 

study and Table 5.12 shows the mean overall difference.

2D 3D
Mean absolute difference (%) 5.24 4.24

SD 3.82 3.08

Table 5.11: Mean absolute differences. Mean and standard deviation (SD) of the absolute value 
differences between the automatic segmented volumes and the mean manually segmented volumes

2D 3D
Mean overall difference (%) 3.33 -1.07

SD 5.66 5.22

Table 5.12: Mean overall differences. Mean and standard deviation (SD) of the differences between the 
automatic segmented volumes and the mean manually segmented volumes

The mean absolute difference of 5.24% for the 2D algorithm is slightly higher than the 

4.13% mean difference for the 3D algorithm, and Table 5.12 (and Figure 5.24) suggests 

that the 2D segmentation has a tendency to over-segment the liver. This could be due to 

the fact that the 2D algorithm wraps around and includes areas of vascular structure that 

are surrounded by liver tissue (in a 2D image slice). The vascular structure is excluded 

by both manual segmentation and the 3D algorithm, and the relevance of this is 

discussed in Chapter 6.

When considering the significance of the data in Tables 5.9 and 5.10, it is important to 

note the high standard deviation values for the data; thus these results should be treated 

with a degree of caution. However, as these values are ratios, obtained via comparative 

measures, it is not suitable to use them in tests of significance such as the Mest or 

ANOVA. A comparison with the results obtained by other researchers in the field is 

presented in Chapter 6.
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As a final volume comparison measure, Figure 5.25 summarises the data in Figures 5.7 

and 5.16 showing the correlation between the mean manual segmentation volumes and 

both the 2D and 3D automatic segmentation volumes. The graph contains the two 

separate lines of best fit for both the 2D and 3D series'. The equations for the lines are 

displayed both in the figure and in Table 5.13 below, which are both very near to a 

perfect gradient of 1. The R values for both sets of points are above 0.98, which 

indicates a very high level of correlation.

Dimension of segmentation algorithm Equation of line of best-fit
2D y =  1.0067x + 63052
3D y =  1.008x- 30983

Table 5.13: Equations of lines of best-fit -  estimate through the volume 
correlation graph shown in Figure 5.25
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5.5.2. Volumetric overlap

Figure 5.26 shows the mean values for the overlap results for all the datasets, including 

the overlap between the two manual segmentations. It can be seen that the overlap value 

for the 2D segmentation is slightly higher than the 3D value, suggesting that the 2D 

algorithm is slightly more accurate than the 3D. This disagrees slightly with the results 

of the overall volume estimation above. The overlap values for both segmentation 

algorithms are in excess of 0.9, and within 5.6% percent of the manual overlap.

Mean overlap
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0.933 0.97

P I
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Figure 5.26: Mean overlap data. The two left-most columns show the mean data for the overlap between 
2D and manual, and 3D and manual segmentations. The rightmost column shows the overlap between the 

two individual manual segmentations (y-axis range is shortened to highlight to differences)
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5.5.3. Contour distance

Figure 5.27 shows the mean distances between the automatic contours and the manual 

contours. The mean distances for the both the 2D and 3D segmentation are very similar, 

and nearly two pixels greater than the distance between the two manually segmented 

contours. From this data it can be seen that there is a < 2 pixel mean overall distance 

difference between both 2D and 3D automatic segmentation and mean manual 

segmentation.

I-----------------------------------------------------------------------------------------------
Mean con tou r d ista n ce

4.00

Manual

Segm entation type

Figure 5.27: Mean distance data. The two leftmost columns show the mean distance between the 2D and 
3D segmentations with the manual segmentation, and the remaining column shows the mean distance 

between the two individual manual segmentations.

It is apparent here that there is a surprisingly low mean distance difference, given the 

magnitude of the differences of volume estimation and volume overlap. For example, in 

dataset 7, there is a 13% difference between the 2D automatic segmentation volume and 

the mean of the manual segmentations, yet only a 3.72 average pixel difference between 

the surfaces (for all the image slices). The possible reasons for such a result are 

discussed in Section 6.3 below.
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5.5.4. Algorithm speed

No in-depth speed studies were conducted, although the speed of the algorithms varied 

greatly depending on dataset size and liver shape complexity. As a rough guide, each 

individual 2D slice would take ~3-5 seconds to segment, and an entire liver (containing 

150 slices, for example) would take ~10 minutes. By contrast, the 3D technique was 

much faster, and a typical 150 slice dataset would take ~5 minutes. All time estimates 

are based on algorithms running on a PC with a 2.6Ghz Pentium Xeon processor.

5.6. Parameters and initialisation points

As discussed briefly in Section 3.4 and 4.4 above, the parameters used to segment livers 

in both 2D and 3D were deduced by iteratively testing different combinations of 

parameters on a subset of images/datasets, judging which gave the most accurate results 

by comparison of area/volume and visual analysis. Yet it is important to note that the 

values of these parameters could affect the accuracy of the segmentation, and so a small 

study was conducted to find which parameters have the greatest effect, and to 

demonstrate that effect.

The study was conducted, separately for both the 2D and 3D algorithms, in two phases. 

The first phase attempted to find the two most sensitive parameters i.e. the parameters 

that created the largest segmentation error when their values were changed by the 

smallest amount from those presented in Chapter 3 and 4. To achieve this, each of the 

parameters was altered independently until catastrophic segmentation failure occurred, 

defined as an area/volume error of + 25% from mean manual segmentation. Volume 

was chosen as the measure of segmentation error as it allows the results to more easily 

demonstrate whether the automatic algorithm has over- or under-segmented the data;
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this is useful when analysing the results and when discussing the reasons for why 

altering a parameter produces failed segmentation.

Segmentation was carried out in increasing 'bands' of difference, ± 5, 10, 25, 50, 75, 

100, and 200% e.g. each parameter was changed (independently) by ±5 and 

segmentation carried out; then each changed by ±10 etc. This approach makes it 

possible to eliminate surplus tests -  once the two most sensitive parameters have been 

found, it is unnecessary to keep testing other parameters at higher difference values.

The two parameters which produced catastrophic error due to the smallest percentage 

change in their value were put forward to the second phase of the study. This phase 

measured the volume using parameter values varying at regular intervals in between the 

values which produced catastrophic failure. In addition to measuring the effects of 

changing the parameters individually, the results of changing the parameters 

simultaneously were also measured. Again, the method used to measure the accuracy of 

the segmentation was comparison of area/volume with mean manual segmentation.

All tests were carried on a subset on six datasets, chosen at random from the 18 used for 

the main study. The mean of the results is used in the graphs below, though due to the 

large volume of data and complexity of the three-dimensional graphs, standard 

deviation values are omitted. The 'starting' values of the parameters for 2D and 3D are 

listed in Chapter 3 and 4 respectively. It should be noted that, under the study design, it 

would be possible to change the sign of a parameter once the percentage difference 

reaches a large enough value. As the value of the parameter (with the exception of the 

standard deviation value used to set thresholds 7/0 and 77,/) is designed to control the 

magnitude of each force, this is nonsensical. As a result, negative parameters values
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were not allowed, and parameter changes > -100% were dealt with so that the parameter 

remained equal to zero.

5.6.1. 2D parameters

The data in Table 5.14 shows the number of datasets that failed at each parameter value 

(zero values are left as blank cells for clarity). In the -50% row, the table shows all six 

datasets failed for the SD parameters (controlling the threshold values). Four 

segmentations failed for parameter c (controlling the strength of the inflationary force), 

with the remaining two failing at -75%. Two suffered catastrophic failure when the 

image-based parameter, d, was increased by 75, but the most sensitive parameters are 

clearly c and SD. Furthermore it can be seen that it is a reduction in these values that 

causes failure -  the normal force becomes so weak that it cannot overcome either the 

elasticity term of the surface or the external, image-based force; and the threshold 

values come increasingly close together such that the normal force is reversed more 

frequently.

X a b c d SD
-75 2 X
-50 4 6

-25
-10

+ 10
+25
+50
+75 2

Table 5.14: Number of liver datasets achieving catastrophic segmentation failure at each parameter 
alteration. ’X ’ indicates no test was carried out, due to all datasets having failed at a lower absolute

percentage difference.

Parameters c and SD were put forward for the second phase of the study where their 

effect on the segmentation accuracy was measured over a range of values. Segmentation 

was carried out while changing the parameters simultaneously, thus allowing a two
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dimensional grid of parameter values to be tested. Figure 5.28 contains two graphs that 

show the segmentation error (as measured by percentage volume difference between 

automatic and manual segmentations). Figure 5.28(a) is a three-dimensional chart where 

the jc and y axes represent the value of the parameter, while Figure 5.28(b) is a contour 

chart, where the different colours represent the different levels of percentage difference 

to manual segmentation. The colour code of the graphs is set so that light blue 

represents a segmentation result below the catastrophic failure threshold of 25% 

difference.

It should be noted that parameters c and SD are directly linked, in that they both control 

the inflationary force, y, of the contour/surface. The value of c controls the magnitude of 

the force, whereas the value of SD assigns the upper and lower threshold values -  where 

intensity values above or below the respective upper and lower thresholds reverse the 

direction of the inflationary force and make it an inflationary force.



168

(a)
2D algorithm - mean absolu te  volume error changing param eters c and SD

100

50 % volume error

1.25 '

Starting value = 5 3-75
-50% -  2.5 6.25

Parameter c 8.75
2.25 2 5

Starting value =1.5 
-50% = 0.75

1.875
11.25 1.5

1.125

0 5 Parameter SD

(b)

D 75-100 
□  50-75
■  25-50
■  0-25

1.875

Parameter SO

0.75

□  95-100
□  90-95
□  85-90
■  80-85
■  75-80
■  70-75
■  65-70
■  60-65

Starting value = 1.5 ■  55-60 
-50% = 0.79D 50-55

■  45-50
■  40-45
□  35-40
■  30-35
■  25-30
■  20-25
□  15-20 
‘□10-15
■  5-10
■  0-5

7.5 8.75
Starting value > 5

-50% = 2.5

Figure 5.28: Absolute volume difference of 2D segmentation accuracy changing parameters c and SD. 
(a) shows a 3D graph, (b) shows a contour graph with increased resolution.
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The shape of the graphs show a distinctive flat *base', indicating the alterations of the 

value of the parameters by up to ±50% does not give catastrophic failure. The most 

dramatic error occurs while reducing the magnitude of the inflationary force; this is 

likely due to the force becoming so weak that it is not able to overcome the elasticity 

force, a, which attempts to regularise the distance between vertices and thus naturally 

draws the vertices inwards to a single point (thus a 100% error in measured volume). 

This catastrophic failure is seen at between -50% and -75%, regardless of the value of 

SD. Yet increasing the power of the inflationary force does not have so drastic an effect 

on the segmentation accuracy; if SD is unchanged, even at > +100% the measured 

volume error stays in the base region. Once the value of SD is lowered (thus the 

threshold width is smaller) segmentation fails regardless of the strength of the 

inflationary force; yet as SD is increased, only an increase in the strength of the 

inflationary force increases the segmentation error to the level of catastrophic failure.

Figure 5.29 shows the mean volume of automatic segmentation, measured as a 

percentage of manually segmented volume, where it is possible to see whether the livers 

have been over- or under-segmented. As might be expected, the lower inflationary force 

causes severe under-segmentation. Lowering SD also results in under-segmentation, as 

the narrow width of the upper and lower threshold values makes it more likely for the 

inflationary force to reverse and thus not allow correct segmentation. As both c and SD 

increase, the resulting increased strength of the inflationary force coupled with the 

lower propensity for it to be reversed results in over-segmentation.
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Figure 5.29: Mean volume of 2D segmentation, measured as percentage of manually segmented volume,
changing parameters c and SD.

5.6.2. 3D param eters

The data in Table 5.15 shows the number of datasets that failed at each parameter value 

(zero values are left are blank cells for clarity). The table shows that most sensitive 

parameter is SD, with five datasets failing at -50% and one at -75%. The second most 

sensitive parameter is d  (controlling the strength of the image force), with four datasets 

failing at +75 and two at +100%. Thus parameters d and SD were moved forward to the 

second phase of the study.

One point worthy of note is the fact that when parameters a, b are reduced to zero (- 

100%) catastrophic failure does not occur. This is because there is some overlap 

between the effects of the internal forces a and p  -  analysis of equation (4.5) shows that 

a proportion of the same data is used to calculate a is also used for p. Thus removing the 

influence of either a or p  does not have a catastrophic effect on segmentation. 

Furthermore, failure only occurs in three datasets when d (the edge-based strength) is
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reduced to zero, showing that segmentation can achieve some level of success by using 

only the threshold levels.

X a b c d SD
-100 6 4 3 X
-75 2 1

-50 5
-25
-10

+10
+25
+50
+75 4

+100 2
Table 5.15: Quantity of liver datasets achieving catastrophic segmentation failure at each parameter 
alteration.. 'X' indicates no test was carried out, due to all datasets having failed at a lower absolute

percentage difference.

As for the 2D algorithm, segmentation was carried out while changing the parameters 

simultaneously, allowing a grid of parameter values to be tested. Figure 5.30 contains 

two graphs that show the segmentation error (as measured by percentage volume 

difference between automatic and manual segmentations). Figure 5.30(a) is a three- 

dimensional chart where the jc and y axes represent the values of the parameters, while 

Figure 5.30(b) is a contour chart, where the different colours represent the different 

levels of percentage difference to manual segmentation. The colour code of the graphs 

is set so that light blue represents a segmentation result below the catastrophic failure 

threshold of 25% difference.

In contrast to the 2D study, parameters d and SD are completely independent, the 

former controlling the strength of the external, image based force (represented by edge 

detection), and SD representing the width of the upper lower and thresholds as above. 

The graphs in Figure 5.30 show a bimodal graph which again has a flat 'base', showing 

that there is some flexibility in setting of the parameters to obtain results comparable 

with those presented above for the main study of the thesis.
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Figure 5.30: Effect of changing parameters c and SD on 3D segmentation accuracy, measured by volume 
difference to manual segmentation. Figure (b) shows a contour graph with increased resolution.

Figure 5.31 shows the mean volume of 3D automatic segmentation, measured as a 

percentage of manually segmented volume. It shows that as both the edge-based force is 

decreased while the SD (thus threshold width) is increased, the surface tends to over­

segment due the surface forcing its way through edges, and the wide threshold width 

allowing it to continue segmenting surrounding tissue. By contrast, as the strength of



edges in the dataset is increased and the width of the thresholds decreased, the surface 

cannot expand correctly and the normal force is more easily reversed, thus the surface 

under-segments.
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Figure 5.31: Mean volume of 3D segmentation, measured as percentage of manually segmented volume,
changing parameters c and SD.

5.7. Unhealthy liver segmentation

Much of the clinical interest in the liver naturally revolves around the diagnosis and 

treatment of unhealthy tissue. As a result, preliminary studies were carried out into the 

feasibility of using the developed algorithms to segment such tissue. As discussed in 

Chapter 1, there are many different diseases that can affect the liver; it is beyond the 

scope of this thesis to deal with the classification of such disease, however the 

developed algorithms can assist with the quantification of disease, and provide an 

important basis for future work in the area, which is discussed in Chapter 6.

Two types of abnormalities were used in a small study to gauge the suitability of the 

developed segmentation algorithms to assist with future work. Firstly, the algorithm was 

run on livers with varying levels of cirrhosis. It was found both 2D and 3D algorithms
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were able to successfully segment mildly cirrhotic livers, though as the levels of 

cirrhosis increased, the segmentation algorithms struggled to find the correct 

boundaries. The reason for this is that, as the level of disease increases, the uniformity 

of the appearance of liver tissue begins to degrade, and ‘noisy’ edges appear. A simple 

conclusion is that both 2D and 3D algorithms are able to segment livers that have mild 

cirrhosis, but as the severity of the disease increases, segmentation becomes 

increasingly less accurate.

A second class of abnormalities used to test the segmentation algorithms were abscesses 

or lesions. There are a variety of abscesses and lesions that can affect the liver, and their 

correct segmentation can provide useful information about the location and 

quantification of the disease. Lesions can include:

Primary liver tumour (hepatocellular carcinoma): Discrete solitary or multiple 

lesions are seen as well-defined low-density areas compared to the surrounding 

liver.

Hepatic metastases: hypovascular and therefore hypodense on contrast enhanced 

scans.

Benign Cysts: seen as sharply defined homogenous areas, the contents of which 

have a density nearer to water and are not affected by intravenous injection of 

contrast medium.

Figure 5.32 contains a selection of images that demonstrate the ability of both 2D and 

3D algorithms to segment well defined abnormalities. In each case, the algorithm was 

initialised within the bulk of the abscess or lesion (as in the case of healthy tissue 

segmentation), and the threshold parameters set automatically according to the 

pixel/voxel values contained with the initialised area/volume. Table 5.16 presents
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quantitative results from five separate lesions. The volumes of the manually segmented 

abnormalities are shown, with the two subsequent columns containing the volumes 

measured by the 2D and 3D segmentation. The final two columns contain the values for 

the overlap between the automatic and manual segmentations. Figure 5.33 contains a 

bar chart showing the segmented volumes (the data in the columns two, three and four 

of Table 5.16).

Figure 5.32: Lesion segmentation. Figures (a) and (b) show the results of 2D segmentation, with two 
separate contours having been initialised in figure (b). Images (c) and (d) show rendering of the 

abnormalities segmented using the 3D algorithm.
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Abnormality ID Manual
volume

2D automatic 
volume

3D automatic 
volume

2D
overlap

3D
overlap

1 129568 129014 129365 0.96 0.98
2 86894 87009 87158 0.99 0.98
3 35689 35421 35525 0.98 0.99
4 82791 80126 81542 0.97 0.98
5 102156 101875 102589 0.98 0.98

Table 5.16: Results of the segmentation of well-defined lesions

V olum es of autom atically  and  m anually segm en ted  lesions

140000

120000

100000

1  80000
■  Manual 
□  2D 
■3D

60000

40000

20000

1 2 3 4 5
Dataset

Figure 5.33: Volumes of segmented lesions.

The data in Table 5.12 shows that the accuracy of the segmentation of the abnormalities 

is quite high, higher than the segmentation of healthy liver tissue. This is almost 

certainly due to the much smaller and simpler structures of the abnormalities on which 

the algorithm was run. It should be emphasised, however, that while these results 

suggest that the automatic segmentation algorithms are capable of segmenting some 

forms of lesions, liver abnormalities vary greatly in their appearance, size, distinction, 

location and distribution, and a more in-depth study would need to be carried out to 

assess in which situations the automatic segmentation algorithms can be used to 

accurately quantify the extent of disease.
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It is also important to note that while the automatic segmentation of the lesions was 

initiated by an operator, the actual location of the lesion does not appear to have an 

affect on the accuracy of the segmentation. Both 2D and 3D techniques are able to 

segment abnormalities whether they are wholly surrounded by liver tissue or on the 

perimeter of the liver. Chapter 6 will discuss several possibilities of using the structure 

of the automatically segmented healthy liver tissue as a basis for estimating the location 

of abnormalities, and thus enabling automatic initialisation of their segmentation.

5.8. Segmentation of healthy tissue in unhealthy liver

Figure 5.34(a) demonstrates an example where the 2D algorithm was capable of 

segmenting healthy liver tissue from an otherwise unhealthy liver that contains two 

well-defined lesions. Figure 5.34(b) is an image that demonstrates the failure of the 

algorithm to achieve accurate segmentation. The model is able to segment (and thus 

measure the volume of) healthy liver tissue in livers where the disease is well defined; 

yet the where disease is more diffuse, it struggles.

(a) (b)

Figure 5.34: Healthy liver tissue segmentation in an unhealthy liver. Figure (a) shows successful 
segmentation where well-defined lesions exist. Figure (b) shows unsuccessful segmentation.

Figure 5.35 contains images showing views from two different angles on the results of 

segmenting healthy liver tissue in 3D, from an otherwise unhealthy liver. The obvious
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indentation indicates the location of a lesion at the edge of the liver. Chapter 6 discusses 

further possibilities for making use of such a segmentation.

Figure 5.35: 3D Segmentation of healthy tissue from an abnormal liver. Two images of the same liver, 
viewed from different angles. The obvious indentation indicated by the red arrows marks the location of a 

lesion that has not been included in the segmentation

5.9. O ther abdominal organs

The nature of the developed algorithms means that they may be used, in theory, to 

segment other abdominal structures from CT scans. Figure 5.36 shows images that 

demonstrate both the 2D contour’s and 3D surface’s ability to segment the kidney. In 

this scenario careful attention must be paid to the parameters of the models, as the 

histogram of voxel values of the interior of the kidney has a different shape to that of 

the liver. It is also possible to segment gas filled structures such as the lungs and the 

colon, using both the 2D contour and 3D surface. However, the segmentation of these 

structures can be achieved easily, rapidly, and possibly more accurately using low level 

techniques (Hu, Hoffman and Reinhardt, 2001; Nappi, Dachman et al., 2002) such as 

thresholding and 3D region growing; the gas that fills such organs has the lowest 

Hounsfield value and appears perfectly black in CT images. In the same manner, 

segmentation of arterial trees is also possible with the models developed in this work (in 

fact, their inflationary nature is well suited to the branching structure of the arterial tree) 

yet the use of contrast agent in a patient's blood during a scan allows the arteries to
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appear bright white in CT images; again this is relatively simple to segment with lower 

level techniques.

Figure 5.36: Kidney segmentation, (a) and (b) show examples using the 2D algorithm, (c) is 3D
segmentation.
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5.10. Summary

This chapter has presented the procedures and results of the automatic segmentation of 

liver tissue from CT datasets.

Section 5.1 introduced the methods and techniques that were used to validate the 

accuracy of automatic segmentation. In the absence of both a realistic phantom and 

surgical liver data, comparison is made with liver datasets segmented manually by two 

independent operators. Three measures of validation were described, volume estimation, 

volumetric overlap and contour/surface distance.

Section 5.2 briefly discussed the pre-processing carried out on all datasets, and 

explained which phase of contrast enhancement provided preferable segmentation 

conditions.

Section 5.3 presented results of the efforts made to segment liver datasets as a series of 

2D images. Initial results using low-level segmentation techniques were rejected due to 

lack of robustness. The results of using the active contour model, detailed in Chapter 3, 

to segment the liver are presented, along with evidence that several of the novel aspects 

of the developed algorithm increase the accuracy of the segmentation.

Section 5.4 presented results of the segmentation of liver datasets in full 3D, using the 

active surface model discussed in Chapter 4, and Section 5.5 compared the accuracy of 

both the 2D and 3D segmentation techniques, with the conclusion that the 2D technique 

may be slightly more accurate than the 3D.
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Section 5.6 shows preliminary results that demonstrate the ability of both the 2D 

contour and 3D surface to segment abnormal liver tissue.

The chapter concludes with Section 5.7, demonstrating that segmentation using the 

developed algorithms is not merely confined to liver tissue.

From these results, it is possible to conclude that the developed algorithms achieve good 

accuracy in liver segmentation. Both the 2D and 3D techniques estimate liver volumes 

that correlate very closely with those obtained from manual segmentation; the 

volumetric overlap values are within 5.6% of those obtained from manual-manual 

overlap, and contour/surface distance measures are within 2 voxels of the mean 

difference between two manual segmentations.

The novel work carried out in the techniques' development plays a strong role in 

ensuring this accuracy. In the following chapter, the relevance of the results is 

discussed, along with comparison to existing and previous work in the field. In addition, 

the possibilities for incorporating this work into future projects concerning the liver are 

presented.

5.11. Novel contributions

Liver segmentation in 3D. To the author's knowledge, this is the first work that 

presents robust, accurate and repeatable 3D liver segmentation from CT data. 

Liver segmentation using no prior reference model, by initialising the 

procedures at any location within the organ.

Segmentation of unhealthy liver, and potential use for segmentation of other 

organs.
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6. Conclusions

This chapter summarises the work described in the thesis emphasising the main 

contributions to the fields o f deformable models and medical image segmentation. It 

then gives some concluding remarks and discusses some areas fo r  future research.

6.1. Contributions

The main goal of the work presented in this thesis was to develop a technique to 

automatically segment liver from abdominal CT scans. In pursuit of this goal, both 2D 

and 3D segmentation techniques were developed; while some of the basic methodology 

was developed from work carried out by other researchers, several novel techniques 

were implemented and used effectively to achieve the segmentation results. This section 

summarises the novel contribution of the work and discusses its significance.

Chapters 3 and 4 explained in detail the development of the inflationary, parametric 

models that were used to segment the liver. Parametric active contours and surfaces 

have been used extensively in image processing since their introduction, yet this work 

demonstrates that there is still scope for them to be further developed to achieve more 

accurate results, and so that they may be used in further applications.

Central to the many aspects of the novel technical contribution of this thesis is the 

concept of the utilisation of contour or surface curvature to locally modify the 

behaviour of the model. While curvature in itself has been researched at length 

previously, both in its definition and utilisation, in this work it is used to directly affect 

and improve the final segmentation results achieved using parametric models. To the 

author’s current knowledge, no other work on using curvature to affect segmentation



183

with active contour or surface models in such a manner, either in 2D or in 3D, has been 

previously published.

Chapter 3 introduced an inflationary active contour model that overcomes the traditional 

flaws of similar techniques by reparameterising the elements that constitute the model at 

certain iterations of its movement. This concept was developed initially by Mclnemey 

and Terzopoulos (2000) in their work on T-snakes, yet this thesis develops the concept 

further by reparameterising the contour at greater levels of detail where it is most 

required, in areas where the curvature and complexity of the contour is at its highest. 

Functionality is further improved by ensuring lower resolution in areas of lower 

curvature decreasing the likelihood of the contour leaking through weak edges. While 

the technique was developed specifically for the liver, preliminary tests suggest that it is 

suitable for use in a wide variety of segmentation situations.

Chapter 4 introduced the active surface model to achieve full 3D segmentation. Several 

concepts used in work by other researchers were combined to create a novel and unique 

segmentation tool. The use of surface curvature information to increase the local 

resolution of the surface has, at the time of writing, not previously been used in 

conjunction with active surface models. Further novel contribution has been achieved in 

the field of using regional information to affect the movement of the vertices of the 

model. While active region models were proposed some time ago (Ivins and Porrell, 

1994) this work used basic region statistics to directly influence the effect of external, 

image-based, forces. As a result, the vertices of the model do not get ‘caught’ on 

insignificant edges, yet the effect of prominent edges is amplified.
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Chapter 5 demonstrated the effectiveness of both 2D and 3D techniques to segment the 

liver. The major novel contribution to the field of liver segmentation is the robust and 

repeatable segmentation of liver in full 3D. A further aspect of novel contribution is the 

ability of the segmentation algorithm to be initialised at any location within the liver, so 

long as that location represents an area of parenchymal liver tissue. This avoids several 

of the major issues that affected early attempts to segment the liver (see Chapter 2), and 

improves upon the steps required for segmentation with more modem techniques, such 

as level set theory (Pan and Dawant, 2001). Furthermore, segmentation is achieved 

using no prior reference model, which enables both healthy and unhealthy tissue to be 

segmented.

6.2. Achievements and discussion

As stated above, the main goal of this project was to develop a technique to 

automatically segment liver from abdominal CT scans. From the results presented in 

Chapter 5, it is possible to conclude that this goal of accurate segmentation of the liver 

was successfully accomplished. The intra-class correlation results suggest that the 

variation in the estimation of liver volume from segmentation by two manual operators, 

the automatic 2D algorithm, and the automatic 3D algorithm, is solely due to the natural 

variation of liver volume between patients. Direct comparison of the results of 

automatic algorithms with the results of manual segmentation, carried out using 

volumetric overlap and contour distance measures, suggest that the accuracy of both 

automatic techniques is high -  mean overlap error did not exceed 5.6%, and mean 

surface distance was less than 2 voxels, when compared to manual assessment.

Tables 6.1 and 6.2 compare the automatic liver segmentation results achieved by 

previous researchers with the 2D and 3D results presented in this thesis, which are
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highlighted in bold type. Several researchers present average distance measurements 

(measured in mm) as measures of segmentation. For this work measurement of accuracy 

in mm was not considered suitable (as discussed in Chapter 5), as the algorithms treated 

each dataset independent of its voxel dimensions, and thus taking the mean of the actual 

distance conversions would produce results skewed to give greater weight to datasets 

with larger voxel dimensions.

Author Evans Evans
Seo & 
Park

Liu & 
Zhao

Bae et 
al.

Lim 
et al.

Pan & 
Dawant

Number of 
Datasets 18 18 12 20 4 6 5

Measurement
method Area Overlap Area Area Area Area Overlap

Result 5.24% 0.93 8.28% 5.30% 6.50% 3.00% 0.95

Table 6.1: Comparison of segmentation accuracy in 2D. The units for the area results are percentage 
error compared to manual segmentation. The overlap is measured where a value of one equals perfect

overlap.

Author Evans Evans
Heimann et 

al.
Lamecker et 

al.
Pan & 

Dawant
Number of 

Datasets 18 18 59 33 5

Measurement
method Volume Overlap Volume Volume Overlap

Result 4.24% 0.92 11%’ 7% 0.92
* median of volumetric errors

Table 6.2: Comparison of segmentation accuracy in 3D. The units for the volume result are percentage 
error compared to manual segmentation, the units for distance measurement are mm. The overlap is 

measured where a value of one equals perfect overlap.

The Figures presented in the table show that the volumetric errors for both 2D and 3D 

techniques presented in this thesis are lower than all but one of those obtained by other 

researchers, the exception being Lim et al.. (2006). However, they present results for a 

small number of datasets (six) and their technique is very slow (taking 1-3 minutes to 

segment a single slice, compared to < 5 seconds for this work's 2D technique), due to it 

relying on several thresholding and morphological processing stages. Of the previously 

presented 2D techniques, the most accurate appears to be Liu and Zhao's (2005)



186

gradient vector flow technique, the volumetric error being almost identical to the 2D 

result from this work. Table 6.1 shows the overlap result obtained in this thesis to be 

0.02 less than that obtained by Pan & Dawant's (2005) level set technique, which is 

heavily constrained by marking of external boundaries, and only five datasets are used 

for validation. From the results presented in the tables it can be seen that the 2D work 

equals or improves on previously published research.

While only Pan and Dawant have previously made efforts to use data-driven techniques 

segment the liver in 3D, Heimann el al. (2006) and Lamecker et a l  (2004) use active 

shape models for segmentation purposes. Table 6.2 shows the accuracy of the 3D active 

surface in this model to be greater than the active shape model approaches, though it 

should be noted these results used a larger quantity of datasets, and could be considered 

more robust. Volume overlap comparison gave an identical result to that of Pan & 

Dawant (2005), though their technique only treats five datasets.

The results in Table 6.2 raise the question of whether data-driven segmentation 

techniques (such as the inflationary models presented by this research and that of Pan 

and Dawant), or techniques relying heavily on prior shape knowledge (such as active 

shape models) are better suited to the task of liver segmentation. While it is true that 

assumptions for shape should not be made in liver pathology (as the shape and structure 

of the liver can be drastically different in unhealthy organs) the fact is that data-driven 

segmentation is very difficult without such prior knowledge. Pan and Dawant (2005) 

find that the "2D version of [their] algorithm leads to better results than the 3D 

version...[due to]...the rapid change in liver shape from one slice to the next...where 

virtually no black boundary between the [liver and heart] exists". As discussed above in 

Chapter 5, this lack of boundary is caused by the passage of the inferior vena cava
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through the liver on its way to the heart, and prior knowledge (in the form of operator 

interaction) was required to prevent leakage for the 3D algorithm presented in this 

thesis.

Therefore, the results suggest that prior knowledge is a requirement for accurate 3D 

segmentation, yet the fact remains that the data-driven segmentation results presented in 

this work give greater accuracy than the active shape model research carried out by 

other groups; indeed, closer analysis of the results presented by Heimann et al. shows 

that, while the median volumetric error was 11%, the error ranged from 9% to 25% - not 

a single one of their 59 sample datasets was segmented as successfully (in volumetric 

terms) as the mean accuracy of the 18 datasets segmented in 3D in this work. A possible 

reason for this has been mentioned briefly above; in that the shape of the liver can vary 

greatly, and thus even with a large training set there may be certain livers that the model 

will not be able to fit.

Thus, from comparison of the results in this thesis and those of previous work, it can be 

concluded that prior knowledge is required for 3D segmentation, though techniques that 

retain some form of shape independence achieve better results. Furthermore, it can also 

be concluded that 2D techniques appear to be better suited to liver segmentation, due to 

accuracy of results and the lack of requirement for prior knowledge. This conclusion 

would appear to be counter-intuitive, yet it agrees with the conclusions of the only other 

published effort to compare 2D and 3D liver segmentation (Pan and Dawant, 2005).

Two particularly interesting results relate to the comparison between 2D and 3D results. 

The results in Chapter 5 show that the volumes segmented by the 2D algorithm tend to 

be of larger value than that those segmented in 3D. One explanation for this fact is the
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2D algorithm’s capability to merge at points of self-intersection, possibly including 

non-liver areas within the segmented region. Figure 6.1 shows an example of how this 

occurs. It contains three images showing the 2D contour in the final few iterations of 

segmenting a liver slice. While it has wrapped around the non-liver tissue, in the final 

image it has intersected with itself, merged and altered to include the non-liver tissue.

While Figure 6.1 demonstrates a rather extreme example, in several situations many 

small areas of vascular structure on the liver perimeter are included by the 2D 

algorithm, yet not included by 3D or manual segmentation. These errors accumulate to 

leave a disproportionately large difference in measured volume, especially compared 

with the smaller differences in volumetric overlap and mean contour/surface distance. 

This situation does not arise during 3D segmentation. Although this is partially due to 

the fact that the 3D surface cannot merge with itself, it is further due to the inherent 

nature of 3D segmentation, which does not treat each slice as an individual case.
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Figure 6.1: Contour merging increases volume. Figure (a), (b) and (c) show the contour expanding. 
Figure (c) shows the result of the contour’s self-intersection.
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The issue of over-segmentation is also relevant when discussing the unexpected result 

of relatively low mean distance measurements combined with relatively high 

differences in volumes, in certain cases. This can be explained by the fact that an error 

in a small number of points can have a large effect on the value of the volume, but a 

much smaller effect on the mean pixel distance for the entire liver. This explains how, 

as highlighted in Chapter 5 above, in dataset 7 there is a 13% difference between the 2D 

automatic segmentation volume and the mean of the two manual segmentation volumes, 

yet only 3.72 average pixel difference over the entire organ.

While appearing to be less accurate in terms of overall volume estimation, Figures 5.24, 

and 5.25 suggest that the 2D algorithm is slightly more accurate than the 3D algorithm 

(although not by a great deal). This concurs with the previous effort at comparing 2D 

and 3D liver segmentation (Pan and Dawant, 2001), yet the difference between the 

results in this work is of a lesser magnitude. One possible explanation for the 

phenomenon is that the 2D algorithm is, in general, more accurate than the 3D 

algorithm, yet more susceptible to the type of large-scale error as demonstrated in 

Figure 6.1. Importantly the accuracy of segmentation for both techniques appears to be 

similar or greater than that presented by other researchers using different techniques, 

such as level-sets and registration (see Chapter 2).

One important question that is of particular relevance clinically, is what is the required 

(or accepted) accuracy of the automatic segmentation if it is to be used clinically? This 

question is not answered easily, as a search of the literature reveals that there have been 

no clinical studies investigating this matter, and thus there is potential in this area for 

research.
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One of the most important aspects of the developed algorithms is their ability to 

segment the liver with no prior reference to any shape model or other structures of the 

abdomen, which can be seen as a significant breakthrough from previously published 

research. It is of great benefit when dealing with an organ such as the liver as its inter­

patient shape is irregular, as discussed in Section 1. It is of further benefit when dealing 

with abnormal livers, as it means both 2D and 3D algorithms can be used not only to 

segment the abnormal tissue, but to segment the healthy tissue around it, as 

demonstrated in Figures 5.25 and 5.26.

6.3. Limitations and future work

In addition to succeeding to reach the goal of automatically segmenting the liver, the 

work developed during this thesis can be both improved and, more promisingly, 

combined with other aspects of medical image processing to further research into the 

diagnosis and treatment of liver disease. This section discusses both elements of such 

future work.

One of the most prominent limitations of the work is that neither the 2D algorithm nor 

the 3D algorithm is ‘fully’ automatic. Both require a manual operator to select an area 

of parenchymal liver tissue to initiate the segmentation algorithm, and further manual 

intervention is required in 3D to prevent the surface from inflating along in the inferior 

vena cava. In addition, an obvious area of future work is to implement a 3D mesh 

merging scheme, in a manner similar to Lachaud and Montanvert (1999), so that the 

surface may merge with itself at locations of self-intersection. However it is not clear 

whether this would improve upon the accuracy of healthy liver segmentation, and a 

study would need to be carried out to test this.
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One limitation that affects both 2D and 3D algorithms is the setting of the parameters 

that control the movement of the models. As Chapter 5 states, the parameters for the 

models were set empirically. One interesting further study would be to implement some 

form of parameter optimisation system, whereby an optimisation algorithm compares 

the results of segmentation obtained using different parameter sets, before outputting 

the ‘optimal’ set. If this system were implemented carefully, it is highly likely that it 

would improve on the presented segmentation results.

The nature of the developed segmentation algorithms, and their inherent lack of reliance 

on any prior model of shape, makes them particularly suitable to be used in conjunction 

with other image processing techniques that rely heavily on prior shape knowledge. 

This can be used both to improve upon the accuracy of the segmentation, and to enable 

automatic identification of abnormal tissue.

For example, the segmentation algorithm could be used in conjunction with a statistical 

shape model of the liver. In terms of pure segmentation accuracy, the constraints of the 

model could be used to reduce or eliminate any need for manual intervention e.g. there 

would be no need for an operator to mark the entry and exit points of the vena cava, as a 

shape model could automatically constrain the active surface model in these areas. 

Furthermore, the segmentation results obtained using the active models could be 

compared with the shape of a statistical model -  any regions where the segmentation 

and model disagreed strongly could be highlighted as potential abnormalities. For 

example, comparison with a statistical shape model may automatically highlight the 

obvious indentation in the results of the 3D liver segmentation shown in Figure 5.29.
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6.4. Summary

This thesis has presented work on the automatic segmentation of liver from 

Computerised Tomography, using both 2D and 3D techniques.

The main novel contribution has been the successful implementation of accurate, robust 

and repeatable automatic segmentation of liver in full 3D which, at this date and to the 

author’s knowledge, has not been previously published. The most recent comprehensive 

previous liver segmentation research was carried out by Liu, Zhao and Kijewski (2005), 

which dealt solely with 2D techniques, which are inherently limited as is discussed 

above.

The thesis has also presented novel contribution in technical areas. Established 2D 

active contour and 3D active surface algorithms have been adapted for use with 

differing segmentation tasks, and Chapter 5 shows examples of how both algorithms 

can be used to segment other abdominal organs as well as the liver. The most important 

technical novel contribution is the use of curvature to affect the resolution at which both 

the 2D contour and 3D surface are reparameterised, and the local flexibility, thus 

allowing more accurate segmentation in areas of high curvature, and increasing the 

resistance of contour/surface leaking into unwanted areas/volumes in areas of lower 

curvature.

It is hoped that this step into full 3D liver segmentation may be used as a basis for 

future research, especially in the fields of the detection and diagnosis of areas of 

abnormal liver; as a result, it will contribute to efforts to facilitate the diagnosis and 

treatment of liver disease.
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