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Abstract

Diffusion-weighted magnetic resonance imaging (DW-MRI) permits in-vivo measurements of 

water diffusion, from which we can infer the orientation of white matter fibres in the brain. 

We show that by ordering the measurements, we can improve the reproducibility of the fibre- 

orientation estimate from partially-completed DW-MRI scans, without altering the complete 

data set.

Tractography methods reconstruct entire fibre pathways from the local fibre-orientation es­

timates. Because the local fibre-orientation measurements are subject to uncertainty, the recon­

structed fibre pathways are best described with a probabilistic algorithm. One way to estimate 

the connection probabilities is by defining a probability density function (PDF) in each voxel, 

and sampling from the PDF in a Monte-Carlo fashion.

We propose new models of the PDF based on standard spherical statistical methods. The 

models improve previous work by closely modelling the dispersion of repeated noisy estimates 

of the fibre orientation. We compare a simple PDF (the Watson PDF) that models circular 

cluster of axes to a more general PDF (the Bingham PDF) that models circular or elliptical 

clusters of axes. We also propose models of the PDF in regions of crossing fibres, where there 

are two distinct fibre populations in the voxel. We validate the PDFs by comparing them to the 

uncertainty in fibre orientation calculated from bootstrap resampling of a repeated brain MR 

acquisition. We find that the Bingham PDF produces connection probabilities that are closer to 

the bootstrap results than the Watson PDF.

We use the new PDF models to perform a connectivity-based segmentation of the cor­

pus callosum in eight different subjects. The results are similar to those of previous studies on 

corpus callosum connectivity, despite the use of finer cortical labelling, suggesting that the dom­

inant connections from the corpus callosum project to the superior frontal gyrus, the superior 

parietal gyrus and the occipital gyrus.
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Chapter 1

Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a rapidly evolving field with 

exciting potential for understanding the anatomical connectivity of the brain. DW-MRI is sen­

sitive to the microscopic random diffusive motion of water molecules. The random thermal 

motion of these molecules is hindered by the cellular structures in the brain. In white matter, 

the fibrous nerve tissue that connect neurons together, the water molecules are less hindered 

when they move along the fibres than when they move across them, because molecules moving 

along fibres encounter fewer cellular structures. This produces an apparent anisotropy in the 

diffusion -  the diffusion process is as random in white matter as it is in free water, but the in­

creased freedom of water molecules to move along the white matter fibres gives the appearance 

that the diffusion coefficient is larger along the fibres than across them.

The axon fibres that constitute white matter typically measure approximately 10- 6  m in 

diameter, though some are as small as 10- 7  m or as large as 2 x 10- 5  m [5]. A typical DW-MR 

acquisition measures the diffusion over approximately 5 x 10- 2  s, during which time the root 

mean-squared displacement of free water molecules (at normal body temperature of 37° C) is 

approximately 10- 5  m. The axons hinder the diffusion of water molecules over the course of 

a DW-MR acquisition because the RMS displacement is larger than the average width of the 

axons.

DW-MR images are typically acquired on a grid with spacing of approximately 2 x 10- 3  m, 

which means that a white matter voxel contains on the order of 105 fibres [6 ]. The “fibre- 

orientation” estimates derived from DW-MRI rely on the axons being highly organised into 

bundles with a common orientation at the scale of the voxel. If the axons were randomly ori­

ented within the voxel, there would be no net diffusion anisotropy and no way of tracing the 

axonal paths with MRI. Histological studies suggest that white matter fibres are often highly 

organised into bundles with a common orientation. Fig. 1.1 shows a section from a dissected 

human brain, in which macroscopic bundles of white matter fibres are clearly visible. The ap-
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parent organisation of the fibre bundles is confirmed by the observation of anisotropic diffusion 

in both ex-vivo [7] and in-vivo [6 ] axonal fibres.

Figure 1.1: Dissected human brain showing microscopic white matter fibres organized into 

visible bundles. Image from Poupon et al [8 ].

The local measurements of the diffusion in each voxel are processed by “tractography” 

methods that attempt to reconstruct entire white matter tracts. One widely-used technique is to 

compute “streamlines” by following a path through the vector field of the estimated fibre orien­

tation in each voxel [9]. Fig. 1.2 shows a schematic representation of streamlines tracked from a 

start point in the splenium of the corpus callosum in a human subject. Streamline tractography 

has been widely applied to the human brain, where several authors have tracked major fibre 

pathways such as the corpus callosum, cingulum, and fomix, producing results that are con­

sistent with known anatomy [10]. Medical applications for tractography include pre-surgical 

planning for the surgical removal of brain tumours, where tractography can be used to visualise 

the path of fibre tracts close to or affected by the growth of tumour tissue [1 1 ],

A major limitation of the streamline approach to tractography is that it does not account 

for uncertainty in the local fibre-orientation estimates. One source of error is the random noise 

on the DW-MR measurements. Noise introduces an error into each fibre-orientation estimate, 

which in turn introduces an error into the streamline trajectory. The uncertainty in the fibre- 

orientation estimates depends on the scanner protocol, the mathematical model of the diffusion 

(most commonly the Gaussian model, as described in Ch. 3), and the microstructure of the tissue 

in each voxel. The cumulative effect of these errors on the streamline trajectory is difficult to



13

Figure 1.2: Slice from DW-MRI image of a human brain. Estimated local fibre-orientation esti­

mate (arrows) are coloured according to orientation: red is left-right, green is anterior-posterior, 

blue is inferior-superior. The red lines are streamlines traced through the vector field of local 

fibre-orientation estimates. The image is taken from Bammer et al [10].

predict and depends on the architecture of the fibre bundle that the streamline follows.

The need to model and visualise uncertainty in tractography motivated a probabilistic ap­

proach to fibre tracking, where the uncertainty in the local fibre orientation is included in the 

tractography process. Monte-Carlo methods [12, 13] use a probability density function (PDF) 

of the local fibre orientation in each voxel. A probabilistic streamline is the same as a standard 

streamline, except that when a probabilistic streamline passes through a voxel, the fibre ori­

entation is sampled randomly from the corresponding PDF (see Sec. 5.3). Many probabilistic 

streamlines are tracked from the same start point. The probability of connection from a starting 

point A to a particular position B  in the brain, given the PDF in each voxel, is the probability 

of a probabilistic streamline started at A  reaching B.

Tractography has potential for the study of neuroscience, since it allows in-vivo study of 

the anatomical connectivity in parallel with functional imaging. This provides the opportunity 

to study how the functional connectivity in the brain corresponds to the anatomical connections 

that are suggested by tractography. Johansen-Berg et al [14] find that the functional activation in 

the human thalamus during a motor task corresponds to the parts of the thalamus where tractog-
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raphy predicts a connection to the motor cortex. They reach the same conclusion with executive 

tasks, which activate the the prefrontal cortex and the areas of the thalamus where tractography 

predicts a connection to the prefrontal cortex. They use the probabilistic tractography method 

of Behrens et al [13] to calculate the most probable cortical connection to each point in the 

thalamus.

1.1 Thesis overview

Ch. 2 is a brief introduction to the principles of magnetic resonance imaging. Ch. 3 explains 

how MRI is applied to the study of diffusion, and introduces the methods for inferring the 

local fibre orientation or orientations from the DW-MRI measurements. The models that we 

use in subsequent chapters are the Gaussian model [15], and the multi-compartment Gaussian 

model [16], since these models are computationally simple, and practical to use with data from 

standard DW-MR sequences.

The first original contribution of the thesis is presented in Ch. 4. We present a method 

to optimise the MR acquisition in order to obtain the best estimate of the fibre orientations 

from partially completed scans. Because we measure the diffusion in anisotropic tissue at many 

unknown orientations, we make multiple diffusion-weighted measurements with the diffusion- 

weighting gradient oriented differently at each measurement. These gradient orientations are 

distributed as evenly as possible on the unit sphere, so that the fibre-orientation estimates have 

minimal dependence on the orientation of white matter fibre bundles relative to the gradient di­

rections. A set of measurements along isotropically distributed gradient directions are typically 

acquired in a random order, so a subset of these directions may be significantly anisotropic. 

We present a method to order the gradient directions such that any subset containing the first 

P  out of the total N  directions is as isotropic as possible. We show in synthetic data (using 

the Gaussian model) that data from P  ordered measurements gives better reproducibility of the 

fibre orientation and the anisotropy, than data from P  unordered measurements.

Ch. 5 reviews tractography algorithms, including the Probabilistic Index of Connectivity 

(PICo) [12], which defines a PDF of the fibre orientation in each voxel. The following chapters 

evaluate new models of the fibre-orientation PDF within the PICo framework.

Ch. 6  introduces the spherical PDFs that we use as models of the fibre-orientation PDF. 

The Watson model assumes cylindrical symmetry about the peak of the PDF. The Bingham 

and Angular Central Gaussian (ACG) models are more general, and do not assume cylindrical 

symmetry. Ch. 7 explains how we estimate the parameters of the PDFs from statistics of the 

diffusion in each voxel, using the Gaussian model of diffusion. We then evaluate how well the
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PDFs model the uncertainty in fibre orientation caused by image noise in synthetic data. We 

conclude that the Watson and Bingham PDFs are significantly better models of the uncertainty 

due to noise than the ACG PDF.

The second main contribution of Ch. 7 is the evaluation of the PICo PDF models in brain 

data. We estimate the uncertainty in the estimated fibre orientations in the brain data by boot­

strap resampling [17] of eight repeated acquisitions of the DW-MRI data. The bootstrap method 

captures the total uncertainty in the data, not just that caused by image noise. We compare the 

distribution of fibre-orientation estimates predicted by the Watson, Bingham and ACG PDF 

models to the distributions we retrieve from the bootstrap resampling. There is some correla­

tion between the PDF and the bootstrap uncertainty; however, the bootstrap results suggest the 

uncertainty is lower than that predicted by the models.

The last experiments in Ch. 7 compare PICo connection probabilities in the brain image 

using model-based PDFs and bootstrapping. We track the path of the fibre bundles of the 

corpus callosum, the structure that connects the left and right hemispheres of the brain. We 

initiated the tracking from each voxel in the corpus callosum along the midline between the 

two hemispheres. The corpus callosum contains highly anisotropic fibres; at the midline it is 

possible for a non-expert in neuroanatomy to identify it in a DW-MR image. This makes it a 

natural choice of structure to study for this thesis. We find that PICo tractography using the 

Bingham PDF produces connection probabilities that are most similar to those derived from 

bootstrap tracking.

In Ch. 8  we extend the Watson and Bingham PDFs to model two distinct fibre orientations 

within a voxel. Given the rather coarse resolution of DW-MR (approximately 8  mm3 voxels) 

and the complex fibre architecture in the brain, many voxels contain more than one population 

of fibres. When we resolve two fibre orientations within a single voxel, the orientations are more 

sensitive to errors and the PDF is more difficult to fit to the distribution of axes. We propose a 

novel method to find the PDF parameters in two-fibre voxels, and compare its performance in 

synthetic data to a previously published method proposed by Alexander and Barker [18]. We 

find that Alexander and Barker’s method gives more reliable estimates of the PDF parameters.

The next contribution of Ch. 8  is that we extend the calibration process that relates the pa­

rameters of the diffusion (as described by the two-compartment Gaussian model) to the param­

eters of the PDF. We then compare PICo results with Watson and Bingham PDFs in synthetic 

data. We conclude that the Bingham PDF is a better model of the uncertainty due to noise at 

intermediate anisotropy, where the contours of the fibre-orientation PDF are elliptical.

In the remainder of Ch. 8 , we compare the PDFs to the the bootstrap results, in a similar
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manner to Ch. 7.

In Ch. 9, we use the one-fibre and two-fibre models of the PDF to perform PICo tracking 

in brain images of eight subjects. We use the PICo algorithm to segment the corpus callosum 

according to its connectivity to cortical grey matter, and compare the segmentation to the results 

of a previous study that used streamline tractography [19]. The results agree with the previous 

study: the majority of the corpus callosum connects to three large cortical regions. We find that 

attempting to resolve complex fibre architecture with the two-compartment Gaussian model 

does not alter the segmentation.



Chapter 2

Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) [20] measures behaviour of ensembles of hydrogen nuclei 

(protons) in the presence of an external magnetic field, after they are deliberately disturbed from 

their equilibrium state. Protons in complex molecules, such as lipids, return to equilibrium at 

different rates to protons in much smaller water molecules, which means that the MRI signal is 

dependent both on the density of protons in the tissue, and on the molecular structures in which 

the protons are present. This gives MRI excellent soft-tissue contrast. Diffusion-weighted 

MRI (DW-MRI) measures the diffusion of water, which arises from the microscopic thermal 

motion of water molecules. Cellular structures form barriers that hinder the movement of water 

molecules, which makes the properties of diffusion sensitive to the local tissue microstructure.

2.1 Protons and magnetic resonance

Protons possess an intrinsic quantised angular momentum known as “spin”. Spin is a quantum 

mechanical property so named because a classical analogy to the proton in a magnetic field is 

a spinning top in a gravitational field. The angular momentum of the top keeps it upright. If 

the top is perturbed so that its axis of rotation is no longer vertical, then gravity exerts a torque 

upon the top, and the axis of rotation precesses around the vertical axis. The speed of precession 

increases in a stronger gravitational field, or with slower rotation of the top.

The spinning proton behaves in a similar way when placed in a magnetic field. The proton 

aligns itself to one of two positions, which we shall call “with” or “against” the magnetic field. 

These positions are not exactly aligned along the axis of the field, so the proton precesses about 

the axis of the field. The frequency of precession is known as the Larmor frequency L = yBo, 

where Bo is the strength of the magnetic field, and 7  is a constant called the gyromagnetic ratio. 

Protons aligned against the field have a slightly higher energy than those aligned with it [21, 

Ch. 5].

The hydrogen atom is of particular interest to MRI because it is abundant in the body, and
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its proton is unpaired. According to the shell model of the nucleus, nuclear protons have lowest 

energy if they are paired with spins in the opposite direction [22, Ch. 4]. The net magnetization 

of a collection of paired protons in a magnetic field is therefore zero. Unpaired protons, how­

ever, are free to align with or against the field. The protons aligned with the field have slightly 

lower energy, which means that slightly more protons are in this state at equilibrium, resulting 

in a small net magnetisation M z, which itself precesses about the Bo field. Some other atoms 

(such as nitrogen) also have an unpaired proton, however these atoms are far less abundant in 

the body than hydrogen, and have lower gyromagnetic ratios, so they do not contribute to the 

conventional MRI signal [23, Ch. 3].

2.2 Measurement of magnetic resonance

The net magnetisation of hydrogen atoms is the basis of the MRI signal. The ratio 

of aligned protons N -  to anti-aligned protons N + is given by a Boltzmann distribution: 

N - /N +  = exp ( 7  B o/kT ) ,  where k is Boltzmann’s constant and T  is the temperature of 

the substance being imaged. Since the human body temperature is approximately constant, we 

can only increase the excess of aligned protons in in-vivo imaging by increasing Bo. At clinical 

field strengths of 1.5 T, the thermal energy of the molecules at body temperature is much greater 

than the difference in energy between spins aligned with or against the field. Spins therefore 

constantly change between alignments, but a large ensemble of spins achieve an equilibrium 

such that a small excess (approximately 5 per million spins) are aligned with the field. This 

small excess is sufficient to produce a measurable net magnetisation because of the abundance 

of hydrogen atoms in the body, of which many form part of water molecules (pure water con­

tains 5 x 1023 hydrogen atoms per gram [21]).

We define the “magnet frame” as a coordinate system where the z-axis is aligned with Bo. 

The net magnetisation vector of a collection of protons is aligned with the positive z-axis in 

this frame. We measure magnetic resonance by disturbing the equilibrium of the protons and 

observing how they return to the equilibrium state. We also define a frame of reference with 

coordinate axes Or', y ' , z'), where z' aligned with z, and the x' and y' axes rotate about z at the 

Larmor frequency, L. If we disturb the net magnetisation such that it is no longer aligned with 

Bo, then it will precess in the magnet frame with frequency L. If we apply a pulsed magnetic 

gradient field B i along the x' axis, the magnetisation vector is rotated about the axis of B i [23, 

Ch. 3]. The extent of this rotation is determined by the amplitude and duration of the pulse. 

The frequency L  is therefore the resonance frequency, because the net magnetisation can be 

manipulated with B \  fields much weaker than B q.
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The field B i is applied for a short time, and is known as a 90° pulse, because it rotates the 

net magnetisation by 90° onto the y' axis. The pulse removes longitudinal magnetization along 

B 0 and creates transverse magnetization along y ' . This transverse magnetization is stationary 

in the rotating frame, but in the magnet frame it precesses about Bo at the resonance frequency 

7 B0 , which produces the MRI signal by inducing a current in a radio-frequency receiver coil. 

After the pulse is switched off, the transverse magnetization decays and the longitudinal magne­

tization returns gradually to its original alignment with Bo. This process is known as relaxation.

2.2.1 T1 relaxation

T1 relaxation is the recovery of net longitudinal magnetization after the 90° pulse. T1 relaxation 

primarily occurs through “spin-lattice” interactions. The protons in molecules such as water re­

main aligned with or against Bo at all times, however the molecules themselves are free to rotate 

and translate in space. When a molecule rotates in the x-y plane at the resonance frequency, its 

magnetic field oscillates at the resonance frequency, producing a molecular version of the B i 

field produced by the 90° pulse. This field can produce changes in alignment of nearby protons. 

These interactions are the mechanism of T1 relaxation. The recovery of longitudinal magneti­

zation M z is exponential, and at time t after the 90° pulse, M z {t) =  M z( 1 — exp[—tT l]). 

The T 1 relaxation time is the time taken for the recovery of 65% of M z .

The distribution of rotational frequencies in a sample is related to the thermal energy of the 

molecules, their size and their molecular bonds. Water molecules are small and relatively free to 

rotate and translate. In the body, most free water rotates at frequencies high above the resonance 

frequency. Water therefore has a long T l, because the rate of proton-proton transitions is low. 

Larger molecules, such as proteins, tend to rotate at slower frequencies, closer to the resonance 

frequency. Proteins in water solution can also form bonds with water molecules, further slowing 

their rotation. Protein solutions therefore have a shorter T l than pure water. Lipid molecules 

are larger still, and their average rotation frequency is still closer to the resonance frequency of 

typical MR Bo fields. Lipid molecules, such as those found in the myelin coating in brain white 

matter, therefore have a high rate of spin-lattice interaction and short Tl relaxation times.

2.2.2 T2 relaxation

Simultaneous with the recovery of longitudinal magnetization following a 90° pulse is the decay 

of transverse magnetization. This is known as T2 relaxation. Immediately after the pulse, the 

longitudinal magnetization is completely converted to transverse magnetization, M xy(0) =  M z. 

Thereafter, M xy{t) = M z exp(—f/T 2). For any given tissue, T2 < T l.

The molecular basis for T2 relaxation is de-phasing. When the pulse is applied, the protons



2.2. Measurement o f  magnetic resonance 20

are in phase, aligned with y', that is, they precess in the x-y plane at the resonance frequency. 

After the pulse, protons begin to dephase, because some protons experience slightly different 

magnetic fields (and therefore precess at a different speed). The proton-proton interactions de­

scribed above cause some de-phasing, but the primary mechanism of T2 relaxation is variations 

in the local magnetic field [21, p.51]. Protons in an area where Bo is slightly different precess 

at different rates, causing de-phasing. There are two sources of magnetic field inhomogeneity, 

the first is from flaws in the main magnet, which are constant. This source of de-phasing can 

be significantly reduced by spin-echo imaging, which is described below. The other source of 

local field variation is from the protons themselves. Protons that are relatively fixed in space, 

and rotate slowly compared to the resonance frequency, cause local differences in the Bo field. 

In free water, where few molecules rotate slower than the resonance frequency, and are not 

fixed, there is little de-phasing due to field inhomogeneity, and T2 is long. Water molecules in 

protein solutions rotate more slowly and have shorter T2. Solid molecules rotate slowest of all, 

and have still shorter T2.

2.2.3 The spin-echo sequence

T2 images reflect the rate of de-phasing following a 90° pulse. The combined de-phasing 

due to T2 relaxation and the inhomogeneities in Bo is called T2* relaxation. The spin-echo 

sequence [24] is designed to remove T2* effects by cancelling out the de-phasing due to field 

inhomogeneity. A 180° pulse is inserted between the 90° pulse and the measurement of the 

signal. Imagine two spins F and S, where F precesses faster than S, because of an inhomogeneity 

in Bo. Time starts at t = 0 when the 90° pulse is applied. At time t — te/ 2, F is ahead of S. 

The 180° pulse then rotates both spins by 180°. Assuming that both the inhomogeneity and the 

spins remain fixed, F continues to rotate faster than S, however because of the flip, F is now 

behind S. After a further time te/ 2, F and S are again in phase. If there is no T2 relaxation, 

the transverse magnetisation is the same at time t = te as it was at t = 0. This is called the 

“spin-echo”, and the time te is the echo time.

2.2.4 Image weighting

The nature of the MRI image depends strongly on the time between excitation pulses (typically 

a 90° pulse) and time between each pulse and the measurement of the signal. By choosing these 

times strategically it is possible to produce images that are “weighted” to show differences in 

either T l or T2.

At time tr after an excitation pulse, the fraction of recovered longitudinal magnetisation is 

M z ( 1 — exp[—tr/T l}) .  The total longitudinal magnetisation within a voxel is proportional to
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both N -  / N +, the excess fraction of protons aligned with B q, and the density of protons N (H )  

within the voxel. Therefore the total recovered longitudinal magnetisation is proportional to 

N (H ) (N - /N + )  exp[—fr /T l] .

The transverse magnetisation is maximum immediately after the excitation pulse, after a 

time te it decays by exp(—te/T2).  The total MR signal is then:

N { H ) ) ( N - / N +)(1 — exp[—fr/Tl]) exp(—fe/T 2). (2.1)

All MRI images contain some combination of T l, T2, and proton density contrast, however 

it is possible to weight the images such that a particular source of contrast is dominant. If

t r is long compared to T l, then all of the longitudinal magnetisation, M z, is recovered, since

exp[—tr/Tl] tends to 1 when tr Tl. To suppress Tl contrast, tr is made longer than 

the longest T l in the tissue being imaged. If te is short compared to T2, then the transverse 

magnetisation remains, since exp(—te/T 2 )  tends to 1 when t e T2. To suppress T2 contrast, 

te is made shorter than the shortest T2 of the tissue being imaged.

A Tl-weighted image is produced from a short tr (to preserve Tl contrast) and a long t e 

(to suppress T2 contrast). A T2-weighted image is produced from a long tr (to suppress T l 

contrast) and a long t e (to develop T2 contrast). A proton-density-weighted image is produced 

from a long tr and short te [21, p. 47].

2.3 Conclusions

We have given an overview of the physical processes that produce T l- and T2-weighted MR 

images. The behaviour of water molecules is of particular interest, since these are the subject 

of study in diffusion imaging. In a spin-echo sequence, the refocusing effect of the 180° pulse 

relies on the spins being stationary during the sequence, so that their Larmor frequency does 

not change between the start of the sequence and te. The random motion of diffusing water 

molecules leads to incomplete recovery of the transverse magnetisation at te. This relationship 

between the loss of transverse magnetisation and diffusion is exploited to measure diffusion 

with MRI, as we explain in the next chapter.



Chapter 3

Water diffusion and its measurement with 

MRI

Molecular diffusion arises from the random thermal motion of molecules that are in a liquid 

or gaseous state. Maxwell’s kinetic theory of gases states that the mean kinetic energy of the 

molecules depends only on the temperature [25, p. 184]. Liquid water is abundant in the 

human body, and DW-MRI studies the statistical properties of the diffusion of water within the 

tissue microstructure. Water molecules in the body are sufficiently dense and energetic that 

they are constantly colliding. The collisions are elastic, so the total kinetic energy is the same 

before and after each collision. We cannot hope to predict or trace the path of single molecules, 

however we can make statistical inferences about the macroscopic behaviour of large collections 

of molecules over many collisions. If there are no barriers to the motion of the water molecules 

(apart from other water molecules), the probability density p of a molecule being at a particular 

displacement r  from its start point after a random walk of duration t, is a zero-mean Gaussian 

distribution when t is much longer than the mean time between molecular collisions. Einstein 

[26] derived a formula for the variance of this distribution, the “diffusion coefficient”, from the 

kinetic theory of gases.

In diffusion-MRI we estimate p separately in each image voxel, which typically occupies 

approximately 10- 8  m3. The diffusion time in MR imaging is approximately 50” 3 s and the dif­

fusion coefficient of free water at body temperature over this time is approximately 1 0 - 9  m2 s~l 

[6 ], which means that the root mean squared displacement of water molecules over the diffusion 

time is approximately 3 x 10- 5  m. Tissue structures that are much smaller than this therefore 

affect p  in the voxel. In Sec. 3.1 we discuss the physiology of brain tissue and in Sec. 3.2 we 

discuss how this affects the observed p. We then discuss the different methods for estimating p 

in the brain.
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3.1 Physiology of brain tissue

For historical reasons, cortical brain tissue is called “grey matter” and the connective nervous 

pathways are called “white matter” (the names denote the colour of the tissue in the post mortem 

brain) [27].

Grey matter is composed of neurons and their supporting cells. The neuronal cell bodies 

form only a small part of the surface area of each neuron. Fibrous dendritic spines [28] occupy 

almost half of the neuronal area. The dendrites reach from the neuronal nucleus and form 

synaptic connections with other dendrites and with axons. The axons differ from the dendrites 

in structure and function. Dendrites are small fibres that are part of the neuronal body and 

form local synaptic connections. Axons are longer, cylindrical fibres whose primary function 

is to transmit electrical signals between sites that do not communicate directly via dendritic 

synapses. Fig. 3.1 shows a diagram of a single neuron.

In the adult brain, all but the smallest axons are coated with a fatty protein called myelin, 

which insulates the axon and increases the efficiency of electrical communication. It is the 

myelin coating that gives axons their white appearance, and the “white matter” regions of the 

brain are composed of bundles of coherently organized axons and their supporting cells. Axons 

vary in diameter from less than 1 x 10-6 m to 25 x 10_6 m, with most of the fibres around 

1 x 10-6 m [5]. Oligodendroglial cells form the myelin coating, each oligodendrocyte forms 

multiple layers of tightly wrapped myelin around the axon trunk. The total thickness of the 

myelin coat varies with axon diameter: the ratio of axonal diameter to total fibre diameter is 

almost constant at 0.6 in studies of various mammals and fibre diameters [5]. Beneath the 

myelin is the axonal membrane, which is 8  x 10_9m thick and encases the axon itself. The 

internal space bounded by the axonal membrane is filled with axoplasm, a gel with viscosity 

approximately five times that of water, and small internal fibres that maintain the structure of 

the axon and transport nutrients along its length.

The brain is surrounded by cerebrospinal fluid, which is produced in the fluid ventricles 

within the cerebrum. This fluid has several functions, including the protection of the brain from 

impact and the transport of neural hormones.

3.2 Qualitative observations of diffusion in the human brain

The particle displacement function, p, depends on the interaction between the water molecules 

and the surrounding tissue structures. The behaviour of p is strongly dependent on the charac­

teristics of the brain tissue.

The ventricles contain fluid with few barriers to the displacement of water molecules.
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Figure 3.1: Diagram of a neuron with myelinated axon, from Young et al [29].

Pierpaoli et al [6 ], show that p in the cerebrospinal fluid is isotropic, with contours similar to 

those observed in free water.

Grey matter contains a mass of cellular structures that are dense enough to hinder the 

motion of water molecules significantly during DW-MRI acquisition. At the resolution of DW- 

MRI, the voxels contain large numbers of neurons oriented in different ways, so the cellular 

structures hinder diffusion equally in all directions. The root mean-squared displacement is 

lower than it is in cerebrospinal fluid, but p remains isotropic [6 ].

White matter is also densely populated with fibrous structures that hinder diffusion, re­

sulting in a similar root mean-squared displacement to that observed in grey matter. On the 

scale of image voxels, the axons are highly organised, leading to an anisotropic p  [6 , 46]. The 

probability of meeting a cellular barrier is much lower for a particle that happens to move along 

the fibres than for a particle that moves across them, so p has a ridge along the longitudinal axis 

of the fibres. When more than one bundle of fibres passes through the voxel, p has ridges along 

the axes of the fibre bundles.

Structural organisation of cellular barriers in white matter is generally accepted to cause 

diffusion anisotropy, but there is no detailed explanation of how this anisotropy occurs at the 

cellular level. Many studies of animal and human nerve fibres have explored the contribution of 

different cellular features to diffusion anisotropy, these are reviewed in detail by Beaulieu [30].

The contribution of the myelin coating to anisotropy has proved difficult to quantify. 

Beaulieu and Allen [31] measure anisotropy in excised tissue from the non-myelinated olfac­
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tory nerve and myelinated optic nerve of the garfish. They find that the olfactory nerve has 

higher anisotropy, but the axonal diameter is much smaller in the olfactory nerve, so the influ­

ence of myelination is difficult to quantify. However, it is clear that myelin is not a requirement 

for anisotropic diffusion in white matter. Gulani et al [32] compare anisotropy in two types 

of excised rat spinal cord. Normal rats have myelinated spinal cords, but rats with a particu­

lar genetic mutation lack the ability to produce myelin. Gulani finds higher anisotropy in the 

myelinated spinal cord, but the non-myelinated cord still has significant anisotropy. Wimberger 

et al [33] and Prayer et al [34] show anisotropy in non-myelinated fibres in the neonatal rat 

brain, and Hiippi et al [35] report anisotropy in non-myelinated fibres in the brains of human 

neonates.

Diffusion anisotropy in the human brain is observed to increase as the brain develops 

and myelination increases [36]. However, the anisotropy may also increase because of greater 

organisation of the fibres. In the adult brain, the packing density of axonal fibres varies greatly 

in different fibre tracts. Pierpaoli et al [6 ] examine anisotropy in several tracts in the human 

brain where the packing density varies by an order of magnitude, and they did not find any 

correlation between packing density and anisotropy.

3.3 Diffusion-Weighted MRI (DW-MRI)

The DW-MRI sequence is a modified form of the spin-echo sequence. Spin-echo eliminates 

de-phasing caused by spatial variation in Bo (T 2 effects). In liquids, the re-phasing will not be 

complete, since diffusing spins will move during the time te, and hence the field they experience 

will not be precisely the same before and after the 180° refocusing pulse. This is a source of 

error in T2 imaging, but is the basis of diffusion imaging.

DW-MRI uses gradients to enhance de-phasing of protons that move during te. This se­

quence is called a “pulsed-gradient spin-echo” (PGSE) [37]. A PGSE sequence measures dif­

fusion in one dimension. Fig. 3.2 is a schematic of the sequence. First, a 90° excitation pulse 

tips the spins into the transverse plane perpendicular to Bo, where they precess in phase at 

the resonance frequency. Between the excitation pulse and the 180° refocusing pulse, the first 

diffusion-weighting gradient pulse Ti is applied. During the gradient pulse, the magnetic field 

strength varies along the direction of the gradient, making the frequency of precession a function 

of position along the gradient and thereby causing spins to dephase. After the 180° refocusing 

pulse, the diffusion-weighting gradient T 2 , which is identical to T 1, is applied. Spins that do not 

move, or that move perpendicular to the gradient, will experience the same field in both pulses, 

and thus re-phase at time te (labeled “TE” in Fig. 3.2), as in a standard spin-echo sequence.
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Spins whose motion contains a component along the direction of the gradient during te will ex­

perience either a weaker or a stronger field during the second gradient and will not be in phase 

at te. Therefore the random motion of diffusing spins reduces the transverse magnetisation that 

we measure at te, and the extent of de-phasing increases with larger displacements along the 

gradient direction.

W W -

P X) PI 80

TE

TE/2

Figure 3.2: Diagram of PGSE acquisition from Alexander and Barker [38]. The gaps Gi 

through G4 reduce artefacts in the image.

The purpose of DW-MRI in vivo is to infer information about the tissue structure from the 

displacement density, p, which Stejskal and Tanner [37] show is related to the DW-MR measure­

ment by a Fourier transform. For a measurement at the wavenumber q, the MR measurement 

is

A*(q) =  A*(0) J p ( r )  exp(«q • r)dr, (3.1)

where

q =  7 <*g, (3-2)

g is the magnetic gradient vector, 7  is the gyromagnetic ratio of the proton and S is the duration 

of the gradient pulse. We use the normalised measurement A(q) =  A*(0)_ 1v4*(q).

3.4 Estimating the spin displacement density

Early experiments with DW-MRI examined the “apparent diffusion coefficient” (ADC) in one 

dimension. The ADC is so called because the cellular structures in the imaged tissue hin­

der the random motion of water molecules and the resulting ADC is therefore smaller than
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the diffusion coefficient of free water. The ADC is calculated by assuming the relationship 

A(q) =  exp(—bd) where b (commonly called the“6-value”) is | q  | 2 t.

The ADC was shown to be dependent on tissue type: Hansen [39] finds that the ADC is 

lower in excised brain tissue than in excised muscle tissue, and Cleveland et al [40] reports 

that the ADC is anisotropic in rat muscle tissue: the ADC is greater along the length of the 

muscle fibres than across them. Many subsequent studies have examined anisotropy in brain 

and nerve tissue, both in-vivo [41] and in excised samples [31, 15], with the aim of quantifying 

the anisotropy and in understanding its causes.

Measurement of the ADC in one dimension is insufficient for whole-brain imaging, be­

cause the anisotropic tissue is heterogeneously oriented. Even if the fibre orientations of all the 

anisotropic tissue was known, it would be impossible to acquire measurements along all the 

different orientations in a time that is tolerable for conscious subjects. We therefore attempt to 

calculate p, or the parameters of some model of p, in three dimensions.

Diffusion spectrum imaging (DSI) [42] measures A(q) on a grid of evenly spaced q  and 

computes the fast Fourier transform to obtain a discrete set of measurement of p  on a grid of 

displacements, r. This is a slow process because many measurements are required to provide 

sufficient detail in structure of p. Wedeen and Tuch [42, 43] use around 500 measurements per 

voxel. DSI typically uses a voxel size of approximately 64 x 10- 9m-3 , which is necessary to 

achieve a sufficient signal to noise ratio.

The imaging parameters of DW-MRI are a trade off between spatial resolution, diffusion 

time, signal to noise ratio, and the total time spent by the subject or patient in the scanner. In 

current clinical scanners (field strength 1.5-3 Tesla) the spatial resolution of DW-MRI is less 

than for conventional MRI.

We can estimate p from fewer measurements if we assume a model of p. This reduces the 

minimum number of measurements p  to the number of parameters in the model, which we fit 

to the data.

3.4.1 Gaussian model

In Diffusion-tensor MRI (DT-MRI) [15] we assume that p  is a trivariate, zero-mean Gaussian 

distribution:

where D  is the diffusion tensor and t  is the diffusion time. The tensor is symmetric because 

p(r) =  p(—r) (diffusion is equally likely in both directions), and positive semi-definite because 

the diffusion coefficient in any direction is always greater than or equal to zero. In the literature,

(3.3)
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the diffusion tensor is sometimes called positive-definite, because in practice we do not observe

zero diffusion, and hence the eigenvalues of D  are positive. Because of symmetry D  has six

independent elements. Substituting this model into equation 3.1, we obtain

A(q) =  exp(—£qTD q), (3.4)

and thus

-  log(A(q)) =  £qTD q. (3.5)

Each measurement A(q)  provides a linear constraint on D. Given at least six diffusion- 

weighted measurements with different q, it is possible to solve for D.

It is common to take more than six measurements to provide a more robust estimate of D 

in the presence of noise. A common approach is to acquire these measurements on a spherical 

shell with fixed | q  |. The directions must be spread evenly on the sphere to avoid bias. Jones 

[44] shows in simulation that for a total of N  measurements, the best estimate of D  comes 

from using N  different q  rather than N M ~ l measurements of M  different q. The diffusion 

weighting is often expressed in terms of the scalar “b-value”, where b =\ q  \2 t. The voxel 

volume in DT-MRI is typically much smaller than for DSI, approximately 8  x 10~9m3.

The diffusion tensor may also be calculated by a direct fit of Eq. 3.4 to the measurements 

by numerical optimization. A direct fit can improve robustness [45] because the noise is closer 

to Gaussian on the measurements than on the log-measurements. We may also incorporate con­

straints on the diffusion tensor. For example, we can constrain the tensor to be positive definite 

by writing D  in terms of its Cholesky decomposition D = LFU, where U  is an upper triangular 

matrix. We then optimise the parameters of U  in the equation A (q) =  exp(—£qTU TU q).

The eigen system of D  contains three eigenvectors e i, e 2 , e 3 , and their corresponding 

eigenvalues Ai > A2 >  A3 . The eigenvectors describe the principal axes of the diffusion, and 

the eigenvalues are proportional to the mean squared displacements along the corresponding 

eigenvector. The diffusion tensor can be visualised as an ellipsoid, where the eigenvectors 

define the orientation and the eigenvalues define the size of the ellipsoid axes.

The introduction of DT-MRI led to a rapid growth in in vivo studies of diffusion in the 

brain, and the Gaussian model remains popular in the literature. The acquisition time is modest 

and the computation of D  is fast on a standard PC. Useful scalar indices can be derived from 

the DT for quantitative analysis of the diffusion. The mean squared molecular displacement R 2 

is related to the trace of the DT: R 2 = 2£Tr(D). The anisotropy can be quantified in different
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ways; a frequently used index is the fractional anisotropy [46]

i
2

(3.6)

Tensor-based characterisations of the anisotropy are useful for studying heterogeneous white 

matter structures in the brains, where a comparison of the ADC along two or three directions as 

in [41] is insufficient. Bammer et al [47] report a reduction in anisotropy of normal-appearing 

white matter in multiple sclerosis patients, suggesting microstructural changes outside the sites 

of visible lesions. The physical mechanism for these changes is still being studied. Multiple 

sclerosis causes demyelination, axonal degeneration, and oedema (excess water at the site of 

inflammation), which all influence p.

The statistic TV(D) is widely used to highlight areas of acute cerebral ischemia [48]. A 

reduction in anisotropy has been found in some fibres of patients with schizophrenia [49, 50] 

and epilepsy [51]. Multiple sclerosis lesions exhibit reduced anisotropy and increased Tr(D ),

The eigenvectors of the DT describe the orientation of p. If the voxel contains only fibres 

organised into a single bundle, the DT is highly anisotropic, the ellipsoid is prolate, like a cigar, 

and the primary eigenvector, e i, provides an estimate of the fibre orientation, which is used to 

track the path of white matter fibres. We discuss fibre tracking methods in Ch. 5.

A limitation of DT-MRI is that the tissue structure within a voxel is often not homoge­

neous, and the Gaussian model is a poor approximation of p  in these cases. When a voxel 

contains multiple fibre bundles, p  has a ridge corresponding to each bundle, but the tensor 

model cannot describe this situation. When two fibre bundles cross at an acute angle, e i consis­

tently points between the two fibre bundles. When the fibres are perpendicular, Ai «  A2 A3 

and the ellipsoid is oblate, like a pancake, ei may lie anywhere in the plane normal to e 3 and 

the anisotropy is substantially underestimated. If three or more fibres cross, then the anisotropy 

will be further underestimated and the tissue in the voxel may be misclassified as isotropic grey 

matter.

As well as fibre crossings, the discretisation of the brain into a voxel grid often creates 

voxels that contain different tissue types. This also decreases anisotropy and makes e i a less 

reliable estimate of the fibre orientation.

3.4.2 Detecting non-Gaussian diffusion

Frank [53] fits a spherical harmonic series to diffusion-weighted measurements acquired on a 

spherical shell. Any function on the sphere f ( 6 , cf>) can be expressed using spherical-harmonic

[52].
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basis functions:
oo I

E E  ^Irn^lm-  (3-7)
1=0 m = —l

A spherical harmonic series containing orders up to I =  L  is equivalent to an order L  polyno­

mial on the sphere, and vice versa.

A standard acquisition of N  measurements with A (q) with independent directions q  each 

give a measurement of the ADC along the direction k: d(k) =  —6 - 1  log(A(q)). Each ADC 

is real valued, so the coefficients, aim, in Eq. 3.7 are also real. The ADC is also symmetric, 

(d(k) =  d(—k)), so any ADC can be described by a spherical harmonic series of even order, 

I = 0 ,2 ,4 , . . . ,  oo. Depending on the shape of the ADC, the coefficients of high order terms 

may be zero after some maximum order L. When p  is perfectly isotropic, L =  0, since d(k) is 

constant for all k. If p is anisotropic but still Gaussian then L = 2. If p is not Gaussian then 

L > 2. Higher order terms also model the effects of noise. Alexander et al [54] use analysis 

of variance (ANOVA) to test whether a series with L = M  + 2 fits significantly better than a 

series with L — M .  Their algorithm fits L = 2 to most white matter in the brain where the DT 

is prolate, but fits L = 4 in many voxels in regions of crossing fibres such as the pons.

Ozarslan and Mareci [55] use higher-order tensors in place of the second-order tensor used 

in most DT-MRI:
oo

log(A(q)) =  — t J ^ q ^ D ^ q ^ ,  (3.8)
3=1

where each term is the contraction of the order 2  j  tensor with q ^ ,  which is the outer product 

of q^1) =  q  and q^’-1). Truncating the series of higher order tensors at order j  — L, we get an 

order L polynomial in q, which is equivalent to a real, symmetric, spherical harmonic series of 

order L [18].

3.4.3 Multi-Gaussian model

The multi-Gaussian model assumes that a voxel is a mixture of two (or more) separate tissue 

compartments, where p in each compartment is a Gaussian distribution. The simplest and most 

widely used model assumes that the exchange of water molecules between the compartments is 

negligible. The combined PDF is then a weighted sum of the individual Gaussian distributions:

p(r) = a iG (D i , t )  H b a nG(D n, t), (3.9)

where n  is the number of compartments, a* 6  [0,1] and Yli=i a i = 1- Substituting into 

equation 3.1 gives
n

=  ai exP (-*qTE>iq) (3.10)
* = i
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Because this model has more parameters than the single Gaussian model, more measurements 

are required to fit the parameters. Eq. 3.10 is nonlinear and is solved by optimisation of the 

parameters, which can easily converge on a local minimum, making the solution dependent on 

initial estimates. The fitting can be made more reliable by trying multiple starting points, or 

by imposing constraints such as fixed a  or cylindrical symmetry of the tensors. The value of 

n  is fixed and must be assigned before the optimisation. Many authors [16, 56, 57] test for a 

departure from Gaussian diffusion, for example by using the method in [54], and assign n  = 2 

in these voxels. When n = 2, Tuch [16] shows some success at resolving two fibre directions. 

Most studies use n < 2 in all voxels, because it is difficult to detect and fit more compartments 

consistently.

3.4.4 Model-free inversion

Diffusion spectrum imaging (DSI) [42] measures A(q) on a grid of evenly spaced q  and com­

putes the fast fourier transform to obtain a discrete set of values of p on a grid of displacements, 

r. A radial projection gives the Orientational Density Function (ODF) 0:

gives the probability of a particle displacement into a differential solid angle about the direction 

r , so (j> peaks in directions of the ridges of p. This projection discards the radial information in 

the MRI measurements.

If we are only interested in the angular structure of p , it is more efficient to make measure­

ments spread over a spherical shell at fixed | q  | and approximate 0. Methods such as q-ball 

imaging and the persistent angular structure (PAS-MRI) can resolve multiple fibre orientations 

in clinical scanners with far fewer measurements per voxel than DSI.

Jansons and Alexander [58] use the persistent angular structure (PAS) p, where:

p is a constant and <5 is the delta function ( 6  = 1 if | r  |=  p, 0 otherwise). According to this 

formulation p  is zero everywhere except the surface of the sphere of radius p. This results in 

a form of p  that contains only angular information. Jansons derives a general parametric form 

of p that maximises the entropy with respect to the data. The parameters must be found by 

numerical optimisation, which is very time consuming. The peaks of the PAS can describe 

multiple fibre directions, and can be computed with far fewer measurements than DSI.

Tuch’s q-ball algorithm [43] uses the Funk transform [59], to generate a function that 

closely resembles </>, from measurements at fixed | q  |. Lin et al [60] propose a similar method

which is the integral of p  in the radial direction along a certain orientation r. Therefore 0[r]

p(r) =  p(r)p  2S(| r  | -p ) , (3.12)
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to q-ball, which they demonstrate with 253 measurements per voxel. Q-ball is much faster than 

PAS-MRI, since it does not involve an optimisation process. Tuch demonstrates q-ball using 

492 measurements per voxel, however, Alexander [61] applies it to data with 60 measurements 

per voxel. Alexander shows that q-ball and PAS-MRI perform well with 60 measurements, 

though q-ball requires a slightly higher signal to noise ratio (SNR) to resolve two fibre orien­

tations as consistently as PAS-MRI. Fig. 3.3 shows a slice of a q-ball reconstruction in brain 

data with 60 measurements per voxel, overlaid on a map of the tensor fractional anisotropy. 

The peaks of the ODF appear to correspond to the orientation of the white matter fibre bundles. 

The zoomed region shows a fibre-crossing region, where two peaks are resolved by the q-ball 

method.

Figure 3.3: Q-ball reconstruction of the ODF in the brain, overlaid on a fractional anisotropy 

map. The peaks of the ODF align with the fibre orientation in white matter. Image provided by 

Kiran Seunarine, generated using the Camino toolkit [1].

3.5 Conclusions

The experiments in this thesis use both the Gaussian model and the multi-compartment Gaus­

sian model. We focus on DT-MRI first in Ch. 4. The Gaussian model is computationally inex­

pensive compared to more advanced algorithms, which facilitates methods and experiments that 

require large samples of synthetic data. Also, the diffusion tensor provides easily computable 

statistics of anisotropy, such as the fractional anisotropy, which has been shown to correlate
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with the uncertainty in the associated fibre-orientation estimate [56]. The multi-compartment 

Gaussian model is a natural extension of this model, which is still reasonably computationally 

efficient and allows us to use the same statistics of anisotropy to model the uncertainty as a 

function of the tensors fitted in multi-fibre voxels.



Chapter 4

Optimal orderings of diffusion-weighted MRI 

measurements on the sphere

Diffusion-tensor MRI [62] (DT-MRI) assumes a Gaussian model of the spin displacement den­

sity. Each measurement A  at wavenumber q  provides a linear constraint on the diffusion tensor 

D:

log[A(q)/A(0)] =  - t q TD q , (4.1)

where t is the diffusion time. Since D  has six independent elements, DT-MRI requires at least 

seven measurements with independent q. A standard approach is to acquire N  measurements 

A(q i ) , . . . , A(q^)  on a spherical shell in q-space, with | q i | =  | q 2 | ••• = | qjv |, and 

M  measurements with q  =  0. The gradient directions q i , . . . ,  q/v are spread isotropically 

on the sphere to minimise dependence of the error in the measured diffusion tensor on the 

orientation of imaged tissue. Several algorithms in the literature determine isotropically spread 

sets of N  directions. Tuch et al [16] use the vertices of a tessellated icosahedron as gradient 

directions. Jones et al [63] model the directions as antipodal pairs of charged particles (at 

qi and —qi), joined by a light, rigid rod that passes through the centre of the unit sphere. 

Each pair is free to rotate on the surface of the sphere. Jones et al search for the point set 

that minimises the sum of the forces between the particles. Papadakis et al [64] maximise 

the minimum distance between any two charge pairs. Hasan et al [65] review and compare 

several methods and evaluate their suitability for fitting the diffusion tensor. They conclude 

that for estimating diffusion anisotropy, using N  unique directions provides no advantage over 

acquiring AT/6 repeated measurements in each of 6 directions. However, Jones [44] shows that 

for highly anisotropic tissue, N  unique directions provide more stable estimates of the principal 

direction and anisotropy of the diffusion tensor. Unique gradient directions also allow resolution 

of multiple fibre-orientations within a single voxel [18].

In this chapter, we define the electrostatic point set as the directions found by minimising
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the electrostatic energy of equal and opposite pairs of charged particles on the sphere. We 

obtain electrostatic point sets using Jansons and Alexander’s procedure [58]. They choose the 

lowest energy configuration from 500 local minima computed from different random starting 

configurations. Previous approaches [63, 64] use one starting position, so their results may be 

suboptimal, particularly for large N .  The electrostatic energy of the two pairs of charges i and 

j  is

Eij = 2>/2[(l +  • q ) -  ̂ +  (1  -  q  • q ) - ^ ] . (4.2)

The total energy of the system of N  pairs is

N  i - 1

£V =  E E E« '  (4-3)
i—2 j = 1

If a scan is interrupted, because of excessive patient motion for example, the set of directions 

acquired may be anisotropically distributed, because subsets of an isotropic point set are not in 

general isotropic. Several neurological conditions currently studied with diffusion-MRI, such as 

epilepsy, dementia, and schizophrenia, can cause patients to become non-compliant or to have 

seizures during the acquisition. Partial scans would generally be excluded from a research study, 

but a partial scan may still be useful for clinical diagnosis if the subset of gradient directions 

used before the interruption is close to isotropic.

Dubois et al [6 6 ], propose a method to improve results from partial scans by separating 

gradient directions that are positioned close together in the acquisition sequence. They intro­

duce weights to the energy in Eq. 4.3 and they use point sets that minimise

N  i - 1

E i j W i j . (4.4)
i —2 j = 1

They propose three weighting schemes. In the first, pairs are divided into subsets of six direc­

tions, Wij =  1 if pairs i and j  are in the same subset, and wij = 0 .6  if the pairs are not in 

the same subset. In the second scheme, pairs in adjacent subsets have an intermediate weight

= 0.8. In the third scheme, there are no subsets and the weights decrease gradually ac­

cording to the order in the acquisition sequence: = 1 if | i — j  \< 1 0 , w^j  = | i — j  |_Q if

| i — j  |>  10, and a  is a positive scalar. They calculate the point sets with a simulated annealing 

algorithm.

Dubois et al demonstrate the method with a point set of 18 directions. They scan the brain 

of a healthy adult volunteer using both their point sets of 18 directions and with electrostatic 

point sets of 6 , 12, and 18 directions. They show that maps calculated using the first P  =

6,12,18 directions of their point sets appear similar to those produced from the corresponding
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electrostatic point set of P  directions. A drawback of this approach is that the point set that 

minimises Eq. 4.4 does not minimise Eq. 4.3, and is less isotropic than the electrostatic point 

set. Empirically, we find also that the weights in Eq. 4.4 increase the number of local minima, 

making the global minimum of Eq. 4.4 harder to locate.

In a previous work [3] we divide the electrostatic point set into equally-sized subsets, and 

optimise the ordering of the pairs to make each subset as isotropic as possible. Specifically, we 

minimise
N  i - 1

E ijS ij , (4.5)
*=2 j = 1

where =  1 if pairs i and j  are in the same subset, and zero otherwise. The purpose of 

the method is to create isotropic subsets, so that the diffusion tensor can be fitted to the mea­

surements in each subset. One potential application for this is motion correction using tensor 

information derived from the subsets at different points during the scan. It also improves the 

results of partial scans compared to an unordered point set, however the method treats subsets 

independently, so it does not minimise the energy of the first P  pairs. Therefore, a partial scan 

consisting of, for example, the first two subsets, or the first subset and half of the second, may 

be significantly anisotropic.

We propose a new method to optimise the ordering of acquisition and thus improve the 

quality of partial scans without compromising the quality of the complete scan. We test the 

ordered point sets and compare them with the Dubois point sets in simulation and we also 

demonstrate the ordered point set using brain data from a healthy volunteer.

4.1 Methods

This section presents the method to find an ordering of an isotropic point set of size N  gradient 

directions that gives the most well separated subsets { q i , . . . ,  qp}, 6  <  P  < N .  In contrast to 

Dubois’ approach, the method does not alter the quality of the complete scan, since none of the 

directions are modified.

We cannot know in advance how many measurements the scanner will complete before 

interruption, and so we require that each subset of P  directions is well separated. To achieve 

this, the method optimises (N  — 6 ) nested subsets of the first P  directions, in contrast to the 

earlier work by Cook et al [3], which divides directions into non-overlapping subsets. We aim 

to minimise the electrostatic energy of all subsets simultaneously, so we search for the ordering 

that minimises
N

f = J 2 Er p ~2’ (4 -6)
P = 6
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where E p  is the electrostatic energy of the subset { q i , . . . ,  qp}. The electrostatic energy of P  

isotropically distributed pairs is approximately proportional to P 2; the normalisation factor P 2 

in Eq. 4.6 ensures that each subset { q i , . . . ,  qp} contributes similarly to the objective function.

An exhaustive search of all N \  orderings is feasible for small N  but rapidly becomes in­

tractable as N  grows. We search for the ordering that minimises /  using the simulated annealing 

[67, p. 444] method in Algorithm 1. The parameters T, e, R  and S  control the annealing sched­

ule. We decrease T  to (1 — e)T  after trying S  random changes to the configuration, so positive 

changes in /  are progressively less likely to be accepted. The counter R  records how many 

times T  has been lowered since we improved the best configuration. Simulated annealing is 

a heuristic algorithm and we have no guarantee that a particular minimum is the global mini­

mum. We therefore test a range of annealing schedules to provide an estimate of the optimum 

algorithm parameters. We compute orderings over a range of N .  Specifically, we compute 

orderings for N  = 12,18,30,61. We find for each N  that / min never reduces when T  is less 

than approximately 10~5. The optimisation ends when T  is below Tmin or when T  has been 

lowered 106 times without a change in f m\n. We set Tmin =  10- 8  for each N  and fix S  = 104.

1. Read unordered electrostatic point set.

2. T  = Tmax; R  = 0

3- /min — /

4. while R  <  106 and T  > Tm-m

(a) for x = 1 . . .  S

i. Choose two points i and j  and swap their position.

ii. Calculate the change 8 f  in / .

iii. If Sf  <  0  accept the change, else accept the change with probability

exp [ S f / T ] .

iv. i f f  < /min, set / min =  /  and store the current configuration.

(b) If /min changed during 4a, then R  = 0. Else R  = R  +  1 .

(c) T  = (1 -  e)T .

5. Return the best configuration.

Algorithm 1: The simulated annealing algorithm.

We choose the initial temperature Tmax for the simulated annealing using a simple calibra­
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tion algorithm. Starting from a random ordering, we run a single annealing iteration (statement 

4a in Algorithm 1) and determine the temperatures Tio, T30 , and T50 at which 10%, 30%, and 

50% respectively of the upward steps (6f > 0) are accepted.

We vary the cooling parameter e between 10- 3  and 10~6. With Tmax =  T5 0 , the algorithm 

terminates in approximately 5 minutes with e =  10- 3  and 48 hours with e =  10- 6  on a 2.4 

GHz PC workstation.

For N  = 12, we perform an exhaustive search of all possible orderings to find the global 

minimum configuration. The annealing algorithm finds this minimum whenever e <  1 0  4, with 

Tmax =  Tio, T3 0 , T5 0 . For N  = 18 and 30, we cannot search all possible orderings, however 

the annealing algorithm finds the same minimum when e <  10 4, with Tmax =  Tio,T3o,Tso. 

With N  = 61, the annealing finds the same minimum with Tmax > T30 and e =  10-6 . Higher 

values of N  will likely require slower annealing (smaller e and higher Tmax).

4.2 Experiments and results

This section shows some experiments to compare different point sets with scan interruption. 

We show quantitative results from simulations and some qualitative results from human-brain 

data. We compare the first P  directions from different point sets:

1. Ordered electrostatic.

2. Dubois [6 6 ].

3. Subset electrostatic [3].

4. Unordered electrostatic [58]

For comparison, we compute the same statistics from electrostatic point sets with N  = P. 

We compare two values of N : 18, as used by Dubois et al [6 6 ], and 61, typical of high angular 

resolution acquisitions and used in [3].

We compute point set 2 for each N  using the third weighting scheme from [6 6 ], which 

Dubois et al propose for use when scan interruption may occur at any point in the acquisition. 

In this scheme, = 1 if | i — j  |<  10, = | i — j  |_a if | i — j  |>  10. We determine

the value of a  empirically by finding the a  (to the closest 0 .1) that gives a point set with the 

minimum /  in Eq. 4.6. For N  = 18, a  = 0.4, for N  = 61, a = 0.3. To find the optimal point 

set for each a, we follow [58] and use a Levenberg-Marquardt optimisation to minimise Eq. 4.4 

from each of 50,000 random starting points and pick the lowest minimum.

We compute point set 3 for N  = 18 by dividing the pairs into three groups of 6  pairs. 

We optimise Eq. 4.5 using simulated annealing as described in Sec. 4.1, with Tmax =  T50 and
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e = 10-5 . For N  =  61, we divide the pairs into one group of 16 pairs, and three groups of 15 

pairs. We run the annealing with Tmax =  Z50 and e = 10“ 6. After annealing for N  = 61, we 

choose directions from the first subset that give the minimum E p  with P  = 6  and make these 

the first six directions of the subset. This ensures that the first six directions are as isotropic as 

possible without changing the subsets.

4.2.1 Evaluation of ordered points

We evaluate the point sets using synthetic data. Given a Gaussian test function with diffusion 

tensor D  we synthesise the first P  measurements. We then add complex Gaussian noise and 

take the modulus. The diffusion time, | q | and signal to noise ratio are the same as in the 

human brain data (described below). For N  = 61, the number of unweighted measurements, 

M , varies according to P. For N  =  18, M  = 1. The diffusion tensor is calculated by a linear 

least-squares fit to the log of the noisy measurements.

For each D  we obtain 5000 independent noisy estimates of the fractional anisotropy (FA) 

[46] and the principal direction at each of 1000 random rotations of D, giving a total of 5  x 106 

trials.

We use three different diffusion tensors typical of those found in the brain. All three are 

cylindrically symmetric with a trace of 2.1 x 10~ 9 m2 s_1. Tensor D \  has FA =  0.8, which 

is typical of major white-matter fibre tracts. Tensor D 2 has FA =  0.4, and D 3 has FA =  0.1, 

which is often used as a threshold in tractography to detect grey matter.

The concentration of the estimated principal axes x i . . .  X5000 about their mean axis m  is 

found by fitting the parameter k of the Watson distribution: p(x) =  exp[«;(m • x )2] [68]. A 

larger value of k means that the principal directions are more concentrated about m. A uniform 

distribution of directions on a sphere has zero concentration, while identically aligned axes have 

infinite concentration.

4.2.2 Comparing the point sets

Figures 4.1-4.6 show the results for D\  only. The trends are similar for D 2 and D 3 over all 

values of P, so we omit these to avoid cluttering the plots. We define the “angle bias” as the 

angle between the mean of the estimated principal directions, m, and the true principal direction 

for each orientation of D.

We plot min(/c) over the 1000 orientations of D  for each point set and value of P. An 

anisotropic point set has a high angle bias, and produces to high concentration at some orienta­

tions of D  and low concentration at others. Aside from point set 4, all point sets have a mean 

angle bias of less than 3 degrees with P  >  6, and point sets with the highest min(/c) have the
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lowest angle bias. At P  = 6 , point set 2 has a higher angle bias but min(Av) «  0.

Fig. 4.1 plots the minimum concentration of the estimated principal directions against P  

with N  = 18. The minimum concentration for point set 1 is lower than for point set 2 for most 

P, but higher when P  = 6  and P  = 18. Point set 3 performs worse than point sets 1 and 2 

when P  is not a multiple of six, but is still better than point set 4.

Fig. 4.2 plots the minimum concentration of the principal directions against P  with N  = 

61. Point sets 1 and point set 2 produce similar results, although point set 2 has lower min(K) 

when P  = 6 . Point set 3 has similar performance to point sets 2 and 1; at some P  point set 3 is 

slightly worse and at others slightly better. As with N  = 18, point sets 1, 2 and 3 are all better 

than point set 4.

Fig. 4.3 shows the mean FA over all trials for N  =  18. Point sets 1, 2 and 3 give similar 

results to the optimal N  = P  point set with P  > 6 . Point set 3 is slightly less accurate than 

point sets 1 and 2, but still better than point set 4. Fig. 4.4 shows the standard deviation of FA 

with N  = 18. Point set 2 has higher standard deviation than point set 1 with P  = 6 , but slightly 

lower standard deviation for P  = 7 and P  = 8 . Point set 3 has higher standard deviation than 

point sets 1 and 2 for P  < 12.

Fig. 4.5 shows the mean FA for N  = 61. Fig. 4.6 shows the standard deviation of FA for 

N  = 61. In both plots, point sets 1, 2 and 3 are similar for P  > 6 , and give more accurate and 

consistent measurements of FA than point set 4.

4.2.3 Human brain data acquisition

We acquire human brain data on a 3T scanner (GE Excite II platform, running G3M4 software), 

equipped with 0.04 T m-1 gradients, using an 8  channel phased array coil. Imaging parameters 

are 6  = 21 ms, A — 0.029 s ( 6  and A are defined in Fig. 3.2), b =  1200 s mm-2 and t e = 

0.073 s. The image consists of fifty one 2.7 mm thick slices, with a 96 x 96 matrix, reconstructed 

to 256 x 256, with a 22 cm field of view. Cardiac gating was employed with a TR of 30RR and 

triggering occurring on every QRS complex.

The sequence acquires 7 unweighted (5 =  0) images and 61 diffusion-weighted images. 

The gradient directions were calculated using the electrostatic energy minimisation algorithm 

in [58] and ordered using the procedure in the methods section. The b = 0 images are acquired 

at regular intervals throughout the scan, whenever the ratio of weighted to unweighted images 

is greater than 9 : 1 .  This ratio of weighted to unweighted image acquisitions is a compromise 

between the optimal ratio for measuring anisotropy and that for measuring fibre orientations 

[38]. The signal to noise ratio in white matter in the b = 0 images is approximately 20.

Figure 4.7 compares the colour-coded principal direction maps with P  = 10 from the
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Figure 4.1: Plot of min(/c) against P  with N  = 18, for test function D\ (FA =  0.8). The key 

is: electrostatic N  = P  (circles), point set 1 (ordered, asterisks), point set 2 (Dubois, squares), 

point set 3 (electrostatic subsets, triangles) and point set 4 (unordered electrostatic, diamonds).

ordered point set, with P  = 10 from the unordered point set, and with the full scan (P  =  61). 

The map from the 10 ordered directions is closer to the results of the complete scan than the 

map from 1 0  unordered directions.

4.3 Discussion

We conclude that ordering the points significantly improves the results from a partially com­

pleted scan compared to a unordered point set. The Dubois point sets can give slightly more 

precise estimates of the diffusion tensor principal direction with small N ,  however the optimi­

sation required to compute these point sets becomes difficult at high N ,  and ordering performs 

as well as the Dubois point sets at large N .  The Dubois point sets can perform poorly with 

P  =  6 , because they do not explicitly optimise the first six directions, since the weights in Eq.

4.4 are equal for the first ten points. The subset electrostatic point sets [3] are also susceptible 

to this problem when the subsets contain more than 6  directions, though the problem can be 

alleviated to some extent by reordering the directions within the first subset.

We expect ordered point sets to be most useful in a clinical setting, where diffusion-
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Figure 4.2: Plot of min(K) against P  with N  =  61, for test function D\  (FA =  0.8). The key 

follows that of Fig. 4.1.

weighted imaging is becoming increasingly common. Time constraints may prevent a rest­

less patients from being rescanned, or patients can become non compliant or distressed (e.g. , 

from an epileptic seizure), after part of a high resolution diffusion-weighted image has been ac­

quired. An ordered point set improves the measurements of the fibre orientation and fractional 

anisotropy from a partial scan and since ordering does not alter the data in a complete scan, it 

is simple to adapt existing acquisition sequences.

In this chapter, we have presented a method to optimise the acquisition scheme in order to 

improve the voxel-based measurements of the fibre orientation with DT-MRI. The next chapter 

introduces tractography, where these local measurements are used to trace the path of white 

matter fibre bundles in the brain.
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Figure 4.7: Colour-coded principal direction map from the human brain data, using ten random 

directions (top row), ten ordered directions (middle row), and all sixty-one directions (bottom 

row).



Chapter 5

Tractography with DW-MRI

Many recent studies have proposed methods to examine the nervous connectivity of the brain 

by tracing paths between sites that are connected by white matter fibres. This area of MRI 

research is commonly called tractography. Tractography methods can be split into two broad 

classes, deterministic and probabilistic. Deterministic methods estimate a single maximum- 

likelihood fibre-path. Probabilistic methods determine the probability of connection between 

any two points in the brain. Both methods have been used widely with DT data, though the 

principles extend naturally to other models of p. The work presented in this thesis relates to 

probabilistic streamline-based tractography, and we examine these methods in detail here.

5.1 Streamline tractography

Streamline tractography algorithms estimate the path of a fibre bundle from a given seed point. 

The algorithms work by propagating a particle along the local fibre orientation from the seed, 

until the end of the fibre bundle is reached. The path of the particle is a streamline. Fibre tracts 

are often visualised by tracking many streamlines seeded within the tract. This can give the 

appearance that streamlines represent individual fibres, in fact they are estimates of the path of 

a large bundle of axons.

5.1.1 Fibre assignment by continuous tracking

Fibre Assignment by Continuous Tracking (FACT) [9] was the first method to trace fibre paths 

using streamlines in DT data. The FACT method follows ei in each voxel, so the stream particle 

changes direction only when the path crosses a voxel boundary. The streamline is continuous in 

that it may enter and exit the voxel at any point, and is not forced to pass through voxel centres.

To ensure that streamlines are constrained to white matter, FACT tests the angular disper­

sion of e i in the neighbourhood surrounding a voxel. If the angular dispersion is high, then the 

tract is judged to have left white matter, and the streamline stops. FACT was first demonstrated 

by Mori et al in the rat brain [9], but the method has since been applied to the human brain (for
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example, by Stieltjes et al [69]).

5.1.2 Interpolated tracking

Conturo et al [70] track streamlines in DT data using a fixed, sub-voxel step size s. The stream­

line is propagated using Euler’s method [67, p. 710]. Starting from a position ro, the next posi­

tion of the streamline r i  is ro +  sei(ro). This requires a continuous approximation of the data 

to provide e i (r) at sub-voxel intervals. They use trilinear interpolation of each measurement 

and recalculate the tensor at each step in the tracking process. Conturo finds that bundles of 

streamlines seeded in white matter trace paths that are visually consistent with known anatomy. 

Conturo also uses two regions of interest to reduce false positive connections. Seed points are 

placed in both regions and any streamline that does not pass through both regions is discarded. 

When regions of interest are placed at the ends of known fibre tracts, the number of spurious 

fibre trajectories is reduced because an erroneous streamline is unlikely to trace back onto the 

known path.

Basser [71] et al generate a continuous approximation of the diffusion tensor field, instead 

of interpolating the DW-MR data directly. They interpolate the tensors using spline-based inter­

polation of the diffusion tensors fitted to the data in each voxel [72]. They use the Runge-Kutta 

method [67, p. 710] to track through the interpolated tensor field, which is more precise than 

the Euler method. In the fourth-order variant of the Runge-Kutta method, the trajectory of the 

streamline along a step from ro to r i  is a weighted average of four smaller steps:

va =  s e i( r0) (5.1)

v b = s e i( r0 +  | v a) (5.2)

vc =  s e i( r0 +  | v 6) (5.3)

v d = s e i( r0 +  | v c) (5.4)

i ( v a +  2 wb +  2vc +  v d). (5.5)

Tench [73] et al also use the Runge-Kutta method, but they interpolate the raw data, rather than 

the tensor field.

In the “tensorline” scheme [74, 75] the velocity of the stream particle is an adaptable 

function of the path of approach, the local diffusion tensor information, and the path of approach 

deflected by the local diffusion tensor, the tensor deflection (TEND) term. Given a previous 

tracking step v*n, the next step direction is

Vout = / e i  +  (1 -  / ) ( ( !  -  g)v in +  gT> • v*n), (5.6)
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where /  and g are weights between 0 and 1. When D  is prolate, the TEND term will deflect 

Win towards ei. If D  is oblate the TEND term will deflect v in toward the plane of the oblate 

DT, and if D  is isotropic then the TEND term will be close to v*n. The TEND algorithm can 

be adapted to choose f  and g intelligently. For example, if the DT is highly prolate, then /  

should be close to 1. When the DT is oblate, e i is unreliable and it is sensible to decrease / .  

A low value of g gives more weight to Vjn, which discourages sharply bending tracts without 

terminating the streamlines.

5.1.3 Stopping criteria for streamlines

Streamline algorithms are designed to terminate when the streamline has left white matter, or 

when the streamline trajectory is no longer trustworthy, for example if the streamline intersects 

itself or changes direction too rapidly. An anisotropy threshold terminates streamlines that enter 

an isotropic region [70]. A curvature threshold [71] terminates streamlines that curve too much 

over over a short path (e.g., one voxel). White matter fibre bundles generally curve slowly, and 

sharp curvature is often associated with erroneous paths. However, some pathways, such as the 

u-fibres, have naturally high curvature [76], and a restrictive curvature threshold makes tracking 

in these regions impossible.

5.2 Reliability of streamline tractography

Many investigations into the reproducibility of DT-MRI fibre orientation measurements have 

not explicitly dealt with tractography. This includes theoretical studies by authors such as An­

derson [77], and empirical studies. Lin et al [78] trace fibre paths in the rat brain with a chemical 

tracer. They use a contrast-enhancing agent to highlight the optic tracts, and fitting a polynomial 

curve to the path of the optic tract. Lin compares the gradient of this curve to e i in voxels along 

the path of the curve. The mean angular deviation of e i from the polynomial curve was 1.1°, 

with standard deviation o  =  13.27°. Tuch et al [16] test the reliability of their multi-Gaussian 

model by adding noise to simulated tensors and calculating the mean error in the orientation of 

the primary eigenvectors.

Most evaluation of the reliability of tractography has used synthetic data, where the ground 

truth is explicitly defined. Both Toumier et al [79] and Lazar et al [76] test streamline tractogra­

phy in synthetic tensor fields. Lazar finds that interpolation decreased the divergence of stream­

lines from an ideal path, except where the tensor field is divergent (where tensors neighbouring 

the ideal path pointed away from the path), in which case FACT tracked closer to the ideal path. 

Tensorline tracking generally underestimates tract curvature, but this bias towards low curva­

ture (which is stronger when the tensor is oblate) stabilises tensorline trajectories in regions of
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crossing fibres. Other studies have used animal models such as the macaque monkey [80, 81], 

and found agreement in the gross anatomy between histological studies and the tractography.

Stieltjes et al [69], tracked streamlines in the human brainstem of six healthy subjects, us­

ing Conturo’s two-region idea, an anisotropy threshold, and a curvature threshold. A group of 

raters defined the ROIs and assessed the similarity of the resulting tracts. Stieltjes concluded 

that the anisotropy threshold was the most effective at producing reproducible tracts. The rec­

ommended parameters were an anisotropy threshold of /  =  0.25, and an a threshold allowing 

a maximum of 40 degrees curvature between adjacent voxels on the streamline path.

The need for restrictive thresholds to achieve reproducibility show the limitations of deter­

ministic tractography. One of the biggest problems is that no estimate of the confidence in the 

streamline path is given, so a spurious streamline carries as much weight as any other.

5.3 Probabilistic streamline tractography

Probabilistic methods estimate the connection probability between two points A  and B,  given 

the set of fibre orientation measurements in the image. Koch et al [82] simulate the diffusion of 

a water molecule, which takes a random walk with probabilities of each walk step defined by 

the local molecular displacement density, p, for which they use the Gaussian model. A particle 

takes a random walk from a manually defined start point, with each step sampled from the local 

p. This process is repeated many times and the the probability of connection to a voxel is the 

fraction of particles that pass through the voxel during the random walk. While this method 

produces higher probabilities of connection along the path of white matter, since particles are 

more likely to move along fibres than across them, it assumes that the probability density of 

directions of molecular displacements along x  is equivalent to the probability density of the 

local fibre orientation, which in general is not the case. In bundles of fibres with high anisotropy, 

the probability of a random walk moving perpendicular to ei is much higher than the probability 

that the fibre bundle is oriented perpendicular to ei. Only at very low anisotropy do the PDF of 

directions of molecular displacement and the fibre-orientation PDF become comparable [12].

The Probabilistic Index of Connectivity (PICo), which was introduced independently by 

Parker et al [83] and Lazar and Alexander [84], and developed in more detail by Parker et al 

[12], defines a probability density function (PDF) P  of the fibre orientation x  in each voxel, in 

contrast to the PDF on molecular displacements used by Koch. The probability of connection 

between A  and B  is the integral over all possible paths that connect A  and B.  This integral is too 

complex to solve analytically, so we find the connection probabilities by generating “probabilis­

tic streamlines”. Starting from a seed point at A, we draw a sample orientation x  according to
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the local PDF, and move a small step along this orientation. The tracking continues until a stop­

ping criteria is met, and the streamline connects A  to all points along its length. Behrens [85, 

p.69-70] shows that as the step size tends to zero, the probabilistic streamlines are samples from 

the integral over all possible paths. Note that the integral is over all possible paths of a single 

tract, and the “connection probability” represents the belief that a single coherently-organized 

bundle of white matter fibres traces a path from A  to B.  The connection probability cannot be 

interpreted as a distribution of fibres: it is wrong to suggest that a connection probability of 0.5 

means that half of the fibres in the voxel A  connect to B.

In the limit of no uncertainty, P (x ) is a delta function, which is 1 if x  is aligned with ei and 

zero otherwise, and the probabilistic streamlines follow the maximum likelihood estimate of the 

fibre orientation in each voxel. When there is uncertainty in the data, probabilistic streamlines 

from the same seed disperse according to the uncertainty in the local fibre orientations along 

the path of the streamline. We generate a large set of N  probabilistic streamlines, and the 

probability of connection between the seed point and a voxel v is the fraction of probabilistic 

streamlines that pass through voxel v. A similar method was proposed by Behrens et al [13]. 

The methods differ in the definition of the voxel PDF: PICo and related algorithms fit a model of 

the PDF, while Behrens uses a Bayesian approach to sample directly from the fibre-orientation 

PDF in each voxel. We discuss both methods separately in the following subsections.

The stopping criteria for probabilistic streamlines are less restrictive than for deterministic 

approaches, since streamlines that enter regions with high uncertainty will disperse widely and 

give low connection probabilities. Behrens et al use no anisotropy threshold and a curvature 

threshold of 80 degrees within a voxel, to prevent streamlines from looping back into fibre 

paths that they had already tracked. Parker et al likewise use no anisotropy threshold but a 

slightly more restrictive curvature threshold, limiting curvature to 70 degrees.

5.3.1 Model-based PDFs

The advantage of the PICo model-based approach over the Bayesian method proposed by 

Behrens et al [13] is that the PDF parameters are pre-computed once per imaging scheme, 

which requires approximately five hours of computation time on a standard PC for single-fibre 

calibration, while the calibration method for the Bayesian method must be carried out once per 

subject, and requires approximate 24 hours of computation time. The advantage of the Bayesian 

method is that it does not assume any model of the fibre-orientation PDF, while PICo must both 

assume a model of the PDF and correlate its variance to some parameters of the diffusion.

In PICo, the peak orientation of the PDF is estimated from the data. We assume that the 

measured fibre orientation /x is an unbiased estimate of the true fibre orientation x  from the
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PDF. It remains to determine the variance of the PDF from the data.

Parker et al propose models that relate the fractional anisotropy /  of the diffusion tensor 

to the concentration of the PDF. The simplest model assumes that the fibre orientation has 

rotational symmetry about the peak. This is true when the diffusion has rotational symmetry 

about the principal direction. Pierpaoli et al [6 ] suggest that this is the case in many parts of the 

brain.

Fig. 5.1 shows the coordinate system that Parker et al use to define the PDFs. The tensor 

principal direction, e i, has polar coordinates (0, (f>) (a). In the coordinate frame of the tensor, 

e i =  z', and the probability of the true fibre orientation being x  is a function of 69' and 6(f)'.

With rotational symmetry, the PDF depends only on the angle 69'. Any axis found by 

rotating x  about e i by an angle 6(f)' has the same probability density.

X

♦
a

*  X

Figure 5.1: The coordinate system for PICo from Parker et al [12].

In the initial PICo paper, Parker et al [12] model the uncertainty in symmetric tensors with a 

one-dimensional Gaussian distribution N(Q, o) of 69', subject to the constraint that 69' <  To 

obtain a fibre-orientation estimate from this PDF, we sample 69' from the Gaussian distribution 

and 6(p' from a uniform distribution U[0 ,2ir\. Parker relates the standard deviation cr of the 

distribution to /  by a sigmoid function. While the model has the desired result of decreasing 

uncertainty as /  increases, the sigmoid relationship between /  and uncertainty is a heuristic 

choice.

Pierpaoli et al [6 ] found that the diffusion is not symmetric about the principal direction of 

the tensor in some areas of white matter, including the pyramidal tract and the internal capsule.
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In these regions, the uncertainty in fibre orientation depends on 89' and 84>'. Parker et al use a 

sigmoid model where the standard deviation of the distribution of 59', N ( 0, a),  is dependent on 

the sampled 8(f)'. The standard deviation o  is proportional to eTDe, where e is the vector with 

59' = |  and 5(f)' = U[0,2ir]. The axes sampled from this distribution are less concentrated 

along e 2 than along e3 .

In later work, Parker and Alexander [56] use a modified form of the Gaussian PDF as a 

model of the uncertainty in e i caused by image noise. The diffusion is assumed to have circular 

symmetry about e i. Parker and Alexander find empirically the relationship between /  and the 

concentration of the PDF by emulating the scanner sequence used to acquire the data. Given a 

Gaussian p with a diffusion tensor of anisotropy / ,  they synthesise many sets of measurements 

according to Eq. 3.4. Each trial gives an estimate of e i and therefore a sample of 89'. They 

fit the value of o  from 7V(0, <r) to the samples of 89'. This procedure is repeated over a range 

of / ,  to produce an estimate of o  as a function of / .  Lu et al [8 6 ] propose a calibrated model 

using perturbation theory to describe the error in the diffusion tensor. This model also allows 

for elliptical contours of the PDF.

Models for multiple fibres

Parker and Alexander [56] extend the single-fibre PICo PDFs to the Gaussian compartment 

model with n = 2. They synthesise noisy data from the test function p = 0.5[G(Di,£) +  

G (D 2 ,£)], where D i and D 2 are cylindrically symmetric diffusion tensors with identical 

anisotropy, and the principal directions of D i and D 2 are orthogonal. They then fit a fourth- 

order spherical harmonic series to the data, and re-sample from the series to obtain a larger 

number of measurements, with inherent smoothing from the spherical harmonic model. They 

fit the parameters of the two diffusion tensors to this resampled data, and extract the principal 

directions. This process yields a set of fibre orientations, one from each tensor at each trial, 

which they separate into two even groups, one for each fibre population. They then calculate 

89' for the axes in each group, and fit the parameter o of the Gaussian distribution to the sam­

ples of 89'. This procedure is repeated over a range of / .  Parker and Alexander plot o against 

/  and fit a biexponential curve to this plot to give o  as a function of / .

They report that the value of o  in each compartment depends only on /  of the diffusion 

tensor. The anisotropy of the other compartment, and the angle between the fibres, does not af­

fect the uncertainty. This is surprising because the diffusion-weighted measurements do depend 

on both compartments. The spherical harmonic resampling may smooth out these differences, 

but in doing so they may introduce errors to the fibre-orientation estimates.

The general two-Gaussian model is p = a G (D i,f)  +  (l-a !)G r(D 2 ,£). Parker and Alexan­
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der do not claim that the value of a  is independent of a. We expect that a  does affect the 

uncertainty, with larger compartments having lower uncertainty than smaller ones.

5.3.2 Limitations of the model-based PDFs

The model-based calibration approach to PICo has some inherent limitations. Firstly, the ap­

proach considers only sources of uncertainty that can be modelled during the calibration pro­

cess. Often, only imaging noise is modelled. Other sources of uncertainty, such as patient 

motion or eddy-current distortions, are difficult or impossible to model and are not accounted 

for.

The calibration process gives an estimate of the uncertainty in fibre orientation assuming p  

is Gaussian, with a known diffusion tensor. In the brain, p is not necessarily Gaussian, and the 

diffusion tensor is not known but estimated from noisy measurements. Noise generally causes 

a positive bias in anisotropy [87], and since anisotropy is inversely related to uncertainty in the 

fibre orientation, the concentration of calibrated PDFs is generally overestimated. Furthermore, 

the model itself may not be a good approximation of the true uncertainty in the fibre orientation, 

for example it may assume circular contours of the PDF, even if the true contours are elliptical.

5.3.3 Bayesian methods

Behrens et al [13] use a Markov Chain Monte Carlo (MCMC) [8 8 ] method to sample the fibre- 

orientation PDF. Markov Chain Monte Carlo provides samples from the PDF P ( uj \ Y )  of 

possible parameters uj of some model of p  given the observed data Y.  The fibre orientation 

PDF is a function of all the parameters in uj. According to Bayes’ theorem:

F,„ i „ .
where the denominator in Eq. 5.7 is the integral over all parameter vectors in the parameter 

space fI :

P (Y )  = [  P ( Y  | uj)P(uj)duj (5.8)
Jn

P (Y \u )  is the probability of the data given the model and P ( uj) is the prior probability of uj. If 

we do not have any prior information about uj, i.e. all information that we have about uj comes 

from Y,  then P { uj) is uniform. Behrens et al use non-informative prior distributions but ensure 

positivity where sensible, for example A(0 ) must not be negative.

The MCMC method provides samples from P (u  \ Y )  without computing P(Y) ,  which 

cannot be done analytically. The probability of the data given the parameters is the joint proba-
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bility of the diffusion-weighted measurements yi,

n

P ( K | w )  = 1 ^ 0 , 4  |u>) (5.9)
i

P(yi | w) = N(fi i ,e )  (5.10)

where N  is the normal distribution with variance cr2, and mean pi, and pi is the predicted value 

of y i  given uj. Behrens et al propose two models of p: a partial volume model and the standard 

Gaussian model.

For the Gaussian model, the predicted measurement is pi = A(0) exp(—bfrJDrj), where 

bi is the b- value for measurement i .  There are eight parameters in uj for this model, six for the 

diffusion tensor, A(0 ) and cr.

The partial volume model contains one anisotropic compartment with diffusion only in one 

direction, and one isotropic Gaussian compartment. The predicted value of each measurement 

is

P i  = A(0)[(1 — v) exp (—bid) +  v exp(—bidr]HARJri) ] , (5.11)

where d is the diffusion coefficient, v is the fraction of the voxel occupied by the isotropic 

compartment, A  =  diag[100] and R  rotates A  to the orientation (#,</>). This model has six 

parameters: 6, </>, v, d, A(0), and cr. This model is forced to represent crossing fibres as uncer­

tainty in a single fibre orientation, while the tensor model can account for the data by varying 

the shape of the tensor as well as its orientation. The partial volume model therefore gives 

greater uncertainty in the fibre orientation in regions of crossing fibres, which is desirable for 

probabilistic tractography.

Friman and Westin [89] present a modified version of the Bayesian framework. In the 

diffusion tensor model, they constrain the tensor to be cylindrically symmetric and use a prior 

distribution for the tensor orientation that gives higher likelihood to low curvature of the stream­

lines. They also fix the eigenvalues of the tensor and the parameters A(0) and cr at their max­

imum likelihood estimate. This simplifies the calculation of P(u> \ Y )  and allows them to 

sample from the fibre-orientation PDF without using a MCMC method, however it is unclear 

what effect the restrictive priors have on the fibre-orientation PDF.

Multiple fibres

Hosey et al [90] present a two-fibre PDF that combines ideas from the diffusion tensor model 

and the partial volume model. For a single fibre:

P i  = A(0)[(1 -  u)exp(-bid)  +  i/exp(—rjD ir*) (5.12)
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where D  is a cylindrically-symmetric tensor. This extends naturally to two fibres:

Pi =  A(0)[(1 - v \ -  v2) exp (-bid)  -f e x p ( - r jD ir j)  +  v2 e x p ( - r jD 2r j ) ] , (5.13)

Hosey et al sample the parameters of the one-fibre model M \  and the two-fibre model M 2 by 

MCMC. In addition to using these samples for tractography, they calculate the likelihood of the 

data P ( Y  \ Mi)  and P ( Y  | M 2) for voxel classification. They use the two-fibre model in a 

voxel when the statistic P ( Y  \ M 2) / P ( Y  \ M\)  is above a threshold [8 8 ], otherwise they use 

the one-fibre model.

5.4 Tractography without streamlines

Other tractography algorithms, such as those based on fast marching methods, evolve a recon­

structed pathway from a seed point but do not define streamlines. Fast Marching Tractography 

[91] advances a front along the voxel boundaries in all directions. The front advances fastest 

where there is good coherence in the orientation of primary eigenvectors (as in white matter). 

Toumier et al [92] present a similar method that does not advance the front in whole voxel steps. 

The front expands from a seed point by defining “child points” spread in a cone about the local 

tensor ei. Each child point is assigned an “index of connectivity” from an orientation density 

function, which is a function of the local diffusion tensor’s orientation and anisotropy, such that 

directions close to e i of a highly anisotropic tensor have a high index of connectivity. Zhang 

et al [93] compute the evolution of a front by simulating the diffusion of water. The process 

begins with a unit concentration C  of water in a seed voxel, with zero concentration elsewhere. 

The front evolves according to the diffusion equation:

where D is the diffusion tensor. The front expands to contain all voxels with a nonzero concen­

tration of water at time t.

Other techniques treat tractography as an inverse problem, such as the “spaghetti energy” 

model of Poupon et al [94]. This method defines an energy related to curvature, in analogy 

to the thermal energy that must be transferred to spaghetti to make it flexible. Highly curved 

paths have the highest energy. The authors explain the method in terms of Bayes’ theorem: the 

optimal streamline path maximises P{D \ T ), where P(D)  is the prior probability of a set of 

directions D  that define a fibre path, and P(T)  is the prior probability of the tensor data T. By 

Bayes’ rule,

V • (DVC) (5.14)

P {T  | D)P{D)
(5.15)
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the spaghetti energy alters P ( D ) to favour low curvature paths, and p(T  \ D) is proportional 

to the diffusivity along the directions D, i.e. the method maximises the alignment of D  with 

directions of maximum diffusivity, subject to the regularization term that favours low curvature.

5.5 Bootstrap methods in tractography

The bootstrap method [17] is a technique to improve estimates of uncertainty from small data 

sets. The source data in each voxel is the set of N  x R  measurements A(c[i)r , which contains 

R  repeated measurements at each of N  wavenumbers. This data is sampled with replacement, 

where each sample consists of N  measurements, one at each q*, and the measurement at each 

wavenumber is chosen at random from one of the R  possibilities. Therefore, we first construct 

a vector r  of N  elements, with each element drawn at random from the uniform distribu­

tion U[1,R]. Then for each wavenumber q z, we select the measurement from acquisition r ( i) ,  

such that the complete bootstrap sample is [^(q i),.^ ), -4(q2)i-(2) • • . A(qN)T(N)]- The result of 

bootstrap resampling is a set of different combinations of the measurements at each wavenum­

ber. We can therefore assess the uncertainty in derived measures (such as the diffusion tensor) 

by calculating them for all of the bootstrap samples and applying standard statistical methods.

The bootstrap sample value at each wavenumber q* is drawn from a small set of actual 

measurements A ( q i ) i . . .  ^4(qi)i*. These measurements are themselves random samples from 

an underlying distribution of possible values. This is both a strength and potential weakness 

of the technique. It is a strength because the uncertainty is estimated directly from the data, 

without making any assumptions about how the data should be distributed. However, any in­

ferences derived from bootstrapping depend on how well the set of R  measurements represents 

the underlying distribution from which they are sampled, which depends strongly on the size 

of R. Bootstrapping must therefore never be thought of as a substitute for acquiring more data, 

since additional acquisitions would yield additional samples of yf(qz) from the true distribution, 

while bootstrap resampling draws from the restricted set of R  measurements.

Jones [95] uses bootstrapping to estimate the uncertainty in fibre-orientation estimates 

of DT-MRI in the brain. Jones uses two separate DW-MR images acquired from a volunteer 

in a single scanner session. The volunteer was immobilised, so the resulting images were in 

near perfect spatial alignment. Jones creates 1000 bootstrap samples of the data in each voxel. 

The signal along each diffusion-weighting gradient is chosen randomly from either the first 

or second DW-MR image. Jones then fits the diffusion tensor to the bootstrap samples, and 

calculates the dispersion of the fibre-orientation estimates. Jones visualises these results using 

a “cone of uncertainty” showing the 95% confidence interval on ei. The uncertainty is large
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in regions of fibre crossings, and fairly small in highly anisotropic white matter regions (the 

95% confidence interval is 3.5° in the body of the corpus callosum). This quantification of 

uncertainty is important for probabilistic tractography, however Jones’ results are specific to 

his imaging parameters. Also, Jones uses only two images to form the bootstrap samples, 

which tends to underestimate the uncertainty [96]. Behrens et al [13] use the same procedure 

to validate their MCMC tractography algorithm with the partial volume model. The cone of 

uncertainty is similar, with a mean difference over the whole brain of 15%. It is not clear 

whether the difference is due to the underestimation of uncertainty in the bootstrap, errors in 

the partial volume model, or both.

The bootstrap method has also been applied to tractography. Lazar and Alexander [97] 

study the concentration of fibre orientations derived from bootstrap resampling of eight re­

peated acquisitions. They conclude that the concentration of fibre orientations from bootstrap 

resampling is similar to that predicted by their noise-based calibration approach [76] in ho­

mogeneous white matter fibres such as the corpus callosum, and present images comparing 

probabilistic streamlines from bootstrap resampling and from the PDF model. They find that 

the bootstrap results are generally consistent with a model-based approach, except where there 

was evidence of branching in the fibre bundles. Jones and Pierpaoli [98] also use the bootstrap 

method to track probabilistic streamlines. The fibre orientations at each iteration of the tracking 

process come from bootstrap resampling of the data, rather than samples from a PDF. They con­

clude that the uncertainty in a fibre pathway depends not only on the local uncertainty, which 

determines the probability of the streamline following an incorrect path, but also on the archi­

tecture of tissue surrounding the fibre being tracked, because that determines what happens to 

streamlines that do follow the wrong path. Streamlines in fibre bundles that adjoin grey matter 

are less likely to produce false positive connections than streamlines in a bundle of fibres close 

to other white matter tracts, since streamlines that reach grey matter disperse quickly and are 

terminated by most tracking algorithms, whereas streamlines that jump into neighbouring tracts 

do not disperse and continue tracking.

5.5.1 Limitations of bootstrap methods

Bootstrap resampling systematically underestimates the true uncertainty in the data [99], and 

this underestimation is a function of the number of measurements. Increasing the number of 

repeats reduces the correlation between bootstrap samples and gives a better estimate of the 

true uncertainty. O’Gorman and Jones [96] investigate in synthetic data how the number of 

repeated measurements affect the estimated uncertainty in the principal direction of diffusion 

tensors in DT-MRI. They find that with eight repeats, the size of the 95% cone of uncertainty
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is underestimated by approximately 0.5 degrees. Their results suggest that the bootstrap with 

eight repeats is a good approximation of the uncertainty in diffusion tensor orientations. They 

also find that approximately 600 bootstrap samples are sufficient to estimate the uncertainty; 

increasing the number of bootstrap samples (in contrast to increasing the number of actual data 

measurements) does not improve the results.

5.6 Conclusions

We have reviewed streamline tractography and its use in a probabilistic framework. The PICo 

method uses the anisotropy of diffusion, calculated from the diffusion tensor or tensors in each 

voxel, to predict the parameters of a fibre-orientation PDF in each voxel given a specific MR 

acquisition scheme. The calibration step, which maps tensor anisotropy to uncertainty, can 

be performed once per imaging scheme, assuming that the SNR in white matter is constant, 

which makes PICo less computationally expensive than Bayesian methods, where the PDF is 

calculated directly for each subject.

PICo assumes that the parameters of the diffusion tensor or tensors in a voxel correlate 

strongly with the uncertainty, and that the models of the fibre-orientation PDF are a good ap­

proximation of the distribution of fibre-orientation estimates observed in the calibration pro­

cess. Bootstrap estimates of the uncertainty provide one way of testing these assumptions, but 

bootstrapping tends to underestimate the uncertainty, so we must also test the effects of boot­

strapping on the parameters of the fibre-orientation PDFs.

The fibre-orientation PDFs used by Parker and Alexander [56] assume cylindrically sym­

metric diffusion tensors, where the second and third eigenvalues of the diffusion tensor are 

equal. The PDF that models uncertainty in asymmetric tensors in [12] is calibrated heuristically, 

while the symmetric PDF is calibrated directly from experiments in synthetic data [56, 100]. 

In the following chapters, we propose new models of the fibre-orientation PDF that model 

uncertainty in asymmetric tensors, and we implement a calibration method to give the PDF 

parameters as a function of tensor shape. We then extend the models to deal with voxels con­

taining two distinct fibre populations. We compare the uncertainty predicted by the new models 

to that predicted by bootstrap resampling of a human brain data set.
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Statistical distributions for axial data

The models of the fibre-orientation PDF that we evaluate in this thesis make use of standard 

statistical distributions specifically designed for spherical data. Existing applications of these 

models include astronomy, for the analysis of the source orientation of cosmic rays [1 0 1 ] and 

geology, for analysis of paleomagnetic data such as the orientation of ferromagnetic domains 

within rocks [102]. This chapter introduces the distributions that we use as models for the 

fibre orientation PDF in later chapters. These distributions model axial data, so p(x) =  p(—x) 

for any vector x  on the unit sphere. They are therefore preferable to directional distributions, 

for which p(x) /  p(—x), for modelling the fibre-orientation PDF. The PDFs we present here 

generalise to higher dimensional spaces as detailed by Mardia and Jupp [6 8 ] but we concentrate 

on models for three-dimensional spheres.

6.1 Watson Distribution

The Watson distribution has the PDF

p(x) =  W (x ; /*,«) =  exp [«(/x • x )2] , (6 .1)

where the unit vector pi is the mean orientation, the scalar parameter At is the concentration about 

pi, and M  is the confluent hypergeometric function of the first kind [6 8 , p. 181] (see Appendix 

B). The Watson distribution is rotationally symmetric about pi, and is a good candidate model 

of the DT-MRI fibre-orientation estimate when the tensor has rotational symmetry.

For At > 0, the distribution is “bipolar” and has maxima at ±/z. As At increases, the 

distribution becomes more concentrated about pt. For At <  0, the distribution is a “girdle 

distribution” concentrated around the great circle orthogonal to pi. Concentration of the girdle 

distribution increases as At —> — oo.

For prolate, symmetric tensors, where Ai A2 «  A3 , the best estimate of the fibre 

orientation is e i, and the probability of an error (80', 8(f>') (in the notation of Parker et al [12])
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depends only on SO'. Repeated measurements of e i would produce two equal and opposite 

clusters of axes centred on the true axis of ei. A bipolar Watson distribution with /z =  e i gives 

a probability p(SO') oc exp [A c cos2 (<S#')], with no dependence on S<f>'.

When two identical bundles of fibres cross within a single voxel, the tensor becomes in­

creasingly oblate with increasing angular separation of the fibre bundles. When the bundles 

cross at right angles, the tensor is completely disk-shaped, with Ai «  A2 ^  A3. Further 

measurements of ei would be equally likely to lie anywhere in the plane of the fibre crossing, 

but they would be unlikely to be close to e3 , because hindrance of particle mobility is much 

greater along this axis. A girdle Watson distribution with /z =  e 3 is maximum in the plane 

perpendicular to e3, with p(x) oc exp[/c(e3 • x )2].

6.1.1 Maximum likelihood estimation of parameters

Mardia [6 8 ] derives the maximum likelihood estimates of the Watson parameters given a set of 

samples x i , . . . ,  x n. We shall use these methods later to fit the Watson distribution to sets of 

axes derived from simulated DW-MRI acquisitions.

The log-likelihood function is

The maximum likelihood estimate /z of the mean axis comes from the eigenvectors t i ,  t 2 , and 

t 3 of T. If ac > 0, then I is maximum when /z =  t i ,  where t i  is the eigenvector with the 

largest eigenvalue. If k  < 0, then Z(/z, ac; x i , . . .  , x n) is maximised when /z =  t 3 , where t 3 

corresponds to the smallest eigenvalue.

To find ac, we differentiate equation 6.2 with respect to ac and set =  0, giving

We solve equation 6.4 for k  numerically, using the Newton-Raphson method [67, p. 362]. 

To decide whether to fit a bipolar or girdle distribution we maximise Z(ti, x i , . . . ,  x n) and

Z(/z,/c;x i , . . . , x n) =  « E ? = 1 (x i ’/z) 2 -  n l o g M  (1 , §,«)

=  n{«|zTT / z - l o g M  ( ! , § , « )  },

where T  is the scatter matrix of n  samples x i , . . . ,  x n:

(6.2)

(6.3)
i= 1

D 3(k) = f iT T/z, (6.4)

with

(6.5)

smce

(6.6)
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l( t 3 , kg] x i , . . . ,  x n) and choose the mean axis and concentration parameter that produce the 

greatest I.

6.2 Bingham Distribution
The Bingham distribution provides a model for axial data with or without cylindrical symmetry. 

The PDF is
1 3

p(x) = M( ~ ,  A) exp (x A x) , (6.7)

where
I  k 3 0  0  ^

(/x3, / x2,/li1)t , (6-8)0  Av2 0

y 0 0 K\

and K1 <K<2 < K 3 < 0. The concentration parameters are defined only up to an additive con­

stant, since A  and A + cl are parameters of the same distribution for any real c. Conventionally, 

K3 is set to 0, so equation 6.7 simplifies to

1 3
p(x) =  M (~ , A ) - 1  exp ( k  1 ( ^ 1  • x ) 2 +  k 2 ( / x2 • x )2) . (6.9)

When /ei =  k2, the Bingham distribution is equivalent to a bipolar Watson distribution with 

mean axis /u3 [6 8 , p. 234]. When k 2 =  0, the Bingham distribution is the girdle Watson with 

polar axis pi1.

6.2.1 Maximum likelihood estimation of parameters

Mardia gives the following derivation for the parameters of a Bingham distribution. Let T  again 

be the scatter matrix of n  samples x i , . . . ,  x n, then the log-likelihood of the samples is

Z(A ,x i , . . .  , x n) =  n l o g T r ( A T ) - l o g M ( i  2 A) (6 . 10)

We express A  and T  in terms of their eigen systems, A  =  U K U T and T  =  VLV T, where 

U  and V  are orthogonal, K  =  diag(«i, k 2 , k 3 ) ,  and L =  diag(ii, t 2 , t 3 ) .  The maximum 

likelihood estimates of U  and K  are U  and K . The term Tr(A T) is maximised when U  =  V 

[6 8 , p. 201]. Mardia shows that the eigenvalues of T  are related to the concentration parameters

3 1 o g M ( l , j , K )  
ti — - . (o. 11)

U K i

We use the method presented by Kent [103] to estimate K . Kent presents methods to compute 

the right hand side of equation 6.11, which allows us to solve equation 6.11 for K  using the 

Newton-Raphson method. Kent states that his methods produce a relative error of no more than

0 .1% in the fitted parameters, though he does not give any numerical results to validate this 

claim.
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6.3 Angular Central Gaussian Distribution
The Angular Central Gaussian (ACG) distribution was introduced by Tyler [104] as an alterna­

tive model to the Bingham distribution. The ACG density function is

p (x ) = | A |-  ̂ ( x t A - 1 x ) - 2 , (6.12)

where A is a positive-definite, (3 x 3) matrix. The ACG distribution is the distribution of direc­

tions from a tri-variate Gaussian distribution N  with mean 0 and covariance matrix A: if y  are 

distributed according to N ( 0, A), then | y  | - 1  y  has ACG distribution with matrix parameter

A. This means that random samples from the ACG distribution may be generated without the

use of a rejection method, using the same routines that generate multivariate Gaussian vectors.

Another computational advantage of the ACG is that the normalising constant, | A  | 2 , is much 

easier to compute than the hypergeometric constant of the Bingham distribution.

The parameter matrix is defined up to a multiplicative constant, because A and cA describe 

the same distribution for any nonzero c.

6.3.1 Maximum likelihood estimation of parameters

Tyler shows that the maximum likelihood estimate A is a solution to the equation

q n
A =  — x jA _ 1Xi. (6.13)

n '
* = 1

Tyler presents a simple iterative algorithm to find A. Let Aq =  I, then:

n n - 1

^  XjxJ(xjA“ 1Xf ) ~1 

_i=l
^ ( x j A - 1^ ) - 1
_i=i

(6.14)

As with the Bingham distribution, the principal directions of A correspond to those of T.

6.4 Conclusions

We have introduced three distributions to use as models of the fibre-orientation PDF. The Wat­

son distribution, which has circular contours on the sphere, is analogous to the Gaussian PDF 

used by Parker et al [12], except that it can take the girdle form with negative k in order to 

model the distribution of e i from oblate tensors. The Bingham and ACG distribution both al­

low elliptical contours on the sphere, which we use to model cases where the distribution of 

fibre-orientation estimates is not circular about the mean, such as when the diffusion tensor 

does not have cylindrical symmetry. We present a method to calibrate these distributions for 

PICo tractography in Ch. 7, and in Ch. 8 , we use the distributions to model uncertainty in voxels 

where we resolve two fibre bundles.



Chapter 7

Models of the single-fibre PDF

The experiments in this chapter evaluate the Watson, Bingham and Angular Central Gaussian 

models of the fibre-orientation PDF in synthetic data and in the brain. We set out the framework 

for the comparison of the models and evaluate them in synthetic data. The experiments in 

synthetic data test which models most closely reproduce the uncertainty in fibre orientations 

caused by noise. The synthetic data is produced by emulating the scanner sequence used in 

the acquisition of the brain data. The experiments in brain data test which models most closely 

reproduce the total uncertainty in fibre orientations, recovered from bootstrap resampling of 

repeated images of the same subject.

7.1 Calibration of models

The PICo algorithm requires calibration for each imaging scheme. We assume in this calibration 

that the Gaussian model is a good approximation of the particle displacement density, p. Given 

a diffusion tensor, the acquisition scheme and an estimate of the variance of the noise, we 

synthesise a large set of noisy MR acquisitions from a Gaussian p with the specified tensor. We 

then fit the diffusion tensor to each acquisition, extract the fibre orientations, and estimate the 

concentration. To calibrate PICo we perform this procedure over a range of tensor shapes and 

construct a lookup table (LUT) that gives an estimate of the concentration in each voxel of a 

DT-MR image, given the diffusion tensor in each voxel.

The calibration is specific to the MR acquisition sequence and the type of diffusion tensor 

fitting routine used to extract the fibre orientations. Chapters 7 and 8  include experiments using 

synthetic data and a series of eight brain images acquired from a healthy volunteer. We therefore 

generate synthetic data by emulating the scanner sequence used in the acquisition of the brain 

data and the PICo PDFs are calibrated for the brain MR images, with tensors fitted using a 

nonlinear least-squares approach. The fitting routine optimises the parameters of the Cholesky 

decomposition of the diffusion tensor, as described in Sec. 3.4.1, with the Levenberg-Marquardt
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algorithm. We explain the details of the brain MR acquisition in Sec. 7.1.1.

7.1.1 The MR acquisition sequence

A series of eight complete acquisitions were made in a single visit to the scanner. We number 

these images 1 through 8 , and the “average brain” is the mean of all 8  images. The subject 

remained still between the acquisitions, so there is a good spatial correspondence between 

the eight acquisitions. The data was acquired on a Philips Achieva 3T scanner. The imag­

ing parameters are A =  0.0284 s, 5 = 13.52 x 10- 3  s (5 and A are defined in Fig. 3.2),

| g |=  0.062 x 10- 3  T m _1. These values translate to a “6-value” (b =\ q  |2 t) of 1200smm-2 .

The data was acquired on a 112 x 128 matrix, reconstructed to 128 x 128, resulting in an in­

plane voxel size of 1.84 x 10- 3  m. The slice thickness is 2.1 x 10- 3  m. To reduce scanner time, 

34 contiguous slices were acquired, which do not cover the entire brain. The acquisition used 

tT — 6  s and t e =  56 x 10- 3  s, with SENSE [105] parallel imaging (factor 2). A single image 

with no diffusion weighting, which we call the unweighted image, was acquired, followed by 

61 diffusion weighted images with b = 1200 s mm-2 . The 61 gradient directions are distributed 

isotropically on the hemisphere using an electrostatic minimisation algorithm [58].

We use the following procedure to estimate the signal to noise ratio (SNR) in white matter 

in the unweighted image. We define a region of interest (ROI) containing N  voxels in a white 

matter region. We calculate the mean unweighted signal M(A*(0)), averaged over all images 

i = 1 . . .  8 , for each voxel in the ROI. The estimated noise in image i is e(i) = A*(0) — 

M(A*(0)). We calculate the mean signal M(A*(0)), the mean noise M(e)  and the variance of 

the noise cr2(e) over the ROI:

The estimated SNR is then We estimate the SNR in the corpus callosum of the

subject to be 17.

7.1.2 Voxel classification

We segment the brain from the background within the image volume using the Brain Extraction 

Tool [106]. Within the brain, we fit the diffusion tensor in voxels with Gaussian diffusion (us­

ing the same nonlinear fitting routine we use for the calibration of PICo), and a two-Gaussian

i = 1 v = l

(7.1)

(7.2)

(7.3)
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compartment model in voxels with non-Gaussian diffusion. The methods for fitting the two- 

Gaussian compartment model to the data are explained in Sec. 8.4. We classify the diffusion in 

each voxel as Gaussian or non-Gaussian with the spherical harmonic algorithm of Alexander et 

al [54]. Each voxel is classified as Gaussian (order 0 or 2 spherical harmonic) or non-Gaussian 

(order 4 spherical harmonic). We average the measurements from the eight acquisitions to en­

hance signal to noise, and run the spherical harmonic classification algorithm on the average 

measurements. We choose the threshold for the F-test interactively using a graphical tool in­

cluded in the Camino package [1]. The voxel classification is the same in all experiments, so 

that the fibre orientation estimates either come from a single-fibre population, or a two-fibre 

population. We use this voxel classification for the experiments in the brain in chapters 7 and 

8 . In synthetic data, we use the ground truth voxel classification.

7.1.3 Data synthesis

We generate synthetic data by emulating the scanner sequence used to acquire the brain data. 

For each wavenumber, q, the ideal signal A*(q) is the sample of the Fourier transform of a test 

function p  at q. The test function is either Gaussian (Eq. 3.3) or a two-Gaussian compartment 

model (3.9). The trace of the diffusion tensors in each test function is 2.1 x 10~9m 2 s-1 , which 

is the typical trace in brain white matter. The trace in white matter is approximately constant in 

healthy subjects [6 ].

We add complex Gaussian noise to the ideal signal and take the modulus:

A(q) = | Af (q) +  c | , (7.4)

where the real and imaginary components of c are taken from the normal distribution N ( 0, cr), 

and <t is calculated to give a signal to noise ratio of 17 in the unweighted images, which is the 

noise level we estimate in the brain data.

7.1.4 LUT generation procedure

We construct a LUT for each model that returns the concentration parameters of the PDF given 

the shape of the diffusion tensor. Given the tensor eigenvalues Ai > A2 > A3, we use two 

parameters to index the LUT: x  =  A1A3 1 and y =  A2A3 1. The calibration algorithm generates 

synthetic data and fits the PDF parameters:

1 . for x = 1 ; x  < £max; x+ = 8

(a) for y = 1 ; y < x\ y+ = 8

i. Calculate tensor D

ii. For each trial i = 1 : T
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A. Synthesise noisy data from Gaussian p with tensor D: add noise to ideal 

signal j4t(q) =  exp(—fqTDq) (Sec. 7.1.3).

B. Fit tensor to noisy data and extract fibre-orientation estimate =  ei.

(b) Fit the model concentration parameters to x» . . .  x t -

(c) Record the concentration parameters in the LUT.

The computational expense of calibration scales quadratically with the extent of the LUT, 

defined by x max — rrmiR, and the resolution, defined by S. The computation scales linearly with 

the number of trials, T, used to calculate each set of concentration parameters. In the remainder 

of this section we examine the range of tensor shapes observed in the brain data and perform 

some experiments to determine the range, resolution, and number of trials that we require to 

calibrate PICo for this imaging scheme.

7.1.5 LUT range

The useful extent of the LUT is determined by the range of diffusion anisotropy in the brain. 

Fig. 7.1 shows a histogram of x  in one of the brain volumes. We compute LUTs with x m[n = 1 

and xmax =  15. With x =  15 and y =  1, the tensors have fractional anisotropy of 0.93.
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Figure 7.1: Histogram of diffusion tensors in the brain data, binned according to A1/A3 .

The LUT range is also dependent upon the noise level in the image, since the noise condi­

tions limit the maximum diffusion coefficient that may be reliably measured. As the diffusion 

coefficient along a particular direction increases, the signal (according to Eq. 3.4) decreases 

exponentially, and once it has decreased sufficiently for the measured signal to be dominated by
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noise, the diffusion coefficient will be systematically underestimated. This underestimation is 

more pronounced along fibre bundles, where the diffusion coefficient is high, than across them, 

where the diffusion coefficient is low, causing anisotropy to be underestimated (assuming that 

the trace remains constant). Jones and Basser [107] study this effect and conclude that it is 

unlikely to be significant at the b-value of 1 2 0 0  s mm - 2  that is used in the brain data in this 

thesis.

7.1.6 Experiment (i): number of trials required at each LUT entry

Experiment (i) tests how many fibre-orientation estimates are required for each entry in the LUT 

to obtain acceptable reproducibility of the concentration parameters. As a baseline we construct 

a LUT for the Bingham PDF with T  =  10000 trials per entry, :rm ax = 10, ymax = 10, S = 0.2. 

We compare the baseline values to those produced from LUTs with 500,1000,2000 and 5000 

trials. We also produce another LUT with 10000 trials, which shows the reproducibility of the 

baseline. Table 7.1 shows the mean absolute and percentage error in the parameters and 

over all entries in the LUT.

Trials mean percentage error mean absolute error

«1 « 2 «i « 2

500 5.98 25.54 47.18 13.94

1 0 0 0 3.61 20.72 30.50 9.73

2 0 0 0 2.79 1 2 .2 0 23.32 7.26

5000 1.95 6.48 16.30 5.40

1 0 0 0 0 1.65 5.53 13.71 4.33

Table 7.1: Errors in the Bingham parameters with increasing numbers of trials in the calibration.

The parameter « 2  has the largest percentage error but the smallest absolute error. In oblate 

tensors | « 2  | is much smaller than | «i |, and in the event that the diffusion tensor is completely 

oblate, with Ai =  A2 A3, «2 is close to zero. Fig. 7.2 shows the percentage error in «2 with 

5000 trials at each entry. The percentage error is above 10% only when x = y. We conclude 

from this experiment that 5000 trials are sufficient.

7.1.7 Experiment (ii): LUT resolution

We use bilinear interpolation to estimate the concentration from the LUT given any x  and y. 

Experiment (ii) examines the error introduced by interpolation at various values of the step size 

tf. We construct a Bingham LUT where 5 = 0.05, x max = 10, ymax = 10, T  = 5000, and



7.1. Calibration of models 70

i

Figure 7.2: Percentage error in « 2  in experiment (i), with 5000 trials per LUT entry.

sub-sample the table in both dimensions at intervals of 0.1,0.2,0.5, and 1.0. Table 7.2 shows 

the mean error (over all entries in the subsampled LUT) between the actual LUT values and the 

predicted values from interpolation of the subsampled tables.

8 mean percentage error mean absolute error

«2 Ki « 2

0.1 1.56 4.57 12.73 3.71

0.2 2.04 11.39 16.33 4.67

0.5 2.47 49.93 18.37 6.424

1.0 3.18 203.2 20.31 14.50

2.0 4.50 808.7 23.95 45.47

Table 7.2: Errors in the Bingham parameters in an interpolated LUT with increasing step size.

The mean errors in the LUT with 8 =  0.1 are smaller than the errors between successive 

runs of the LUT generation algorithm with T  =  10000 in experiment (i). Fig. 7.3 shows the 

percentage error in «i with a step size of 0.1. Most values are correct within 5% and the error 

exceeds 10% only when x =  y. We conclude that a step size of 0.1 and T  =  5000 trials are 

reasonable values for the LUT generation. Using these values, the calibration process takes 

approximately eight hours on a standard 2.4 GHz PC workstation.
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Figure 7.3: Percentage error in in experiment (ii), with J =  0.1.

7.1.8 Experim ent (iii): Effect of noisy LUT indices

The LUT gives concentration parameters from a Gaussian test function given the shape param­

eters of the diffusion tensor x  and y. In practice, we have only a noisy estimate of x  and y. 

This causes an error in the concentration assigned to each PDF, even if the LUT has zero errors. 

Experiment (iii) shows the effect of this error in synthetic data.

We synthesise 1000 sets of noisy measurements from a Gaussian test function with a cylin- 

drically symmetric diffusion tensor D /  with anisotropy /  =  0.1. For each set of measurements 

we fit the noisy diffusion tensor D /j, 1 < i  <  1000, and calculate the parameters x and y. We 

then obtain the Bingham parameters and « 2  from the LUT for each noisy tensor D /*, where 

the LUT has resolution 8 =  0.1 and sample size T  =  5000. We repeat this procedure over a 

range of anisotropy up to /  =  0.9.

Fig. 7.4 plots against / .  The blue circles are predicted for the tensor D f  from 

each test function. The red squares and error bars show the mean and standard deviation of 

returned from the LUT when the LUT indices x  and y  are calculated from the noisy D T h e r e  

is little systematic error, but the noise introduces a random error in the concentration. Fig. 7.5 

plots the standard deviation of «i and « 2  from D/* as a percentage of the value predicted by the 

LUT for the corresponding T>f. At low anisotropy, the percentage error is high, but it levels off 

to around 20% at moderate to high anisotropy. This source of error has obvious implications for 

PICo tractography, as we shall examine in experiments (v) and (xi). We conclude that increasing 

the PICo calibration time by using 8 < 0.1 or T  >  5000 would not improve tractography for this
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imaging scheme, because the errors in the LUT are already small compared to those introduced 

by the error in the tensor eigenvalues that we expect to encounter in real data.
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Figure 7.4: Bingham k,\ against /  in experiment (iii). The blue circles are k \ predicted for the 

tensor D /  from each test function. The red squares and error bars show the mean and standard 

deviation of ki returned from the LUT when the LUT indices x  and y are calculated from the 

noisy D/*.

7.2 The PICo tracking algorithm

We define the algorithm here as it is used in the tractography experiments. The tracking method

is similar to FACT, because streamlines may enter and exit voxels at any point, and follow the

voxel fibre orientation without interpolation. In a similar way to Behrens et al [13], we apply 

no anisotropy threshold, and a curvature threshold that terminates streamlines only if they curve 

by more than 80 degrees over the length of the longest side of a voxel.

1. Initialise the fibre orientation PDF in each voxel v.

2 . connection probability in each voxel is pv = 0 .

3. for all iterations i = 1 : N  and v  in [—1,1], do

(a) Start a new streamline at the centre of the seed voxel.

(b) Generate a new sample x„ from the fibre orientation PDF in voxel v.

(c) X v = VXv
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Figure 7.5: Standard deviation of (blue circles) and (red squares) estimated from noisy 

data in experiment (iii), as a percentage of the actual k \ and « 2  predicted for the test function.

(d) while (the curvature over the voxel dimension is less than 80 degrees; the streamline 

remains inside the brain volume; and the streamline does not self-intersect):

i. Move into the closest voxel along x v.

ii. Record current position in streamline.

iii. Generate a new sample x v from the fibre orientation PDF in v.

iv.

(e) for all voxels v on streamline path

i. Connection probability pv = pv +  jj .

4. Output PICo map, which is a 3D image of identical dimensions to the data, where the 

intensity in each voxel v is pv.

7.2.1 B ootstrap tracking

The algorithm for producing bootstrap PICo maps is identical, except that there are no models 

of the fibre orientation PDF. At each iteration, the fibre orientations in each voxel are estimated 

by fitting the diffusion tensor or two-tensor compartment model to a bootstrap sample (see Sec. 

5.5) of the diffusion-weighted measurement in the voxel.

1. Initialise the fibre orientation PDF in each voxel v.

§ Q

0.4 0.5 0.6
Fractional anisotropy

2 . connection probability in each voxel is pv = 0 .
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3. for all iterations i = 1 : N  and v  in [—1 ,1].

(a) Start a new streamline at the centre of the seed voxel.

(b) Generate random vector r  from uniform distribution U[ 1,8].

(c) Create bootstrap sample of data [A(qi)1.(1), A (q2 )T-(2) • • • ^ (q 6 i)-r(6 i)]-

(d) Fit diffusion tensor to bootstrap sample, and calculate ei.

(e) e i = t?ei-

(f) while (the curvature over the voxel dimension is less than 80 degrees; the streamline 

remains inside the brain volume; and the streamline does not self-intersect):

i. Move into the closest voxel along ei.

ii. Record current position in streamline.

iii. Generate random vector r .

iv. Create bootstrap sample of data in voxel v.

v. Fit diffusion tensor and calculate ei.

(g) for all voxels v on streamline path

i. Connection probability pv = pv +

4. Output PICo map, which is a 3D image of identical dimensions to the data, where the 

intensity in each voxel v is pv.

7.3 PICo tractography in synthetic data

The experiments in this section test how well the PDFs model the uncertainty caused by noise in 

the principal direction of a Gaussian test function. The experiments use the models to calculate 

PICo probability maps in the synthetic fibre pathway shown in Fig. 7.6. The image dimensions 

are 80 x 32 x 33 and the voxel dimensions are 2 x 2 x 2 mm3. We seed streamlines at a single 

point in the image, and they follow a helical pathway. A streamline seeded in the noise-free 

image traces out a path of length 145 mm, with a radius of curvature of 46 mm. We carry out 

each experiment in this section in eight tori, with the fractional anisotropy /  of each torus set 

to a different value between 0.2 and 0.9.

We construct a gold standard synthetic PICo map by tracking streamlines in 5000 identical 

images. In each image, we add noise to the measurements as described in Sec. 7.1.3, fit the 

tensors, and then track a streamline from the seed point. The collection of streamlines define 

a PICo connection probability map, except that the fibre orientations at each iteration are esti­

mated directly from the noisy data and not sampled from a PDF. We measure sum of squared
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Figure 7.6: Path of a streamline in the synthetic fibre pathway, in the absence of noise. The 

diffusion tensors in voxels intersected by the streamline are also shown. The streamline is 

shown from an axial (top) and coronal perspective (bottom).

differences (SSD) S  between PICo maps generated using our models (also with N  = 5000 it­

erations) and the gold standard. The best model of the fibre-orientation PDF will produce maps 

with the lowest SSD to the gold standard.

7.3.1 Experiment (iv): PICo maps in noise free data

In experiment (iv), we compute 50 PICo maps with each PDF in the noise-free data, where the 

orientation and shape of each tensor is not affected by noise. This experiment tests the ability 

of the PICo PDFs to reproduce the uncertainty in fibre orientations, when the tensor shape and 

orientation is known.

Figure 7.7(a) shows the sum of squared differences to the gold standard in experiment 

(iv). The Watson and Bingham models both have smaller errors than the ACG model. Figure 

7.7(b) shows the normalised cross correlation between the Watson and Bingham and the gold 

standard. The correlation is greater than 0.99 over the range of anisotropy, but decreases with 

increasing anisotropy. We conclude from this result that the Watson and Bingham distributions 

are accurate models of the actual PDF, though they fit the data less well at high anisotropy. We 

also conclude that the PICo process is stable after 5000 iterations. The ACG model consistently 

overestimates the uncertainty. Fig. 7.8 shows an example PICo map from the gold standard, the 

Watson model and the ACG model. The fibre orientations sampled from the ACG PDF are more 

dispersed than those from the Watson PDF. The pathway has been rotated to ease visualisation,
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:

Figure 7.6: Path of a streamline in the synthetic fibre pathway, in the absence of noise. The 

diffusion tensors in voxels intersected by the streamline are also shown. The streamline is 

shown from an axial (top) and coronal perspective (bottom).

differences (SSD) S  between PICo maps generated using our models (also with N  = 5000 it­

erations) and the gold standard. The best model of the fibre-orientation PDF will produce maps 

with the lowest SSD to the gold standard.

7.3.1 Experim ent (iv): PICo m aps in noise free data

In experiment (iv), we compute 50 PICo maps with each PDF in the noise-free data, where the 

orientation and shape of each tensor is not affected by noise. This experiment tests the ability 

of the PICo PDFs to reproduce the uncertainty in fibre orientations, when the tensor shape and 

orientation is known.

Figure 7.7(a) shows the sum of squared differences to the gold standard in experiment 

(iv). The Watson and Bingham models both have smaller errors than the ACG model. Figure 

7.7(b) shows the normalised cross correlation between the Watson and Bingham and the gold 

standard. The correlation is greater than 0.99 over the range of anisotropy, but decreases with 

increasing anisotropy. We conclude from this result that the Watson and Bingham distributions 

are accurate models of the actual PDF, though they fit the data less well at high anisotropy. We 

also conclude that the PICo process is stable after 5000 iterations. The ACG model consistently 

overestimates the uncertainty. Fig. 7.8 shows an example PICo map from the gold standard, the 

Watson model and the ACG model. The fibre orientations sampled from the ACG PDF are more 

dispersed than those from the Watson PDF. The pathway has been rotated to ease visualisation,
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so that the true path of a streamline lies in the axial plane.

We conclude from experiment (iv) that the Bingham and Watson PDFs are better models 

of the uncertainty caused by noise than the ACG PDF, when the anisotropy of the test function 

is known, since these models have the lowest SSD to the gold standard.

7.3.2 Experiment (v): Noisy estimates of the PDF concentration

Experiment (iv) tests the performance of PICo under ideal conditions. In practice PICo uses 

noisy estimates of the diffusion tensor parameters. The ratio of the eigenvalues x  and y are sub­

ject to a positive bias [87] as well as random error, which introduces a bias in the concentration 

parameters we sample from the LUT: in general we will overestimate the concentration.

Experiment (v) tests the sensitivity of each PDF model to the error in tensor shape caused 

by noise. We again compute 50 PICo maps with each PDF. For each PICo map, we add noise to 

the ideal image and fit the diffusion tensors. The orientation of the PDFs are determined from 

the noise-free image, as in experiment (iv), but the tensor eigenvalues are determined from the 

noisy images. Fig. 7.9 shows the SSD to the gold standard. The SSD is similar to the noise-free 

result (Fig. 7.8), except at /  =  0.2 and /  =  0.9. At /  =  0.2 the SSD of the Watson model 

is slightly higher, which suggests that it is more sensitive to the error in the LUT index than 

the Bingham model. At /  =  0.9, all three models have larger errors. At /  =  0.9 the fibre 

orientations in the gold standard are highly concentrated, and a small error in the concentration 

produces relatively large changes in the connection probabilities.

When we use noisy PDF concentration for PICo in experiment (v) and plot the mean SSD, 

S,  over the 50 PICo maps for each PDF, we can only detect differences between the PDF perfor­

mances if the differences are much larger than the variance of each PDF’s performance across 

different images. This is the case for the ACG PDF, which has higher SSD than the other PDFs 

in all 50 PICo maps. However, the differences between the Watson and Bingham PDFs are less 

clear, because they are small compared to the differences in S  over the different images. We can 

emphasise differences in the performance of each PDF by measuring the relative performance 

of two PDFs A  and B  in the same image. We measure d = S ( I n,A) — S ( In , B)  for each image 

I n, 1 <  n  < 50. We detect a significant difference between A  and B  by computing the mean 

d(A, B ) and standard error crj(A, B ) ‘, there is a significant difference at the 95% confidence 

level if | J(A, B) \ > 1.96ad-(A, B).

Fig. 7.10 shows d{Watson, Bingham) for experiment (v). When this statistic is greater 

than zero, the SSD for the Bingham model is on average lower than for the Watson model, over 

the 50 PICo maps. The Bingham model has lower SSD at f  = 0.2,0.8,0.9 than the Watson 

model, which is interesting because the tensors in the test function are axisymmetric and hence
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(b) Correlation to the gold standard for axisymmetric tensors in experiment (iv).

Figure 7.7: Sum of squared differences to the gold standard in experiment (iv). Data points are 

the mean SSD calculated from 50 different runs of the PICo algorithm. Error bars show the 

standard deviation. Markers are blue circles for the Watson model, red squares for the Bingham 

model, and black crosses for the ACG model.
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Figure 7.8: PICo probability maps in the synthetic image, with /  =  0.5. Streamlines in the 

gold standard (top left) and using the Watson model (top right) are less dispersed than in the 

ACG map (lower left).

we expect that the true PDF has circular contours. However, since the noise introduces an error 

in the eigenvalues of the tensor, we have only noisy estimates x' and y' of the true shape of the 

tensor. The PDF concentrations returned from the LUT come from calibration with x' and y' 

rather than the true values x  and y. The error in y' has a different effect on each model. The 

Bingham PDFs in the LUT have elliptical contours, since noise causes y' to be greater than 1. 

The Watson PDF remains circular but becomes less concentrated as y increases, because it is 

the best fit of a circular PDF to an elliptical cluster of axes.

7.3.3 E xperim ent (vi): Non-axisym m etric tensors

In experiment (vi), we repeat experiment (v) with test functions whose tensors do not have 

cylindrical symmetry. We hypothesise that the Bingham model has significantly lower SSD to 

the gold standard than the Watson model. We test the PDFs with A2/A3 =  Ai/(2A3), Ai =  

3A3,5A3,7A3,9A3, with T r(D ) the same as the symmetric tensors. The principal direction of 

the tensors is unchanged. Fig. 7.11 shows the SSD for each PDF. The ACG model still has the 

largest SSD, even though the ACG PDF can have elliptical contours. The difference between 

the Watson and Bingham PDFs are less obvious, so we compute the statistic d as we did for 

experiment (v). Fig. 7.12 shows the results. The Bingham PDF is significantly better than the 

Watson PDF at the 95% confidence level, and the difference is larger at high anisotropy.



7.3. PICo tractography in synthetic data 79

Figure 7.9: Sum of squared differences to the gold standard in experiment (v) with the PDF 

orientation fixed at the correct value. Data points are the mean SSD with the gold standard. 

Error bars show the standard deviation. Markers are blue circles for the Watson PDF, red squares 

for the Bingham PDF, and black crosses for the ACG PDF.
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Figure 7.10: The statistic d(Watson, Bingham) in experiment (v). The error bars are the 95% 

confidence region for the estimate of d.
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Figure 7.11: Sum of squared differences to the gold standard in experiment (vi) with the PDF 

orientation fixed at the correct value. Data points are the mean SSD with the gold standard. 

Error bars show the standard deviation. Markers are blue circles for the Watson PDF, red squares 

for the Bingham PDF, and black crosses for the ACG PDF.
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Figure 7.12: The statistic d(Watson, Bingham) in experiment (vi). The error bars are the 95%

confidence region for the estimate of d. 
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7.4 Experiment (vii): bootstrap simulation of one-fibre measure­

ments

Bootstrap resampling of the brain data gives us an estimate of the concentration of fibre orien­

tations in the brain. In Sec. 7.5 we compare the concentration predicted from the LUTs to that 

fitted to the bootstrap fibre orientations. The bootstrap is an imperfect gold standard because 

it tends to underestimate uncertainty. In this section we perform similar experiments to those 

of O’Gorman and Jones [96], to quantify how bootstrapping affects the estimate of the fibre 

orientation given the imaging scheme we use to acquire the brain data (see Sec. 7.1.1).

In experiment (vii), we show how the number of repeated acquisitions influences the fibre- 

orientation PDF parameters estimated from bootstrap resampling of the data. For each set of 

r  repeats we synthesise r  independent sets of noisy data from a Gaussian test function. We 

extract 1000 bootstrap resamples of the data, extract the fibre orientations and fit the Watson 

model. We repeat the experiment 100 times with the diffusion tensor of the test function ran­

domly reoriented after each iteration, giving us 1 0 0  estimates of k for each test function and r. 

We compare the bootstrap results to those obtained without bootstrapping, i.e. by using 1000 

independent sets of data, and extracting the fibre orientation directly.

Fig. 7.13 shows the mean and standard deviation of k for r = 4,8 and 20. Fig. 7.14 

shows the “angle bias”, the angle between the mean of the bootstrap fibre orientations and the 

actual orientation of the test function. Bootstrap estimates of the fibre orientation with eight 

repeats underestimate the uncertainty in the fibre orientation, because the mean k is higher 

from bootstrapping than from Monte Carlo simulation. The mean k, is only slightly higher 

with eight bootstrap repeats than with Monte Carlo simulation, but the variance of k is much 

larger over the 1 0 0  orientations of the test function, which means that bootstrapping exacerbates 

dependence of the concentration on the orientation of the test function. This effect will tend to 

reduce the correlation between the bootstrap concentration and concentration predicted by the 

LUT in each voxel. There is also significant angle bias in the bootstrap data, especially at 

low anisotropy. While this does not prevent us from comparing PICo connection probabilities 

to the bootstrap connection probabilities in Sec. 7.6, we expect some differences between the 

bootstrap and PICo results, even if PICo accurately models the uncertainty caused by noise and 

noise is the dominant source of uncertainty in the images.

7.5 Analysis in brain data

In this section we examine the PICo concentration parameters fitted to the bootstrap brain data. 

For every voxel in the brain, we generate 1000 bootstrap samples of the data, extract 1000 fibre-
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Figure 7.13: Bootstrap estimation of diffusion tensor orientation in synthetic data. Bootstrap re­

sampling underestimates the true uncertainty (red squares). The bootstrap results are shown for 

four repeats (blue circles), eight repeats (black crosses), and twenty repeats (magenta triangles).
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Figure 7.14: Bootstrap estimation of diffusion tensor orientation in synthetic data. The angle 

bias is consistently larger in bootstrap samples than in Monte-Carlo simulation (red squares). 

The bootstrap results are shown for four repeats (blue circles), eight repeats (black crosses), and 

twenty repeats (magenta triangles).
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orientation estimates and fit the parameters of the Watson and Bingham PDF. We compare these 

parameters to those predicted from the LUTs in the average brain image.

7.5.1 Experiment (viii): Correlation between bootstrap concentration and LUT 

concentration

Experiment (viii) compares the bootstrap concentration to the LUT predictions. We calculate 

the LUT indices A1/A3 and A2 /A3 in the average brain and extract the PDF parameters from 

the LUT.

We exclude grey matter and CSF voxels from the analysis by applying an anisotropy 

threshold, we consider only voxels with /  > 0.1 in the average brain image. We also exclude 

voxels classified as non-Gaussian by the procedure in Sec. 7.1.2.

Fig. 7.15 shows a plot of the Watson concentration parameter k against / .  The lines show 

the mean k for cylindrically symmetric tensors, which were calculated in experiment (vii). In 

the average brain image, many of the tensors are asymmetric, and consequently have lower 

k . Some tensors are sufficiently oblate that they are better modelled by the girdle Watson 

distribution, with k <  0. At higher anisotropy, the k, are more tightly clustered around the 

expected value for cylindrically-symmetric diffusion. The general trend of increasing k with 

increasing anisotropy is observed in the bootstrap data, however the variance of k at any given 

anisotropy is substantial, and increases at high anisotropy. Fig. 7.15(b) shows the difference 

between the predicted k, and the bootstrap k for each voxel. The value of tz cannot be accurately 

predicted from the anisotropy of the tensor.

Fig. 7.16(a) shows the correlation between the Bingham concentration from the bootstrap 

data and the LUT. The LUT tends to underestimate the concentration. Also, a few voxels have 

high concentration according to the LUT, but zero concentration in the bootstrap image. These 

voxels are background voxels that were not excluded by the segmentation described in Sec.

7.1.2.

Part of the disagreement between the bootstrap and lookup table predictions comes from 

the inherent tendency of bootstrap resampling to underestimate the variance in the fibre orien­

tations, as we saw in experiment (vii). This causes the bootstrap concentration to be artificially 

high, with an increased dependence on the orientation of the fibres relative to the gradient di­

rections.

Another possible cause of disagreement between the LUT and the bootstrap is the error in 

the LUT indices x  and y. If the diffusion has cylindrical symmetry, then y = 1 and tz\ =  k2,

i.e. the Bingham PDF has circular contours. Noise causes an increase in y, which could cause 

the Bingham concentration | +  ac2 | to be underestimated. Fig. 7.16(b) shows the differ­
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ence between «2 /« i  in the bootstrap and LUT concentration. The mean value of K^j «i in the 

LUT concentration is 0.36, in the bootstrap data it is 0.37. This suggests that cylindrical asym­

metry caused by noise is not a major cause of the differences between the LUT and bootstrap 

concentration.

Another limitation of the PICo calibration is that it uses a Gaussian test function, while 

the value of x  and y from the brain data only represents the best fit of a Gaussian model to 

the data, which may be poorly approximated by the Gaussian model. We have excluded non- 

Gaussian voxels that we detect with the spherical harmonic algorithm, but some voxels with 

non-Gaussian diffusion undoubtedly remain. It is possible that these non-Gaussian effects break 

the relationship between anisotropy and concentration that we expect from the LUTs.

7.6 Tractography in brain data

In this section we compare PICo probability maps generated from bootstrap data to those pro­

duced by using the PDFs and LUTs. The tractography algorithm for the bootstrap PICo maps 

is described in Sec. 7.2.1. We define a region of interest (ROI) across the corpus callosum of 

the subject. Fig. 7.17 shows a sagittal slice of the fractional anisotropy image with the ROI 

highlighted.

7.6.1 Experiment (ix): Stability of PICo connection probabilities

The bootstrap tracking process is much more computationally expensive than the PDF sam­

pling. Experiment (ix) tests the stability of connection probabilities in brain image 1, to find the 

minimum number of iterations that give acceptable reproducibility of the results. We compute 

four PICo maps for each seed in the ROI using the Bingham model, one with 1000 iterations, 

one with 2000 iterations and two with 5000 iterations. Fig. 7.18 shows the SSD between each 

pair of images. Increasing the iterations above 1000 does reduce the errors, but the SSD at 1000 

iterations is below 0.1 for all seed points in the ROI (mean 0.04) so we use 1000 iterations to 

generate the bootstrap PICo maps with the limitation that we cannot detect differences between 

models that are less than the difference between subsequent PICo runs in the same image.

7.6.2 Experiment (x): PICo calibrated directly from bootstrap fibre orientations

Experiment (x), tests how well each PDF models the distribution of fibre orientations from the 

bootstrap data, given the actual bootstrap fibre orientations computed in experiment (viii). We 

compute connection probability maps from every voxel in the ROI, first using the bootstrap 

data, and then using the Watson, Bingham and ACG PDF fitted to a sample of bootstrap fibre 

orientations in experiment (viii).

This experiment tests the ability of each PDF to model the distribution of fibre orientations
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extracted from the bootstrap data when the PDF orientation and concentration are known. Large 

differences between the bootstrap tractography and PICo results suggest intrinsic deficiencies 

in the PDFs as models of the fibre-orientation PDF. We conclude from experiment (iv) that the 

Watson and Bingham PDFs are good models of the uncertainty caused by image noise, when 

the test function that produces the data is Gaussian. Experiment (x) tests whether the PDFs 

accurately model bootstrap fibre orientations from the brain, when the models are calibrated 

directly from the bootstrap fibre orientations. Fig 7.19 shows the SSD between the bootstrap 

PICo maps and the models fitted to the bootstrap fibre orientations in experiment (viii). We 

conclude from this that the Bingham PDF is the best model of the bootstrap uncertainty, since it 

consistently has the lowest SSD of all models: the mean and standard deviation of the SSD over 

all seed points is 0.07 ±  0.03, the mean and standard deviation of the SSD between repeated 

runs of the PICo algorithm in experiment (ix) is 0.04 ±  0.02. At the 95% confidence level, 

d(Watson — Bingham) =  0.6 ±  0.17. Fig. 7.20 shows the difference between the Watson 

and Bingham PICo maps for the seed point where the Watson model has the highest SSD to 

the bootstrap connection probability map. The largest difference in connection probability is

0.09. For the other seed points, the differences are typically smaller, in one seed point where 

d(Watson — Bingham) =  0.6, the mean difference between the non-zero Bingham and Watson 

connection probabilities is 0.006.

7.6.3 Experiment (xi): PICo calibrated by tensor shape

Experiment (xi) compares the bootstrap results to the PICo maps, with PDF concentration de­

fined from LUTs. This experiment is similar to experiment (v). The orientation of the PDFs 

is the same as in experiment (x), but the concentration is determined from the LUTs, with the 

estimated tensor eigenvalues subject to the effects of noise.

Fig. 7.21 shows the SSD when the tensor eigenvalues are estimated in the average brain. 

The trends are similar to those in Fig. 7.22, the mean and standard deviation of the SSD for the 

Bingham model is 0.57 ±  0.4.

Fig. 7.22 shows the SSD when the PDF concentration is determined from the LUTs, with 

the tensor eigenvalues estimated from brain image 1. The pattern is similar to the result of 

experiment (x), and the Bingham PDF remains the best model. The mean and standard deviation 

of the SSD for the Bingham model is 1.00 ±  0.95, an order of magnitude larger than the SSD 

when the Bingham PDF is calibrated directly from the bootstrap data. The Watson SSD with 

the tensor eigenvalues taken from brain image 1 is 2.97 ±  2.2.

Fig. 7.23(a) shows the difference in connection probabilities between the bootstrap track­

ing and PICo using the Bingham PDF with concentration calculated from the bootstrap fibre
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orientations. Fig. 7.23(b) shows the differences between the bootstrap tracking and PICo using 

the Bingham PDF with concentration predicted from the LUT, where the indices x  and y of 

the LUT were calculated from the tensors in brain image 1. The difference in connection prob­

abilities is much larger in the latter case. In both images, the differences become larger with 

increasing distance from the seed point in the centre of the corpus callosum, but this does not 

necessarily mean that the differences in concentration are also larger further along the stream­

line path, because the differences in streamline trajectories at the scale of the voxel accumulate 

as the streamlines disperse from the seed point.

Since the increase in SNR resulting from averaging significantly lowers the SSD, we con­

clude that the error in the tensor eigenvalues is a significant source of error in the PDF concen­

tration for PICo in the brain.

7.7 Conclusions
We have evaluated the Watson, Bingham and ACG models of the fibre-orientation PDF. The 

experiments in synthetic data suggest that the Watson and Bingham PDFs are significantly bet­

ter models of the uncertainty due to noise than than the ACG PDF. The bootstrap experiments 

show some correlation between the tensor anisotropy and the concentration. There is still sig­

nificant disagreement between the bootstrap and LUT concentration, however these errors do 

not in most cases cause large differences in the connection probabilities from PICo (with PDF 

concentration defined in the average brain) compared to those obtained from bootstrap fibre 

tracking. The largest source of error comes from using noisy estimates of the tensor eigenval­

ues to obtain the concentration parameters from the LUT.

The Bingham PDF produces consistently lower SSD to the bootstrap connection probabil­

ities than the Watson PDF. The difference between the two models is apparent whether the PICo 

concentration parameters are fitted to the bootstrap fibre orientations or taken from the LUT.
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(a) Watson k  against /  in experiment (viii). The points show k  calculated from the bootstrap 

data, plotted against /  o f  the corresponding voxel in the average brain. The solid line is a 

quadratic curve fitted to the data points. The dashed line is the predicted k  for cylindrically- 

symmetric tensors, based on a bootstrap experiment with eight repeats, from experiment (vii).
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(b) Watson n  predicted from the LUT, subtracted from k  found in the bootstrap data in experi­

ment (viii).

Figure 7.15: Watson k plotted against the value of /  in the corresponding voxel in the average 

brain data.
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Figure 7.16: Bingham parameters in the bootstrap data and predicted from the LUT in experi­

ment (viii).
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Figure 7.17: The region of interest for tracking is a cross section of the corpus callosum of the 

subject.
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Figure 7.18: Comparing PICo maps with different numbers of iterations in the ROI in brain 

image 1. Data points are SSD between two images from the same seed point. Blue circles 

are the SSD between two different maps each with 5000 iterations. Red squares are the SSD 

between 1000 and 5000 iterations, black crosses are the difference between 2000 and 5000 

iterations.
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Figure 7.19: SSD between PICo maps calculated from bootstrap data and those calculated using 

PDF models calibrated by the bootstrap fibre orientation estimates in experiment (viii). The 

three PDF models are shown: Watson (blue circles), Bingham (red squares) and ACG (black 

crosses).
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Figure 7.20: Differences in connection probability between the Bingham and Watson model in 

experiment (x). The SSD to the bootstrap image for this seed is 6.1 for the Watson model and

0.1 for the Bingham model. The arrow highlights the seed point.
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Figure 7.21: SSD between PICo maps calculated from bootstrap data and PDF models with 

tensor anisotropy estimated from the average brain. The three PDF models are shown: Watson 

(blue circles), Bingham (red squares) and ACG (black crosses).
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Figure 7.22: SSD between PICo maps calculated from bootstrap data and PDF models with 

tensor anisotropy estimated from brain image 1. The three PDF models are shown: Watson 

(blue circles), Bingham (red squares) and ACG (black crosses).
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(a) Difference in connection probability between the bootstrap tracking and 

PICo with the Bingham concentration parameters calculated from the boot­

strap fibre orientations in experiment (viii).

(b) Difference in connection probabilities between the bootstrap track­

ing and PICo with the Bingham concentration parameters taken from 

the LUT, with the tensor shape parameters from brain image 1.

Figure 7.23: Difference in connection between PICo (using the Bingham PDF) and the boot­

strap tracking from a single seed point, which is highlighted by the arrow.



Chapter 8

Models of the two-fibre PDF

Multi-fibre reconstruction algorithms resolve two or more distinct fibre orientations within a 

voxel. Parker and Alexander [56] extend PICo to model the uncertainty in fibre orientations 

in voxels containing two fibre orientations. The model of the PICo PDF in these voxels is 

calibrated by synthesising a set of fibre-orientation estimates [xn , X2 1 ; X12, X2 2 ; • • •; x t i ,  XT2] 

from T  trials of a two-fibre reconstruction algorithm, and fitting the PDF parameters to these 

axes. Parker and Alexander calculate the fibre orientations from a two-compartment Gaussian 

model in [56] and in later work [100] calibrate PICo with fibre orientations calculated using 

PAS-MRI.

In this chapter, we extend the Watson and Bingham PDFs to model the uncertainty in 

fibre orientation in two-fibre voxels. The test function for the calibration is a two-compartment 

Gaussian model. Parker and Alexander [56] divide the fibre-orientation estimates from a fitted 

two-compartment Gaussian model into two sets, one for each principal direction, and fit the 

single-fibre PDF to each group of axes. For each trial, the axis most closely aligned to one of the 

principal directions of the test function is assigned to that set. However, this division introduces 

a potential for misclassification. Alexander and Barker [38] later proposed an iterative method, 

which we examine in the next section.

We propose a single mixture model for the PDF, which fits the whole set of axes at once, 

without dividing the axes into two groups. We compare this approach to the iterative method 

proposed by Alexander and Barker. We then evaluate the performance of the models in synthetic 

data and in bootstrap brain data.

8.1 Iterative sorting

The iterative method proposed by Alexander and Barker [38] assigns the fibre orientations from 

each trial to two equally-sized sets, s i and S2 , where each set contains the axes from one fibre 

population. The axes are initially assigned to the sets in the order that they returned from the
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two-tensor fitting routine. The algorithm then proceeds as follows:

96

1 . counter = 0 ;

2 . swap = true;

3. while (counter < 100 & swap)

4. compute mean orientation of s\ and /x2 of S2

5. swap = false;

(a) for all axes x * i  in s i  from trial t :  if ( j x * i  • | < |  x t i  • A*2 I)

i. assign x ti to S2 and x t 2 to s\.

ii. swap = true

iii. counter = counter + 1

Once the algorithm terminates, we fit a spherical PDF to each set of fibre orientations using the 

standard methods described in Ch. 6 .

Alexander and Barker [38] find that the sorting process usually converges after three itera­

tions. This is the case when the clusters of fibre orientations are reasonably well separated, but 

is not always true when the clusters are not well separated. Occasionally the algorithm oscil­

lates, switching a few axes back and forth between the sets, so we terminate the algorithm after 

1 0 0  iterations.

8.1.1 Initialisation step

In this thesis, we initialise the algorithm differently. When the principal directions of the test 

function e n  and e i2 are known (for example, in PICo LUT calibration) we use these to make 

the initial division. For each pair of fibre orientations from trial t ,  we assign x i  to s \  and X 2 to 

«2 if | e n  • x i |> | e i2 • x i |, otherwise we assign x i to S2 and X2 to s\. When the true fibre 

orientations are not known, we substitute a pair of axes from one of the trials for e i and e 2 .

8.2 Two-Watson model

The two-Watson model is an equally-weighted mixture of two Watson distributions. One dis­

tribution models the axes from each fibre population, and the mixture is equal because half of 

the axes in the sample come from each compartment. We optimise the parameters of both dis­

tributions within a single objective function, to maximise the likelihood of the entire set of 2 T
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axes. The PDF of the model is:

1 / I  3 \ _ 1  1 / 1 3  \ _ 1
p(x) =  - M  ( - , K i j  exp -x )2] -  + M  ( - , k 2 ) exp [«2 (/x2 •x )2] •

(8.1)

We optimise the parameters of the two Watson distributions with a Levenberg-Marquardt min­

imisation [67] of the negative log-likelihood ip of the fibre orientation estimates:

T

^  = - ^ 2  log[p(xa)] +  log[p(xi2)] • (8 .2 )
i=i

We constrain the optimisation to return bipolar distributions, by optimising u;2 =  y /i^ , n  =

1,2. We define the modal axes in terms of spherical polar coordinates 6n and (pn. The 

Levenberg-Marquardt algorithm fits the parameters [#i, <p\,uji, 6 2 , (p2 , ^ 2] by minimising ip in 

Eq. 8.2.

We divide the axes from each trial into two sets, s 1 and s2, as in Sec. 8.1.1 to provide an 

initial estimate of the parameters of each Watson distribution. Without this initialisation step 

the optimisation often converges on a local minimum.

8.3 Two-Bingham model

In a similar way to the two-Watson model, we optimise the parameters of a mixture of two 

Bingham distributions to maximise the likelihood of the entire set of 2T  axes. The two-Bingham 

model has PDF:

p(x)  =  A i ) - 1  exP (xTA ix ) +  \ M ( \ i  \  A 2 ) - 1  exp ( x t A 2x )  , (8.3)

where the parameter matrix A n, n = 1,2, may be decomposed into its eigen system:

(M371> ^2715 M in )

( Av3 n  0 0 ^

(M377>M2n,Ml7i)r - ( 8 -4 )0 K2n  0

0 0 Kin  J

We set Ksn =  0 as explained in Sec. 6.2. Substituting into Eq. 8.3 gives 

1 1 3
p(x) = 2 M ^2’ 2 ’ A l )_1 6Xp ' x )2 +  /c2i(M2i • x )2)

1 1 3
+  2 M ^2 ’ 2 ’ A 2 ) - 1  exp (^ 12(Mi2 • x ) 2 +  « 22(M22 • x )2) • (8-5)

We use a conjugate gradient method [67] to minimise the negative log likelihood ip of the fibre- 

orientation estimates:
T

fp = ~ ^ 2  1o§[p(x*i)] +  log[p(x*2)] • (8.6)
»=1
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We define two rotation matrices, rotates the vector [0 ,0 ,1]T to the orientation (9, <f>) 

and R y  is a rotation of 7  degrees about the axis (9,4>). The principal axes of each distri­

bution, p ln and fj,2n perpendicular, so we substitute p ln = R ^ fO , 0 , 1]T and /x2n =  

R ^ n R e n ,0 n [1 ,0 ,0]T. As with the Watson model, we wish to restrict the concentration parame­

ters Kin < K2n <  0. We therefore substitute K\n =  — cu2, k^u =  cos2(0n).

The conjugate gradient method minimises fits the parameters [9\, 4>\, 7 1 ,  k \, uj\, 6 2 , 4>2 , 

7 2 , K2 , 0J2 , O2] that minimise i/j in Eq. 8 .6 . We use conjugate-gradient method here, because it 

does not require us to compute the second derivative of the objective function, which makes the 

method easier to implement.

We divide the axes from each trial into two sets, si and S2 , as in Sec. 8.1.1, to provide an 

initial estimate of the parameters of each Bingham distribution. Without this initialisation step 

the optimisation often converges on a local minimum.

8.4 Experiment (xii): multi-Gaussian compartment fitting routines
The multi-Gaussian compartment model (Sec. 3.4.3) with n = 2 has a maximum of 13 parame­

ters: six for each tensor and one mixing parameter. However, it may be desirable to fit a model 

with fewer parameters to improve robustness and to simplify the PICo calibration process. One 

possible constraint is to fix the mixing parameter a = 0.5, so there are 12 parameters. We can 

also restrict the diffusion tensors to be cylindrically symmetric, so the second and third eigenval­

ues are the same. We do this as explained by Alexander [18], by substituting D =  a e ie j  +  (31, 

where e i is the principal direction of the tensor, I  is the identity tensor, and D  has eigenvalues 

\ i  = a  + (3, A2,3 =  (3.

This reduces the number of free parameters from 13 to 9. If we enforce cylindrical sym­

metry and fix the mixing parameter a  — 0.5, there are 8 free parameters.

Experiment (xii) makes a qualitative comparison between the performance of each in­

version in synthetic data. We generate 1000 noisy sets of diffusion-weighted data using 

a two-Gaussian test function |G (D i,£ )  +  ^G (D 2 ,f), where D i =  diag[Ai, A2 , A2] and 

D 2 =  diag[A2 , A2 , Ai]. We estimate the orientation and anisotropy of the tensors using four 

inversion routines:

1. full inversion (13 parameters)

2 . equal mixing inversion ( 1 2  parameters).

3. cylindrical inversion (9 parameters)

4. restricted inversion (8  parameters)
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Both tensors have the same fractional anisotropy, / ,  which we vary between /  =  0.4 and 

/  =  0 .8.

8.4.1 C oncentration of fibre orien tations

Inversions 3 and 4 have more concentrated fibre orientations, which are grouped in elliptical 

clusters. At /  =  0.4 (Fig. 8.1) and /  =  0.6 (Fig. 8.2), these inversions produce significantly 

more concentrated fibre-orientation estimates than the other inversions. The inversions are more 

similar at /  =  0.8 (Fig. 8.3).

(a) Inversion 1. (b) Inversion 2.

(c) Inversion 3. (d) Inversion 4.

Figure 8.1: Axes recovered from a Gaussian test function ^G (D i, t) +  ^G(D 2 , t) with /  =  0.4 

for both tensors.

8.4.2 E stim ation of fractional anisotropy

Fig. 8.4 histograms the anisotropy of the fitted tensors at /  =  0.4, Fig. 8.5 shows the estimated 

anisotropy at /  =  0.8. The histograms from inversion 1 are the least biased from the true 

values. We conclude that fixing the mixing parameter improves the estimate of / .  The restricted
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(a) Inversion 1. (b) Inversion 2.

I

(c) Inversion 3. (d) Inversion 4.

Figure 8.2: Axes recovered from a Gaussian test function ^G (D i, t) +  ^G (D 2 , t) with /  =  0.6 

for both tensors.

inversion simplifies the calibration of PICo considerably. Three parameters potentially affect 

the concentration of fibre orientations: the anisotropy of the two tensors, and the angle between 

their principal directions. Calibrating PICo with an unequal mixing parameter would add an 

extra dimension to the LUT, while calibration of non-cylindrically symmetric tensors would 

require an even more lengthy calibration, since the concentration would be dependent on A1/A3 

and A2 /A3 and the angle between the second eigenvectors of each tensor.

We therefore assume that each compartment contains cylindrically symmetric tensors in 

the calibration of the PICo PDFS, which is a reasonable assumption because such symmetry is 

often observed in anisotropic white matter containing a single bundle of white matter fibres [6 ].
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(a) Inversion 1 (b) Inversion 2.

(c) Inversion 3. (d) Inversion 4.

Figure 8.3: Axes recovered from a Gaussian test function ^G (D i, t) +  ^G (D 2 , t) with /  =  0.8 

for both tensors.

8.4.3 M ixing p aram eter

We further assume in the two-fibre model that the mixing parameter is 0.5, which we may 

expect to be the average value over all the voxels containing two fibres. Fig. 8 .6  shows the 

histogram of the mixing parameter of the largest compartment, in the noisy synthetic data with 

/  =  0.8, using inversion 1 and 3. Inversion 3 appears to be unbiased while 1 is biased away 

from the true value of 0.5.

8.4.4 E xperim ent (xiii): concentration  of fibre orientations from  unequally 

mixed com partm ents

Experiment (xiii) shows a qualitative analysis of the effects of fixing the mixing parameter at 

0.5 in the model fitting when the mixing parameter of the test function is not 0.5. We generate 

1000 noisy trials of the diffusion-weighted data using a two-Gaussian test function ckG^Di, t ) +
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(a) Inversion 1, f  — 0.4. (b) Inversion 2, /  =  0.4.
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(c) Inversion 3, /  =  0.4. (d) Inversion 4, /  =  0.4.

Figure 8.4: Histogram of /  estimated from a Gaussian test function JC r(D i,t) +  ^G (D 2 ,£) 

with f  =  0.4 for both tensors.

(1 — a ) G ( D 2 i t ), /  =  0.9 for both tensors, D i =  d i a g [ A i ,  A 2 ,  A 2 ] and D 2 =  d i a g [ A 2 ,  A 2 , A J .  

We vary a  between 0.5 and 0.8. We recover the fibre orientations from the data using inversions 

3 and 4. We fit the two-Watson PDF to the fibre orientations estimated from inversion 3. We use 

the estimated anisotropy of the tensors (as calculated using inversion 4) at each trial to retrieve 

the concentration from the Watson PDF calibrated with a  =  0.5 (the calibration procedure is 

described in Sec. 8.7). Fig. 8.7 shows the concentration of each compartment plotted against 

the mixing parameter. As the mixing parameter departs from 0.5, the calibrated concentration 

of fibre orientation estimates from the larger compartment is an underestimation. However, the 

anisotropy of the smaller compartment is underestimated, which means that the concentration 

is approximately correct. In practice, the error due to uneven mixing is limited, because as a
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(a) Inversion 1, /  =  0.8. (b) Inversion 2, /  =  0.8
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(c) Inversion 3, /  =  0.8. (d) Inversion 4, /  =  0.8

Figure 8.5: Histogram of f  estimated from a Gaussian test function ^G (D i,f) +  ^G (D 2 ,f) 

with /  =  0 .8  for both tensors.

approaches 1, the smaller compartment becomes increasingly difficult to detect. Fig. 8 .8  shows 

the histogram of mixing parameters found in the average brain (the average of eight repeated 

acquisitions) using inversions 1 and 3. Using inversion 3, approximately 50% of all two-fibre 

voxels have a mixing parameter of greater than 0 .6 , in these voxels the concentration of the 

larger compartment will be underestimated on average by the LUT.
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mixing parameter mixing parameter

(a) Inversion 3. (b) Inversion 1.

Figure 8 .6 : Histogram of mixing parameter in two-fibre voxels in synthetic data, with /  =  0.8.
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Figure 8.7: Concentration of fibre orientations as a function of the the mixing parameter in 

experiment (xiii). The larger compartment (squares) has higher concentration than the smaller 

compartment. The blue series is the concentration of fibre-orientations fitted directly to the 

data. The red series is the predicted concentration from a calibration procedure where the 

mixing parameter is assumed to be 0.5.
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8.4. Experiment (xii): multi-Gaussian compartment fitting routines

mixing parameter

(a) Inversion 3.

(b) Inversion 1.

0.7 0.75 0.8
mixing parameter

Figure 8 .8 : Histogram of mixing parameter in two-fibre voxels in the average brain.
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8.5 Robustness of direct fitting and iterative sorting with Bingham- 

distributed axes

In this section we compare the direct fitting of the models to the iterative sorting method using 

axes sampled from Bingham distributions with known concentration.

8.5.1 Experiment (xiv): direct fitting and sorting with unequal concentration

Experiment (xiv) investigates the differences between the direct fitting and sorting methods 

in data sampled from Bingham distributions with known orientation and concentration. We 

sample 1000 pairs of axes from two Bingham distributions B\  and B 2 oriented such that /xn  

and n l2 are separated by 90 degrees. We vary the largest concentration parameter ku of each 

distribution between —10 and —400, with = k u /A. These concentration parameters are 

similar to those fitted to the fibre-orientation estimates over a range of anisotropy from /  =  0.4 

to /  =  0.9. We fit the two-Bingham model to these axes using the direct fitting and iterative 

sorting approach. We repeat the entire process 50 times, and define the consistency fraction for 

each fitting method as the fraction of trials where the estimated axes of the distributions are less 

than 3 degrees from their true orientation and the estimated concentration of each distribution 

differs from the true value by less than 5%. Fig. 8.9 plots the consistency fraction for the sorted 

and optimised two-Bingham PDFs against the concentration k \\ of B\ ,  with the concentration 

of B 2 [«i2 =  —10, « 2 2  =  2.5]. The direct fitting method is more consistent than the sorting 

method. When « n  and AC12 are both less than —20, both methods find the correct parameters 

for all 50 trials.

8.5.2 Experiment (xv): Acute crossing angles between principal directions

We repeat experiment (xiv) with /xn  and /x12 separated by 60 degrees. Reducing the angle 

between the principal directions increases the potential for misclassification. Fig. 8.10 plots the 

consistency fraction for the sorted and optimised two-Bingham PDFs against the concentration 

Acn of B\ ,  with the concentration of B 2 [k \2 = —10, k22 =  2.5]. Direct fitting is still highly 

consistent. The sorting method is less consistent as the concentration of B \  increases, because 

the misclassifications cause a relatively larger error in highly concentrated distributions. When 

ACn and Ati2 are less than —20, both methods find the correct parameters for all 50 trials.

8.6 Direct fitting and sorting of fibre orientations from synthetic 

MRI data

According to experiments (xiv) and (xv), the direct fitting method is better than the sorting 

method at estimating the concentration of Bingham-distributed data at low concentration. The
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Figure 8.9: Consistency fraction in experiment (xiv). The optimised model fitting (red) finds 

the correct PDF parameters more often than the sorting algorithm (blue) at low concentration.

experiments in this section test whether the direct fitting is better when fitted to axes from 

synthetic MRI data.

8.6.1 E xperim en t (xvi): R eproducibility  of concentration param eters

This experiment tests the stability of the direct fitting and sorting techniques among differ­

ent sets of fibre orientations generated from the same test function. The test function is 

p  =  0.5[G(D1?t) +  G (D 2,f)] with D i =  diag[Ai, A2, A2] and D 2 =  diag[A2, A2, AJ. We 

generate 2000 noisy data sets and extract the fibre orientation estimates. We fit the PDF pa­

rameters by optimising the two-Watson and two-Bingham models, and fitting the Watson and 

Bingham PDFs to each set of fibre orientations after iterative sorting. We repeat data synthesis 

and fitting 30 times. At each iteration we reorient the test function with one random rotation of 

both diffusion tensors. Fig. 8.11 shows the mean and standard deviation of the concentration 

of the first compartment, as a function of the anisotropy of the tensors. Both the optimised 

and sorted PDF parameters are similar, even at /  =  0.4 where the anisotropy is low. The re­

producibility of the concentration is high for the Bingham and also for the Watson PDF, even 

though the axes are grouped in elliptical clusters. We conclude that both methods are reliable 

for finding the concentration of fibre orientations from this test function.
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Figure 8.10: Consistency fraction in experiment (xv). The optimised model fitting (red) finds 

the correct PDF parameters more often than the sorting algorithm (blue) at low concentration.

8.6.2 E xperim ent (xvii): R eproducibility  of concentration at an acute crossing 

angle

We repeat experiment (xvi) with D 2 rotated such that the angle between the principal directions 

e n  and e i2 is 60 degrees. The clusters of fibre orientations are less well separated, which may 

cause the PDF fitting to fail. Fig. 8.12 shows the concentration for the Watson and Bingham 

models found by direct fitting and iterative sorting. The sorted Watson PDF (Fig. 8.12(a)) has 

low concentration for all values of / ,  and at /  =  0.9 the sorting algorithm returns a negative 

k . The optimised Watson PDF has similar concentration except at /  =  0.4 and /  =  0.9. It 

appears that the variance of «i is high, but in fact, the direct fitting systematically assigns a high 

concentration to one compartment and a very low concentration to the other. This happens even 

if the orientation of the PDFs is fixed during the optimisation. The sorting algorithm does not 

suffer from this problem at low anisotropy, but at /  =  0.9 it fits a negative k . At intermediate 

anisotropy the Watson concentration is very low. We conclude from this result that the Watson 

model is a poor approximation of the fibre orientation PDF at acute crossing angles. At high 

anisotropy with orthogonal tensors, the fibre orientation estimates resolve into approximately 

circular clusters, as we see in experiment (xii). With a crossing angle of 60 degrees the clusters 

of axes maintain an elliptical shape when the tensors are highly anisotropic.

Fig. 8.12(b) shows the concentration of the two-Bingham model, which has higher con­
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centration, which we expect, because it can model the elliptical clusters of axes. As with the 

Watson model,the direct fitting algorithm returns higher concentration in one compartment at 

low and high anisotropy, and agrees with the sorting algorithm at intermediate anisotropy.

The angle bias for the two-Bingham model is the maximum angle between the Bingham 

axis /x3n, where /z3n is the axis aligned closest to tensor eigenvector e in in the test function. 

Fig. 8.13 plots the angle bias as a function of / .  At low anisotropy, the direct fitting provides 

a biased estimate of the orientation of the Bingham distributions. At /  =  0.9, the angle bias is 

only slightly higher for the optimised model, yet the variance of the concentration (Fig. 8 .12(b)) 

is still much higher than that of the sorted model. This may be because only a small angle bias 

is required at high concentration to produce a large difference in the estimated concentration.

We conclude that with MR fibre orientations the sorting algorithm is better than direct 

fitting, because it provides the lowest angle bias does not introduce spurious differences between 

the concentrations of identical compartments at acute crossing angles.

8.7 Calibration of models

The two-tensor PDFs are calibrated by constructing LUTs that give the concentration of the 

PDF as a function of tensor anisotropy and of the angle between the principal directions, given 

the imaging scheme and the signal to noise ratio in the data. The calibration algorithm is:

for ( / i  =  / min; f i  < /max; f i  =  f i  +  Sf) for (9 = 6»min; 9 < <9max, 9 = 9 + 6e)

1 . for ( / 2 =  /min; h  <  / i ;  h  =  h  +  &f)

(a) Calculate tensor D si with anisotropy / i ,  and D s2 with anisotropy / 2.

(b) Rotate D s2 by 9 degrees about the second eigenvector.

(c) For each trial i =  1 : T

i. Synthesise noisy data from Gaussian compartment model.

ii. extract fibre-orientation estimates xi,  x 2.

2. Fit the model of the fibre orientation PDF to x*. . .  x 2̂ -

3. Record the parameters of the PDF in the LUT.

Since we use the restricted inversion, we do not consider the effects of the mixing param­

eter, or of non cylindrically-symmetric tensors.

The experiments in this section evaluate the range of anisotropy and crossing angles where 

we can resolve two fibre populations given the imaging parameters of the brain data. Parker
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and Alexander [56] find that the concentration of fibre orientations in one compartment is in­

dependent of the orientation and anisotropy of the other compartment. They fit a fourth-order 

spherical harmonic series to the data in two-fibre voxels, and re-sample from the series to obtain 

a larger number of measurements, with inherent smoothing from the spherical harmonic model. 

They fit the full (13 parameter) two-tensor model to the resampled data. We use the restricted 

two-tensor model and do not use spherical harmonic resampling. We evaluate the effects of the 

crossing angle and the anisotropy on the concentration in detail in experiments (xviii) and (xix).

8.7.1 Experiment (xviii): crossing angle

Experiment (xviii) tests how the concentration depends on the crossing angle for data sampled 

from a two-Gaussian test function. We generate 1000 noisy trials of the diffusion-weighted data 

using a two-Gaussian test function with /  =  0.9 for both tensors, with crossing angles between 

50 and 90 degrees. Fig 8.14 shows the concentration of fibre orientation estimates using the 

restricted inversion, and Fig. 8.15 shows the concentration of fibre orientation estimates from 

the full inversion. Both figures show the concentration found by iterative sorting. The con­

centration is dependent on the crossing angle when the test function is Gaussian, for both the 

restricted and the full two-tensor models. At crossing angles of 55 degrees or less, the sorting 

method assigns different concentrations to each compartment, suggesting that the fibre orienta­

tion estimates cannot be reliably resolved into two distinct clusters when the tensors cross at 55 

degrees or less.

8.7.2 Experiment (xix): anisotropy of compartments

Parker and Alexander [56] model the concentration of fibre orientations from each compartment 

independently, assuming that the anisotropy of the other compartment has no effect on the 

concentration. Experiment (xix) tests whether this assumption is valid for data from a Gaussian 

test function. We generate 1000 noisy trials of the diffusion-weighted data using a two-Gaussian 

test function p =  0 .5[G (D i,t) +  D 2 ,f)], where / ( D i)  =  0.9, and / ( D 2 ) varies between 

0.3 and 0.9, and the two tensors cross at 90 degrees. We also generate 1000 trials from the 

test function p =  0.5[G(D2,£) +  D 3 ,f)], where / ( D 2) =  / ( D 3 ) and /  varies between 0.4 

and 0.9. and the two tensors also cross at 90 degrees. Fig. 8.16 shows the concentration of 

each compartment plotted against / ( D 2). We conclude that the concentration of orientations is 

dependent on the anisotropy of the other compartment.

8.7.3 LUT Generation procedure

We examine the range of LUT parameters /  and 9 in the average brain (the mean of all 8 

repeated acquisitions of the subject) to guide the choice of LUT range. Experiments (xx) and
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(xxi) test different resolutions and sample sizes for the calibration process. Fig. 8.17 shows a 

histogram of estimated anisotropy in two-fibre voxels in the average brain.

We set / min =  0.3; according to the LUTs, the concentration of two tensors of /  =  0.3 

crossing at 90 degrees is low, k = 6 for the Watson PDF and = —16, k,2 = —3 for 

the Bingham PDF. According to the histogram of anisotropy in Fig. 8.17, 90% of the tensors 

have /  >  0.3. We set / max =  0.94, which corresponds to a ratio of A1 /A3 =  18. This is 

slightly more anisotropic than the maximum anisotropy observed in single-tensor voxels (Fig.

7.1). Approximately 10% of the tensors in two-fibre voxels have /  >  0.94, but this is almost 

certainly an artefact of the two-tensor fitting procedure and not a physical effect, since no single­

tensor voxels have anisotropy this high.

We set the angular range 0min =  50 and 0max =  90 degrees. Fig. 8.18 shows the histogram 

of crossing angles in the mean brain, 82% of two-fibre voxels have a crossing angle greater than 

50 degrees and experiment xviii suggests that the concentration of fibre orientations at smaller 

angles is close to zero. There is probably a bias in the histogram towards larger crossing angles, 

because as the crossing angle tends to zero, the compartments become harder to distinguish.
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Figure 8.11: Concentration parameters of two-Watson model and two-Bingham model (red 

squares), and the concentration parameters found by iterative sorting (blue circles) in experi­

ment (xvi).
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Figure 8.12: Concentration parameters of two-Watson model and two-Bingham model (red 

squares), and the concentration parameters found by iterative sorting (blue circles) in experi­

ment (xvii).
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Figure 8.13: Angle bias for the optimised (red) and sorted (blue) two-Bingham models in ex­

periment (xvii).
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Figure 8.14: Concentration parameters of the Bingham (red squares for the first compartment, 

red crosses for the second compartment) and Watson (blue circles for the first compartment, 

blue crosses for the second compartment) PDFs for two compartments, using the restricted 

inversion. The Bingham series show | | +  | K2 | for each compartment, the Watson series

show k for each compartment.
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Figure 8.15: Concentration parameters of the Bingham (red squares for the first compartment, 

red crosses for the second compartment) and Watson (blue circles for the first compartment, 

blue crosses for the second compartment) The Bingham series show | «i | +  | « 2  | for each 

compartment, the Watson series show k for each compartment.
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Figure 8.16: Concentration parameters of the Watson PDFs for two compartments. The blue 

squares show the concentration of axes from a compartment that is mixed with a compartment 

with /  — 0.9, the concentration from the compartment with /  =  0.9 is shown by the blue 

circles. The red circles show the concentration when /  is equal in both compartments.
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Figure 8.17: Histogram of tensor anisotropy in voxels classified as containing two compart­

ments.



fr
eq

ue
nc

y

8.7. Calibration o f models 117

crossing angle (degrees)

Figure 8.18: Histogram of the crossing angle in voxels classified as containing two compart­

ments.
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8.7.4 Experiment (xx): two tensor LUT resolution

We generate a LUT using the algorithm in Sec. 8.7 with / min =  0.3, / max =  0.94 and 0min =  

#max =  90 degrees. We use bilinear interpolation to estimate the concentration for any f i  and 

f 2 within the range. We construct a Bingham LUT with step size 5f =  0.01, with T  = 2000 

trials at each point in the table, and sub-sample the table in both dimensions at intervals of 0 .0 2 ,

0.04, and 0.1. Table 8.1 shows the mean (over all entries in the subsampled LUT) error between 

the actual LUT values and the predicted values from interpolation of the subsampled tables.

Resolution mean percentage error mean absolute error

Kl « 2 « 2

0 .0 2 4.80 5.39 7.21 2.40

0.04 6 .1 1 6.98 9.31 3.12

0 .1 6.93 10.87 11.51 5.71

Table 8.1: Errors in the Bingham parameters with increasing step size 8f.

We repeat the experiment with the crossing angle 0 set to 60 degrees. Table 8.2 shows the 

mean (over all entries in the subsampled LUT) error between the actual LUT values and the 

predicted values from interpolation of the subsampled tables. The error from interpolation is 

larger, but is still small in absolute terms. We conclude that a step size 8f = 0.02 is a reasonable 

compromise between computation time and accuracy. We could save computation time by using 

a variable 5f, with a smaller value at lower crossing angles, but we maintain a fixed Sf =  0 .0 2  

to simplify the calibration process and the interpolation.

Resolution mean percentage error mean absolute error

« 2 Ki 2

0 .0 2 6.73 5.31 6.69 1.06

0.04 8.56 7.18 8.56 1.47

0.1 10.07 11.06 10.52 12.39 2.19

Table 8.2: Errors in the Bingham parameters with increasing step size 5f.

8.7.5 Experiment (xxi): two tensor LUT sample size

Experiment (xxi) tests the variance of the estimated concentration as a function of the number 

of trials T  used to fit the two-Watson and two-Bingham models. We generate LUTs according 

to the algorithm in Sec. (8.7) with / min =  0.3, /max =  0-9* &f — 0.05 and 9min =  0max =  90 

degrees. As a baseline we compute a LUT with T  = 5000 trials. Table 8.3 shows the mean
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(over all entries in the subsampled LUT) error between the baseline concentration and those 

calculated with smaller T.  We conclude that T  = 2000 is a reasonable sample size.

T mean percentage error mean absolute error

« 1 « 2 «i « 2

500 9.98 12.98 13.39 4.59

1 0 0 0 7.36 8 .8 8 15.07 3.00

2 0 0 0 6.27 6.38 7.99 2.35

4000 4.87 5.95 7.70 2.28

5000 4.22 4.73 5.81 1.61

Table 8.3: Errors in the Bingham parameters with increasing numbers of trials in the calibration.

Given the parameters /min =  0.3, /max =  0.94 8f — 0.02, $min — 50, $max =  90 

and T  = 2000, it remains to choose the angular step size 8q for the generation of the LUTs. 

Experiment (xviii) suggests that the concentration varies linearly as a function of the crossing 

angle for highly anisotropic tensors, but this is unlikely to be the case for all combinations of 

/ i  and / 2  we may find in a two-fibre voxel. We set 8q = 5 degrees, which is the smallest step 

that still allows the full LUT to be computed in less than 24 hours of computation time on a 

standard 2.8G H z  PC workstation.

8.8 Analysis in synthetic data

We test the two-Bingham and two-Watson models in a synthetic fibre crossing, by comparing 

them to a gold standard PICo map as in Ch. 7. The test functions for the data are Gaussian, with 

cylindrically-symmetric tensors. A streamline seeded in the noise-free image traces out a path 

of length 80mm, from left to right. The test function for these voxels is G(Di ,  t), where D i 

is oriented along the x-axis. A perpendicular fibre pathway of width 14mm intersects the main 

path, the test function in these voxels is G (D 2 , t), where D 2 is oriented along the y-axis. The 

voxels in the intersection between the two paths are two-fibre voxels, and the test function for 

these voxels is 0.5[G(Di, t) +  G /D 2 , t)]. The anisotropy of both tensors is equal, and varies 

between /  =  0.4 and /  =  0.9.

The tractography algorithm is as described in Sec. 7.2 with one modification: in voxels 

where there are two tensors, we draw samples from both PDFs and the streamline tracks along 

the axis most closely aligned to the previous streamline trajectory.
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8.8.1 E xperim ent (xxii): P IC o m aps in noise free d a ta

Experiment (xxii) tests the models in the noise free data, as we did for the single-fibre PDFs in 

experiment (iv). We define a gold standard synthetic PICo map by tracking streamlines in 5,000 

identical copies of the fibre crossing image. In each image, we add independent Gaussian noise 

to the DW measurements, fit the tensors, and then track a streamline from the designated seed 

point. The collection of streamlines define a PICo connection probability map, except that the 

fibre orientations at each iteration are estimated directly from the noisy data and not sampled 

from a PDF. We measure sum of squared differences 5  between PICo maps generated using the 

models (also with 5,000 iterations) and the gold standard.

Fig. 8.19 shows the SSD for the Bingham and Watson models as a function of the 

anisotropy of the tensors. The Bingham PDF has lower SSD to the gold standard when /  <  0.8, 

but at high anisotropy, the clusters of fibre orientations are well modelled by both distributions.
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Figure 8.19: Sum of squared differences to the gold standard in experiment (xxii). Data points 

are the mean SSD calculated from 50 iterations of the PICo algorithm. Error bars show the 

standard deviation. Markers are blue circles for the Watson model and red squares for the 

Bingham model.

8.8.2 E xperim en t (xxiii): Noisy estim ates of the PD F concentration

Experiment (xxiii) compares the two models with noisy estimates of the anisotropy and crossing 

angle. The estimate of the anisotropy and crossing angle is taken from noisy data, however the

0.6 0.7
fractional anisotropy
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peaks of the PDFs remain fixed at the correct value. The experiment tests how the error in 

PDF concentration (which depends on the estimated crossing angle) affects each PDF, given 

the noise conditions of the data. Fig. 8.20 shows that the error to the gold standard is much 

larger for both models, but the Bingham model has lower errors. Fig 8.21 shows the statistic 

J(Watson, Bingham) (defined in Sec. 7.3.2); the Bingham PDF has lower SSD at /  <  0.7, but 

there is no significant difference at higher anisotropy.
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Figure 8.20: Sum of squared differences to the gold standard in experiment (xxiii). Data points 

are the mean SSD calculated from 50 iterations of the PICo algorithm, each with different noisy 

estimates of the tensor anisotropy and crossing angle. Error bars show the standard deviation. 

Markers are blue circles for the Watson model and red squares for the Bingham model.

8.9 Bootstrap simulation of two-fibre measurements

In experiment (xxiv), we show how the number of repeated acquisitions influences the two-fibre 

PDF parameters estimated from bootstrap resampling of the data.

For each of r  repeats, r = 2 ,4 , 6 , . . . ,  16, we synthesise r independent sets of noisy data 

from a Gaussian compartment test function, p = 0.5[G(Di, £), G (D 2 , t)]. The anisotropy of 

both tensors is /  =  0.8, and D 2 is oriented perpendicular to D i. We extract 1000 bootstrap 

resamples of the data, extract the fibre orientations and fit the Watson PDF. We repeat the 

experiment 1 0 0  times with the test function randomly reoriented after each iteration, giving 

us 100 estimates of «i and ac2 and the corresponding axes p,1 and /i2 for each r. We use the

0.6 0.7
fractional anisotropy
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Figure 8.21: Statistic ^(Watson, Bingham, in experiment (xxiii). Data points are d, error bars 

show the 95% confidence region for the value of d.

minimum k from each of the 100 orientations in the analysis. We compare Kmin from the 

bootstrap axes to those obtained from a standard Monte-Carlo method without bootstrapping,

i.e. by using 1 0 0 0  independent sets of data, and extracting the fibre orientations directly.

Fig. 8.22 shows the mean and standard deviation of min(K) as a function of the number 

of repeats. Fig. 8.23 shows the “angle bias”, which is the angle between the mean of the boot­

strap fibre orientations and the known orientation of the tensors. Since there are two principal 

directions, we define the angle bias as the largest of the two angles between a mean axis /x. and 

the closest tensor principal direction. The concentration is not consistently overestimated with 

bootstrapping, but the variance of k over the 1 0 0  orientations of the test function is higher than 

for the Monte-Carlo simulation (the standard deviation of the Monte-Carlo concentration is 5.4 

over the 100 orientations). This suggests that bootstrap resampling exacerbates the bias that 

arises from the sparse sampling of diffusion along 61 gradient directions. Although the gra­

dient directions are spread as evenly on the sphere as possible, 61 directions cover the sphere 

sparsely and there is inevitably better concentration at some orientations of the test function 

than at others.

The bootstrap results also have much larger angle bias, the mean angle bias is 0.07 degrees 

for the Monte-Carlo estimate and 1.8 degrees for 8 bootstrap repeats. The bootstrap estimate 

of k is not an unbiased estimate of the true concentration, because the peaks of the PDFs are
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biased away from their true value. The standard deviation of the bootstrap concentration over 

the 1 0 0  orientations of the test function is also much higher than the standard deviation of the 

Monte Carlo concentration: o  =  3 for Monte Carlo estimation, while o =  24 with 8 bootstrap 

repeats.

We repeat experiment (xxiv) with 2000 bootstrap samples, and we find that there is little 

difference (approximately 1% improvement) in the angle bias or variance of k.
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Figure 8.22: Mean Watson concentration as a function of bootstrap repeats in experiment (xxiv). 

The line shows the mean for standard Monte-Carlo estimation. Error bars show standard devi­

ation.

8.10 Experiment (xxv): PDF fitting with an unknown test function

The PICo calibration algorithm uses a test function with known principal directions, these di­

rections can be used to drive the fitting of the PDF models. When fitting the two-fibre mod­

els to fibre-orientations extracted from the bootstrap brain data, we have two clusters of axes, 

but the mean axis of each cluster is unknown. Experiment (xxv) tests the ability of iterative 

sorting algorithm to fit the PDF parameters when the true fibre orientation is unknown. We 

generate 1000 noisy trials of the diffusion-weighted data using a two-Gaussian test function, 

p = 0 .5[G (D i,t) +  D 2 , £)], where / ( D i )  varies between 0.4 and 0.9, D i =  diag[Ai, A2 , A2] 

and D 2 =  diag[A2 , A2 , AJ.

We initialise the sorting algorithms by splitting the set of fibre orientations into two sets s\

n 1--------------- 1--------------- 1--------------- 1--------------- 1--------------- r

o

o o o  o o  o o

J______ I______ I______ I______ 1______ I______ I______ L
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Figure 8.23: Mean angle bias as a function of bootstrap repeats in experiment (xxiv). The line 

shows the mean for standard Monte-Carlo estimation. Error bars show standard deviation.

and S2 - Given two axes and x #2 from a randomly selected trial 9, we assign x<?i to si and 

X02 to S2 - Then for each pair of axes from subsequent trials, we assign the axis most closely 

aligned to x#i to s\, and the other to «2 - We repeat this process 1 0 0  times with a different 

starting trial 9.

Fig. 8.24 shows the mean and standard deviation of the concentration over the 100 itera­

tions, compared to the concentration parameters we calculated using the same test function in 

experiment xvi), where the iterative algorithm is initialised using the principal directions of the 

test function rather than a pair of axes from one trial. The concentrations differ only slightly 

from experiment (xvi).

We repeat this experiment with D 2 rotated such that the principal directions of the tensors 

cross at 60 degrees. Fig. 8.25 shows the mean and standard deviation of the concentration over 

the 100 iterations. The concentration is similar to that from experiment (xvii) except at /  =  0.8 

and /  =  0.9, but even then the difference is small. Fig. 8.26 shows the angle bias. The bias 

is slightly higher than when the fibre orientations are known, for all the sampled points, but is 

much higher at /  =  0.4, though it is still lower than the angle bias of the optimisation method 

(Fig. 8.13).

We conclude from experiment (xxv) that the iterative sorting algorithm can accurately find 

the concentration and orientation of the PDFs except in voxels with low anisotropy and an



8.11. Experiment (xxvi): Two-fibre PDFs in brain data: LUTs and bootstrap 125

-1 0 0

-200

-300

-500

-600

-700

- H i 0.3 0.4 0.5 0.6
fractional anisotropy

0.80.7 0.9

Figure 8.24: Concentration of two compartments calculated with the iterative sorting method, 

with different starting points in experiment (xxv) (red), compared to the concentration calcu­

lated from the same test function in experiment (xvi) (blue). The crossing angle between the 

two tensors is 90 degrees.

acute crossing angle, but these voxels have low concentration, so the effect of the angle bias on 

connection probabilities is probably small.

8.11 Experiment (xxvi): Two-fibre PDFs in brain data: LUTs and 

bootstrap

This experiment examines the correlation between the PDF concentration parameters fitted to 

the bootstrap data, against those predicted from the LUTs. A strong correlation between boot­

strap and LUT concentration means that the anisotropy and crossing angle of the tensors are a 

good indication of the PDF concentration.

For every voxel classified as non-Gaussian in the average brain image, we generate 1000 

bootstrap samples of the data, extract the 2 0 0 0  fibre-orientation estimates and fit the parameters 

of the two-Watson and two-Bingham PDFs using the optimisation and the sorting method. We 

also compute two-fibre LUTs using the sorting method. We compare the Bingham concentra­

tion parameters to those taken from the LUTs using the anisotropy and crossing angle of the 

two tensors in the average brain image.

Fig. 8.28 shows the correlation between the bootstrap and LUT two-Bingham concentra-
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Figure 8.25: Concentration of two compartments calculated with the iterative sorting method, 

with different starting points in experiment (xxv) (red), compared to the concentration calcu­

lated from the same test function in experiment (xvii) (blue). The crossing angle between the 

two tensors is 60 degrees.

tion using the sorting method. There appears to be some correlation between the bootstrap and 

the LUT concentration, though there are some voxels where the LUT either overestimates or 

underestimates the concentration compared to the bootstrap result.

The differences between the two are probably caused by a combination of factors besides 

the underestimation of uncertainty in bootstrap resampling. As in the single-fibre case, there 

is an error in estimating the LUT indices (anisotropy and crossing angle) in each voxel, Also, 

some voxels may have crossing angles and anisotropy outside the range modelled by the LUT. 

Unequal mixing of the compartments is also not included in the calibration, experiment (xiii) 

suggests that the most noticeable effect of this is an underestimate of concentration in the larger 

compartments. Also, the assumption of cylindrical symmetry may not be justified. Fig. 8.27 

shows the histogram of A2 /A3 in the mean brain, computed with the full two-tensor model. 

Noise causes the measured A2 /A3 to be greater than 1 even if the underlying test function is 

cylindrical, but in the brain there may be genuine cylindrical asymmetry.

More fundamentally, the LUT is calibrated with two-Gaussian compartment test functions, 

and this might not be a good approximation of the diffusion in the brain data. Also, the voxel 

classification may contain false-positives due to noise, and fit a fourth-order spherical harmonic
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Figure 8.26: Angle bias in the iterative sorting method with different starting points in exper­

iment (xxv), with a crossing angle of 60 degrees between the two tensors. The angle bias is 

higher when the true fibre orientations are unknown (red) than when they are known (blue).

in some voxels where there are not two distinct fibre orientations.

8.12 Tractography in brain data

In this section we compare PICo probability maps generated from bootstrap data to those pro­

duced by using the models and LUTs. We track in the same region of interest (ROI), across the 

corpus callosum of the subject, as we use in Ch. 7. The bootstrap tractography algorithm is the 

same as in Sec. 7.2.1, except that in voxels classified as containing two fibre orientations, we fit 

a restricted two-Gaussian compartment model and extract ei from both tensors. The streamline 

then tracks along the tensor e i that is most closely aligned to the previous streamline trajectory. 

We track 2000 streamlines from each seed point, which is twice as many as we use for the 

single-fibre case, since the fibre-orientation PDF is more complex than in the single-fibre case.

8.12.1 E xperim en t (xxvii): P IC o  calib ra ted  directly from  bootstrap  fibre o rien­

ta tions

We compare the bootstrap tractography results to PICo tractography with the models calibrated 

directly from the bootstrap fibre orientations in each voxel. This experiment tests the goodness 

of fit of the models to the bootstrap fibre orientations. We track 2000 streamlines from each 

seed point in the ROI using the optimised two-Watson and two-Bingham models. Fig. 8.29
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Figure 8.27: Histogram of A2 /A3 in the average brain.

shows the SSD between the connection probability maps from each model and those from the 

bootstrap tracking. As in the single-fibre experiments, the Bingham results are more similar to 

the bootstrap tractography. It is not possible to quantify how much of the difference in the SSD 

is due the two-fibre PDFs, because the Watson and Bingham models are also different in the 

single-fibre voxels (experiment (x)).

The mean SSD for the Bingham connection probability images is 0.18 ±  0.2, which is 

larger than in the single-fibre case, (0.07 ±  0.03).

8.12.2 P IC o  ca lib ra ted  by anisotropy

Experiment (xxviii) quantifies the effects of the error in PDF concentration introduced by a 

noisy estimate of the anisotropy. In a similar way to experiment (xi), we take the orientation 

of the PDFs fitted to the bootstrap data, but take the concentration from the LUT, indexed 

by the anisotropy and the crossing angle of the tensors fitted in the mean brain. Fig. 8.30 

shows the SSD between the PICo PDFs and the bootstrap connection probabilities, when the 

concentration parameters are calculated from the tensors in the average brain. As in the single­

fibre case, the difference between the Bingham and Watson models remains when the estimate 

of the anisotropy is noisy. The SSD of the Bingham model to the bootstrap data is 1.12 ±  0.92, 

compared to 0.57 ±  0.4 in the single-fibre case.

When the PICo concentration parameters are calculated from brain image 1, the SSD for 

the Bingham model is 1.48 ±  1.2, compared to 1.00 ±  0.95 in the single fibre case. Fig. 

8.31 shows the difference between the bootstrap and Bingham connection probabilities for a
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Figure 8.28: Bootstrap PDF concentration plotted against LUT concentration using the sorting 

method.

seed where the SSD is 1.45, close the mean value. The mean SSD for the Watson model is 

2.93 ±  2.0 almost twice as large as for the Bingham model, but actually slightly smaller than 

the mean SSD for the Watson model in the single-fibre image (2.97).

8.13 Summary and conclusions

The calibration of PICo PDFs for the two-Gaussian compartment model is challenging because 

of the large number of parameters in the model and the difficulty of modelling two clusters of 

fibre-orientation estimates with a spherical PDF. Experiment (xii) compared four two-tensor fit­

ting routines. The experiment tested the fitting routines on a two-Gaussian test function with an 

equal mixing parameter, with cylindrically symmetric tensors crossing at 90 degrees. Bearing 

in mind that we only tested one of many possible realistic test functions, we made the follow­

ing observations. Restricting the mixing parameter in the fitting improves the estimate of the 

fractional anisotropy. This is important for PICo because the LUT is indexed by this statistic. 

Restricting fitting to cylindrically-symmetric tensors increases the concentration of fibre orien­

tation estimates, but causes the clusters from each fibre orientation to become elliptical rather 

than circular, which requires a more complex model of the fibre-orientation PDF.

The choice of two-tensor fitting routine is also guided by the computational burden of the 

PICo calibration. The full 13-parameter two-tensor model is clearly unsuitable for PICo because
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Figure 8.29: SSD between bootstrap tractography results and PICo using models calibrated 

from the bootstrap fibre orientations in experiment xxvii. The red squares are the SSD for the 

Bingham model, the blue circles are the SSD for the Watson model.

the estimated anisotropy and mixing parameter are too unstable to be reliable indices for the 

LUT and because it would require too many parameters in the calibration. With a fixed mixing 

parameter and cylindrically-symmetric tensors, the LUT has three parameters: the anisotropy of 

each tensor, and the angle between the principal directions. Experiments (xx) and (xxi) suggest 

that the calibration process requires approximately 24 hours on a standard PC workstation. We 

could potentially add the mixing parameter to the calibration, but we would have to reduce the 

resolution of the LUT in at least one dimension, in order to keep the computational burden 

acceptable. Experiment (xviii) suggests that the crossing-angle step size, 6$, in the LUT could 

be larger than 5 degrees, since the relationship between the crossing angle and the concentration 

is approximately linear. However, experiment (xviii) used a highly anisotropic test function 

( /  =  0 .8 ) and further experiments would be required to test the behaviour of less anisotropic 

test functions at varying crossing angles.

We propose two models of the fibre-orientation PDF: the two-Watson model and the two- 

Bingham model, both mixtures of the PDFs we used as single-fibre distributions in Ch. 7. The 

elliptical clusters fibre orientations from the two-tensor fitting routine are better modelled with 

Bingham distributions, and experiment (xxviii) shows that the two models produce significantly 

different connection probabilities in the brain.
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Figure 8.30: SSD for the two-Bingham model (red squares) and two-Watson (blue circles) 

between the bootstrap and the PICo connection probabilities, with PICo concentration estimated 

from the LUT in the average brain.

In the calibration of the PICo PDFs, we obtain many noisy estimates of the fibre orienta­

tions from a two-tensor fitting routine. The ordering of these axes is unspecified, so it is often 

not clear how to divide the axes into separate clusters from each fibre population. We propose 

fitting the parameters of a two-Watson and two-Bingham model directly to the data, and com­

pare this to an iterative sorting approach [18] where the axes are divided into two groups, and 

a single-mode PDF is fitted separately to each group of axes. Experiment (xiv) shows that the 

direct fitting is better than the sorting at finding the parameters of Bingham distributions, when 

the axes are sampled from Bingham distributions and one or both of the clusters of axes have 

very low concentration. However, the direct fitting method appears to be more sensitive to the 

outliers that are found in clusters of axes extracted from noisy MR data. Experiment (xvii) 

shows that the sorting method gives better estimates of the PDF orientation, and more plausible 

estimates of the concentration of fibre-orientation estimates from synthesised MR data.

We compare the PDF concentration from bootstrap fibre orientations to the concentration 

estimated from the LUT calibration approach. The bootstrap fibre orientations are an imperfect 

gold standard, as we see in experiment (xxiv). Bootstrapping increases the dependence of the 

concentration on the orientation of the diffusion relative to the gradient directions. There is 

some correlation between the bootstrap concentrations and those predicted by the LUT, but
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Figure 8.31: Difference in connection probability between the bootstrap tracking and the Bing­

ham model, with concentration estimated from the LUT in brain image 1. The arrow highlights 

the seed point.

the LUT tends to underestimate the concentration compared to the bootstrap method. The 

differences between the two are probably caused in part by the deficiencies of the bootstrap 

method, and in part by deficiencies in the PICo calibration. PICo models only the uncertainty 

due to noise; other sources of error, such as artefacts due to magnetic susceptibility effects, may 

also be present in the brain data, however we would expect those to reduce concentration of the 

bootstrap fibre orientations, rather than increase it.

We perform probabilistic tractography in the brain using the bootstrap fibre orientations, 

the Bingham and Watson PDFs fitted to the bootstrap data, and the Bingham and Watson PDFs 

calibrated from the LUTs. The connection probability maps calculated using the Bingham 

PDF models fitted to the bootstrap data are similar to those calculated from bootstrap tracking 

(experiment (xxvii)). This suggests that the two-Bingham PDF is a good model of the fibre- 

orientation PDF. However, the PICo calibration process introduces errors in the concentration 

that make the differences between PICo and bootstrap connection probabilities much larger, but 

the Bingham model still has smaller errors than the Watson model (experiment (xxviii)).



Chapter 9

Connectivity based partitioning of the corpus 

callosum

This chapter details an application of the PICo method to the problem of connectivity-based 

partitioning of the corpus callosum. Connectivity-based partitioning is a method for segmenting 

a region of interest in the brain based on anatomical connectivity to other brain regions. Given 

a segmentation of cortical grey matter into distinct labelled regions, we use tractography to 

determine which labelled region is most likely to be connected to each voxel in the region of 

interest.

Part of this work is published in [108], where we applied the Watson PDFs. In this thesis 

we use the two-Bingham PDFs. Compared to earlier efforts [19, 109, 110], we make two main 

innovations. Firstly, we leverage advances in atlas-based image segmentation to produce cortex 

partitioning of subjects automatically. Secondly, we resolve crossing fibres and use a novel 

model of uncertainty as described in Ch. 8 .

9.1 Method

We segment the corpus callosum of 8  healthy subjects (six male, two female). The diffusion- 

weighted images contain 6 6  diffusion weighted measurements in each voxel. The first 54 mea­

surements are at a fixed | q  |=  q, $ =  0.034s, A =  0.04s (£ and A are defined in Fig.

3.2), | g |=  0.022Tm -1 , giving a 6 -value of 1050s mm-2 . The gradient directions are spread 

evenly on the hemisphere to minimise then dependence of the tensor on the orientation of the 

tissue relative to the gradient directions. Six images have no diffusion-weighting, and six of the 

54 diffusion-weighted measurements are repeated with | q  |=  q/ 2 as part of an experimental 

acquisition procedure, which is unrelated to this work.

We refer to the brain region of interest as the seed region and each voxel in the seed region 

as a seed point. We define the “connectivity map” for each seed point as the collection of
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probabilistic streamlines emanating from the seed.

The algorithm to partition the seed region is as follows:

1. Label the grey matter regions of the subject in the space of the diffusion data.

2. Generate the connectivity map for each seed point from the diffusion data.

3. For each seed point, determine the labelled grey matter region to which the seed has 

highest likelihood of being connected according to the connectivity maps.

We describe the details of each of these three steps in order.

9.1.1 C ortical region labeling

We require cortical regions to be defined in the same space as the connectivity maps. However 

the diffusion-weighted images lack the resolution for accurate delineation of cortex. Thus a 

high resolution T1-weighted image of the subject is acquired, on which the cortical regions 

of interest are defined. These regions are then transferred onto the diffusion data after co­

registration of the T 1 -weighted image to a non-diffusion weighted image acquired as part of the 

diffusion MRI sequence hereafter referred to as the unweighted image.

precentral supramarginal

su p erior tem poral inferior frontal

middle temporal superior parietal

superior frontal postcentral

m iddle frontal inferior tem poral

inferior parietal parahippocampal

occipital occip itotem poral

Figure 9.1: A surface rendering of the labeled atlas used in this work with cortical labels.

One feature of our method is the automation of the cortical region labeling step by warping 

an atlas [111] into alignment with the T1-weighted image. Figure 9.1 shows the brain atlas 

and the cortical labels. Fig. 9.1.1 shows the warped atlas after registration to the T1-weighted 

image of one subject. To improve the quality of the co-registration between the T1-weighted 

and unweighted images, we also acquire a high-resolution EPI image, which is used as an 

intermediate representation of the brain configuration in the diffusion data space. Specifically, 

the T1 -weighted image is non-rigidly aligned to the EPI image, which in turn is non-rigidly 

registered to the unweighted image. The corresponding transformations are computed to enable
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Figure 9.2: (Left) The grey matter labels for one hemisphere, shown superimposed on the 

underlying structural image of the atlas. (Right) The atlas is registered to the T1-weighted image 

of one subject, and the warped grey matter labels for one hemisphere are shown superimposed 

on the subject’s structural image.

atlas labels defined on the T1-weighted image to be transferred to the unweighted image. The 

non-rigid registration algorithm used optimizes an intensity cross-correlation metric under the 

constraints of a diffeomorphic transformation model in multiresolution fashion [1 1 2 ].

9.1.2 G eneration  of p robabilistic  stream lines

The tensor fitting routine is the same we use in Ch. 7 and Ch. 8 . In single-fibre voxels, we 

fit the elements of the diffusion tensor directly to the data. We use the spherical-harmonic 

classification [54] to find voxels where the diffusion is non-Gaussian. In these voxels we fit 

the restricted two-tensor inversion defined in Ch. 8 , which assumes that the two tensors are 

cylindrically-symmetric and that each of the compartments in the voxel contributes equally to 

the signal.

We generate streamlines using the Bingham PICo PDFs. We generate LUTs following 

the procedures in Ch. 7 and Ch. 8 . We estimate the signal to noise ratio in this data to be 

approximately approximately 14 in white matter in the unweighted images. We use the direct 

fitting method to find the parameters of the two-Bingham PDFs. This is consistent with the 

earlier published version of this work [108], but in light of experiment (xvii), we expect that the 

sorting method would produce better results.

The tractography method is the same as in Ch. 8 . We define the region of interest as a cross 

section of the corpus callosum along the mid-sagittal line (between the cerebral hemispheres). 

We use a simple region-growing algorithm to segment all connected voxels with anisotropy 

/  >  0.4. This anisotropy threshold is higher than the usual grey-white matter threshold of 

/  «  0.1. We use this threshold to eliminate voxels that contain a mixture of white matter and
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CSF or of white and grey matter.

9.1.3 Labelling of the seed region

We label each voxel in the seed region according to the cortical region (as defined in [111] 

and shown in Fig. 9.1) that has the highest connection probability to the seed. The connection 

probability between each cortical region and the seed voxel is the fraction of streamlines from 

the seed that enter the region. Because tracking terminates upon entry to a labelled region, we 

do not consider connectivity that passes through multiple cortical regions.

9.2 Results

The fibre bundles passing through the corpus callosum extend to both the left and right cortex, 

so we construct two sets of connectivity maps. Each map represents the connections to one 

hemisphere of the brain. Fig. 9.3 shows the labelled corpus callosum of all eight subjects.

The three largest partitions in the corpus callosum we find are consistent with the earlier 

study [19]. The voxels within these partitions are most likely to connect to the superior frontal 

gyrus, the superior parietal gyrus and the occipital gyrus respectively. Fig. 9.4 shows the size of 

each partition as a percentage of the size of the corpus callosum for the Bingham connectivity 

map. On average over all the controls, the sizes of the three largest partitions are 54%, 21% and 

9% for the left hemisphere and 57%, 23% and 10% for the right hemisphere. The fourth largest 

partition to the left hemisphere is the postcentral gyrus, with an average size of 6 %. The fourth 

largest partition to the right hemisphere is the superior temporal gyrus, with an average size of 

3%. Postcentral connections to the right hemisphere 0.8% on average. •

We repeat the tractography without using the two-Bingham PDFs, to see what influence 

resolving crossing fibres has on the results. We fit a single diffusion tensor in each image and 

perform PICo tractography as before, using the Bingham PDFs. Fig. 9.5 shows the results, 

which are very similar to the results when we use the voxel classification and two-Bingham 

PDFs. The failure of the two-fibre methods to significantly alter the results has several possible 

explanations. The voxels containing crossing fibres may not be consistently identified. Fig. 9.6 

shows a slice of a fractional anisotropy image, with a known fibre-crossing region (studied in, 

for example, [54] and [113]) highlighted, where fibres of the cortico-spinal tract are thought 

to cross those of the corpus callosum. Note that the anisotropy appears to be lower in the 

crossing region than in the surrounding white matter, because the Gaussian model is a poor 

approximation of the DW-MR measurements. The corresponding voxel classification from 

the spherical harmonic algorithm is also shown overlaid on the anisotropy. Only some of the 

voxels in the fibre-crossing region are classified as non-Gaussian. Using two-fibre PDFs will
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only make a difference to the labelling if the streamlines are diverted into a different cortical 

zone as a result of resolving the fibre-crossings. The architecture of the fibre pathways and 

cortical zones may make this unlikely. In addition to the difficulties associated with identifying 

crossing fibres, the tracking algorithm is biased towards following a low-curvature path, since 

we follow the direction most closely aligned to the previous streamline trajectory.

In [108], we used the voxel PDFs to make a random choice of which principal direction to 

follow in voxels with two fibre populations. If the (Watson) PDFs in a voxel are Wi(x; /x1? k ) 

and W2(x; /x2, «), and the orientation of the streamline trajectory on entry to the voxel is x, 

then the probability of tracking along a sample from W \ is pi = W i(x)/[W i(x) +  W2 (x) and 

the probability of tracking along a sample from W2 is 1 — p\. If two equally-concentrated PDFs 

have peaks almost equally aligned with the incoming streamline trajectory, then the streamline 

is almost equally likely to follow a sample from either one. The tracking algorithm in this thesis 

would always choose whichever PDF was most closely aligned to the incoming direction, even 

if the difference between the two was small. However, further work is required to explore more 

fully whether making a probabilistic choice of fibre orientation is theoretically sound, and how 

such a method could be compared to bootstrap tractography, where no PDF is defined.

The partitioning results in Fig. 9.4 are consistent with those in [108] for the three largest 

partitions, which constitute over 90% of the partitioned area of the corpus callosum, but the 

postcentral gyrus partition is not consistently larger in the left than in the right connectivity 

maps.

9.3 Conclusions

Compared to the work by Huang et al. [19], we have chosen a significantly finer cortical la­

beling. Despite that, it appears majority of the connections through the corpus callosum are 

restricted to several large cortical regions. Additionally, several regions, notably the middle 

and inferior temporal gyrus, the occipitotemporal gyrus and the supramarginal gyrus, are not 

found in the partitions. It is possible that the connections to these regions are mediated through 

other regions, either by ipsilateral or U-fibre connections. Alternatively, such connections may 

exist in the corpus callosum but are not resolved by the partitioning method. The tractography 

estimates the probability that a single fibre pathway connects to the labelled region. Multiple 

cortical regions may have a nonzero connection probability to the seed but this cannot be in­

terpreted as a distribution of distinct fibre pathways. The PDF that we sample from in PICo is 

the probability of a single fibre pathway existing along the path of each streamline. We cannot 

resolve multiple connections to the seed voxel.
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We were unable to find any difference in the segmentation when using the two-Bingham 

PDFs in conjunction with the spherical-harmonic voxel classification. A more reliable voxel 

classification algorithm, or an alternative method of resolving fibre crossings (such as q-ball

[43] or PAS-MRI [58]) may alter the results considerably.

It has been shown in postmortem studies that there are wide-spread heterotopic commis­

sure connections across the corpus callosum [114]. We consistently find more connections to 

the left postcentral gyrus than to the right. Partitioning studies such as this have the potential to 

offer new evidence of the existence of the heterotopic connections and, furthermore, possibly 

locate where such connections traverse across the corpus callosum. Other potential applications 

include the study of connectivity in diseases such as schizophrenia, where previous research has 

suggested a reduction in the size of the corpus callosum [115].



9.3. Conclusions 139

Figure 9.3: Partitions for the left and right side connectivity from the Bingham connectivity 

map, coloured according to the labels in Fig. 9.1.
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Figure 9.4: Results of tracking with Bingham PICo PDFs, using the two-fibre PDFs in non- 

Gaussian voxels. The number of voxels assigned each label is shown as a percentage of the 

total voxels in the corpus callosum segmentation of each subject. The black region are voxels 

from which no streamlines reached a labelled region.
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Figure 9.5: Results of tracking with Bingham PICo PDFs using only the single-fibre PDFs.

4

4



9.3. Conclusions 141

Figure 9.6: (top) A coronal slice of a fractional anisotropy image from one of the subjects. A 

prominent fibre crossing region is highlighted by the boxes, (bottom) A spherical harmonic 

voxel classification map overlaid on the anisotropy. Anisotropic Gaussian voxels are coloured 

green, non-Gaussian voxels are coloured red.



Chapter 10

Conclusions and future directions

We have presented new models of the fibre-orientation PDF for voxels containing a single fibre 

population. The Watson PDF is similar to the Gaussian model used by Parker and Alexander

[56], with circular contours on the sphere. Unlike Parker’s Gaussian model, the Watson PDF 

can also model a distribution of fibre orientations concentrated in a plane, such a distribution is 

seen when there are crossing fibres in a voxel and the diffusion tensor is oblate.

The Bingham PDF generalises the Watson PDF to distributions that do not have rotational 

symmetry about the peak. It can therefore model the elliptical clusters of fibre orientations 

observed in voxels where the diffusion is anisotropic but does not have cylindrical symmetry 

about the fibre orientation.

The ACG PDF can also model elliptical clusters of fibre orientations, but tends to overes­

timate the uncertainty. The ACG PDF is less sensitive to outliers than the Bingham or Watson 

models, however this means that when sampling from the ACG PDF we are more likely to ob­

tain an outlying axis. This means that the ACG PDF disperses streamlines more widely than 

the other models (see Fig. 7.8). There are relatively few outliers in the single-tensor fitting at 

the SNR of the brain data, which makes the ACG PDF least suitable of the three candidates.

We show in synthetic data that the Bingham PDF provides the best model of the uncertainty 

due to noise, since it provides lower errors to the gold standard of the uncertainty. In the 

bootstrap brain data, we also find that the Bingham model provides the best model of the fibre- 

orientation PDF as defined by the bootstrap data. In practice, our ability to model the fibre- 

orientation PDF is limited, because we must rely on a LUT, which is indexed according to 

tensor parameters which are subject to errors. We show that even when the parameters are 

taken from the average brain, the difference in connection probabilities between PICo and the 

bootstrap tractography grows from a mean SSD of 0.07 to a mean of 0.57. When the parameters 

are taken from a single brain image, the mean SSD is 1.0.

For the two-fibre case, we test a mixture model of the Watson and Bingham models. We
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show that if we impose constraints to improve the stability of the two-tensor fitting, the clus­

ters of fibre orientations from the fitting routine are elliptical, and best modelled by a Bingham 

distribution. Experiment (xiv) suggested that direct fitting of the two-Bingham parameters via 

optimisation may improve the accuracy of the estimated concentration. However, in axes ob­

tained from MR data, the iterative sorting method of Alexander and Barker [38] proved to be 

better, at low crossing angles. The differences between the bootstrap fibre tracking and two- 

fibre PICo are larger than in the single-fibre image, the mean SSD with tensor parameters taken 

from brain image 1 is 1.48. Still, the two-Bingham model has lower SSD than the two-Watson 

model.

The distributions of fibre orientations in two-fibre voxels are less concentrated and have 

more outliers than the single-fibre distributions. The ACG model could be better in these voxels, 

however it us not such a good model in the single fibre case. A future work could perform PICo 

using the Bingham PDF in one-fibre voxels and the ACG PDF in two-fibre voxels. We could 

also use the Watson PDF in the two-fibre voxels, to quantify how much difference the two- 

Bingham PDF specifically makes to the connection probabilities. Another interesting idea is 

to model the effects of a variable mixing parameter in the two-fibre fitting. It is possible that 

a variable mixing parameter will destabilise the estimated anisotropy and cause a larger error 

in the concentration, but ignoring the mixing parameter also causes an error in the estimated 

concentration.

We use the Bingham PDFs to perform a connectivity based segmentation of the corpus 

callosum. We use direct fitting in Ch. 9 to find the parameters of the two-Bingham PDF. Based 

on experiment (xvii), we expect that the sorting method would be better. The experiments in Ch. 

8  and Ch. 9 depend on spherical harmonic voxel classification to distinguish two-fibre voxels. 

The classification thresholds are set manually and there is no correct threshold that is known to 

produce the best classification. Using the two-fibre models did not alter the results of the corpus 

callosum segmentation, however it would be interesting to see how perturbing the thresholds 

affects the results of experiments (xxvi) and (xxvii), where we compare PDF concentration at 

the voxel level.

Another interesting future work would be a full comparison between the model-based 

approaches and the Bayesian methods proposed by Behrens et al, [13], Friman and Westin [89] 

and Hosey et al [90].



Appendix A

Generation of pseudo-random samples from 

axial distributions

A.l Watson distribution

The routines for simulating the bipolar and girdle Watson distribution give the spherical polar 

coordinates of the sample axis x. The values R x refer to pseudo-random variates from a uniform 

distribution (R  e  [0,1]). These should be set to new values each time a line is executed.

A. 1.1 Bipolar distribution

The mean axis is assumed to be the Cartesian z-axis, where 6 = 4> = 0. In the implementation, 

the mean axis can be specified, and the samples generated from the algorithm below are rotated 

appropriately. We use the rejection method [67, p.290], shown by Best and Fisher [116] to 

generate the samples.

2 . U = R u V  = R 2

3. Set 5 =  I lo g (g  +  l)

4. If V  > exp(kS 2 — kS), go to 2

5. Sample direction = (cos- 1  S,2ttR s)

A. 1.2 Girdle distribution

The polar axis is assumed to be 9 = <f> — 0. As in the bipolar case, the polar axis can be 

specified at run time.

1. Set C\ = y/\ k  I, C2 = ta n - 1  (Ci)

2 . U = R u V  = R 2
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3. Set 5 =  ^ - t a n (C2U)

4. If V  > (1 — k,S2) exp (k S 2), go to 2

5. Sample direction = (cos- 1  S,2ttR s)

A.2 Bingham distribution

The Bingham is simulated by the rejection method, using a modified Watson distribution as a 

wrapper function. We require the Watson distribution that wraps the Bingham distribution as 

closely as possible, as shown in figure A.I. For most distributions the best choice of wrapper is 

a bipolar distribution with /z =  ei. The wrapper must always be greater than or equal to the 

underlying Bingham distribution, so

exp [k3(/z3 • x )2] >  exP •x )2 +  ^ 0 2 •x )2] (A-1)

The normalisation constant Cbw is different from the constant in equation 6.1. The minimum 

value of Cw  is found by considering the case where x  is orthogonal to /z3.

77—  > 77-  exp [ACi(/i! • x ) 2 +  «2 (/z2 • x )2] • (A.2)

Because < /-c2, the right hand side of A.2 is maximum when x  is equal to ± /z1, yielding

1 1>  —  exp [K2\
Cfyyj CB

Cbw < Cb  exp [ - « 2] • (A.3)

Substituting the maximum value of Cbw into A. 1 and taking logs of both sides gives

«3(/z3 • x )2 +  k 2 >  k i ( / / i  • x )2 +  «2(/z2 ‘ x )2- (A.4)

The right hand side is maximised when x equals /z3, so

> - « 2 - (A.5)

Substituting this into equation A.4, we get

Kl(Vl • x )2 +  K2[(fJL2 • x )2 +  (/z3 • x )2)] -  k 2 <  0. (A.6 )

Given that k \  <  k2 and (/z: • x )2 +  (/z2 • x)2 +  (/z3 • x )2 =  1 for all x, it is easy to see 

that equation A .6  is satisfied for all x.

When <C « 2  .the Bingham distribution is similar to a girdle Watson distribution with 

/z3 =  e3. In this instance it is more efficient to use a girdle Watson as a wrapper. Equation 

A.2 becomes

1 1 
—  exp [^(/Z i • x )2] >  —  exp [ n i fa  • x )2 +  ac2 (jz2 • x )2] (A.7)
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Figure A.l: Contours of a bipolar Watson distribution wrapping a Bingham distribution, 

which is maximum when x  is orthogonal to / i : and fi2, giving

Cbw <  CB - (A.8 )

Substituting this into A. 1, it follows that ac3 > k\.

Figure A.2: The girdle distribution (right) is a more efficient wrapper than the bipolar (left) in 

some cases.

A.3 Angular Central Gaussian Distribution

The ACG distribution is closely related to the trivariate Gaussian distribution (see Ch. 6 ). We 

therefore use a standard method to generate trivariate Gaussian samples with zero mean and 

covariance matrix A. Let Nx be samples from the standard normal distribution N (0, A). We 

decompose A into its eigen system, A =  U L U T, with L =  diag{o \ ,  cr2, erf). This process is 

done only once. The algorithm to generate a sample is then:

1. Z  =  (N i  * <71, N 2 * <72, iV3 *  <73 ) T

2. return U z I z I-1 .



Appendix B

Hypergeometric functions

The normalizing constant for the Watson distribution in three dimensions is the confluent hy­

pergeometric function of the first kind [6 8 ]:

M (a, fe, k) -- _ r (6 > n [  exp(2f)fa_1(l — f)b~a_1d£, (B.l)
F { b -  a)r(a) J0

where T  is the Gamma function. The function also has a series representation:

, . a did  -j- l) K? v —> (d)n KnM (o, M ) =  l +  _ K + J _ ^ _ . . .  =  g U 2 _ ,  (B.2)

where (a)n and (b)n are Pochhammer symbols [117]

W "  =  E f e r -  (B3)T(d)

Fig. B.l shows a plot of the function M (1/2 ,3 /2 , k). The generalisation of the function to 

matrix argument (for the Bingham distribution) is given by Kent [103]:

1 3 ^  ^  r , ^  r ( i + i ) r ( j  + I )aja j
=  2V ^ e x p [ K 1] — p / - - - 7 3 v n ------ ’ ( B '4 )2 2 i^ 0 r(z + j + f)z!j!

where a± =  —k\ and a.2 =  — «i-
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Figure B .l: Plot of the confluent hypergeometric function of the first kind against k .
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