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Abstract

The highly conserved eukaryotic checkpoints keep tight control over cell cycle 

progression, arresting the cell in response to incomplete DNA replication or 

DNA damage. In fission yeast, Rad3 (functional homologue of ATM, mutated in 

ataxia telangiectasia, and structural homologue of ATR, ataxia telangiectasia 

and rad3 related) is necessary for activation of both replication and damage 

checkpoints. However, despite the identification of many checkpoint genes, the 

actual sequence of upstream events leading to Rad3 activation remains 

unclear. The aim of my project was to identify and characterise the Rad3- 

dependent DNA damage/perturbed replication sensors and checkpoint 

activators.

A genetic screen was carried out in fission yeast, using the working 

hypothesis that overexpression of these sensors/checkpoint activators would 

ectopically induce a Rad3-dependent block over mitosis in the absence of DNA 

damage or disturbed replication. The screen identified several genes of which 

the DNA replication initiation factor Cdc18/CDC6 had the strongest and most 

reproducible phenotype. Cdc18 is essential to prevent mitosis during S phase. I 

chose to concentrate on characterisation of the Rad3-dependent checkpoint 

role of Cdc18.

The actual level of Cdc18 is important for producing the Rad3-dependent 

cell cycle block. A stabilised Cdc18 protein, mutated at the conserved CDK 

(cyclin dependent kinase) consensus sites also caused a Rad3-dependent cell 

cycle arrest, and was more stable and easier to manipulate than the screen-
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derived clone. Genetic crosses demonstrated Cdc18 acts early on in the 

checkpoint pathway, and through Crb2/Chk1. There was no gross DNA 

damage or detectable replication intermediates in the presence of elevated or 

stabilised Cdc18 levels. I also found that artificial depletion of Cdc18 during an 

S phase block results in loss of the checkpoint but not the replication structures, 

uncoupling the maintenance of replication forks from the maintenance of the 

mitotic block.

An unexpected consequence of Cdc18 stabilisation was an increase in 

the size and variability of chromosome III on pulsed field gel electrophoresis. 

This localised to an expansion of Sfi 1 restriction fragments containing the rDNA 

repeats.

In conclusion, Cdc18 stabilisation activates a Rad3-dependent 

checkpoint in the absence of apparent re-replication, which is associated with 

an expansion of the rDNA repeats on chromosome III. Two models are 

proposed. In the first, Cdc18 induces low level genome wide replication, that is 

undetectable but sufficient for checkpoint activation. This leads to increased 

recombination with unequal crossover events in the rDNA repeats on 

chromosome III, with subsequent repeat expansion. In the second, the 

increased levels of Cdc18 directly activate the cell cycle checkpoint 

independently of the concurrent expansion of chromosome III.
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Chapter 1 Introduction

1.1 General overview of the eukaryotic mitotic cell cycle

Before a cell can divide it must first faithfully copy its DNA so that each 

daughter cell receives a full complement of genetic information. The eukaryotic 

cell cycle consists of S phase, mitosis and the gap phases, G1 and G2, and is 

defined by the ordered temporal progression from G1-S-G2-M (Murray and 

Hunt 1993). Chromosomal duplication is restricted to S phase (DNA synthesis 

phase), and chromosomal segregation to M phase (Mitosis). S phase and 

Mitosis are separated by the gap phases, G1 and G2 (Figure 1.1). Eukaryotic 

checkpoints keep tight control over the order of these events, delaying the cell 

cycle in response to incomplete DNA replication or DNA damage (Hartwell and 

Weinert 1989). The damage checkpoint operates in G1, S and G2 to prevent 

entry into mitosis with damaged DNA. In S phase, the replication checkpoint 

ensures DNA replication is complete before mitosis and cell division 

commences (Hartwell and Weinert 1989, Forsburg and Nurse 1994). The 

spindle checkpoint monitors the separation of chromosomes during mitosis, 

with cell cycle arrest subsequent to mitotic spindle damage or incorrect 

attachment of the chromosomes to the mitotic spindle (Amon 1999). Mistakes 

in these checkpoint controls result in the incomplete transmission of genetic 

information, with loss of genomic integrity and changes in ploidy. This genomic 

instability contributes to cancer development in higher organisms and may 

cause resistance to standard treatments (Hartwell and Kastan 1994).

The fundamental mechanisms of cell cycle progression and checkpoint 

responses are highly conserved from yeast to humans. The stable haploid cell
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Chapter 1 Introduction

cycle of the fission yeast Schizosaccharomyces pombe makes it amenable to 

genetic analysis with well-established molecular biology and cytology 

techniques (Moreno et al. 1991). The mitotic cell cycle and checkpoint controls 

resemble that of higher organisms with distinct G1-S-G2-M phases, with 

mammalian homologues identified for the major fission yeast cell cycle and 

checkpoint genes. It has been used as a model system for the study of several 

cell biological problems including the mitotic cell cycle. As all the experimental 

work described in this thesis was carried out in S. pombe, I will concentrate on 

the fission yeast cell cycle.

S. pombe is a unicellular cylindrical eukaryote. It measures 3-4pm in 

diameter, and 8-15pm in length. Most growth occurs as a consequence of cell 

elongation, with the cell diameter remaining approximately constant. As a 

result, the length of a cell reflects how far it has passed through the cell cycle: 

new daughter cells are the shortest, cells just about to divide are the longest 

(Mitchison 1971, Fantes and Nurse 1977, Fantes 1977, Mitchison and Nurse 

1985).

At key cell cycle stages, cells have to attain certain characteristics to 

pass through. The first is in late G1, when eukaryotic cells need to decide 

between two developmental programmes: to commit to progress from the G1 

phase of the cell cycle to chromosomal DNA replication; or to exit from the 

proliferation cycle and differentiate. This decision is dependent on mitogenic 

stimuli, and is made at the restriction (R)-point in the mammalian cell cycle 

(Pardee 1974, Zetterberg and Larsson 1985) (reviewed by Zetterberg et al. 

1995). Higher eukaryotes can also choose to exit the cell cycle altogether and 

enter a non-dividing state, GO. From GO, they can re-enter the cell cycle at a
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Chapter 1 Introduction

later point in time. The R-point is equivalent to “Start” in fission yeast (Nurse 

and Bissett 1981, Aves et al. 1985, Simanis and Nurse 1989). In the presence 

of adequate nutritional conditions, fission yeast cells grow to the critical cell 

mass necessary to pass “Start” and undergo DNA replication (Hartwell 1974, 

Nurse 1975, Nurse 1981). Starved cells undergo G1 arrest, and, if both h+ and 

h- cells are present, can leave the proliferation cycle to undergo subsequent 

conjugation and meiosis. Hence, fission yeast can only “differentiate” or initiate 

alternate pathways of development from pre-Start G1 (reviewed by Woollard 

and Nurse 1995). The rum1 gene is crucial in fission yeast to keep the cell in 

pre-Start G1: cells undergo Start immediately after mitosis in its absence; G2 

cells will skip mitosis to get to pre-Start G1 when rum1 is overexpressed 

(Moreno et al. 1994).

Fission yeast experience a very short G1 before entering S phase, where 

DNA replication takes place and each chromosome is duplicated to make two 

sister chromatids (Nurse et al. 1976, Nurse and Thuriaux 1977). In eukaryotic 

cells, sisters remain physically connected from S phase synthesis until mitotic 

segregation (Uhlmann and Nasmyth 1998). Sister chromatid cohesion is 

essential for sister separation to opposite poles of the cell at mitosis (Miyazaki 

and Orr-Weaver 1994). It also enables chromosomal segregation to take place 

long after replication, by providing the cell with a “memory” of the duplication 

process. This temporal separation of the eukaryotic cell cycle, with its ability to 

define which chromatids need to be separated at cell division, distinguishes it 

from the bacterial cell cycle, where chromosomal segregation follows straight 

on after DNA replication. The separation of the S and M phases enables both 

chromosomal condensation, essential for separation of large genomes, and the
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Chapter 1 Introduction

two rounds of chromosomal segregation required after a single round of 

replication in meiosis.

Before entry into mitosis the cells will approximately double their size to 

reach a critical cell mass. G2 takes up around 70% of total cell cycle time. Late 

G2 phase is the second key cell cycle stage as cells need to check DNA 

replication is complete and there is no DNA damage before proceeding into 

mitosis (the G2-M checkpoint).

Mitosis consists of a sequence of events common to most eukaryotes 

(Nasmyth 2005). The first phase of mitosis (prophase, prometaphase and 

metaphase) concerns the amphitelic attachment of sister chromatids 

(attachment to microtubules from opposing poles of the mitotic spindle). 

Syntelic attachment (with both sisters attached to the same pole) causes 

daughter cell aneuploidy. Chromosomes condense in prophase. The nuclear 

membrane dissolves to mark the start of prometaphase, with proteins attaching 

to the centromeres to create the kinetocores. Microtubules attach to the 

kinetocores, and in metaphase the sister chromatids align along the centre of 

the mitotic spindle. This final key cell cycle stage demands that the 

chromosomes are correctly aligned and the spindle properly formed (the spindle 

checkpoint).

The second phase of mitosis concerns the simultaneous destruction of 

all the connections between sister chromatids and subsequent traction towards 

the opposing poles in anaphase (Uhlmann et al. 1999). In telophase the two 

daughter nuclei are formed, and the chromosomes disperse. With exit from 

mitosis the spindle breaks down and a septum forms for cytokinesis, the
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Chapter 1 Introduction

splitting of the cell into two daughter cells. As G1 is so short in fission yeast, 

cytokinesis actually occurs at the subsequent S phase (Figure 1.1).

The mammalian cell cycle stages are similar to those of S. pombe. 

However, there are some important differences. In mammalian cells, G1 and 

the interpretation of extra-cellular signals is more critical as a decision is 

needed either to continue proliferation or to exit the cell cycle and differentiate 

(reviewed by Planas-Silva and Weinberg 1997). Also, dissolution of the nuclear 

membrane occurs with mitotic entry in mammalian cells, whereas in fission 

yeast the nuclear membrane does not breakdown and a closed mitosis occurs.

1.2 DNA replication

The fidelity of DNA replication is essential for maintenance of genomic integrity. 

All eukaryotes accurately and temporally regulate chromosomal replication. 

Replication control is conserved throughout evolution with homologues of the 

initiators and regulators found in many organisms (Dutta and Bell 1997).

Eukaryotic chromosomal replication is initiated at multiple sites called 

replication origins, ars (autonomously replicating sequences), first identified in 

S. cerevisiae (Bell and Stillman 1992). The replication origins direct the 

formation of the pre-replicative complex (pre-RC) (Kelly and Brown 2000). The 

pre-RC is made up of a number of proteins: the evolutionarily conserved six 

subunit ORC (origin recognition complex); CDC6/Cdc18 (Kelly et al., 1993) and 

CDT1 (cdc10 dependent transcript 1); the heterohexameric MCM 

(minichromosome maintenance) complex containing MCM2-7. Replication 

origins are recognised by the ORC, and binding of ORC to origins persists
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Chapter 1 Introduction

throughout the cell cycle (Bell and Stillman 1992, Bell et al. 1993, Micklem et al. 

1993, Grallert and Nurse 1996, Leatherwood et al. 1996, Lygerou et al. 1999). 

In late mitosis, origins are licensed by a step-wise recruitment of the pre-RC 

proteins to the ORC platform (see Figure 2). When CDC6/Cdc18 and CDT1 

have been loaded onto the DNA, they both promote the loading of MCM onto 

chromatin ( Nishitani and Nurse 1995, Coleman et al. 1996, Romanowski et al.

1996, Donovan et al. 1997, Dutta and Bell 1997, Tanaka et al. 1997, Donaldson 

and Blow 1999, Nishitani et al. 2000). The pre-RC is essential for replication 

initiation but needs to assemble further conserved proteins to form the pre­

initiation complex (pre-IC) (Kearsey and Labib 1998, Zou and Stillman 2000). 

Assembly of the pre-ICs takes place throughout S phase in a sequential 

manner dependent on the timing of origin firing (Zou and Stillman 2000). The 

initiation factor Dpb11/Cut5 is required, which in turn loads Cdc45 and the DNA 

polymerases (reviewed by Takeda and Dutta 2005). Cdc45 loading precedes 

origin firing (DNA unwinding) and DNA polymerase recruitment. Assembly and 

activation of the pre-IC is governed by Cdc28 and DDK (Dbf4-dependent 

kinase) activity (Cdc2 and Hsk1/Cdc7 in S. pombe) (Brown and Kelly 1998, 

Johnston et al. 2000). The DDK becomes chromatin associated during S phase 

and phosphorylates the MCM complex (Brown and Kelly 1998, Jares et al. 

2000).

Following initiation, the MCM proteins are found associated with non­

origin DNA progressively more distant from the site of initiation, implying that 

the MCM complex may be associated with the moving forks (Aparicio et al.

1997, Labib et al. 2000). The activity of replication origins must be coordinated 

to ensure that the entire genome is correctly replicated in the absence of any
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re-replication of DNA regions. The main control of replication origin activity is 

by the opposing action of the mitotic CDKs (cyclin dependent kinases and the 

APC (anaphase promoting complex) ubiquitin ligase. Pre-replication complex 

origin assembly takes place in the presence of low CDK/ high APC activity, 

which is only seen at the M/G1 transition. Origin firing occurs with inactivation 

of the APC plus CDK activation past a threshold (low APC/ high CDK activity) 

(Kelly and Brown 2000).

In S. cerevisiae the CDKs are known to inhibit each pre-RC component 

(ORC, Cdc6, Cdt1 and MCMs) by different mechanisms to prevent pre-RC 

assembly, and subsequent origin firing, during S phase, G2 and mitosis. The 

mitotic CDK, Cdc28, has been shown to bind to Cdc6. Once complexed with 

Cdc28, Cdc6 is unable to function in the assembly of the pre-RC (Mimura et al. 

2004).

In fission yeast origin licensing control can be bypassed by: (1) strong 

overexpression of cdc18\ (2) moderate co-overexpression of both cdc18 and 

cdtl, which may allow re-initiation even in G2 cells (Nishitani and Nurse 1995, 

Yanow et al. 2001). The continuous DNA synthesis observed is referred to as 

re-replication.

Many of the replication machinery components involved in the initiation of 

DNA synthesis are thought to have roles in preventing mitosis until the 

completion of S phase in fission yeast. This is called the S-M checkpoint, which 

will be discussed in further detail later on.
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1.3 Cell cycle regulation

The key factors in determining successful cell cycle progression with the 

complete transmission of correct genetic information to two daughter cells are 

the:

1) Control mechanisms: the crucial role played by the cyclin dependent 

kinases (CDKs) and their associated cyclins in triggering chromosomal 

duplication and segregation.

2) Surveillance mechanisms (the cell cycle checkpoints): the monitoring of 

the fidelity of chromosomal duplication and segregation.

1.3.1 Cell cycle regulation I: Cell cycle control mechanisms

1.3.1.1 Cyclin Dependent Kinases and Cyclins

In all eukaryotes, the members of the cyclin-dependent kinase (CDK) family 

play a central role in controlling the onset of S phase and mitosis, and in 

ensuring that these phases alternate and that there is only one S phase per cell 

cycle (reviewed by Nurse 1990, Nigg 1995, Nurse 2000). The CDKs are 

serine/threonine kinases, which bind to their cyclin regulatory subunits to form 

active heterodimeric complexes.

Mutagenesis screens performed in S. pombe looking for the cell division 

cycle (cdc) phenotype revealed the cdc2 gene (Bonatti et al. 1972, Nurse et al. 

1976, Nasmyth and Nurse 1981). The Cdc phenotype is characterised by cell 

cycle arrest and elongation (continued cell growth in the absence of cell 

division) at the restrictive temperature, but cells grow and divide normally at the 

permissive temperature. Mutations in cdc2 were shown to cause defects in
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both nuclear division and DNA replication (Nurse and Thuriaux 1980, Nurse 

1981). The conserved role of Cdc2 in the eukaryotic cell cycle was 

demonstrated by the rescue of a cdc2 mutant, by both S. cerevisiae Cdc28 and 

by a human clone of cdc2 (Beach et al. 1982, Lee and Nurse 1987).

Cdc2 is an essential gene. Loss of activity arrests cells both in pre-start 

G1 and in late G2, whereas overexpression advances entry into mitosis. No 

complete suppressors of cdc2 disruption have been identified, leading to the 

conclusion that a single CDK is responsible for both the G1/S and G2/M 

transitions in S. pombe (Nurse and Thuriaux 1980, Nurse 1981, Nurse 1990, 

MacNeill and Nurse 1997).

CDK function requires the association of the CDK with a cyclin partner. 

The cyclins, like the CDKs, are highly conserved throughout eukaryotes, and 

were first discovered in sea urchin eggs (Evans et al. 1983). Cell cycle 

progression in S. pombe is governed by the interaction between its single CDK, 

Cdc2, and 3 B-type cyclins: Cdc13, Cig1 and Cig2 (Fisher and Nurse 1995). All 

cyclin protein levels oscillate throughout the cell cycle, and are strictly regulated 

by both transcription and by ubiquitin-dependent proteolysis (Glotzer et al. 

1991, Wilkinson et al. 1999).

The B-type cyclins contain an N-terminal destruction box, which allows 

their targeting for ubiquitin-dependent proteolysis. The destruction of a cyclin 

will inactivate the CDK-cyclin complex (Murray and Kirschner 1989). The 

ubiquitin-dependent pathway is under the control of the anaphase promoting 

complex (APC), with cyclin destruction and subsequent CDK inactivation by 

completion of mitosis. Both Cdc13 and Cig2 contain the characteristic 

destruction box (but not Cig1), necessary for APC recognition and targeting for
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ubiquitin-dependent proteolysis. When a mutant cdc13  strain with no 

destruction box is used, cells cannot exit mitosis and an anaphase arrest is 

seen (Yamano et al. 1996, Yamano et al. 1998).

Cdc13 is essential for G2/M progression, its levels peaking at the onset 

of mitosis but undetectable by anaphase. Cells deleted for cdc13 do not divide 

and undergo multiple rounds of S phase, which may be visualised as re­

replication (Hayles et al. 1994). Use of an indestructible Cdc13 mutant strain 

prevents mitotic exit (Yamano et al. 1996). Cdc13 has been shown to co- 

immunoprecipitate with Cdc2, and the Cdc2-Cdc13 complex is active at entry 

into mitosis (Booher and Beach 1988, Booher et al. 1989, Hagan et al 1988, 

Moreno et al. 1989).

Cig1 lacks the mitotic destruction box and putative ubiquitin interacting 

motif typical of the other B-type cyclins, suggesting it is not cell cycle regulated. 

At present there is no clear cell cycle role for Cig1. However, it is involved in 

the phosphorylation and inactivation of Rum1, with subsequent release of its 

the inhibitory effect on Cdc2, allowing progression through START into S 

phase. Hence, Cig1 plays a non-essential part in the G1/S transition (Bueno et 

al. 1991, Moreno et al. 1994). It has also been shown to form a complex with 

Cdc2, with kinase activity peaking in mitosis (Basi and Draetta 1995).

Cig2 is the major cyclin for the Gi/S transition (Bueno and Russell 1993, 

Martin-Castellanos et al. 1996, Mondesert et al. 1996). Expression of Cig2, and 

subsequent associated kinase activity peaks at the onset of DNA replication. In 

the absence ofC ig2, Cdc13 can promote Gi/S progression, but with an 

observed delay in S phase entry. So, Cdc13 (complexed with Cdc2) is capable 

of inducing the onset of both S phase and mitosis. This is not a reciprocal
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process: although Cig2-Cdc2 can promote the G1/S transition alone, there is no 

entry into mitosis in the absence of Cdc13 (Bueno and Russell 1993, Fisher and 

Nurse 1996, Mondesert, McGowan et al. 1996 ).

In higher eukaryotes, there are several CDKs, forming complexes with 

various cyclins at specific cell cycle stages. In the human cell cycle there are 

five cyclin groups (A, B, C, D and E) and 4 key CDKs (CDK 1,2,4 and 6). The 

cyclins act to target the specific CDK to the appropriate phase of the cell cycle. 

Human CDK1 has the closest homology to S. pombe Cdc2, and is the mitotic 

CDK. CDK1 forms complexes with both Cyclin A and B to regulate the G2/M 

transition. Both CDK4 and CDK6 have roles in G1, in complexes with the D- 

type cyclins (Cyclin D1, D2 and D3). CDK2 is the S phase CDK. It is 

sequentially activated by the E-type cyclins (Cyclin E1 and E2) during the G1/S 

transition, and by the A-type cyclins (Cyclin A1 and A2) in S phase (Sherr 1993, 

Reed 1997, Draetta 1994) (reviewed by Ekholm and Reed 2000).

1.3.1.2 The S. pombe Cdc2 cell cycle

Activation of Cdc2 is required for entry into mitosis. As in all eukaryotes this 

requires active site phosphorylation on threonine 167 and cyclin association 

(Moreno et al. 1989).

In early G1, the CDK inhibitor Rum1 accumulates and specifically inhibits 

Cdc2. Inactivation of Rum1 allows cells to pass START and proceed into S 

phase. During S phase and G2, Cdc2 activity is kept low by inhibitory 

phosphorylation at Y15 by Wee1 and Mik1 (Gould and Nurse 1989, Lundgren et 

al. 1991, Featherstone and Russell 1991, Hayles and Nurse 1995, Russell and 

Nurse 1986). This is maintained until dephosphorylation by Cdc25 in late G2,
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the rate-limiting step for entry into mitosis (Enoch and Nurse 1990). Full 

activation of the Cdc2/Cdc13 complex will trigger mitotic entry (Russell and 

Nurse 1986, Millar et al. 1991). Mitotic exit is enabled with the degradation of 

Cdc13, with subsequent inactivation of Cdc2.

Both the initial activation of the CDK, and the regulation of the G1/S and 

G2/M transitions by inhibitory phosphorylation and activating dephosphorylation 

respectively, are highly conserved throughout eukaryotic and mammalian cells 

(reviewed by Takizawa and Morgan 2000).

There are two models to explain how a cell ensures that: S phase is 

complete before entry into mitosis; S phase and M alternate; there is only one S 

phase per cell cycle. The quantitative model of CDK activity in fission yeast 

proposed that a particular cyclin is irrelevant to function except as a general 

CDK activator (Fisher and Nurse 1996). CDK activity is initially low in G1. An 

increase in activity promotes S phase entry and initiation of DNA synthesis. A 

further increase in activity enables the onset of mitosis, and prevents origin 

reloading and re-replication. CDK activity falls on exit from mitosis, before rising 

again for the subsequent S phase. However, the qualitative model proposes 

cyclin identity may be essential for CDK interaction with appropriate cyclin- 

specific targets, and are more than just a conformational switch for CDK activity 

(reviewed by Miller and Cross 2001). It is highly likely that a combination of the 

two models is occurring.

1.3.1.3 Regulation of CDKs

There are three key biochemical events regulating the activity of the S. pombe 

CDK, Cdc2. The first mechanism is the inhibitory phosphorylation of Cdc2 at
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Tyrosine 15 (Y15) by Mik1 and Wee1 during S phase, and dephosphorylation 

by Cdc25 during G2. In a Wee1 single mutant, mitosis is accelerated but cells 

remain viable (Nurse and Thuriaux 1980). However, cells will die from mitotic 

catastrophe in a weeV mik1' double mutant (Lundgren et al. 1991, Rowley et al. 

1992, al-Khodairy and Carr 1992). Loss of Cdc25 will result in cells arresting in 

G2.

Cyclin association and active site phosphorylation on threonine 167 are 

essential for kinase activity, with the amount of cyclin available strictly cell cycle 

regulated by both transcription and ubiquitin-dependent proteolysis.

The third key way to regulate Cdc2 activity is by the binding of CDK 

inhibitor (CDKI) proteins. The major S. pombe CDKI is Rum1, isolated as an 

inducer of re-replication. Rum1 was subsequently shown to inhibit the 

Cdc2/Cdc13 complex (Moreno, Labib et al. 1994) (Correa-Bordes and Nurse

1995). Cells deleted for rum1 are sterile due to a defect in G1 arrest during 

nitrogen starvation (Moreno et al. 1994).

Cell cycle regulators are frequently mutated in human cancers (reviewed 

by Malumbres and Barbacid 2001). Alterations seen include cyclin 

overexpression (mainly cyclin D1 and E1) and loss of CDK inhibitors (such as 

p21CIP1, p27KIP1 and p57KIP2). However, mutations in CDK are rarely seen. For 

this reason, cyclin-CDK complexes have been considered as very promising 

therapeutic targets in human malignancies.
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1.3.2 Cell cycle regulation II: Cell cycle surveillance - Mitotic cell cycle 

checkpoints

The idea that the replication or damage status of DNA during the mitotic cell 

cycle is “checked”, and the information sent via a regulatory pathway to the 

cycle regulators was proposed by Hartwell and Weinert (Hartwell and Weinert 

1989). They identified, in budding yeast, checkpoint mutants that proceeded 

into mitosis despite the presence of unrepaired DNA damage (Weinert and 

Hartwell 1988, Hartwell and Weinert 1989). The checkpoint mutants were 

considered components of the system that monitor and communicate the DNA 

status. A conserved eukaryotic checkpoint control was established with 

checkpoint mutants identified in fission yeast and mammalian cells (Savitsky 

1995, Lieberman et al. 1996, Bentley et al. 1996, Weinert 1997, Kostrub et al. 

1998) (see Table 1.1 below).

The DNA damage checkpoint arrests cell cycle progression at the G2/M 

transition in the presence of damaged DNA. The DNA replication, or S phase, 

checkpoint has two components. One component is the S-M checkpoint (so 

called because it ensures S phase and mitosis alternate), the role of which is to 

prevent mitotic entry until replication is complete (Nyberg et al. 2002). Cut (cell 

ultimately torn) cells are a phenotype of an impaired S-M checkpoint (Stewart 

and Enoch 1996, Lydall and Weinert 1996). The other component is the intra-S 

phase checkpoint, which responds to either damage of replicating DNA, or to 

the presence of replication inhibitors (e.g. hydroxyurea) by slowing down S 

phase progression (with slower fork movement and the down-regulation of late 

origin firing to allow sufficient time to repair the DNA) (Paulovich et al. 1997, 

Santocanale and Diffley 1998, Shirahige et al. 1998). The intra-S phase
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checkpoint prevents irreversible fork collapse, considered DNA damage by the 

cell with subsequent activation of the DNA damage checkpoint (distinct from, 

but overlapping with, the intra-S checkpoint during S phase) (Lindsay et al.

1998). These major checkpoint pathways have been defined in S. pombe. 

Although all the checkpoints described are distinct, they have many common 

sensor, transducer and effector molecules.

Table 1.1 The checkpoint proteins

S. pombe S. cerevisiae Human Functional

domains

Functions Comment

PI3 kinase 

Rad3 Mec1 ATR Ser/Thr kinase

DNA damage/ 

replication checkpoints

Binds to Rad26

Tell

Rad26

Tell

Dcd2

ATM

ATRIP

Ser/Thr kinase 

Coiled-coil Binds to Rad3

RF-C like

Rad 17 Rad24 RAD17 RF-C

DNA damage/ 

replication checkpoints Binds to Radi

PCNAlike

Rad9 Dcd1 RAD9 PCNA-like

DNA damage/ 

replication checkpoints

Required for Hus1/Rad1

Radi Rad 17 RAD1 nuclease

interaction

Binds to Rad17/Hus1

Hus1 Mec3 HUS1 Binds to Radi

BRCT domain

Rad4/Cut5 Dbp11 TopBPI BRCT DNA damage/ Binds to Rad9/Rad3

Crb2 Rad9 BRCA1 BRCT

replication checkpoints 

DNA damage checkpoint Binds to Chk1

Effector kinases

Cds1 Rad53 CHK2 Ser/Thr kinase DNA replication checkpoint Binds to Mrc1

Chk1 Chk1 CHK1

FHA domain 

Ser/Thr kinase DNA damage checkpoint Binds to Crb2

Mrc1 Mrc1 Claspin DNA replication checkpoint Binds to Cds1

A third type of checkpoint, the spindle checkpoint, operates during 

mitosis to ensure correct alignment of chromosomes on an undamaged spindle. 

Cell cycle arrest occurs if the chromosomes are not properly attached to the
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mitotic spindle or there is mitotic spindle damage (Amon 1999). I will 

concentrate on the damage and replication checkpoints, and not discuss the 

spindle checkpoint further. I will first discuss an overview of the damage and 

replication checkpoints in humans, and then in greater detail in fission yeast.

1.3.2.1 Overview of the human G1/S and G2/M damage checkpoints 

The DNA damage response consists of a signal (DNA damage) detected by a 

sensor (DNA damage binding protein), which activates the transducer system 

(a protein kinase cascade). This amplifies and diversifies the initial signal by 

activating the downstream effectors of the damage response: simple damage 

excision, cell cycle arrest to allow repair or apoptosis, and transcriptional 

control. Key to the damage response in human cells is ATM (mutated in ataxia 

telangiectasia) (Savitsky et al. 1995, Zakian 1995J (reviewed by Abraham 2001, 

Shiloh 2001). ATM performs two main functions in humans: checkpoint control 

and telomere maintenance. ATM deficiency leads to the human cancer 

predisposition and neurodegenerative syndrome Ataxia Telangiectasia. This is 

an early onset autosomal recessive ataxia associated with characteristic 

chromosomal aberrations, cell cycle checkpoint defects, cancer susceptibility, 

and sensitivity to ionizing radiation. Certain types of ATM mutations seem to 

increase cancer predisposition in heterozygous carriers.

ATM is recruited to and activated at the site of DNA damage. From here 

it phosphorylates downstream effectors of the damage response (including p53, 

CHK2 and BRCA1) (see Figure 1.3). ATR (ATM and Rad3 related) is another 

damage surveillance protein. It was discovered when searching for a gene with 

ATM  and rad3 homology in the human genome database (Cimprich et al.
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1996). ATR mutation, and partial loss of function, is associated with the 

autosomal recessive Seckel Syndrome, which is clinically similar to A-T 

(O'Driscoll and Jeggo 2003). ATR and ATM have an overlapping set of targets 

but are thought to respond to different types of DNA damage. ATM is 

necessary for the initial rapid phase of the DSB damage response (which lasts 

1 to 2 hours). ATR acts at a later stage, to maintain the phosphorylated state of 

specific substrates. However, the main role of ATR appears to be in response 

to UV light, stalled replication forks and hypoxia (all of which do not activate 

ATM). BRCA1 and p53 are phosphorylated by both kinases, but not all 

substrates are shared, with ATM activating Chk2 and ATR activating Chk1. 

ATR is thought to be more important during G2-M, and not G1-S (reviewed by 

(Sancar et al. 2004). An important characteristic of ATR is its need for an 

accessory protein, ATRIP (ATR interacting protein). This is conserved 

throughout evolution as ATRIP is the functional homologue of S. pombe Rad26, 

which interacts with the ATR homologue Rad3 (Edwards et al. 1999).

Both ATM and ATR are members of a family of large PI3-kinase related 

proteins, characterised by a C-Terminal kinase domain and a long N-terminal 

region with no clear structure or function. Tell (involved in telomere 

maintenance only) is considered the S. pombe homologue of ATM, and Rad3 

(involved in checkpoint control and telomere maintenance) the S. pombe 

homologue of ATR.

In fission yeast, six genes have been identified that are involved in the 

activation of the checkpoint response by detection of stalled forks and DNA 

damage. They are collectively referred to as the rad genes (rad1, rad3, rad9, 

rad17, rad26 and hus1) ( Enoch and Nurse 1990, Enoch and Nurse 1991, al-
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Khodairy and Carr 1992, Enoch et al. 1992, Enoch et al. 1993, al-Khodairy et al. 

1994). Mammalian homologues have been identified for all the rad genes (see 

Table 1.1) (Savitsky 1995, Lieberman et al. 1996, Bentley et al. 1996, Kostrub 

et al. 1998). Cells mutated in these genes are hypersensitive to HU 

(hydroxyurea), a drug which blocks replication, and also produce a 

characteristic DNA damage sensitivity phenotype (al-Khodairy and Carr 1992, 

Enoch et al. 1992).

Rad17 is considered a checkpoint specific structural homologue of the 

replication factor, RFC (a globular protein with a deep groove). The Rad9- 

Rad1-Hus1 (9-1-1) complex is the checkpoint equivalent of PCNA, forming a 

PCNA-like structure (a hetero-trimeric ring). RFC and PCNA form part of the 

replication machinery. RFC acts to load the PCNA onto the DNA. PCNA then 

recruits Pold for DNA synthesis (Yuzhakov et al. 1999). By analogy with 

eukaryotic DNA replication, Rad17-RFC may load the PCNA-like 9-1-1 complex 

onto chromatin (reviewed by O'Connell et al. 2000). The similarity of the 

checkpoint proteins to the DNA replication proteins has led to the idea that they 

are components of DNA-interacting complexes, which act as sensors for DNA 

damage or replication perturbations. So, Rad17 is the checkpoint specific 

clamp loader (CCL) and loads the heterotrimeric (9-1-1) clamp complex (CCC) 

onto the DNA at sites of DNA damage (Melo et al. 2001, Zou and Elledge 

2001). ATR-dependent phosphorylation of Rad17 following DNA damage is 

necessary for the checkpoint response.

In human cells, the next step in the damage response is dependent on 

the cell cycle stage and type of DNA damage. Following DNA damage in G1, 

ATM acts via Chk2, and ATR via Chk1 (reviewed by Sancar et al. 2004) (Figure
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3.1a). Both Chk1 and Chk2 bring about a rapid G1 arrest via the 

phosphorylation, and subsequent nuclear extrusion and degradation, of 

Cdc25A. This prevents Cdc25A from activating Cdk2, resulting in a rapid cell 

cycle arrest. The G1 arrest is then maintained via p53 phosphorylation and 

activation (by both ATM/ATR and Chk1/Chk2). The key downstream target of 

p53 is p21, which acts by binding to and inhibiting the Cdk2-S phase cyclin 

complex, and prevention of Rb (retinoblastoma) activity (and hence prevention 

of the E2F-driven transcription of genes necessary for S phase progression) by 

binding to and inhibiting Cdk4-Cyclin D (Bartek and Lukas 2001).

When DNA damage occurs in G2, either the ATR-Chk1-Cdc25A or ATM- 

Chk2-Cdc25A pathway is activated, depending on the type of damage, to 

prevent mitotic entry (Figure 3.1b). Chk1 and Chk2 also bring about the 

phosphorylation and activation of the CDK inhibitor, Wee1.

1.1.1.2 The replication checkpoint

DNA replication is initiated at multiple origins of replication throughout S phase 

(Kelly and Brown 2000). Replication fork termination occurs by meeting a 

converging fork. However, replication forks will slow down or stall in the 

presence of DNA damage and replication inhibitors or on meeting a natural 

replication pause site, a Replication Fork Barrier (RFB) (Rothstein et al. 2000). 

DNA damage may also produce a RFB. Replication stress may lead to 

genomic instability and cancer development in higher organisms. As mentioned 

previously, the replication checkpoint consists of the S-M checkpoint (delaying 

mitosis until S is complete) and the intra-S checkpoint (slowing down S phase 

progression in the presence of DNA damage). In their absence, replication
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stress results in irreversibly collapsed forks, and inappropriate entry into mitosis. 

The essential DNA replication proteins and the non-essential Rad checkpoint 

proteins are both required for replication checkpoint function.

As eukaryotes initiate replication at multiple origins, the collapse of a 

single fork will not result in a region of unreplicated DNA, but the collapse of 2 

converging forks may do so (Zhou and Elledge 2000). Stalled replication forks 

are stabilized (with the replicative machinery protecting the nascent ends of the 

replicating DNA) and collapsed forks are restarted by recombination. 

Homologous Recombination is thought to play a key role in replication with the 

re-activation of stalled forks (Kraus et al. 2001).

Four cellular responses are seen in response to replication perturbation: 

inhibition of late origin firing; stabilization of active replication forks; delay in 

entry into mitosis; and the slowing of fork progression on damaged templates 

(Kelly and Brown 2000). The checkpoint proteins are all necessary for the first 

three, but not for the fork slowing. The intra-S phase checkpoint acts via 

ATR/Rad3 and Chk1/Cds1 to inhibit late origin firing in the presence of DNA 

damage and replication stress (Paulovich and Hartwell 1995). So, the intra-S 

checkpoint acts during normal replication to prevent the formation of irreversible 

DNA structures at the replication fork. This maintains the fork in a state that is 

“active" and ready for replication to re-start when appropriate. The S phase 

checkpoint is important even during normal replication.

When replication forks stall in S-phase, the intra-S phase checkpoint is 

activated, and ATR, Claspin, Rad17-RFC and the 9-1-1 complex are recruited. 

As in the G1 arrest, ATR acts via phosphorylation and activation of Chk1, which 

then brings about an S phase delay via phosphorylation of Cdc25A and
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inhibition of Cdk2 activity (Figure 1.4a). However, if DNA damage (such as 

DSBs) occurs in S phase, ATM acts instead, via H2AX, MDC1 and p53, to 

activate Chk2, with subsequent inhibition of Cdk2 via Cdc25A (Figure1.4b).

The damage sensors for the intra-S phase checkpoint are a combination 

of checkpoint and repair proteins. As described above, a standard checkpoint 

response (via ATM-Chk2-Cdc25A-Cdk2) is seen, plus a second pathway that is 

dependent on the phosphorylation of SMC1 by ATM (aided by the repair 

proteins BRCA1, FANC1 and NBS1) (reviewed by Lehmann 2005)).

The SMC (structural maintenance of chromosomes) proteins are highly 

conserved throughout evolution. They form a superfamily of proteins with 

similar structures, all having a SMC core plus associated non-SMC proteins. 

Three heterodimeric SMC complexes have been identified, all with roles in 

repair and the response to DNA damage: cohesin (SMC1, SMC3), which also 

holds sister chromatids together and is necessary for homologous 

recombination; condensin, which also condenses chromosomes at mitosis; and 

SMC5-6. Rad50, which is required for meiotic recombination and 

recombination repair, is also necessary for the establishment of the intra-S 

phase checkpoint. Its structure resembles that of the SMC proteins

1.1.1.3 DNA damage and replication checkpoints in S. pombe

Eukaryotic cell cycle checkpoints are highly conserved. I would now like to

discuss the current model for the damage and replication checkpoints in S.

pombe.

39



Chapter 1 Introduction

1.1.1.3.1 The rad genes

In humans the two key checkpoint genes are ATM and ATR, the S. pombe 

homologues being te ll and rad3 respectively. In S. pombe, the rad3 gene 

plays a central checkpoint role, functioning upstream with the other rad genes 

to send the damage/ stalled replication signal to the effector kinases, Chk1 and 

Cds1. They bring about a cell cycle arrest by inhibitory phosphorylation of the 

CDK, Cdc2, via the inhibition of Cdc25 and the activation of Wee1 and Mik1 

(Figure 1.5). Rad3 is required for both the initiation and maintenance of a 

replication block, but for only the initiation of the response to DNA damage 

(Martinho et al. 1998).

The non-essential rad checkpoint genes are rad3, rad26, radU, rad1, 

rad9 and husl. Mutants in these genes are unable to respond to DNA damage 

or perturbations in replication. Rad3 forms a complex with Rad26, the complex 

then functioning as a PI3-related kinase. Rad 17, with its four small subunits, 

has limited homology to Replication factor C (RFC) and the PCNA sliding clamp 

loader (Griffiths et al. 1995). Radi has structural similarity to exonuclease, plus 

a structural motif similar to the sliding clamp protein PCNA. It forms a complex 

with Rad9 and Hus1, the 9-1-1 complex, independently of a checkpoint signal 

(Figure 1.6). The 9-1-1 complex is conserved in budding yeast and humans, 

and has been proposed to provide processivity for DNA-repair and replication 

enzymes (Thelen et al. 1999).

When DNA damage or replication fork stalling occurs, at least two 

complexes are loaded independently onto the DNA: Rad3-Rad26, and the 

Radi 7-dependent 9-1-1 (consistent with their respective homologies to RFC 

and PCNA). Rad3-Rad26 appears to be at the head of a phosphorylation
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cascade immediately upstream of the 9-1-1 complex. This organization is 

maintained for both the G2/M and S-M checkpoints. The Rad3 association with 

Rad26, and subsequent Rad3-dependent phosphorylation of Rad26 appears 

independent of all the other checkpoint proteins and may be considered an 

initial response to DNA damage (Edwards et al. 1999).

However, when DNA damage occurs in S phase (the intra-S phase 

checkpoint), the Rad17 and 9-1-1 complexes appear to be required for the 

Rad3-dependent phosphorylation of Rad26. It has been proposed that the RFC 

and PCNA-like complexes act upstream of Rad3 in the intra-S phase 

checkpoint pathway, and may be necessary for to load Rad3 onto the DNA and 

for its subsequent function (O'Connell, Walworth et al. 2000) (Figure 1.6). In 

response to DNA damage, Hus1 and Radi associate in the 9-1-1 complex in a 

Rad3-dependent manner, and Hus1 undergoes Rad3-dependent 

phosphorylation (al-Khodairy and Carr 1992, Kostrub et al. 1998). The Rad3- 

dependence of all these phosphorylation events sets out a hierarchy among the 

Rad proteins.

1.1.1.3.2 The checkpoint signal transducers

Two proteins containing BRCT-domains, Crb2/Rhp9 and Mrc1 (mediator of the 

replication checkpoint), are also necessary for the checkpoint response. Cells 

lacking Crb2 fail to arrest in the presence of UV or radiation damage, but the 

replication checkpoint remains intact. Crb2 interacts with Chk1 and Rad4 in 

response to DNA damage (Saka et al. 1997) (Figure 1.7). When DNA damage 

occurs in G2, Rad3 phosphorylates Crb2, which then binds to Chk1 to bring it 

into close contact with Rad3 (Mochida et al. 2004). However, Rad3
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phosphorylates Mrc1 following replication stalling in S phase, which then binds 

to Cds1 to create close contact between Rad3 and Cds1 (Tanaka and Russell 

2004). It has been suggested that the checkpoint mediators distinguish the 

different cell cycle phases (and hence the need for Mrc1 or Crb2) by nuclear 

localisation and/or CDK-dependent phosphorylation (Esashi and Yanagida

1999). Cdc2 phosphorylates Crb2, during both a normal cell cycle and in 

response to DNA damage. It has been shown that non-phosphorylatable Crb2 

mutants do not re-enter the cell cycle after DNA damage, raising the possibility 

of a feedback regulation mechanism between the checkpoint and the cell cycle 

machinery (Esashi and Yanagida 1999).

The Rad4/Cut5 protein functions in both the S-M and the G2/M 

checkpoint pathways. It has been grouped with all the other checkpoint rad 

genes upstream of cds1 and chk l, as both the phosphorylation of Chk1 in 

response to DNA damage and Cds1 kinase activity is Rad4-dependent. 

Phosphorylation of Rad9, Rad26 and Hus1 in response to either DNA damage 

or stalled DNA replication is independent of Rad4/Cut5 checkpoint function. 

Rad4 it is a BRCT scaffold protein and is thought to act with Rad3, Rad26 and 

Rad17 to effect the checkpoint response. In the model proposed by Harris et 

al, Rad4 acts to bring together the multimeric complex of Rad3-Rad26-9/1/1 on 

the DNA (Harris et al. 2003) (Figure 1.7). In the event of DNA damage, Rad4 

anchors Crb2, which in turn links Chk1 to the region. Hence, Rad4 is the link 

between the Rad3-dependent cascade and Chk1 phosphorylation and 

activation. Rad4 is also essential for DNA replication during a normal cell cycle, 

and the replication checkpoint (Saka and Yanagida 1993, Saka et al. 1994). 

Rad4 is thought to tether Cds1 when replication stalls. However, there is
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debate as to whether or not this occurs via Mrc1 (Harris et al. 2003, Tanaka and 

Russell 2004).

Chk1 and Cds1 are the link between the Rad proteins and the mitotic 

machinery controls (Walworth et al. 1993, Murakami and Okayama 1995). 

Rad3 phosphorylates and activates the Cds1 kinase after a DNA replication 

block and the Chk1 kinase after DNA damage, though redundancy has been 

observed (Lindsay et al. 1998, Kelly and Brown 2000). Cds1 also plays an 

essential role in recovery from the S phase arrest. In the presence of an HU 

induced S-phase block, cells lacking Cds1 lose viability (Walworth et al. 1993, 

Murakami and Okayama 1995).

Cds1 is structurally similar to S. cerevisiae Rad53 with its forkhead- 

associated (FHA) N-terminal domain. Rad53 has two FHA domains and is 

required for both the damage and replication checkpoints. Rad9 binds to the 

central FHA domain of Rad53, whilst the N-terminal FHA domain is involved in 

the replication checkpoint cascade. The activation and phosphorylation of 

Cds1, in response to stalled replication or DNA damage is S phase specific, 

and protein phosphorylation correlates with kinase activation. This makes Cds1 

phosphorylation a useful marker for the S-M checkpoint (Lindsay et al. 1998).

Chk1 is primarily the transducer of the damage checkpoint, but also 

appears to have a distinct role in the replication checkpoint and is essential for 

recovery from an S phase block. A HU-induced replication block requires the 

activation of the intra-S phase checkpoint, acting via Cds1, to prevent 

irreversible fork collapse. In the absence of Cds1, collapsed forks occur which 

are considered DNA damage by the cell, with subsequent activation of the DNA 

damage checkpoint and Chk1-induced cell cycle arrest. Hence Chk1 can
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substitute partially for Cds1 in an HU block (Lindsay, Griffiths et al. 1998). The 

phosphorylation, and activation, of Chk1 is rad gene dependent and occurs in 

response to DNA damage during G2. The Rad3-dependent serine 345 

phosphorylation of Chk1 is directly linked to Chk1 kinase activity, and is 

therefore considered a useful biochemical marker of DNA damage checkpoint 

pathway activation (Capasso et al. 2002). Overexpression of Chk1 produces a 

mitotic delay (Walworth et al. 1993, Walworth and Bernards 1996). Genetic and 

2-hybrid analyses have demonstrated a Chk1-Crb2 interaction, but Chk1 lacks 

an obvious FHA domain (Saka et al. 1997).

Chk1 and Cds1 send the checkpoint signal to the cell cycle machinery. 

Activation of the fission yeast CDK, Cdc2, is required for entry into mitosis. As 

in all eukaryotes this requires active site phosphorylation on threonine 167 and 

cyclin association. Inhibitory phosphorylation on tyrosine 15 (Y15) by Wee1 

and Mik1 maintains the complex in an inactive state until dephosphorylation 

occurs via Cdc25. This is the rate-limiting step for entry into mitosis (Enoch and 

Nurse 1990, Lundgren et al. 1991).

Chk1 and Cds1 act in two ways to inhibit Cdc2 activity and produce cell 

cycle arrest. The first is by the phosphorylation and inactivation of Cdc25 

(Furnari et al. 1999). The co-immunoprecipitation of Chk1 and Cdc25 has been 

shown in vivo (Furnari et al. 1997). The Cdc25 phosphorylation also allows 

physical association with Rad24, leading to nuclear exclusion. Rad24, and 

Rad25, encode 14-3-3 proteins, which bind to signalling molecules including 

phosphatases (Ford et al. 1994). The loss of Cdc25 activity (by both 

phosphorylation and spatial re-organisation) results in a decrease in CDK 

activity. The second way in which Chk1 and Cds1 bring about cell cycle arrest
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is through the activation of Wee1 and /or Mik1, which then directly inhibit Cdc2 

by Y15 phosphorylation. Cdc25 appears to be the major target of the S-M 

checkpoint, with supporting activation of Mik1 and Wee1. However, Wee1 and 

Mik1 do not appear to play a role in the G2 damage checkpoint, which uses 

inhibition of Cdc25 alone to effect a cell cycle block (Enoch and Nurse 1990). 

This suggests that the two pathways are mechanically distinct. Checkpoint 

activation may be mimicked by the overexpression of Cdc25, the inactivation of 

Wee1 or Mik1, or by the use of a Cdc2 Y15 mutant that uncouples S phase and 

mitosis (Enoch and Nurse 1991).

In fission yeast, there is an additional S phase checkpoint sub-pathway. 

When the S phase checkpoint fails to stabilise stalled forks in an HU block (for 

example in a Cds1 mutant), they are thought to be converted into structures 

recognised as DNA damage with resultant activation of the Chk1-mediated 

damage pathway (Lindsay et al. 1998).

1.1.3 Human checkpoints, the cell cycle and cancer

I have outlined above the major components and pathways of the cell cycle 

checkpoints in both mammalian cells and in fission yeast. In humans, their 

appropriate function is essential for the maintenance of genomic integrity and 

prevention of changes in ploidy. Failure to arrest the cell cycle in these 

situations contributes to cancer development and may cause resistance to 

standard treatments (Hartwell and Kastan 1994). DNA damage is a relatively 

common event and may result in mutation, cancer and death of the cell or the 

organism. The DNA damage response enables the cell to either cope with the 

damage or to activate apoptosis (programmed cell death). The damage
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response includes: removal of the DNA damage; activation of the damage 

checkpoint and subsequent cell cycle arrest, allowing time for repair and hence 

preventing the transmission of damaged/incompletely replicated DNA; and 

apoptosis to remove seriously damaged or deregulated cells.

I have already discussed the association between ATM and ATR 

deficiencies and cancer predisposition. Both the RB protein and p53 act to 

restrain cell cycle progression. P53 is regulated by MDM2 (inhibits p53) and 

p 1 9 ARF (jphjbrts MDM2). Amplification of MDM2, and loss of p53 or of p f  9*RF 

are observed in many human cancers, with inactivating p53 mutations the most 

common genetic alteration seen overall (in 50% of human cancers) (Hollstein et 

al. 1991, Levine et al. 1991, Oliner et al. 1992). The function of p53 may also 

be abolished by nuclear extrusion or by interaction with viral proteins (in cervical 

cancer, the oncoprotein E6 binds and inactivates Rb, E7 binds and inactivates 

p53) ( Scheffner et al. 1991, Lechner et al. 1992). The p53 pathway is probably 

inactivated in most tumours, which also has treatment implications. 

Radiotherapy, and many standard chemotherapy regimes, utilise the p53 

pathway to kill tumour cells. The Li-Fraumeni syndrome is caused by a 

germline mutation in p53 (the same phenotype is seen with a germline mutation 

in Chk2) and is characterised by multiple early onset tumours, such as breast 

and sarcoma (Li and Fraumeni 1969, Bell et al. 1999).

The retinoblastoma gene was the prototype for Knudson’s two-hit 

hypothesis and tumour suppressor genes (Knudson 1971). Loss or inactivation 

of Rb is a frequent event in human tumours, but is classically associated with 

childhood retinoblastoma and osteosarcoma. Overexpression of cyclin D1, 

either by gene amplification or loss of the inhibitory gene p16INK4a, will
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phosphorylate Rb with subsequent release of the E2F transcription factor. Loss 

of the tumour suppressor gene p21 also results in inappropriate E2F release 

and S phase entry.

1.4 Mechanisms of DNA repair

DNA damage ranges from covalent base modification to the DNA double strand 

break (DSB). There are many DNA repair pathways, each with structure 

specific DNA recognition subunits. The DSB is considered the most dangerous 

form of cellular damage. The two ends of broken DNA may become separated, 

leading to inappropriate recombination and problems with repair. This major 

threat to genomic integrity is also specifically generated in certain 

circumstances in higher eukaryotes, such as V(D)J recombination in B and T 

cells to generate immunoglobulin diversity. V(D)J recombination is tightly 

controlled, but mistakes may lead to development of lymphoma (malignancies 

of B and T cells). For example, the poor prognosis Burkitts B cell lymphoma 

occurs when inappropriate recombination places the c-myc oncogene next to 

immunoglobulin heavy chains. Inappropriate DSB repair events frequently lead 

to carcinogenesis in higher eukaryotes by both oncogene activation and tumour 

suppressor genes loss (Khanna and Jackson 2001).

The detection of DSBs triggers downstream pathways, such as DNA 

repair and checkpoint activation. There are two distinct and complementary 

eukaryotic DSB repair mechanisms: Non-homologous end joining (NHEJ) and 

homologous recombination (HR) (Critchlow and Jackson 1998). Both 

mechanisms are highly conserved throughout eukaryotes, with fission yeast
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homologues identified for the key genes involved, but are used to differing 

extents in different organisms. Simple eukaryotes, such as fission and budding 

yeast, use predominantly HR to repair radiation-induced DSB. This is because 

S. pombe spends most of its time in G2 with a sister chromatid available as a 

repair template. NHEJ is generally inefficient in S. pombe, but is used in G1 

arrested cells (Ferreira and Cooper 2004). However, NHEJ predominates in 

DSB repair in the mammalian cell cycle, although HR is also important in S 

phase and G2 (when sister chromatids are present).

1.4.1 NHEJ

NHEJ uses direct ligation of the broken ends with minimal or no regard for 

homology. It is therefore error prone and often introduces sequence deletions. 

Central to NHEJ in all eukaryotes is the heterodimeric Ku protein. This is made 

up of two subunits, Ku70 (69kDa in humans) and Ku80 (83kDa in humans), 

which bind directly and sequence independently to the DSB. In vertebrates, the 

ku protein then recruits and activates the DNA-dependent protein kinase 

catalytic subunit (DNA-PKcs). This 465kDa protein has C-terminal homology to 

the PI3-kinase like family, which includes the Rad3 homologues ATM and ATR. 

It forms the DNA-PK holoenzyme with the Ku heterodimer, and has protein 

serine/threonine kinase activity once bound to DSB. There is no DNA-PK in S. 

pombe (Manolis et al. 2001). Its likely substrates are the XRCC4-ligase IV 

complex and RFA2, both of which are recruited and loaded onto the DNA ends 

by Ku (Plumb et al. 1999). This facilitates NHEJ, with DNA Ligase IV bringing 

about the DNA end ligation.
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Radiosensitivity to DSB inducing agents is seen with inactivation of the 

NHEJ proteins in higher eukaryotes, but not in fission yeast due to HR being the 

dominant repair pathway. Loss of DNA-PKcs or Ku function is associated with 

increased rates of lymphomas in mice.

1.4.2 Homologous recombination (HR)

In HR, the damaged chromosome invades an intact homologous DNA strand to 

retrieve the genetic information it requires for accurate repair. This usually 

results in error-free, non-mutagenic DSB repair. HR involves the uRad52  

epistasis group” of genes, identified by genetic analysis of the budding yeast, S. 

cerevisiae: RadbO, Rad51, Rad52, Rad54, Rad55, Rad57, Rad59, Mre11 and 

Xrs2. Mammalian and S. pombe homologues of all the “Rad52” group have 

been identified and defects in these genes lead to radiosensitivity (Wood et al. 

2001). Rad50 has sim ilarity to the SMC (structural maintenance of 

chromosomes) proteins that are involved in sister chromatid cohesion.

There are several HR pathways all involving strand invasion (reviewed 

by Raji and Hartsuiker 2006). The classical Szostak model describes resection 

of the DSB in the 5’ to 3’ direction to produce a 3’ overhang, which then invades 

undamaged DNA to find a homologous region (Szostak et al. 1983). Rad51 (S. 

pombe Rhp51), central to all the HR pathways, catalyses strand exchange 

events, with the formation of two Holliday junctions. The Holliday junctions are 

considered a central intermediate in HR, and the critical intermediate in cross­

over formation (Holliday 1964, Szostak et al. 1983, Paques and Haber 1999). 

They are then resolved by cleavage and ligation to give two intact DNA 

molecules.
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The recombination mediator proteins, Rad52 and Rad54, assist Rad51. 

There are two S. pombe homologues of Rad52: Rad22 (involved in mating type 

switching and DNA repair) and Rti1. They interact with each other and with 

Rhp51 and Rhp54 (homologue of Rad54). Rhp55 and Rhp57 are the S. pombe 

homologues of Rad55 and Rad57.

When HR is used for DSB repair, Holliday junctions must be resolved 

without the occurrence of crossovers. This is necessary to avoid abnormal 

chromosomal re-arrangements and loss of heterozygosity, both of which can 

lead to cell death and cancer in higher eukaryotes. Several pathways ensure 

resolution of HJ with prevention of cross-overs. The heterodimeric enzyme 

Mus81-Eme1 has been proposed as a Holliday junction resolvase in human 

cells and fission yeast (Interthal and Heyer 2000, Boddy et al. 2000, Boddy et 

al. 2001, Chen et al. 2001). It now appears that Mus81-Eme1 is responsible 

for the vast majority of crossovers occurring during meiosis in S. pombe 

(Osman et al. 2003, Smith et al. 2003).

Also central in Holliday junction resolution in S. pombe is the Rqh1 

helicase, deletion of which results in increased recombination events (Stewart 

et al. 1997). It has high similarity to the hBLM DNA helicase, mutations in 

which cause the autosomal recessive disorder Bloom’s syndrome, 

characterised by immunodeficiency and increased risk of malignancy 

(secondary to increased sister chromatid exchange and increased genomic 

instability).

HR is also involved in DNA replication, in the bypassing of Replication 

Fork Barriers (natural pause sites) and the restarting of stalled replication forks 

(McGlynn and Lloyd 2002). In S. pombe, mutation of the HR genes may lead to
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problems in DNA replication, and recombination intermediates are thought to be 

commonly associated with ongoing DNA replication (Segurado et al. 2002).

1.5 The specific aims of this thesis

Checkpoint responses and the checkpoint genes are highly conserved in 

evolution with mammalian homologues identified for the major fission yeast 

checkpoint genes. However, the actual sequence of upstream events leading 

to activation of Rad3 is unclear with the identity of the DNA damage/stalled 

replication sensors and initial checkpoint activators remaining uncertain. I, 

therefore, set out to find new genes or a new role for known genes involved in 

checkpoint activation upstream of Rad3. I aimed to then characterise their 

Rad3-dependent checkpoint function.
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Figure 1.1: Schematic representation of the fission yeast cell cycle
G2 comprises about 70% of the cell cycle, whereas M, G1 and S take up 
about 10% each.
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Figure 1.2: Assembly and activation of the pre-replicative (pre-RC) and 
pre-initiative (pre-IC) complexes
In late mitosis (low CDK/ high APC activity) Cdc18 and Cdt1 associate with 
ORC, and then in early G1 form the pre-RC by loading MCM. The pre-IC is 
formed in S phase with the loading of Cdc45, Cut5 and the DNA polymerases 
under the control of the CDK Cdc2 and the DDK Hsk1/Cdc7. Origin firing 
then occurs (high CDK/ low APC activity), with dissociation of Cdc18 and Cdt1 
from chromatin. Cdc18 and Cdt1 are degraded to prevent DNA re-replication.
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Figure 1.3: Human G1/S and G2/M damage checkpoints
ATM and ATR are recruited to and activated at the site of DNA damage from 
where they activate an overlapping set of downstream targets.
(a) After DNA damage inG1, ATM/ATR phosphorylates Rad17, Rad9, p53 
and Chk1/Chk2, which then phosphorylate Cdc25 leading to inactivation and 
nuclear extrusion via association with 14-3-3. Cdc25 can no longer activate 
Cdk2, causing inhibition of DNA replication. p53 mediates maintenance of the 
G1/S arrest via p21-mediated inhibition of the RB protein, with subsequent 
inhibition of transcription of S phase genes.
(b) After DNA damage in G2, ATM/ATR act via mediator proteins to 
phosphorylate and activate Chk1/Chk2. The downstream targets are Cdc25- 
and Wee1-mediated inhibition of Cdk1, preventing entry into mitosis.
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Figure 1.4: Human replication checkpoints
(a) DNA damage in S phase inhibits DNA replication by two ATM-activated 
parallel pathways: via Chk2-mediated ubiquitin-dependent degradation of 
Cdc25A, leaving Cdk2 in its inhibited form and unable to initiate replication.
(b) The stalled fork recruits ATR-ATRIP, Rad17-RFC, 9-1-1 and Claspin. 
ATR phosphorylates Chk1, leading to inactivation of Chk1 via ubiquitin- 
dependent degradation of Gdc25A and S phase delay. ATR-mediated 
activation of repair pathways leads to recovery of stalled and collapsed forks.
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Figure 1.5: An overview of the replication and damage checkpoint 
pathways in S. pombe
Both pathways act through the rad genes to inhibit the activity of Cdc2 and 
impose a cell cycle block. The replication checkpoint uses the Mrc1/Cds1 
pathway to activate Wee1 and Mik1 and inhibit Cdc25. The damage checkpoint 
acts via Crb2/Chk1 to inhibit Cdc25.
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Figure 1.6: Events following DNA damage or replication fork stalling
Rad3 associates with and phosphorylates Rad26. Rad3 also phosphorylates 
Hus1. Rad17-RFC (the “clamp loader’) is thought to load the 9-1-1 complex 
(the “sliding clamp”) onto the DNA. They are all required for the checkpoint 
signal transmission to Mrc1/Cds1 and to Crb2/Chk1.
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Figure 1.7: The scaffold protein Rad4 is the link between the Rad3- 
dependent upstream cascade and the appropriate downstream signal 
transducer activation
Rad4 acts to bring together the multimeric complex of Rad3/Rad26/9-1-1 on the 
DNA. If DNA damage activated the checkpoint response, Rad4 then anchors 
Crb2, which then anchors Chk1. During a replication block, Rad4 tethers Cds1, 
possibly via Mrc1.
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Chapter 2

Identification of Rad3-dependent DNA damage/perturbed 

replication sensors and checkpoint activators
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2.1 Introduction

Six genes have been identified in fission yeast that are involved in activating the 

checkpoint response by an S phase block (the S-M checkpoint) or DNA 

damage, and are collectively referred to as the checkpoint rad genes (rad1, 3, 

9, 17, 26 and hus1) ( Enoch and Nurse 1990, Enoch et al. 1991, Enoch et al. 

1992, al-Khodairy and Carr 1992, Enoch et al. 1993, al-Khodairy et al. 1994). 

Cells mutated in these genes are hypersensitive to DNA damage and to 

Hydroxyurea (HU), an inhibitor of DNA replication. Central to the damage and 

replication checkpoint responses is Rad3, S. pombe homologue of ATR, 

encoding a protein with structural and functional similarities to ATM. Rad3 

phosphorylates and activates the Cds1 kinase after a DNA replication block, 

and phosphorylates and activates the Chk1 kinase after DNA damage. 

However, Chk1 can also substitute for Cds1 in a DNA replication block (Lindsay 

et al. 1998) (Kelly and Brown 2000). Checkpoint activation blocks the onset of 

mitosis by decreasing the activity of the mitotic Cdc2/cyclin complexes by Cdc2 

Y15 phosphorylation. Cds1 also plays a role in recovery from the S phase 

arrest; in an HU-induced S phase block cells lacking Cds1 lose viability 

(Walworth et al. 1993, Murakami and Okayama 1995, Lindsay et al. 1998, 

Boddy et al. 1998, Murakami and Nurse 2000, Boddy and Russell 2001).

Both Chk1 and Cds1 phosphorylation and activation are dependent on 

the presence of Rad3 and the other checkpoint Rad proteins. However, the 

actual sequence of upstream events leading to activation of Rad3 is unclear, 

with the identity of the DNA damage/incomplete replication sensors and initial
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checkpoint activators remaining uncertain. I set out to find new genes or a new 

role for known genes involved in checkpoint activation upstream of Rad3. I 

postulated that overexpression of such genes might ectopically activate the 

replication and/or damage checkpoint in the absence of DNA damage or stalled 

replication. In the presence of Rad3 the checkpoint would be activated leading 

to cell elongation, but in the absence of Rad3 cells would grow normally. Thus 

checkpoint activation and cell cycle arrest should be: dependent on Rad3; but 

independent of DNA damage and DNA replication intermediates. Under 

normal circumstances the identified ectopic checkpoint activator would respond 

to DNA damage/ replication perturbations, but also not produce damage or 

replication intermediates itself that would lead to secondary checkpoint 

activation.

My approach was two-fold:

(1)To identify and test suitable candidate genes which would activate the 

checkpoint in a Rad3-dependent manner

(2) To screen for genes capable of ectopic activation of the checkpoint in a 

Rad3-dependent manner

2.2 Results

2.2.1 Candidate genes

The first approach was to identify possible candidates for the roles of DNA 

damage sensors and checkpoint activators. It was hypothesised that genes 

involved in detection of DNA double strand breaks (DSB) and subsequent
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activation of the repair pathways may also be involved upstream in the damage 

checkpoint.

Key candidates for activating a Rad3-dependent damage checkpoint in 

fission yeast were selected: Ku70 and Ku80 are the S. pombe homologues of 

the human heterodimeric Ku protein subunits, Ku70 and Ku80. They bind 

directly to DSB during DNA repair by NHEJ; Rad22 (S. pombe homologue of 

human Rad52), known to bind to DSB in fission yeast (Kim et al. 2000); and 

TeM (S. pombe homologue of human ATM: ataxia telangiectasia mutated, and 

a Rad3 paralogue). ATM performs two main functions in humans: checkpoint 

control and telomere maintenance. The clinical picture is of an early onset 

autosomal recessive ataxia associated with characteristic chromosomal 

aberrations, cell cycle checkpoint defects, cancer susceptibility, and sensitivity 

to ionizing radiation. There are two S. pombe homologues of ATM: Rad3 

(involved in checkpoint control and telomere maintenance) and Teh (involved in 

telomere maintenance only). A t e l f  mutant strain has no obvious phenotype 

(Matsuura et al. 1999).

pRep41X ku70 (a gift from M. Ferreira) and pRepI te ll (a gift from A. 

Matsura) were received. Rad22 was subcloned into pRep3X. The sequence of 

the putative S. pombe homologue of hKudO (kudO) was obtained from the 

Sanger Centre S. pombe blast server and the gene obtained by PCR from a S. 

pombe genomic library. BamH1 and Sail restriction enzyme sites were added 

allowing the ku80 gene to be inserted into pRep3X. Sequencing confirmed the 

gene was full length with no mutations, deletions or insertions.

All 4 plasmids (pRep41X ku70, pRepI te ll, pRep3X rad22 and pRep3X 

ku80) were transformed into a leu-132 S. pombe strain using the modified
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Lithium Acetate protocol (see Chapter 7 Materials and Methods). The 

transformed cells were plated out and left to grow for 3 days at 32°C under

selective conditions (the omission of leucine from the media selects for cells 

containing the LEU2 marked nm tl plasmids) in the presence of 15pM thiamine 

to suppress gene expression. The genes were induced by replica-plating onto 

selective media minus thiamine. The cells were examined by light microscopy 

at 24 hours for cell elongation due to checkpoint activation. A hundred colonies 

were screened per gene. However, none of the candidates produced an 

elongated phenotype and were not pursued further (see Table 2.1).

Table 2.1 Screening of candidate genes

Gene Overexpression vector Number elongated % elongated

ku70 p R ep 41 X 0 /1 0 0 0

ku80 p R ep 3X 0 /1 0 0 0

rad22 p R ep 3X 0 /1 0 0 0

te ll p R ep ! 0 /1 0 0 0

2.2.2 Genetic Screening for Rad3-dependent cell cycle arrest 

The second approach used was screening of S. pombe gene libraries.

2.2.2.1 S. pombe cDNA library overexpression screen

Two different S. pombe cDNA libraries were used: the Edgar/Norbury library 

(B.Edgar and C.Norbury unpublished) which uses the pRep3X vector containing 

the thiamine repressible full strength nm tl promoter (Maundrell 1990) and the 

LEU2 marker; and a new Gateway compatible Lifetech library constructed from 

total S. pombe RNA derived from mitotic, meiotic and schmooing cells in a 2:1:1 

ratio, within a Gateway modified version of the pRep4X vector (created by
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T.Duhig in this laboratory,). This vector contains the same n m tl promoter as 

pRep3X but has the ura4 marker in place of LEU2.

The genetic screen was then performed as described in the schematic 

(Figure 2.1a). The libraries were transformed into h+ rad3*s leu1-32 ura4-D18 

ade6-704 (Martinho et al. 1998) using the modified Lithium Acetate protocol 

(see Chapter 7 Materials and Methods). The rad3*s strain has a specific 

mutation in the rad3 gene A2217V (alanine mutated to valine). At the 

permissive temperature (25°C) the rad$s strain behaves like wildtype rad3+, but

at the restrictive temperature (36°C) it exhibits the damage sensitivity

phenotype of a rac(3A deleted strain. Briefly, the transformed cells were plated 

out and left to grow for 5 days at 25°C under selective conditions in the

presence of 15pM thiamine to suppress gene expression. They were then 

replica-plated onto selective media containing Phloxin B in the absence of 

thiamine to allow expression of the gene controlled by the nm tl promoter. 

Phloxin B was used as cells that die, for example if undergoing cell cycle arrest, 

take up the dye. Such colonies appear a much darker pink due to the Phloxin B 

accumulated in cells. Each plate was replica-plated in duplicate to enable 

observation of the effects of gene overexpression on the same colonies at both 

the permissive and restrictive temperatures (i.e. in the presence and absence of 

Rad3 function).

Screening was carried out after 24 hours (as it takes up to 12 hours at 

32°C, and around 18 hours at 25°C, after the removal of thiamine to induce

gene expression by the nm tl promoter). Initially, screening was done by eye at 

25°C looking for the dark pink colonies due to increased Phloxin B uptake.
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These colonies were then viewed under the light microscope to identify those 

with elongated cells. Where this was the case, the equivalent colony on the 

36°C plate was viewed under the light microscope looking for normal growth.

Colonies that showed elongation at 25°C and normal growth at 36°C (see Table

2.2 below) were picked and re-screened. If the phenotype persisted, plasmid 

recovery was performed. The 14 recovered plasmids were transformed back 

into the rad3ts strain to determine which were responsible for the Rad3- 

dependent arrest phenotype, as some colonies may contain several different 

plasmids following library transformation. The phenotype maintaining plasmids 

were then transformed into and the genes overexpressed in h- leu1-32 ura4D- 

18 and h- rad3-136 leu1-32 ura4D-18 (behaves as a rad3A delete) strains at 

25°C, 32°C and 36°C to exclude a temperature effect. As the initial screen had

been performed at 25°C and 36°C, I had to ensure that the observed effects on

cell growth were consequent to gene overexpression and not temperature. 

Plasmids producing the desired phenotype were fully sequenced to identify the 

gene, and to check the gene was full length with no mutations, deletions or 

insertions.

1) Edgar/Norbury S. pombe cDNA library: 50,000 colonies were 

screened: six colonies had the appropriate phenotype: sequencing of 

recovered plasmids found all six contained full-length sp d l (S jDhase 

delaying protein).

2) Gateway compatible Lifetech S. pombe cDNA library: 80,000 colonies 

were screened; eight colonies had the desired phenotype; sequencing of 

the recovered plasmids revealed cig1 (from 3 different plasmids from 3
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separate colonies), te ll (from 2 different plasmids from 2 separate 

colonies), cdc18, MCM7, and styl.

2.1.1.2 Cdc18

Cdc18/CDC6 is a key factor initiating DNA replication in eukaryotes. On 

transformation back into the rad$s strain, pRep4X cdc18 strongly maintained 

the phenotype of cell elongation in the presence of Rad3 at 25°C, and wildtype

growth in the absence of Rad3 at 36°C (Figure 2.2a). Sequencing showed the

gene to be full-length with no mutations, insertions or deletions. There was a 

70bp leader sequence. The pRep4X cdc18 plasmid was then transformed into 

a rad3+ leu1-32 ura4D-18 strain and into the rad3-136 leu1-32 ura4D-18 

(behaves as radJ) strain using the modified Lithium Acetate protocol. The 

transformed cells were plated out and left to grow for 3 days at 32°C on

selective media containing 15pM thiamine to suppress gene expression. The 

colonies were then replica-plated in triplicate onto selective media minus 

thiamine (to induce gene expression) and put at 25°C, 32°C and 36°C. They

were screened after 24 hours by light microscopy to exclude temperature- 

sensitive elongation. In the presence of the Rad3 protein, elongated cells were 

observed at all three temperatures (Figure 2.2b). However, in the absence of 

Rad3 wild-type growth occurred at all 3 temperatures (Figure 2.2c). I concluded 

that the cdc18-induced elongation observed was Rad-dependent and not 

temperature-sensitive.
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Table 2.2 cDNAs recovered from genetic screening

Gene Function Number of plasmids Phenotype maintained 

on rad3ts retransformation

Temperature

effect?

Human homologue 

(%homology): 

Function

ode 18 DNA replication initiation 1 yes no CDC6 (33% ):

D N A  replication initiation

ctg l B type cyclin 3 yes yes Cyclin A2 (35% ): 

At G 1 /S  transition

spd 1 RNR inhibitor 6 yes no N one found

te ll PI3K in telomere 

length control

2 no not done ATM/ATR  (29% ): 

Checkpoint and te lom ere length 

control

MCM 7 MCM complex subunit 1 no not done MCM7{A8%): 

D N A  helicase subunit

s ty l MAPK (stress pathway) 1 very w eak not done MAPK14 (54% ): 

stress response
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2.1.1.3 Spdl

Six clones that produced a Rad3-dependent cell cycle arrest were found to 

contain the spd l (S jDhase delayed) gene. Spd1 was originally isolated in an 

overexpression screen looking for cell cycle inhibitors (Woollard et al. 1996). 

Spd1 is a non-essential gene encoding a cell cycle-regulated protein, the levels 

of which peak in G1, decline in S-phase and then return in G2. Overexpression 

causes both a post-Start G1 arrest and a G2 arrest. The G2 arrest acts via 

Rad3. The G1 arrest is independent of all known checkpoint proteins but 

requires Cdc22. Cdc22 encodes the large subunit (with suc22 encoding the 

small subunit) of the essential ribonucleotide reductase (RNR) enzyme, which 

catalyses deoxyribonucleoside triphosphate (dNTP) formation for DNA 

replication and repair. The deletion of spdl produces an acceleration through 

G1 into S. However, Spdl is not essential for the checkpoint response (Borgne 

and Nurse 2000, Liu et al. 2003, Hakansson et al. 2006).

I proposed that because Spdl is not essential for the checkpoint 

response it may be acting as an amplifier of the upstream checkpoint signal 

(Borgne and Nurse 2000). This could manifest as damage tolerance in the 

absence of Spdl. Damage tolerance was screened for by comparing the 

UV-C, MMS, Bleomycin (which behaves as a radiomimetic) and HU survival 

curves for spdlA::ura4 and wildtype S. pombe strains. One thousand log phase 

cells per plate of each strain were plated onto medium containing increasing 

concentrations of Bleomycin (from 0-6000pu/ml), MMS (from 0-0.06%) and HU 

(from 0-25mM). Cells from both strains plated out onto YE5S medium only 

were exposed to increasing doses of UV-C (0-600J/m2). The cells were than
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incubated at 32°C for three days before colonies were counted and survival

curves calculated and plotted. The UV-C (Figure 2.3a), Bleomycin (Figure 

2.3b), MMS (Figure 2.3c), and HU survival (Figure 2.3d) curves for the two 

strains were essentially identical, providing no evidence for increased damage 

tolerance in the absence of S pd l.

If Spdl is not acting to amplify the checkpoint signal why do we see 

activation of the Rad3-dependent checkpoint? Other possible explanations 

considered were: Spdl is directly damaging the cells (but that does not explain 

the Rad3-independent G1 arrest); there is functional redundancy between spdl 

and other checkpoint genes; Spdl actually functions in other damage 

pathways, such as the stress pathway.

It has recently been proposed that Spdl is an inhibitor/regulator of the 

RNR enzyme. This model assumed a direct interaction between Spdl and 

Suc22 proteins (Liu et al. 2003). Spdl inhibits RNR activity by anchoring the 

Suc22 subunit inside the nucleus during G1. With the fall of Spdl levels in S 

phase, Suc22 is released into the cytoplasm to form the active enzyme complex 

with Cdc22, and produce the dNTPs required for replication. However, 

Hakansson et al. have demonstrated Spdl binding to the Cdc22 subunit in the 

cytoplasm and propose a more direct inhibition of the RNR enzyme (Hakansson 

et al. 2006). This suggests that overexpression of Spdl may produce a post- 

Start G1 arrest that is Rad-independent by depletion of dNTPs required for S 

phase. On deletion of s p d l , activation of the RNR enzyme is no longer 

dependent on the S phase decline of Spdl protein levels, explaining the 

acceleration seen from G1 into S.
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It has been suggested that Chk1 may directly or indirectly modify Spdl in 

response to DNA damage (Liu et al. 2003). Chk1 could be acting as a signal 

from the damage pathway to ensure degradation of Spdl and release of dNTPs 

for use in DNA repair.

2.1.1.4 Cig1

Cig1 encodes a non-essential S. pombe B-type cyclin, but lacks the mitotic 

destruction box and putative ubiquitin interacting motif typical of this class 

(implying it is not cell cycle regulated). Cig1 overexpression produces 

elongation with a 1C DNA content (Bueno et al. 1991). A clear role for Cig1 in 

the cell cycle is yet to be found, but it is involved in the inactivation of Rum1 by 

phosphorylation. This releases the inhibitory effect of Rum1 on Cdc2, allowing 

progression through START into S phase (Moreno et al. 1994). It has 35% 

homology to human cyclin A2.

All three cig1 plasmids recovered from the screen were transformed back 

into the ra d $ s strain, and all showed the same phenotype (Figure 2.4a). 

Sequencing confirmed a full-length gene in all 3 plasmids, with no mutations, 

deletions or insertions. Screening to exclude a temperature effect, by looking at 

cig1 overexpression in wildtype and in the rad3-136 strain at 25°C, 32°C and

36°C, was performed as described in 2.2.2.2.. In the rad3' background cells

were: slightly elongated at 25°C; abnormal/curved at 32°C; and wild-type at

36°C (Figure 2.4b). In a rad3+ background cells were: elongated at 25°C;

elongated and curved at 32°C; and wild-type at 36°C (Figure 2.4c). So, in the

presence of Cig1 overexpression, cells appear elongated at 25°C and wild-type
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at 36°C regardless of the Rad3 background status. I concluded that the

apparent Cig 1 induced Rad3-dependent elongation was in fact a Cig 1 induced 

temperature-sensitive elongation.

2.1.1.5 Others (MCM7, Tell, Sty1)

Tel 1 had previously been tested as one of the candidate genes and showed no 

elongation at 25°C. It encodes a phosphotidyl inositol (PI3) kinase involved in

telomere length control in parallel with the Rad3-dependent checkpoint 

pathway. It has 29% homology with both human ATM and ATR (ataxia 

telangiectasia related). It was not possible to retransform one of the te ll 

plasmids into rad$s, whilst the other te ll plasmid failed to maintain the desired 

phenotype on retransformation into rad3>s.

MCM7 is a component of the MCM complex required for DNA replication. 

It has 48% homology to human MCM7, a subunit of the DNA helicase. MCM7 

failed to show cell elongation at 25°C on retransformation into rad2fs.

Sty1 encodes a mitogen-activated protein kinase (MAPK) transmitting 

osmotic stress and other stress signals. It has 54% homology to human MAPK 

14, a serine-threonine protein kinase involved in signalling the response to 

cytokines and physiological stimuli and triggers apoptosis in response to stress. 

There was only very weak effect on retransformation into rad$s, with cell 

elongation at 25°C seen in only 1% of colonies.
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2.1.1.6 S. pombe genomic library Screen

A genomic library screen was performed as described in the schematic (Figure 

2.1b). A size selected multi-copy genomic library (a gift from Tamagawa: 

consisting of large genomic fragments 11-12kb, with the LEU2 marker) was 

transformed into the rad3*s strain using the modified Lithium Acetate protocol. 

The transformed cells were plated out and left to grow for 3 days at 36°C (so

that genes causing a Rad3-dependent arrest would be able to grow normally 

initially in the absence of Rad3) under selective conditions. Each plate was 

replica-plated in duplicate to enable observation of the effects of gene 

expression on a single colony at both the permissive and restrictive 

temperatures. 60,000 colonies were screened. No colonies were found with 

the desired phenotype of a Rad3-dependent arrest.

2.1.1.7 Human cDNA library overexpression screen

A Gateway compatible Lifetech human cDNA library within a Gateway modified 

version of the pRep4X vector was screened by the same protocol for the S. 

pombe cDNA libraries.

This was a preliminary screen only and was of 108,600 colonies. None 

gave the desired phenotype of a Rad3-dependent arrest.

2.3 Discussion

I had set out to identify Rad3-dependent DNA damage/ perturbed replication 

sensors and checkpoint activators. All the candidate genes initially considered 

did not demonstrate such a role. Genetic screening of cDNA libraries
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suggested Rad3-dependent checkpoint roles for Cdc18, Spd1, Cig1, Sty 1, 

MCM7 and Tell. However, Spd1 had no apparent direct checkpoint effect and 

the decision was made not to study it further. Cig 1 was shown to have a 

temperature-sensitive rather than a Rad3-dependent effect on cell elongation. 

Sty1 was not studied further as only a very weak phenotype was seen on re­

transformation. Despite the failure of MCM7 and Tell to reproduce the Rad3- 

dependent phenotype, which excluded them from further experiments during 

this work, they should be considered again in the future due to their close 

relationships respectively with Cdc18 and Rad3.

In view of the persistently strong phenotype seen with Cdc18 in 

comparison with the other genes obtained from the screen, I decided to work on 

the further characterisation of the Rad3-dependent checkpoint role of Cdc18.

73



a)
c D N A  library tra n s fo rm e d  into rad3ts 

\
5 days on se lective  m e d ia  plus th iam ine at 2 5 °C

rep lica -p la ted  o nto  se lective  m e d ia  m inus th iam ine plus phloxin  B

/  \
2 5 °C  3 6 °C

l t
screen a t 24h
look for e lo ng atio n  ------------------- look for norm al g row thi

rescreen fo r p h e n o typ e  m ain ten ance  

reco ver an d  s tq u e n c e  D N A  

re transform  in(o  rad3ts  fo r pheno typ e  

ex c lu d e  te m p e ra tu re  e ffects

b)
m u lticop y g e n o m ic  lib rary  transform ed  into rad3tsi

3 d ays  on se lec tive  m e d ia  at 3 6 °C

re p lica -p la ted  o n to  se lec tive  m e d ia  plus phloxin B for 12h  at 3 6 °C

/  \
2 5 °C  3 6 °C

I l
screen  a t 12h
look fo r e lo n g atio n  ------------------- look for norm al g row th

rescreen  fo r p le n o ty p e  m ain tenance

re co ver a n d  s e q u e n c e  D N A  

re transform  into rad3ts  fo r phenotype  

ex c lu d e  te m p tra tu re  e ffects

Figure 2.1: Genetic screening fo r activators of a Rad3-dependent cell 
cycle arrest
(a) Schematic for cDNA library screen (b) Schematic for multicopy genomic 
library screen.



rad3ts pRep4X cdc18

rad3-136 pRep4X cdc18

25 °C  32 °C  36°C

Figure 2.2: Overexpression of pRep4X cdc18 produces a Rad3- 
dependent cell cycle arrest
(a) Overexpression of pRep4X cdc18 in the rad3ts background produces cell 
elongation at 25°C in the presence of Rad3but wild-type growth at 36°C in the 
absence of Rad3.(b) Overexpression of pRep4X cdc18 in a rad3+ background 
produces cell elongation irrespective of temperature, (c) Overexpression of 
pRep4X cdc18 in a rad3' background produces wild-type growth irrespective 
of temperature.

75



0 100 200 300 400 500 600

J/m2

Bleomycin

i i

0 2000 4000 6000 8000

|iU/ml

0.02 0.04

%
0.06 0.08

MMS HU
100

§  75 -

I
□  50 - 
V)
sP
o ' 25 -

o-q>
0 5 10 15 25

 wildtype
  spdl A

Figure 2.3: Spd1 does not amplify the checkpoint signal
Survival curves were obtained for wildtype and a spdlA strain in the presence
of increasing (a) UV (b) Bleomycin (c) MMS and (d) HU. There was no obvious 
effect of the absence of Spdt.
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rad3-136 pRep4X cig1

wildtype pRep4X cig1
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Figure 2.4: Overexpression of pRep4X cig1 produces a temperature- 
dependent cell elongation
(a) Overexpression of pRep4X cig1 in the rad3ts background produces cell 
elongation at 25°C in the presence of Rad3but wild-type growth at 36°C in the 
absence of Rad3(b) Overexpression of pRep4X cig1 in a rad3+ background 
produces slightly elongated cells at 25°C, abnormal/curved cells at 32°C, and 
wild-type growth at 36°C. (c) Overexpression of pRep4X cig1 in a rad3' 
background produces elongated cells at 25°C, elongated and curved cells at 
32°C, and wild-type growth at 36°C.
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3.1 Introduction

A genetic screen looking for upstream elements of the DNA damage and 

replication checkpoints revealed a Cdc18-activated Rad3-dependent cell cycle 

arrest. Cdc18 is the fission yeast homologue of human CDC6. It is an 

essential gene, and was cloned simultaneously as a multi-copy suppressor of 

cdc10-12$s and by complementation of the cdc18-k46 mutant (Kelly et al. 

1993). It is a key initiator and regulator of DNA replication in eukaryotes, co­

ordinating alternate rounds of S phase and mitosis (Nishitani and Nurse 1995). 

Eukaryotic replication is initiated at specific DNA sequences called replication 

origins (Kelly and Brown 2000) (Figure 1.2). They are recognised by the ORC 

(origin recognition complex) (Bell and Stillman 1992, Bell et al. 1993, Micklem et 

al. 1993, Grallert and Nurse 1996, Leatherwood et al. 1996, Lygerou et al. 

1999). As cells reach the end of mitosis, origins are licensed by a step-wise 

recruitment of proteins to the ORC platform. Cdc18, along with Cdt1, is loaded 

onto the DNA from where they recruit the heterohexameric complex composed 

of the 6 minichromosome maintenance (MCM 2-7) proteins, and form the pre- 

replicative complex (Kelly et al. 1993, Hofmann and Beach 1994, Piatti et al. 

1995, Nishitani and Nurse 1995, Muzi Falconi et al. 1996, Cocker et al. 1996, 

Tanaka et al. 1997, Detweiler and Li 1997, Donovan et al. 1997, Kearsey and 

Labib 1998, Maiorano et al. 2000, Nishitani et al. 2000). The MCM complex is 

considered to be the replicative helicase, travelling in front of the replication 

machinery opening up the DNA during S phase ( Aparicio et al. 1997, Labib et 

al. 2000).
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It is essential the entire eukaryotic genome is replicated completely, and 

that this is restricted to once per cell cycle. In fission yeast, Cdc18 regulation is 

crucial to prevent re-replication of DNA with a single cell cycle. Cdc18 

expression is tightly cell cycle regulated, both transcriptionally and post- 

translationally. Transcription, under the control of Cdc10, starts in mitosis, 

peaks at G1/S and then is repressed during S phase and G2 (Kelly et al. 1993). 

However, Cdc18 does not accumulate during mitosis due to the presence of the 

mitotic CDK, Cdc2/Cdc13, which phosphorylates Cdc18, targeting it for 

ubiquitin-dependent degradation ( Jallepalli et al. 1997, Jallepalli et al. 1998). A 

physical interaction between the amino-terminus of Cdc18 and CDK has been 

described and both Cdc2-Cig2 and Cdc2-Cdc13 phosphorylate Cdc18 in vitro 

(Brown et al. 1997, Lopez-Girona et al. 1998). With the drop in mitotic CDK 

activity in anaphase, Cdc18 levels rise and peak at G1/S.

The phosphorylation of Cdc18 by CDK is conserved but does not always 

lead to degradation. In humans and in Xenopus, nuclear export of 

phosphorylated Cdc18 occurs (Petersen etal. 1999, Elsasser et al. 1999, Fujita 

etal. 1999, Calzada etal. 2000, Drury etal. 2000).

This critical control of the timing of the initiation of DNA replication can be 

bypassed by strong overexpression of Cdc18 or a moderate co-overexpression 

of both Cdc18 and Cdt1, which allows re-initiation even in G2 cells (Nishitani 

and Nurse 1995, Yanow et al. 2001). The continuous DNA synthesis results in 

increased DNA content and giant nuclei, as visualised on fluorescent 

microscopy and FACS analysis, and is referred to as re-replication. It is thought 

that aberrant replication occurs in this situation, and the whole genome might 

not be fully re-replicated (Nishitani and Nurse 1995). Cdc18 overexpression
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leading to re-replication has been shown to induce: (1) a Rad3-dependent 

mitotic block, with the likely mechanism of the structures generated by re­

replication activating the S-M checkpoint; (2) a Rad3-independent block 

attributed to a direct interaction of the N-terminus of Cdc18 with and 

subsequent inhibition of Cdc2 (Greenwood et al. 1998).

Cdc18 is required to induce and maintain the S phase checkpoint. In its 

absence cells are unable to initiate DNA replication and proceed into mitosis 

with a <1C DNA content and generate a “cut” phenotype (cell untimely torn: 

cytokinesis takes place without prior completion of mitosis, resulting in the 

cleavage of an undivided nucleus by the septum) (Kelly et al. 1993). However, 

this S phase checkpoint role is not known to be Rad3-dependent.

3.2 Results

3.2.1 Stabilisation o f Cdc18 activates a Rad3-dependent checkpoint in the 

absence o f apparent re-replication

3.2.1.1 Description o f pRep4X cdc 18

The cDNA from the c d c  18-containing plasmid, obtained from the 

overexpression screen using the Gateway compatible S. pombe cDNA library, 

was fully sequenced. This confirmed the presence of the full-length cdc18 

gene, with a 70 base pair 5’-untranslated region (5’UTR) and no mutations, 

deletions or insertions. The 5’UTR may affect expression and consequent 

phenotype. This could explain the different behaviours of studied cdc18  

cDNAs: the cdc18 cDNA isolated as a multi-copy suppressor of Cdc10, which 

was missing the 5’UTR and the first 139 nucleotides of the coding sequence,
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did not induce re-replication (Kelly et al. 1993); continuous DNA synthesis is 

observed in the cdc18 cDNA with a 86 base-pair 5’UTR (Nishitani and Nurse 

1995); and my newly isolated cdc18 cDNA, which induces a Rad3-dependent 

checkpoint activation, in the absence of apparent re-replication as assessed by 

both microscopic observation and FACS analysis (Figure 3.1a). Another 

explanation for the different behaviours was the use of the pRep4X vector 

rather than the pRep3X, which produces a lower level of Cdc18 overexpression 

(see section 3.2.2 beiow and Figure 3.2).

The Rad3-dependence of the cell cycle arrest seen with overexpression 

of pRep4X cdc18, was investigated further by measurement of the plating 

efficiency (P.E.) of cells overexpressing Cdc18 in the presence and absence of 

Rad3. P.E. is the ratio of colonies grown to actual number of cells plated, and 

reflects the viability of the strain used. Cultures of wildtype (rad3+) and rad3- 

136 (a non-functional mutation that behaves as a rad3' (Nasim and Smith 

1975)) strains transformed with pRep4X cdc18, were grown to mid log phase in 

the presence of 15pM thiamine to suppress gene expression by the n m tl 

promoter. The cells were then filtered and washed three times to remove the 

thiamine. A thousand cells from each strain were plated out onto media with or 

without thiamine, and incubated for 3 days at 32°C before the number of 

colonies was counted and the P.E. calculated (see Table 3.1). When the 

promoter was repressed there was no difference seen in the number of colonies 

produced (P.E: 77% rad3+ versus 75% rad3'). After switching on Cdc18 

overexpression, the P.E. fell to 2.5% in the presence of Rad3, but there was no 

effect on P.E. in the absence of Rad3 (which remained at 75%). I concluded 

that: Cdc18 overexpression activates a Rad3-dependent loss of cell viability;
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elevated levels of Cdc18 per se cause no gross cellular damage, as assessed 

by normal cell viability and P.E in the absence of Rad3.

Table 3.1 Plating efficiency of 1000 cells

Promoter rad3* pRep4X cdc18 rad3' pRep4X cdc 18

OFF 77% 75%

ON 2.5% 74%

3.2.1.2 Description of Cdc18 T6A

The cdc18 cDNA, obtained from the screen described in Chapter 2, produced a 

Rad3-dependent cell elongation on overexpression. However, the behaviour of 

the pRep4X cdc18 was not reliably reproducible, with observation of incomplete 

penetrance. The degree/uniformity of cell elongation observed following the 

replica-plating of rad3ts pRep4X cdc18 colonies to 25°C after the removal of 

thiamine (activating the Cdc18-induced Rad3-dependent cell cycle arrest) 

varied considerably between and even within colonies. Therefore, other means 

of stabilising Cdc18 levels to produce a Rad3-dependent cell cycle arrest were 

investigated. Phosphorylation of the 6 CDK consensus sites by Cdc2 regulates 

the stability of the Cdc18 protein (Nishitani and Nurse 1995, Jallepalli et al. 

1997, Greenwood et al. 1998, Lopez-Girona etal. 1998, Baum etal. 1998), and 

over-expression of a mutant lacking these phosphorylation sites results in 

increased re-replication (Jallepalli et al. 1997). The endogenous cdc18 gene 

was replaced in a rad3ts strain by a o d d 8 T6A mutant gene encoding a protein 

with all 6 CDK sites mutated from threonine to alanine (at positions: 10, 46, 60, 

104, 134 and 374) expressed by the cdc18 promoter. This prevents 

phosphorylation by Cdc2 thus inhibiting Cdc18 proteolysis and producing stable
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high Cdc18 levels. The cdc18 T6A mutant strain was only viable in the 

absence of Rad3. Incubation of this strain at 25°C resulted in cell elongation, 

however at 36°C cells grew normally (Figure 3.1b). No re-replication was 

observed on FACS analysis and no enlarged nuclei (typical of DNA re­

replication) were observed (Figure 3.1c). I concluded that the Cdc18 

phosphorylation mutant activates a Rad3-dependent cell cycle arrest, in the 

absence of apparent DNA re-replication.

Of note, two different cdc18 phosphorylation mutant parent strains were 

used in this thesis: one with the cdc18 T6A mutant gene tagged with the S. 

cerevisiae marker LEU2 (which complements the S. pombe leu1-32 mutation); 

and one with a kanr TAP-tagged cdc18 T6A mutant gene. All strains derived 

from crosses using these two parent cdc18 T6A strains are clearly described in 

Tables 7.1 and 7.2 in Chapter 7 Materials and Methods. Table 3.2 below 

describes the 4 most frequently used cdc18 T6A strains.

Table 3.2 Cdc18 T6A mutant strains

G en o typ e

h+ rad?5 cdc18-T6A LEU2 ade6-704 leu1-32 ura4-D18 CCL1

h+ rad3>s cdcl8-T6A-TAP kanr ade6-704 leu1-32 ura4-D18 CCL2

h+ cdc25-22ts rad3&::ura4 cdc18-T6A kanr leu1-32 ura4-D18 CCL3

h+ rad$s cdc18-T6A LEU2 ade6-704 leu1-32 CCL4

3.2.2 Level of Cdc 18 appears important for effect

To test whether the level of Cdc18 is important for cell elongation in the 

absence of re-replication, Western blotting was performed to look at the Cdc18 

protein expression levels in rad3+ pRep3X cdc18, rad3fs pRep4X cdc18, rad$s 

cdc18 T6A-TAP (CCL2) and rad3+ (Figure 3.2). This showed: Cdc18 levels are
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apparently lower in the Cdc18 phosphorylation mutant than when it is 

overexpressed in the pRep vectors; there is a apparent higher level of Cdc18 

overexpression in the pRep3X than in pRep4X. This suggests the possibility 

that the actual level of Cdc18 may determine its effects: (1) re-replication 

occurring at higher levels (as seen with pRep3X cdc18)\ (2) Rad3-dependent 

arrest in the absence of apparent re-replication at lower levels (as seen with 

pRep4X cdc18 and cdc18 T6A). I speculated that lower levels of Cdc18 

overexpression/stabilization might induce the S-M checkpoint without re­

replication. Cdc18 T6A is more stable and reproducible, probably as a result of 

only moderately elevated Cdc18 levels. I therefore used this mutant for further 

characterisation of the Cdc18 induced Rad3-dependent checkpoint.

3.2.3 Cdc18 acts at the beginning o f the checkpoint pathway and via 

Rad3/Chk1/Crb2

3.2.3.1 Cdc18 acts via Rad3

My results so far have suggested that stabilisation or elevated levels of Cdc18 

sends the S-M checkpoint signal in the absence of DNA replication 

intermediates. If true, then Rad3 inactivation would abrogate the signal and 

release the cells from the cell cycle block. To test this possibility, an 

asynchronous population of log phase rad$s cdc18 T6A (CCL1) cells was 

blocked for 4 hours at 25°C. The temperature was then raised to 36°C to 

inactivate rad3 (see schematic in Figure 3.3a). Samples were taken every 20 

minutes from release for FACS analysis and for calculation of the septation 

index and the percentage of binucleated cells present. As predicted, cells were 

synchronously released from the cell cycle block (Figure 3.3a). This experiment
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demonstrates that Rad3 is required to not only to initiate and but also to 

maintain the checkpoint signal generated by high level of Cdc18.

3.2.3.2 Cdc18 acts via rad3/chk1/crb2

The block and release procedure described in 3.2.3.1 was also used to test 

activation of the downstream effector checkpoint kinases Cds1 and Chk1. A 

rad3[s cdc18 T6A chk1-HA strain was used. However, after Rad3 inactivation 

for 1 hour at 36°C (see schematic in Figure 3.3b), the culture was shifted back 

to 25°C for 2 hours to re-impose the mitotic block. Protein extract samples 

were taken every 20 minutes for 3 hours after release, and the phosphorylation 

status of Cds1 and Chk1 analysed by Western blot. After shift back to 25°C 

when Rad3 was active, only a small proportion of the Cds1 protein pool showed 

the altered mobility indicative of its phosphorylated active form (data not shown) 

(Lindsay et al. 1998). However, most of Chk1 was converted to a slow 

migrating form corresponding with its phosphorylation and activation (Walworth 

and Bernards 1996) (Figure 3.3b), suggesting that Chk1 is likely to be the main 

effector kinase responsible for the block.

Genetic crosses were performed to see whether the other rad checkpoint 

genes were also required for the block. Inactivation of chkl, rad9, hus1, rad17, 

rad1, rad26 and crb2 suppressed the elongated phenotype, cells looked wild­

type, and were able to grow and divide normally. In all cases backcrossing 

recovered the rad3ts cdc18 T6A phenotype, confirming its presence in the 

checkpoint mutant background. Deletion of either cds1 or its activating partner 

mrc1 demonstrated they were not required for the cell cycle block, because 

cells still became elongated in their absence (Table 3.3 and Figure 3.4). Cdc18
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therefore appears to be activating the Chk1/Crb2 damage arm of the Rad3- 

dependent checkpoint rather than acting through the Cds1/Mrc1 replication 

arm.

Table 3.3 Genetic crosses

Checkpoint mutant Phenotype with cdc18 T6A ra d fs cdc18 T6A phenotype 

seen on backcross

rad3te 25°C elongated *

36°C
wild-type

rad3Aura4 wild-type Yes

rad3AkanR wild-type Yes

rad26Aura4 wild-type Yes

rad26Akanr wild-type Yes

chklAura4 wild-type Yes

chklAkanr wild-type Yes

chklAura4 cds1Aura4 wild-type Yes

crb2Aura4 wild-type Yes

crb2Akanr wild-type Yes

rad9Aura4 wild-type Yes

rad9AkanR wild-type Yes

hus1 1-14 wild-type Yes

huslAkanR wild-type Yes

rad17 h-21 wild-type Yes

cds1Aura4 elongated ★

cdslAkanR elongated

mrclAura4 elongated *

*not backcrossed as had elongated phenotype

I conclude that an elevated level of Cdc18 acts upstream of Rad3 to 

activate the S-M checkpoint through the Chk1 kinase, and that components of 

the rad checkpoint gene network are required to maintain the cell cycle block.
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3.2.4 Checkpoint genes are not required to maintain DNA damage 

intermediates seen on two-dimensional (2D) DNA gel electrophoresis. 

Neutral-neutral two-dimension DNA gel electrophoresis, followed by Southern 

blotting and probing with a fragment of interest, is a technique used to detect 

replication or recombination intermediates within a specific region of the 

genome (Friedman and Brewer 1995). Typical structures seen are: the “simple 

Y” (corresponding to passive replication of a fragment); the “bubble arc” 

(corresponding to origin firing); and, the “X-spike” (corresponding to 

recombination and/or termination intermediates) (Figure 3.5a). I wanted to see 

if DNA damage was represented on a 2D gel as a specific structure, and, would 

such a structure play a role in upstream checkpoint signalling.

3.2.4.1 DNA damage produces a specific 2D gel intermediate 

Neutral-neutral 2D DNA gel analysis of wild-type cells treated with 0.02% MMS 

(a DNA damaging agent) revealed a structure not seen with HU treated wild­

type cells. An exponentially growing wildtype culture (of the 972 h- strain) at 

32°C was split at t=0h; 11mM HU was added to one half; 0.02% MMS to the

other. At 5 hours samples were taken from both cultures for preparation of 

genomic DNA for 2D gel electrophoresis. Southern blots of the gels were 

probed with origin and non-origin containing fragments of rDNA. The rDNA 

replication origin is ars 3001, which has been mapped to a 600 bp sequence in 

the upstream non-transcribed regions of the rDNA repeats. All origin activity is 

confined to this sequence, with no activity detected in other regions of the 

10.4Kb rDNA repeat. The origin probe recognises ars 3001, demonstrating the 

“simple Y” and the “bubble arc”, as well as the “X-spike”. The non-origin probe
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recognises a fragment of the rDNA repeat spanning the 5.8S and 25S genes, 

downstream of ars 3001. It reveals the “simple Y” of passive replication and the 

“X-spike” only (Figure 3.5b).

An additional structure was found at the top of the X spike in the MMS 

treated cells only. This “X” like structure could be a DNA damage intermediate 

(Figure 3.5b). It was hypothesised that this intermediate structure could 

function as part of the DNA damage checkpoint, either as an upstream signal or 

as a downstream target.

3.2.4.2 The damage intermediate may be cell cycle phase dependent 

The next step was to determine whether the “X” structure could be produced by 

DNA damage at any point in the cell cycle, or whether it is specific to a 

particular cell cycle phase. Wildtype cells were blocked in S phase by adding 

11mM HU to an exponential culture at 32°C. After 3.5h 0.02% MMS was

added. Samples were taken at 3.5h and 5.5h for preparation of genomic DNA 

for 2D gel electrophoresis. Cells were blocked in G2 using a cdc25-22ts strain, 

exponentially growing cells at 25°C were shifted to 36.5°C for 3.5 hours (G2

block confirmed by FACS analysis, DAPI staining and by absence of replication 

intermediates on the 2D gel) and then 0.02% MMS was added. Samples were 

again taken at 3.5h and 5.5h for preparation of genomic DNA for 2D gel 

electrophoresis. Both gels were blotted and probed with the 3.4Kb non-origin 

rDNA fragment.

The “X” structure was present after the addition of MMS in both S phase 

and G2 blocked cells (Figure 3.6a). This may be interpreted as either the 

damage intermediate being produced in G2 cells (and not cell cycle phase
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dependent), or as leak through the block with damage subsequently occurring 

in S phase cells (and therefore S phase dependent). The Y arc seen in the 

damaged G2 cells may represent strand invasion as part of the repair process 

and not replication intermediates. I concluded that the “X” structure may be cell 

cycle phase specific. S phase cells will be most sensitive to the effects of an 

alkylating agent such as MMS, explaining the strong presence of the structure 

in asynchronous and S phase cells, but its weak signal in G2 cells.

3.2.4.3 Presence of the damage intermediate is not rad checkpoint gene- 

dependent

If the structure is either a downstream target of, or a component of, the damage 

checkpoint, its presence would be dependent on the rad checkpoint genes. To 

test this, 0.02% MMS was added to exponentially growing cultures of rad3A, 

chklA, cdslA, cdslAchklA, hus1-14, radlA, rad17~, and rad9A strains at 32°C.

Samples were taken for preparation of genomic DNA for 2D gel electrophoresis 

at Oh and 5h. Southern blotting of the gels and probing with the 3.4Kb non­

origin rDNA fragment demonstrated the presence of the structure in all the Rad 

checkpoint mutants after exposure to MMS, although it was rather weak in 

some mutants (Figure 3.6b).

In conclusion, the structure does not appear to be a downstream target 

of the damage checkpoint. However, it may play an upstream role signalling 

the presence of DNA damage at any stage in the cell cycle with subsequent 

activation of the damage and/or the repair pathways (either the non 

homologous end joining or homologous replication repair pathways).
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3.2.5 Cdc 18 sends the checkpoint signal but is not required for fork 

maintenance

Cdc18 is required to induce and maintain the S phase checkpoint. In the 

absence of Cdc18, cells cannot initiate DNA replication and proceed into 

mitosis with a 1C DNA content, and “cut” cells are seen (Kelly et al. 1993).

3.2.5.7 Cdc 18 accumulates in an HU block

To investigate what happens to Cdc18 levels during an HU-induced S phase 

block, a cdc25-22 cdc18-TAP strain was synchronized in late G2 by incubation 

at 36.5°C for 4 hours and then released in the absence or presence of HU for 3

hours. Samples were taken every 20 minutes following release for: (1) FACS 

analysis of DNA content to follow progression through the cell cycle; (2) 

Western blot analysis of total protein lysates using anti-Cdc18 antibodies 

(Figure 3.7a). In the absence of HU, Cdc18 levels peaked with the first S phase 

and then disappeared. However, Cdc18 levels remained high throughout the 

HU-induced S phase block. This suggests that Cdc18 accumulates in an HU 

block.

3.2.5.2 This accumulation is Rad3-dependent

The experiment described in section 3.2.5.1 was repeated using a cdc25-22 

rad3Aura4 cdcl8-TAP strain to see if the accumulation of Cdc18 in an HU block 

required the presence of Rad3. The cells were again synchronized in late G2 

by incubation at 36.5°C for 4 hours and then released in the presence of HU for

3 hours. Samples were again taken every 20 minutes for FACS and Western 

blot analysis. In the absence of Rad3, Cdc18 levels peaked and then fell,
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implying that Cdc18 accumulation during an HU block is dependent upon the 

presence of Rad3 and the Rad3-dependent checkpoint (Figure 3.7b).

3.2.5.3 Cdc 18 is required to maintain the checkpoint response but is not 

needed to maintain the replication fork 

A cdc18 switch off (S/O) strain (in which wild-type level Cdc18 expression is 

controlled by the thiamine-repressible nmt81 promoter) was used to further 

explore the role of Cdc18 in the HU checkpoint response (see timeline in Figure 

3.8). A 32°C exponentially growing culture was split at t=-4h and 11mM HU

was added to both cultures. At t=-1h one culture received thiamine at a 

concentration of 5pl/ml to switch off cdc18 expression (this takes 1 hour). At 

t=0h both cultures were followed for the next 6 hours in a continued HU block. 

Hourly samples were taken for FACS analysis, and to monitor cell phenotype 

using DAPI and calcoflor staining. After 4 hours in the presence of thiamine, 

the cdc18-S/0 strain started to accumulate cells with aberrant mitosis including 

“cut” cells (Figure 3.8b), indicating that the artificial depletion of Cdc18 leads to 

loss of the mitotic block imposed by the checkpoint response.

It has been proposed previously that replication forks play an essential 

role in checkpoint activation (Tercero et al. 2003). Also, inactivation of both 

ORC (Orp1) and Cdc18 results in disappearance of replication forks and loss of 

the checkpoint (Murakami et al. 2002). The above experiment was repeated to 

look at what happens to the replication intermediates on the depletion of Cdc18 

alone during an HU block. At 2h, 4h and 6h samples were taken for preparation 

of genomic DNA for two-dimensional gel electrophoresis. The 2D DNA gels 

were Southern blotted and probed with the ars 3001 origin rDNA fragment.
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Replication forks were seen at similar intensity in both the presence (Figure 

3.8a) and absence of Cdc18 (Figure 3.8b). This suggests that although Cdc18 

stabilization is essential to maintain the checkpoint response and prevent 

aberrant entry into mitosis, it is not required to maintain the stalled replication 

forks. It also implies that that the aberrant mitotic entry is not a consequence of 

replication fork collapse. These results uncouple the roles of Cdc18 in fork 

assembly and in checkpoint activation.

3.3 Discussion

The key conclusions from the results in Chapter 3 are:

1) Elevated levels of Cdc18 activate a Rad3-dependent checkpoint arrest

2) The checkpoint acts through the Rad3/Chk1/Crb2 “damage” pathway 

and not the Rad3/Cds1/Mrc1 “replication” pathway

3) Rad3 is required to initiate and to maintain the checkpoint signal 

generated by a high level of Cdc18

4) Cdc18 acts early on in this checkpoint pathway

5) Wild-type Cdc18 is required for checkpoint control (eliminate Cdc18 and 

the checkpoint is lost), even when the checkpoint is activated by other 

means (such as HU), and this Cdc18 accumulation is also Rad3- 

dependent

6) Cdc18 is not required to maintain stalled replication forks in an HU block 

A late step for S phase activation is Cdc2/Cig2 activity, which also 

phosphorylates Cdc18, targeting it for by ubiqitin-dependent degradation. The 

S phase checkpoint blocks mitosis via Rad3 in the presence of replicating DNA
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to ensure mitosis does not occur until S phase is completed. I have shown that 

on removal of Cdc18 from cells blocked in S phase, cells enter aberrantly into 

mitosis. As the presence of Cdc18 is essential for the checkpoint response, the 

checkpoint is dependent on the inhibition of the cyclin-cdk complex activity and 

hence prevention of Cdc18 destruction. On checkpoint activation, Rad3 inhibits 

Cdc2, leading to a decrease in Cdc18 phosphorylation and subsequent 

degradation.

This could result in the generation of a positive feedback loop, in which 

the initial stabilisation of Cdc18 is in turn enforcing the checkpoint pathway by 

further Rad3 inhibition of Cdc2 and subsequent further stabilization of Cdc18 

levels (Figure 3.9a). So, in the presence of a replication block, such as that 

induced by HU, the positive feedback loop is put into action. However, this is 

lost in the absence of Cdc18, and aberrant mitotic entry observed. The Cdc18 

phosphorylation mutant has the same effect as a replication block. With no 

Cdc2-induced Cdc18 degradation possible, the checkpoint is enforced and the 

cells don’t enter mitosis (Figure 3.9b).

I hypothesized that this loop is only activated when a certain threshold is 

exceeded, with wild-type Cdc18 levels on the DNA being too low to activate the 

checkpoint response during a normal S phase (due to their rapid degradation by 

the CDK complex). This would allow the cell to discriminate between local 

noise activating Rad3, and the necessity to amplify the response and institute a 

complete arrest. The overexpression and stabilisation of Cdc18 in these 

experiments are exceeding the set threshold and activating the checkpoint.

I also propose that, in light of the evidence that Cdc18 is not required to 

maintain the stalled replication forks during S phase, it is actually acting as an S
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phase sensor, letting the cell know that replication is ongoing and to hold off 

from mitosis.

The 2D DNA gels looking at the effects of DNA damage showed a 

damage intermediate (the “X” spike). This may be a visualisation of a Rad3- 

dependent checkpoint activator, generated in response to DNA damage, acting 

in a similar way to Cdc18 stabilisation.
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Figure 3.1: Elevated levels of Cdc18 induce a Rad3-dependent cell cycle 
arrest with no evidence of re-replication on microscopy or FACS 
analysis
(a) Left panel: cell elongation is observed when rad3ts p Rep4X cdc18 cells 
grown at 36°C in the presence of thiamine (OFF), are replica-plated to 25°C in 
the absence of thiamine (ON). Right panel: rad3ts pRep4X cdc18 cells were 
grown for 24 hours at 36°C in the presence of thiamine (OFF), the thiamine 
was then washed out and the cells resuspended in the absence of thiamine 
(ON). The culture was then split, and the cells were grown for 22 hours at 
either 36°C (rac/3") or 25°C (rac/3"*), before samples were taken two hourly for 
FACS analysis. Note no re-replication on FACS at both temperatures, (b) 
Rad3ts cdc18 T6A cells exhibit wild-type growth at 36° C (top panel), but 
elongate after 6 hours at 25°C (bottom panel), (c) There is no evidence of re­
replication in elongated rad3ts cdc18 T6A cells on light microscopy (left panel) 
or FACS analysis (right panel).
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Figure 3.2: Different effects may relate to different levels of Cdc18 
expression
Wildtype and rad3ts cells harbouring pRep4X cdc18 were cultured for 24 
hours in the presence (OFF) or in the absence (ON) of thiamine. Wildtype 
and rad3ts cdc18 T6A cells were also cultured for 24 hours. Western blotting 
was performed probing with polyclonal anti-Cdc18 antibodies. Note the 
Cdc18-T6A phosphorylation mutant protein runs at a higher molecular weight 
due to the attached TAP tag.
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Figure 3.3: Mutation of the CDK consensus sites of Cdc18 results in a 
Rad3-dependent cell cycle arrest and Chk1 activation
(a) A rad3ts cdc18 T6A strain was synchronized using a Cdc18-activated 
Rad3-dependent block at 25°C (see schematic). The synchronous release 
was confirmed by FACS analysis (bottom right) and the percentage of 
binucleated cells and the septation index (bottom left), (b) A rad3ts cdc18 
T6A chk1-HA culture was synchronized as in (a) but shifted back to 25°C (see 
schematic) after 1 hour to re-impose the mitotic block. Samples were taken 
for western blotting using anti-HA antibodies. Note that most of Chk1 is 
converted to a slower migrating form corresponding with its phosphorylation 
and activation.
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Figure 3.4: The Cdc18 -activated Rad3-dependent cell cycle arrest acts 
through the Chk1/Crb2 pathway and not Cds1/Mrc1
The cdc18 T6A phosphorylation mutant was expressed in the known essential 
checkpoint pathway mutant backgrounds, and elongation or wild-type growth 
screened for using light microscopy.
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Figure 3.5: DNA damage produces a specific 2D gel intermediate
(a) Schematic of the replication intermediates detectable by 2D gel 
electrophoresis, (b) 2D gels of DNA extracted from wildtype cells treated with 
HU ( left panel) and MMS (middle panel) and probed for with ars3001,and 
treated with MMS (right panel) and probed for with a fragment which recognises 
a non-origin sequence downstream of ars3001.
The arrow is pointing towards the "X" like stucture.
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Figure 3.6: The damage intermediate may be cell cycle phase specific 
and is not dependent on the rad checkpoint gene network
(a) The damage intermediate was seen on 2D gel electrophoresis of wild type 
cells treated with MMS in an HU-induced S-phase block (left panel) and in a G2 
arrest (right panel), (b) The damage intermediate was present on 2D gel 
electrophoresis of the rad checkpoint genes treated with MMS. All blots were 
probed for with a fragment recognising a non-origin sequence downstream of 
ars3001.
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Figure 3.7: Cdc18 accumulates in a Rad3-dependent manner in an H U 
block
(a) A cdc25-22 cdcl 8-TAP strain was synchronised in late G2 by incubation at 
36°C for 4 hours and then released into the absence or the presence of HU 
(see schematic). After release at the permissive temperature of 25°C, 
samples were taken every 20 minutes for 3 hours and cell cycle progression 
was followed by flow cytometry analysis (top). Western blot analysis of total 
protein lysates from each samples were performed using anti-Cdc18 
antibodies (bottom). Note the accumulation of Gdc18 in the HU block, and 
that the cells start to leak through the block after 120 minutes, (b) The G2 
block and release into HU described in (a) was repeated in the absence of 
Rad3 using a cdc25-22 rad3Aura4 cdcl 8-TAP strain. FACS analysis (top 
panel) demonstrated that no S phase occurs, and there is no accumulation of 
Cdc18 (bottom panel, plus note presence of tubulin control).
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Figure 3.8: Cdc18 is not required for replication fork stabilisation
(a) A cdc18 switch off strain (S/O) was grown at 32°C and HU added for 10 
hours. At time = -1 h, thiamine was added to half of the culture and cells 
grown for another 6h (see schematic), (b) 2D DNA gels of genomic DNA 
extracted from cdc18 S/O in the absence (cdc18*) o r presence {cdc1&) o f 
thiamine were probed for ars 3001. Note the presence of replicating 
structures at all timepoints in both strains, (c) Left panel: FACS analysis of 
the samples from (b). Right panel: At 6 hours the proportion of aberrant 
mitotic cells were determined by DAPI staining. Note the cut cells in the 
presence of thiamine (cdc1&) (bottom panel).
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Figure 3.9: The positive feedback loop model for the Cdc18-activated 
Rad3-dependent checkpoint
(a) A positive feedback loop amplifies the Cdc18-activated Rad3-dependent 
delay into an absolute arrest, by stabilizing Cdc18 levels due to inhibition of 
Cdc2-directed Cdc18 degradation: (i) Cdc18 induces a Rad3-dependent 
inhibition of Cdc2 and consequent inhibition of mitosis; (ii) Cdc2 inhibits Cdc18 
by phosphorylation which targets it for degradation; (iii) So, Cdc18-directed 
inhibition of Cdc2 acts to prevent its own degradation, increasing Cdc18 levels 
and enforcing the Rad3-dependent arrest, (b) (i) A replication block activates the 
positive feedback loop, (ii) This is dependent on the presence of Cdc18. (iii) 
The phosphorylation mutant will also activate the positive feedback loop.
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4.1 Introduction

I have shown in Chapters 2 and 3 that an increase in the level of Cdc18 

activates a Rad3-dependent cell cycle block. When the cdc18 cDNA is 

overexpressed by the strong nm tl promoter within the pRep4X vector, the 

subsequent checkpoint effects observed are secondary to the increased levels 

of Cdc18. I also attributed the Rad3-dependent cell cycle block observed with 

the phosphorylation mutant to increased Cdc18 levels, although it is possible 

that the phosphorylation mutant has other effects beyond increasing Cdc18 

protein levels. It is known that phosphorylation destabilises Cdc18, so from 

now on I will refer to stabilisation, as well as increase, of Cdc18 levels when 

discussing the phosphorylation mutant.

This Cdc18-induced, Rad3-dependent arrest appears to utilise the 

Chk1/Crb2 “damage” pathway and not the Cds1/Mrc1 “replication” pathway. 

However, a Rad3-dependent accumulation of wild-type Cdc18 is a necessity for 

checkpoint control in an HU-induced S phase arrest. These two observations 

were linked in the positive feedback loop model for the Rad3-dependent 

checkpoint role of Cdc18 put forward in Chapter 3 (Figure 3.9). I proposed that 

an initial stabilisation of Cdc18 levels enforced the checkpoint pathway by 

Rad3-mediated inhibition of Cdc2 (preventing Cdc2-mediated Cdc18 

phosphorylation and targeting for ubiquitin-dependent degradation) and 

subsequent further stabilisation of Cdc18 levels. I also considered the idea that 

a threshold level of Cdc18 must be exceeded for checkpoint activation, allowing 

the cell to distinguish between local noise and the need for cell cycle arrest.
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I next wanted to characterise further the actual nature of the Cdc18- 

induced block. I also wished to establish whether the increased Cdc18 protein 

level itself activates the checkpoint directly or via a secondary effect. The 

stabilisation of Cdc18 levels may cause: 1) low level re-replication undetectable 

on FACS analysis or with nuclear DAPI staining and fluorescent microscopy; 2) 

DNA damage. These would both subsequently activate a Rad3-dependent cell 

cycle block.

4.2 Results

4.2.1 The Cdc18 phosphorylation mutant (Cdc18 T6A) produces a spectrum of

Rad3-dependent cell cycle effects 

In Chapter 3 (3.2.3.1) I described how the Cdc18-activated Rad3-dependent 

arrest could be used under specific conditions to synchronise rad3ls cdc18 T6A 

cells, implying the presence of an absolute cell cycle block in liquid culture. To 

quantitate this further, the rad$s cdc18 T6A was streaked out onto YE5S media 

and left to form colonies for 3 days at 36°C. The colonies were then replica- 

plated in duplicate to 36°C and 25°C. By 5h widespread cell elongation was 

seen at 25°C with wild-type growth in the corresponding colonies at 36°C. 

However, by 24h the cells at 25°C had reverted to wild-type behaviour, 

suggesting adaptation to the effects of the mutant Cdc18.

The cell length at division is the most sensitive way to measure a delay 

in entry into mitosis. Therefore, I chose this method to quantify the transient 

nature of the cell cycle block. Asynchronous log phase populations of both 

rad3[s cdc18 T6A and control rad3ts cells were blocked for 7 hours at 25°C in
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liquid culture (supplemented minimal media). At hourly timepoints, live cells 

were sampled and stained with calcoflor before imaging on the fluorescent 

microscope. For each sample, 12 cells with a septum were identified and 

photographed. Their length at septation was measured using a standard 

calibration bar (Image J programme). After 7 hours at 25°C the mutant cdc18 

T6A septated cells were found to be 60% longer than the wild-type septated 

cells (22.8|liM versus 13.9pM); there were no differences in length at division at

t=0h (Figure 4.1). This implies the presence of a transient mitotic block.

4.2.2 There is no evidence o f Cdc18-induced DNA re-replication causing 

checkpoint activation 

In 3.2.1 I described the absence of apparent re-replication in the presence of 

pRep4X cdc18 overexpression or the Cdc18 phosphorylation mutant, as 

assessed by DAPI staining of the nucleus or by FACS analysis. FACS analysis 

was repeated on samples taken hourly for 5 hours from asynchronous log 

phase cultures of rad$s and rad$s cdc18 T6A at 36°C. Both strains maintained

a 2C DNA content throughout the timecourse with no evidence of DNA re­

replication (Figure 4.2a).

4.2.2.1 The checkpoint signal is sent in the absence of detectable replication 

intermediates on 2-dimensional DNA gel electrophoresis 

When cdc18 is under the control of the pRep3X thiamine repressible promoter, 

its overexpression produces re-replication in G2 arrested cells demonstrated by 

increased DNA content on FACS analysis and by the presence of replication 

intermediates on 2-D DNA gel electrophoresis (Yanow et al. 2001). I therefore
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looked for the presence or absence replication intermediates on a 2-D gel in G2 

arrested cdc18 T6A cells. The mutant Cdc18 T6A protein remains elevated 

throughout the cell cycle as it cannot be phosphorylated and subsequently 

degraded (personal communication - D.Hermand). An asynchronous log phase 

culture of the cdc25-22ts rad3Aura4 cdc18 T6A strain, grown overnight at 25°C,

was arrested at the G2/M transition by shifting to 36.5°C for 8 hours (see

timeline in Figure 4.2b). Samples were taken two hourly for cell number 

analysis using a Coulter Counter (Figure 4.2d) and hourly for FACS analysis 

(Figure 4.2e), to confirm the G2 arrest. At Oh and 3h (when the cells are 

blocked in G2, and before any leak through may occur) samples were taken for 

preparation of genomic DNA for 2D gel electrophoresis. The Southern blot of 

the gel obtained was probed for with the origin fragment of the rDNA repeat. 

Replication intermediates were visualised in the asynchronous Oh culture, but 

these had all disappeared in the G2 arrested cells (Figure 4.2c). I concluded 

that the mutant Cdc18, in a rad3A background, is not causing detectable re­

replication.

4.1.3 There is no evidence of gross Cdc18-induced DNA damage causing 

checkpoint activation 

Because Chk1 is the main effector kinase for the DNA damage checkpoint, I 

tested whether it was the elevated Cdc18 protein level itself sending the 

checkpoint signal or whether it was inducing DNA damage with subsequent cell 

cycle arrest. This can be looked for on a gross level by first assessing the 

effect of the presence of the mutant protein on culture generation time and the 

timing of S phase initiation and completion. The next step was to look at the

109



Chapter 4 Characterisation of the Cdc18-activated checkpoint II

results of non-lethal DNA damage such as forward mutation rate.

4.1.1.1 Basic physiological parameters

4.1.1.1.1 Generation time is not altered in the Cdc18 T6A mutant

In Chapter 3.2.1.1 it was noted that Cdc18 overexpression in the absence of 

Rad3 had no effect on the plating efficiency. To look more closely at cell 

growth, asynchronous exponentially growing cultures of rad3fs and rad$s cdc18 

T6A were followed for 5 hours (300 minutes) at 36°C. Samples were taken

every 20 minutes for cell number processing using a Coulter Counter. The 

optical density (OD) was measured hourly at 595nm on a Spectrophotometer. 

The Cdc18 T6A mutant protein had no detectable effect on exponential cell 

growth, with the generation time for both control and mutant strains at 36°C

being 165 minutes, calculated from the logarithmic plots of the cell number 

measurements (Figure 4.3a).

4.1.1.1.2 S phase initiation and completion is not altered in the Cdc18 T6A 

mutant

To determine any effects on S phase, synchronized log phase cultures of both 

mutant and wildtype Cdc18 in a rad3Aura4 background were prepared using a

cdc25-22ts block and release procedure (see timeline in Figure 4.3b). The 

strains were cultured overnight at 25°C, and then synchronised in late G2 using 

a 4 hour incubation at 36.5°C. Cell number samples were taken every 60-90 

minutes during the block to ensure its effect (Figure 4.3d). After the cells were 

released from the G2 block by shifting back to 25°C, samples were taken and
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fixed every 20 minutes for the next 3 hours and cell cycle progression followed 

by FACS analysis (Figure 4.3c), cell number and septation rate (the septa were 

visualised and counted by fluorescent microscopy after calcoflor staining) 

(Figure 4.3e). No differences were observed in the timing of S phase initiation 

and completion despite the known presence of the mutant protein at an 

elevated level during S phase and persisting throughout G2. I concluded that 

the elevated levels of Cdc18 did not affect the timing of S phase initiation or 

completion.

4.1.1.2 Forward mutation rate

If Cdc18 is activating the checkpoint via low level DNA damage, then it may 

increase the observed spontaneous mutation rate. A forward mutation will 

change a wild-type gene to a mutant form. The forward mutation of ura4+ to 

ura4~ results in 5FOA resistance (5-FOA-R). This forward mutation rate (FMR) 

has been previously reported to be 1 per 107 cells (Kai and Wang 2003), and is 

easily detected and calculated as ura4+ strains, unlike ura4- strain, cannot grow 

in the presence of 5FOA. This is because the nontoxic 5FOA compound is 

converted to toxic 5-fluorouracil in yeast strains expressing a functional ura4 

gene. A mutagenesis assay was performed to see if there was any increase in 

the FMR in the presence of the Cdc18 T6A mutant. Rad3ts ura4+ and rad3ts 

ura4+ cdc18 T6A strains were grown to mid log phase, and 1x108 cells of each 

plated out onto YE5S media containing 5FOA for 3 days at 36°C. After 3 days

incubation at 36°C the number of 5FOA-R colonies were counted. The FMR

per 107 cells was 3.6 for rad3lsura4+ and 2.8 for rad3tsura4+cdc18 T6A (see 

Table 4.1 below). There are two possible explanations for this in the presence
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of only a historic control: 1) elevated levels of Cdc18 do not significantly affect 

the spontaneous mutation rate; 2) cdc18 and rad3 may both cause an increase 

in the spontaneous mutation rate, but are epistatic so no significant difference is 

seen between the two strains.

Table 4.1 Cdc18 T6A does not increase the forward mutation rate (FMR)

Total cells plated onto 5FOA Total ura4‘ colonies FMR per 10' cells

rad3s ura4* 3.72x10° 135 3.6

radds ura4+ cdc18 T6A 3.16x108 89 2.8

4.2 Discussion

From the results in Chapters 3 and 4, I conclude that stablisation of Cdc18 

levels can lead to a transient S-M checkpoint activation, blocking onset of 

mitosis in the absence of detectable replication intermediates or DNA over­

replication. However, as only a single replication origin was looked at on the 2D 

gels, I would need to perform either quantitative Southern blotting or microarray 

analysis of replication origins to be really sure of the absence of replication 

intermediates. Cdc18 acts upstream of Rad3 to bring about Chk1 

phosphorylation and activation, and the rad  checkpoint gene network is 

necessary for this cell cycle block. Cds1 and Mrc1 are not required for the 

checkpoint. In the absence of Rad3, cells containing elevated Cdc18 levels 

have the same generation time and cell cycle parameters as those containing 

wild-type Cdc18, and there are no gross effects on mutation rate. It appears 

that the increased level of Cdcl 8 transiently activates the S-M checkpoint 

through Chk1, with no other obvious effects on the cell cycle.
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Figure 4.1: Cdc18 induces a transient mitotic block
Asynchronous log phase populations of rad3ts cdc18 T6A and rad3ts were 
blocked for 7 hours at 25°C. (a) At hourly timepoints, live cells were sampled 
and stained with calcoflor. (b) At each timepoint, the cell length of 12 septated 
cells was measured. After 7 hours at 25°C the mutant cdc18 T6A septated 
cells were 60% longer than wild-type (22.8pM versus 13.9 pM). Note there 
was no difference in length at division at t=0h.
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Figure 4.2: There is no detectable re-replication in the presence of the 
Cdc18T6A phosphorylation mutant
(a) There is no evidence of re-replication on hourly FACS analysis of 
asynchronous log phase cultures of rad3ts and rad3ts cdc18 T6A at 36°C. (b) 
Schematic: A G2 block was induced using cdc25-22ts rad3Aura4 cdc18 T6A
(c) Asynchronous (AS) and G2 block 2D gels (at Oh and 3h respectively) 
were probed with non-origin rDNA. Note the disappearance of replication 
intermediates at3h. (d) G2 arrest confirmed by cell number (left panel) and 
FACS analysis (right panel).
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Figure 4.3: There is no evidence of gross Cdc18-induced DNA damage 
causing checkpoint activation
(a) There is no difference in generation time (calculated from cell number) 
between rad3ts and rad3ts cdc18 76Aat36°C. (b) Schematic for G2 block and 
release, (c) No differences seen in the timing of S phase initiation and 
completion on FACS analysis, (d) This was confirmed on cell number and 
septation index measurements.
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Chapter 5

A Pulsed Field Gel Electrophoretic analysis of the Cdc18 

phosphorylation mutant, Cdc18 T6A
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5.1 Introduction

I have shown that the Cdc18 phosphorylation mutant, Cdc18 T6A, is capable of 

initiating a spectrum of Rad3/Chk1-dependent checkpoint responses, from a G2 

delay to absolute cell cycle arrest. This appears likely to be a direct effect of 

the elevated Cdc18 protein levels, with no re-replication seen by FACS or 

detection of replication intermediates on 2-D DNA gels of G2 arrested cells. 

Because Chk1 is the main effector kinase for the DNA damage checkpoint, I 

carried out preliminary experiments looking for evidence of a Cdc18-induced 

damage mediated pathway. These showed no evidence of gross DNA 

damage. The next step was to use pulsed field gel electrophoresis (PFGE) as 

a more sensitive means of assessing DNA damage and also to confirm the 

absence of re-replication.

Fission yeast contains three chromosomes, (5.7Mb, 4.6Mb and 3.5Mb in 

size), which can be separated and visualised by PFGE. Replication 

intermediates do not migrate through a pulsed field gel (PFG) and stay in the 

well (Grallert and Nurse 1996). Hence, there is no chromosomal entry into the 

gel during an HU block, a synchronised S phase, or in the presence of ongoing 

re-replication. Damage causing double stranded breaks in the DNA is seen as 

a failure to resolve the chromosomes plus a smear in the lower end of the gel 

(Miller and Cooper 2003).
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5.2 Results

5.2.1 Chromosome III does not appear to enter the PFG in the presence of the 

Cdc18 T6A mutant

I wanted to look for evidence of DNA damage or re-replication in the presence 

of the Cdc18 phosphorylation mutant using PFGE. I first repeated previous 

experiments to demonstrate what happens to resolution of the wild-type S. 

pombe chromosomes in the presence of both an HU replication block and a 

MMS-induced DNA damage. An exponentially growing wildtype strain at 32°C

was split into 4 equal cultures at t=0h. Hydroxyurea (at 11mM concentration) 

was added immediately to culture B. At 2 hours, 0.002% MMS and 0.005% 

MMS was added to cultures C and D respectively. At 3 hours, samples were 

taken for the preparation of agarose plug embedded genomic DNA for PFGE. 

The gel was run for 72 hours and the DNA visualised with Ethidium Bromide 

(EtBr) (Figure 5.1). In the presence of HU, stalled replication forks prevented 

entry of chromosomes into the gel. As the concentration of MMS increased, the 

chromosomes were not resolved and DSBs appeared as a smear in the 

kilobase (Kb) region of the gel.

Cultures were set up of the cdc18 T6A mutant strains and their 

appropriate controls: rad$s and rad$s cdc18 T6A (CCL1) at 36°C; cdc25-22ts

rad3A and cdc25-22ts rad3A cdc18 T6A (CCL3) at 25°C (asynchronous cycling

cells) and also at 36.5°C (blocked for 3.5h before samples taken to ensure cells

were arrested in G2). Samples were taken in mid-log phase for the preparation 

of agarose plug embedded genomic DNA for PFGE. The gel was run for 72
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hours before staining with EtBr. In the cdc18 T6A mutant strain, chromosomes 

I and II entered the gel normally. There was no evidence of DNA damage in the 

form of DSBs. However, there was no or little entry of chromosome III into the 

gel in either cycling (in both rad3>s and cdc25-22ts rad3A mutant backgrounds,

the latter not shown) or G2 arrested cells when Cdc18 T6A was present. All 3 

chromosomes entered the gel as usual in the control strains (Figure 5.2a).

5.1.2 Chromosome III is present in the PFG as a smear over the size range 

3.5-greater than 5.7Mb

There are two reasons why chromosome III is not seen: 1) It is not entering the 

PFG; 2) It is present in the PFG, but at a different size. To check this, the PFG 

obtained in 5.2.1 was Southern blotted and probed with both a 3.4Kb fragment 

of non-origin rDNA and with an 800bp central portion of the adenine 6 gene 

(both specific to chromosome III). This revealed chromosome III was present in 

the gel, but as a smear extending from 3.5Mb up to greater than 5.7Mb (Figure 

5.2b). The fact that all 3 chromosomes are able to enter the gel supports the 

interpretation that there is no ongoing Cdc18-induced re-replication which could 

activate the checkpoint.

5.1.3 Chromosome III does not resolve into a discrete band at any stage in the 

cell cycle

I hypothesised that, as the cdc18 T6A strain appears to grow normally with wild- 

type physiological parameters in the absence of Rad3, the changes seen in 

chromosome III are resolved to a discrete band with each round of mitosis. I 

therefore wanted to see what happened to chromosome III as it progressed
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through the cell cycle. A synchronized mid log-phase culture of the mutant 

Cdc18 in a rad3Aura4 background (CCL3) was prepared using the cdc25-22 

block and release procedure described in 4.1.1.1.2.. Samples were taken 

hourly during the 36.5°C block for light microscopy (looking for cell elongation) 

and cell number determination to confirm the G2 arrest. On release, samples 

were taken every 20 minutes for 3 hours to monitor progression through S 

phase (using septation index and FACS analysis) and for the preparation of 

agarose plug embedded genomic DNA for PFGE (Figure 5.3a). The PFG was 

run for 72 hours before staining with EtBr. Chromosomal gel entry was reduced 

for all 3 chromosomes as expected around the 80 minute timepoint, 

corresponding with S phase and the presence of replication intermediates. 

Chromosome III was not visualised with EtBr staining at any point in the cell 

cycle (Figure 5.3b). Southern blotting and probing for chromosome III with non­

origin rDNA revealed a smear that was present throughout the cell cycle (Figure 

5.3c). The presence of the smear was reduced around the time of S phase. I 

concluded that the abnormality present in chromosome III persists throughout 

the cell cycle, but like chromosomes I and II does not enter the PFG during S 

phase.

5.1.4 Removal of the Cdc18 T6A mutant allows resolution of chromosome III in 

a discrete band

If it was the presence of Cdc18 T6A de-stabilising chromosome III, then 

elimination of Cdc18 T6A should allow the size of chromosome III to be 

stabilised. The cdc18 T6A mutant gene was crossed out of a cdc25-22 rad3A 

cdc18 T6A strain (CCL3), selecting for wildtype, cdc25-22, rad3A and cdc25-22
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rad3A strains by random spore analysis. In each case, 50% of the cells should 

have chromosome III from the cdc18 T6A parent, and 50% from the non-cdc18 

T6A parent. Samples were taken from exponentially growing cycling cells from 

the cross-derived strains for preparation of agarose plug embedded genomic 

DNA. The DNA was analysed with PFGE (Figure 5.4a) followed by Southern 

blotting and rDNA repeat probing (Figure 5.4b). In 17 strains analysed (not all 

data shown) chromosome III was now found to form a discrete band with an 

approximate 1:1 split between a normal sized chromosome III (in 9 out of the 

17) and an increased (greater than 5.7Mb) sized chromosome III (in 8 out of the 

17). This shows an approximately Mendelian inheritance of the 

normal.increased sized chromosome III from the parent strains.

I selected four of these strains (two with a large chromosome III and two 

with a normal sized 3.5Mb chromosome III) for further analysis. Each strain 

was cultured both overnight and for 30 generations before processing 

exponentially growing cells for PFGE. Southern blotting and rDNA probing 

demonstrated that after 30 generations of growth the normal size chromosome 

Ills remains unchanged, but in contrast the larger chromosome Ills returned 

closer to a normal size (Figure 5.4c). This implies the maintenance of an 

enlarged chromosome III requires the continued presence of Cdc18 T6A. If 

Cdc18 T6A is removed then the enlarged chromosomes gradually revert back 

to a normal size.
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5.1.5 Chromosome III remains abnormal in the presence of Cdc18 T6A mutant 

after meiosis

I then looked at the strains derived from the cross performed in 5.2.4 that still 

contained the cdc18 T6A mutant. Samples were taken from exponentially 

growing cycling cells from the cross-derived strains for preparation of agarose 

plug embedded genomic DNA. The DNA was analysed with PFGE (Figure 

5.5a) followed by Southern blotting and rDNA repeat probing (Figure 5.5b). In 

all 15 of these strains chromosome III remained smeared as in the parent strain 

(not all data shown). In 12 strains chromosome III was large (up to 7Mb in size) 

and smeared. In 3 strains it was close to wild-type size (around 3.5Mb) and 

starting to smear.

I conclude that the Cdc18 T6A mutant induces variable changes in the 

size of chromosome III. These changes disappear with removal of the mutant 

Cdc18.

5.1.6 The ribosomal rDNA repeat is expanded in chromosome III in the 

presence of the Cdc18 T6A mutant

All eukaryotes contain the genes encoding the ribosomal DNA (rDNA) as a 

tandem array of repeated units. The total number of rDNA repeats per genome 

varies greatly between given organisms, and is maintained at this appropriate 

level. However, variations in repeat number have been observed with both 

expansion and contraction. S. cerevisiae contains up to 150 copies of rDNA on 

chromosome XII. The phenomenon of rDNA repeat expansion has been 

observed in S. cerevisiae, in mutants defective for the essential subunits of the 

RNA polymerase I (pol I) transcription factor (TF) UAF. Pol II was used instead
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of Pol I to transcribe chromosomal rDNA, with a consequent increase in repeat 

number, suggesting the ability to use recombination to alter rDNA repeat 

number (Oakes et al. 1999). However, excessively high recombination events 

may also be harmful: accumulation of extra-chromosomal rDNA circles is toxic 

and may cause senescence (Sinclair and Guarente 1997). In fission yeast 

there are 100-150 of these 10.4Kb units (1-1.5Mb total), located at both ends of 

chromosome III (27% at one end, 73% at the other). This makes the rDNA 

ars3001 the most abundant replication origin in the genome.

To determine if there were changes in the repeat number of rDNA, an 

enzymatic digest of cdc18 T6A chromosomes in agarose plugs was performed 

and the size of the restriction digest fragments examined.

5.1.6.1 Sfi1 digest of chromosome III demonstrates expansion of the restriction 

fragments containing the rDNA repeats 

The restriction enzyme Sfi 1 cuts chromosome III into 4 discrete bands: A 

(915Kb containing 73% of the rDNA repeats); B (383Kb); C (1900Kb); D (242Kb 

containing 27% of the rDNA repeats) (Figure 5.6a). I carried out an Sfi1 digest 

of DNA embedded agarose plugs containing the cdc18 T6A mutant 

chromosomes (CCL1) and of their appropriate controls. PFGE was carried out 

under two different conditions (see Chapter 7 Materials and Methods): over 24 

hours using the standard conditions used after enzymatic digest, to resolve 

smaller fragments (in the kilobase Kb range) and over 72 hours using the 

standard conditions used for whole chromosome analysis, to resolve larger 

fragments (in the megabase Mb range). Southern blotting and probing for 

rDNA in the first run (looking in the Kb range) showed the loss of both rDNA
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containing bands in the presence of the Cdc18 T6A mutant (Figure 5.6b). It 

should be noted that the ethidium staining of the Cdc18 T6A digest was faint, 

raising the possibility that the rDNA bands were below the detection level. 

However, the second run (looking in the Mb range) clearly demonstrated a 

smear extending from 915Kb to about the 2Mb region of the gel in the presence 

of the Cdc18 T6A mutant (Figure 5.6c), confirming the presence and expansion 

of the rDNA repeats.

I concluded that there is expansion in the restriction fragments containing 

the rDNA repeats within chromosome III in the presence of the Cdc18 T6A 

phosphorylation mutant protein. The same digests were then probed with ade6 

(data not shown). There was no change seen in the size of the central ade6 

containing restriction fragment (fragment C), implying that the expansion seen 

is specific to the rDNA containing restriction fragments.

5.1.6.2 The expansion of chromosome III may be limited to the rDNA repeats 

I looked at the effects of the presence of the Cdc18 T6A phosphorylation 

mutant on a S. pombe linear minichromosome strain (Chr16). This contains a 

530Kb central region of chromosome III with no rDNA repeats, and is stably 

maintained in addition to the 3 regular chromosomes (Niwa et al. 1986). The 

minichromosome strain was crossed with rad3fs cdc18 T6A (CCL1), and a 

rad3ts cdc18 T6A Chr16 strain selected by random spore analysis. Samples 

were taken in mid-log phase from wildtype, Chr16 and rad3ts cdc18 T6A Chr16 

strains cultures at 36°C, for the preparation of agarose plug embedded genomic 

DNA for PFGE. As before, in the presence of the Cdc18 T6A mutant the intact 

chromosome III could not be visualised with EtBr staining (Figure 5.7a), but the
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530Kb minichromosome entered the PFG normally (Figure 5.7a and b). This 

supports the finding that there is expansion in the restriction fragments 

containing the rDNA repeats on chromosome III, suggesting that this expansion 

may be occurring within the rDNA repeats themselves.

5.1.7 The Cdc18 T6A phosphorylation mutant may not enhance recombination 

genome wide

The Cdc18 T6A mutant is affecting the size of chromosome III, with the 

expansion of the restriction fragments containing the rDNA repeats. I 

hypothesised that the phosphorylation mutant was promoting recombination 

with unequal cross-over events, leading to an increase in size of the rDNA 

containing restriction fragment. Decreased numbers of rDNA repeats were not 

observed. This may be due to: selection against cells containing less rDNA 

genes; or the unequal cross-over mechanism only producing rDNA gene 

amplification, as described in the transcription-induced cohesin dissociation 

model of rDNA amplification (Kobayashi and Ganley 2005). In this model, 

suppression of the S. cerevisiae silencing gene Sir2 allows transcription with 

subsequent displacement of cohesin. This results in unequal sister chromatid 

templates for DSB repair and amplification of rDNA copy number.

To investigate whether the unequal crossing-over phenomenon seen 

with Cdc18 T6A is genome wide or restricted to the rDNA repeats I looked for 

evidence of a generalised increase in recombination events.
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5.1.7.1 The Cdc18 phosphorylation mutant may not enhance meiotic 

recombination

Leu1 and the mating type locus, m atl (which determines whether a strain is h+ 

or h'), are located 140Kb (physical separation) apart on chromosome II. 

Genetic separation is measured in centimorgans (where one centimorgan is 

equal to a 1% probability of a recombinant between the two genes). One 

centimorgan may range from a 3 to 24Kb in physical separation, due to 

variation in the recombination frequencies between any two genes over the 

whole genome. The genetic separation between Ieu1 and m atl has been 

estimated previously at 14 centimorgans (Kohli et al. 1977).

An h+ cdc25-22 rad3Aura4 cdc18 T6A leu+ strain was crossed with an h' 

cdc25-22 rad3Aura4 cdc18 T6A leu' strain. Spores were plated out, and at 5 

days the resulting colonies replica-plated in duplicate onto selective media for 

leucine and onto sporulation plates. They were scored for leu+/leu' at 24 hours, 

and for h+/h' after staining with iodine at 72 hours (see Table 5.1 below). Out of 

74 colonies scored, only seven recombinants were seen (three h+ leu' and four 

h leu+). This translates to a recombination frequency of 9.5%, equating with a 

genetic separation of 9.5 centimorgans between Ieu1 and matl. In the absence 

of the appropriate controls (h+ cdc25-22 rad3Aura4 leu+ crossed with h' cdc25- 

22 rad3Aura4 leu, and h+ leu+ crossed with h 'leu '), I can only propose that as 

this value was not significantly different to that expected historically (14 

centimorgans) that Cdc18 T6A may not increase recombination levels during 

meiosis.
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Table 5.1 Cdc18 T6A may not cause increased meiotic recombination

leu- leu+

h+ 3 34

h- 33 4

Recom binants 3/36 4/38

Recom bination frequency (7/74) 9.5%

G enetic separation 9.5 centimorgans

5.1.1.2 The Cdc18 phosphorylation mutant does not enhance mitotic 

recombination genome wide 

I then looked for evidence of genome wide increased levels of mitotic 

recombination in the presence of Cdc18 T6A. Cdc2-56ts is a temperature 

sensitive mutant of the cdc2 gene: cdc2+ (but with a wee phenotype) at 25°C,

and cdc2' (with an elongated phenotype) at 36°C. It is able to revert

spontaneously to the cdc2+ phenotype at a considerably higher frequency 

(4x1 O'6 versus 2x10‘8) than other cdc2 alleles studied. This high reversion 

frequency was shown to result from the duplication of the chromosomal region 

encompassing the mutant cdc2 gene. One end of the duplicated region 

mapped to a 5S ribosomal RNA gene. There are about 30 5S rRNA genes 

dispersed throughout the S. pombe genome. It was proposed that unequal 

crossing over between two 5S rRNA genes led to the cdc2 duplication seen in 

the revertants (Carr et al. 1989).

I hypothesized that if Cdc18 T6A enhances recombination with unequal 

crossing over throughout the S. pombe genome, then it would induce an even 

higher cdc2-5tfs spontaneous reversion frequency. The cdc2-56ts and 

rad3Aura4 cdc18 T6A strains were crossed, and cdc2-5tfs rad3Aura4 and cdc2- 

56ts rad3Aura4 cdc18 T6A strains selected for by random spore analysis. I
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measured the spontaneous reversion frequencies of cdc2-5&s rad3Aura4 and 

two cdc2-5&s rad3Aura4 cdc18 T6A strains. Approximately 5x107 colonies 

were plated out for each strain at the permissive temperature of 25°C. After 5

days the colonies were replica-plated to 36°C. At 24 hours the number of

revertants were counted, as only these cells would be able to form colonies at 

36°C. The reversion frequencies were calculated (see Table 5.2 below) with no

increase seen in the presence of the mutant Cdc18.

Table 5.2 Cdc18 T6A does not enhance genome wide mitotic 

recombination

strain Cell number plated Number of revertants Reversion frequency

cdc2-5ds rad3>\ura4 7x107 10446 15x10"5
cdc2-5&s rad3Aura4 cdc18 T6A 13.3x107 7856 6x10 5

I concluded that it is unlikely that there is any enhanced genome wide

meiotic or mitotic recombination in the presence of Cdc18 T6A. Any increased 

recombinatorial activity appears to be limited to the restriction fragments 

containing the rDNA repeats. In fact the phosphorylation mutant appeared to 

reduce the reversion frequency.

5.2 Discussion

I have established that moderately elevated levels of Cdc18 can lead to a 

transient Rad3/Chk1 -dependent S-M checkpoint activation, blocking onset of

mitosis in the absence of detectable replication intermediates and DNA over-
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replication, with no gross effects on cell cycle time or mutation rate. However, 

one unexpected consequence of an elevated Cdc18 level is to increase the size 

of chromosome III, with expansion of the Sfi 1 restriction fragments containing 

the rDNA repeats.

Why is the chromosomal expansion seen limited to the rDNA repeats? 

The total number of chromosomal rDNA repeats is maintained at the 

appropriate level for an organism, and rapidly restored following contraction or 

expansion (Kobayashi et al. 1998). Genes found in such a repeated structure 

have a high frequency of recombination events, and are considered unstable. 

There are several processes that stimulate recombination in the rDNA repeats. 

These are: 1) The presence of the recombination hotspot, HOT1 (a DNA 

sequence enhancing genetic exchange around that region); 2) Collisions 

between replication forks and RNA polymerases (Voelkel-Meiman et al. 1987); 

3) The presence of replication fork barriers (RFBs) (also known as pause sites), 

which block replication forks from moving into the adjacent rDNA repeat in a 

direction opposite to that of rDNA transcription (Brewer and Fangman 1988). 

RFBs are a highly conserved feature of rDNA, with barriers being found at the 3' 

end of the rRNA genes in a number of organisms including S. cerevisiae, where 

they were first identified (Brewer et al. 1992). S. pombe rDNA repeats contain 

four closely spaced polar replication barriers. It has been proposed in S. 

cerevisiae, that expansion and contraction of the rDNA tandem repeats is 

coupled with DNA replication, with fork blockage at RFBs directly stimulating 

recombination via the formation of DNA DSB (Kobayashi et al. 2004).

Recombination regulatory mechanisms are present in the rDNA repeats 

to protect against possible harmful effects. A Fob1-dependent system is
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present is S. cerevisiae (Merker and Klein 2002). Fob1 binds to the RFB site 

and is necessary for RFB activity (Brewer, Lockshon et al. 1992). It is also 

required for HOT1 activity in a recombination test system outside the rDNA 

(Kobayashi and Horiuchi 1996). Mutations in Fob1 decrease recombination, 

however mutations in the Sir2 gene increase recombination in the chromosomal 

rDNA.

Sir2 is required for the transcriptional silencing of three budding yeast 

chromosomal regions: the silent mating-type locus; the telomere regions; and 

the rDNA (reviewed by (Rusche et al. 2003)). Sir2 is a NAD+ dependent 

histone deacetylase, and plays an essential role in forming heterochromatin 

(the higher repressive order of chromatin) (Smith et al. 2002). Pol II cannot 

access heterochromatin, with subsequent silencing and suppression of rDNA 

recombination (Fritze et al. 1997). Sir2 has been shown to be required for the 

efficient association of the cohesin subunit, Scc1, to rDNA (Kobayashi, Horiuchi 

et al. 2004); cohesin is essential for sister chromatid cohesion, and I will review 

this topic before discussing further the results.

In eukaryotic cells, sister chromatids remain physically connected from S 

phase synthesis until anaphase separation (reviewed in (Nasmyth et al. 2000). 

Sister chromatid cohesion is essential for amphitelic separation of sisters to 

opposite poles of the cells at mitosis, and acts as a “memory” that permits 

chromosomal segregation to take place long after completion of duplication. 

Cohesin is a multi-subunit protein complex essential for sister cohesion in yeast 

and vertebrates (Toth et al. 1999). There are four cohesin subunits (Smc1, 

Smc3, Scc1 and Scc3), all required for establishing and maintaining the 

attachment between sisters.
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Separation at the metaphase-anaphase transition is triggered by 

proteolytic cleavage of the Scc1 cohesin subunit by separase, a protease 

activated by the destruction of its inhibitory chaperone, securin (separin). This 

is mediated via the APC (anaphase promoting complex) (a ubiquitin protein 

ligase) and S. pombe SIp 1 /  S. cerevisiae CDC20. Separins exist in all 

eukaryotes. Human separin is overexpressed in many tumour cells, with 

increased levels thought to predispose to missegregation and genomic 

instability (Zou etal. 1999).

The spindle assembly checkpoint operates during mitosis to ensure the 

sister chromatids are correctly aligned on an undamaged spindle before 

separation into two identical daughter cells. It is vital that separase is not 

activated until the alignment of every single chromosome on the mitotic spindle 

is complete. In most eukaryotic cells, lagging or unaligned chromosomes 

transmit a signal via their unattached kinetochores. This promotes the 

formation of a form of Mad2, Mad2-1, which inhibits the APC via sequestration 

of Slp1/CDC20, with subsequent inhibition of the B-type cyclin and securin 

proteolysis. This is turn prevents activation of separase. However, when the 

sister chromatids are attached ampitelically and under traction, there are no 

unattached kinetochores. This promotes the activation of Slp1/CDC20 and the 

APC with subsequent destruction of securin, and consequent activation of 

separase (Zachariae and Nasmyth 1999).

So, separation of sister chromatids at the metaphase-anaphase 

transition is triggered by separase cleaving the Scc1 cohesin subunit. The 

silencing gene, Sir2, is thought to act (either directly or indirectly) with cohesin 

to decrease the frequency of unequal sister chromatid recombination
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(Kobayashi, Horiuchi et al. 2004). The majority of recombination repair events 

seen do not lead to changes in rDNA repeat number, and are based on equal 

sister chromatid repair.

Kobayashi et al proposed a transcription-induced cohesin dissociation 

model of rDNA repeat amplification, involving Sir2 and E-Pro (an RNA Pol II 

promoter) (Kobayashi and Ganley 2005). In wild-type cells: Sir2 represses E- 

Pro activity; there is cohesin association throughout the rDNA; replication forks 

pause at the RFB, producing DSBs which are repaired by equal sister 

chromatid recombination; there is no change in rDNA copy number. In the 

absence of Sir2; E-Pro is active, transcription displaces cohesin; unequal sister 

chromatids are used as templates for recombinational repair; expansion of the 

rDNA repeats is seen.

Increased levels of Cdc18 may increase the rDNA repeat number in a 

mechanism involving cohesin. Cohesin loading in Xenopus has been shown to 

be dependent on the formation of the pre-replicative complex; Cdt1, MCM2-7, 

ORC and CDC6 (Takahashi et al. 2004). The increased levels of Cdc18 

present after S phase, and specifically during mitosis, in the Cdc18 T6A 

phosphorylation mutant could be interfering with cohesin association, leading to 

mis-alignment, unequal sister chromatid recombination and rDNA repeat 

expansion.

There are three possible explanations for a Rad3-dependent checkpoint 

activation with an associated expansion in number of the rDNA repeats: 1) 

Cdc18 is inducing genome wide replication at a low level, which is not 

detectable by FACS analysis or by 2D DNA gels, but is sufficient to activate the 

checkpoint. In the rDNA repeats on chromosome III, the presence of a low
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level of replication bubbles may result in recombination with unequal cross-over 

events (as a result of replication fork blockage at the RFB, with DSB formation) 

with a subsequent increase in size of the chromosomal rDNA copy number; 2) 

Cdc18 is inducing recombination only in the rDNA repeats, and this leads to 

checkpoint activation; 3) The increased level of Cdc18 may be directly 

activating the cell cycle checkpoint, in a manner which occurs independently of 

the Cdc18 effects on the size of chromosome III or on inducing DNA replication. 

With this model, activation of the Rad3/Chk1-dependent S-M block is a direct 

consequence of elevated Cdc18 levels, and is not due to effects on DNA 

replication, recombination or damage. Support for this view is given by the fact 

that cells containing Cdc18 T6A and lacking Rad3 appear to grow normally, 

which would not be the case if damaging changes were occurring to the DNA. 

It may be that the Cdc18 T6A mutant protein may also have other effects 

independent of Cdc18 stabilization because the protein cannot be 

phosphorylated. The observed expansion of the rDNA repeats may be a 

phenotype peculiar to the presence of the mutant Cdc18 protein, completely 

independent of the Cdc18-induced Rad3-dependent checkpoint response.
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Figure 5.1: PFGE controls using an exponentially growing wildtype 
strain at 32°C
PFGE was performed on wildtype cells (lane 1), wildtype cells plus 11 mM HU 
for 3h (lane 2), wildtype cells plus 0.002% MMS for 1h (lane 3) and wildtype 
cells plus 0.005% MMS for 1h (lane 4). The DNA was visualised with 
Ethidium Bromide. Note resolution of the 3 S. pombe chromosomes (lane 
1), the failure of chromosomal entry in the presence of HU (lane 2), and the 
loss of chromosomal resolution/appearance of DSB with increasing %MMS 
(lanes 3 and 4).
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Figure 5.2: The Cdc18 phosphorylation mutant affects the mobility of 
chromosome III
(a) Chromosome III is not visualised in the presence of Cdc18 T6A onethidium 
bromide staining, either in asynchronous cycling cells (left panel) or G2 arrested 
cells (right panel), but it is present in the controls, (b) Southern blotting and 
probing with non-origin rDNA (for a fragment downstream of ars3001) (top 
panel) and ade6 (bottom panel) demonstrate chromosome III is present in the 
gel as a smear.
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Figure 5.3: There is no change in the behaviour of chromosome III 
throughout the cell cycle in the presence of the Cdc18 phosphorylation 
mutant
(a) Cdc25-22 rad3A ura4 cdc18 T6A cells were synchronised in G2 by growing 
overnight at 25°C and then shifting to 36.5°C for 3.5h (schematic). Cells were 
then released by shifting back to 25°C and samples taken for septation rate (left 
panel) and (b) PFGE (top panel) every 20 minutes for 3h. Note the absence of 
chromosome III on ethidium bromide staining, (c) Southern blotting and probing 
for chromosome III with non-origin rDNA. Note the smear present throughout 
the cell cycle.

136



smear

Figure 5.4: The changes in the size and variability of chromosome III 
disappear with the removal of the Cdc18 phosphorylation mutant
(a) Ethidium bromide stained PFG of cross-derived strains not containing cdc18 
T6A. Note absence of chromosome III in approximately half of the strains, (b) 
Southern blotting and probing of (a) for chromosome III with with non-origin 
rDNA. Note ratio of normal:enlarged chromosome Ills (6:7).
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Figure 5.4c
(c) Southern blotting and probing for chromosome III with non-origin rDNA in 
four selected strains from (a). Top panel shows overnight culture, bottom panel 
shows 30 generation culture. Note that after 30 generations the larger 
chromosomes Ills returned closer to a normal size.
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Figure 5.5: Chromosome III remains abnormal in the presence of the 
Cdc18 T6A phosphorylation mutant after meiosis
(a) Samples were taken for PFGE from exponentially growing cycling cells from 
the cross-derived strains that contained cdc18 T6A. Note the absence or 
reduction in the level of chromosome III on ethidium bromide staining, (b) 
Southern blotting and non-origin rDNA repeat probing. Note that chromosome 
III is present as a smear in all strains (but is more discreet when it approaches 
wildtype size).
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Figure 5.6: There is an expansion in the restriction fragments containing 
the rDNA repeats within chromosome III in the presence of Cdc18 T6A
(a) Schematic of digestion of chromosome III with the restriction enzyme Sfi1.
(b) Agarose plugs containing wild type Cdc18 and Cdc18 T6A chromosomes 
underwent Sfi1 digest prior to PFGE under conditions to resolve fragments in 
kilobase (Kb) range (left panel). The gel was then Southern blotted and probed 
for chromosome III with non-origin rDNA (right panel). Note the absence of the 
rDNA containing restriction fragments, (c) As in (b) except PFGE was run 
under conditions to resolve fragments in megabase (Mb) range. Note rDNA 
containing fragments present as a smear in the 1-2Mb range.
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530Kb

530Kb

Figure 5.7: The expansion in chromosome III may be occurring within the 
rDNA repeats
(a) PFGE was performed on a minichromosome strain (contains an extra 
530Kb centromeric fragment of chromosome III, that has no rDNA repeats) in 
the absence and presence ofCdc18T6A. In both cases ethidium bromide 
staining demonstrated the presence of the minichromosome within the PFG.
(b) Isolated enhancement of the Kb gel range to demonstrate the presence of 
the minichromosome more clearly.
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Chapter 6 Discussion

6.1 Cdc18 induces a Rad3-dependent checkpoint arrest

6.1.1 An overexpression screen, looking for Rad3-dependent activators o f the 

DNA damage/replication checkpoints, suggests a new role for 

Cdc18/CDC6

Despite the identification of many genes involved in the checkpoint response to 

DNA damage or stalled/perturbed replication, the actual sensors and primary 

pathway activators remain unknown. Central to the G2/M and S-M checkpoints 

in fission yeast is Rad3, homologue of the human PI3-kinase related protein 

ATR (ataxia telangiectasia and rad3 related). ATR and its ortholog, ATM 

(ataxia telangiectasia) (homologue of S. pombe Te ll), are two of the key 

damage checkpoint genes in humans. Rad3 works upstream with the rad gene 

network to send the checkpoint signal to the effector kinases: Chk1 and Cds1 

(Walworth et al. 1993, Savitsky 1995, Lieberman et al. 1996, Bentley et al. 

1996, Kostrub etal. 1998, Lindsay et al. 1998, Martinho et al. 1998).

I set out to identify new genes, or a new role for known genes, involved 

in checkpoint activation upstream of Rad3. I postulated that overexpression of 

such genes might ectopically activate either the replication and the damage 

checkpoints, or both. In the presence of Rad3 the checkpoint would be 

activated leading to lethality, but in the absence of Rad3 cells would grow 

normally. Thus checkpoint activation and cell cycle arrest would be Rad3- 

dependent, but independent of DNA damage and DNA replication 

intermediates.
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The search for such Rad3-dependent activators of the DNA 

damage/replication checkpoints found 6 candidate genes: cdc18, spd l, cig1, 

s ty l,  MCM7 and te ll.  However, as Cdc18 had the strongest and most 

reproducible phenotype I elected to concentrate on the characterisation of the 

Cdc18-induced Rad3-dependent checkpoint. For these studies I used a cdc18 

T6A strain (encoding a protein with all 6 CDK sites mutated from threonine to 

alanine preventing phosphorylation by Cdc2) as this produced a more 

predictable, stable and reproducible Rad3-dependent arrest than Cdc18 

overexpression using the thiamine-repressible nm tl promoter.

Cdc18/CDC6 is an essential gene with established roles in the initiation 

of DNA replication, and in the induction and maintenance of the S phase 

checkpoint. In the absence of Cdc18, cells inappropriately enter mitosis and a 

cut phenotype is observed (Kelly et al. 1993, Nishitani and Nurse 1995). Re­

replication only occurs with strong overexpression of Cdc18 ( Nishitani and 

Nurse 1995, Yanow et al. 2001), and this induces both a Rad3-dependent 

mitotic block (the presence of replication structures leading to S-M checkpoint 

activation), and a Rad3-independent block (attributed to a direct interaction of 

the N-terminus of Cdc18 with and subsequent inhibition of Cdc2) (Bueno and 

Russell 1992, Nishitani and Nurse 1995, Greenwood et al. 1998). However, 

Cdc18 is not known to activate a Rad3-dependent checkpoint response in the 

absence of replication intermediates (see Table 6.1 below).
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Table 6.1 Summary of effects of overexpression/stabilisation of Cdc18 levels in

different constructs

Construct Re-repiication

Effects 
Mitotic Rad3- 
block dependent 

block

Transient
block

Changes in 
size/variability 
chromosome III

pRep3x cdc18

(Nishitani and Nurse 1995)

Yes Yes No No Not known

pRep3X C-terminus cdc18

(Greenwood et al. 1998)

Yes Yes Yes No Not known

pRep3X N-term in us cdc18

(Greenwood et al. 1998)

No Yes No No Not known

pRep4x cdc18

(This thesis)

No Yes Yes No Not known

cdc18 T6A

(This thesis)

No Yes Yes Yes Yes

In this thesis I have demonstrated that increased levels or stabilisation of 

Cdc18 activate a Rad3-dependent checkpoint arrest, and that the rad  

checkpoint gene network is necessary for this cell cycle block. Rad3 is 

essential for initiation and maintenance of the checkpoint signal. Wild-type 

Cdc18 is required for checkpoint control, even when the checkpoint is induced 

by other means, such as HU. However, Cdc18 is not required to maintain 

stalled replication forks in an HU block. Cdc18 operates early on in the 

checkpoint, and acts mainly through the Rad3/Chk1/Crb2 “damage” pathway. It 

does not require the presence of a functioning Rad3/Cds1/Mrc1 “replication” 

pathway. I found no evidence of gross DNA damage or effects on the cell 

cycle, and no evidence of replication intermediates.

However, an unexpected consequence of stabilization of Cdc18 levels 

was to increase the size of chromosome III, with expansion of the Sfi 1 

restriction fragments containing rDNA repeats. I confirmed that the changes
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seen in chromosome III were a consequence of exposure to the presence of 

mutant Cdc18 protein.

6.1.2 How does stabilisation of Cdc18 levels produce a Rad3-dependent 

arrest?

I considered three possible scenarios to explain the observation of a transient 

checkpoint activation in the presence of elevated Cdc18 levels: (1) A direct 

effect of Cdc18, occurring independently of any other effects of Cdc18 in the 

cell such as changes in chromosome III; (2) An indirect effect of Cdc18 

consequent to low level activity of a known mechanism, such as 

endoreplication, or of an unknown mechanism that results in the increased size 

of chromosome III; and (3) Both direct and indirect effects acting independently 

to activate the checkpoint.

In a normal S phase, Cdc2 phosphorylates Cdc18 which becomes 

targeted for ubiquitin-mediated proteolysis (Brown et al. 1997, Jallepalli et al. 

1997, Kominami and Toda 1997Jallepalli et al. 1998, Lopez-Girona et al. 1998, 

Kominami et al. 1998, Wolf et al. 1999). This results in most of Cdc18 being 

degraded by end of S phase, allowing cells to proceed into G2 and M. In 

Chapter 3, I put forward the idea that Cdc18 acts as a marker that “S phase is 

in progress”. This proposal stemmed from the observation that although Cdc18 

is essential for checkpoint activation in an HU block, it is not required to 

maintain stalled replication forks. I hypothesised that once Cdc18 has played 

its role in replication initiation, it remains physically associated with the DNA 

transmitting information that replication is ongoing until sister chromatid 

duplication is complete. In its absence, cells inappropriately enter mitosis but
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replication forks do not collapse.

I also proposed a positive-feed back loop model for the Cdc18-activated 

Rad3-dependent checkpoint. Cdc2 is the target of the S-M checkpoint, and its 

Rad3-dependent inactivation blocks mitosis (Figure 3.10a(i)). Cdc2 also 

phosphorylates Cdc18 targeting it for degradation (Figure 3.10a(ii)). The 

checkpoint requires Rad3-dependent Cdc2 inhibition to prevent Cdc18 

destruction. I considered the possibility that the positive feedback loop, in 

which the initial stabilisation of Cdc18 enforces the checkpoint pathway by 

further Rad3 inhibition of Cdc2, subsequently leads to further stabilisation of 

Cdc18 levels (Figure 3.10a(iii)). In the presence of a replication block, such as 

that induced by HU, the positive feedback loop is put into action. However, this 

is lost in the absence of Cdc18, and aberrant mitotic entry observed. The 

Cdc18 phosphorylation mutant has the same effect as a replication block. With 

no Cdc2-induced Cdc18 degradation possible, the checkpoint is enforced and 

cells don’t enter mitosis (Figure 3.10b).

It may be that the S-M checkpoint is active during a normal S phase at 

an extremely low level, with a monitoring mechanism in place to maintain and 

amplify the checkpoint when required. S. pombe Cds1 activity is undetectable 

in an undisturbed S phase (Lindsay, Griffiths et al. 1998), but ATR is present 

during normal DNA replication and regulates the timing of origin firing in 

Xenopus egg extracts (Shechter et al. 2004). I proposed that wild-type Cdc18 

levels are too low to activate a strong checkpoint response during a normal S 

phase, and that the feedback loop has a threshold which enables discrimination 

between local noise and a true requirement for checkpoint activation. This 

threshold is exceeded at the levels of Cdc18 produced during either n m tl-
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controlled overexpression or in the phosphorylation mutant, resulting in Rad3- 

dependent checkpoint activation. The idea of a threshold may also explain the 

spectrum of effects seen, from a G2 delay to an absolute arrest with features of 

transience and incomplete penetrance.

Checkpoints involve a sensor detecting a particular structure, and then 

activating the effectors of checkpoint activation. There are many potential 

structural candidates that could activate the checkpoint in the event of DNA 

damage. However, another possibility is that the replication machinery may 

have a role as a signaler of a replication block. In support of this idea, I found 

that the original overexpression screen produced not only Cdc18 but also 

MCM7 as Rad3-dependent checkpoint activators; MCM7 is part of the MCM 

complex, which is thought to function as the replicative DNA helicase (Kearsey 

and Labib 1998). The replication machinery is conveniently sited to perform 

this secondary function of Rad3-dependent checkpoint activation. The MCM 

proteins remain nuclear throughout S phase (Mendez and Stillman 2000), and 

are necessary for ongoing DNA synthesis (Labib et al. 2000). The MCM 

complex is re-localized and exported from the nucleus on completion of S 

phase. This would fit with a putative role in preventing mitosis until replication is 

complete, by providing an “S phase in progress” signal. Human MCM7 has 

been shown to interact with ATRIP, which binds and activates the ATR kinase 

(the human homologue of Rad3), leading to the proposal that excess hMCM7 

might activate the intra-S phase checkpoint (Cortez et al. 2004, Tsao et al. 

2004).
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6.1.3 Cdc18/CDC6 plays a central role in S phase progression and is crucial 

for checkpoint control.

The importance of Cdc18/CDC6 is reflected in the tightness of its regulation, 

both transcriptionally and post-translationally. Cdc18 is expressed during 

mitosis and G1, with transcription repressed in G2 and S phase ( Kelly et al. 

1993, Muzi Falconi et al. 1996, Baum et al. 1998). The second layer to 

Cdc18/CDC6 regulation is phosphorylation and targeted degradation by Cdc2. 

The quantitative model of CDK activity in fission yeast can be used to 

understand the Cdc18 protein levels throughout the cell cycle (Fisher and Nurse 

1996). These authors proposed that CDK activity must be low prior to S phase 

(which equates to high levels of Cdc18 during assembly of the pre-replicative 

complex). CDK activity then reaches a high level to promote S phase (with 

Cdc18 levels falling, but sufficient for an “S phase in progress” signaling role). 

An even higher threshold is reached to promote mitosis and inhibit replication 

(hence Cdc18 is not present in G2 and M), until CDK activity falls on exit from 

mitosis (allowing Cdc18 to re-accumulate ready for the next round of 

replication).

6.1.4 How does the increase in the size of chromosome III seen with the 

stabilisation of Cdc18 levels fit into this story?

Expansion in the size of chromosome III occurs in the Sfi1 digestion fragments 

containing the rDNA repeats. Recombination between the rDNA repeated 

structure occurs at high frequency, and the number of repeats is therefore 

unstable (Kobayashi et al. 1992). The phenomenon of repeat expansion has
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broad biological and medical implications, and is involved in several inherited 

genetic disorders such as Fragile X syndrome and Huntington’s disease.

In Chapter 5 ,1 proposed several models to explain this observation in the 

context of a Cdc18-induced Rad3-dependent checkpoint. The first model 

supposed that Cdc18 was inducing low level genome wide replication that was 

undetectable but sufficient for checkpoint activation. This resulted in increased 

recombination with unequal crossover events in the rDNA repeats on 

chromosome III, leading to subsequent repeat expansion. The second model 

suggested that the increased levels of Cdc18 were directly activating the cell 

cycle checkpoint independently of the concurrent expansion of chromosome III. 

The third model suggested that Cdc18 was inducing recombination at the rDNA 

repeats only, not genome wide, and this could activate the checkpoint. I also 

considered the possibility that the expansion of chromosome III is a phenotype 

peculiar to the phosphorylation mutant.

I also discussed, in Chapter 5, what specific properties of the rDNA 

repeats could lead to expansion, and discussed several processes that 

stimulate recombination in the rDNA. Previously, it has been thought that the 

repetitive nature of all expandable elements can lead to occasional strand 

slippage during DNA replication (reviewed by Mirkin 2006). If unrepaired, this 

may convert to an expanded repeat after a second round of replication. But 

such strand slippage is likely to lead to only a limited increase in repeats, rather 

than the large scale expansion seen in chromosome III in the presence of the 

phosphorylation mutant. Human disorders, such as Fragile X syndrome and 

Huntington’s disease, are characterised by DNA repeat expansion. A threshold 

length for expansion (100-120bp) has been demonstrated, and is associated
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with the formation of unusual DNA secondary structures (hairpins, triplexes etc) 

by DNA unwinding or strand separation, as is seen with DNA replication.

The whole process of repeat expansion (of both the rDNA repeats and of 

the small DNA repeats involved in some human hereditary disorders) is tied up 

with the two processes of replication and recombination. We know that Cdc18 

is a key player in DNA replication and is bound to chromatin throughout S 

phase. As I discussed at the end of Chapter 5, increased levels of Cdc18 may 

lead to expansion of the rDNA repeat number in a cohesin-related mechanism. 

Cohesin loading in Xenopus has been shown to be dependent on the formation 

of the pre-replicative complex, including Cdt1, MCM2-7, ORC and CDC6 

(Takahashi et al. 2004). Proper sister chromatid cohesion enables DSB repair 

by recombination without any net change in the number of rDNA repeats. 

Cohesin holds the sister chromatids together from DNA synthesis during S 

phase until anaphase segregation. However, cohesin dissociation leads to 

sister chromatid misalignment and subsequent expansion of the rDNA repeats. 

The increased levels of Cdc18 present after S phase in the presence of the T6A 

phosphorylation mutant may be affecting cohesin association, with subsequent 

mis-alignment and rDNA expansion. It may be acting through effects on sir2, 

the silencing gene required for the efficient association of the cohesin subunit, 

Scc1, to rDNA (Kobayashi et al. 2004). In the absence of Sir2, expansion of the 

rDNA repeats is seen (Kobayashi and Ganley 2005).

I also considered and discounted the following mechanisms behind 

Cdc18-induced expansion of the rDNA containing fragments of chromosome III: 

the occurrence of “onion skin” re-replication in the DNA (no replication 

intermediates were detected during a G2 block using 2D DNA gel
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electrophoresis); the production of a ring chromosome (this would not have 

entered the PFG); that telomere elongation rather than rDNA repeat expansion 

is occurring (telomeres are not thought to elongate above 2Kb in size); the 

presence of a chromosomal translocation (the concurrent reciprocal event was 

not observed).

In conclusion, this work has shown that a moderately elevated level of 

Cdc18, brought about either by use of an ectopic promoter or by modifying its 

stability, activates the Rad3-dependent checkpoint. I propose this is either a 

direct effect of Cdc18, or an indirect effect via Cdc18-induced expansion of the 

rDNA containing restriction fragment of chromosome III.

6.2 The global role of Cdc18/CDC6

There is increasing evidence, both in S. pombe and also in higher eukaryotes, 

that CDC6/Cdc18 may perform two separate functions during the cell cycle. 

The first is the well-established and extensively characterised role in replication 

initiation. The second is the emerging role in the regulation of the S-M 

checkpoint.

As described earlier, in S. pombe Cdc18 is targeted for ubiquitin- 

dependent proteolysis by the Cdc2 cyclin-dependent kinase, resulting in falling 

Cdc18 levels in S phase and its absence in G2. However, in comparison, the 

human CDC6 protein is present throughout the cell cycle. Chromatin bound 

CDC6 persists throughout S phase and G2 before its degradation by the APC 

during mitosis, suggesting it may have other functions during late S phase until 

mitosis (Petersen 2000). The majority of the non-chromatin bound soluble
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CDC6 is exported from the nucleus during S phase and G2 in a CDK- 

dependent manner (Petersen et al. 1999, Pelizon et al. 2000). This relocation 

of CDC6 is thought to prevent re-replication. However, it has also been 

proposed that a fraction of CDC6 remains chromatin bound throughout the cell 

cycle, and that it is the MCM proteins that fluctuate between soluble and 

chromatin bound forms (Mendez and Stillman 2000).

It is thought that once replication licensing has occurred, CDC6 is not 

required for the subsequent DNA replication (Rowles et al. 1999, Jares et al. 

2000), but CDC6 may play another role, involving checkpoint activation, later in 

the cell cycle. In human cells, overexpression of CDC6 inhibits the activation of 

Cdk1-cyclin B and blocks entry into mitosis in a Chk1-dependent manner, 

suggesting important roles in both origin licensing and cell cycle progression 

(Clay-Farrace et al. 2003). It has also been shown in Xenopus that: CDC6 is 

displaced from chromatin as a direct consequence of origin licensing; rebinding 

of CDC6 to chromatin occurs in S phase after replication initiation (as the 

replication forks progress away from the origin); CDC6 is required for Chk1 

activation in response to stalled forks, separate from its role in loading the MCM 

complex onto chromatin (Oehlmann et al. 2004).

Further evidence for the checkpoint role of Cdc18/CDC6 is the 

relationship with oncogene-induced senescence. This is associated with 

human pre-cancerous lesions and is considered a barrier to tumourigenesis. 

CDC6 overexpression has been shown to induce an ATM-dependent 

senescence in human cells lines (Bartkova et al 2006).

It is now also being proposed that CDC6 has third role, unrelated to DNA 

replication and checkpoint control. CDC6 appears to be critical for the
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formation of the meiotic spindle in mouse oocytes (Anger et al. 2005). Other 

DNA replication proteins (ORC and MCM) are also thought to be involved in 

chromosomal condensation and distribution in mitosis (Pflumm and Botchan 

2001, Prasanth et al. 2002).

In summary, Cdc18/CDC6 has clearly defined roles in the initiation of 

replication and in the induction and maintenance of the S phase checkpoint, 

and an emerging role in mitosis.

6.3 The relationship between cell cycle biology and cancer medicine

I am a Clinical Oncologist, treating cancer patients with a combination of 

chemotherapy and radiotherapy. Chemotherapy involves the use of cytotoxic 

and cytostatic drugs, and biological, immunological and genetic therapies. 

Chemotherapy may also be used to enhance the effects of radiotherapy, by 

acting synergistically or as a radio-sensitizer. I chose to work on DNA 

checkpoints as their disruption results in genomic instability, and may lead to 

cancer in humans. The efficacy of radiotherapy, and of many chemotherapeutic 

agents, relies on an intact checkpoint pathway. I have found a new checkpoint 

role for Cdc18, which is either a direct effect or is secondary to low-level 

replication and subsequent recombination. I would therefore like to discuss the 

implications of my research with respect to cancer diagnosis and therapy, and 

to consider the possible clinical role of Cdc18/CDC6.

The basic cell biology of 25 years ago identified signalling molecules that 

are now being used as therapeutic targets in cancer treatment. The clinical 

importance of these molecules was not obvious at the time. The cyclin-
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dependent kinase pathways have since been targeted, along with the tyrosine 

kinase receptor pathways. One recent development, with dramatic clinical 

effects, was the specific inhibition of the Bcr-abl fusion protein (a tyrosine 

kinase receptor) with imatinib (Glivec®). The Philadelphia chromosome is 

found in CLL (chronic lymphocytic leukaemia) and represents a t(11:22) 

translocation placing the bcr gene next to the abl gene. Imatinib was also found 

to have dramatic effects in gastro-intestinal stromal tumours (GIST). As a 

result, more generalised tyrosine kinase inhibitors are being developed with 

promising clinical results. The more we know and understand about the 

genetics behind malignancy, the greater the predictive power of behaviour and 

outcome (known as tumour profiling), and the greater the ability to individualise 

therapeutic treatments and optimise outcome. Cancer clinicians and cancer 

scientists need to work together to produce the desired end result: personalised 

medical treatments for cancer with ever increasing survival rates.

So what is the role of Cdc18/CDC6 in understanding, assessing and 

treating human cancers? Firstly, Cdc18/CDC6 and the ORC-associated DNA 

replication factors play a key role in the initiation of replication, which results 

from the convergence of many, potentially mutagenic, signalling pathways. 

They are therefore perfectly positioned to give an accurate indication of cell 

division. Cell proliferation markers have been long used as indicators of 

dysplasia and malignancy (reviewed by Semple and Duncker 2004). Ki-67 in 

particular has been used successfully in the diagnosis of breast cancer, 

prostate cancer, and soft tissue sarcomas, but is not so helpful in other 

malignancies. However, anti-CDC6 antibodies have been shown to detect a 

dramatically higher percentage of abnormal cells in cervical cancer and brain
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tumour samples than Ki-67 (Williams et al. 1998, Ohta et al. 2001).

The MCM proteins, closely associated with Cdc18/CDC6 in the pre- 

replicative complex, are sensitive and specific biomarkers of cell cycle entry. 

They are currently being used as markers of dysplasia/early cancer in the 

development of new, and in the improvement of established, minimally invasive 

screening tests. For example, MCMs are being used in an attempt to improve 

the sensitivity of the smear test for cervical cancer (Gonzalez et al. 2005, Scott 

et al. 2006). Cdc18/CDC6 could be used in the same way.

But CDC6 may play a role in cancer beyond that of a proliferation marker 

(Gonzalez et al. 2006). Gonzalez et al concluded that the aberrant expression 

of CDC6 is oncogenic, by down regulation of the INK/ARF locus. The INK/ARF 

locus is one of the most frequently inactivated in human cancers, and encodes 

3 tumour suppressors: p15INK4b, ARF and p16INK4a. They proposed a model 

whereby a conserved DNA regulatory domain, sensitive to CDC6 levels, 

positively governs the INK4/ARF locus. They compared the CDC6 induced 

down regulation of tumour suppressors to the silencing of mating type loci in 

budding yeast. I have already discussed and considered the possible 

interaction between Cdc18/CDC6 and the silencing gene, Sir2, which may 

underlie Cdc18-enhanced recombination as the putative mechanism behind the 

observed rDNA repeat expansion.

Cdc18/CDC6 is a universal component of all cells, cancerous or not. 

Given its key role in replication and this new role in checkpoint control, 

deregulation of Cdc18/CDC6 carries the risk of severe consequences to the cell 

and organism. However, this also translates into its potential use as a clinically 

important therapeutic target, diagnostic tool and prognostic factor.
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7.1 Fission yeast physiology and genetics

7.1.1 Gene and protein nomenclature

Throughout this thesis I have followed the genetic nomenclature of 

Schizosaccharomyces pombe reviewed in (Kohli and Nurse 1995). Gene 

names consist of three lower case letters in italics (e.g. rad3). The wild-type 

gene is indicted by a superscript plus symbol “+” following the gene name (e.g. 

rad3+). Gene mutant alleles are represented in italics by either a number, or a 

combination of numbers and letters, separated from the gene name by a 

hyphen (e.g. rad3-136). A superscript is used to denote a temperature 

sensitive mutation (e.g. rad3>s). Deletions are specified by the symbol delta “A” 

(e.g. rad3/s). If the deleted gene has been replaced by another gene, this further 

specified by followed by the name of the replacing gene (e.g. rad3A::ura4+). 

The protein encoded by a specific gene has the same name but not in italics, 

the first letter upper case and rest in lower case (e.g. Rad3). When genes are 

expressed from a plasmid the name of the plasmid and a “p” preceeds the gene 

name (e.g. pRep4X cdc18). Strain mating type is indicated as h+ or h-.

S. cerevisiae genes are named as S. pombe genes, except a capital 

letter is used (e.g. Cdc6). Human genes are named as S. pombe genes, 

except capitals are used (e.g. CDC6).

7.1.2 Strain growth and maintenance

The S. pombe strains used in this study are listed in Table 7.1 (previously 

constructed) and Table 7.2 (constructed for this thesis). All strains were derived
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from the wild types 972h- and 975h+. Growth conditions and media were used 

as previously described (Moreno et al. 1991). Maintenance and growth of 

fission yeast strains, storage and waking up of frozen cultures, checking of 

phenotypes and genetic crosses were performed as described in (Moreno et al. 

1991, MacNeill and Fantes 1993). When required Hydroxyurea (HU) at 11mM, 

thiamine (vitamin B1) at 15pM, geneticin (G418) at 0.5mg/ml, or 5-fluoro-orotic 

acid (5FOA) at 1 mg/ml was added.

Table 7.1 Fission yeast strains previously constructed

Genotype Reference

Wildtype (972 h+ and 972 h-) CCL collection

h- ade6-704 leu 1-32 CCL collection

h- rad3f* ade6-704 \eu1-32 ura4-D18 T.Carr

h+ rad3?s ade6-704 leu1-32 ura4-D18 T.Carr

h- spd1A::ura4 ade6-704 leu1-32 ura4-D18 CCL collection

h- rad3A::ura4 ade6-704 leu1-32 ura4-D18 T.Carr

h- rad3-136 leu 1-32 ura4-D18 CCL collection

h- leu 1-32 ura4-D18 CCL collection

h- cdc25-22 CCL collection

h- chklA::ura4 ura4-D18 CCL collection

h- chk1A::ura4 ura4-D18 leu1-32 CCL collection

h- cdslA::ura4 leu 1-32 ura4-D18 CCL collection

h- chklA::ura4 cds1A::ura4 ade6-704 leu 1-32 ura4-D18 CCL collection

h+radlA::ura4 leu1-32 ura4-D18 CCL collection

h- rad9A::ura4 ade6-704 leu 1-32 ura4-D18 CCL collection

h- hus1-14 leu1-32 CCL collection

h- rad 17- ade6-704 leu 1-32 ura4-D18 CCL collection

h- rad26A::ura4 leu1-32 ura4-D18 CCL collection

h- crb2A::ura4 leu 1-32 ura4-D18 CCL collection

h- mrclA::ura4 ade6-704 leu1-32 ura4-D18 T.Carr

h- miklA::ura4+ wee1-50 ade6-704 leu1-32 ura4-D18 CCL collection

h+ rad3ts cdc18 T6A LEU2 ade6-704 leu1-32 ura4-D18 CCL1 CCL collection

h+ rad3>s cdc18 T6A-TAP kanr ade6-704 leu1-32 ura4-D18 CCL2 CCL collection

h+ rad3A::kanr leu1-32 ura4D-18 CCL collection

h+ chklA::kanr Ieu1-32 ura4D-18 CCL collection

h+ cdslA::kanr Ieu1-32 ura4D-18 CCL collection

h+ crb2A::kanr leu1-32 ura4D-18 CCL collection
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h+ rad26A::kanr leu1-32 ura4D-18

h+ rad9A::kanr leu1-32 ura4D-18

h+ hus1A::kanr leu1-32 ura4D-18

h- nmt81 cdc18-td HIS3 ade6-M210 his5 kanR

h- cdc18A::ura4 ade6-704 leu1-32 pRep81 cdc18

h- cdc2-5()s leu 1-32

h- nda3-km11cs leu-132 ura4-D18

cdc25-22?s cdcl8-TAP kanr leu 1-32 ura4-D18

h- cdc25-22?s rad3A::ura4 leu1-32 ura4-D18

cdc25-22?s rad3A::ura4 cdc18-TAP kanf leu1-32 ura4-D18

h+ cdc25-22ts rad3A::ura4 cdc18 T6A-TAP kanr leu1-32 ura4-D18

h- his2 ade6-M210 Chr16

rad3?s cdc18 T6A LEU2 chk1-HA ade6-704 \eu1-32 ura4-D18

CCL collection 

CCL3 CCL collection

CCL collection

CCL collection

CCL collection

CCL collection

CCL collection 

CCL collection

CCL collection 

CCL collection

CCL collection

T.Toda

CCL collection

Table 7.2 Fission yeast strains constructed for this thesis

Genotype

rad3s ade6-704 leu1-32

rad3-136 leu 1-32 ura4-D18 pRep4X-cdc18

rad3-136 leu 1-32 ura4-D18 pRep4X-cig1

leu 1-32 ura4-D18 pRep4X-cdc18

leu 1-32 ura4-D18 pRep4X-cig1

rad3A:: ura4 ade6-704 leu 1-32 ura4-D18 pRep4X-cdc18 

h- miklA::ura4 ade6-704 leu1-32 ura4-D18

h+ rad3fs cdc18-T6A LEU2 ade6-704 leu1-32 CCL4

rad3A::ura4 cdc18-T6A LEU2

chk1A::ura4 cdc18-T6A LEU2

cds1A::ura4 rad3fs cdc18-T6A LEU2

chk1A::ura4 cds1D::ura4 cdc18-T6A LEU2

mrc1A::ura4 rad$s cdc18-T6A LEU2

crb2A:: ura4 cdc18-T6A LEU2

rad9A::ura4 cdc18-T6A LEU2

hus1-17 cdc18-T6A LEU2

radlA::ura4 cdc18-T6A LEU2

rad17h-21 cdc18-T6A LEU2

rad26A::ura4 cdc18-T6A LEU2

miklA::ura4 rad3>s cdc18-T6A LEU2

hus1A::kanr cdc18-T6A LEU2

rad3A::kanr cdc18-T6A LEU2

chklA::kanr cdc18-T6A LEU2

cds1A::kanr rad3?s cdc18-T6A LEU2

crb2A::kanr cdc18-T6A LEU2

rad26A::kanr cdc18-T6A LEU2
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rad9A::kanr cdc18-T6A LEU2 

hus1A::kanr cdc18-T6A LEU2

rad3?s cdc18-T6A LEU2 ade6-M210 Chr16 CCL5

cdc2-56>s rad3A::ura4

cdc2-56>s rad3A::ura4 cdc 18-T6A kanr CCL6

nda3-km11CS rad3A::ura4

nda3-km11CS rad3A::ura4 cdc18-T6A kanr CCL7

7.1.3 Strain construction

Generation of all double mutant strains was by crossing two single mutant 

strains of opposed mating type, followed by random spore analysis. Random 

spore analysis was also used to generate mutant strains with additional 

markers. All the checkpoint mutant cdc18 T6A strains and the 

minichromosome 16 cdc18 T6A strain were derived by crossing h+ rad3fs cdc18 

T6A LEU2 with the opposing phenotype mutant strain, followed by random 

spore analysis at 36°C. This was to allow growth of cdc18-T6A checkpoint

mutant strains with a lethal phenotype in the presence of rad3+ that were also 

rad3*s. They were selected for on the basis of prototrophy for leucine (cdc18- 

T6A) and uracil or G418 resistance (for kanr). They were then replica-plated to 

25°C to observe normal growth or elongation.

7.1.4 Transformation of plasmids and libraries

Cells were transformed with plasmid DNA by a modified lithium acetate method 

(Bahler et al. 1998). Approximately 1-2pg of DNA was transformed into 5x108 

log phase cells with 20pg of herring sperm carrier DNA per transformation. 

Plasmids were maintained by use of a selectable marker.
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7.1.5 Induction of gene expression from the nmt promoter

The thiamine repressible nm tl promoter is derived from the nmt1+ gene, which 

is required for thiamine biosynthesis (Maundrell 1990). Three versions are 

available in which the promoter sequences have been mutated to different 

degrees to give lower levels of expression (Basi et al. 1993, Forsburg 1993). 

They can be ordered by strength: REP1>REP41>REP81. These all have the 

LEU2 marker and a Nde1 restriction enzyme site in the polylinker. Plasmids 

containing LEU2, but with Xho1 replacing Nde1 are named 3X, 41X, 81X and 

can be ordered by strength: REP1=REP3X>REP41X>REP81X. They are also 

available with different markers e.g. REP4X=REP3X with ura4 replacing LEU2.

The standard thiamine concentration for repression of gene expression 

from the nmt promoters is 5pg/ml, although some low level expression occurs 

even in the presence of thiamine. Strains containing genes under the control of 

the nm tl promoter were always grown on plates containing 5pg/ml thiamine 

before replica-plating onto minus thiamine plates to allow induction of gene 

expression (takes up to 12 hours at 32°C). To induce full expression in liquid

culture, cells were grown until log phase in minimal media containing thiamine, 

filtered and washed three times with thiamine-free media, and then 

resuspended and grown in the absence of thiamine.

7.1.6 Shift experiments with temperature sensitive mutants 

Temperature-sensitive strains were grown either at the permissive temperature 

of 25°C (cdc25-22ts) or the restrictive temperature of 36°C (rad$s cdc18-T6A

CCL1) and then shifted as required. The cdc25-22ts block and release method 

of culture synchronisation was performed as described previously (Moreno et

162



Chapter 7 Materials and Methods

al. 1989). Cold-sensitive strains (nda3-km11cs) were cultured at the permissive 

temperature of 32°C or the restrictive temperature of 19°C.

7.1.7 Physiological experiments with Hydroxyurea (HU)

HU inhibits the ribonucleotide reductase enzyme resulting in nucleotide 

depletion. At a concentration of 11mM it will arrest an entire population of 

exponentially growing cells in early S phase on plates or in liquid culture.

7.1.8 Flow cytometric analysis (FACS)

Culture samples containing 2x106-107 cells were fixed in 70% ethanol and 

stored at 4°C. Two hundred pi of each sample were then processed for FACS

analysis by washing in 3ml of 50mM NaaCitrate, resuspending in 0.5ml 50mM 

Sodium Citrate containing 0.1 mg RNaseA, and put at 37°C for a minimum of 2

hours. 0.5ml 50mM Sodium Citrate containing 2pg/ml propidium iodide was

then added before sonicating for 30 seconds at setting 6 in a Soniprep 150 

sonicator (MSE). FACS analysis was performed using a Becton Dickinson 

FACScan as previously described looking at both DNA content and cell length 

(estimated by forward scatter) (Sazerand Sherwood 1990).

7.1.9 Cell number determination

A Coulter counter was used for measuring cell number. Cell fixation was by 

adding 1.6mls of formol saline (0.9% saline, 3.7% formaldehyde) to 0.4ml of 

culture and storing at 4°C. Before cell number processing and counting, 18mls

of ISOTON solution was added and the sample sonicated as in 7.1.8.
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7.1.10 Cell length determination

Gross changes in cell length were observed from forward scatter 

measurements during FACS analysis (7.1.7). Actual cell length was 

determined by scanning a picture of the cell(s) containing a calibration bar 

taken at the same resolution. The images were then imported into the 

programme NIH Image J, enabling the measurement of individual cell lengths.

7.2 Molecular Biology Techniques

7.2.1 General techniques

The following techniques were essentially carried out as previously described 

(Sambrook et al. 1989): DNA digestion by restriction enzymes; DNA gel 

electrophoresis; preparation of competent bacterial cells for transformation; 

bacterial transformation with DNA. Qiagen columns (Qiagen) were used for 

both small (mini-prep) and large (maxi-prep) preparation of DNA from bacteria. 

PCR reactions were performed in a MiniCycler (MJ Research), conditions for 

each reaction determined by the DNA template and oligonucleotide primers 

used. PCR products were purified using a GENECLEAN II Kit (BIO 101).

7.2.2 Construction of plasmids

S. pombe plasmids consist of: a bacterial origin of replication and selectable 

marker; a yeast selectable marker; and the equivalent of an autonomous 

replication sequence (ars), responsible for high frequency of transformation. 

Budding yeast markers used in S. pombe are the LEU2 and URA3 genes.
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Plasmids containing these markers complement the S. pombe mutations Ieu1' 

and ura4'.

7.2.3 Plasmid recovery

Cell cultures (1.4mls) were grown up with selection and the cells collected after 

microfugation. Added to the resuspended pellet was 0.2 ml of 2% Triton X- 

100/1% SDS/100mM NaCI/10mM Tris HCI (pH 8.0)/1mM Sodium EDTA. After 

addition of 0.2ml phenol:chloroform and 0.3 g acid washed glass beads the 

cells were vortexed for 2 minutes and then microfuged for 5 minutes. The 

upper aqueous layer was transferred and extracted with 200pl 

phenol.chloroform. The DNA was then precipitated and 1-5 pi used for 

transformations of competent S. pombe cells.

7.2.4 DNA sequencing

Sequencing was performed using the ABI PRISM Dye Terminator Cycle 

Sequencing Ready Reaction Kit (Perkin Elmer). DNA was purified using a 

1.5ml Qiagen mini-prep column (Qiagen). A PCR reaction was set up 

containing 5pl DNA/1pl (25ng) primer/9pl Terminator Ready Reaction Mix 

containing Amplitaq DNA polymerase (Perkin Elmer). The PCR products were 

then ethanol precipitated and samples run on a 4.8% acrylamide gel and 

detected using an ABI Prism 377 DNA sequencer. Sequences were analysed 

using the Applied Biosystems Sequence Navigator Software and matched 

against the Sanger centre S. pombe genome database.
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7.2.5 Western Blotting

Cells were boiled for 6 min after being washed once in STOP buffer. Protein 

extracts were prepared using glass beads in HB and a fastprep machine 

(Biol 01) (Moreno et al. 1991). Protein concentration was determined using the 

BCA kit from Sigma. About 50pg was separated on 10% SDS-PAGE and

blotted on nitrocellulose membrane (Amersham Hybond ECL) and detected by 

ECL (Amersham). The antibodies used were PAP (Sigma) at 1:1000, 

monoclonal anti-HA (Babco) at 1:1000 and polyclonal anti-Cdcl 8 antibodies 

(Nishitani and Nurse 1995) at 1:1000.

7.2.6 Preparation of genomic DNA for two-dimensional gel electrophoresis 

Around 8x108 cells were harvested by filtration and washed first with 50mls ice- 

cold nuclear isolation buffer (NIB) (50mM MOPS pH 7.2, 150mM KAC, 2mM 

MgCb) plus 0.1% sodium azide, and then with 50mls NIB. The cell pellets were 

frozen and stored at -80°C. Genomic DNA was extracted from the cells as

described (Wu and Gilbert 1995). The pellets were re-suspended in 3mls NIB 

with 500pM spermidine and 150pM spermine. The solution was filled with

acid-washed glass beads and cells broken by vortexing at 4°C for 15 minutes.

Two mis of NIB were added to the extracted supernatant and centrifuged for 10 

minutes at 6500g at 4°C. The pellet was re-suspended in 2mls G2 buffer pH

8.0 (800mM Guanidine-HCI, 30mM EDTA, 30mM Tris-HCI, 5% Triton X-100) 

with 200pg/ml RnaseA, and incubated for 30 minutes at 37°C. Proteinase K at

20mg/ml was then added. After a further 60 minutes of 37°C incubation, the
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lysate was centrifuged at 6500g for 10 minutes at 4°C. An equal volume of

Qiagen buffer QBT was added to the supernatant and the total volume put 

through a pre-equilibrated (with 1ml QBT) Qiagen genomic 20/G column. The 

column was washed 3 times with 1ml Qiagen buffer QC before eluting the DNA 

in 1.8mls of Qiagen buffer QF, pre-warmed to 50°C. DNA was precipitated with

isopropanol, washed in 70% ethanol and re-suspended in TE, with a yield of 15- 

20pg. The DNA was then digested with 80 units of restriction enzymes (EcoR1

and Kpn1) in a 200jliI volume at 37°C for 2.5 hours before ethanol precipitation.

7.2.7 2D gel conditions

Gels were run as described in (Friedman and Brewer 1995). The first 

dimension conditions were a 0.4% agarose gel in TBE, no ethidium bromide 

(EtBr), run for 24 hours in TBE at 1V/cm at room temperature. The gel was 

strained with EtBr to allow visualisation and excision of the lane from 1cm below 

the fragment of interest to around 7cm above. The excised lane was rotated 

through 90° and re-cast in a 1.1% agarose gel (with 0.3pg/ml EtBr in TBE)

equilibrated at 55°C. The second dimension was then run at 4°C in TBE buffer

plus 0.3(ig/ml EtBr circulating at 50-100mls/min at 6V/cm to allow the arc of

linears to migrate 8-10cm.

7.2.8 Southern blotting for 2D gels

The 2D gel was then washed at room temperature with gentle agitation for 30 

minutes in 5 volumes of 0.25N HCI. This was repeated in denaturing solution
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(0.5M NaOH, 1M NaCI) and finally in neutralising solution (0.5M Tris pH7.5, 3M 

NaCI). A Posiblot transfer apparatus (Stratagene) was used to transfer the 

DNA to a GeneScreen Plus membrane (NEN). A UV Stratalinker (Stratagene) 

crossed-linked the DNA to the membrane. Hybridisations were performed at 

68°C using around 2x106 cpm of a randomly primed probe per ml of QuickHyb

hybridisation solution (Stratagene). Membranes were washed 3 times for 20 

minutes with 0.1% SDS, 0.1XSSC at 63°C. The membranes were then

exposed to BioMax film (Kodak), scanned and processed in Adobe Photoshop.

7.2.9 Probes for 2D gels

To detect non-origin DNA within the tandem rDNA repeats the digested 

genomic DNA was probed with a 3.4Kb fragment from the rDNA repeats. This 

was isolated by EcoR1 digest of a plasmid containing the rDNA repeat (YIP32- 

rDNA), followed by purification with a QIAquick Gel Extraction Kit (Qiagen). The 

probe was labeled with a(32P)dATP (Amersham) using the Stratagene Prime It

II labelling kit, followed by removal of non-incorporated nucleotides with a 

ProbeQuant G-50 Micro Column (Amersham). The cpm/pl was quantified with

a scintillation counter.

7.2.10 Preparation o f agarose-embedded DNA for pulsed field gel 

electrophoresis

DNA was prepared as previously described (Ferreira and Cooper 2001). 

Cultures of cells were washed twice in SP1 buffer (1.2M sorbitol, 50mM 

citrate/phosphate pH5.6, 40mM EDTA), resuspended at a density of 0.5-1 x108
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cells/ml, and then treated with SP1 buffer containing 0.6mg/ml Zymolyase-T100 

(ICN) for 1 hour at 37°C. Cells were pelleted and gently resuspended in 100pl

TSE buffer (0.9M sorbitol, 10mM Tris-HCI pH 7.5, 45mM EDTA) plus one 

volume of 1% LMP agarose (GIBCO-BRL) in TSE. The cell suspension was 

placed in 100pl plug moulds (Biorad) and allowed to solidify. Agarose plugs

were first incubated for 90 minutes at 50°C in 1% SDS, 0.25M EDTA, 50mM 

Tris-HCI (pH 7.5) and then for 48 hours at 50°C in 1% lauryl sarcosine, 0.5M 

EDTA, 10 mM Tris-HCI (pH 9.5) containing 1 mg/ml Proteinase K 

(GIBCO-BRL). Plugs were then washed in TE10X (10mM Tris-HCI pH 7.5, 

10mM EDTA) at room temperature, and Proteinase K was inactivated by 

incubating with 0.04mg/ml PMSF in TE10X for 1 hour at 50°C. The plugs were 

finally washed twice for 30 minutes in TE10X at room temperature and stored at 

4°C.

7.2.11 Digestion of agarose-embedded DNA

For Sfi1 restriction enzyme digest, plugs were pre-equilibrated for 30 minutes in 

NEB buffer 2 on ice (10mM NaCI, 5mM Tris-HCI pH 7.9, 1mM MgCI2, 0.1 mM 

DTT, 100pg/ml BSA). Buffer was then replaced, and 100 units of Sfi1 (NEB)

added. The plugs were incubated overnight at 50°C and then washed twice for 

30 minutes in TE10X on ice and stored at 4°C.
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7.2.12 PFGE conditions

7.2.12.1 For whole chromosome analysis, or to visualise larger fragments 

after Sfi1 restriction enzyme digest

Before electrophoresis, plugs were equilibrated in 1X TAE running buffer for at 

least 1 hour. Plugs were loaded in a 0.8% pulsed-field certified grade agarose 

gel (Biorad) and electrophoresed at 14°C in a CHEF-DR III pulsed-field gel 

apparatus (Biorad) at 2V/cm for 72 hours, using 3 blocks. Parameters were: 

Block 1 - switch time 1,200 seconds, 96° included angle, run time 24 hours; 

block 2 - switch time 1,500 seconds, 100° included angle, run time 24 hours; 

block 3 - switch time 1,800 seconds, 106° included angle, run time 24 hours. 

The gel was then stained with EtBr and visualized using a Dual Intensity 

Transilluminator.

7.2.12.2 Sfi1 restriction enzyme digest analysis

The digested agarose plugs were pre-equilibrated in 0.5xTBE running buffer for 

at least an hour. Plugs were loaded onto a 1% pulsed-field certified grade 

agarose gel (Biorad) in 0.5xTBE and electrophoresed at 14°C in a CHEF-DR III 

pulsed-field gel apparatus (Biorad) at 6V/cm for 24 hours, using 1 block with a 

switch time of 60-120 seconds and a 120° angle. The gel was then stained with 

EtBr and visualized using a Dual Intensity Transilluminator.

7.2.13 Southern blotting of PFG

The gels were first washed in 5 volumes 0.25N HCI for 10 minutes. They were 

then denatured by washing in 0.5M NaOH/1M NaCI for 30 minutes, followed by 

30 minutes in neutralising solution (NaCI, Tris-HCI pH7.5, 1mM EDTA). All
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washes were at room temperature with gentle agitation. The DNA was 

transferred to a Duralon UV membrane by capillary action overnight on the 

bench. A UV Stratalinker (Stratagene) crossed-linked the DNA to the 

membrane. Hybridisation was performed at 65°C overnight with a randomly

primed probe. Membranes were washed sequentially with: 1% SDS, 0.1XSSC 

at 25°C; 0.1% SDS, 0.1XSSC at 65°C; 0.01% SDS, 0.1XSSC at 65°C. Each

wash was for 20 minutes. After a final brief wash in 1% SDS, 0.1XSSC at 25°C

the membrane was exposed to BioMax film (Kodak), scanned and processed in 

Adobe Photoshop.

7.2.14 Probes for PFGE blots

Chromosome III was probed for using a 3.4Kb non-origin rDNA fragment and 

an 800kb fragment of the adenine 6 gene. The 3.4Kb non-origin rDNA probe 

was prepared as described in section 7.2.8. The 800bp adenine 6 probe was 

isolated from plasmid plRT2 by digestion with EcoR1 and Hindlll, followed by 

purification with a QIAquick Gel Extraction Kit (Qiagen). The probe was then 

labelled and purified as described in section 7.2.8.

7.3 Microscopy

7.3.1 Visualisation of nuclei by DAP I staining

Five pi of rehydrated 70% ethanol fixed cells were placed on a slide and heat or 

air dried before adding 5 j l l I of DAPI (1pg/ml DAPI and 1 mg/ml p- 

phenylenediamine antifade in 50% glycerol). Cells were then imaged on the
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fluorescent microscope with a 360nm excitation/ 480nm emission filter, and 

photographs taken which were processed in Adobe Photoshop.

7.3.2 Visualisation of septa with calcoflor

3pl of live cells or rehydrated 70% ethanol fixed cells were air dried on a slide 

and 3pl of Calcoflor (10mg/ml stock) added. Cells were then imaged on the

fluorescent microscope with a 360nm excitation/ 480nm emission filter, and 

photographs taken which were processed in Adobe Photoshop.

7.3.3 Phase and DIC imaging

3pl of cells were placed on a glass slide and a glass coverslip overlaid. Cells

were viewed by DIC or phase microscopy using a Zeiss Axioplan microscope 

and photographs taken, which were scanned and then processed in Adobe 

Photoshop.
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