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Abstract

Mediator is a transcription co-factor complex that co-operates with transcriptonal activators to 

enhance gene specifc transcription and is conserved between yeast Drosophila and man. The 

MED17 subunit of Mediator (formerly known as TRAP80/CRSP6/DRIP80) has been 

characterised as a transcriptional activator interacting with a number of transcription factors, such 
as heat shock factor and p53. Expression of MED17 in yeast and Drosophila is essential to cell 

viablity possibly due to its function as a global transcriptional regulator.

In a yeast-2-hybrid screen with a viral cyclin as bait, MED17 was identified as an interacting 

done. Due to the oncogenic potential of viral cydins, effects of human MED17 on p53 regulated 

transcription were investigated. Functional characterisation of MED17 effects on p53 showed that 
it repressed p53 mediated transcription in luciferase reporter assays. Further, a MED17 

constitutively expressing line generated in non-transformed mouse cells inhibited apoptosis and 

demonstrated other features of p53 functional loss. Human MED17 still activates heat shock 

regulated transcription, as previously described for the Drosophila homologue. Analysis of other 

transcription factors regulated by MED17 was investigated by gene expression microarray 

analysis of the MED17 cell line, revealing a putative co-activator function in ft-catenin regulated 

transcription. Also studied was the interaction of MED17 with cellular homologues of viral cyclin. 
CycSn/cdks phosphorylate MED17, with cydin A/cdk2 specifically phosphorylating MED17 to 

enhance its expression.

This investigation reveals a novel repressor function for MED17 on p53 mediated transcription 

and links cell cyde regulators to the transcriptional activities of MED17/Mediator and p53.
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Chapter 1: Introduction

1.0 Transcription by RNA polymerase II

Transcription is the process of synthesising RNA for which the activity of 

the enzyme RNA polymerase (RNA pol) is central. Three types of RNA pol, I, II 

and III, exist and differ in their functions. RNA pol I and III are responsible for the 

majority of cellular transcriptional activity, synthesising ribosomal (rRNA) and 

transfer RNA (tRNA) respectively. RNA pol II, however, is involved in the 

transcription of genes and the synthesis of pre-messenger RNA (pre-mRNA). 

RNA pol II is a multi-subunit complex containing, Rpb1, a C-terminal domain 

motif (CTD) protein that is phosphorylated by regulatory kinases (Young, 1991). 

The CTD consists of a heptapeptide repeat (YSPTSPS) and is critical to the 

function of RNA pol II. Phosphorylation of specific serine residues in the CTD 

occurs during transcription and is associated with the regulation of RNA pol II 

activity. Specifically, serine 2 and serine 5 of the heptapeptide repeat are 

phosphorylated during transcription initiation and elongation. In the formation of 

the pre-initiation complex, which consists of RNA pol II and the general 

transcription factors, bound to DNA upstream of a transcription initiation site, 

serine 5 is phosphorylated. The subsequent phosphorylation of serine 2 is 

associated with the transition of RNA pol II to the elongation phase of 

transcription (Kobor and Greenblatt, 2002;Palancade and Bensaude, 2003).

Concurrent with the process of transcription are the capping, splicing and 

poly-adenylation modifications to the sequence of the transcribed mRNA
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(Proudfoot et al., 2002;Zorio and Bentley, 2004). The process of capping involves 

the addition of a methylated guansine cap to the 5’ end of the mRNA when it is 

between 22-40 base pairs long. The cap stabilizes the mRNA, protecting it from 

exonuclease activity, as well as facilitating the transport of the mRNA to the 

ribosomes for translation. In humans three enzymes are responsible for this 

reaction, human mRNA capping enzyme 1 (HCE1), HCE1A and HCE1B, whose 

guanyltransferase and triphosphatase catalytic activity is aided by interaction with 

phosphorylated serine 5 of the CTD.

mRNA splicing also occurs during transcription. Mammalian genes 

typically contain on average nine introns which are spliced from the mRNA by the 

spliceosome complex to generate a continuous open reading frame by removing 

exons and joining introns. Splice sites are initially recognised by the UlsnRNP 

subunit of the spliceosome during transcription which recruits other members of 

the complex. The elongation rate of the transcript may in fact regulate splicing by 

transcribing multiple splice sites to which the spliceosome can be used to 

generate alternative transcripts. The coupling of elongation with splicing may be 

mediated by an interaction between spliceosome proteins and the CTD of RNA 

pol II.

The poly-adenylation at the 3’ end of the mRNA is required for termination 

of transcription and the release of RNA pol II from the mRNA on completion of 

transcription. This “poly-A tail”, similar to the 5’ cap also protects the transcript 

from exonuclease activity. The addition of the poly-A tail is initiated by cleavage 

of the 3’ end at a conserved mRNA sequence coupled with the recruitment of
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poly-A polymerase. Studies in yeast indicate the CTD of RNA pol II seems to be 

required for both the cleavage and the poly-A extension by phosphorylation of 

serine 2 of the heptapaptide repeat in the CTD which is important for binding of 

accessory factors (Ahn et al., 2004).

The general transcription factors (GTF), TFIIA, B, D, E, F and H are a 

distinct set of factors required for transcriptional activity of RNA pol II whereas 

RNA pol I and RNA pol II are recruited to pre-initiation complexes by their own 

distinct GTFs. GTFs have been identified through biochemical purification and 

study of their transcription activating function in vitro. Together with RNA pol II 

they are collectively referred to as the basal transcription machinery, which is 

conserved among eukaryotes. The basal transcription machinery mediates 

transcription initiation and elongation required for basal transcription from a core 

gene promoter region. Gene specific transcription is activated by the basal 

transcription machinery on addition of sequence specific activator proteins 

binding their cognate DNA enhancer elements which are upstream of the core 

promoter. Similarly transcriptional repression can also be mediated by repressor 

proteins binding to their specific elements and inhibiting the activity of the basal 

transcription machinery. The addition of these DNA regulatory sequences 

introduces a high degree of complexity in the regulation of eukaryotic 

transcription.
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1.1 DNA regulatory sequences involved in transcription

Levine and Tjian noted that diversity in the types of DNA regulatory 

sequences present in the promoter regions of genes positively correlated with the 

mechanistic complexity of transcription in higher order organisms (Levine and 

Tjian, 2003). A typical simple eukaryote promoter, as would be found in yeast, 

consists of a core promoter, upstream activator sequence (UAS) and a silencer 

region all located in the 5’ region upstream of the transcription initiation site. The 

core promoter typically consists of a TATA box which mediates binding to the 

TATA binding protein (TBP), a subunit of the TFIID complex. Located distal to 

this is the UAS, binding site for usually two or three different sequence specific 

transcription factors which regulate the activity of TBP.

Compared with a eukaryote promoter a metazoan promoter demonstrates 

a higher degree of complexity. A typical metazoan promoter consists of these 

basic regulatory sequences as found in eukaryotes in addition to regulatory 

elements located both upstream and downstream of the transcription initiation 

site (Fig 1.1). The metazoan basic core promoter contains initiator sequences as 

well as a promoter element which is downstream of the transcription initiation 

site. This promoter element is thought to be particularly important in 

transcriptional regulation of genes which do not contain a TATA box. The 

proximal promoter elements, also known as response elements, functions like 

the UAS in promoter regions of lower order organisms but additionally contains 

binding sites for a transcriptional repressor as well as two activators, typically. 

Multiple enhancer sites which direct tissue specific gene expression patterns are
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specific to metazoan transcription. Enhancer sequences can be located many 

kilobases upstream or downstream from the transcription initiation site and 

contain binding sites for multiple transcription factors. Due to their distant 

location, transcription factors from adjacent genes have the potential to 

inappropriately activate transcription. Insulator sequences block the interaction of 

distal enhancers with the proximal promoter to prevent this. These additional 

DNA sequences in the typical metazoan gene promoter provide sites for the 

interaction of transcription regulatory proteins.

Broadly, two components contribute to transcriptional complexity in 

Metazoans. Firstly, DNA regulatory sequences in the promoter regions of genes 

enhance the complexity of the metazoan transcription by permitting the binding of 

sequence specific DNA binding proteins which have the capacity to positively or 

negatively regulate transcription. In addition, an increased number of 

transcription factors encoded in the genomes of higher organisms which 

enhances complexity still further. The human genome is thought to encode over 

3000 transcription factors in contrast to the genomes of C.elegans and 

Drososphila which are thought to encode about 1000 transcripton factors each 

(Lander et al., 2001). Transcription factors and the co-activator proteins recruited 

by them introduce another level of regulation in transcription by integrating 

multiple signalling pathways that govern transcriptional programmes. Such 

signals may be derived from the environment, the cell cycle and/or tissue specific 

pathways which in turn activate many transcription factors whose combined 

effect influences the transcriptional status of particular gene loci.
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In summary, biological complexity is associated with the enhanced 

complexity of transcriptional mechanisms. Contributing to the complexity of these 

mechanisms are increased numbers of DNA regulatory sequences with the 

concomitant increase in DNA binding transcription factors as well as co-factors 

encoded by the expanding genomes of higher order organisms. Elucidating these 

transcription mechanisms is required to understand how the cellular environment 

manipulates biological processes, via the transcription of specific genes.
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many kb upstream transcription 
initiation site

insulator distal upstream silencer initiator
sequence

downstream
promoter
element

enhancer proximal promoter core promoter

Fig 1.1 DNA regulatory sequences involved in Metazoan transcription

Diverstity of DNA regulatory sequences increases with high order organisms. Comparing between a simple eukaryote, such as yeast, 
and a metazoan, only the silencer region and TATA box are common between the two organisms.

RE - response element
GTF - general transcription factors
TBP - TATA binding protein

01 - transcription factors



1.2 Transcription factors and co-factor complexes

The activation of gene specific transcription, as opposed to basal 

transcription, requires the binding of sequence specific transcription factors and 

the recruitment of protein complexes which aid transcription. These complexes 

have been termed co-activators or co-repressors according to their 

transcriptional activity. Transcription factors tether co-factor complexes to DNA, 

which regulate transcription by various mechanisms. Transcription co-factor 

complexes are broadly classed according to their mechanism of transcriptional 

regulation. These involve remodelling/modifying chromatin structure or the 

modulation of basal transcription machinery activity.

1.3 Chromatin modification in transcription regulation

The interaction of DNA with transcription factors and co-factors is affected 

by its higher order structure within the cell. DNA is packaged within the cell as 

chromatin. The core units of chromatin are nucleosomes, each one consisting of 

146 base pairs of DNA wrapped around a protein octamer scaffold, containing 

two molecules each of histone H2A, H2B, H3 and H4 (Ehrenhofer-Murray, 2004). 

The stacking of these nucleosomes allows the formation of chromatin. 

Nucleosomes themselves are progressively packaged to form higher order 

structures known as euchromatin and heterochromatin, which reflect DNA in 

either a transcriptional permissive or inhibited state, respectively. Both chromatin 

modification and remodelling contribute to the regulation of transcription by 

altering chromatin structure.
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Chromatin modification refers to the post-translation modification of 

histones which undergo acetylation, methylation, phosphorylation, ubiquitination, 

sumoylation and ADP ribosylation. This extensive repertoire of modifications may 

in fact directly affect transcriptional activity through the recruitment of specific 

activators to modified histones, in what is known as the histone code. These 

modifications may also be implicated in other processes of DNA metabolism 

such as its replication and repair. Of the modifications, acetylation is the most 

studied and is generally associated with transcriptional activation. These 

reversible reactions are catalysed by histone acetyl transferases (HATs). Gcn5 

was the first HAT to be identified in yeast, that was associated with 

transcriptional activation (Brownell et al., 1996). The identification of HATs in 

mammals, such as CREB-binding protein (CREB) and p300, was through their 

association with transcriptional activators. Other mammalian HATs have been 

isolated in complexes with homology to the yeast HAT complex Gnc5p. Two 

mammalian HAT complexes, containing P/CAF and hGCN5, have been identified 

and contain subunits homologous to yeast Gnc5p in addition to other novel 

proteins suggesting that histone acetylation is a well conserved mechanism of 

transcription regulation from yeast to humans.

Mechanistically, acetylation of lysine residues on the histones reduces the 

positive charge of the amino group of lysine and alters its interaction with the 

negatively charged DNA, preventing the formation of heterochromatin. HATs can 

exhibit specificity to particular histones and even particular lysine residues within 

their N-termini. For example, yeast Gcn5p preferentially acetylates H4, whereas
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human counterparts P/CAF and hGNC5 acetylate H3 (Kuo et al., 1996). 

Specificity of lysine residue acetylation can also be altered by HAT associated 

proteins, as demonstrated by yeast Gcn5 when associated with either the Spt- 

Ada-Gcn5 acetyltransferases (SAGA) or adaptor (ADA) co-activator complexes, 

both of which can extend the set of lysine residues acetylated on histone H3 by 

Gcn5 (Grant et al., 1999). HAT activity may also be directed by the recruitment of 

transcription factors to particular acetylated histones, as proposed by the histone 

code. Acetylated histones may serve to recruit bromodomain containing proteins 

such as P/CAF whose bromodomain interacts specifically with an acetylated 

lysine in a histone H4 peptide (Dhalluin et al., 1999;Kanno et al., 2004). Similarly 

the two tandem bromodomains of TAF(II)250, a subunit of the TFIID complex, 

bind with high affinity to two acetylated lysines of histone H4 (Jacobson et al., 

2000). In a model of acetylated histone directed transcription, activators may 

recruit HATs to chromatin to acetylate histone H4, thus facilitating the binding of 

TAF(II)250. This interaction may serve to recruit other members of the basal 

transcription machinery to the core promoter. In such a model, co-operation 

between HATs and transcription factors serves to enhance the relaxing of 

chromatin and hence facilitate the activation of transcription.

A novel mechanism of transcription regulation has recently been 

described involving the acetylation of transcription factors by HATs. P300 can 

acetylate p53 at C-terminus lysine residues to enhance its sequence specific 

binding to DNA (Luo et al., 2004). The acetylation of nuclear receptors such as 

androgen receptor, oestrogen receptor a and the peroxisome proliferation-
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activated gamma receptor (PPARy) to alter their sensitivity to ligands and their 

promoter specificity has also been reported (Fu et al., 2004b). These effects of 

acetylation on transcription factors implicate HATs activity as having a direct 

effect on sequence specific transcription factors. These additional effects of 

acetylation suggest that HATs are generally associated with the activation of 

transcription which targets transcription at both the level of the chromatin as well 

as transcription factors, where its activity may more subtly regulate transcription.

Counteracting the activity of the HATs are two classes of histone 

deacetylases (HDAC) which catalyse the deacetylation of histones to repress 

transcription. Classification of the HDACs is also based on their similarity to the 

yeast histone deacetylases with class I HDACs resembling yeast Rpd3 whereas 

class II HDACs are similar to yeast HAD1. Mammalian class I HDACs consist of 

HDAC1,2 ,3 and 8, while class II include HDAC 4,5,6,7,9 and 10 (de Ruijter et 

al., 2003). HDACs require other co-factors to function. These HDAC/co-factor 

complexes usually consist of proteins that modulate the activity of the HDAC as 

well as DNA binding proteins which target the HDACs to specific gene 

promoters. Examples of such complexes are the Sin3, SMRT (silencing Mediator 

for retinoic acid and thyroid hormone receptors) and N-CoR (nuclear receptor co- 

repressor). The Sin3 complex contains mSin3A, HDAC1 and 2. SMRT and N- 

CoR are distinct complexes but are highly related, both utilising HDAC3 to 

repress transcription mediated by nuclear receptors (Guenther et al., 2001).

In addition to the classical family, the second family of histone 

deacetylases include the Sirtuins, which are homologous to the yeast Sir2 protein
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(Silent Information Regulator 2). Sir2 catalytic activity requires NAD+ as a co­

factor, which links its activity to metabolic pathways (Blander and Guarente, 

2004). The Sirtuins include 7 family members and are associated with 

transcriptional repression of p53 as well as the forkhead transcription factors 

(Vaziri et al., 2001;Brunet et al., 2004).

The recruitment of HDACs to sites of transcription repression is mediated 

either by DNA bound transcription factors or methylated DNA. In the later 

mechanism, methylation of DNA at cytosine residues located 5’ to guanosines, 

termed CpG islands facilitates recruitment of HDAC complexes via methylated- 

CpG binding proteins to mediate long term transcriptional repression, known as 

epigenetic silencing. Once recruited, HDAC enzymes repress transcription by 

removing acetyl groups from lysine residues of histones, enhancing its interaction 

with DNA thus occluding transcription factor binding. This negative regulatory 

activity of HDACs complements the transcriptional activator properties of HATs to 

ensure gene transcription is appropriately activated.

1.4 Chromatin remodelling in the regulation of transcription

Though presented as distinct form of transcriptional regulation, chromatin 

modification functions alongside chromatin remodelling. Together, these 

processes alter chromatin architecture and to regulate transcription. Chromatin 

remodelling differs from its modification as there is no addition of biochemical 

groups to the histone proteins. Instead nucleosome positions may be altered at a 

specific gene promoter (known as “sliding”) or remodelling of the nucleosome
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may occur through altering of DNA-histone interactions (Becker and Horz, 2002). 

Chromatin remodelling also includes the process of histone eviction, the removal 

histones, and histone exhange (Boeger et al., 2003;Mizuguchi et al., 2004).

The processes of chromatin remodelling are catalysed by complexes 

containing an ATPase subunit required for ATP hydroysis, which is required to 

loosen DNA-histone interactions. The initial discovery in yeast of ATP-dependent 

chromatin remodelling complexes was that of the switching and sucrose non­

fermenting (Swi/Snf) complex containing the Swi2/Snf2 ATPase (Caims et al., 

1994;Cote et al., 1994). Related complexes were also discovered in humans. 

hBRM/hSnf2a and BRG1/hSnf2b are homologs of Brahma (Brm) a Drosophila 

protein with homology to Swi2/Snf2. hBRM and BRG1 complexes contain 

proteins homologous to Swi/Snf but also contain novel proteins unique to these 

complexes (Wang et al., 1996a;Wang et al., 1996b;Papoulas et al., 1998). In 

addition to Swi/Snf related complexes, there is a second family of ATP- 

dependent nucleosome remodelling complexes, homologous to the imitation 

switch (ISWI) ATPase of Drosophila. One of the members of this family is the 

nucleosome remodelling factor (NURF) which was found to enhance GAGA 

transcription factor binding to DNA to activate transcription (Tsukiyama and Wu, 

1995;Tsukiyama et al., 1995).

Chromatin remodelling complexes act as indirect activators by facilitating 

the interaction of transcription factors with DNA. Their activity is specific to 

particular genes, for example, the recruitment of Swi/Snf related complexes and 

activation of transcription by nuclear receptors occurs upon ligand binding to the
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receptors (Yoshinaga et al., 1992;Muchardt and Yaniv, 1993;lchinose et al., 

1997;Wa!lberg et al., 2000). Similarly, the NURF complex is associated with 

transcriptional activation by the GAGA and Gal4 transcription factors, though no 

interaction between these transcription factors and NURF has been reported 

(Kang et al., 2002a).

The activity of the chromatin remodelling complexes is also coupled with 

chromatin modification. The Swi/Snf complex is recruited to specific acetylated 

histone lysine residues in a manner dependent on the bromodomains of 

Swi2/Snf2 and Gcn5 (Syntichaki et al., 2000;Hassan et al., 2002;Agalioti et al., 

2002). This implies a synergy between histone acetylation and chromatin 

remodelling in transcription activation, as seen with both Swi/Snf and ISWI 

complexes, whose activities require prior histone acetylation (Agalioti et al., 

2000;Hassan et al., 2001;Mizuguchi et al., 2001;Reinke et al., 2001).

Conversely, transcriptional repression can also be mediated by the 

chromatin remodelling complexes. BRG-1 is essential in transcriptional 

repression mediated by the retinoblastoma protein and its expression is absent in 

some tumour cell lines, suggesting a tumour suppressor role for this protein 

(Strobeck et al., 2000). Mechanisms for BRG-1 and BRM mediated repression 

have not yet been elucidated.

The modification and remodelling of chromatin represents an important 

initial phase in the regulation of transcription. Chromatin that is permissive to 

transcription is subject to other forms of transcriptional regulation by the
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transcription co-factors, which will be discussed in the next section of this 

introduction.

1.5 Transcription co-factors associated with the modulation of the basal

transcription machinery

Co-factors associated with the basal transcription machinery facilitate 

transcription by promoting assembly of the GTFs with RNA pol as well as 

regulating the transcriptional activity of the basal machinery. Such co-factors 

include TFIID, USA and Mediator, which have all been identified as 

macromolecular complexes and will be discussed further.

The TFIID co-activator complex

One of the first co-activator complexes to be identified with the basal 

transcription machinery was TFIID. TFIID is itself a member of the basal 

transcription machinery and is absolutely required for specific gene transcription 

by RNA pol II, along with TFIIB and TFIIE, in an in vitro system (Sawadogo and 

Roeder, 1985). These results suggested that transcription activators may 

function to recruit TFIID to the core promoter where it binds the TATA box to 

further recruit the GTFs to the transcription pre-initiation complex (Horikoshi et 

al., 1988;Hai et al., 1988). The interaction between TFIID and the TATA box was 

found to be dependent on another protein, TATA-binding protein (TBP) which 

was able to induce basal transcription from TATA containing promoters 

(Horikoshi et al., 1989).
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Further, purification of TFIID by way of TBP revealed other associated 

proteins known as TBP-associated factors (TAF) (Dynlacht et al., 1991). TAFs 

may have a role directing transcription from specific promoters as indicated by 

the interactions of several TAFs with the transcription factors p53 and VP-16 

(Goodrich et al., 1993;Lu and Levine, 1995;Thut et al., 1995). Mutational studies 

of TAF homologs in yeast and Drosophila further suggest their role in gene 

specific transcription due to defects in transcription of certain subsets of genes 

(Green, 2000;Chen and Hampsey, 2002). TBP can activate transcription from 

RNA polymerases, though its specificity for activating RNA pol II may be dictated 

by different complexes of TAFs (Cormack and Struhl, 1992;Chiang et al., 1993). 

These activities of the TFIID complex suggest that the GTFs may have an 

intrinsic gene specific transcription activator property without the recruitment of 

additional co-activator proteins.

Upstream Stimulatory Activity

Upstream stimulatory activity (USA) was isolated from fractions of 

mammalian nuclear extracts and comprised of proteins that could enhance 

transcription by activators as well as induce repression (Meisteremst et al., 

1991). Independent proteins from the USA fraction were identified. Among them 

was positive co-factor 4 (PC4), a general co-activator of transcription, which was 

shown to enhance transcription by interacting with the activator domain of VP-16 

and TFIIA to promote recruitment and stable binding of TFIID to the TATA box 

(Ge and Roeder, 1994;Kretzschmar et al., 1994;Kaiser et al., 1995). PC4
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transcriptional activation can be inhibited by the prior binding of TFIID suggesting 

that PC4 functions in the early stages of transcription initiation. Further study 

revealed a repressor function for PC4 in a minimal pre-initiation complex, 

however upon recruitment of TFIIH and TAF(II)250 to the complex, PC4 was 

phosphorylated by these kinases and released to permit transcription (Malik et 

al., 1998).

Negative co-factor (NC), also identified in USA fractions, demonstrated 

effects on the GTFs to negatively regulate basal transcription. Both NC1 and 

NC2 compete with TFIIA and TFIIB respectively for binding to TBP to prevent 

initiation of transcription (Meisteremst and Roeder, 1991;Goppelt et al., 

1996;Kamada et al., 2001). Overall the USA fraction contains both positive and 

negative co-factor elements whose recruitment to and activity on the basal 

transcription machinery may be guided by specific GTF and TAF proteins.

Mediator complex

The presence of Mediator complexes was suggested by studies of the 

phenomenon of activator interference, the ability of one activator to inhibit 

transcriptional activation by another, in vivo. Initially, activator interference was 

attributed to the sequestration factors such as GTFs and RNA pol II by the 

competing activator. However interference persisted even when these factors 

were provided in excess but were relieved when a crude yeast fraction was 

added (Kelleher, III et al., 1990;Flanagan et al., 1991). This fraction was termed
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Mediator and was hypothesised to contain factors that bridged activator proteins 

with the basal transcription machinery.

The Mediator complex was eventually isolated in complex with the RNA 

pol II holoenzyme and was originally thought to activate transcription through 

TFIIH mediated phosphorylation of RNA pol II CTD (Thompson et al., 1993;Kim 

et al., 1994). Subunits of the complex: suppressor of RNA pol B (SRB) 2, SRB4. 

SRB5 and SRB6 had been previously identified in genetic screens for extragenic 

suppressors of RNA pol II CTD truncations. Cells lacking these SRBs have 

phenotypes similar to that of cells with a deletion of a large portion of the CTD 

(Koleske et al., 1992). The discovery of these subunits in a complex with RNA 

pol II further linked Mediator to the regulation of its CTD.

The mechanism of Mediator activation of RNA pol II dependent 

transcription is still largely unknown. Although Mediator has been shown to 

interact with RNA pol II, recruitment of RNA pol II to the transcription machinery 

may be just one mechanism employed. Mediator associates with only 2% of the 

RNA pol II in yeast suggesting that it functions at a minority of RNA pol II 

regulated genes or perhaps that its interaction is transitory. A “Mediator cycle” 

has been hypothesised whereby Mediator recruits RNA pol II to the transcription 

initiation site and once phosphorylated by TFIIH, Mediator is released to initiate 

another round of transcription (Thompson et al., 1993).

The importance of Mediator in transcription is illustrated by mutational 

studies in yeast of the genes encoding proteins identified in the complex. Many of 

these genes are essential for viability, an example being SRB4, whose
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expression is essential for global RNA pol II activity. Studies in a SRB4 negative 

background however revealed that transcription could be restored with the 

expression of other Mediator subunits fused to a DNA binding domain (DBD). 

Transcription could not be restored by similar DBD fusions to SRB5 and SRB6, 

which were shown to interact with SRB4 (Lee et al., 1999). These studies 

support a model of recruitment or tethering of the Mediator complex to DNA thus 

allowing the complex to promote transcription.

Mediator subunits are also associated with negative regulation of 

transcription. Identified as recessive suppressors of CTD truncation phenotypes, 

negative regulators SRB8, SRB9, SRB10 and SRB11 have also been isolated as 

subunits of Mediator (Song et al., 1996;Carlson, 1997). SRB10/cdk8 and 

SRB11/cyclin C form an active kinase able to phosphorylate the CTD of RNA pol 

II prior to formation of the transcription initiation complex which inhibits its 

transcriptional activity (Hengartner et al., 1998). Additionally, Mediator/cyclin 

C/cdk8 may function as a repressor by phosphorylating the cyclin H component 

of cyclin H/cdk7, the kinase present in TFIIH, to inhibit transcription activation 

(Akoulitchev et al., 2000).

The similarity of phenotypes obtained in genetic screens between 

Mediator subunits has led to the hypothesis that Mediator is composed of 

subcomplexes which are further divided in to modules and submodules. By 

analysing the interactions of the Mediator proteins and basal transcription factors, 

yeast Mediator has been divided into 2 sub-complexes of Rgr1 and SRB4. The 

Rgr1 subcomplex is further divided into Gal11 and Med9/10 modules as well as
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SRB10/11 submodule (Kang et al., 2001). This organisation of Mediator may 

regulate its transcriptional specificity and activity, through sub­

complexes/modules acting individually or in co-operation to regulate RNA pol II 

activity.

The mammalian Mediator complexes have been identified by various 

methods which include, co-purification with yeast Mediator homologues and 

ligand bound nuclear receptors as well as direct purification of the complexes 

from fractions of nuclear extracts. These Mediator complexes include the 

Srb/Med co-activator complex (SMCC), thyroid receptor associated protein 

(TRAP) complex, PC2, vitamin D receptor interacting protein (DRIP) and co­

activator required for Sp-1 (CRSP) and have been shown activate transcription in 

vitro in systems consisting of sequence specific activators, USA and crude 

nuclear fractions containing the GTFs and RNA pol II. Transcriptional repression 

properties have also been described for the Mediator complexes. Repressing 

such complexes include negative regulator of activated transcription (NAT) and 

SMCC (Sun et al., 1998). Though identified independently of one another, all 

these complexes contain protein subunits conserved between the yeast and 

mammalian Mediator complexes, though some complexes appear to have 

subunits specific to that complex.

Despite the addition of other subunits in the mammalian Mediator 

complexes, the overall structural conformation of the complex remains conserved 

between yeast and mammalian cells as seen by analysis of yeast, murine and 

the human CRSP and TRAP complexes by electron microscopy and 3
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dimensional reconstruction (Asturias et al., 1999;Dotson et al., 2000;Taatjes et 

al., 2002). This basic structure consists of three modules, broadly described as a 

head, middle and tail, which form a pocket with which RNA pol II interacts. 

Further studies have revealed that Mediator conformation may change 

dependent on specific interacting transcriptional activators, as seen for CRSP 

(Taatjes et al., 2004). A conformational change may relate to its interaction with 

RNA pol II in the transcriptional pre-initiation complex and more subtly regulate 

transcriptional activation.

1.7 Transcriptional regulation by nuclear receptor

Mediator activates transcription in a multi-step process involving multiple 

transcriptional co-factors. Studies of the mammalian Mediator complex, TRAP 

have established a model for transcriptional activation by the thyroid hormone 

receptors (TR), a nuclear receptor transcription factor interacting with the TRAP 

complex (Ito and Roeder, 2001). In the absence of the stimulating ligand, the 

thyroid hormone receptor a exists in a heterodimer with the retinoic acid X 

receptor (RXR). This heterodimer interacts with the thyroid hormone response 

element and actively represses transcription by recruiting the co-repressor 

complex, SMRT. SMRT mediates repression through the recruitment of HDACs 

(Chen et al., 1996). Upon ligand binding, repression is relieved by the rapid 

recruitment of p160/SRC (steroid receptor co-activator) proteins, such as SRC-1, 

TIF2 and RAC3. The intrinsic HAT activity of some of the p160/SRC proteins, as 

well as their recruitment of HATs, CBP and pCAF, facilitate histone acetylation
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and the relaxing of chromatin structure to allowing binding of TRAP to the 

liganded receptor, and ultimately transcription activation (Sharma and Fondell, 

2000;Sharma and Fondell, 2002) (Fig 1.2).

The recruitment of both p160/SRC member proteins and TRAP to the 

liganded receptor is aided by interactions between specific protein motifs present 

on these proteins as well as the nuclear receptors. On the nuclear receptors, 

ligand dependent activation domains (AF-2) of the receptors mediate interaction 

with LXXLL motifs present on the p 160/SRC member proteins. Recruitment of 

the TRAP complex is also facilitated by a two LXXLL motifs present on subunit 

TRAP220. In the absence of TRAP220, the TRAP complex can not activate 

transcription by the liganded receptor (Ito et al., 2000). TRAP220 also interacts 

with other nuclear receptors in a ligand dependent manner, such as the 

androgen, oestrogen and peroxisome proliferation-activated receptors, to 

activate transcription (Kodera et al., 2000;Wang et al., 2002;Kang et al., 2002b). 

These findings suggest TRAP220 is required for transcription activation by a 

number of nuclear receptor transcription activators.

This model of nuclear receptor activated transcription includes a chromatin 

remodelling phase during activation, as has been shown for TR(3 by chromatin 

assembly and transcription assays in vitro (Lee et al., 2003). Further, oestrogen 

and androgen receptors also interact with chromatin remodelling complexes, via 

the BRG-1 protein of the Swi/Snf complex, to enhance transcription by these 

steroid hormone receptors (DiRenzo et al., 2000;Marshall et al., 2003). It is 

therefore suggested that Mediator functions in a multistep process to activate
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nuclear receptor transcription, whose recruitment by transcription activators link 

them to the basal transcription machinery.

1.7 TRAP80: a subunit of the TRAP transcription co-factor complex

Interactions between transcriptional activators and subunits of the 

Mediator complex allow it to regulate transcription by several different activators. 

One such Mediator subunit, TRAP80, interacts with several different transcription 

factors. TRAP80 was originally identified as an 80Kda subunit of TRAP, a 

Mediator complex involved in transcriptional activation of ligand bound thyroid 

receptors (Fondell et al., 1996). The TRAP transcription co-activator complex 

was purified from HeLa cells constitutively expressing a FLAG-tagged thyroid 

hormone receptor a1. TRAP is recruited by the thyroid receptor upon treatment 

of the cells with thyroid hormone (T3) and assembled on thyroid hormone 

response element (TRE) sequences in DNA to activate transcription in vitro. The 

cDNA of TRAP80 was cloned from a HeLa cDNA library by micropeptide 

sequencing of the TRAP80 protein using PCR primers based on the nucleotide 

sequence of these peptides (Ito et al., 1999). PCR products were then 

sequenced and BLAST searches used to obtain matching human cDNA clones. 

TRAP80 cDNA was initially predicted to encode a protein of 717 amino acids 

which contained leucine zipper motif, a region which can mediate protein-DNA 

and/or protein-protein interactions. The original sequence for TRAP80 was later 

replaced by a newer sequence that encoded a protein of 651 amino acids but 

contained all the protein motifs as previously described. This study also revealed

42



the presence of the TRAP80 protein in another transcription co-factor module, 

SMCC. SMCC was identified by similar methods to the TRAP complex. Tagged 

yeast Mediator protein FLAG-srblO, a human homologue of cdk8 (cyclin 

dependent kinase 8) was used to immunopurify SMCC which contained TRAP 

subunits TRAP220, TRAP170 and TRAP 100 but not TRAP80 (Gu et al., 1999). 

TRAP80 polypeptides and other TRAP subunits were however identified by mass 

spectrometry of SMCC and TRAP, which demonstrated the shared subunits of 

the two complexes (Ito et al., 1999).

1.8 TRAP80 and associated human Mediator complexes

Proteins of similar size to TRAP80 have also been identified as a 

component of related mammalian transcriptional co-activator complexes, DRIP 

(vitamin D receptor interacting protein) and CRSP (co-factor required for SP-1 

activation) (Rachez et al., 1998;Ryu et al., 1999). The CRSP co-activator 

complex is a co-factor involved in Specificity protein-1 (Sp-1) transcriptional 

activation from which CRSP6 (also known as CRSP77) was independently 

cloned. These transcription co-factor complexes and others often share common 

subunits though nomenclature for these subunits differs between the complexes. 

Recently, a unified nomenclature for the subunits of the Mediator, the 

transcriptional co-activator complex has been adopted, in which 

TRAP80/CRSP6/DRIP80 has been named MED17 and will be adopted hereafter 

(Bourbon et al., 2004).
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1.8 Conservation of the MED17 gene between species

Homologues of human and yeast Mediator subunits have been identified 

in Drosophila by genomic searches for conserved genes. This has also been 

aided by the identification of Drosophila Mediator complex by affinity purification 

via dMED6, one of the Mediator subunits conserved between yeast and human 

(Park et al., 2001a). dMED17 was subsequently identified as a homologue of 

MED17 through searches of the Drosophila expressed sequence tag and 

genomic databases and was confirmed as a subunit of the Drosophila Mediator 

complex by Western blot and mass spectrometry (Park et al., 2001a). 

Evolutionarily closer to human Mediator, the mouse Mediator complex also 

contains a subunit, p78, that is equivalent to MED17 (Jiang et al., 1998;Ito et al.,

1999). As shown in Table 1.1, MED17 homologs from other species, especially 

mammalian, show a high degree of conservation of amino acid sequence 

between species (see Appendix Fig 7.1 for amino acid alignments). This high 

degree of homology, is also seen with other Mediator subunits, and suggests that 

the transcriptional functions of Mediator are conserved among species.
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Species Name Genbank

Accession

number

Identity

%

Similarity

%

Homo sapien TRAP 80 AF117657 - -

Homo sapien Crsp6 NM_004268 100 100

Homo sapien DRIP80 AF105421 98 99

Mus musculus Crsp6 NM_144933 96 98

Rattus norvegcus Similar to crsp6 XM_217086 96 98

Gallus gallus Crsp6 NM_00106280 90 94

Drosophila melanogaster TRAP80 AF289995 41 62

Apis mellifera

Similar to 

ENGSANGP 

00000021505

XM_394516 41 60

Anopheles gambiae
ENSANGP

000000021505
XM_319901 39 59

Schiz os acch no myces pombe SpSrb4 CAB10081 9 25

Sacchromyces cerevisiae Srb4 L12026 10 26

Caenorhabditis elegan Y113G7B.18 CAB76740 8 23

Table 1.1 Species homologues of human MED17
Analysis was done of MED17 homologues from various species for similarity and 

identity to the human TRAP80 protein using the Clustral W programme. Included 

in this analysis are homologs from other human Mediator complexes in addition 

to yeast and worm homologues identified by Boube et al., 2000.
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1.9 MED17 interactions and Mediator function in mammalian systems

The study of Mediator function in transcription has predominately been 

investigated through the use of in vitro reconstituted transcription systems 

supplemented with purified co-factors. Initial characterisation of the 

transcriptional activating properties of Mediator on Gal4-p53 were done using in 

vitro transcription assays with purified GTFs and PC4 co-activator, but limiting 

TFIIH (Gu et al., 1999). Importantly, in similar transcription assays, transcriptional 

repression properties were also seen with Gal4 activated transcription in 

conditions where TFIIH was not limited. Repression was specific to PC4 

activated transcription but was not dependent on the presence of the pol II CTD. 

A potential mechanism for repression of PC4 activated transcription by SMCC 

was suggested by kinase assays which showed SMCC was able to 

phosphorylate PC4, which was thought to inactivate its transcriptional activity. 

The interaction of SMCC with wild type p53 and not a transactivation mutant was 

also shown, implying that transcription activation of p53 by SMCC was 

dependent on this interaction with p53 transactivation domain. Overall, the study 

showed that the mechanisms of transcriptional activation and repression by 

SMCC were independent of RNA pol II CTD and its phosphorylation by TFIIH, 

indicating alternative mechanisms of SMCC regulated transcription.

Many Mediator subunits are conserved between the various Mediator 

complexes. Investigation of the TRAP and SMCC complexes revealed a high 

degree of similarity in their subunit composition as well as their interactions with 

DNA bound transcription factors. These conserved subunits include MED17.
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Both TRAP and SMCC activated transcription mediated by the thyroid hormone 

receptor from TRE and by Gal4 fusions to p53, VP-16 and AH (Gal4 activator) in 

vitro from a GAL promoter element (Ito et al., 1999). Furthermore, TRAP80 and 

TRAP220 were shown to interact with p53 in vitro. A wild type p53 fusion to GST 

was able to pull down MED17, however MED17 failed to interact with a GST-p53 

point mutant at residues 22 and 23, suggesting the N-terminus of p53 mediates 

this interaction. This region of p53 contains its transactivation domain. The same 

mutation in p53 also eliminated its interaction with SMCC. Pull down assays also 

showed a direct interaction between MED17 and wild type VP-16, a herpesvirus 

transcription factor. This interaction was lost when the activation domain of VP- 

16 was deleted. These results suggest that the transcriptional activities of TRAP 

and SMCC on Gal4-p53 and Gal4-VP-16 are mediated, in part, by the direct 

interaction of the transactivation domains of these DNA bound transcription 

factors with the MED17 subunit. This interaction with the transactivation domain 

of transcription factors is also a feature of Drosophila Mediator/MED17 regulation 

of HSF transcription, as is described in the next section.

1.11 Functional characterisation of Drosophila MED17 (dMED17) and its

role in heat shock factor regulated transcription

dMED17 was identified in both searches of Drosophila genome and by 

mass spectrometry of dMED6 co-purifying proteins. Drosophila Mediator is 

functionally equivalent to human Mediator complexes in both size and 

transcriptional activation with Drosophila Mediator also activating VP-16
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transcription in vitro. In addition, specific interaction between dMED17 and VP-16 

was shown in GST-pull down assays.

Further elucidation of the transcriptional targets of Drosophila Mediator 

revealed additional transcription factors that interact with the Mediator complex, 

including heat shock factor (HSF), dorsal, bicoid, Kruppel and Fushi-tarazu. 

Transcriptional activation by Dorsal and heat shock factor in soluble nuclear 

fractions was inhibited by depletion of Mediator with anti-dSOH1 (dMED31) 

antibody, showing that Mediator is required for transactivation via these 

transcription factors. A more direct role for dMED17 in the activation of heat 

shock transcription was suggested by in vitro binding assays with HSF. GST- 

HSF was able to pull down dMED17, dMED31 and CDK8 from a soluble nuclear 

extract derived from Drosophila embryos (Park et al., 2001a). A direct interaction 

between in vitro translated dMED17 and GST-HSF was shown, with dMED17 

specifically interacting with the C-terminus of HSF, containing its transactivation 

domain. This interaction did not occur with any other Mediator subunit tested, 

including dTRAP220 (dMED1) and dTRAP100 (dMED24). Furthermore, dMED17 

co-localised with HSF at heat response elements upon stimulation with heat 

shock. This step was distinct from the recruitment of the RNA pol II holoenzyme 

to the HSP70 promoter. These interactions and localisation studies support the 

idea that Mediator, via the dMED17 subunit, is recruited to HSF/HSE sites where 

it activates transcription by phosphorylation of the CTD of RNA pol II using the 

cyclin C/cdk8 subunits (Park et al., 2001b). This central role for dMED17 

suggested by artificial recruitment assays with a gene reporter containing a

48



region of the HSP70 promoter that was specifically transactivated by Gal4- 

MED17 but not by any of the other Gal4-Mediator subunit fusions tested (Park et 

al., 2003). Chromatin immunoprecipitation (ChIP) also showed enhanced 

occupancy of the HSP70 promoter by Mediator upon transfection of Gal4- 

MED17. The current hypothesis is that dMED17 activates heat shock factor 

regulated transcription through recruitment of the Mediator complex.

1.12 Other putative transcriptional targets of MED17

The potential of Mediator to activate a number of transcription factors has 

been hinted at by studies in Drosophila. Mediator was shown to interact with 

various transcription factors, whose transactivation domains activated 

transcription of a reporter gene when fused to Gal4. These transcription factors 

included VP-16 and HSF, which have previously been shown to specifically 

interact with the MED17 subunit of Mediator, but also included three others 

previously unknown Mediator interacting transcription factors from Drosophila, 

Drf, Armadillo and Notch. Of these newly identified transcription factors, dMED17 

interacted directly with Dif, a homologue of the p65 subunit of NF-kB, in GST pull 

down assays whereas GST-Armadillo and Notch interacted with dMED17 in 

soluble nuclear fractions, but did not interact in the GST-pull down assays 

suggesting other proteins bridged the interaction with these transcription factors. 

Characterisation of Dif mediated transcription by MED 17 showed that 

transcription of drosomycin, a Dif responsive gene was lost when dMED17
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expression was eliminated by RNAi. This study suggests a role for MED17 in the 

activation of NF-kB transcription in mammalian cells.

The interactions of MED17 with this variety of transcription factors 

together with direct studies of the Mediator complex have led to the proposal of a 

MED17 module on the Mediator complex. Fractionation of the Drosophila 

Mediator from SL2 cell nuclear extracts by gel filtration has revealed Mediator 

exists in three different forms, denoted C1, C2 and C3, all of which contain 

MED17 (Gu et al., 2002). The largest form, C3 at 2 Mda, activates transcription in 

vitro. C2 is a smaller complex of 1.5 Mda and is thought to be a sub-complex of 

C3 generated by partial disruption of the complex during purification. The C1 

complex at 0.5 Mda is the smallest and is a distinct module of Mediator which is 

unable to activate transcription even in a system containing highly purified 

general transcription factors and RNA pol II. Interestingly C3, but not C1, 

interacts with RNA pol II, possibly explaining the inability of C1 to activate 

transcription. The C1 and C3 forms do, however, interact with Armadillo, Dif, HSF 

and Notch. These results imply a co-activator role for C3 module and as yet an 

undetermined transcriptional function, but possibly a repressor function, for C1.

1.13 A role for MED17 in Drosophila embryogenesis

The interaction of dMED17 with such a variety of transcription factors, 

implicates it in the regulation of diverse transcriptional pathways, hence MED17 

expression could be essential to Drosophila development. dMED17 as well as 

dMED13 were implicated in Drosophila embryogenesis through P-element
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screen for genes affecting the function genes Scr and Pb homologs of Hox- 

A5/B5 and Hox-A2/B2 respectively (Boube et al., 2000). Scr and Pb are 

regulators of cell identity whose over-expression is associated with 

developmental defects. Both genes also co-operate in the specification of the 

adult mouthparts. Initially dMED13 was identified as a regulator of Pb. Mutation 

of the dMED13 locus (also known as pap) by p-insertion, phenocopies Pb over­

expression suggesting Pap functions as a repressor of Pb expression or function. 

These studies also included an investigation on the effects of dMED13 on 

developmental abnormalities induced by Scr gain of function alleles, namely sex 

combs. Here, double deletion of dMED13 and 6MED17 loci increased distal sex 

comb formation via enhanced Scr activity, thus demonstrating co-operation 

between the two Mediator proteins in the repression of Scr activity. However, 

these effects were not attributed to increased expression of the Scr protein but 

rather through a mechanism parallel or downstream of Scr activity (Boube et al.,

2000).

This same study also demonstrated the importance of dMED17 

expression in Drosophila development. P-insertion mutation of dMED17 locus 

resulted in larvae dying at the second-instar stage. A requirement of MED17 for 

cell viability was also demonstrated by clonal analysis whereby mitotic 

recombination producing dMED17*  cells resulted in the loss of cell viability. 

These Drosophila MED17 v' phenotypes were attributed to global transcriptional 

failure. Similarly, expression of Srb4, the yeast MED17 homologue is also 

essential yeast viability due to its role in global transcription (Holstege et al.,
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1998). More generally, a role for Mediator in Drosophila development has also 

been shown by analysis of Mediator gene transcripts by Nothem blots, with an 

increase in Mediator transcripts, including dMED17, seen with development from 

embryo to larvae to pupae stages (Park et al., 2001a). These studies of MED17 

suggest that MED17 has a global transcriptional regulatory function but also 

demonstrates selectivity in the regulation of specific transcription factors.
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1.14 MED17: Summary

TRAP80, now known as MED17, is a subunit of Mediator complexes 

involved in both transcriptional activation and repression. Homologs of MED17 

have been identified in the Mediator complexes of yeast and Drosophila. 

Functional studies of these homologs implicate the MED17 subunit as a global 

regulator of transcription. dMED17, the best studied of the homologs, appears to 

also to have a co-activator function specific to HSF transcription factor. Several 

other transcription factors have been demonstrated to interact with MED17 

suggesting MED17 may also have further specific transcription regulatory 

functions. Notably the p53 tumour suppressor protein has been shown to interact 

with MED17 implicating it as a regulator of p53 mediated transcription. In vitro 

transcriptional studies of the Mediator complex show that it activates p53 

dependent transcription, suggesting a co-activator function for MED17. The 

processes involved regulating p53 dependent transcription are discussed further 

in the next section of this introduction.
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1.15 The p53 tumour suppressor protein

The transcription of genes that mediate cell cycle arrest and apoptosis is 

regulated, in part, by the activity of the p53. p53 was first isolated as a 53Kda 

protein interacting with the large T-antigen of simian virus-40 (S\M0), whose 

expression was enhanced in SV-40 transformed cells (Linzer and Levine, 

1979;Lane and Crawford, 1979). These findings and the observation that p53 

could co-operate with the Ras oncogene in the transformation of embryonal cells 

fitted with a oncogenic function for p53 (Parada et al., 1984;Eliyahu et al., 1984). 

However, sequence variability between different p53 clones revealed that a point 

mutation (A135V) allowed p53 to co-operation with Ras in transformation (Hinds 

et al., 1989). Wild type p53 was, in fact, shown to have a suppressing role in 

transformation mediated by Ras and E1A (Finlay et al., 1989). It was therefore 

hypothesised that wild-type p53 was possibly an ‘anti-oncogene’ but when 

mutated, contributed to tumourigenesis, as was frequently found in tumour 

samples (Hollstein et al., 1991;Levine et al., 1991). Early experiments revealed 

that p53 expression suppressed the growth of tumour cells, however the 

expression of p53 mutant alleles allowed unrestrained growth (Baker et al., 

1990). In similar experiments, induction of apoptosis was observed in a murine 

myeloid leukaemia cell line upon expression of wild type, but not mutant, p53 

(Yonish-Rouach et al., 1991). The discovery of these effects of p53 suggested 

that it was a regulator of cell cycle arrest and apoptosis.

Further characterisation of the p53 protein revealed transcriptional 

activation properties which were localised to the N-terminus of the protein (Fields
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and Jang, 1990;O'Rourke et al., 1990). Target genes for transactivation by p53 

were identified by the presence of sequence specific response elements in the 

promoter regions of genes (Kem et al., 1991;Zambetti et al., 1992). One of the 

first p53 regulated genes to be identified was muscle creatine kinase (MCK) 

whose transcription was activated via p53 response element identified within the 

gene’s enhancer region (Weintraub et al., 1991). Additional p53 transcriptional 

targets have since been identified via these response elements and include such 

genes as p21 Cip and Mdm2 (El Deiry et al., 1993;Juven et al., 1993). Moreover, 

mutatants of p53 similar to those found in tumours were found to inhibit 

transcriptional activation by the p53 tetramer, acting as dominant negatives to 

prevent its interaction with the response elements (Raycroft et al., 1990). 

Similarly, viral oncoprotein large T-antigen of SV-40, inihibited p53 transcriptional 

tetramerisation in vitro (Farmer et al., 1992). These data indicated that the wild 

type p53 protein was in fact a suppressor of proliferation whose normal 

transcription function could altered by mutation or by interaction with viral 

oncoproteins during the process of tumourigenesis.

In addition to the transcriptional activating properties, repression by p53 

has also been observed in the absence of p53 response elements. Genes such 

as c-fos, interleukins and bc/2, are mediators of cell growth and cell survival 

whose transcription is repressed by p53. Both the activator and repressor 

functions of p53 contribute in the induction of apoptosis by enhancing 

transcription of pro-apoptotic genes while simultaneously inhibiting transcription 

of pro-survival genes. The role of p53 in the induction of apoptosis was observed
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in experiments with p53 null mice whose thymocytes showed increased 

resistance to some apoptotic stimuli (Lowe et al., 1993;Clarke et al., 1993). 

Furthermore, p53 null mice were found to be more susceptible to spontaneous 

and carcinogen-induced tumours, which is also observed in mice 

haploinsufficient for wild type p53 allele (Harvey et al., 1993). The importance of 

p53 in the development of human tumours is demonstrated by the cancer 

susceptibility syndrome, Li-Fraumeni, where the spontaneous development of a 

range of tumours has been attributed to inactivating mutations of the p53 locus 

(Malkin et al., 1990).

Outside Li-Fraumeni syndrome, p53 is also important in the development 

of sporadic tumours. Over 50% of all tumours have been found to harbour 

mutations of the p53 locus, making it one of the most frequently mutated genes 

in cancer and represents a key suppressor of oncogenic transformation in both 

murine and human cells (Rangarajan et al., 2004).

1.16 The p53 response and its regulation

The p53 gene is conserved in human, mouse, Drosophila and C.elegans 

genomes, illustrating its importance as a regulator of cell proliferation (Jin et al., 

2000;Schumacher et al., 2001). P53 is responsive to cellular insults such as 

DNA damage, hypoxia or oncogene expression which can induce p53 and 

activate its transcriptional properties to trigger cell cycle checkpoints, DNA repair, 

cellular senescence or apoptosis. The loss of p53 function results in the 

deregulation of these processes leading to genomic instability and the
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inappropriate survival of genetically damaged cells, thus contributing to 

oncogenesis. The p53 transcription factor receives a multitude of signalling 

stimuli to co-ordinate a cell response to a variety of stress responses. How p53 

activity is regulated by these stimuli is not fully understood, but determinants 

such as cell type, nature and strength of the p53 activating stimulus and its levels 

of expression are thought to have an impact on the p53 transcriptional response 

(Fridman and Lowe, 2003).

Many of the activities of p53 can be allocated to protein domains which 

span the N-terminus, the central core and the C-terminus of the protein. The N- 

terminus contains a transcriptional transactivation domain and an SH3 domain, 

which mediates interactions with various transcriptional regulators, as well as 

mouse double minute (Mdm2), an E3 ubiquitin ligase which catalyses the 

addition of ubiquitin. The central core contains the DNA binding domain which 

permits the sequence specific interaction of p53 with response elements. The C- 

terminal domain of p53 contains nuclear localisation and nuclear export signals, 

as well as a tetramerisation domain, essential for the transcriptional activity of 

p53. This tetramerisation domain can be mutated in Li-Fraumeni’s syndrome 

(Variey, 2003). This differs in sporadic tumours where mutations of the p53 locus 

most frequently involve the central DNA binding region of the protein, some of 

the most common being mutations of amino acid residues 175, 248 and 273 

(Levine et al., 1991).

Together these domains of p53 regulate the transcriptional activity of the 

protein by affecting its interaction with transcription co-factors as well as
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localisation to target genes. Another form of p53 regulation mediated by these 

protein domains involves its post-translational modification by a number of 

different processes which are further discussed in the next section.

1.17 Post-translational modification of p53 and their effects on 

transcriptional activity

Post-translational modifications of p53 alter its expression and localisation 

of p53 as well as directly affecting its transcription activity. Of these 

modifications, acetylation and phosphorylation have been extensively studied 

and both are associated with stabilisation of p53 expression. Upon cell stress, 

acetylation of p53 occurs at lysine residues its N and C-terminus and is catalysed 

by HATs, such as p300, CBP and PCAF as well as more recently described, the 

Hepatitis C core protein, implicating viral proteins in the acetylation of p53 (Liu et 

al., 1999;Wang et al., 2003c). In addition to the stabilisation of p53, acetylation is 

also thought to enhance the sequence specific binding of p53 to its response 

elements (Luo et al., 2004). Other proposed effects of acetylation involve 

competitive inhibition of Mdm2 by HATs. Mdm2 catalyses ubiquitylation of p53, 

targeting it for degradation via the 26S proteasome to prevent its inappropriate 

activation by maintaining expression of the protein at low levels. Both acetylation 

and ubiquitylation occur on the same lysine residues in the p53 protein. 

Acetylation may stabilise p53 expression, preventing Mdm2 mediated 

ubiquitylation of p53 (Li et al., 2002). Such a mechanism for p53 regulation
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suggests how the diverse post-translational modification made to p53 may co­

operate in regulating the transcriptional activity of the protein.

As acetylation is a reversible post-translational modification, 

unsurprisingly, histone deacetyalases have been identified in the deacetylation of 

the p53 protein as well as being associated with transcriptional repression 

mediated by the protein. The direct association between HDACs and p53 

deacetylation was shown when HDAC-1/2/3 were found to deacetylate p53 to 

specifically repress p53-dependent activation of a p53 responsive gene reporter 

(Juan et al., 2000). Transcriptional repression by p53 is associated with a 

complex of mSin3A, HDAC-1 and p53 which represses transcription of the MAP4 

and stathmin genes. This repressor complex formed under hypoxic conditions, 

suggesting that the complex was specific to certain cell stress conditions (Murphy 

et al., 1999;Koumenis et al., 2001). HDACs have also been identified with other 

p53 interacting proteins known to negatively regulate its transcription. Examples 

include the oncogenic transcription factor, PML-RAR, and Mdm2 (Ito et al., 

2002;lnsinga et al., 2004). In addition to the “classical” family of HDACs, the Sir2 

family of histone deacetylases also repress p53 mediated apoptosis, coupling 

cell metabolism with apoptosis (Luo et al., 2001).

Like acetylation, phosphorylation is generally associated with the 

activation of p53. Various kinases involved in the p53 signalling pathway, cell 

cycle regulation as well as cell signal transduction are able to phosphorylate p53 

at particularly serine and threonine residues located in the N and C-terminus of 

the protein, though some phosphorylated residues have also been identified in its
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central core. Many of these phosphoacceptor sites can be phosphorylated by 

more than one serine/threonine kinase signifying a high degree of redundancy as 

to the type of kinase which phosphorylates it (Bode and Dong, 2004). Though 

phosphorylation generally activates p53, mechanisms for how phosphorylation 

achieves this remain largely unknown. Studies with site mutants have largely not 

revealed a specific consequence for a particular phosphorylation site, so it may 

stand that specific combinations or the cumulative effect of phosphorylation 

events along with other post-translational mechanisms may specifically regulate 

p53 function. However, phosphorylation of p53 at serine 46 by HIPK2 

(Homeodomain Interacting Protein Kinase 2) strongly correlates with induction of 

apoptosis via transcription of p53 AIP1 (p53-regulated Apoptosis Inducing 

Protein 1) (Oda et al., 2000;Hofmann et al., 2002).

In addition to acetylation, phosphorylation and ubiquitylation, p53 

undergoes sumoylation, glycosylation, ribosylation and recently discovered, 

neddylation (Harper, 2004). How each of these modifications regulate p53 is not 

yet fully understood but does indicate further complexity in the regulation of the 

p53 transcriptional machinery.

1.18 p53 and associated general transcription factors and co-factors

Like many sequence specific transcription regulators, p53 requires the 

activity of RNA pol II. Additionally, p53 interacts with a number of general 

transcription factors in the basal transcription machinery to mediate both 

transcriptional activation and repression. One of the first general transcription
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factors to be identified as interacting with p53 was TBP of the TFIID complex, 

which induced p53 mediated transcription repression at a minimal promoter 

containing an initiator sequence and a TATA box but lacking a canonical p53 

DNA binding site (Seto et al., 1992). A mechanism for p53/TBP repression may 

involve disruption of the holoezyme complex or squelching of necessary factors 

for transcriptional activation, in addition to as yet unidentified factors which 

specifically target the repressor complex to p53 negatively-regulated genes such 

as bcl-2 (Ragimov et al., 1993;Farmer et al., 1996). The interaction between TBP 

and p53 was mapped to the transactivation domain of p53 and further studies 

showed that p53 activated transcription, with TBP or TFIID, from promoters 

containing the p53 response element (Liu et al., 1993;Chen et al., 1993). These 

data suggest the dual activator and repressor functions of p53, are in part, 

determined by the presence of the p53 RE in the proximal promoter of p53 

regulated genes.

Interactions between p53 and other members of the TFIID complex have 

also been identified. In Drosophila, p53 directly interacts with both TAFII 40 and 

TAFII 60 to mediate transcriptional activation which is eliminated by point 

mutations in the p53 transctivation domain (Thut et al., 1995). Similarly, TAFII 31 

of the human TFIID complex has been identified as a p53 transactivation domain 

interacting protein required for p53 transcription (Lu et al., 1995). In addition to 

interacting with the TAFs, the p53 transactivation domain also interacts with 

Mdm2, linking transcriptional activity to post-translation modification of p53. TAFII 

31 can block the interaction of Mdm2 with p53, preventing its degradation by
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ubquitylation (Buschmann et al., 2001). Likewise Mdm2 can mask the 

transactivation domain preventing TAFII 31 interaction and can also inhibit 

activation of RNA pol II by an interaction with TBP and TFIIE (Thut et al., 1997). 

The general transcription factor TFIIH also interacts with p53, though the 

functional significance of this interaction is not yet known (Xiao et al., 1994). 

These data indicate that the transcriptional activation by p53 is closely 

associated with the GTFs of the basal transcription machinery and that disruption 

of these interactions by post-translational modification of p53 may alter the 

transcriptional response. Additionally, transcriptional co-factors may also have a 

role in modifying p53 transcription.

P53 interacts with other co-factors that regulate RNA pol II activity. Among 

these the chromatin remodelling complex, Swi/Snf, has been found to interact 

with p53, through interaction with two subunits of the complex, BRG-1 and 

hSNF5, which co-operate in transcriptional activation (Lee et al., 2002). 

Other transcription regulatory factors have been identified as positively or 

negatively regulators of p53 transcription. One such factor is Yin Yang 1 (YY1) 

which inhibits of p53 acetylation by inhibiting its interaction with p300 (Gronroos 

et al., 2004). YY1 also promotes p53 degradation by MDM2 (Sui et al., 2004). 

More recently, a DEAD box RNA helicase protein, p68 has been described as a 

positive co-factor which is recruited to the p21 promoter in a p53 dependent 

manner (Bates et al., 2005).

In sum, p53 interacts with and is regulated by a number of transcriptionally 

associated proteins. Broadly these proteins can be classed in to components of
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the basal transcription machinery as well as transcription co-factors that may be 

involved in regulating p53 transcription at specific gene targets. Like the many 

post-translational modifications that occur to the p53 protein, the diversity of 

interacting transcription co-factors may finely regulate the p53 transcriptional 

response to diverse cell stress stimuli.
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1.19 Summary: p53

Mutation of the p53 tumour suppressor locus occurs in 50% of all tumours, 

resulting in the inactivation of its transcriptional activity and loss of its anti- 

tumourigenic activity. The regulation of p53 transcription occurs via a variety of 

post-translation modifications to the transcription factor as well as interacting co­

factors, which modulate p53 activity. Such a complex mechanisms of regulation 

may be required to integrate the signalling of cell stresses into finely tuning the 

cell’s response to the particular stimulus. This diversity of regulatory mechanisms 

may also compensate for the inactivation of some p53 response pathways in 

cancer, which would prevent activation of p53 transcription. Understanding the 

mechanisms behind the regulation of p53 transcription will lead to a greater 

understanding of how cell stresses activate p53 and how they may be disrupted 

in the development of cancer.
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1.20 The Cell Cycle

The control of cell proliferation is regulated by the process of the cell 

cycle. Most adult cells reside in a non-cycling state termed quiescence (GO), 

however on receiving extracellular signals, such as cell to cell contact and growth 

factors, cells exit from quiescence and re-enter the cell cycle. The cell must 

ensure faithful duplication, which occurs through four distinct, ordered cell cycle 

phases known as G1, S, G2 and phase M.

During normal cell proliferation, cells exit from GO and enter to G1 (gap1) 

phase where they grow in size and prepare for DNA replication by inducing 

expression of genes required for DNA synthesis. The process of DNA synthesis 

occurs in S-phase (synthesis) when the cellular DNA and organelles are 

replicated in preparation for cell division. This phase is followed by the G2 phase 

(gap2) where the cell machinery is prepared for the M-phase (mitosis) where 

segregation of replicated DNA and cytokinesis forms the daughter cells. 

Following this, cells become sensitive to external signals and may enter in to 

another round of the cell cycle or may enter polyploidy.

A critical point in the “decision” to enter another round of replication is the 

G1 restriction point, and is therefore one of the most tightly regulated restriction 

points of the cell cycle. As demonstrated in normal cells in culture, factors such 

as nutrients and cell density can influence the progression through the G1 phase 

or in their absence induce cell cycle withdrawal into quiescence (Pardee, 1974). 

The G1 restriction point in tandem with other cell cycle check points maintains 

genomic integrity and allows regulated cell proliferation. Cancer cells exhibit a
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lack of regulation by the cell cycle check points, permitting uncontrolled 

proliferation resulting from the activation of oncogenes and/or the loss of tumour 

suppressors. Understanding the molecular mechanisms occurring at cell cycle 

check points is fundamental to understanding the deregulation of the cell cycle in 

cancer.

1.21 Cyclin/cdks and the regulation of cell cycle check points

Study of the cell cycle in yeast has given a great deal of insight in to 

regulation of the mammalian cell cycle and its check points. One of the initial 

discoveries of cell cycle regulation in yeast was that of cdc2, a serine/threonine 

kinase which is responsible for the transition between G1/S and G2/M phases. A 

human homologue to the yeast cdc2 was discovered through a screen of human 

cDNA screen for complementation of cdc2 mutant lethality (Lee and Nurse, 

1987). Other Cdc2 homologues were discovered in a number species, 

representing a common mechanism of cell cycle regulation. Work in Xenopus 

oocytes revealed the presence of cdc2 in a complex known as Maturation 

Promoting Factor (MPF) and was essential for oocyte meiosis and mitosis. MPF 

contained a protein that was regularly destroyed with each egg cleavage cycle 

and was hence termed “cyclin”. A cyclin-like protein, cdc13, was found to interact 

with cdc2 in yeast and though originally thought to be a substrate of cdc2, cdc13 

was actually found to regulate the catalytic activity of its binding partner as well 

as its nuclear localisation (Booher et al., 1989). Other cdc2-like proteins were 

identified on the basis of conserved motifs, PSTAIRE and the T-loop, within the
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protein. With the discovery of these complexes, the nomenclature of the cdc2 

family proteins changed to “cyclin dependent kinases” (cdks) based on their 

interaction with specific cyclin subunits. In yeast, there is only one cdk whereas 

genomes of higher eukaryotes encode multiple cdks. In human cells, the 

counterpart of cdc13/cdc2 is now known as cyclin B/cdk1.

Other human cyclins were discovered in complementation studies in yeast 

as described for cdc2. The D-type family of cyclins (D1/D2/D3), as well as cyclin 

E, were discovered on their ability to complement cln mutants in S.cerevisiae 

(Koff et al., 1991;Lew et al., 1991;Xiong et al., 1991). In contrast, human cyclin A 

(CCNA2) was identified through cloning of a single hepatitis B virus integration 

site, which was predicted to encode a protein with similar homology to cyclin A of 

clams and Drosophila (Wang et al., 1990). Cyclin A1 was discovered later 

through its homology with mouse cyclin A1 (Yang et al., 1997). To form a kinase 

complex, the D-type cyclins predominately bind cdk4 and cdk6, whereas cyclins 

E and A bind cdk2. The kinase activity of these cyclin/cdk complexes is 

associated with the particular phases of the cell cycle. The D-type cyclin 

complexes and cyclin E/cdk2 are recognised as important regulators of the mid 

G1 restriction point. The activity of cyclin A/cdk2 however is associated with 

transition through S-phase whereas cyclin B/cdk1 is required for the G2/M phase 

transition. Regulation of the kinase activity of these cyclin/cdk complexes is 

essential in maintaing normal cell proliferation.
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2.4 Regulation of cdk activity

Cyclins

The catalytic activity of cdks is dependent on its binding to an appropriate 

cyclin partner to induce conformational changes. The determination of cyclin/cdk 

structures has given insight as to how these structural changes activate the 

kinase. Using the example of cyclin A, which binds and activates cdk2, cyclin 

binding induces structural changes in two regions of the cdk known as the T-loop 

and PSTAIRE helix. While in an inactive kinase state, the T-loop blocks the 

substrate binding groove and also orientates away from this groove the PSTAIRE 

helix, a region of the cdk that binds ATP. Upon interaction with cyclin A1, the T- 

loop is re-orientated out of the substrate groove and consequently the PSTAIRE 

helix moves in, to allow coordination of the ATP molecule required for catalysing 

the kinase reaction (Jeffrey et al., 1995). Cyclin E1 also interacts with cdk2 to 

activate its kinase activity and is reported to induce similar conformational 

changes in cdk2 as seen with the interaction with cyclin A1 (Honda et al., 2005). 

The expression of the cyclin in a cell cycle phase specific manner therefore 

determines when a cyclin/cdk complex becomes active to phosphorylate its 

specific substrates.

The specific phosphorylation of substrates during a cell cycle phase may 

be required for progression through a phase or transition between phases of the 

cell cycle. How a cyclin/cdk complex targets phosphorylation of specific 

substrates is thought arise from interactions that occur between the cyclin and 

the substrate. The presence of the amino acid motif, RXL (also known as the Cy
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motif) on a substrate has been associated with phosphorylation by cyclin A/cdk2 

(Brown et al., 1999). More recently, using the S-phase promoting cyclin/cdk in 

yeast, Clb5/cdk1, an interaction between the Cy motif on specific substrates and 

a hydrophobic patch on the cyclin has been found to be essential to 

phosphorylation (Loog and Morgan, 2005). Substrate specificity for the D-type 

cyclins complexes is limited as the retinoblastoma family of proteins were the 

only identified substrates, up until recently when Smad3 was identified as a 

substrate of cyclin D/cdk4 complexes (Matsuura et al., 2004). Identification of 

further substrates of the D-type cyclin complexes may elucidate mechanisms of 

substrate specificity for these cyclin/cdks.

The activation of the cdk by cyclins is also dependent on the localisation of 

the cyclin. Many of the cyclin/cdk substrates are nuclear therefore co-localisation 

ensures that the kinase meets its substrate. D-type cyclins are nuclear proteins 

which accumulate during the G1 phase of the cell cycle and become 

cyctoplasmic during interphase, though the mechanisms regulating their 

localisation are not fully understood (Baldin et al., 1993). Cyclins E and A are 

also nuclear imported proteins however cyclin B1 and B2 show different patterns 

of localisation. Cyclin B1 expression is predominately cytoplasmic whereas cyclin 

B2 is nuclear (Pines and Hunter, 1991;Ohtsubo et al., 1995).

As well as the timely expression of the cyclins during cell cycle phases, 

equally important is their destruction to inactivate cyclin/cdk activity when passing 

between cell cycle phases. Degradation of the cyclins is undertaken by the 

proteasome, after cyclins have been covalently attached to ubiquitin at lysine
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residues. Two ubiquitin conjugating enzyme complexes are known to mediate 

cyclin degredation, Skp/Cullin/F-box (SCF) and the anaphase promoting complex 

(APC). Cyclin D1 is a substrate of the SCF type complex containing Skp1, Skp2 

and Cull (Yu et al., 1998). Furthermore, cyclin D1 may be targeted for 

degradation via phosphorylation of Thr-286 by the glycogen synthetase kinase 

(GSK)-3I1 (Diehl et al., 1997). Cyclins A and B are ubiquitinated by APC in 

contrast to cyclin E which is ubiquitinated by the SCF complex containing the 

Fbw7 F-box protein (King et al., 1995;Geley et al., 2001;Koepp et al., 2001). The 

degradation of the cyclins after completing their function allows co-ordinate 

transitition between phases of the cell cycle. The requirement for timely 

degradation of the cyclins is emphasised by the cell cycle abnormailities that 

occur when their destruction is inhibited. An example is cyclin B1 whose 

continued expression during M-phase prevents transition into G1 (Wheatley et 

al., 1997).

Cdk activating kinase (CAK)

Unlike the cyclins, the cdks do not demonstrate such fluctuations in 

expression during cell cycle phases. However their activity is regulated by other 

post-translational mechanisms. The phosphorylation of cdks has both positive 

and negative regulatory influences on cdk activity. CAK mediated 

phosphorylation of Thr-160, located on the T-loop of cdk2 moves it out of the 

substrate groove to allow substrate binding. Dephosphorylation occurs by way of 

the cdk-associated phosphatase, KAP, which inactivates cdk.
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CAK itself comprises of cyclin H/cdk7 and is also responsible for the 

activation cdk4 and cdk l. Apart from its role as a cdk activator, cyclin H/cdk7 has 

been isolated as component of the TFIIH complex. Though its kinase activity is 

required for transcription elongation, its ability to phosphorylate the CTD of RNA 

pol II seems to be dispensable for this function (Akoulitchev et al., 1995;Makela 

et al., 1995). The presence of this cyclin complex in the transcriptional machinery 

did however suggest crosstalk between the cell cycle regulators and 

transcription.

Inhibitory phosphorylation of cdk2 also occurs at Thr-14 and Thr-15 

through the actions of the Wee1 and Myt kinases. Phosphorylation at these sites, 

located in the ATP binding phosphate binding site, is thought to reduce its affinity 

for ATP required for the kinase reaction. De-phosphorylation of these sites by the 

cdc25 family of phosphatases (cdc25A/B/C) restores cdk activity.

Cyclin dependent kinase inhibitors (Cdki)

In addition to direct modifications to cyclin/cdk proteins, additional 

regulatory proteins modulate their activity. The Cdkis represent another well 

established group of protein involved in cdk regulation. Two families of Cdkis are 

directly implicated in cell cycle regulation. The inhibitor of kinase 4 (INK4) family 

of Cdkis consists of p15 (INK4b), p16 (INK4a), p18 (INK4c) and p19 (INK4d). 

These inhibitors predominately block the activity of cdk4 and cdk6 by preventing 

their interaction in the activation of D-type cyclins (Ruas and Peters, 1998).
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A second family of Cdkis containing p21, p27 and p57 make up the 

Cip/Kip family which block the activity of cyclin/cdk2 complexes. Structural 

studies of cyclin A1/cdk2 bound to p27 revealed that p27 inhibited cdk2 activity 

by occlusion of the ATP binding pocket in cdk2 as well as blocking the substrate 

binding groove. Contrary to their inhibitory role, a current model for p21 and p27 

function has been proposed as D-type cyclin assembly factors that enhance the 

stability of the cyclin/cdk complex. The kinase inhibitory function of p21 and p27 

may predominate at high stoichiometric ratios relative to the cyclin D/cdk 

complexes. This models offers an explanation for the dual roles of p21 and p27 

as both promoters as well as inhibitors of cyclin D/cdk kinase activity.

1.23 Cyclin/cdks and cell cycle checkpoints

Sixteen cyclins and nine cdks have been so far identified in human cells, 

of which eleven cyclins and six cdks are directly involved in cell cycle regulation. 

These cyclin complexes are cyclin D1/D2/D3 complexed with cdk4 or cdk6, cyclin 

A1/A2 complexed cdk2 or cdkl, cyclin E1/E2 with cdk2, cyclin B1/B2 with cdkl 

and cyclin H with cdk7. More recently, cyclin C/cdk3 was identified as a 

cyclin/cdk complex associated with the cell cycle regulation that was able to 

induce exit from quiescence by phosphorylation Rb (Ren and Rollins, 2004).

Studies of the mammalian cyclin/cdk complexes in cultured cells by over­

expression, use of cdk inhibitors and microinjection of antibodies has revealed 

phases of the cell cycle where the activity of specific cyclin/cdks may be required. 

The synthesis and assembly of D-type cyclin complexes results from mitogenic
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signals and is thought to be necessary in the entry and progression through the 

G1 phase as observed in cells over-expressing cyclin D1 which show an 

accelerated G1 (Jiang et al., 1993;Quelle et al., 1993). Inhibition of the D-type 

cyclin kinase subunit, cdk4, has the converse effect, inducing G1 arrest and exit 

from cell cycle (Serrano et al., 1993;Tetsu and McCormick, 2003). D-type 

cyclin/cdk complexes phosphorylate Rb and subsequently release E2F from 

repression which activates the transcription of cyclins E and A. The D-type 

cyclins perform a second function during the G1 phase by titrating away Cdkis, 

p21 and p27, releasing the cyclin E/cdk2 complex from inhibition. Cyclin E/cdk2 

functions during the G1/S phase transition to phosphorylate Rb. Inhibition of 

cyclin E or interacting kinase, cdk2, prevents transition in to S-phase and induces 

G1 phase arrest (Pagano et al., 1993;Ohtsubo et al., 1995). The cyclin A/cdk2 

complex functions in the progression of S-phase where the expression of the 

cyclin is required for the synthesis of DNA (Girard et al., 1991;Pagano et al., 

1992). Substrates of the cyclin A/cdk2 complex include proteins involved in the 

assembly and function of the cellular machinery required for DNA synthesis. 

Cyclin B/cdk1 is present in the G2/M-phase transition of the cell cycle and is 

required for entry into mitosis.

Cell cycle arrest induced by the inhibition of cyclins and their cdks implies 

that expression and kinase activity of the cyclin/cdk complexes is essential at 

specific phases in the cell cycle. However, these studies in cultured cells do not 

reflect observations made in mice nullizygous for specific cyclins and cdks. If 

cyclin expression was essential to the cell cycle progression, in vivo, then it
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would be expected that mice null for the cyclins would not be viable. Instead, 

mice null for cyclin D1 are still viable but are smaller than normal and 

demonstrate tissue-specific developmental abnormalities (Fantl et al., 

1995;Sicinski et al., 1995). Mice nullizygous for cyclin D2 and cyclin D3, 

respectively, are also viable with limited tissue specific abnormalities indicating 

that some tissues require expression of specific cyclins for development (Sicinski 

et al., 1996;Sicinska et al., 2003). Lethality occurs when mice are nullizygous for 

triple deletions of the cyclin D1, D2 and D3 genes. Deletion of all three cyclins is 

lethal at embryonal day 16.5 and is attributed to a severe defect in the 

elaboration of haemopoietic lineages (Kozar et al., 2004). Similarly, mice null for 

cdk4 and cdk6 show a partial haemopoietic failure resulting in a progressive 

embryonic lethality which is not seen mice deficient for either cdk4 or cdk6 

(Malumbres et al., 2004). However, the phenotype of the cdk4'/‘ /cdk6'/_ mice is 

similar to that of the D-type cyclin null mice. Lethality is also induced in mice 

deficient for both cyclin E1 and E2 due abnormal placental development but can 

be rescued to allow embryos to develop to term, whereas mice singly null mice 

do not have these abnormalities (Geng et al., 2003;Parisi et al., 2003). Cdk2_/' 

deficient mice are still viable but have some tissue-specific defects (Ortega et al.,

2003). These phenotypes of the cyclin and cdk null mice suggest that there is 

redundancy in their functions with alternative cyclins and cdks able to 

compensate for deficiencies. Overall these studies imply that the cyclins are not 

essential regulators of cell cycle progression but may in fact be rate limiting steps 

during specific phases of the cycle.
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2.5 Transcriptional regulation at the G1 restriction point

Regulation of E2F transcriptional activity by pRb at the G1 restriction point 

is thought to be important in cell growth. Exit from GO/early G1 to late G1 and S- 

phase requires transcriptional activation of genes regulated by members of the 

E2F (E2A binding factor) family of transcription factors specific for the next phase 

of the cell cycle (Johnson et al., 1993; Lukas et al., 1996). E2F proteins in 

complex with either DP-1 or DP-2 (differentiation-regulated transcription factor 

protein) regulate the transcription of genes containing a TTTCGCGC concensus 

sequence within their promoter regions. Such genes include cell cycle regulators 

cyclin E, cyclin A, cyclin D1, cdc2(cdk1) and cdc25A, enzymes involved in DNA 

synthesis: dihydrofolate reductase (DHFR), thymidine kinase (TK) and DNA 

polymerase a; proteins involved in DNA replication: including ORC1 (origin 

recognition complex), cdc6 and MCM proteins (minichromosome maintenance) 

(Stevens and La Thangue, 2003). Apoptotic genes also regulated by E2F include 

APAF-1 (apoptosis protease-activating factor), p14ARF and p73 (Irwin et al., 

2000;Ginsberg, 2002). Thus E2F activates pathways involved in promoting 

growth as well as apoptosis. It is proposed that this concomitant activation of 

apoptotic genes safe guards against inappropriate high levels of activation of 

E2F, possibly by oncogenes, and therefore eliminates potential tumour cells.

pRb similarly protects against inappropriate activation of E2F by 

repressing E2F-regulated transcription thus regulating the passage of cells into 

late G1. pRb belongs to retinoblastoma family of proteins which also includes the 

p107/Rb2 and p130/Rb3 proteins. pRb bound to E2F represses its activation by
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recruiting chromatin remodelling complexes, including HDACs (histone 

deacetylase), Swi/Snf complex and histone methyalses. HDAC activity induces 

remodelling of chromatin structure through the removal of acetylated lysine 

residues on histones, condensing the structure of transcriptionally active 

chromatin. pRb also utilises mechanisms of transcriptional repression 

independent of chromatin remodelling and DNA bound transcription factors. 

Termed “active repression”, Rb can inhibit formation of the pre-initiation complex 

by E2F, TFIID and TFIIA (Ross et al., 2001).

The phosphorylation status of Rb determines its ability to repress E2F 

bound to DNA. The hypophosphorylated Rb binds E2F repressing its 

transcriptional activity, preventing G1 progression. This arrest is overcome by the 

D/cdk complexes as well as cyclin E/cdk complexes which phosphorylate pRb on 

14 potential phosphoacceptor sites. The multiple phosphorylation of Rb on serine 

and threonine residues induces conformational change in Rb which prevents 

binding to E2F. Phosphorylation by the D-type cyclin kinases initially releases 

HDAC complexes from binding to Rb and reveals a serine phosphosite 

phosphorylated by cyclinE/cdk2. The derepression of E2F allows the 

transcription of cyclin E and via a positive feedback loop cyclin E/cdk further 

phosphorylates Rb to disrupt its interaction with E2F and thus permit full 

activation of E2F transcription. With this, the G1 restriction point is by-passed 

and the cell enters S-phase. Cyclin A has also been implicated as a negative 

regulator of E2F transcription in S-phase. Cyclin A with cdk2 phosphorylates 

heterodimeric E2F-1/DP-1 transcription factor to inhibit its DNA binding and
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permits entry in to S-phase (Dynlacht et al., 1994;Krek et al., 1995). Such a 

mechanism limits activation of E2F mediated transcription and the subsequent 

delay/arrest of cells in S-phase leading the re-initiation of cell cycle and/or 

apoptosis.

The mechanisms of transcriptional regulation of E2F by the G1/S phase 

cyclins are dependent on their kinase activity and are directly involved in the 

control of cell cycle. Other mechanisms of transcriptional regulation of different 

transcription factors have been demonstrated for the cyclins, as is outlined in the 

next section.

1.25 Cdk independent transcriptional activities of D-type cyclins

The regulation of E2F transcription by the D-type cyclins, via Rb, is an 

example of the cell cycle regulatory function of these cyclins which requires the 

kinase activity imparted by cdk4 and cdk6. However, the D-type cyclins also have 

other transcriptional regulatory functions that are independent of the cdk activity. 

Such a role for the cyclins was suggested by findings that cyclin D1 specifically 

interacted with the oestrogen receptor to activate transcription mediated by this 

nuclear receptor which was not dependent on cdk activity (Neuman et al., 

1997;Zwijsen et al., 1997). Since these findings, other transcription factor and co­

factors have been found to interact with the D-type cyclins, in particular cyclin D1 

(Coqueret, 2002;Fu et al., 2004a). D-type cyclins have also been found to 

interact and regulate transcription mediated by the androgen receptor and thyroid 

receptor as well as the Sp-1 transcription factor, all of which are regulated by the
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Mediator complex (Shao and Robbins, 1995;Knudsen et al., 1999;Lin et al., 

2002). The interaction of cyclin D1 with these nuclear receptors has both 

activating and repressing effects on the transcriptional activity of these receptors. 

The cyclin D1 interaction with the oestrogen receptor stimulates transcriptional 

activation from oestrogen receptor response elements. This property of the cyclin 

was dependent on its C-terminal domain, containing a LLXXXL motif, similar to 

that found on the AF2 domain of the oestrogen receptor. This motif is required for 

efficient transactivation of the oestrogen receptor by the nuclear co­

activator/steroid receptor co-activator (NcoA/SRC-1a) and is utilised by cyclin D1 

to interact with SRC-1 a to bridge a complex with the oestrogen receptor. 

Furthermore, this interaction allowed ligand independent DolyploidyDtion of 

oestrogen receptor-mediated transcription (Zwijsen et al., 1998).

In contrast to its effects on the oestrogen receptor, the cyclin D1 

interaction with the androgen and thyroid receptor-fi1 has been demonstrated to 

induce transcriptional repression. Characterisation of cyclin D1 repression of the 

androgen receptor showed cyclin D1 competed with p300/cAMP binding protein 

(P/CAF) for binding to the receptor. P/CAF has previously been shown to interact 

with cyclin D1 to potentiate oestrogen receptor-mediated transcription (McMahon 

et al., 1999). Though the C-terminus of cyclin D1 was required for androgen 

receptor repression, it was not dependent on the LLXXXL motif there. 

Repression did require the AF-1 domain of the androgen receptor and was 

partially dependent on the activity of HDACs (Petre et al., 2002). HDAC3 has 

been reported to interact with cyclin D1 and subsequently this interaction has
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been mapped to a central domain on cyclin D1, which when expressed alone is 

sufficient to repress transcription by both the androgen and thyroid receptor 

without affecting the oestrogen receptor (Lin et al., 2002;Petre-Draviam et al.,

2004).

Another nuclear receptor that is repressed by cyclin D1 is the 

peroxiosome proliferation activated receptor-y (PPAR-y) whose transcriptional 

activity is linked to adipocyte differentiation. Homozygous deletion of cyclin D1 

gene in mouse fibroblasts enhanced PPAR-y transcriptional responses, which 

was also demonstrated in vivo by a cyclin D1 anti-sense transgenic mouse model 

(Wang et al., 2003a).

Cyclins E and A have also been implicated in the regulation of 

transcriptional targets not directly related to their cell cycle control. Cyclin E has 

been demonstrated to potentiate androgen receptor-mediated transcription on 

stimulation with di-hydroxy-testosterone, an activity that was independent of its 

interaction with cdk2 (Yamamoto et al., 2000).

These additional functions of the cyclins suggest that they have more 

direct role in transcription regulation, specific to nuclear receptor mediated 

transcription. Furthermore, with the nature of cyclin expression during phases of 

the cell cycle, the cyclins may co-regulate nuclear receptor mediated 

transcription in a cell cycle phase dependent manner. These functions of the 

cyclins along with their more established roles may contribute to the effects of 

cyclin deregulation as observed in the pathogenesis of cancer.
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1.26 Deregulation cyclins and cancer

Many regulatory mechanisms act at the G1 restriction point which is an 

important barrier to the formation of cancerous cells. It is these mechanisms that 

are targeted by activating oncoproteins and/or inactivation of tumour 

suppressors. This can result from the mutation of cellular genes or the 

expression of viral proteins. The loss of the G1 restriction point predisposes cells 

to malignant transformation and genomic instability as cell proliferation becomes 

unchecked and autonomous.

The over-expression of the cyclins is one such mutational event whereby 

cells acquire autonomy from external signals. Over-expression of cyclin D1 in 

tumours can result from enhanced mitogenic signalling as well as amplification of 

the CCND1 gene locus, encoding the cyclin D1 protein. CCND1 (also known as 

PRAD1) was initially identified and observed as a clonally rearranged gene in 

parathyroid adenomas where its gene locus was juxtaposed to the parathyroid 

hormone gene promoter to induce cyclin D1 over-expression. This mutation is 

observed in 20-40% of parathyroid adenomas (Motokura et al., 1991).

Breast tumours also frequently demonstrate over-expression of cyclin D1, 

by both amplification of the CCND1 gene and by constitutive over-expression. 

Mouse models of targeted cyclin D1 over-expression to the mammary gland 

support the oncogenic potential of cyclin D1 in the formation of breast tumours. 

Cyclin E is also over-expressed in some breast tumours and is linked with a 

poorer prognosis (Keyomarsi and Pardee, 1993;Nielsen et al., 1996). A 

chromosomal rearrangement, t(11;14) (q13;q32) involving the translocation of
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CCND1 to the immunoglobin heavy chain promoter has also been observed in 

lymphomas (Medeiros et al., 1990). Discovered more recently was a nucleotide 

polymorphism, A870G, of CCND1 which results in alternately spliced transcript 

encoding a 55 amino acid C-terminal truncation of cyclin D1. This truncated 

protein alters the functional properties of the cyclin and is associated with a 

higher incidence of tumours (Solomon et al., 2003;Wang et al., 2003b).

Other mutations also contribute to the deregulated kinase activity of the D- 

type cyclins, such as mutation of the p16INK4A and cdk4 loci, which would 

contribute to the enhanced kinase activity of the D-type cyclins/cdks. The cell 

cycle regulatory function of cyclin D1 is thought to be responsible for promoting 

tumourigenesis, though a contributory role by its cdk independent transcription 

regulatory functions can not be ruled out.

Viruses have also targeted cell cycle regulators by encoding viral proteins 

able to inactivate or enhance the function of cell cycle regulators for the purposes 

of the viral life cycle. Some of these viral proteins are homologous to cellular 

proteins. Members of the oncogenic y2-herepesvirus family, Herpesvirus saimiri 

(HVS), Kaposi’s sarcoma-associated virus (KSHV) and murine herpesvirus-68 

(MHV-68) encode functional viral cyclins with homology to cellular cyclins.
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1.27 The Y2-herpesviral cyclins

HVS: v-cyclin

The first viral cyclin to be discovered was that of HVS, identified through 

sequencing of a region of the genome unique to HVS and not present in a related 

y1-herpesvirus, EBV (Nicholas et al., 1992). The open reading frame, termed 

eclf2, encoded a viral cyclin with 24% amino acid identity and 46% similarity to 

the human cyclin D1 protein (Schulze-Gahmen et al., 1999). Characterisation of 

v-cyclin revealed it formed a functional kinase when bound to cdk6 via a cyclin 

box motif present on the cyclin (Jung et al., 1994). Later studies revealed v- 

cyclin/cdk6 kinase activity to be resistant to cyclin/cdk inhibitors p16INK4A, p21 

(Cip) and p27 (Kip), suggesting its kinase activity is unchecked by these proteins 

in infected cells (Swanton et al., 1997).

KSHV: vcyclin

vcyclin, encoded by ORF72 in the KSHV genome, is a cyclin homologue 

with 32% amino acid homology to cellular D-type cyclins (Cesarman et al., 

1996;Li et al., 1997). Like cellular D-type cyclins, vcyclin binds cdk2 and cdk4 but 

predominately activates cdk6 and extends its range of substrates to include 

those of cyclin E/cdk2 and cyclin A/cdk2. Substrates of vcyclin/cdk6 include the 

D-type cyclin/cdk substrate, Rb (Godden-Kent et al., 1997), cyclinE/cdk2 

substrate, p27Cip (Mann et al., 1999;Ellis et al., 1999), cyclinA/cdk2 substrates, 

origin recognition complex-1 (ORC-1) and Cdc6 (Laman et al., 2001b) as well as 

cyclin B substrate, histone H1 (Godden-Kent, 1997).
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Like HVS cyclin, vcyclin is also resistant to the cdkls (Swanton et al., 

1997). Though required for its full activation, vcyclin/cdk6 can function 

independently of CAK phosphorylation (Child ES 2001)(Kaldis et al., 2001). 

These properties of vcyclin/cdk6 suggest that the complex can subvert normal 

regulatory mechanisms imposed on cellular cyclin/cdks to function as a 

constitutively active kinase.

The ability of vcyclins to function like the G1/S phase cyclins, with a kinase 

activity that is unregulated, results in the independence of the cell cycle on 

growth signalling and the loss of normal cell cycle checkpoints, allowing cells to 

exit from quiescence and re-enter cell cycle (Swanton et al., 1997;Child and 

Mann, 2001). The oncogenic potential of vcyclin has been tested in a transgenic 

mouse model. The vcyclin transgenic mouse developed lymphoma after a long 

latency, suggesting secondary somatic mutations are important to the 

tumourigenicity of vcyclin (Verschuren et al., 2004). This is supported by further 

mouse studies, the progeny of the vcyclin transgenic mice crossed on to a p53 

null background developing lymphoma earlier, implying apoptosis as a barrier to 

oncogenesis when vcyclin is overexpressed (Ojala et al., 1999;Verschuren et al., 

2002). In the context of KSHV infection vcyclin is likely to co-operate with the 

other latently expressed genes of KSHV, like LANA-1 with which it is co­

transcribed, that inactivate the p53 pathway, in order to potentiate KSHV induced 

oncogenesis.

Vcyclin properties also extend to functions previously not ascribed to 

cyclins. Phosphorylation of cellular bcl-2 is unique to vcyclin/cdk6 and results in
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the inactivation of its anti-apoptotic properties (Ojala et al., 2000). Vcyclin may 

also have functions that are independent of its kinase activity, an example being 

vcyclin interaction with signal transducer and activator of T-cells 3 (STAT3) to 

inhibit its DNA binding and transcriptional activation thus inhibiting the growth 

suppressive effects of oncostatin M signalling, a property similar to cyclin D1 

which represses STAT3 in a cdk4-independent manner (Bienvenu et al., 

2001;Lundquist et al., 2003). This range of activities demonstrated by vcyclin has 

been used as a robust model for studying the functions of the G1/S cyclins.

MHV-68: m-cyclin

Sequencing of the MHV-68 genome revealed an ORF similar to that of 

ORF72 of KSHV encoding vcyclin, demonstrating conservation of the viral cyclin 

between the y-2 herpesviruses (Virgin et al., 1997). In contrast to vcyclin, the 

MHV-68 cyclin, M-cyclin, displays a late lytic gene expression profile and was 

predicted to encode a smaller protein of about 25Kda. M-cyclin also only binds 

cdk2 and cdkl but not cdk4 or cdk6 (Upton et al., 2005). Studies of a transgenic 

mouse expressing M-cyclin from a /c/c-promoter, targeting protein expression to 

the T-cell compartment, revealed M-cyclin enhanced cell cycling and proliferation 

in ex vivo cultured thymocytes and in some mice led to the development of 

lymphoblastic lymphoma (van Dyk et al., 1999). This study suggests functional 

similarity between M-cyclin and the related herpesvirus cyclins.
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1.28 Summary: Cyclins

Cyclins are regulators of cell growth and proliferation that were initially 

discovered in yeast and Xenopus oocytes. Cyclins bound to their cognate kinase 

subunit, the cdk, form serine/threonine kinases whose activity is regulated by 

multiple mechanisms. Specific cyclin/cdk complexes phosphorylate proteins that 

enable and co-ordinate transition and progression through the phases of the cell 

cycle. Some of these proteins are transcriptional regulators whose function is 

modulated to alter gene expression and facilitate cell proliferation. Cdk- 

independent functions for the cyclin D1 in transcription regulation have also been 

shown in transcription mediated by the thyroid and androgen receptors. Mediator 

complexes are involved in transcription initiated by both these receptors.

Cancer is often associated with aberrant cyclin function leading to 

unchecked cell proliferation. Oncogneic herpesviruses, namely HVS, KSHV and 

MHV-68 of the y2-herpesviridae, encode functional cyclins that are resistant to 

cellular regulation and have expanded functions compared to their cellular 

counterparts. Both cellular and viral cyclins therefore have a role transcriptional 

regulation that promotes cell proliferation and when abberantly expressed may 

drive tumourigenesis.
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1.29 This Thesis

MED17, a subunit of a Mediator complex regulating transcription by 

nuclear receptors, interacted with a viral cyclin in a yeast two hybrid screen 

(Laman, unpublished data). It had been previously shown that MED17 activates 

p53 mediated transcription in vitro. This novel interaction suggested that viral 

and/or cellular cyclins affect MED17 and thereby regulate the transcriptional 

activity of p53 tumour suppressor, thus linking cell proliferative signals with 

transcriptional regulators of cell cycle arrest and apoptosis.

In this thesis, the activity of MED17 on p53 and other potential Mediator 

regulated transcription factors was explored. In addition, the interaction between 

cyclins and MED17 was investigated to determine their nature and function. 

Evidence is provided that MED17 is a repressor of p53-mediated transcription in 

vivo which inhibits apoptosis and induces phenotypes seen in cells with 

compromised p53 function. Human MED17 activates heat shock factor mediated 

transcription as has been described for Drosophila MED17, demonstrating that 

this function of MED17 is conserved. Investigating the interaction with the viral 

cyclin, it was found that MED17 interacted with vcyclin of KSHV as well as 

cellular cyclins, cyclin D1, cyclin E and cyclin A both in vitro and in vivo. 

Furthermore, these interacting cyclins mediate phosphorylation of MED17 and 

regulates its expression. Overall these data link cyclins to the control of p53 

transcriptional activity through an interaction with the MED17 subunit of Mediator, 

suggesting interplay between cell proliferative signalling and transcriptional 

regulation of apoptosis.
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Chapter 2: Materials and methods

Standard methods 

2.1 Cell culture and transfection: Mammalian adherent cell lines

U20S, MG63 and NIH-3T3 cells were maintained in DMEM supplemented 

with 10% FCS (Sigma), 5 mg/ml penicillin/streptomycin (Gibco BRL, UK) and 

cultured at 5% CO2 in humidified conditions (see Table 2.1). For transfection, 

cells were seeded at 2 x1 0 5 in 60mm well dishes using a haemocytometer, 1 2  

hours before applying DNA/Fugene 6  transfection reagent (Roche Diagnostics, 

Mannheim, Germany), following the manufactures protocol (expression 

constructs transfected are given in Table 2.2). Fresh media was added after 24 

hours and cells were harvested for protein after 48 hours post transfection.

2.2 Cloning of vector and MED17 cell line

NIH-3T3 cells were maintained and transfected in conditions as stated for 

mammalian adherent cells. Cells were seeded at 1x106 in 10cm Petri dishes 

before transfection with either 2pg of pOP-RSV-1 (Stratagene) or pOP-RSV-1 

MED17 HA, to generate the NIH-3T3 vector and NIH-3T3 MED17 cell lines 

respectively. 48 hours after transfection cells were trypsinised and re-seeded at 

1x105 into multiple 10cm Petri dishes overnight. After 12 hours the cells were 

washed with PBS and media changed to select for neomycin resistant clones. 

Selection media consisted of DMEM, 10% FCS and 600pg/ml of G418 (neomycin
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sulphate) (Glbco BRL, UK). During selection media was replaced every three 

days and after 14 days single colonies isolated using cloning rings (Sigma). 

Colonies were transferred to 24 well plates containing neomycin supplemented 

media for further selection and expansion. Expanded colonies were screened by 

Western blotted for expression MED17 HA. For the vector only line, several 

G418 resistant colonies were pooled. MED17 expressing colonies were further 

expanded and maintained in 300pg/ml of G418 of supplemented media.

2.3 Yeast culture and transformation

Single colonies were inoculated in to 10ml of YPD medium and cultured 

for 12 hours at 25°C. Cultures were then diluted to OD6oonm=0.3 in 50ml of YPD 

medium and grown for a further 4 hours. To remove medium, the yeast were 

then spun and suspended in 25ml of sterile water and spun again and the water 

aspirated. The yeast pellet was then re-suspended in 2ml of 1x lithium 

acetate/0.5x TE in preparation for transformation. After incubating at room 

temperature for 1 0  minutes, the yeast 1 0 0 pl of the mixture was combined with 

10pl of 10mg/ml sheared salmon sperm DNA as well as 1pg of the expression 

construct DNA. To this 700pl of 1x Li Ac/ 1x TE/ 40% PEG was added and 

incubated at 30°C for 30 minutes without shaking. 85pl DMSO was added before 

heat shocking the transformation mixture at 42°C for 7 minutes. The transformed 

yeast were washed in a volume of 1ml before re-suspending them in 500pl of 1x 

TE. Of this volume, 100pl of yeast were plated on to amino acid deficient medium 

to allow for growth of transformants.
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2.4 Preparation of yeast cell lysates

In preparation for lysis and extraction of protein, yeast cultures were 

grown to O D 6oonm=0 .3 . Cultures were then centrifuged at 2500rpm for 5 minutes 

and the pellet washed with water before centrifuging again. 500pl of ice cold 

protein sample buffer was added to the pellet in addition to 500pl of glass beads 

followed by agitation of the sample 4 times for 45 seconds. Lysates were then 

centrifuged at 13,000rpm for 5 minutes at 4°C to remove debris and the 

supernatant transferred to a new microfuge tube and boiled with Laemmli protein 

sample buffer for 5 minutes before loading on SDS-PAGE gel to resolve proteins.

2.7 Cell culture and baculovlrus Infection: Sf9 cells

Sf9 cells were maintained in culture flasks containing Graces Medium 

(Gibco BRL, UK) supplemented with 20% FBS (Sigma), L-glutamine and pluronic 

acid at 26°C in a rotating incubator. Cells were cultured at a density of 5x105/ml. 

For the production of cyclin/cdk complexes for in vitro kinase assays, Sf9 cells 

were seeded at 1x106/well in 6  well dishes and allowed to adhere for 30 minutes 

at room temperature after which the media was carefully aspirated and 1 ml of 

baculoviruses encoding the cdk or cyclin were overlayed onto cells, singly or in 

combination. Infected Sf9 cells were cultured for a further 72 hours before cells 

were harvested.
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2.6 Preparation of Sf9 lysates

Lysates from Sf9 cells expressing cdks with or without cyclins were used 

for in vitro kinase assays. 72 hours after infection, cells were re-suspended by 

pipetting and centrifuged at 3000 rpm for 5 minutes to pellet cells following which 

the media was aspirated. 1x Sf9 lysis buffer was added to lyse the cell pellet 

which was done for 10 minutes on ice. Cell debris was then pelleted by 

centrifugation. Lysates were either used fresh in kinase assays or alliquoted and 

snap frozen in a dry ice/ethanol bath and stored at -80°C until required.

2.7 Amplification of baculovirus stocks

For amplification of the baculovirus stocks, Sf9 cells were seeded at 1x107 

into 175mm flasks in non-supplemented Graces Medium for 15 minutes before 

2ml of baculoviral supernatant was added and incubated for a further hour. After 

the incubation the viral media was aspirated and fresh 2 0 % FCS supplemented 

Graces Medium was added and cells were incubated for 72 hours at 26°C. 

Supernatant containing progeny baculoviruses was extracted and cleared of cell 

debris by centrifugation before being stored in the dark at 4°C until required.

2.8 Polymerase chain reaction (PCR) and site directed mutagenesis

PCR was used to amplify DNA for cloning of genes and in site directed 

mutagenesis, to create phosphosite mutants of MED17. PCR was performed 

using a 96-Plus thermocycler (MWG Biotech, UK). Expand High-Fidelity DNA 

polymerase (Roche) used was in the reactions. A typical reaction mixture
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consisted of: 0.2pM of the sense and anti-sense primer (see Table 2.3), 5pl of 

10x polymerase buffer (containing Mg Cb), 200pM of dNTP, DNA template in a 

total volume of 50pl. For the addition of an HA epitope at the C-terminus of the 

protein, an anti-sense primer was designed to delete the stop codon and place 

the HA sequence in frame. MED17 HA was PCR amplified from a human foetal 

cDNA library. A typical amplification protocol would be: 30 cycles of 95°C for 1 

minute, 55°C for 1 minute and 72°C for 4 minutes followed by 1 cycle at 72°C for 

1 0  minutes.

For site directed mutagenesis, Pfu polymerase (Stratagene) was used to 

amplify whole plasmids using overlapping primers introducing the point mutation. 

PCR reaction was setup and run according to the manufacturer protocol as set 

out in the Stratagene Quikchange® Site-Directed Mutagenesis kit.

2.14 Cloning and restriction analysis

Plasmids and DNA fragments were prepared for cloning by digesting with 

restriction enzymes. Restriction analysis was also used to verify the insertion of 

the DNA fragment after cloning. A typical 10pl reaction mixture consisted of 

200ng of DNA, 1pl of 10x buffer, 2 units of restriction enzyme and in a total 

volume of 1 0 pl. Reactions were incubated at 37°C for 1 hour except for Sma I 

enzyme which was incubated at 25°C. All restriction enzymes used were 

obtained from Promega and were used with the supplied buffers.
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2.10 Agarose gel electrophoresis

Digested plasmids and DNA fragments were resolved on agarose gels to 

assess digestion and size of the digested DNA. Typically, 1% gels were made 

with electrophoresis grade agarose (Sigma) in 0.5x TAE, using the Biorad mingle 

system. To melted agarose was added ethidium bromide (Sigma) at 0.5pg/ml 

before casting gels. Set gels were placed in to a mini gel migration trough 

(BioRad), filled with 0.5xTAE and DNA loaded with a DNA loading buffer. Sizing 

of bands was done by running a separate well with 1kb ladder (Boehringer- 

Mannheim). Gels were run at 100v until the loading buffer dye reached the 

bottom of the gel. Bands were visualised using a UV transilluminator.

2.11 Gel extraction of DNA

DNA fragments of correct size were excised using a clean scalpel. 

Removal of agrose from DNA fragments was done using the QIAquick gel 

extraction kit (Qiagen) as per manufacturer’s protocol. 30pl of DNA was extracted 

from the column and was used for DNA ligation or frozen at -20°C.

2.12 DNA ligation

DNA extracted from the agrose was ligated in a total volume of 20pl 

consisting typically of a ratio of 7:1 of insert to vector 2pl of vector DNA, 14pl of 

DNA fragment, 2pl of 10x ligase buffer, 1pl of DNA ligase (New England BioLab). 

Ligation reaction was incubated at room temperature for an hour before 

transformation into chemically competent bacteria.
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2.13 Production of chemically competent FB810 bacterial stocks

20ml of LB broth (Sigma) was inoculated with a single colony of FB810 

bacteria and incubated at 37°C for 12 hours. The bacterial culture was then 

diluted 1 :1 0  and cultured further until the culture had an ODeoo of 0.5. Cultures 

were chilled on ice for 15 minutes before being pelleted by centrifugation at 4°C 

for 20 minutes at 15000 rpm. Bacteria were resuspended in one volume of 

sterile, chilled. After second centrifugation, the bacterial pellet was resuspended 

in 1715th of the volume of 50mM CaCh in 1 0 % glycerol and incubated for 30 

minutes on ice before being aliquoted. The bacteria were then frozen in dry 

ice/ethanol and stored at -80°C.

2.14 Transformation of bacteria

Chemically competent TOP10 (Invitrogen) E.coli bacteria were used to 

transform DNA ligation reactions following exactly the manufacturer’s protocol. 

For transformation to produce recombinant GST proteins, expression plasmids 

were transformed in to FB810 chemically competent E.coli. 50pl of competent 

bacteria was alliquoted and incubated on ice to which 20pl of the DNA ligation 

reaction was added. After 30 minutes incubation on ice the competent bacteria 

were placed at 42°C for 30 seconds before. Transformed bacteria were then 

plated on to ampicillin (1 0 0 pg/ml) supplement agar and allowed to incubate for 

12 hours at 37°C. Individual transformants were screened for presence of the 

clone of interest or used to grow larger cultures for protein purification.
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2.15 Plasmid extraction and purification

Small scale extraction and purification of plasmid DNA was done using 

Qiagen miniprep kits. Single bacterial colonies were inoculated into 5ml of LB 

broth supplemented with ampicillin at 100pg/ml. Cultures were grown for 12 

hours at 37°C in a shaking incubator. Bacteria were then pelleted by 

centrifugation, resuspended, lysed and neutralised according to the 

manufacturer’s protocol. The supernatant was passed over a affinity column to 

capture plasmid DNA and after washing the column, DNA was eluted with 50pl of 

0.1M Tris pH 0.75. Miniprep DNA was stored at -20°C.

Qiagen Maxi™ kits were used to extract and purify DNA from 500ml 

bacterial cultures in a similar method to the miniprep kits. DNA was isopropanol 

precipitated at 4°C for 30 minutes by centrifugation at 30,000 x g. DNA pellets 

were washed with 70% ethanol and air-dried before being re-dissolved in distilled 

water. The concentration and purity of DNA was determined by UV 

spectrophotometry at OD 260nm and OD 280nm.
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Protein biochemistry

2.19 Western blotting

Proteins were mixed with protein sample buffer and resolved on SDS- 

PAGE gels between 6  and 15%, dependent on the molecular weight of the 

protein. Proteins were then transferred to Hybond PVDF membrane (Amersham 

Pharmacia Biotech, Buckinghamshire, UK) using semi-dry gel transfer apparatus 

(BioRad) after which the membrane was incubated in 5% non-fat milk (Marvel) in 

PBS and 0.05% Tween-20 (Sigma) for 30 minutes at room temperature. 

Incubation with primary antibodies occurred in 5% non-fat milk in PBS/Tween-20, 

overnight at 4°C. After the incubation milk was removed from the membrane by 

washing 3 times for 20 minutes with shaking, at room temperature, using fresh 

PBS/Tween-20 between washings. A secondary HRP conjugated antibody was 

then added for an hour at room temperature with shaking. Following this, a 

further three incubation for 20 minutes with PBS/Tween-20 were done at room 

temperature to remove excess secondary antibody. Bands were visualised by 

luminescent detection using ECL+ (Amersham Pharmacia Biotech) and 

photographic film. A list of primary and secondary antibodies used in this thesis is 

given in Table 2.4 and Table 2.5.
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2.17 Recombinant GST-protein synthesis

FB810 cells transformed with the plasmid of interest were cultured 

overnight in 20ml of LB broth with ampicillin before being diluted 1:10 in fresh LB 

and cultured to an ODeoo of between 0.3 and 0.5. IPTG was added to the culture 

to a final concentration of 1mM and incubated at 30°C for 2 hours. Cells were 

pelleted and lysed in Tween lysis buffer with lysozyme (Sigma) at 100pg/ml 

followed by sonication to extract protein. Lysates were cleared of cell debris by 

centrifugation at 1 0 ,0 0 0  rpm for 15 minutes at 4°C before being incubated with 

200pl of 50% slurry of GST beads overnight, at 4°C on an orbital rotor. Beads 

were washed five times in a total of 50 bead volumes with Tween lysis buffer and 

stored in the buffer at 4°C. Expression and purification of proteins was checked 

by resolving proteins on a SDS-PAGE gel and visualised with Comassie staining.

2.18 In vitro binding assays

GST-proteins bound to beads were washed in a GST binding buffer 

solution to replace the buffer. Beads were incubated with in vitro 

transcribed/translated protein using the TnT® Quick Coupled System (Promega) 

according to the manufacturer’s protocol. The in vitro transcription/translation 

(IVT) reactions were diluted 5 fold in GST binding buffer to a final volume of 

260pl, and centrifuged for 30 minutes at 15,000rpm at 4°C to remove precipitated 

protein. 50pl of diluted and clarified IVT reactions was added to 25pl of GST 

affinity beads and incubated for 3 hours at 4°C on an orbital rotor. Beads were 

pelleted by centrifugation and washed with RIPA buffer 5 times with 40 times the
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bead volume. The presence of bound proteins was determined by Western 

analysis.

2.19 In vivo co-immunoprecipitations

DNA plasmids encoding proteins of interest were transfected alone or in 

combination in U20S cells seeded at 1x106 cells on a 10cm dish. Cells were 

harvested 48hrs post-transfection by scraping into 500pl of RIPA lysis buffer with 

protease cocktail inhibitor (Boehringer Mannheim). Protein concentration was 

determined by Bradford assay between samples. Prior to immunoprecipitation, 

lysates were pre-cleared with protein G-beads for 30 minutes at 4°C on an orbital 

rotor to reduce non-specific binding to the beads. Pre-cleared lysate was 

incubated with 30pl of protein G-beads and 2pg of specific antibody or isotype 

control antibody (Upstate Technologies) on an orbital rotor for 90 minutes at 4°C 

(see Table 2.6 for antibodies). For FLAG tagged protein immunoprecipitations, 

pre-conjugated FLAG protein on agarose beads (Sigma) were used for 

immunoprecipitation. After immunoprecipitation, antibody conjugated protein-G 

beads were washed 3 times with 10 fold bead volumes of the lysis buffer and re­

suspended 40pl of Laemmli protein sample buffer. 10pl was resolved on 

polyacrylamide gel for Western blot analysis.
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2.20 In vitro kinase assays

Sf9 lysate expressing cdk alone or cyclin/cdk were incubated in kinase 

assay buffer with GST fusion proteins, 10pCi y-33? ATP and ATP was added to a 

final concentration 50pM. Incubations occurred at 30°C for 30 minutes after 

which GST beads were washed with 500pl of kinase assay buffer, Laemmli 

protein sample buffer added and proteins resolved on a SDS-PAGE gel. Gels 

were fixed in 10% acetic acid and 10% methanol for 30 minutes at room 

temperature before drying to Watman paper (3M). Images were obtained by 

using a Cyclone™ phosphoimager (Packard).

Gene reporter assays 

2.21 Luciferase assays

Luciferase reporters consist of a promoter upstream of a luciferase gene, 

whose gene product is assayed as a measure of transcriptional activation from 

that promoter. A list of the promoter constructs with luciferase reporters used in 

this thesis is given in Table 2.5.

The luciferase enzyme is assayed by inducing a reaction which produces 

light. Quantification of luminescence is proportional to the amount of the 

luciferase enzyme and hence a measure of the strength of activation of the 

reporter. In this reaction, initially the addition of an adenyl group from ATP to the 

carboxyl group of luciferin (C13H12N2S2O3) is catalysed by luciferase to form
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adenyl-luciferin and pyrophosphate in a reversible reaction. The emission of light 

only occurs in a second reaction when adenyl-luciferin reacts with oxygen to 

produce adenyl-oxyluciferin and light.

Reporter assays were done using a 6 well dish format with samples done 

in triplicate. Cells seeded at 2x105 were co-transfected with 200ng of reporter 

luciferase construct as well as 200ng of control plasmid, pEF-LacZ and MED17 

and/or p53. Transfected DNA was equalised between samples with pcDNA3 

vector only. Cells were harvested for protein 48 hours post transfection into 300pi 

of 1x reporter lysis buffer (Promega) per well. 20pl of lysate was used for each 

luciferase assay, to which 100pl of luciferase substrate (Promega) was added. 

Dispensing of luciferase substrate and luminescence readings were done using 

Fluroskan Ascent FL (Thermo Electron Corporation) with an integration time of 

10 seconds. Results were displayed as a fold change in luminescence relative to 

the vector only control and normalised to G-galactosidase values (see section 

2.22). Cell lysates were also used for Western blots to check protein expression.

2.22 &-galactosidase assays

Co-transfection of the pEF-LacZ plasmid allowed normalisation of the 

luciferase values between samples by assaying for (i-galactosidase activity. A 

typical reaction consisted of 30pl of reporter cell lysate, 160pl of ONPG (10mM) 

and 700pl of Z-buffer. The reaction was incubated for 15 minutes at 37°C until 

yellow and the reaction stopped by the addition of 400pl of Na2C03 (1M). OD420 

was then measured to obtain ft-gal value. The normalised luciferase value was
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determined as a ratio between the raw luciferase value and the (J-galactosidase 

value.

Cellular staining and analysis 

2.23 Propidium iodide (PI) staining

Cells were seeded at 1x106in 10cm dishes and treatment with nocadozole 

at 40nM for 48 hours. Cells were then trypsinised, washed in PBS and fixed with 

ice cold 70% ethanol for a minimum of 2 hours at 4°C. Cells were washed in PBS 

before adding 50pl of a 100|jg/ml stock of Rnase A and 200pl of a 50pg/ml stock 

of PI and allowed to incubate for 30 minutes at room temperature. The cells were 

washed again in PBS and filtered before FACS analysis. Using the doublet 

detection module to gate the single cells from the doublets, polyploidy population 

of cells were counted as those cells with DNA content greater than 2N.

2.24 Immunofluoresence assay (IFA) and centrosome analysis

1x104 cells were seeded on to glass cover slips in 60mm dishes. The 

media was then aspirated and cells washed twice with PBS. Cells were then 

fixed and permeabilised with ice cold methanol for 10 minutes at -20°C followed 

by rinsing with cold acetone for 1 minute at room temperature. To prevent non­

specific binding of the antibody, permeablised cells were blocked with 1% 

fraction V foetal BSA (Sigma) in PBS for 30 minutes, changing the blocking
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solution twice. Incubation with the y-tubulin antibody conjugated to CY3 (Sigma) 

was done in 1 % fraction V BSA/PBS for 1 hour at room temperature, using the 

antibody at a concentration of 1:200. Coverslips were washed a further three 

times in BSA/PBS over 15 minutes, with Hoescht 33342 dye at a final 

concentration of 5pM added in the last wash to allow visualisation of nuclei. 

Coverslips were mounted onto glass slides with anti-fade mounting media (0.1% 

phenylenediamine in 60% glycerol), allowed to dry and then sealed with nail 

varnish. Centrosomes and nuclei were visualised using confocal microscopy 

(Leica system at a magnification of 125x).

2.25 Annexin staining

1x106 cells lines were seeded on 10cm dishes before treatment with either 

1pM staurosporine (Sigma) or 100pM etoposide (Sigma) for 24 hours to induce 

apoptosis. Cells were harvested by trypsinization and stained with annexin-V 

conjugated to FITC and PI (Molecular Probes) following manufacturer’s protocol. 

Cells were collected by FACS and gated to separate cells from debris and then 

sorted according to PI and annexin staining. Cells staining with annexin-V only 

were quantified to measure induction of apoptosis.
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2.26 Matrigel cell invasion assay

Sterile invasion chambers (Chemicon® International) were rehydrated 

using 300pl of warm serum free DMEM for 1 hour at room temperature. During 

rehydration of the extracellular matrix layer a suspension of the vector/MED17 

cells at 1x106 cells/ml was prepared in serum free medium. Serum free DMEM 

was aspirated from the upper chamber and replaced with 300pl of the cell 

suspension. To the lower chamber was added 500pl of supplemented DMEM. 

The invasion chambers were incubated for 48 hours under standard cell culture 

conditions after which non-invading cells and the extracellular matrix from the 

chamber were removed using a cotton-tipped swab. Inserts containing invasive 

cells visualised by light microscopy after staining for 20 minutes at room 

temperature and then rinsing in water before drying. Matrigel assays were done 

in triplicate for both the vector and MED17 cell lines.
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Gene Expression Microarray (GEM) and analysis

2.27 RNA extraction

RNA was extracted from cells using an Rneasy kit (Qiagen). 2x106 cells 

were lysed on 10cm dishes using RLT buffer, supplemented with Q>-ME, and 

harvested by scrapping. Samples were then homogenised by passing crude 

lysates through a QIAshredder column (Qiagen) by centrifugation and the 

subsequent clarified lysates were collected, to which 350pl of 70% ethanol was 

added. This mixture was passed through an Rneasy spin column and washed 

with buffers RW1 and RPE according to the manufacturer’s protocol. RNA was 

eluted into a clean eppendorf tube with 30pl of Rnase-free water. RNA quality 

and quantity was analysed using an Agilent Bioanalyser (Agilent Technologies).

2.28 cRNA synthesis, labelling and gene chip hybridisation (see Fig 2.1)

To synthesise labelled cDNA for hybridisation to the gene chip, 10pg of 

total RNA was used to generate first-strand cDNA using a T7-linked oligo(dT) 

primer and was followed by cRNA synthesis, using biotinylated UTP and CTP 

(Enzo Diagnostics), by in vitro transcription. The target cRNA synthesised were 

then processed according to manufacturer’s recommendations using an 

Affymetrix GeneChip© Instrument System. Spike controls were added to 20pg of 

fragmented cRNA before hybridisation overnight to Affymetrix mouse 430A 

microarrays (www.affvmetrix.com/product/arravs/specific/mouse430.affx). Spike 

controls are targeted cRNAs derived from different species and are used to
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confirm threshold detection of low abundance transcripts which is masked 

excessive variation in the background intensity, termed noise. After hybridisation, 

arrays were washed and stained with streptavidin-phycoerythrin before scanning 

on an Affymetrix GeneChip© scanner. Scanned images were first assessed by 

eye to confirm scanner alignment and the absence of significant bubbles or 

scratches. 375’ ratios for GAPDH were checked to be within acceptable limits 

and were used to confirm suitable amplification of the RNA as well as checking 

for sample degradation. Spike controls BioB, BioC, BioD and CreX were all 

present in increasing intensity as expected confirming threshold detection of low 

abundance transcripts.

2.29 Microarray data processing (in collaboration with Dr.M.Trotter)

Array probe-set expression values were background corrected, 

normalised and summarized using default parameters of the RMA model (Irizarry 

et al., 2003). All array processing was performed using the “a//y” package of the 

Bioconductor (www.bioconductor.org) suite of software for the R statistical 

programming language (www.r-proiect.org). The resulting gene expression data 

set contained processed expression values for 22690 probe-sets (Affymetrix 

MOE430A GeneChip©). The expression set was analysed to assess the 

significance of differential gene expression between cell lines, which were both 

done in triplicate arrays.
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2.30 Analysis of differential gene expression between vector and MED17 

cell lines (in collaboration with Dr.M.Trotter)

A moderated t-statistic (Smyth and Speed, 2003) was calculated to assess 

the significance of differential gene expression between the two cell lines for 

each probe-set. In order to control for the error of multiple hypotheses, the 

significance p-va/ues obtained were corrected for false discovery rate, to become 

q-values, using the method of (Storey and Tibshirani, 2003). A threshold value of 

g<0.001 was used to select genes with a differential expression between the 

vector and MED17 cell lines. In total, 1858 array probe-sets were found to be 

significant using this threshold. Of these significant probe-sets 1124 were up- 

regulated and 734 were down-regulated in the MED17 group.

2.31 Annotation of significant probe-sets and data visualisation (in 

collaboration with Dr.M.Trotter)

The GOBrowser facility of the Affymetrix NetAffx website 

(www.affvmetrix.com/analvsis/netaffx/index.affx) categorises marker probe-sets 

according to GO Biological Process annotation (www.Qeneontoloqv.org). The 

browser's standard chi-square test of independence was used to identify over­

represented GO Biological Process categories among the 1858 significantly 

changed probe-sets. Heat maps were created for genes present in these 

biological process categories by exporting RMA gene expression scores into 

dChip v1.3 programme (http://biosun1.havard.edu/complab/dchip/).
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2.32 Analysis of probe-set data using Ingenuity Pathway analysis

Ingenuity Pathway Analysis is a web-based programme that allows access 

to a large database consisting of many modelled relationships between proteins 

and is used to identify pathways involved in biological functions from microarray 

data. The database is continuously reviewed by literature searches allowing 

pathways to be updated based on current published data. Ingenuity Pathway 

Analysis was applied to the MED 17 cell line marker probe-sets to identify signal 

pathways whose regulation may be affected by MED17 over-expression. In 

addition to clustering of genes by biological function, as done using GOBrowser, 

the Ingenuity Pathway analysis identifies relationships between genes including 

protein-protein interactions and transcription networks. By using two independent 

analysis programmes, comparisons can be drawn between the two analyses and 

with the aim of identifying transcription factors and networks regulated by MED17 

identified.

To analyse the marker probe-set data from the microarrays of the MED17 

cell line, data was uploaded to the web based application 

(www. inQenuitv.com/product/pathwavs analysis.html) in a text document format 

containing probe set IDs with corresponding p-values. Global and network 

analysis of the data was downloaded and displayed accordingly. Network 

diagrams displayed in this thesis were generated by the Ingenuity Pathway 

analysis application.
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Real-time Quantitative Polymerase Chain Reaction (Q-PCR)

2.33 Q-PCR general technique

Quantitative RT-PCR was used to determine the relative expression of 

mRNA from a multiple tissue cDNA panel of human tissues (Clontech). Due to 

the sensitivity of the technique, extra precaution was taken to prevent 

contamination of samples. Such measures included, preparation, storage of 

samples in separate areas as well as autoclaving and filter sterilisation water. 

Filtered pipette tips and eppendorf tubes were also autoclaved and irradiated at 

254nm in a UV cross-linker (Stratagene Stratalinker 2400) prior to use. 

Designated pipettes were also irradiated prior to use.

Quantification of gene expression was done using the ABI Prism 7700 

Sequence Detection System. The Q-PCR technique is based on the principle of 

detection of the amplified product of the PCR reaction by labelling with a 

fluorescent dye. The SYBR green I dye achieves this by staining double stranded 

DNA formed by the amplified sequence. For quantifying the MED17 transcript, 

the SYBR green I dye was used.

To allow normalisation of the SYBR green signal between wells, an 

internal reference dye (ROX) is incorporated into the PCR AmpliTaqGold® 

buffer, its signal is unaffected by the PCR reaction. Normalised reporter signals 

(Rn) from reactions containing cDNA template (Rn+) and non-template (Rn-) 

controls are calculated before there is detectable fluorescence from the SYBR 

green.
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The normalised reporter signals from the template and non-template 

controls are further used to calculate ARn by subtraction of Rn- from Rn+. ARn can 

be plotted on an amplification plot against cycle number to analyse the 

amplification of the sequence (Fig 2.2). During early cycles small changes are 

seen in ARn on the amplification plot, which is known as the baseline. Increases 

in ARn above this baseline indicate detection of amplified products from the PCR 

reaction. To determine the threshold cycle (Ct), the cycle at which amplification 

of the product becomes statistically significant, a threshold is calculated as the 

average standard deviation of ARn in the early cycles of the reaction, multiplied 

by an adjustment factor. Ideally on the amplification plot the threshold should lie 

in the linear range of the plot. From the threshold, C t is then obtained.

Q-PCR was also done for ubiquitously expressed housekeeping gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which is used to 

normalise between samples. In a separate reaction, Q-PCR for GAPDH was 

done and C t values calculated in the same manner. The difference between Ct 

values for MED17 and GAPDH was calculated to give ACt. These values were 

further normalised to one of the samples on the panel of cDNAs by subtracting 

the A C t of each sample to give AACt. The final value for the relative expression 

of MED17 was calculated by expressing the figure as a negative power of 2 (2*

AACTj

The hybridisation of primers to one another, to form primer dimers, can 

affect the fluorescent detection of the primers hybridised to the template cDNA is 

a false positive result. Formation of primer dimers can be detected using a
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dissociation curve programme. The dissociation curve programme initially 

denatures the cDNA and then heats the reaction from 60°C to 95°C over 20 

minutes to induce annealing and hence generates a fluorescent signal when 50% 

of the primers dissociate. The presence of more than one signal, at different 

temperatures, during the running of the dissociation curve programme suggests 

formation of primer dimers, the amplification of more than one product, or the 

contamination of the template cDNA (Fig 2.3). The dissociation curve programme 

was run at the end of each reaction.

2.34 Oligonucleotide design for Q-PCR

Primers for Q-PCR (Qiagen-Operon, Cologne, Germany) were designed 

using the Primer Express® software programme (PE Applied Biosystems, UK) 

based on default parameters and guidelines. Primers used for Q-PCR are shown 

in Table 2.3.
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Solutions for standard methods

10x Lithium acetate 

1xTE

TAE (50x)

DNA loading buffer 

Protease Inhibitors

Coomasie stain 

Destain/Fix for PAGE

1M Li Ac in sterile water and autoclaved.

10mM Tris pH 7.5 

1mM EDTA

242g Tris base 

57.1ml Acetic acid 

100ml 0.5M EDTA

Make to 1L with dH20  and adjust pH to 8.5

60% (w/v) sucrose solution 

0.1% (w/v) bromophenol blue

0.1 mM Na F 

0.1 mM Na3 VO4 

2mg/ml Aprotinin 

100mg/ml PMSF

0.25% (w/v) Brilliant blue 

7% (v/v) Acetic acid

10% (v/v) Methanol 

10% (v/v) Acetic acid
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Laemmli Sample Buffer 250 mM Tris pH 6.8 

(4x) 0.02% (w/v) BPB

4% (w/v) 2-Mercaptoethanol 

8% (w/v) SDS 
40% (v/v) Glycerol

Solutions for Protein Biochemistry

Sf9 lysis buffer 0.1 % (w/v) Tween 20
50mM Tris pH 7.5

50mM NaCI

2mM EGTA

1mM EDTA

1mM DTT

50% (v/v) glycerol

+ cocktail protease inhibitor

Tween lysis buffer 50mM Hepes pH 7.5

150mM Na Cl 

2.5mM EGTA 

1mM EDTA 

1mM DTT

0.1% (w/v)Tween-20 
10mM fi-glycerophosphate 

+ cocktail protease inhibitor
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RIPA lysis buffer 50mM Tris pH 8.0 

150mM NaCI 

1% (w/v) NP-40 

0.1% (w/v) SDS 

+ cocktail protease inhibitor

GST binding buffer 20mM Hepes pH7.6 

50mM KCI 

2.5mM MgCb 

0.02% (w/v) NP-40 
1 mM dithiothreitol (DTT) 

10% (v/v) glycerol 

1mM PMSF

NETN 20mM Tris pH 8.0 

100mM NaCI 

1mM EDTA 

0.5% (w/v) NP-40

10x Kinase assay buffer 500mM Hepes pH 7.4
100mM MgCb 

10mM DTT

100mM ATP stock 60mg ATP
adjust pH with NaOH to pH 7.0 

Distilled water to 1ml
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Solutions for reporter assays

Z- buffer 60mM Na2HP0 4 .7 H20  

40mM Na2HP04.H20 

10mM KCI 

1mM MgS04 

50mM li-ME

Add dH20  to 80% of final volume, adjust pH to 7.0, 

add remaining volume and store at 4°C.
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Table 2.1 Cell lines used in this thesis

Cell line ATCC
number

Morphology Organism Growth properties

U2-0S HTB-96 Osteosarcoma 
with epithelial 
morphology, 

p53 wt

Homo sapien Adherent

MG-63 CRL-1427 Osteosarcoma 
with fibroblast 
morphology, 
p53 mutated

Homo sapien Adherent

NIH-3T3 CRL-1658 Fibroblasts, 
p16 INK4a and 

p19 ARF 
transcriptionally 

silenced, 
p53 wt

Mus
musculus

Adherent

Sf9 CRL-1711 Epithelial Spodoptera
frugiperda

Adherent/suspension
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Table 2.2 Expression construct used in this thesis

vector gene cloning/reference

pCDNA3
(Invitrogen)

MED17HA (wt) PCR, EcoR l/Xho 1
MED17 HA (288A)

Created by site 
mutagenesis

MED17 HA (573A)
MED17 HA (647A)

MED17 HA (573/647A)
MED17 (ASP)

Cdk4 HA (van den and Harlow, 
1993)

vcyclin (2xFLAG tagged)
(Swanton etal., 1997)a)cyclin D1 (2xFLAG tagged)

pOP RSV-1 
(Stratagene) MED17 HA (wt)

Sub-cloned from 
pCDNA3 MED17 HA 

Kpn l/Xho 1

pGEX 6P-1 
(Amersham 
Bioscience)

MED17 (wt) PCR, EcoR l/Xho 1
MED17 aa 148-651 PCR, EcoR Vl/Xho 1

MED17 aa 148-651 (288A)

Created by site 
mutagenesis

MED17 aa 148-651 (573A)
MED17 aa 148-651 (647A)

MED17 aa148-651 
(573/647A)

MED17 aa148-651 (ASP)
pCB6+ p53 (wt) (Clark et al., 2002)

PEF LacZ (Dalton and Treisman, 
1992)

pGBD-UI

V-cyclin (wt) Bam HI digest ligated in 
to Sal 1 digested vector

V-cyclin aa1-251 Pst 1 restriction from wt
V-cyclin aa1-168 Bgl II restriction from wt

V-cyclin aa 169-254 Bgl ll/Sal 1 restriction 
from wt in to vector Bam 

I/Sal 1
V-cyclin aa216-254 Pst 1 restriction fragment
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Table 2.3 Primer sequences used in this thesis

Primer Use Sense/anti
-sense

Sequence

MED17
MED17 cloning/ 

sequencing

S CGGAATT CCC ACCAT GT CCGGGGTGCGCGCAGTGCGG

MED17HA A CGGCTCGAGTCAAGCGTAGTCTGGGACGTC  
GTATGGGT AT AGT AGACAAGGGCT AAGTGC

MED17
(S288A)

S CCAAACCAGGTGCCCCACATTGGCAGACAAAATTAG

MED17
(S288A)

A GT CT GCC AAT GT GGGGCACCT GGTTT GGATTTGG

MED17
(S573A) Site

mutagenesis

S GCCAT CACGGT GGCCGCCCC AAGTGG

MED17
(S573A)

A CCACTTGGGGCGGCCACCGTGATGGC

MED17
(S647A)

S GCTTATGTCTGCACTTGGCCCTTGTCTACTA

MED17
(S647A)

A TAGT AGACAAGGGCCAAGTGC AG ACAT AAGC

MED17 S CTAAGGAGTAGAGCTGCTGCAACC

MED17 A ATTT GACCAATG AGCCT GTATCTGA

GAPDH qRT-PCR S GG AGT CAACGG ATTT GGTCGTA

GAPDH A ACTCTGGTAAAGTGGATATTGTTGCC

101 A GCCAGACGCGCC AGATT CT GCG AC AT

303 S CCT G AAG ATT ACTGTCCTCTTGATGTCC

303 A GG ACATC AAG AGG AC AGT AAT CTT C AGG

403

MED17
sequencing

S CCGAGCTTGCAGTTATCTTTGTGC

403 A GCACAAAG AAATAGAT AACTGCAAGCTCGG

501 S GCAAAGCAT ATTTTTCTAAGGAGT AGAGC

501 A GCTCTACTCCTTAGAAAAATATGCTTTGC

601 S CATGCAGTT CAGCAACT CGCCAAGG

601 A CCTT GGCG AGTT GCT G AACT GCAT G

GAATTC -  Eco R1 
CTCGAG -  Xho I
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Table 2.4 Primary Antibodies used for Western blotting

Antibody/catalogue
number

Isotype Company

HA. 11 Mouse Ig G BAbCO, Berkeley, Ca.
HA (12CA5) Mouse Ig G Cancer Research UK
p53 (DO-1) Mouse Ig G Santa Cruz Biotechnology, Ca.

p53 (PAb421) Mouse Ig G Calbiochem
p21 (C-19) Rabbit Ig G Santa Cruz Biotechnology, Ca.

Mdm2 (SMP-14) Mouse Ig G Santa Cruz Biotechnology, Ca.
Caspase-9 (SA-321) Rabbit Ig G BIOMOL

HSP40 (611780) Mouse Ig G BD Transduction Laboratories
HSP60 (611562) Mouse Ig G BD Transduction Laboratories

fc-actin (Ab-1) Mouse Ig M Oncogene
GAL4 (RK5C1) Mouse Ig G Santa Cruz Biotechnology, Ca.

Rb (554136) Mouse Ig G BD Pharmingen
cdk4 (C-22) Rabbit Ig G Santa Cruz Biotechnology, Ca.
cdk6 (C-21) Rabbit Ig G Santa Cruz Biotechnology, Ca.
cdk2 (M2) Rabbit Ig G Santa Cruz Biotechnology, Ca.
FLAG (M1 

monoclonal) (F 
3040)

Mouse Ig G Sigma
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Table 2.5 Secondary antibodies used for Western blotting

Antibody/catalogue
number

Isotype Company

Anti-mouse-HRP
(sc-2060)

ig G Santa Cruz Biotechnology, Ca.

Anti-mouse-HRP
(401225)

ig m Oncogene

Anti-Rabbit-HRP
(323-005-021)

ig G Jackson ImmunoResearch Inc.

Table 2.6 Antibodies used for co-immunoprecipitation

Antibody Isotype Company
p53 (DO-1) Mouse Ig G Santa Cruz Biotechnology, Ca.

FLAG (M1 Agarose) 
(A4596)

Mouse Ig G Sigma

cyclin D1 (CC11) Mouse Ig G Oncogene
cyclin E (M-20) Rabbit Ig G Santa Cruz Biotechnology, Ca.
cyclin A (H-432) Rabbit Ig G Santa Cruz Biotechnology, Ca.
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Table 2.7 Reporter constructs used in this thesis

vector reporter promoter company/reference
pGL3 Bax (Lomax et al., 1998)
pGL3 Bax (promoter and intron RE) (Thomborrow et al., 

2002))
p21-luc p21 Cip (El Deiry etal., 1993)

PG13-luc p53 RE (Maestro et al., 1999)
Mdm2-luc Mdm2 (Ard et al., 2002)
pHSE-Luc heat shock factor BD Biosciences
pAP-1 -Luc AP-1 BD Biosciences

TOPFLASH Lef/Tcf (Coghlan et al., 2000)
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Chapter 3

3.0 Introduction

Mediator is a transcriptional co-factor complex recruited to DNA bound 

transcription factors, such as the thyroid hormone receptor, to activate or repress 

gene transcription. It is hypothesised that Mediator complex bridges transcription 

activators and the basal transcription machinery to activate RNA pol II. Further, 

Mediator is conserved among many species, suggesting it has an essential role 

in regulating transcription. In a yeast-2-hybrid screen, MED17, a subunit of the 

Mediator complex was identified as an interacting protein with a viral cyclin 

closely related to vcyclin of KSHV.

MED17 is an 80KDa protein which forms one of the core components of 

the Mediator complex. Studies of human and Drosophila MED17 have suggested 

its interaction with a number of transcription factors and is thought to co-operate 

in the activation of transcription. Human MED17 has been shown to interact with 

p53 and VP-16, an interaction that may be required for their activation of 

transcription by the Mediator complex (Ito et al., 1999). Similarly, the Drosophila 

homologue, dMED17, interacts with the heat shock factor transcription factor and 

is recruited to sites of active transcription (Park et al., 2001b). These data further 

suggest a role for MED17 as a transcription co-activator which may function with 

other Mediator subunits to recruit the basal transcription machinery to specific 

DNA bound transcription factors. Many of these studies of MED 17 and Mediator,
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especially the human protein, have been done in vitro. No studies have been 

done specifically investigating MED17 function in mammalian cells.

A yeast-2-hybrid screen using the Herpesvirus saimiri cyclin as bait, 

revealed an interaction with MED17 (Laman et al., 2001a) and suggests possible 

interactions with cellular D-type cyclins, as well as the viral homolog, vcyclin of 

KSHV. The known interaction between MED17 and p53 further suggests a 

relationship between the cell proliferative properties of the cyclins and 

transcriptional regulation of p53, via MED17. In the absence of any in vivo 

functional data on MED17 in mammalian cells, the aims of this chapter were to 

investigate the transcriptional properties of MED17 on p53 mediated transcription 

as well as the consequential effects on cell cycle arrest and apoptosis.
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Chapter 3: Results

3.1 Expression of an HA tagged MED17 in vivo

An epitope tagged MED17 expression construct was generated to study 

MED17 function in vivo. Expression of an epitope tagged protein allows specific 

detection of the exogenous protein but not the endogenous protein. Sequences 

encoding an haemagglutin (HA) epitope were incorporated into oligonucleotide 

primers which were used to amplify MED17 cDNA from a human foetal cDNA 

library. These oligonucleotide primers introduced the HA epitope to the C- 

terminus of the MED17 protein. Initial attempts were made to detect MED17 

expression with either a FLAG or HA epitope at the N-terminus, but were 

unsuccessful. Expression of these proteins was undetectable in vivo despite in 

frame fusions to the epitope. The failure to detect MED17 with an N-terminus 

epitope may be attributed to this region of MED17 being critical in the post- 

translational processing of the protein, which could have been affected by the 

addition of the epitope.

MED17 HA was cloned into a pCDNA3 expression vector and transfected 

into human osteosarcoma cells, U20S, to test for expression of the protein. Cell 

lysates were harvested 48 hours post transfection and analysed by 

immunoblotting for the presence of the HA epitope. In transcriptional co-factor 

complexes, TRAP and CRSP, MED17 has been reported to have approximate 

masses of 80KDa and 77KDa respectively. Immunoblot analysis with HA 

antibody, 12CA5, of the cell lysates prepared from the transfected U20S cells
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detected a protein of approximately 75KDa, however the protein was also 

detected in the non-transfected control suggesting this HA antibody was cross 

reactive with a protein of similar size to MED17 (Fig 3.1 A).

Immunoblots were also performed with an alternative HA antibody, HA.11, 

to avoid cross reactivity with the similarly sized protein, which also detected a 

protein with a molecular weight in agreement with those previously observed for 

MED17 in the transcriptional co-factor complexes. Furthermore, no other proteins 

were detected in the non-transfected and the CDK4 HA transfected positive 

controls, suggesting specific detection of MED17 HA (Fig 3.1 B). Expression of 

this protein was at a significantly lower level than that for the CDK4 HA 

transfected positive control which indicated the MED17 protein was not highly 

over-expressed. Similar levels of expression were seen at 0.5pg to 2pg of 

transfected DNA. Alternatively, these data could indicate the relatively high 

turnover of the MED17 protein within the cell. However, these results indicated 

that MED17 HA was expressed in U20S cells from a transfected pcDNA 

expression construct. The HA.11 antibody was therefore used in all subsequent 

Immunoblots for detection of MED17 HA.

To test expression from the pcDNA MED17 HA, further studies were also 

conducted in other tumour cell lines, H1299 (p53 null human small cell lung 

tumour) and MG63 (p53 null human osteosarcoma) (Fig 3.1C and 3.1D). Similar 

to the results observed in the U20S cells, a protein in the 75KDa range was 

specifically detected by Western blotting for HA. These data show that this
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MED17 HA expression construct was able to express MED17 in different tumour 

cell lines and was used for further in vivo studies.

3.2 MED17 transactivates a heat shock gene reporter

dMED17 has previously been shown to transactivate heat shock factor 

(HSF) mediated transcription in reporter assays (Park et al., 2003). To 

investigate whether MED17 functions as a transactivator of HSF transcription in 

human cells, reporter assays were performed using a constructs carrying heat 

shock element (HSE) upstream of the luciferase gene. MED17 was co­

transfected with the HSE reporter and a ft-galactosidase expression construct, as 

a transfection control, into U20S osteosarcoma cells. Transcriptional activation 

of the reporter was measured using luciferase assays and normalised to the 

amount of G-galactosidase activity. The HSE-luciferase reporter showed a dose 

dependent activation, to a maximum of 30-fold, in response to transfection of 

increasing amounts of MED17, compared to the vector alone (Fig. 3.2A).

To confirm the in vivo activation of HSE-responsive genes indicated by the 

reporter assays, cell lysates from the reporter assay were tested for the 

expression of heat shock proteins. The levels of two differentially regulated heat 

shock proteins, HSP40 and HSP60 were assayed by Western blotting. HSP40 

expression is induced by cellular stress in contrast to HSP60 whose expression 

is constitutive (Fink, 1999). Both HSP40 and HSP60 expression were moderately 

enhanced with increasing expression of MED17 (Fig. 3.2B). These data show 

that MED17, in the absence of cellular stress, enhanced expression of an
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Fig 3.1 In vivo expression of HA tagged MED17 in tumour 
cell lines

Western blots of MED17 HA expressed from a transfected 
pcDNA3 construct. Increasing amounts of construct were 
transfected into U20S, H1299 and MG63 tumour cell lines and 
protein lysates prepared for Western blot with anti-HA antibody.
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A. Detection of MED17 HA with anti-HA antibody 12CA5
B. Detection of MED17 HA with anti-HA antibody HA.11
C and D. MED17 HA expression in tumour cell lines, H1299 and 
MG63, respectively.



inducible and constitutively expressed HSP, which may be attributed to the 

activation of HSF regulated transcription. To test the specificity of HSF mediated 

transcription, an AP-1 gene reporter was tested for activation by co-transfecting 

with 2pg of the MED17 expression construct. A 0.05 fold decrease in activation, 

which was not statistically significantly, was observed on co-transfection with 

MED17, relative to the vector alone suggesting that MED17 expression did not 

affect on AP-1 mediated transcription and that the effects of MED17 on the heat 

shock reporter were specific to its over-expression (Fig 3.2C).

In conclusion, heat shock factor mediated transcription was activated by 

over-expression of MED17 and supports further studies of other MED17 

transcriptional targets.

3.3 MED17 interacts with p53 in vivo

The TRAP/SMCC Mediator complex has been reported to activate p53 

mediated transcription from artificial templates in in vitro transcription assays, a 

function that may require MED17, a Mediator subunit reported to interact with 

p53 in vitro (Ito et al., 1999). However, the in vivo function of MED17 in the 

regulation of p53 transcription has not been studied.

To test whether the interaction between p53 and MED17 occurred in 

human cells in vivo, cell lysates from U20S cells transfected with MED17 were 

immunoprecipitated with antibodies to p53, and analysed for the presence of 

MED17-HA by Western blotting for the HA epitope. MED17 co- 

immunoprecipitated specifically with p53 from a U20S cell lysate, but not with an
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Fig 3.2 MED17 transactivates a heat shock gene reporter

The Drosophila homolog of MED17 has been reported to 
activate transcription mediated by heat shock factor (HSF). 
Human MED17 was tested for activation of HSF transcription 
in vivo using a luciferase gene reporter in U20S cells.

A. Gene reporter assays with a heat shock responsive 
luciferase reporter, co-transfecting with increasing amounts 
of MED17.
B. Immunoblots of reporter cell lysates detecting MED17 HA, 
HSP40 and HSP60 expression.
C. AP-1 (Activator Protein-1) luciferase reporter co-transfected 
with 2pg of MED17.



isotype control (Fig. 3.3). The presence of p300, previously identified as a p53- 

interacting protein, served as a positive control for the equivalent 

immunoprecipitation of p53. These data indicate that MED17 interacted with p53 

in vivo.

3.4 Analysis of bax-luciferase reporter activation by p53 over-expression

The in vivo interaction of MED17 and p53 was suggestive of a role for 

MED17 in the regulation of p53-mediated transcription which was subsequently 

investigated using a bax luciferase reporter. The bax gene is a p53 responsive 

gene and contains p53 response elements (RE) within its promoter region which 

mediate p53 binding to DNA and the subsequent activation of transcription. The 

bax reporter used in these studies was cloned from promoter sequences 370bp 

upstream of the transcription initiation site and contain one consensus p53 RE. 

The responsiveness of this promoter to p53 levels was first tested in U20S cells 

by co-transfection of the bax reporter with increasing amounts of a p53 

expression construct (Fig 3.4A). Luciferase assays were then conducted on the 

cell lysates to assess transcriptional activation. The addition of 50ng of p53 

increased transcriptional activation of the bax reporter by 45 fold relative to the 

vector control. This activation was further increased by 10 fold with transfection 

of 100ng of p53, increasing reporter activation to 59 fold (+/-5 fold), as compared 

to the vector control. With transfection of 200ng of p53, reporter activation was 

decreased, a phenomenon that may be attributed to the squelching of 

transcription co-activators. Immunoblot analysis of cell lysates used in the

130



iso control 

IP p53

HA

HA

p300

Fig 3.3 MED17 interacts with p53 in vivo

Western blot for HA tagged MED17 co-immunoprecipitated with 
endogenous p53 from U20S cell lysates. Isotype matched antibody 
was used as a control in an identical IP reaction. Immunoblotting for 
p300 was used as a positive control for the immunoprecipitation of 
p53.



reporter assays show a dose dependent increase in the expression of p53, with 

increasing amounts of transfected p53 expression construct. These results 

indicate maximal activation of the bax reporter to approximately 60 fold was 

achieved when 100ng of p53 was introduced.

This experiment was repeated with a decreasing titration on a log scale in 

the amount of p53 transfected to determine the linear range of activation of the 

bax reporter on p53 (Fig 3.4B). At 5ng of p53, a 30 fold activation (+/-10 fold) was 

observed and transfection of 0.5ng of p53 showed a 9 fold activation (+/-1 fold) of 

the reporter compared to the vector control. Immunoblots of cell lysates from the 

reporter assay showed a small increase in the expression of p53 between vector 

only and 0.5ng of p53 compared to other transfected amounts of p53. These data 

indicate transfection of p53 between 0.5ng and 50ng activated the bax reporter 

within a linear range.

3.5 MED17 represses activation of a bax-luciferase reporter

To analyse the effect of MED17 on p53-regulated transcription, the bax 

reporter was co-transfected with a titration of MED17 HA expression construct 

into U20S cells. Transfection of 0.25, 0.5 and 1pg of the expression construct 

resulted in 0.61 (+/- 0.06), 0.65 (+/- 0.08) and 0.56 (+/- 0.04) fold activation of the 

bax reporter, which was equivalent to a 39%, 35% and 44% reductions in 

reporter activation compared to the vector control (Fig 3.5A). Surprisingly, the 

reporter did not show a dose dependent decrease in activation with increasing 

amounts of MED17 HA. Cell lysates prepared for the reporter assays were also
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and 50ng of p53



immunoblotted for expression of MED17 HA, p53 and R-actin (Fig 3.5B). MED17 

HA showed enhanced expression correlating with increasing amounts of the 

MED17 HA expression construct transfected. p53 expression was low in all the 

immunoblots, as expected for cells not induced into cell cycle arrest or apoptosis, 

however, there was a moderate decrease in p53 expression with increasing 

expression of MED17. Immunoblotting for R-actin showed equal amounts of 

protein were loaded between the samples. Previously published data has 

described the Mediator complex, containing MED17, as a co-activator of p53 

transcription. These data suggest that MED17 over-expression is able to induce 

repression of p53 transcription at endogenous levels of the protein as well as 

decrease its expression.

As these experiments were done with a with an C-terminal HA epitope 

containing MED17, to investigate the relative effect of the epitope on the p53 

repressor function of MED17, a bax reporter assay was done transfecting 1 pg of 

a non-epitope containing MED17 expression construct (Fig 3.5C). Transfection of 

this construct induced a 0.57 fold activation of the bax reporter compared to the 

vector control, equivalent to a 43% reduction in activation. This repression is 

similar to that of MED17 HA and suggests that repression of the bax reporter was 

not a consequence of the epitope.

These data suggest that MED17 represses p53 transcription which is 

contradictory to previous data suggesting an activator function for the protein 

within the Mediator complex, as tested in an in vitro system. Human MED17 has 

not been previously shown to exhibit transcriptional repression with any of its
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interacting transcription factors which may represent more subtle regulation of 

the transcriptional activities of the Mediator complex by its individual subunits. 

MED17 was therefore further investigated, using the MED17 HA expression 

construct, to elucidate its repression effects on p53 transcription.

To investigate the strength of p53 repression by MED17 over-expression 

on bax-luciferase transactivation, reporter assays were performed in the 

presence of exogenous p53. A range of 9 to 35 fold of activation of the bax- 

luciferase reporter was seen with transfection of 0.5ng to 50ng of p53 transfected 

into cells was previously demonstrated in earlier experiments. Thus 0.5ng of p53 

was chosen to sub-optimally activate the bax luciferase reporter and test MED17 

repression. U20S cells were co-transfected with MED17 and p53 expression 

constructs, and luciferase assays were conducted. In this experiment when 

0.5ng of the p53 construct was transfected, the bax-luciferase reporter showed a 

0.2 fold increase in activation however on co-transfection of increasing amounts 

MED17, decreased activation of bax-luciferase reporter in a dose dependent 

manner was observed. Moreover, reporter activation was decreased to levels 

below that of the vector only control, decreasing activation 50% relative to the 

vector only control (Fig 3.5D). These data showed that MED17 decreased 

activation of the bax reporter in a dose dependent manner when moderately 

activated by exogenous p53. This dose dependent repression of the bax reporter 

by MED17 may not occur at endogenous levels of p53 due to the relatively low 

expression of p53 in unstressed cells requiring only moderate levels of MED17 

over-expression to repress p53 transcription.
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To see if repression of the bax reporter correlated with a decrease in the 

expression of p53 regulated genes, Western blots for p53, p21 and Mdm2 were 

performed on cell lysates prepared from U20S cells transfected with the MED17 

HA expression construct. Due to the relatively low expression of p53 regulated 

proteins more cell lysate was prepared, in comparison to that used in the reporter 

assays. 1x106 cells were transfected with 5pg of MED17, which was proportional 

to the amounts of MED17 transfected in the reporter assays. Over-expression of 

MED17 in U20S cells resulted in the decreased expression of the p53, Mdm2 

and p21 proteins relative to fi-actin (Fig 3.5E) and was consistent with decreased 

transcriptional activity of p53 as observed with the bax reporter. Importantly the 

decreased expression of p53 was not due to enhanced expression of Mdm2, a 

negative regulator of p53 expression, suggesting a mechanism other than 

enhanced degradation of p53 was responsible for decreased transactivation.

3.6 p53 expression is necessary for MED17-mediated repression of a

bax-luciferase reporter

As demonstrated previously, MED 17 interacts with p53 and decreases 

p53 transcriptional activity upon MED17 over-expression in vivo. These 

experiments were conducted in a p53+/+cell line U20S. To investigate whether 

the decreases in transcription associated with MED17 over-expression were 

dependent on p53, the bax-luciferase reporter was transfected into MG63 (p53*A) 

cells. In these cells, over-expression of MED17 HA had no effect on the basal 

level of activation of the bax-luciferase reporter relative to the vector control (Fig
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Fig 3.5 MED17 represses a p53 responsive bax-luciferase reporter 
and decreases expression of p53 regulated proteins

Effects of MED17 over-expression on p53 transcription were investiagted 
in U20S cells using a bax-luciferase reporter. Expression of p53, Mdm2 
and p21 were also tested as transcriptional targets of p53.

A. bax reporter was co-transfected into U20S cells with a titration of 
MED17 HA. Reporter activity is normailsed against a vector only (vec) 
control.
B. Immunoblots of cell lysates prepared for the bax reporter assays with 
titrations of MED17 HA.
C. bax reporter assay in U20S cells with 1pg of MED17 expression 
construct containing no HA epitope.
D. bax reporter assays with co-transfection of activating amounts of p53 
and increasing MED17.
E. Western blot of lysates prepared from U20S cells transfected with 5pg 
of MED17 to investigate expression of p53 regulated proteins.



3.6A). This contrasts the effects in the p53+/+ U20S cells and suggests that 

MED17-mediated decrease in p53 transcription is dependent on the expression 

of p53. To determine whether the bax luciferase reporter was responsive to p53 

in MG63 cells, 50ng of a p53 expression construct was co-transfected with the 

reporter, and a 110-fold (+/-4 fold) activation of the reporter was observed. 

Moreover, when MED17 was co-transfected with p53, activation of the reporter 

reduced to 35 fold, representing a 69% decrease in reporter activation. 

Immunoblots of the reporter cell lysates showed that expression of exogenous 

p53 was also significantly reduced when MED17 was over-expressed (Fig 3.6B). 

These data suggested that MED17-mediated repression was dependent on the 

levels of p53 and that that MED17 over-expression mediated decrease in p53 

transcriptional activity as well as a decrease expression of the exogenous p53 

protein, by a possible post-translational mechanism. Further to this, investigation 

of p53 repression by MED17 was conducted using additional p53 responsive 

reporter.

3.7 MED17 represses transactivation of a p21 and a synthetic p53

responsive gene reporter

p53 responsive genes have been identified through conserved DNA 

sequences located in their promoter regions, termed p53 response elements, 

and have been identified in most, but not all p53 regulated genes (El Deiry et al., 

1993;Miyashita and Reed, 1995). To investigate MED17 repression of p53, two 

other p53-responsive reporter constructs were tested; a p21 reporter and an
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artificial p53 reporter construct. The artificial p53 reporter (pG13-luc) contains 13 

tandem p53 DNA binding sites upstream of a firefly luciferase gene while the p21 

contains one RE. Reporter assays with these constructs were done in U20S 

cells which express the p53 protein. Co-transfection of 1pg of the MED17 

expression construct with the p21 reporter resulted in a 0.8 fold activation of the 

reporter, equivalent to a 20% reduction in activation (Fig 3.7A). Further 

experiments were performed with the p21 reporter, in the presence of exogenous 

p53, by transfecting 5ng of a p53 expression construct. p53 alone was able to 

activate the reporter 2.5 fold (+/-0.12 fold) relative to vector only. When p53 was 

co-transfected with MED17, reporter activation was reduced to 2.1, 1.7 and 1.6 

fold by titration of 0.25, 0.5 and 1pg of the MED17 expression plasmid, 

respectively (Fig 3.7B). Unlike the bax reporter, the p21 reporter did not repress 

to below basal levels. In experiments with the pG13-luc reporter, 5ng of the p53 

expression plasmid was able to activate the reporter by 2.2 fold (+/- 0.35 fold) 

relative to vector only. With the lowest amount of MED17, 0.25pg, a slight 

increase in reporter activation of 0.1 fold was observed on co-transfection with 

p53 (Fig 3.8A). This was in contrast to transfection of 0.5 and 1pg of MED17 

which repressed reporter activation to 1.8 and 1.3 fold. Immunoblots were 

performed on these cell lysates prepared for the reporter assays to confirm 

transfection and titration of MED17, as well as p53, in these experiments. 

Analysis of p53 protein levels showed enhanced expression with transfection of 

p53 but expression decreased with increasing expression of MED17 (Fig 3.8B). 

However, p53 expression remained higher than endogenous levels of p53 at the
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1pg titration of MED17 suggesting that the reporter repression by MED17 was 

not entirely attributed to decreased expression of p53 protein. These data 

suggest that the transcriptional activity of p53-responsive genes is decreased in 

a dose-dependent manner by MED 17 over-expression and are consistent with 

previous data, that MED17 decreased expression of p53 transcriptional targets, 

like p21, when over-expressed in U20S cells.

3.8 Generation of a MED17 constitutively over-expressing cell line

To further investigate the function of MED17 in vivo, a cell line 

constitutively expressing MED17 was generated in non-transformed cells, NIH- 

3T3. NIH-3T3 cells were isolated as a spontaneously immortalised cells derived 

from mouse embryonic fibroblasts which do not express p16INK4A and p19ARF. 

Both these genes share the same locus but are transcribed by two transcripts, a 

and ft respectively, which are generated by alternative splicing. Transcription of 

both genes is inhibited by epigenetic silencing. Using these cells to generate the 

MED17 cell line is advantageous over a tumour derived cell line as they contain a 

characterised gene mutation whereas tumour cells may contain a number of 

mutations that may affect many cellular processes, such as apoptosis. More 

generally, the NIH-3T3 cells are more representative of a normal proliferating cell 

making identification of a MED17 phenotype more distinguishable. Though the 

cell line is derived from mouse fibroblasts, there is a 96% identity between 

mouse and human MED17 proteins (see Table 1.1). Functionally, murine and 

human Mediator complexes are similar as indicated studies of transgenic mice
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B. Western blot of G13 reporter lysates blotting for HA and p53.



null for Mediator subunit MED1 (TRAP220), which is deficient in thyroid hormone 

receptor signalling (Ito et al., 2000). The high identity between human and mouse 

MED17 proteins as well as the functional similarity between the respective 

Mediator complexes support the relevance of the study of human MED17 in 

murine cells.

To generate a MED17 line, MED17 HA was sub-cloned into the pOP RSV- 

1 plasmid. This plasmid allowed constitutive expression of MED17 from a Rous 

sarcoma virus promoter. Independent clonal cell lines were generated by 

transfection of the pOP RSV-1 MED17 HA vector into NIH-3T3 cells and selected 

for stable integration of the plasmid by growing cells in media supplemented with 

neomycin. Single colonies were harvested and screened for MED 17 HA 

expression by Western blot (Fig 3.9A). Similarly an empty vector cell line was 

generated and used as a negative control for comparison in assays using the 

MED17 cell line.

Western blots for HA revealed the expression of a protein corresponding 

to the size of MED 17 HA in the stably transfected NIH-3T3 cells which was 

present in 4 of the 6 clones isolated (Fig 3.9A). No expression of MED17 HA was 

seen in the vector only cell line (denoted (-)), and as a positive control for MED17 

expression, lysate from NIH-3T3 cells transiently transfected with MED17 HA 

were Western blotted in parallel (denoted (+)). Comparison of MED17 expression 

between stably and transiently transfected cells showed expression in the cell 

line was significantly lower. Of the MED17 over-expressing clonal lines, clone 

number 13, hereafter referred to as MED17(C13), was chosen as the highest
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expressing MED17 cell and was subsequently used in assays to test the p53 

transcriptional response in this cell line.

3.9 MED17(C13) line represses p53 responsive gene reporters

The transcriptional response of p53 regulated genes in the MED17(C13) 

cell line was tested using p53 responsive gene reporters, as similarly used in the 

U20S cells. Using the MED17(C13) line would allow investigation of MED17 

function at lower levels of overexpression compared to transient transfection of a 

MED17 expression vector. Both the vector and MED17(C13) lines were 

transfected with p53 responsive luciferase reporters: bax, Mdm2 and p21 as well 

as a Lac Z expression vector at the same amounts as used in previous reporter 

assays. Luciferase assays were conducted as before, and values were 

determined relative to the vector control cell line. MED17(C13) cells showed 

repression of both the bax-luc (0.42 fold) and Mdm2-luc (0.35 fold) reporters, 

which was comparable to the levels of repression seen when MED17 was 

transiently transfected (Fig 3.9B and Fig 3.9C). The p21-luc reporter, however, 

failed to demonstrate significant repression as seen for the bax-luc and Mdm2- 

luc reporters.

These data show that MED17(C13) represses the p53 responsive gene 

luciferase reporters, bax and MDM2 but not p21, relative to the vector line, 

suggesting that the MED17 line represses transcription of some but not all p53 

responsive genes (Fig 3.9D). Repression of p53 responsive genes in the 

MED17(C13) line was further investigated.

145



3.10 Expression of Mdm2 in the MED17(C13) line is decreased

Reporter assays in the MED17(C13) line showed that bax and MDM2 

luciferase gene reporters were repressed by up to 42% compared to the vector 

control line. To test whether the repression of p53 transactivation correlated with 

a decrease in expression of the endogenous proteins, Western blot analysis for 

the expression of p53, MDM2 and p21 in cell lysates prepared from the vector 

and MED17(C13) lines were performed. Previous experiments involving transient 

over-expression of MED17 showed that expression of all three of these proteins 

decreased. Immunoblots of cell lysates prepared from both cell lines show 

decreased expression of Mdm2 but slightly elevated levels of p53 and p21 in the 

MED17(C13) line compared to the vector control cell line (Fig 3.9E).

These data show that the effects of transient over-expression of MED17 

did not correlate with those observed in the MED17(C13) cell line. This is 

demonstrated by the increased expression of p21, alongside the reporter assay 

data with p21 reporter in MED17(C13) cells, suggesting that there is specificity in 

the p53 transcriptional targets repressed by MED17. Transcription of the Mdm2 

gene however seems to be repressed in the MED17(C13) cell line as suggested 

by the reporter assays and its decreased expression in the immunoblots. 

Furthermore, the decreased expression of Mdm2 may account for the elevated 

expression of p53. With the relative decrease of Mdm2 expression, the turnover 

of p53 by ubiquitin mediated degradation is decreased and may elevate p53 

expression. Due to the enhanced expression of p53 but decreased
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transactivation of some p53 regulated genes, we next investigated the response 

of MED17 cells to apoptotic stimuli.

3.11 MED17(C13) cells resistant to apoptosis

Data from the reporter assays with transient and stable over-expression of 

MED17 suggested that it repressed p53 transcription and decreased expression 

of some proteins regulated by p53. To study the effect of MED17 on p53 function 

in vivo, the MED17(C13) cell line was used to test the ability of these cells to 

activate apoptotic pathways in response to cellular insults.

Apoptosis was measured by annexin V staining of cells induced into 

apoptosis by cytotoxic chemicals. Annexin V conjugated to FITC was used to 

detect cells with externalised phosphatidylserine on the cell membrane, a feature 

observed in early apoptotic cells. Staining with propidium iodide (PI) was also 

used to distinguish early apoptotic cells from late apoptotic and/or necrotic cells 

which will stain positively for both annexin V and PI. When cell membrane 

integrity is lost, cells become permeable to PI which intercalates to DNA. Annexin 

V-FITC staining cells were scored as apoptotic cells whereas doubly stained 

annexin/PI cells may represent cell death by necrosis or cells in late apoptosis.

The cytotoxic chemicals, etoposide and staurosporine were used to 

induce apoptosis. Etoposide induces DNA damage through its inhibition of 

topisomerase II, to create double stranded DNA breaks which activates the 

transcriptional activity of p53 (Baldwin and Osheroff, 2005). In contrast, 

staurosporine is a protein kinase C inhibitor which induces p53 transactivation.
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Fig 3.9 Generation of a constitutively over-expressing MED17 
cell line

A MED17 HA cell line was generated in NIH-3T3 cells by transfection with 
pOP-RSV-1 MED17 HA vector and selection of clones for stable integration 
of the plasmid by culturing in G418. Clones were screened for HA 
expression by immunoblot. Reporter assays were done on a selected clone 
alongside Immunoblots for p53 regulated genes to investigate p53 function 
in this cell line.

A. Immunoblots for screening of clones expressing MED17 HA.
B. bax-luciferase reporter assay with MED17(C13) and the vector control 
cellline.
C. Mdm2-luciferase reporter assay in vector and MED17(C13).
D. p21-luciferase reporter assay in vector and MED17(C13).
E. Immunoblots of lysates from the vector cell line and MED17(C13) for 
p53 regulated proteins.



Though the mechanism of staurosporine is not fully understood, it is known to 

induce the p53 transcriptional target bax, an upstream effector of apoptosis 

associated proteases, caspase-9 and caspase-3 (Otter et al., 1998).

Comparison of apoptosis in the non-induced cell lines showed that the 

background levels of apoptosis were lower in the MED17 line by 68% relative to 

the vector control. Differences in the induction of apoptosis between the two cell 

lines were further compared on treatment of the cell lines with the cytotoxic 

agents. Treatment of the vector only line with etoposide induced a 4.2 fold 

induction of apoptosis compared to non-treated vector cells. By comparison a 2.2 

fold induction in apoptosis was observed in the MED17 cell line, equivalent to a 

52% reduction in apoptosis between the lines (Fig 3.10A and Fig 3.1 OB). 

Similarly, induction of apoptosis by staurosporine induced a 2.9 fold induction of 

apoptosis compared to 1.3 fold in the MED17 line, equivocal to a 45% reduction. 

Though at baseline levels the number of annexin only staining cells was reduced 

in the MED17(C13) line, there was however an 0.51 fold increase in the number 

of cells annexin V and PI, suggesting enhanced cell death by necrosis (Fig 

3.10C). Treatment with etoposide and staurosporine enhanced the annexin V/PI 

staining cells by 3.8 and 4.5 fold respectively in the vector only cell line. In the 

MED17(C13) cell line, etoposide induced a 2.6 fold increase whereas 

staurosporine induced a 3.6 fold increase in doubly staining cells, representing a 

32% and 20% decrease compared to the treated vector only cells. These data 

suggest an overall decrease in cell death is observed in the MED17(C13) cells
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compared to the vector only cells which is most likely to be attributed to 

repression of apoptotic pathways.

3.12 MED17(C13) cells inhibit cleavage of caspase-9 when treated with

staurosporine

To confirm the induction of apoptosis by staurosporine, lysates from the 

vector and MED17 cells were prepared after treatment with staurosporine. The 

lysates were immunoblotted for cleaved forms of caspase-9 to investigate 

expression of these proteins between the cell lines. Staurosporine treatment 

induced cleavage of pro-caspase-9 into its active form, which was observed in 

the vector line but not the MED17 cell line (Fig 3.10D). This result suggests that 

over-expression of MED17 blocked the cleavage of caspase-9 to repress 

apoptosis. This may result from repression of bax transcription. As an upstream 

regulator of caspase-9 activation, the reduced expression of bax protein could 

supress induction of apoptosis. The mechanism of staurosporine induced 

apoptosis involves the activation of bax transcription. The decrease in 

staurosporine induced apoptosis as well as the repression seen in bax reporter 

assays in the MED17(C13) cell line support the hypothesis that the decrease in 

apoptosis in this cell line may in part result from the reduced response of bax to 

apoptotic stimuli.
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Fig 3.10 MED17(C13) cells have enhanced resistance to etoposide 
and staurosporine induced apoptosis

A. Annexin V-FITC/PI staining and FACS analysis of vector and MED17 
(C13) cells treated with DMSO, etoposide (etop.) or staurosporine (stauro.) 
Annexin V-FITC only staining cells were quantified as a marker of early 
apoptosis.
B. Fold change in apoptotic cells (annexin V only staining) normalised to 
DMSO treated vector cells.
C. Fold change in annexin V/PI staining cells normalised to DMSO 
treated vector cells.
D. Western blot of cell lysates from prepared from vector and MED17(C13) 
cells treated with staurosporine, blotting for cleaved caspase-9 expression.
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3.13 MED17(C13) cells are resistant to nocodozole-induced cell cycle

arrest

p53 null cells demonstrate loss of checkpoint control in G2/M phase, 

which can result in poly-ploidization and genomic instability of cells (Tarapore et 

al., 2001). The apoptosis assays on the MED17(C13) cell line suggested that the 

p53 function was compromised in these cells. As p53 also impacts on cell cycle 

check point control, assays were done to test the ability of vector and 

MED17(C13) cells to arrest cell cycle in response to nocodazole treatment. 

Nocodazole is an inhibitor of microtubule polymerization and can induce G2/M 

phase cell cycle arrest via p53 (Cross et al., 1995;Lanni and Jacks, 1998). p53 

null cells are incapable of normal G2 cell cycle arrest and continue cell cycle 

progression to mitosis.

MED17 and vector control cells were treated with 40nM nocodozole and 

then stained with propidium iodide and analysed by FACS for the percentage of 

cells with a >4N DNA content. The results from a typical experiment are shown in 

Fig 3.11A, where both vector and MED17 untreated cell lines have approximately 

1.5% of cells with a >4N DNA content. However, when exposed to nocodozole 

13.4% of the population of vector control cells have >4N DNA content, compared 

to 23.1% of MED17(C13) cells. This result indicated that approximately 1.7 fold 

more MED17 cells bypassed a nocodazole-induced arrest than vector cells. 

Furthermore, these data suggest that MED17 may have a negative regulatory 

effect on other p53 transcriptional targets involved in cell cycle arrest. The 

previous data presented, however, suggests that p21 may not be one of the
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genes negatively regulated by MED 17 as its expression is enhanced in the 

MED17(C13) cell line compared to the vector cells.

3.14 MED17(C13) cells have increased numbers of centrosomes

p53 null cells often demonstrate excessive numbers of centrosomes per 

cell indicating either centrosomes reduplication or mis-segregation. To quantify 

centrosome number in the vector and MED17(C13) cell lines, 

immunofluorescence assays were performed to detect y-tubulin, a component of 

the centrosomes. Centrosomes observed within nuclei of the cells were counted 

using confocal microscopy, and a minimum of 100 nuclei were scored per 

experiment, which was repeated in triplicate. Nuclei were counter-stained with 

Hoechst dye. Visualisation of centrosomes in both cell lines revealed differences 

in their size, number and structure between the two cell lines: MED17(C13) cells 

frequently had multiple centrosomes with enlarged and disorganised 

morphologies. This was not seen in the vector cell line (Fig 3.11B). Although the 

vector control cells demonstrated a low, but reproducible number of cells with 

multiple nuclear centrosomes (£3 per nucleus), most cells (72%) had the normal 

number of centrosomes (1 or 2 centrosomes per nucleus). However, in MED17- 

expressing cells, there was approximately a 25% decrease in the number of cells 

with 1 or 2 centrosomes per nucleus with a concomitant rise in those exhibiting 

abnormal, multiple centrosomes (Fig. 3.11C).

These analyses of apoptotic induction, DNA content after nocodazole 

treatment, and centrosome number indicate MED 17-expressing cells phenocopy
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cells which have a compromised p53 function, consistent with the hypothesis that 

MED17 functions as a repressor of p53.
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A. Propidium iodide staining for cell cycle analysis.Asynchronous 
vector and MED17(C13) cells were treated with nocodazole for 48 
hours to induce G2 phase arrest.DMSO treated cells were used as a 
control. 8N cells were quantified and expressed as a fraction of total 
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B. Immunofluoresence detection of y-tubulin (red) to visualise 
centrsomes in the vector and MED17(C13) cell lines. Counter staining 
with Hoescht (blue) was done to visualise nuclei by confocal 
microscopy. Centrsomes per nuclei were quantified.
C. Quantification of nuclear centrosome numbers between the vector 
and MED17(C13) lines.



Chapter 4: Introduction

4.0 Introduction

Technologies to analyse cellular pathways, circuits and networks in high 

through-put systems have been and are continuing to be developed to allow 

profiling of cells at the level of proteins, metabolites and transcripts and have 

subsequently given rise to the research fields of proteomics, metabolomics and 

transcriptomics. Of these technologies, the profiling of transcripts using gene 

expression microarray technology is the most advanced and is being increasingly 

used in the screening of changes in gene transcription across the whole genome. 

As well as the profiling of RNA, the microarray technology has also been adapted 

to the profiling of genomics DNA with uses in pathogen 

detection/characterisation, genotyping (single nucleotide polymorphism (SNP) 

detection), resequencing and screening for protein-DNA interactions. This later 

use of DNA chip technology has been used recently to identify transcription 

factor binding sites by a method known as “ChlP-chip”. Applications of 

microarray technology are broad and range from basic biological research, to 

drug discovery as well as potential uses in the clinical classification and 

prognosis of disease.

In use are two types of microarrays which differ generally in their 

hybridisation of either cDNA or cRNA (known as the “target”) to the chip. More 

commonly used than the cDNA microarrays are the oligonuceotide arrays for 

which cRNA is hybridised to “probes”. Affymetrix genechip probes are
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synthesised on the genechips themselves by a process involving 

photolithography and span genes across the whole genome. Each probe has its 

own corresponding mismatch probe which serves as an internal control for non­

specific binding of the target RNA. For each gene there are a number of probes 

which span the 5’, middle and 3’ regions of the transcript allowing for greater 

specificity of detection. In comparison to probes on the cDNA microarrays, 

oligonucleotide array probes are smaller at 25bp long. Labelling of the target 

DNA also differs with as cRNA is biotinylated during the in vitro transcription of 

the cDNA and is only stained with streptavidin-phycoerythrin once hybridised to 

the probes. Cells are then laser confocal scanned and computational analysis 

done to determine gene expression which is usually denoted as a ratio of 

abundance, also known as a reference biological sample, and can be expressed 

as a fold change between the control and experiment arrays. This methodology 

differs from cDNA microarrays where differently labelled cDNAs from control and 

experimental samples are hybridised to the same chip thus expression of a 

specific transcript in the experimental sample is represented as relative to the 

control.

Microarrays generate large data sets that require computational analysis 

to determine significant changes in gene expression patterns. Investigation of 

these data sets us usually done in an unsupervised manner by clustering of 

genes, as represented by the probe-sets, whose expression varies significantly 

between the control and experiment samples. Annotation of the probe-sets 

allows functional interpretation of genes and facilitates clustering of functionally
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similar genes that may be co-regulated. Such methods for uncovering gene 

networks are commonly used and are sometimes referred to as “guilt by 

association” where it is assumed that similar expression patterns between genes 

means that they are functionally related. In contrast, supervised learning is used 

in the generation of classifications whereby algorithms are used to identify 

predictive gene markers that discriminate between classes.

In this thesis I have used oligonucleotide arrays to analyse gene 

expression in a cell line constitutively over-expressing MED17 compared to a 

vector only control. Significantly regulated probe-sets were identified and 

clustering done using two web based applications to determine biological 

functions attributed to these differentially regulated genes. MED17 has been 

shown to interact with a number transcription factors suggesting a role in 

regulating diverse biological functions. Gene expression microarrays have been 

used to identify genes regulated by specific transcription factors. Similarly, this 

chapter aims to identify potential transcriptional networks and biological functions 

that may be directly or indirectly regulated by MED 17.
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Chapter 4: Results

4.1 Microarray analysis of the MED17 cell line

MED17 has been shown to interact with a number of transcription factors 

thus may be able to affect several different transcriptional networks. To 

investigate the transcriptional networks regulated by MED17, the MED17(C13) 

cell line was used in a gene expression microarray experiment to produce a 

global transcription profile upon over-expression. mRNA was harvested from the 

two cell lines and used to make cDNA, which was hybridised to Affymetrix 

MOE430A Genechip© microarrays. The grouped microarray gene expression 

scores were analysed for differential expression. In the MED17 cell line, 1858 

probe-sets were found to be significant (corrected g<0.001) of which 1124 were 

up-regulated (representing 886 genes) and 734 were down-regulated 

(representing 646 genes). These marker probe-sets were analysed further to 

infer the biological functions of the genes they represented.

4.2 Genes involved in DNA metabolism and cell proliferation are 

significantly up-regulated in the MED17 cell line

Using the GOBrowser tool, available on the Affymetrix NetAffx website, 

the significantly up-regulated probe-sets were annotated with their biological 

function and categorised into processes to analyse the global effects of MED17 

over-expression (see Chapter 2, section 2.30). Amongst the marker probe-sets, 

92 appeared in a category annotated “DNA metabolism”. Of these, a further sub-
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category annotated 16 (17.4%) with an involvement in “chromatin

assembly/disassembly” (Fig 4.1 A). This sub-category was found to be statistically 

over-represented (p=5.15'23) when compared to expectation using a chi-squared 

test of independence. Of note in these up-regulated probe-sets are those of 

Nap1l1 (nucleosome assembly protein 1-like-1), which is represented by 5 probe- 

sets. Probe-sets for Smarca5 (Swi/Snf related, matrix-associated, actin 

dependent regulator of chromatin, subfamily A, member 5) and cbx5 

(chromobox homolog 5, also known as heterochromatin protein 1) were also up- 

regulated. The up-regulation of these genes may be required for putative co- 

repressor and co-activator functions of MED17 in transcription.

In addition to the DNA metabolism category, 128 probe-sets annotated as 

“cell proliferation” were also over-represented. Within the cell proliferation 

category, two sub-categories, “cell cycle” and “DNA replication”, were found to be 

highly represented (p=6.3_39 and p= 1.86'36 respectively) amongst the cell 

proliferation probe-sets (Fig 4.1B and Fig 4.1C). These data suggest that MED17 

global transcriptional function may promote cell proliferation. The MED17 

markers were analysed further using Ingenuity Pathway Analysis, to determine 

specific gene networks that were changed by MED17 over-expression and which 

might contribute to global changes in the expression of genes involved in DNA 

metabolism and cell proliferation.
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4.3 Global analysis of MED17 cell line marker probe-sets by Ingenuity

Pathway Analysis

Ingenuity Pathway Analysis was used as a data analysis tool to identify 

potential biological functions and their gene networks that are regulated by 

MED17 (see Chapter 2, section 2.31). For this analysis 4730 significant probe- 

sets were selected (corrected to p<0.005). The larger number of probe-sets used 

for this analysis may potentially reveal more gene networks but at the 

consequence of discovering more false positive results. Therefore gene markers 

selected by Ingenuity Pathway Analysis were compared with those selected 

using g-values<0.001 to identify potential false positive results.

Initially, global analysis of the MED17 markers was done to identify higher 

level functions and genes associated with disease that were over-represented in 

the dataset which may be attributed to MED17. Of the marker probe-sets, 830 

were representative of genes present in the global analysis database. Analysis of 

higher level functions of these genes found 24 categories of cellular function in 

which the MED17 markers were significantly over-represented (p<0.05) (Table 

4.1). The remaining MED17 markers were not significantly over-represented in 

any of the categories present in the global analysis database.

Of the cellular function categories, genes involved in “Cellular movement” 

were highly represented. More generally, categories of genes involved with 

developmental functions in different organs and systems were highly represented 

amongst the MED17 markers. In particular several categories were highly 

represented which included genes involved in development and function of the
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haematological, immune and lymphatic systems, as well as immune response 

and haematological disease, suggesting a function for MED17 in the 

haematological system. Also represented was a functional category labelled “Cell 

death”, however, none of the seven genes present in this category had functions 

related to p53. A category termed “Cellular growth and proliferation” was similarly 

identified by the Ingenuity Pathway Analysis. The genes present in this category 

contained a number of interleukins and chemokines which were not identified in 

the “cell proliferation” category previously identified using GOBrowser. Simliar to 

the GOBrowser, the Ingenuity Pathway analysis identified statistically significant 

categories of genes associated with particular cellular function. However, new 

functional categories were identified that were not present in the GOBrowser 

analysis. To investigate pathways that may be involved in these general cellular 

functions, further analysis was performed to ascertain functional relationships 

between the MED 17 markers.

4.4 Analysis of MED17 cell line probe-set markers by Ingenuity Pathway

Analysis reveals activation and repression of p53 regulated genes

Network analysis of the MED17 markers allows the identification of groups 

of genes that may be directly or indirectly regulated by MED17. From the total 

number of MED17 markers, 742 were placed into 105 networks that contained at 

least one of the markers. Each network was scored on the number of MED17 

markers present. Seven networks scored 35 markers as present, the highest 

score for any of the MED17 networks. One of these networks, termed “cellular
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Function Number of markers 
present

p-value

Cellular movement 47 4.51 E-3 -4.29E-2
Haematological System 

Development and Function
62 4.51 E-3 -4.29E-2

Immune Response 57 4.51 E-3-4.29E-2
Nucleic Acid Metabolism 16 4.51 E-3-4.29E-2

Cell Morphology 19 6.35E-3
Cellular Growth and 

Proliferation
25 7.08E-3 -  4.29E-2

Immune and Lymphatic 
System Development and 

Function

26 7.08E-3 -  4.29E-2

Tissue Development 16 7.08E-3 -  4.29E-2
Embryonic Development 14 1.11E-2 -  1.64E-2

Organ Development 14 1.11E-2 -  1.64E-2
Organismal Development 14 1.11E-2 -  1.64E-2

Cell-To-Cell Signalling and 
Interaction

39 1.74E-2 -  4.29E-2

Reproductive System 
Development and Function

16 1.74E-2 -4.29E-2

Amino Acid Metabolism 8 2.73E-2
Haematological Disease 8 2.73E-2
Cardiovascular System 

Development and Function
21 3.65E-2 -  4.29E-2

Cell Death 7 4.29E-2
Cellular Development 13 4.29E-2

Endocrine System 
Development and Function

11 4.29E-2

Gastrointestinal Disease 7 4.29E-2
Inflammatory Disease 7 4.29E-2

Lipid Metabolism 14 4.29E-2
Renal and Urological 

System Development and 
Function

7 4.29E-2

Skeletal and Muscle 
Disorders

7 4.29E-2

Table 4.1 Global functions of MED17 cell line markers analysed 
by Ingenuity Pathway Analysis

The Ingenuity Pathway application allocated probe-set markers (corrected to 
p<0.005) in to categories of cellular function and disease. All statistically 
significant categories (p<0.05) over-represented by the MED17 gene markers are 
given in the table above with total numbers of gene markers for each category.
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compromise, DNA replication, recombination and repair, cancer”, contained a 

p53 node, indicating high expression of the p53 transcript. These data concur 

with previous Western blot analysis of the MED17 cell line, which showed 

enhanced expression of p53 compared to the vector line (Fig 4.2). The 

transcription of many genes in this network is regulated by p53. Of the down- 

regulated genes, the transcription of gluthatione S-transferase M1 (GSTM1), 

GSTM5, thrombospondin 2 (THBS2) and interferon alpha-inducible protein 

(G1P2) is associated with the activation of p53, hence the decreased expression 

of these transcripts may be attributed to MED17 effects on p53 mediated- 

transcription. Surprisingly, the Mdm2 gene was up-regulated. Previous analysis 

of Mdm2 promoter activity and Western blot analysis of the Mdm2 protein 

showed decreased activation and expression of the protein (Fig 3.1 OC and Fig 

3.10E). These data indicate that the expression of the Mdm2 transcript does not 

correlate with the gene reporter analysis or the expression of the Mdm2 protein in 

the MED17 cell line.

Other p53 transcriptional targets were found to be up-regulated in the 

presence of high levels of p53. Nucleostemin (NS), hyaluronan synthase 2 

(HAS2), adenylate kinase 1 (AK1), thrombomodulin (THBD), prostaglandin- 

enteroperoxide sythase-1 (PSTG1) and collagen type IV alpha I (COL4A1) are all 

genes transcribed by activated p53 and were highly expressed in the MED17 cell 

line. Other transcriptionally regulated genes in this network are actively 

repressed by p53 but are activated in the MED17 cell line, with the exception of 

microsomal glutathione S-transferase (MGST), which suggests deregulation of
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Fig 4.2 MED17 gene markers are present in a network termed 
“Cellular compromise, DNA Replication, Recombination and 
repair, cancer”

Ingenuity Pathway Analysis of MED17 gene markers (corrected to 
p<0.005) scored 35 genes as present in this network. Red icons 
represent upregulated genes whereas green icons are 
down-regulated genes. Straight lines between genes indicate 
protein-protein interactions and arrows show transcripton regulatory 
function between genes. * indicates multiple probe-sets were present 
in the dataset for the gene.



p53 transcriptional repressor function. These activated genes include multidrug 

resistance member 1b (Abclb), adenomatosis polyposis coli (APC), BUB1, 

hyaluronan-mediated motility receptor (HMMR), jumonji domain containing 1C 

(JMJD1C), protein tyrosine phosphatase type IVA member 1 (PTP4A1), 

poliovirus receptor-related 3 (PVRL3) and striatin (STRN3). In summary, these 

data suggests p53 regulated genes are both activated and repressed in the 

MED17 cell line and furthermore infer that MED17 is not a ubiquitous repressor 

of all p53 transcriptionally regulated genes. These data are further discussed in 

chapter 6.

4.5 Analysis of MED17 cell line marker probe-sets by Ingenuity Pathway

Analysis reveals the activation of cell cycle related networks

Changes in transcriptional networks induced by MED17 may induce global 

cellular functional changes. The repression of p53 transcription and the affects of 

its deregulation, in tandem with regulation of other growth promoting transcription 

factors by MED17, may be responsible for the significant representation of “cell 

proliferation” and “cell cycle” probe-sets in the MED17 dataset, as analysed using 

GOBrowser {see section 4.2). Network analysis using Ingenuity also placed gene 

marker probe-sets in networks associated with cell cycle.

A total of 35 focus genes from the dataset were placed In a network 

labelled “cell cycle, DNA replication, recombination and repair, cancer” (Fig 

4.3A). Genes placed in this network included cyclin A2 (CCNA2), cyclin B1 

(CCNB1) and cdkl (CDC2), which are regulators of cell cycle phase progression
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and transition. Up-regulated marker probe-sets were also present for genes 

involved in the initiation of DNA replication, such as ORC2L and Mcm3. These 

data suggest that MED17 induces global transcriptional changes that promote 

cell proliferation.

Another network, labelled “cell cycle, cellular assembly and organisation, 

DNA replication and repair”, also contained 35 focus genes (Fig 4.3B). Gene 

markers most notably up-regulated in this network included ATM, BRCA1 and 

structural maintenance of chromosomes 1-like 1 (SMC1E1) all of which are 

associated with DNA repair pathways. ATM and BRCA1 are also associated with 

the regulation of p53 transcription in response to DNA damage and induction of 

cell cycle check-points. This suggests that pathways involved in damage 

responses are activated in the MED17 cell line but does not consequently 

activate apoptosis as shown previously (Fig 4.2). Furthermore these networks 

implicate cell cycle associated genes in the activation of the damage response.

The identification of these two networks related to cell cycle compares 

with findings from the GOBrowser analysis which identified a “cell cycle” sub­

category of genes. Between the analysis applications, 32 genes were common 

between the cell cycle sub-category and the two cell cycle networks (Table 4.2), 

thus two independent analyses have suggested the up-regulation of genes 

involved cell cycle/cell proliferation in the MED17 cell line. These effects may be 

downstream of cell proliferation promoting transcription factors activated by via 

MED17. Further analysis was done of the significant gene networks identified by
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Fig 4.3 Gene marker probe-sets in the MED17 dataset are 
represented in networks related to cell cycle
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Probe-set ID Gene Name GenBank
accession

number

Fold
change

g-value

1452954 at UBE2C
Ubiquitin conjugating 

enzyme E2C AV162459 1.79 1 84E-05
1416076 at CCNB1 Cyclin B1 NM 007629 1.68 2.57E-04
1419451_at FZR1 Frizzled related 

protein
BC006616 1.25 1.19E-04

1448314_at CDC2 cyclin dependent 
kinase -1

NM_007659 1.37 7.81E-05

1417131_at CDC25A Cell division cycle 25A 
phosphatase

C76119 1.15 4.50E-04

1426850_a_at MAPK2K6
Mitogen activated 

protein kinase kinase 
6

BB261602 1.81 7.96E-05

1417910 at CCNA2 Cyclin A2 X75483 1.55 1.08E-04
1449061 a at PRIM1 Phmase polypeptide J04620 1 2.48E-04
1426653_at MCM3 Minichromosome

maintenance
BI658327 1.41 2.29E-04

1425166_at RBL1 Retinoblastoma-like 1 
(P107)

U27178 1.63 2.48E-04

1434437 x at RRM2
Ribonucleotide 

reductase, M2 subunit AV301324 2.03 1 58E-04
1418225 at ORC2L Origin recognition BB830976 1.19 9.27E-04
1423337 at ORC4L complex BB775020 1.89 1.84E-05
1417037 at ORC6L NM 019716 1.11 6.98E-04
1439040 at CENPE Centromeric protein E BG068387 2.11 3.64E-04

1431921 a at STAG1 Stromal antigen AK017978 1.9 6.48E-04
1450396 at STAG2 NM 021465 1.75 6.82E-05
1434496 at PLK3 Polo-like kinase 3 BM947855 1.33 7.22E-05
1452241_at TOPBP1 DNA topoisomerase II 

binding protein
BC007170 1.81 1.15E-04

1450950_at CSPG6 Chondroitin sulphate 
proteoglycan 6

AK005647 2.11 1.16E-04

1416162 at RAD21 Rad21 AF332085 1.04 2.15E-04
1416746_at H2AFX H2A histone family 

member X
NM_010436 1.49 5.02E-05

1450677 at CHEK1 Checkpoint NM 007691 1.66 2.75E-04
1421205_at ATM Ataxia telangiectasia 

mutase
NM_007499 1.34 3.46E-04

1423920 at BRRN1 Barren BC021499 1.15 3.37E-04
1417830 at SMC1L1 Structural BB156359 1.51 5.16E-05
1448635 at SMC2L1 maintenance of NM 008017 3.25 9.62E-05
1427275 at SMC4L1 chromosomes like BI665568 3.19 5.93E-05
1417445_at KNTC2 Kinetochore- 

associated protein 2
NM_023294 1.63 6.91E-05

1416915 at MSH6 Mut S. homolog of 6 U42190 1.27 8.61E-04
1417947_at PCNA Proliferating cell 

nuclear antigen
BC010343 1.19 2.04E-04

Table 4.2 Common cell cycle related genes between GOBrowser and 
Ingenuity pathway analyses

The above table gives all the cell cycle related marker genes selected by 
independent analyses done using GOBROWSER and Ingenuity Pathways, q- 
values for marker probe-sets are stated.
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Ingenuity application to identify putative transcription targets of MED17 that may 

mediate the up-regulation of cell cycle genes.

4.6 Activation of 6-catenin/LEF/TCF transcription in the MED17 cell line

The interaction of MED17 with a number of transcription factors in 

Drosophila suggests that it may have a global role in transcriptional regulation. 

The investigation of transcriptional networks using Ingenuity pathway analysis 

could reveal transcription factors and their transcriptional targets that are 

regulated by MED 17. Armadillo, a Drosophila homolog of &-catenin, has been 

shown to interact with MED17 in Drosophila embryo soluble nuclear fractions. Q>- 

catenin co-operates with the LEF and TCF transcription factors to regulate 

transcription of genes involved in proliferation and cell movement. Moreover, it is 

thought to have a role in oncogenic transformation mediated by inappropriate 

activation of signalling pathways such as the Wnt signalling pathway. Activation 

of IS-catenin by MED17 could result in the enhanced expression of genes related 

to cell cycle and cell movement which were suggested by the analyses of the 

microarray data using GOBrowser and Ingenuity Pathway Analysis.

Identified by Ingenuity Pathway Analysis was one relating to ft-catenin, 

which scored 35 genes as present among the MED17 markers (Fig 4.4A). This 

network, termed “cellular movement, cell-to-cell signalling and interaction, tissue 

development”, showed an enhanced fold change expression of fi-catenin, +1.060 

(p=4.11'05) for which multiple up-regulated probe-sets were present in the 

dataset. Significantly, genes transcriptionally regulated by ft-catenin were also
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up-regulated in this network. These genes included plasminogen activated 

receptor, urokinase-type (PLAUR), gap junction protein, alpha 1 (GJA1), kinesin 

family member 23 (KIF23) and Fos-like antigen 1 (FOSL1), which showed 

expression fold changes of +1.29, +1.83, +1.23 and +1.84 respectively. In 

addition to these genes others were sought amongst the MED17 marker probe- 

sets to support these data suggesting activation of ft-catenin regulated 

transcription. A further 6 genes were identified including well described 

transcriptional targets, cyclin D1 (CCND1) and c-myc (MYC) which are both 

involved in cell cycle and proliferation (Table 4.3). These data suggest that fi- 

catenin transcription is activated in the MED17 cell line and was subsequently 

investigated in functional assays.

To test the activation of fi-catenin transcription in the MED17 cell line, as 

suggested by the analysis of the fc-catenin network, a (J-catenin/LEF/TCF 

responsive reporter was used in gene reporter assays to compare reporter 

activation between the vector and MED17 cell lines. Transfection of the LCF/TCF 

luciferase reporter into the MED17 cell line resulted in a 5-fold activation (+/- 0.82 

fold), compared to the vector cell line control (Fig 4.4B). In conjunction with 

results from the microarray analysis, these data suggest that fi-catenin regulated 

transcription in the MED17 cell line is enhanced relative to the vector control cell 

line which may contribute to the enhanced expression of cell cycle genes. In 

addition, the diversity of transcriptional targets activated by ft-catenin may 

activate other gene networks, specifically relating to cell motility, which was 

further investigated.
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Fig 4.4 MED17 gene markers are present in a network termed “Cellular 
movement, cell-to-cell signalling and interaction,tissue development” 
which contains the &-catenin transcription factor

A. A schematic of the IS-catenin network, revealed by Ingenuity Pathway 

Analysis, scored 35 genes as present. Red icons represent up-regulated 

genes whereas green icons are down-regulated genes. Lines between genes 

indicate protein-protein interactions and arrows show transcription regulatory 

function between genes. * indicates multiple probe-sets were present in the 

dataset for the gene.

B. Gene reporter assays with G-catenin/LCF/TCF responsive luciferase 

reporter in the vector and MED17 cell lines. Equal amount of reporter were 

transfected in to the cell lines with a Lac-Z expression plasmid to normalise 

luciferase values. Values are expressed as fold change relative to the vector 
control cell line.
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Probe set ID Gene Name Genbank
accession

number

Fold
change

p-value q-value

1417488_at FOSL* Fos-like antigen 1 U34245 1.84 5.90E-07 6.36E-05
1415801_at GJA1* Gap junction 

protein, alpha 1
M63801 1.82 3.93E-07 4.77E-05

1453748_a_at KIF23 Kinesin family 
member 23

BC047273 1.23 1.18E-04 -

1452521_a_at PLAUR* Uroplasminogen 
activated receptor

X62701 1.29 3.41 E-07 5.89E-05

1452483_a_at CD44* CD44 antigen X66083 3.43 1.14E-08 6.92E-06
1417263_at COX-2* Cyclooxygenase 2 M94967 2.83 3.14E-09 9.94E-06

1424942_a_at MYC* c-myc BC006728 1.31 3.20E-06 3.27E-04
1427940_s_at MYCBP myc binding 

protein
BC041706 1.02 4.07E-03 -

1448698_at CCND1* cyclin D1 NM_007631 1.06 1.22E-05 1.18E-04

1427256_at CSPG2* Chondroitin 
sulphate 

proteoglycan 2

BM251152 1.03 1.32E-04 9.39E-04

Table 4.3 ft-catenin transcription targets identified in significant MED17 
marker probe-sets and by Ingenuity Pathway Analysis

FOSL, GJA1, KIF23 and PLAUR genes are present in the Ingenuity Pathway 
network termed “cellular movement, cell-to-cell signalling and interaction, tissue 
development” and were identified as transcription targets of ft-catenin. Additional 
gene targets of G-catenin were identified by literature review. * indicates Q>- 
catenin regulated genes present in the MED17 probe-set markers corrected to 
qr<0.001. In addition MYCBP was selected as significant marker probe-sets when 
corrected to p<0.005 by Ingenuity Pathway Analysis but was not placed in the Q>- 
catenin gene network. G-catenin regulated genes not present among the markers 
probe-sets include follistatin, TCF-1, gastrin, MMP7 (matrix metalloprotease 7), 
MMP26, c-jun and MDR1 (multidrug resistance 1).
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4.7 Genes involved in cellular motility are up-regulated in the MED17 cell 

line

Global analysis of the MED17 probe-set gene markers showed a 

significant representation of markers involved in “cellular movement” (p<0.0429). 

Subsequently two networks relating to “cellular motility”, in addition to the Q>- 

catenin network, were identified containing 25 and 19 focus genes respectively 

(Fig 4.5A and Fig 4.5B). In these networks three fc-catenin transcriptional targets, 

CD44, MYC and CSPG2, were identified. These networks did not contain as 

many focus genes as identified in the p53 and cell cycle networks, however their 

significant representation in the global analysis (section 4.3) and potential 

relationship to the li-catenin network warranted further investigation.

Genes involved in cell motility as part of the cancer cell invasion process 

have been investigated using microarray analysis and have identified gene 

markers indicative of invasive cancer. The presence of such gene markers in the 

MED 17 marker probe-sets was analysed using a list of markers compiled from 

microarray analysis as well as immunohistochemistry studies of expression, to 

support the data from the gene networks (Sahai, 2005). From the MED17 

markers, 8 of the 10 were found to be markers of genes involved in cell invasion 

that were not present in the cell motility networks (Table 4.4). CD44 and radixin 

(RDX) were both present in a network termed “cellular movement, cancer, 

tumour morphology” as well as the list of cell invasion markers. From the same 

list of gene markers for cell invasion, CD44 and PLAUR are genes regulated by 

ft-catenin. These data suggest that a number of genes markers involved in cell
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movement are up-regulated in the MED17 cell line which may in part be 

attributed to the enhanced expression of ft-catenin regulated genes.

Based on the transcriptional profile, functional assays for cell motility were 

performed using the vector and MED17 cell lines. Morphologically, the MED17 

cells contained an increased number of filopodial structures, when observed 

using phase contrast microscopy (Fig 4.6 upper panels). Filopodia are spike-like 

structures protruding from the cell membrane and are formed by the restructuring 

of actin during cell movement. In contrast, the vector cell line contained much 

fewer such structures. This suggested that MED17 cells morphologically 

resemble invasive cells. To assess the invasiveness of the MED17 line, cells 

were tested for their ability to invade an extracellular madtrix (ECM). The assay is 

modelled on cell invasion through a basement membrane. Invasion chambers 

consist of a polycarbonate membrane containing 8pm pores covered by an ECM. 

Invasion occurs when cells migrate through the ECM and through the pores and 

adhere to the underside of the membrane, which is detected by cell staining. 

NIH-3T3 cells are non-invasive and likewise, the vector cells were not found to 

be invasive. However the MED17(C13) cells invaded the ECM indicating that 

these cell had an invasive capacity (Fig 4.6 bottom panels). This capacity is 

consistent with the up-regulation of gene markers involved in cell motility, as 

indicated by the microarray study.
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Fig 4.5 Analysis of MED17 cell line markers shows networks 
involved in cell motility

Analysis of markers using Ingenuity Pathways revealed two pathways 
relating to cell motility.

A. A network termed “Cellular movement, cancer, tumour morphology”. 
Total of 25 focus genes were present.
B. A network termed “Cellular movement, cellular compromise, DNA 
replication,recombination and repair”. Total of 19 focus genes were 
present.



Probe-set ID Gene Name GenBank
Accession

Fold
change

p-value

1422990 at MET
Hepatocyte growth 

factor receptor NM 008591 1.040 4.95E-05
1423445 at ROCK1 BI662863 2.580 5.82E-06
1451041 at ROCK2 BB761686 1.87 2.41 E-07

1452521 a at PLAUR
Uroplasminogen 

activated receptor X62701 1.29 3.41 E-07
1423267 s at ITGA5 Integrin alpha 5 BB493533 1.22 4.97E-03
1422444 at ITGA6 Integrin alpha 6 BM935811 2.33 1.11 E-07
1421198 at ITGAV Integrin alpha V NM 008402 1.85 1.12E-05
1434250_at PAK2 p21-activated 

kinase2
BC086650 1.12 5.93E-05

1452483 a at CD44* CD44 antigen X66083 3.43 1.14E-08
1426777_a_at WASL Wiskott-Aldrich 

Syndrome like
BF466143 1.02 1.60E-05

1416180 a at RDX* Radixin NM 009041 2.15 7.87E-08
1450370 at MSN Moesin BC047366 1.21 1.42E-05

Table 4.4 Gene markers for cell motility present among MED17 markers

* indicates markers present in the cell motility networks (Fig 4.5A and Fig 4.5B). 
CD44 and PLAUR are transcriptional targets of fi-catenin. With exception of 
PAK2 and MSN, all the above genes were present in the MED17 markers 
corrected to q<0.001. Other gene markers for cell motility not present among the 
MED17 markers include epidermal growth factor receptor, hepatocyte growth 
factor receptor, PTEN, Rac1, cathepsin and matrix metalloproteases.
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and MED17 cells were seeded on the chambers in triplicate and 
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4.8 Optimisation of MED17 primer concentration for Q-PCR

The microarray analysis of the MED17 cell line showed global 

transcriptional changes induced by MED17 over-expression (section 4.2). GEM 

analysis suggests these global changes might be attributed to the activation of 

transcriptional networks by MED17 interacting with, and regulating, specific 

transcription factors. These transcriptional networks may be important for tissue 

specific development. To ascertain whether MED17 has a role in tissue specific 

development, real time quantitative PCR (Q-PCR) was performed to determine 

any differences at the level of mRNA of MED17 in a variety of human tissues.

Q-PCR for MED17 was optimised as described in the Material and 

Methods chapter. Primers for the Q-PCR were designed to amplify an 81-mer 

sequence from base pairs 1318 to 1398 of MED17 genomic DNA that region 

transcribes to mRNA. To test whether the selected primers amplified the MED17 

81-mer, PCR was done using the primers to amplify the product from a human 

foetal cDNA library. Foetal cDNA was used as it is representative of a number of 

developing tissues. The reaction was resolved by agarose gel electrophoresis to 

visualise the correct sized PCR product (Fig 4.7A). PCR of the GAPDH mRNA 

transcript (a 78bp amplicon) was also performed to confirm amplification of the 

template. A reaction containing no template cDNA was also performed. Both 

MED17 and GAPDH reactions amplified a single product corresponding to the 

expected sizes of the amplicons suggesting that the primers amplify specifically 

the MED17 and GAPDH mRNAs. No products were observed in the non­

template control. These data show that MED17 primers amplified a product
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corresponding to the size of the predicted amplicon, and were used for further 

optimisation of Q-PCR for MED17.

An important variable of Q-PCR is the concentration of the primers. To 

obtain the optimal performance of the primers in the amplification, the threshold 

cycle must be kept low while maintaining a high ARn in the presence of constant 

template (see Chapter 2, section 2.29). MgCh concentration was kept constant at 

3.5mM. To optimise the primer concentration both sense and anti-sense MED17 

primers, forward and reverse primers respectively, were titrated against each 

other at 50, 300 and 900nM concentrations in reactions using foetal cDNA as the 

template. Q-PCR was done with these concentrations and a threshold cycle 

determined for each reaction at a baseline threshold value of 0.075 (Fig 4.7B and 

Fig 4.8A). Reactions containing 50nM of the forward or reverse primer correlated 

with a cycle threshold greater than 23. The maximum the cycle threshold 

reached was 30.06 for the reaction containing both primers at 50nM. Cycle 

thresholds were reduced to 19 with the increase in primer concentration (forward 

and reverse) to 300nM and 900nM. These data suggests that an appropriate 

primer concentration for MED17 Q-PCR would be between 300 and 900nM for 

both the forward and reverse primers. A primer concentration of 300F/300R 

produced a low threshold cycle with a high ARn comparable to 900nM 

concentrations with low variation between samples as indicated by the error bars. 

Though results for reactions containing 50nM of primers were also consistent the 

higher threshold cycle and lower ARn were not as favourable (Fig 4.8A). These
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data indicate that the 300F/300R concentration of primers was suitable for Q- 

PCR.

To investigate whether any of the primer-pair concentrations could be 

associated with the formation of primer dimers, dissociation curves were 

generated at the end of reaction (see Chapter 2, section 2.29). The dissociation 

curves produced for the optimisation of primer concentration showed the 

presence of one fluorescent peak occurring at 79.2°C for each primer-pair and all 

primer concentrations tested (Fig 4.8B). The presence of one curve at a high 

melting temperature suggests the presence of one amplified product with no 

formation of primer dimers. Non-template controls for the given concentrations of 

primers were also performed and excluded primer dimer formation (Fig 4.8A). 

These data indicate that the primer concentrations of 300F/300R selected for use 

in Q-PCR does not result in primer dimer formation and is therefore suitable for 

subsequent experiments.

4.9 Validation of MED17 Q-PCR

Expression levels of a gene transcript can be determined within a specific 

tissue, relative to another ubiquitously expressed house-keeping gene, which can 

then be compared between tissues. Quantifying expression of such a house­

keeping gene allows normalisation of the expression values of the MED17 

transcript between tissues, allowing comparison. Q-PCR for the GAPDH 

transcript (glyceraldehyde-3-phosphate dehydrogenase) was used as a control 

for normalising MED17 expression between tissues. The optimisation of the
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Fig 4.7 Optimisation of primer concentrations for MED17 Q-PCR

A. Agarose gel (1.5%) electrophoresis of PCR for MED17 and GAPDH. 
Q-PCR primers for MED17and GAPDH were used to amplify respective 
sequences from foetal cDNA. Also included was a non-template control.
B. Threshold cycles for combinations of different MED17 primer 
concentrations. 50, 300 and 900nM concentrations of the forward (F) 
and reverse (R) primers were titrated against each other and Q-PCR 
was done in triplicate for each combination. Mean threshold cycle for 
each combination is displayed. Error bars show the standard deviation 
for primer-pair sample.
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GAPDH primer-pairs for Q-PCR was previously done by Dr. Dimitra Bourboulia in 

our laboratory and was used for these experiments. The use of GAPDH to 

normalise levels of gene transcript expression is only valid if its expression 

parallels that of MED17 across a range of different concentrations of template 

cDNA. To test this, serial dilutions of 1:5 of foetal cDNA were prepared, and Q- 

PCR reactions for MED17 and GAPDH were done concurrently for each of the 

dilutions. Threshold cycles for all of the reactions were plotted and the MED17 

and GAPDH standard curves were compared (Fig 4.9A). In addition, the 

difference in the threshold cycle values between Q-PCR reactions for MED17 

and GAPDH for each of the concentration of template was also plotted (Fig 

4.9B). The gradient of the line of best fit for this plot determines the correlation 

between amplification of MED 17 and GAPDH. A gradient of 0.06 was calculated 

which is equivalent to an average of 6% difference in the amplification of MED17 

compared to GAPDH which ranges between threshold cycle values of 20.535 

and 33.055, as seen in Figure 4.9A. With these parameters Q-PCR for MED17 

was done on human tissue cDNAs.

4.10 Expression of the MED17 transcript in human tissues

Analysis of the networks activated in the MED17 cell line suggested 

cellular functions that could be attributed to MED 17 over-expression. To 

investigate whether these functions are specific to a given tissue, Q-PCR was 

done for MED17 to quantify expression of the MED17 transcript and analyse 

expression among different tissues. Using a panel of cDNAs synthesised from a
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Fig 4.9 Validation of MED17 Q-PCR

Analysis of MED17 amplicatiion against that of GAPDH across a 
rangeof concentrations of foetal cDNA to ensure their amplification in 
parallel with one another which allows GAPDH to be used as a control 
for normalising between different template cDNAs.

A. Standard curve for MED17 and GAPDH Q-PCRs across dilutions 
of foetal cDNA of 1:5. Correlation co-efficients (R2) are given for each 
of the lines of best fit.
B. A plot of the difference between threshold cycles for MED17 and 
GAPDH for the given concentrations of foetal cDNA. The equation for 
line of best fit is given.



variety of human tissues, Q-PCR reactions were done in parallel for MED17 as 

well as for GAPDH. The final normalised expression values were then expressed 

as relative to MED17 expression in small bowel, as the values for threshold 

cycles for MED17 obtained for this tissue were closest to the mean threshold 

cycle of 26.64 for the panel of cDNAs. Threshold cycle values for MED17 ranged 

from 25.05 to 28.675 and were within the acceptable limits for analysis, as 

determined during the validation experiment (Fig 4.9A).

In the panel of tissue cDNAs expression of MED17 in the pancreas, 

spleen, testis and ovaries was found to be higher by greater than two fold relative 

to small bowel (Fig 4.10). High expression was also seen in placenta and lung 

tissue but only at 1.5 fold. Low expressing tissues included heart, brain and 

colon, where expression of MED17 was approximately 50% lower than the 

relative control. In particular, skeletal muscle was the lowest expressing tissue 

whose expression was only 5% relative to that of small bowel. These data 

suggest that the expression of the MED17 transcript varies between different 

human tissues. MED17 may also be important in the development and function 

of pancreas, spleen, testes and ovaries where its relative expression is high.
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Fig 4.10 Relative expression of the MED17 transcript in a panel of 
human tissues

Q-PCR for MED17 was done on a panel of cDNAs synthesised from 
various human tissues. Q-PCR for MED17 and GAPDH was done in 
triplicate for each tissue cDNA and MED17 expression normalised to that 
of GAPDH. MED17 expression is displayed as relative to its expression 
in small intestine.



Chapter 5

5.0 Introduction

My investigation into the role MED 17 in the regulation of p53 has indicated 

that it represses p53’s pro-apoptotic activity. The mechanism of repression is 

most likely to be due to transcriptional inhibition of a subset of pro-apoptotic 

genes. This investigation of MED17 was initiated by the cloning of MED17 as an 

interacting protein with viral cyclin, which was identified in the yeast-2-hybrid 

screen. Two functional models are suggested by this interaction. Firstly, viral 

cyclin may regulate the function of MED17. This yeast-2-hybrid screen has 

previously identified Orc-1 as a substrate of viral cyclin, where phosphorylation of 

Orc-1 facilitates its nuclear export (Laman et al., 2001b) Similarly, MED17 may 

also be a substrate of viral cyclin/cdk complexes which may modulate the 

function of MED17, thereby affecting its transcriptional functions. In particular, 

MED17 regulation of p53 transcription may be enhanced by its interaction with 

viral cyclin thus contributing to viral cyclin mediated oncogenesis.

An alternative model is that MED17 may affect viral cyclin function. 

Mediator complexes are associated with cyclin/cdk complexes that regulate of 

transcription. Cyclin C/cdk8 and cyclin H/cdk7 are involved in the phosphorylation 

of the CTD of RNA pol II and have been described as both positive and negative 

regulators its activity, making their exact function unclear (Liu et al., 2004). The 

Walleye Dermal Sarcoma Virus cyclin (OrfA) also interacts with 

hyperphosphorylated forms of RNA pol II in complex with cdk8 and can regulate
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transcription of viral genes, suggesting that viral cyclins may also be regulators of 

RNA pol II activity (Rovnak and Quackenbush, 2002). MED17 may recruit viral 

cyclin to the basal transcription machinery to phosphorylate the CTD and thereby 

regulate transcription.

This chapter aimed to elucidate the nature of the interaction between viral 

cyclin and MED17 as well as establishing a function for the interaction.
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Chapter 5: Results

5.1 HVS cyclin interacts with MED17 in yeast

The yeast-2-hybrid screen (Y-2-H) is based on the principle of recruitment 

of an activation domain to a reporter gene by virtue of an interaction with a “bait “ 

protein, which is a fusion between the Gal4 binding domain (GBD) and the 

protein of interest (Fields and Song, 1989). Gal4 transcription activator consists 

of two functional domains, a C-terminal activation domain (AD) and an N-terminal 

sequence specific DNA binding domain (BD). The Y-2-H screen utilises a “bait” 

protein fused to the BD to select for interacting proteins synthesised from a cDNA 

library fused to AD. The interaction of library proteins with the bait protein 

“reconstitutes” the Gal4 transcription activator and allows transcription of reporter 

genes regulated by upstream activating sequences (UAS) which contain the Gal4 

RE, such as ADE2, HIS3 and LacZ. Transformed yeast are selected on amino 

acid deficient growth medium by auxotrophy for complementation of the bait and 

library expression plasmids, URA3 and LEU2. Then by virtue of reconstitution of 

the Gal4 transcription activator, transformants were selected for activation of the 

reporter genes, ADE2 and HIS3. Screening for interacting proteins by activation 

of LacZ was done by assaying for G-galactosidase. The expression of ft- 

galactosidase can be detected on X-gal supplemented growth plates which 

induces a blue colour change in the yeast colony or alternatively by liquid assay 

culture, which I used.
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In a Y-2-H screen of a human B and T cell cDNA library fused to 

pGal4(AD), MED17 was cloned as an interacting protein with the bait protein, V- 

cyclin of Herpesvirus saimiri, which was fused to pGal4(BD). Sequencing of the 

pGal4(AD)-MED17 clone, showed an in frame fusion of the pGal4(AD) to amino 

acids 19-651 of MED17. p-galactosidase reporters with the MED17 clone 

showed a 5.4 fold activation of the reporter relative to vector only, suggesting an 

interaction between V-cyclin and MED17 (Laman, unpublished data).

To confirm the interaction of MED17 and V-cyclin in the Y-2-H screen, 

truncations of V-cyclin were used to map the site of interaction of MED17 on HVS 

cyclin. These truncations of V-cyclin spanning the length of the gene and were 

fused to the BD of Gal4 (Fig 5.1 A). V-cyclin truncations, aa1-215 and aa1-168 

contain a region of V-cyclin responsible for interaction with the T-loop of cdk6, 

located at the extreme N-terminus of V-cyclin via the H3 helix and the loop 

between helices H3 and H4. At the C-terminus of V-cyclin are a further two 

helices, HTand H2’, spanning amino acids 154-185, of which V-cyclin aa169-254 

only contained the H2’ helix. These truncations were used to test the 

dependency of the MED17 and V-cyclin interaction on the cdk6 subunit.

To test whether the expression of the GBD-V-cyclin truncation were at 

equal efficiencies, Western blots were conducted on protein lysates from the 

transformed yeast to detect the Gal4-BD (Fig 5.1 B). V-cyclin truncations 1-215 

and 1-168 were expressed to an equal efficiency as full length V-cyclin. However, 

the smaller C-terminus truncations, 169-254 and 216-254 were expressed at 

much lower efficiencies compared with the full length protein. These expression
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efficiencies were taken into consideration when interpreting results from the 

reporter assays using these truncations.

Yeast were next transformed with DNA encoding the GBD-truncations of 

V-cyclin and the original pGAD MED 17 clone identified in the Y-2-H screen. 

Transformed yeast were streaked on to synthetic complete media lacking amino 

acids to enable selection of the transformed yeast. Colonies forming from the 

transformed yeast were observed for colour changes relating to the activation of 

ADE2 gene by Gal4 transcription. Yeast not expressing ADE2 are red in 

appearance whereas its expression induces a colour change to white from red. A 

colour change from red to white was observed in the colonies of yeast 

transformed with the full length V-cyclin and MED17, indicating activation of Gal4 

transcription (Fig 5.2A (3)). Yeast transformed with the truncations of V-cyclin 

(Fig 5.2A (4t5,6,8)) appeared red. pGal4(GBD) V-cyclin (full length) and 

pGal4(AD) MED17 alone also appeared red, suggesting that the full length cyclin 

and MED17 were necessary to activate ADE2 transcription (Fig 5.2A (1,2)).

As an independent test of Gal4 transcriptional activation in the yeast 

transformed with the truncations of V-cyclin, ft-galactosidase assays were 

performed on cultures of the transformed yeast and Miller units were calculated 

(Fig 5.2B). Relative to the GAL vector only, full length V-cyclin induced an 

increase of 31 fold in the activation of the ft-galactosidase reporter. All the 

truncations of V-cyclin decreased activation of the reporter compared to the full 

length cyclin. V-cyclin truncations, aa1-215 and aa1-168 induced 1.4 and 3.1 fold 

activations relative to GAL whereas aa 164-254 and aa215-254 induced 4.3 and
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4 fold activations respectively. These data suggest that the first 215 amino acids 

of V-cyclin are not required for an interaction with MED17. The smaller 

truncations of the C-terminus of V-cyclin activated the reporter to a higher level 

than the C-terminal deletions, however their expression to be significantly lower 

in comparison to full length V-cyclin.

In conclusion, any truncation of V-cyclin significantly reduced the 

activation of the reporter by at least 10 fold. From these data, no interaction 

domain on V-cyclin could be mapped however this may suggest that the whole 

conformational structure of V-cyclin may be important for its interaction with 

MED17.
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Fig 5.1 Expression of GAL V-cyclin fusion proteins in yeast

A series of truncations spanning the length of V-cyclin and fused to 
GBD were made to map the MED17 interaction to a region of HVS 
cyclin in yeast.

A. Schematic of the truncations of GBD V-cyclin fusions cloned with 
predicted masses of GAL fusion proteins.
B. Western blot of GAL V-cyclin fusion proteins expressed in yeast. 
Protein were resolved on a 15% polyacrylamide gel.



A

1 pGBD cyclin and pGAD only
2 pGBD only and pGAD MED17
3 pGBD cyclin (1-254) and pGAD MED17
4 pGBD cyclin (1-168) and pGAD MED17
5 pGBD cyclin (1-215) and pGAD MED17
6 pGBD cyclin (216-254) and pGAD MED17
7 blank
8 pGBD cyclin (169-254) and pGAD MED17

Fig 5.2 MED17 interacts with V-cyclin in yeast

A. Yeast were transformed with the V-cyclin truncations and plated 
on fully supplemented growth medium to observe colour change from 
red to white indicating interactions of expressed fusion proteins with 
MED17.
B. G-gal reporter assays in yeast with trunctions of pGBD V-cyclin and 
pGAD MED17.



5.2 vcyclin and cyclin D1 interact with MED17 in vitro

The result from the Y-2-H screen indicated an interaction occurred 

between MED17 and a viral cyclin. To test whether this interaction occurred in 

an alternative system, in vitro binding assays were performed using GST fusions 

to viral and cellular cyclins and their interacting cdk subunits, cdk4 and cdk6. 

vcyclin of KSHV, a related y2-herpesvirus cyclin was used in these assays. 

MED17 HA was in vitro translated (IVT) in reticulocyte lysates and used in the 

binding assays with the GST fusion proteins to cyclins and cdks.

Binding assays involve the immobilisation of GST fusion protein on 

glutathione sepharose beads. Homodimerisation of GST portion of the fusion 

protein with glutathione bound to beads allows isolation and purification of the 

protein from crude bacterial lysates. IVT proteins can be passed over these 

beads to test for their interaction. IVT MED17 HA was passed over GST fusions 

of the cyclins and cdks. After washing the GST beads, binding between the 

proteins was tested by immunoblotting for the in vitro translated protein, MED17 

HA. In these experiments MED17 was pulled down by GST fusions to vcyclin and 

cyclin D1 as well as by GST fusions to the cdk subunits, but not with GST (Fig 

5.3A and Fig 5.3B). These data indicate that a direct interaction occurred 

between MED17 and the subunits of cyclin/cdk complexes.
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Fig 5.3 MED17 inteacts with vcyclin and cellular cyclins in vitro

MED17 binding assays were used to confirm the interaction of vcyclin 
as suggested by the Y-2-H screen.

A. Western blot for MED17 after pull down with GST and GST-vcyclin. 
Coomassie staining for GST-protein (lower panel).
B. Western blot for MED17 after pull down with GST and GST-cyclin D1, 
cdk4 and cdk6.



5.3 vcyclin and cyclin D1 interact with MED17 in vivo

To test whether an interaction occurs in vivo, co-immunoprecipitation 

experiments were performed with vcyclin and MED17. MED17 HA was co­

transfected with vcyclin, tagged with a FLAG epitope, in U20S cells and cell 

lysates harvested after 48 hours. These lysates were immunoprecipitated using 

antibodies to FLAG after which the immunoprecipitates were immunoblotted to 

detect MED17 HA. MED17 co-immunoprecipiated with vcyclin, but failed to do so 

with an isotype control antibody showing specificity of interaction to vcyclin (Fig 

5.4A). Immunoprecipitates were also Western blotted for cdk6 as a control for 

equivalent immunoprecipitation of vcyclin. The in vitro binding data also indicated 

that cyclin D1 interacted with MED17. Similar immunoprecipitation experiments 

using FLAG tagged cyclin D1 demonstrated in vivo interaction between the two 

proteins (Fig 5.4A). Western blotting for cdk6 showed comparable 

immunoprecipitation of cyclin D1.

5.4 MED17 interacts in vivo with cyclins E and A

Both HVS and KSHV cyclins, in complex with cdk6, can phosphorylate 

substrates of cyclin E/cdk2 and A/cdk2 complexes. We therefore investigated 

whether an in vivo interaction occurred between MED17 and either cyclins E or

A. U20S cells were transfected with MED 17-HA and cell lysates were 

immunoprecipitated with antibodies to either endogenous cyclin E or A. MED17 

was detected in immunoprecipitates to both of these cyclins but not in 

immunoprecipitates with an isotype control antibody (Fig 5.4B). Western blotting
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for cdk2 showed co-immunoprecipitation with cyclin A. These data show that 

MED17 interacts with cyclin E and cyclin A in vivo in addition to vcyclin and cyclin 

D1. These data imply that MED17 interacts with multiple cyclin/cdk complexes. 

Furthermore, the interaction of these G1/S phase cyclins with MED17 suggests 

that the effects of this interaction occur in these phases of the cell cycle. Further 

investigation of MED17 was done to establish the nature of the MED17/cyclin 

interaction.

5.5 Synthesis of GST-MED17 fusion proteins

It is possible that the interaction between viral and cellular cyclins/cdks 

with MED17 mediates its phoshorylation. To test whether MED17 was a 

substrate of the interacting cyclin/cdks, in vitro kinase assays were used. In these 

assays the substrate were synthesised and purified as a GST fusion protein from 

bacteria. Two GST MED17 fusion expression constructs were cloned (Fig 5.5A). 

One of these constructs encodes a N-terminal truncation of the first 147 amino 

acids of MED17 and was made utilising a convenient internal restriction site 

within MED17. The other contained the full length coding sequence of MED17. 

Both MED17 clones are fused to GST at the N-terminus and their expression 

induced by an IPTG inducible promoter.

GST-MED17 (148-651) expression was performed over a time course to 

optimise extraction and purification of the protein from bacteria. Lysed bacterial 

pellets, post-sonication pellets and GST-MED17 purified on glutathione 

sepharose beads were harvested after 0, 1, 2 and 4 hours of induction of
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Fig 5.4 MED17 interacts with vcyclin and cellular cyclins in vivo

A. Co-immunoprecipitation experiments with FLAG-tagged vcyclin 
and cyclin D1. Immunoblot for MED17 shown. Immunoblot for cdk6 
included as a positive control.
B. Immunoblot MED17 after CO-IP of cyclin E and A. Immunoblot 
for cdk2 included as a positive control.



bacteria in 1mM IPTG supplemented media. Protein extracts were resolved by 

SDS-PAGE and the gels stained with Coomassie Blue to observe expression 

and purification of the GST protein. A strongly expressed band, not present in the 

uninduced bacterial culture, was observed after one hour corresponding to the 

predicted mass of the fusion protein of about 75KDa in the bacterial pellet and 

post-sonication pellet fractions (Fig 5.5B). However no fusion protein bound to 

gluthatione beads was observed at any of the timepoints, indicating inefficient 

purification of the protein from the bacterial lysate. These results showed the 

expression of the protein was optimal 1-2 hours post induction. The high 

expression of the protein in the post-sonication fraction indicated that there was 

inefficient extraction of the recombinant protein. By increasing the extraction of 

the protein as well as increasing the scale of the recombinant protein synthesis 

enhanced the amount of protein binding to the beads (Fig 5.5C). These same 

conditions were used to express the full length MED17 as a GST fusion protein.
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Fig 5.5 Synthesis of a recombinant GST-MED17 full length and 
N-terminus truncation

MED17 was cloned as a fusion protein with GST to be used in 
in vitro kinase assays with cyclin/cdks.

A. Schematic of the GST fusions of MED17 made.
B. Expression of the N-terminal trunction GST-MED17 in Escherichia coli 
FB810 shown on Coomassie stained 10% polyacrylamide gel.
C. Expression and binding to GST beads of MED17 fusion proteins 
(FLand aa148-651).



5.6 GST-MED17 binds p53 and cdk6 in pull down assays

Proteins fused to large tags can result in conformational changes to the 

protein structure from misfolding. Previous experiments have already shown that 

MED17 binds p53 and the cdk6 subunit of vcyclin and cyclin D1, in vivo. To 

demonstrate that the GST-MED17 fusion proteins produced were correctly folded 

and therefore retained their binding to p53 and cdk6, pull down assays were 

used to test for the interaction of these proteins. Lysate made from U20S cells 

were incubated with GST-MED17 full length and MED17 (148-651) immobilised 

on gluthation resin, which were subsequently immunoblotted for p53 and cdk6 

(Fig 5.6A). Both MED17 fusion proteins pulled down p53 and cdk6, whereas GST 

alone failed to do so. These data indicate that both GST-MED17 proteins interact 

with p53 and cdk6, in vitro and were therefore used for further functional studies 

of MED17.

5.7 vcyclin/cdk6 phosphorylates GST-MED17 in vitro

The in vitro binding assays showed that both GST-MED17 fusions 

interacted with cdk6, the kinase subunit which interacts with vcyclin and cellular 

D-type cyclins. With previous data showing multiple interactions with cyclin/cdks 

both in vitro and in vivo, collectively these data suggested that MED17 may be a 

substrate of cyclin/cdk complexes. In vitro kinase assays were therefore 

conducted with both MED17 GST fusion proteins and vcyclin/cdk6 to test 

whether MED17 could be phosphorylated. Sf9 cells infected with baculoviruses 

encoding cdk6 or co-infected with vcyclin and cdk6 were used to produce the

205



cyclin/cdks for these assays. Infected cells were harvested 48 hours post­

infection and their cell lysates used in the kinase reaction, containing the GST 

bound proteins and radioactively labelled ATP. Both MED17 fusion proteins were 

phosphorylated by vcyclin/cdk6 and not by cdk6 alone as was GST-Rb (aa792- 

928) which was used as a positive control (Fig 5.6B). GST alone was not 

phosphorylated by vcyclin/cdk6. Of the two GST-MED17 proteins, MED17 (148- 

651) was more robustly and specifically phosphorylated. These results indicate 

that MED17 both full length MED17 and an N-terminal truncation are 

phosphorylated and further indicate the presence of phosphorylation sites and 

other sequences required for phosphorylation were not present in the first 147 

amino acids of MED17. Further studies of cyclin/cdk phosphorylation of MED17 

were therefore conducted with the GST N-terminus truncation of MED17.
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Fig 5.6 GST-MED17 fusion protein interacts with p53 and cdk6 and 
is phosphorylated by vcyclin/cdk6

A. Western blots for p53 and cdk6 after ex-vivo pull downs from U20S 
lysate with GST-MED17 full length (FL) and N-terminus truncation 
(148-651).
B. In vitro kinase assays with cdk6 alone or vcyclin/cdk6 with GST-MED17 
(FL and 148-651) as a substrate. GST-Rb was included as a positive 
control.



5.8 GST-MED17 pulls down cdk4 and cdk2

Data from in vitro binding assays, in vivo co-immunoprecipitations and ex 

vivo pull down assays have indicated that MED17 interacts with cyclin/cdk 

complexes involved in the G1/S phase transition of the cell cycle. Prior to testing 

MED17 in the kinase assays with the cellular cyclin/cdks which promote S-phase 

entry, the interaction of GST-MED17 (aa148-651) with cdk4 and cdk2 in ex vivo 

pull down assays was evaluated. GST-MED17 interacted with cdk4 and cdk2 in 

contrast to GST alone which did not pull down either cdk (Fig 5.7A). Pull downs 

with GST-Rb (C-terminus) were included as a positive control. Immunoblots for 

cdk2 showed a mobility shift corresponding to the kinase active and inactive 

forms of the enzyme. The lower molecular weight band of cdk2 represents the 

kinase active form, whereas the higher molecular weight form is inactive. Like 

pRb, MED17 predominately pulled down the kinase active form of cdk2 

suggesting interaction with active cyclin E and A/cdk2 complexes. These data 

are suggestive of MED17 interacting with the D-type cyclins as well as cyclin E 

and A complexes. Further to this, MED17 phosphorylation by these cyclin/cdk 

complexes was tested by in vitro kinase assays.
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5.9 MED17 is phosphorylated by cellular cyclin/cdks in vitro

vcyclin/cdk6 is functionally homologous to cellular cyclin D1/cdk and cyclin 

E and cyclin A/cdk2 complexes. The data presented thus far indicates that these 

cellular cyclin complexes interact with MED17. In vitro kinase assays, performed 

exactly as those for the vcyclin/cdk6 complexes, were used to investigate 

whether cyclinD1/cdk4, cyclinD1/cdk6, cyclinE/cdk2 and cyclinA/cdk2 complexes 

phosphorylate MED17. GST-MED17 was phosphorylated by all cyclin/cdks 

complexes tested, while GST was not (Fig 5.7B). Crude lysates made from cells 

infected with baculoviruses encoding cdk6 resulted in residual levels of 

phosphorylation of GST-MED17 and Rb, but was greatly enhanced when the 

cyclin subunit was present. These results demonstrate that MED17 is a substrate 

of cellular cyclin/cdk complexes involved in the G1/S phase transition of the cell 

cycle.
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Figure 5.7 GST MED17 is phosphorylated by cyclin/cdks in vitro
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(148-651) and GST-Rb, testing for interactions with cdk4 and cdk2.
B. In vitro kinase assays with cellular cyclin/cdks with GST, GST-MED17 
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5.10 Identification of phosphoacceptor sites on M ED17

The in vitro kinase assays suggested that MED17 was a substrate of the 

cyclin/cdks and also that phosphoacceptor sites were present in amino acids 

148-651. The primary amino acid sequence of MED17 was therefore analysed 

for protein motifs associated with substrates of cyclin/cdks complexes. Previous 

analysis of the amino acid sequence has previously identified a leucine zipper 

motif (aa146-167) within the N-terminus region of the protein (Ito et al., 1999). 

Searching for putative phosphoacceptor consensus sites conforming to 

(S/T)PX(H/R/K), three putative sites located at serine residues 288, 573 and 647 

were found, of which the SP motif at 573 was conserved between all the known 

MED17 homologs, with the exception of yeast and C.elegans (Fig 5.8A and 

Appendix 7.1). A Cy motif (R/K)XL, usually present in cyclin A/cdk2 substrates, 

was also identified at aa279 which was conserved in murine MED17 only. The 

Cy motif with the minimal serine phosphoacceptor sequence, SP, sites have 

been identified as strong predictors of cyclin A/cdk2 phosphorylation (Stevenson- 

Lindert et al., 2003).

To investigate which of the three putative phosphoacceptor sites where 

phosphorylated in vitro, point mutations of nucleotides encoding the serine 

residues within the putative phosphoacceptor sites were engineered to encode 

alanine residues either singly (S288A, S573A, and S647A) or in combination 

(573/647A, 288A/573A/647A (ASP) within the GST-MED17 (aa148-651) fusion 

protein (Fig 5.8B). MED17 mutants were then expressed and tested for their 

ability to be phosphorylated by vcyclin/cdk6 and cyclin A/cdk2 complexes in
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kinase assays. Surprisingly, mutation of any serine residue, either singly or in 

combination, ablated GST-MED17 phosphorylation by vcyclin/cdk6 or cyclin 

A/cdk2 complexes despite equivalent expression and input of GST-MED17 

mutants into the kinase assay, compared to wild type GST-MED17 (Fig 5.8C). 

These data suggest that each serine residues was important for the conformation 

and/or phosphorylation of GST-MED17 in vitro. Studies of the phosphosite 

mutants were continued in vivo to ascertain a function for MED17 

phosphorylation.
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5.11 MED17 phosphosite mutants are repressors of p53-mediated 

transcription

My previous data indicates that MED17 can repress p53 transcription. To 

investigate whether MED17 phosphorylation directly modulates its repression 

activity on p53 transactivation, bax-luciferase reporter assays were done as 

described previously using the MED17 phosphosite mutants. All the site mutants 

of MED17 were able to repress the bax reporter which ranged from 21% to 39%, 

equivalent to 0.79 and 0.61 fold activation, relative to the vector only control. 

MED17 573A/647A in particular showed slightly enhanced repression of 61% 

compared to the other mutants at endogenous levels of p53 (Fig 5.9A). These 

results indicate that all MED17 point mutants were able to repressed p53- 

mediated transcription when over expressed.

5.12 Interaction of the phosphosite mutants of MED17 with p53

The phosphorylation of proteins has a diverse range of effects that may 

alter its function. The addition of a negatively charged phosphate molecule can 

alter protein conformations, revealing new protein interaction sites or altering 

existing ones. To investigate whether the phosphorylation of MED17 changed its 

interaction with p53, co-immunoprecipitation assays with the phosphosite 

mutants of MED17 were performed. S288A, S573A, S647A, S573/S647A and 

ASP mutants were subcloned into a mammalian expression vector, to allow for in 

vivo U20S cells expression and detection of MED17 HA by immunoblotting. 

Expression constructs were transfected into the cells and cell lysates were
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prepared 48 hours post-transfection. Total cell lysates were then 

immunoprecipitated with an antibody against p53. All of the MED17 phosphosite 

mutants tested interacted with p53 by co-immunoprecipitation (Fig 5.9B). 

However, a difference in expression levels among the mutants was observed in 

the Western blots of the input lysates. MED17 647A and ASP seemed to be less 

efficiently expressed compared to the other site mutants however both proteins 

co-immunoprecipitated with p53. Immunoblotting for p300 confirmed the co- 

immunoprecipitation of another p53 interacting protein. In conclusion, all MED17 

point mutants continued to interact with p53 suggesting that these sites did not 

affect the MED17-p53 interaction. This experiment did however suggest that 

differences occurred in MED17 expression when the putative phosphosites were 

mutated to alanine residues, which was further investigated.
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Fig 5.9 MED17 phosphosite mutants interact with p53 and can 
repress p53-mediated transcription

The interaction and function of the MED17 phosphosite mutants with 
p53 was tested to determine a phenotype for MED17 phosphorylation.

A. bax-luciferase reporter assays with MED17 site mutants.
B. Western blots for HA and p300 expression in input lysates and 
co-immunoprecipitates after depletion with a p53 antibody.



5.13 MED17 mutants are expressed at different efficiencies compared to

wild type MED17

To determine whether point mutations at the putative phosphoacceptor 

sites on MED17 affected its expression in vivo, the mutants were transfected into 

U20S cells and the cell lysates were analysed by immunoblot and densitiometry 

to determine changes in expression compared to MED17 wt. In the previous 

experiment, expression levels of MED17 647A and MED17 ASP varied from 

MED17 wt (Fig 5.9), however relative transfection efficiency was not evaluated. 

In this experiment, as a control for transfection efficiency, a plasmid expressing 

ft-galactosidase was co-transfected, and equivalence of transfection was 

assayed by obtaining LacZ values. All LacZ values were found to be in the 

equivalent range of 0.15 to 0.22 suggesting comparable transfection efficiencies 

between the MED17 mutants. These values were used to normalise changes in 

the densitometry readings between samples (Fig 5.10).

When analysing the expression levels of the single mutants, MED17 wt 

and MED17 573A and MED17 647A were at similar levels. However the MED17 

288A mutant was more highly expressed than the wild type protein by 40% 

(compare lanes 2 and 3), indicating that mutation of MED17 at S288 decreases 

its expression. However the double mutant 573A/647A showed a significant 

decrease in expression to 0.4 fold, representing a 60% decrease in expression 

(compare lanes 2 and 6). The double mutation of S573 and S647 suggests that 

both serine residues, which may be phosphorylated in vivo, contribute to 

stabilisation of the MED 17 protein. These data show that the point mutants of
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MED17 are expressed, however, at different efficiencies compared to the wild 

type MED 17. In conclusion, putative serine phosphoacceptor sites on MED 17 

contribute differentially to MED17 expression with S288 negatively regulating and 

S573 and S647 positively regulating MED 17 levels.
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5.14 Inhibitors of cdk1/2 and cdk4/6 decrease MED17 expression

Mutation of putative serine phosphoacceptor sites in MED17 resulted in 

differences in expression at the protein level compared to wild type MED17. 

These finds suggest phosphorylation of MED17 might be responsible for 

regulating its expression. To assess the contribution of cdk activity on MED17 

wild type expression, roscovitine was used to inhibit endogenous cdk1/2 activity. 

U20S cells transfected with MED17 were treated with concentrations of 10, 30 

and 50pM roscovitine for 24 and 48 hours before cells were harvested and 

lysates tested for the expression of MED17 by Western blotting.

MED17 expression decreased, in a dose dependent manner, with 

increasing concentration of roscovitine as compared to the vehicle control 

(DMSO) at both 24 and 48 hours of treatment (Fig. 5.11 A). A faster migrating 

form of MED17-HA was also observed, correlating with increasing concentrations 

of roscovitine treatment. This species was specific to MED17 cells treated with 

roscovitine at 30 and 50pM, being the only detectable form of MED17-HA in the 

cells treated at 50pM at 24 hours of treatment. After 48 hours of treatment, with 

the higher concentrations of roscovitine, MED17 expression was not detectable. 

Western blots for Rb showed lower molecular weight bands corresponding to 

dephosphorylated forms of the protein suggesting kinase activity of cdk2, which 

phosphorylates Rb, was inhibited. These data indicate that inhibition of cdk1/2 

activity promotes a mobility shift and reduced levels of MED17.

To observe whether the effect of cdk1/2 inhibition on MED17 was specific 

to these cdks, an inhibitor of cdk4/6 was used in similar experiments to those
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used for roscovitine (Fig 5.11B). At concentrations of 0.125pM, 0.25|jM and 

0.5pM PD0183812 did not have a significant effect on MED17 expression, 

though by 48 hours these same concentrations decreased MED17 expression in 

a dose dependent manner. Western blots for Rb show a molecular weight shift 

occurring after 48 hours of treatment, which is also phosphorylated by cdk4 and 

cdk6 cyclin complexes, suggesting that the inhibitory effects of PD0183812 on 

cdk4 and cdk6 kinase activity occurs only after 48 hours and may explain why 

the change in MED17 expression levels did not occur at the 24 hour time point. 

These data suggest that inhibition of the kinase activity of the G1/S phase 

cyclin/cdks complexes results in decreased MED17 expression, possibly through 

the inhibiting phosphorylation of residues S573 and S647 of MED17.
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Fig 5.11 MED17 expression decreases in the presence of cdk 
inhibitor drugs, roscovitine and PD018312

A. Western blot for MED17 expression after treatment with cdk1/2 
inhibitor, roscovitine with increasing concentrations and at 24 and 
48 hour time points.
B. Western blot for MED17 expression after treatment with cdk4/6 
inhibitor, PD0183812 with increasing concentrations and at 24 and 
48 hour time points.



5.15 Over-expression of cyclins alters MED17 expression

The data so far suggests that phosphorylation of MED17 by the 

cyclin/cdks alters its expression. To further test this, cyclins D1 and A, as well as 

vcyclin were over-expressed to enhance the kinase activity of their interacting 

cdks. Cyclins were co-transfected with MED17, and the effect on MED17 

expression analysed by immunoblot of the U20S cell lysates (Fig 5.12).

Surprisingly, over-expression of cyclins had differing effects on MED17 

expression. Both cyclin D1 and vcyclin over-expression decreased MED17 

expression, with cyclin D1 having the most marked effect, ablating MED17 

expression. In contrast to the other cyclins, cyclin A over-expression enhanced 

MED17 expression and supports the finding of the experiments using cdk1/2 

inhibitor, roscovitine, suggesting phosphorylation by cyclin A/cdk1/2 complexes 

enhances MED17 expression. However, these data is not supported by the 

previous data using PD0183812 which suggested that the activities of cdk4 and 

cdk6 may enhance MED 17 expression. One possible explanation is that the 

effects of PD0183812 indirectly decrease the kinase activity of cyclin E and cyclin 

A/cdk2 complexes due to cell cycle arrest at the mid-G1 restriction, which could 

be induced by the drug. The concomitant decrease in cyclin E and A expression 

would decrease cdk2 activity and lead to decreased expression of MED17. 

These data suggest that MED17 expression is differentially regulated by the 

various cyclin/cdk complexes during the G1/S phase progression through the cell 

cycle.
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Together with the data studying the expression levels of the MED17 site 

mutants, a model for the differing affects of the cyclins on MED17 expression 

could be that cyclin D1 phosphorylates MED17 at S288 to negatively regulate its 

expression whereas cyclin A positively regulates its expression by 

phosphorylating residues S573 and S647.
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Chapter 6: Discussion

6.1 Transcriptional co-activation properties of MED17

Previous studies of MED17 function in vivo have been mostly limited to 

studies of the Drosophila homolog of MED17 function from which my analysis 

shows a 46% homology to the human MED17. MED17 is a protein co-purified 

with a number of different Mediator complexes. Studies of yeast, Drosophila and 

human MED17 shows its interactions with a variety of transcription factors and 

suggests that MED17 may in fact be a transcription co-activator. One of these 

interacting transcription factors, HSF, recruits MED17 to HSF response elements 

upon stimulus of heat shock. I have shown that human MED17 when over­

expressed is able to activate transcription from a heat shock responsive gene 

reporter in a dose dependent manner (Fig 3.2). Expression of heat shock 

regulated proteins was also tested, Western blotting for HSP60 and HSP40, 

which showed slight increases in their expression. HSP40 expression is inducible 

as opposed to HSP60 which is constitutively expressed. These data suggest a 

role for MED17 in HSF transcription. Though not tested, the stimulus of heat 

shock may have co-operated with MED17 in the activation of HSF mediated 

transcription as well as enhance expression of heat shock regulated proteins. In 

the absence of the stimulus it is possible that expression of transcriptionally 

active HSF homotrimers is low, therefore MED17 recruitment HSF response 

elements to activate transcription is limited by the lack of DNA bound HSF. 

Activation of the heat shock gene reporter by MED17, in the absence of cell
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stress, is still significant and suggests that this transcriptional activator function of 

MED17 is conserved between Drosophila and human.

Furthermore, the microarrays of a cell line over-expressing MED17 

suggested a role for MED17 in the activation of ft-catenin regulated transcription 

as indicated by gene network analysis, the presence of IS-catenin transcription 

targets among lists marker probe-sets and transcriptional assays (Fig 4.4 and 

Table 4.3). The association between MED17 and G-catenin is further implied by 

the interaction of the two proteins in soluble nuclear fractions (Park et al., 2003). 

These data do not exclude the possible activation of this pathway solely by 

upstream regulators of the fc-catenin pathway. Further studies are required to 

establish whether MED17 directly affects G-catenin regulated transcription.

6.2 MED17 as a repressor of p53

In contrast to its co-activator role in HSF regulated transcription, the 

results presented in this thesis suggest that MED17 in fact represses p53 

activation of some of its target genes, which are mostly likely to be involved in the 

apoptotic response. The human Mediator complex has been shown to activate 

p53 transcription in vitro possibly via an interaction with MED17, (Ito et al., 1999). 

However, this interaction does not occur with the Drosophila homologues (Park 

et al., 2003). Using co-immunoprecipitation I have shown that p53 and MED17 

interacts in human cells. Upon further characterisation of the MED 17 effects on 

p53 transcription, I found that MED 17 was able to repress p53 mediated 

transcription when over-expressed in mammalian cells, in vivo. MED17 over­

227



expressing cells also display phenotypes associated with p53 loss of function. 

Mediator has been found to activate p53 in vitro these data may not reflect the 

true function of MED17 effects on p53. Furthermore, my study of the effects of 

MED17 over-expression on HSE regulated transcription suggest that MED17 

does function differently within my experimental systems to what has previously 

been described in vivo for Drosophila cells. Typically the in vitro transcription 

assays used to study the affects of Mediator on transcription are reconstituted 

systems containing highly purified RNA pol II, transcription factors as well as co­

activators which are used to study transcription of a naked DNA template. Under 

such conditions transcriptional activation may be favoured thus repression 

maybe more difficult to observe. These experiments also assay the gross 

transcriptional function of the Mediator complex rather than the contribution of 

individual subunits. Therefore an assumption is made that because Mediator 

activates p53 transcription these effects must be via the p53 interacting subunit, 

MED17. How Mediator regulates transcription from different transcription factors 

is not fully understood. In my studies, I have induced low levels of MED17 over­

expression in a cell line and obtained similar results in p53 reporter assays 

compared to high level over-expression induced by transient transfection, 

reducing the possibility that repression of p53 is an artefact of MED17 over­

expression. MED17 over-expression may in fact promote the assembly of 

Mediator complexes, containing MED17, that repress p53 transcription as well as 

positively regulating transcription by other interacting transcription factors. By 

utilising in vivo assays requiring the over-expression of the MED17 protein, these

228



data presented in this thesis may more accurately define the role of MED17 in 

regulating p53 mediated transcription.

6.3 Selective repression of p53 transcriptional targets by MED17

Data presented in chapter 3 showed the repression of a number of 

different p53 responsive reporters, with the exception of a p21 reporter, on over­

expression of MED17. MED17 failed to repress activation of the reporter at 

endogenous levels of p53 but showed dose dependent repression when p53 was 

over-expressed. These data suggest that MED17 is not a ubiquitous repressor of 

all p53 transcriptional targets but may specifically repress genes which function 

in the execution of apoptosis rather than those involved in cell cycle arrest, such 

as p21. A similar programme of p53 transcriptional repression has also been 

observed with a related protein, the thyroid hormone receptor (TR). Human TR 

131, via an interaction with p53, can repress p53 transcription by a mechanism 

enhancing p53 binding to the p53 RE in the proximal promoter region (Barrera- 

Hemandez et al., 1998). Interestingly, TR 131 mediated repression of p53 is able 

to repress induction of two p53 responsive genes, bax and Gadd45, but not p21. 

Conversely, p53 has been also shown to repress TR 131 mediated transcription 

by inhibiting the TR interaction with TREs suggesting cross-talk between these 

two transcription networks (Yap et al., 1996;Bhat et al., 1997). The isolation of 

Mediator as a TR interacting complex potentially indicates that MED17 has a 

synergistic role with TR in the repression of p53 transcription.
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The microarray analysis of the MED17 cell line also suggests that MED17 

may selectively repress or activate p53 transcription targets. The Ingenuity 

Pathway Analysis revealed a gene network relating to p53 showing up-regulation 

and down regulation of MED17 markers representing p53 transcriptional targets. 

In fact, the expression of the p53 protein is increased while expression of its 

ubiquitin ligase, Mdm2, is decreased in the MED17 over-expressing cell line. This 

decrease in Mdm2 expression may cause a decrease in the turnover of p53 

resulting in increased p53 expression levels and enhanced expression of some 

p53 transcriptional targets that are resistant to MED17 repression of p53 

transctivation. Alternatively, the enhanced expression of the p53 at the level of 

mRNA and protein may also be attributed to the activation of DNA damage 

pathways that are co-regulated by cell cycle gene networks, which were also 

shown to be up-regulated in the MED17 cell line by two independent analyses. 

Addressing the low number of down-regulated MED 17 markers representing p53 

regulated genes, in “unstressed” cell lines activation of the p53 pathway is low 

therefore establishing significantly repressed genes in the relative absence of 

p53 transcription activation becomes more difficult. Further GEM analysis of the 

MED17 cell line using apoptotic insults to activate the p53 pathway may reveal 

more p53 regulated genes that are significantly repressed by MED 17.

6.4 A mechanism for MED17 regulation of transcription

The absence of a mechanistic insight into how Mediator functions makes 

speculating a function for MED17 during transcription more difficult. The
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mechanisms put forward in this section of the discussion therefore assume that 

MED17 is in complex with other Mediator subunits and the mechanisms 

proposed are established from studies of large Mediator complexes. Additional 

complexity is added to these mechanisms as co-activator and co-repressor 

functions of MED17 are considered.

Studies of the function of the Mediator complex have largely focused on 

describing its co-activator properties and have often related these properties to 

the overall structure of the Mediator complex. Mediator is potentially organised 

into modules and sub-modules of subunits as suggested by the absence of some 

groups of subunits between the various isolated forms of Mediator. MED17 

seems to be one member of a group of core subunits that is conserved between 

PC2, CRSP and TRAP Mediator complexes (Sato et al., 2004). Modules may in 

fact be recruited to the core complex dependent on the interacting transcription 

factor or perhaps the requirement for transcriptional activation or repression. 

Notably is the presence of a module of Mediator consisting of MED12, MED13, 

CycC (cyclin C) and CDK8 is associated with a form of Mediator that represses 

transcription. In this arrangement the MED13 subunit interacts with MED17 

(Guglielmi et al., 2004). A mechanism of transcription repression proposed for 

this module may involve the phosphorylation of the cyclin H component of TFIIH 

preventing phosphorylation of the RNA pol II CTD and its subsequent activation 

(Akoulitchev et al., 2000). Alternatively, this module may exclude RNA pol II 

interaction with the Mediator complex or inactivate transcription activators by 

phosphorylation, as suggested by studies in yeast (Chi et al., 2001;Nelson et al.,
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2003). Recruitment of Mediator complexes containing this repressor module may 

even be facilitated by gene specific repressors, as has been shown for Tup-1 

(Zaman et al., 2001). Mediator complexes devoid of the 

MED12/MED13/CycC/cdk8 module may be activators. Therefore this offers a 

mechanism for how Mediator can switch between activator and repressor 

functions, which can be similarly be applied to the transcription targets of MED 17 

(Fig 6.1). Other Mediator associated proteins which interact with p53, including 

TR G1 (described previously) and MED1 (TRAP220) (Ito et al., 1999) may also 

feature in MED17 mediated repression.

More general studies of the Mediator complex have revealed other 

potential regulatory mechanisms which may apply to MED17 mediated 

repression. Investigation of the Drosophila Mediator complex has suggested the 

further arrangement of the subunits in to three distinct sub-complexes, termed 

C1, C2 and C3, which were isolated from nuclear extracts by column 

chromatography (Gu et al., 2002). Two of the sub-complexes, C1 and C2 vary 

both in size and transcriptional properties, with C2 able to activate transcription 

whereas C1 is not. The largest complex C3 is of similar size to previously 

identified Mediator complexes and has properties of a transcriptional activator. 

Identification of the C1 and C2 complexes, both of which contain the MED17 

subunit, suggests added complexity to the regulation of transcription through 

their differentially recruitment to transcription factors and effects transcriptional 

activation or repression. Similar studies of human Mediator complexes have also 

revealed smaller sub-complex, present in a 150KDa fraction, able to repress
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transcription in vitro. This sub-complex also contains the MED12, MED13 and 

CycC and cdk8 subunits, suggesting that transcriptional repressor sub­

complexes exist alongside the larger 2MDa co-activator complex (Wang et al., 

2001). These subunits have also been identified in a 550KDa complex in 

association with pol II but in the absence of GTFs, hinting that this potential 

smaller repressor complex acts via an interaction with pol II (Liu et al., 2001). In 

addition, structural studies of the CRSP complex suggest that Mediator 

complexes may adopt specific conformations dependent on the interacting 

transcription factor, which may further regulate the transcriptional properties of 

Mediator (Naar et al., 2002).
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Fig 6.1 Model for MED17/Mediator repression of p53 regulated transcription

Recruitment of the MED12/MED13/CycC/cdk8 module to Mediator is required for transcriptional repression whereby CycC/cdk8 
phosphorylate the cyclin H component of TFIIH thus inhibiting its kinase activity with cdk7. Inhibtion of TFIIH kinase prevents 
phosphoryation of the CTD of RNA pol II subunit, Rbp1, preventing initiation of transcription. TR(31 and MED1 are proteins shown 
to interact with p53 and may facilitate recruiment of Mediator, alongside MED17, to sites of p53 transcription.



6.5 Cyclin/cdks in the regulation of MED17 mediated transcription

The initiation of this investigation into MED17 was by the identification of 

an interaction between a viral cyclin and MED17 in a yeast-2-hybrid screen. 

Further studies showed that MED17 is a novel substrate of both vcyclin and 

cellular cyclins/cdks complexes, implicating these cell cycle regulators in 

transcriptional processes involving Mediator. My studies with roscovitine, an 

inhibitor of cdk2, the predominant cdk subunit of cyclin A complex also showed a 

dose dependent decrease in the expression of MED17 with the appearance of a 

faster migrating form of MED17, possibly corresponding to non-phosphorylated 

MED17. Analysis of the human MED17 amino acid sequence showed a putative 

serine phosphoacceptor site at residue 573, which is conserved between human, 

rodent, chicken and fly homologues of MED17 and may indicate regulation of the 

MED17 by phosphorylation in all of these organisms. A further two putative 

serine phosphoacceptor sites, at residues 288 and 647, were identified on 

human MED17 however both of these residues were not conserved among all 

the MED17 homologues. A Cy motif, found on many cyclin A/cdk2 substrates, 

was also identified and was conserved between human and mouse MED17. A 

point mutation of any one of these sites was able to ablate MED17 

phosphorylation in vitro by both vcyclin/cdk6 and cyclin A/cdk2. The result from 

this experiment does not identify any particular putative serine phosphoacceptor 

site on MED17 but does show that phosphorylation of MED17 can be disrupted. 

A possible reason for why mutation of just one of the serine residues ablated 

MED17 phosphorylation maybe the misfolding of the recombinant proteins
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preventing phosphorylation. Alternatively, if MED17 is phosphorylated at all three 

serine residues, this result may indicate co-operation between the serine 

phosphoacceptor sites whereby disruption of one site inhibits phosphorylation at 

the other two sites due to conformational changes in the protein.

The experiments looking at the expression of the MED17 point mutants, 

both singly and in combination with one another, does however suggest that all 

three putative serine phosphoacceptor sites function in the regulation of MED17 

expression. Furthermore, cyclin/cdk mediated phosphorylation of MED17 may 

differentially regulate MED17 expression, as suggested by the data over­

expressing the cyclins with MED17 wt. In contrast to cyclin A, over-expression of 

cyclin D1 and vcyclin with MED17 resulted in its decreased expression, 

suggesting they are negative regulators of MED17/Mediator associated 

transcription. It is possible that cyclin D1 and vcyclin mediated decrease in 

MED17 expression could involve phosphorylation of S288, as indicated by the 

mutation of this residue which in fact enhances MED17 expression compared to 

the wild type. The S288 residue may also be too close to the Cy motif to be a 

target for phosphorylation by the cyclin A/cdk2 complex, as has been suggested 

by studies of substrates of this cyclin complex (Stevenson-Lindert et al., 2003). 

More likely is that S573 and S647 of MED17 maybe targeted for phosphorylation 

by the cyclin/cdk2 complexes. Mutation of both these serine residues resulted in 

decreased expression of MED17 compared to the wild type protein, suggesting 

that cyclin A/cdk2 mediated phosphorylation of MED17 enhances its expression. 

These data are further supported by the previous data, over-expressing cyclin A
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with wild-type MED17 as well as experiments with cdk2 inhibitor, roscovtine, 

where changes in MED17 wt expression were observed, consistent with the 

hypothesis that cyclin A/cdk2 phosphorylation enhances MED17 expression.

With differential expression of the MED17 serine phosphosite mutants it 

would therefore be expected that repression of p53 transcription is decreased, 

however, all mutants were able to repress a bax-lucif erase reporter at 

endogenous levels of p53 (Fig 5.9). Only slight variations occurred between the 

mutants for repression of the reporter suggesting that MED17 phosphorylation 

does not directly influence MED17 mediated repression of p53 transcription. 

These studies were limited by the requirement for transient, high level over­

expression of MED17 HA which would make differences in p53 repression more 

difficult to observe. These data do not exclude the possibility that MED17 

phosphorylation affects its transcriptional transactivation properties.

The targeting of the MED17 subunit for phosphorylation by cyclin/cdks 

would seem to directly associate cell cycle phase transition with transcriptional 

processes. As MED17 has been shown to be required for global transcriptional 

regulation, it would seem that cyclin/cdks are upstream regulators of multiple 

transcription factors regulated by MED17 and Mediator. In a model of cell cycle 

cyclin/cdk regulation of Mediator it could be envisaged that MED17 expression 

and therefore transcriptional activity would be highest during late G1/S-phase of 

the cell cycle when the activity cyclins E and A, in complex with cdk2, will be at 

its highest. During this phase, complex formation could be enhanced leading to 

quantitative changes in transcriptional activation or repression.
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6.6 Mediator and the integration of signalling pathways in to

transcription

Mediator has often been viewed as an end-point to signal transduction 

pathways, that integrates signalling pathways and regulates global transcription 

accordingly (Myers and Komberg, 2000; Levine et al.} 2003). A direct role for 

cyclin/cdks in transcription regulation has previously been found by the discovery 

of cyclin C/cdk8 and cyclin T/cdk9 complexes as both activators and repressors 

of transcription. More closely linked to cell cycle regulation, cyclin H/cdk7 has 

also been attributed with a role in transcription, as a part of the TFIIH complex, 

as well as functioning as subunits of CAK responsible for activation of the kinase 

activity of cdks. The kinase activity of these cyclin/cdk complexes is associated 

with phosphorylation of components of the pre-initiation complex, which include 

the phosphorylation RNA pol II CTD during transcription initiation and elongation. 

However these kinase activities have also been extended to the phosphorylation 

of Mediator subunits.

The post-translational modification of Mediator subunits has been 

suggested by mobility shifts during SDS-PAGE, in particular MED4 has been 

noted to have changed migration pattern after phosphatase treatment of purified 

Mediator complex. Subsequently MED4 and MED16 have been demonstrated to 

be novel substrates of Kin28, the yeast homolog of cdk7 (Liu et al., 2004). A 

single threonine residue at Thr237 was identified as the phosphoacceptor site on 

MED4 (Guidi et al., 2004). The function of MED4 phosphorylation remains 

unknown however it is thought that the unphosphorylated protein preferentially

238



interacts with other Mediator subunits, suggesting that phosphorylation alters 

formation of the complex (Balciunas et al., 2003). MED2 has also been proposed 

as a novel substrate of cdk8 where mutational studies of serine 208 

phosphoacceptor repressed transcriptional activation from a 2p yeast expression 

plasmid (Hallberg et al., 2004). Other kinases may also target Mediator subunits 

for phosphorylation. MED2 phosphorylation also repress transcription of genes 

regulated by the Rcs1/Aft1 transcription factor that are involved in responses to 

low iron (van de et al., 2005). Protein kinase A (PKA) as a part of the Ras-PKA 

proliferation signalling pathway in yeast was found to phosphorylate serine 608 of 

MED13 to repress expression of a subset of genes (Chang et al., 2004). These 

signalling pathways link Mediator to cell proliferation as similarly seen for MED17 

phosphorylation by cell cycle associated cyclin/cdks. Interestingly, MED 12, 

MED13, CycC and cdk8 expression in yeast is dependent on nutritional status, 

with expression of these subunits decreasing in response to nutrient limitation 

(Hengartner et al., 1998;Nelson etal., 2003). Whether the Ras-PKA pathway has 

a role in stabilising the expression of these subunits is yet to be determined. 

Further studies may yet reveal more Mediator subunits and different post- 

translational modification that add to the complexity of Mediator regulation.
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6.7 Conclusion

The data presented in this thesis has suggested novel transcriptional 

functions and regulators for MED17 that can be more broadly implicated in the 

functioning of the Mediator complex. I have shown a novel repressor function for 

MED17 in the regulation of p53 transcription in addition to confirming its more 

established role as a transcriptional activator. Also presented is data revealing 

MED17 is a novel substrate of viral and cellular cyclin/cdk complexes, implicating 

these cell cycle proteins as regulators of the Mediator complex. My work has 

contributed to the knowledge of the Mediator complex however, continuing 

studies of this complex are required to understand the complexities of this global 

transcriptional regulator.
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Unified
nomenclature

s.cerevisiae D.melanogaster Rsap/en
TRAP/SMCC

MED1 Med1 Trap220 TRAP220
MED1L
MED2 Med2
MED3 Pgd1/Hrs1/Med3
MED4 Med4 Trap36 TRAP36
MED5 Nut1
MED6 Med6 Med6 hMed6
MED7 Med7 Med7 hMed7
MED8 Med8 Arc32
MED9 Cse2/Med9 CG5134
MED10 Nut2/Med10 Nut2 hNut2
MED11 Med11 Med21
MED12 Srb8 Kto TRAP230

MED12L
MED13 Ssn2/Srb9 Skd/Pap/Bli TRAP240

MED13L
MED14 Rgrl Trap170 TRAP170
MED15 Gal11 Arc105
MED16 Sin4 Trap95 TRAP95
MED17 Srb4 Trap80 TRAP80
MED18 Srb5 P28/CG14802
MED19 Rox3 CG5546
MED20 Srb2 Trfp hTRFP
MED21 Srb7 Trap19 hSrb7
MED22 Srb6 Med24
MED23 Trap150B TRAP150B
MED24 TraplOO TRAP100
MED25 Arc92
MED26 Arc70
MED27 Trap37 TRAP37
MED28 Med23
MED29 Intersex
MED30 Trap25 TRAP25
MED31 Soh1 Trap18 hSohl
CDK8 Srb10/Ssn3/Ume5 Cdk8 hSrblO
CycC Srb11/Ssn8AJme3 CycC hSrbl 1

Table 7.1 Unified nomenclature for Mediator Subunits

The new nomenclature for the Mediator subunits is stated with Mediator subunits 
identified in yeast, Drosophila and Human Mediator complex TRAP/SMCC 
(Bourbon et al., 2004).
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Fig 7.1 Alignment of MED17 homologues

Alignment was done using the Bio Edit sequence alignment programme 
(www.mbio.ncsu.edu/BioEdit/bioedit.html). The protein sequences used for this 
alignment correspond to the Genbank accession numbers given in Table 1.1. 
Bordered sequences indicate amino acid identity between all homologues.
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