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Abstract

Cells embedded within tissues respond to mechanical, chemical and biological 

signals. However, the detail of how mechanical forces are transmitted to cells is 

poorly understood at present and represents a key missing link in Tissue 

Engineering. As cells attach to the fibrils in fibroblast-seeded 3D collagen scaffolds 

they generate contractile forces to levels, which depend on cell type, attachment, 

density, growth factors and matrix stiffness. The aim of this study was to use 

external applied strain to increase matrix stiffness in collagen constructs. Embedded 

resident cells (from three different sites) were then subjected to specific mechanical 

loading regimes in scaffolds of increasing stiffness and matrix remodelling genes 

quantified as markers of mechanoregulatory cellular response. Mechanical responses 

of cells were also quantified as contraction profiles over time.

Our findings indicated that collagen got stiffer with application of high strains and 

visco-elastic properties resulted in minimal transfer of applied loads as recorded by 

movement of indwelling markers. The mechanical and molecular responses of three 

different cell lineages: human dermal (HDF), neonatal foreskin fibroblasts (HNFF) 

and human bone marrow stem (hBMSC) cells seeded in constructs of increased 

stiffness was tested. Results indicated that in HNFFs contraction was predominantly 

attachment-dependent while in HDFs it was predominantly stiffness-dependent. 

hBMSCs showed differential response to serum levels. Molecular responses in 

progressively stiffer constructs investigated were MMP-2, MMP-3, MMP-9, TIMP- 

2,COL-1,COL-3 and IGF-1. Different cell types expressed specific variations in 

gene regulation. The effect of specific mechanical loading (slow and fast ramp)
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regimes on regulation of matrix remodelling genes also showed a lineage dependent

response.

The major impact of this project has been the identification of a strong co-relation 

between substrate stiffness, mechanical loading and regulation of key ECM turnover 

genes. This knowledge is crucial to successful tissue engineering outcomes. The 

differential lineage dependent response is a key finding and will have to be tailored 

depending on cell source and specific outcomes desired.
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Chapter 1: INTRODUCTION 

Tissue Engineering
Tissue engineering (TE) was defined firstly by Langer and Vacanti [1993] who 

stated it to be "an interdisciplinary field  that applies the principles o f  engineering 

and life sciences toward the development o f  biological substitutes that restore, 

maintain, or improve tissue function''. [Langer et al., 1993]. MacArthur and Oreffo 

defined tissue engineering as "understanding the principles o f  tissue growth, and 

applying this to produce functional replacement tissue fo r  clinical use ’ ’ [MacArthur 

et al., 2005]. Recently Williams [2006] defined tissue engineering as ‘ 'the creation 

o f  new tissue fo r  the therapeutic reconstruction o f  the human body, by the deliberate 

and controlled stimulation o f  selected target cells, through a systematic combination 

o f  molecular and mechanical signals

TE is a multi disciplinary field where biology, material science, modelling and 

engineering combine in order to replace or support damaged tissues and restore or 

improve their function. Any tissue or organ is subjected to a range of different 

mechanical forces as a result of body movement, contact with neighbouring tissues 

and due to direct cellular contraction. Cells embedded within those tissues/organs 

respond to mechanical/chemical/biological signals. The importance of external 

mechanical stimulation (applied loads) is now becoming appreciated and researchers 

have studied different loading regimes (some examples are: external agents such as 

thrombin, uniaxial forces and biaxial forces) applied to different scaffolds and none 

or a very wide range of effects (some examples are: actin cytoskeleton, cellular 

contraction and molecular gene regulation) have been shown [Harris et al., 1980; 

Kolodney et al., 1992; Brown et al., 1996; Mudera et al., 2000]. One of the most 

important decisions is the choice of the extra-cellular matrix (ECM), as ECM
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material properties can completely alter the nature of external mechanical loads 

reaching resident cells. This can lead to regulation of gene expression, tissue 

differentiation and tissue architecture [Mudera et al., 2000; Cheema et al., 2005; 

Eastwood et al., 1998; Cullinane et al., 2003].

This study is focused on collagen Type I which is the most common occurring 

protein in the human body and the most distinctive property is its viscoelastic 

property. Because o f this property collagen is used in TE as bio-artificial matrix, 

over the last decade [Eastwood et al., 1994; Tomasek et al., 1992; Brown et al., 

1998; Mudera et al., 2000; Grinnell et al., 2002; Karamichos et al., 2006].

Collagen models
Collagen Type I provides tensile strength and stiffness to the tissues. When tissues 

are damaged their mechanical strength and integrity has to be recovered if full 

function is to be restored, and that is one of the main aims in TE.

Following an injury (such an accident) or surgery scar tissue will replace injured skin 

and underlying or damaged muscle. In these cases formation of scar tissue is 

inevitable, where on the other hand we have bone, epithelia, and gums where 

complete regeneration without scarring is possible. The amount of scarring is often 

unpredictable and may be determined by different factors such as: the size, depth, 

and location of the wound; as well as the age of the individual [Diegelmann et al., 

2004].

The origin of scars is located at the cellular level, where as cells remodel and lay 

down new extracellular matrix (ECM), in this case collagen, contract the injured 

tissue resulting in a thick and dense fibrous connective tissue. Although, the scar
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tissue, replaces (structurally) destroyed tissue, it cannot perform the functions of the 

missing tissue and the result is to loose tissue functional ability.

Normally scars become less noticeable with age, however, major injuries (such as 

burns) can cause loss of a large surface area of skin and may form hypertrophic scars 

(Figure 1). A scar is made up of'connective tissue', ECM deposited in the skin by the 

fibroblasts to close the wound.

Figure 1. Hypertrophic scar formation with arrow 

pointing to the connective tissue formed to close the 

wound. |http://www.med.uottawa.ca/medweb/hetenyi/ 

ayeni_figures.htm]

Host cells (at a scarred tissue) are mainly fibroblasts, and several studies have 

reported growth factors effects on normal skin fibroblasts contractility in collagen 

constructs [Clark et al., 1989; Montesano et al., 1988; Tingstrom et al., 1992; 

Gullberg et al., 1990] but not much has been reported on different cell types 

(including hypertropic scar fibroblasts) [Uppal et al., 2001]. Myofibroblasts are 

responsible for the generation of such contractile forces [Grinnell 1994, Tomasek et 

al., 2002, Serini et al., 1999]. Gabbiani et al. [1971] were first described 

myofibroblasts and since then, the role of myofibroblasts has been extensively 

studied [Desmouliere, 1995; Desmouliere and Gabbiani, 1996; Powell et al., 1999; 

Moulin et al., 2000; Hinz et al., 2001; Van Beurden et al., 2003]. Myofibroblasts 

cause the extracellular matrix to contract (Clark, 1996) and are involved in the 

regulation of proliferation and differentiation cell lineages such as: epithelial,

*
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vascular, and neurogenic cells [Saunders and D'Amore, 1992; Yamagishi et 

a/., 1993]. Myofibroblasts form stress fibers containing the major contractile 

elements actin and myosin II as reviewed by Tomasek et al. [2002]. The activation of 

myosin II that allows its cyclic attachment to actin filaments involves myosin light 

chain phosphorylation by the Ca21-calmodulin-dependent myosin light chain kinase 

(MLCK) [Tomasek 2006], as discussed later.

It would be necessary, therefore, to investigate how different cell lineages respond 

to such environments. The focus of this study was to quantify cellular responses, 

when seeded in collagen constructs, to external mechanical stimulation, in order to 

understand how those forces alter the organisation o f new ECM and how cells 

respond.

Cell embedded scaffolds
Type I collagen is a biomaterial that has been used as 3-D Fibroblast populated 

construct to study the generated tensile forces in culture, where resident cells tend to 

reduce the dimensions (contraction) of the 3-D material [Tomasek et al., 2002; 

Grinnell, 1994], When such constructs are attached to a force monitoring device such 

as the Culture Force Monitor (CFM) used here (Figure 2), the pattern of forces 

generated can be quantified and correlated with fibroblast motility/traction, 

contraction and fibril remodelling [Eastwood et al., 1994; Brown et al., 1998; Brown 

et al., 1996; Delvoye et al., 1991].
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Figure 2. The CFM . Collagen construct attached between a fixed point and a force transducer 

which is then connected to a PC for real time contraction forces m easurem ents.

Extension of such a monitoring device is the tensional-CFM (t-CFM) [Eastwood et 

al., 1998]. A motor attached to the stage of CFM provides the option of mechanical 

loads application to the collagen constructs (Figure 3). Unidirectional tensile loads in 

predetermined patterns applied throughout this study and will be described later. 

Mechanical forces transferred to the cells together with ECM surface biochemistry 

and soluble factor composition regulate tissue turnover and repair. In connective and 

contractile tissues cell control is often dominated by mechanical signals, cells also 

generate their own forces in response to different mechanical or chemical signals as 

part of normal tissue maintenance and renewal, hence the use of the t-CFM system.
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Figure 3. The t-C FM . The m otor is been added to the CFM set-up to provide mechanical 

stim ulation to collagen constructs as it moves the stage.

Force transducer

Floatation bars

Stepper
Motor

Fix point

Such t-CFM systems have been used to predictably align cells and cellular 

reorientation in response to patterns of strain setup within the collagen gel construct 

[Eastwood et al., 1998; Tomasek et al., 1984; Delvoye et al., 1991]. Other studies 

have correlated changes in cell shape with cell attachment and force generation in 

similar constructs [Talas et al., 1997; Halliday et al., 1995] and alteration in 

fibronectin fibre assembly [Yamamoto et al., 2001]. Application of mechanical 

strains on collagen constructs means that collagen fibrils within the body of this 

material can be considered as a conduit by which mechanical information is 

transmitted both locally between cells and regionally across the construct. 

Interactions between collagen and cells are critical for the mechanical regulation of 

cell activity as well as for connective tissue homeostasis [Tomasek et al., 2002; 

Brown et al., 1998]. Investigators have reported that collagen contraction by resident 

cells reflects the mechanism of wound contraction. Tsai et al [1995] have analyzed
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the contraction potency of fibroblasts that had been obtained from hypertrophic scar, 

normal skin, and normal oral mucosa, and concluded that the degree of initial 

collagen contraction was closely related to morphological changes of fibroblast 

resident cells. However, in vivo, tissues are assemblies of one or more types of cell 

and their associated extracellular matrix, which is produced by the cells in a 

geometrically organized manner. This study tested three different cell lineages and 

their responses (cellular and molecular) to stiff collagen matrices.

Mechanical forces in connective tissues in vivo and in vitro
Conventional mechanics deals with the strength and physical properties o f any given 

material. Means of testing this is the load-deformation behaviour of the material. In 

the case o f biomechanics the behaviour of the material that has been synthesized by 

the cells (i.e., extracellular matrix, ECM) is tested. The effects of mechanical strain 

on ECM/cell behaviour, has been reported in literature and discussed here. Mudera et 

al. [2000] showed significant up-regulation of matrix degrading genes following 

application of strain. Furthermore, there have been a number of studies describing 

different cell straining systems, as reviewed by Langelier et al [Langelier et al, 

1999]. Those systems applied forces to cells when seeded on 2-D and/or 3-D 

environment. However, there are differences between the systems; for example 

Flexercell system [Banes et al., 1985] strain application was possible though force 

monitoring was not. At the other end of these systems, the tensional-Culture Force 

Monitor (t-CFM) [Eastwood et al., 1998] where tensile loading and force monitoring 

is possible. It is clearly important to assess each experiment and design the optimal 

strain values/regimes in order to characterize and quantify cellular responses.
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Cell-matrix interactions
Collagen is found in almost every tissue and organ, particularly skin, cartilage, 

ligaments, bone. In fascia, ligaments and tendons, 80% of the dry weight is collagen 

where its hierarchical fibrillar organisation is key to overall gross tissue strength and 

stability. Fibroblasts synthesize and secrete the fibrils which are the principal source 

o f tensile strength in tissues; define shape and form of tissues [Canty et al., 2005].

At present, there are 16 different types of Collagen [Ross et al., 1995] that are 

classified on the basis of chronology of discovery. Collagen gets its high tensile 

strength from its fibres. Collagen fibres appear as wavy structures of variable width 

and indeterminate length. They appear as a bundle of fine, thread-like subunits 

known as the collagen fibrils. Fibrils size varies between tissues; from 20nm in 

diameter for developing tissues to 200nm in dense regular connective tissue (for 

example tendons) or in tissues that are subject to considerable stress.

The collagen molecule (also called tropocollagen) measures about 300 nm in length 

and 1.5 nm thickness. It has a head and a tail which become aligned when forming a 

fibril. Head and tail are arranged in overlapping rows with a gap between the 

molecules within each row. The strength of the fibril is due to covalent bonds 

between collagen molecules of adjacent rows (Figure 3b).
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Furthermore, Fibroblasts seeded in collagen ECM play a vital role in both immediate 

and long term responses to mechanical forces [Grinnell et al., 2002]. Mechanical 

stimuli on such constructs play a key role in regulating function (such as actin 

cytoskeletal network, integrins and signal transduction alteration) in a variety of cell 

types [Shyy et al., 2002; Sadoshima et al., 1997; Liu et al., 1999; Tummina et al., 

1998]. Further, interactions between cells and surrounding collagen are critical for 

the mechanical regulation of cell activity and for connective tissue homeostasis 

[Eckes et al., 2004; Brown et al., 1998; Tomasek et al., 2002], as well as the balance
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of functions like migration, attachment, proliferation, differentiation, and gene 

expression [Gentleman et al., 2003; Tomasek et al., 2002].

Recent studies in human dermal cells suggest that fibroblasts within 3-D matrices 

respond to changes in mechanical loading in a way that maintains “tensional 

homeostasis” (constant tension) in the surrounding matrix [Eastwood et al., 1994], 

Tensional homeostasis may be fundamental to the regulation of tissue tension under 

normal conditions, during development and also in response to injury.

Studies using planar (2-D) substrates have demonstrated that the development of 

focal contacts and stress fibers are tension-dependent processes, [Riveline et al., 

2001; Tamariz et al., 2002; Burridge et al., 1996] and that these structures tend to 

align along the tensile axis [Kolodney et al., 1992; Takakuda et al., 1996; Wakatsuki 

et al., 2003]. Cell migration and spreading are also influenced by the mechanical 

stiffness of the ECM. In general, cells on flexible substrates are more migratory and 

have smaller focal adhesions than those on more rigid substrates [Pelham et al., 

1997]; cells also preferentially spread on more rigid substrates [Lo et al., 2000]. 

Although these studies using 2-D substrates have provided important insights into 

cell mechanical behavior, cells reside within 3-D extracellular matrices in vivo, and 

ECM geometry has been shown to effect both cell morphology, adhesion 

organization and mechanical behaviour [Bard et al., 1975; Tomasek et al., 1982] The 

mechanism of cell-mediated collagen contraction has been reported in literature 

[Eastwood et al., 1994; Mudera et al., 2000; Cheema et al., 2003] and involves 

interactions between cells and the surrounding matrix (ECM) via specific cell 

surface receptors [Klein et al., 1991]. In literature, examination of collagen 

contraction, by resident cells, at different time points showed that the rapid increase
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in force generated (described by the authors as traction phase) corresponded with 

cell attachment and the extension of cell processes which are a prerequisite to any 

form of cell migration [Eastwood et al., 1996].

The rate and magnitude of contraction, though, is dependent on several factors such 

as cell density, collagen concentration and percentage of serum present (mainly due 

to LPA presence; discussed later) [Parizi et al., 2000]. Furthermore, the mechanical 

responses of fibroblast-seeded collagen constructs, has been reported in literature, by 

investigating different test parameters such as stretch rate and stretch amplitude 

[Wakatsuki et al., 2000]. It is important, therefore, to quantify contractile forces 

produced by the cells in response to different ECM environments and how these may 

alter the cytoskeleton structure and/or cellular orientation of the cells.

So far three model systems (Figure 4) with distinctly different mechanical properties 

have been developed and reported in literature: a) The floating collagen constructs 

model (Figure 4a) where fibroblasts spread and attach to collagen fibers. Tractional 

forces generated by the cells (contraction) lead to compaction of the collagen gel 

[Harris et al., 1981; Tomasek et al., 1992]. In this model, the collagen fibers are free 

to move in all directions; tension is therefore distributed isotropically, and the matrix 

remains mechanically relaxed [Grinnell 1994]. b) The stabilised collagen construct 

model (Figure 4b). Here the tractional forces result in reduction of matrix height; 

however because the collagen is attached to the underlying plastic substratum 

tension is distributed anisotropically along lines of stress [Mochitate et al., 1991; 

Tomasek et al., 1992]. Finally, c) The stabilised collagen model (Figure 4c). The 

collagen construct is released from the plastic substratum after 12h, leading to a
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rapid contraction of the collagen [Mochitate et al., 1991; Tomasek et al., 1992] as a 

result of a contraction by the individual cells, involving an actin and myosin 

interaction similar to that which occurs in smooth muscle [Tomasek et al., 1992].

Model A Model B Model C

Stage A

X
Stage B

Stage C

Petri dish 

■ ■ ■  Collagen construct

Figure 4. T h ree  models o f collagen constructs are  shown. Model A: collagen is released from  the 

plastic su b stra tu m  at time=Oh and  con tracted  by resident cells; M odel B: collagen is a ttached  to 

the  plastic su b stra tu m  (Stage A) and  rem ains attached d u rin g  contraction  (Stage B); Model C: 

collagen construc t is a ttached  to the plastic substra tum  (Stage A) and  a fte r  12h is released 

(Stage B), leading to a rap id  contraction  of the collagen (Stage C)
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Different cell types respond differently to mechanics
Fibroblasts have been, so far, the most popular cell type seeded in collagen 

constructs. This study investigated how three different cell types respond to 

increased matrix stiffness and how may these be modulated by it.

Human Adult and Neonatal Skin Fibroblasts

Fibroblasts are found in all connective tissues, and have been shown to synthesize 

and secrete extracellular matrix proteins under cell culture conditions [Hedman et al., 

1979]. They are a well established cell type for in vitro analysis of fibroblast growth, 

migration and collagen metabolism [Gay et al., 1976; Booth et al., 1980; Peterkofsky 

et al., 1965; Hausmann 1967]; as well as known for growing in biodegradable 

materials to produce a living dermal replacement [Hansborough et al., 1992; Cooper 

et al., 1991]. This study tested two types of fibroblasts: Human Dermal Fibroblasts 

(HDF) derived from the dermis of adult skin and neonatal fibroblasts (HNFF) 

derived from normal human neonatal foreskin.

Human embryonic and adult stem cells
Stem cell is a cell type with potential to repair damaged organs/tissues. From heart 

muscle tissue to bone and from cartilage to skin, stem cells have been associated 

with major input of repair of these organs [Korbing et al., 2003; Kelly et al., 2005; 

Grigoropoulos et al., 2006].

There are two main sources of stem cells: a) Human embryonic and b) adult stem 

cells (Figure 5) each with advantages and disadvantages.
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Adult Human Stem Cells have been isolated from a variety of tissues [Barry et al., 

2004] where their differentiation potential is highly attractive. Many adult tissues 

contain stem cell population however the major source of adult mesenchymal stem 

cells is the bone marrow (hBMSCs). Researchers [Friedenstein et al., 1987; 

Kuznetsov et al., 1997] have shown that these hBMSCs are contributing to the 

regeneration of a variety of tissues, such as bone, cartilage, muscle, ligament, tendon, 

adipose and stroma. hBMSCs were first identified and isolated by Friedenstein 

[Friedenstein et al., 1966] from rat marrow. Despite the fact that hBMSCs are a very 

small fraction (0.001-0.01%) of the total population, isolation and expansion is 

possible in high efficiencies. hBMSC isolation and purified cultures are confirmed 

using specific surface marker proteins (according to the literature) [Jorgensen et
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al.,2003; Barry et al., 2004; Pittenger et al.,1999]. Choices of markers were used in 

this study and are listed on table 1.

Characteristic hBMSC References
CD14 - ve CD 14 is a surface protein 

preferentially expressed on 
monocytes/macrophages. It binds 
lipopolysaccharide binding protein 
and recently has been shown to bind 
apoptotic cells.

[Jorgensen et al.,2003; 
Barry et al., 2004; 
Pittenger et al., 1999]

CD31 - ve platelet/endothelial cell adhesion 
molecule (CD31 antigen)

[Jorgensen et al.,2003; 
Barry et al., 2004; 
Pittenger et al., 1999]

CD34 - ve CD34 is a monomeric cell surface 
antigen with a molecular mass o f 
approximately 110 kD that is 
selectively expressed on human 
hematopoietic progenitor 
cells.[supplied by OMIMJ

[Jorgensen et al.,2003; 
Barry et al., 2004; 
Pittenger et al., 1999]

CD44 + ve CD44 The protein encoded by this 
gene is a cel 1-surface glycoprotein 
involved in cell-cell interactions, 
cell adhesion and migration. It is a 
receptor for hyaluronic acid (HA) 
and can also interact with other 
ligands, such as osteopontin, 
collagens, and matrix 
metalloproteinases (MMPs).

[Jorgensen et al.,2003; 
Barry et al., 2004; 
Pittenger et al., 1999]

CD 105 + ve CD 105 is a homodimeric 
transmembrane glycoprotein highly 
expressed by endothelial cells

[Jorgensen et al.,2003; 
Barry et al., 2004; 
Pittenger et al.,1999]

Table 1. Surface marker proteins: CD14, CD31, CD34, CD44,and CD10S, used for hBMSCs

staining are shown together with a brief description and their expression (-ve or +ve) from 

hBMSCs.
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Molecular genes
This study investigated the effect of increasing matrix stiffness on cell force 

generation as well as its effect on molecular mechanoresponsive genes. This is based 

on the findings that uniaxial pre-strain significantly alters the collagen stiffness.

Eastwood and co-authors [1998], using the t-CFM, has proved possible to identify 

mechano-responsive genes such as MMP-1, -2, and -3. Prajapati et al [2000] 

demonstrated strain dependence of HDFs in this 3-D system in terms of protease 

expression (MMP’s and plasminogen activator). Mudera et al [2000] identified a 

sophisticated relationship between force vector and cell alignment operates to 

regulate gene expression of key matrix degrading enzymes. Increases in a range of 

proteins including tenascin and collagen levels in response to tension have been 

used. These studies suggest that cells respond to altered strain in their matrix in a 

number of ways, though correlation between cell response and the triggering aspect 

o f mechanical loading is rarely investigated [Choquet et al, 1997].

In vivo, the early stage of wound healing in almost all tissues is the expression of a 

variety of extracellular proteolytic enzymes such as MMP-2 and MMP-9 

investigated by Ritty and co-authors [2003] on tendon cells. These proteinases have 

several functions during healing and scar formation such as modulation and removal 

of compromised ECM.

Table 2 summarizes the genes used throughout this study as markers/indicators of 

matrix synthesis/degradation.
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Gene Name Gene Abbreviation Characteristic References
M atrix M etalloprotem ase-2 M MP-2 This gene encodes an enzym e 

w hich degrades type IV 
collagen, the m ajor structural 
com ponent o f  basem ent 
m em branes

[B rinckerhoff et al , 2002]

M atrix M etalloproteinase-3 MMP-3 This gene encodes an enzym e 
which degrades fibronectin, 
laminin, collagens III, IV, IX, 
and X, and cartilage 
proteoglycans The enzym e is 
thought to be involved in 
wound repair, progression o f 
atherosclerosis, and tum or 
initiation.

[B rinckerhoff et al., 2002]

M atrix M etalloproteinase-9 M M P-9 The enzym e encoded by this 
gene degrades type IV and V 
collagens. S tudies in rhesus 
m onkeys suggest that the 
enzym e is involved in IL-8- 
induced m obilization o f 
hem atopoietic progenitor cells 
from bone m arrow, and m urine 
studies suggest a role in tumor- 
associated tissue rem odeling

[B rinckerhoff et al., 2002; 
R itty et al., 2003]

Tissue Inhibitor o f  
M etalloproteinase-2

TIM P-2 This gene is a m em ber o f  the 
TIM P gene family The proteins 
encoded by this gene family are 
natural inhibitors o f  the matrix 
m etalloproteinases, a group o f 
peptidases involved in 
degradation o f  the extracellular 
matrix

[B rinckerhoff et a l.,2002 ]

C o llag en -1 COL-1 Collagen facilitates successful 
adaptation o f  in vitro culture 
and enhances expression o f 

cell-specific m orphology and 
function The high protein 
concentration results in a 

s turdier gel which provides 
m axim al support to maintain 

the 3D  environm ent

[G autreau et al.., 1999; Abir 
et al., 2001 ]

Collagen-3 COL-3 Type III collagen appears first 
in a wound and initiates the 

hem ostatic process In addition, 
3-D m atnx form ulations (e g , 

sponges) o f  recom binant human 
type III collagen dem onstrate 
superior mechanical integrity, 
larger surface area, and higher 
hem ostatic activity than bovine 
collagen type I in experim ental 

m odels

[Gelberm an et al., 1980; 
Bailey et al., 1977]

Insulin 
G row th F acto r-1

IGF-1 IGF-I is a com plex gene that is 
regulated by m ultiple prom oters 
and is capable o f  producing at 

least four different m ature IGF- 
1 precursor proteins (i.e. 

isoform s) Because o f  the 
variety o f  isoform s it remains 

unclear if  all the forms o f  1G F-I 
have sim ilar effects

[Ham eed et al., 2004; 
S p an g en b u rg , 2003]

Table 2. Gene markers used throughout this study are summarised here. MMP-2,-3,-9, TIMP-2,

COL-1.-3, and IGF-1. A brief description and reference of each one of the genes are listed.
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Thesis overview

The purpose of this study was to test how mechanical forces are transmitted through 

bio-artificial matrices using collagen as an example and to test the effect of 

mechanical stimuli on its physical properties as well as the responses by the resident 

cells. This study focused on an in vitro tissue model, i.e. fibroblast-populated 

collagen constructs. Native Type I collagen was used as the bio-artificial matrix. 

Collagen is the most common mammalian connective tissue protein, found in skin, 

cartilage, ligament and bone. Fibrillar Type 1 collagen is widely used to form bio- 

scaffolds for tissue engineering (TE) and repair applications [Brown et al., 2005; 

Ehrilch et al., 1990].

Hypothesis under test

“Stiffness of 3D collagen constructs can be controlled by applying external 

mechanical strain. The micro movement as perceived by the cells within these 

constructs is dependent on stiffness of constructs” .

“ Cells seeded in a collagen construct will up-regulate/down-regulate their pattern of 

force generation and expression of mechano-responsive genes (MMP-2, -3, -9, 

TIMP-2, COL-1, -3, and IGF-1) in response to changes in stiffness of the collagen 

construct” .

” Up-regulation/down-regulation of cell responses (i.e. contraction forces and gene 

regulation), in increasingly stiff collagen constructs, will differentially be modulated 

between different cell lineages” .
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“ Introduction of two different ramp loading regimes will up-regulate/down-regulate 

the expression of mechano-responsive genes (MMP-2, -3, -9, TIMP-2, COL-1, -3, 

and IGF-1) differentially, depending on cell lineages” .

Aims and Objectives

The overall aim of this study was to progressively alter the properties (organisation 

and stiffness), of native Type I collagen constructs, and use the embedded resident 

cells (fibroblasts) as the load sensing system (i.e cyto-sensors) in order to quantify 

cellular (physical and molecular) responses.

The main objectives of this study are outlined below:

1) To test the ability to increase collagen matrix stiffness by applying increasing 

uniaxial pre-strains and optimising stiffness after visco-elastic relaxation of 

collagen independent of cell involvement.

2) To quantify micro movement as perceived by cells embedded within these 

constructs of increasing stiffness, using indwelling markers.

3) To quantify the mechanical contractile cellular responses of cells embedded 

in increasingly stiffer constructs in terms of contraction forces generated.

4) Test the effect of defined ramp loading regimes on regulation of relevant 

ECM genes (MMP-2, -3, -9, TIMP-2, COL-1, -3, and IGF-1) in cells 

embedded in progressively stiffer constructs.

5) Test lineage response (human dermal fibroblasts, neonatal foreskin 

fibroblasts and human bone marrow stem cells) of defined ramp loading 

regimes (molecular and contractile).
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Chapter 2: Materials & Methods

Processing of Tissues
Fresh full thickness skin biopsy was obtained from the surgery theatres (Full ethical 

approval) and human dermal fibroblast cell culture was established using a routine 

explant technique [Burt et al., 1992]. Skin obtained was in a variety of tissue sizes 

(depending on operation/patient).

Figure 6. Layers o f hum an skin consist of the 

epiderm is follow by the derm is w ith a fatty  layer 

beneath them  |M edicinenet website: 

w w w.m edicinenet.com / m elanom a/article.h tm  ]

Sw eat gland

Normal Skin

Skin comprise of three tissue layers (epidermis, dermis and underlying fat), as shown 

in figure 6. The layer of subcutaneous fat was scraped off the sample, using sterile 

carbon steel scalpel blade, and the remaining two layers were explanted. Small 

pieces of the skin (2mmx2mm) were cut, using scalpel blades, and skin pieces placed 

in flasks with the dermis side down. Explants were incubated at 37°C and 5% CO: 

for 1 hour, at which point explants were stuck down and dry and standard fibroblast 

growth medium DMEM was added [Invitrogen, Scotland, UK] supplemented with 

10% foetal calf serum (FCS) [First Link Ltd, Birmingham, UK], lOOu/ml Penicillin 

and lOOug/ml Streptomycin [Invitrogen, Scotland,UK] and L-Glutamine [2mM -  

SIGMA, Poole, UK].
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Cell migration, from explants, was observed using microscopy and when cells had 

covered 70%-80% of the flask surface explants were removed gently using a plastic 

pipette, and washed off with sterile 0.1M Phosphate Buffered Saline (PBS).

Cell culture
Cells were passaged at 70-80% confluence and used for experiments between 

passages 3-10.

Flasks containing cells were first washed 2 times with 0.1M Phosphate Buffered 

Saline (PBS). Flasks were incubated for 5-10 minutes at 37°C, containing trypsin 

(0.5% in 5.3 mM EDTA); used to release cells. Adherent cells were then released 

from the substratum and the action of trypsin was inhibited by addition of 15ml 

serum-containing DMEM. Cells were then centrifuged at 400g for 5 minutes to 

obtain cell pellet and re-plated at lower concentration (1:3), to allow cell expansion.

Human dermal fibroblasts (HDF’s) used in this study were cultured in DMEM 

supplemented with 10% FCS and/or 20% FCS during experiments described later. 

HNFF’s were only cultured in 10% FCS.

Human Neonatal Foreskin (HNFFs)
Human tissue explants and fibroblast cultures were established from freshly 

harvested neonatal foreskin tissue (full ethical approval) and foreskins derived cells 

(HNFF) were used for experiments in this study. HNFFs culture was identical to 

HDFs described above [HNFF cells were a gift from Dr. Jeffrey Teumer, Intercytex 

Ltd, USA].
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Human Bone Marrow Stem Cells (hBMSCs)
Normal Human bone marrow aspirates (normally 3-5ml) were obtained from patients 

undergoing routine surgery for hip/knee replacement (full ethical approved). Marrow 

aspirates were withdrawn, using a sterile 21G needle inserted into the patient’s bone 

(from hip/knee bones). Marrow was placed into tubes containing 3000 units of 

heparin and centrifuged at 900g for 10 minutes at room temperature to remove fat 

and debris. The supernatant was loaded onto a 20 ml ficoll (1.073g/ml density 

gradient; Amersham Pharmacia Biotech SE 75285). This was then centrifuged at 

1160g for 30 minutes at room temperature and decelerated slowly (270sec. to 

standstill-in order to keep the interface intact). Following centrifugation the top layer 

including the interface (which contains the nucleated cell fraction with human Bone 

Marrow Stem Cells hBMSC’s ) was aspirated and placed into new sterile centrifuge 

tubes. PBS was then added, for washing, and centrifuged at 400g for 5 minutes. 

Finally, cells were cultured in DMEM (in T25 flasks) [Koller et al, 1998] 

supplemented with 10% and/or 20% FCS (reasons described later) and lOOu/ml 

Penicillin and lOOug/ml Streptomycin.

The Culture force monitor (CFM) and the tensioning culture 
force monitor (t-CFM)
In this study the responses of fibroblasts have been investigated, when seeded in 

collagen constructs and subjected to external mechanical stimuli, using a specially 

fabricated device the tensioning-culture force monitor (t-CFM), Figure 7 [Eastwood 

et al.,1998].
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A force monitoring system was first developed, by M.Eastwood [Eastwood et al., 

1994] in which a fibroblast populated collagen construct (FPCL) was suspended 

between fixed points to give a rectangular, uniaxial force generation reading. A force 

transducer at one end and an anchoring point at the other provided the axis for 

measurement of overall contraction by the FPCL. This passive measuring instrument 

was termed the CFM (Culture Force Monitor) [Eastwood et al., 1994; Mudera et al., 

2000].

This was then further developed, by Eastwood et al [1998] to a computer driven 

tensional loading device (t-CFM; Figure 7) capable of unidirectional controlled 

loading. t-CFM was used here to apply different predetermined programmed tensile 

loads (described later) to the collagen constructs, using PC-based software X I50 

(Parker Automation, City, USA). The analogue output was amplified, digitised and 

plotted using LabView software (National Instruments, v.6, Newbury, UK)

Figure 7. The t-C FM . Cell seeded collagen construc t is placed between a fixed point and a force 

tran sd u cer. The m otor shown was used to apply m echanical stim ulus (Eastwood et al., 1998; 

M udera  et al., 2000|.

Force transducer

Floatation bars

Motor

Fix point
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Force transducer calibration
Measurement of contraction forces in this study was monitored using a force 

transducer, described before, mounted on a CuBe beam which was calibrated 

regularly, as follows.

Force transducer 

Figure 8. W eight and  tran sd u cer, used, ca lib ration  position shown

The Cu-beryllium transducer beams were placed on the CFM stage with the flat 

surface facing parallel to the ground (Figure 8). Five weights plus a transducer beam 

free standing i.e Og (0, 29.4, 49, 196, 294 and 490g) were placed on the hook at the 

tip of the transducer. Each mass gave a force reading and was recorded for 5 minutes 

for stable operation check. The calibration curve was plotted (Figure 9) as force 

(Dynes) against applied actual weight (grams).

Weight
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Figure 9. Typical calibration curve is shown from one of the transducers used here. Force 

(Dynes) is plotted against weight used.

Linearity was important to ensure accurate force readings, using the transducer 

beams, and a value close to 1 was expected for the ‘R2 value (value indicating how 

close to linearity is the line plotted. 1 is perfect match to straight line). Transducers 

with 4R2 < 0.95 were not used.

Preparation of collagen constructs
Collagen constructs were prepared as described previously [Eastwood et al., 1998]. 

4ml o f Type I rat tail collagen [First Link UK Ltd, Birmingham, UK] was added to 

0.5ml of lOx Minimum Essential Medium Eagle [Invitrogen, Scotland, UK]. After 

drop-wise neutralization with 5M and 1M sodium hydroxide (until colour changed 

from yellow to light pink observed; pH from acid to neutral; 7.0), a suspension of 5 

million cells (counted using a haemacytometer) in 0.5ml DMEM was added to the 

collagen mixture. Two plastic end floatation bars (Figure 10b) were pre coated with
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neutralised collagen. The solution containing the cells and the collagen was poured 

into a 75 x 25 x 15mm well (with the floatation bars), and allowed to gel for 30 

minutes at 37°C.

One plastic spacer bar was positioned (before collagen incubation) at each of the 

short ends of the well to give 10mm spaces for mechanical extension and they were 

removed, after collagen had set (Figure 10a).

65mm

Spaces Bars

A-frames

G ap to allow for 
stre tch /s tra in

Floatation
Bars 6(b)

F igure 10. (a) Collagen gel shown with spaces bars added for 10mm space w ithin the mold 

(5mm a t each sort end) and  (b) Collagen gel shown afte r spaces bars rem oved, w ith A -fram es 

positions shown when hooked to the t CFM .

40



Constructs were hooked to the CFM/t-CFM ( following 30 minutes incubation to 

allow constructs to set) via the A-frames attached to the fixed point at one end and 

the force transducer on the other (Figure 7). The force transducer was connected to 

the PC via an amplifier to provide force readings per second through LabView 

software, as described above.

Strain measurements within collagen constructs
Predictable cellular alignment (Figure 1 lb) to mechanical stimuli along the lines of 

principal strain, have been previously demonstrated [Eastwood et al., 1998], using 

the t-CFM. Using Finite Element Analysis (FEA) in this model a stress shielded 

zone (D-zone) was predicted due to stiffness of floatation bars used where 

mechanical stimuli was not along a principal line of strain. Cells within this zone 

were stellate shaped Figure 1 lc) with no alignment.

A -zone

D -zone

F igure 11. FEA analysis (a) pred ic ted  cell alignm ent (b) in the A-zone (d) of the collagen and 

cells w ith random  orien tation  and  stellate m orphology in D-zone (c) [Eastwood et al., 1998|
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For direct measurement o f local strain within acellular collagen constructs, stainless 

steel markers (3x0.4mm) were cast into predetermined positions, (a) at the centre and 

(b) near the short floatation bar ends o f  each gel construct (Figure 12). One pair was 

parallel to the loading axis in the A -  zone and one pair was perpendicular with the 

floatation bar in the D-zone [Karamichos et al., 2006]. The position and orientation 

o f  stainless steel markers were decided in order to mimic cell orientation/alignment 

(aligned parallel to the applied load axis in the A-zone and randomly orientated in 

the D-zone), as shown by Eastwood et al. [1998]

Loaded axis

Fix pointForce transducer

Stainless steel 
marker pairs

Figure 12. F our stainless steel m arkers em bedded w ithin collagen constructs. O ne p a ir  in the A- 

zone and  one in the  D-zone.

Collagen constructs were strained, using both the t-CFM or manually through a 

screw-vemier attachment to the culture bars (Cell free constructs using both 

methods, cell seeded constructs using the t-CFM only). For manually strained 

constructs, 1mm strain steps were applied using the micrometer, built into the stage 

(maximum  displacem ent o f 12mm) with 1 minute periods between each strain point. 

A fibre optic microscope (Moritex Seopeman 504) was used to monitor changes in 

the position and angles o f  the stainless steel markers, as shown in figure 13. Digital 

images were captured at the end o f  each strain step and stored (M acintosh G4 PC)
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for image analysis and measurement using OpenLab software (Improvision, 

Birmingham, UK).

Strain direction 
 ►

Figure 13. Red arrows indicate (a) Distance measured in D-zone, (b) Angle measured in D-zone, 

(c) Distance measured in A-zone and (d) Angle measured in A-zone

These marker displacements were used to calculate the local magnitude and vector of 

forces within the two construct zones. Distances indicated by the red arrows were 

measured and averaged for each construct. For the x-plane markers (Figure 13a and 

13c) the distance between the two markers was measured. For the y-plane markers 

(Figure 13b and 13d) the distances for each individual marker was measured and 

averaged to give a value for the specific construct.

Effects of FCS starvation on cell attachment and effect of cell 
seeding on viscoelastic properties of collagen
External strains (applied as described above) of 5%, 10% and 15% were applied 

using the t-CFM, each over 5 seconds (Figure 14 -  Red arrow). Both cell-seeded 

(1 million cells/ml density) and acellular collagen constructs were tested. Direct cell 

contribution through force generation, spreading, contraction was minimised by 

complete removal of Fetal Calf Serum (FCS) to prevent attachment/contraction 

(described below). After applied load, constructs were held at the constant final 

displacement for one hour (to allow for strain relaxation) which was the point used
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for stiffness calculations (Figure 14 -  blue arrow). In other words, final strain 

relaxation of the collagen constructs was measured relative to the initial applied 

displacement to determine material stiffness (Total applied strain -  Strain relaxation 

= Stiffness accumulated in collagen).

800 Total applied strain
700 - Strain relaxation
600

500
Stiffnes: >400

300

Strain application200

100

0.60.2 0.4
Time (Hours)

0.8

Figure 14. External uniaxial strain applied to collagen (red arrow) and value recorded Ih post 

strain (Blue arrow)

Again the differences in collagen mechanical properties between the A and Delta 

zone under defined loads represented a key part of the collagen material properties 

investigation.

Fetal Calf Serum Starvation
Cell seeded collagen constructs were prepared without FCS in order to minimize 

cell-matrix attachment (attachment = force generation) [Eastwood et al., 1998; 

Mudera et al., 2000]. Experimental cell seeded constructs were FCS starved for 60 

minutes and then each one stained with live/dead stain (Live/Dead 

Viability/Cytotoxicity Kit, Molecular Probes, Paisley,UK) for cell viability 

(examined using fluorescence microscopy) and also fixed using 10% Formal saline 

for routine microscopy (whole constructs visualised using an inverted microscope) to
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visualise for lack of cell attachment using morphology as an output. Further, 

mechanical output was used, i.e these constructs produced no force for 60 minutes of 

FCS starvation.

Mechanical loading application on collagen constructs
X-ware software X I50 [Parker Automation, City, USA] was used to control the 

motor attached to the CFM stage. In this part of the study pre-strain was introduced 

to the collagen constructs in order to vary the stiffness of the collagen. HDF’s, 

HNFF’s and hBMSC’s cell types were all included in the pre strain experiments. The 

first part of this study investigated the cellular responses to increasing matrix 

stiffness, in terms of force generated under externally applied mechanical pre-strains 

(i.e mechanical loads applied at time 0).

Motor calibration
Before any mechanical stimulation could be performed on the constructs, t-CFM 

machines were calibrated for linear operation within the pre-strain range used for our 

experiments (0%, 5% and 10%).

All the motors used in this study, had a step angle of 1.8° which translates to 200 full 

steps per revolution. Each revolution of the motor related to a certain distance by 

which the stage moved, as explained below. The default motor set up was 4000 steps 

(which is one revolution) which permitted accurate calculation of the relationship 

between motor and distance travelled (i.e strain applied). For example:

Distance(D) _ NoSteps _ 10.000 _ ^ $revs/ SQC 
Time(T) Seconds 4.000
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Using a screw pitch of 0.5mm displacement (2), we could calculate the distance 

(mm) travelled:

From (1) and (2) we can equate:

10.OOOsteps = 2.5revs/sec = 1,27mm displacement (3)

Hence, in order to apply a 10% strain to constructs of 65mm (length) an applied 

displacement of 6.5mm was needed (10% of 65mm), using the following motor 

motion:

From (3) 10.000 steps = 1.27mm, i.e 6.5mm = 51.160 steps (4)

The software controlling the motor was X I50 [Parker Automation, Dorset, UK]. 

Speed and distance travelled was selected and calculated as above as distance (D), 

related to the strain which was needed (Table 3). In this study the predetermined 

strains were: 0%, 5%, 10% and 15%. Therefore:
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Strain Distance (mm) Motor Step No.

0% 0 0

5% 3.25 25558

10% 6.5 51160

15% 9.75 76760

Table 3. S tra in  (% ) used for C FM /t-C FM  collagen constructs transla ted  to d istance (m m ) 

travelled  by the m otor.

Model development
Three different speeds (V), were initially investigated, 0.1, 0.3 and 0.5revs/sec 

(Figure 16) in order to make sure we operate on linear motor regions. Results 

showed (Figure 16) linearity for all speeds at all strains (0%, 5%, 10%, and 15%) 

and hence the faster speed (0.5) was adopted throughout this study.

15%  p re-stra in 10%  p re-strain 5%  pre-stra in
1600

(b)
1000

600

0
0 60 100 160 200 260 300300

Tim* (S e co n d s) Tim s (S o o o n d s)

1600

1000

500

0
250 300100 160 2000 60

(C)

Tun* (S o o o n d s)

Figure 16. T h ree  d ifferen t speeds w ere tested for 0% , 5%  and 10%  pre-stra in : a) 0.5revs/sec., 

b) 0.3revs/sec., and c) 0.1 revs/sec.
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Importantly, 15% pre-strain was later excluded from this study. Initial results 

showed no force generation by the 3 different cell types (described above: HDF, 

hBMSC and HNFF) when cell-seeded collagen constructs were subjected to 15% 

pre-strain. As described later, one aspect of this study was to investigate forces 

generated by cells when mechanically stimulated, therefore 0 (dynes) force 

generated following 15% pre-strain led to exclusion, from this study, of the 15% 

regime.

Mechanical stimulus to collagen constructs
Constructs (cellular and acellular) were pre set and placed on the t-CFM and a pre 

strain of 0%, 5% and 10% was applied (Figure 17; Red arrow). Constructs were held 

at the constant final displacement for 24 hours (as described earlier) and contraction 

force monitored. Figure 17 shows response examples from cellular and acellular 

constructs (dotted and continues line respectively).

Force (Dynes]
Cellular contraction

Acellular

Pre-Strain

Time (Hours)

Relaxation Phase: 1 h

Figure 17. Representation of pre-strain applied to cellular and acellular constructs. Full visco­

elastic relaxation was shown within lh  post strain (relaxation phase).
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As presented later on, full visco elastic relaxation was shown at lh independent of 

cell presence and/or pre-strain levels.

FCS starvation model
Pre strain experiments were repeated using HNFF’s and HDF’s by FCS starving the 

embedded cells for lh. More specifically, cells were embedded in collagen with 

serum free medium and allowed to set (as described before). At time Oh constructs 

were floated in serum-free DMEM and pre-strain was applied (0%, 5% and 10%). 

Due to viscoelastic properties of the collagen, relaxation will always follow strain. It 

was determined (Results section) that the optimal viscoelastic relaxation time for 

collagen constructs adaptation to pre-strain was lhour irrespectively of the amount 

of pre-strain. Constructs were held under tension and at lh post-strain (optimal 

relaxation time) FCS was added to the DMEM to give a final concentration of 10% 

(red arrow, Figure 18), using a 10ml syringe to deliver. Force generated data was 

recorded for 24h and then experiments stopped.
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Force (Dynes)
Cellular contraction

Pre-Strain

\ i

• V

/
FCS added

( Time (Hours)

Relaxation Phase: 1 h

Figure 18. Representation of pre-strain applied to cells seeded collagen constructs without FCS. 

10% FCS addition indicated by black arrow.

Pre-strain loading
After all the programming details were determined, the t-CFM motor was 

programmed. Pre-strain of 0%, 5% and 10% was applied with the velocity 

(V=0.5revs/sec., as described above) remaining constant throughout. Constructs 

were kept at the final displacement (post-strain) for 24h during which force 

generated by the cells recorded.

Ramp mechanical loading
Specific programmes were written for ramp mechanical loading. Previous studies 

have shown specific genes regulation due to ramp loading [Cheema et al., 2005]. In 

this study we used this knowledge to combine two different ramp loading regimes 

(described below) with the constructs subjected to 0% and 5% pre-strain. We 

allowed 12h post-strain, before 10% strain was applied over lh or 12h.
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Cellular contraction responses following mechanical loading
All cell types used here (HDF, HNFF, and hBMSC) reached a maximum contraction

force within 12h. Pre-strain (0% and 5%) was applied at t=0h and constructs were 

kept under tension for 12h. At 12h two different Ramp loading regimes were applied 

(for programs see above). A 10% total strain was applied using two ramp loads; a) 

Over lh and b) over 12h. Figure 19 shows an example of the two ramp loads applied 

for 0% pre-strained constructs.

Force (Dynes)
(b)

Force (Dynes)

■*11  ̂ Time (Hours) 0 12h
Ramp Ramp

Figure 19 Ramp loading regimes applied after 12h culture on the CFM (a) lh duration and (b)

12h duration

Figure 20 shows an example of the two ramp loads applied for 5% pre-strained 

constructs.

Time (Hours)
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Force (Dyn< s) Force (Dyrns)

Pre-Strai n Pre-Strai n

Time (Hours)

Ram
Time (Hours)

Contraction Contraction

Relaxation Phase Relaxation Phase

Figure 20 Ramp loading regimes applied after 12h culture on the CFM, on pre-strain (5%-Red 

arrow) constructs (a) lh  duration and (b) 12h duration

These experiments investigated the effect of different ramp loading regimes on 

expression of molecular outputs using specific genes responsible for matrix 

regulation. All the experiments were stopped at 24h and processed for molecular 

outputs (described later).

Statistical analysis
Statistical analysis of data (minimum of n=3 for all the experiments) were performed 

using the non-parametric, ANOVA (Analysis of Variance) testing (Kruskal-Wallis), 

using GraphPad Prism (Orism, Graphpad software, San Diego), t-test was also used, 

where needed. ANOVA and t-test are closely related and the only difference is that 

ANOVA can test the differences between the means o f two or more groups, t-test 

was used here only to compare the means of two groups.
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Histology: H&E
Constructs were processed for light microscopy and wax embedded. Sections were 

cut (5pm) on a microtome and dried onto glass slides. Sections were de-waxed in 

xylene, rehydrated and stained with Haematoxylin and Eosin (H&E; both VWR, 

Lutterworth, Leicestershire, UK).

Sections were then dehydrated in a graded series of alcohols, and mounted with 

DePX (VWR, Lutterworth, Leicestershire, UK) and mounted with coverslip. 

Sections were viewed (nuclei in blue, cytoplasm pale pink and collagen pink) using a 

light microscope (Olympus BH-2, Olympus, Japan).

Immunohistochemistry
Immunohistochemical staining of hBMSC was performed. hBMSC cultured on glass 

coverslips were fixed in ice cold acetone for 5 minutes and then washed twice in 

PBS for 5 minutes. They were then incubated in PBS containing 1%BSA and 1% 

Tween 20 for 30 minutes at room temperature.

The following primary monoclonal mouse anti human Ig G antibodies were diluted 

with PBS containing l%Tween and 1%BSA, CD105 diluted 1:10 (R&D Systems, 

Abingdon, Oxon, UK), CD44 diluted 1:25 (BD Bioscience, Oxford, UK), CD45 

diluted 1:25(BD Bioscience, Oxford, UK), CD31 diluted 1:40 (DAKO, Ely, 

Cambridgeshire, UK), and CD34 diluted 1:25(Serotech, Oxford, UK)

A total volume of 120pl of the diluted primary antibody was placed onto parafilm 

“stuck” onto the bench. The coverslips with the fixed cells were then placed cell side
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down onto the primary antibody droplet. These were then covered with a box to 

prevent drying out and left at room temperature for one hour.

This was followed by 3x 5 minute PBS washes and then incubation in the secondary 

antibody for one hour at room temperature. The secondary antibody was a goat 

antimouse IgG, Alexiaflour, 594nm, (Invitrogen Ltd, Paisley, UK) diluted 1 in 250 

with PBS. The cells were then washed three times in PBS for five minutes. The 

coverslips were then gently blotted and mounted in Permaflour (Beckman Coulter 

UK Ltd, Bucks, UK) and viewed under a Olympus BH2-RFC fluorescent 

microscope, (Olympus BH-2, Olympus, Japan).

RNA extraction
The total cellular RNA was isolated from all the cell populated collagen lattices, 

using Qiagen Rneasy kits (Qiagen, UK). In addition to this kit a Q1A shredder kit 

was used in order to break up the collagen before total RNA isolation occurred.

All gels were flash frozen in liquid nitrogen, following the end of CFM/t-CFM 

experiments, and stored at -80° C to prevent RNA degradation. When gels were 

processed, 1ml o f ‘RLT buffer’ was added to each one of them. RLT buffer contains 

guanidine isothiocyanate which denatures RNAses. Samples were kept at room 

temperature for 15-20 minutes and then passed through the membrane in the spin 

column provided with the QIA shredder kit. This step was added in order to break up 

collagen completely. From that stage onwards the standard Qiagen Rneasy kit 

protocol was used (standard manufacturer protocol).

lml of 70% ethanol was added to each sample and mixed well, by pipetting. 650ul of 

this mixture was added to the spin column and centrifuged for 15 seconds (7,000g).
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This process was repeated until the whole sample has passed through the spin 

column. A silica-gel membrane in the spin column kept the RNA attached to the 

membrane. The flow through was discarded. 700ul of kRWl buffer’ (to wash away 

any contaminants) was added to the spin column and again centrifuged for 15 

seconds (7,000g).

500ul o f ‘RPE buffer’ (to wash away any contaminants) was then added and 

centrifuged for 15 second (7,000g). 500ul of ‘RPE buffer’ was added again, this time 

centrifuged for 2 minutes (7,000g), helping washing away any remaining 

contaminants. Finally 50ul of RNase-free water was added to the membrane and 

centrifuged for 1 minute (7,000g). The resulted elute was collected, which contained 

the total RNA. Readings were taken at 260nm (absorption of nucleic acids) and 280 

nm (absorption of proteins present in the sample) using Genespec 1 (Naka 

instruments, Japan) spectrophotometer. Typical ratios 260/280nm, obtained from 

samples was 1.6-2.0, indicating good quality of RNA, i.e. correct size (above 200 

bases).

c-DNA synthesis
The total RNA was reverse transcribed into cDNA using Expand reverse 

transcriptase (Roche Diagnostics, East Sussex, UK). The RT reaction generates a 

single-stranded DNA molecule, which is complementary to the RNA (cDNA). Reaction 

for cDNA synthesis contained 2pgm/10|j.l of RNA (for every sample), 0.4pl dNTPs 

(deoxynucleoside triphosphates-5mM), 5pl First Strand Buffer, 3pl MgCh (25mM), 

0.5pl OligoDT primer, 2pl MMLV (200U/pl) reverse transcriptase enzyme, 0.25pl 

RNAse inhibitor and 28.85pl of water to give a total of 50pl reaction mix. This 50pl
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mix was mixed and a drop of mineral oil was added on top before running through 

the RT cycle, using a PCR thermocycler (Hybaid OMN-E). RT reaction included the 

following sequence: 25 0 C for 10 minutes, 42 0 C for 60 minutes, and 94 ° C for 5 

minutes.

Samples were then stored at -80° C. Transcribed cDNA was used later as a template 

in the Polymerase Chain Reaction (PCR), described below.

PCR amplification
PCR was performed to amplify specific region of the cDNA from each sample. The 

cDNA is amplified exponentially via cycles of denaturation, annealing and 

extension.

Relative Quantitative PCR was performed using Applied Biosystems 7300 Real- 

Time PCR System (California, USA), with the TaqMan Universal PCR Master Mix 

(Applied Biosystems) which contained AmpliTaq Gold® DNA polymerase for 

better yield and AmpErase® UNG to prevent carry over contamination. 10pl of the 

cDNA was used per reaction and TaqMan® Gene Expression Assays were provided 

(Applied Biosystems) and used for gene expression. Assays use universal cycling 

conditions, eliminating the need to optimize conditions individually. For each gene 

expression 50pl of Master Mix, 5pl of Gene Expression Assay and 35pl of Rnase 

free water used in conjuction with the cDNA; a total of lOOpl per sample per gene 

assay, from which 25pl pipette into the 96 well plates. Triplicates were performed 

for each sample and each gene assay.
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Applied Biosystems 7300 Real-Time PCR System combines thermal cycling, 

fluorescence-dye technology, and application-specific software enabling detection of 

the PCR products cycle-by-cycle accumulation in a single-tube reaction (of 25pl).

Results (see Results) were expressed relative to housekeeping gene GADPH which 

was found not to be significantly altered by the loading regimes. In order to 

relatively quantify genes upregulation / downregulation we compared the Threshold 

Cycle (Ct) values of the samples of interest with a control or calibrator such as a 

non-treated sample. The Ct reflects the cycle number at which the fluorescence 

generated within a reaction crosses the threshold. The Ct assigned to a particular 

sample thus reflects the point during the reaction at which a sufficient number of 

amplicons have accumulated, within that well/sample, to be at a statistically 

significant point above the baseline.

The Ct values of both the calibrator and the samples of interest are normalized to the 

appropriate endogenous housekeeping gene, in this case GADPH.

Primers used in this study are listed in table 4 Sequences are as provided by Applied 

Biosystems (confidential).

Genes tested

MMP-2 COL-3

MMP-3 TIMP-2

MMP-9 IGF-1

COL-1

Table 4. Genes tested here a re  listed
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Chapter 3: Cell force generation is dependent on collagen 
substrate stiffness and serum concentration
An elastic material deforms under stress and upon removal of the load, tends to 

return to its original shape. A viscous material though, is permanently deformed and 

does not return to its original shape after removal of the load. Fibrillar collagen 

protein, in terms of its material properties, lies between these two types of behaviour 

(elastic and viscous), hence it is visco-elastic.

The main objectives of the first part of this study were: a) To test stress -  relaxation 

of collagen constructs following external mechanical forces, i.e to quantify visco­

elastic properties of collagen construct and adaptation to external strain and stiffness 

changes b) Test the effects of external uniaxial loading (pre-strain) on collagen fibril 

orientation, c) Test the effect of FCS starvation on fibroblast attachment and 

contraction.

Collagen stress-relaxation
Initially the stress relaxation of the collagen constructs was tested. Collagen 

constructs, whether cell-seeded (1 million/ml) or cell-free, were mechanically loaded 

(pre-strain) in the t-CFM. As described in Methods, the pre-strain levels applied to 

the constructs, using the t-CFM, were 0%, 5% and 10% (Figure 17). Following pre­

strain application, constructs were maintained under tension for 24h, to quantify the 

time of viscoelastic relaxation.

The time taken for complete relaxation was determined here and found to be lh (n=4 

for each pre-strain level), independently to the amount of pre-strain (average of 

l.l±0.2h for cellular and 1.07±0.3h for acellular constructs). The force reached at
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that time point (lh) was termed here Stress-Relaxation (SR). SR is defined here as 

the amount o f  force  (in dynes) ‘Most” following pre-strain.

Figure 21 shows representative example of 5, 10 and 15% pre-strain (n=4 each) 

applied to collagen construct and the relaxation over lh. As shown in Figure 10a, b 

and c, optimal viscoelastic relaxation time was lhour irrespective of the amount of 

pre-strain (5%, 10% and 15% respectively).
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Figure 21. P re-strain  applied to cell-free 

collagen constructs and m axim um  force 

registered for 5, 10 and 15%  pre-strain . Stress- 

relaxation (SR) force was m easured, at all 

strains, a t lh  as the overall fall in force.

Collagen constructs cell free and/or cell seeded were fully viscoelastic relaxed, 

within lh, following pre-strain. This lh  was independent o f  the pre-strain regimes 

applied here.
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Figure 22. The am ount of SR force (dynes) at the end of lh  post-strain  is shown fo r both cell 

free and cell-seeded constructs. ^  and *  indicate com parab le groups and significance p<0.05.

However, the SR was dependent on pre-strain levels. Figure 22 shows the relaxation 

force following pre-strain plotted for cellular and acellular constructs. This indicates 

an approximate doubling (from 80 to 160 dynes) of relaxation as the pre-strain 

doubles from 5% to 10% (both cellular and acellular showed significant differences 

between 5%-10% pre-strain; p=0.001 and p=0.04 respectively). When pre-strain was 

increased further, both cellular and acellular constructs showed significant (both 

p<0.01) reduction on the relaxation force. At that pre-strain level (i.e 15%) there was 

a significant lower relaxation force for acellular constructs (30%; p=0.004) 

compared to cellular. Therefore, the amount o f  relaxation (SR) was directly 

dependent on pre-strain levels.

■ Acellular 

□ Cellular
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Collagen morphology
As tensile load (pre-strain) is applied to the collagen construct, the construct 

elongates and fluid is expelled leading to fibril compaction and orientation. In this 

study we investigated developing/changing fibril orientation (SEM; as described in 

Methods) following pre-strain (Figure 23).

Force direction

Figure 23. E lectron M icroscopy images of acellu lar collagen gels before and  afte r d ifferen t 

ex ternal m echanical loading (B ar = Sum), (a) Free floating, (b) 7%  p re-stra in , (c) 20%  p re ­

stra in  |k a ra m ic h o s  et al., 20061

Strain measurements were correlated with ultra structural pictures of constructs (pre­

strain applied and constructs kept under tension for lh before being fixed in 1.5% 

glutaraldehyde) under 0%-25% applied strain (n=3; Figure 23). Figure 23a shows a 

non pre-strained construct where collagen fibrils are randomly oriented. 23b and 23c 

shows collagen constructs subjected to 7% and 20% strain respectively, showing 

collagen fibrils aligned (visual observation) in the direction of the applied strain 

direction. All the strain levels used in this study showed similar results.

These results showed that there was a progressive reorganization and alignment o f 

collagen fibrils on application o f increasing amounts o f strain (with no cellular 

involvement).
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Distinction between cellular contraction and collagen matrix
Cell-seeded in collagen constructs have been used as in vitro models and have shown 

cellular ability to generate a measurable force over the experimental period (24h) 

[Eastwood et al., 1994; Mudera et al., 2000]. In this study, we tested the hypothesis 

that the presence of cells (at 1 million/ml concentration normally used in 

experiments) within increasingly stiff constructs, would not alter the physical 

properties of the construct. Constructs (n=3) were prepared without FCS to exclude 

cell-matrix attachment and so force generation, as shown in the previous section. 

Cells did not adhere or spread in the collagen as shown in Figure 24c and after 60 

minutes remained spherical with little cell-cell contact or cell spreading and process 

elongation (Figure 24c; Arrow). However, when FCS was added (after 60 minutes), 

cells started to elongate and take a stellate morphology (Figure 24d and 24e; Arrows) 

as well as generate significant forces (above 10 dynes; Figure 24b).Cells with FCS 

present (n=3) from t=0h started to generate significant forces (above 10 dynes; 

Figure 24a), within 20 minutes, as well as attach and spread exhibiting normal 

morphology of fibroblasts as they attach to this substrate (Figure 24g and 24h) 

[Karamichos et al., 2006].
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Figure 24. (a) C on traction  profile over 7h hours is shown for a) cell seeded construc t w ith FCS 

presence from  t=0h and b) cell seeded construc t following lh  FCS sta rva tion . Note: Delay in 

C IT  in (b) w here co-related to cell a ttachm ent a t 0.5h, 2.5h and 24h. W ith FCS presence at 

t=0h: (c) shows cell a ttachm ent as early  as t=20m in with progressive increase in cell spread ing  

over tim e (d and e). W ith FCS presence at t= lh : (f) shows a delay in cell a ttachm ent and 

sp read ing  due to FCS starvation  which correlates w ith 0 dynes force generation , (g) and (h) 

shows progressive increase on cell spread ing  with tim e, co-related w ith increased force 

generation .

This experiment showed that cells remain round (in morphology) for lh FCS 

starvation and upon re-introduction of FCS are capable of attaching, spreading and 

generating significant forces to the collagen construct [Karamichos et al., 2006]. 

Therefore, FCS starvation was used to distinguish between cell contributions from  

collagen matrix physical properties (i.e stiffness, fibril alignment).
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Stiffness is affected by Pre Strain
In this study, the hypothesis under test was that, cell presence (1 million/ml normally 

used) would not alter the stiffness of the construct. Results described above showed 

that FCS starved cells remained round, with minimal adhesion/force generation. 

However, if cells started to attach and adhere for this analysis it would become too 

complicated to investigate the physical properties of cell seeded collagen construct. 

Onset of cellular force generation would lead to fibril organization/alignment (and 

collagen deposition in the long term) leading to an increasing in overall stiffness (in 

this case within 24h) of the construct [Karamichos et al., 2006], and so FCS 

starvation was used as mechanism to temporarily block this cell-mediated change of 

material properties in order to assess its relative influence of simple cell presence 

(unattached) versus cell force generated [Karamichos et al., 2006]. Cell-free and cell- 

seeded (FCS starved) collagen constructs were compared.

0, 5%, 10% and 15% pre-strain was applied to both cell free and cell seeded collagen 

constructs (FCS starved; both n=4). Stiffness was calculated at the end of full 

viscoelastic relaxation determined earlier (i.e lh post pre-strain) for all the constructs 

(cellular and acellular) for all pre-strain regimes. Stiffness for 2.5% was calculated 

(approximation) from values obtained from higher strains. Figure 25a shows 

stiffness plotted against applied strain in mm.
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Figure 25. S tress-S tra in  curves are  

shown for both cell free and cell-seeded 

constructs. M atrix  stiffness is plotted 

against p re-stra in  applied (% ).

There was no significant difference in stiffness (Figure 25) between cellular and 

acellular constructs at any pre-strain level. Collagen construct stiffness was increased 

with pre-strain in a non linear manner by 70Pa for 2.5% and rose up to 310Pa at 5% 

(p<0.05), 380Pa at 10% (p<0.05), and 630Pa (p<0.05), for 15% pre-strain. There are 

two main phases: (a) a plateau region (Figure 25) between 5% and 10% pre-strain (b) 

a shift in the rate o f  changes stiffness (Figure 25) after the 5% and 10% plateau. This 

data suggests a non linear response o f  the collagen matrix to external strain.

Pre-strain leads to increased collagen stiffness independent o f  cellular presence, i.e. 

cells at I mil/ml did not alter material properties o f  collagen when tested for  

increased stiffness.
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Model development -  Forces distribution in acellular collagen 
constructs
Following collagen stiffness quantification, this part of the study investigated the 

patterns o f local matrix strain under external uniaxial load in terms of both vector 

and force magnitude. This was achieved using micro displacement of the stainless 

steel marker pairs cast into acellular collagen constructs, to quantify local strain 

under known applied uniaxial strains.

As described in Materials (Figure 11), cells in the collagen align parallel to the lines 

of principle strain, over 24h on the CFM, within the A-zone of the construct and are 

randomly oriented within the D zone due to stiffness of the floatation bars [Eastwood 

et al., 1994]. In order to simulate these shifts in principle strain, stainless steel 

markers were positioned (Figure 26) in two axes (a) parallel, in the A-zone, and (b) 

perpendicular, in the D-zone, to the applied load.

Stainless steel 
marker pairs

Force transducer

 ►
Loaded axis

Figure 26. Stainless steel embedded in collagen lattices are shown, as well as the axis of the 

applied load.
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Initial distance between each marker pair, was measured immediately after set up 

(prior to loading). The measured distances that were used to quantify and analyse 

local collagen matrix strain are shown in Figure 27.

di

(a)

d3 f  » (C)
X

(b)

Figure 27. Stainless steel m arkers positioned in the A zone. A rrow s indicate m easurem ents 

taken on the axis parallel and perpend icu lar to the loaded axis, (a) and  (b) respectively, (c) 

Shows the position of the m arkers w ithin the collagen construct.

F igure 28. S tainless steel m arkers positioned in the D zone. A rrow s indicate m easurem ents 

taken on the  axis parallel and perpend icu lar to the loaded axis applied (a) and  (b) respectively, 

(c) Shows the position of the m arkers w ithin the collagen construct.

Marker movement was measured in two planes (x and y), as described in Methods. 

On the x-plane di was measured and on the y-plane d2 and d3. z plane could not be 

quantified and hence was not included in this study.

di

(a)
X

67



When pre-strain was applied, collagen constructs showed a waist effect as shown in 

figure 29b. Literature has shown [Eastwood et al., 1994; Mudera et al., 2000] that 

cells will have identical effect (waist) on collagen shape and structure when they 

contract the matrix. Similar alignment is produced by externally applied strain 

[Kostyuk et al., 2004].

Force direction

(a) (b)

:::::::::::::::::::::::: Collagen fibril aligned 
.................... and compacted

Figure 29. (a) Initial collagen shape and fibril mesh (prior to pre-strain) is shown and (b) Waist 

effect and fibril alignment and compaction are shown following pre-strain.

Therefore, marker bars embedded within those constructs would move in the x-plane 

(parallel to the force applied) and in the y-plane (due to waisting).

Over the strain range employed (0-15%) a significant proportion of the applied strain 

was lost in elastic deformation of the compliant construct (approximately 50%). 

Figures 30 and 31 show the strain transmitted through the collagen constructs, and 

registered as detectable marker bar displacement, plotted against the applied strain 

(%). In other words, an applied displacement of 3.25mm will be 5% strain on the x- 

axis, calculated according to original construct length which was 65mm. Following 

this we measured the local displacement between the end points of each marker bar 

at each point in applied strain range and plotted on the y-axis.
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Therefore, a measured displacement of 0.5mm between the marker bars following an 

applied strain of 1mm represents a 50% marker response, plotted on the y-axis.

<— >
^  D zone 
S  A zone

Figure 30. Marker displacement (parallel to the long axis of the construct, as shown by arrow) 

for applied strains 0 to 15% plotted for both A and D zone of the constructs.

Figure 30 shows the displacement measured parallel to the applied load. The 

maximum displacement (50%) transfer rose up to 3% applied strain, at which point 

half of the applied strain was transferred to the markers Beyond 3% applied strain 

there was a steady decrease (down to 28%) in the proportion of the displacement 

detected by the markers with increasing applied strain. Over this range the 

proportion of applied strain which was detected as displacement of the markers 

dropped from 50%, at 3% strain, to only 22% by the end of the series at 17% applied 

strain. This suggests that after 3% applied strain the material properties of the 

construct in the A-zone became progressively stiffer, since marker displacement was 

reduced (i.e inherent fibrilar movement is limited with increasing external strain and 

consequently increasing stiffness). The 3% point therefore represents a key change in 

overall material behaviour.
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The D-zone behaved in a similar manner to the A-zone with a maximum observed 

displacement at 3% applied strain. However, in this case the maximum detected 

displacement was only a quarter (12%) of that seen in the A-zone, indicating that the 

displacement magnitude adjacent to the construct attachment bars was much lower 

than in the main bulk of the construct, consistent with the idea that the collagen 

construct of the D-zone is strain-shielded by the attachment bar [Eastwood et al., 

1998] and that cells experience forces in different directions, in the D-zone. In 

contrast, in the A-zone strain is highly aligned-parallel with the loading axis.

c  40

®  20

8 10 122 6 14 16 180 4
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\  f
^  D zone 
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- A zon* 
-D zo rw

Strain (%)

Figure 31. Marker displacements (across the long axis of the construct, as shown by arrow) for 

strains 0 to 15% plotted for both A and D zone of the constructs.

The comparable analysis of responses in the plane perpendicular to the applied load 

is shown in Figure 31. With an applied strain of 6%, in the A-zone there was a 

marker displacement of 20%. Surprisingly further increase in applied strain, up to 

15%, produced constant detectable displacement (20%) of the markers for each ramp 

strain step. Indeed, in this perpendicular plane it was the D-zone markers, which 

produced the greater actual displacement (in this case the response was 

characteristically cyclical in nature). There was an early response at 1.5% applied
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strain of 0.45% actual marker displacement (30% of applied strain). However, there 

was a constant 30% displacement for 4 consecutive strain steps, upto an applied 

strain of 7.7%, where the markers suddenly flipped back to the zero displacement 

position (ie. starting position). With further increase in applied strain to 9.2% the 

markers responded with a flip back to the displacement position (30% of 

displacement) where again a constant displacement was shown for increasing strains 

up to 15%. This movement then represented a double displacement between 0% and 

30% of the applied strain. Again these results suggested that even in terms of force 

vectors in the D-zone, resident cells would have experienced equal and opposite 

direction forces at different stages during the strain process [Karamichos et al., 

2006]. It is important to note at this point that position of the markers on the z plane 

was not controllable.

It is concluded, then, that application o f increasing external mechanical strain on 

3D collagen constructs cells perceive different forces in both magnitude and vector 

in different zones and areas o f the collagen matrix, particularly at the edges and 

loading/anchoring region.

Discussion
The influence of the viscoelastic relaxation (amount of force for stress relaxation- 

SR) has not been carefully examined in biologic soft tissues. Other studies have 

reported preconditioning protocols, but without comment on rest periods during the 

test [Huang et al., 1993; Wakatsuki et al., 2000; Seliktar et al., 2000]. The first part 

of this study was to test stress-relaxation of the collagen constructs following a 

uniaxial fast-ramp load. More importantly we investigated both cellular and acellular
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constructs in terms of the time taken for them to viscoelastic relax following 0-15% 

pre-strain levels. The optimum time for fu ll visco-elastic relaxation was lh  fo r  all the 

constructs, independent o f  the presence o f cells or the amount ofpre-strain.

One of the main drawbacks with the use of collagen as a TE construct is its 

characteristic randomly oriented fibril network and its poor tensile strength. There is 

a need, then, to devise some means to align and strengthen collagen fibrils and so to 

increase strength. To address these issues the next part of the study was to analyze 

the effects of pre-strain on alignment (i.e. collagen fibril orientation) and on collagen 

stiffness.

Alignment of collagen matrix without cell contribution, using the pre-strain model, 

was shown in this study. Normally cells embedded within a collagen fibril mesh 

reorganise the mesh by generating force onto those fibrils over time. Use of 

externally applied pre-strain gives the opportunity to take over this task from the 

resident cells which will have implications in terms of eliciting predictable molecular 

responses.

Results showed alignment of the fibrils (Figure 23) at a pre-strain as low as 5% 

together with an increase in stiffness. In terms of stiffness, cellular and acellular 

constructs showed a non linear increase, with no significant difference between the 

two (Figure 25).
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Cell-ECM interactions
Studies have not yet been able to identify any effect of the presence of cell bodies on 

mechanical properties of constructs under strain when the cell-matrix interactions 

(i.e integrin attachment and cytoskeleton) are minimal. This study tested the effect of 

the simple presence of cells on collagen matrix stiffness, minimising cell-collagen 

attachment by FCS removal.

Serum dependence and cell shape changes and attachment is well known in the 

literature; Grinnell and co workers [2002] have reported differences on cell 

morphology when treated with growth factors and other agents, eg. LPA or PDGF or 

basal medium containing only ovine serum albumin, where fibroblasts showed 

stellate morphology following 4 h in PDGF medium, whereas cells in LPA medium 

tended to become bipolar. Further studies have emphasized the bipolar morphology 

of cells [Elsdale et al., 1972; Tomasek et al., 1984], which might be a response to the 

LPA in serum however in this study this has not been investigated.

Following addition of FCS (within 20min.) cells started to attach and spread 

exhibiting normal morphology of fibroblasts as they attach to this substrate and also 

contract the collagen matrix. These findings agree with other studies where 

contractile force increased significantly while cells are spreading into the collagen 

matrices in the presence of serum [Wakatsuki et al., 2003] compared to cells lacking 

serum, where no substantial matrix remodelling and/or production of contractile 

force was shown [Wakatsuki et al., 2003]. Since the strain-dependent increase in 

material stiffness was the same in the presence and absence of cells (i.e independent 

of cell-matrix attachment) this study concluded that the contribution of the cell 

cytoplasm was minimal in terms of cytoskeleton assembly. At least until all attach
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and assemble a strong cytoskeleton, then, this implies that the mechanics are 

dominated by scaffold material properties. This is important in cell-scaffold design 

in tissue engineering, though it might be cell density dependent beyond the range 

tested here [Karamichos et al. 2006].

Novel method for measurement of forces transmitted 
through collagen constructs
Little is known of how cells perceive applied external strain, though Wakatsuki et al 

[2003] have determined the basic parameters linking contraction and cytoskeletal 

organization. Visco-elastic tensile test systems recently developed have shown that 

strains applied to cell seeded collagen constructs vary between different sites in the 

construct. In this case greater strains occur in the centre region of constructs. 

However this did not take account of the ECM material properties immediately 

surrounding cells. Here we have generated data using stainless steel markers and 

showed that force distribution is non-linear and differs in magnitude between the 

different areas of the same construct.

The main core of constructs (A-zone) was subjected to higher forces in the parallel 

axes (parallel to forces applied) compared to the D-zone. However, forces in the D- 

zone perpendicular to the applied load, displayed a non-linear response to increasing 

strain; interestingly in this instance the D-zone registered a higher magnitude of 

displacement than the A-zone.

Diagrammatic analysis of stresses in the D zone of constructs suggested that strains 

set up as the construct edges elongate and are extended to take up the longer curved 

dimension as the centre of the gel (A-zone) narrows to a 4waist’. Formation of the
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construct waist means that the greatest strain will occur in these construct edges. In 

turn stress will be transferred, as suggested by the arrows (Figure 32a-c), to the end 

piece anchoring bar. However, since each of the two edges contributes equally to 

these stresses, with opposite vectors, this analysis suggests that failure is most likely 

at the centre of the gel-anchor interface. Direct observation of the gel (Figure 32d) 

indicated that this was indeed the site where gel-anchor bar failure occurred.

The most likely explanation of the marker movement in the y-plane, D zone is a 

stress relaxation from a central failure point (Figure 32b) moving out towards the 

edge and growing in magnitude (Figure 32c), allowing the permanent relaxation of 

the edge which is seen after stress recovery. Direct experimental (Figure 32d) 

observation identified that the construct failed first in the central area of the edge, 

consistent with the predictions in Figure 32b and 32c. Early stages of this failure 

point, with potential contribution of relaxation of the edge, would explain the flips in 

strain identified in the y plane: D zone. Since markers in D zone were positioned 

very close to the attachment point any micro fracture would result in force 

transmission and so displacement of the markers. Not surprisingly markers far from 

this focus, in the A zone did not show such movement in the y plane. Equally, a 

combination of localised gel edge failure and focal failure at the anchor bar are likely 

to explain the discontinuous strain transfer detected by bars in the x plane.
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F igure 32. D iagram atic rep resen tation  of force d istribu tion  as s tra in  is increasing from  a) 0 %  to 

b) 10%  and  c) 20% . A rrow s indicates stress tra n sfe r  to the gel-anchor in terface which 

increases as stra in  increases, d) Shows direct observation of the gel indicating  failu re of the gel 

construc t a t the gel-anchor interface jK aram ichos et al., 20061.

The results obtained from this experiment give insight into the baseline properties of 

the collagen constructs. Beyond tissue engineering, the importance of understanding 

the mechanism of construct ‘failing’ (ie breaking) at the attachment point will lead to 

clinical answers. A striking example is the bone-1 igament-bone complex, extensively 

studied by Woo and co workers [1999]. Woo et al have developed a tensile loading 

system in order to be able to investigate both structural and mechanical properties of 

the bone-1 igament-bone complex [Woo et al., 1983]. During normal activity, 

ligaments are easily elongated to maintain normal movement and allow the joint to 

move easily and smoothly. At higher externally applied loads, such as during 

exercise, the stiffness of the ligament increases to restrict any excessive motion in 

the joint [Woo et al., 1999]. However, if the applied load exceeds the maximum 

limits of the ligament, the risk of ligament damage increases. Consequently point of 

failing will be at the attachment point with bone.
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Conclusions

► Optimal time needed for collagen constructs to fully viscoelastic relax was lh 

for all pre-strain levels tested (0-15%).

► Pre-strain application on 3D collagen constructs significantly increases its 

stiffness whilst increasing the fibril network organization/alignment.

► Collagen material properties (ie stiffness and fibril orientation) were 

independent of cell presence upto the density tested here (1 mil/ml).

► FCS starvation was used successfully to exclude cellular attachment and 

contraction of the collagen matrix

► Cells perceive different forces in both magnitude and vector in different 

zones and areas of the collagen matrix, particularly at the edges and 

loading/anchoring region.
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Chapter 4: HDF cellular and molecular responses to 
increasing collagen matrix stiffness

HDF’s contraction forces regulated by mechanical 
stimulation
Stiffness and fibril orientation (Chapter 3) of a collagen matrix were shown to be 

affected by the application of external mechanical pre-strain [Karamichos et al., 

2006]. Stiffness was predictably increased by increasing the levels of pre-strain and 

collagen fibrils were orientated and aligned parallel to the principal strain (i.e applied 

load) [Karamichos et al., 2006]. In this study we used Collagen Type I as a scaffold, 

which cells have the ability to contract and align by generating forces on its fibrous 

structure [Eastwood et al., 1996; Eastwood et al., 1998]. Hypothesis under test was 

that cells seeded in a collagen construct will alter their pattern of force generation 

and expression of mechano-responsive genes (those related to matrix turnover) in 

response to changes in stiffness of the collagen fibril construct.

Human Dermal Fibroblasts (HDFs) were embedded in collagen matrices that were 

subjected to 3 different pre-strain regimes: 0%, 5% and 10%, which produce a 

stiffness range up to 380Pa (310Pa at 5% and 380Pa at 10% pre-strain; Figure 25). 

Figure 33 shows the contraction profile over 24h of HDF’s, for the 3 different 

stiffness levels.
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Figure 33. Contraction force profiles generated by HDF seeded constructs, with 10% FCS, 

following 0%, 5% and 10% pre-strain (n=3 each). Black arrows show final force reached by 

seeded cells and blue arrow shows Contraction Initiation Time levels.

The maximum mean contraction force (70 Dynes) was recorded when cells were 

embedded within non-strained constructs, i.e 0% pre-strain. As pre-strain increased, 

contraction force decreased (70% decrease to 23dynes for 5% and 65% to 12dynes 

for 10% pre-strain). This was significant only between 0% and 5%, 0% and 10% 

(p=0.05). Contraction forces between the 5% and 10% pre-strain (310Pa and 380Pa) 

were not significantly different. These results indicate that increasingly stiffer 

collagen matrices result in lower measurable force generation by the HDFs seeded 

within. The next part of this study was to examine cellular morphology and specific 

genes expression, in response to pre-strain and define specific cellular responses.

—  0% Strain
—  5% Strain 

10% Strain
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Increasing collagen stiffness (0%, 5%, and 10% pre-strain) and higher fibril 

orientation within it results in significantly lower measurable contraction forces 

generated by embedded HDFs.

Cellular morphology in response to increasing stiffness
Specimens (n=4) were processed for routine histology after 24h culture in the t- 

CFM, in order to investigate cellular morphology and orientation following pre­

strain. Figure 34 shows typical orientation at the end o f  24h, o f  a 310Pa stiff 

construct. Cells were aligned parallel to the line o f  the applied pre-strain. Identical 

morphological results were observed for all three pre-strain regimes (0%, 5% and 

10%).

Figure 34. HDF seeded collagen construc ts showing 

orien tation  (Blue arrow s) parallel to the line of
Long axis o f  collagen

princip le strain .

Results here can be extrapolated and co-related with Chapter 3 where movement o f  

markers embedded within collagen were quantified, in response to pre-strain. Cells 

align parallel to the lines o f  the applied pre-strain (Figure 34) [Eastwood et al., 1998] 

Results in Chapter 3 showed alignment o f  collagen matrix with increased stiffness at 

a ‘gross level’.

Cell alignment was independent o f  the amount o f  the pre-strain ( i.e stiffness) since 

uniform alignment at all pre-strain levels was observed.
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The Contraction delay effect
Figure 33 showed HDF responses to increased collagen stiffness. Increasing stiffness 

also altered the time point where the cells started to quantitatively generate 

contraction forces (in above a nominal 5 dynes threshold). This time delay was 

termed here as Contraction Initiation Time (CIT) and is plotted on the y-axis of 

Figure 35 against the pre-strain levels (0%, 5% and 10%).

Critically there was a significant (p<0.05) time delay when cells started to 

quantitatively contract the stiffer collagen constructs. In constructs subjected to 0% 

pre-strain there was measurable force generation in less than 20 minutes, but when 

stiffness was increased to (3 lOPa) by 5% pre strain there was a significant time delay 

of almost 7 hours in measurable contraction (p<0.05). When the stiffness was 

further increased to 380Pa (10% pre-strain), there was again a statistically significant 

difference in time delay to measurable contraction (5 hours; p<0.05) though there 

was no significant difference between 5% and 10% pre-strained constructs.
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Results here indicated that increase in collagen matrix stiffness also delayed 

initiation of cellular contraction apparently to a maximal level at 5% pre-strain 

(hence no further increase in CIT).

Strain (%)

Figure 35. CIT is shown for HDF seeded constructs at the three different stiffness regimens 

(n=3 each). There was a significant difference in CIT between 0%-5% (*; p<0.05) and 0%-10% 

(a; p<0.05). No significant difference in CIT was noted between 5%-10% pre-strain.

In summary pre-strain applied to cell-seeded collagen constructs will alter the fibril 

organisation of the collagen, by aligning cells and collagen fibrils along the lines of 

the applied pre-strain (Chapter 3) [Karamichos et al., 2006]. It also delayed cellular 

force generation and the onset of contraction. In terms of cellular morphology, cells 

were round with minimal attachment to the collagen during the period of no force 

generation (i.e CIT). Cells were round in morphology during the period of CIT, 

however, were able to spread and generate forces later, indicating that were unable to 

contract fast, a stiffer matrix.
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CIT was increased with collagen stiffness i.e CIT was directly dependent on collagen 

stiffness up to 5% pre-strain, though there was no significant increase in CIT above 

5% pre-strain.

Cellular contraction regulated by FCS starvation
As shown in previous chapters, cells in collagen constructs remained viable even 

with persistent round shape morphology, when FCS starved for lh, but generated 

little or no force, due to restricted substrate attachment. Subsequent addition of FCS, 

at t=lh, after cell seeding led to the onset of cell spreading/elongation and force 

generation within 20 minutes (Chapter 3- Figure 24). Here we tested the hypothesis 

that cellular responses to pre-strain may be altered by FCS pre-starvation, i.e 

excluding cellular contribution to force generation as the collagen viscoelastic 

relaxes and cells are unable to attach and generate their own forces during this 

process, i.e cells attach only after the stiffness levels are at equilibrium. Cells in 0% 

FCS were pre-strained as before and allowed 1 hour (pre determined) to allow for 

visco elastic relaxation of collagen, before addition of FCS to a final concentration of 

10%. Force output was then measured for a further 23h at each level (0,5 and 10%) 

of pre-strain constructs.
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Figure 36 shows that total force generated (at 24h) decreased dramatically for stiffer 

matrices from 84 dynes (0% pre strain) to 8.9 dynes at 10% pre strain (p=0.05), as 

seen previously with no serum starvation. However in this case maximal effect o f  

reduced force generation was clearly produced at the highest matrix stiffness (10% 

pre-strain), indicating that the force generated was directly dependent on matrix 

stiffness, over the full range o f  stiffness.
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F igure 36. C o n trac tion  force profiles generated  by HDF seeded construc ts following lh  FCS 

sta rv a tio n  fo r 0 % , 5 %  and  10%  p re-stra in  (n=3 each). Black arro w s show final force reached 

by seeded cells and  blue a rrow s show C IT  levels.

FCS starvation led to similar results in terms o f  contraction forces (i.e decreased 

force with increased pre-strain; from 84 to 40 and 9dynes for 0,5, and 10% pre-strain 

respectively), with a significant CIT (Figure 37; p<0.05).
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CIT was stiffness dependent and not due to FCS starvation/presence. Figure 37 

shows CIT for constructs with lh FCS starvation. Similar significance was shown; 

between 0% - 5% (p<0.05; 5 times) and 0% - 10% (p<0.05; 6 times) pre strained 

constructs.
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Figure 37. CIT is shown for HDF seeded constructs following lh serum starvation, at the three 

different stiffness regimens (n=3 each). There was a significant difference in CIT between 0%- 

5% (*; p<0.05) and 0%-10% (n; p<0.05). No significant difference in CIT was noted between 

5%-10% pre-strain.

Comparison of CIT responses with and without FCS starvation showed that FCS 

starvation only altered CIT significantly in the case of the least stiff constructs (0% 

pre-strain: Figure 38: p=0.05).
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Figure 38. CIT is shown for HDF seeded constructs (n=3 each) under 0% pre-strain, with and 

without FCS starvation (*; p<0.05).

These results represent clearly the role o f serum in attachment and initiation o f  

contraction in increasingly stiffer collagen constructs. Crucially these results 

suggested that FCS starvation will be significant only at less s tiff constructs (0% 

pre-strain) when control o f  cellular attachment and contraction is desired.

Fast and slow contraction phase
Many cell types (including HDF’s) generate a characteristic contraction force pattern 

[Eastwood et al., 1994; Mudera et al., 2000], often with a force ‘plateau’ after 4-1 Oh 

of culture. Initial force generation (0-8h) is thought to be due to traction as cells 

attach to and spread through the collagen constructs [Tomasek et al., 2002]. Hence it 

is an attachment and motion dominated process. Understanding of this traction phase 

is important since it both facilitates and perhaps predicts the level force generation 

(at the end of contraction phase) and matrix remodelling [Tomasek et al., 2002].
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In this study tension homeostasis was reached within 10-12h of culture. We therefore 

investigated the initial rate of contraction (traction phase; as described in Methods) 

between Oh and 4h [Karamichos et al., 2006].
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Figure 39. Rate of force generation is shown (0-8h) for HDFs seeded within increasingly stiffer 

collagen constructs with FCS at t=0h (n=3 each). No significant differences were observed.
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Figure 40. Rate of force generation is shown (0-8h) for HDFs seeded within increasingly stiffer 

collagen constructs with FCS added at t=lh (n=3 each). Significant differences were observed

between 0% and 10% pre-strain for FCS starved constructs (d ; p<0.05).
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Non-strained, FCS starved HDF constructs showed a significant ( Figure 40; p<0.05) 

17 times faster (in terms of rate between 0-8h) contraction than constructs with the 

highest stiffness (i.e 10% pre-strain). In contrast when FCS was present at t=0h no 

significant difference was shown in the contraction rate between the three levels of 

constructs stiffness (Figure 39), tested here. However, at 0% pre-strain, constructs 

with FCS presence were significantly different compared to the serum starved ones, 

by two fold (p=0.05). These indicated that despite cells requiring more time to attach 

to collagen (CIT), they were able to rapidly attach/contract the collagen upon 

reintroduction of FCS [Karamichos et al., 2006].

Re introduction o f  FCS at lh, mediates a rapid force generation, particularly in low 

stiffness constructs. In addition this attachment-traction phase o f  force generation 

was most important in the least stiff constructs, with or without serum starvation.

Collagen constructs seeded with HDF’s and 20% FCS 
supplement
As described in Methods, cell seeded collagen constructs were pre-strained with 20% 

FCS present, in order to investigate the effect of serum increase on forces generated 

by seeded HDFs. This part of the study investigated the effect of increased FCS 

(20% FCS) on force generated by the seeded cells, in this case HDF’s.

Figure 41 shows the mean (n=4) contraction forces generated following 0%, 5% and 

10% pre-strain. Peak force was massively increased at 0% pre-strain, when 20% FCS 

was used (305 dynes compared to 70 with 10% FCS). Furthermore, peak force 

(Black arrows) was significantly different for 0% and 5% (305 and 32 dynes 

respectively; p=0.05) as well as 0% and 10% (305 and 24 dynes respectively;
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p=0.05). No significant difference was shown between 5% and 10% pre-strain. The 

significance shown here is exactly the same as constructs with 10% FCS and/or even 

with lh FCS starvation. In conclusion the increase in FCS concentration had no 

significant effect on peak force generation in stiffer matrices (310 and 380Pa), but it 

was significantly increased in less stiff matrices.
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Figure 41. Contraction force profiles generated by HDF seeded collagen constructs, with 20% 

FCS, following 0%, 5% and 10% pre-strain (n=3 each). Black arrows show final force reached 

by seeded cells and blue arrows show CIT levels.

In terms of CIT (Figure 42), there was significant delay between all the pre-strain 

regimes i.e 0%-5%, 0% -10% and 5%-10% (all three; p=0.05). HDFs with 20% FCS 

supplement are the first in this study to show significant attachment delay (CIT) 

between the two stiff constructs (310 and 380Pa), when compared with constructs 

supplemented with 10% FCS. These results indicated that FCS levels increase 

(20%) have a significant effect on cellular responses to stiffer matrices.
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Figure 42. CIT is shown for HDFs seeded with 20% FCS, at the three different stiffness 

regimens (n=3 each). There was a significant difference in CIT between 0%-5% (*; p<0.0§), 

0%-10% (**; p<0.05) and 0%-10% (n; p<0.05).

It is important to note that the CIT at 5% pre-strain was significantly reduced with 

20% FCS, when compared to 10% FCS and lh FCS starved constructs (Figures 35 

and 37 respectively), suggesting that cells might be able to attach and spread faster 

(i.e generate contraction forces) at increasingly stiffer matrices with increased levels 

o f FCS acting as stimuli.

Gene expression of HDF seeded progressively stiffer 
matrices
From the previous section it was demonstrated that stiffness of the collagen gel 

increased as pre-strain was increased (Chapter 3). It was also shown that collagen 

fibrils are aligned parallel to the lines of principle strain, leading to a more 

orientated, organised fibril structure (Chapter 3). This part of the study investigated 

the relationship between specific matrix gene regulation and the generation of force 

in an HDF embedded collagen model. MMPs are a family of specific enzymes used
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by fibroblasts to degrade their surrounding ECM [Liota et al., 1979; Mudera et al., 

2000].

Having introduced the effect of pre-strain we hypothesis that MMP expression will 

be regulated by it. More specifically, the expression levels of MMP-2, 3 and 9 were 

investigated here, as well as TIMP-2, COL-1, COL-3 and IGF-1. TIMP’s are known 

for their inhibitory action to MMP’s [Vincenti 2001; Mudera et al., 2000], and so 

were tested here. Gene expressions were tested for HDF’s seeded in progressively 

stiffer collagen constructs, at the end of 24h. All expressions were plotted against the 

housekeeping gene, Glyceraldehyde-3-phosphate dehydrogenase (GapDH). GapDH 

is a catalytic enzyme involved in glycolysis and is expressed in all cells. It is shown 

to be consistently expressed at uniform levels and it is not affected by mechanical 

alterations. It is therefore used as an internal control, i.e housekeeping enzyme. 

Consequently it was first established that GAPDH levels were stable and 

independent of pre-strain treatment. Figure 43 demonstrates GAPDH levels for all 

the pre-strain regimes used. Figure 43a shows the expression of GAPDH for HDFs 

seeded with 10% FCS and figure 43b with 20% FCS. No significant difference was 

found between the pre-strain regimes and/or with GAPDH expression at 10% and/ or 

20% FCS.

91



Ct
 (

cy
cl

e 
nu

m
be

r)

40

35

30

25

20

15

10

5

0
0% 5% 10%

40

35

30

-S 25 |
| □  GapDH I = 20

>»

5 16o
10

5
0

(b)

Pre Strain (%)
5%

Pre-Strain (%)

Figure 43. GapDH housekeeping gene levels are shown for 0%, 5% and 10% pre-strain, a) with 

10% FCS and b) with 20% FCS. Standard deviation used for error bars.

Therefore, GAPDH can be used as a reference against which all other gene 

expression markers can be compared.

Changes in HDF gene expression with stiffness (in 10% and 
20% FCS)
The first part of this study was to investigate the expression of the genes following 

24h culture of increasingly stiffer HDF embedded collagen constructs. Genes tested 

for all the pre-strain regimes and FCS levels are listed in Methods (Table 4).

Figure 44, shows the changes in expression of MMP-2 (Gelatinase A) relative to 

GAPDH (The difference between GAPDH and test gene is plotted on the y-axis - A 

value of 5 indicates that the expression of the target gene was 5 times higher than the 

housekeeping gene) at three pre-strain regimes/matrix stiffness.

HDF’s seeded within the 0% pre-strained constructs, showed significant down- 

regulation o f MMP-2 when compared to 5% (p= 0.05) and 10% pre-strain (p=

[□GcpDHl
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0.0286), by 10 and 6 fold respectively. These results indicated that MMP-2 

expression was sensitive to increasing matrix stiffness.
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Figure 44. MIVfP-2 expression is shown for HDF’s seeded to collagen constructs (n=3) 

supplemented with 10% FCS and subjected to 0%, 5% and 10% pre-strain. Standard deviation

used for error bars. Q and * indicate comparable groups and significance p<0.05.

T1MP-2 (Figure 45) expression was increased as matrix stiffness (pre-strain) 

increased, (0%-5% and 0%-10%; p= 0.05). Results suggested that TIMP-2, like 

MMP-2, is up-regulated by matrix stiffness, though TIMP-2 (unlike MMP-2) 

continued to rise when pre-strain was increased from 5% to 10% (without reaching 

conventional significance).
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F igure 45. T IM P-2 expression is shown fo r H D F’s seeded to collagen construc ts (n=3) 

supplem ented  w ith 10%  FCS and  subjected  to 0 % , 5 %  and 10%  p re-stra in . S ignificant

regulation  was show n (*). ^  and * indicate com parab le  groups and  significance p<0.05. 

S tan d a rd  deviation was used for e r ro r  bars.

Three more genes showed significant response to increasingly stiffer matrices. COL- 

1 (Figure 46a; p= 0.05) and IGF-1 (Figure 46c; p= 0.05) were significantly up- 

regulated when 10% pre-strain was applied, compared to 0%. There was no 

significance between 0%-5% and 5%-10% pre-strain. COL-3 on the other hand, 

showed significant up-regulation only (10 fold; p= 0.05) between 5% and 10% pre­

strain.
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Figure 46. (a) COL-1, (b) COL-3 and (c) 

IGF-1 expression is shown for HDF’s seeded 

to collagen constructs (n=3) supplemented 

with 10% FCS and subjected to 0%, 5% 

and 10% pre-strain. Standard deviation 

used for error bars, a and * indicate 

comparable groups and significance p<0.05.
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Results showed that the increasing matrix stiffness (due to pre-strain) resulted in 

significant up-regulation o f  ECM mechano-responsive genes (such as MMP-2, 

TIMP-2, COL-1, and COL -3). However, threshold in regulation o f  these genes 

appeared between 5 and 10% pre-strain. Suggesting that mechanoresponsive genes 

have a ‘lim it’ to their up-regulation due to stiffness (i.e stiffer matrices will not 

necessarly elicit gene up-regulation).

The second part o f  this study involved increasing the FCS concentration to 20%. All 

other pre-strain parameters and analyses were as above (with 10% FCS).

Figure 47 shows the expression o f  MMP-2 and TIMP-2 for HDFs seeded within 

constructs supplemented with 20% FCS.
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and  * indicate com parab le  groups and significance p<0.05. S tan d a rd  deviation was used for 

e r ro r  bars.

The pattern of changes in MMP-2 (Figure 47a) gene expression, with increasing 

stiffness, was identical to 10% FCS. Between 0% and 5% pre-strain expression 

increased by 18 fold (p= 0.05), which was higher when compared to 10% FCS (10 

fold up-regulation; Figure 44). Again expression fell as pre-strain increased from 5% 

to 10% by almost 2/3, and it was statistically significant (p= 0.05) (unlike 10% FCS). 

This did not mimic the 10% FCS response.

In contrast with 10% FCS, figure 47b shows the expression of TIMP-2 with 20% 

FCS. This time TIMP-2 showed the same pattern as MMP-2 and was significantly 

up-regulated between 0%-5% (p= 0.05), but down-regulated between 5 and 10% pre­

strain (p= 0.05).

| □  TIMP21
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Figure 48. (a) COL-1, (b) COL-3, (c) MMP-3 and (d) IGF-1 expression is shown for HDF’s 

seeded to collagen constructs (n=3) supplemented with 20% FCS and subjected to 0%, 5% and

10%  p re-stra in . Standard deviation used for error bars. ^  and  * indicate com parab le  groups and 

significance p<0.05.

Four more genes were significantly regulated due to increased matrix stiffens at 20% 

FCS. Figure 48a shows COL-1 expression, significantly up-regulated between 0%- 

5% (p= 0.05) and down-regulated between 5%-10% (p= 0.05) following exactly the 

same trend as MMP-2 and TIMP-2. Similar results for MMP-3 (Figure 48c; p=0.05 

between both 0%-5% and 5%-10%) and IGF-1 were observed (Figure 48d; p=0.05 

between both 0%-5% and 5%-10%).

Finally, COL-3 (Figure 48b), unlike at 10% FCS, showed down-regulation between 

0% and 10% pre-strain (p= 0.05) indicating an inverse co-relation.
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These results showed a novel combination o f  matrix stiffness, pre-strain and FCS 

levels, all controllable with our system, to regulate critical ECM genes such as 

MMP-2, TIMP-2 and COL-1 and -3 (Figure 49).
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Figure 49. Genes regulation trends are shown for HDFs seeded within collagen constructs with 

10% and 20% FCS: a) MMP-2, b) TIMP-2, c) COL-1, and d) COL-3.

The rest o f  the genes listed in table 4, showed no significant regulation when matrix 

stiffness was increased, i.e non mehano responsive genes.
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Gene expression regulation dependent on FCS levels
Results so far showed up/down-regulation of mechanoresponsive genes when 

collagen matrix stiffness increased, for a) 10% FCS and b) 20% FCS. Figure 50 

shows the significant up/down-regulation of the same genes; however this time we 

analyse each pre-strain regime at the two different FCS levels (i.e 0% pre-strain at 

10% FCS with 0% pre-strain at 20% FCS). Therefore the hypothesis under test here 

is that FCS stimulation will significantly regulate mechanoresponsive genes within 

stiff collagen constructs. Figure 50 shows all the genes significantly altered, by the 

FCS increase (10% to 20%).
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Figure 50. Gene expression is shown for HDF’s seeded in collagen constructs (n=3) 

supplemented with 10% and/or 20% FCS and subjected to 0%, 5% and 10% pre-strain, (a) 

MMP-9 expression at 10% pre-strain for both 10% and 20% FCS, (b) TIMP-2 expression at 

5% pre-strain for both 10% and 20% FCS, (c) COL-3 expression at 0% pre-strain for both 

10% and 20% FCS, and (d) IGF-1 expression at 10% pre-strain for both 10% and 20% FCS. 

Significant regulation was shown (*). Standard deviation used for error bars.
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Figure 50a shows significant up-regulation (p= 0.05) of MMP-9, 20% FCS, at the 

highest stiffness. In contrast, when 20% FCS was present, COL-3 (Figure 50c) was 

significantly up-regulated (p= 0.05) at the lowest in stiffness constructs, i.e 0% pre­

strained. Similar results, due to 20% FCS, were shown for TIMP-2 and IGF-1 on 

Figure 50b and 50d respectively, where were both significantly up-regulated 

following 5% pre-strain (p= 0.05 and p=0.05).

Results here showed differential genes regulation between two different serum 

levels, highly dependent on pre-strain/stiffness levels. A combination o f  FCS levels 

and pre-strains (pre determined) were important fo r matrix genes regulation.
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Discussion
Knowledge of how fibroblasts, in soft connective tissues, respond to external 

mechanical forces applied to extracellular matrix is limited. However, it has been 

suggested that fibroblasts which generate contractile forces are responsive to external 

mechanical loading [Brown et al., 1998; Eastwood et al., 1994; Grinnell, 1994; 

Delvoye et al., 1991].

This study was based on cell seeded collagen constructs as a model to investigate the 

effect of collagen stiffness in terms of cellular contraction and molecular 

mechanoresponsive genes, given that pre-strain significantly alters the collagen 

stiffness [Karamichos et al., 2006].

Our result suggest that fibroblasts regulate the force generated on adjacent collagen 

fibrils in response to stiffness of the ECM, i.e there is a feedback control to matrix 

stiffness. This is in general agreement with the early identification of tensional 

homeostasis [Brown et al., 1998] and is consistent with the idea that fibroblasts 

generate forces to monitor and control ECM material/ECM mechanical properties 

[Bishoff et al., 2003]. Here we quantified the forces generated by the cells seeded in 

collagen ECM and showed that stiffer matrices resulted in generation of smaller 

quantifiable forces by the host cells.

Prajapati et al [2000] demonstrated strain dependence of HDFs in this 3-D system in 

terms of protease expression (MMP’s and plasminogen activator). Mudera et al 

[2000] identified a sophisticated relationship between force vector and cell alignment 

operates to regulate gene expression of key matrix degrading enzymes. Increases in a 

range of proteins including tenascin and collagen levels in response to tension have
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been used and studies have suggested that cells respond to altered strain in their 

matrix by localized, proportional strengthening of the cytoskeleton linkages, 

allowing stronger force to be exerted on the integrins [Choquet et al., 1997].

There have been a number of studies [Katoh et al, 2001, Totsukawa et al., 2000] 

looking at different pathways of cell contractile activity such as myosin light chain 

kinase, and Rho kinase. More importantly it has been reported, that less organized 

ECMs results in insufficient cell -  matrix interactions and ultimately in translocating 

collagen fibrils [Grinnell et al., 2002]. Also focal adhesions only form after high 

degree of remodelling occurs [Grinnell et al., 2002]. As our results suggest cells will 

manipulate/contract less stiff matrices, organising these collagen fibrils. Applied 

forces (pre-strain) in turn would be expected to help stiffen the ECM surrounding 

these cells which may have implications in physiological terms.

That is, resident fibroblasts generate tensile loads on their immediate ECM in order 

to achieve internal homeostasis. Forces generated by the host cells eventually lead to 

stiffer material properties. Recent studies by Marenzana et al [2006] suggest that 

over larger periods, fibroblasts have the ability to ‘fix’ this new material stiffness 

into the collagen matrix permanently. This dual stage stiffening and fixing of fibrillar 

collagen represents the predicted basis of ECM remodelling [Tomasek et al., 2002].

In literature cell-matrix attachment has been reported, such as the involvement of 

RGD-bonding integrins to force generation and to cytoskeletal structure [Sethi et al., 

2002]. We have shown in Chapter 3 [Karamichos et al., 2006] that cells are viable 

and will not attach/contract a collagen matrix following FCS starvation. FCS is
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known to contribute towards cell contraction and FCS percentage increase can lead 

to increased contractile forces. Here we showed that cells will recover from the FCS 

starvation and are still be able to contract the matrix, though after a significant time 

delay (post FCS addition; CIT).

Conclusions

► Increasing collagen matrix stiffness and fibril alignment, using pre-strain, led 

to generation of significantly lower forces by embedded HDFs.

► Increasing collagen matrix stiffness led to a significant increase in 

contraction initiation time.

► Doubling of FCS (%) had no significant effect on contraction forces except 

in non pre-strained constructs.

► Doubling of FCS (%) led to a significant increase in CIT.

► Matrix remodelling gene regulation (MMPs and COLs) were shown to have a 

threshold between 0% and 10% pre-strain, suggesting that optimal matrix stiffness, 

around 310Pa (for the levels of stiffness tested in this study), is required for 

maximum output and/or expression of specific genes.
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Chapter 5: hBMSC cellular and molecular responses to 
increasing collagen matrix stiffness

Over the last decade, interest has grown in human Bone Marrow Stem Cells 

(hBMSCs) as an important area of TE/regeneration due to their ability to 

differentiate to multiple cell lineages. Furthermore, hBMSC’s can, under certain 

physiological and experimental conditions, be induced to become adipocytes, 

chondrocytes, and osteoblasts [Prockop, 1997; Pittenger et al., 1999].

After establishing the responses of a well described, committed, cell-type (HDF), to 

pre strain our aim was to compare these with mechanical responses of progenitor 

cells (hBMSC) in progressively stiffer matrices. The hypothesis here was that 

hBMSC seeded within increasingly stiff matrices will generate smaller contraction 

forces, similar to HDFs (Chapter 4), i.e. display fibroblastic mechanistic behaviour.

hBMSCs were obtained by bone marrow aspirates from six healthy patients (free of 

infectious diseases) in this study (as described in Methods) and stained for surface 

marker proteins (Introduction;Table 1) CD14, CD31, CD34, CD44, and CD105 

(Figure 51). Red staining (right column) indicates that hBMSCs were positive. No 

stain represents negative stain. As reported in literature [Barry et al., 2004; Pittenger 

et al., 1999; Jorgensen et al., 2003], hBMSCs stained negative for CD14, CD31, and 

CD34 and positive for CD44 and CD 105. This test was used to identify/clarify these 

cells as hBMSCs.
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Figure 51. hBMSCs static culture were stained for (a) Negative Control (b) Stained with CD14, 

(c) Negative Control (d) Stained with CD31, (e) Negative control (f) Stained with CD34, (g) 

Negative Control (h) Stained with CD44 and (i) Negative control (j) Stained with CD105
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hBMSCs (1 mil/ml) were then seeded within collagen constructs and force generation 

was measured (over 24h) for cells from 6 different donors. Force generation patterns 

(Figure 52) fell into two distinct groups: 1) High contractile and 2) Low contractile. 

There was no clear sex or age correlation between these two groups. Highly 

contractile cell lines started generating force rapidly (<2h), producing peak forces of 

90-120 dynes. In contrast the weakly contractile cell lines generated a total of 20-50 

dynes (i.e. <50% force) with characteristically prolonged delays in the onset of 

contraction (12-14h). In two of these forces generation was barely detectable (less 

than 20 dynes) by the system. The high contraction cells generated force with a 

comparable pattern to HDFs, with similar final force levels (80-100 dynes; Chapter 

4; Figure 33).
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Figure 52. hBMSC’s contraction profile for 6 different cell lines. ‘High’ and ‘low’ contractile 

cell lines are separated by an arbitrary black line (65 dynes) and final force generated indicated 

by a blue circle, for high contractile cell lines and a yellow circle for low contractile cells.
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It is currently assumed that differences in force generation were related to some 

aspect of donor physiology. Previous chapters showed that HDFs will generate less 

force with increased collagen stiffness and the aim here was to test whether hBMSCs 

responded in a similar way. Therefore, only the high contractile cell lines were used 

in subsequent studies.

All cell cultures appeared similar morphologically (Figure 53) at the end of the 

contraction period with similar cell shape (elongate) for both groups.

Figure 53. hBMSCs seeded in collagen constructs following 24h on the CFM. (a) and (b) show 

two different cell lines with similar, aligned (arrows) morphology.

Force generation and Mechano-regulation of hBMSCs
During the cell expansion stage of culture, hBMSCs proliferation rate improved 

(observation) when the FCS level was increased from 10% to 20%. Therefore 

hBMSCs were cultured in two different groups: a) with 10% FCS and b) with 20% 

FCS. It was concluded that cells expanded at different FCS levels might show a 

different mechano-response and so pre-strain experiments were repeated at both FCS 

concentrations. In each case, 10% and 20% FCS levels were also used for cell force 

generation monitoring.
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hBMSC tested in 10% FCS final concentration generated peak force similar to HDFs 

(Chapter 4; Figure 33), producing lower peak force as the matrix stiffness increased 

(140, 40 and 5 dynes for 0%, 5%, and 10% pre-strain respectively). Forces generated 

between 0%-5% and 0%-10% pre-strain were significant different (Figure 54; 

p<0.05).
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Figure 54. Contraction force profiles generated by hBMSC seeded constructs, with 10% FCS, 

following 0%, 5% and 10% pre-strain (n=3 each). Black arrows show final force reached by 

seeded cells.

Similar to the results shown previously (Chapter 4), when HDFs were seeded in 

stiffer collagen constructs, hBMSCs registered lower forces in response to stiffer 

matrices. This suggested similar mechanistic behaviour to fibroblasts.

108



However, when the hBMSCs response was tested at 20% FCS levels, increased force 

generation was shown at the stiffer matrices (Figure 55). Total force generated (at 

the end o f  24h -  Black arrow) was the same for all pre-strain levels (135dynes) 

indicating that a rate-limiting component o f  the FCS is critical in determining how 

cells respond to matrix stiffness.
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Figure 55. Contraction force profiles generated by HBMSC seeded constructs, with 20% FCS, 

following 0%, 5% and 10% pre-strain (n=3 each). Black arrow show final force reached by 

seeded cells.

In conclusion, a) total force is insensitive to increased matrix stiffness and b) initial 

rate force remains sensitive (contraction phase 12-24h) and cells are sufficiently 

activated at 20% FCS to compensate for increased matrix stiffness.
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Furthermore, significant differences (described below) were shown in the initial rate 

of force generation 0-4h (i.e. traction phase) and the appearance of CIT with 

increased pre-strain (with 20% FCS), which suggests that the stiffness-dependent 

response was still present.

When 20% FCS was used, total force generation was increased at stiffer matrices, 

reaching the same level (135 dynes) as the 0% pre-strained constructs. Here the 

initial rate of traction was tested in order to investigate whether cells are activated 

with 20% FCS in a manner that compensates for the increased matrix stiffness.
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Figure 56. Rate of force generation is shown (0-8h) for hBMSCs seeded within increasingly 

stiffer collagen constructs with FCS at t=0h and t= 1 h (n=3 each). El* a and * indicate 

comparable groups and significance p<0.05.

Figure 56 shows the initial rate of traction (0-8h) for all the groups tested here. 

Significant rate differences were shown for 10% FCS between 0% and 10% pre­

strain (p^O.05), while 20% FCS showed significance between 0%-10% and 5%-10%
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pre-strain (p=0.05 for both). When the two FCS concentrations were compared (10% 

and 20%) significant differences were found at non pre-strained constructs (p=0.05) 

and also at the highest stiffness (10% pre-strain; p=0.05).

Two key conclusions can be drawn here; a) FCS is responsible fo r  promoting 

cellular contraction (i.e post 10-12h) rather than traction which remains responsive 

to matrix stiffness independent o f  serum levels, b) hBMSCs are differentially 

responsive to serum levels when compared to HDFs.

Contraction Initiation Delay in hBMSC seeded constructs
When hBMSCs were seeded in collagen constructs, CIT was again (as with HDFs; 

Chapter 4) present. Both serum levels resulted in significant delays (CIT) between 0- 

5% and 0-10% pre-strained constructs (p=0.05 for all significant groups). Figure 57 

shows the CIT for 10% and 20% serum at all three pre-strain levels.
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Figure 57. C IT  is shown for hBM SCs seeded w ith 10%  and 20%  FCS, at the th ree  d ifferen t 

stiffness regim ens (n=3 each). * and $ indicate com parable groups and  significance p<0.05.

Based on the contraction profiles (Figure 55), increased serum (%) significantly 

affected stiffer constructs (5 and 10%) stimulating equal peak on force generation to 

levels in non pre strained constructs, hence abolishing the inhibitory effect o f matrix 

stiffness on peak contraction force generation. It was assumed here that the traction 

phase was important in order for the hBMSCs to ‘recover’ their contractility at stiffer 

matrices.
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Molecular Outputs 

Expression of specific genes by hBMSC’s when seeded 
within stiffer collagen matrices
The hypothesis for this part of the study is that selected MMP (2,3, and 9) and 

TIMP-2 (and potentially other key matrix elements such as collagen types I and III) 

gene expressions will be regulated by levels of pre-strain since previous findings 

indicated that gene expression of these ECM regulating enzymes is sensitive to 

overall external applied loading [Mudera et al., 2000; Cheema et al., 2005]. Since 

FCS influenced force generation, it is also proposed that mechano sensitive genes 

would alter with different FCS levels in this system.

Figure 58 shows an unchanged level (no significant differences), as shown for 

HDF’s previously, of the housekeeping gene GapDH, for hBMSC’s in collagen 

constructs (n=3) independent of the pre-strain levels with both (a) 10% and (b) 20% 

FCS. Gene expression did not differ significantly between the cell lines here and so 

could be used as a reference gene.
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hBMSCs seeded in collagen constructs with 10% FCS
hBMSCs seeded in 5% pre-strained constructs, showed significant (10 fold) up- 

regulation of MMP-2 (Figure 59a; p= 0.05), when compared to unstrained constructs 

(0% pre-strain). However, additional pre-strain (10%) resulted in significant down- 

regulation of the MMP-2 (p= 0.05) by 8 fold. MMP-3 (Figure 59b) showed the same 

trend, in response to pre-strain, up-regulated at 5% pre-strain (p=0.0286) and down- 

regulated at 10% (p=0.05). MMP-2 and MMP-3 genes showed the highest 

expression at 5% pre-strain, indicating either peak sensitivity to matrix stiffness or a 

cell response to local loss of matrix stiffness. MMP-2 regulation was similar to that 

shown already for HDF’s (Figure 44, Chapter 4).

Figure 59c shows the expression of COL-3 gene over the pre-strain regimes tested. 

COL-3 expression increased significantly (12 fold) with increasing matrix stiffness 

(0-5% and 0-10%; p= 0.05) upto a maximum at 5% (though not falling at 10%). This 

increased expression suggests that COL-3, like MMP-2 and -3, is up-regulated by 

matrix stiffness.
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Figure 59. MMP-2, MMP-3 and 

COL-3 expression is shown for 

hBMSCs seeded within collagen 

constructs (n=3) supplemented with 

10% FCS and subjected to 0%, 5% 

and 10% pre-strain. Significant 

regulation shown (*). Standard 

deviation used for error bars.

hBMSCs showed similar MMP-2 regulation (i.e. up-regulation at 5% and down- 

regulation at 10% pre-strain) with HDFs (Chapter 4) though TIMP-2 and COL-1 

expression was not significantly altered with hBMSC seeded collagen constructs, 

indicating a cell lineage dependence.

When 20% FCS was tested, as already described for HDFs, several genes were 

differentially regulated. Figure 60a, shows significant up-regulation of MMP-9 at 

5% pre-strain (14 fold; p= 0.039) and was down-regulated (15 fold; p=0.039) with 

further strain (10% pre-strain). 0% pre-strain did not significantly differed when 

compared to 10% pre-strain.
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In addition, Figure 60b and 60c shows regulation of COL-1 and COL-3 in response 

to stiffer matrices. COL-1 expression at 10% pre-strain was significantly down- 

regulated (7 fold) compared with 0% and 5% pre-strain (p= 0.0286 and p= 0.05 

respectively). COL-3 (Figure 60c) showed down-regulation (5 fold; p= 0.05) at 5% 

pre-strain compared to 0% pre-strain. Hence, changes in collagen gene expression in 

response to matrix stiffness were small but tended towards reduced expression with 

increased stiffness. hBMSCs showed, similar COL-1 gene regulation as HDFs, 

however COL-3 regulation was reversed (compared to HDFs) at stiffer matrices.
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This would suggest cell lineage dependence on collagen genes regulation with 20% 

FCS and increased matrix stiffness. IGF-1 expression responded with a small but 

significant increase (p= 0.05) at 10% pre-strain (Figure 60d) compared to 5%.

From the above findings (Figure 60) there was a threshold between 0% and 10% 

pre-strain where gene regulation for enzymes responsible for matrix remodelling is 

up-regulated, suggesting that stiffer matrices may trigger up-regulation o f  increased 

matrix remodelling genes by hBMSCs.

Results here also showed expression o f different genes (such as MMP-3 instead o f  

MMP-9), fo r 10% and 20% FCS respectively, when serum concentration was 

changed. Furthermore, a number o f different genes expressed different, when 

compared to HDFs (Chapter 4), suggesting a cell lineage dependence in response to 

matrix stiffness and FCS levels.
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Discussion
ECM orchestrates changes in cellular behaviour [Phillips et al., 2003; Ingber 1998]. 

Mechanical forces transferred to the cells together with the biochemical ECM 

composition regulate the balance within any tissue. Cells on the other hand will 

generate forces in response to different mechanical or chemical signals in order to 

control their shape and behaviour [Ingber 1998].

Reorganisation of the ECM by the cells, in response to forces has been reported in 

literature [Eastwood et al., 1998; Mudera et al., 2000; Karamichos et al., 2006]. 

However the means by which cells sense these forces is not well understood. Despite 

a number of studies (discussed below) contribution of cells embedded within 

collagen constructs to matrix properties is uncertain. For example, Bellows et al 

[1982] suggested that alignment could be generated within 24h by uniaxially 

tethering the constructs and allowing them to generate tension. Cell alignment has 

also been reported [Eastwood et al 1998; Mudera et al 2000] due to external uniaxial 

mechanical loading, and due to contact quidance following collagen fibril alignment 

using magnetic fields [Guido et al., 1993] suggesting that integrins act as 

mechanoreceptors and transmit mechanical signals to the cytoskeleton. Ingber 

[1998], also suggested that mechanical signals may be mediated simultaneously at 

multiple locations inside the cell through force-induced rearrangements within the 

actin-based cytoskeleton.

Interactions of cells with the ECM are essential in almost all biological processes 

including wound healing and scar formation. Cells present within various ECMs 

receive specific signals/information, normally triggered by ECM mechanical 

function/state via the transmembrane receptors, known as integrins. These receptors,
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in sequence, are connected to a complex of structural and signalling proteins forming 

the focal adhesions (structural and signalling proteins; FA) that anchor the actin 

stress fibers to the cell membrane. The regulation operated by the integrins on the 

cell phenotype is, at least in part, conditioned by the mechanical rigidity of the ligand 

[Lambert et al., 2001]. The resistance offered by the support applies tension on 

integrins, increases the stiffness of the cytoskeleton [Wang et al., 1993], the strength 

of the integrin-cytoskeleton linkage [Choquet et al, 1997] and the assembly and 

signalling activity of focal adhesions proteins [Pelham et al., 1997].

However, the investigation of collagen based materials physical properties are even 

more complicated because a) collagen concentration or crosslinking will vary 

material properties [Torres et al., 2000] and therefore may elicit differential response 

from the cell type seeded within and b) cell type differences may have significant 

effect on material properties. Mechanotransduction in mesenchymal stem cells is 

said to be mediated through structures that link cells to ECM, such as focal 

adhesions that develop in cells cultured on a rigid substrate [Izzard et al., 1976; 

Burridge et al., 1988].

This study has concentrated on 3D collagen constructs and hBMSCs seeded within 

those constructs showed differential responses when FCS % was altered. Previous 

chapters (Chapter 4) showed that HDFs responded to increased stiffness by 

generating lower contraction. Importantly, this effect is abolished in hBMSCs when 

FCS concentration was increased to 20%. The question arising is what levels of force 

are needed in order to elicit hBMSC response which are similar with both 10% and 

20% FCS. One potential way to test this is to increase cell number and keep the FCS 

levels low, and investigate their responses again at molecular, contraction forces, and
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morphology level. Alternatively, higher or different in magnitude strains have to be 

applied and tested for differential hBMSC responses.

The mechanism by which fibroblasts regulate the contraction of 3D collagen 

matrices has been shown to vary according to growth factor stimulus, mechanical 

environment, and the differentiation state of the cells [Grinnell et al., 2006]. 

Physiological agonists platelet-derived growth factor (PDGF) and lysophosphatidic 

acid (LPA) both have been shown to stimulate collagen matrix contraction, even 

though these agonists have opposite effects on the movement of cellular dendritic 

extensions within the matrices. PDGF increases their extensions; LPA causes their 

retraction [Grinnell, 2003].

Further studies have emphasized the bipolar morphology of cells [Elsdale et al., 

1972; Tomasek et al., 1984], which might be a response to the LPA in serum. 

Unpublished data have shown that progressive, step-wise, addition of FCS to cell 

seeded collagen construct will give an instant increase in force generation. Similar to 

what it is shown in this study using the traction phase as reference. It may therefore 

be possible that serum (and mainly LPA in serum) has similar effect to contraction 

forces generation as growth factors such as TGF-b [Brown et al., 2002].
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Conclusions
► Stiffness increase led to lower peak contraction forces generated by 

embedded hBMSCs, identical to HDFs.

► Increased FCS (%) significantly affected stiffer constructs (5 and 10%) 

stimulating identical peak contraction forces to levels in non pre strained constructs, 

hence abolishing the inhibitory effect of matrix stiffness.

► Similar to HDFs, hBMSCs showed CIT in both serum levels (10 and 20%),

suggesting a matrix stiffness dependence, and not a cell lineage dependence.

► MMP-2 and COL-3 were mechano-responsive in patterns similar to HDFs

suggesting that matrix stiffness will modulate matrix remodelling genes.
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Chapter 6: HNFF cellular and molecular responses to 
increasing collagen matrix stiffness

HNFF responses to pre-strain
This section of the study was designed to test the hypothesis that Human Neonatal 

Foreskin Fibroblasts (HNFFs) respond by generating lower contraction forces, to 

increasing matrix stiffness, i.e a similar response to HDF. The HNFF response to 

FCS starvation, as previously shown using HDF, was also tested here. FCS was 

added as before at lh and force generated was recorded for an additional 23h (as 

described in Methods). Experiments were run over 24h and constructs processed for 

RT-PCR.

The same pre-strain regimes of 0%, 5% and 10% were used. Figure 61 below shows 

HNFF responses to pre-strain without serum starvation.
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Figure 61. Contraction force profiles generated by HNFF seeded constructs, with 10% FCS,

following 0%, 5% and 10% pre-strain (n=3 each). Black arrows show final force reached by 

seeded cells and blue arrow shows CIT levels.

HNFF demonstrated the same force generation response to increasing matrix 

stiffness, as HDFs. When FCS was present from the start the peak force generated 

was reduced from 200 dynes at 0% pre-strain to 90 and 35dynes for 5% and 10% 

pre-strain respectively. As for HDFs, the fall in peak (24h) force generated was 

significant between 0% and 5% as well as 0% - 10% pre-strain (falling by 50% and 

82%: p=0.05 for both).
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Figure 62. CIT is shown for HNFF seeded constructs at the three different stiffness regimens 

(n=3 each). There was a significant difference in CIT between 0%-10% pre-strain (*; p<0.05).

HNFFs showed significant delay in force generation (i.e CIT; Figure 62). CIT was 

only significantly different (p=0.0265) between 0% and 10% pre-strained constructs, 

in contrast to HDFs where CIT was significant different at 5% pre-strain as well as 

10%. These results showed that CIT is pre-strain (i.e stiffness) dependent.
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HNFF’s contraction altered by serum starvation
HNFFs were subjected to FCS starvation (as with HDF; Chapter 4) to determine the 

effect on force generation and CIT. Figure 63 shows HNFF contraction under 0%, 

5% and 10% pre-strain, following lh FCS starvation and replacement.
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o 100 u. FCS added 
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12
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16 200 4 8 24

Figure 63. Contraction force profiles generated by HNFF seeded constructs, following lh FCS 

starvation for 0%, 5% and 10% pre-strain (n=3 each). Black arrows show final force reached 

by seeded cells and blue arrow shows Contraction Initiation Time levels.

There was a significant (p=0.05), incremental reduction in total force generation with 

increasing matrix stiffness following FCS starvation, similar to that with HDFs 

(Figure 36). At 0% pre strain peak force generation was 100 dynes, decreasing to 39 

and 12.3 dynes at 5% and 10% pre-strain respectively (Figure 63-Black arrows). 

Importantly, when cells were FCS starved (for lh), total peak force for 0%, 5% and 

10% pre-strained constructs were significantly lower (all three; p=0.05) compared to 

constructs with FCS at t=0h.
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Critically, forces generated by HNFFs, with 20% FCS presence, were progressively 

lower with increase in matrix stiffness. This is similar to HDFs but different to 

hBMSCs (where total peak force was the same at all stiffness levels) suggesting that 

serum levels increase will affect force generation differentially between cell 

lineages.

CIT was stiffness dependent and not FCS starvation/presence dependent. Figure 64 

shows CIT for constructs that were FCS starved, for lh. Significant difference was 

shown between 0% - 10% (p<0.05; 2.5times) pre strained constructs.

5%
Pre-Strain (%)

10%

Figure 64. CIT is shown for HNFF seeded constructs following lh  serum starvation, at the three 

different stiffness regimens (n=3 each). There was a significant difference in CIT between 0%- 

10% pre-strain (*; p<0.05).

When HDFs were tested, CIT was significant higher at lower matrix stiffness (i.e 5% 

pre-strain) as well as 10% pre-strain. This indicates that different cell lineages will 

have different ‘threshold’ o f  CIT, when matrix stiffness is increased.
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Tractional forces generated by HNFFs
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Figure 65. Rate of force generation is shown (0-8h) for HNFFs seeded within increasingly stiffer 

collagen constructs with (a) FCS at t=0h and (b) FCS at t=lh (n=3 each), n and * indicate 

comparable groups and significance p<0.05.

When FCS was present from t=0h, non-strained HNFF constructs showed a 

significant (Figure 65a) 32 and 39 times faster (in terms of rate between 0-8h) 

contraction rate than constructs with the higher stiffness (5 and 10% pre-strain 

respectively; both p<0.05). FCS starvation, for lh, showed similar trends with 10 

and 12 times faster contraction rate between 0%-5% and 0%-10% pre-strained 

constructs (Figure 65b; p<0.05) respectively. Contraction rates were significantly 

different in both FCS presence and FCS starved constructs between 5% and 10%

127



pre-strain (both p<0.05). When constructs with FCS presence compared to the serum 

starved ones, all 0%-5%, 0%-10% and 5%-10% pre-strained constructs were 

significantly different (all p<0.05) by 25, 5 and 2 times faster.

This is a reverse response by HNFFs compared to HDFs (Chapter 4). Here FCS 

starvation led to significantly slower contraction rate, where for HDFs FCS 

starvation led to faster responses. Indicating that FCS starvation is cell lineage 

dependence, i.e rates o f  contraction forces generated by seeded cells (after FCS 

starvation) will depend on the cell lineage itself
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Figure 67. Gene expression levels shown for both with and without FCS starvation. Expressions 

for cells not starved are: (a) COL1, (c) COL3 and (e) IGF1. Expressions for cells starved for lh: 

(b) CO Ll, (d) COL3 and (f) IGF1. Standard deviation used for error bars.

Despite the fact, those genes expression, did not reach conventional statistical 

significance, trends showed (Figure 66) that MMP-2 and MMP-3 up-regulated when 

FCS was present at t=0h (Figure 66a and 66c respectively; arrow), with a peak 

expression at 5% pre-strain showed when cells were FCS starved (Figure 66b and 

66d respectively; arrow)
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Concluding this part o f the study, expression o f the marker genes tested here, was 

independent o f matrix stiffness (i.e pre-strain) for both FCS supplemented and FCS 

starved constructs. This is in contrast with both HDFs and hBMSCs cell types, tested 

here, where gene regulation was dependent on matrix stiffness.

However when responses between FCS at t=0h and FCS at t= lh  were compared, 

significant differences between two genes were found. MMP-2 and MMP-3 were 

significantly up-regulated by 5 and 10 fold respectively (p=0.05 for both) when cells 

were FCS starved and seeded in less stiff constructs (0% pre-strain) as shown in 

figures 68 and 69 respectively. Therefore serum starvation caused up-regulation o f  

these two genes.
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Figure 68. MMP-2 gene expressions for constructs (n=3) with FCS and without FCS starvation, 

subjected to 0% pre-strain (p=0.05). Standard deviation used for error bars.
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Figure 69. MMP-3 gene expressions for constructs (n=3) with FCS and without FCS starvation, 

subjected to 0% pre-strain (p=0.05). Standard deviation used for error bars.

Consequently, cell attachment/contraction was minimised (for lh) using serum 

starvation and serum re-introduction led the cells to significantly increase specific 

mechano-responsive genes expression.

MMP (MMP-2 and -3) regulation was shown above to be independent of matrix 

stiffness (i.e pre-strain) and only cells seeded at 0% pre-strained constructs 

significantly altered their genes expression when serum starved. In contrast, COL-3 

was significantly (p=0.05) down-regulated when cells were FCS starved for both 0% 

and 5% pre-strained constructs (Figure 70 and 71).

132



40

36

30
GAPDH- 
test gene 26 

(Fold)
20

□ COL3 (0% pre-strain)
■ COL3 -SS- (0% pre-strain)

0% pre-strain

Pre-Strain (%)

Figure 70. COL-3 gene expressions for constructs with and without FCS starvation, subjected 

to 0% pre-strain. COL-3 gene was down-regulated following serum starvation 

(p=0.05).Standard deviation used for error bars.
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Figure 71. COL-3 gene expressions for constructs with and without FCS starvation, subjected to 

5% pre-strain. COL-3 gene was down-regulated following serum starvation (p=0.05). Standard 

deviation used for error bars.
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COL-3 expression was FCS dependent at 0% and 5% pre-strained constructs. 

However, when the constructs were pre-strained by 10%, COL-3 expression was not 

altered significantly, indicating an internal (cellular) threshold above 5% pre-strain.
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Discussion
This study was based on cell seeded collagen constructs as a model to investigate the 

effect of increasing matrix stiffness on cell force generation and its effect on 

molecular mechanoresponsive genes. This is based on the findings that uniaxial pre­

strain significantly alters the collagen stiffness, as shown in Chapter 3 [Karamichos 

et al, 2006].

These results suggest that fibroblasts regulate the force generated on adjacent 

collagen fibrils in response to stiffness of the ECM, i.e there is a feedback control to 

matrix stiffness. This is in general agreement with the early identification of a 

tensional homeostasis [Brown et al., 1998] and is consistent with the idea that 

fibroblasts are cells generating forces to monitor and control ECM material/ECM 

mechanical properties [Bishoff et al., 2003]. Here we have quantified the amount of 

forces generated by the HNFF cells seeded in collagen ECM and showed that stiffer 

matrices resulted in a reduced generation of quantifiable forces by the resident cells, 

as with HDFs and hBMSCs shown earlier.

It is important in this respect to consider the influence of different cell lineages as 

different fibroblast types may have different responses to increasing ECM stiffness. 

Fibroblast is a generic term for cells resident in and maintaining a wide range of 

collagen matrix types. It would seem inevitable that cell sensing and responses must 

differ if they are to maintain different material properties. A ‘signature’ of each cell 

lineage may be achieved which will be useful in guiding specific cellular responses 

(i.e cell seeded constructs which aim to mimic different tissues). Our results here 

suggest similar response to ECM stiffness by different cell types (HDFs, hBMSCs 

and HNFFs) in terms of early (24h) force generation but crucially different responses
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in terms of the detail of their gene expression, which may have long term 

implications.

COL-3 gene expression in HNFFs showed a synergistic inverse relationship which 

reached the lowest expression values at 310Pa construct stiffness. HNFFs showed 

FCS dependence rather than stiffness dependence. MMP-2 and -3 were both up 

regulated when cells were FCS pre-starved for lh. In contrast, COL-3 was down- 

regulated (as with HDFs at 5%), indicating opposite regulation of MMPs and 

collagen. Furthermore, there was an FCS dependence on COL-3 expression, since it 

was the only gene significantly down-regulated, in 310Pa stiff constructs (5% pre­

strain). Functionally COL-3, in dermis, is thought to act as an early stage provisional 

fibre element in remodelling, repair and growth of the ECM.

This study has also shown that cells will recover from the FCS starvation and are 

then able to generate forces, which are significantly higher at 0% pre-strained 

constructs, though with a longer CIT. CIT measure is important in this respect as it 

appears to reflect the ability and rate of cells to generate tractional forces (early 

stages) as they spread and move (Force rates; Figures 44a and b). Hence factors 

reducing cell spreading (reduced FCS, increased matrix stiffness and density) 

resulted in delayed traction force generation.

The increased stiffness of a Tissue Engineered construct by means of external 

mechanical stimuli will have to be tailored to elicit predictable cellular responses. 

Furthermore, FCS levels will have to be taken into account on rate as well as 

initiation time of generation of cellular contractile forces.
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Conclusions

► Increased collagen stiffness led to generation of lower contraction forces by 

the seeded HNFFs.

► HNFFs recovered from the FCS starvation and generated significantly lower 

forces at the lowest stiffness constructs.

► CIT was present in FCS starved/non starved constructs, showing similar 

responses to HDFs and hBMSCs (Chapter 4 and 5), suggesting matrix stiffness 

dependence.

► HNFFs showed no ECM stiffness dependence as far as gene regulation is 

concerned, indicating that altered regulation on mechano-responsive genes are 

possible even in relatively similar cell types (HDFs vs HNFFs).

► MMP-2 and MMP-3 gene expressions were up-regulated and COL-3 down- 

regulated at less stiff constructs following FCS starvation.

► COL-3 was also down-regulated at 310Pa stiff constructs with no further 

significant regulation at higher stiffness.

137



Chapter 7: HDF specific mechanoresponsive gene regulation: 
Stiffness and ramp loading dependence

HDFs gene regulation dependent on stiffness and ramp 
loading regimes
Previous chapters have shown that different cell types (HDF’s, HNFF’s, and 

hBMSC’s) will have a differential response, in terms of contraction force, to external 

mechanical strain, when seeded in increasingly stiffer constructs. Contraction forces 

generated by embedded cells and molecular outputs at the end of 24h were 

investigated as well as the effect of FCS presence/absence (within these increasingly 

stiffer constructs) in terms of contraction forces and molecular outputs.

It has been reported in literature (as discussed later) that different loading regimes 

can regulate specific genes within cell seeded collagen constructs. The final part of 

this study was to combine the pre-strain regimens with specific ramp loading 

regimens (see Methods, Figure 19 and 20) and investigate the molecular outputs.

HDFs and hBMSCs were seeded in collagen constructs and pre-strained, as 

described before (see Methods, Figure 19 and 20), by 0% and 5% pre-strain. 10% 

pre-strain was omitted as contraction forces were not detectable for all the cell types 

tested here. Constructs were cultured with 10% and 20% FCS (as with pre-strain 

experiments) on the t-CFM for 12h before two different ramp loading regimes 

applied: (a) 10% strain over lh, and (b) 10% strain over 12h. Figure 71b shows 

exmples of these loading regimes. All the experiments were stopped and processed 

for mRNA extraction at the end of 24h.

138



Fo
rc

e(
D

yn
es

)

Ramp load 
over 1 or 12h

t  600

5% pre-strain

o 4 8 12 16 20 24

1000

900

700

600 Ramp load 
over 1 or 12h600

400

0% pre-strain300

200

100

0
4 8 12 16 20 240

Figure 71b. Loading regimes shown, used for both HDFs and hBMSCs. a) 0% pre-strain 

applied following by 10% ramp load at 12h (over lh  or 12h depending on experiment), b) 5% 

pre-strain applied following by 10% ramp load at 12h (over lh or 12h depending on 

experiment)

In order to investigate the molecular outputs we split the data into three different 

comparable groups: a) Stiffness dependent

b) Rate dependent

c) FCS dependent

Groups are summarised in table below:

HDF’s 10% FCS 10% FCS 20% FCS 20% FCS

Ramp Load 10% over 1 h 10% over 12h 10% over 1 h 10% over 12h

0% pre strain Group 1 Group 2 Group 3 Group 4

5% pre-strain Group 5 Group 6 Group 7 Group 8

Table 5. Four different groups of pre-strain and ramp loading were used for each FCS 

supplement levels (10% and 20%). For 10% FCS: (Group 1) 0% pre-strain and 10% over lh, 

(Group 2) 0% pre-strain and 10% over 12h, (Group 5) 5% pre-strain and 10% over lh, and 

(Group 6) 5% pre-strain and 10% over 12h. For 20% FCS; (Group 3) 0% pre-strain and 10% 

over lh , (Group 4) 0% pre-strain and 10% over 12h, (Group 7) 5% pre-strain and 10% over 

lh , and (Group 8) 5% pre-strain and 10% over 12h.
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In terms of contraction, both cell types in all groups showed no measurable 

contraction (at the end of 24h) following the ramp loading regimes.

Effect of stiffness on ramp loaded collagen constructs
This part of the study was conducted to investigate the effect of ramp load on gene 

regulation in increasingly stiffer HDF seeded collagen constructs. The hypothesis 

here was that introduction of two different ramp loading regimes will regulate MMP 

and COL genes, in increasingly stiffer matrices. Table 6 below shows the Groups 

compared here.

Stiffness Group 1 vs Group 5

Group 2 vs Group 6

Group 3 vs Group 7

Group 4 vs Group 8

Table 6. Groups which are different in stiffness but identical in ramp rate and FCS levels were 

compared for specific gene regulation as shown. Group 1, 2, 3, and 4 are subjected to 0% pre­

strain where Groups 5, 6, 7, and 8 to 5% pre-strain.

Molecular outputs were compared for significant regulation depending on the 

stiffness (i.e initial pre-strain) when ramp load was applied (10% over lh and/or 

12h). Genes tested here were the same as listed before (Table 4; Methods); MMP-2, - 

3, -9, TIMP-2, COL-1, -3, and IGF-1.

Fast ramp loading (over lh) was used for Groups 1 and 5. Group 5 though had an 

increased initial stiffness (310Pa) at t=0h. When gene regulation was quantified here 

results showed the following; MMP-2 and COL-1 were significantly (p<0.05) down- 

regulated (Figure 72a and 72c; 12 and 16 fold respectively) at stiffer constructs,
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while TIMP-2 and COL-3 (Figure 72b and 72d; p<0.05) were significantly up- 

regulated at the same group o f  stiffness, indicating an inverse co-relation. IGF-1 was 

also up-regulated (Figure 72e; p<0.05) in stiffer constructs; similar with previous 

results i.e up-regulation at higher stiffness (>5% pre-strain).
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It is important here to note that MMP-2 and TIMP-2 showed inverse correlation 

between Group I and 5. Similar correlation was shown between COL-1 and -3 at the 

same Groups. These results indicated that matrix genes expression can be controlled 

with a combination o f stiffness and fast/slow ramp loads; however the balance o f the 

two is necessary to achieve predictable results.

In contrast, when slow ramp loading was used for both stiffness levels (Group2 and 

6) COL-1 was the only gene significantly regulated, showing a down-regulation 

(Figure 73; p<0.05) at stiffer constructs (Group 6). This was consistent with fast 

ramp loading (as shown above) suggesting that collagen I gene regulation is highly 

stiffness dependent rather than ramp load rate dependent.

■  COL1

Group 2 Group 6
Ramp loading regimes

F igure 73. COL-1 gene expression is shown for H D F’s em bedded w ithin collagen constructs 

(w ith 10%  FCS; n=3) subjected  to 0%  and /o r 5%  pre-stra in  and also a fu rth e r  10%  stra in  at 

t=12h, over 12h. S ignificant regulation is indicated by the asterisk  (*)
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Effect of stiffness on ramp loaded collagen constructs (20% 
FCS)
Ramp loading experiments using HDFs were repeated with 20% FCS, as described 

previously, in order to compare and investigate any changes in gene expressions due 

to FCS levels elevation. Firstly, stiffness effect is investigated when 20% FCS is 

present. Again there was no contraction following the application of ramp loading 

regimes.

Figure 74a and 74b shows, as with 10% FCS, significant inverse correlation between 

MMP-2 and TIMP-2; MMP-2 gene was down-regulated (p<0.05) and TIMP-2 up- 

regulated (p<0.05). Identical results with 10% FCS were shown with IGF-1 here 

(Figure 74e) which was significantly up-regulated at stiffer constructs. However, the 

ramp load was applied slowly (over 12h) and not fast (over lh) as with 10% FCS. 

These results showed similar regulation o f MMP-2, TIMP-2 and IGF-1, suggesting 

that gene regulation can be achieved with a combination o f  serum levels (ex. 10% or 

20%) and ramp loading rates.
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Figure 74. Gene expressions shown from HDF’s embedded within collagen constructs (with 

20% FCS) subjected to 0% and or 5% pre-strain and also a further 10% strain at t=12h, over 

lh  and/or 12h (n=3). (a) MMP-2 following ramping over 12h, (b) TIMP-2 following ramping 

over 12h, (c) COL-1 following ramping over 12h, (d) MMP-3 following ramping over 12h, (e) 

COL-1 following ramping over 12h, and (f) COL-3 following ramping over 12h
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On the other hand, COL-1 was significantly up-regulated (p<0.05) due to increased 

stiffness and a slow ramp load (over 12h). COL-1 was regulated in opposite manner, 

compared to 10% FCS, where COL-1 was down-regulated with increased stiffness in 

both fast and slow ramp loading regimes, indicating that factors in FCS can regulate 

in COL-1 expression.

Finally, MMP-3 (Figure 74d) was significantly (p=0.05) up-regulated for the same 

group as COL-1. It is important to note that the groups and genes that are not 

mentioned here showed no significant regulation, i.e when 20% FCS was present 

none of the other genes showed significant regulation due to stiffness and ramp 

loading.

The results showed that MMP-2 and TIMP-2 were inversely correlated between 0% 

and 5% pre-strained constructs when slowly (over 12h) ramp loaded (Group 4 and 

8). In contrast to MMP-2, MMP-2 was regulated in identical manner as TIMP-2, 

suggesting that matrix degradation and the specific metalloproteinase which will be 

responsive to external loads are very much dependent on serum levels.

Effect of ramp loading rate for collagen constructs
Results showed genes up/down-regulated by the effect of increased stiffness and 

ramp loading regimes. Here we investigated the effect of the ramp loading rate on 

gene expression. Genes that were not significantly regulated are not presented here. 

Groups compared are listed in Table 7.
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Rate Group 1 vs Group 2

Group 3 vs Group 4

Group 5 vs Group 6

Group 7 vs Group 8

Table 7. Groups which are different in ramp rate but identical in stiffness and FCS levels were 

compared for specific gene regulation as shown. Group 1, 3, 5, and 7 are subjected to fast ramp 

load (over lh) where Groups 2, 4, 6, and 8 to slow ramp load (over 12h).

Figure 75 shows significant down-regulation (p=0.05) of TIMP-2 at slow rate when 

compared to fast rate (Group 6 and 5 respectively) when HDFs were seeded within 

stiff constructs (5% pre-strain).
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Figure 75. TIMP-2 gene expression is shown for HDF’s embedded within collagen constructs 

(with 10% FCS; n=3) subjected to 5% pre-strain and also a further 10% strain at t=12h, over 

lh and/or 12h (Group 5 and 6). Significant regulation is indicated by the asterisk (*)

TIMP-2 expression was consistently up-regulated with 10% and 20% FCS when 

constructs were pre-strained at t=0h (i.e matrix stiffness dependent) at Figure 72 and 

74. However here, TIMP-2 showed down-regulation in response to ramp load rate. 

Crucially, MMP-2 was not significantly different (i.e independent of ramp rate)
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when the same groups were compared, in contrast to Figure 72 and 74 where MMP- 

2 was regulated in an opposite manner to TIMP-2. Indicating that specific 

metalloproteinase are very much dependent on the rate on which the ramp loads is 

applied.

Lastly, the ramp load rate when 20% FCS was present only affected COL-3. COL-3 

showed up-regulation with slow ramp load in 0% pre-strained constructs (Figure 76; 

p<0.05).

Figure 76. C O L-3 gene expression 

is shown for H D F’s em bedded 

w ithin collagen construc ts (with 

■  C 0L3 W ° /°  FCS; n=3) subjected  to 0%  

pre-stra in  and also a fu rth e r  10% 

stra in  a t t=12h, over lh  an d /o r 

12h (C ro u p  3 and  4). S ignificant 

regulation is indicated by the 

asterisk  (*)
Ramp loading regimes
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Effect of FCS doubling on cell seeded collagen constructs 
(10% vs 20%)
The final part was to investigate gene regulations due to FCS level elevation. The 

groups compared here are listed on table 8.

FCS Group 1 vs Group 3

Group 2 vs Group 4

Group 5 vs Group 7

Group 6 vs Group 8

Table 8. Groups which are different in FCS levels but identical in stiffness and ramp rate were 

compared for specific gene regulation as shown. Group 1, 2, 5, and 6 were with 10% FCS where 

Groups 3 ,4 , 7, and 8 with 20% FCS.

There were several genes significantly regulated due to doubling of FCS, and are 

presented on Figure 77. Non significant gene regulation is not discussed or presented 

here.

Expression of MMP-2 and TIMP-2 were both significantly up-regulated (Figure 77a 

and 77b; p<0.05 both) with 20% FCS, when no pre-strain and a slow ramp load was 

applied (Group 4). In contrast, MMP-3 and COL-1 (Figure 77c and 77d) were 

significantly down-regulated (both p<0.05) at the same Group when 20% FCS was 

present.
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It is important to note that this is the only time where MMP-2 expression was up- 

regulated, when ramp loading was applied, indicating that FCS levels are important 

regulators o f  specific matrix genes.
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Figure 77. Gene expressions shown from HDF’s embedded within collagen constructs (with 10 

and/or 20% FCS) subjected to 0% pre-strain and also a further 10% strain at t=12h, over 12h 

(n=3). (a) MMP-2, (b) TIMP-2, (c) MMP-3, and (d) COL-1.
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Finally, IGF-1 is shown here (Figure 78) to be stiffness dependent when the two 

serum levels were separately investigated. Figure 78 shows significant down- 

regulation, with 20% FCS, (p=0.05) of IGF-1 expression at 5% pre-strained 

constructs and fast ramp loaded (Group 7).
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Figure 78. IGF-1 gene expression is shown for HDF’s embedded within collagen constructs 

(with 10% and/or 20% FCS) subjected to 5% pre-strain and also a further 10% strain at t=12h, 

over lh.
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Discussion
Cells in the musculoskeletal tissues experience a variety of mechanical stress 

through physical distortion (strain) of the ECM, in which cells are embedded. In 

addition to those forces, each individual cell will generate an internal isometric 

tension under which physiological processes take place [Tomasek et al., 2002].

When external forces are applied to the cell seeded ECM construct or tissue, the 

distribution of those forces is not evenly spread across the cell surface membranes. 

As discussed before, cytoskeleton via integrins and focal adhesions take on the 

forces transferred. What happens though when this cellular force balance is being 

forced to higher/lower levels? For example, in this study we used two levels of 

different collagen stiffness by pre-straining the constructs 0 and 5% and allowed the 

cells to reach internal homeostasis (as seen on the CFM by a ‘’plateau” phase). 

However, the last part of this study aimed to disrupt this inherent force balance, by 

applying a ramp load after the plateau has been reached (at 12h). By doing so we 

wanted to investigate any alterations in cellular contraction forces and specific gene 

expression. It is crucial to investigate the expression of specific ECM genes such as 

MMPs and TIMPs, since excessive forces to constructs/tissues may lead to non- 

physiological responses.

When ramp loads were applied to constructs, in this study, effectively the collagen 

stiffness was increased further. Initial pre-strain was shown here to significantly 

increase collagen stiffness [Chapter 3; Karamichos et al., 2006]. Following that, 12h 

of cellular contraction (as described in this study) would mean a further increase in 

collagen stiffness until tensional homeostasis was reached. All cell types used in this 

study reached a ‘plateau’ within 8-1 Oh therefore in terms of mechanical integrity
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constructs had reached a steady-state. At 12h, a fast and/or slow ramp load was 

applied to these constructs which would immediately mean, that the resident cells, 

will reach a new internal mechanical steady-state. Despite the increased construct 

stiffness, imposed by ramp loading the collagen matrix, cells did not generate 

measurable contraction forces, suggesting that cells will respond to the increasing 

ECM stiffness by other means.

Despite the importance of mechanical forces in tissue homeostasis, the mechanisms 

how cells convert those mechanical signals into a specific response in ECM gene 

expression patterns are poorly understood [Renedo et al., 2005]. Imposing external 

forces on the ECM will lead to changes of the stress levels applied to the integrin 

receptors of the surface membranes of the cells and will produce physical alterations 

of the construct and/or tissue in terms of cellular responses. Consequently, changes 

of force balance across integrins will result in changes in the transcription of specific 

genes.

Results here showed clear mechano-sensitivty of specific genes. It is important to 

note that strains applied here and total matrix stiffness was relatively small, however 

within a loosely woven collagenous substrate [Prajapati et al., 2000] cells were 

shown to be sensitive to such loadings.

Rate dependence
HDFs showed significant regulation of ECM regulatory genes when a fast ramp was 

applied to stiff constructs, at 12h. Previous study [Prajapati et al., 2000] has shown 

significant up-regulation of MMPs enzyme levels when external mechanical
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stimulation was applied, such as MMP-2 and MMP-9, following cyclical load. The 

same study also reported a down-regulation of MMP-3 where here we showed that 

MMP-3 can be up-regulated if FCS levels are increased.

Prajapati et al [2000] has also suggested that cells are stress-shielded by their own 

matrix which would agree partly with the data shown here. However, it is likely that 

cells hold an internal threshold where anything above that (i.e higher external loads) 

will initiate the reverse of the process. An example of this speculation is the peak 

expression of genes after 5% pre-strain and return to 0% levels when 10% pre-strain 

was applied. It is possible that genes which showed no significant responses here due 

to ramp loading, have already reached a threshold and alternative pathways may 

have been activated.

Previous work has shown that there are optimal levels of cell-substrate adhesion i.e, 

where the binding is neither too strong nor too weak [Palecek et al., 1997]. 

Therefore, the effect of ramp loading will be more noticeable at sites where cells are 

strongly attached to the ECM, as mechanical signals will be able to be transferred 

and ultimately translated.

The limitation of this study was that gene expression was investigated at the end of 

24h and therefore differences in expression might exist at earlier points. We showed 

here that HDFs have a significant delay (Chapter 4) until they actually attach and 

therefore contract the collagen matrix. This attachment delay might be, on its own, a 

significant regulatory effect for specific gene expressions.

153



Conclusions
► Ramp loads applied to increasingly stiffer collagen constructs, at 12h, showed no 

further measurable contraction force generated by the seeded cells.

► Fast ramp loads applied to increasingly stiff matrices showed regulation of MMP- 

2, MMP-3, COL-1 and TIMP-2 genes, at the presence of 10% FCS.

► Slow ramp loads applied to increasingly stiff matrices showed regulation of 

MMP-2, COL-1, COL-3, TIMP-2, and IGF-1 genes, at the presence of 20% FCS.
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Chapter 8: hBMSC specific mechanoresponsive gene 
regulation: Stiffness and ramp loading dependence

hBMSCs gene regulation dependent on stiffness and ramp 
loading regimes
The previous chapter showed that HDF genes, linked to functional ECM 

remodelling, were regulated differentially in response to a combination of changes in 

collagen matrix stiffness and external loading regimens. This part of the study was 

conducted to investigate the effect, in terms of gene regulation, of controlled 

combinations of the same ramp loading regimens applied to increasingly stiff 

collagen constructs, this time seeded with hBMSC, where multipotent stem cells 

respond differently when compared to terminally differentiated cells i.e. fibroblasts.

Pre-strain and ramp loading regimens were identical as described before. Briefly, 

two different ramp loading regimes were applied: a) 10% strain over lh, and b) 10% 

strain over 12h, on constructs cultured with 10% and 20% FCS. Molecular outputs 

were investigated here according to the same three different comparable groups:

a) Stiffness dependence

b) Rate dependence

c) FCS dependence

There was again no force generation recorded by hBMSCs after 12h. Genes tested 

here were the same as stated in Table 4 (Methods).
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Effect of stiffness on ramp loaded collagen constructs
The effect of ramp load was investigated on gene expression in increasingly stiff 

seeded collagen constructs. Real-time PCR analysis showed that there was no 

significant change in gene expression in relation to increasing matrix stiffness (i.e 

pre-strain). Results were in complete contrast to HDFs where MMP-2 and COL-1 

were down-regulated and TIMP-2 and COL-3 were up-regulated under the same 

regimes (Chapter 7), suggesting a differential matrix gene regulation by hBMSCs (i.e 

cell lineage dependence) when subjected to ramp loads.

Effect of ramp loading rate for collagen constructs
Here we investigated specific remodelling gene regulation due to the effect of 

different ramp loading rate, on increasingly stiff hBMSC seeded collagen constructs. 

Again marker gene expressions that were not significantly altered, as listed in table 4 

is not shown. Groups compared are listed in Table 7 (Chapter 7).

The differential ramp load rate, in the presence of 10% FCS, only affected MMP-2 

expression. MMP-2 was significantly (p=0.05) down-regulated in 5% pre-strained 

constructs under slow ramp load (Figure 79: Group 6).
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Figure 79. MMP-2 gene expression is shown for hBMSCs embedded within collagen constructs 

treated with 10% FCS, at 5% pre-strain followed by lh (Croup 5) and 12h (Group 6) ramp 

load.

In contrast to HDFs (see Figure 72) where MMP-2 was down-regulated due to 

increased matrix stiffness in the presence of 10% FCS, hBMSCs were sensitive to 

ramp loading rate in stiffer (5% pre-strain) constructs. This suggested again a cell- 

lineage dependent on matrix gene regulation.
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FCS levels regulate marker gene expression
Several genes were significantly regulated when FCS levels were doubled from 10% 

to 20%. The same ramp loading regimes were applied. The hypothesis under test was 

that FCS levels will substantially influence mechano- responsive genes. This was 

tested over both slow (over 12h) and fast ramp (over lh) loading regimes (Figure 

80).
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Figure 80. HBMSC’s seeded in collagen constructs subjected to ramp loading over lh and 12h. 

(a) Shows COL1 regulation for 0% (Group 4) and 5% (Group 8) pre-strained constructs when 

subjected to slow ramp loading (12h). (b) Shows M1VIP3 regulation for 5% pre-strained 

constructs when subjected to both fast (lh; Group 7) and slow (12h; Group 8) ramp loading.

There was a small but significant fall in COL-1 expression (Figure 80a; p=0.05) in 

response to increased stiffness (5% pre-strain) and slow ramp load over 12h (Group 

8). In other words combination of the increased, 310Pa, stiffness together with a 

slow ramp load led to down-regulation of COL-1, indicating that construct stiffness 

is important. The previous chapter, with HDF seeded constructs identified the 

complete opposite pattern of regulation of COL-1, suggesting that this apparent 

matrix mechano-remodelling response is cell lineage dependent.
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Figure 80b shows MMP-3 expression was up-regulated (p=0.05) with slow ramp 

load (over 12h) in constructs with 310Pa stiffness (i.e pre-strained by 5%). This 

compares with a similar MMP-3 up-regulation in HDFs under same matrix stiffness 

but without ramp loading. This suggests that responses in MMP expression are cell 

lineage dependent. These may correlate to similar cell differences in matrix 

remodelling.

Pre-strain results for hBMSC’s seeded in collagen constructs in 20% FCS, showed a 

significant down-regulation of MMP-2 and MMP-9 between 310Pa and 380Pa 

construct stiffness. In contrast those two genes were not mechano-responsive in 

hBMSC. MMPs responded differently to the mechanical loading regimes (i.e pre­

strain and/or ramp loading) consistent with the idea that there is a close relationship 

between matrix remodelling by cells and mechanical loads. Furthermore, the 

differences in gene expression, with ramp loading in the presence of 20% FCS, 

suggest that the sensitivity of mechano-responses in these cells is highly FCS 

dependent. 20% FCS presence was shown (Chapter 5) to increase the contraction 

rate at early stages (traction phase) compared to 10% FCS, which may correlate with 

the differential gene regulation shown here.

In conclusion, this indicates that cellular responses to external mechanical 

loads/strains can be regulated by number o f  factors (FCS levels, pre-strains and 

ramp loads). Furthermore, increased attachment at early stages (traction phase) 

may be leading to these responses. These effects may act through changes in gene 

expression o f  key factors in matrix remodelling.
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Effect of doubling FCS levels on marker gene expressions
The effect of different serum levels (10% and 20%) on hBMSC seeded collagen 

constructs was investigated. Groups compared are listed in Table 4 (Methods). 

Several genes were significantly regulated with increased FCS.

MMP-2 expression (Figure 81a) showed a significant up-regulation (7 fold, p= 0.05) 

with 20% FCS when constructs were 310Pa stiff and also ramp loaded slowly over 

12h. This is in contrast to HDFs where MMP-2 was up-regulated at non pre-strained 

constructs, though with the same ramp load rate (over 12h).
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Figure 81. Gene expressions shown for hBMSC’s embedded within collagen constructs, 

supplemented with 10% and/or 20% FCS, following 0% or 5% pre-strain at t=0h and ramp 

loading at t=12h over lh or 12h (n=3). (a) MMP2 - 5% pre-strain and 10% ramp loading over 

12h and (b) MIVIP9 - 0% pre-strain and 10% ramp loading over lh.

Figure 81b shows up-regulation (3 fold, p=0.05) of MMP-9 with 10% FCS, under 

0% pre-strain and a fast (over lh) ramp load. The only time that MMP-9 was 

previously regulated was between the two stiff matrices (5 and 10% pre-strain) and 

with 20% FCS present. HDFs and ramp loads did not showed significant regulation 

of MMP-9. The expression of MMP-9 is not shown for most of the cell lines and
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literature on its regulation is very limited (as described later), hence these findings 

are very important for the role of the MMP-9 on the collagen matrix degradation.

In conclusion, different levels o f  FCS will give differential gene regulation (MMP-2 

at 10% FCS and MMP-3 and COL-1 at 20% FCS) altering the responses to 

mechanical stimuli as well as matrix stiffness.
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Discussion
Cell-cell interactions play an important role in tissue formation and regeneration, 

both in embryonic and adult stages. Mesenchymal cells have been shown to improve 

performance of composite skin substitutes in the animal models [Gulsun et al., 2004; 

Kataoka et al., 2003; Spees et al., 2003]. Lacroix and co-workers [2002] have also 

predicted that stem cells have a considerable effect on the healing pattern and 

healing rate.

Experimental studies concentrating on tissue repair [Kelly et al., 2005] have shown 

that several physical factors such as the size and location of the defect, or the type of 

loading, can influence the quality, type and durability of the repair tissue. Also the 

local mechanical environment of mesenchymal stem cells was found to influence 

cellular proliferation, differentiation, and the subsequent remodelling or degradation 

of the repair tissues, within an osteochondral defect, as outlined by Kelly et al 

[2005].

The process of wound healing requires coordinated cellular activities, including 

phagocytosis, chemotaxis, mitogenesis, differentiation, synthesis and reorganisation 

of collagen and ECM [Clark, 1996]. New studies report that mobilised bone marrow 

hBMSCs do actively participate in skin wound healing [Fathke et al., 2004; Harris et 

al., 2004]. Collagen deposition and epithelial differentiation is believed to take place 

under conditions of mesenchymal epithelial communication [Harris et al., 2004; 

Maas-Szabowski et al., 2001; Aoki et al., 2004]. This makes hBMSCs good 

candidates for TE applications.
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This study showed a significant regulation of genes important in ECM remodelling 

and turnover when stiff constructs, ramp rate and FCS levels were combined. This 

has major implications in the area of TE, specifically in tissues where load bearing is 

a major function. De Palma et al [1966] for example observed that cartilage 

formation in defects in non weight bearing areas occurred at a slower rate, and was 

quantitatively inferior to the cartilage that formed in weight bearing areas. Other 

studies including O’Driscoll et al [1988] demonstrated that continuous passive 

motion helped to heal injured rabbit knee joint articular cartilage repaired with 

autogenous periosteal grafts containing MSCs [O’Driscoll et al., 1988]. The question 

really is how and when do cells perceive these controlling loads through their dense 

ECM.

Stem cells are known for their unique intrinsic characteristics enabling them to 

control cell replacement during homeostasis and tissue repair [Daniels et al., 2001]. 

This makes them highly attractive for use in TE applications.
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Conclusions
► MMP-2 was the only gene significantly regulated showing down-regulation at 

stiffer matrices when a slow ramp was applied, indicating overall matrix stiffness 

dependence as well as ramp load rate at stiff matrices, in hBMSCs.

► COL-1 showed stiffness dependence, with 20% FCS, when constructs were 

slowly ramp loaded.

► MMP-3 showed ramp rate dependence, with 20% FCS, at stiffer constructs.

► MMP-2 and MMP-9 showed differential dependence on FCS levels. At stiff 

matrices and slowly ramp loaded (for MMP-2) and at non-stiff matrices and a fast 

ramp load (for MMP-9).
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Chapter 9: GENERAL DISCUSSION
Trinkhaus [1984] suggested the role of coupling between mechanical forces and 

tissue growth and remodelling. Many studies have now concentrated on the effects 

of mechanical forces such as tension, compression, and shear stress at the cell level 

[Edwards et al. 1999; Huang et al., 1999; Kaspar et al 2000; Tabony et al 2002]. 3D 

collagen constructs have been studied for many years and much is now known about 

contractile forces generated by fibroblasts over time in culture [Tomasek 1984; 

Eastwood et al., 1994; 1996; Elsdale 1972; Bell et al., 1979; Delvoye 1991; Brown 

1996]. These have been put forward as models representing wound contraction 

and/or morphogenesis. In this study we have used the 3D collagen constructs as an in 

vitro model (seeded with different cell types) to investigate the effect of external 

mechanical forces (uniaxial tension) on the matrix properties and the molecular 

response of resident cells.

External forces (i.e strain) are critical for tissue homeostasis and elicit specific 

cellular responses, such as gene expression and protein production [Hinz 2006; 

Eckes et al., 2004; Parsons et al., 1999]. The process of converting different 

mechanical forces into biochemical signals and integrating these signals into the 

cellular responses is referred to as mechanotransduction [Huang et al., 2004]. In 

other words, the process of passing mechanical (external) signals into the cell 

(internal) involves biochemical and molecular events in the cell cytoplasm, 

cytoskeleton and nucleus. Mechanosensing is postulated to involve many different 

cellular and extracellular components such as cell-matrix adhesions and cell-cell 

junctions [Davies et al., 1997].
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To date, very few studies have been carried out on how forces are been distributed 

through a collagen construct. These have included the use of magnetic twisting 

cytometry [Eckes et al., 1998; Wang et al. 1995] and linear force magnetocytometry 

[Karcher et al., 2003]. With both models though, their findings were limited to 

deformations and stresses localised within 10pm from the site of force application. 

Supporting these studies, Davies et al. [1997] has proposed that 

mechanotransduction occurs at the local site of force application or at sites where 

force reaches the cell nucleus, cell-matrix adhesions, or cell-cell junctions. The strain 

field is far from homogeneous and widely distributed throughout the cell and 

therefore, it is certain that more structures are involved such as cell-matrix 

attachment points (i.e. focal adhesions), as discussed later.

Other models have shown and calculated cell stiffness and/or overall construct 

stiffness [Wakatsuki et al., 2000] however; the limitation for these studies is that the 

cell-ECM system has been investigated as one, which adds to the complexity of 

mechanotransduction. Cell interactions with the ECM are critical for the mechanical 

regulation of cell activity and as well as for connective tissue homeostasis [Tomasek 

et al., 2002; Brown et al., 1998] though to get around the problem of complexity of 

the cell body contribution to collagen construct mechanics/stiffness, the author 

devised a system to selectively exclude the cells [Karamichos et al., 2006] so matrix 

stiffness can be accurately quantified.

The important aspect of this study is that it extends our limited knowledge of 

mechanotransduction derived from cell-matrix culture models towards understanding

(1) the effect of mechanical forces on resident cells in bio-artificial matrices in vitro
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(2) how mechanical forces of a certain type, amplitude, and duration can elicit 

specific cellular responses for potential in vitro applications in the TE area, and (3) 

what combinations of mechanical stimulation produces possible predictable cellular 

responses. Understanding of mechanotransduction is vital for successful transition 

from in vitro to in vivo models. It is important to identify the critical transduction 

process at cellular and molecular level. However, to control such process is clearly 

much more complicated than any single signalling molecule or even any individual 

transduction pathway. The same stimulus (external or intracellular) can produce an 

entirely different response dependent on both the chemical and the mechanical 

context in which signal transduction proceeds.

External forces and cellular responses
For some years now it is clear that many cell types are sensitive to mechanical forces 

from their surroundings [Jones et al., 1992]. The magnitude and type of forces that 

are needed, in in vitro ECM models, to elicit specific cellular responses is not clear. 

The amplitude, length, and time where these external forces are applied vary and 

depend very much on models/tissues under investigation. Stiffness, integrity and 

strength of a tissue or scaffold depend on the rate at which forces are applied and 

will vary widely between tissues [Frank et al., 1985].

Previous studies have used ex vivo and in vivo models to investigate the effect of 

tissue stretch on subcutaneous tissue fibroblast morphology [Langevin et al., 2005], 

highlighting the importance of mechanotransduction in determining function at 

cellular level.
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In the first part of this study, the applied force rate was constant but the magnitude 

was used to regulate stiffness of the collagen matrix, which led to unique cell type 

responses, i.e. contraction 4’signature” .

Focal adhesions and ECM interactions following pre-strain
The human body, from an engineering point of view, is a load-transmiting 

mechanism [Kenedi et al., 1975]. Human tissues such as tendons (muscle to bone) 

and ligaments (bone to bone) largely transmit loads across joints. Consistent with 

this function, their structure of aligned collagen fibres provides for load bearing 

primarily in one direction and contributes to highly anisotropic material properties 

[Lynch et al., 2003].

At the cellular scale, cells embedded in a particular tissue appear to probe the 

stiffness as they attach and pull on their surrounding ECM [Bischoff et al., 2003]. 

Such processes are highly dependent on myosin-based cytoskeletal ‘motor’ 

contractility and cellular-matrix integrin based adhesions [Discher et al 2005]. When 

external forces are applied, it is proposed that cells respond to the stiffness changes 

of the substrate (in this study collagen) by adjusting their adhesion strength, 

cytoskeleton and tensional homeostasis [Brown et al., 1998]. Several findings 

suggest that cells are more responsive to changes in force. Previous chapters showed 

that application of an initial rapid strain (pre-strain) can elicit specific cellular 

responses (reduced contraction), suggesting that timing of strain application is 

equally important to cellular responsiveness.

Cell adhesion to the ECM is central to development and the organisation, 

maintenance, and repair of tissues by providing anchorage and triggering signals that
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direct cell survival, migration, cell cycle progression, and expression of 

differentiated phenotypes [De-Archangelis et al., 2000; Danen et al., 2003].

However, in vivo, a cell-mediated control of tension must be a far more complex 

balance of forces due to the composite ECM material properties (including elastin 

and proteoglycans) [Brown et al., 1998]. Abnormalities in adhesive interactions are 

often associated with pathological states, including wound healing defects [Wehrle- 

Haller et al., 2003; Jin et al., 2004]. Deficient healing exists when there is 

insufficient deposition of connective tissue matrix and the tissue is weakened to the 

point where it can fall apart [Langevin et al., 2005]. Therefore it is important to 

trigger regeneration of injured tissues/sites. Regeneration is the process that occurs 

when there is loss of structure and function but the organism has the sophisticated 

capacity to replace that structure by replacing exactly what was there before the 

injury. Good examples of regeneration ability are the salamander and crab, which 

can regenerate tissues. However, for mammals the ability to regenerate has been lost 

and only very limited amount of regeneration can occur at a few sites of injury 

[Langevin et al., 2005]. Hence, understanding how cells sense and respond to their 

surrounding environment is only the beginning of a potential breakthrough in tissue 

engineering and tissue remodelling.

A common pathway for force transmission is via focal adhesions. Integrins, which 

form bonds with various ECM proteins (fibronectin and vitronectin), constitute 

primary pathway and have been viewed as major candidates of mechanosensing 

[Huang et al., 2004]. On the intracellular side, proteins such as paxillin and focal 

adhesion kinase (FAK) tend to localise to focal adhesions [Huang et al., 2004].
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These have multiple binding patterns and are very important to focal adhesion 

strengthening and mechanotransduction. This is comparable to doing weight lifting 

with one hand instead of two. Two hands will stabilise the load application and 

ensure good force transmission from the muscle (motor) to the bar, to complete the 

lift up.

Generally the accepted model for cell-ECM adhesion strength, proposed by Lotz et 

al. [1989], postulates a three-step sequence consisting of initial integrin-ligand 

binding followed by adhesion strengthening [Lotz et al., 1989]. The strengthening 

response arise from 1) increases in adhesive molecules along the length of the border 

of cell-substrate contact area (spreading), 2) receptor recruitment to anchoring sites 

so adhesions are stronger, by means of detachment from substrate resistance (i.e all 

forces will be equally distributed across the bonds, clustering; and the bonds would 

break at the same time), and 3) coupling of cell surface receptors leading to FA 

strengthening.

The mechanical aspects of adhesion remain poorly understood and in this study have 

not been investigated in detail. However, when using collagen ECM, it is accepted 

that collagen fibrils can transmit signals through integrins [Schlessinger, 1997]. 

Collagen is a flexible but inextensible fibrillar structure with a stiffness of 30-100 

Pa as measured by a dynamic mechanical analyzer [Wang et al., 2003] and lies far 

lower that of a normal cell culture dish which is non flexible and with a stiffness of 

more than lGPa [Wang et al., 2003]. The two of them represent the two extremes 

away from physiological, human tissue stiffness; however external stimulation can 

increase collagen stiffness and hence alter focal adhesions. Previous data has shown
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that increased mechanical force to integrin-mediated adhesions increased the 

stiffness of the cell [Wang et al., 1993; Choquet 1997]. Based on these findings 

Wang et al [2003] later suggested that physical properties of collagen fibrils cause 

down-regulation of focal adhesion complex proteins, which in turn resulted in the 

disappearance of functional focal adhesions and stress fibres. This, according to the 

authors, may contribute to a decrease in intracellular tension. It is therefore certain 

that such a decrease in intracellular tension will lead to alterations in the signalling 

pathways and result in differential cellular responses to the new tension steady-state. 

Wang et al [2003] finally suggested that focal adhesion complex proteins, like FAK 

were decreased within lh when cells were seeded in collagen constructs. FAK is a 

cytoplasmic non-receptor tyrosine kinase located close to focal adhesions and may 

be key to integrating signalling to cells from the ECM-integrin and growth factors. 

This suggests that decrease in focal adhesion complex proteins will be altered by 

external forces applied to collagen constructs.

Riveline et al [2001] applied mechanical force to vinculin-containing dot-like 

adhesions at the cell edge using a micropipette. Local centripetal pulling led to local 

assembly and elongation of these structures and to their development into streak-like 

focal contacts. They therefore suggested that integrin-containing focal complexes 

behave as individual mechanosensors exhibiting directional assembly in response to 

local force. To an extent this phenomenon is the inescapable effect of single force 

vectors on compliant anchored materials.

From all the above studies we can postulate the following model, on collagen 

stiffness and cel 1-adhesion (Figure 82).
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Figure 82. a) Diagrammatic representation of increasingly aligned and stiffer, cell seeded 

collagen constructs, using pre-strain, b) Focal adhesion model is shown. Focal adhesions get 

stronger as collagen matrix stiffness increase following application of pre-strain.

Collagen stiffness and alignment will increase as pre-strain increases (Figure 82a) 

and according to this model, resident cells will adhere to the ECM by forming 

stronger focal adhesions as indicated in figure 82b. Putting this into perspective, 

increase of pre alignment and stiffness in the collagen matrix (at t=0h) will lead to 

differential response by the cells, in terms of signalling pathways activated due to 

altered focal adhesions, following mechanical loading.

This study has tested three different cell types and many similarities in terms of 

responses to ECM stiffness (i.e reduced contraction as stiffness increased) were 

shown, however in terms of gene markers regulation differential outputs were 

shown, as discussed below.
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From mechanotransduction to gene expression
Molecular cell biology is guided by the desire to understand how cells and tissues 

develop their unique organic qualities, including the ability to change shape, move 

and grow [Ingber, 1998]. Molecular mechanisms involved in cellular responses 

following changes in matrix stiffness are still unclear, but it is important to examine 

and understand signals travelling both from the ECM to the cell and from the cell to 

ECM, as highlighted by Discher et al [2005].

A variety of studies have shown the significance of external load application and 

their effect in tissues. Application of loads to bone [Burger et al., 1999; Hsieh et al., 

2001; Rubin et al., 2000; Brighton et al., 1991; Huiskes et al., 2000], ligament 

[Huiskes et al., 2000; Bhargava et al., 1997], and tendon [Amoczky et al., 2002; 

Banes et al., 1995; Hannafin et al., 1995] have been implicated in the maintenance of 

tissue homeostasis. This is thought to occur through the transfer of tissue strain to the 

cell cytoskeleton that, in turn, initiates a mechanotransduction signalling response 

[Banes et al., 1995; Ingber et al., 1995]. Mechanotransduction can be regulated 

outside the cell by extracellular matrix proteins and proteolytic enzymes [Laiho et al. 

1989]. More specifically, proteolytic degradation of the ECM is an essential feature 

of repair and subsequent remodelling stages [Gailit et al., 1994]. MMPs are known 

for their role in wound healing, angiogenesis, embryogenesis, and in many 

pathological processes such as tumor metastasis [Stetler-Stevenson 2001]. Studies 

have shown a correlation between cytoskeletal architecture and MMP gene 

expression, where agents that altered the actin-based cytoskeleton produced a 

parallel induction of MMP-1 and MMP-3 expression [Werb et al., 1977; Aggeler et 

al., 1984; Werb et al., 1986; Unemori et al., 1986]. Such cytoskeletal changes are 

intricately associated with cell shape and substrate attachment. In addition, changes
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in the cytoskeletal architecture have been reported induce changes in protease 

activity, although a number of cytokines have also been implicated [Werb et al., 

1993]. Clearly therefore, protease production is essential in ECM remodelling. 

Understanding of the process and the specific proteases involved in mechano- 

responsive changes will be critical in in vitro and/or in vivo models.

A well studied model is the fibroblast seeded 3-D collagen lattice. Fibroblasts 

embedded in these constructs affect the surrounding ECM through new synthesis, 

deposition, and remodelling [Kurkinen et al., 1980; Welch et al., 1990]. Prajapati et 

al [2000] have shown the linkage between extracellular protease productions and 

defined mechanical loading on HDFs, concluding that mechanical loading elicited 

complex and substantial changes in matrix modifying proteases.

Any cell type that is embedded in these construct will be sensitive to relatively small 

amounts of external loading, because of the high compliance of the collagenous 

matrix. This study has concentrated on the effect of external mechanical loads and 

how this affects specific mechano-responsive genes. Significant effects on gene 

regulation were shown, despite the relatively small external loading (involved 0%- 

10% strain). In agreement, with other studies [Brown et al., 1998; Burt, 1992] 

suggesting that HDFs regulate any increase or decrease in matrix tension through 

protease production.

Implications for gene regulation at the in vivo level have been shown in a number of 

studies, including Dupuytren’s disease [Tarlton et al., 1998], where notably 

significant differences in MMP levels were found which suggested the existence of a
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threshold in terms of gene expression. These findings are in agreement with the data 

shown, in this thesis, where most of the significant genes tested showed a threshold 

of maximum or minimum mechano-responsiveness. These findings suggest that the 

external loading resulted in an increase, in the MMP levels, which would be likely to 

weaken the collagen fibres (eg. by depolymerization) or result in removal of non 

collagenous ECM elements (proteoglycan, fibronectin, laminin). In addition, 

Palecek’s [1997] work on fibroblast locomotion has shown that there are optimal 

levels of cel 1-substrate, i.e., where binding is neither too strong to prevent retraction 

nor too weak to allow traction reinforcing the statement of threshold gene regulation 

existence.

Stem Cells and gene expression
The therapeutic efficacy of hBMSCs in tissue engineering and regenerative medicine 

is determined by their unique biological, mechanical and physicochemical 

characteristics that are yet to be fully explored. During embryonic development, 

physical forces exerted by hBMSCs organize ECM into a wide variety of structures 

and mechanical properties giving rise to different tissues [Stopak et al., 1982; Stopak 

et al., 1985; Bard et al., 1975; Bard 1977]. Similarly, wound contraction and 

remodelling of connective tissue matrix are strongly influenced, if not dominated by 

mechanical interactions between fibroblasts and the collagen ECM [Ehrlich 1988].

Although hBMSCs are not the major cell type in the normal dermis recent studies 

showed that participation of these cells in skin wound healing, e.g. by the 

mechanism of homing and differentiation [Kataoka et al., 2003; Korbing et al.,

2003]. Aoki et al. [2004] showed that bone marrow stromal cells accelerated 

epidermal regeneration better than preadipocytes and dermal fibroblasts [Aoki et al.,
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2004]. hBMSCs participation in skin wound healing has been further investigated by 

other groups, where collagen deposition, epithelial and epidermal differentiations are 

believed to take place under the control of mesenchymal-epithelial communication 

[Spees et al., 2003; Harris et al., 2004; Maas-Szabowski et al., 2001; Aoki et al.,

2004].

Mechano-remodelling of collagen is a key component of the process of 

cytomechanical control. This comprises altered load transmission by asymmetric 

(fibrous) matrix structures and production/revision of that structure by resident cells, 

to which stem cells may contribute into wound healing process in tissue engineering 

[Tomasek et al., 2002].

Previous studies have shown that cytoskeleton disruption resulted in a 4-fold tether 

length increase in fibroblasts but had no effect in hBMSCs, indicating a weak 

association between the cell membrane and hBMSC actin cytoskeleton [Titushkin et 

al., 2006]. Despite the fact that this is a 2D observation and it cannot directly be 

compared to our 3D system, it may be a significant difference between hBMSCs and 

fibroblasts. hBMSCs in this study showed differences in response to increasingly 

stiffer matrices when FCS levels were increased. It will be valuable to further 

investigate and compare morphological changes, particularly related to the actin 

cytoskeleton in 3-D, when serum levels are altered.

This study has introduced a novel way o f  increasing the stiffness and organisation o f  

collagen ECM. The development o f the t-CFM by Eastwood et al [1998] has allowed 

accurate measurement o f  average contractile forces generated by cell populations
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within 3D constructs, with or without the application o f defined external loads. This 

study investigated the influence o f matrix stiffness on3 different cell type contraction 

as well as effect on the regulation o f key matrix-remodelling genes regulation. 

Differences between these effects on fibroblasts from different anatomical sites were 

also investigated, highlighting altered responses to similar environmental stimuli. 

These findings have implications in the basic understanding o f  cellular processes 

involved in normal remodelling, wound repair and related in the processes 

important in the engineering o f soft connective tissues.
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Summary

The table below summarises all the results showed in this study.

10% FCS Force generated Molecular Outputs Ramp loading 
molecular outputs

HDFs • Decreased at higher stiffness • M M P2-Peak at 5% pre-strain
• TIM P2-Progressive increase 
with stiffness
• COL 1-Progressive increase 
with stiffness
• COL3-Progressive increase 
with stiffness
• IG FI-Progressive increase 
with stiffness

• M M P2 dow n-regulated at 
stiff matrices with slow  ramp
• TIM P2 up-regulated at stiff 
matrices with slow ramp 
•COL1 dow n-regulated at 
stiff matrices with slow ramp
• COL3 up-regulated at stiff 
matrices with slow ramp
• IG F 1 down-regulated at 
stiff matrices with slow ramp

HNFFs • Decreased at higher stiffness • No significant difference due 
to stiffness

•N /A

hBMSCs • Decreased at higher stiffness • M M P2-Peak at 5% pre-strain
• MMP-3 Peak at 5% pre-strain
• COL3- Increase at stiffer 
matrices

• M M P2 dow n-regulated at 
stiff matrices with slow ramp 
when compared to fast ramp 
load

20% FCS Force generated Molecular Outputs Ramp loading 
molecular outputs

HDFs • Decreased at higher stiffness • M MP2- Peak at 5% pre-strain
• TIM P2-Peak at 5% pre-strain
• COL1 - Peak at 5% pre-strain
• M M P3- Peak at 5% pre-strain
• IGF 1 - Peak at 5% pre-strain
• COL3- Progressive decrease 
with stiffness

• M M P2 dow n-regulated at 
stiff matrices with fast ramp
• TIM P2 up-regulated a t stiff 
matrices with fast ramp
• CO LI up-regulated at stiff 
matrices with fast ramp
• M M P3 up-regulated at stiff 
matrices with fast ramp
• 1GF1 up-regulated at stiff 
m atrices with fast ramp

HNFFs •N /A • N/A •N /A

hBMSCs • Remained the same at all 
stiffness

• M MP9- Peak at 5% pre-strain
• COL 1 -Peak at 5% pre-strain
• COL3- Lower at 5% pre­
strain
• IGF 1 - Lower at5%  pre-strain

•CO L 1 dow n-regulated at 
stiff matrices with slow ramp 
• M M P3 up-regulated at stiff 
matrices with slow ramp 
com pared to fast ramp load

lh FCS 
Starvation

Force generated Molecular Outputs Ramp loading 
molecular outputs

HDFs • Decreased at higher stiffness •N /A •N /A

HNFFs • Decreased at higher stifness • No significant difference due 
to stiffness

•N /A

hBMSCs •N /A •N /A •N /A

Table 9. Main experimental results for all three cell types (HDF,hBMSC and HNFF) are 

summarized here. Forces generated and molecular outputs under different conditions are 

shown.
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Future work

• Improvements on the t-CFM hardware can be made in order to make it more user- 

friendly.

• Work on cell-matrix interactions, concentrating on integrins, will give a valuable 

inside on to how exactly cells perceive the concept of different in stiffness matrices.

• Following the gene expression study, here, protein levels can be examined for these 

cell types.
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