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A bstract

The acquisition of a spatial structure during embryo development involves the 

differentiation of cells, often according to positional information. The complex­

ity of the molecular networks regulating differentiation and of the mechanisms 

generating positional information makes it necessary to study them by means 

of m athem atical modeling. Vertebrate embryos also acquire a segmented struc­

tu re  during somitogenesis; this requires spatial and temporal variations in gene 

expression, which m athem atical modeling can also help understand.

A molecular mechanism for the somitogenesis clock is proposed, which ac­

counts for inter-cellular synchronisation, and is based on positive feedback, 

even though it is compatible with all experimental data  interpreted as showing 

th a t the clock is based on negative feedback. Experiments proposed to  test this 

model involve real-time clock reporters, as well as inducible systems to induce 

spatially-controlled perturbations.

Theoretical and experimental results have led to conflicting ideas as to 

how useful positional information can be established. In particular, it has 

been pointed out th a t some models of extracellular diffusion of morphogen 

exhibit inadequate traveling waves of receptor saturation. Two alternative 

(but not mutually exclusive) models are proposed, which are based on recent 

experimental results highlighting the roles of extracellular glycoproteins and 

morphogen oligomerization.

The readout of positional information is translated to a discrete set of gene 

expression patterns. Intriguingly, it has been observed in numerous contexts 

th a t genes regulating differentiation are initially co-expressed in progenitors 

despite their antagonism. We characterise conditions under which three classes 

of generic “m aster regulatory networks” can behave as a “multi-switch” , di­

recting differentiation in an all-or-none fashion to a specific cell-type chosen 

among more than  two possible outcomes. bHLH dimerisation networks can



readily display coexistence of many antagonistic factors when competition is 

low. Decision-making can be forced by a transient increase in competition, 

which could correspond to some unexplained experimental observations related 

to Id proteins.



Contents

1 Introduction 1

1.1 S om itogenesis ............................................................................................  1

1.1.1 Oscillatory gene expression.......................................................  2

1.1.2 W a v e fro n t.....................................................................................  3

1.1.3 Clock and w a v e f ro n t .................................................................  4

1.1.4 Coupling of the oscillations......................................................... 5

1.1.5 Hes a u to re p re s s io n ..................................................................... 6

1.1.6 Models for the o sc illa tio n s .......................................................  7

1.1.7 E x p erim en ts ..................................................................................  8

1.2 Establishment of morphogen g r a d ie n t s ............................................. 10

1.3 High-dimensional s w itc h e s ....................................................................  11

2 Is the som itogenesis clock really cell-autonom ous? A coupled- 

oscillator m odel o f segm entation 13

2.1 In tro d u c tio n ...............................................................................................  14

2.2 Lunatic fringe secretion m o d e l.............................................................. 16

2.2.1 M otivation for the model: intercellular c o u p lin g ............... 17

2.2.2 Biological grounding of the m o d e l .......................................... 18

2.2.3 Details of the model .................................................................  19

2.2.4 Initial phase and PSM flow ................................................... 22

2.3 Simulation of the m o d e l ........................................................................ 23

2.3.1 Reproduction of the somitogenesis clock p a t t e r n ...............  23

iii



2.3.2 Discontinuities in the P S M ....................................................... 24

2.3.3 Stochastic p e r tu rb a t io n s ..........................................................  26

2.3.4 Effect of L-fng misexpression ................................................  27

2.4 C onclusion.................................................................................................  30

2.5 Note added in p ro o f................................................................................  31

A cknowledgm ents..............................................................................................  31

2.6 Equations for the L-fng secretion m o d e l............................................. 31

2.7 Param eters for the L-fng secretion m o d e l .........................................  33

2.8 Simulation m e t h o d ................................................................................  34

2.9 Random p e r tu rb a t io n s .........................................................................  35

3 Light-inducible system  36

3.1 In tro d u c tio n .............................................................................................  36

3.2 Materials and m e th o d s .........................................................................  39

3.2.1 Supplementation with exogenous chrom ophore.................. 39

3.2.2 Cloning of ra t bilitranslocase...................................................  39

3.2.3 Cloning of the switch vectors ............................................. 39

3.2.4 Reporting of in d u c tio n .............................................................. 41

3.2.5 Establishment of stable l in e s .................................................... 43

3.2.6 Induction and assay ....................................................................  44

3.3 R e su lts ........................................................................................................ 46

3.3.1 Establishment of stable switch l in e s .......................................  46

3.3.2 Establishment of reporter c e l l- l in e s ......................................  46

3.3.3 Proportion of chromophore-bound p h y to ch ro m e ................  47

3.3.4 Supplementation with A L A ...................................................  48

3.3.5 Investigation of photosensitization.........................................  48

3.3.6 Use of a n tio x id a n ts ....................................................................  49

3.3.7 Variations on the illumination p ro to c o l ...............................  49

3.3.8 Best induction results .............................................................  50

iv



3.4 D iscussion .................................................................................................  50

3.4.1 P h o to to x ic ity .................................................................... 50

3.4.2 Possible improvements to the investigation of the cellular

responses ....................................................................................  53

3.4.3 Possible improvements to the switch ...................................  54

3.5 C onclusion.................................................................................................  57

4 Reporting of the clock oscillations 58

4.1 In tro d u c tio n ..............................................................................................  58

4.2 Materials and m e th o d s .......................................................................... 59

4.3 R esu lts ........................................................................................................  60

4.4 D iscussion .................................................................................................  61

5 Fast-tracking m orphogen diffusion 64

5.1 In tro d u c tio n .............................................................................................. 65

5.1.1 Glycoprotein-mediated phase r e p a r t i t io n .................  6 6

5.1.2 Shh-like o lig o m eriza tio n ...............................................  69

5.2 R esu lts ........................................................................................................  69

5.2.1 Glycoprotein phase-repartition with localized Notum syn­

thesis ..............................................................................................  75

5.2.2 Glycoprotein phase-repartition with global Notum . . . .  76

5.2.3 Shh-like o lig o m eriza tio n ...............................................  78

5.3 D iscussion .................................................................................................  78

5.4 A p p e n d ix .................................................................................................  80

5.4.1 Param eter v a lu e s .............................................................  80

5.4.2 Evaluation of g ra d ien ts ...................................................  82

5.4.3 S im u la tio n s .......................................................................  82

5.4.4 Equations for Wg-like d i f fu s io n ..................................  83

5.4.5 Equations for Shh-like oligomerization ...............................  84

5.4.6 Ranges for the measures plotted in figures 5.5 and 5.6 . . 84

v



6 H igh-dim ensional sw itches and the m odelling of cellular differ­

entiation 86

6.1 A b s t r a c t ....................................................................................................  87

6.2 In tro d u c tio n .............................................................................................. 8 8

6.2.1 Biological a s p e c ts ........................................................................ 89

6.2.2 M athematical m o d e ls .................................................................  94

6.3 R esu lts ........................................................................................................  95

6.3.1 M utual inhibition with a u to c a ta ly s is ................................... 95

6.3.2 M utual inhibition with autocatalysis, and l e a k ..................  96

6.3.3 A model for bHLH p r o te in s .......................................................100

6.4 D iscussion .................................................................................................... 107

6.4.1 Co-expression p ro p e r tie s ............................................................. 107

6.4.2 Peaks of differentiation in h ib i to r s .............................................112

6.4.3 Dynamical p ro p e rtie s .................................................................... 113

6.4.4 Stochastic outcomes .................................................................... 115

6.4.5 Evolvability of switch n e tw o r k s ................................................115

6.5 C onclusion.................................................................................................... 116

6 . 6  Analysis of m utual inhibition with a u to c a ta ly s is ................................117

6.6.1 Special case: no cooperativity (c =  1 ) ......................................117

6 .6 . 2  One on, all others o f f .................................................................... 117

6.6.3 k variables on, others o f f ..............................................................119

6.7 Analysis of m utual inhibition with autocatalysis, and leak . . . 1 2 0

6.7.1 Convergence..................................................................................... 1 2 1

6.7.2 Steady-state analysis: all at the same v a lu e ............................1 2 1

6.7.3 k on, k < n .....................................................................................123

6 . 8  Analysis of the bHLH m o d e l.................................................................. 124

6.8.1 Dynamical a n a ly s is ........................................................................125

6.8.2 Steady-state analysis: variables on at the same value . . 126

6.8.3 On at different v a lu es .................................................................... 128



6.9 M e th o d s ........................................................................................................131

6.9.1 Numerical in teg ra tion .....................................................................131

6.9.2 Com putation of convergence times ..........................................131

6.9.3 Simulations with time-dependent p a ram e te rs .........................132

7 Addendum  to “H igh-dim ensional sw itches and the m odelling

of cellular differentiation” 133

7.1 A p p e n d ix .................................................................................................... 135

7.2 Study of the full s y s t e m ...........................................................................135

7.3 Comparison: with and without a p p ro x im a tio n .....................................138

8 Generalized, sw itch-like com petitive heterodim erization net­

works 141

8 . 1  A b s t r a c t ........................................................................................................141

8.2 In tro d u c tio n .................................................................................................142

8.3 R esu lts ........................................................................................................... 144

8.3.1 Study of the characteristic p o ly n o m ia l ...................................145

8.4 D iscu ssio n .................................................................................................... 149

8.5 Normalization with respect to the A  — Bj dissociation constants 154

8 . 6  Stronger inequality when no Xi is at the “lower solution” . . . .  155

9 Conclusion 156



List of Tables

2.1 Param eters used for simulations............................................................. 34

3.1 Most significant variants of the switch v e c to r s ...............................  42

3.2 Subset of experiments which gave best induction re su lts ..............  51

5.1 Ranges from which parameters were selected at random for the

simulations described in section 5.2...................................................... 81

5.2 Ranges for Figure 5 . 5 ..............................................................................  85

5.3 Ranges for Figure 5 . 6 ..............................................................................  85

viii



List of Figures

2 . 1  Interaction graph of the Lunatic fringe secretion m o d e l .............  2 1

2.2 Phase 1  in the Lunatic fringe secretion model ..............................  24

2.3 Phase 2  in the Lunatic fringe secretion m o d e l ..............................  25

2.4 Phase 3 in the Lunatic fringe secretion m o d e l ..............................  25

2.5 2 cycles after the introduction of the coupling boundary at cell

150, the disruption of the pattern  is m in im a l...................................  26

2.6 Simulation of the cell-autonomous model proposed by Palmeirim

et al. (1997), with random p e r tu rb a t io n s ........................................  27

2.7 Phase 1  in the Lunatic fringe secretion model, with random per­

turbations .................................................................................................. 28

2.8 Phase 2  in the Lunatic fringe secretion model, with random per­

turbations .................................................................................................. 28

3.1 Pathway for the biosynthesis of the chrom ophore............................  38

4.1 Example of the best oscillatory activity which was obtained . . 62

5.1 (A) Distribution of Wg, Dpp, Dll/Dlp, and Notum in a Drosophila 

third instar wing disc. (B) Glycoprotein phase-repartition model

for Wg signaling......................................................................................... 6 8

5 . 2  Example of a gradient of bound receptor which meets the criteria

described in section 5 .2 .1 ....................................................................... 70

5.3 Example of a non-monotonous gradient of bound receptor. . . .  71

ix



5.4 Concentrations of other elements of the system, for the same 

param eter values as in Figure 5 . 3 ......................................................  72

5.5 Pairwise plot of param eters for which the model with localized 

Notum synthesis gives rise to a gradient of bound receptor meet­

ing the conditions set out in section 5 .2 .1 ........................................  73

5.6 Pairwise plot of parameters for which the model with global No­

tum  synthesis gives rise to a gradient of bound receptor meeting

the conditions set out in section 5 .2 .1 ...............................................  74

5.7 Example of a suitable gradient of bound receptor for the Shh-like 

oligomerization model ..........................................................................  77

6 . 1  Arrows represent activation, and squares inhibition. Adapted 

from Cinquin & Demongeot (2002)......................................................  90

6.2 Time evolution of the concentrations of 4 switch elements, for

the model with m utual inhibition with autocatalysis and leak . . 98

6.3 Time evolution of the concentrations of 4 switch elements, with

the leak level a  being gradually decreased over t i m e ....................  9 9

6.4 Time evolution of the concentrations of two switch elements, for

the model with m utual inhibition with autocatalysis, and leak . 1 0 0

6.5 Time evolution of the concentrations of 4 switch elements, in the

bHLH dimerisation m o d e l ...................................................................... 1 0 2

6 . 6  Same as Figure 6.5, but with a pulse of the competition param eter 102

6.7 Colour-coded time of convergence.........................................................105

6 . 8  Same as Figure 6.7, bu t with a lower value of a ........... 106

6.9 Same as Figure 6.7, bu t with a markedly higher value of a  . . . 106

6.10 Same as Figure 6.7, with a  close to the th r e s h o ld ........107

6 . 1 1  Times of convergence as a function of the initial condition . . .  108

6.12 Domains in which the same switch as in Figure 6.11 converges

to a state with 2 switch elements o n ......................................................109



6.13 Time evolution of the concentrations of two switch elements, for

the bHLH dimerisation m o d e l ................................................................110

6.14 Same as Figure 6.13, but with initial concentrations at roughly 

half the equilibrium value ...................................................................... I l l

7.1 Comparison of a 4-switch simulated with equations 7.1 (aq to 

£4), or with the approximating equations used by Cinquin & 

Demongeot (2005) (approx X\ to approx £ 4 ). See main text for 

values of system-wide parameters; switch-element specific pa­

rameters are di =  1 for all z, o\ =  190, a2 =  226, as = 177, and

<74 =  195.......................................................................................................... 139

7.2 Comparison of a 4-switch simulated with equations 7.1 (xi to  

£ 4 ), with V z, Di = 0.011, or with the approximating equations 

used by Cinquin & Demongeot (2005) (approx X\ to  approx £ 4 ).

Other param eters are the same as in Figure 7.1..................................140

8.1 Simulation of a 4-dimensional switch, where the competition pa­

ram eter is progressively in c re a se d .........................................................152

8 . 2  Simulation of a 4-dimensional switch, where the synthesis rate

for £ 3  is progressively in c re a s e d ............................................................ 153

xi



Acknowledgem ents

This PhD was made possible by an AstraZeneca studentship awarded to CoM- 

PLEX, obtained by the Director Anne Warner, and by support from Claudio 

Stern, who allowed me to  carry out experiments despite their risky aspect, and 

funded them through an EU Framework 6  Network of Excellence ’Cells into 

Organs’ LSHM-CT-2003-504468 grant, as well as other MRC, BBSRC and NIH 

grants. I am grateful to him for his supervision, and for suggesting improve­

ments to this manuscript, and to  Jacques Demongeot for introducing me to the 

subject of m athem atical biology.

I am also grateful to David Whitmore and Kathy Tamai for numerous dis­

cussions and sharing of lab equipment and facilities, to  Karl Swann for help 

and advice with luciferase imaging, to Michael W hite for a discussion about 

luciferase lifetimes, to  Sabina Passamonti for a discussion about bilitranslo- 

case, to M atthieu Lacolle for discussions about optics, to Masa Tada and Ari 

Fassati for sharing reagents, to  Jonathan Ashmore for energetically providing 

help at various points, to Mary Rahman, Daniel Cintiar, and Sharon Boast 

for technical assistance, to  the Chemistry Department for lending glassware, to 

Shamshad Cockcroft and Sadaf Shadan for sharing a piece of liver, to  Stephen 

Price for the use of his electroporator, to  the many labs who provided plasmid 

constructs indispensable in the course of this work, and to Stern lab members 

who all gave me help at some point.

I am indebted to Amanda Albazerchi for her early involvement in the light- 

switch experiments, help with embryology, and for countless pieces of advice, to



Jacques Demongeot and Karen Page for their respective contributions to  Chap­

ters 6  and 8 , to Michel Kerszberg for suggesting the title of this thesis, and to 

Christian Bottomley, Dan Brewer, and Dave Dale for biweekly entertainment.



Chapter 1

Introduction

1.1 Som itogenesis

Somites are transient, segmental structures in vertebrate and cephalochordate 

embryos, derived from paraxial mesoderm (Saga & Takeda, 2001). They are 

formed on both  sides by budding off anteriorly, at regular intervals (30 minutes 

in zebrafish, 90 minutes in chick, 2 hours in mouse), from the presomitic meso­

derm (PSM). Mesoderm segmentation and the polarity of the resulting somites 

play an essential role in the patterning of other structures, such as nerves, verte­

brae, muscles and blood vessels (Keynes & Stern, 1988, Saga & Takeda, 2001). 

The polarity of somites is an essential aspect of their development, and pos­

sibly of their maintenance (Stern & Keynes, 1987, Nomura-Kitabayashi et al.,

2002). It arises by a very complex process which will not be detailed here, but 

in which the “clock” described below might play a fundamental role.

Cells ingress from the primitive streak into the most posterior part of the 

PSM, and continue proliferating while in the PSM; in the chick, Prim m ett 

et al. (1989) identified regions of high mitotic activity near the caudal end 

(cells undergoing mitosis there have one descendant which does not contribute 

to PSM, Stern et ah, 1988), in the middle of the PSM, and at its rostral end. 

There is little cell movement in the PSM (Stern et ah, 1988, Selleck & Stern,
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1991, Selleck Sz Stern, 1992, Psychoyos & Stern, 1996), but sufficient for cells to 

cross boundaries of presumptive somites (Stern et al., 1988, Kulesa & Fraser, 

2002).

While cells undergo relatively little migration in the PSM, they do undergo 

a movement relative to the whole of the PSM, as its anterior end regresses 

posteriorly as new somites are formed, and its posterior end also progresses 

posteriorly, as a result of cell proliferation and ingression.

1.1.1 O scillatory gene expression

The species considered here axe chicken and mouse, which were the focus of the 

study, and zebrafish, as much data has been derived from it. Some oscillatory 

gene expression has been shown in Xenopus (Li et al., 2003), but much less is 

known about th a t model.

A number of genes have been identified whose expression oscillates in the 

PSM, and are collectively referred to as the “somitogenesis clock” . The ones 

which are mentioned in this section are those which oscillate with the same 

periodicity as th a t of somitogenesis. All of those identified so far but one are 

related to the ubiquitous membrane receptor Notch, which is cleaved upon 

binding of one of its ligands, Delta or Serrate (reviewed by Mumm & Kopan, 

2000; see however Ladi et al., 2005, for a recently-documented exception to 

this rule). This cleavage releases an intra-cellular domain, which can activate 

gene transcription in association with other proteins. Among these targets are 

members of the Hes and Hey/Herp families (reviewed by Iso et al., 2003), which 

have been shown to be transcriptional repressors (Hes6  being an exception). 

Genes of these families whose expression in the PSM is cyclic are c-hairyl 

(Palmeirim et al., 1997), c-hairy2 (chick)/ Hesl (mouse; Jouve et al., 2000), 

Hes7 (Bessho et al., 2001b), herl and her7 (zebrafish; Holley et al., 2000, Oates 

& Ho, 2002), and Hey2 (chick and mouse; Leimeister et al., 2000).

Oscillatory expression has been shown in chick and mouse for Lunatic fringe
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(Forsberg et al., 1998, McGrew et al., 1998), which modifies Notch to make it 

more sensitive to activation by Delta (Blair, 2000), which is the Notch ligand 

expressed in the PSM; zebrafish Lunatic fringe does not show similar oscillatory 

expression (Prince et al., 2001), but the Notch ligand DeltaC does (Jiang et al., 

2 0 0 0 ; it has also been very recently proposed th a t expression of the mouse 

ligand Dill oscillates as well, Maruhashi et al., 2005).

Notch-related genes exhibit waves of expression which sweep from the pos­

terior to the anterior end of the PSM. Axin2, a W nt pathway gene, also shows 

oscillatory expression in mouse PSM (Aulehla et al., 2003), but with a dif­

ferent pattern. Disruption of Notch-related oscillations alters the pattern  of 

Axin2 oscillatory expression, but does not completely suppress the oscillations; 

it has been proposed th a t disruption of Axin2  oscillations suppresses Notch- 

related oscillations, but th a t does not seem to be completely clear from the 

figures presented by Aulehla et al. (2003). At the time of writing, the details of 

the relationship between Notch-pathway and Axin2  oscillations had not been 

elucidated.

1.1.2 W avefront

FG F 8  mRNA and protein form a concentration gradient in the PSM, decreasing 

from the posterior end to the anterior end (Sawada et al., 2001, Dubrulle et al., 

2001, Dubrulle & Pourquie, 2004); signaling occurs through the M A PK /ERK  

pathway (Sawada et al., 2001, Delfini et al., 2005). The implantation of FG F 8  

or FGF inhibitor SU5402 beads affects the size of somites, as does retinoic 

acid deficiency (Maden et al., 2000). The mechanisms by which this occurs 

are however unclear; it is particularly intriguing th a t FG F 8  and SU5402 beads 

have asymmetrical effects anterior and posterior to their implementation site 

(Dubrulle et al., 2001). It has been proposed th a t lowered FGF signaling 

increases m aturity of cells in the PSM as well as their ability to respond to the 

clock by segmenting. Since the PSM, considered as a dynamical population
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of cells, is under constant movement in the posterior direction, but seems to 

be at a steady state as regards gene expression and cell behaviour, regions 

with a constant level of FGF signalling presumably also travel posteriorly. The 

term  “wavefront” refers to the region where FGF signalling is at the putative 

critical level where segmentation is induced; this wavefront presumably travels 

posteriorly, at the same average speed as the PSM when the size of the PSM 

is constant.

1.1.3 Clock and wavefront

The clock and wavefront model was initially proposed by Cooke & Zeeman 

(1976), based on experimental data  from Xenopus, with the concern of ex­

plaining the regulation of somite number, which was argued to vary very little 

between individuals of a same species, and to be unaffected in m utant embryos 

of smaller size (this view was however contradicted by Prim m ett et al., 1988). 

The progression of a wavefront (proposed to be a cell-intrinsic “timing gradi­

ent” , or a physical wave involving “propagatory interactions between cells”) 

was supposed to be alternatively inhibited and accelerated by an oscillator, so 

th a t cells destined to segment together would be reached by the wavefront, and 

undergo a change in adhesiveness properties, within a short time-frame.

Two hidden and anonymous, but major variations have been brought to 

the original clock and wavefront model. The model presented by Dubrulle 

et al. (2001), according to which the FG F 8  concentration forms a determina­

tion wavefront, brings those two major variations together, because it implicitly 

assumes th a t clock and wavefront are independent, even though data  presented 

by the authors does show th a t the grafting of FG F 8  beads affects the oscilla­

tory pattern  in the PSM (but th a t was not investigated in detail), and because 

it assumes th a t the oscillator specifies cells to become boundary cells if they 

are reached at a specific phase of their oscillation, somite compaction happen­

ing subsequently. Compaction being a phenomenon subsequent to boundary
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formation is compatible with data  from zebrafish m utants (Henry et al., 2000).

Dale &; Pourquie (2000) proposed another clock and wavefront model with 

only one major variation from the original model, in which cells have a “po­

sitional information” value which increases with time and endows competence 

to segment above a threshold value; the oscillator, when it reaches a specific 

phase, provokes segmentation of cells which are competent to do so.

Contrary to what is stated in the numerous reviews on somitogenesis, it is 

totally unclear how FGF signalling and the clock interact to regulate segmen­

tation. The various clock and wavefront models detailed above do not account 

for asymmetrical effects of grafted FGF beads, the coupling th a t there seems 

to be between clock and wavefront, the periodic effects of heat shocks (Prim- 

m ett et al., 1988; the cell-cycle model for somitogenesis, Prim m ett et al., 1989, 

Collier et al., 2000, is unique in being able to account for them), or various 

inductive effects related to the segmentation process (Sato et al., 2 0 0 2 , Sato &; 

Takahashi, 2005). The experiments described below (section 1.1.7) would have 

allowed to investigate some aspects of the relationship between clock and FGF 

wavefront.

1.1.4 C oupling o f th e  oscillations

Early experiments on the clock showed tha t oscillatory expression could go on 

after sectioning of the PSM and separate incubation (Palmeirim et al., 1997, 

McGrew et al., 1998, Forsberg et al., 1998); this has been confirmed for most 

genes of the clock, and more recently investigated in more detail, by cutting the 

PSM into more than two pieces (Maroto et al., 2005). This was first interpreted 

as suggesting th a t the clock was cell-autonomous; there are however a number 

of reasons to expect some form of coupling, which are detailed in Chapter 

2  (in the specific case of zebrafish, it had already been suggested th a t there 

was some coupling, Jiang et al., 2000). The model in Chapter 2 shows tha t 

it is possible to reconcile both the autonomous and non-autonomous aspects.
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Maroto et al. (2005) show summarily th a t dissociation of PSM cells leads to 

a disruption of the oscillations, but th a t is not proof th a t cellular cross-talk 

is taking place in vivo, as the disruption of the oscillations could just as well 

be an artifact due to the dissociation (in the case of Xenopus neurogenesis, 

the dissociation of animal cap cells, long thought to result in the dilution of 

neurogenesis inhibitors, has been shown to activate the FGF pathway, leading 

to neurogenesis, K uroda et al., 2005; FGF is the very same signalling pathway 

which has been shown by the same group to  interact with the somitogenesis 

clock). The experiments described in section 1.1.7 were designed to address 

the question of coupling.

The role of retinoic acid signalling in the setup or maintenance of oscillation 

synchrony between the left and right sides of the PSM has been reported by a 

number of groups (Vermot & Pourquie, 2005, Vermot et al., 2005, Kawakami 

et al., 2005, Saude et al., 2005). However, no details are available as regards 

the molecular mechanism by which th a t happens, and th a t data  is not of direct 

relevance to the model in Chapter 2.

1.1.5 H es autorepression

It has been shown th a t Hesl can undergo oscillatory expression in a variety of 

cell types (H irata et al., 2002). Since Hesl can downregulate its own expression 

(Takebayashi et al., 1994), it was proposed th a t self-repression (in combination 

with a cofactor) mediates oscillatory expression. Hesl is not necessary for somi­

togenesis, as Hesl m utants do not have any somitogenesis phenotype (Ishibashi 

et al., 1995; neither do Hesl/H es5 double m utants, Ohtsuka et al., 1999). On 

the other hand, Hes7 m utation does disrupt somitogenesis (Bessho et al., 2 0 0 1 b, 

H irata et al., 2004). It has thus been proposed th a t delayed self-repression of 

Hes7 is responsible for its oscillatory expression (Hirata et al., 2004; see also 

Bessho et al., 2003). This however overlooks the fact th a t Hes7 has been shown 

not to repress transcription from its own promoter, in a model system involving
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cultured cells (Bessho et al., 2001a). It thus seems rather unlikely th a t Hes7 

provides oscillatory expression by single-handedly repressing itself; of course it 

could be th a t Hes7 can repress its own expression in combination with other 

factors, present in the PSM but not in cultured cells, or th a t Hes7 is part of a 

negative feedback loop involving other factors (which would explain why Hes7 

disruption leads to upregulation of its own promoter in the PSM, Bessho et al., 

2003). It is noteworthy th a t stabilization of Hes7 leading to a disruption of 

oscillations (Hirata et al., 2004) does not in the least prove a direct autorepres­

sion mechanism for the generation of the somitogenesis oscillations (it could 

just as well be th a t it is the average level of Hes7 repression which m atters to 

m aintain the oscillations).

H erl/H er7 direct autorepression has also been proposed to be the mech­

anism generating the oscillations in zebrafish PSM, taking into account the 

delays stemming from mRNA and protein production (Lewis, 2003). A ba­

sic prediction one would make from such a model is th a t disruption of herl or 

her7 results in the upregulation of their promoter activity; however, if one care­

fully distinguishes morpholino-stabilised mRNA from nascent transcripts, the 

opposite is true for herl and her7 morphants (Gajewski et al., 2003). O ther un­

resolved problems with the model proposed by Lewis (2003) are th a t it was not 

attem pted to have the model reproduce the oscillatory pattern  in the PSM (the 

posterior-anterior waves of expression), and tha t its synchronization properties 

were studied only for a pair of cells.

1.1.6 M odels for th e  oscillations

Many m athem atical models have been proposed for somitogenesis in general 

(Cooke & Zeeman, 1976, M einhardt, 1986, Collier et al., 2000, Schnell &; Maini, 

2000, Kerszberg Sz Wolpert, 2000, Kaern et al., 2000, Jaeger & Goodwin, 2001), 

but only two address directly the molecular mechanism of the oscillations (Cin­

quin, 2003, Lewis, 2003). It is interesting to note th a t models have been pro­
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posed for Lunatic fringe-Notch mediated oscillations (Cinquin, 2003, Dale et al.,

2003), and for her/hes-m ediated oscillations (Lewis, 2003, Bessho et al., 2001b), 

but th a t the two mechanisms for the generation of oscillations are hardly ever 

studied together, which only goes to show just how little is understood about 

the somitogenesis clock.

Because the experimental system available was chick, and Lunatic fringe- 

Notch interactions are much better characterized than  hairy and Hey genes, it 

was decided to focus on the Lunatic fringe-Notch feedback loop. A molecular 

model for the oscillations is proposed in Chapter 2, which resolves the problem 

of inter-cellular coupling mentioned above. This model is based on a positive 

feedback loop, unlike th a t of Dale et al. (2003), which proposes a negative 

feedback loop for the same system; the experimental data  from which a negative 

feedback loop is inferred is however only indirect, and it is shown in Chapter 2  

th a t th a t data  is actually more compatible with a positive feedback model. Very 

recently, is has been shown th a t Notch signalling is upregulated in the PSM of 

Lunatic fringe m utants (Morimoto et al., 2005; intriguingly, the same antibody 

seems to give staining patterns different from those reported by Huppert et al., 

2005). This has been interpreted as supporting the hypothesis th a t Lunatic 

fringe inhibits Notch signalling, but disruption of Lunatic fringe activity in the 

model presented in Chapter 2 also leads to a level of Notch signalling above 

baseline levels (manuscript in preparation). This is due to the fact th a t Lunatic 

fringe activity can lead to a depletion of the Notch pool, by transforming it to 

the sensitized form which is supposed to have a shorter half-life.

Chapter 2 therefore shows how mathematical modeling of the mechanism 

of the clock can help understand its mechanism from a biological point of view.

1.1.7 E xperim ents

The model detailed in Chapter 2 , as well as the problems with the clock and 

wavefront models mentioned above, made it interesting to test predictions ex­



perimentally. The most obvious prediction to be made from the model in 

Chapter 2 is th a t a perturbation of the clock created locally in the PSM will 

propagate to the rest of the PSM; another is th a t ectopic upregulation of Lu­

natic fringe will lead to upregulation of Notch signalling, at least transiently. 

Misexpression of clock-related genes in the anterior-most PSM would have ad­

dressed whether the timing of segmentation can be altered by the segmentation 

clock, how the size of a somite is determined, and what the effects of clock gene 

misexpression on somite polarity are.

However, no convenient experimental techniques were available to create 

perturbations in gene expression with sufficient spatial precision. Many systems 

of inducible expression have been designed, the most common ones being based 

on tetracycline-responsive proteins (Gossen & Bujard, 1992), tem perature- 

responsive promoters (Chou & Perrimon, 1992), and hormone-responsive pro­

teins (Wang et al., 1994). But few misexpression systems provide the experi­

mentalist with tight spatial control; one is based on heat shocks (Halfon et al., 

1997), which makes it unsuitable because heat shocks disrupt somitogenesis 

by an undetermined mechanism in chicks (Prim m ett et al., 1988), frogs (Els- 

dale et al., 1976), and zebrafish (Roy et al., 1999). Others are based on the 

photo-release of caged compounds (see Shigeri et al., 2 0 0 1 , Ando et al., 2001 for 

reviews), but do not provide the flexibility of the system described in Chapter 

3, which would have allowed to turn  gene expression both on and off, with 

a control of intensities, w ithout having recourse to chemical modification of 

DNA, RNA, or proteins.

The plant phytochrome PhyB has been previously used to create a light- 

switch in yeast cells, in a double-hybrid assay which required purification of 

chromophore from algae extracts Shimizu-Sato et al. (2 0 0 2 ). Although spatial 

control of induction was not attem pted by the authors, it was expected tha t 

th a t would only require a tightly-focused light source. Chapter 3 describes an 

attem pt to adapt the system to animal cells, and to enhance it with endogenous
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biosynthesis of the chromophore (which hasn not been reported before in animal 

cells). There was however insufficient time to develop the system to a point 

where it would work well enough to be used.

In order to read out the effects of the perturbations of clock genes, it was 

attem pted to design a real-time, in vivo clock reporter, as described in Chapter 

4. This reporter was based on electroporation in chick embryos of a luciferase 

reporter construct; the reporter construct seemed however to interfere with 

somitogenesis, and there was insufficient time to resolve th a t problem.

1.2 E stablishm ent of m orphogen gradients

It is considered of great interest to study the process by which cells come to 

differentiate, both to  understand embryo formation, and for possible medi­

cal applications. Embryos have a reproducible spatial structure, which stems 

partly from localized differences in cellular behaviour; somitogenesis is a com­

plex process by which spatial structure is created.

Another way spatial structure can be created is by means of positional in­

formation, as proposed by Wolpert (1969, 1996); according to this idea, the 

localized production of a chemical substance, termed morphogen, leads to a 

spatial variation in its concentration, which can regulate which type cells dif­

ferentiate to. It has since been shown th a t this concept seems to be valid in 

different instances of development, and in particular for the Drosophila wing 

disc (Cadigan, 2002). However, a conceptual problem with positional informa­

tion was pointed out by Kerszberg & Wolpert (1998): for models in which a 

morphogen diffuses freely in the extracellular matrix, and in which the con­

centration is read out by membrane receptors, the gradient of bound receptor 

which is formed tends to be far from linear, meaning th a t cells differentiat­

ing in the regions where it is flat should be exquisitely sensitive to morphogen 

concentrations, which is probably not realistic. It has been shown th a t this
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problem can be alleviated by hypothesizing a mechanism of ligand-receptor 

complex degradation and slow association constants (Lander et al., 2 0 0 2 ), the 

possibility of signaling for internalized complexes (Lander et al., 2002), sim­

ilar to the ligand-triggered, but ligand-free, receptor dimers of Kerszberg & 

Wolpert (1998), or self-enhanced ligand degradation (Eldar et al., 2003). In 

Chapter 5, we propose two other simple mechanisms for suitably-shaped mor­

phogen gradients to arise, one based on morphogen oligomerization, and one 

based on the role of extracellular glycoproteins. The model involving extracel­

lular glycoproteins also has the advantage of providing potential explanations 

for some of the aspects of the experimental system it is based on.

1.3 H igh-dim ensional sw itches

Chapters 2 , 3, 4, and 5 deal, directly or indirectly, with ways in which positional 

information can be set up. Models for highly non-linear readouts of th a t infor­

mation have been proposed (McCarrey & Riggs, 1986, Kerszberg &; Changeux, 

1994, Kerszberg, 1996; see Kerszberg, 1999, for a review). The next logical 

question to address is how positional information can be integrated with other 

sources of information (such as developmental history) to drive differentiation 

to specific outcomes. Differentiation is a process during which one cell-type is 

chosen and all others excluded, in an all-or-none fashion; it is generally driven 

by a set of key transcription factors. Transcription factors driving cells to as­

sume different fates are often observed to antagonize one another’s activity or 

expression, but they are also often coexpressed, either early on in development 

or in m ultipotent cells. Chapter 6  models sets of regulatory networks, identi­

fying those which are capable both of coexpression of antagonistic elements, at 

a low level (corresponding to cells in early development, or m ultipotent ones), 

and of exclusive expression of a specific element; the way the system moves 

from a state of coexpression to a state of exclusive expression is related to
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experimental observations. This study suggests a role for Id proteins which 

had not been foreseen, highlighting the use of mathem atical modeling in con­

ceptualizing experimental data. Chapter 8  extends significantly the range of 

the networks to which the results in Chapter 6  apply, allowing one to  deter­

mine not only how the number of coexpressed elements can be regulated, but 

also how specific elements can be directed to  be up- or down-regulated; this is 

linked to the way the properties of the elements can be affected by intercellular 

signalling.

These results provide specific examples of how mathematical modeling can 

be used to  aid the understanding of embryo development.
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Chapter 2

Is the som itogenesis clock really 

cell-autonomous? A  

coupled-oscillator m odel of 

segm entation

This chapter is a reproduction of an article whose reference is Is the somitogen­

esis clock really cell-autonomous? A coupled-oscillator model of segmentation, 

Cinquin O., J. Theor. Biol. 222(4), pp459-468 (2003)

A bstract

A striking pattern of oscillatory gene expression, related to the segmentation 

process (somitogenesis), has been identified in chick, mouse, and zebrafish em­

bryos. Somitogenesis displays great autonomy, and it is generally assumed 

in the literature th a t somitogenesis-related oscillations are cell-autonomous in 

chick and mouse. We point out in this article th a t there would be many biolog­

ical reasons to expect some mechanism of coupling between cellular oscillators, 

and we present a model with such coupling, but which also has autonomous
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properties. Previous experiments can be re-interpreted in light of this model, 

showing th a t it is possible to  reconcile both autonomous and non-autonomous 

aspects. We also show th a t experimental data, previously interpreted as sup­

porting a purely negative-feedback model for the mechanism of the oscillations, 

is in fact more compatible with this new model, which relies essentially on pos­

itive feedback.

2.1 Introduction

Somites are transient, segmental structures in vertebrate and cephalochordate 

embryos, derived from paraxial mesoderm (Saga &; Takeda, 2001). They are 

formed on both sides by budding off anteriorly, at regular intervals (90 min in 

the chick, 2  hours in the mouse), from the presomitic mesoderm (PSM). Meso­

derm segmentation and the polarity of the resulting somites play an essential 

role in the patterning of other structures, such as nerves, vertebrae, muscles 

and blood vessels (Keynes Sz Stern, 1988, Saga Sz Takeda, 2001).

A molecular “segmentation clock” , or “somitogenesis clock” , was recently 

identified by Palmeirim et al. (1997), and involves oscillations in both mRNA 

and protein levels of c-hairyl, a chick homologue of a gene first identified in 

Drosophila, c-hairyl expression is not synchronous throughout the PSM: a 

wave, originating from a large region of posterior PSM, spreads anteriorly while 

shrinking, and stabilises at the anterior border of the PSM (see below for a more 

detailed description). A new somite is formed every time a wave reaches the 

border.

Subsequently, other cycling genes were identified: c-hairy2 (chick) /  H ESl 

(mammals) cycles in both chick and mouse PSM (Jouve et al., 2000), and Lu­

natic fringe (L-fng), an im portant regulator of the Notch pathway (Blair, 2000), 

involved in boundary-formation in insect development, cycles in the chick (Mc- 

Grew et al., 1998) and mouse (Forsberg et al., 1998) (but not zebrafish, Prince
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et al., 2001). A Notch ligand, DeltaC, was also identified as cycling in zebrafish 

PSM (Jiang et al., 2000). The period of oscillation is 90 minutes for the chick, 

2  hours for the mouse, and 20-30 minutes for the zebrafish (Stickney et al., 

2000). In the chick, PSM cells experience about 2 cell-cycles (Prim m ett et al., 

1989) and 12 clock-pulses before being incorporated into a somite (Palmeirim 

et al., 1997).

The oscillatory expression pattern has been classified with 3 stages; in the 

first stage, cells in the caudal half of the PSM (youngest cells) express the 

genes in synchrony (or at least with much smaller phase-lags than  in the rest 

of the PSM). In the second stage, the expression pattern  moves rostrally and 

narrows; this narrowing was supposed by Palmeirim et al. (1997) and others 

(Kaern et al., 2000, Jaeger Sz Goodwin, 2001, Jaeger Sz Goodwin, 2002) to 

stem from a progressive increase of the clock period, but it has also been 

proposed th a t it results from shorter synthesis bursts (Cooke, 1998). In the 

third stage, expression becomes stabilised in one half of a prospective somite, 

and this somite forms shortly thereafter. Cells undergo a relative movement 

at constant speed in the PSM, and they oscillate about 8  times while moving 

from the posterior end to the middle of the PSM. When cells reach the middle 

of the PSM, the intensity of the oscillations in c-hairyl increases sharply (O. 

Pourquie, personal communication). For other genes such as c-hairy2, the 

intensity of oscillations is on the contrary down-regulated. L-fng and c-hairyl 

expression patterns are synchronous in most of the PSM, and diverge when 

they reach the boundary of the forming somite (McGrew et al., 1998); a stripe 

of L-fng expression stabilises in the anterior part of the forming somite in the 

chick, but not in the mouse.

Normal functioning of the clock seems to be essential for segmentation, as 

its disruption by m utations affecting the Notch pathway (Barrantes et al., 1999, 

Jouve et al., 2000, Jiang et al., 2000, Dunwoodie et al., 2002), or enforcement 

of a non-zero baseline of l-fng expression (Serth et al., 2003, Dale et al., 2003),
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result in severe segmentation defects. Different models provide a link between 

clock oscillations and actual somite segmentation, but our purpose here is to 

address the mechanism for the oscillations, rather than  the way they are read 

out. Somitogenesis is a process which shows great autonomy; for example, PSM 

explanted from an embryo still undergoes partial segmentation (even though 

the process requires ectoderm to go all the way, the segmental pattern  is ob­

servable, Packard et al., 1993; Lash & Ostrovsky, 1986). Based on one type of 

experiment, the segmentation clock is generally assumed to be cell-autonomous 

in chick and mice (see section 2.3.2). However, there is also evidence th a t there 

could be some intercellular coupling in segmentation-clock oscillations (see sec­

tion 2.2.1), as first suggested by Jiang et al., 2000, in the case of the zebrafish. 

The two aspects seem difficult to reconcile. In the following, we propose how­

ever a model for segmentation-clock oscillations which allows for coupling, but 

can also behave as if oscillations were cell-autonomous, providing a new possible 

explanation for experiments previously interpreted as ruling out intercellular 

coupling. The model could easily be extended to account for the very first 

segmentation clock oscillations in the primitive streak, which occur at a much 

earlier stage of embryonic development than PSM segmentation (Jouve et al., 

2 0 0 2 ), and which remain unexplained by current models. Oscillations in the 

proposed model partially rely on a positive feedback mechanism, but the model 

is compatible with experimental data  which has been interpreted as supporting 

a negative-feedback mechanism, and is also compatible with experimental data  

which contradicts a purely negative-feedback model.

2.2 Lunatic fringe secretion m odel

Many experiments suggest th a t the somitogenesis clock is not cell-autonomous 

(see below), but some experiments have been interpreted as ruling out the ex­

istence of coupling (see section 2.3.2). The Lunatic fringe secretion model was
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formulated to resolve this contradiction, within the framework of current ex­

perimental data. The model addresses the way segmentation-clock oscillations 

are generated and synchronised between cells, in the primitive streak as well 

as in the PSM. It does not address the relationship between the oscillations, 

physical somite segmentation, and polarity-establishment, but it is compatible 

with all major current models, which involve either the existence of a criti­

cal threshold m aturity (original clock and wavefront model, Cooke Sz Zeeman, 

1976), the spread of a signal (cell-cycle model, Prim m ett et al., 1989), or an 

FG F 8  wavefront (Dubrulle et al., 2001).

2.2.1 M otivation  for th e model: intercellular coupling

There seems to be some evidence tha t PSM clock-gene oscillations are not 

totally cell-autonomous:

•  Primitive-streak precursors of the lateral and medial parts of the same 

somite do not have the same anterio-posterior position in the primitive 

streak (Selleck &; Stern, 1991, Psychoyos &; Stern, 1996, Eloy-Trinquet 

Sz Nicolas, 2 0 0 2 ), and the expression of their somitogenesis-clock genes 

does not oscillate in synchrony (Jouve et al., 2002). However, synchrony 

seems to be achieved quickly upon ingression into the PSM. While other 

complicated mechanisms could be at play, synchronisation of physically 

close cells seems to be the simplest explanation.

• Somites are not “developmental compartments” : groups of PSM cells 

with a restricted spatial extent shortly after ingression can have descen­

dants which span many somites (Kulesa Sz Fraser, 2002), and a single 

cell, labeled shortly before it is incorporated into a somite, can have de­

scendants in two adjacent somites (Stern et al., 1988). It would be a 

complicated model, if oscillations are totally cell-autonomous, for daugh­

ter cells to inherit different phases after cell division, and to “sort out”
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at segmentation time.

•  Inversion of the anteroposterior polarity of presumptive somites in the 

caudal PSM does not result in segmentation or polarity defects (Dubrulle 

et al., 2 0 0 1 ); segmentation models relying on the somitogenesis clock 

require re-synchronisation of the inverted tissue with surrounding PSM 

for this to be possible.

•  Analysis of zebrafish m utants in the segmentation-clock genes has led 

Jiang et al. (2000) to conclude th a t the role of Notch signalling is to 

synchronise the segmentation clock between neighbouring cells.

•  One would expect stochastic effects to have a measurable impact on the 

individual cellular oscillators, which could not be overcome if oscilla­

tions were cell-autonomous. Randomness in transcriptional regulation 

was discussed by Kepler &; Elston (2001); phenotypic effects of varying 

biochemical param eters were shown by Ozbudak et al. (2002). Inter­

cellular synchronisation was argued by Cooke (1998) to be necessary for 

the somitogenesis clock pattern  to be so refined.

2.2.2 B iological grounding o f the m odel

The Lunatic fringe secretion model is based on experimental data  showing the 

crucial importance of Notch in somite segmentation, on the regulation of L-fng 

in the PSM, which shows th a t L-fng is a target of Notch activity (Cole et al., 

2 0 0 2 , Morales et al., 2 0 0 2 , Barrantes et al., 1999, Dale et al., 2003), on the action 

of L-fng on Notch (Blair, 2000), and on the fact th a t Notch receptor and ligand 

expression levels seem to be constant in the chick and mouse PSM (Barrantes 

et al., 1999, Forsberg et al., 1998). It is fundamentally different from previous 

models of lateral inhibition mediated by Notch signalling (Collier et al., 1996), 

in th a t ligand levels are constant, and Notch signalling is periodically active in
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all cells. It is also very different from the clock and induction model (Schnell & 

Maini, 2000), in which there is no explicit molecular mechanism, Lunatic fringe 

is seen as a passive output, and oscillations are cell autonomous (the ratchet 

mechanism at the heart of th a t model is made very unlikely by experimental 

results discussed in section 2.3.4, which show th a t a non-zero baseline of Lunatic 

fringe disrupts oscillations).

The model accounts for coupling between cellular oscillators by secretion 

of L-fng, which has not been documented in the PSM, but has been in other 

experimental contexts (Wu et al., 1996). Notch signalling is very versatile and 

not fully understood, and cleavage of ligands could be involved in signalling 

(Artavanis-Tsakonas et al., 1999), providing another potential source of cou­

pling; this could require oscillation of Delta levels, as has been observed in 

zebrafish (Jiang et al., 2000), but would not necessarily be incompatible with 

Delta levels being constant on a large scale, as in the chick and mouse.

The secreted factor could be different (and involve a more complex mech­

anism downstream of the clock) without the results presented in this section 

being necessarily compromised. It is also conceivable th a t inter-cellular com­

munication could be mediated by gap-junctions (which do exist between PSM 

cells, Blackshaw & Warner, 1976); in this specific case, the structure of the 

model could remain the same, but the equations would probably need to be 

significantly modified to take into account the strong differences between ionic 

currents and enzyme kinetics.

2.2.3 D eta ils o f th e m odel

In the following, proteins and their concentrations are denoted in the same way.

• Two forms of the Notch receptor are considered, a regular one (n), and 

another one (ns), which has been greatly sensitised to Delta signalling by 

L-fng (/). L-fng makes Notch more sensitive to Delta signalling and less
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sensitive to Serrate signalling, which could make the outcome of L-fng 

modification of Notch uncertain if both ligands were expressed, but Ser­

rate has been shown not to be expressed in the chick embryo up to the 

first somite stage (Caprioli et al., 2 0 0 2 ). Notch is supposed to be trans­

lated at a constant rate (in the PSM, no oscillations in Notch mRNA have 

been shown). Because there is no evidence for oscillations in the levels 

of Notch-binding proteins in the mouse or the chick, Notch signalling is 

taken to be proportional to the quantities of Notch protein, with a weight­

ing factor on unsensitised Notch to account for its lower efficiency. This 

approximates the tim e for Notch cleavage, for intra-cellular fragment mi­

gration to  the nucleus, and for degradation of the transcriptionally-active 

intra-cellular fragment, as being small compared to the period of the somi­

togenesis clock, so th a t the intensity of signalling is at a quasi-equilibrium 

for both sensitised and unsensitised Notch.

•  Cell-cell coupling is accounted for by the action of secreted L-fng on 

neighbouring cells. To keep the model simple, diffusion is not explicitly 

considered, being replaced by a weighting factor on L-fng from neighbours 

(if L-fng is indeed secreted, it can probably not travel over distances 

covering more than  a few cells). The strength of coupling is discussed in 

more detail in section 2.2.4.

• Notch drives the transcription of L-fng, with a cooperativity which has 

been chosen to be 3 (a minimum cooperativity is required for oscillations; 

3 is not the minimum, as oscillations are also observed for example with a 

cooperativity coefficient of 2.7). Notch-dependent expression of L-fng is 

intricate, but two binding-sites for CBF1, which directly mediates Notch 

signalling, have been identified in the L-fng regulatory region (Morales 

et al., 2 0 0 2 ); w hat’s more, experimental data suggests th a t other such 

binding sites could be present (Morales et al., 2002). There is thus a
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Figure 2.1: Interaction graph of the Lunatic fringe secretion model. For clarity, 

the influence of cell i on cells i- 1  and i+ 1  is not shown.

basis for cooperative action of Notch on the L-fng gene.

e All three proteins undergo exponential decay. This corresponds to degra­

dation which is either spontaneous or mediated by proteases functioning 

far from saturation.

The graph of the interactions between the components of the model is shown 

in Figure 2 .1 . Corresponding equations are given in section 2.6.

Although the general mathematical description of the model is given in 

two dimensions, only a linear chain of coupled cells will be considered in the 

following. Results for simulations in 2  dimensions could be in agreement with 

the experimentally-observed chevron of clock-gene expression (Freitas et al., 

2001, Jouve et al., 2002), if one supposes tha t oscillations are initiated in a 

laterally-restricted posterior region, and th a t lateral coupling is weaker then 

longitudinal coupling. One reason for the lateral coupling to be weaker than 

the longitudinal coupling (in or close to the primitive streak, not in the PSM), 

could be th a t only a proportion of cells are competent to oscillate; if the lateral 

density of such cells is lower than  the longitudinal density, weaker coupling
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could be a crude approximation of the decreased efficiency of lateral diffusion of 

L-fng from one cell to another (since competent cells are more distant laterally 

than longitudinally). This will be addressed in a later study.

2.2.4 Initial phase and P SM  flow

Cells stay only transiently in the PSM. This can be safely ignored when consid­

ering cell-autonomous oscillations, but a coupled system can be influenced by 

conditions at its boundaries, which depend on how newly-ingressed cells and 

freshly-segmented cells behave.

One im portant question is th a t of the initial phase of cells which ingress into 

the PSM. In the cell-autonomous model, tha t initial phase must be a complex 

function of time (the clock and trail model of Kerszberg & Wolpert, 2000, also 

requires an oscillating initial phase). In the Lunatic fringe secretion model, it 

may be constant. Since the problem of synchronising newly-ingressed cells with 

posterior PSM is easier if these cells ingress with an oscillating initial phase 

(data not shown), simulations presented below were carried out with these cells 

taking on a fixed initial phase when they ingress.

Oscillations in anterior-most cells were stopped on arrival of an expression 

wave, with a crude, artificial algorithm (the Lunatic fringe secretion model 

does not seek to address the mechanism by which cells segment). Cells which 

had segmented were considered not to influence other cells any more, and their 

oscillatory phase was blocked.

One im portant aspect of somitogenesis clock oscillations is tha t the posterior 

half of the PSM should keep oscillating in near-synchrony (and th a t the region 

of synchrony should not extend anteriorly, beyond the middle of the PSM ). To 

reproduce this, it had to be assumed th a t coupling was stronger in the posterior 

half of the PSM. This could be an indirect effect of different cell densities in 

the anterior and posterior halves of the PSM. Alternatively, it could be tha t 

FG F 8  has the effect of making coupling stronger (FGF 8  has been shown to be
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expressed much more intensely in posterior PSM than in caudal PSM, Dubrulle 

et al., 2 0 0 1 ); this would also explain why the caudal-like domain of clock-gene 

expression can be extended anteriorly by grafts of FG F 8  beads, as shown in 

Figure 4L by Dubrulle et al. (2001). Stronger coupling in posterior PSM could 

explain why this region is labile with respect to its segmentation programme, 

while anterior PSM is not. The effects of FGF 8 -beads grafts could also be 

explained by effects on the coupling strength, which will be addressed in a 

later study.

Simulations were performed with coupling being three times stronger in the 

caudal PSM than in the rostral PSM, the coupling strength being a continuous 

but sharp function of the relative position in the PSM (see Appendix 2.6 for 

details). The coupling strength needs not be a continuous function, but this 

was deemed more biologically realistic.

2.3 Sim ulation o f the m odel

2.3.1 R eproduction  o f the som itogenesis clock pattern

The pattern  of oscillatory gene expression, as first described by (Palmeirim 

et al., 1997), can be readily reproduced with the Lunatic fringe secretion model: 

the posterior half of the PSM can oscillate in near-synchrony, with each wave 

of expression travelling anteriorly (see Figures 2.2 to 2.4, and Movie 1). It 

is not straightforward to model the shrinkage of the wave of expression as it 

travels; rather, a small domain of roughly constant size travels anteriorly from 

the region of near-synchrony.

Note the difference in intensities of Lunatic fringe expression between the 

anterior and posterior parts of the PSM, which is compatible with experimental 

data, and does not require a specific mechanism as in the cell-autonomous case.

The way the system works seems to be the following: the coupling in the 

model seems to reduce the oscillation period, as L-fng provided by neighbours
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Figure 2.2: Phase 1 in the Lunatic fringe secretion model: a wave of expression 

initiates in the posterior half of the PSM. Abscissae correspond to cell number 

in the PSM (anterior is to the left, posterior to the right), and ordinates to 

L-fringe expression levels (in arbitrary units). At the anterior end, 1 2  somites 

have already formed, and their oscillation phase is frozen.

prompts earlier firing (secreted L-fng acts both cell-autonomously and on neigh­

bouring cells, and it is thus possible for an isolated cell to show oscillating ex­

pression of clock genes). The stronger coupling in the posterior PSM has two 

effects. Firstly, its cells tend to fire earlier than those in the anterior PSM (with 

the right initial conditions). Secondly, cells in the posterior PSM fire more in 

synchrony than  those in the anterior PSM. A wave originated in the posterior 

PSM travels to the anterior PSM, but more slowly, because of the reduced 

coupling. It is crucial th a t L-fng is involved in a positive feedback circuit (with 

Notch signalling), so th a t a cell which is firing recruits its neighbours.

2.3.2 D iscontinuities in th e PSM

Experiments which have been interpreted as proving th a t somitogenesis clock 

oscillations are cell-autonomous consist in cutting the PSM transversally, and 

observing th a t oscillations continue in both halves for up to two cycles (Palmeirim 

et al., 1997, McGrew et al., 1998, Forsberg et al., 1998). W ithin the frame-

24



0 3

0.25

0.2

I
0.15

0.1

0 05

0
200 3000 100 400 500

Figure 2.3: Phase 2 in the Lunatic fringe secretion model: the wave of ex­

pression now has a much more restricted extent and is travelling anteriorly. 

Abscissae correspond to cell number in the PSM (anterior is to the left, pos­

terior to the right), and ordinates to L-fringe expression levels (in arbitrary 

units).
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Figure 2.4: Phase 3 in the Lunatic fringe secretion model: the wave of ex­

pression reaches the anterior border of the PSM. Abscissae correspond to cell 

number in the PSM (anterior is to the left, posterior to the right), and ordinates 

to L-fringe expression levels (in arbitrary units).
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Figure 2.5: 2  cycles after the introduction of the coupling boundary at cell 

150, the disruption of the pattern  is minimal. An anomaly is only observed at 

times when the wave of expression reaches the coupling boundary. Abscissae 

correspond to cell number in the PSM (anterior is to the left, posterior to the 

right), and ordinates to L-fringe expression levels (in arbitrary units).

work of the Lunatic fringe secretion model, these experiments can be modelled 

as introducing at some time a coupling boundary in the chain of oscillators, 

across which oscillators do not influence each other. Simulations have been 

performed (see Movie 2 ), which show tha t the oscillatory pattern  is essentially 

unaffected for many cycles after the introduction of the boundary (see Figure 

2.5 for a snapshot 4 cycles after the introduction of the boundary). The disrup­

tion becomes larger with time, but current experimental data  does not allow 

verification of whether this actually happens, as tissues were fixed after at most 

two cycles of oscillation.

2.3.3 Stochastic perturbations

Similar random perturbations were applied during simulations of the Lunatic 

fringe secretion model, and of the model given by J. Lewis as supplemental 

data  to the article by Palmeirim et al. (1997), which considers cell-autonomous 

oscillations (see Appendix 2.9 for simulation details). Results are shown in
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Figure 2.6: Simulation of the cell-autonomous model proposed by Palmeirim 

et al. (1997), with random perturbations in the phase of each cell. A pattern  in 

unsegmented PSM is barely discernable. Abscissae correspond to cell number 

in the PSM (anterior is to the left, posterior to the right), and ordinates to L- 

Fringe expression levels (in arbitrary units). The model was originally proposed 

for c-hairyl oscillations, but L-Fringe oscillates with the same pattern.

Figures 2.6 to 2.8 (see Movies 3 and 4 for a complete t  ime-animat ion). W ith 

the Lunatic fringe secretion model, the overall pattern  is totally preserved; 

some variations of expression intensity can be observed in the caudal PSM, but 

the different phases of oscillation can still be sharply distinguished (Figures 

2.7 and 2.8). In the case of the cell-autonomous model (Figure 2.6), stripes 

of expression corresponding to already-segmented somites are discernable, but 

levels of Lunatic fringe are extremely heterogeneous in unsegmented PSM.

The model is also robust against parameter variations, as discussed in sec­

tion 2.7.

2.3.4 Effect of L-fng  m isexpression

It has been observed by Dale et al. (2003) th a t constitutive misexpression of L- 

fng  in the PSM blocks the somitogenesis clock, and suppresses the expression of 

endogenous L-fng. This has been interpreted by the authors as supporting the
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Figure 2.7: Phase 1 in the Lunatic fringe secretion model, with random pertur­

bations: the pattern  is still very similar to tha t shown in Figure 2 .2 . Abscissae 

correspond to cell number in the PSM (anterior is to the left, posterior to the 

right), and ordinates to L-fringe expression levels (in arbitrary units).
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Figure 2.8: Phase 2 in the Lunatic fringe secretion model, with random pertur­

bations: the pattern is still very similar to tha t shown in Figure 2.3. Abscissae 

correspond to cell number in the PSM (anterior is to the left, posterior to the 

right), and ordinates to L-fringe expression levels (in arbitrary units).
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existence of a negative feedback circuit between L-fng and Notch signalling: 

Notch signalling would activate L-fng transcription, and L-fng would down- 

regulate Notch-signalling; this circuit would be the core of the somitogenesis 

clock. However, while it has been demonstrated th a t L-fng transcription is 

indeed activated by Notch signalling (Cole et al., 2002, Morales et al., 2002, 

confirmed by other means by Dale et al., 2003), L-fng-induced down-regulation 

of Delta-mediated Notch signalling is contrary to present biological evidence, 

which shows L-fng-catalysed glycosylation to make the Notch receptor more 

sensitive to activation by Delta (Blair, 2000) (of the two Notch ligands Delta 

and Serrate, only Delta is expressed in the chick up to the first somite stage, 

Caprioli et al., 2 0 0 2 ).

W hat is more, suppression of endogenous L-fng expression by misexpression 

of L-fng does not imply th a t the oscillations rely exclusively on a negative- 

feedback circuit. In the L-fng secretion model, for a single cell there are 4 

feedback circuits between the 3 variables, one of which (between L-fng and 

sensitised Notch) is positive and essential for the oscillations. If the model 

is modified to account for misexpression of L-fng, and if the misexpression 

strength is above a threshold, oscillations are stopped and L-fng is endoge­

nously expressed at a dramatically lower intensity (data not shown). The in­

tuitive reason for this is th a t continuous L-fng expression depletes the pool of 

un-sensitised Notch; in the model, sensitised Notch has a shorter half-life than 

Notch, and even though it is continuously produced if L-fng is continuously 

expressed, its concentration is much lower than its peak concentration when it 

is produced in bursts.

The L-fng secretion model is thus compatible with the data reported by 

Dale et al. (2003), as well as with the data  on sensitisation of Notch by L-fng.

In contrast to Dale et al. (2003), Serth et al. (2003) reported th a t misex­

pression of L-fng in mouse PSM does not suppress endogenous oscillations, but 

disrupts their pattern. A major difference between the method employed by
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the two groups is th a t Dale et al. (2003) electroporated plasmids carrying l-fng 

under the control of a strong, constitutive promoter, while Serth et al. (2003) 

created transgenic mice with l-fng under the control of a portion of the delta 

promoter. It is thus quite possible th a t a stronger level of misexpression was 

achieved by Dale et al. (2003). The L-fng secretion model can reconcile both 

results, because suppression of endogenous oscillations is only achieved above 

a threshold level of misexpression, comparable to the amplitude of endogenous 

oscillations; what is more, the amplitude of the endogenous oscillations is re­

duced by misexpression, as reported by Serth et al. (2003) (however, it was 

not possible to reproduce the disappearance of oscillations specifically in the 

anterior PSM).

2.4 Conclusion

The Lunatic fringe secretion model can account for the oscillatory gene ex­

pression pattern  exhibited by the PSM of chick and mouse embryos. It is 

dependent on local coupling between cells, which allows it for example to not 

require new cells to ingress into the PSM with an oscillatory initial phase, and 

to be more resistant to random perturbations. However, oscillations also have 

an autonomous character, in th a t the introduction of a coupling boundary at 

a specific position of the PSM does not significantly affect the oscillatory pat­

tern. Such a behaviour is in agreement with experiments which were previously 

interpreted as ruling out the existence of coupling between cellular oscillators.

This shows th a t coupling between the PSM oscillators is compatible with 

all current experimental data. W hat’s more, such coupling could explain phe­

nomena which have hitherto remained obscure. The model could benefit from 

an extension to 2 or 3 dimensions, to earlier embryonic times (and explain the 

way the phase gradient is set up by the spread of the very first wave), and to 

a strength of coupling set by FG F 8  levels (which could then allow to explain
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the anisotropic effect of FG F 8 -beads grafts described by Dubrulle et al., 2001). 

This will be addressed in later studies.

Finally, the model, even though it is based on L-fng activation of Notch sig­

nalling (in agreement with biological studies of L-fng), is also compatible with 

data  interpreted as supporting L-fng-mediated repression of Notch signalling.

2.5 N ote  added in proof

After this article went to press, J. Lewis proposed a model for the somitogenesis 

clock, based on negative feedback and transcriptional delays, inspired by the 

zebrafish but applicable to  chick and mouse (Lewis, 2003). Experiments will 

be required to distinguish between this model and the Lunatic fringe secretion 

model, but they could differ in their synchronisation properties, and in their 

abilities to account for the differences in oscillatory patterns in anterior and 

posterior PSM.
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2.6 Equations for the L-fng secretion m odel

A system defined by a set of the equations below, without coupling to any 

neighbours, undergoes oscillations for a wide range of parameters. The mecha-
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nism seems to rely primarily on the positive feedback circuit, with the system 

“firing” a burst of sensitised Notch and L-fng once a threshold has been reached 

in Notch and L-fng.

The equations for cell i (the index denotes the anterio-posterior position in 

the PSM) are given by equation 2 .1 , where Z* is the quantity of Lunatic fringe 

protein in cell z, rii the quantity of un-sensitised Notch receptor, nf the quantity 

of sensitised Notch receptor, i?a(*) the set of axial (longitudinal) neighbours of 

oscillator i which are considered to influence it, and 'di{i) the set of lateral 

neighbours considered to influence it, with ea and el measuring the respective 

effects of L-fng in proportion to the cell-autonomous effects. In the case of 

a one-dimensional chain and nearest-neighbour coupling, neighbours of cell z 

this would be cells z — 1  and z +  1 , except for the first and last oscillators in 

the chain. a 3  is expected to be small, and corresponds to weak activation of 

unsensitised Notch by Delta. The simulations presented below were performed 

with coupling extending to the 4 nearest neighbours (2 anterior neighbours and 

2  posterior neighbours, except for cells close to the borders).

The coupling function used was

e' =  e' ( 2  +  t a n h ( ^  +  ^ - i 7- f ) )  (2.2)

with n  the number of cells in the simulated PSM.

The dynamics of Notch sensitisation are taken to be linear in both enzyme
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and substrate as a first simplification. Conditions matching this approximation 

are saturating un-sensitised Notch or roughly constant levels of un-sensitised 

Notch.

2.7 Param eters for the L-fng secretion m odel

Parameters used for simulations are shown in Table 2.1. They were chosen 

such th a t the period of the oscillations is about 1 2 0  minutes, as in the mouse 

PSM. Protein concentrations are dimensionless.

The robustness of the model regarding parameter variation was investigated 

by varying individually each of the parameters in Table 2.1 and equation 2.2, 

the other parameters and the initial conditions being kept similar (it was too 

computationaly costly to attem pt to find “good” initial conditions for each set 

of parameters, and the results below thus give a lower bound on robustness). 

Parameters were deemed satisfactory when a wave spent more than 3 times as 

much time in the anterior PSM as in the posterior PSM (meaning th a t oscil­

lations in the posterior PSM are much more synchronous than in the anterior 

PSM).

The system is least sensitive to parameters governing L-fng (a 0, i, and 

0 :3 ), the strength of coupling (e*), and the coupling differential between anterior 

and posterior PSM (given by equation 2.2), which all can be individually varied 

5-fold around the values given in Table 2 .1 , with the system preserving its 

behaviour (the oscillation period can be affected). It is slightly more sensitive to 

the parameters governing the formation of sensitised Notch and its degradation 

(respectively 7 1  and 7 2 ),  which can be varied 3-fold around the values given in 

Table 2.1. The most sensitive parameters are those governing Notch synthesis 

and degradation (respectively (3\ and # 2 ), which can however be varied by 50%.

The parameters in Table 2.1 correspond to lifetimes of about 3 minutes for 

L-fng and the sensitised Notch receptor, and of about 64 minutes for the unsen­
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sitised Notch receptor. It is normal for the lifetime of the sensitised receptor 

to be much shorter than th a t of the sensitised receptor, as it is much more 

likely to be bound by Delta and cleaved (a process which is not explicitly taken 

into account by the model). The sensitised receptor is assumed to be about 

30 times more efficient at signalling (parameter a 3); thus, if intrinsic stabilities 

were the same, there should be a 30-fold difference in lifetimes. Since there is 

only a 2 0 -fold difference, the model assumes th a t sensitisation makes the re­

ceptor more stable than the unsensitised form. Biological data corresponding 

to these parameters is lacking. The lifetime of L-fng takes into account not 

only spontaneous or proteolytic degradation, but also diffusion away from the 

secreting cell, which explains its low value.

Numerical details of the simulations are given in section 2.8.

Param eter Value

oto 1.08 min - 1

Oi\ 4.0

Oi2 0.217 min - 1

&3 0.03

0i 0.0217 min - 1

P2 0.0108 min - 1

71 15.2 min - 1

72 0.217 min - 1

ez 0.3

Table 2.1: Parameters used for simulations.

2.8 Sim ulation m ethod

Initial conditions were chosen for the system to evolve toward the desired pat­

tern (the Lunatic fringe secretion model currently does not seek to address the
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initiation of oscillations). To account for cell-flow in the PSM, new variables 

were added at regular intervals at the “posterior” extremity, representing new 

cells entering the PSM, with fixed initial values (corresponding to the state of 

an isolated oscillator, l/3 rd  of its oscillatory period after its L-fng peak). To 

account for the blocking of the clock once cells had segmented, derivatives in 

anterior-most cells were set to 0  once they had been reached by an expression 

wave, and segmented cells were considered not to influence other cells in the 

PSM anymore.

Integration was performed with the adaptive-stepsize Runge-Kutta algo­

rithm  (Press, 1992), which was implemented in a custom Ada program (source 

available on request). Simulations comprised 300 cells, and were executed on 

a Macintosh PowerPC running Mac OS 1 0 .2 . Graphs were plotted using gnu- 

plot, converted to animated GIFs using gifsicle, and to QuickTime movies with 

QuickTimePro.

2.9 Random  perturbations

The model presented by J. Lewis as supplemental data  to the article by Palmeirim 

et al. (1997) is a phase model, which does not incorporate any molecular mech­

anism. On the other hand, the Lunatic fringe secretion model is built on a 

molecular mechanism. It was thus not obvious which perturbation method to 

use, as the perturbation magnitudes had to be similar for the comparison to 

be fair. The method chosen consisted in integrating the equations of the two 

models by small steps ( 2 0  per somitogenesis period), and at each step, deciding 

at random whether each individual oscillator should have its state variables up­

dated or not (the chance of not updating was 20%). The kind of randomness in 

oscillator behaviour thus modelled corresponds to oscillators “lagging behind” 

their normal cycle for short periods of time.
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Chapter 3 

Light-inducible system

I am grateful to Amanda Albazerchi for help with the purification of PCB, as 

well as early cloning steps in the making of the switch vectors.

This Chapter describes the development of a light-inducible gene expression 

system, whose purpose is to test the existence of inter-cellular coupling in the 

somitogenesis clock, which is one of the key features of the model proposed 

in the previous Chapter. It is impossible with current methods to electropo­

rate the presomitic mesoderm directly, but it is possible to electroporate its 

precursors. Had the development of the system been successfully completed, 

precursors of the PSM could have been electroporated with a combination of the 

clock gene to misexpress and a clock reporter (see next Chapter), the embryo 

incubated, and misexpression induced later in a well-defined area by shining of 

a focused beam of light; perturbations in the clock of un-induced cells would 

have shown the existence of inter-cellular coupling.

3.1 Introduction

A light-inducible system (light-switch) was shown to be functional in yeast by 

Shimizu-Sato et al. (2 0 0 2 ). It is based on Arabidopsis thaliana’s phytochrome 

B (PhyB), a member of a family of photoreceptors regulating de-etiolation

36



(expansion of the embryonic leaves), shade avoidance, and flowering (reviewed 

by Schepens et al., 2004). The N-terminus of PhyB (PhyB_NT) can bind the 

endogenous chromophore phytochromobilin (P<FB) as well as a close cyanobac- 

terial analogue, phycocyanobillin (PCB; Li & Lagarias, 1992). When shone 

with red light, the chromophore-bound phytochrome adopts a far-red absorb­

ing conformation, and interacts with the Phytochrome-Interacting Factor 3 

(PIF3), as assayed by the double-hybrid system; when shone with far-red light, 

it reverts to its red-absorbing conformation, and stops interacting with PIF3. 

This has been exploited by Shimizu-Sato et al. (2002) by fusing PhyB_NT to 

the GAL4 DNA-Binding Domain (GBD) and PIF3 to the GAL4 Activation 

Domain (GAD), and by driving expression of a LacZ reporter from a GAL4 

Upstream Sequence (UAS) enhancer. As neither PCB or P4>B are endoge­

nously present in yeast, the authors incubated the yeast with exogenous P $B  

purified from cyanobacterial extracts.

As cultured cells provide a much more convenient setting to assess with 

precision the properties of an inducible system than  a whole embryo, it was 

attem pted to adapt the light-inducible system, as described by Shimizu-Sato 

et al. (2 0 0 2 ), to COS-7 cells (derived by Gluzman, 1981).

Three possible ways to provide the chromophore were envisaged:

1. incubation of the cells in medium supplemented with PCB, purified from 

cyanobacterial extracts

2. co-transfection of the cells with a vector driving expression of a PCB 

transporter, to facilitate uptake from the medium

3. co-transfection of the cells with a vector driving expression of enzymes 

catalyzing PCB synthesis from the endogenously-present heme

( 1 ) did not lead to satisfactory results.

(2 ) might have been possible with bilitranslocase; bilitranslocase has been 

identified as importing organic anions structurally-related to PCB into liver
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cells (Passamonti & Sottocasa, 1988; see Kamisako et al., 1999, for a review on 

the subject).

(3) led to the best results (described in more detail below). There were two 

known avenues to chromophore biosynthesis, one using phycocyanobilimferredoxin 

oxidoreductase (PcyA), and one using P<FB synthase (HY2; see Figure 3.1). 

Since PcyA misexpression in bacteria had been shown to reconstitute chro­

mophore synthesis (G am betta & Lagarias, 2001), and PCB was the chro­

mophore used by Shimizu-Sato et al. (2 0 0 2 ), it was decided to use th a t enzyme.

Glycine + Succinyl CoA

5-ALA

M itochondrion ER
Jegative feedback

H em e

rat HO-1
Protoporphyrin IX

HO-1?

H em e

BilirubinBiliverdin
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Apophytochrom e

N u c le u s 't
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P-Phi-B PCB PCB

✓ 
V ,

Figure 3.1: Pathway for the biosynthesis of the chromophore. See Frankenberg 

et al. (2003) for a review of heme biosynthesis.
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3.2 M aterials and m ethods

3.2.1 Supplem entation  w ith  exogenous chrom ophore

Cells were incubated with PCB at the same concentration as th a t used by 

Shimizu-Sato et al. (2 0 0 2 ); it had been purified from cyanobacterial according 

to their protocol, and the preparation was successful as assessed by absorbance 

spectra, and use of the light-switch in yeast (experiments performed by Kathy 

Tamai).

3.2.2 C loning of rat bilitranslocase

The R. norvegicus sequence for its mRNA has been reported by Battiston 

et al. (1998). Intriguingly however, a BLAST search did not produce any hit 

in the rat or mouse genomes (confirmed by S. Passamonti, personal communi­

cation). An RT-PCR on a preparation of rat liver cDNA, with specific forward 

(ATGTTGATACATAATTGGATCCTGAC) and reverse (TTATTACTCAAC- 

CGTGGATCG ) primers, based on the sequence reported by (Battiston et al., 

1998), did result in the amplification of a single transcript, which was how­

ever much too short to be the predicted product (similar results were obtained 

by S. Passamonti, personal communication). The PCR reaction was performed 

with Taq in 1.5mM Mg2+-supplemented Promega buffer, with annealing at 55°. 

Synthesis of the gene would be a possibility, but would carry a very high cost.

3.2.3 C loning o f th e sw itch vectors

The yeast expression vectors used by Shimizu-Sato et al. (2 0 0 2 ) were acquired. 

The open reading frames were re-cloned into vectors adapted to mammalian 

expression (in particular in terms of mRNA polyadenylation signals; the GAD 

was also replaced by the VP16 activation domain, which is expected to be 

1,200 times more active in vertebrates, Fang et al., 1998). To improve tran ­
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sient coexpression of the two two-hybrid fusion proteins, along with the chro­

mophore synthesis enzymes, it was decided to have all open reading frames on 

the same vector (hereafter referred to as “switch vector” ). This was achieved 

in various ways, by combinations of different promoters on the same vector, 

Encephalomyocarditis virus Internal ribosome Entry Sequences (IRESes; Jang 

et al., 1989), and fusion with self-cleaving peptides (Szymczak et al., 2004), the 

latter greatly reducing the size of the vectors and removing the risk of IRES or 

promoter interference (Adam et al., 1996)

Since apophytochrome - GBD fusions can still bind DNA, it is expected 

tha t they might have a dominant-negative effect if they outnumber holophy- 

tochrome - GBD fusions (holophytochrome is a stable protein, with a half-life 

of over 8  hours, references in Eichenberg et al., 1999, but it is not clear what 

the half-life of apophytochrome is, even if it has been suggested to be less 

stable, Hennig &; Schafer, 1998). It is therefore probably crucially im portant 

tha t PCB be present in sufficient amounts to bind the majority of the phy­

tochrome (or, equivalently, th a t the phytochrome be present in sufficiently low 

amounts). Different promoters driving phytochrome expression were therefore 

tried: CytoMegaloVirus (CMV) enhancer/promoter, yeast Alcohol DeHydro- 

genase (ADH; it has been measured to be lOOx-fold weaker than the more- 

common CMV, Lee et al., 1998), and Thymidine Kinase (TK). In some iter­

ations of the switch vector, the GBD-PhyB_NT fusion was expressed from an 

IRES (a version of which was m utated to provide even lower expression, Rees 

et al., 1996). PhyB was fused N-terminal to GBD in the system described by 

Shimizu-Sato et al. (2 0 0 2 ), but it proved much more convenient to reconstruct 

the vector with PhyB fused C-terminal to GBD. Phytochromes are generally 

fused N-terminal to other proteins, and even though Hennig & Schafer (1998) 

successfully recovered phytochrome fused C-terminal to maltose binding pro­

tein, they suggest tha t such fusions can be problematic in the general case. The 

original vector carried PhyB fused C-terminal to GBD, but the fusion order
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was later swapped.

PIF3 was replaced by the first 100 amino acids from PIL2 (also known as 

P IF 6 ), which were identified by Khanna et al. (2004) as having a 3-fold stronger 

interaction with the far-red absorbing conformer of PhyB (that data was not 

available at the time the first constructs were made).

Both bacterial heme oxygenase and pcyA were fused with an N-terminal 

chicken Mitochondrial Targeting Sequence (MTS; obtained from chicken Mn- 

superoxide dismutase), shown by confocal observation of an M TS-GFP fusion 

to be functional in COS-7 cells.

In a variation of the switch vector, bacterial heme oxygenase was replaced 

by rat ho-1 , one of the three mammalian heme oxygenases (first two reviewed 

by Maines, 1997); ho-1 is the one which is stress-responsive, and which seems 

to have been most extensively characterized (ho- 2  has been proposed to have 

a more regulatory role, McCoubrey et al., 1997, Galbraith, 1999, and ho-3 has 

a low catalytic activity, McCoubrey et al., 1997). It is normally targeted to 

the Endoplasmic Reticulum (ER; although it has recently been shown by Kim 

et al., 2004, to be also cytosolic in their model), but since biliverdin reductase 

is cytosolic, biliverdin must be able to diffuse out or be transported.

A summary of the vectors which were tested is presented in Table 3.1.

3.2.4 R eporting o f induction

A reporter vector was created comprising a multimerized UAS enhancer, asso­

ciated to an hsp70 minimal promoter (as described by Rprth, 1996), driving 

expression of firefly luciferase from the vector pGL 2  (Promega). Another re­

porter was obtained, comprising a 4-mer UAS enhancer, associated to an ade­

novirus major late E 1 B TATA box, driving expression of a Renilla luciferase - 

GFP fusion (Yu & Szalay, 2002). The latter was only used in the first exper­

iments, because Renilla luciferase was found to provide a luminescence signal 

which decayed much more rapidly during IPD imaging (after the addition of
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t o

Ref First transcript Second transcript

ZX5 ADH:GAD-VP16-PIF3;mutated IRES;GBD-PhyB_NT CMV:pcyA;mutated IRES;hol

BG6 ADH:VP16-PIF3;mutated IRES;GBD-PhyB_NT CMV:pcyA;mutated IRES;hol

BZ19 ADH:VP16-PIF3;mutated IRES;PhyB_NT-GBD CMV:pcyA;mutated IRES;hol

DV2 CMV:VP16-PIF3;mutated IRES;PhyB_NT-GBD CMV:pcyA;mutated IRES;hol

DX ADH:VP16-PIF3;IRES;PhyB_NT-GBD CMV:pcyA;mutated IRES;hol

FH5 ADH:VP16-PIF3;IRES;GBD-PhyB_NT CMV: pcyA ;IRES; ho 1

FJ5 ADH:VP16-PIF3-SC-PhyB_NT-GBD CMV:pcyA;IRES;hol

HG8 ADH:VP16-PIF3-SC-PhyB_NT-GBD CMV :MTS-pcyA-SC-MTS-hol

HK1 Beta-actin:neoR ADH:VP16-PIF3-SC-PhyB_NT-GBD CMV:MTS-pcyA-SC-MTS-hol

JF3 ADH:VP16-PIL2-SC-neoR-SC-PhyB_NT-GBD CMV :MTS-pcyA-SC-MTS-hol

JP3 TK:MTS-pcyA-SC-MTS-hol;IRES;VP16-PIL2-SC-neoR -SC-PhyB_NT-GBD

GV ADH:VP16-PIF3;IRES;PhyB_NT-GBD CMV:MTS-pcyA-SC-rat hoi

GZ ADH:VP16-PIF3;mutated IRES;GBD-PhyB_NT CMV:MTS-pcyA-SC-rat hoi

Table 3.1: Most significant variants of the switch vectors. SC: self-cleaving motif; neoR: neomycin resistance (neomycin 

phosphotransferase).



coelenterazine to the medium) than the signal from firefly luciferase. Also, the 

half-life of Renilla luciferase was found to have been increased by fusion to 

GFP (it was measured as being 8.5h by inhibition of protein synthesis with 

cycloheximide), hampering the assessment of inducibility of the system over a 

short period of time, as the speed of induction depends heavily on the half-lives 

of the reporter.

A variant UAS-firefly luciferase reporter was created by introducing an AU- 

Rich Element (ARE; Chen & Shyu, 1995) in the 3’ UTR of the mRNA.

Some of the experiments were carried out with dual-luciferase assays, by 

cotransfection of a vector driving expression of either firefly or Renilla luciferase 

from a promoter usually considered as constitutive (either the CMV enhancer 

and promoter, or the Thymidine Kinase (TK) basal promoter). The idea was 

to normalize the inducibility results by the quantity of cells and/or efficiency 

of transfection. However, it appeared th a t both the CMV and TK promoters 

were up-regulated by the light-treatment of the cells (see below), making them 

totally inappropriate for th a t purpose.

3.2.5 E stablishm ent o f stable lines 

B y selection

Switch vectors were designed which carried neomycin resistance as a selection 

marker, expressed either from its own promoter, or as a fusion to the two-hybrid 

proteins. Selection was carried out at the lowest neomycin concentration which 

prevented overgrowth after plating of the electroporated cells (this was found 

to be 200fj,g/mL). Once colonies were obtained, they were picked with a yellow 

tip or trypsinized within cloning rings, and replated in individual wells, or the 

whole plate was trypsinized and cells replated in individual wells after dilution.
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By screening

Lentiviral infection of cells achieves sufficiently high efficiency to warrant direct 

screening of infected cells, rather than selection. The vector chosen had the 

advantage of carrying a deletion of the 3’ LTR (which results in the deletion of 

the 5’ LTR as well upon integration), alleviating the problem of LTR interfer­

ence with inducibility and silencing (Yu et al., 1986, Swindle et al., 2004), and 

insulator elements on both sides, hopefully reducing the basal level expression 

even further (Ramezani et al., 2003). As the cloning-ring method had been 

tried previously and had not been successful, the dilution method was used 

to establish lines (cells were counted, and diluted so tha t one cell would be 

expected in the volume pipetted into each well); FACS would have been much 

more efficient and much more reliable in establishing clonal populations, but a 

FACS machine was not available.

3.2.6 Induction and assay

Cos-7 cells were cultured in Dulbecco’s Modified Eagle’s Medium-Glutamax I, 

supplemented with 10% bovine serum. Switch and reporter vectors were either 

co-electroporated (107  cells/mL, BioRad electroporator settings at 220V for 

70 ms, with 4mm BioRad cuvettes and 1 5 DNA),  or co-transfected (with 

Lipofectamine and Plus reagent, Invitrogen, following the manufacturer’s pro­

tocol). Cells were wrapped up in aluminium foil to avoid both photodamage 

and unwanted induction, left to recover for 24 or 48 hours, and induction was 

performed by shining 20fiW.crrT2 red light, as measured with a MACAM opti­

cal power metre (the light was filtered with a 660nm, lOnm-bandpass filter) for 

7 minutes (this exposure was found to give optimal results; reponses did not 

follow the Bunsen-Roscoe law). Neither the medium (which contained phenol 

red), nor the plastic lid showed enhanced absorbance in the red as compared 

to the far-red.
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Cells were incubated for 4.5 hours after induction, and assays were per­

formed in one of three ways:

1. Imaging a plate in vivo, immediately after addition of 50 nM beetle lu- 

ciferin (Promega) to the medium, with an Imaging Photon Detector (IPD; 

Photek, UK, using software and a system design provided by Science 

Wares, www.sciencewares.com), with a 5x objective.

2. Imaging a 96-well plate in vivo (the tem perature being maintained at 

25°), with a Packard TopCount NXT Microplate Scintillation and Lu­

minescence Counter, which provides photon counts for each well on the 

plate.

3. Using a photon counter (custom-made by Karl Swann, or from Promega) 

on a cell lysate (with reagents from the Promega single or double lu­

ciferase assay kit); this was the most sensitive (and probably the most 

reliable) method but photon counters were not always available.

Variations to minimize photodam age

To attem pt to reduce photodamage, cells were incubated, prior to induc­

tion, overnight with 50/iM N-acetyl cysteine, 30^M Trolox, 30mM imidazole, 

ImM pheny 1-nit rone, 10 minutes with lOmM sodium azide (followed by post­

induction washes), or 30 minutes with 20mM imidazole (combinations of those 

compounds were also tried, as cooperative effects have been shown in antioxi­

dant protection, see Wrona et al., 2004, and references therein).

Deprivation of oxygen prior to induction was attem pted, by pre-incubating 

cells at room tem perature in a chamber continuously flushed with pure nitro­

gen, for periods of time varying from 5 to 20 minutes. It is difficult to know 

whether oxygen was effectively removed from the medium, as a resazurin solu­

tion did not change colour as expected (which is possibly a kinetic problem), 

and an oxygen electrode was not available.
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3.3 R esults

3.3.1 E stablishm ent of stable sw itch lines

The switch vectors, owing to  the number of open reading frames they were 

carrying, were around twice as long as vectors carrying fluorescent markers, 

electroporated as controls. Short of adding yet another open reading frame 

with a fluorescent marker (which was not attem pted), or designing an mRNA 

in-situ hybridisation probe, it was impossible to know what the efficiency of 

electroporation was. IPD imaging of cells after induction showed clusters of 

activity; it is not clear whether this stems from only cells in those clusters 

having received both the switch and the reporter vectors, or from heterogeneous 

responses (which could be related to copy numbers of those vectors).

To have a homogenous cell population, as well as to have a set of different 

expression levels of the switch proteins, switch vectors were designed which 

carried a selection marker (neomycin resistance), expressed either from its own 

promoter, or as a fusion to the two-hybrid proteins.

Very slow growing colonies were obtained (as compared to colonies obtained 

from cells electroporated with a control vector expressing the neomycin resis­

tance gene under the control of a strong promoter). Despite numerous attem pts 

with three different methods, it proved impossible to obtain viable cells from 

the small colonies (while tha t was successful for the control cells).

3.3.2 E stablishm ent of reporter cell-lines

The inducibility of the electroporated UAS-firefly luciferase reporter, as as­

sayed by coelectroporation with a vector driving constitutive expression of a 

GBD-VP16 fusion with the CMV enhancer and promoter, was around 190-fold 

18 hours after electroporation. This is much lower than could have been hoped 

for. To get better silencing of the uninduced reporter, it was decided to es­

tablish reporter cell-lines, with genomic integration of the reporter. The use of
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techniques such as transfection or electroporation would have required a pro­

moter driving expression of a selection marker, adjacent to the reporter (unless 

it was removed after integration, for example with a recombinase), potentially 

increasing the basal expression level of the reporter. Therefore, genomic inte­

gration of the reporter was performed with a lentiviral vector.

Out of about 180 wells plated, only 18 hosted a single, actively-growing 

colony. Out of these, only 5 showed inducible expression of the luciferase re­

porter (with induction ratios ranging from 35 to 166, as assayed by transfection 

with GBD-VP-16, incubation for 18 hours, lysis and photon-counting). The 

basal expression level of the two lines used for experiments, compared to cells 

transfected with the same amount of reporter as used in induction experiments, 

was 50- and 1,000-fold lower.

Thus, although reporter cell-lines were successfully established, and they 

showed a reduced background expression of the reporter, they did not show a 

better inducibility than cells co-transfected with a reporter vector.

3.3.3 Proportion  o f chrom ophore-bound phytochrom e

It would have been extremely helpful, in understanding why only low induction 

ratios were achieved, to be able to measure what proportion of the phytochrome 

binds PCB. The fluorescence properties of holophytochrome would have been 

a great help, as a band of holophytochrome in an SDS-PAGE gel will fluoresce 

if the gel is supplemented with zinc (Davis et al., 2001). One of the vectors 

constructed carried a myc-tagged GBD-PhyB_NT fusion. Immunopurification 

of the fusion was attem pted, but proved unsuccessful, possibly because of too 

low quantities present in the cell extract. The required apparatus was not 

available to characterize the phytochrome by red/far-red shifting of absorption 

spectra (difference spectra) of cell extracts, and green fluorescence visualized in 

vivo did not show any difference between control and switch vector transfected 

cells. It is thus unclear which quantity of phytochrome is synthesized, and
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what proportion is bound to the chromophore.

3.3.4 Supplem entation w ith  ALA

The synthesis of A-amino-levulinic acid (ALA) is the rate-limiting step of heme 

biosynthesis, and the negative feedback regulation of heme synthesis is exerted 

on ALA synthase (Granick & Urata, 1963, Rimington, 1966; see Figure 3.1). It 

was thus expected th a t supplementation with ALA would increase the synthesis 

of PCB, and might alleviate possible detrimental effects of heme breakdown by 

heme oxygenase.

Pre-incubation with ALA, and induction at the low light intensity described 

in the induction protocol, was found for some vectors to have a positive effect on 

the induction ratio. Optimal concentrations were not extensively investigated 

because of the time-consuming character of the assays, but different vectors 

seemed to have different optima; in particular, vectors containing ra t heme 

oxygenase seemed to do better with higher concentrations than vectors based 

on bacterial heme oxygenase.

3.3.5 Investigation o f photosensitization

It was noticed tha t shining ALA-incubated, switch vector electroporated cells, 

with the intensity and the duration of the standard induction protocol could 

lead to a dramatic reduction of reporter expression. This effect was later shown 

not to require any switch vector. More importantly, it was shown tha t without 

ALA the switch vectors themselves can cause photosensitization, as assayed by 

the reduction in expression level of a promoter-less vector containing a luciferase 

open reading frame (pGL3, Promega). W ith the higher light-intensity tried, 

switch-transfected cells showed a 3-fold drop in luciferase expression levels, 

which can reasonably be assumed to stem from photodamage (an experiment 

on control-transfected cells was inconclusive and should be repeated).
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To have independent readouts of photodamage and induction of expres­

sion (which would affect the reporter readout in opposite ways), cotransfection 

of two luciferases (with different substrates) was performed: one driven by a 

promoter expected to provide constitutive expression (whose downregulation 

would have been indicative of cellular damage), and one driven by a UAS 

(whose upregulation would have been indicative of the system working as in­

tended). However, it turned out tha t both promoters tested (CMV and TK) 

can be upregulated by mild light treatment.

3.3.6 U se of antioxidants

To alleviate the photosensitization caused by both ALA and chromophore, 

induction was performed under low-oxygen conditions, and in the presence 

of antioxidants. Low oxygen had no detectable effect. Of the antioxidant 

compounds listed in Materials and Methods, only N-acetyl cysteine and Trolox 

had a beneficial effect on induction when used with ALA, and a protective 

effect on constitutively-expressed luciferase; other compounds were found to 

decrease both luciferase expression and inducibility.

3.3.7 Variations on th e illum ination protocol

It is not clear whether PCB would be biosynthesized in the active or the inactive 

conformation. Shining cells with far-red light, and incubating them either 

overnight or for the same amount of time as for induction assays, did not 

reduce reporter expression as compared to cells kept in the dark.

Dark reversion of the phytochrome (i. e. spontaneous transition from the 

Pfr form to the Pr form without light stimulation) has been documented in dif­

ferent contexts (see Nagy h  Schafer, 2002, for a general review); reconstituted 

Arabidopsis PhyB has been shown to undergo only moderate dark reversion 

(about 25% in an hour, Elich & Chory, 1997), but dark reversion varies with
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the systems it is observed in, has been shown to be enhanced by tem perature 

for PhyA (Hennig & Schafer, 2001), which could be a problem since Cos cells 

are incubated at 37°, a higher tem perature than the one at which either plant 

or yeast experiments are carried out, and modifications to endogenous phy­

tochromes tend to make them  susceptible to dark reversion (Elich & Chory, 

1997, Eichenberg et al., 1999). To alleviate possible high dark-reversion rates, 

continuous overnight incubation in the presence of red-light was attem pted, 

but did not result in enhanced expression of the reporter.

Light intensities much lower than the 20fiW  normally used were tested to 

provide induction, in the hope they might still effectively shift the phytochrome 

to the active form, while minimizing photodamage, but this did not lead to 

improved reporter induction.

3.3.8 B est induction results

Table 3.2 shows under which conditions the best induction ratios were obtained. 

For an unknown reason, Lipofectamine transfection seemed to lead to higher 

photosensitization of the cells, and to lower induction rates. All the results pre­

sented in Table 3.2 were obtained by co-electroporation of switch and reporter 

vectors. The assay on the Packard well counter was only performed once, and 

gave better results than assays preformed on lysed cells. This could be because 

the 96-well white plates hosting the cells (of the format required for imaging) 

had different optical properties, which affected induction.

3.4 D iscussion

3.4.1 P hototox icity

Phototoxicity seems to be a major issue, but it has proved impossible to in­

vestigate to what extent it is responsible for low inducibility. ALA causes
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Vector ALA AO Assay Induction ratio

GX lx N-T P 4.2

GX 4x - P 7.4

GV 4x - P 6.3

HG 4x - P 5.6

FJ 0.3x - P 5.4

HG 0 - P 5.6

FJ 0.3x - P 4.6

HG 0 - L 2.4

FJ 0 - L 2 . 6

FJ lx N-T L 3.2

HK 0 - L 1 . 8

JF 0 N-T L 2.5

Table 3.2: Subset of experiments which gave best induction results. AO: an­

tioxidant; N-T: NAC+Trolox; P: Packard; L: lysis. ALA concentration is given 

as a ratio to 0.5mM
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an accumulation of protoporphyrin intermediates, which greatly sensitize cells 

to phototoxicity (in fact, ALA administration, combined with illumination, is 

used to treat superficial human cancers, as cancerous cells seem to sensitized 

much more readily than others, Hasan et al., 2003). The optimum wavelength 

for ALA-induced photosensitivity has been suggested to be in the red, which 

is also the range used for activation of the light-switch.

It seems possible th a t a suitable quantity of holophytochrome is not formed 

in Cos cells without ALA supplementation and tha t ALA supplementation 

causes too much photodamage to see high levels of induction, th a t Cos cells 

are more sensitive than yeast to photodamage caused by free or phytochrome- 

bound chromophore, or th a t Cos cells expressing the biosynthetic enzymes build 

up the chromophore to amounts causing higher photodamage than it does at 

the concentration it is added to the yeast growth medium. The absorption of 

various chromophores can lead to photosensitization; tha t did not seem to be 

the case for phytochrome reconstitution in yeast according to the protocol of 

Kunkel et al. (1995), but protein synthesis can be inhibited in yeast with ph- 

thalocyanine, a dye whose absorption maximum is around the same wavelength 

as th a t of PCB (Paardekooper et al., 1995).

The fact tha t rat ho-1 led to better results than bacterial heme oxygenase, 

when cells were incubated with ALA, could be due to a variety of reasons, 

including more efficient removal of protoporphyrins (higher heme oxygenase 

activity might lead to enhanced clearance of ALA-derived protoporphyrins, de­

pending on what reaction in the pathway is rate-limiting), or different amounts 

of free chromophore and phytochrome-bound chromophore (which could have 

different effects on photosensitization). It could be tha t the bacterial heme 

oxygenase was not as efficient as native heme-oxygenase. Both bacterial heme 

oxygenase and pcyA need ferredoxin as a cofactor. Ferredoxins (known as 

adrenodoxin in vertebrates) are mitochondrial proteins (Grinberg et al., 2000); 

this is why in the switch vectors PcyA and heme oxygenase were targeted to
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the mitochondrion. Conservation of functional interactions between ferredox- 

ins and partners across prokaryotic and eukaryotic sources has been shown, see 

for example Hlavica et al., 2003, but this interaction could be inefficient.

3.4.2 Possible im provem ents to  th e investigation o f the  

cellular responses

•  The homogeneity of cell responses is unknown; it could be th a t some are 

killed by the shining of light and some survive it, or tha t all of them 

sustain a similar amount of damage; the ratio of the two luciferase activ­

ities would have been more useful in the first case (a problem with the 

luciferase assay is th a t many cells seem to detach from the plate under 

adverse conditions, although this has not been formally quantified, and 

are therefore lost; an assay with Trypan-blue dye exclusion might indi­

cate to what extent cells are killed, and other methods are available to 

quantify cytotoxic effects, Fotakis & Timbrell, 2005).

•  It would be useful to have the dual-luciferase assay work properly, with­

out upregulation of the “constitutive” promoter. It is not unexpected 

for viral promoters to be stress-responsive (Geelen et al., 1987, Andrews 

et al., 1997). No other suitable promoter was readily available, but it 

would be possible to use a promoter-less vector, with the constraint that 

its activity should be assayed first in the Promega double-assay system 

(as the quenching of the signal of the first assayed luciferase has been 

observed to not be quite as efficient as described by the manufacturer).

•  It would have been of interest to image the kinetics of induction; IPD 

imaging was not very well suited to th a t purpose, because plates are 

heated from the bottom, leading to heavy evaporation and condensation 

on the lid, and thus to an increased luciferin concentration in the medium, 

and an artificially-increased luminescence signal. W ith Packard imaging,
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th a t problem was alleviated by the fact th a t both induced and un-induced 

wells can be imaged at the same time, providing a proper control for 

variations in luciferin concentration; the problem however is th a t the 

machine is designed to maintain a tem perature of 25°, and cannot be set 

to 37°.

3.4.3 Possible im provem ents to  th e sw itch

•  It has not been tried to express only PcyA as a biosynthetic enzyme, 

without exogenous heme oxygenase (omitting heme oxygenase might have 

beneficial effects on cellular metabolism, and make the use of ALA unnec­

essary) . It could be th a t endogenous heme oxygenase activity is sufficient 

to provide biliverdin (especially since ho- 1  expression is upregulated by a 

great variety of stressful conditions, some of which electroporation would 

possibly provide), bu t it has been shown tha t the rate-limiting step of 

heme degradation is heme oxygenase activity rather than biliverdin re­

ductase (Tenhunen et al., 1969), and one would therefore expect that 

there would be competition with PcyA for biliverdin, and th a t it would 

be helpful to provide th a t substrate in large quantities.

•  An ABC transporter expressed during erythroid m aturation has been 

shown to reduce intra-cellular protoporphyrin levels (Zhou et al., 2005). 

Another ABC transporter, also induced during erythropoiesis, localizes to 

the inner mitochondrial membrane, and has been suggested to mediate 

un-characterized transport functions in heme synthesis (Shirihai et al., 

2 0 0 0 ; the possibility of the transport of the heme degradation product 

biliverdin across the mitochondrial membrane does not seem to have been 

investigated, probably because biliverdin reductase is a cytosolic or nu­

clear enzyme, Maines et al., 2001, but it could be th a t a low-specificity 

transporter helps either its export or import, which could be helpful if rat
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ho-1 is misexpressed, see Figure 3.1). Misexpression of these transporters 

might respectively help alleviate ALA-induced photosensitization, and 

enhance chromophore synthesis; the cDNA for the latter was obtained, 

but had not yet been used at the time of writing.

•  Since the amount of ferredoxin reductase can be a limiting factor in some 

biosynthetic processes (Tuckey & Sadleir, 1999), expression vectors for 

both bovine adrenodoxin and adrenodoxin reductase were obtained; at 

the time of writing coexpression of these vectors along with the switch 

vectors had not yet been attempted.

•  It remains a possibility tha t exogenous chromophore uptake might by 

enhanced by the addition of Tween or dimethylsulfoxide (Kunkel et al., 

1995); but it is not clear what the effect on the viability of the Cos cells 

would be.

• Edaravone could have been a very good anti-oxidant to use, as it has 

been shown to be a potent inhibitor of photodamage on cells in culture 

(Tanabe et al., 2005), but it did not seem to be available commercially 

as of June 2005. It would have also been interesting to try  a combination 

of zeaxanthin and ascorbic acid, as this has been shown to specifically 

protect cells against photooxidative damage (Wrona et al., 2004).

• Photosensitizers excited by light can directly interact with various molecules, 

or interact with oxygen; the latter is greatly favoured in most cases 

(Foote, 1968), and it has been shown tha t the presence of oxygen is 

an absolute requirement for photoinactivation of cells incubated with a 

porphyrin derivative (Moan & Sommer, 1985). The method used here to 

reduce oxygen did not lead to noticeable results, but according to Moan

& Sommer (1985) incubation in a 1 % O2  atmosphere is sufficient for 50% 

of the photoinactivation effect to occur. It is therefore very possible that
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the reduction in oxygen concentration which was achieved was insuffi­

cient. Commercial systems used to remove oxygen from vessels used to 

cultivate anaerobic organisms are available, but carry a high price. Alter­

natively, it might be worthwhile degasing the medium beforehand, and 

replacing it with N2-saturated medium (Camerin et al., 2005).

•  The uninduced level of expression of the reporter was very close to the 

level of expression obtained by electroporating cells with reporter alone 

(a 1.4-fold difference was measured); the problem with low induction 

ratios therefore stems from defective activation of the reporter, rather 

than “leaky” expression of the reporter. To amplify the induction of the 

reporter, a vector was designed in which the same UAS used for the lu­

ciferase reporter drove expression of a GBD-VP 16 fusion. This system by 

itself would not have allowed the switch to be turned off, and a cysteine 

motif for light-induced degradation (Tour et al., 2003) was thus addi­

tionally fused. The switch and UAS-GBD-VP16 vectors, as well as the 

UAS-luciferase reporter, were coelectroporated. However, the basal ex­

pression level of uninduced UAS-GBD-VP16 was sufficient to self-activate 

the switch, despite the presence of an ARE in the mRNA of the GBD- 

VP16 fusion. A lentiviral vector containing the UAS driving GBD-VP 16 

was constructed, and no self-activation observed; it is however not clear 

whether tha t construct was functional (as the ARE could have interfered 

with viral replication).

•  While this writing was in progress, the cloning of a heme importer was 

reported (Shayeghi et al., 2005). Its misexpression in cell-lines increases 

heme uptake a few fold, and although it has some specificity, it remains 

a possibility tha t it might also enhance PCB uptake.
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3.5 Conclusion

Shimizu-Sato et al. (2 0 0 2 ) report th a t the level of reporter expression they 

achieve 3 hours after activation of the light-switch is about l / 6 th  of the level 

of expression obtained from the native GAL4 protein. Supposing the response 

lag due to long mRNA and reporter half-lives is not greater for the adapted 

light switch than for the original one (which is reasonable because luciferase 

has a much shorter half-life than  betagalactosidase), such a level of expression 

would translate to an induction ratio of at least 190/(6*1.4) =  20, where 190 is 

the induction ratio provided in Cos-cells by the GBD-VP16 fusion, and 1.4 the 

“leak” of the light-switch proteins in the dark. The induction ratios th a t were 

achieved (repeatably around 3) are far below this (this however does not take 

into account the fact th a t not all electroporated cells will express the switch 

vector, which is a reason why it would have been helpful to establish a stable 

cell-line), and it is doubtful th a t the system would be useful as such for the 

applications envisaged.

Even though many variations have been experimented with to improve in­

ducibility, because of the sheer number of combinations, only a very small 

subset has been tried; it remains a possibility tha t a specific combination of 

the variations tried would have given satisfactory results. If this work was to be 

pursued, it would be essential to determine what proportion of the phytochrome 

is in the chromophore-bound form.
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Chapter 4 

Reporting of the clock 

oscillations

This Chapter describes the development of a real-time reporter for the somi- 

togenesis clock oscillations. This would have been of great interest in its own 

right, because the oscillations have never been directly visualised, but only 

inferred from differences in expression patterns across embryos or between em­

bryos halves incubated for different periods of time. In combination with the 

light-inducible system described in the previous Chapter, it would have allowed 

to easily visualise perturbations induced in the clock.

4.1 Introduction

To date there has been no real-time reporting of the somitogenesis clock os­

cillations. This is probably due to the fact th a t the oscillations occur with a 

period which is short compared to the time of chromophore formation of the 

Green Fluorescent Protein (GFP; see Reid & Flynn, 1997, for a kinetic study) 

and its half-life, even when it is destabilized by addition of a “PEST tag” (the 

half-life of the destabilized version is 2 hours, Li et al., 1998). Luminescence 

reporting does not share the time limitations of GFP, as luciferase seems to
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be active immediately upon synthesis, and has a short activity half-life when 

in the presence of its substrate. It also has the great advantage of providing 

quantitative data.

Various promoters driving luciferase expression were tested to provide re­

porting of the clock phase after electroporation into chick embryos.

4.2 M aterials and m ethods

Embryo m anipulation

Embryos were electroporated dorsally with a DNA solution containing 0.25fig/fiL 

to l . l ug / f iL  of luminescent reporter vector, l f ig/ f iL DsRedExpress-Nl (BD 

Biosciences), 6 % sucrose and 0.04% Fast Green, at stage 5, around the anterior- 

most primitive streak (where many PSM progenitors seem to be located, Psy- 

choyos k  Stern, 1996), with an Intralcel electroporator set to deliver 3 6 V, 50ms 

pulses, New-cultured (New, 1955, Stern k  Ireland, 1981) until red fluorescence 

became visible, transfered to an 1 % agar-, 50nM beetle luciferin-supplemented 

albumin Petri dish, and imaged on the IPD. No integrated atmosphere-control 

system was available on the IPD, and despite coating the inner face of the lid of 

the Petri dish with albumin, and sealing the dish with Parafilm, heavy conden­

sation was produced on the lid, altering its optical properties and desiccating 

the embryo; a custom-made plastic box with a copper base, heated from the 

bottom, reduced condensation sufficiently.

C onstruction of a vector for constitu tive luciferase ex­

pression

The CMV enhancer - beta-actin promoter was inserted into pGL 2  (Promega).
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C onstruction of the Lunatic fringe reporter

The mouse Lunatic fringe promoter has been shown to drive cyclic expression 

of a lacz reporter in PSM (Morales et al., 2002, Cole et al., 2002). The firefly 

luciferase gene from pGL3 (Promega) was inserted downstream of the mouse 

Lunatic fringe promoter, provided by Cole et al. (2002), replacing their beta- 

galactosidase reporter1.

4.3 R esults

IPD imaging of embryos electroporated with a vector driving constitutive lu­

ciferase expression showed firefly luciferase to be functional in chicken embryos, 

and luciferin to be diffusible through the egg white and cell and vitelline mem­

branes. The half-life of luciferase activity, measured after inhibition of protein 

synthesis with cycloheximide, was 25 minutes.

Promoters tested for oscillatory activity when electroporated into chick 

PSM were those of the Notch targets Hesl, Hes7, Heyl, and Hey2; these pro­

moters would have been expected to drive oscillatory transcription in mouse 

embryos, unless there were 3’ regulatory regions not included in the constructs, 

required for oscillating expression in the PSM. Activity could be detected for 

Hes7 and Hey2, mainly in the PSM, but it proved difficult to observe the ex­

pected oscillatory pattern.

The Lunatic fringe luciferase reporter showed on rare occasions oscillatory 

activity, but never more than two oscillation rounds (see Figure 4.1), and never 

with the overall pattern th a t would be expected in the PSM, based on the 

mRNA in-situ hybridisation data. This is most probably related to the fact

^ h e  results of many independent sequencing reactions on the plasmid provided by the 

authors agreed with the NCBI mouse genome sequence, but differed by one base-pair from 

the sequence reported by the authors. They did not confirm whether this was due to a 

sequencing error, but suggested polymorphism as a possible explanation.
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tha t electroporation of the reporter seemed to block segmentation, after the 

first 6 - 8  somites (on a set of embryos co-electroporated with the reporter and 

DsRed, after overnight incubation, 1 had 13 somites but no DsRed expression, 

1  had 10 somites and DsRed expression only in the notochord, 1 had 8  somites 

and PSM expression of DsRed, 2 had 8  somites and PSM and somitic expression 

of DsRed, 1 had 7 somites and PSM and somitic expression of DsRed, and 1 

had 6  somites and somitic expression of DsRed). Concentrations of the reporter 

as low as 0.25tig/ w e r e  used for electroporation (the vector length is about 

lOkb); as observed signal intensities decreased with concentration, it is expected 

tha t it would be very difficult to get a signal from more diluted reporter.

4.4 D iscussion

A possible cause for the segmentation phenotype observed is the introduction 

of a great number of transcription factor binding sites identical to those in the 

Lunatic fringe promoter, carried by the reporter. This could disrupt expression 

of Lunatic fringe, blocking the segmentation clock (it is often the case in mouse 

and zebrafish that mutations affecting the clock still allow formation of the most 

anterior somites). In-situ mRNA hybridisation with clock markers would tell 

whether the clock really is disrupted.

It is plausible that a way to prevent the reporter from interfering with 

the segmentation clock would be to deliver it as a single copy (or only a few 

copies) to a large quantity of cells in the PSM. This might be achievable with 

the same lentivirus as described in the previous chapter. A version of the 

virus carrying GFP was injected under unincubated embryos, and the embryos 

antibody-stained for GFP after a 48-hour incubation period. Weak, uniform 

staining was observed, suggesting that VSV-G-pseudotyped lentiviruses can 

successfully infect chicken embryos (this has also been shown by McGrew et al., 

2004, Chapman et al., 2005). A viral version of the Lunatic fringe-luciferase
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Figure 4.1: Example of the best oscillatory activity which was obtained. Each 

curve represents the photon-count, integrated over a 5-minute sliding window, 

registered from a small area of the PSM. The inter-peak distance is roughly 90 

minutes, the period of the somitogenesis clock in chicken.
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reporter was under construction at the time of writing.
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Chapter 5 

Fast-tracking morphogen 

diffusion

This chapter is a reproduction of an article whose reference is Fast-tracking 

morphogen diffusion, Cinquin O., J. Theor. Biol, (in press)

The previous Chapters address somitogenesis, which is a complex process 

by which spatial structure is created in embryos. Another way in which spa­

tial structure can be created is by the establishment of positional information 

within the embryo, and the differentiation of cell behaviour depending on the 

information they read out at their location. The establishment of positional 

information and its readout can interfere, and this Chapter proposes a possible 

solution to that problem, based on recent experimental results. Although po­

sitional information is involved in somitogenesis through the FGF 8  gradient, it 

seems to be established by a cell-intrinsic mechanism, rather than by diffusion 

of a morphogen, which is considered here.

A bstract

The readout of morphogen concentrations has been proposed to be an essential 

mechanism allowing embryos to specify cell identities (Wolpert Trends Genet
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12 (1996) 359), but theoretical and experimental results have led to conflicting 

ideas as to how useful concentration gradients can be established. In particular, 

it has been pointed out th a t some models of passive extracellular diffusion 

exhibit traveling waves of receptor saturation, inadequate for the establishment 

of positional information. Two alternative (but not mutually exclusive) models 

axe proposed here, which are based on recent experimental results highlighting 

the roles of extracellular glycoproteins and morphogen oligomerization. In the 

first model, inspired from the interactions of Dally and Dally-like with Wingless 

and Decapentaplegic in the third-instar Drosophila wing disc, two morphogen 

populations axe considered: one in a cell-membrane phase, and another one in 

an extracellular-matrix phase, which does not interact with receptors; in the 

second model, inspired from biochemical studies of Sonic Hedgehog, morphogen 

oligomers are considered to diffuse freely without interacting with receptors. 

The existence of a dynamic sub-population of freely-diffusing morphogen allows 

the system to establish a gradient of bound receptor, which is suitable for 

the specification of positional information. Recent experimental results are 

discussed within the framework of these models, as well as further possible 

experiments. The role of Notum in the setup of the Wingless gradient is also 

shown to be likely not to involve a gradient in Notum distribution, even though 

Notum is only expressed close to the source of Wingless synthesis.

Abbreviations: Dll: Dally; Dip: Dally-like; Dpp: Decapentaplegic; Wg: 

Wingless; Shh: Sonic Hedgehog

5.1 Introduction

The third instar Drosophila wing disc has provided examples of molecules form­

ing morphogen gradients (reviewed by Cadigan, 2002). W hether the transport 

of morphogens relies on passive extracellular diffusion has been a source of in­

tense debate (see for example Kerszberg & Wolpert, 1998, Lander et al., 2002,
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Kruse et al., 2004), but recent experimental data  has dealt a new hand by 

greatly clarifying the role of extracellular proteoglycans in the establishment 

of morphogen gradients (Baeg et al., 2004, Belenkaya et al., 2004, Han et al., 

2004, 2005); mathematical models are yet to be developed to take this role into 

account.

It was first observed by Kerszberg & Wolpert (1998), and confirmed by 

Lander et al. (2002), th a t a simple system of morphogen diffusion and recep­

tor binding will generally create a traveling wave of receptor saturation and 

not a stable gradient of bound receptor. It has been shown that this problem 

can be alleviated by hypothesizing a mechanism of ligand-receptor complex 

degradation and slow association constants (Lander et al., 2002), the possi­

bility of signaling for internalized complexes (Lander et al., 2002), similar to 

the ligand-triggered, but ligand-free, receptor dimers of Kerszberg & Wolpert 

(1998), or self-enhanced ligand degradation (Eldar et al., 2003). We propose 

here two other simple mechanisms for suitably-shaped morphogen gradients to 

arise, one based on morphogen oligomerization, and one based on the role of 

extracellular glycoproteins. The latter model illustrates what the role of ex­

tracellular glycoproteins could be, and also provides a specific insight into the 

establishment of the Wingless (Wg) gradient, one of the morphogens identified 

in the Drosophila wing disc.

5.1.1 G lycoprotein-m ediated phase repartition

This model is inspired from the Wg (Zecca et al., 1996) and Decapentaplegic 

(Dpp; Nellen et al., 1996) morphogen gradients in the Drosophila wing-disc, but 

could also apply to other gradients, such as the Sonic Hedgehog (Shh) gradient 

in the developing neural tube (Briscoe et al., 2001). Dally (Tsuda et al., 1999; 

abbreviated Dll) and Dally-like (Khare & Baumgartner, 2000, Baeg et al., 2001; 

abbreviated Dip) are cell-surface heparan sulfate proteoglycans, tethered to the 

membrane by a GPI anchor (ie, glypicans), which have been shown to influence
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both Dpp and Wg signalling. In the Drosophila wing disc, Wg and Dpp cannot 

diffuse into clones deficient for both Dll and Dip, or into clones deficient for 

heparan-sulfate synthesis (Belenkaya et al., 2004, Han et al., 2005); it has been 

proposed tha t Dll acts as a Wg co-receptor, while Dip mediates Wg movement 

across cells (Baeg et al., 2001), but Dll seems to also have a role in mediating 

inter-cellular movement (Han et al., 2005). Importantly, Dip can be released 

into the extracellular m atrix by the secreted protein Notum (Kreuger et al.,

2004), and Dll-Notum interactions have been shown to be essential for wing- 

disc patterning (Han et al., 2005), suggesting tha t Dll could also be released 

by Notum. Notum is mainly expressed in the region of high Wg signalling, 

and can itself be released into the extracellular m atrix (Gerlitz & Basler, 2002, 

Giraldez et al., 2 0 0 2 ). Notum would not be taken into account in a model for 

Dpp gradient establishment (see below for a further discussion of Notum as 

regards the Wg and Dpp gradients).

In the model proposed here, and illustrated in Figure 5.1 Dll and Dip are 

considered as a single entity (noted as d in the equations detailed in Appendix 

5.4.4), which binds to the morphogen m. Two populations are considered, 

one in the extracellular m atrix (EM), and one on the cell membrane (mem); 

cell membrane-attached d molecules are released into the extracellular matrix 

by Notum (n). The crucial hypothesis of the model is that the morphogen 

equilibrates between the extracellular matrix and membrane phases, following 

the repartition of d. Extracellular morphogen is injected at the left boundary, 

and Notum synthesized (and considered to be immediately secreted) over the 

first Both free and bound receptor populations are taken into account,

with a fixed rate of receptor synthesis, and unregulated degradation.

In order for the model to be compatible with the experimental data showing 

the absence of diffusion of morphogen into clones deficient for Dll and Dip, only 

the EM morphogen and Notum are considered to diffuse.
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5.1.2 Shh-like oligom erization

Shh has been shown to oligomerize, and it has been proposed that the higher- 

order multimers mediate long range signalling (Zeng et al., 2001, Chen et al., 

2004, Feng et al., 2004). The relative signaling potencies of the different forms 

have been debated, but it seems reasonable tha t there should be a dynamic 

equilibrium between them (even if no interconversion was observed in vitro by 

Chen et al., 2004), and th a t signaling could be mediated by the monomeric 

form, while multimeric forms diffuse without interacting with the receptors. 

The available biochemical data  is not sufficient to propose one specific Shh mul- 

timerization scheme; different oligomerization extents have been reported, from 

6 -mers to about 30-mers. Therefore, in order to assess the possibility for such 

multimerization to provide a suitable gradient of receptor-bound monomer, an 

arbitrary, generic scheme was adopted, in which any two oligomers can combine 

to create one of higher size, provided that the size of the product is smaller 

than the maximum being considered. The reactions are reversible, and any 

oligomer can split into two smaller products. Equations are detailed in section 

5.4.5.

5.2 R esults

Simulations were run with successive sets of parameters sampled at random 

from the ranges detailed in Table 5.1. A set of parameters was considered 

to be suitable if the following conditions on the gradient of morphogen-bound 

receptor were met:

•  about 3 hours after the start of the simulation, the concentration of 

morphogen-bound receptor was sufficiently close to linearity (as per a 

measure described in the appendix)
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Figure 5.2: Example of a gradient of bound receptor which meets the criteria 

described in section 5.2.1 10000s after the start of the simulation.

• after a further 3 hours of simulation, the gradient stayed with 30% of its 

original values

• the range of the gradient was greater than 2 -fold

• the concentration of bound-receptor at the high end was greater than 

30nM (corresponding to 100 bound receptor molecules, following the cal­

culations in Lander et al., 2002), and more than 2% of the receptors were 

bound to morphogen 75/im into the field.
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Figure 5.3: Example of a non-monotonous gradient of bound receptor.
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Figure 5.4: Concentrations of other elements of the system, for the same pa­

rameter values as in Figure 5.3, at 10000s. The curves were scaled with their 

highest value so their variations would be visible on the same graph.
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Figure 5.5: Pairwise plot of parameters for which the model with localized No­

tum synthesis gives rise to a gradient of bound receptor meeting the conditions 

set out in section 5.2.1. 1: ^ A  ■ 2: 3: 4: 5:

dEM(0)t 6 : , 7: ' ^ an§es are given in section 5.4.6. Scales are

logarithmic except for D%u , Dn, and r^Z(ioo) •
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Figure 5.6: Pairwise plot of parameters for which the model with global Notum 

synthesis gives rise to a gradient of bound receptor meeting the conditions set 

out in section 5.2.1. Number correspondences are the same as in Figure 5.5.
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5.2.1 G lycoprotein phase-repartition w ith  localized N o- 

tum  synthesis

Out of more than 100,000 parameter sets tested, about 0.5% met the conditions 

above, with gradient ranges of up to 34-fold (range average was 4). Remark­

ably, satisfactory parameter sets spanned the entire sampling range for each 

individual parameter, even though the ranges were chosen to be very wide, 

showing that the structure of the system can accommodate a wide variety of 

kinetic parameters. An example gradient is shown in Figure 5.2.

For 4.4% of the parameters tested, the concentration of bound receptor did 

not form a proper gradient, in that the concentration did not steadily decrease 

as the distance from the source of the morphogen increased. This is illustrated 

in Figure 5.3. Figure 5.4 shows the concentrations of other variables of the 

same system; the increasing concentration of morphogen is associated with an 

increasing membrane Dll/Dlp concentration (and also an increasing ratio of 

membrane to EM Dll/Dlp, as the latter is constant).

To examine the influence of the parameters on the establishment of the de­

sired gradient, satisfactory parameters were plotted pairwise, along with mea­

sures of the gradients established (Figure 5.5). It resulted from this analysis 

that for all satisfactory bound-receptor gradients, the gradient of Dll/Dlp was 

extremely shallow (with no more than 3% variation across the field for the EM 

form, with an average of 0.16%, and no more than 29% variation for the mem­

brane form, with an average of 3%), as was that of Notum (with a maximum 

variation of 10% and an average of 3%). Diffusion coefficients for Notum were 

biased towards higher values, and correlated strongly with the amplitude of 

both Notum and Dll/Dlp gradients.

This suggested that localized production of Notum was not favorable to the 

establishment of bound receptor gradient.
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5.2.2 G lycoprotein phase-repartition w ith global N otum

In order to test this, the same simulation was run, but with Notum synthesis 

over the whole field, rather than over the first 10 /im. Pairwise plots of sat­

isfactory parameters are shown in Figure 5.6. About 1.7% of the parameter 

tested (out of about 90,000 tested) met the conditions, i.e. 3-fold more than 

with localized Notum synthesis, with ranges of up to 30-fold (range average 

was 4.6). Only in 0.9% of the cases was the gradient reversed as in Figure 5.3.

Comparison of Figures 5.5 and 5.6 shows tha t global Notum synthesis re­

laxes restriction on the relative values of the morphogen diffusion rate D m and 

/3, the rate of exchange of the morphogen between the membrane and EM 

phases (the former must be sufficiently high compared to the latter, if Notum 

is synthesized locally), as well as the restriction on the relative values of D m 

and the activity of Notum 7  (again, the former tends to be high compared to 

the latter, if Notum is synthesized locally).

Notable restrictions on parameter sets common to the models with localized 

or global Notum synthesis are tha t the product of S^Mi the degradation rate of 

the morphogen in the extracellular matrix and /?, as well as that of the activity 

of Notum 7  and its synthesis rate crn, must be sufficiently high.

Interestingly, the rate of association of receptor and morphogen is not 

skewed in the 1 0 5  — 1 0 8  range; the proposed model thus does not share the 

restriction of that of Lander et al. (2002). Also, to investigate the role of 

bound-receptor downregulation, the corresponding parameter ^ ouncj was set to 

0, and the same analysis as previously carried out. The results were roughly 

identical (data not shown), showing that receptor downregulation is not an 

important feature of this model.
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5.2.3 Shh-like oligom erization

Different simulations were run, varying the number of oligomer forms consid­

ered (from 3 to 38), the form under which Shh was injected (as a monomer or 

a multimer), and the rate constants for the oligomerization reaction X{ +  Xj <-> 

x i + j ,  where x p  is a p-mer of Shh. The laws tried out for the forward rate con­

stants were = k+ (i.e. the same rate for all reactions), =  k+/( i  +  j )  

(i.e. “mild” scaling down of the rates according to the size of the product), 

and k*j = k+/  (i +  j ) 2 (stronger scaling down of the rates). Backward reactions 

were considered to happen all at the same rate.

No suitable gradients were identified with 18-mer Shh injection at the 

boundary (rather than monomer Shh), or with strong scaling of the oligomer­

ization rates. It was easiest to identify suitable parameter sets for a system 

with Shh forming up to 1 0 -mers, with no scaling of forward reaction rates, and 

for systems with Shh forming up to 8 -mers or 18-mers, with mild scaling of 

forward reaction rates.

The low number of parameter sets identified (about 60) does not warrant a 

detailed parameter study. An example gradient is shown in Figure 5.7.

5.3 Discussion

We have detailed two mechanisms for the creation of a morphogen gradient, 

which do not share restrictions of mechanisms which have been previously 

studied:

• Separation of the morphogen into an extracellular phase, from which 

it cannot directly interact with receptors, and a cell-membrane phase; 

the corresponding mathematical model does not require any degrada­

tion scheme of receptor-morphogen complexes, and can accommodate 

biochemical parameters over a very wide range of values. Values which 

show correlation when interesting gradients are formed are the relative
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rates of morphogen degradation and phase equilibration, as well as rates 

related to the relative levels of extracellular matrix and cell-membrane 

concentrations. These are good candidates for experimental observation 

and manipulation.

• Oligomerization of the morphogen into a compound which does not in­

teract with receptors, as could be the case for Sonic Hedgehog.

Both these mechanisms create in effect a dynamic sub-population of morphogen 

that travels unhindered by receptor interaction, allowing the morphogen gradi­

ent not to die off too quickly or saturate receptors. Tracking of the membrane 

diffusion of single molecules is feasible (as shown for example by Murakoshi 

et al., 2004); extending these experiments to extracellular diffusion would al­

low one to assess whether sets of individual paths indeed reflect the sort of 

diffusion which underlies these new models.

The phase repartition model is compatible with both observations that pro­

teoglycans are indispensable for Dpp and Wg diffusion, and that cell membrane- 

tethered diffusion would be too slow to account for the observed speed of 

gradient establishment (Lander et al., 2002). Its absence of requirement for 

receptor-mediated morphogen degradation is also in line with the lack of re­

quirement of the receptors Fz and Fz2  to establish a Wg gradient (Han et al.,

2005).

It has only recently been discovered that Dip’s GPI anchor can be cleaved, 

releasing it into the extracellular matrix. Since Notum is synthesized only in a 

region of high Wg signaling, it has been proposed tha t this localized expression 

has a role in promoting morphogen diffusion to regions of less intense signaling. 

However, our model makes the counter-intuitive suggestion that this may not 

be the case. This is in line with experiments showing that misexpression of 

Notum in the dorsal compartment of a Drosophila wing disc has symmetrical 

effects on the dorsal and ventral compartments (Giraldez et al., 2002), and with
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the fact that Dpp has been show to also require Dll and Dip for its diffusion 

(Belenkaya et al., 2004). If Notum (and the EM and membrane fractions of Dll 

and Dip) had a strongly non-homogenous distribution along the dorso-ventral 

axis, one would expect interference with Dpp signalling, which takes place in a 

gradient orthogonal to tha t of Wg (Figure 5.1).

Semi-quantitative imaging of the membrane-associated and free, extracel­

lular sub-populations would provide crucial data to test models with. In par­

ticular, to accomodate experimental data showing that morphogen diffusion 

does not occur over clones deficient in Dll and Dip (Belenkaya et al., 2004, Han 

et al., 2005), the phase repartition model makes the im portant assumption that 

extracellular Dip has a negligible diffusion rate.

Even though parameter sets were identified which allow Shh-like oligomer­

ization to give rise to suitable gradients, this did not happen as readily as for 

the phase repartition model. This could very well have to do with the fact that 

glycoproteins also seem to be essential to the establishment of a Shh gradient 

(Han et al., 2004), and th a t the two phenomena need to be taken into account 

together.
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5.4 A ppendix

5.4.1 Param eter values

The concentrations of morphogens and receptors, as well as their kinetic reac­

tion coefficients, have been precisely evaluated only in a restricted number of
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Parameters Range Distribution

^EM» Cem» ^EM ’ i m 1 0 " 7  -  1 0 - 4 s - 1 Log-uniform

*»,<5free, Abound, 1 0 " 7  -  1 0 _4 s _ 1 Log-uniform

D£m , D \ D , 5-30 n m 2.s~l Uniform

0 KT 8  -  I s ” 1 Log-uniform

7 1 -  106 s_ 1 A/ _ 1 Log-uniform

1 0 ~ 8  -  lO -^ M s " 1 Log-uniform

1 0 " 1 4  -  1 0 _8 M s _ 1 log-uniform in 1 0 - 7  — 1 0 - 4
free

OLf,h+ 1 0 5  -  1 0 8 M _ 1 s _ 1 Log-uniform

Q:r , k~ 1 0 " 7  -  1 0 _ 1 s _ 1 jp  log-uniform in 1 0 5  — 1 0 8

V 1 0 " 8  -  1 0 _ 1 3 M ^m _ 1 Log-uniform

Table 5.1: Ranges from which parameters were selected at random for the 

simulations described in section 5.2.

cases (for example by Dyson & Gurdon, 1998; see Freeman & Gurdon, 2002 for 

a review). Relevant concentration ranges for morphogens have been proposed 

to be around 10-100 pM (Freeman & Gurdon, 2 0 0 2 ). Dyson & Gurdon (1998) 

have shown that cells can respond with as few as 2 % of their receptors bound 

to the morphogen (the total of number of receptors per cell being estimated to 

5,000); this gives a maximum 50-fold useful variation range of the concentra­

tion of bound receptor (also compatible with the data of Gurdon et al., 1999). 

Cultured S2 cells show responses to Dpp over a 10-fold range, from lOOpM to 

lOOOpM (Shimmi k  O ’Connor, 2003) (but the presence of Dip could possibly 

alter those responses). BMP receptor affinity for its ligand is of the order of 

nanomolars (Koenig et al., 1994, Suzuki et al., 1994), and that of the FGF 

receptor picomolars (Nugent k  Edelman, 1992).

The association rates of two proteins in solution can be as high as 108- 

1 0 9 M - 1 s -1 , close to the rate of random encounter given by Smoluchowski’s 

equation kon = 411 DR,  probably thanks to long-range electrostatic interactions
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(Northrup & Erickson, 1992, Gabdoulline & Wade, 1997). The order of magni­

tude of binding rates seems however to normally be around 106 M - 1 s -1 . It has 

been proposed that, for BMP-like morphogens, it can be as low as 3.105 M - 1 s _ 1  

(references in Lander et al., 2002). For FGF, the binding rate has been mea­

sured at 4 . 1 0 (Nugent  & Edelman, 1992); such high values have been 

used in some simulations (Kruse et al., 2004).

The extracellular diffusion rate of a 50-kDa albumin, in vivo, has been re­

ported to be 16/rni2s -1 , and tha t of a 15-kDa albumin 24/xm2s-1 (Tao & Nichol­

son, 1996). The molecular weights of processed Wingless and Decapentaplegic 

dimers are about 36kDa (value from Pubmed protein) and 30kDa (Doctor et al., 

1992), respectively. 10/xm2 s - 1  seems therefore to be a good assumption for the 

order of magnitude of the extracellular diffusion rates (this is the value used 

by Kerszberg &; Wolpert, 1998, and Lander et al., 2002).

5.4.2 Evaluation o f gradients

Small dependence of the gradient on the rate of morphogen production has been 

used as a criterion of biological relevance (Eldar et al., 2003). There are however 

documented cases of morphogen readouts not being buffered against changes in 

morphogen production rates (Grimm & Pflugfelder, 1996, Staehling-Hampton 

et al., 1994, Zecca et al., 1996). In this study, gradients were evaluated with the 

“7 7” criterion proposed by Lander et al. (2002), which provides a simple measure 

of how close to linearity they are (as it would be difficult for rapidly-decaying 

gradients to provide a useful range of concentrations over a high number of 

cells).

5.4.3 Sim ulations

Simulations were performed with the Numerical Algorithms Group’s Fortran 

library Mark 20, using the D03PDF function, called from a custom Fortran
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7 7  program (available on request), compiled with the NAG Ware compiler, and 

run on G5 iMacs and PowerMacs. The D03PDF accuracy setting was 10-12, 

and the degree of the polynomial approximation 2 or 3.

5.4.4 Equations for W g-like diffusion

THEM — +  P
mem

m mem

^mem

n =  Dr, An

^free —

^bound

dx
( ; X  =  0)

^mem 0)

'̂ mem̂ mem P

^EM H- ^mem 
^ m em ^ E M  “  ^ E M ^  mem

^EM +  d mem

OifVfTeeTTlmem ^r^'bound

-^em^em +  7 ndmem

^mem^niem T^^mem ®d

8nTl ~l~ @n

^free^free 0' fT fTee17lmem +  O r rbound “1“ 

^bound^bound H“ f fe e ^ m e m  O^Tbound

— V

& d/S.
d
mem

^free(^ — 0 ) ar/8.rfree

Unspecified boundary conditions are zero-flux conditions, and unspecified 

initial conditions are 0 .
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5.4.5 Equations for Shh-like oligom erization

Xi

^free

^bound —

dx\
dx
^free(^ ~  0 )

D\Ax\ — $ \ X \  + j —\ X j  +  ^ 1 , 1 ^ 2  —  ^ j = \ . . n - \ k \ j X \

Oyrfree^l QV^bound 

D{AXi SiXi ~ b  ^j+k=i,j>k

+  Yij > i k i j _ i X j  +  k i i X 2i — ^ j —i ^ n - i k ^ j X i X j  — I 2  i < n k t , i X i

^free^free ^ /^ fr e e ^ T  Abound H“

^bound^bound ~l~ O L f T free^T ^ r^ b ou n d

(x =  0) =  — V

=  *r/<SE
r
fee

where X* is an i-mer of Shh, n is the maximum number of Shh proteins 

which can associate into a single oligomer, and &“ ■ are respectively the 

association and dissociation rates in the reaction X* +  Xj <-*• Xi+j , and the other 

parameters are the same as previously. Unspecified boundary conditions are 

zero-flux conditions, and unspecified initial conditions are 0 .

The diffusion rates for oligomers were scaled from the rate for the monomer, 

according to the Stokes-Einstein law for spherical particles: D{ — D\ * i ~1/3.

5.4.6 Ranges for th e measures p lotted  in figures 5.5 and 

5.6
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Number Measure Lower bound Upper bound

1

2

Abound(0 )  
^boundOOO)

^ e m (O)
^ e m ( IO O )

2

-2.9.10- 2

34 

6 .1 .1 0 ~ 3

3 ^m era(O)
rfmem ( 1 0 0 )

-0.34 -0.015

4 n ( 0 )

n ( 1 0 0 ) 0.015 0.084

5 ^ e m ( O ) -19 -2.9

6

7

^ E M  ( 0 )  

^mem (0 )

^ e m ( IO O)

^m em (lO O )

3.0

2.9

17.7

17.7

Table 5.2: Ranges for Figure 5.5

Number Measure Lower bound Upper bound

1

2

3

4

5

6  

7

^bound(0 )
r bo und (100)

^ e m (O)
^ e m ( i o o )

rfmem(O)

2

- 1 .1 .1 0 " 1 2  

-4.10 - 1 1  

-8 .1 0 - 1 5  

-19

1.3

1.3

30

3.6.10- 1 2  

3.10~ 1 2

1.9.10— 1 4  

-3.0

17

17

t^mem (1 0 0 )

n ( 0 )

n ( 1 0 0 )

^ e m ( O )

<*EM (0 )  
d m c m  ( 0 )  

^ e m ( I O O )  

d m c m  (1 0 0 )

Table 5.3: Ranges for Figure 5.6
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Chapter 6

High-dimensional switches and 

the modelling of cellular 

differentiation

This chapter is the reproduction of an article whose reference is High-dimensional 

switches and the modeling of cellular differentiation, Cinquin 0 . & Demongeot 

J., J. Theor. Biol. 233(3), pp391-411 (2005)

I am grateful to Jacques Demongeot for contributing the potential in section

6.7.1.

The previous Chapter dealt with the establishment of positional informa­

tion. In order for the information to be used by differentiating cells, it must be 

converted into a gene expression pattern, and possibly integrated with other 

regulatory inputs. The following Chapters deal with mathematical models of 

the way this can be achieved by networks of transcription factors, at the indi­

vidual cell level.
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6.1 Abstract

Many genes have been identified as driving cellular differentiation, but because 

of their complex interactions, the understanding of their collective behaviour re­

quires mathematical modelling. Intriguingly, it has been observed in numerous 

developmental contexts, and particularly hematopoiesis, that genes regulating 

differentiation are initially co-expressed in progenitors despite their antagonism, 

before one is upregulated and others downregulated.

We characterise conditions under which 3 classes of generic “master regula­

tory networks” , modelled at the molecular level after experimentally-observed 

interactions (including bHLH protein dimerisation), and including an arbitrary 

number of antagonistic components, can behave as a “multi-switch” , directing 

differentiation in an all-or-none fashion to a specific cell-type chosen among 

more than 2 possible outcomes. bHLH dimerisation networks can readily dis­

play coexistence of many antagonistic factors when competition is low (a sim­

ple characterisation is derived). Decision-making can be forced by a transient 

increase in competition, which could correspond to some unexplained experi­

mental observations related to Id proteins; the speed of response varies with 

the initial conditions the network is subjected to, which could explain some 

aspects of cell behaviour upon reprogramming.

The coexistence of antagonistic factors at low levels, early in the differenti­

ation process or in pluripotent stem cells, could be an intrinsic property of the 

interaction between those factors, not requiring a specific regulatory system.

Abbreviations: bHLH, basic Helix-Loop-Helix, Id, Inhibitor of Differentia­

tion

Keywords: multistationarity, cellular differentiation, cellular reprogram­

ming, bHLH dimerization
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6.2 Introduction

It has long been recognised that cellular differentiation could result from epi­

genetic memory, controlled by the dynamical properties of the same system, 

present with an identical structure in all cells (Delbriick, 1949), rather than 

from a progressive, irreversible loss of differentiation potential; a fundamental 

property of such a control system would be the presence of positive feedback 

circuits (Thomas, 1981, Plahte et al., 1995, Snoussi, 1998, Gouze, 1998, Cin- 

quin & Demongeot, 2002, Soule, 2003). Indeed, pioneer experiments showed 

tha t the genomes of some differentiated cell types retain the capacity to regen­

erate a whole organism (Gurdon, 1962, Gurdon et al., 1975), and more recent 

experiments have strengthened the view that there is extensive plasticity in 

cell-fate determination (reviewed by Blau & Baltimore, 1991, Blau & Blakely, 

1999, and Theise & Krause, 2002).

Bistable switches have been given a thorough theoretical investigation (Cherry 

&: Adler, 2000), and have been constructed de novo (Gardner et al., 2000) 

or modified (Ozbudak et al., 2004). There is evidence, discussed in section

6 .2 .1 , tha t cells undergoing differentiation sometimes face commitment deci­

sions which involve more than two possible outcomes, but switches involving 

more than two variables have not been given extensive attention (we are not 

aware of any generic mathematical model that addresses cellular differentia­

tion, with more than two possible outcomes). In the following, we discuss the 

relevance of these high-dimensional switches to the modeling of cellular differen­

tiation, and investigate the properties of different molecular models, evaluating 

them with the current knowledge of the mechanisms of cellular differentiation.

In particular, we test whether these models are able to display a coexistence of 

antagonistic factors at low levels, as decision-making with increased expression 

levels could be a relevant model of differentiation.



6.2.1 Biological aspects

Some comm itm ents are irreducible to binary steps

Cellular differentiation is often envisioned as a temporal cascade of decisions, 

by which cells restrict their potential fate further and further, until they reach 

a unique fate. It has been argued that each of these decisions is binary (Brown 

et al., 1988, Sternberg & Horvitz, 1989, Kaletta et al., 1997, Lin et al., 1998). 

However, recent studies of hematopoeisis strongly suggest otherwise (Rothen- 

berg et al., 1999), and point to models in which many cross-antagonising fac­

tors compete with each other (see below), receiving activation or inhibition 

from extracellular signals, leading to the progressive up-regulation of one spe­

cific factor, and down-regulation of all others. The hypothesis that decisions 

are more complex than binary is also supported by the fact tha t the same cell 

type can be obtained by different developmental pathways (Rothenberg et al., 

1999).

Apart from hematopoiesis, two systems have been described which seem to 

clearly involve a 3-outcome decision, irreducible to a sequence of 2 binary de­

cisions: cells in the C. elegans hermaphrodite germline are directed to mitosis, 

differentiation as sperm, or differentiation as oocyte (Ellis & Kimble, 1995), 

and founder cells of Drosophila mesoderm are directed to specific dorsal mus­

cle or pericardial cell phenotypes by 3 mutually-repressive genes (Jagla et al., 

2002).

Finally, in at least two instances of neural development, fate choices between 

a great diversity of possible outcomes have been shown, and are unlikely to be 

mediated by a series of binary commitments. This is the case of olfactory 

development (Serizawa et al., 2000, Ebrahimi et al., 2000), which does not 

involve genetic rearrangements (Eggan et al., 2004), and of the regulation of 

hundreds of alternatively-spliced transcripts of a single gene in the Drosophila 

brain (Neves et al., 2004).
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a) Binary, hierarchic decisions model

G enes specific for cell-type

b) Simultaneous decision model

Figure 6.1: Arrows represent activation, and squares inhibition. Adapted from 

Cinquin & Demongeot (2 0 0 2 ).

Thus, it appears tha t model a, depicted in Figure 6.1, is not the only 

possibility, and that model b of Figure 6.1 should also be taken into account.

Having shown tha t high-dimensional switches are necessary for the m ath­

ematical modeling of some developmental decisions, we now turn to the way 

their structure should be modelled: differentiation factors are often antagonistic 

(section 6 .2 .1 ), which does not prevent them from being sometimes coexpressed 

(section 6 .2 .1 ), and modulation of the interaction strength is a way differenti­

ation is regulated (section 6.2.1). The basis for a mathematical formulation of
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the models is provided in section 6 .2 .2 .

Antagonism between differentiation factors

Antagonism between genes driving differentiation to different fates has been re­

peatedly established; often, enforced expression of a differentiated phenotype, 

whether by specific misexpression of a gene, or fusion of cells with different 

phenotypes, also leads to repression of the previous phenotype (repression of 

alternative fates has been proposed to be an essential mechanism of differ­

entiation, reviewed by Cory, 1999). The idea of competition is reinforced by 

dose-dependency effects, shown for example by comparison of heterozygous and 

homozygous mutants, heterokaryon studies, or knock-down mutations (Wein- 

traub, 1993, McDevitt et al., 1997, reviewed by Orkin, 2000; Crittenden et al.,

2 0 0 2 ), by monoallelic expression of a gene such as Pax5 (Nutt et al., 1999), and 

by dosage effects of interacting bHLH proteins (Zhuang et al., 1996). These 

effects argue tha t boolean models, in which a specific master gene would be 

turned on, initiate transcription of cell-type specific genes, and repress all other 

fates, are insufficient.

Competition between cell-fate determining factors has also been documented 

at the molecular level, for example in the case of neurogenesis, where bHLH 

proteins play a major role in specifying neural subtypes (Chien et al., 1996, 

Brunet & Ghysen, 1999). Gowan et al. (2001) have identified a network of 

3 cross-repressive bHLH proteins (although not all possible cross-repressions 

have been characterised). Briscoe et al. (2000) have also shown tha t a cross- 

repressive gene network reads out the Shh gradient in the neural tube. Two sets 

of two cross-repressing genes have been identified, with a possibility tha t there 

is a larger, totally cross-repressive network (all the possible interactions do not 

seem to have been assessed yet). The competition can also occur by physical 

interaction between the factors, rather than by cross-repression of transcrip­

tion: in hematopoeisis, GATA-1 , which drives erythroid and megakaryocytic
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differentiation (Kulessa et al., 1995, Visvader et al., 1992, Iwasaki et al., 2003), 

and PU-1, a transcription factor essential for the expression of myleoid-specific 

genes (reviewed by Zhang et al., 1996), as well as B-cell specific genes (Chen 

et al., 1996), suppress each other’s activity by physical interaction (Rekhtman 

et al., 1999, Zhang et al., 1999, Nerlov et al., 2000). This seems to be a general 

phenomenon in hematopoiesis (Hu et al., 1997, reviewed by Cross &; Enver, 

1997, Enver &; Greaves, 1998).

In addition to repressing other genes, cell-fate determining factors often 

enhance their own expression; it has been proposed that this is a common 

property of “master switches” (Rothenberg et al., 1999).

Coexpression of antagonistic factors

Coexpression of antagonistic genes has been shown both for closely-related 

lineages (for example coexpression of antagonistic hematopoeisis-related genes, 

Miyamoto et al., 2002, Akashi et al., 2003, Ye et al., 2003, reviewed by Orkin, 

2003, transient prespore expression of a prestalk-specific gene in Dictyostelium, 

Jermyn & Wiliams, 1995, coexpression of lineage-specific genes in pancreas 

development, Chiang &; Melton, 2003, and coexpression of neurogenic genes, 

Rallu et al., 2002, Pierani et al., 2001, Briscoe et al., 2000, although the latter 

may be due to a transient effect of the misexpression method), and between 

more distantly-related lineages (for example expression of neural markers by 

hematopoietic precursors, Goolsby et al., 2003).

A semi-quantitative analysis of the expression of many hematopoietic genes 

was performed by Akashi et al. (2000), showing that lineage-specific (and an­

tagonistic) genes were co-expressed at low levels in precursors, before respec­

tive upregulation and downregulation (see Rothenberg, 2000, Zhu & Emerson, 

2002, for reviews). At an earlier stage of development, markers for different 

germ layers are also transiently co-expressed (Wardle & Smith, 2004).
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Regulation of differentiation

Some proteins have been shown to have regulative effects on differentiation in 

many different cellular contexts, and would thus prove interesting to incorpo­

rate in models of cellular differentiation.

•  Id proteins, ubiquitously expressed during development, seem to act as 

inhibitors of cell differentiation, by sequestering ubiquitously-expressed 

class A bHLH proteins, preventing class B bHLH to form A-B het­

erodimers, which are transcriptionally active (Benezra et al., 1990, Gar- 

rell Sz Modolell, 1990, Ellis et al., 1990, reviewed by Norton et al., 1998, 

Norton, 2000), and by preventing DNA binding (O’Toole et al., 2003); 

see Massari &; Murre (2000) for a precise classification of HLH proteins. 

Twist can act in the same way (Spicer et al., 1996), or in another, more 

direct way, by binding to class MyoD (Hamamori et al., 1997).

•  Hesl, a bHLH protein, seems in many cases to be essential in the mainte­

nance of an undifferentiated state (Kageyama et al., 2000); its effect can 

be mediated either by active repression, which involves the recruitment 

of Groucho, or by passive repression, which involves hetero-dimerisation 

with other bHLH proteins.

•  The PUF family of proteins represses the expression of many genes by 

regulating their mRNA stability (Wickens et al., 2002), and has been 

proposed to have the ancestral function of maintaining proliferation of 

stem cells; in C. elegans, sex-determination genes are regulated by PUF 

members.

•  NF-kB has been shown to inhibit differentiation of mesenchymal cells, 

by destabilisation of the transcripts of Sox9 and MyoD, two transcription 

factors involved in different differentiation pathways (Sitcheran et al.,

2003).
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All these differentiation-inhibiting proteins have a negative effect on the 

strength of transcription of genes which are essential in cell-fate determina­

tion. The models presented below suggest that modulation of the transcription 

strength of proteins involved in cell-fate determination could allow for an ini­

tial co-existence of many antagonistic factors, followed by up-regulation of one 

factor at the expense of others, as the transcription strength is increased.

6.2.2 M athem atical m odels

The models studied here have an arbitrary number of components. Each vari­

able represents the intracellular concentration of a differentiation factor (called 

“switch element” in the following), which enhances its own expression and re­

presses that of all others (the system is symmetrical, in that any element has 

the same relationship with all others, and in that all elements share a com­

mon set of parameters). The models can represent different forms of biological 

interactions. The terminology used below is that of transcriptional control: 

each factor is supposed to be a protein, which enhances the transcription of 

its own mRNA, and represses the transcription of the mRNAs for other switch 

elements, with or without physical interaction with other factors; as a simplifi­

cation, the translation step is not taken into account in the model, and proteins 

are thus supposed to act directly on each other’s concentrations. There is evi­

dence that translational regulation can play a major role in some cases (Wick- 

ens et al., 2000, Okano et al., 2 0 0 2 ). In the following models, different forms 

of post-transcriptional control (by means of regulation of mRNA stability, or 

translation of the proteins), can be represented in the same way as transcrip­

tional control. Downregulation of cytokine receptors has been observed prior to 

commitment (Kondo et al., 2000), and downregulation of receptors promoting 

expression of competing factors could also be accounted for by the following 

models.

3 kinds of models are studied below:
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•  Mutual inhibition with autocatalysis: all switch elements repress one 

another, and enhance their own expression. This is one of the simplest 

models one can think of that is able to achieve dominant expression of 

each of its elements, depending on the initial conditions.

•  Mutual inhibition with autocatalysis, and leak: the same as the previous, 

with a supplementary term that represents an identical, basal level of 

expression, which is independent of any element of the network. This 

could correspond for example to a gene upstream in the differentiation 

hierarchy, which “primes” the lower level of the differentiation network, 

as has been proposed within the hematopoietic differentiation network 

(Ye et al., 2003, reviewed by Orkin, 2003).

•  bHLH dimerisation: based on the class A/class B bHLH dimerisation 

discussed above.

The first two models can be viewed as a generic representation of the in­

teractions between switch elements, while the third is based on an explicit 

assumption. All are formulated according to standard kinetics.

These models are cell-autonomous, and do not take into account “differen­

tiation cues” that cells receive. The models could be extended to take into ac­

count either different initial conditions, leading to various differentiated states, 

or different biases of the network (for example by providing a higher basal 

expression level of one of the factors).

6.3 R esults

6.3.1 M utual inhibition w ith  autocatalysis

Each switch element is supposed to undergo non-regulated degradation (mod­

eled as exponential decay, with an arbitrary speed 1 ), and transcription/translation
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with a relative speed a. Each element positively auto-regulates itself, and re­

presses expression of others, with a cooperativity c. Calling Xi the concentration 

of each switch element, the corresponding equations are, for n elements:

drci

dt

dx
d t

■xi +
GX\

l  +  £ ni= 1 x i

(6 .1)

n
Xft +

ax n

1 +  S?=1ar

The analysis is restricted to c > 1, as there is only one steady state (0) 

if c < 1. The results presented in appendix 6 . 6  show that it is possible for 

one switch element to be on and others off (for a > 2 ), but that if there is 

some cooperativity in the system (ie c > 1 ), it is impossible for more than 1  

element to be on at the same time. On the contrary, if there is no cooperativity 

(c =  1 ), simulations show tha t a multitude of equilibria exist and are stable 

(switch elements in the “on” state can even coexist at different concentrations). 

Thus, the multistability behaviour of this system is tunable only by changes in 

the strength of the cooperativity, a mechanism which seems to be of unlikely 

biological relevance.

6.3.2 M utual inhibition w ith autocatalysis, and leak

The model is the same as previously, except that each element has a “leaky” 

expression, modelled as a constant production term a. The equations become:
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dx\
dt

dxr
dt

=  —X \  +
ax-

—  — x n  +

l  +

ax:
1 +  E?=1<

+  a

(6 .2)

+  a

The system is interesting only for c > 1  (see appendix 6.7). If the leak is 

small, it does not have a major effect on the system, except when the cooper­

ativity is close to 1: as shown in appendix 6.7, it is impossible for more than 

one switch element to be “on” , at a much higher level than the leak level a.

Even when the cooperativity is close to 1, it is still the case tha t only 

one variable at the same time can dominate all others; in order for that to 

happen, the transcription strength must be sufficiently high. A simulation was 

performed for a cooperativity of 1 .1 , with increasing a (see Figure 6 .2 ). All 

switch elements are initially coexpressed, and once a becomes sufficiently high, 

one switch element is upregulated, and others downregulated.

The same pattern of coexpression followed by exclusive expression can be 

achieved with a decreasing leak (see Figure 6.3), with the difference that the 

level of initial coexpression decreases slightly with time (this level is lower than 

the relative maximum transcription strength <7, but higher than the leak a). 

Once the leak has become sufficiently small, exclusive upregulation occurs.

We show in appendix 6.7 that our models with mutual inhibition and au­

tocatalysis, with or without leak, always converge to an equilibrium (and thus 

never oscillate).

Effect of a perturbation

If two switch elements are given initial values close to the resting value one 

would have on its own, there is a transient drop in both values, until the higher
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Figure 6.2: Time evolution of the concentrations of 4 switch elements (x\ 

to £4 ), for the model with mutual inhibition with auto catalysis, and leak, 

with the transcription strength <j  being gradually increased over time. The 4 

elements are initially coexpressed at an identical level, which increases with a; 

when a reaches a threshold level, one element is upregulated, and others are 

downregulated. Parameters in the simulation were a  =  2 and c =  1 . 1  Low, 

random noise was added to allow the system to escape the equilibrium as it 

became unstable.

98



100

60

60

40

20

0
50000 1000 2000 3000 4000

Figure 6.3: Time evolution of the concentrations of 4 switch elements (x\ to 

£ 4 ). for the model with mutual inhibition with autocatalysis, and leak, with the 

leak level a  being gradually decreased over time. The 4 elements are initially 

coexpressed at identical levels (higher than the leak a  because of autocatalysis); 

when the leak reaches a threshold level, one element is upregulated, and others 

are downrogulated. Note that the scales for the and for a are different by a 

factor of 11, equal to c /(c — 1) in this simulation. Thus, it is impossible for the 

curve of more than one £* to be above that of a at equilibrium. Thus, in the 

boxed region, the system is in the process of responding to the drop in <a, and 

not at equilibrium. Parameters in the simulation were a = 100 and c =  1.1 

Low, random noise was added to allow the system to escape the equilibrium as 

it became unstable.
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Figure 6.4: Time evolution of the concentrations of two switch elements (aq 

and X2), for the model with mutual inhibition with autocatalysis, and leak. 

The resting concentration when one element is on and the other off is roughly 

100. Initial concentrations differ by 10. Parameters are a = 100, a  = 0.02, and 

c = 2 . The trajectory is essentially the same for all a  < 10, and very similar 

for initial concentrations differing by only 1 .

one picks up and extinguishes the other (see Figure 6.4). The initial drop is 

less pronounced than for the bHLH dimerisation model (see below).

6.3.3 A m odel for bHLH proteins

Each switch bHLH protein is supposed to bind to a common activator accord­

ing to the law of mass action, with a binding constant K 2, and a total quantity 

of activator at. In turn, the heterodimer activates transcription of the corre­

sponding switch protein only, with Hill kinetics and cooperativity 2  (as with 

cooperativity 1 , no interesting equilibria exist, as shown in appendix 6 .8 ). The 

equations are:
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(6 .3)

These equations simplify to:

d Xi x\
—  =  ~ X i  +  g  — 2  ’dt a D z +  x\

with D = 1  +  £Jl=lXi, g , a  = K 2/a% G IR̂

Param eter a  is a measure of the harshness of the competition between 

switch elements (it increases if K 2 increases, ie if binding to the common ac­

tivator occurs at higher concentrations, and if at diminishes, ie if the quantity 

of common activator goes down). The value of a  is essential in determining 

the behaviour of the system. As shown in appendix 6 .8 , and summarised in 

section 6.3.3, switch elements can coexist only if a  is sufficiently low, ie if the 

competition is not too harsh (the lower a , the more switch elements can be 

non-0 at equilibrium). Figure 6.5 shows a simulation with a  being increased 

over time; switch elements are sharply turned off as a  reaches threshold values. 

Figure 6 . 6  shows how an increase in a  leaves only 1  switch element on, which 

remains exclusively on even if the competition level is relaxed to its original 

value.

We prove in the appendix that the system always converges to an equilib­

rium for a  > 1 / 2 ; extensive simulations have also shown this to be the case for

d x
a t x n

n

dt
— ~ X n  +  (7

1+'Zi=1Xi

K o  +
G + z? =

atx n
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Figure 6.5: Time evolution of the concentrations of 4 switch elements (x\ to 

£4 ), in the bHLH dimerisation model, with competition parameter a  being 

gradually increased over time. The horizontal lines mark the values a  =  1/42, 

a = 1/32, and a  =  1 / 2 2. Each time a  reaches one of those threshold values, 

one of the switch elements is repressed. Low, random noise was added to allow 

the system to escape equilibria as they became unstable. In this simulation 

a  =  100.
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Figure 6 .6 : Same as Figure 6.5, but with a pulse of the competition parameter 

a. The initial conditions are such that the switch elements coexist for low a; 

once a  has sufficiently increased, only 1  switch element stays on, and remains 

on with all others off, even when a  is brought back to its initial, low value.
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Basins of attraction and tim es of response

The cell fusion and reprogramming experiments, described below in section 

6.4.3, would lead to a situation where a switch element, previously repressed, 

is brought to a level comparable to that of another switch element which was 

already expressed. This corresponds to an initial situation in which two ele­

ments are not at their resting value, which could also describe the situation in 

cells in the process of differentiating. For the models studied here, if 2 switch 

elements are competing, 3 outcomes are possible: the switch element at the 

higher concentration completely represses the other, both coexist and reach 

a non-zero equilibrium at the same value (only an element which started at 

the higher concentration can end up predominating), or both go to 0  (extinc­

tion). Figures 6.7 to 6.10 show which equilibrium the system converges to, as 

a function of the initial state, for different values of the competition parameter 

a  (each domain from which the system converges to the same equilibrium is 

a “basin of attraction”). If there are 3 switch elements competing, there are 

more possibilities, as 2 or 3 elements can coexist in the “on” state. Figures 6 . 1 1  

and 6 . 1 2  show the basins of attraction of such a switch (the attraction basins 

belong to the same system, but were split on two figures to prevent the outer 

ones from obscuring the inner ones).

The speed at which the competition between the switch elements is carried 

out could be crucial in determining the dynamical properties of differentiation. 

We thus computed the time it takes for the system to approach its equilibrium, 

starting from various initial concentrations of the switch elements (that time 

is colour-coded in Figures 6.7 to 6.12). This time becomes dramatically higher 

when the initial conditions come close to the borders of the basins of attrac­

tion (ie when concentrations are near a threshold around which the system 

converges to two or more different outcomes). The effect becomes even more 

pronounced when 3, rather than 2 , switch elements are competing (Figures 

6 . 1 1  and 6 .1 2 ).
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To show the effect in more detail, individual trajectories were plotted for a 2- 

dimensional switch (Figures 6.13 and 6.14). For cell fusion and reprogramming 

experiments, the effect on the concentration of switch elements depends on the 

dynamics of nuclear import and export. Two types of initial conditions were 

used: two switch elements were given the concentration that one would have at 

rest, if it was “on” (Figure 6.13), or two switch elements were given half that 

concentration (as cytoplasmic concentrations of proteins expressed exclusively 

in 1 of 2 equally-sized cells should be cut by half upon fusion; Figure 6.14). In 

both cases, the concentrations of the two switch elements, even for tha t which 

will eventually prevail, initially go down. The effect is more pronounced for 

higher values of the initial concentrations, and for close initial values of the 

two concentrations. This could explain the transient extinction of expression 

of differentiated markers upon cell fusion (see Discussion): if there is sufficient 

cooperativity downstream of the switch element, its dip could be sufficient to 

provoke a temporary extinction of expression of the proteins specific to the 

differentiated state.

Extinction domain

2For a  > there is an extinction domain around the diagonal X\ = .. =  xn.

Simulations show that the domain is very restricted until a  becomes very close 

to its upper threshold value, at which non-0 equilibria cease to exist (see Figures 

6.9 and 6.10).

Summary of a threshold values

For the system to be able to sustain k switch elements “on” at the same time, 

the condition a  < l / k 2 must be met (for a 1 , this condition is also suffi­

cient). Thus, for a  > 1/4, only 1  switch element can be on at a time. The 

corresponding equilibrium value is a decreasing function of a. For a  > 4(n̂ +1), 

there is an “extinction domain” around the diagonal X\ =  .. =  x n: match-
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Figure 6.7: Colour-coded tim e of convergence (as defined in Appendix 6.9.2), 

as a function of the initial conditions in x,\ and x 2- From the initial conditions 

to the left of the red region, the system  converges to x2 o n  and X\ off, and the 

opposite for the initial conditions to the right of the red region. Parameters 

axe ol =  0.4 and a  =  100. X \  and x 2 range from 0 to 300.
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Figure 6.8: Same as Figure 6.7, but with a lower value of a , giving a large 

domain of convergence to an equilibrium where Xi and x 2 coexist. Domains of 

convergence are indicated, and are separated by the two yellow lines. Parame­

ters are a  =  0.1 and a  =  100. X\ and x 2 range from 0 to 300.

Figure 6.9: Same as Figure 6.7, but with a markedly higher value of a.  There 

are two main domains of convergence (to one switch element on and the other 

off), and a third domain of convergence to 0 (complete extinction of the switch), 

in a region very close to the upper part of the diagonal (for clarity reasons, the 

region is indicated as larger than it actually is). Parameters are a  =  15 and 

g =  100. Xi and x2 range from 0 to 300.
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Figure 6.10: Same as Figure 6.7, with a  close to the threshold above which 0 

is the only equilibrium. The region from which the system  converges to 0 has 

expanded. Parameters are a  =  24.75 and a  =  100. X\ and x2 range from 0 to  

300.

ing sufficiently closely the concentrations of the switch elements, at whatever 

value, makes the system  switch off all switch elements. For large cr, the extent 

of this domain is small, except in a very narrow range of a  values. Finally, for 

a  >  a condition which becomes a  >  or/4 for large cr, there are no non-0

steady states.

6 .4  D iscu ssio n

6.4.1 C o-expression  properties

Of the models proposed here, if the cooperativity of activation is considered 

to be constant, only the model with bHLH dimerisation is capable both of 

exclusive expression of an arbitrary number of switch elements, and coexpres­

sion at similar levels of all elements. This behaviour is finely tunable with  

the key competition parameter deriving from the availability of the bHLH
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Figure 6.11: Times of convergence as a function of the initial condition, 

for a 3-dimensional switch. 4 unconnected domains of convergence to the 

same equilibrium are shown. For visibility, the 3 other domains are shown in 

Figure 6.12. Parameters are a  =  0.1 and a  =  25. A rotation movie is avail­

able at h t t p : / / w w - t im c . im ag. f  r / O l iv i e r . C in q u in /H igh -d im en sion a l_  

sw itc h e s_ a n d _ th e _ m o d e lin g _ o f_ c e llu la r _ d if fe r e n t ia t io n /r o ta t in g _  

g ra p h s. html
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Figure 6.12: Domains in which the same switch as in Figure 6.11 converges to  

a state with 2 switch elements on. A rotation movie is available at h t t p : / /  

www-timc. im ag. f r / O l i v i e r . C in q u in /H igh -d im en sion a l_sw itch es_an d _  

th e _ m o d e lin g _ o f_ c e llu la r _ d if fe r e n t ia t io n /r o ta t in g _ g r a p h s .h tm l

hetero-dimerisation partner, with lower availability being unfavourable to co­

expression of the antagonistic factors (see below for a further discussion).

The model with mutual inhibition, autocatalysis, and leak can express no 

more than one switch element at a level higher than the other ones, and is 

thus less amenable to progressive elimination of unwanted factors in the course 

of differentiation. In order for coexpression to occur at a significantly-higher 

level than the leak, the cooperativity of the system  must be close to  1. If 

differentiation was controlled by a network of this kind, initial coexpression  

could be maintained either by a low transcriptional strength in the system  

(which is consistent with antagonistic factors being expressed at a lower level in 

the un-differentiated state), or, as has been suggested, by regulated degradation  

of mRNAs.

Interestingly, the m ultistability behaviours of a switch based on bHLH-like 

dimerisation and that of a switch based on direct cross-repression are quali-
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Figure 6.13: Time evolution of the concentrations of two switch elements (x\ 

and X2), for the bHLH dimerisation model. The resting concentration when 

one element is on and the other off is roughly 8 . Initial concentrations differ 

by 0.7 (a), or 0.1 (b). Notice the differences in scales. Parameters are a = 50 

and g — 500.
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Figure 6.14: Same as Figure 6.13, but with initial concentrations at roughly 

half the equilibrium value when one element is on and all others off. Initial 

concentrations differ by 0.5 (a), or 0.1 (b).
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tatively different: the former can maintain many variables on at an equilib­

rium only if those variables are sufficiently high (compared to the transcription 

strength), while the reverse is true of the latter.

We previously studied networks of cross-repressing factors, in which the 

factors do not enhance their own expression (Cinquin & Demongeot, 2002). 

We did not include this kind of model in the present study, because for one 

factor to be able to dominate all the others, it had to be assumed that the 

cooperativity of the network was very high, an assumption which is possibly 

not realistic.

6.4.2 Peaks of differentiation inhibitors

According to the paradigm of inhibition of differentiation by sequestration of 

class A bHLH proteins, the quantity of binding partner should be low prior 

to differentiation, and the competition parameter a  introduced earlier should 

thus be high. Relieving inhibition of differentiation, by increasing the quantity 

of binding partner, and thus decreasing competition, cannot move the bHLH 

dimerisation network from a state where it supports coexpression of many 

switch elements, to a state where only one is expressed. Also, increasing the 

transcription strength of the network a does not destabilise equilibria.

It is thus impossible to account for the selection of one differentiation out­

come by increasing the availability of class A proteins (for example by down- 

regulation of Id proteins). However, it is still possible that the competition 

strength, even in the undifferentiated state, is sufficiently low for many switch 

elements to be co-expressed. A potential mechanism to select 1  element and 

extinguish all others is then to transiently increase the competition strength, 

for example by transient up-regulation of Id proteins, just prior to differenti­

ation commitment (a corresponding simulation is shown in Figure 6 .6 ). This 

is in fact what has been experimentally observed on independent occasions, on 

a short time scale, during in vitro differentiation of osteoblasts (Ogata et al.,
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1993), neurons (Nagata &; Todokoro, 1994), myeloid cells (Ishiguro et al., 1996), 

astrocytes (Andres-Barquin et al., 1997), Schwann cells (Stewart et al., 1997), 

keratinocytes (Langlands et al., 2000), germ cells (Houldsworth et al., 2001), 

and fibroblasts (Chambers et al., 2003). No rationale for these transient effects 

had been proposed so far.

When Id proteins are not up-regulated, other proteins could play the same 

role of increasing competition in the bHLH network. For example, Hes-1, which 

also has class A sequestering activity (Sasai et al., 1992), is transiently upreg- 

ulated upon differentiation of an immortalised hair cell line (Rivolta et al., 

2 0 0 2 ), an immortalised neural cell line (Ohtsuka et al., 1998), and neuroblas­

toma (Grynfeld et al., 2 0 0 0 ) (although its role in the latter case is complicated 

by the fact that it also binds Id proteins and interferes with Id2/E2-2 complex 

formation, Jogi et al., 2002); the transient Hes- 1  expression is concomitant 

with downregulation of the bHLH protein HASH-1 . Hes genes are dominant 

repressors with many targets (Barolo & Levine, 1997), and could also directly 

repress many elements of the network, which can be modeled by a decrease in 

the transcription strength cr, and has the same effect of destabilising equilibria 

where many elements are coexpressed.

Finally, erythroid-specific genes have been observed to be transiently down- 

regulated upon induced, in-vitro differentiation (Lister et al., 1995), which 

could also be explained by transiently-increased competition in a bHLH dimeri- 

sation network.

6.4.3 Dynam ical properties

Analysis of the proposed dynamical systems shows that the time to convergence 

can widely depend on the initial condition. Convergence can be relatively very 

slow when initial conditions are near a threshold around which the system 

converges to two or more different outcomes. This is for example the case when 

2  or more “switch elements” are at roughly equal concentrations, higher than
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that of others (the more elements in competition, the slower the competition 

becomes). It is interesting to note that slow effects are observed in induced- 

transdifferentiation experiments, and in cell fusion experiments.

•  Fibroblasts reprogrammed to T-cell-like cells need to be incubated for 

many days before they acquire detectable T-cell characteristics (Hakelien 

et al., 2002). This may be due to the fact that fibroblast master genes 

are expressed at a high level, and the counter-acting T-cell master genes, 

introduced by permeabilisation of the membranes, are also present at a 

high concentration. An effect of the relative levels of cytoplasmic fac­

tor concentrations could be tested by incubation in T-cell and fibroblast 

cytoplasmic extracts, mixed at different ratios. Further investigation of 

master networks could involve incubation of cells in cytoplasmic extracts 

of 3 or more cells-types (or transient misexpression, at controlled levels, 

of antagonistic master genes).

•  In hepatoma-fibroblasts hybrids, extinction of albumin production can 

take days (Mevel-Ninio & Weiss, 1981). Most interestingly, some hybrids 

show reexpression of albumin after extinction. These two outcomes can 

be accounted for by the models proposed above: when two antagonistic 

“switch elements” are coexpressed at a high level (which probably cor­

responds to the fusion experiments, as upon fusion the protein contents 

of the cells, which are of different phenotypes, are mixed), it is possible 

for the system to revert to a state where all switch elements are turned 

off (total extinction), or for the two switch elements to decrease to a low 

level, before the trajectory of one of them picks up and goes back to a 

high state (extinction followed by reexpression).

•  Activation of the myogenic phenotype also takes place on the scale of 

days, when muscle cells are fused to various other cell types, a delay 

which was suggested not to be linked to DNA duplication (Blau et al.,
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1985; see Blau & Blakely, 1999, for an extensive review).

Also, it could be that the progressive upregulation of differentiation-related 

genes observed during hematopoietic development is a cell-autonomous conse­

quence of the slow dynamics of a switch network.

6.4.4 Stochastic outcom es

It has  been observed in the studies cited above that heterokaryons with the 

same number of nuclei coming from each donor can have different differentia­

tion responses. Blau & Blakely (1999) suggested that the differentiation out­

comes are regulated by a network of opposing factors. W ithin this framework, 

stochastic responses to cell fusion can readily be explained by slight differences 

in the quantities of differentiation factors contributed by each cell type, which 

tip the balance one way or the other. The network determining cell fate would 

be most sensitive to random noise when the factors are in roughly equal con­

centrations. The sensitivity to molecular noise of the networks proposed here 

would be interesting to study, as it has been proposed that some types of dif­

ferentiation during development could have a stochastic aspect (for example in 

adipogenesis, Tchkonia et al., 2002, or hematopoiesis, Enver & Greaves, 1998).

6.4.5 Evolvability of switch networks

In addition to having a coexpression behaviour which is easily tunable by one 

parameter, the generic bHLH network studied here has the advantage of being 

perhaps more easily evolvable than a network in which every element actively 

represses all others: the interaction needs only take place between every element 

and a common activator (which requires n interactions, instead of n (n — 1 ) / 2 ). 

bHLH networks have been suggested to evolve mainly by single-gene duplica­

tion events (Amoutzias et al., 2004), maintaining a topology in which every 

element of the network interacts with a restricted number of “hubs” .
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6.5 Conclusion

The models presented here could be useful in understanding development, as 

well as cell-fate reprogramming (which can be induced artificially, but has also 

been shown to happen naturally, Weimann et al., 2003). We have derived 

general results about the dynamics and co-expression properties of switch net­

works, and shown the flexibility of bHLH dimerisation networks. Of the net­

works studied here, which were generically formulated with usual kinetic equa­

tions, only a subset can co-express antagonistic elements at a similar level, 

higher than the basal level: those with mutual inhibition, autocatalysis, and 

leak (but only when the cooperativity is very close to 1 , and the transcrip­

tion strength sufficiently low), and bHLH dimerisation networks (when the 

competition is sufficiently weak). This restricts the classes of models which 

can reproduce experimentally-observed co-expression of antagonistic factors, 

as well as showing how it can occur.

Strikingly, even though bHLH networks are the most apt to coexpression of 

antagonistic elements, the selection of one element requires a transient increase 

in competition, which is not what is thought to happen over a long time scale 

in the course of differentiation. Transient, hitherto-unexplained increases in 

competition have however been observed in a few cell lines upon differentiation, 

and could be a general phenomenon.

In order to model specific differentiation events, these networks would prob­

ably need to be extended to take into account combinatorial interactions, which 

could complicate their behaviour. The models would also gain from being ex­

tended to take into account non-symmetrical networks, in which some switch 

elements are stronger than others, and stochastic kinetics.
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6.6 Analysis o f mutual inhibition w ith auto­

catalysis

6.6.1 Special case: no cooperativity (c =  1)

We assume that a > 1 . The set of steady states for the system defined by 

equations 6.1 is 0 and the attracting hyperplane {x  | 1 +  E™=1£i =  cr}. Let 

s = Y%=lXi. Then s never crosses the value a — 1, and since ±i = Xi (  )  >

Xi is of constant sign, and each X{ convergent.

Simulations show that there is a great number of stable steady states.

For c > 1 , the convergence of the dynamical system (defined by equations 

6 .1 ) to an equilibrium, from any initial condition, will be derived in a more 

general context, in section 6.7.1. In the rest of the appendix we assume c > 1 .

6.6.2 One on, all others off 

Equilibrium existence

The steady-state equations are

V j, Xj (1 +  E ”=1xJ) =  c r X j ,

ie

x c~l = i  ( 1  +  EJLjxJ) or Xj = 0  

Re-arranging the first equation,
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Let f{x )  = \ x c — x c 1. Then f ' (x )  =  ^ x c 1 -  (c — l)x c 2. / '( z )  < 0 iff

The equilibria studied here are such that only Xj is non-0, for some j .  There 

are either 0  or 2  solutions, 2  iff

is decreasing for c > e ~  2.7. The right-hand side of equation 6.4 has a 

maximum for c =  2, of about 0.7, matched by a = 2. Thus, for a >  2, there 

are two equilibria. Both large c and large a are favourable to the existence of 

an equilibrium with one variable dominating all others.

Local stability analysis

It is useful, for the Jacobian term computations to follow in the rest of the 

appendix, to note that if g ( x )  =  g ' { x )  =  .

If Xj is at a non-zero steady-state and Vz ^  j,X{ = 0, and if c > 1 , the 

stability at that steady state depends only on the sign of the ( j , j )  coefficient 

of the Jacobian matrix (this coefficient will be called Jj j  in the remainder of 

the appendix).

J x < c — 1. The minimal value of /  over the positive real set is / ( ^ cr) =
e - i  _ i

c

(6.4)

In (^ iy)C 1 is an increasing function of c, and lim^oo In (^fy)C 1 =  1 . lĵ r

J j , j  =  - l  +  M l  +  E ^ O
3__________

(1 +  E"=1 x ? ) 2

(6.5)
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Jj j  = ~  1  +  ac

with

a xCj 1 =  1  +  Xj, (6.6)

at equilibrium
1

J j j  —  1 +  c

the equilibrium is stable iff

_r 1 c . __
X; > —, le 1  + Xj > c

J  r r  Ja

It is possible to give a sufficient condition for the equilibrium with the

( ^ ) C_1, and the corresponding equilibrium will be stable. A sufficient stability 

condition is thus

Numerical investigation shows that this condition is met for a > 2.

6.6.3 k  variables on, others off

W ith identical parameters, there can be no equilibrium with 2 variables having 

different, non-zero values.

At any equilibrium, variables can be renumbered so that, in the Jacobian 

matrix, variables at 0 form an independent block. This block is stable, and 

the stability of the whole system depends only on the block formed by non - 0  

variables. Thus, in the following we suppose that no steady-state variable has 

0  for a value.

greatest solution to equation 6 . 6  to be stable. Let f ( x )  = x c — o x c b If 

then the greatest root of equation 6 . 6  will be greater than
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For i ±  j ,

J i j ( x )  =  -GC-
x 2c~x

(1 +  kxc)2

W ith the same kind of analysis as in Cinquin & Demongeot (2002), the 

equilibrium is stable only if

a c  * 2C 1 2- <  1 -  <7C(1 +  (fe -  1 )x c ) — X ° 1 —  (6.7)
(1 + k x c f  (1  + kxe)2

W ith the definition of the equilibrium,

gcx2c~1 <  a 2x 2c~2 — gc (1 +  (k — 1) x c) x c~l

xc <  —x c 1 — (1 +  (k — 1) xc) 
c

- X 0- 1 > k x c +  1 
c

Again with the definition of the equilibrium,

- x c~l >  x c~ \  
c

ie c < 1 , in which case no interesting equilibria exist.

6.7 Analysis o f mutual inhibition w ith auto­

catalysis, and leak

If a  > 0, c > 1 , and one of these inequalities is strict, the function f ( x )  =  

x l~c — a x ~ c can take the same value for at most 2 positive values of x. Thus, 

there are only two values a variable can take at a given steady state ( 0  cannot
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be a steady state value). If two different equilibrium values are taken by some 

variables, one of these values is higher than j-, and the other lower.

If a  > 0 and c = 1, the system only has one equilibrium, with all variables 

equal.

6.7.1 Convergence

Let y{ = y/x~i, and

Thus, P  is a potential for the system.

If its equilibria are isolated, a gradient system converges to a steady-state

solutions of the system is finite when the cooperativity c is an integer, and 

the system thus always converges to a steady state (we expect this result to 

also hold for non-integer values of c). The model without leak corresponds to 

a  = 0 , and this convergence result thus also applies to it, for c > 1 .

6.7.2 Steady-state analysis: all at the same value 

Equilibrium existence

P  =

2  Vi = ~Vi + o ylc~l cl _ J P
1  +  S?=1 2/?c yi dyi

regardless of the initial conditions. It is shown below that the number of

V j , ( x j  -  a )  (1 +  EJLjxJ) =  ( T X Cj

If V j, Xj = x ,

n xc+1 — (o + na) x c +  x — a  = 0 (6 .8)
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There is at least one solution, maybe 3 (or 2 in degenerate cases) depending 

on the parameters. The solutions are noted xi, x u, and Xh, with xi < Xi < x^.

If f ( x )  = n x c+1 — (cr +  not) xc +  x, f ' (x)  =  (c +  1 )nxc — c(a +  n a )xc~1 +  1, 

f "(x)  =  c (c+ l)n x c _ 1  — c(c—l)(c r+ n a)x c_2. / "  (cr +  n a ) j  =  0 . / '  takes

negative values iff / '  (^ +  n a ) j  < 0 , which is a necessary condition for

the existence of 3 equilibria with all variables on.

The dynamics of the system constrained to V i, Xi = x  are defined by

(7 T C
x = —x  H-------------- 1- a

1  +  n xc

The sign of x{t) is the opposite of that of f (x (t )) .  Because x u is such 

that f ' (xi )  < 0 , it is easy to see that the steady state x u is unstable for the 

constrained system, and thus for the full system.

Local stability analysis

W ith a leak a, equation 6.7 becomes

(j
xc < ---------------— 1  — (k — 1 ) x cc (x — a)

a xc+1
1  +  kx  <

c (x — aY

axc a x c+1
<

x -  a c ( x  -  a)

1 _
x  — a  < - x  

c

Thus the stability condition 6.7 is met iff x < a ~ ^  (in that case, since non­

diagonal terms of the Jacobian are obviously negative, diagonal terms are also 

negative, and the equilibrium is stable). Since solutions to equation 6 . 8  can be 

made arbitrarily high by increasing cr, increasing cr past a threshold value (other

122



parameters being equal) will prevent the existence of a stable equilibrium with 

all variables equal.

6.7.3 k on, k < n

Let p — n — k.

(xi -  a) (1 + pxct + kxch) = ax\

px^+1 — (pa +  a) x^ +  ( 1  +  kxch) xi — a (  1  +  kxch) = 0 

kx ĉ 1 -  (ka +  cr)xch + (1 + p x cl ) x h -  a ( l + p x ^ )  =  0

Choosing for example the graded lexicographic order over C[xj, x^], theorem 

5.3.6 from Cox et al. (1996) shows that the system has a finite number of 

solutions, when c is an integer.

We have

T 1 c - i D ~ x t
J i < i  =  - l  +  caxi D2

J. . =  - C( J X C~ 1 —Jh3 LOXj

If X{  —  X j ,

T T C - I a  X i  — a
J i  i  — 1 H~ C X j  — 1 H" C

D  X i

Consider the reordered Jacobian matrix, with k variables “on” with a value 

x)i, and p “off” with a value xi ( k + p  =  n).

It follows from the analysis in section 6.8.3 that the equilibrium can be 

stable only if — Jij < 0  (ie Xi < a -^ y), if the number of variables having 

value X i  is strictly greater than 1 .
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Thus there are only two possible kinds of stable equilibria: all variables 

equal, in which case the equilibrium value is lower than a^ry, or one higher 

than all the other ones (in which case the lower ones are lower than, and the 

higher one greather than

6.8 Analysis of the bHLH m odel

W ithout cooperativity in transcriptional activation by the bHLH dimer, there 

is only one stable steady-state:

0Ci = Xi I - 1  +
a  ( l +  E"=1 Xj) +  Xi 

If at some steady state k variables are on and share a common value x  

(variables at a steady state, if not 0 , share a common value),

i =
kax  +  x  +  a

a — a
x

and if xp(t0) =  0 ,

ka + 1 ’

Jp,p — ( 1  T kax  +  a

T    cr — a  n
Jp'p = a ( k a  + l) > ° ’

and JPi — 0  for p ^  /, proving the unstability of the steady state.

In the following, it is assumed that transcriptional activation occurs with 

cooperativity 2 , and the steady-state equations become

A
X i  =  a -
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V z, a D 2 +  x 2 = axi (6.9)

6.8.1 Dynam ical analysis

0 is a stable steady state. If £i(0) =  0, then V t > 0, Xi(t) = 0. If Xi(0) > 0, 

then V t > 0, Xi(t) > 0. One can thus suppose that V z,V t > 0, Xi(t) > 0. 

Consider a state in which there is one variable strictly superior to all others 

(ie, a state not belonging to the line X\ = x 2 = .. = x n). Suppose without loss 

of generality that the variable in question is x\.  Consider the function

/i(*) =  xa D 2 +  x\

h (x) = 2 a D x ^ ^ D ~  Xl) -  Xl^
U  ̂ (aD2 + x 2)2

0a D 2 +  x \ f  ■ . xi Xi (xx -  x ^  (aD 2 -  x x x {)
2aDXl / l W  =  +  ^  (aD» +  x ? )(a g» +  x?)

For a  > 1/2, the second term is positive.

We have

d*i (*) , , ,
— =  <7/l(x) -  XI

We first consider the case in which V t > 0, V n > j  > 1 , X\ > Xj.

Suppose that a f i( 0 ) >  x(0). In this case, f i  (0) > 0, and X\ and /  are 

strictly increasing functions of time. If cr/i(0) < Xi(0), then / i  (0) can be 

negative or positive. In the first case, X\ is decreasing as long as f \  is. If 

at some time to &fi(to) > then for t > X\ and f \  are increasing

functions of time. Thus there can be at most one change in the monotony of 

xi. Thus lim^oo X\(t) exists. Since x\  exists and is bounded on any trajectory,
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limt_*oo2 ;i(£) =  0. All trajectories thus converge to a steady state where Vj > 

1 , Xj =  Xi or Xj = 0 .

If 3 t  st V n > j  > 1, X i ( t )  =  X j ( t ), the system is brought back to one

dimension. Note that it is impossible for any variable to outgrow x\.

6.8.2 Steady-state analysis: variables on at the sam e 

value 

Equilibrium existence

Variables zero at the steady state can be discarded from the analysis. If k 

variables are non-0 , and are all equal, to x ^  0 ,

x 2 ( l  +  k2a ) +  x  (2k a  — cr) +  a  =  0 (6.10)

Solutions are

cr — 2ka  ±  y j  o 2 — 4a  (1 +  ka)
2(1 +  k2a)

A sufficient and necessary condition for the existence is

cr2

It will be shown below that, at a stable steady-state, there is at most 1 non- 

0 variable which can be different from other non-0 variables. If there is such a 

variable, equal to y, the equation for the value of other variables becomes

~ 2  (l +  k2a)  +  x  (2 ka  ( 1  +  y) — a) +  a  ( 1  +  y)2 = 0  (6 .1 1 )x

Solutions are

a -  2ka  (1 +  y) ±  y /a 2 -  4a (1 +  ka  +  y) (1 +  y) 
2 ( 1  +  k2a)
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and the condition for a solution to exist

. . ka  +  1 +  y
4a (1 +  y )  - < 1

(7
The solutions for y are

<r — 2a (1 +  k x ) ±  \Ja 2 — 4a (1 +  a +  kx) (1 +  kx)
2(1 + a)

Local stability analysis

Variables zero at the steady state can be discarded from the analysis. 

Using

x 2 bx2 +  2 cx
ax2 + bx + c  (ax2 +  bx +  c) 2  ’ 

one derives the diagonal term of the Jacobian (with b = 2a (D — x») and

c  =  a  (D — X i ) 2 ) :

7 ! r, D ( D  — X i )
J i y i  —  - 1  +  2 a a x i

(aD2 +  x 2)2 
Using the steady state equation 6.9,

2 a  2

Ji,i =  —1 H--------(D (D — x^ )  =  —1 H—  (cr — Xi -  aD)
(J O'

2 2
Jiti = 1  (xi +  aD)  =  1  (a +  Xi (1 +  ka))

cr a
The diagonal terms are negative for

a /2  — a  
Xi > 1  + ka  

The off-diagonal terms are given by

i  j  — a x .

2  2 axj  +  2 a ( D  — Xj) 
(aD2 +  x 2)2
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2 D  Ji 7 — —2 (joiXj------------
•3 ' (a D 2  +  x>)2

2 a  „
J i j  =  D

cr

Xi
Jij — Jij — — 1  +  2 — cr

Thus, a necessary condition for the equilibrium to be stable is

V Xi st Xi 7  ̂ 0, Xi > cr/2 (h.12)

This is possible if and only if a <  l / k 2 and a > 2 ^ p r^ .

Condition 6.12 is stronger than the requirement for the diagonal element to 

be negative (and is thus also a sufficient condition), and can never be met by 

variables equal to the lower solution of equations 6 . 1 0  or 6 . 1 1  .

Thus, for any value of the transcription strength a and for any number 

of coexistant variables /c, sufficiently low values of a  make the equilibrium 

stable. If there is a stable equilibrium with k variables on, there is also a stable 

equilibrium with p variables on, for 1 < p <  k. For sufficiently large cr, the 

necessary condition a  <  l / k 2 becomes sufficient for stability (see Figure 6.5 for 

an illustration of the validity of this condition).

6.8.3 On at different values

If at steady state, Xi ^  Xj and both are non-0, then

x\  — crxi = x 2j — crxj (=  —a D 2)

There are thus only two possible non-0 steady-state values, noted x a and 

Xb, with x a < Xb. Noting P(x)  =  x 2 — a x , and supposing that x a and Xb exist, 

P ’(xa) < 0, ie < 1.
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Consider the Jacobian matrix of the system, reordered so that variables 

having xa as a value come before those having x 5  as a value:

/  k p \
a c • • • c f  1 .............  f i

c ’• . ■ • • :  : : : :

c • • • c a f i  ...............  f i

j 2    h  b e • • • e

: : : : e ' • . • • •  •

V/ 2    h  e ••• e b j

With the appropriate eigenvectors, it is easy to show that b — e and a — c 

are eigenvalues for this matrix, of order k — 1 and p — 1. Thus, if k > 1 and 

p > 1 , a necessary condition for stability of an equilibrium is e > b and c > a. 

In particular, there can be at most 1 variable having x a as a value.

More precisely, the characteristic polynomial of the matrix is

P ( x ) = (a — c — x)k~l (b — e — x)p~l \_x2 — x  (a +  b +  (k — 1) c +  {p — 1) e)

+  (p — 1 ) ea +  (k — 1 ) cb +  (k — 1 ) (p — 1  )ec + a b — k p f i f 2]

(6.13)

Suppose thus that the number of variables having values x a is 1 . Then, a 

sufficient condition for instability of the equilibrium is

(p -  1  )ea + a b -  p f \ f 2 < 0

Notice that in this case / 1  =  f 2 =  e. The sufficient condition for instability 

can thus be written

e (pe — (p — 1 ) a) — ab > 0
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Replacing with the equilibrium values,

■2aD (  - 2 a D  . /  2 .  _ A \
P-------------(p ~  1) 1 -  -  {xa +  aD)a

1  -  ^  (xa + a D ) j  ( l - ^ ( x b + a D ) )  > 0

2 A  / ,  2aD 2 ,  A  ( 2 a D \ 2
1  -  — (xa + aD)  J ( (p -  1 ) — ----- 1  +  — (xb +  aD) J +  p  ( ——  ) >  0

2  /  2aD  , 2zA  ( 2 a D V  „l - - ( * o + a 0 ) j ^ _ - l  +  _ j + p ( _ j  > 0

2aD  /  2xa\  /  2xb \  / 1 2 \

<7 a a \ a

( v " 1) * 0
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The first term is positive because the values of x a and x b are symmetri­

cal with respect to cr/2. The second term is also positive, and the sufficient 

condition for the instability of the equilibrium is thus met.

Thus, there is no stable equilibrium with non-0 variables having different 

values.

6.9 M ethods

6.9.1 Num erical integration

All integration was performed with a custom-written implementation of the 

4th-order adaptative stepsize Runge-Kutta algorithm (Press, 1992), with 10- 3  

relative accuracy. Source code is available at h ttp ://w w w -tim c .im a g .fr/ 

O liv ie r .C in q u in /a d a /ada_b las_runge_ku tta .h tm l. The data was plotted 

using GMV or gnuplot.

6.9.2 Com putation of convergence tim es

A custom program was written to do the following, starting from a regular 

200*200 grid of initial conditions (for 2D systems), or a 50*50*50 grid (for 3D 

systems), with Vz ^  j, Xi ^  Xj, to avoid reaching unstable steady-states: (1) 

integrate the system until a steady-state is reached (as defined by the sum of 

the absolute values of the derivative vector elements begin lower than 1 0 -4) 

(2 ) start the integration again, with the same initial conditions, stopping when 

the system gets close enough to the previous steady-state (each variable with 

10% of its steady-state value if i t ’s not 0, lower than 0.15 if it is 0; moderate 

changes in these arbitrary values do not significantly affect the results). The 

stepsize of the Runge-Kutta algorithm was kept lower than 0.3.
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6.9.3 Simulations w ith tim e-dependent param eters

In order for the system to leave steady states which had become unstable 

because of changed parameters, small random perturbations were applied (each 

variable was multiplied by a random number uniformly chosen in [0.99 .. 1.01] 

every 30 time units).
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Chapter 7 

Addendum to  

“High-dimensional switches and 

the modelling of cellular 

different iat ion”

An essential approximation was ommitted by Cinquin & Demongeot (2005),

concentration of free class B protein i, x j  its total concentration, at the total 

quantity of common class A dimerization partners, and D{ the dissociation 

constant for the A — Bi complex. Then

the case in particular if the total quantity of class A dimerization partners is 

small compared to the dissociation constants of the A — Bi complex. If this is 

true of all A — Bi complexes, one derives equations numbered (3) by Cinquin 

& Demongeot (2005).

in the section on bHLH competitive heterodimerisation. Let x{ denote the

x{ can be approximated by x j  only if a( C  Dj +  Tij=1x { D i /D j , which is
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It is shown in the Appendix that the proof, given by Cinquin & Page, that 

to have expression of k switch elements, the competition level a  needs to verify 

a  < 1  / k 2, still holds without this simplification, as long as all D*s are identical. 

Numerical simulations suggest that this result extends to arbitrary DiS, but 

this remains to be proven.
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7.1 Appendix

7.2 Study of the full system

The dynamics of the full system are defined by

atx{ / Dj
d t T „ V 1 +E jxT/Dj

=  - d iXf  + (7.1)

2

t ^2  _ j _  (
2  +  yi+V-x'/Dj J

d xT . rr x{
J/1J U I L/1

dt

With D  =  1  + 'Ex{/Di ,

dxj1 T x f 2
=  - d ix i +  a

di * 1 l x f  +  a ( A ^  +  afy
D is such that

TT-
D  -  1 =  £,

Di +  a*/D 

If V i, Di = Do, then

/ f \ A> + ~  a t + V (A) — a t + ) + 4afDo
D 0  ( l  +  E x { / D ^  = ---------------------

and

d x j  T (Jixj2
~dt~ ~  ~  Xi  ̂ 7  \ 2

x j  +  a  ( Dq +  5 ] ^  +  &t +  y  (Do — at +  ^ XJ) +  4a*Do J /4

In the following, x f  is replaced by Xi for clarity. As noted by Cinquin & 

Demongeot (2005), one can suppose without loss of generality that all XiS are
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non-zero at the steady state being studied. Using the same notation for the 

Jacobian as Cinquin &; Page, the Jacobian matrix at a steady state is given by

d i , j (*^) P i  T  i t  j  \ . .TL

where, noting s = (Dq -  at +  EJ=1 a: f c ) 2  +  4atD0,

( l  +  D°--Qt+s£^ P fc- )  ( D o  +  Z nk=1x k +  at +  s)
Pi = -Gix\oi— .------------------------------------------ —o >

2 |  Xi2  +  ol ( D q +  +  at -f \J(Do — &t~I- 51%-iXk)2 +  4a* Do J /4

P  rl f i n  ( Tl l ^ n r ( D ° ~ at  +  ^fc=lX*) (^0 +  +  ^ k ^ l Xk)Pi = diPiQi I Dq +  ^fc=lXA: + S f I -1----------------------------—------------------------

acr
Q i  — —di +  2r 2x 2 Xi ^ k = l Xk + a t +  -5)'

Qi — —di +  a;——- (Do +  ^ k —\x k +  +  «s) 2

Let VU =  (Do +  +  at +  s)2. Then at steady state

VF =  -  (riXj -  x^) (7.2)
a

/ -------------- 7 7 7 7 T=  1  ±  y / l  -  aWPi
2  Xi

Therefore,

Q i  =  ± d i ^ / l  -  a W P i ,

where the sign is the opposite of that defining Xi at the steady state, in 

equation 7.2. Following Cinquin & Page, at most one of the Xi can be at the 

lower solution of equation 7.2; without loss of generality, let xn be at the lower
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solution of equation 7.2. W ith rK> =  max^ri, it follows as in Cinquin & Page 

that n  7  ̂ k' at a stable steady state, because if n = k! then

Q n P n —1 dn OtW  {3n d n—lP n —l

Pn Q n —1 dn_i — 1 — QlW (5n—\ d n(3n

Qn Pn- 1 =  A i-1  V I  ~  OtW 0n 

Pn Qn- 1 Pn y / l  ~  a W /? n_ i

Qn/P n  >  |Q n - l / ^ n - l |

Let k = n; then one derives as in Cinquin & Page

E"=1n  =  2E£=1 z* -  Xi^ y J r ? - a W +  ^ a W

S ”=1rj <  2 E£=1 2 fc -  E i#K, K, yV? -  a W  (7.3)

Noting r s =  min* r*, this inequality holds for

Dq -+- S^=1Xfc +  at +  y  (.Do — a* +  S^=1 x^) +  4a*Do <• r s/  

which is equivalent to rsy/a — at — D 0  — EjJ=1Xfc > 0 and

(rs/ y/a -  2at) < rs/2^/a  (rs/ y /a  -  2 (D 0  +  at)) (7.4)

It is straightforward to show that the second factor of the left-hand side of 

this equation is positive, and inequality 7.3 therefore holds for

E ^ ix *  >  Ts D°2y/a 1  -  2 aty/ a / r s

Now let P(x)  — 2x — Y%=lyjr1 — a  (D 0  +  x  +  at +  s)2. Then 
_  o _ r n  - q(-Pq +*+a< +a)(1 + -P- ° )

i _ 1  ^ r?_Q!(£)o+a:-f-at+s) 2

A sufficient condition for V x, P'(x) > 0 is
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D 0 -  at + x  <  \ f (D o  — at +  x)  +  4a* D 0

which is always the case. Therefore, replacing by ^ 7-  — i - 2 ofy^/r

in equation 7.3 (as in Cinquin & Page),

Ji^K, k' \
0r i ­ ot ^D0 +  rs/2y /a  -  l_2̂ /rs + a t +  y j ( d 0 - a t +  rs/2 y /£  ~_2â /rs)

which implies a  <  1 /A:2, where k is the number of non-zero a^s.

If all XiS are at the upper solution of equation 7.2, one derives

=  2E£=1ifc -  E " = 1  yjr? -  a W  (7.5)

V71^ 1 = 1
_ 2r.

S ? = in  <  r , / v ^ ~  , - 2 ^ / r .  -  

a  (-Do + rs/2V 5 -  1 _2 (1fvS/r> + at +  ^(l>o  -  a, + rs/2v/5 -  Y-2a^V5/r, ) +

which also implies a  < l/fc'

7.3 Comparison: w ith and w ithout approxi­

mation

The system defined by equations 7.1 cannot be normalized as the approximated 

one. Using V i ,  D{ = 0.02, K 2 = 1, and a  varying from 0.02 to 0.2, at = 

Ki!\/ol  varies from 2.2 to 7. Figure 7.1 shows a numerical simulation for 2 

4-way switches with these same parameters, one defined by equations 7.1, and
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Figure 7.1: Comparison of a 4-switch simulated with equations 7.1 (X\ to £4 ), 

or with the approximating equations used by Cinquin & Demongeot (2005) 

(approx x\ to approx £4 ). See main text for values of system-wide parameters; 

switch-element specific parameters are di =  1 for all i, <Ti =  190, 0 2  =  226, 

cr3 =  177, and cr4 =  195.

one defined by the approximating equations used by Cinquin & Demongeot 

(2005). The results are virtually identical. However, for lower values of Di, the 

difference becomes noticeable (Figure 7.2 shows a comparison for V i, A  =  

0 .011).
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Figure 7.2: Compaxison of a 4-switch simulated with equations 7.1 (X\ to £4 ), 

with Vi, Di = 0.011, or with the approximating equations used by Cinquin & 

Demongeot (2005) (approx x\  to approx x4). Other parameters are the same 

as in Figure 7.1.
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Chapter 8 

Generalized, switch-like 

com petitive heterodimerization  

networks

This chapter is the reproduction of an article submitted for publication, and 

co-authored with Karen Page. I am grateful to Karen for contributing the first 

part of section 8.3.1, and various improvements to the manuscript.

8.1 Abstract

High-dimensional switches have been proposed as a way to model cellular differ­

entiation, particularly in the context of basic Helix-Loop-Helix (bHLH) com­

petitive heterodimerization networks. The previous study derived a simple 

rule showing how many elements can be co-expressed, depending on the rate 

of competition within the network. A limitation to that rule, however, is that 

many biochemical parameters were considered to be identical. Here we derive 

a generalized rule, which treats the case of an arbitrary bHLH network. This in 

turn allows one to study more ways in which these networks could be regulated, 

linking intrinsic cellular differentiation determinants to extracellular cues.
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8.2 Introduction

Switch-like responses are an essential aspect of the dynamics of signaling net­

works, and are expected to be crucial in mediating cellular differentiation, a 

process during which one cell-type is chosen and all others excluded, in an all- 

or-none fashion. Such responses have been documented experimentally (Xiong 

& Ferrell, 2003), and bistable switches have been thoroughly characterized from 

a mathematical point of view (Cherry & Adler, 2000). A first study has de­

rived a rule for the behavior of a subset of bHLH heterodimerization networks 

of arbitrary dimension, which were shown to have the required flexibility to ac­

count for many experimental observations related to switches with more than 

2 outcomes (Cinquin & Demongeot, 2005). Here we generalize that rule to a 

wider set of networks.

bHLH networks

bHLH proteins form a large family, which has been shown to have a crucial 

role in numerous instances of commitment to specific lineages and differentia­

tion (Massari & Murre, 2000). Three important classes in that family, which 

are the basis for the mathematical model presented below, are the class A, 

ubiquitously-expressed transcriptional activators capable of forming homod­

imers and heterodimers, the class B, capable of providing promoter-specific 

transcriptional activation only when heterodimerized with a class A element, 

and Id proteins, which have been most often reported to form transcriptionally- 

unproductive heterodimers with the class A. Since different class B proteins 

bind the same class A partners, there can be some competition between them 

for access to those partners. In networks in which class B proteins auto-activate 

their own transcription (a common feature of determinants of cellular differ­

entiation), class B proteins can therefore inhibit one another’s expression, by 

titrating out the class A. Id proteins have the same effect of titrating out the
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class A, but are not explicitly taken into account in the model below because 

they have not been shown to regulate their own expression.

M athem atical m odel

A simple kind of model trying to account for switch-like behavior is where a 

set of class B proteins activate their own transcription. If class A proteins 

are considered to be expressed in a constitutive way, and not subjected to 

regulated degradation, they are present at a constant level. Only the time- 

evolution of each of the class B species is thus of interest. Calling x j, i = l..n , 

the concentrations of Bi (class B species), the equations are

with D = l+ £ " =1 aq, a  =  A | / a? G IRj", where K 2 is the concentration of A — 

Bi complex at which Bi transcription is half-maximal, at is the total quantity 

of class A proteins, cq and di are respectively the maximal synthesis rate and 

the degradation rate of B i , and where each Xi is normalized with respect to 

the dissociation constant for the A — Bi complex (this normalization leads to 

each maximal synthesis rate cq being divided by the dissociation constant of 

the A — Bi complex, see Appendix 8.5).

This set of equations is the same as derived by Cinquin & Demongeot 

(2005), without the restriction V i, di = 1, cq =  a.

Previous result

It was shown by Cinquin k, Demongeot (2005) that, in the case where V i, di = 

1 , cq =  a and a »  1 , there are stable steady states with k elements “on” (i.e. 

non-0 ) if and only if

a  < 1 /k2
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(when the condition a »  1  is not met, the above condition is necessary 

but not sufficient).

Since a  is a measure of the harshness of the competition in the system (as it 

depends on the quantity of the common class A activators, and the heterodimer 

concentration giving half-maximal transcription), this shows that the harsher 

the competition in the system, the lower the number of elements which can 

co-exist.

8.3 Results

Let Ti = (Ji/di. Then at any stationary state,

V i st ±  0, x~ — TiXi +  aD  = 0,

and

^  / n ±  y jr \  — AaD2
V i st Xi 7  ̂ 0, Xi = ------ —— ----------- (8 .2 )

z

XiS at 0 can be discarded from the rest of the analysis. It will be shown 

below that if the stationary state is stable, at most one Xi can be at the lower 

solution of equation 8 . 2  (inequality 8.5). Suppose that there is such an x K (if 

there is not, a stronger inequality is derived, see Appendix 8 .6 ), and let n' be 

such that rK> =  maXjr*. It will be shown below that any steady state where 

k = k! is unstable, and we can therefore suppose k ^  k! . Then

2 (D -  1 ) =  E i^K +  y jr f  -  4aD 2̂  + r K-  y / r \ -  4a D 2

E +  2 =  2 D — — AaD2 +  y jr \  — AaD2

E(T{ +  2 < 2D — E i^Kt y jr f  — 4a D 2
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Consider the right-hand side of the above inequality as a function of D. It 

is an increasing function, and for the above inequality to hold, it must also 

hold for the maximum of that function (which is for D =  ra/2y /a )1 where 

rs =  minf r», ie

This implies in particular a  < 1 /k2, where k is the number of non-zero x*s, 

generalizing the result obtained by Cinquin & Demongeot (2005).

8.3.1 Study of the characteristic polynom ial

In a stable steady state at most one Xi takes the “lower” solution

For convenience, let /?* =  l/r*. The Jacobian matrix of the system defined by 

equation 8 .1 , at a stationary point x  in which none of the species has Xi = 0 , 

is given by

T &i , jQi i ^ 5 j  — 1..71

where P* =  2diaD/3i, and Qi = d* (1 — 2ftxj). We assume tha t a > 0 

and note that Pi > 0. Eigenvalues A of J  are solutions to the equation 

det (J  — AIn) = 0 .

(8.3)

Q i  — P\ — A —Pi —Pi —Pi

—P 2  Q2 — P 2  -  A —P 2  • • • — P 2

det (J  — AIn) =
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det ( J  — \ I n) =  (n ”=1 Pj)

Qi _  i  *.Pi 1  Pi

- 1

_A_
P 2

- 1

- 1

- 1

l ^ - i -JTn

de t (J -A /„)  =  (n?=1Pi)

Qi
Pi 1 - ^  

1  Pi
_Qi _i_ A

P i ^  P i

.Qi + A. 
P i ^  P i

- 1  -1
Q2  A_ n
P 2 P 2 U

- 1

Q n    A
P n  Pn

W ith A = 1 -  OiAL’ 
^ 1  ^ 1

det ( J  -  XI„) =  (n"=1 P4) ^  -  A

A - 1  - 1  •

_1  Si _ A  o • 
1 p 2 p 2 u

- 1

W ith =

det (J  -  \I„ )  =  (n"=1 Pi) S i

0 . . .  0

1 H—* 1 . . .  - 1

P 2  0 . . .  0

0  •.

0

0  ••• 0 B n

For n > 2, let
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A  - 1  ............  - 1

- 1  B 2 0  ••• 0

Ln = - 1  0 B 3 ••• 0

0  ••• 0  

- 1  0 ••• 0 Bn

By developing with respect to the last column, Ln =  B nLn~x —(—l ) n _ 1  Cn- i, 

where

- 1  ............

b 2 0  • • •

0  b 3 0

- 1

0

0

0

0  • • • 0  B n- i  0

By developing with respect to the last row, Cn- \  =  —B n-iC n- 2 for n > 4. 
- 1  - 1

Since C2 =
Bo 0

= B 2, by induction Cn = (—1 ) II"=2-£i

Therefore, Ln =  BnLn- i  — II™=2Bi for n > 3. Since L 2 = 

A B 2 — 1 , it can be shown by induction that

A  - 1  

— 1 B 2

Ln = A U ^ B i  -  m 2n f o r  n >  2

Since A B \ = B\ — 1,

B ,L n =  (B l -  1) n U B i  -  B ^ =2B U , m Bi =  n ?=iBi -  Er=iOU , m Bi> 

for n > 2 .

Thus, det (J  — XIn) = (II"=1Pj) ( ll”=1^  — SJl=1II”=1 j l L i B j ) ,  and any eigen­

value A of J  satisfies
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(8.4)

with Bi = %■ — 4-. Suppose without loss of generality that Qn and Qn- i  

are respectively the largest and second-largest Qi. Suppose in addition that 

these largest values are unique (the case where they are not will be dealt with 

below). Then P(Q n) has the same sign as (—l)n_1, and P(Q n-  1 ) has the same 

sign as (—l) n. Thus, 3 t €]Qn-uQ n[  s-t- P(t) =  0 . Therefore, at any stable 

steady-state, Qn- i  < 0 , and therefore V i ^  n, Qi < 0 , meaning

Therefore, at any stable steady-state, any Xi with i < n  is at the higher 

solution of equation 8 .2 , and

If Qn or Qn- 1 are not unique in the re-numbering scheme discussed above, 

then the nonunique value is a root of P and hence cannot be positive. Therefore 

at most one Qi can be positive and it is possible to renumber for a non-strict 

version of inequality 8.5 to hold. Strictness follows follows since q ^ O .

In a stable steady state, uk ^ K,n

We now show that there is no stable steady state with rn = max* r*. Suppose 

that Q n >  0? Qn—1 ^  0, and rn = max* r*. Then

di  (1 -  2PiXi) <  0

(8.5)
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•P(O) =  (Qn-l/Pn-1 + Qn/Pn) K% \Q  j /  P j + Q n / P n ^ ^ ^ Q  j /  P j - I F ^ Q  j /  Pj

The last two terms in the sum both have the same sign as (—l) n.

Now consider

Qn Pn— 1   1  2/3nXn Pn— 1
Pn Qn— 1 1 2 /?n_iXn_i Pn

Q n  P n -1  \ / l  -  4aD*(% /3„_!
P n Q n - 1 ^1 -  A a D 2P l ^  P„

By hypothesis, >  1 , and thus

Q n / P n  > \ Q n - l l P n - \ \

Therefore, P ( 0 ) has the same sign as (—l)n. Since P(Q n) has the same sign 

as (—l) n_1, P has a positive root, and the steady state is unstable.

8.4 Discussion

The results above show that, in the case where degradation and normalized 

synthesis rates are allowed to be different for each element of the network, 

it becomes more difficult for the system to sustain the co-expression of many 

elements. Indeed, equation 8.3 implies that the weakest element (in terms of the 

ratio of the maximal synthesis rate to the product of the degradation rate and 

the dissociation constant for heterodimer formation with class A proteins) that 

is “on” cannot be much weaker than the other ones which are being co-expressed 

(an intuitive result, since a weak element would be too easily repressed by the 

other ones, and would not stay “on” in their presence). In addition to that, the 

competition level a  restricts the number of elements which can be co-expressed, 

in the same way as when degradation and normalized synthesis rates are all 

equal.
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It is particularly noteworthy that in the course of cellular differentiation, 

antagonistic genes are often co-expressed early-on despite their antagonism, 

before one gradually takes over (as discussed by Cinquin & Demongeot, 2005). 

It has been proposed th a t the differentiation of some cell-types has a stochastic 

aspect, but in many instances, extra-cellular cues play an essential role in 

controlling cell-fate, although the details of the pathway from extra-cellular cue 

to intrinsic differentiation determinants are not always clear. Interestingly, the 

synthesis and degradation rates of key transcription factors have been shown in 

different instances to be regulated (see Ebert et al., 2003, Lim & Choi, 2004, zur 

Lage et al., 2004, for examples of regulated synthesis rates, and Horwitz, 1996, 

Trott et al., 2001, Sriuranpong et al., 2002, Vinals et al., 2004, for examples 

of regulated degradation rates). The activity of transcription factors can be 

directly regulated by post-translational modifications such as phosphorylation 

(for example phosphorylation of myogenic factors can decrease their activity, 

Winter et al., 1993, Zhou &: Olson, 1994, Suelves et al., 2004, and this can also 

be the case for class A proteins, Page et al., 2004), by physical interactions 

with other proteins (Bengal et al., 1992, Perry et al., 2001), or indirectly by 

affecting cofactors (Simone et al., 2004, Seo et al., 2005). Phosphorylation can 

also modulate the propensity of bHLH proteins to form heterodimers (this can 

be the case for class B proteins, Firulli et al., 2003, class A proteins, Sloan 

et al., 1996, Lluis et al., 2005, and also Id proteins, Hara et al., 1997, Deed 

et al., 1997). It seems to generally be the case that upon cell differentiation, 

the activity of transcription factors associated with the cell-fate is enhanced.

Within the framework proposed here, the biasing of complex cell-fate de­

cisions to specific outcomes can be mediated by the up- or down-regulation 

of synthesis rates or affinity for common class A activators, or down- or up- 

regulation of degradation rates, for favored and unfavored outcomes, respec­

tively. Different signaling pathways can act on one or many factors and do not 

need to directly cross-talk, as all the inputs are integrated by the competition
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between the switch elements.

The result of the decision can be regulated by the synthesis, class A- 

affinities, and degradation rates of the switch elements, while its timing is 

dependent on the level of competition in the system: an increase in the com­

petition level, which can for example be mediated by an increase in Id protein 

expression (shown in many experimental contexts, see references in Cinquin & 

Demongeot, 2005) sequestering the common activator away from all the ele­

ments of the switch, will force the weakest elements to be turned off. The effi­

ciency with which Id proteins sequester the common activator can also be mod­

ulated by phosphorylation, which can also just be modeled by a change in the 

quantity of common activator available for switch elements. Some Id proteins, 

despite being paradoxically called “Inhibitors of differentiation” , have indeed 

been shown recently to drive tumor-suppression and differentiation (Russell 

et al., 2004, Yu et al., 2005), as suggested by Cinquin & Demongeot (2005).

There is a great variety of ways in which a switch network can be led from a 

state of co-expression of all its elements to a state where only one is expressed, 

by a change in the competition level and in the synthesis and degradation 

rates. We show here two numerical simulations, to illustrate equation 8.3. In 

Figure 8.1, the competition level is increased, in a network in which elements 

have different normalized synthesis to degradation ratios; the weakest non­

zero element is turned off every time the competition reaches a threshold. In 

Figure 8.2, the competition level is kept constant, but one element is made 

progressively stronger, and turns off all the other ones. Of course, the alteration 

of all parameters at the same time would be a plausible biological situation.

The networks studied here have been described in the context of class A 

and class B bHLH heterodimerization, but they could have a much wider rele­

vance. Hox proteins, crucial determinants of tissue identity, have been shown 

to depend heavily on common binding partners of the PBC and Meis fami­

lies (Mann & Affolter, 1998). A subfamily of bHLH-leucine zipper proteins
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Figure 8.1: Simulation of a 4-dimensional switch defined by equations 8.1; the 

competition parameter a  is progressively increased, causing the weakest non- 0  

element to be switched off periodically. Specific parameters are di = 1  for all 

i , (71 =  190, <J2  =  226, < 7 3 =  177, and ( 7 4  =  195.
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Figure 8.2: Simulation of a 4-dimensional switch defined by equations 8.1; the 

synthesis rate for x$ is progressively increased, causing all other elements to 

be successively switched off. Other synthesis and degradation rates are as in 

Figure 6.5, and the competition rate a = 0.02.
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shows tissue-specific expression, homo- and hetero-dimerization, and alterna­

tive splicing of dominant-negative forms (Kuiper et al., 2004). Myc and Max, 

which have opposite roles on cell growth and proliferation, form homodimers 

and heterodimers with Mad, with different affinities (Grinberg et al., 2004).

Networks in which each element needs to repress all others can easily be cre­

ated with competition for a common heterodimerization partner, rather than 

active repression of all other elements. Networks including other forms of cross­

repression and asymmetrical topologies would also be of interest to study cel­

lular differentiation, and are currently under investigation.
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8.5 Norm alization w ith respect to the A — Bi 

dissociation constants

Supposing the A — Bi dimerization reactions are at equilibrium, using the law 

of mass action one gets

a t [ B j ] / D j  

1 +  Y,j[Bj)/Dj ’

where Di is the dissociation constant for each A — Bi complex, and at is the 

total quantity of A. If the synthesis of Bi depends on the concentration of the 

A — Bi complex, in a non-linear fashion described by a Hill function of degree 

2 with maximal value <Ji and half-maximal synthesis for [ABi] = K 2, and Bi 

has a degradation rate di, writing Xi = [Bi] one gets
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d ii _  [AS , ] 2

dt ~  K% + [ABi]2

Now let yi =  Xi/Di. Then

dyi =  _l_dxf , (?i Vi

dt D i  dt l^% D i  a D 2  +  y2 ’

with D  =  1 +  Q; =  K%/a} G IR .̂

The normalization with respect to the dissociation constants Di has thus 

led to the replacement of each maximal synthesis rate a» by (Ji/Di.

8.6 Stronger inequality when no Xi is at the  

“lower solution”

If all XiS are given by the higher root of equation 8.2, one gets

E in  +  2 =  2D -  Z iyJ r ? - 4 a D 2

With the same argument as previously,

(8.6 )

with rs =  mini t*.
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Chapter 9

Conclusion

The model for somitogenesis presented in Chapter 2 proposes a molecular mech­

anism for the oscillations in the PSM which is different from that which is com­

monly accepted. The model proposed here is based on positive feedback, but 

it is also compatible with all the experimental data interpreted as supporting a 

negative feedback mechanism (some of which was made available after Chapter 

2  was published), as well as with experimental data providing direct evidence 

against a negative-feedback mechanism.

Many experimentally-testable predictions can be made from the model. 

However, not all necessary experimental tools are presently available, and an 

attem pt was made to develop them over the past three years. The first tool is 

a light-inducible gene expression system. Such a tool would be of considerable 

interest for spatially and temporally manipulating biological systems, well be­

yond the scope of the experiments discussed in this thesis. Preliminary results 

have shown reporter induction by a factor of about three, which is a proof of 

principle, but probably would not be sufficient to obtain easily-interpretable re­

sults. A limitation of the system seems to be that it induces photosensitisation, 

probably because of the accumulation of molecules which generate free radicals 

or reactive oxygen species when illuminated. It might be possible to improve 

the system by fine-tuning the quantity of these molecules, using anti-oxidants,
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or temporarily depriving the cells of oxygen; all of which have been attem pted 

but, due to time limitations, not in exhaustivity.

The second tool is a real-time reporter of the somitogenesis clock. This was 

created using the lunatic fringe promoter and a luciferase reporter. Unfortu­

nately, this reporter interferes with somitogenesis, possibly because it intro­

duces a great number of exogenous binding sites for the transcription factors 

involved in the clock (this is a limitation of the technique of electroporation, 

which is the most readily available one for misexpression in chick). Another 

way to deliver the reporter, based on a lentivirus, is under development. Other 

model systems, such as mouse or zebrafish, more readily allow the generation 

of transgenic animals; the problem with these animals, however, is that manip­

ulation and culture of the embryos is not so straightforward.

While it would have been ideal to have experimental data to test the model 

for the somitogenesis clock, and invalidate or refine it, the model does show the 

usefulness of mathematical modeling in biology, because it makes predictions 

which it would have been all but impossible to reach based on sheer intuition, 

and which relate to the heart of the biological mechanism.

Similarly, Chapter 5 is based on a set of experimental data, and proposes 

a new model for the establishment of morphogen gradients, whose molecular 

base can be experimentally tested. That model deals with molecular interac­

tions between morphogens, receptors, and glycoproteins; it has become clear 

recently that glycoproteins play an essential role, but that role is only partially 

understood. The model is limited by the absence of quantitative details about 

the molecular interactions, but it shows that it would be extremely interesting 

to acquire such data, which was not previously obvious, and thus suggests an 

original experimental approach.

The study of networks controling cellular differentiation, presented in Chap­

ters 6  and 8 , is a different sort of modeling, in that it is not based on one specific 

biological system, but tries to extract essential properties from a wide set of
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systems, to investigate their generic properties. One such property of particu­

lar interest is the coexpression of antagonistic genes at low levels. It is shown 

that the generic networks which come most readily to mind to model cellular 

differentiation cannot in fact account for that property easily. However, bHLH 

networks, in which elements are competing for access to a common co-activator, 

have a much broader range of behaviours: the level of competition (which de­

pends on the total quantity of co-activator) determines the number of elements 

which can be coexpressed, through a rule whose simplicity is surprising: for k 

coexpressed elements, the level of competition a  must be such that a  <  1/A;2. 

The element expressed most strongly can be selected by increasing the com­

petition level. There is a memory effect, because the level of competition can 

be brought back to its initial level without turning back on the elements which 

were switched off.

This “top-down” approach is more abstract than those described in the 

previous two chapters but it still allows one to derive predictions. In particular, 

it suggests that the role the Inhibitors of Differentiation proteins (Id) is to tune 

the level of competition, and that they are much more than mere inhibitors of 

differentiation: if their role is to reduce the number of fates available to cells 

by increasing competition, they are in fact necessary for differentiation. A 

few experimental results published after Chapter 6  confirm that prediction, 

by showing that that the absence of Id proteins can in certain cases block 

differentiation. Interestingly, the transient increase in the expression level of 

Id proteins, observed during the differentiation of a number of independent 

cell-lines, had so far received no explanation.

Finally, it is interesting to note that many of the genes involved in the somi­

togenesis clock are bHLH proteins, and it has been shown that their products 

heterodimerise. They are of a different class than that considered for bHLH 

networks, and the results derived about those networks probably do not apply 

directly, but it is a strong possibility that there are competitive heterodimeri-
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sation phenomena contributing to the somitogenesis oscillations, particularly 

since it has recently been shown tha t the mRNA for one of these proteins is 

expressed in a gradient in the PSM.

Future work

The mathematical models developed throughout this thesis are based on ordi­

nary differential equations, and do not take into account noise which appears 

when single-molecule reactions are considered; the reasons for this are computa­

tional costs involved with simulations, as well as the great difficulty of deriving 

analytical results from probabilistic equations. It would prove interesting to 

study how the analytical results derived here hold up to the introduction of 

noise and delays.

All the theoretical Chapters in this thesis not only explain current experi­

mental data, but also suggest direct experimental tests. It would prove partic­

ularly interesting to carry out those tests, to validate and refine the models.
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