
REFERENCE ONLY

UNIVERSITY OF LONDON THESIS

Degree Year Name of Author c

COPYRIGHT
This is a thesis accepted for a Higher Degree of the University of London. It is an 
unpublished typescript and the copyright is held by the author. All persons consulting 
the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recognise that the copyright of the above-described thesis rests with the author and 
that no quotation from it or information derived from it may be published without the 
prior written consent of the author.

Theses may not be lent to individuals, but the Senate House Library may lend a copy 
to approved libraries within the United Kingdom, for consultation solely on the 
premises of those libraries. Application should be made to: Inter-Library Loans, 
Senate House Library, Senate House, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London theses may not be reproduced without explicit written 
permission from the Senate House Library. Enquiries should be addressed to the 
Theses Section of the Library. Regulations concerning reproduction vary according 
to the date of acceptance of the thesis and are listed below as guidelines.

A. Before 1962. Permission granted only upon the prior written consent of the
author. (The Senate House Library will provide addresses where possible).

B. 1962- 1974. In many cases the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975 - 1988. Most theses may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most theses may be copied.

This thesis comes within category D.

0 ^ ”"This copy has been deposited in the Library of

This copy has been deposited in the Senate House Library, Senate House,

LOANS

Malet Street, London WC1E 7HU.

C:\Documents and Settings\lproctor\Local Settings\Temporary Internet Files\OLK8\Copyright - thesis (2).doc





On the Fluidization Characteristics of Fine Powders

Parimanan Cherntongchai

Department of Chemical Engineering 

University College London 

London WC1E 7JE

Thesis submitted to the University of London for the 

degree of Doctor of Philosophy

November 2005



UMI Number: U592679

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U592679
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



To my family.



ACKNOWLEGMENT

First of all, I would like to acknowledge the Royal Thai Government and the Thai 

energy policy office for a great opportunity of a higher education and their generous 

scholarship. Secondly, I would like to acknowledge Professor Stefano Brandani for his 

genuine supervision and financial support for the research project. For over 4 years of 

Ph D research, Professor Brandani has always given me brilliant advices and valuable 

scientific opinions on my research. Finally, I would like to acknowledge also to Chiang 

Mai University, Thailand, for all supports and allowance of time to complete the study.

Next, I would like to acknowledge to all members of staffs of the department of 

chemical engineering, University College London. I would like firstly to thank to Mr 

David Cheesman for his experiences and helps on designing and setting up the 

fluidization rig. To all technical staffs in the mechanical workshop, I would like to 

sincerely acknowledge for their great help, suggestion and the wonderfully finishing 

experimental rig. In addition, I would like to give a special thank to Sarah for her great 

work and helps on all electronic devices. I would like to thank also to Martyn, Mark and 

Dave for their technical support. Finally, I would like to thank to the departmental 

office staffs for their generous helps.

Furthermore, I would like to thank to the department of biochemical engineering for 

their allowance to use the laser light scattering machine. Moreover, I would like give a 

special thank to Mr Phillip for his training on using the machine.

2



Many thanks to all friends; Jason, Sarah, Andrea, Silvia, Karolina, Hu Bin, Kittipong, 

Krystina, Wael, Talal, Nan, Sharon, Suet, Monica, Massimillano, Gianluca, Alfeno, 

Giovanna, Marta, Tom, Panos, Peerada, Phunrawie, Kanok-om, and Kedsarin for their 

accompanying, listening, and sharing. For those whom I may not be able to mention all 

names, I would like to greatly acknowledge all of you.

I would like to genuinely thank to Mr Carlos Amador for generous supports he has 

given. Thank you for being with me in every situation.

Finally, I would like to reveal my great acknowledgment to my father, my mother and 

my two sisters. They might not realize that they have given me all energy and brave to 

accomplish the mission. I also would never forget to thank also to all relatives and 

friends in Thailand for looking after my parents in place of me when I am away from 

home.

To my resting father, even he could not make it until the end of my Ph D, but I know 

that he is now smiling somewhere and feel proud of his daughter.

3



ABSTRACT

Powders belonging to group A of the Geldart classification have been studied in detail 

using the bed collapse technique. To obtain the correct properties of the powders a 

model is developed, which takes into account the system configuration for both one- 

and two-valve experiments. An experimental apparatus has been assembled and used to 

validate the model using glass ballotini in the size range 22-106 pm. The system allows 

simultaneous measurements of total bed height, using a digital camera, and pressure 

transients at various positions along the vertical axis. The powders have been sieved to 

obtain 6 size ranges and the fluidization properties have been measured. Mixtures of 

particles have been prepared and the effect of the size differences has been investigated.

The experimental results allow the construction of plots of the void fraction vs inlet gas 

superficial velocity, which show a continuous transition around the minimum bubbling 

point, with no sudden contraction of the dense phase voidage immediately above the 

minimum bubbling point for all powders. The plot of Sd vs Ud yields a characteristic 

curve, which within the experimental uncertainty has overlapping values for systems 

below and above the minimum bubbling point. The minimum bubbling point was 

affected by the structure of the distributor plate, with a coarser sinter leading to 

premature bubbling.

The experimental data were used to test drag force correlations reported in the literature. 

It was found that none of the correlations commonly used in CFD simulations describes 

accurately the experimental 6d and Ud measurements. Modifying the literature equations 

it was possible to correlate the experimental 8d and Ud curve and use this information to
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predict the minimum bubbling point using a CFD model recently developed at UCL. 

The experimental results measured in this study show a strong dependence with 

voidage, which has allowed the formulation of constitutive equations for the 

characteristic dimension of the CFD model. The resulting simple correlation of the 

model parameter was used to obtain a new minimum bubbling criterion and predictions 

are compared to an extensive database of literature values.
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NOMENCLATURE

A
A

Bed cross-section area (m )

Ad Projected area of particle (m2)

At Archimedes number -  gpPdP(pP- p F)/p 2

Abottmdist Bottom distributor pressure drop coefficient (kPa.min/L)

Ajopdist Top distributor pressure drop coefficient (kPa.min/L)

Abed Fixed bed pressure drop coefficient (kPa.s/m2)

b Height of pressure port from distributor (m)

blower Height of the lower pressure port from distributor (m)

Cd Drag coefficient

De Density ratio (Pp/pf)

dp Mean particle size based on the surface to volume ratio (m)

E Modulus of elasticity (Pa)

F Fine fraction -  fraction of particles with diameter less than 40 pm

F Ave
2 2Average body force per unit volume (kg/m s )

F d Drag force per unit volume (kg/m2s2)

F d Average drag force per unit volume (kg/m2s2)

F fp Fluid-particle interaction force per unit volume (kg/m2s2)

Fpp
ij

Particle-particle interaction force per unit volume (kg/m s )

fb Bubble fraction

ft) Drag force per unit volume on an individual particle (kg/m2s2)

m Voidage function

g Acceleration of gravity (m/s2)

L Distance (m)

26



L0 Height of bubble escape bed, zone 0 (m)

L, Height of sedimentation bed, zone 1 (m)

U Height of fixed bed, zone 2 (m)

Lc Height of column (m)

Ld Height of dense phase (m)

Li Initial bed height (m)

M w Molecular weight (g)

N Coefficient for voidage function

n Richardson and Zaki index

P Absolute pressure (Pa)

Patm Atmospheric pressure (Pa)

Pw Absolute pressure in the windbox (Pa)

Q Gas flow rate (m3/s)

Qalm Gas flow rate at atmospheric pressure (m3/s)

Qd Gas flow rate passing distributor (m /s)

Qv Gas flow rate passing the second valve (m3/s)

Qg Gas flow rate (m3/s)

QP Particle flow rate (m3/s)

Qwindbox Gas flow rate at windbox pressure (m3/s)

R Ideal gas constant (J/mole K)

Rew Mixture Reynolds number -  pF|uFp|dP/n

Rep Particle Reynolds number -  pFudp/|iF

T Temperature (K)

t Time (s)

tbub Bubble escape time (s)
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tc Collapse time (s) (end of sedimentation stage)

tend Time end of the consolidation stage (m)

u Superficial velocity (m/s)

u, Superficial velocity of gas in zone 1 (m/s)

Uo Initial superficial gas velocity (m/s)

ub Bubble velocity (m/s)

Uc Dense phase superficial velocity (m/s)

Uoist Gas superficial velocity passing distributor (m/s)

Ul>ist(bottm) Gas superficial velocity passing bottom distributor (m/s)

Uoist(top) Gas superficial velocity passing top distributor (m/s)

Ud(max) Maximum dense phase superficial velocity (m/s)

UD Dynamic wave velocity (m/s)

ue Continuity wave velocity (m/s)

Umb Minimum bubbling superficial velocity (m/s)

Umf Minimum fluidization superficial gas velocity (m/s)

Ut’ Superficial velocity required to give 6 = 1 (m/s)

Ut Terminal falling velocity (m/s)

Up Particle velocity (m/s)

uF Fluid velocity (m/s)

Ufp Relative fluid-particle velocity (m/s)

W p Weight of powder (kg)

VB Particle volume in the bed (m3)

Vw Windbox volume (m3)

X Distance between particles (m)

z Distance from distributor (m)
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Greek Letters

Ap

Apwindbox

AP

AP0

APi

AP2

APfied 

AP Dist 

AP Dist(bottra) 

AP Dist(top) 

AP freeboard 

AP fixedbed 

AP rota 

AP windbox

ei

£2

Sd

£d(inf)

£d(max)

Characteristic length (m)

Pressure drop (Pa)

Windbox pressure drop (Pa)

Piezometric (non- recovery) pressure drop (Pa) 

Pressure drop in zone 0 (Pa)

Pressure drop in zone 1 (Pa)

Pressure drop in zone 2 (Pa)

Bed pressure drop (Pa)

Distributor pressure drop (Pa)

Bottom distributor pressure drop (Pa)

Top distributor pressure drop (Pa)

Freeboard pressure drop (Pa)

Fixed bed pressure drop (Pa)

Rotameter pressure drop (Pa)

Piezometric windbox pressure drop (Pa) 

Voidage

Average voidage

Voidage in zone 0 or initial bed voidage

Voidage in zone I

Voidage in Zone II

Dense phase voidage

Limiting dense phase voidage

Maximum dense phase voidage
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6dm Fixed bed voidage

Smb Minimum bubbling voidage

Smf Minimum fluidization voidage

M'F Gas viscosity (kg/m s)

Pm Mixture viscosity (kg/m.s)

P Density (kg/m3)

Pf Gas density (kg/m3)

Pp Particle density (kg/m3)

T Tortuosity factor
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Chapter 1: Introduction to Fluidization

1.1 Fluidization

Fluidization (Kunii and Levenspiel, 1969) is a process in which solid and fluid are in 

contact and the fluid-particle bed has fluid-like properties:

•  Light objects float on top of the bed,

• The surface stays horizontal even in tilted beds,

• The solids can flow through an opening in the vessel just like a liquid,

• The bed has a static pressure head due to gravity.

At low fluid flow, when the fluid is passed upwards through a packed bed, the pressure 

drop increases with fluid velocity, until the force from the fluid on an individual particle 

equals to the force exerted by gravity and the bed of particles is fully supported by the 

fluid. In this state, the liquid-like behaviour is achieved and the bed is said to be 

‘fluidized’. The fluid superficial velocity at this point is called ‘minimum fluidizing 

velocity’. Increasing further the fluid superficial velocity beyond the minimum 

fluidization velocity results in a constant pressure drop across the bed that equals the 

weight of the bed per unit area and the fluidized bed can behave in various regimes, 

depending on the fluid and particle properties.
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1.2 Regimes of fluidization

The contact between fluid and particle can generate several fluidization regimes, when 

the fluid superficial velocity is beyond the minimum fluidization velocity. An increase 

in velocity above the minimum fluidization velocity results in a smooth progressive 

expansion of the bed. A bed such as this is called ‘homogeneous fluidized bed’ (Figure 

1.1(b)) (Kunii and Levenspiel, 1969). With further increase in fluid superficial velocity, 

bubbles are formed in the fluidized bed, especially for gas-solid systems. At this point, 

the bed is called ‘bubbling fluidized bed’ (Figure 1.1(c)) (Kunii and Levenspiel, 1969). 

The bed loses its homogeneity and it is now a heterogeneous fluidized bed. As the 

velocity is increased further, the bubbles in the bubbling bed will coalesce and grow as 

they rise. I f  the ratio of the height to the diameter of the bed is high enough, the size of 

bubbles may become almost the same as the diameter of the bed, in this regime a 

fluidized bed is called ‘slugging fluidized bed’ (Figure 1.1(d)) (Kunii and Levenspiel, 

1969). I f  the particles are fluidized at a high enough fluid flow rate, the velocity exceeds 

the terminal velocity of the particles. The heterogeneous, two-phase character of the bed 

firstly peaks, and then gradually gives way to a condition of increasing uniformity. The 

upper surface of the bed disappears and bubbles tend to lose their distinct shape and the 

gas can become the continuous phase with streamers of solids in gas. There is a 

continuous density gradient from the bottom of the vessel to the top. Beds under these 

conditions are called ‘turbulent fluidized bed’ (Figure 1.1(e)) (Smolders and Baeyens, 

2001). The turbulent bed is bridging two extreme conditions: a regime in which the 

dense phase is a continuous phase and a regime where the gas is a continuous phase and 

particle clusters make up the dispersed phase. This later regime is called ‘fast fluidized 

bed’ (Figure 1.1(f)) (Smolders and Baeyens, 2001). With further increases of gas
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velocity, eventually the fluidized bed becomes an entrained bed, where ‘dispersed, 

dilute or lean phase fluidized bed’ (Figure 1.1(g)) (Kunii and Levenspiel, 1969) is 

observed and the solids are transported pneumatically.
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Figurel. 1 Schematic representation of fluidized beds in different flow regimes (a) fixed 

bed, (b) homogeneous expanded bed, (c) bubbling bed, (d) slugging bed, (e) turbulent 

bed and (f) Fast fluidized bed, and, (g) dilute bed (Lim et al., 1995)

The regimes mentioned above occur for the non-cohesive particles or small and/or less 

dense particles. However, for fluidised bed of cohesive powders, channelling bed occurs 

and gas passes though interconnected vertical and inclined cracks extending from the 

distributor to the bed surface and the total fluidized bed pressure drop is lower than the 

weight of the bed per cross section area. On the other hand, for large and /or dense
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particles, a spouting behaviour is observed. This phenomenon (Bridgwater, 1985) 

happens when the gas from the distributor forms an open cylindrical cavity that 

penetrates to the bed surface, called ‘spout’. The solid particles are entrained into the 

spout from the spout wall at all heights. At the bed surface, the particles then fall back 

in the downward-moving annular bed of solid.

1.3 Geldart’s classification of powders

For each regime of fluidization, the fluidization charcteristic can be different depending 

on the fluid and particle properties. Geldart (Geldart, 1973 and 1986) identified four 

regions in which the fluidization character can be distinctly defined, see Figurel.2.
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Cohesive
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Figurel.2 Geldart’s classification of particles. (Geldart, 1973)
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Group C powders are cohesive and are characterized by

• Normal fluidization is extremely difficult; the powder lifts as a plug in small 

diameter tubes, or channels badly.

• Pressure drop across the bed is lower than the bed weight per cross-section area.

•  Particle mixing is poor

Group A powders are designated as ‘aeratable’ particles and are characterized by

• Bed expands considerably at velocities between Umf and Umb.

• When the gas velocity is increased above Umb, the bed height becomes smaller 

because the dense phase voidage is reduced more quickly with increasing gas 

velocity than the bubble hold-up increases.

• The dense phase finally assumes a stable voidage between 8mf and Smb.

• Gas bubbles rise more rapidly than the rest of the gas.

• Bubbles split and coalesce frequently through the bed, resulting in a restricted

bubble size.

•  Gross circulation of solids occurs even when a few bubbles are present.

• Considerable back-mixing of gas in the dense phase occurs.

• Gas exchange between bubbles and the dense phase is high.

Group B powders are characterized by

• Inter-particle forces are negligible.

• Bubbles start to form at or only slightly above minimum fluidization velocity.

• Bed expansion is small.

•  Particle circulation in the absence of bubbles is little

• Most bubbles rise more quickly than the interstitial gas velocity
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•  Bubble size increases with both bed height and excess gas velocity.

• Coalescence is the predominant phenomenon, and there is no evidence of a 

maximum bubble size.

•  Bubble sizes are independent of both mean particle size and size distribution.

• Backmixing of dense phase gas is relatively low, as well as the gas exchange

between bubbles and dense phase.

Group D. large and/or dense particles belong to this group. The particles are 

characterized by

• Bubbles, except very large bubbles, rise more slowly than the interstitial 

fluidizing gas.

• As a result, gas flows into the base of the bubble and out of the top, providing a 

mode of gas exchange and by-passing.

• Gas velocity in the dense phase is high.

• Solid mixing is relatively poor.

• Backmixing of the dense phase gas is small.

•  Segregation by size is likely when the size distribution is broad, even at high gas 

velocities.

• Flow regimes around particles may be turbulent, causing some particle attrition 

with rapid elutriation of the fines produced.

• Bubble sizes are similar to those in group B powders.

• The bed can be made to spout even when the bed depth is appreciable.
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1.4 Quality of fluidization

The fluidization quality is the outcome of the fluidization characteristics for each regime 

of fluidization. Generally, satisfactory fluidization quality is referred to the conditions in 

which the fluid-particle contact and the fluid-particle circulation are enhanced.

In practice, the most employed fluidization regime is the bubbling bed. The fluidization 

quality implies small fluctuations, small bubbles, large bed expansion and slow collapse 

rate. This kind of behaviour is associated with particles belonging to Geldart’s Group A 

powder classification.

1.5 Scope of this work

In this work, the fluidization characteristics of powders belonging to group A of the 

Geldart classification were studied and glass ballotini in the size range of 22-100 micron 

were used. Particular attention was given to the expansion characteristics of powders in 

the homogeneous and the bubbling bed. The purpose of these studies is to gain an 

understanding of the effect of particle size distribution on the fluidization characteristics 

of powders by comparing results from powders of the relevant narrow size cut and those 

obtained from the original size distribution. The fluidization characteristics of powders 

of bimodal mixtures were also studied by preparing mixtures composed of powders of 

two different sizes according to the sieve analysis.
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The standard bed collapse technique (Rietema, 1967) is used to investigate Geldart type 

A powders. Both 1-valve and 2-valve bed collapse experiments are applied and different 

values for the dense phase voidage and collapse times were observed. To obtain the 

correct properties of the powders a model is developed, which takes into account the 

system configuration for both one-valve and two-valve experiments. An experimental 

apparatus has been assembled to allow simultaneous measurements of total bed height, 

using a digital camera, and pressure transients at various positions along the vertical 

axis.

Four different powders with wide “natural” particle size were studied experimentally. In 

order to understand the effect of each individual size cut on the behaviour of the original 

powder, the original powders were sieved into 6 different size cuts; according to 21/4 

sieve size aperture series and fluidization characteristics of each size cut were studied. 

The narrow size cut powders were then mixed to prepare the bimodal mixture. The 

mixtures are composed of two narrow cut powders of difference in size at varied 

percentage. This is to understand the behaviour of the bimodal powder in comparison 

with the natural size powders and the narrow size cut powders. In addition, preliminary 

experiments were carried out to exclude effects resulting from column diameter, initial 

bed height and distributor porosity on the measured fluidization characteristics, in 

particular the dense phase voidage, Sd, and the corresponding superficial gas velocity, 

Ud.

The drag force is the key parameter to describe, for example, the dense phase 

characteristic and the minimum bubbling point. Therefore, the 6d and Ud experimental 

data from the narrow size cut and the natural size powder were used to validate the drag
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force correlations reported in the literature. It was found that none of the correlations 

commonly used in CFD simulations could describe accurately the experimental Sd and 

Ud measurements. Modifying the literature equations, it was possible to correlate the 

experimental Sd and Ud curve.

The modified drag force correlation was then applied to a CFD model recently 

developed at UCL to predict the minimum bubbling point. The experimental results 

show a strong dependence with voidage of the characteristic parameter of the model and 

a simple correlation was obtained. The predictions from the new minimum bubbling 

criterion were compared to an extensive database of literature values.
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Chapter 2: Literature Reviews

2.1 Expansion characteristics of fine powders

The expansion characteristics of fine powders are the onset of minimum fluidization, 

the onset of minimum bubbling, the voidage of the dense phase, the bed voidage, bubble 

fraction and bubble properties. The minimum fluidization stage gives the transition 

point from the fixed to the fluidised bed and it is a lower limit of the bed expansion. 

After the minimum fluidization stage, the bed expands homogeneously. The upper limit 

of the homogeneous expansion is the minimum bubbling point, when the first bubble 

appears. The difference between these two points, in terms of Umt/Umf or emb/emf, gives 

the indication of the degree of the homogeneous expansion of the bed (Geldart and 

Abrahamsen, 1978).

At a velocity between the minimum fluidization and the minimum bubbling velocity, 

the bed of powders shows particulate expansion, where there is no bubble in the bed and 

the dense phase voidage and the bed voidage are the same. The bed voidage increases 

with the increasing velocity, until the bubbling starts. At this point, the bed is said be at 

the minimum bubble point. From this point on the bed expansion increases less rapidly, 

remains constant or might even decrease. Simone and Harriott (1980) report that at 

velocities much higher than Umb the bed voidage reaches a minimum and then expands
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again. This is because the dense phase voidage can be reduced more rapidly than the 

bubble holdup increases (Geldart and Wong, 1984). The region of decreasing voidage is 

called unstable bubbling region (Jacob and Weimer, 1987). As reported for instance by 

Foscolo et al. (1987), the dense phase voidage lies between the minimum fluidization 

and the minimum bubbling voidage. At velocities approximately 4-6 times Umb the 

dense phase voidage reaches a minimum and stays constant (Foscolo et al., 1987).

Gibilaro (2001) considers the behaviour of a fluidized bed just above the minimum 

bubbling velocity and points to an abrupt and sharp transition in the dense phase 

voidage. Brandani and Foscolo (1994) described this phenomenon theoretically by 

applying the jump conditions to the analysis of the equations of change for the particle 

bed model (Foscolo and Gibilaro, 1987) and showed that the model would predict 

qualitatively the observed behaviour.

By studying the expansion characteristics of a homogeneous bed it is possible to obtain 

a relationship between Ed and Ud. This is generally used to describe the dense phase 

behaviour of the powder for both homogeneous expanded beds and bubbling beds. A 

number of researchers (Abrahamsen and Geldart, 1980a; Barreto et al., 1983; De Jong 

and Nomden, 1974; Geldart and Wong, 1984; Simone and Harriott, 1980) reported that 

the Ed and Ud relationship of fine powders at ambient conditions for the bubbling bed 

deviates from the two-phase theory of Toomey and Johnstone (1952), which assumes 

that Ed of the bubbling bed is at Emf and Ud is Umf.
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2.2 Effect of size and size distribution on bed 

expansion characteristic

It is generally stated that powders with wide particle size distributions and powders with 

the additions of fines, generally have an improved fluidization quality. This results in a 

smoother fluidization and a larger expansion ratio than a narrow cut powder. From the 

point of view of chemical conversion, since chemical reactions occur at the 

bubble/dense phase interface and within the dense phase, a more expanded dense phase 

and smaller bubble sizes are preferable and improve the performance of the reactor.

The bed expansion characteristics are varied with particle size and size distribution. 

Knowing the effect of the particle size and size distribution on the fluidization 

behaviour will be useful on the selection of size and size distribution for the desired 

expansion characteristic.

Abrahamsen and Geldart (1980a) developed an empirical correlation of Umb/Umf to 

describe the homogeneous expansion of natural size distribution fine powder, taking 

into account the effect of fines. The empirical correlation is based on the data of 23 

different powders varying in mean size between 20 pm and 72 pm and with a particle 

density range from 1100 kg/m3 to 4600 kg/m3. The powders were alumina, ballotini and 

cracking catalyst and the fluidizing gases were air, helium, argon, carbon dioxide and 

Freon-12.

Using SI units for the physical properties

U mb 2300p°'2V °,m exp(0.716F)

d » V - ( P p - P F)0934 ( U
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The Richardson and Zaki (1954) equation is also often used to determine the expansion 

coefficient from experimental data.

—  = sn (2 .2 )
U t

A log-log plot of superficial velocity vs void fraction data will yield n as the slope and 

the terminal falling velocity of an individual particle U t as the intercept.

The expansion parameter n correlates with the terminal particle Reynolds number, n 

acquires constant values in both the creeping flow and inertial flow regimes, which are

4.8 and 2.4 respectively. The parameter n changes with terminal velocity Reynolds 

number in the intermediate regime between these two limits (Gibilaro, 2001). The 

relationship developed by Khan and Richardson (1989), eq. 2.4, enables n to be 

calculated from the Archimedes number defined in eq. 2.3.

Ar = dpPF Pp Pf (2 .3 )

4.8 + 0.1032 At057 
1 + 0.043 Ar‘

(2 .4 )

The Richardson and Zaki correlation was originally developed for solid-liquid systems. 

Applying this correlation to gas-solid systems leads to values of n that vary widely from 

system to system.

In general, many researchers reported a higher value of n from that calculated from eq. 

2.4. Massimilla et al. (1972) reported this behaviour for an FCC catalyst with a wide 

size distribution and narrow size cuts at ambient conditions. Kai et al. (1987) made 

similar observations for fine powders with wide size distribution at ambient 

experimental conditions. Foscolo et al. (1987) studied the behaviour of an FCC catalyst
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with a wide size distribution at ambient conditions and found that both n and Ut were 

higher than the predicted values.

Geldart and Wong (1984) studied cohesive particles and reported that the n index is 

higher than the predicted value and that it increases as the particle size decreases and as 

the powder becomes more cohesive.

The effect of temperature has been studied recently by Lettieri et al. (2002), who 

reported a higher value of n for the fluidised bed at the elevated temperature for FCC 

catalysts with a wide size distribution and additions of fines.

The effect of pressure has been investigated by various researchers. Crowther and 

Whitehead (1978) carried the experiment at a supercritical condition and reported that n 

increased with average particle diameter. Poletto et al. (1993) also reported the higher 

value of n for fine powders under near supercritical conditions. Jacob and Weimer 

(1987) studied the effect of pressure using carbon with a wide size distribution. They 

reported that n decreases with pressure and yields values higher than those predicted.

A summary of the values reported in the literature for the expansion coefficient n is 

presented in Table 2.1
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Table 2.1 Summary of n index from literature

Author Powders PSD %Fines Operating

Condition

n

Kai et al. (1987) Alumina Wide 18 Ambient 5.3

Massimilla et al. 

(1972)

FCC Wide

Narrow

Ambient 5.4-7

Foscolo et al. (1987) Catalyst Wide 5-15 Ambient 4-5.34

Geldart and Wong 

(1984)

- Alumina

- Catalyst

- Fly-ash

- Metal oxide

- Plastic

- Glass

Wide Ambient 

(For Group A 

and AC powder)

4.4-60

Lettieri et al. (2002) FCC Wide 5-25 High

temperature

7-9.6

Jacob and Weimer 

(1987)

Activated

carbon

Wide 30 High pressure 4-7

Crowther and 

Whitehead (1978)

- Catalyst

- Coal

Narrow

Wide

Supercritical 5-9

7-19

The terminal velocity Ut can be calculated using the drag force per unit volume on 

single particle in equilibrium with gravity and the Archimedes buoyant force, eq. 2.5:

d̂ ~(Pp ~Pf)s (2 .5 )

The drag force is expressed as a function of the drag coefficient, Cd.
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Table 2.2 summarises drag coefficient correlations generally used in fluidization 

studies.

Table 2.2 Drag coefficient correlations

Author Cd correlation

Dallavalle (1948) 

drag coefficient
f  4 8 1CD -  0.63+ r_
I  Vr «p ,

(For all flow regimes

2

)

Rowe (1961)
CD = [l + 0.15(eRep)>687], if  eRep <1000

Rep

Cd = 0.44, if eRep >1000

Stokes law
c n = ^ ~ ,  Rep <0.1 

Rep

Rep is particle Reynolds number, where Rep = --F
M'F

The values of U t obtained from the experimental expansion data usually exceed the 

terminal falling velocity calculated from these correlations (Jacob and Weimer, 1987). 

Similar results were also obtained by Crowther and Whitehead (1978), Foscolo et al. 

(1987) and Lettieri et al. (2002).

Therefore, as discussed by Barreto et al. (1983), the Richardson and Zaki correlation 

can be used to describe the velocity-voidage relationship, provided that both the 

expansion coefficient n and the terminal velocity U \ are obtained from the experimental 

expansion data.
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2.3 Correlation for bed expansion from the two fluid 

equations for fluidized beds

One can obtain an implicit relationship between 6d and Ud from any drag force 

correlation applicable to fluid particle systems. Consider the equations of change for a 

fluid- particle suspension (Ishii, 1975; Anderson and Jackson, 1967; Foscolo and 

Gibilaro, 1987). The typical approach is to consider the system composed of two fluids, 

schematically shown in Figure 2.1, and derive the mass and momentum balance 

equations in one-dimension

Up

t

Up

t
Fluid Particle

6 (HO
n n Z

Uf Up

Figure 2.1 Control volume of unit cross-sectional area for a fluidized suspension

Both the particles and the fluid are regarded as being incompressible fluids in contact 

with each other.

Conservation of mass 

Fluid-phase

de deu+ - ~ f_ = 0 ( 2.7 )
d t  dz

Particle-phase
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a O z s ) + 3( iZ 8 K = 0
d t  dz

Combining eqs 2.7 and 2.8, the fluid and particle velocities are linked to the superficial 

fluid velocity, Uo, by:

U 0 = ( l - e ) u p+eu F (2 .9 )

Therefore the relative velocity between fluid and particle can be expressed as

U o — u
Upp = uF - U p  = ---------------------------  (2 .10)

Conservation of momentum

Fluid-phase

epF
duF
at + u,

auF
dz

— Fd 6ppg 8
ap
dz

( 2 .11 )

Particle-phase

(l-e )p ,
auP
~dt

+ u,
aUp
dz

= FD- ( l - e ) p pg - ( l - e )
ap
dz

( 2.12 )

Where Fd is the drag force per unit volume between the fluid and the particle 

suspension. For a homogenously expanded bed, eqs 2.11 and 2.12 can be simplified to 

obtain the pressure gradient

| ^  = [spF +(l —e)pp]g
dz

(2 .13)

and

Fd = e ( l -e ) (p p - p F)g (2 .14)

The drag force for a suspension of particles, Fd, is a function of the fluid velocity and 

the void fraction. Therefore, eq. 2.14 represents an implicit relationship between Sd and 

Ud that can be solved iteratively.

Chapter 2: Literature Reviews 48



The same approach can be applied to pressure drop correlations available for particle 

suspensions. Typically these correlations are for the non-recoverable pressure loss, AP, 

which is related to the dynamic pressure by (Gibilaro, 2001):

dp dP
^  = -  Ppg (2 .15)dz dz

At equilibrium we obtain from eq. 2.13:

| ^  = ( l-e )(p p- p F)g (2 .16)
dz

With the knowledge of a drag force correlation for the particle suspension, or a pressure 

drop correlation, eqs 2.14 and 2.16 can be used to describe the relationship between 6d 

and Ud and the minimum fluidization point.

23.1 Pressure drop and drag force correlations for fluidized 

beds.

Pressure drop correlations are developed typically to describe the pressure loss in a

fixed bed which is a result of frictional interaction between the fluid and the particles.

Gibilaro (2001) shows that, by analogy with laminar flow of Newtonian fluids in pipes 

(Hagen-Poiseuille equation), the Blake-Kozeny equation (Carman, 1937) can be 

obtained.

AP pF U (1 -8 )2
T  = 150 .2 3 (2 .17)

L  d P e

For higher Reynolds numbers, similar arguments lead to Burke and Plummer (1928) 

equation.
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Ergun (1952) described the total energy loss for the fixed bed as the sum of the viscous 

and kinetic energy losses. Ergun’s equation is the combination of the Blake-Kozeny and 

Burke-Plummer equations for the pressure drop in the fixed bed over the full range of 

flow regimes.

( 2 ,9 )
L d2e3 62 dp

Eq.2.19 has been obtained from fixed bed data and should not be applied to higher void 

fractions. To overcome this limitation, Foscolo et al. (1983) have generalised this 

equation to any void fraction. Their approach is again based on the pipe flow analogy. 

However, three features are introduced;

1. A tortuosity factor, taking into accounts the effective length of the fluid path, 

which from statistical arguments is related to the void fraction: t = 1/e.

2. An expansion/contraction loss in the inertial flow regime proportional to the 

particle concentration, (1- e).

3. The correct limit for the single-particle

Their proposed equation for the pressure drop in the fixed and expanded fluidized beds, 

for the entire flow regime is the ‘Revised Ergun equation’ and is given by:

AP pFU 2( l - e )
d.

17.3
Re,

A
+ 0.336 s-48 ( 2.20 )

lp V ‘ XVP

Other pressure drop equations are available in the literature. For example, Anderson 

(1961) presented a pressure drop correlation for the particulate fluidized bed consisting 

of spheres of uniform size. The equation differed from the Ergun equation since it 

included a tortuosity factor and a cross-section factor, both of which are void fraction
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dependent and the inertial drag coefficient was dependent only on the particle Reynolds 

number.

AP ____ , (l -  e)2 |iFU _ ^  _3 1 -  e pF U 2
-  36Z Y + 6c; r

t = 1.71
1 - 8  

V e ;
for 0.45 < e < 0.94

( 2.2 1 )

x = 8 2 for 0.92 < 8 < 1

C‘ 8
24

Re

The development of drag force correlations is typically based on finding a relationship 

between the drag force in a particle suspension, Fd, and the drag force of the isolated 

particle, fo. Wen and Yu (1966) introduced the “voidage function” f(e). The origin of 

the voidage function arises from the study reported by Richardson and Zaki (1954) for 

sedimentation. Wen and Yu (1966) proposed that the voidage function is a function of 

bed voidage and

F t
= f(e )= ( 2.2 2 )

Fd = f(e )
6pFU 2 Y 3 0.45

- +  -

ReP Re 0.313
P ( 2 . 2 3 )

f(e) = e 47 for 0.001 <Re„ <1000

The value of the coefficient N is a subject of continuous discussion. In many studies, 

this exponent was assumed to be constant or a function of physical properties (Wen and 

Yu, 1966). While Di Felice (1994) showed that the exponent is not constant and should 

be varied with the bed concentration. Mostoufi and Chaouki (1999) proposed that the 

exponent is a function of particle Reynolds number at terminal velocity and the 

Archimedes number. Makkawi and Wright (2003) showed that the exponent depends on
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the relative particle Reynolds number. However, in the majority of the studies reported 

in the literature a constant value was adopted.

Ishii and Zuber (1979) developed drag coefficient and relative motion correlations for 

dispersed two-phase flows of bubbles, drops and particles from simple similarity criteria 

and a mixture viscosity model. The correlations proposed cover all concentration ranges 

and Reynolds number ranges, from the Stokes regime up to Newton’s regimes.

FD = CD P £ ^ ( l - e)A£L (2 .24)

where

CD = ~ ~ _ (l + 0.1ReM075) ( 2.25 )
KeM

dp Pp|uFP ( 2.26)
M

and the mixture viscosity for a fluid particle suspension is given by

ft
c , \ - 25ed

M 1- 1 - 8

'dm j
(2 .27)

Gibilaro et al. (1985) used the pressure drop correlation from Foscolo et al. (1983) to 

produce a drag coefficient correlation for the individual particle, which yield a general 

and fully predictive expression for the drag force on a particle in a fluidized suspension.

F =f1 D  1 D

4  8

-3 (2 .28)

where n is the Richardson and Zaki (1954) expansion coefficient.
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Syamlal and O’Brien (1987) proposed a new drag function which was used by 

Gelderbloom et al. (2003) for CFD simulations of bubbling/collapsing fluidized beds.

3 (l-e )sp .
Fd = 4 U L ,d p

u, 'Y
0.63 +4.8, 

v » Re j
FP ( 2.29)

The particle Reynolds number is defined by

dp PpluppI
Re =

Pi
(2 .30)

The drag coefficient for the isolated particle used is that of Dallavalle (1948) and U r m  is 

terminal velocity correlation, developed from the correlation of Garside and Al-Dibouni 

(1977).

=0.5(A-0.06Rep + %/0.0036Rep + 0,12ReP(2 B - A ) + A 2) (2 .31)

A = s ^ '4 (2 .32)

fQs1'28, e < 0.85 
B = \ D ( 2.33 )

}e , e > 0.85

Where Q and R are user-defined quantities with defaults of 

Q = 0.8, and can be adjusted to match Umf

R = 2.653, and can be adjusted to have function continuity at e = 0.85.

The drag force correlations mentioned above are generally used in CFD simulations of 

fluidized beds, as reported by Van Wachem et al. (2001) who applied also a different 

drag model. They reported that the choice of the drag force correlation used was the 

main factor that influenced the characteristics of the fluid-particle suspensions.
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In general the correlations presented above need appropriate modification in order to 

describe quantitatively the fluidized suspensions. For instance Kai et al. (1987) used the 

Ergun equation to describe the relationship between velocity and voidage of fine 

powders with different percentage of fines, at ambient condition. They found that the 

constant term in Ergun equation has to be changed from 150 to 226. Simone and 

Harriott (1980) used the Carman-Kozeny equation in describing the particulate 

expansion of narrow sized and natural size distribution of fine powders at ambient 

condition, but they observed a deviation from the predicted behaviour. Jacob and 

Weimer (1987) used the correlation of Foscolo et al. (1983) for the estimation of the 

particulate expansion of fine powder fluidised under pressure. They reported that the 

equation underestimated particulate expansion for the powder containing fines. 

However, they found that the empirical correlation from Abrahamsen and Geldart 

(1980a) could adequately describe their results for all pressures.

In this work, the Richardson and Zaki equation as well as the drag force correlations 

which are generally included in CFD simulations are used to describe the 6d and Ud 

characteristic curve of the powders. A summary of the correlations used is presented in 

Table 2.3 and Figure 2.2 shows the predictions obtained from the different correlations 

for a representative system. It can be seen that the correlations give a wide range of 

results. Therefore, one of the aims of this work is to examine how the drag force 

correlations can be modified to describe correctly the expansion behaviour of the 

powders studied. The drag force correlation that can predict well the system will be 

used in the stability criteria for the prediction of the minimum bubbling point.
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Table 2.3 Summary of the drag force correlations applied in this work

Author Correlations

Ergun

equation
A P = 1 5 0 ^ U2( l ; B)2+1.75( l -2e)pFU' 
L dp e e dp

Revised

Ergun

equation

AP =  pFU 2( l - e)ri7.3 + 0 3 3 6 U 8

L dp vReP )  

(Foscolo et al., 1983)

Richardson 

and Zaki
U,

Ar = dppF
F f

U = f  3.809 + -v/3-8092 + 1.832VAtY Pf 
'  '  P F d P

(Dallavalle, 1948)

4.8 + 0.1032Ar057 
1 + 0.043 Ar°57

(Khan and Richardson, 1989)

Ishii and

Zuber

( 1 9 7 9 )

FD =  CD P f U f p  (1 e )Ac 
2 Vp

CD =  2 4  (l + 0.1ReM0 7 5 )
R e M V M '

n  P F j^ F p jKeM -  —

/  ,  \ - 25e*n
M'm _ i  1— e „ — r\ ^  

— 1 6dm 0 . 6 2

M-f V e dm J
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Table 2.3 (Continued)

Author Correlations

Syamlal

and

O’Brien

(1987)

Fd= 3 (,_ s )epf fo.63 + 4.8 |U rm 1 û p
4 U ^ d p [  V Re J

dP Pf|ufp|Re = ------- !-----!•
M-f

Urm correlation developed by Garside and Al-Dibouni (1977)

U rm = 0.s(a  -  0,06 Rep + ^/o.0036ReP + 0 .12Rep(2B -  A ) + A 2)

A = s414

fQel2\s < 0 .8 5  
B = < R = 2.653 and Q = 0.8 

[sR,e > 0.85
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 Revised Ergun equation
 Ergun
 Richardson and Zaki
 Ishii and Zuber

Syamlal and O’Brien

Figure 2.2 Prediction of 8d and Ud characteristic curve using original pressure drop 

correlations for 45-53 pm narrow size cut powder

2.4 Prediction of the minimum bubbling point.

Geldart’s group A powder at fluid velocities higher than the minimum fluidization 

velocity initially expand uniformly. The expanded fluidized bed is said to be stable and
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is called a ‘non bubbling bed’. At higher superficial velocities, the fluidized bed can 

become unstable and bubbles appear in the fluidized bed.

The transition point between particulate and bubbling bed is the point where the first 

bubble appears in the fluidized bed. At this point, the voidage of the particulate bed 

reaches a maximum.

This transition can be seen as a stability problem and two different approaches have 

appeared in the literature, differing in the physical contributions that lead to the 

presence of a homogeneous expanded bed. The two approaches suggest either a purely 

hydrodynamic contribution or the resultant of inter-particle forces. The interparticle 

forces are based on the assumption of the existence of sufficiently strong electrostatic, 

van der Waals, or capillary forces that lead to the stability of the bed.

The stability criteria, based on the hydrodynamic consideration, were first mentioned by 

Harrison et al. (1961), who considered the stability of the spherical cap bubble in a 

fluidized bed and concluded that the bed was always unstable, and that bubbles always 

exist in a fluidized bed. According to this approach, only when the maximum bubble 

size is the same order of magnitude as the particle diameter the fluidized bed appears to 

be homogeneous. Pigford was the first to show that any two fluid model will lead to an 

intrinsically unstable bed (Gibilaro, 2001) and this was reported by Jackson (1963), 

Murray (1965), and Pigford and Baron (1965). These authors all considered the stability 

of the uniform fluidization linearising the fluid dynamic equations of change for a 

fluidized suspension. From their analysis, a small perturbation always propagates with 

time and gas fluidized beds should always be bubbling beds.
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Wallis (1969) developed the one dimensional wave theory for both single-phase and 

two-phase flows. He defined the term ‘wave’ as a propagation due to continuous 

changes in some variables and defined the term shock as a propagation due to a step 

change or a finite discontinuity. The most important waves, involved in the stability, are 

continuity and dynamic waves.

Continuity waves occur whenever there is a relationship between flow rate and 

concentration. The continuity waves propagate between two regions of different 

voidage and the equilibrium of forces is maintained on both sides of the wave and there 

is no inertia effect. The continuity wave velocity was proposed first by Slis et al. (1959).

U e = (l —s ) ^ -  (2  34)
de

Slis et al. (1959) applied the Richardson and Zaki (1954) equation and obtained:

U e = U tn(l -  e)en_1 (2 .35)

Dynamic waves, on the other hand, depend on the existence of an elastic force, which 

will accelerate material through the wave as a result of concentration gradients.

The application of the wave theory yields the important conclusion that the fluidised 

bed is not always unstable if a suitable expression can be found for the elastic force 

terms. The stability of the flow is governed entirely by the relative magnitude of the 

dynamic and continuity wave velocities. I f  the continuity waves overtake dynamic 

waves, the flow is unstable.

Verloop and Heertjes (1970) were the first to apply the concept of Wallis (1969) for the 

stability of fluidized beds. The equation of the continuity wave velocity from Slis et al.
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(1959) was applied. The equation of dynamic wave velocity was developed by 

considering that the particle phase has an elasticity E and the dynamic wave is then:

Assume that the fluidized system consists of vertical rows of particles, each individually 

supported by the fluid stream. A pulse given to one of the particles will be transmitted 

to the other particles, because of the increasing drag with decreasing distance between 

the particles. The transmission velocity is the longitudinal pulse velocity. By neglecting 

interparticle forces, the modulus of elasticity (E) can be defined by the drag coefficient- 

interparticle distance relation, eq. 2.37.

x = distance between particles 

Under laminar flow condition, the drag force correlation of Rowe (1961) was applied.

Foscolo and Gibilaro (1984) considered no effect of interparticle forces, adopting the 

approach of Verloop and Heertjes (1970). The drag force correlation developed by 

Foscolo et al. (1983) was employed for the calculation of the dynamic wave velocity 

and the correlation from Slis et al. (1959) was applied for the continuity wave velocity. 

The fully predictive stability criteria for whole range of flow from laminar, intermediate 

and turbulent, yields:

(2 .36)

AFD x + dp
E " (2 .37)

(2 .38 )
a = 1 for Rep < 2

a = 1.4 for 2< Rep < 500
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u ,  j
= 0.5611^/1- 8 8 " 1 (2.39)

Foscolo and Gibilaro (1987) derived a model for the description of fluidized bed. They 

considered the fluidized bed as an ‘inter-penetrating continuum’ and presented an 

interpretation of the terms in the equations of change that can account for the 

compressibility of the particle phase where the force can be transmitted between 

particles for particulate behaviours without the need to include particle-particle 

interactions. Their two-fluid model modifies the particle momentum balance;

Momentum balance - Particle phase

(l-s )p ,
dup
~dt

■ + u.
dup
dz

= FD - ( l - e ) p Pg - ( l - e ) f £ - F ,
dz FP ( 2.40)

Ffp Fluid-particle interaction force (Transmission force)

This transmission force is a function of the voidage. By considering the control volume 

to be large compared with the size of particles, the transmission force was added in the 

particle momentum balance equation. Applying the drag force correlation of Foscolo 

and Gibilaro (1984) and Gibilaro et al. (1985) the following expression for Ffp was 

obtained;

r- tt2 de 
FP — D P p   ̂ ( 2.41 )dz

where

U D = |3.2gdp( l - e ) ^ ^  ( 2.42 )
V P p
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Epstein (1984) and Jean and Fan (1992) modified the buoyancy force to be based on the 

density of the fluid alone. Jean and Fan (1992) modified the stability criteria of Gibilaro 

and Foscolo (1984) as follows:

Lettieri et al. (2001) generalised the particle bed model of Foscolo and Gibilaro (1987), 

allowing for the use of the experimentally determined values of n, the Richardson and 

Zaki expansion coefficient.

All these approaches include a correction term only in the particle momentum balance 

and this leads to a fundamental inconsistency in all these approaches. I f  the nature of the 

additional force term is a fluid-particle interaction, Newton’s third law is not fulfilled.

An alternative approach is to include a stress tensor in the dense phase, resulting from 

interparticle cohesion forces. Rietema et al. (1967) suggested that the origin of the 

elasticity is to be found in the existence of interparticle forces. This work discussed the 

interparticle forces in terms of van der Waals forces between the two neighbouring 

particles. Rietema (1973) showed that interparticle forces like cohesion and friction give 

a fluidized bed a sufficiently stable structure. It is questionable whether this is the case 

for highly expanded or liquid fluidized beds. Rietema (1973) also introduces an elastic 

term, now as a consequence of the interparticle forces. The stability criterion is based on 

Wallis’ analysis. The same approach was applied by Kai and Takahashi (1989).

Foscolo et al. (1985) introduced the effect of the interparticle forces into their analysis. 

They showed that the continuity wave velocity is unaffected, whereas the dynamic wave
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velocity increases with increasing interparticle attraction. However, they pointed out 

that the interparticle forces can play an important role only when there are very strong 

interparticle forces due to deformable particles, electrostatic or strong magnetic forces.

Brandani and Astarita (1996) included magnetic forces acting on the particles in the 

particle bed model of Foscolo and Gibilaro. The dynamic velocity with the inclusion of 

the magnetic effects becomes:

U £ = 3 . 2 g d , ( l - e ) g ^ - + ■ 18(' . f X; B° (2 .44)
p p  H  +  X P +  2 ( 1  -  s ) x p  j  P o P p

where

XP = Particle magnetic susceptibility

po = Permeability of free space

B0 = Mean induction

Mutsers and Rietema (1977a) introduced the interparticle forces and wall friction into 

the momentum balance of the dispersed phase and applied the perturbation theory to the 

linearized momentum equations. This leads to a stability criterion based on a dynamic 

equilibrium.

Kono et al. (1986a) also considered the dense phase as an elastic body and developed a 

model to describe the stability of the bed, based on Wallis’ analysis, with the inclusion 

of interparticle adhesion forces The tensile strength, which represents the particle 

cohesive force developed by the authors, was applied to formulate the dynamic wave 

velocity and the viscous term in Ergun equation was used for the continuity wave 

velocity.
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Brandani and Zhang (2004) derived a new model for the description of fluidized bed, 

which resolves the fundamental inconsistency of the Foscolo and Gilibaro particle bed 

model (Foscolo and Gibilaro, 1987). The equations of change are those of a two fluid 

model, but both the fluid and particle momentum balances are modified as shown 

below.

Fluid phase

ep,
duF
d t

+ u.
du.

o z

dp _ _
D ^  P f 8  e  ~  f F T  +  ^ F A ve  dz

(2 .45)

Particle phase

(l-e)p ,
dup
~d\

+ u,
dup
dz

= Fd - ( l - s ) p pg - ( l - 6 ) c p
dz

— F  — F  — F
PP FP PAve ^ ^  ^

The model is derived from the two-fluid formulation and the inclusion of the effect of 

the finite size of the particles. Fpp are additional particle-particle interactions; FFp are 

additional fluid-particle interactions; FAve are additional terms that result from averaging 

body forces over the finite dimension of the particles.

Brandani and Zhang (2004) argue that the term Fpp becomes dominant when the bed 

voidage is close to that of the fixed bed or when the velocity of the fluid is less than the 

minimum fluidization velocity. Once the bed is fluidized, FPP becomes negligible and is 

not considered in the determination of the minimum bubbling criterion.

The averaging procedure over a characteristic length 25, where 5 should be of the order 

of the particle diameter, leads to the following terms

3F
FD =FD + 5 - f -  (2.47)

dz
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To simplify their model, Brandani and Zhang (2004) introduce the quasi-equilibrium 

approximation which was applied in order to obtain the derivative of the drag force. 

Based on the quasi-equilbrium approximation, all quantities are a function of the void 

fraction and the derivative can be calculated at equilibrium.

5 F r

dz V ^  J Equil

de
dz

At equilibrium eq. 2.14 holds and

^-«(l-2eXp„-pF)g|^

and the particle momentum balance becomes

0 -e)p,
dup dup 

+ u,
dt

+

dz
= Fd - ( l -e )ppg

dz

8[2(l -s )pp + ( 2 s - l )p p ]g
de.

dz

while the fluid momentum balance becomes

epj
^du.

dt
+ u,

duF
dz

= - F d - e p Fg - s

de

dp
dz

-5 [ ( l -2 s )pp  + 2 e p F]g —
dz

( 2.48 )

( 2.49)

(2 .50)

(2.51)

To obtain the minimum bubbling criterion the equations of change are linearized and 

the drag force correlation of Gibilaro (2001) was used.

F d = — C d U 2 ( 1 - s ) e  
4 dn

- 3  8 (2 .52)

Where Cd is calculated from the Dallavalle (1948) equation.
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Following Wallis (1969) the criterion of minimum bubbling is expressed in terms of the 

continuity and dynamic wave velocities:

U e = U D (2 .53)

where

u = 0 - ^ 1  = l z i  - i ?U—
v 3e JEqu,i e 2 + dCg_ 5 f L (2 .54)

dRep CD

and the dynamic wave is given by

Un =%/v2 -G + V (2.55)

y  1 e P f U

b e p p + ^ - e ^ ,

G =
1 % FU 2 -8 [ ( l - e ) p p  + spF]g

(2.56)

P̂p 0 e)pF

A further aim of this study is to validate the minimum bubbling criterion of Brandani 

and Zhang (2004) with the powders used in this work, that are non cohesive. Therefore, 

the influence of the inter-particle force on the bed expansion behaviour and the 

minimum bubbling point should be negligible.

Although other correlations for the minimum bubbling point exist in the literature, such 

as that of Abrahamsen and Geldart (1980a), these will not be used in the present study, 

because the emphasis will be on correlations that can be used in CFD simulations of 

fluidized beds. Therefore, the stability criterion developed by Brandani and Zhang 

(2004) is used to describe the minimum bubbling point of the powders studied, since the 

experimental results on the narrow size-cut powders and the appropriate drag force
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correlation can be used to examine the voidage dependency of the characteristic length, 

6, of this model.
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Chapter 3: Materials and Methods

3.1 Introduction

In this study, the fluidization characteristics of different sizes of powders belonging to 

group A of the Geldart classification were investigated using the fluidization and de- 

fluidization experiments and the 1-valve and 2-valve bed collapse experiments. The 

fluidization and de-fluidization experiments allow us to observe fluidization properties 

obtained from the measurement of pressure-drop, while the 1-valve and 2-valve bed 

collapse experiments are carried out to observe the bed expansion behaviour and to 

determine the properties of the dense phase in a bubbling bed.

In this Chapter the properties of the materials and the full description of the 

experimental apparatus will be presented. While the interpretation of the fluidization 

and de-fluidization experiments is straightforward, the correct analysis of the 1-valve 

and 2-valve bed collapse experiments will require the formulation of an appropriate 

model, which will be presented in Chapter 4.
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3.2 Experimental set-up

Data Acquisition 

Board

Experimental Rig

________ ’ r_______

Interface

box

Compressed Air

Figure 3.1 Experimental set-up

Figure 3.1 shows a schematic diagram of the connections of the experimental set-up. 

The compressed air is fed to the rotameter, which is used to control the air flow rate. 

The fluidized beds are instrumented with pressure ports and a lateral window for direct 

visual observation of the fluidization dynamics is present. The pressure readings are 

recorded via an interface box connected to the data acquisition board of the computer, 

which is also used to obtain digital films of the bed dynamics.

3.2.1 Fluidization beds

Figure 3.2 shows the two columns used for the fluidization experiments reported in 

Chapter 5. The column diameters are 0.127m ID and 0.243 m ID and were used to 

ensure that the experimental results are independent of the column size. After an initial
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validation of this assumption, most of the experiments were carried out in the smaller 

0.127 m ID column, since, especially for the experiments with the narrow particle size 

cuts, less solid material is required and for the same superficial velocity less gas is 

consumed.

Y IY IW Y 1

0.127m ID

Indicator light 

Digital camera

Pressure
Fixed scale

transducer

Discharge valve 

Windbox

Figure 3.2 Experimental apparatus

From Figure 3.2, it is possible to see that the system is equipped with a three-way valve 

(solenoid type), the inlet being connected to the rotameter and one outlet is connected to 

vent and the other to the windbox of the fluidized bed. A discharge valve (solenoid 

type) is also connected to the windbox in order to allow the operation of the bed 

collapse experiment in which the air residue is vented, i.e. the 2-valve experiment. To 

eliminate any powder loss from the fluidized bed, a second distributor plate is placed at 

the top of the column.
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The inlet valve, the discharge valve and an indicator light are controlled by the interface 

box. The inlet valve is switched between feeding the windbox and venting to air, while 

a synchronous control opens the discharge valve and turns on the indicator. When 

carrying out visual observations, the indicator is placed in the view of the digital camera 

in order to mark the exact start of the experiment. The data logging system records also 

the position of the valve and the pressure data are obtained in spreadsheet form through 

the Labtech Notebook software.

A linear scale is fixed next to the window and has been calibrated with a rigid ruler. The 

signal from the web cam of the computer is recorded using the windbox movie maker 

software, which also allows the control of the camera and the frame by frame analysis. 

To measure the bed pressure drop, pressure transducers are connected to the windbox 

and the freeboard, which is typically at 0.70 m or 0.80 m above the distributor and well 

above the top surface of the bed of the particles. In addition, pressure transducers are 

also mounted vertically along the column to measure the vertical differential pressure 

drop profile from 0.05 m to 0.60 m above the distributor; with a probe spacing of 0.10 

m. The exact dimensions of the pressure ports, as well as those of the columns will be 

summarised in section 3.2.2.
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3.2.2 Dimension of the fluidization column

•  Column diameter

0.190 m

(a)

0.243 m
0.300 m

(b)

Figure 3.3 Inside diameter of columns (a) 0.127 m ED and (b) 0.243 m ID

• Winbox dimensions

1
0.1422niiii

™ -----

0.150 mi

i
L

i

0 127 m' 0 243 m

(a) (b)

Figure 3.4 Winbox dimension for (a) 0.127 m ED and (b) 0.243 m ED
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• Probe locations -  relative distances.

1.0 m

0.150 ni

0.10074m
0.10074m

,0.10074m
,0.10074m 
0.10074m
0.10074m
0.10074m
0.10074m
0.10074m 

T 0.05422m

0.099m
0.099m

0.099m
0.099m
0.099m
0.099m
0.099m
0.099m

' 0.099m 
It  0.099m

(a) (b)

Figure 3.5 Probe locations for (a) 0.127 m ID and (b) 0.243 m ID

• Offset of the window from the inner wall of the column

The viewing windows are made of Plexiglas and their thickness is slightly less than that 

of the column walls. For the 0.127 m ID column, the front window plate leaves a gap of 

approximately 0.003 m and the back window plate is lined up with the column wall. For 

the 0.243 m ID column, the front and the back plates are off approximately by 0.002 m. 

These exact dimensions become important when comparing the pressure drops in the 

two columns.
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The dimension of the window (inner wall side) is shown in Figure 3 .6.

0.333 m

0.645 m

Window

0.0494 m

0.0753 m

Figure 3 .6 Dimension of the window from the inner wall of the column

• Fixed scale calibration 

On applying the tape scale on the side of the column it is difficult to stretch the scale 

exactly and for accurate measurements a rigid ruler was used as a calibration. 

Correction factors of 0.998 and 0.99 have to be applied to the readings for the 0.127 m 

ID and the 0.243 m ID column respectively.

3.2.3 Rotameters

With reference to Figure 3.7, only the 3 rotameters named A, B, and C were used in this 

study. At room temperature and atmospheric pressure, the range of the air flow rates of 

rotameters A, B, and, C are 0-8 L/min, 0-40 L/min and 0-230 L/min respectively.
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Fully opened

Pressure gauge

Flow control valve

Compressed air (consl

Figure 3.7 Rotameters utilised in this work

At zero flow rate, all the flow control valves (bottom valve) and the top valves are 

closed, except the one of the rotameter in use, which is fully opened. The compressed 

air available from the main supply is at 100 lb/in2, with a relative humidity at room 

temperature of approximately 60% as measured by a wet bulb thermometer. During the 

experiments the pressure at the inlet of the rotameter was reduced to 20 lb/in2.

At different air flow rates, the control valve is regulated until the float is stable and the 

rotameter scale is read at the top rim of the float. In addition, at each air flow rate, the 

pressure drop from the pressure gauge, representing the pressure loss from the inside the 

rotameter to the windbox, is also recorded.
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The rotameter flows were calibrated using a volumetric air flow meter. The meter is a 

typical gas meter with a maximum pressure of 2.9 lb/in2, the minimum air flow rate of

0. 267 L/min and the maximum air flow rate of 41.66 L/min.

3.2.4 Interface box and the data acquisition board

The interface box has three functions. The first function is to control the inlet valve, the 

discharge valve and the indicating light. Secondly, it receives the signals from the 

pressure transducers which are transmitted to the data acquisition board. Finally, it 

provides the power supply to the pressure transducers.

3.3 Materials

33.1 Powders

The glass ballotini were purchased from Guyson International Limited. The glass 

ballotini was used in this study because of the standard properties of this material, 

which are non-porous, spherical and non-cohesive. Therefore, the uncertainty due to 

porosity, shape irregularity and particle cohesion will have no influence on the 

fluidization characteristics, studied. This also yields more reliable results needed to 

validate the theoretical models.

The size range of the ballotini is between 22 to 106 pm. As mentioned in Chapter 1, this 

covers the whole range of Geldart’s Group A powders at this density.
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From the “natural” size distribution obtained from the manufacturer, powders of narrow 

size cuts and bimodal mixtures were prepared and studied. The detailed discussion of 

the particle size analysis, as well as the particle density measurements is given in 

Appendix A. The sieve analysis as well as the laser light scattering method is used for 

the size analysis, while the density bottle using distilled water as a medium is used for 

the density measurement.

Four different average sizes of the natural size distribution powders were studied. They 

are 37 pm, 46 pm, 72 pm and 89 pm. For 37 pm, two batches were used, namely 37 pm 

(Batch 1) and 37 pm (Batch 2). The particle size distributions of these powders are 

shown in Figure A1 to A5 in appendix A. The Summary of the powder properties is 

shown in Table 3.1. For this natural size distribution, the powder contains particles of 

the adjacent sieve size cut. In other words, the powder contains the particles of adjacent 

size and the mixture is continuously dispersed.

Table 3.1 Properties of ballotini powder with natural size distribution

dp (nm) Density (kg/m3) Shape %

fines

Dispersion

37 (batch 1) 2480 Sphere 64 Poly dispersion

37 (batch 2) 2480 Sphere 62 Poly dispersion

46.61 2480 Sphere 44 Poly dispersion

72 2480 Sphere 0 Poly dispersion

89 2480 Sphere 0 Poly dispersion
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To study the effect of each individual size cut on the powders with a natural size 

distribution, the powders were classified using sieving, according to the standard 214 

consecutive sieve aperture series. Based on the sieve analysis of the natural size 

powders, these original powders were classified into six narrow size cuts, which are 0- 

45 pm, 45-53pm, 53-63pm, 63-75pm, 75-90pm and 90-106pm. The particle size 

distributions of these powders are shown in Figure A6 to A ll  in appendix A. The 

summary of the powder properties is shown in Table 3 .2.

Table 3.2 Properties of ballotini powder with narrow size cut

dp (pm) Size range (pm) Density (kg/m3) shape %  fine dispersion

33.50 0-45 2480 Sphere 100.0 Poly dispersion

45.10 45-53 2480 Sphere 7.5 Mono dispersion

55.08 53-63 2480 Sphere 0 Mono dispersion

68.41 63-75 2480 Sphere 0 Mono dispersion

81.81 75-90 2480 Sphere 0 Mono dispersion

97.82 90-106 2480 Sphere 0 Mono dispersion

Finally, bimodal mixtures of different narrow size cut were prepared in such a way that 

two narrow size powders of different size by three consecutive sieve sizes were mixed 

in a varied percentage. As a consequence, mixtures of 106-90 pm and 53-45 pm were 

prepared, as well as mixtures of 90-75 pm and 45-0 pm (Fines). This is to study 

behaviour of the bimodal mixture, in comparison with the narrow size cut and the 

natural size powder. For the later bimodal mixture, the effect of fines will be studied in 

comparison with the narrow size cut powders and the natural size powder. The
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summary of the powder properties is shown in Table 3.3. At the start of experiments 

using the mixed powders, a high gas flowrate is used to ensure proper mixing.

Table 3 .3 Properties of ballotini powder with mixed size cut

dp (pm) Size range (pm) Density

(kg/m3)

shape % fine dispersion

60.21 25%(0-45)+75%(75-90) 2480 Sphere 25 Bimodal

47.57 50%(0-45)+50%(75-90) 2480 Sphere 50 Bimodal

39.31 75%(0-45)+25%(75-90) 2480 Sphere 75 Bimodal

75.70 25%(45-53)+75%(90-106) 2480 Sphere 0 Bimodal

61.74 50%(45-53)+50%(90-106) 2480 Sphere 0 Bimodal

52.13 75%(45-53)+25%(90-106) 2480 Sphere 0 Bimodal

3.3.2 Distributor characteristics

The distributor has the important function of ensuring a uniform gas flow at the inlet of 

the fluidized bed. This can greatly influence the bubbling properties and the structure of 

the bed.

There are two types of distributors: porous plates and perforated devices. Porous plates 

are typical in small scale applications and ensure a very uniform gas inlet condition. 

Perforated devices are widely employed in industrial equipment, due to the ease of 

scale-up and the reduced pressure drop. The drawbacks of the perforated devices are the 

presence of stagnant zones and the solids attrition caused by gas jet formation.
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On selecting a distributor, the most important consideration is that it should distribute 

the gas uniformly, and should not induce excessive resistance to the gas flow. In 

addition, the distributor chosen should prevent solids loss by leakage, minimize solid 

erosion and avoid choking.

A bronze sintered distributor, with 0.050 m thickness was used in the experimental set­

up. In order to investigate the distributor porosity effect on fluidization properties, two 

average pore sizes were used: a 7 pm average pore size with a permeability constant of 

2.5* 10-8 cm2 and a 35 pm average pore size with permeability constant of 30* 10 8 cm2. 

The theoretical distributor pressure drop can be calculated from:

AD Q^F^d / -> i  \
APDia=_^ r  <3 1 )

APoist is the distributor pressure drop; Q is the air flow rate, A is the distributor cross 

section area; O is the permeability constant and Xd is the thickness of the distributor.

It should be noted here that the permeability constant is the ability of a porous material 

to pass gas or liquid on application of a differential pressure, under the condition of 

viscous flow.

33 3  Pressure transducer

The pressure transducers used in this study are series 851 and 860 pressure transducers 

from AutoTran Incorporated. The electronic signal from the pressure transducer is 0-5 

volts and this voltage signal is converted into kPa pressure units using a calibration. The 

locations, the pressure range, the data logging frequency, and, the input/output channel 

are shown in Table 3.4.
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Table 3 .4 Pressure transducer information

Pressure

transducer

Mode 

(absolute or 

differential)

Location from 

distributor 

(m)

Pressure 

range (kPa)

I/O

channel

Data

logging

freq(Hz)

A Absolute -0.05 m 

(Windbox)

0-13.79 8 90/15

H Differential 0.05-0.15 +/-3.45 2 90/15

E Differential 0.15-0.25 +/-1.49 3 90/15

F Differential 0.25-0.35 +/-1.49 4 90/15

G Differential 0.35-0.45 +/-1.49 5 90/15

B Differential 0.45-0.50 0-1 6 90/15

C Absolute 0.65 +/-0.50 7 90/15

D Absolute 0.75 0-1 1 90/15

3.3.4 Web cam digital camera and the movie maker software

The web cam, Logitech QuickCam Pro4000 with a resolution of 640 by 680 video 

pixels was used in this study. The digital camera was controlled using the Windows 

Movie Maker software. The acquisition speed is set at 30 frames/s, but while the
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program allows grabbing pictures at the speed of 30 frames /sec, the frame analysis can 

be carried out only every 3 frames. This system allows the determination of 10 points/s, 

which is perfectly adequate for bed collapse experiments but accuracy and frequency of 

this measurement does not allow the statistical analysis of bed surface fluctuations.

3.3.5 Data acquisition program

The Labtech Notebook data acquisition software used converts the analogue signal from 

the pressure transducers according to:

A P(kPa) = Scale * (volts) + offset (3 .2 )

The pressure transducers are calibrated with a water U-tube manometer. By using a T- 

connection, both the pressure transducer and the manometer are connected 

to the pressure port located at the windbox. At different air flow rates, the distributor 

pressure drops, read from the pressure transducer and the manometer are recorded. The 

calibration curves are shown in the Appendix B.

The conversion factors used for each pressure transducer and inserted in the data 

acquisition software are reported in Table 3.5.
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Table 3.5 Conversion factor

Name Input/output

channel

Pressure range 

(kPa)

Conversion factor

Scale Offset

A 8 0-13.79 3.447 -3.447

H 2 +/-3.45 1.724 -5.171

E 3 +/-1.49 0.7464 -2.2392

F 4 +/-1.49 0.7464 -2.2392

G 5 +/-1.49 0.7464 -2.2392

B 6 0-1 0.2488 -0.2488

C 7 +/-0.50 0.2488 -0.7464

D 1 0-1 0.2488 -0.2488

Indicating light 0 - 1 0

3.4 Experimental methods

3.4.1 Rotameter calibration

1. Calibration of rotameter A, using the airflow meter.

• Connect air inlet tube to the air flow meter

•  At each rotameter scale, measure volume of air passing through the meter in a 

given period of time and read the rotameter pressure gauge.

•  Assuming that the pressure drop inside the meter is negligible, volumetric flow 

rate of air is at atmospheric condition (Qatm) and the pressure reading from 

rotameter pressure gauge is the pressure drop inside the rotameter (AProta)

• Rotameter scale versus Qatm is the rotameter A characteristic (Figure 3.8)
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2. Calibration fine distributor in 0.243 m ID column

• Empty the column

• Connect the air inlet tube to the windbox

• Make sure that inlet valve is opened and discharge valve is closed

• At different rotameter scales for A, B and C, record the distributor pressure drop 

(APoist), using the pressure transducer at the windbox.

• Plot APoist versus Qatm from rotameter A and the mathematical correlation can be 

obtained (Figure 3.9)

3. Calibration of rotameter B and C

• Disconnect the inlet tube from the windbox

• At different rotameter scale, record the pressure from the rotameter pressure 

gauge. This is the pressure drop inside the rotameter (APr(>ta) B and C.

• From Figure 3.9 and the AP^st of rotameter B and C, Qatm versus rotameter scale 

of B and C can be obtained.

The rotameter characteristic curve is the graph of rotameter scale versus Qatm and of 

rotameter scale versus AProta These can be seen in Appendix C.
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Figure 3.8 Rotameter A characteristic curve
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Figure 3.9 Fine distributor pressure drop in 0.243 m ID versus the atmospheric air flow

rate from rotameter A
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3.4.2 Distributor calibration

• Empty the column

• Connect the air inlet tube to the windbox

• Make sure that inlet valve is opened and discharge valve is closed

• At different rotameter scale A, B and C, record the distributor pressure drop

(APdist), using the pressure transducer at the windbox.

• Record the pressure reading at the rotameter pressure gauge, which is now 

pressure drop inside rotameter and windbox (AProta+windbox)

•  Convert Qatm to windbox air flowrate (Qwindbox)

14.7
Qwmdbox -  Qatm  A .  7  \  ( 3 . 3 )

\  windbox + rota ^^ro ta  /

•  Plot APdist versus Qwindbox

Distributor characteristic curves can be seen in Appendix C.

3.4.3 Discharge valve calibration

• Empty the column.

• Connect the air inlet tube to the windbox.

• Make sure that inlet valve is opened and discharge valve is opened

• At different rotameter scale A, B and C, record the distributor pressure drop

(APdist), using the pressure transducer at the windbox.

•  Record the pressure reading at the rotameter pressure gauge, which is now 

pressure drop inside rotameter and windbox (AProta+windbox)

• Convert Qatm to windbox air flowrate (Qwindbox)
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Q (14.7 + AP,
14.7

windbox
P̂reu )

(3.4)
windbox +rota

• Use the distributor characteristic curves to calculated air flow rate passing 

distributor (Qd)

• Calculate the air flow rate passing discharge valve (Qv)

•  Plot APdist versus Qv 

Discharge valve characteristic curves can be seen in Appendix C.

3.4.5 Fluidization experiments

A fluidization experiment is carried out by varying the inlet gas superficial velocity 

from zero velocity up to approximately 4-8 times the minimum bubbling velocity. At 

each velocity, the total bed heights, the pressure drops in the windbox and in the 

freeboard, and the vertical differential pressure drop profiles were recorded.

With regard to the total bed height, the calibrated scale fixed next to the column’s 

window was used to indicate the height. The pressure drops in the windbox and the 

freeboard and the vertical differential pressure drop profiles were recorded over 90 sec 

with the data logging frequency of 15 Hz or 90 Hz.

3.4.6 De-fluidization experiments

A de-fluidization experiment is then carried out by reducing the inlet superficial gas 

velocity from approximately 4-8 times the minimum fluidization velocity to zero.

Qv =Qwindbox -Qd (3.5)
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Likewise, the total bed heights, the pressure drops in the windbox and the freeboard, 

and the vertical differential pressure drop profiles were recorded.

3.4.7 Bed collapse experiments

Two modes of the bed collapse experiments were carried out, termed ‘ 1-valve 

experiment’ and ‘2-valve experiment’ respectively.

For the 1-valve experiment, the bed of particles is fully fluidized at a certain inlet 

superficial gas velocity. Then, the inlet valve is suddenly shut, which is synchronized 

with the switching on of the indicator light bulb. After this, the bed surface will collapse 

until all particles are at rest and the bed collapse process finishes. In this case the 

windbox is not vented and any residual gas escapes through the collapsing bed.

For the 2-valve experiment, the bed of particles is fluidized as before. However, once 

the inlet valve is shut down, the discharge valve, together with the indicator light bulb, 

is synchronized to be turned on. Similarly, the bed surface collapses until the settlement 

of all particles is reached. In this case the gas can escape the bed both from the top and 

from the windbox.

During the experiment, the variation with time of the bed height, the pressure drop in 

the windbox and freeboard, and the vertical differential pressure drop profile was 

continuously recorded using the web cam digital camera and the differential pressure 

transducers. In practice, the recording of the bed height is started 5 seconds before 

energizing the valves, while the pressure measurement is started 15-20 seconds before.
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After energizing the valves, the recording of the bed height is carried out until the end 

of the bed collapse process, while the pressure signals are recorded for 70-75 seconds, 

which ensures that the flow of gas has reached completion within the recording time.

The bed collapse experiment is generally used to study to dense phase properties. 

Figure3.10 shows the bed collapse curve from 1-valve and 2-valve experiment for 46 

pm natural size powders, Uo < Umb. The collapse curves from 1-valve and 2-valve 

behave differently. However, these should yield one set of the dense phase properties. In 

Chapter 4, a new model for the interpretation of both these experiments is developed, 

which can be used to interpret the bed collapse curve and return the intrinsic properties 

of the dense phase, which are independent of the system configuration
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Figure3.10 Bed collapse curves from 1-valve and 2-valve experiment, 46 pm natural

size powder, U 0<Un,b
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3.5 Parameter calculations

Prior to obtaining the finalised fluidization properties, some parameters, which are the 

column cross section area, the windbox volumetric flow rate, the windbox inlet 

superficial velocity, corrected bed height, bed voidage, and total bed height, need to be 

calculated from the raw experimental results. The parameter calculations are as follow;

For 0.127 m ID

• Column cross sectional area

0 1272
Area = 71— - —  + (0.0753 * 0.003) (3.6 )

4

• Windbox volumetric flow rate

q  - q  _________ l iZ ---------------  ( 3 7 ^
(14.7 + -  AProla) ( 3 7 }

• Windbox inlet superficial velocity

U = (3 .8 )
O A V /Area

• Corrected bed height

Corrected _ bed _ height (L) = L reading * correction _ factor (3 .9 )

• Bed voidage (from corrected bed height)

W_
8 = 1-----

(0 127)2 (3 .10)
PP [Ot ~ -----— L) + ((L -  0.04941) * 0.0753 * 0.003)]

4

• Total bed pressure drop 

The total bed pressure drop can be backed out from the windbox pressure drop using the 

following expression.
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^  windbox ^̂ freeboard b̂ottmdist ’Qwindbox (3.11 )

AP = Total bed pressure drop (kPa)

APwindbox = Piezometric windbox pressure drop (kPa)

AP freeboard = Freeboard pressure drop (kPa)

Abottmdist = Bottom distributor pressure drop coefficient (kPa.min/L)

For 0.243 m ID

•  Column cross section area

0 2432
Area = 7i —-------- 1- (0.07 * 0.004) (3 .12)

4

• Windbox volumetric flow rate

14.7
Q w m d b o x  -  Q a tm  7  \ (3 .13)

'  ^  windbox + rota ‘̂ r o t a  )

•  Windbox inlet superficial velocity

U o = 0 wmdbox_ (3 .14)
Area

• Corrected bed height

Corrected _ bed _ height (L) = L reading * correction _ factor (3 .15)

• Bed voidage (from corrected bed height)

W_
6  =  1 ----------

(0 243)2 (3 .16)
PP [(*: —-----— L) + ((L -  0.04941) * 0.07 * 0.004)]

4

•  Total bed pressure drop

A P  A P ^ ^  A P fjreejK)ar{j Abcttmdist Qwindbox ( 3.17 )

The last terms in the RHS of eqs 3.6 and 3.12 take into account the small area 

associated with the windows that are not perfectly aligned with the walls.
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3.6 Summary of the experiment conditions

In conclusion, experimental studies on the fluidization characteristic of powders, 

belonging to Geldart’s Group A powder, were carried out on the natural size powders, 

the narrow size cut powders, and the bimodal mixture powders, In addition to these 

experiments, the effects of the column diameter, the distributor porosity and the initial 

bed height on the fluidization characteristic of the same powder were also investigated. 

The summaries of the experimental conditions are reported in Table 3.6 to Table 3.10.

Table 3.6 Experimental conditions for the study of the effect of the initial bed height 

and the column diameter on the fluidization properties

dp (pm) Dispersion ID  (m) Li

(m)

Wp(kg) Distributor type U0 (mm/s)

Top Bottom

37(B1) Poly dispersion 0.127 0.40 7.7971 Fine Fine 0-8Umb

0.30 5.4022 Fine Fine 0-8Umb

0.243 0.40 28.4350 Coarse Fine 0-8Umb

0.30 19.3876 Coarse Fine 0-8Umb

72 Poly dispersion 0.127 0.40 7.7971 Fine Fine 0-8Umb

0.30 5.4022 Fine Fine 0-8Umb

0.243 0.30 19.3876 Coarse Fine 0-8Umb

37(B2) Poly dispersion 0.127 0.40 7.7971 Fine Fine 0-8Umb

0.30 5.4022 Fine Fine 0-8Umb
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Table 3.7 Experimental conditions for the study of the effect of the distributor porosity

on the fluidization properties

dp (|xm) Dispersion ID  (m) Li

(m)

Wp(kg) Distributor type U0

Top Bottom

72 Poly dispersion 0.127 0.30 5.4022 Fine Fine 0-8Umb

0.30 5.4022 Coarse Coarse 0-8Umb

0.243 0.30 19.3876 Coarse Fine 0-8Umb

0.30 19.3876 Fine Coarse 0-8Umb

Table 3.8 Experimental conditions for the study of the fluidization properties of natural 

size distribution powder at the different average particle diameter

dp (tim) Dispersion ID (m) Li(m) Wp(kg) Distributor type U0

Top Bottom

37(B1) Poly

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

37(B2) Poly

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

46.61 Poly

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

72 Poly

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

89 Poly

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb
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Table 3.9 Experimental conditions for the study of the fluidization properties of the

narrow size cut powder at the different average particle diameter

dp

(pm)

Size range 

(pm)

Dispersion ID (m) Li

(m)

W p

(kg)

Distributor type Uo

Top Bottom

33.50 0-45 Mono

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

45.1 45-53 Mono

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

55.08 53-63 Mono

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

68.41 63-75 Mono

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

81.81 75-90 Mono

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb

97.82 90-106 Mono

dispersion

0.127 0.40 7.7971 Fine Fine 0-8Umb
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Table 3 .10 Experimental conditions for the study of the fluidization properties of mixed 

size cut powder at the different average particle diameter

dp

(pm)

Size range 

(pm)

Disper­

sion

ID  (m) Li

(m)

wp

(kg)

Distributor type Uo

Top Bottom

60 25%(0-45)+

75%(75-90)

Bimodal 0.127 0.40 7.7971 Fine Fine 0-8Umb

47 50%(0-45)+

50%(75-90)

Bimodal 0.127 0.40 7.7971 Fine Fine 0-8Umb

39 75%(0-45)+

25%(75-90)

Bimodal 0.127 0.40 7.7971 Fine Fine 0-8Umb

75.70 25%(45-53)+

75%(90-106)

Bimodal 0.127 0.40 7.7971 Fine Fine 0-8Umb

52.12 50%(45-53)+

50%(90-106)

Bimodal 0.127 0.40 7.7971 Fine Fine 0-8Umb

61.73 75%(45-53)+

25%(90-106)

Bimodal 0.127 0.40 7.7971 Fine Fine 0-8Umb

Chapter 3: Materials and Methods 95



Chapter 4: Bed Collapse Model

4.1 Introduction

The bed collapse technique, introduced in 1967 by Rietema is one of the standard 

techniques widely used to study hydrodynamic properties of a fluidized bed. The 

experiment is carried out allowing the fluidized bed to reach a steady state condition 

with a subsequent abrupt shut off of the gas supply. As a result, the fluidizing bed starts 

to collapse and the time dependence of the bed surface is recorded. It is also possible to 

measure simultaneously the gas pressure along the bed height. The experiment is 

schematically represented in Figure 4.1

Three distinct regions can be distinguished (Figure 4.1). the bubble escape (I), where 

the surface fluctuates due to gas bubbles reaching the top of the bed; the sedimentation 

stage (II), where the top section of the bed is still fluidized, while the bottom has settled 

to a fixed bed and interface between these two regions is moving upward while the bed 

surface is collapsing; the consolidation stage (III), where the fixed bed settles to a final 

compacted bed. The sedimentation stage yields a linear region, which is used to
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extrapolate the dense phase height back to time 0 to obtain the dense phase voidage. The 

bed collapse curve also yields the collapse time, tc.

t = 0 0< t<tbub t =  tbub tbub< t <tc t = tc t =  tend

(a)

Height
in

tend Time0 tc

Figure 4 .1  Illustration of (a) the collapsing fluidized bed and (b) its corresponding

collapse curve

The primary information is from the sedimentation collapse curve, which is the y- 

intercept value from the extrapolation of sedimentation curve, the slope of the 

sedimentation curve, called the collapse rate, and the fluidization characteristic from the 

overall shape of the collapse curve. For instance, a powder will belong to Geldart’s 

Group A powder if the collapse curve has all three stages. For Group B powders, the 

typical collapse curve will have only the bubble escape stage and the solid consolidation
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stage. Furthermore, for group A powder homogeneous fluidized bed, there will be no 

bubble escape stage. Finally, for group C powders where the fluidizing bed tends to 

show channelling effects, the bed collapses faster at the beginning and it slows with 

time. This is due to the gradual disappearing of the channels.

Slis et al. (1959) were the first to analyse the behaviour of a homogeneously expanded 

bed subject to a variation in inlet flows. They developed a kinematic approach, i.e. 

assuming that the momentum balance instantaneously equilibrates, and the fluid is 

incompressible. The theory is based on the continuity equation and applies the 

Richardson and Zaki (1954) equation. Their results were confirmed by Gibilaro et al. 

(1984). These approaches were developed for liquid beds, where the inlet velocity can 

be changed abruptly. In gas systems, the gas flow is distributed using a porous disc and 

a windbox, therefore even when the gas inlet is shut off there is a residual gas flow into 

the bed.

Abrahamsen and Geldart (1980b) were the first to realise that the gas in the windbox 

will have an effect on the collapse rate and Tung and Kwauk (1982) included this effect 

in their analysis by considering the total gas flowing from the windbox and assuming an 

average of this over the entire collapse process. Barreto et al. (1988) extended the same 

approach to include the bubble escape with a bubble wake region. With the application 

of the constant average gas deaeration rate (Tung and Kwauk, 1982), Nei and Liu 

(1998) studied the collapsing process based on the analysis of pressure variations with 

time during the collapse process.
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The parameters of the bed collapse experiment reported in the literature are therefore 

the dense phase voidage and the standard deaeration time defined by Geldart and Wong 

(1984):

tc I s / V 1) 
L. d U /d t  + U dis

where U = Average gas velocity in the distributor

Li = Initial fixed bed height

Ld = Height of the dense phase

Li = Height of the sedimentation bed

tc = Collapsing time

(4.1)

To minimize the effect of the windbox gas residue there are various design options: low 

pressure drop distributor; small windbox volume; the installation of a venting valve 

(second valve) in the windbox, which is synchronized, with the gas inlet valve. While 

the first options will reduce the efficiency of the gas distribution at the base of the 

fluidized bed, the use of a second valve is considered the best option and recent 

measurements are typically carried out using this system (Lettieri et al., 2000).

Park et al. (1991), who were among the first to use the bed collapse experiment with a 

venting valve in the windbox, carried out a careful experimental study of the effect of 

the second valve and suggested that the aperture of this valve should be adjusted in 

order to optimise the discharge of gas from the windbox. More recently Lettieri et al. 

(2 0 0 0 ) observed a significant difference in the collapse rate, depending on the use of 

one or two valves.
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Since what is measured is a property of the powder, it should be independent of the 

system’s configuration. It should be possible to predict the response of a 2-valve system 

from that of a 1 -valve system and vice versa, and this would allow an experimental 

confirmation of the validity of the measured particle properties. Therefore, in this work, 

the bed collapse model was developed with the inclusion of the effect of the design 

configurations, which are the windbox volume, the distributor pressure drop and the 

system with 1- or 2-valve configuration. The model can predict the bed collapse curve, 

the upward movement of the fixed bed interface, the transient pressure drop profile, the 

bubble escape time and the de-aeration times. By taking these system configurations 

into account, the model can give the intrinsic value of the dense phase voidage, dense 

phase superficial velocity and the bed voidage.

4.2 Bed collapse model

To derive the model equations, it is useful to start with the description of the dynamic 

response of a homogeneously expanded bed (Figure 4.2b). We will see that the bubble 

escape region can be described very easily from a simple overall mass balance, and can 

be superimposed on the solution at a later stage. We will not consider the consolidation 

stage, which is typically modelled as a first order kinetic process (Tung and Kwauk, 

1982) even though the first part of this process is most likely due to the upward 

propagation of voidage waves (Brandani, 2005).
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Zone 0 

Zone 1

Zone 2

0 < t < tbub t tbub t ^  tbub

(a) (b) (c)

Figure 4.2 Schematic of (a) bubble escape stage, (b) and (c) sedimentation stage for 1 - 

valve configuration system

The 1-valve configuration is easier to interpret since as soon as the gas inlet is switched 

off, the homogeneously expanded bed will start to collapse and a settled bed section will 

form at the bottom and rise upwards. Between these two regions of differing void 

fractions is a moving boundary where gas is displaced since the bottom section will 

have a smaller void fraction, i.e. 6 i > 8 2 . In the 1-valve configuration, the maximum 

pressure will always be in the windbox and the gas generated at the interface (L2) will 

always flow upwards. The situation is slightly more complicated when the second valve 

is introduced, since the windbox pressure will drop below the pressure at the interface 

(L2) and the gas generated at the interface (L2) will partition itself and flow both 

upwards and downwards. This must be taken into account when deriving the mass 

balances.

■Control

volume
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The main assumptions made in deriving the model equations are:

• One-dimensional system

• In the bed sections the fluid is incompressible.

• Negligible inertial effects.

• The top fluidized section remains at a constant void fraction ei corresponding to 

a gas velocity Ud

• The gas in the windbox is compressible and is considered ideal.

4.2.1 Sedimentation stage

1-valve configuration

The solid mass balance yields (Figure 4.2 (b))

V b = ( 1 - 8 2) L 2 + ( l - e 1)(L, - L 2) = ( l-e ,)L ,  +(e, - e 2 )L 2 (4.2)

where V b = Volume of the bed occupied by the particles 

Li = Height of the sedimentation bed (zone 1)

L2 = Height of the fixed bed zone (zone 2)

61 = Bed voidage in zonel

6 2  = Bed voidage in zone 2

From eq. 4.2

dl_/ 2 1 c j dL/ j

dt e2 £j dt

The gas phase mass balance across the bottom section yields

(4.3)

u, = - (e2 -  £|) ^  = U dl! -  (1 - e , ) ^ -  (4.4)dt dt

where Ui = Superficial velocity of gas passing zone 1

UdiS = Superficial velocity of gas passing the distributor
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The top section is a homogenously fluidized bed (Slis et al., 1959) and

. c I L ^ U c l  
e, dt e,

Combining eqs 4.4 and 4.5 yields the bed collapse rate

dL,

(4.5)

dt

Where Ud = dense phase superficial velocity 

Hence, from eq. 4.4

dL2 ( l - ^ X U . - U * )

= u db- u d (4.6)

(4.7)
dt (6 j 8 2)

To close the problem an equation for the distributor velocity is needed, and this is 

obtained from the mass balance in the windbox, applying the ideal gas law

- i f T r - s : u " A  <18)

or

_ 5 E « l = p «l U  A  ( 4 9 )

dt Vw * v ’

where A = Fluidized bed cross section area

M w = Gas molecular weight

pw = Absolute windbox pressure

R = Ideal gas constant

T = Temperature

Vw = Windbox volume

pf = Gas density 

Udis can be calculated from the knowledge of the pressure drop across the distributor. In 

order to determine the distributor pressure drop, the momentum balance needs to be 

evaluated.
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In zone I, the fluid-particle system is at equilibrium and

AP, = (Pp -  pf )(1 -  s, )(L, -  L 2 )g (4.10)

where APi = Pressure drop in zone 1 (homogeneous bed)

pp = Particle density

In zone II, there is a fixed bed and the pressure drop can be measured independently or 

calculated from a standard pressure drop correlation.

AP2 = f ( u J  (4.11)

where AP2 = Pressure drop in zone 2 (fixed bed)

Combining these values, the pressure drop through the distributor is given by

APd*. = (p» -P r tJ -P fg L , -4 P , -A P 2 (4.12)

where APd^ = Distributor pressure drop

patm = Absolute atmospheric pressure drop

The system of equations is completely formulated through the inclusion of the flow 

characteristics of the distributor and the bed collapse model can be solved through 

integration of eqs 4.6, 4.8, and 4.7.

The parameters needed are:

• The void fraction of the settled bed, which can be measured from the final bed 

height.

• The void fraction of the expanded bed, 6 1 .

•  The equilibrium superficial velocity of the homogeneously expanded bed, Ud.

Chapter 4: Bed Collapse Model 104



2-valve configuration

Following the same procedure as above, and taking into account the possibility of flow 

reversal through the distributor and fixed bed sections, the mass balance in the windbox 

becomes:

- ^ f -  = ^ r ( ± U toA + Qv) (4.13)
U l  v w

where Qv = gas flow rate through the discharge valve 

The bed collapse rate is

^ -  = ± U (fa- U d (4.14)

L2 correlation is

dL2 _ ( l - s l )(Ud± U d,s)
(4.15)

dt (e, ~s2)

and the pressure drop across the distributor is

APKst= (pw- p . J - p fgL1 -A P ,±A P 2 (4 16)

The solution of the model equations requires the knowledge of the flow characteristics 

of the discharge valve and the top sign in eqs 4.13-4.16 applies when the gas is flowing 

from the windbox to the particle bed.

4.2.2 Bubble escape stage

1-valve configuration

The collapsing bed structure is shown in Figure 4.2a.The total mass balance over the 

control volume sketched in Figure 4.2a yields

U *, A = Qg + Qp = e, (1 -  fb)U d A + fbU b A + U p A (4 .17)

Where fb = Volume fraction of bubbles
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Qg = Gas flow rate

Qp = Particle flow rate

Ub = Bubble velocity

Up = Particle velocity

The properties in the bubbling zone are assumed to be similar to those in the steady 

state bubbling fluidised bed.

U CA = e , ( l - f b)U dA + fbU bA (4.18)

Combining eqs 4.17 and 4.18

Up= %  = u<fc-u „ (4.19)
dt

The pressure drop through the distributor is given by

APd*. = (p„ -  Pmn) - PfgLc -  AP0 -  AP, -  AP2 (4.20)

APo =(Pp-P f ) ( 1 - s o)(L0 - L 1)g (4.21)

Where APo = Pressure drop in zone 0 (Bubbling bed)

Lo = Height of the bubble escape bed

6 o = Bed voidage in zone 0

L2 can be calculated from eq. 4.7 and Li is obtained from eq.4.6, where the initial 

condition for L2 and Li is zero. Li increases until the end of the bubble escape stage, 

where Lo = Lj. After this, the sedimentation stage starts and Li falls. L2 increases for the 

whole process of the bed collapse until it reaches the top of the bed.

If  the distributor velocity is neglected the equation originally derived by Barreto (1984) 

is obtained. The bubble escape stage has a rate of collapse equal to the difference 

between the distributor velocity and the gas velocity before the valve shut off. Eq. 4.19

Chapter 4: Bed Collapse Model 106



has to be integrated simultaneously with eqs 4.6, 4.9, and 4.7 (1-valve configuration) to 

yield the full solution to the bed collapse model.

The parameters needed are:

• The void fraction of the settled bed, which can be measured from the final bed 

height.

•  The void fraction of the dense phase, si.

• The equilibrium superficial velocity of the homogeneously expanded bed, Ud.

• The void fraction of the bed voidage, eo.

The sedimentation stage will start only when Udis becomes less than Ui (see eq.4.4), and 

the bubble escape will end when Lo = Lj

2-valve configuration

There are two possible bed collapse structures during the bubble escape stage, in the 

case of the 2-valve configuration. This is due to the possibility of flow reversal of the 

gas generated at the interface L2 moving downward through the distributor. The first 

possible structure is as shown in Figure 4.2a, when zone 1 can exist and stay in between 

zone 2 and zone 0. Another possible structure is when zone 1 can not exist and zone 2 is 

in direct contact with zone 0 (Figure 4.3).

To determine the existence of zone 1 during the bubble escape stage, Ui, is calculated 

based on the assumption that zone 1 exists. From gas mass balance at L2 , Ui can be 

calculated from eq. 4.4:
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U 1 = e1(±U dJ  + ( l - e 1)U d (4 .22)

I f  Ui is greater than zero, the bed collapse structure is as shown in Figure 4.2(a). The 

bed collapse rate can be expressed as follows;

^ T  = U „ ± U * S (4 .23)
at

As for the 1-valve configuration, eq. 4.23 has to be integrated simultaneously with eqs 

4.13, 4.14 and 4.15 (2-valve configuration) to yield the full solution to the bed collapse 

model.

I f  Ui is less than zero, the region of homogeneous expanded bed cannot exist. The 

collapsing bed structure can only have the bubbling bed zone in contact with the fixed 

bed zone and the bed structure is shown in Figure 4.3.

a

1

W

m
M m

w m

i

• -‘i
e2  

I I  1

a

I I I
LU.

t^tbub

Figure 4.3 Bubble escape stage collapsing structure when Ui<0 for 2 valve experiment

In this case, eq. 4.23 is still valid and it has to be integrated with eqs 4.13 and 4.14 as 

before. L2 can be calculated as a function of Lo and from a mass balance:

dL2 _ ( l_e0)(U0 -U^)
- 7 —  -------     ( 4.24 )
dt (e0 - e 2)
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This case is true especially at a very high inlet flow rate and for the initial part of the 

bubble escape stage.

4.23 Modification of the model for the column with top cover

In this work, the experimental apparatus used a distributor covering the top part of the 

column in order to avoid the loss of very fine powders through the freeboard. On using 

this distributor, the only modification that should be made in the bed collapse model is 

in the momentum balance for the calculation of the distributor pressure drop.

Collapsing bed momentum balance

Apw ~ PfS^c = AP0 +  APj ±  AP2 ±  APDis(Bottm) ±

Where APô top)

A P [>is(bottn i)

Top distributor Pressure drop 

Bottom distributor Pressure drop

(4 .25)

e0. Q 0
t Tcl.

ei

&

L,

t > 0

Figure 4.4 Structure of the collapsing bed for 1 valve configuration system t > 0  for the 

system with top distributor

The gas mass balance from bottom distributor to top distributor (Figure 4.4)
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dL, . dL, dLn (4 .26)
^dis(boton)^ +  ( 8 1 ^  +  ( 8 o “  +  ^  ~~ E °  ^ ^  ~  ^ d is ( t q j ) ^

From the particle mass balance (Figure 4.4)

dVn ,, N dLn  /  \ dL] dL2 A , . .
—  -  ( 1 - 0 — -  + (e„ - 6 , ) — l  + (e, - 8 , ) — -  = 0 ( 4.27 )
dt V o J  dt V 0 17 dt V 1 dt V 7

T^dis(bottm) T^dis(top) ^ d is  ( 4.28 )

Hence by using the same type of the distributor plate, AP o^p) = AP Dis(bottm)

4.2.4 Collapsing bed pressure drop profile

On solving the system of differential equations mentioned above, Lo, Li, and L2 can be 

defined, based on the corrected values of 8 0 ,8 d and Ud As a consequence, the transient

pressure drop profile during the bed collapse can be obtained from the momentum

balance, as described below.

I f  x is the location of pressure port, when the location is at the freeboard (x>Lo), the 

pressure drop is;

Apx>L„ = (A Tcpd.s(U isA)) + pf (Lc -x )g  (4 .29)

Where Atopdis = Top distributor pressure drop coefficient

Lc = Height of the column

When L i< x< Lo

APl, <x>L# (Pp -Pr )(l-e 0 )(L0 -x)g+(A Topdjs(UduA))+pf (Lc -x)g ( 4.30 )

When L2<x<Lj
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A P l 2<x>l,  =(Pp - p f K l - S iK L ,  - x ) g  + (pp - p f ) ( l - e 0)(L 0 - L , ) g  +

(A Topdis ( U dBA ) )  +  P f ( L c " x ) g

When x<L*2

Apx<l2 = A bcdU dis( L 2 -  x) + (pp -  pf )(1 -  s, )(L j — L 2) +

(Pp -  Pf XI -  So )(L0 -  L , )g + ( A Topdls ( U *  A)) + pf ( L c -  x)g ( }

Where Abed = Fixed bed pressure drop coefficient

4.2.5 The model prediction for the sedimentation collapse 

curve

There are two limiting cases for the sedimentation collapse curves, depending on the 

ratio of the pressure drop in the distributor to that in the bed (APDist/APBed) I f  

APoist/APBed is small, then most of the gas will escape through the discharge valve. The 

sedimentation curves are shown in Figure 4.5(a). However, if AP ŝt/APsed is large, only 

the gas in the windbox will escape through the collapsing bed. The collapsing curves are 

shown in Figure 4.5(b).

Based on the model predictions we can conclude that if  AP ŝt/APsed (Figure 4.5(a)) is 

large then the 2 -valve experiment will yield the correct extrapolation to obtain the dense 

phase voidage. The residual gas in the windbox will generate a time lag in the 1-valve 

collapse curve. I f  APo /̂APBed (Figure 4.5 (b)) is small, the flow reversal will dominate 

in the 2 -valve experiment accelerating the bed collapse, yielding an under-estimated 

extrapolation of the linear portion. In this case the 1-valve configuration will yield the 

correct pair of 6 i and Ud. When APd*,^ APsed particular care should be used since the 1 - 

valve experiment extrapolation will overpredict si, while the 2 -valve experiment
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extrapolation will underpredict it. In this case, the numerical solution should be coupled 

to a non-linear fitting algorithm to obtain ei and the remaining model parameters.
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Figure 4.5 Limiting behaviour of 1-valve and 2-valve experiments (a) APo^/APse^ 1

and (b) APDist/APBed< 1

In fluidization studies, the particle size is often varied to optimize the fluidization 

quality of a powder. From our model predictions based on a fixed distributor, discharge 

valve and bed weight, we can also observe that carrying out experiments with larger 

particles, i.e. higher fluidization velocities, may mean that the experiments are in the 

range AP ŝt/APeed > 1 Reducing the particle sizes also means a reduction in fluidization 

velocity and a possible switch to APDist/APBed < 1. To avoid ambiguity in the 

interpretation of the results we would suggest carrying out both 1 - and 2 -valve 

experiments where possible and interpreting both sets of results using the model 

presented above.

AP Dis' APfied < 1

1 -valve

2 -valve

T
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4.2.6 The model prediction of pressure drop profile

Once the entire collapse curve has been predicted, based on the correct value of 8 d, Ud 

and 8 0 , the transient pressure drop profile can be calculated. In this work, the 

differential pressure drop profile was measured and the model predictions are shown in 

Figure 4.6 (a) and (b) for the homogeneous expanded bed of 1-valve and 2-valve 

experiments, respectively. Figure 4.7 (a) and (b) show a model prediction of the 

differential pressure drop profile for bubbling bed of 1 -valve and 2 -valve experiments, 

respectively.

The collapsing bed pressure drop profile is a useful measurement since it gives a clear 

indication of location of L2 which is not possible to detect visually. The pressure drop 

profile can also be used for the direct interpretation of the dense phase voidage and the 

bed voidage. In addition, properties of fixed bed zone (zone 2) of the collapse bed and 

the windbox gas de-aeration through the fixed bed zone can also be observed 

quantitatively.

From Figure 4.6 (a) and (b), the transition points as marked by the circles indicate the 

location of L2 once it reaches the lower port. The pressure value indicated by (A) can 

be used for the direct calculation of the dense phase voidage using:

Ap = (p„ ~ P f )(1 - s d)g(0.10m) + gpf (0.10m) (4,33 )

The pressure reading at point B can be described by eq. 4.34 and represents the pressure 

drop through the fixed bed zone.

AP = A bcdu d „ ( 0  10m) + pf (0.10m)g (4.34 )
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Figure 4.6(b) clearly shows the flow reversal in the 2-valve experiment, since the 

pressure drop changes sign.
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Figure 4.6 Bed collapse differential pressure drop profile for homogeneous expanded 

bed of (a) 1-valve and (b) 2-valve experiments (46 pm Ballotini, Uo = 0.0039 m/s)

✓—

2 valve

\
\ tc

0
\ ^  r

5

\A*

10 1

------- Port 0.55 m-0.45 m

\ / Port 0.45 m-0.35 m
Port 0.35 m-0.25 m

- Port 0.25 m-0.15 m
Port 0.15 m-0.05 m

Time (s) 

(b)

Chapter 4: Bed Collapse Model 116



1 valve1.4 -

1.0

D.8o
2-o
<u tbub

n
2

0.4 -

0.2 -

0.0
5 10 15 20 250

Time (s)

Chapter 4: Bed Collapse Model 117



Figure 4.7

and (b) 2-valve experiments (46 pm Ballotini, Uo = 0.0081 m/s)

For a bubbling bed, Figure 4.7, the bed voidage can also be calculated using the 

pressure drop reading from point (C) and eq. ( 4.35 ). For the 1-valve experiment, 

bubbling bed collapse curves can show clearly enough the location of Li (point D), 

before the end of the bubbling escape stage, when it reaches the lower pressure port.

A p  =  ( P p  - pfXl  -6oX0.10m)g + pfg(0.10m) ( 4 . 3 5  )

m 
m 
m 
m

Port 0.15 m-0.05 m

Time (s)

(b)
Bed collapse differential pressure drop profile for bubbling bed of (a) 1-valve
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4.3 Experimental validation of the model

The model predictions of the bed collapse curves were validated using the 1- and 2- 

valve experimental collapse curves of 46 pm natural size ballotini for the homogeneous 

expanded bed and the bubbling bed, carried out in the 0.127 m ID  column, using the 

fine distributor. The model prediction of the location of L2 for the same powder for both 

homogeneous expanded bed and the bubbling bed were also compared with the values 

obtained from the measured pressure drop profiles.

The prediction of the model requires first the knowledge of the system configuration:

• Windbox volume

• Distributor pressure drop

• Discharge valve (second valve) pressure drop.

To fulfil the model prediction, the correct model parameters, listed below, are also 

needed.

• Fixed bed pressure drop

• Bed voidage, 6 0

•  Dense phase voidage, 6 d

• Fixed bed voidage, 6 2

•  Inlet superficial velocity, Uo

• Dense phase superficial velocity, Ud,

While the windbox volume was obtained from a careful measurement of the 

dimensions, the distributor pressure drop and the discharge valve pressure drop were 

characterized using the procedure reported in Chapter 3.
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Figure 4.8 Experimental characterization of the distributor.

Figures 4.8 and 4.9 report the experimental pressure drop correlations used for the 

distributor and the discharge valve, which showed a quadratic dependence on flow rate.
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Figure 4.9 Experimental characterization of the discharge valve.

4.3 J  Fixed bed pressure drop

After loading a known quantity of powder in the column, fixed bed pressure drop versus 

flow rate measurements were carried out. In the range of flow rates which correspond to 

a fixed bed, the pressure drop varies linearly with superficial gas velocity as shown in 

Figure 4.10, indicating that the viscous terms dominate.
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Figure 4.10 Experimental characterization of the fixed bed pressure drop.

What has been outlined above represents the standard procedure that should be followed 

before performing any bed collapse experiment. Having obtained the system parameters 

typical for our experimental set-up, we are now in the position of applying the model to 

obtain quantitative predictions of the effect of the 1-valve vs 2-valve configuration.

4.3.4 Comparison of the model prediction with the 

experiments

Figure 4.11 shows the experimental bed collapse curves obtained using the 46 pm 

ballotini powder at a gas flow rate lower than the minimum bubbling point. Figure 4.11 

shows that two sets of 8d and Ud are obtained from the two experiments when the linear
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extrapolation is applied. However, with the application of the bed collapse model, both 

1 -valve and 2 -valve collapse curve can be predicted using the correct single set of &d 

and Ud.

In order to complete the model prediction, the model parameters, which are 6 0 , Uo, and 

6 2 , are needed, eo and 6 2  can be calculated from the expanded bed height and fixed bed 

height, respectively. Uo, which is the gas superficial velocity at the windbox, can be 

obtained from the careful calibration of the rotameter as discussed in the previous 

chapter.
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Figure 4 . 1 1  Experimental 1-valve and 2-valve bed collapse experiments,Uo = 0.0039

m/s.
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The experimental results show that we are in the APo /̂APBed < 1 regime. In this case, 

the linear intercept of the 1 -valve experiment is used to determine the correct value for 

6d. Then, Ud, equivalent to Uo, is used to predict correctly the entire 1 -valve collapse 

curve (Figure 4.12). Using the same set of 8d and Ud, the 2-valve experiment is fully 

predicted (Figure 4.12). This provides the means to assure the correctness of the values 

extracted for Sd and Ud.
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6 d = 0.4960.48
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Figure 4 . 1 2  Model fit of 1 -valve experiment and prediction of 2-valve collapse curve,

Uo = 0.0039 m/s

An experimental bubbling bed collapse curve is shown in Figure 4.13. The model 

parameters, 6 2  and Uo, can be identified as before. However, 6 0  has to be carefully 

selected as it affects the model prediction during the bubble escape stage. The value of 

8 0  was selected to match the bubble escape time. For 8 d, the experimental results show
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that the APoist/APBed < 1 regime and Ei was from the intercept of the extrapolation of the 

linear part of the sedimentation stage. Ud was selected so that the predicted 1-valve 

sedimentation curve would match the experimental results (Figure 4.13). The 2-valve 

collapse curve (Figure 4.13) was fully predicted using the same set of eo, Sd and Ud.
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00
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Figure 4.13 Model fit of 1-valve experiment and prediction of 2-valve collapse curve for

bubbling bed, U0= 0.0081 m/s

Figure 4.13 shows that the 2-valve experiment can be predicted with remarkable 

accuracy using the kinematic description of the bed collapse experiment. It should be 

noted that the 2-valve experiment is very sensitive to the pressure drop in the fixed bed, 

and performing the pair of 1- and 2-valve experiments could be used for a rapid

Chapter 4: Bed Collapse Model 125



determination o f the dense phase properties and the pressure drop characteristics o f the 

fixed bed from a simultaneous fit o f both experiments using the model presented.

From the experimental differential pressure drop profile measurements the location o f 

L2 can be obtained as the bed collapses. Figure 4.14 shows the bed collapse pressure 

drop profile o f the 1- and 2-valve experiments, for the homogeneous expanded bed. The 

locations o f the interface L2 are marked as circles. Figure 4.15 shows the agreement o f 

the model prediction and the experimental values.
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Figure 4.14 Experimental bed collapse differential pressure drop profile for 

homogeneous expanded bed of (a) 1-valve and (b) 2-valve experiments (46 jum

Ballotini, Uo = 0.0039 m/s)
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Figure 4.15 Comparison of model prediction of L2 and experimental L2 for collapse of 

homogeneous expanded bed of 1-valve and 2-valve experiments

Figure 4.16 shows the bed collapse pressure drop profile of the 1- and 2-valve 

experiments, for an initially bubbling bed. The locations of the L2 interface are marked 

as circles. Figure 4.17 shows the agreement of the model prediction and the 

experimental values.
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Figure 4.16 Experimental bed collapse differential pressure drop profile for bubbling 

bed of (a) 1-valve and (b) 2-valve experiments (46 pm Ballotini, U0 = 0.0088 m/s)
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Figure 4.17 Comparison of model prediction and experimental L2 for collapse of 

bubbling bed of 1-valve and 2-valve experiments.

4.4 Results of the model validation

The proposed model can be used to predict under which conditions the 1-valve or 2- 

valve configuration will yield the correct extrapolation to obtain the dense phase 

voidage from the experimental curve. Taking into account the system configuration, the 

model developed can be used to represent correctly the bed collapse curve, the bubble 

escape time, the de-aeration times, the fixed bed interface, and, the transient pressure 

drop profile. The new model can also illustrate clearly the variation with time of the gas 

windbox deaeration rate as well as the effect of the second valve on its deaeration rate.
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The procedure used to determine the system properties - distributor pressure drop, 

discharge valve flow characteristics and fixed bed pressure drop - has been outlined and 

has allowed the interpretation of experimental bed collapse curve for the determination 

of the dense phase properties alone.

Based on this study we can conclude that both 1-valve and 2-valve experiments have 

advantages and limitations, and for this reason both should be performed to 

unambiguously determine the intrinsic properties of Geldart type A powders.
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Chapter 5: Pressure Drop 

Characteristics

5.1 Introduction

Several fluidization properties can be inferred from total bed pressure drop and 

differential pressure drop profiles. For example fixed bed pressure drop can be 

measured and the onset of minimum fluidization can be determined easily from a plot of 

the pressure drop versus superficial velocity. The differences between pressure drops 

measured as the velocity increases or decreases give a clear indication of the cohesive 

nature of the particles. Also, if  the pressure drop is less than that corresponding to the 

weight of the particles/area, one has a measure of the extent of the de-fluidization. The 

fluidization characteristics obtained from the pressure drop measurement for the 

different types of powders used in this work are discussed in this chapter, as well as the 

effects of initial bed height, column diameter and the distributor porosity.
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5.1.1 Fluidization quality

The fluidization quality obtained from the pressure drop information is the extent of the 

de-fluidization. I f  the bed is fully fluidized, the bed pressure drop is equal to that 

corresponding to the total weight of the bed/area.

5.1.2 Onset of minimum fluidization point

The minimum fluidization velocity can be simply obtained from the relationship 

between the bed pressure drop and the inlet superficial gas velocity as described in 

Figure 5.1. The minimum fluidization velocity (Umf) is the point where the extrapolation 

of the fixed bed pressure drop crosses the extrapolation of the constant fluidized bed 

pressure drop. While Umf can read from the graph of AP versus Uo, the voidage at 

minimum fludization, 8mf, can be calculated directly from the fixed bed height.

At the onset of the minimum fluidization, the interaction force between fluid and 

particle is equal to the weight of particles and the particles are supported completely by 

the fluid. For a higher velocity, the total bed pressure drop is always equal to the weight 

of the bed/area.
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A = Fixed bed 

B = Fluidized bed

0 + Umf

0 2 4 U bO nJi) 8 10

Figure 5.1Total bed pressure drop versus inlet superficial gas velocity (dp = 37 pm 

(Original powder, Batch 1), ID  = 0.127 m, Li = 0.43 m)

The average particle size has an effect on the fixed bed pressure loss and Umf. Simone 

and Harriott (1980) reported that the minimum fluidization velocity increases with the 

average size and the minimum fluidization voidage decreases with the particle size for 

the narrow size cut powder. The powder with a wide size distribution and with fines 

was reported to have a lower minimum fluidization velocity (Geldart and Buczek, 1989; 

Simone and Harriott, 1980) and a lower minimum bubbling voidage (Simone and 

Harriott, 1980). DeJong and Nomden (1974) reported that the powder with a wide size 

distribution follows the same pressure drop relation as the narrow size cuts.
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5.1.3 Fixed bed pressure drop

The fluid pressure loss in a fixed bed is due to frictional dissipation, but the fluid- 

particle interaction force is insufficient to support the weight of particles.

The fixed bed pressure drop/length can be obtained from the direct measurement of the 

total bed pressure drop at the windbox/corrected bed height and the differential pressure 

drop profile/probe separation, at various flows before the minimum fluidization 

velocity. This information can be used to predict the 1- and 2-valve bed collapse 

experiments as shown in the previous chapter.

5.1.4 Fluidization and de-fluidization experiments

For the case of fixed beds of fine particles, at U < Umf, the pressure increase linearly 

with velocity and the bed height remains constant. When the superficial velocity is 

increased above Umf, a maximum in the pressure drop is sometimes observed. When the 

pressure is higher than the weight of the bed a momentum balance indicates that a yield 

stress in the particle assembly resulting from friction forces between the particles or 

between the particles and the wall (De Jong and Nomden, 1974; Mutsers and Rietema, 

1977a; Srivastava and Sundaresan, 2002; Rietema and Piepers, 1990) is present. I f  the 

powder is cohesive the overshoot in the pressure drop becomes more obvious. In this 

case even above Umf the pressure drop at each velocity can be less than the weight of the 

particles as some powders are supported by the wall (Jackson, 1998).
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When the gas fluidization velocity is reduced, i.e. the de-fluidization experiment, the 

particles start from a condition in which direct contact is minimal and the yield stress is 

less or can be neglected and the transition from fluidized to fixed bed is gradual.

5.1.5 Pressure drop profile of fluidized bed

The differential pressure drop profile can be used to study the local properties of the 

fluidized bed. The pressure drop profile in the fixed bed region can give information 

about the local fixed bed voidage along the vertical bed height. The pressure drop 

profile at the transition from the fixed to fluidized bed can give information about the 

local mechanical stress from the fluidization and de-fluidization experiment. For the 

fluidized bed, the pressure drop profile can give an indication of the general expansion 

behaviour and also the local bed voidage.

5.2 Effect of column diameter and bed height

Experiments have been carried out on the two size natural size distribution powders, 

with average particle diameters of 37 pm and 72 pm. The detail of the experimental 

conditions are summarised in Table 3.6.

5.2.1 Fluidization quality

As shown in Figure 5 .2 and Figure 5 .3, the total bed pressure drop of the fluidized bed 

of powders is equal to the weight of the bed/area. This means that the powders are fully 

fluidized.
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Figure 5.2 Total bed pressure drop versus U0 for 37 pm Ballotini (Batch 1)

However, for the 37 pm powder (Batch 2), Figure 5.4, the total bed pressure drop is 

slightly lower than the weight of the bed, by approximately 1.34 %  and 2.68 % for 0.4 

m and 0.3 m initial bed height, respectively. This means the finer powders are slightly 

cohesive and partially de-fluidized.
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Figure 5.3 Total bed pressure drop versus U0 for 72 pm Ballotini
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Figure 5.4 Total bed pressure drop versus U0 for 37 pm Ballotini (Batch 2)
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5.2.2 Onset of the fluidization stage

As summarised in Table 5.1, the minimum fluidization voidage slightly increases with 

the decrease of aspect ratio (H/D) for each powder and increases with column diameter. 

For the aspect ratio between 1.23 and 3.38, the minimum fluidization voidage increased 

by 2.5-3.5 %. However, the minimum fluidization velocity is unaffected by the aspect 

ratio for each powder. This result is supported by the work of Delebarre et al. (2004), 

which reported that the minimum fluidization voidage decreases with the weight of the 

bed (20 and 5 kg) (or initial bed height) and the aspect ratio has no effect on the 

minimum fluidization velocity.

Table 5.1 Aspect ratio, bed pressure drop, and, minimum fluidization point of powders

dp (pm) ID (m) L,

(m)

Wp(kg) APeed

(kPa)

H/D Cmf Umf

(mm/s)

37(B1) 0.127 0.40 7.7971 5.93 3.37 0.429 1.38

0.30 5.4022 4.11 2.38 0.439 1.41

0.243 0.40 28.4350 6.00 1.79 0.433 1.40

0.30 19.3876 4.09 1.24 0.440 1.40

72 0.127 0.40 7.7971 5.93 3.34 0.423 4.66

0.30 5.4022 4.11 2.34 0.430 4.63

0.243 0.30 19.3876 4.09 1.23 0.438 4.61

37(B2) 0.127 0.40 7.7971 5.93 3.38 0.430 1.34

0.30 5.4022 4.11 2.40 0.445 1.57
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For the 37 pm Ballotini (Batch 2), the minimum fluidization velocity is not the same for 

two different aspect ratios and is also different from Batch 1 which has the same 

average diameter. The possible explanation for this case is that this powder shows a 

degree of cohesiveness, and thus it tends to agglomerate and the results are not fully 

reproducible.

5.2.3 Fixed bed pressure drop

Figure 5.5 to Figure 5.6 show that the fixed bed pressure drop/length gradually changes 

according to the fixed bed voidage for the same type of powder since, as mentioned 

earlier, the fixed bed voidage itself changed according to the aspect ratio and the 

column diameter. For 37 pm Ballotini (batch 2) (Figure 5.7), the fixed bed pressure 

drop/length changed according to the fixed bed voidage as before. However, the 

difference of the pressure drop/length for each aspect ratio does not depend only on the 

voidage but it appears to indicate that some agglomeration of the powder may result in 

channelling and the extent of this varies for different experiments.
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Figure 5.6 Fixed bed pressure drop/length for 72 pm Ballotini
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Figure 5.7 Fixed bed pressure drop/length for 37 pm Ballotini (Batch 2)

5.3 Influence of distributor porosity on pressure drop 

characteristics

The influence of the distributor flow resistance for a porous plate is studied for the 72 

pm Ballotini in the 0127 m ID and 0.243 m ID columns. As mentioned in Chapter 3, 

two porous distributors with different porosity were used. The distributor with 7 pm 

average pore size is called ‘fine distributor’ and the distributor with 35 pm average pore 

size is called ‘coarse distributor’.
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5.3.1 Fluidization quality

As shown in Figure 5.8, the total bed pressure drop o f the fluidized bed o f powders is 

equal to the weight of the bed/area and they are fully fluidized, as expected.

5.3.2 Onset of minimum fluidization

The minimum fluidization points are summarised in Table 5.2. The minimum 

fluidization voidage and its velocity are independent o f the type o f the distributor. From 

Figure 5.6, the fixed bed pressure drops/length is also independent o f the distributor 

flow resistance. Therefore both distributors provide an even flow o f the gas in the 

columns and no voidage in-homogeneities are detected.
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Figure 5.8 Total bed pressure drop versus U0 for 72 pm Ballotini at different column 

diameter and distributor flow resistance
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Table 5.2 Summary of the minimum fluidization point for 72 mm Ballotini at different 

column diameter and distributor flow resistance

dp ID (m) APfied H/D Distributor type Umf £mf

(pm) (kPa) Top Bottom (mm/s)

72 0.127 4.11 2.34 Fine Fine 4.63 0.430

4.11 2.32 Coarse Coarse 4.63 0.426

0.243 4.09 1.23 Fine Coarse 4.61 0.438

4.09 1.22 Coarse Fine 4.61 0.432

5.4 Pressure drop characteristics of narrow size cut 

powders and natural size cut powders

5.4.1 Onset of minimum fluidization

Figure 5.9 and Figure 5.10 show a typical total bed pressure drop versus velocity graph 

for narrow size cut and natural size cut, respectively. The fixed bed pressure drop 

increases with the average diameter as expected and for the narrow size cut the total bed 

pressure drop is the weight of the bed. For the natural size cut, the fixed bed pressure 

drop increases with the average diameter and the bed pressure drop of the fluidised bed 

is the weight of the bed, except for the 37 pm powder (Batch 2). This powder shows a 

partial de-fluidization, as the total bed pressure drop is less than the weight of the bed.
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Figure 5.9 Total bed pressure drop versus UQ for narrow size cut powders
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Figure 5.10 Total bed pressure drop versus U0 for natural size powders
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The minimum fluidization velocities obtained from Figure 5.9 and Figure 5.10 are 

plotted in Figure 5.11, for narrow size-cut powders and natural size distribution 

powders. Considering the narrow size cut powder as a standard, the minimum 

fluidization velocities increase with the average diameter and vary as a quadratic 

function of the diameter. For the natural size powder, the minimum fluidization 

velocities increase with the diameter and also vary as a quadratic function with the 

diameter. However, the relation between Umf and dp of natural size distribution powders 

deviates from that of the narrow size cut, when there is a fine content (<45 pm) in the 

mixture. The powders with 60 -  40 %  fines (37 pm (Batch 1 and 2) and 46 pm) show a 

slightly lower value of Umf. For the two larger average sizes (72 pm and 89 pm), 

containing 0% fines, Umf are approximately on the same trend line of Umf vs dp as for 

the narrow size cut.
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Figure 5 .11 Minimum fluidization velocity of narrow size powders and natural size

powders

Figure 5.12 shows the minimum fluidization voidage of narrow size cut powders and 

natural size powders. For the narrow size cut powders, the minimum fluidization 

voidages decrease with the increases of the average diameter and vary as a linear 

function with the average diameter. The minimum fluidization voidages for powder 

without fines, 72 pm and 89 pm, are on the linear trend of 8mf from narrow size cut 

powders. 8mf of powders with 60-40 % fines, 37 pm (Batch 1 and 2) and 46 pm, are 

found to be lower.
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Figure 5.12 Minimum fluidization voidage of narrow cut powders and natural size

powders

5.4.2 Fixed bed pressure drop

Fixed bed pressure drop/length for the narrow size cut powders and the natural size 

powders are shown in Figure 5.13 and Figure 5.14, respectively. The powders with 

smaller size induce more fixed (Figure 5 .12). The coefficients of the gas flow resistance 

of the fixed bed, ‘fixed bed pressure drop/ (length.Uo)’, for narrow size cut powders and 

natural size powders are shown in Figure 5.15. For the narrow size cut powders, the 

coefficient is higher for smaller average size powders and is related with the average 

size by a logarithmic function. For the natural size powder, the coefficients of those 

without fines can be estimated from the relation found for the narrow size cut powders, 

while the powders with fines have higher coefficients.
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Umf and APFixedbed are influenced by the choice of the average diameter of a particle with 

a wide size distribution. The estimation of Umf and APFixedbed of the natural size powders 

from the narrow size cut empirical relations is possible for the powder without fines. 

However, for the powders containing fines in the mixture, 6mf of the mixture tends to be 

smaller than the estimated value. This may cause the deviation of Umf and APFixedbed 

from the estimated value from the empirical relation found for the narrow size cut 

powders.
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Figure 5.13 Fixed bed pressure drop/length for narrow size cut powder
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5.4.3 Fluidization and de-fluidization experiments

For natural size powders (Figure 5.16), from the fluidization experiment, 37 pm (batch 

1) a small pressure drop overshooting was observed, which was followed by the gradual 

transition to the complete fluidization stage. The same observations were found for the 

37 pm (Batch 2) and 46 pm. As all these powders contain over 40-60 %  of fines, it 

means that in the presence of fines a yield stress is present during the transition from 

fixed to fluidized bed. Once the compacted structure is broken, the transition to 

complete fluidization is obtained. For the 72 pm and 89 pm (Figure 5.16), containing no 

fines, no pressure overshootings are observed. The pressure transition is ideal and there 

is no indication of the presence of a contact stress.

From the de-fluidization experiments, (Figure 5.16-Figure 5.18), all the powders show a 

gradual transition. In addition (Figure 5.16- Figure 5.18), the pressure at each velocity 

is less than those from the fluidization, indicating that the fixed bed voidage in the de- 

fluidization experiments is slightly higher than that of the original fixed bed. The effect 

is stronger when the mixture contains fines.

It can be concluded at this point that that the fines cause more compaction of the 

particles in the fixed bed and enhance frictional effects of the wall.

Chapter 5: Pressure Drop Characteristics 152



BJCL.

I
I

/
/

/
i /  /  APBcd = 593

- r / i ; - , - , --------

k

/ A
/

/ *  *
A / A

/
/  A

9
I

/

/

■ 37 micron (Batch 1) 

a 72 micron 

a 89 micron

Uo(mm̂ s) 8 10

Figure 5.16 Fixed to fluidized bed transition behaviour o f natural size powders (37 pm 

(batch 1), 72 pm and 89 pm) [Full symbols = fluidization and empty symbols = de-

fluidization]

cSOh

CL
2
^  5
I
CO

I
£

0

APBed = 593

*  *

♦ 37 micron (Batch 2)

Uo(mm ŝ) 8 10
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[Full symbols = fluidization and empty symbols = de-fluidization]

For the narrow size cut powder, during the fluidization experiment, there is no pressure 

overshooting observed for all powders (Figures 5.19 to 5.24). The fluidization processes 

for 0-45 pm and 53-45 pm (Figures 5.19 and 5.20) powders show that the compacted 

structure of the powders is broken and this is followed by a gradual transition. For 63- 

53pm, 75-63 pm, 90-75 pm and 106-90 pm (Figure 5.31 to Figure 5.34), the presence 

of a compacted structure is less evident with the increasing particle sizes but the gradual 

transitions are generally observed.

For the de-fluidization process, gradual contractions were observed for all powders. For 

the powder of larger size cut, the fluidization and de-fluidization transitions are almost 

in the identical.
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General conclusions;

• The natural size powders have more bed compaction and the wall friction plays 

a more important role than for the narrow size cuts.

•  The degree of the compaction and the wall friction increases with the decrease in 

the size of the powder and increases with fine content.

•  The bed compaction and the wall friction are generally dominant during the 

fluidization process.

• The de-fluidization process is generally gradual.

5.4.4 Pressure drop profile of the fluidized bed

The differential pressure drop profile represents the local bed voidage of the fixed and 

fluidized bed. From Figure 5.25 to Figure 5.34, region A represents the fixed bed where 

the pressure increases with the velocity. The pressure differences between the readings 

from each port location represent the differences in the local bed voidage. For both 

natural size distributions and narrow size cut powders (Figure 5.25 - Figure 5.34), the 

pressure readings from each location is almost the same, except the lowest pressure 

reading. Once the minimum fluidization point is reached, the bed expands 

homogeneously and this corresponds to region B. The more the bed expands, the lower 

the pressure drop. In this region, the differences of the pressure drop at different heights 

become more obvious. The pressure drop at the lower height, near the distributor region 

is higher compared to those of the higher locations, where the pressure drops are 

approximately the same. This means there is no difference in bed voidage along the bed 

except near the distributor. The possible explanation may be that there is a gas flow 

effect near the distributor area or that there is a small segregation where the larger
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particles accumulate at the bottom of the bed. However, this is observed even with the 

narrow size cut where there is no size dispersion. This indicates a lower void fraction 

near the distributor, but the fact that the pressure drop increases indicates that the 

particles are fluidized.

The differential pressures drop decreases continuously, indicating homogeneous 

expansion, and reaches the minimum at the minimum bubbling point. From (Figure 5.25 

- Figure 5.34), at each height the pressure drop reaches the minimum point at different 

velocities. Generally, the higher pressure ports reach the minimum bubbling point 

before the lowest port. This tends to confirm the fact that the void fraction near the 

distributor is slightly lower than that in the sections above. The range of the velocities 

where the differential pressure drop reaches the minimum point indicates the possible 

range of the minimum bubbling point. To be able to pinpoint the exact value of the 

minimum bubbling point, the maximum dense phase voidage should be used and that 

should be the average value of the entire fluidized bed.

After reaching the minimum value, the differential pressure drops gradually increase, as 

shown in region C. This means the bed voidage gradually decreases and the dense phase 

voidage decreases faster than the bubble hold up in the bed. However, from the pressure 

drop profile, it is hard to tell how rapidly the dense phase voidage decreases. The bed 

voidage reaches a stable value in region D and tends to level off at 2-3.5 times Umb for 

the natural size distribution powders and 1.5-3 times Umb for narrow size cut powders. 

The smaller size of the powders, the higher the U/Umb ratio at which the bed voidage 

levels off.
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Figure 5.25 Pressure drop profile of 37 pm Batch 1 (natural size)
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Figure 5. 27 Pressure drop profile of 72 p.m (natural size)
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5.5 Pressure drop characteristics of bimodal powders

5.5.1 Onset of minimum fluidization

Figure 5.35 and Figure 5.36 show a typical total bed pressure drop versus velocity graph 

for the bimodal mixtures of 90-75pm/45-0pm and 109-90pm/53-45pm, respectively. 

The fixed bed pressure drop decreases with the increase of the average diameter as 

expected and the total bed pressure drop is the weight of the bed/area.
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Figure 5.35 Total bed pressure drop vs Uo for bimodal mixture 90-75 pm/45-0 pm
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Figure 5.36 Total bed pressure drop vs Uo for bimodal mixture 106-90 pm/53-45 pm

The minimum fluidization velocities obtained from Figure 5.35 and Figure 5.36 are 

plotted in Figure 5.37, for bimodal powders, in comparison with the narrow size cut 

powders and the natural size powders. The minimum fluidization velocities of bimodal 

mixtures of 106-90pm/53-45 pm show approximately the same trend as that for the 

narrow size cut powders and the natural size powder without fines. However, the 

bimodal mixtures with varied percent fines have lower minimum fluidization velocities 

and follow approximately the trend of the natural size powders with fines.
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Figure 5.37 Minimum fluidization velocity of bimodal powders

Figure 5.38 shows the minimum fluidization voidage of bimodal powders in 

comparison with the narrow size cut powders and the natural size powders. The 

minimum fluidization voidages of bimodal mixtures were found to be lower than the 

narrow size cut and decrease with increase the average diameter. The mixtures 

containing fines have even lower minimum fluidization voidage and the mixtures 

without fines.
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Figure 5 .38 Minimum fluidization voidage of bimodal powders

This last result indicates, as one would expect, that particles of differing sizes can 

rearrange to reduce void space.

5.5.2 Fixed bed pressure drop

Fixed bed pressure drop/length for the bimodal mixture of 90-75|im/45-0|xm and 106- 

90jim/53-45|im are shown in Figure 5.39 and Figure 5.40, respectively. The powders 

with smaller size induce more fixed bed gas flow resistance (Figure 5.38). The 

coefficient of the gas flow resistance of the fixed bed, ‘fixed bed pressure 

drop/(length.Uo)\ for the bimodal mixtures in comparison with the narrow size cut 

powders and the natural size powders are shown in Figure 5.41. For bimodal mixtures, 

the coefficients of those without fines can be estimated from the relation found for the
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narrow size cut powders. However, the bimodal mixtures with fines have higher 

coefficients and are approximately in the same trend with the natural size powders with 

fines.
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Figure 5.39 Fixed bed pressure drop/length for bimodal mixture 90-75 pm and 45-0 pm
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Figure 5.40 Fixed bed pressure drop/length for bimodal mixture 90-75 pm and 45-0 pm

For bimodal mixtures, Umf and APFixedbed are influenced by the definition of the average 

diameter, as found for the natural size distribution powders. The estimation of Umf and 

APFixedbed of the bimodal powders from the narrow size cut empirical relations is 

feasible, as long as there are no fines in the mixture. With fines in the mixture, Umf and 

APFixedbed deviate from the empirical relation found for the narrow size cut powders. Umf 

is lower and APFixedbed is higher. However, these values are approximately in the same 

trend as the natural size distribution powders containing fines. From Figure 5.38 , it was 

found that 6mf has a weak effect on Umf and APFixedbed compared to the average diameter 

and this should not be the cause of the deviation from the narrow size cut prediction for 

the mixture with fine content.
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Figure 5.41 Fixed bed pressure drop/ (L.Uo) for bimodal powders

5.5.3 Fluidization and de-fluidization experiments

For all bimodal mixtures (Figure 5.42 to Figure 5.47), the pressure overshooting was 

observed and was followed by the gradual transition to the complete fluidization stage, 

for the fluidization experiment. The pressure overshooting is stronger for the mixtures 

containing fines. From the de-fluidization experiment, (Figure 5.42 to Figure 5.47), all 

the powders show a gradual transition.
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5.5.4 Pressure drop profile of the fluidized bed

Figure 5.48 and Figure 5.53, the pressure drop profile above the minimum fluidization 

velocity showing no particle segregation. This is confirmed by the fact that the pressure 

drop measured at different heights, except near the distributor, shows approximately the 

same values for all bimodal mixtures. This is similar to the result observed for the 

narrow size cut powders.
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5.6 Comparison with correlations

The Revised Ergun equation (Foscolo et.al., 1983) was used to the describe the fixed 

bed pressure drop of the narrow size cuts, natural size distribution powders and bimodal 

powders, as shown in Figure 5.54 and Figure 5.57. The prediction from the Revised 

Ergun equation was found to be lower than the experimental results for all powders. 

This may be due to the compact mechanical structure of the fixed bed that causes 

higher-pressure loss or the drag force correlation is not actually appropriate for 

describing the fluidization characteristic of these powders, even for the particle in 

suspension where there is now contact stress. Therefore, the Revised Ergun equation 

will be re-examined again as well as the drag force correlation reported in the literature, 

using the 6d and Ud characteristic curves.

Revised Ergun equation (Narrow size cut)
16

f> 10 -
—c.c

■ 90-106 micron

■ 75-90 micron

■ 63-75 micron 

□ 53-63 micron 

a 45-53 micron 

o 0-45 micron

CL,

0 1 2 3 54 6 7 8 9 10
Uo(mm/s)

Figure 5 .54 Comparison of fixed bed pressure drop/length with prediction using 

Revised Ergun equation (narrow size cut)
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Figure 5.55 Comparison of fixed bed pressure drop/length with prediction using 

Revised Ergun equation (natural size powders)
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Figure 5.56 Comparison of fixed bed pressure drop/length with prediction using 

Revised Ergun equation (Bimodal mixture of ballotini 90-75pm and 45-0 pm)

Chapter 5: Pressure Drop Characteristics 182



Revised Ergun Equation Bimodal

10
§•■6
§ee

■ 75(B106)+25(B53) 

♦ 50(B106)+50(B53) 

a  25(B106)+75(B53)

2.5 3.0 3.51.5 2.0 4.0 4.5 5.00.0 0.5 1.0
Uo(mni/s)

Figure 5.57 Comparison of fixed bed pressure drop/length with prediction using 

Revised Ergun equation (Bimodal mixture of ballotini 106-90pm and 53-45 pm)

5.7 Summary

The influence of the aspect ratio (i.e. column diameter and initial bed height) and 

distributor flow resistance on the minimum fluidization point and the fixed bed pressure 

drop were studied. It was found that the minimum fluidization voidage and, hence, the 

fixed bed pressure drop was slightly affected by the aspect ratio and the column 

diameter, due to the influence of these on Smf. The minimum fluidization velocity was 

independent of the aspect ratio, column diameter, initial bed height, and distributor flow 

resistance.

The pressure drop characteristics of natural size distribution powders, narrow size cut 

powders and bimodal powders were investigated. It can be generally concluded that 

minimum fluidization velocity is increased as a quadratic function with the increase of
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the average diameter. With the increase of the average diameter, the minimum 

fluidization voidage is decreased, and the fixed bed gas flow resistance is decreased. In 

addition, the relation of Umf and APFixedbed with dp of the narrow size cut can be used to 

estimate of Umf and APFixedbed natural size distribution powder and bimodal mixtures as 

long as there is are fines in the powders. When the powders contain fines, Umf, and 

APFixedbed of the natural size distribution cut and bimodal mixtures showed good 

agreement, but deviate from the values found for the narrow size cuts.

The minimum fluidization voidage of the natural powders with fines and the bimodal 

mixtures, with and without fines, is smaller than that estimated from the narrow size cut 

relation.

The overshooting in the pressure drop during fluidization experiments was observed for 

natural size distribution powders. The degree of compaction and wall friction increased 

with the decreasing of the size of powder and increasing fine content.

From the pressure drop profile of all powder mixtures, there is no particle segregation 

observed in the fluidized bed.

Applying the Revised Ergun equation (Foscolo et.al., 1983) to the prediction of the 

fixed bed pressure drops showed that it underestimated the experimental result for 

powders. This means the experimental drag forces of these powders are higher than the 

theoretical prediction. Therefore, this correlation will be re-examined again in the 

following chapter along with the drag force correlations reported in the literature, using 

the Ed and Ud characteristic curves determined from the bed collapse experiments.
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Chapter 6: Bed Expansion

6.1 Introduction

In this Chapter the bed voidage, the dense phase voidage and the dense phase superficial 

velocities will be measured using the 1- and 2-valve bed collapse experiments. The 

model presented in Chapter 4 will be applied to the experimental results obtained for the 

natural size distribution, the narrow size cut and the bimodal mixture powders. The 

measured dense phase voidage and superficial velocities will be compared with 

correlations taken from literature.

6.2 Influence of column diameter and initial bed 

height on bed expansion

Initial experiments were carried out using both columns to verify that the results were 

independent of the column diameter and also to establish which measurement of the 

dense phase voidage was more accurate. Figure 6.1 and Figure 6.2 show the comparison 

of the bed voidage and the dense phase voidage for the 0.127 m ID column obtained 

from the analysis of the visual observations and the voidage calculated from the
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differential pressure drop measurements using the ID  value of the column. A similar 

comparison for the 0.243 m ID  column is shown in Figure 6.3 and Figure 6.4.

While the results for the initial bed voidage give an indication of the uncertainty of this 

measurement, the dense phase voidages should be determined with a greater accuracy.

For the 0.127 m ID  column, the dense phase voidage from matching the model 

predictions to the bed collapse dynamics are approximately 5% higher than those 

obtained from the differential pressure drop readings. The bed voidages at very high 

velocities tend to give consistent results.

For the 0.243 m ID  column, the difference is reduced to approximately 2.5%. This is 

the same for the results for the 1- and 2-valve experiments and for all powders studied.

This small discrepancy could be attributed to different reasons. The first possible 

explanation is the fact that a small layer of solid is present near the wall. Given the 

larger surface to volume ratio of the smaller column, a larger effect should be present in 

the smaller column as observed experimentally.

Another interpretation could be the error from the pressure measurement itself. The 

inaccuracy of the use of the pressure measurement for the determination of the bed 

voidage may be due to the fluctuation of the signal, but this should be mitigated by the 

fact that an average voidage is calculated from all the pressure readings along the 

vertical height.
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Figure 6.1 Comparison of bed voidage (e0) from bed collapse model prediction and 

pressure reading for 72 fim (0.127 m ID, Li = 0.30 m)

[Full square = Uo<Umb and empty square = Uo>Umb]

I f  one considers the uncertainty in the cross-sectional area due to the presence of the 

windows, it is possible to estimate that the possible error in the calculated voidage from 

the pressure drops is of the same magnitude as the observed discrepancy. Therefore, 

within the experimental uncertainty, we must conclude that these differences are not due 

to the diameter of the columns. Even though the pressure drop profile seems would be 

the more convenient method to determine the dense phase voidage, in subsequent
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calculations the bed voidage and the dense phase voidage will be taken from the bed 

collapse curves observed visually and analysed using the model presented in Chapter 4.

0.60
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0.56

0.54

0.52

0.48

0.46

0.44

0.42 ■ Dp cell E (15-25cm)
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0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

calculated ed

Figure 6.2 Comparison of dense phase voidage (e<j) from bed collapse model prediction 

and pressure reading for 72 pm (0.127 m ID, Li = 0.30 m)

[Full square = Uo<Umb and Empty square = Uo>Umb]
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Figure 6.3 Comparison of bed voidage (ec) from bed collapse model prediction and 

pressure reading for 72 pm (0.243 m ID, Li = 0.30 m)

[Full square = Uo<Umb and Empty square = Uo>Unib]
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Figure 6.4 Comparison of dense phase voidage (ed) from bed collapse model prediction 

and pressure reading for 72 pm (0.127 m ID, Li = 0.30 m)

[Full square = Uo<Umb and Empty square = Uo>Umb]

6.2.1 8d and Ud characteristic curves

Figure 6.5 to Figure 6.7 are the Ud and 8d characteristic curves for the 37 pm (Batch 1), 

72 pm and 37 pm (Batch 2) powders, respectively. For the non cohesive powder, 

(Figure 6.5 and Figure 6.6), the Ud and 8d relationships from two different initial bed 

heights (0.30 m and 0.40 m) and column diameters (0.127 m and 0.243 m) for each
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powder approximately the same trends are observed. Thus, it can be concluded that the 

column diameter and the initial bed height, where the aspect ratio is within 1.2-3.4, 

have no effect on the relation of Ud and 8d. The same results for the homogeneous 

expanded bed were reported, by Mazumadar and Ganguly (1985). They reported that for 

aspect ratios (1.10-4.67) no effect was observed on the Ud and Ed relationship for a 

liquid phase homogeneous expanded bed. For gas systems, Simone and Harriott, (1980) 

reported that the column diameter (0.05 and 0.124 m) has no effect on the dense phase 

voidage for the gas phase homogeneous expanded bed.

For the cohesive powder ( Figure 6.7), the Ud and Sd relationship from different initial 

bed heights are different. This may be due to the agglomeration of powder and the 

presence of channelling in the system.

8
■ 5 in, L = 43 cm 37 îm (Batch 1)

7 a  5 in, L = 30 cm

■ 9.55 in, L = 44 cm6
a 9.55 in, L = 30 cm

5

4

3

2

0
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60

8d

Figure 6.5 sd and Ud Characteristic curve for 37 pm Ballotini (Batch 1)
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0.127 m ,L  = 0.40 m 37 pirn (Batch 2)

0.127 m ,L  = 0.30 m

□□

i I1 I T T

■ 0.127 m ID,L = 0.30m (Fine dist)

a  0.127 m ID,L = 0.30m (Coarse dist)

■ 0.243 m ID,L = 0.30m(Fine bott,& Coarse top) 

a 0.243 m ID,L = 0.30m (Coase bottm&Fine top) 

♦ 0.127 m ID,L = 0.40m (Fine dist)

Chapter 6: Bed Expansion 192



6.2.2 8o vs U0 and 8<i vs Uo characteristic curves

As shown in Figure 6.8 and Figure 6.9, for the same column diameter, the different 

initial bed height has no effect on the dense phase voidage (Figure 6.8 (a) and Figure 

6.9 (a)) and bed voidage (Figure 6.8 (b) and Figure 6.9 (b)) for all the inlet superficial 

velocities investigated.

From Figure 6.8 ((a) and (b)) and Figure 6.9 ((a) and (b)), the column diameter has no 

influence on the dense phase voidage and the bed voidage for the dense phase 

superficial velocity less than the minimum bubbling velocity. At the higher velocities, 

the dense phase voidage and the bed voidage are higher in the larger column. The 

results similar to those of Simone and Harriott (1980), who reported that the dense 

phase voidage in the bubbling region is larger for a larger column (0.05 and 0.124 m 

ID) and the initial bed height (0.40 and 0.60 m) has no effect on the dense phase 

voidage for both homogeneous expanded bed and bubbling beds. For the bubbling beds, 

the characteristic dimensions that should be compared appear to be the diameter of the 

column and that of the bubbles, while for the homogeneously expanded bed the particle 

to bed diameter ratios are very high for both columns.

Chapter 6: Bed Expansion 193



0.60

0.58 

0.56 - 

0.54 - 

w 0.52 - 

0.50 - 

0.48 - 

0.46 - 

0.44 -
0 5 10 15 20 25 30 35

Uo (mm/s)

(a)

0.60 

0.58 

0.56 

0.54 

u 0.52 

0.50 

0.48 

0.46 

0.44
0 5 10 15 20 25 30 35

Uo (mm/s)

(b)

Figure 6.8 Bed expansion for 37 pm Ballotini (Batchl) (a) Sd vs Uo and (b) So vs Uo

37 |im (Batch 1)

■ 5 in, L = 43 cm

■ 5 in, L = 30 cm

a  9.55 in. L = 44 cm

a 9.55 in, L = 30 cm

37 jam (Batch 1)

*
A
A
□ □ □□

A
AM

A
A

□
□

■ 5 m, L = 43 cm

■ 5 in, L = 30 cm

a  9.55 in, L = 44 cm 

a  9.55 in, L = 30 cm

A
A

Chapter 6. Bed Expansion 194



0.50

0.48 -

0.47

0.44

0.43

0.42

■ 0.127 m ID, L = 0.30 m(Fine dist)

a
#>□

i■

■ 0.243 m ID, L = 0.30 m(Fine bottm & Coarse top) 

♦ 0.127 m ID, L = 0.40 m(Fine dist)

□
ft

□
ft

■ o

□

□ □

□ □o

o □ 
o

72 pm

0.50 

0.49 - 

0.48 - 

0.47 

eo 0.46 - 

0.45 

0.44 

0.43 H 

0.42

10 15 20
Uo(mm/s)

(a)

25 30 35 40

□ □ □ □
□ □

■
P>

Q 

O
 

□

o 
□ □ □

ft o ♦

1
■ ■ 0 .127 m ID, L = 0.30 m(Fine dist)

■ 0.243 m ID, L = 0.30 m(Fine bottm & Coarse top)

72 pm
♦ 0.127 m ID, L = 0.40 m(Fine dist)

0 5 10 15 20 25 30 35
Uo(mm/s)

(b)

Figure 6.9 Bed expansion for 72 pm Ballotini (a) 8d vs Uo and (b) So vs Uo

40

Chapter 6: Bed Expansion 195



u.ou

0.58 -
a  0.127 m ID, L = 0.40 m

0.56 - a 0.127 m ID, L = 0.30 m

0.54 - a ^ a a  a

0 0.52 -
a A a a  a a  A /a 

a
A  A A

0.50 - ▲ A 
A

A

aa

0.48 -

0.46 -

0.44 - 37 pm (Batch 2)

0.42 -
10 15 20 25

Uo(mm/s)

(a)

30 35 40

0.60

a  0.127 m ID, L = 0.40 m

- a  0.127 m ID, L = 0.30 m

a ^ a *  *  A
A A AA A 

A A 
A

AA

a a

A

a a  a
A

37 pm (Batch 2)

0.42
10 15 20 25

Uo(mm/s)

(b)

30 35 40

Figure 6.10 Bed expansion for 37 pm Ballotini (Batch 2) (a) ed vs U0 and (b) e0 vs U0

Chapter 6: Bed Expansion 196



For the cohesive powder (37 mm (Batch 2)), the experiments were carried out in 0.127 

m ID for 0.40 m and 0.30 m initial bed height. In these cases (Figure 6.10 (a) and (b)) 

the dense phase voidage and bed voidage are higher when the initial bed height is 

0.40.m, especially at the velocity less than approximately 2.5 times Umb. When the 

velocity is higher than 2.5 times U mb, the dense phase voidage and the bed voidage are 

the same for both bed heights. The difference in the voidage at velocity less than 2.5 

times Umb indicates the presence of agglomeration of the particles. At high velocity, the 

agglomerates were broken and hence the expansions become independent of the initial 

bed heights.

6.3 Influence of distributor porosity

Simone and Harriott (1980) reported that the perforated distributor gives less expansion, 

lower bubbling point and no definite transition to the bubbling point, compared to a 

higher flow resistant distributor, such as a porous plate. In this study two porous plates 

were used and even though the finer distributor has a distributor pressure drop 20 times 

higher than the coarse distributor, only a small effect of the distributor was observed.

As shown in Figure 6.9, the Ud and 8d relationship is independent of the distributor flow 

resistance. From (Figure 6.11), for the same column diameter and at low velocity, the 

dense phase voidage and bed voidage are lower; when the coarse distributor is used. In 

addition, there is not a clear transition indicating the minimum bubbling point. The 

bubbles start almost at the beginning of the fluidization stage. However, at very high 

velocity (Uo *  2.5Umb), the dense phase voidage and the bed voidage are the same as
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those obtained using the fine distributor and the distributor flow resistance has no 

influence on the bed expansion.
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6.4 Eo vs Uo and Ed vs Uo characteristic curves of 

narrow size and natural powders

Figure 6.12 shows e<j and Uo characteristic curves of narrow size cut powder. 6<j 

increases with increase Uo, until the maximum where Ud is the minimum bubbling 

velocity and 6d is the minimum bubbling voidage. After this, the gradual contraction of 

6d was observed. This is in contrast with the observations of a number of researchers, 

(Foscolo et al., 1987; Khoe et al., 1991; Simone and Harriott, 1980), who reported a 

sharp transition of the dense phase voidage at the minimum bubbling point. Jacob and 

Weimer (1987) carried out experiments at high pressures for a fine carbon powder and 

also reported a gradual contraction of the dense phase voidage. Dry et al. (1983) 

reported that presence of fines causes a less pronounced contraction of the dense phase. 

For our system the powder with the narrow size cut also shows the gradual transition of 

the dense phase voidage. At higher velocity, 6d continue to reduce and reaches a 

constant value at Uo approximately 2.5 to 5 times Umb. From Figure 6.12, 8d is higher, 

when the average diameter is lower. This means the particle bed expands more for the 

smaller powder.

From Figure 6.13, eo increases with Uo and equals to 8d, when Ud is less than the 

minimum bubbling velocity. After the minimum bubbling point, eo is higher than ed and 

gradually decreases with Uo. Until Uo is proximately 1.75 to 3.5 times Umb, so increases 

slowly with Uo or even is almost constant.
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Figure 6.14 shows Sd and Uo characteristic curve of the natural size distribution 

powders. The general expansion behaviour is the same as the powder with a narrow size 

cut. 6d increases with Uo, until Ud and Sd is at the maximum. After this point, Sd is 

gradually contracted, until it reaches the constant value at approximately 2.5-5 times 

Umb. Similar to the narrow size cut powders, the smaller the average particle diameter 

has the higher ed.

From Figure 6.15, eo increases with the Uo and equals Sd, when Ud is less than the 

minimum bubbling velocity. After the minimum bubbling point, eo is higher than ed and 

decreases with Uo. Above Uo = 2-3 Umb, So is almost constant and independent of Uo.

0.60 -<
a  46 micron

Natural size0.58 - a  37 micron (Batch 1)

0.56 - a  72 micron

a  89 micron
0.54 - AA Aa

A A
0.52 -

A A
*  *  aa a

to 0.50 - a A

A
0.48 - A

AA
A A A

0.46 A A

*  »
0.44 -

*  *
A A

0.42 - A & A

0.40 - -------------------- 1-------------------- 1-------------------- 1-------------------- 1-------------------- 1-------------------- 1
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Uo (mm/s)

Figure 6.14 ed and Uo characteristic curve for natural size powders.

[Full symbol = Uo<Umb and empty symbol = Uo>Umb]
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Figure 6.15 so and Uo characteristic curve for natural size powders.

[Full symbol = Uo<Umb and empty symbol = Uo>Umb]

Figure 6.16 shows the relation of the limiting dense phase voidage 6d(inf) for the narrow 

size cut and for the natural size cut. The limiting dense phase voidage decreases with the 

increase of the average diameters for both narrow size cut powder and natural powder. 

The limiting dense phase voidage varies exponentially with the average diameter. For 

natural size distribution powders it can be estimated from the empirical correlation 

between ê inf) and dp of the narrow size cut, as long as there are no fines present. The 

natural powders with fines have higher ê inf) than the estimated values. These results are 

similar to those reported by Geldart and Abrahamsen (1978) and Rowe et al. (1978). 

These authors report that increasing content of fines leads to an increase in dense phase 

superficial velocity and hence bed expansion. Dry et al. (1983) and Yadav et al. (1994)
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also report that the fines increase the bed dense phase voidage and the velocity where 

the dense phase voidage levels off.

0.50 - i

■ Narrow size cut

0.48
□ Natural size

0.46 -

0.44 -

0.42 -

0.40
50 60 70 80 10020 30 40 90

Dp Gun)

Figure 6.16 Infinite 8d versus dp relation for narrow size cut powders and natural size

powder

6.5 sd and Ud characteristic curves of narrow size and 

natural size powders

Figure 6.17 shows the 8d and Ud characteristic curve of the narrow size cut powders and 

natural size distribution powders. For all powders, the 8d and Ud relationships before 

and after the minimum bubbling point show the same linear trend. This means that a
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dense phase superficial velocity corresponds to the same dense phase voidage for both 

the expanded and bubbling beds.

From Figure 6.17, Ud increases with increased average diameter for narrow size cut 

powders and natural size powders. At the maximum expansion, U<j(max) increases with 

particle size and 6d(max) decreases with the particle size.

The 6d and Ud characteristic can be described using the empirical Richardson and Zaki 

correlation and drag force correlations. The following section shows the comparison 

between experimental values and those predicted from various correlations.
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Figure 6.17 6d and Ud curves for narrow size cut and natural size distribution powders
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6.6 Validation of fluidization drag force correlations 

and their modifications

In this work, the 6d and Ud characteristic curves were described using the empirical 

Richardson and Zaki (1954) equation; the Ergun (1952) equation; the Revised Ergun 

equation (Foscolo et al., 1983); the drag force correlation developed by Ishii and Zuber 

(1979); the drag force correlation developed by Syamlal and O’Brien (1987) as used by 

Gelderbloom et al. (2003) in the CFD simulations of bubbling and collapsing fluidized 

beds. The details of the correlations mentioned above are summarised in Table 2.3, 

Chapter 2.

Figure 6.20 shows the comparison of the predictions and the experimental 8d and Ud 

characteristic curve for the 45-53 pm narrow size cut powder. The correlations used 

were unable to predict the experiment characteristic curve and this was confirmed for all 

narrow size cut powders. The same result was found for the prediction of the 8d and Ud 

characteristic curve for natural size powder, as shown in Figure 6.22.

To improve the performance of the correlations, these were modified. In this study, the 

Richardson and Zaki equation, the Ergun equation, the Revised Ergun equation, and the 

drag force correlation developed by Ishii and Zuber (1979) were modified.

For the Richardson and Zaki (1954) equation, the expansion coefficient n was 

determined from the experimental data. For the Ergun (1952) equation, the modification 

was made on the constant denoted ‘X ’ as shown in eq. 6.1.
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dz d„s s d„
(6 .1)

In the Revised Ergun equation, the exponent of the voidage 8 was modified and the 

correlation was rewritten as:

d P _ pFU 2( l - e )  
dz  d„

f  18 

, ReP
+ 0.336 ( 6.2 )

In the drag force correlation of Ishii and Zuber (1979) the exponent (K) on the mixture 

viscosity was adjusted, and the maximum packing particle fraction was changed to 

0.601:

M-m _ j | 1 ~ e
M'F

(6 .3 )
' d m  y

where, 8dm = 0.601

Table 6.1 and Table 6.3 summarise the values of the modified factors on the correlations 

for the narrow size cut powders and the natural size powders, respectively. Table 6.2 

and Table 6.4 summarise the adjusted value of the modified factors on the correlations 

for the narrow size cut powders and the natural size powders.

Figure 6.21 and Figure 6.23 show the comparison of the prediction and the experimental 

8d and Ud characteristic curves for the narrow size cut powder and the natural size 

powder. The modified Richardson and Zaki correlation and the Revised Ergun 

equations show the best fit. The same results were found for all powders investigated in 

this study.
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Figure 6.18 shows the original Richardson and Zaki index and the modified index of the 

narrow size cut powders and natural size powders, n was found to be higher than the 

original value and ranges from 4.77 to 5.05 for the narrow size cut powders and from 

4.82 to 5.43 for natural size distribution powders. In general n is varied randomly with 

average particle diameter and the average value of n was used. The modified n for the 

narrow size cut powders is approximately the same as that for the natural size 

distribution powders.

6.0
■ Natural size

■ Narrow size cut

 Original n index

Average n =4.89

a

3.0
20 30 40 50 60 70 80 90 100 110 120

Dp(nm)

Figure 6.18 Modified Richardson and Zaki index and the Original index for narrow size

cut powders and the natural size powder
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Figure 6.19 Modified exponent ‘m’ for revised Ergun equation for narrow size cut

powders and the natural size powder

Figure 6.19 shows the modified exponent in the Revised Ergun equation for powders 

with narrow size cut and natural size distribution. The modified exponents range from 

5.12 to 5.29 for the narrow size cut powders and from 5.15 to 5.42. As before, m does 

not seem to vary significantly with the average particle diameter and an average value 

of m can be used.

The average modified m from the narrow size cut was used as a standard, because the 

expansion characteristic of the narrow size cut powders are of uniform size and the 

uncertainty of the average size is negligible. In addition, the values of m of the natural
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size distribution powders are also scattered around the average value m of narrow size. 

Thus, the average value m from the narrow size cut should be representative for both the 

system of uniform size and the natural size distribution. By using the average modified 

m from the narrow size cut powder, the modified revised Ergun equation can be written

as:

dP _ pfU 2( l- s )  
dz d„

18

v R e P
+ 0.336 -5 .21

This can be related to the drag force correlation by

Fd =eAP

and

(6 .4 )

(6 .5 )

F  _  P f

FdT
18

v Rep
+ 0.336 U 2(l-s )s -4.21 ( 6.6 )
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Figure 6.20 Prediction of 6d and Ud characteristic curve using original pressure drop 

correlations for 45-53 pm narrow size cut powder
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Modified drag force correlations
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Modified Richardson and Zaki 

Modified Ishii and Zuber

□ 45-53 micron

0.52

Figure 6.21 Prediction of Sd and Ud characteristic curve, using a modified pressure drop 

correlations for 45-53 pm narrow size cut powder
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Table 6.1 Summary of the original parameters for the modified pressure drop

correlation for 45-53 pm narrow size cut powder

Dp(mm) Richardson & Zaki Revised Ergun Ergun Ishii & 

Zuber 

(Sdm = 0.62)

n u t

(mm/s)

Exponent

(m)

Factor

(x)

Exponent

(k)

98.82 3.96 0.4880 4.8 150 2.5

81.81 4.12 0.3690 4.8 150 2.5

68.41 4.26 0.2760 4.8 150 2.5

55.08 4.40 0.1910 4.8 150 2.5

45.1 4.50 0.1350 4.8 150 2.5

33.5 4.61 0.0597 4.8 150 2.5
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Table 6 .2 Summary of the modified parameters for the modified pressure drop

correlation for 45-53 pm narrow size cut powder

Dp(mm) Richardson & Zaki Revised Ergun Ergun Ishii & 

Zuber 

(Sdm = 0.60)

n u t

(mm/s)

Exponent

(m)

Factor

(x)

Exponent

00

98.82 4.77 0.4880 5.22 210 1.50

81.81 4.80 0.3690 5.15 186 1.60

68.41 4.94 0.2760 5.29 202 1.80

55.08 5.05 0.1910 5.27 193 1.90

45.1 4.95 0.1350 5.12 165 1.85

33.5 4.85 0.0597 5.20 140 1.95
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Figure 6.22 Prediction of e<j and Ud characteristic curve using original pressure drop 

correlations for 72 pm natural size powder
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Figure 6.23 Prediction of e<i and Ud characteristic curve using modified pressure drop 

correlations for 72 pm natural size powder
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Table 6.3 Summary of the original parameters for the modified pressure drop

correlation for 72 pm natural size powder

Dp(mm) Richardson & Zaki Revised

Ergun

Ergun Ishii & 

Zuber

0>dm 0.62)

n u t

(mm/s)

Exponent

(m)

Factor

(x)

Exponent (k)

89 4.05 0.420 4.8 150 2.5

72 4.23 0.297 4.8 150 2.5

46 4.49 0.143 4.8 150 2.5

37(Batch 1) 4.58 0.094 4.8 150 2.5

Table 6 .4 Summary of the modified parameters for the modified pressure drop 

correlation for 72 pm natural size powder

Dp(mm) Richardson & Zaki Revised Ergun Ergun Ishii & 

Zuber 

(Cdm = 0.60)

n ut

(mm/s)

Exponent

(m)

Factor

(x)

Exponent (k)

89 4.82 0.420 5.23 200 1.60

72 4.98 0.297 5.30 200 1.90

46 5.42 0.143 5.42 200 2.10

37(Batch 1) 5.05 0.094 5.15 150 2.10

Chapter 6: Bed Expansion 216



6.7 8o vs Uo and ed vs Uo characteristic curves of 

bimodal powders

Figure 6.24 and Figure 6.26 show Sd and Uo characteristic curves bimodal mixtures of 

90-75/45-0 jam and 106-90/53-45 pm, respectively. As before, Sd increases with 

increasing Uo, until a maximum value where Ud is the minimum bubbling velocity and 

Sd is the minimum bubbling voidage. After this, the gradual contraction of Sd was 

observed. At higher velocities, Sd continues to reduce and reaches the constant value at 

Uo around 3 to 5 times Umb.

Figure 6.25 and Figure 6.27 show so and Uo characteristic curves bimodal mixtures of 

90-75/45-0 pm and 106-90/53-45 pm, respectively, so increases with Uo and is equal to 

Sd, when Ud is less than the minimum bubbling velocity. After the minimum bubbling 

point, So is higher than Sd and gradually decreases with Uo. Until Uo is proximately 2.5 

times U mb, eo increases with Uo or remains almost constant.
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Figure 6.24 Ed and Uo characteristic curves for bimodal mixture of 90-75pm/45-0jam 

[Full symbol = Uo<Umb and empty symbol = Uo>Umb]
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Figure 6.25 eo and Uo characteristic curves for bimodal mixture of 90-75|um/45-0|im 
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Figure 6.26 Sd and Uo characteristic curves for bimodal mixture of 106-90|xm/53-45jjm

[Full symbol = Uo<Umb and empty symbol = Uo>Umb]
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Figure 6.27 8 0  and Uo characteristic curves for bimodal mixture of 106-90pm/53-45pm 

[Full symbol = Uo<Umb and empty symbol = Uo>Umb]
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Figure 6.28Limiting Ed versus dp relation for narrow size cut powders, natural size and

bimodal powders

The limiting dense phase voidage (e^no) of the bimodal mixture of 90-75pm/45-0pm 

and 106-90jim/53-45pm were plotted in Figure 6.28 in comparison with the narrow size 

cut powders and the natural size distribution powders. The limiting dense phase voidage 

decreases with an increase of the average diameters for both bimodal mixtures. The 

limiting dense phase voidage of both bimodal mixtures are lower than those of the 

narrow size cut powder and the natural size distribution powder, Sd(inf) for the bimodal 

mixture can not be predicted using the empirical correlation obtained for the narrow size 

cut powders. In the case of the bimodal mixture, the fines do not seem to increase Ed(inf)
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as reported by Geldart and Abrahamsen (1978), Rowe et al. (1978), Dry et al. (1983) 

and Yadav et al. (1994).

6.8 Ed and Ud characteristic curves of bimodal 

powders

Figure 6.29 and Figure 6.30 show the 6d and Ud characteristic curve of the bimodal 

mixture of 90-75pm/45-0pm and 106-90pm/53-45pm, respectively. For all powders, 

the Sd and Ud relationships before and after the minimum bubbling point line on the 

same linear trend.

Figure 6.29 and Figure 6.30, Ud increases with increased average diameter. At the 

maximum expansion, Ud(max) increases with particle size and Et̂ max) decreases with the 

particle size.

The modified revised Ergun equation (eq. 6.4) was used to describe the expansion 

characteristic of the bimodal mixture as shown in Figure 6.31 and Figure 6.32. For the 

bimodal mixture of 90-75 pm/45-0 pm (Figure 6.31), the equation can describe fairly 

well the 6d and Ud characteristic for all compositions. For the bimodal mixture of 106-90 

pm/53-45pm (Figure 6.32), the modified revised Ergun equation gives slightly lower 8d 

and Ud characteristic curve when the surface to volume average diameter is used. 

However, within the 5-10% experimental error of the average diameter, the equation 

can give a good prediction of the characteristic curves. It can be concluded that the 

modified revised Ergun equation is predictive for the system of bimodal mixture.
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Figure 6.30 ed and Ud Characteristic curves for bimodal powder 90-75 pm and 45-0pm
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6.9 Summary

The influences of the column diameter, the initial bed height and the distributor flow 

resistance on Ud and Ed characteristics and Ed and £o versus Uo characteristics were 

studied. It was found that the Ud and Ed characteristic curve was independent of the 

column diameter, initial bed height and distributor flow resistance. For the relationship 

between Ed and Eo with Uo, it was found that Ed and So were independent with the initial 

bed height for all Uo. However, Ed and So were independent of the column diameter for
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the homogeneous expanded bed, but for bubbling beds at higher velocity 6 d and eo are 

higher for the larger column. With regard to the distributor gas flow resistance; the 

coarse distributor caused a lower bed expansion at low Uo and premature bubbling. 

However, at higher Uo (-2.5 U mb), 8 d and 8 0  are the same for both fine and coarse 

distributor.

The bed expansion characteristic of the natural size, narrow size and bimodal mixture 

were studied. For all powders, 8 d increases with Uo until the maximum point where the 

bubble starts. After that, 8 d contracted gradually and reached a constant value at 

approximately 2.5-5 Umb.

The bed voidage 8 0 , coincides with 8 d for inlet velocities below the minimum bubbling 

point. After the minimum bubling point, 8 0  continued to increase slightly with Uo and 

then gradually decreases. When Uo is approximately 1.75 to 3.5 times Umb, eo increases 

slowly with Uo or remains almost constant.

The limiting dense phase voidage, 8 d(inf), decreases with increase in particle size and 

varies as an exponential function with the particle size for the narrow size cut powders. 

The empirical correlation of 8 d(inf) and dp for the narrow size cut can be used to estimate 

ScKinf) of the natural size distribution powder, when there are no fines in the mixture. For 

the natural size distribution powder with fines, e<Kinf) was higher compared to those of 

the narrow size powders. However, for the bimodal mixtures, e<j(mf) is lower than those 

of the narrow size cut powders and natural size distribution powders, whether or not the 

mixtures contain fines.
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6d and Ud characteristic curves of the bubbling bed are the same as those of the 

homogeneous bed for all powders. This means that the dense phase behaviour can be 

determined from experiments on the homogeneous expanded beds.

The literature drag force correlations were not able to predict the 6d and Ud 

characteristic curve for the narrow size cut and the natural size distribution powders. 

Suitable empirical modifications have been made to allow the correlation of the 

experimental results obtained in this study.

The modified Revised Ergun equation and the modified Richardson and Zaki expansion 

coefficient were found to describe well the 6d and Ud characteristic curve. Based on the 

average m value of the narrow size, the modified revised Ergun equation for the viscous 

regime was used to describe the narrow size cut and the natural size distribution 

powders. This was then shown to describe the 6d and Ud characteristic curve of the 

bimodal powders with sufficient accuracy. In the next Chapter these results will be used 

in the new stability criterion developed by Brandani and Zhang (2004) to describe the 

prediction of the minimum bubbling point of the powders investigated in this study.
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Chapter 7: Minimum Bubbling Point

7.1 Introduction

The onset of the minimum bubbling point coincides with the point where the 

homogenous expanded bed becomes unstable and the first bubble is formed in the 

fluidised bed. The onset of bubbling can be measured in different ways: by visual 

observation of the bed surface, where inlet superficial velocity and the bed voidage, at 

which the first bubble appears, are noted; differential pressure drop profile along the 

column; the fluctuation of the pressure signal; the e<j and Ud characteristic curve.

Visual observation of the first bubble has the disadvantage that it is not very accurate, 

since one is not able to distinguish premature bubbling from the actual minimum 

bubbling point.

The local minimum in the differential pressure drop profile indicates where the dense 

phase voidage is maximum. Once the bubbling commences the dense phase contracts. 

Figure 7.1 shows the differential pressure drop profile of the 37 pm (Batch 1) powder. 

The local minimum is reached at different velocities for pressure drops at different 

heights. The range of the velocities where the pressure reaches the minimum point gives

Chapter 7: Minimum Bubbling Point 230



the possible range of the minimum bubbling point. To be able to pinpoint the exact 

value of the minimum bubbling point, the maximum dense phase voidage should be 

used and that should be the average value over the entire bed height.

1.8

1.6

1.4

1 12
§■ 1.0 
u.

0.4 

0.2 

0.0
0 5 10 15 20 25 30 35

Uo (mm/s)

Figure 7.1 Differential pressure drop profile along column height (dp = 37 pm (Batchl),

ID  = 0.127 m, Li = 0.43 m)

Umb =5.0-5.7 mm/s

■ 5-15cm 

a 15-25cm 

♦ 25-3 5cm

The fluctuation of the pressure signal measured along the bed height will give an 

indication of bubbles moving through the bed. Figure 7.2 shows the signal of the 

differential pressure fluctuation. In this case, it is easy to detect large individual bubbles 

but it is more difficult to pinpoint the onset of bubbling, where small bubbles Degin to 

form.
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Figure 7.2 Differential pressure drop fluctuation along column height (dp = 37 pm 

(Original powder, Batch 1), ID = 0.127 m, Li = 0.43 m)

From the 8d and Ud characteristic curve, the minimum bubbling point can be identified 

from the maximum point of Sd and Ud, as shown in Figure 7.3. The values of 8d and Ud 

are obtained using the bed collapse experiment, and the bed collapse model for the data 

interpretation By this approach, the minimum bubbling point can be determined 

accurately. This method is used in this study to identify the onset of the minimum 

bubbling point.
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It should be noted that by comparing Ud obtained from the bed collapse experiments 

starting from an initially homogeneous expanded bed with the inlet velocity Uo the 

accuracy of the method can be checked. Figure 7.4 shows Ud in comparison with Uo 

when the bed is a homogeneous expanded bed. There is approximately less than 3%  

error on the flow measurement.
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Figure 7.4 Comparison of Ud of homogenous expanded bed and Uo

Therefore the ea and Ud plot will yield values of emb comparable to the other methods, 

but should yield improved accuracy for the determination of Umt>.

Since the minimum bubbling point is a point of instability to differential perturbation, it 

is easy to have premature bubbling. This can be seen from the differential pressure drop 

profile, where the local minimum of the pressure can be reached at different velocities 

the pressure readings at different heights. The error of Uo together with premature 

bubbling can cause the difference between Ud and Uo to reach approximately 7% as 

shown in Figure 7.5.
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Figure 7.5 Comparison of Ud and Uo if premature bubbling occurs.

7.2 Influence of column diameter and initial bed 

height on the onset of bubbling

For the 72 pm powder, the minimum bubbling voidage and the minimum bubbling 

velocity is approximately independent of the column diameter and the initial bed height 

For the 37 pm (batch 1) powder, the range of minimum bubbling voidages is 

approximately 5% and that of the minimum bubbling velocity is approximately 12 %. 

This shows that the presence of fines can induce agglomeration and slightly cohesive 

behaviour which can lead to an increased uncertainty in the measurement of the 

minimum bubbling point.
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Table 7.1 Summary of minimum bubbling points of powders

dp (pm) ID (m) Li

(m)

W P (kg) APsed

(kPa)

H/D £mb U mb

(mm/s)

37(B1) 0.127 0.40 7.7971 5.93 3.37 0.537 4.55

0.30 5.4022 4.11 2.38 0.529 4.68

0.243 0.40 28.4350 6.00 1.79 0.559 5.20

0.30 19.3876 4.09 1.24 0.555 5.00

72 0.127 0.40 7.7971 5.93 3.34 0.476 7.2

0.30 5.4022 4.11 2.34 0.476 7.3

0.243 0.30 19.3876 4.09 1.23 0.477 7.2

37(B2) 0.127 0.40 7.7971 5.93 3.38 0.539 5.1

0.30 5.4022 4.11 2.40 0.530 5.60

7.3 Influence of distributor porosity on onset of 

bubbling.

As shown in Figure 6.11, the coarse distributor tends to cause premature bubbling in the 

fluidized bed and a smaller bed expansion. When the coarse distributor is used, there is 

no clear transition for the minimum bubbling. In this study, the fine distributor was 

used, because it leads to more accurate determination of the minimum bubbling point.
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7.4 Onset of minimum bubbling stage of narrow size 

and natural size powders

From Figure 7.6, the minimum bubbling velocity increases with the average diameter 

for both narrow size cut and natural size distribution powders. This observation is in 

agreement with Simone and Harriott (1980) who carried out experiments on fine FCC 

catalysts of narrow size cut and natural size distribution powders. The minimum 

bubbling velocity (Figure 7.6) varies as a quadratic function with the average diameter. 

Umb of the natural size distribution powder lines on the same trend as that for the narrow 

size cut, when the mixture has no fines. Umb is higher when mixture contains fines. 

Similar results have been observed by Abrahamsen and Geldart (1978) and Simone and 

Harriott (1980). Abrahamsen and Geldart (1978) indicated that the presence of fines 

tends to increase the bed expansion and, hence, the minimum bubbling velocity. Simone 

and Harriott (1980) reported that the minimum bubbling point of the size distribution 

powder and the narrow size cut powder is the same for the powder of the same average 

size.

From Figure 7.7, 8mb decreases with the increase of the average particle diameter and it 

varies as quadratic function of the average diameter for narrow size cut powder and 

natural size powder. 8mb is higher for the natural size distribution powder whether or not 

the mixture contains fines. However, for the mixture containing no fines, smb is closer to 

the trend line of the narrow size cut powder.
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Figure 7.6 Minimum bubbling velocity for narrow size cut powders and natural size

powders
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Figure 7.7 Minimum bubbling voidage narrow size cut powders and natural size

powders.
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7.5 Onset of bubbling for bimodal powders
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Figure 7.8 Minimum bubbling voidage narrow size cut powders, natural size and

bimodal powders.

From Figure 7.8, 8mb of both bimodal mixtures are slightly lower than those for the 

narrow size cut powder, but follow the same trend. In comparison with the natural size 

powders, Smb of the bimodal mixtures are lower than those of the natural size powders. 

This again shows that fines do not increase emb for the bimodal mixture, as in the case of 

the natural size distribution powders.
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Figure 7.9 Minimum bubbling velocity for narrow size cut powders, natural size and

bimodal powders

From Figure 7.9, Umb of the bimodal powders are in good agreement with the trend of 

the narrow size cut powders, whether or not the mixture contains fines. For the bimodal 

mixture, the fines do not increase emb and Umb in comparison with the narrow size cut 

powders. The empirical correlation of the narrow size cut powder can be used to predict 

the onset of the minimum bubbling stage of the bimodal powders.
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7.6 Prediction of the minimum bubbling point

The minimum bubbling point can be predicted theoretically using the stability criteria, 

mentioned in Chapter 2. In this work, the stability criterion developed by Brandani and 

Zhang, (2004) was used. The experimental minimum bubbling points of narrow size 

powders were used as a standard to investigate the predictive capability of the model.

The calculation procedures of the minimum bubbling point, when the stability criterion 

developed by Brandani and Zhang, (2004) is used, are as follows;

Step 1. The physical parameters are set: Pf; pp; dp; |If

Step 2: Characteristic length (6) is implemented in the dynamic wave velocity (Ud)

Step 3: The drag force correlation is used to calculate the continuity wave velocity (UE) 

Step 4: An initial guess value for smb is set.

Step 5: The appropriate drag force correlation and Ud = Ue are solved simultaneously 

for Umb and emb, by the iteration of 6mb initial guessed value.

7.6.1 Stability criterion description

As discussed in Chapter 2, the model is based on the definition of a characteristic length 

5, which should be of the order of the particle diameter (value used by Brandani and 

Zhang, 2004). In principle 6 can be a function of the void fraction. Having established 

an accurate drag force correlation, for the powders used in this study. From the results 

obtained in the previous Chapter, 5 can also be determined from the experimental 

minimum bubbling points. In this case the minimum bubbling criterion has to be 

modified to include the drag force correlation:
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Using the Dallavalle (1948) equation for the drag coefficient.

r

CD = 0.63 +
4.8

\ 2

v

The criterion of minimum bubbling becomes

' a f t  i - 6  (|3 + i)u
U e — (1 — 6>

V J  Equil 6 2 +
dRe C,

and the dynamic wave velocity (Gibilaro, 2001)

U D = V v 2 -G  + V

where, under the quasi-equilibrium approximation,

l - e  pFU
V =

s epp + (1 — e)pj

1 -8

G =_ 8'
pFU 2 -5 [ ( l -e )p p +epF]g 

sp,, + ( l -e )p F

(7 .2 )

(7 .3)

(7 .4)

(7 .5)

(7 .6)

7.6.2 Characteristic length (8)

Brandani and Zhang (2004) used their model to predict over 110 literature minimum 

bubbling data points. The drag force correlation used was; (Gibibilaro, 2001)]

3 pFD = ^ C DU 2( l - e ) e p
4 dp (7 .7)

P = 3.8
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and they assumed 6/dp = 1. With this choice of parameters, the predictions tend to 

deviate when the voidage is less than 0.45. For our experimental results, the model was 

applied to predict the minimum bubbling points of the narrow size cut powders. The 

characteristic length was chosen as 6/dp = 1 and the modified drag force correlation was 

used.

Figure 7.10 shows the predicted Smb in comparison with the experimental emb. When 

6/dp = 1, it was found that the model tends to underestimate emb when the value of the 

voidage is less than approximately 0.5. This confirms the result found by Brandani and 

Zhang (2004), mentioned above.
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Figure 7.10 Comparison between predicted emb and experimental emb, when 6/dp = 1

□ delta/Dp = 1
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Figure 7.11 Comparison between predicted Umb and experimental Umb, when 6/dp = 1

Figure 7.11 shows the predicted Umb in comparison with the experimental U mb. When 

6/dp = 1, the error in the predicted Umb is due to the incorrect value of emb clearly poor. 

From the comparison above, it is clear that the choice of a constant 6/dp = 1 is 

questionable. From the experimental results on the narrow size cut powders it is 

possible to establish the voidage dependency of 6. From the model derivation, the lower 

limit of 6/dp should be approximately 0.5 since at high voidages the characteristic 

dimension should tend to the particle radius. For dense particle suspensions, the ratio 

should increase.

Figure 7.12 shows the values of 6/dp as a function of bed voidage calculated using the 

original drag force correlation and modified drag force correlation. An exponential
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dependency with e -  8mf is observed. The empirical correlation given by eq. 7.8 is 

obtained when the modified drag force correlation was used, while eq. 7.9 is obtained 

when the original drag force correlation is used.

—  = 0.65 + 3.82[e 
dD

- 3 7 .7 ( e - einf) (7 .8)

—  = 1.00 + 8.8[e 
d„

- 4 2 ( 6 - 6 - ,  )■
(7 .9)
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Figure 7.12 Experimental 6/dp in relation with emb -SFixedbed for narrow size cut powders

Figure 7.12 shows that for void fractions close to the fixed bed, the particles can be 

considered “continuous” only over lengths greater than 6 to 8 particle diameters.
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Using the modified drag force correlation, the model accurately predicts the minimum 

bubbling velocities. When the original drag force correlation is used, the predicted 

minimum bubbling velocity is higher than the experimental values.

12
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■ Modified drag force 

a Original drag force

T33
I

4 6 8
Exp Ujnb (ram/s)

10 12

Figure 7.13 Comparison between predicted Umb and experimental Umb, when 5/dp = f  

(e) (using original and modified drag force correlations)

In conclusion, the stability criterion developed by Brandani and Zhang (2004) can be 

used to predict the minimum bubbling point of the narrow size cut powder, if the correct 

drag force correlation is used and if  the ratio 5/dp is expressed as a function of voidage. 

In this section a novel correlation for the minimum bubbling point of fluidized beds has 

been derived and it will be tested to predict the minimum bubbling point of the natural
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size distribution powders and the bimodal powders, as well as experimental minimum 

bubbling data available in the literature.

7.63 Prediction of the minimum bubbling point for natural 

size powders and bimodal powders

The prediction of the minimum bubbling voidage using the modified stability criterion 

is shown in Figure 7.14. The prediction for the bimodal powder is in agreement with the 

experimental results. For the natural size powders, the prediction is approximately 4% 

less than the experimental results. This may be due to the fact that the characteristic 

length of the natural size powder is different from that of the narrow size cut where 

there is a uniform size in the assembly of particles. For the natural size distribution 

powder, the characteristic length may have to be higher to account for the variants of 

forces and voidage which is likely to be higher for the system with particle size 

dispersion. The prediction seems acceptable nevertheless taking into account the 

experimental uncertainty.

The prediction of the minimum bubbling velocity is shown in Figure 7.15. The 

prediction is approximately 7% lower than the experimental results. For the bimodal 

powders, where the prediction of the minimum bubbling voidage is in agreement with 

the experimental result, the predicted minimum bubbling velocity is lower than the 

experimental results. This is because the prediction of Sd and Ud characteristic using the 

modified revised Ergun equation is in fact slightly less than the experimental results, as 

described in Chapter 6. For the natural size powders, the experimental minimum
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bubbling velocity is less than the prediction. This follows the small error in the

predicted minimum bubbling voidage.
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Figure 7.14 Prediction of the minimum bubbling voidage for the natural size powders 

and bimodal powder using the modified stability criterion
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Figure 7 .15 Prediction of the minimum bubbling velocity for the natural size powders 

and bimodal powder using the modified stability criterion

To ascertain the capability of the empirical correlation of 5/dp and the modified pressure 

drop correlation, the stability criterion and the constitutive equations were validated 

using over 700 literature data points corresponding to various operating condition, type 

of powders, and type of gases. This comparison will be presented in the next section.
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7.7 Validation of the modified stability criterion with 

literature data point

A detailed literature survey was used to establish a database of minimum bubbling 

points corresponding to various operating conditions, such as ambient condition 

(Godard and Richardson, 1968; Massimilla et al., 1972; Geldart, 1973; Musters and 

Reitema, 1977; Khoe et al., 1991; Kono et al., 1994; Rapagna et al., 1992; Foscolo et 

al., 1987; Kono et al., 1987; Rietema, 1973; Sobreiro and Monteiro, 1982; Foscolo et 

al., 1989; Reitema and Piepers, 1990; Marzocchella and Salatino, 2000; Donsi and 

Massilmilla, 1973), elevated temperatures (Lettieri et al., 2001; Xie and Geldart, 1995; 

Rietema, 1973), elevated pressures (Godard et al., 1968; Rapagna et al., 1992; Guedes 

De Carvalho, 1981; Peipers et al., 1984; Reitema and Piepers, 1990; Jacob and Weimer, 

1987; Sobreiro and Monteiro, 1982; Foscolo et al., 1989; Marzocchella and Salatino, 

2000; King and Harrison, 1982; and, Poletto et al., 1993), supercritical conditions (Vogt 

et.al., 2001), and high gravitational strength conditions (Reitema and Muster, 1978). 

The solid materials used in the studies reported in the literatures can be divided into two 

groups; rigid materials and non-rigid materials. The rigid materials can be divided 

further into porous and non-porous materials. The non-rigid materials are the polymeric 

materials. The gases are air, nitrogen, hydrogen, carbon dioxide, Argon, and Neon. 

These distinctions will be used to gain an insight in the predictions obtained from the 

model.

All the data points considered are for gas fluidization. In order to map the fluidization 

type based on the physical properties of particle and gas, the density ratio (pf/pP) versus 

Archimedes number of the data points was super-imposed on the generalized powder
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classification for fluidization by any fluid, developed by Foscolo et al. (1991) as shown 

in Figure 7.16.
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Figure 7.16 The generalized powder classification for fluidization by any fluid.

Most of the data points fall in the region of typical gas fluidization. However, some of 

data points, fluidized by carbon dioxide at high pressures, fall in the liquid fluidization 

region. The operating conditions of these experiments are at supercritical condition, 

where fluid properties are similar to liquid at high temperature and pressure. 

Fluidization types for the majority of the powders are within the transition region and
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bubbling region. For the transition region, the fluidized bed will expand homogeneously 

first up to the transition to the bubbling fluidization. The minimum bubbling voidage is 

higher than the minimum fluidization voidage in this case
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Figure 7.17 Reynolds numbers as function of Archimedes numbers for narrow size cut

powders and natural size powders.

Figure 7.17 shows the Reynolds number versus Archimedes number of the narrow size 

cut and the natural size distribution powders. The systems investigated in the present 

study fall within the creeping flow range. Hence, the modified drag force correlation

Inertial

Transition

Viscous
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and empirical correlation of 8/dp should be applied within this limit. The use of these 

correlations outside the creeping flow region should be checked carefully.
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Figure 7.18 Reynolds numbers as function of Archimedes numbers for the literature

data points.

The Reynolds numbers versus Archimedes numbers of the literature data points are 

shown in Figure 7.18. Most of the data points fall in the creeping flow region and some 

of them continue well within the transition region.
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Figure 7.19 shows the comparison of the predicted 6mb and the experimental emb, when 

8/dp = f(6,8mf). Figure 7.20 shows the comparison of the predicted emb and the 

experimental 8mb when 8/dp = 1. The comparison between Figure 7.19 and Figure 7.20, 

shows that the model predictions based on the modifications proposed in this study are 

greatly improved.

Some scatter of the data is also evident from Figure 7.19. Therefore, to analyse further 

the predictive capability of the model it is useful to look at the comparisons for each 

type of powders and of operating conditions considered.

Figure 7.21 shows the emb prediction of rigid non-porous materials. The prediction 

values are in excellent agreement with the experimental values for all operating 

conditions. Most of the powders are glass ballotini, which are used in the present study. 

It should be noted that for a non-porous material the particle density that should be used 

in the model is defined unambiguously. Also for solid spherical particles the size 

distribution measurements should be accurate. Therefore these parameters used in the 

calculations are reliable and it can be concluded that the model and its constitutive 

equations can be applied to non-porous materials, even though some experiments are in 

the transition region.

Figure 7.22 shows prediction of 8mb for rigid porous materials. The model can predict 

within +/-7% uncertainty many experimental data points. Some data are outside this 

range and the prediction capability is less satisfactory.
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The explanation for the poor prediction of some data points for porous materials may be 

from the error in the values of the particle density. For porous materials, one should use 

the density over the particle volume, i.e. including the pores, and this should not be 

measured using a density bottle, since this will yield a “skeletal” density.

Another possible explanation is due to the fact that porous materials tend to adsorb 

humidity and other components, and the density can be affected significantly by the 

relative humidity of the fluidizing air.

For non rigid polymeric materials (Figure 7.23), the model does not yield accurate 

predictions. As these are non-rigid and most of solids belonging to this category are 

resins, these powders can be deformed during fluidization, or could undergo swelling in 

the presence of water. I f  the particle adsorbs gases or vapours, the particle density will 

be affected as in the case of porous solid particles. I f  the density measurement is carried 

out in a density bottle and the material interacts with water, again the reported density 

could be affected and in the presence of swelling the larger particle size would lead to 

higher experimental emb values in comparison to the predicted values. From Figure 7.23, 

the experimental emb is higher than the predicted values for most cases in this category.

Figure 7.28 to Figure 7.30 show the predictive capability of Umb for rigid non-porous, 

rigid porous and non-rigid polymeric powders. The model predicts reasonably well the 

non-porous materials. For rigid porous materials, the data points that predicted emb 

correctly tend to have a reasonable agreement between the experiment and the predicted 

Umb. Where a poor prediction of emb was obtained, the predicted Umb tend yield poor 

results as well. In general, in the determination of the minimum bubbling point, the
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uncertainty on the velocity measurement is greater than that of the voidage 

measurement. This is because near the minimum bubbling point the change in bed 

height is gradual. Also, since the drag correlations are strongly dependent on the void 

fraction, any error in the voidage at minimum bubbling will result in a much larger error 

in the predicted velocity.

Figure 7.24, Figure 7.25, Figure 7.26 and Figure 7.27, show the prediction of emb for 

different operating conditions, which are high pressure, high temperature, high 

gravitational strength, and supercritical condition respectively. The prediction for high- 

pressure conditions (Figure 7.24) is good except for porous materials. In this case the 

weight of the fluidizing gas in the pores may be non-negligible. For high temperature 

operation (Figure 7.25), the prediction is worse as the content of fines is increased. This 

may be due to agglomeration. For the high gravitational field strength (Figure 7.26), the 

prediction is good. Finally, for the supercritical systems, there is an excellent agreement 

between the prediction and the experiment.
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Figure 7.19 Prediction of literature 8mb for all gases and all powders when 5/dp = f  (e)
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Figure 7.20 Prediction of literature emb for all gases and all powders when 6/dp = 1
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Figure 7.22 Prediction of literature emb for porous materials, when 8/dp = f  (e)
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7.8 Summary

The influences of the column diameter, the initial bed height and the distributor flow 

resistance on the minimum bubbling point were studied. The Sd and Ud characteristic 

curve was used to identify the minimum bubbling point with an improved accuracy in 

the determination of the minimum bubbling velocity. It was found that the minimum 

bubbling point was independent of the column diameter and initial bed height. The flow 

resistance of the distributor was found to have an influence on the minimum bubbling 

point. The coarse distributor causes premature bubbling and a reduced bed expansion. In 

addition, there was no clear transition from the homogeneous expanded bed to the 

bubbling bed.

The minimum bubbling points of the natural size distribution powders, the narrow size 

cut powders, and the bimodal powders were determined. It was found that for the 

narrow size cut powders the minimum bubbling velocity and the minimum bubbling 

voidage vary as a quadratic function with dp. The minimum bubbling velocity of the 

natural size distribution powders at different particle average diameter agreed with those 

of the narrow size cut powders, as long as no fines are present in the mixture. Natural 

size distribution powders containing fines show a higher minimum bubbling velocity.

Higher minimum bubbling voidages were found for the natural size distribution 

powders at different average particle diameters, compared to the narrow size cut 

powders. The minimum bubbling voidage is even higher, when the powder contains 

fines. For the bimodal powder, the minimum bubbling voidages were lower than the 

natural size cut powder, but followed approximately the same trend.
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The minimum bubbling velocities for the natural size distribution powders were on the 

same trend of the narrow size cut powder, when there are no fines in the mixture. With 

fines, the minimum bubbling velocities were higher. For the bimodal powder, the 

minimum bubbling velocities were on the same trend of the narrow size cut powder 

whether or not the mixture contained fines.

The recently developed stability criterion of Brandani and Zhang (2004) has been 

extended using the experimental results obtained in this study. Combining a modified 

drag force correlation and introducing a voidage dependency for the ratio 5/dp a new 

correlation was proposed. This new correlation was further tested against more than 700 

data points taken from the literature. A careful analysis of the results indicates that for 

non-porous rigid particles the model results in accurate predictions of the minimum 

bubbling point.
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Chapter 8: Conclusions and Future 

Work

8.1 Introduction

Fluidization characteristics of fine powders, belonging to group A of Geldart’s powder 

classification, were studied in detail using pressure drop measurements from 

fluidization and de-fluidization experiments and the bed collapse technique. To obtain 

the correct properties of the powders from the bed collapse experiment, a model has 

been developed, which takes into account the system configuration for both one- and 

two-valve experiments.

The effect of particle size has been investigated on four different sizes of natural size 

distribution powders. In order to understand the effect of each individual size cut on the 

behaviour of the original powder, the original powders were sieved into 6 different size 

cuts; according to 21/4 sieve size aperture series and fluidization characteristics of each 

size cut were studied. Bimodal powders were prepared mixing narrow size cut powders 

to compare these with the natural size distribution powders. In addition, the effects of 

column diameter, initial bed height and distributor porosity on the fluidization 

characteristics were also studied.
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The experimental 8d and Ud characteristic curves were used to test drag force 

correlations reported in the literature. It was found that all the correlations commonly 

used in CFD simulations do not describe accurately the experimental results. Modifying 

the literature equations it was possible to correlate the experimental 8d and Ud curves 

and using this information to predict the minimum bubbling point using a CFD model 

recently developed at UCL. A correlation for the dependence with voidage of the 

characteristic parameter of the model was obtained from the experimental results. The 

predictions from the new minimum bubbling criterion were compared to an extensive 

database of literature values.

8.2 Bed collapse model

A model was developed in order to describe the bed collapse curves taking into account 

the effect of the experimental system configuration. A procedure to estimate the model 

parameters: the windbox volume, the distributor pressure drop, the discharge valve flow 

characteristics and the pressure drop in the fixed bed was applied to the experimental 

apparatus available in our laboratory. The model was applied to the two variants of the 

bed collapse experiment, the 1- and 2 -valve configurations. The intrinsic particle 

properties of the dense phase voidage, dense phase superficial velocity and the bed 

voidage can be obtained from the use of the model applied to the analysis of the 

experimental results. In addition, the model can be used to predict under which 

conditions the 1-valve or 2-valve configuration will yield the correct extrapolation to 

obtain the dense phase voidage from the experimental curve. Finally, the model can also
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predict the bed collapse curve, the location of the fixed bed interface, the transient 

pressure drop profile, the bubble escape time and the bed collapse times.

Based on this study we can conclude that both 1-valve and 2-valve experiments have 

advantages and limitations, and for this reason both should be performed to 

unambiguously determine the intrinsic properties of Geldart type A powders. Accurate 

Ud and 6d correlation can be found when applying our model to both the l-valve/2-valve 

bed collapse experiments.

8.3 Influence of column diameter, initial bed height 

and the distributor flow resistance on the 

fluidization characteristics

The influences of the aspect ratio, column diameter, initial bed height and distributor 

flow resistance on the minimum fluidization point, the fixed bed pressure drop, Ud and 

6d characteristic, Cd and eo versus Uo characteristic and the minimum bubbling point 

were studied.

The minimum fluidization voidage and, hence, the fixed bed pressure drop was slightly 

affected by the aspect ratio and the column diameter, due to the influence of these on 

6mf. The minimum fluidization velocity was independent of the aspect ratio, column 

diameter, initial bed height, and distributor flow resistance.
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The Ud and 8 d characteristic curve was independent of the column diameter, initial bed 

height and distributor flow resistance. The relationship between 8 d and e0 with Uo, it was 

found that e<i and 8 0  were independent of the initial bed height for all Uo. However, 8 d 

and 8 0  were independent of the column diameter for the homogeneous expanded bed, 

but at higher velocities 8 d and 8 0  are higher for a larger column. The distributor gas flow 

resistance influences the onset of bubbling with the coarse distributor leading to a lower 

bed expansion at low Uo and to premature bubbling. At velocities higher than Uo (-2.5  

Umb), 8d and 80 are the same for both fine and coarse distributor.

The 8 d and Ud characteristic was used to identify the minimum bubbling point. It was 

found that the minimum bubbling point was independent of the column diameter and 

the initial bed height, but was influenced by the flow resistance of the distributor.

8.4 Fluidization characteristics of narrow size cut, 

natural size distribution and bimodal powders 

with average particle size

The pressure drop characteristics of natural size distribution powders, narrow size cut 

powders and bimodal powders were investigated. It can be generally concluded that 

minimum fluidization velocity is increased as a quadratic function with the increase of 

the average diameter. With the increase of the average diameter, the minimum 

fluidization voidage is decreased, and the fixed bed gas flow resistance is decreased. In 

addition, the relation of Umf and APfIXed bed with dp of the narrow size cut can be used to 

estimate of Umf and APfixedbed natural size distribution powder and bimodal mixtures as
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long as there is no fines in the mixture. However, when the mixture contains fines, Umf, 

and APfiXed bed cannot be predicted using the relation from narrow size cut powders. Umf, 

and APfixed bed of the natural size cut and bimodal with fine were approximately on the 

same trend. Furthermore, the minimum fluidization voidage of the natural powders with 

fines and the bimodal mixtures, with and without fines is smaller than that estimated 

from the narrow size cut relation.

From the pressure drop profile of all powder mixtures, there is no evidence of particle 

segregation in the fluidized bed and the gradual contraction of so is observed from the 

pressure drop profile. It was suggested that in order to define the accurate minimum 

bubbling point, the highest dense phase expansion from the 8d and Ud characteristic 

curve should be used.

The bed expansion characteristic of the natural size, narrow size and bimodal mixtures 

were studied. For all powders investigated, 8 d increases with Uo until the minimum 

bubbling point. After that, 6 d gradually contracts. 8 d continued to decrease after the 

minimum bubbling point and reached a constant value at approximately 2.5-5 Umb.

The bed voidage 6 0 , coincides with 6 d for Uo < Umb and above the minimum bubbling 

point, 8 0  continues to increase slightly with U0 and gradually decreases and levels off at 

very high velocities.

The limiting dense phase voidage, e<j(inf) decreases with increase particle size and varies 

as an exponential function with the particle size for the narrow size cut powders. The 

empirical correlation of e<j(inf) and dp for the narrow size cut can be used to estimate 8 d(inf)
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of the natural size powder, when there is no fine content in the mixture. For the natural 

size distribution powder with fines, 6d<mf) was higher compared to that of the narrow size 

cut powders. However, for the bimodal mixtures, 6d(inf) is lower than that of the narrow 

size cut powders and natural size distribution powders, whether or not the mixtures 

contain fines.

6d and Ud characteristic curve of the bubbling bed is the same as that of the 

homogeneous bed for all powders. This means that the dense phase behaviour can be 

obtained from the behaviour of the homogeneous expanded bed.

The minimum bubbling points of the natural size distribution powders, the narrow size 

cut powders, and the bimodal powders were measured. It was found that the minimum 

bubbling velocity varies as a quadratic function with dp, as well as the minimum 

bubbling voidage for the narrow size cut powders. In comparison with the narrow size 

cut powders, the minimum bubbling velocity of the natural size distribution powder at 

different average particle diameter were on the same trend as those of the narrow size 

cut powders, as long as there was no fine in the mixture. However, natural size powders 

with fine content give higher minimum bubbling velocity.

Higher minimum bubbling voidages were found for the natural size distribution powder 

at different average particle diameters, compared to the narrow size powder. The 

minimum bubbling voidage is even higher, when the powder contains fines. For the 

bimodal powder, the minimum bubbling voidages were lower than the natural size 

distribution powder, but they followed the trend of the narrow size cut powders.
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The minimum bubbling velocities for the natural size distribution powder were on the 

same trend of the narrow size cut powder, when there is no fine content in the mixture. 

With fines in the mixture, the minimum bubbling velocities were higher. For the 

bimodal powder, the minimum bubbling velocities followed the trend of the narrow size 

cut powder whether or not the mixture contained fines.

8.5 Drag force correlations and their modification

Drag force is a key parameter in models that describe fluidized beds. With the 

knowledge of the drag force correlation, the expansion of the dense phase of the 

homogeneous expanded bed and the bubbling bed can bed described. The drag force 

correlation is also used to calculate the kinematic wave velocity for the prediction of the 

minimum bubbling point. The drag force correlations commonly used in CFD 

simulations were validated in this work with the fixed bed pressure drop, dense phase 

expansion characteristic and the minimum bubbling point.

The revised Ergun equation (Foscolo et al., 1983) was used to predict the fixed bed 

pressure drops of all the powders carried out in this work and it was found that the 

correlation underestimated the fixed bed pressure drop of all powders. Therefore, the 

revised Ergun equation together with the drag force correlation used in CFD simulation 

were further validated using the experimental ea and Ud characteristic curves.

The literature drag force correlations: the Ergun equation; the Revised Ergun equation; 

the drag force correlation of Ishii and Zuber, 1979; the drag force correlation developed 

by Syamlal and O’Brien (1987); and the Richardson and Zaki (1954) correlation, were
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used to describe the measured 6d and Ud characteristic curve of the narrow size powder 

and the natural size power. It was found that in the case of the particles in suspension, 

none of the above correlations could describe correctly the 6d and Ud characteristic 

curve, unless the modifications were made on the correlations.

The modified Revised Ergun equation and the Richardson and Zaki equation with 

expansion coefficient obtained from the experimental data were found to describe well 

the 6d and Ud characteristic curve. Based on the average value of the exponent m of the 

narrow size, the following revised Ergun equation was proposed to describe the system 

of narrow size cut powder and natural size cut powder.

ap_Pfu2(i-s)r_iL+033;
KRepdz dp

- 5  21

In the form of drag force, the correlation can be re-written as;

F D = 7 T - C DU 2( l - e ) 8 - 42'
4 d P

These equations allow reasonable prediction of the behaviour of all powders 

investigated, with some deviation for the cases where large fractions of fines are 

present.

8.6 Prediction of the minimum bubbling point

The recently developed stability criterion of Brandani and Zhang (2004) and the 

modified drag force correlation were used to predict the minimum bubbling point of the 

narrow size cut powders. The stability criterion of Brandani and Zang, (2004) using the 

modified drag force correlation is given by:
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U t = U D

U =(1-8)
'd tA  = l - e  (p + l)U

V /E q u il 8 2 +
dRe C,

U n = V v 2- G  + V

Where p = 4.21 and Dallavalle (1948) equation is used for the drag coefficient.

f

CD = 0.63 + 4.8

y  l - e  pfU
8 spp+ ( l -e )p f

1 - 8

G =_ 8
P f U 2 — 5[(l-e)pp+epf ]g 

epp+(l-e )p f

6/dp was found to be an exponential function with the voidage and the empirical 

correlation was proposed.

—  = 0.65 + 3.82e_37 7(t-e- )

The criterion was then used to predict the minimum bubbling point of the natural size 

powders and the bimodal powders and good agreement was found with the 

experimental results for the bimodal mixture.

The new stability criterion was tested with a detailed comparison with 700 minimum 

bubbling points taken from literature. The criterion can predict very well the minimum 

bubbling voidage for various operating conditions of rigid non-porous materials. The 

model prediction of the minimum bubbling velocity is good. It was noted that the
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minimum bubbling velocity is more subject to uncertainty than the bed voidage at 

minimum bubbling.

8.7 Future work

•  More experimental investigations should be carried out to extend the 

understanding of the influence of type of particle size distribution on the 

fluidization characteristic, as well as the effect of fines.

•  Experimental investigations on the effect of size, size distribution and fines 

should also be extended to cover various types of powders, especially porous 

materials, which have many industrial applications.

•  The modified drag force correlation proposed in this work should be validated 

with more 8d and Ud characteristic curves of more types of size distributions and 

more type of powders from the experiments mentioned. This is to ascertain that 

drag forces can generally describe with various types of powders. In particular 

the drag force correlation should be extended to cover the transition and inertial 

flow regimes.

• The drag force correlation and the voidage dependency of the characteristic 

dimension 5 should be implemented in CFD simulations to compare the full 

model predictions in 2- and 3-D with experimental results.
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Appendix A: Particle size and density 

analysis

1. Particle size measurements and size analysis

The particle size measurements were carried out using sieve analysis and laser light 

scattering methods.

Sieve analysis; sieve series are arranged so that the aperture size is on consecutive 21/4 

U.K. British standard (B.S.) screens. The powder is divided into narrow size fractions 

with mass fraction xj of size dpi. The surface to volume average diameter can be defined 

as:

d P = v
Z ,x , /dp,

dPl = (Lower sieve aperture size + Upper sieve aperture size)/2 

For spherical particles, the surface to volume diameter of the individual size cute is 

equal to dp; (Abrahamsen and Geldart, 1980a).

Generally, it is difficult to obtain accurate results through sieving for particle sizes 

below 40 pm because of the very fine particles become cohesive and tend also to adhere
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to the wires of the mesh. For these particles the laser light scattering technique is often 

preferred since it can give a more accurate size analysis.

Laser light scattering method; the particles are suspended in de-ionized water. The 

suspension is held across the path of a laser light beam and the scattered light is 

collected by an array of photo-detectors, positioned perpendicular to the optical axis. 

The scattered light distribution is sampled and processed using appropriate scatter 

analysis software which can yield particle size information over the range 0.1-600 pm. 

(Allen, 1990)

2. Particle size distribution and particle size

2.1 Particle size distributions of natural size ballotini 

powders (Figure A1 -  A5)

The particle size distribution from the sieve analysis for the natural size powders are 

shown in Figure A1 to Figure A5
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Figure A2 Particle size distribution of mixed size ballotini 37 pm (Batch 2)
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Figure A4 Particle size distribution of mixed size ballotini 72 pm
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Figure A5 Particle size distribution of mixed size ballotini 89 jim

22 Particle size distribution of narrow cut ballotini 

powders (Figure A6 -  A ll)

The particle size distribution from the sieve analysis for the narrow cut powders are 

shown in Figure A6 to Figure A11
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Figure A9 Particle size distribution of narrow size ballotini 75-63 pm
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Table Aland Table A2 shows the average particle size (dp) of the natural size 

distribution ballotini and narrow size cut ballotini powders from the sieve analysis and 

the laser light scattering method. It was found that average particles, analysed from the 

two methods gave similar results. The particle size difference from these two methods is 

within 3 pm and becomes slightly larger, 5 pm, for the smaller particle size range of 0- 

45 pm. As a result, the average particle sizes were calculated based on the size analysis 

obtained from sieving method, except for the fine particles in the 0-45 pm range where 

the light scattering results were used.

Table A1 Average size (dp) of the natural size ballotini

Powder dp ( pm) 

In use

dp ( pm) 

from Sieve analysis

dp (pm) 

from laser light 

scattering method

37 pm (Batch 1) 37 36.54 38.82

37 pm (Batch 2) 37 37.98 38.00

46.61 pm 46.61 43.96 46.61

72 pm 72 71.93 69.27

89 pm 89 89.16 88.92
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Table A2 Average size (dp) of the narrow size cut ballotini

Powder dP ( pm) 

In use

dp ( pm) 

from Sieve analysis

dp (pm) 

from laser light 

scattering method

45-0 pm 33.50 28.96 33.83

53-45 pm 45.10 45.10 47.53

63-53 pm 55.08 55.08 55.32

75-63 pm 68.41 68.41 66.02

90-75 pm 81.81 81.81 79.57

106-75 pm 97.82 97.82 94.47

3. Particle density measurement

A 50 ml density bottle was used to measure particle density. Distilled water was used as 

a medium and from a series of measurements the particle density was found to be 2480 

kg/m3.

The procedures of the density measurement are as follows;

• Weigh the empty and dry bottle ( W b )

• Weigh the powder (Wp)

• Load the powder in the bottle

• Weigh the powder and bottle (W b+p)
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• Fill the bottle with the distilled water until it is full. Make sure that there is no 

bubble inside the bottle

• Close the cap and dry the external part

•  Weigh the bottle again (W b +p + w )

• Empty the content and rinse it thoroughly

•  Fill empty bottle with distilled water, dry the external part and weigh it (W b + w )

•  Powder density calculation 

Weight of 50 ml water = W b + w  -  W b

Volume of 50 ml water = W b + w  -  W b  / water density

Weight of the water in the bottle with powder = W b+p+w  -W b + p

Volume o f water in the bottle with powder = (W b + p + w  -WB+p)/water density

Volume o f powder = [W b + w  -  W b  / water density]- [ (W b + p + w  -WB+p)/water density]

Density of powder = Wp/volume of powder
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Appendix B: Pressure Transducer 

Calibration

1. Pressure transducer A (0-13.79 kPa)

o A(0-13.79)
0.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Transducer (kPa)

Figure B. 1 Pressure transducer A calibration
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2. Pressure transducer B (+/-0.50 kPa)
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□ B(+/-0.5)
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Figure B.2 Pressure transducer B calibration
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3. Pressure transducer C (0-1 kPa)
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Figure B.3 Pressure transducer C calibration
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4. Pressure transducer D (0-1 kPa)
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Figure B.4 Pressure transducer D calibration
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5. Pressure transducer E (+/-1.49 kPa)

□ E(+/-1.49)

Transducer (kPa)

Figure B.5 Pressure transducer E calibration
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6. Pressure transducer F (+/-1.49 kPa)
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Figure B.6 Pressure transducer F calibration
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7. Pressure transducer G (+/-1.49 kPa)

3.5

3.0

2.5

2.0

1.5

1.0 

0.5 

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Transducer (kPa)

Figure B.7 Pressure transducer G calibration
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8. Pressure transducer H (+/-3.4S kPa)
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Figure B.8 Pressure transducer H calibration
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Appendix C: Rotameter, Distributor and 

Discharge Valve Characteristic Curves

1. Rotameter characteristic curve
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Figure C. 1 Rotameter characteristic curve
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Figure C.2 Pressure drop inside the rotameter
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2. Distributor characteristic curve
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Figure C.3 Distributor characteristic curve
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3. Discharge valve pressure drop
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Figure C. 4 Discharge valve pressure drop
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2. Conference Proceeding

• Parimanan Chemgtongchai and Stefano Brandani, “A M ode l fo r  the 
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Meeting, San Francisco, USA, 2003
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