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Abstract

The role of small and intermediate conductance calcium-activated potassium channels 

(SK and IK channels) in dorsal root ganglion (DRG) neurones was examined. Sixteen 

antibodies raised against human or rat SK/IK channel peptide epitopes were tested for 

their ability to stain cells expressing channel protein. Of sixteen antibodies, 12 (6 to 

SKI, 1 to SK2, 2 to SK3 and 3 to IK) were deemed suitable for immunohistochemistry 

in human or rat tissue.

Real-time quantitative PCR (qPCR) of rat DRG cDNA was performed to examine 

SK/IK expression levels. DRG neurones produce mRNA for all SK/IK channels and 

these mRNA levels were found to increase during development. Antibody staining 

experiments using DRG neurones cultured from different aged animals produced a 

positive stain with the anti-SK3 antibody only. The number of cells that stained 

positively and the intensity of staining for SK3 increased with age.

To investigate possible functional roles for SK/IK channels sensory neurones, action 

potential afterhyperpolarisations (AHPs) were recorded from cultured DRG and nodose 

cells. The majority of these AHPs proved to be insensitive to the SK channel blocker 

UCL 1848. Attempts to block medium duration AHPs in DRG cells using IK and 

calcium channel blockers, also failed in most cases, suggesting that some other 

potassium conductance^) are responsible.

The possibility that SK3 is functional at the terminals of primary afferents was 

examined next. Spinal cord slices stained with SK/IK channel antibodies revealed 

positive SK3 staining in the outer laminae of the dorsal hom, where small and large 

diameter DRG fibres are expected to terminate. In vivo experiments (done by Dr Rie
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Suzuki, Department of Pharmacology, UCL) using UCL 1848 and l-ethyl-2- 

benzimidazolinone (1-EBIO; an SK channel opener) showed that SK channels are likely 

to be active at these terminals where they have a functional role in mediating innocuous 

mechanical and nociceptive responses.
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Chapter 1

Introduction

Ion channels are protein pores found in the lipid membranes of all cells. Though 

sometimes active in resting cells, they usually open in response to a specific stimulus, 

for example, ligand binding, a change in membrane potential, or a rise in intracellular 

calcium, to allow the passive movement of charged particles (ions, such as Na+, K+, 

Ca2+ or Cl') into or out of a cell.

1.1 Potassium channels -  a general introduction

Though this is not intended to be a thorough review of potassium (K+) channels, I hope 

to introduce a number of their important properties, to provide an outline of the different 

types, their structures and to briefly describe some of the functions. K+ conductances 

were first described and characterised by Hodgkin and Huxley in the giant squid axon 

(Hodgkin and Huxley, 1952). The underlying potassium channels are now known to be 

members of the largest and most diverse group of all ion channels. This diversity is 

primarily due to the large number of genes for the pore-forming (alpha) subunits, but 

also because many of these genes have alternative splice variants. Furthermore, the 

individual subunit proteins can come together as heteromers, associate with auxiliary 

proteins, or undergo post-translational modifications to produce an amazing variety of 

channels. Their functions range from the repolarisation of nerves following action 

potentials to the control of insulin release from pancreatic p cells. However, despite 

progress with patch-clamp technology and various cloning techniques, we do not fully 

understand all of their physiological roles.
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Figure 1.1. A schematic representation of the three main groups of potassium channel a 

subunits. They are separated on the basis o f the number of membrane spanning domains. 

Each group of principal subunits is divided into families, most of which can, in turn, be 

further subdivided into a number of closely related members. In each illustration, “P” 

indicates the pore region.
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1.1.1 Classification of potassium channels

Potassium channels are classified according to their structural, biophysical and 

pharmacological properties. The broadest form of classification is based on the 

topology of the pore-forming a  subunit proteins (see Figure 1.1). The first major group 

contains, amongst others, the voltage-gated (Kv), small and intermediate conductance 

calcium-activated (SK and IK respectively), and sodium-activated (KNa) K+ channels; 

these have a  subunits with six transmembrane domains (TMDs), called S1-S6 and a 

conserved pore-forming P or H5 loop. The S4 domain has been shown to be 

responsible for the voltage-sensitivity seen in Kv channels (Guy & Conti, 1990).

The large conductance calcium-activated K+ channel (BK channel) was also originally 

thought to belong to this family, however, more recent work has demonstrated that the 

a-subunits actually have 7TMDs (S0-S6), although the S1-S6 regions appear to fold in a 

manner similar to other 6TMD channels (Meera et al, 1997).

The second major group is that of the inward rectifier K+ (Kir) channels; these channel 

proteins are now known to have two TMDs (Ml and M2) with a P region analogous to 

that of the 6TMD channels (Doyle et al, 1998). One example is the KAtp channel 

which, in islet cells, responds to intracellular ATP levels in order to regulate pancreatic 

insulin release.

The final group of K+ channel pore-forming subunit proteins are those that make up 

the “leak” or “two-pore” channels; these have 4 TMDs (M1-M4) and two pore (P) loops 

distinguishing them from the other groups. “Leak” channels are non-inactivating and 

are open at all membrane potentials (Lesage and Lazdunski, 2000).
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1.1.2 Assembly and selectivity of potassium channels

Potassium channels (unlike their close relatives the voltage-gated Na+ and Ca2+ 

channels) consist of several separate channel a  subunits that come together to form a 

central pore region allowing the selective passage of K+ ions. Several groups provided 

the initial evidence that K+ channels are heteromers made up of several a  subunits 

(MacKinnon et al, 1988; Isacoff et al, 1990; Ruppersberg et al, 1990). However, 

definitive evidence for a tetrameric structure of K+ channels has recently come from 

impressive work on the crystallisation and x-ray analysis of bacterial K+ channels 

(Doyle et al, 1998; Jiang et al, 2002, Jiang et al, 2003). In this respect the two-pore 

channel family differs from the others in that the 4TMD proteins come together to form 

dimers (Lesage & Lazdunski, 2000). However, by doing this they retain the four-fold 

symmetry of the channel. One common feature of the great majority of K+ channels is 

that the pore sequence contains a GYG (gly-tyr-gly) motif, which conveys selectivity of 

the pore to K+ ions (Heginbotham et al., 1994), although there are also K+ channels e.g. 

certain inward rectifiers with a GFG (gly-phe-gly) motif (Reimann & Ashcroft, 1999).

The fact that K+ channels comprise several individual channel proteins allows for the 

possibility of heteromerisation and indeed this has been shown to occur with several 

members of the K+ channel family; for example, different Kv channel a  subunits can 

come together to form heteromultimers that are functionally different from the 

homomultimers formed from either set of subunits (Isacoff et al., 1990; Ruppersberg et 

al, 1990; Christie et al, 1990). In some instances, different protein subunits may need 

to associate in order to reach the cell surface (Zhu et al, 2003).

This thesis is concerned specifically with calcium-activated K+ (Kca) channels, so in 

the following sections these are described in more detail.
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1.2 Calcium-activated potassium channels (Krfl)

The first indications of the existence of Kq, channels came from studies in red blood 

cells, which showed that increases in intracellular calcium ([Ca2+]i) led to an increase in 

potassium permeability (Gardos, 1958). The first recordings of a K+-selective ionic 

current activated by a rise in [Ca2+]i were made by Meech & Striimwasser (1970) from 

Aplysia neurones. Since this early work, much has been done to characterise Kca 

channels which fall into three subfamilies based on their biophysical and 

pharmacological properties: large conductance (BK), intermediate conductance (DC) and 

small conductance (SK) Kca channels. Functional studies, along with the completion of 

the human genome project, have identified five genes in the human body which code for 

the alpha pore-forming subunits of calcium-activated potassium channels. These are; 

KCNMA1, which codes for the a subunit of the BK channel; KCNN1, KCNN2, 

KCNN3 and KCNN4, which code for the a subunits of SKI, SK2, SK3 and IK channels 

respectively.

1.2.1 BK channels

BK or maxiK channels were first described in chromaffin cell membranes (Marty, 

1981) and cultured rat skeletal muscle (Pallotta et al., 1981). They are highly potassium 

selective with single channel conductances > 100 pS in symmetrical K+ (Sah, 1996). 

These channels rapidly respond by opening upon application of Ca2+ to the cytosolic 

face and promptly close upon its removal. As well as requiring calcium for activation, 

BK channels are also strongly voltage sensitive. At depolarised membrane potentials 

(from + 20 mV to + 40 mV) the concentration of Ca2+ required to activate 50% of BK 

channels lies in the high nanomolar range (several hundred), while at resting membrane 

potentials this value is several micromolar (Barrett et al., 1982). BK channel activation
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is also altered by association with some of the P subunits that have been described 

(McManus et al., 1995; Dworetzky et al., 1996). The dependence of BK channels on 

Ca2+ and membrane potential is an important determinant of their role as a feedback 

mechanism to regulate voltage-dependent Ca2+ channels (VDCCs; Vergara et al., 1998).

A number of compounds are known to block BK channels including 

tetraethylammonium (TEA), which acts at submillimolar concentrations (Blatz & 

Magleby, 1987), also charybdotoxin (ChTx) and iberiotoxin (IbTx), which are two 

scorpion toxins (Galvez et al., 1990). Other blockers include paxilline and penitrem A 

(Sah & Faber, 2002). Of these compounds, IbTx and paxilline are the most selective for 

BK channels. In addition, dehydrosoyasponin-1 (DHS-1) has been shown to act as a 

selective BK channel opener (Sah & Faber, 2002).

The a pore-forming subunit of all BK channels is the product of a single gene, first 

cloned from Drosophila, which was named “Slowpoke” (Slo; Atkinson et al., 1991; 

Adelman et al., 1992). The resulting protein has a high degree of homology with Kv 

channels, particularly in the S4 TMD, which forms part of the voltage sensor (Larrson 

et al., 1996). The BK channel is, however, quite different structurally in that it has 

seven TMDs (Meera et al., 1997; see also Figure 1.2) and a large intracellular C- 

terminal tail that probably confers its Ca2+-sensitivity (Schreiber & Salkoff, 1997). The 

C-terminal region has two RCK (or regulator of K+ conductance) domains, and a region 

with a large number of negatively charged aspartic acid residues which has been termed 

the “calcium bowl” (Schreiber & Salkoff, 1997; Jiang et al., 2001; 2002). Despite there 

being just one gene for the principal BK channel subunit, there is a great deal of 

functional diversity generated via alternative splicing, phosphorylation of the a subunit 

and assembly with P subunits (Sah & Faber, 2002). Thus native channels comprise 

either four a subunits that come together to form a tetramer, (Adelman et al., 1992;
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Shen et a l ,  1994) or they may co-assemble with P subunits (Garcia-Calvo et a l ,  1994; 

McManus etal.,  1995).

These P subunits have two putative TMDs and a large extracellular loop. Three 

different subunits, p i, P2/3 and P4, have been cloned (Dworetzky et al., 1996; Knaus et 

al., 1994; Tseng-Crank et al., 1996; Brenner et al., 2000; Meera et al., 2000). When 

expressed with a subunits, p subunits have been shown to shift the voltage sensitivity o f

ry ■

BK channels to potentials that are more negative, thereby increasing Ca sensitivity, 

and to confer properties such as rapid inactivation (P2/3) and the insensitivity o f BK  

channels to ChTx and IbTx (P4; Sah & Faber, 2002).

RCK domainsP subunit protein 7 TMD a subunit protein

“Ca2+ bowl”

Figure 1.2 BK channels are different from other KCa channels in that the a subunits 

have seven TMDs. The large C terminus with two RCK domains and a “calcium 

bowl” region has been implicated in channel gating. BKs are also known to associate 

with P subunit proteins that alter their pharmacological and electrophysiological 

properties. On the basis o f hydropathy analysis, the p subunits are believed to have 

two membrane-spanning domains (Knaus et al., 1994; Brenner et al., 2000).
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1.2.2 DC channels

The first IK channel to be described was the Gardos channel seen in erythrocytes. The 

cloned KCNN4 gene gave rise to proteins that formed a channel which fell into the IK 

category, hence these channels were called IK1 (Ishii et al., 1997a), though their close 

similarity to SK channels has also led to them being termed SK4 (Joiner et al., 1997). 

IK channels have been cloned from a variety of tissues including the pancreas (Ishii et 

a l , 1997a), T lymphocytes (Lodgson et al., 1997), placenta (Joiner et al'., 1997; Jensen 

et al., 1998) and vascular smooth muscle (Neylon et al., 1999).

Cloned DC channels, expressed in Xenopus oocytes have single channel conductances 

in the range of 20-80 pS (Ishii et al., 1997a). DC channels are inward rectifiers and are 

voltage insensitive. They are, however, more sensitive to calcium than BK channels, 

achieving half-maximal activation at approximately 100 nM Ca2+ (Ishii et al, 1997a; 

Joiner et al, 1997; Neylon et al, 1999). DC channels have been found to be 

constitutively bound to the calcium-binding protein calmodulin (CaM) via a region of 

the C-terminal of the channel protein termed the calmodulin binding domain (CaMBD; 

Fanger et al., 1999; Khanna et al., 1999). Therefore, the binding of Ca2+ to CaM is 

thought to produce a conformational change, which in turn alters the structure of the DC 

channel protein to cause channel opening.

Blockers of DC channels include ChTx and clotrimazole (IC50S: -2.5 nM and -25 nM 

respectively; Ishii et al., 1997a). Their activity can also be enhanced by the compound 

l-ethyl-2-benzimidazolinone (1-EBIO) with an EC50 of -74 pM (Devor et al, 1996; 

Jensen etal., 1998).

IK expression and function has been extensively studied in many non-excitable tissues. 

Although work by Greffrath et al. (1998) suggests that DC channels are involved in AHP
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generation in the magnocellular neurones of the rat supraoptic nucleus, there is very 

little evidence to support a role for DCs in the majority of neuronal tissues.

1.2.3 SK channels

1.2. S. 1 Biophysical properties

SK channels are so-called because of their small single channel conductances (2-20 

pS) particularly when compared to BK channels (Romey & Lazdunski, 1984; Blatz & 

Magleby, 1986). As with all Kca channels, they are activated by a rise in [Ca2+]i and, 

for the SK channels, maximal activation is seen at 400-800 nM (Blatz & Magleby, 

1986; Park et a l , 1994). Like DC channels, SK channels show some inward 

rectification, are voltage insensitive and Ca2+ activation occurs via the constitutively 

bound CaM protein (Sah & Davies, 2000; Faber & Sah, 2003). Of the two Ca2+ binding 

sites available on the CaM protein, only one need be occupied for channel gating (Xia et 

al., 1998; Keen et al, 1999). So presumably, given the proposed tetrameric structure of 

the channels, four or more Ca2+ ions are needed for channel opening.

These channels were first characterised in skeletal muscle (Romey & Lazdunski, 1984) 

but have since been shown to be widely expressed in excitable and inexcitable tissues 

(Kohler et al, 1996; Stocker & Pederzani, 2000; Barfod et al, 2001; Ro et al, 2001; 

Rhodes et al, 2003).

1.2.3.2 Molecular structure o f SK channels

The cloning of the SK channels revealed three distinct genes: SKI, SK2 and SK3 

(Kohler et al., 1996) also known as KCNN1, KCNN2 and KCNN33. They belong to 

the six TMD family of potassium channels and have highly similar sequences, 

particularly in the regions of the transmembrane domains. However, whilst SK
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channels show 80-90% sequence identity, the only significant similarity with other 

members of the 6TMD Kv channel family is seen in the pore region (Kohler et al., 

1996). The closest relative of the SK channels, IK/SK4 channels, show -40% sequence 

identity (Joiner et al., 1997). Interestingly, whilst rat clones of SK2 (rSK2) and SK3 

(rSK3) produce functional channels in mammalian cell lines, rSKl fails to produce 

detectable current; therefore, the majority of SKI studies to date have been performed 

on the human isoform hSKl, that can form functional channels.

As with other 6TMD K+ channels, the SK pore-forming subunits are believed to come 

together to form a tetrameric structure. There is also recent evidence, some of which is 

presented in this thesis, to suggest that SK subunits may form homo- and 

heterotetramers (Ishii et al, 1997b; Benton et al, 2003; Monaghan et al, 2004). In 

addition to the cloned pore-forming subunits, certain studies also suggest the existence 

of accessory subunits. Wadsworth and colleagues found that radiolabelled apamin (125I- 

apamin), and photolabelled derivatives, bind to a -30 kDa protein in a number of tissues 

(Wadsworth et al, 1994; 1996; 1997), which raises the possibility of a putative 

regulatory p subunit for SK channels. However, the exact identity and role of this 

protein remains to be determined.

1.2.3.3 SK channel pharmacology

SK channels are unaffected by low concentrations of TEA, ChTx or IbTx. They are, 

however, potently blocked by the bee venom toxin apamin (Banks et al, 1979; Romey 

& Lazdunski, 1984; Blatz & Magleby, 1986) with the IC50S of expressed channels 

ranging from -100 pM for rSK2 to low nanomolar concentrations for hSKl (Shah & 

Haylett, 2000a; Strobaek et al, 2000; however see also section 1.3.2). More recently, it 

has been shown that scyllatoxin and tamapin, two scorpion toxins, are also capable of
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blocking SK channels (Strobaek et a l , 2000; Pederzani et al, 2002) and these, like 

apamin, display selectivity for SK2 over SK3, which in turn is more sensitive than SKI. 

Other blockers include d-tubocurarine (d-TC; Jenkinson et al, 1983), bicuculline 

(Johnson & Seutin, 1997; Seutin & Johnson, 1999) and a number of synthetic 

dequalinium analogues including the potent and selective blocker UCL 1848 (Campos 

Rosa et al, 2000; Chen et al, 2000). Experiments with UCL 1848 and apamin show 

that the concentrations required to block cloned channels are comparable to those 

needed to block native channels (Hosseini et al, 2001).

As with DC channels, SK channels can be activated by 1-EBIO, which alters Ca2+ 

sensitivity, and thus the open probability of SK channels in the presence of Ca2+ 

(Oleson et al, 1994; Syme et al, 2000; Pedarzani et al, 2001). It is thought that 1- 

EBIO increases Ca2+ sensitivity by stabilising the association of Ca2+-CaM with the 

CaMBD (Pederzani etal, 2001).

1.2.3.4 Overview o f the distribution and junctions o f SK channels

SK channels are distributed in a number of different tissues including T-lymphocytes 

(Grissmer et al, 1992), hepatocytes (Ogden et al, 1990) epithelial cells (Wiener et al, 

1990; Pacha et al, 1992) and throughout the central nervous system (CNS; Kohler et 

al, 1996; Stocker & Pederzani, 2000). Accordingly they have a variety of functions. In 

gastrointestinal smooth muscle, for example, they are involved in muscle relaxation 

(Banks et al, 1979; Ro et al, 2001). Adrenal chromaffin cells have also been shown to 

express functional SK channels, which most likely provide part of a negative feedback 

mechanism for catecholamine release (Neely and Lingle, 1992; Park, 1994). These are 

just some of the known functions for SK channels.
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As has already been stated, K+ channels play a vital role in neurones. One well- 

documented way in which K+ channels regulate neural activity is via the neuronal 

afterhyperpolarisation (AHP), which occurs following either a single action potential or 

a train in many types of nerve cell. The most widely studied mechanism is dependent 

on raised levels of intracellular Ca2+. Since the only other calcium-activated potassium 

channel genes to be identified, are the BK and IK channel genes, SK channel would 

appear to provide the obvious candidates for the molecular counterparts of AHP 

channels. As this thesis centres on possible roles for SK/EK channels in sensory 

neurones, they are discussed in the following section within the context of the neuronal 

AHP. (Note, however, that there are a number of different potassium channels that can 

share this function as discussed in section 1.4).

1.3 Neuronal afterhvperpolarisations (AHPs) and their relation to cloned SK 

channels

Neuronal firing rates are regulated in various ways in order to modulate the 

transmission of information along nervous pathways. In general, AHPs are generated 

by an efflux of potassium through channels that open following action potential 

discharge. By making the cell membrane more negative than it would be at rest, AHPs 

reduce cell excitability.

At least three temporally distinct components of AHPs have been identified (see 

Figure 1.3), each of which acts to regulate action potential firing. These are the fast 

AHP (fAHP), the medium AHP (mAHP) and slow AHP (sAHP) components. Each of 

these components is discussed below.
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1.3.1 ThefAHP

The fast afterhyperpolarisation (fAHP) can be seen immediately following an action 

potential and lasts for 1-10 ms. The channels underlying the fAHP are those involved 

in action potential repolarisation, i.e. voltage-gated K+ channels and BK channels 

(reviewed by Sah, 1996). The fAHP can be followed by a more prolonged AHP which 

peaks relatively rapidly (< 10 ms) and lasts between fifty and several hundred 

milliseconds.

1 sec
fAHP

Figure 1.3 A current clamp recording from a neurone illustrating the afterhyperpolarisation (AHP) 

components seen following a single action potential. The fAHP has a duration of a few milliseconds 

(however, it is difficult to see a separate component on this timescale). The mAHP is more 

prolonged and lasts for several hundreds o f milliseconds. The sAHP is usually only seen after a train 

of action potentials and has been shown in some cases to last for more than 10 s. The current 

example shows an exceptional cell where the sAHP was evident following just a single action 

potential. The red line represents the level of the resting membrane potential (-69 mV). This 

recording was made from a 17-day old rat DRG cell.
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While in superior cervical ganglion (SCG) cells this is often termed the “slow” 

component, here it will be referred to as the medium AHP (mAHP). This is because 

certain cell types, for example hippocampal neurones, also exhibit a third type of AHP 

which is usually only seen after a train of action potentials. This third component has a 

slow rise time to peak and lasts several seconds and will be referred to in this thesis as 

the slow AHP (sAHP).

1.3.2 The mAHP

The mAHP, if present, follows a single action potential and usually lasts for several 

hundred milliseconds (Sah, 1996). It has been shown to be insensitive to millimolar 

concentrations of TEA but can, in most cases, be blocked by low (nM) concentrations 

of apamin, indicating the involvement of SK channels (Kawai & Watanabe, 1986; Sah 

& McLachlan, 1991; Stocker et al, 1999a; Faber & Sah, 2002). This finding is 

consistent with results from in situ hybridisation experiments showing that SK channel 

expression correlates well with brain regions containing cells known to exhibit apamin- 

sensitive AHPs (Stocker & Pederzani, 2000). In some cases, the evidence goes so far as 

to suggest that a specific subtype of SK is involved. In dorsal vagal neurones, SCGs 

and dopaminergic neurones, SK3 is believed to be the major contributor to the apamin- 

sensitive AHP (Pederzani et al, 2000; Hosseini et al, 2001; Wolfart et al, 2001), while 

in Purkinje fibre cells and intemeurones in the hippocampal CA3 region, SK2 channel 

opening is thought to dominate (Savic et al, 2001; Cingolani et al, 2002). In many of 

these neurones the mAHP is believed to regulate the firing frequency (Pederzani et al, 

2001 ; Savic et al, 2001 ; Wolfart et al, 2001).
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1.3.3 The sAHP

The sAHP is also thought to arise from a calcium-activated potassium current, but one 

that is quite distinct from that underlying the mAHP. In most cases the sAHP is only 

seen after a train of action potentials, has a slower rising phase and can last several 

seconds. Furthermore, in the majority of neurones it is insensitive to apamin at 

concentrations of up to 100 nM (Lancaster and Nicoll, 1987). Although it is known that 

the current underlying the sAHP (7 sa h p ) is a potassium current, activated either directly 

or indirectly by the rise in intracellular calcium associated with the opening of calcium 

channels during action potential firing, the identity of the channel in question remains 

controversial. The single channel conductance has been estimated by noise analysis as 

6.8 pS for channels in vagal motomeurones (Sah, 1995). Attempts to make more direct 

(single channel) measurements in myenteric neurones have put the value for the 

conductance at 9-15 pS (Vogalis et al, 2001), but similar experiments in hippocampal 

neurones failed (Bekkers, 2000).

The sAHP builds up as action potentials are fired causing spike frequency adaptation

i.e. the sAHP adapts neuronal firing rates in response to a constant stimulus.

7.3.3.1 Pharmacology o f sAHPs

Despite the absence of selective blockers of the sAHP, a number of different drugs 

have been used in attempts to characterise the sAHP. Many cell types such as 

hippocampal pyramidal neurones (Lancaster & Nicoll, 1987), vagal motomeurones (Sah 

& McLachlan, 1991) and nodose ganglion neurones (Cordoba-Rodriguez et al, 1999) 

have a sAHP that cannot be blocked even by high concentrations of apamin, but can be 

regulated by neurotransmitters such as noradrenaline, histamine and acetylcholine. The 

sAHPs seen in different cell types are diverse with respect to their sensitivities to
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different drugs. For example, the sAHP in hippocampal cells seems to have a single 

component. However, the sAHP seen in neurones from the coeliac ganglion has a more 

complex pharmacology as it can be partially blocked by 20 nM IbTx and 100 nM 

apamin, but it also has a component insensitive to either of these toxins (Martinez-Pinna 

et al, 2000). The differing sensitivities of sAHPs to the actions of different channel 

blockers suggests that several Kca channels may mediate the sAHP in some neurones.

sAHPs are characteristically inhibited by blockers of high threshold voltage-dependent 

Ca2+ channels (VDCCs), for example Co2+ and Cd2+ (Kubota et al, 1984; Griffith, 

1988). Interestingly, the use of more specific blockers, for example co-conotoxin which 

targets N-type Ca2+ channels (Varadi et al, 1995) and dihydropyridines, such as 

nifedipine, which is specific for L-type Ca2+ channels (Varadi et al, 1995; Catterall & 

Striessnig, 1992), demonstrate that different subtypes of VDCC are involved in the 

sAHPs seen in different cell types (Shah & Haylett, 2000b). In some cases, there are 

suggestions that more than one type of channel may be important (Shah & Haylett, 

2000b). Furthermore, drugs like ryanodine that deplete intracellular stores of Ca2+ can 

also inhibit sAHPs in certain neurones, supporting a role for CICR (Moore et al, 1998; 

Cordoba-Rodriguez et al., 1999; Shah & Haylett, 2000b).

One recently described compound, UCL 2027 developed by C.RGanellin and his 

colleagues of the Department of Chemistry at UCL, has been shown to block the sAHP 

in cultured hippocampal cells without affecting the mAHP (Shah et al., 2001). UCL 

2027 was believed to act on the channels underlying the sAHP and it was thus 

suggested that it may present a means to identify this channel.
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1.3.3.2 Are SK channels involved in the sAHP or the underlying current ('Lamp)?

When this thesis work was started it had long been suggested that an apamin- 

insensitive SK channel underlies the neuronal sAHP. Work by Kohler and colleagues 

(1996) seemed to provide an ideal candidate in the SKI channel, which when expressed 

in Xenopus laevis oocytes, was insensitive to relatively high concentrations of apamin 

(100 nM). This fact, along with the detected single channel conductance of hSKl (9.2 

pS; Kohler et al, 1996) and immunofluorescent staining experiments that appeared to 

show the presence of SKI channels in rat hippocampal pyramidal neurones (Bowden et 

al, 2001), led to the suggestion that SKI channels may be responsible for the /„ a h p .

Subsequent experiments cast doubt on this theory as work in oocytes produced 

conflicting results. Grunnet and colleagues (2001) showed that all SK subtypes 

displayed some sensitivity to apamin. However, a much higher concentration of apamin 

was required to block SKI and the dose-response curve was biphasic. In addition, when 

hSKl was transiently transfected into HEK 293 cells and COS-7 cells (two mammalian 

cell lines), the SK current in most of these cells could be blocked by apamin 

concentrations in the low nanomolar range (Shah and Haylett, 2000a; Strobaek et a l, 

2000). This finding is, however, further complicated by the fact that a small proportion 

of HEK 293 cells expressing hSKl had currents that were only partially sensitive to 

apamin (Shah and Haylett, 2001a). In the hands of Dale and colleagues (2001), hSKl 

and hSK2 when expressed in CHO cells, appear to exhibit only partial sensitivity to 

apamin. Therefore, in both oocytes and mammalian cells, it appears that SK channel 

subunits can form both apamin-sensitive and apamin-insensitive potassium channels.

As a recent review highlights (Vogalis et al, 2003), there are several other problems 

with attempting to implicate a particular SK channel in sAHP generation. These 

include uncertainty about the timecourse of [Ca2+]i changes and the time for the sAHP
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to peak and decay; these may be explained by a need for highly localised increases in 

[Ca2+] that may not be reflected in bulk changes throughout the cell. (Hanani & Lasser- 

Ross, 1997, Lasser-Ross et al, 1997, Hillsley et al., 2000). Another problem is the 

ability of neurotransmitters such as noradrenaline to cause a profound reduction in the 

amplitude of the sAHP, putatively via phosphorylation of the underlying channel. Yet 

despite the presence of phosphorylation consensus sequences (Kohler et al, 1996), 

there is no evidence to suggest that expressed SK channels are regulated by any such 

means. One explanation for the very different pharmacologies of SK channels and the 

sAHP channel is the possibility that the latter associates with a putative P subunit, 

making it insensitive to blockers such as apamin. An analogous case is the BK channel 

where certain P subunits confer insensitivity to charybdotoxin (Meera et al, 2000). 

However, again there are no obvious candidates for such auxiliary proteins associating 

with SK channels.

More recent work on the rSKl channel, some of which is presented in this thesis, 

indicates that rSKl acts as a “silent subunit” and is therefore unlikely to be involved in 

generating the sAHP (Benton et al, 2003; D’hoedt et al, 2004). Furthermore, work by 

Bond et al. (2004), using SK knock-out mice, and Villalobos et al (2004), using a 

dominant negative strategy, shows that SK channels are not necessary for the / 8a h p , 

which is thought to be responsible for spike-frequency adaptation. So despite extensive 

work in the area, we are still no closer to finding out the identity of the channel involved 

in the sAHP.
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1.4 AHPs generated bv means other than K rn channels

As already discussed, there is substantial evidence to support the idea that Kca 

channels underlie the AHPs many in excitable cells. In one of the examples already 

discussed the pharmacology of the “medium” AHP in SCG neurones for example, 

provides a strong case for it being an exclusively SK-generated AHP (Kawai & 

Watanabe, 1986; Dunn, 1994; Hosseini et al, 2001). However, in other cell types, there 

is work to suggest that SK channels only form one component of the AHP and that 

other K+ channels also contribute.

1.4.1 Other channels that contribute to mAHPs: KCNOs

Initial experiments looking at the medium duration AHP in hippocampal pyramidal 

cells had suggested that the underlying current (/mAHp) was due largely to a Ca2+- 

independent K+ channel. It was later realised that bicuculline, used as the quaternary 

salt to prevent spontaneous inhibitory activity in these cells, had the additional effect of 

blocking any SK channels present. While it is now known that SKs do contribute to the 

/mAHP in these cells, the fact remains that there is a component resistant to Ca2+ channel 

block mediating this current.

The channel in question is thought to belong to the family of KCNQ K+ channels, 

which fall into the voltage-gated 6TMD group. They are characteristically slowly 

activating and slowly deactivating channels that do not inactivate. Furthermore, the 

current generated, first described by Halliwell & Adams (1982), is sensitive to block by 

muscarinic agonists, which has led to it being termed the M-current ( /m ) .

A role for the 7m has been described in hippocampal pyramidal cells (Storm, 1989; 

Dutar & Nicoll, 1989) and in pyramidal neurones of the basolateral amygdala (Womble 

& Moises, 1993). This is based on the sensitivity of the current and the corresponding
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AHP to carbachol and prevention of block by the muscarinic antagonist atropine 

(Storm, 1989; Womble & Moises, 1993). More direct evidence for KCNQ involvement 

in neuronal firing has now been provided using the specific blockers linopirdine and 

XE991 (Aiken et al, 1995; Wang et al, 1998).

1.4.2 channels

KNa channels form yet another family belonging to the group of voltage-gated K+ 

channels. Two genes have recently been cloned that correspond to the molecular 

counterparts of KNa channels, Slo2.1 (Slick; Bhattachaijee et al., 2003) and Slo2.2 

(Slack; Joiner et al., 1998; Yuan et al, 2003). These genes encode channels that have 

large single channel conductances (comparable to BK and K Atp  channels) whose 

opening is dependent upon rises in intracellular Na+ and Cl' (Bhattachaijee et al, 2003; 

Yuan et al, 2003). The KNa channels first described in inside-out patches from guinea 

pig ventricular myocytes (Kameyama et al, 1983) seem to have a defined protective 

role in cases of ischaemia or other metabolic stress (Dryer, 1994) and while this may 

also hold true in neurones, several other functions have also been suggested. One of 

these is that they may generate a prolonged AHP in response to repetitive firing 

(Schwindt et al, 1989; Dryer, 1994, Safronov & Vogel, 1996, Franceschetti, et al, 

2003). Whether Knh channels play a major role in regulating neuronal excitability is 

uncertain because the Na+ influx through voltage-gated channels during action potential 

firing might not be sufficient to activate them (Dryer, 1994; 2003). However, certain 

circumstances may allow this; firstly, dendritic processes and axonal nodes may provide 

a sufficiently confined space for Na+ to accumulate to levels high enough to activate 

local KNa channels, particularly during a train of action potentials (Koh et al, 1994; 

Safronov & Vogel, 1996). Another possibility is that KNa channels are tightly clustered
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around Na+ channels and so are activated before there is significant diffusion of Na+ 

within the cell (Koh et a l , 1994). Although the exact mechanisms have yet to be 

determined, several studies have provided evidence of a role for Kn8 channels in AHP 

generation. It was shown that AHPs generated following trains of action potentials, in 

cat neocortical and rat motomeurones, reversed when close to EK, were not dependent 

on increases in intracellular Ca2+ and were abolished in Na+-free solutions (Schwindt et 

al, 1989; Safronov & Vogel, 1996). Although the lack of selective inhibitors hampers 

the search for an exact role for Kn8 there is support, in the literature cited above, for the 

idea that may underlie sAHPs that are responsible for spike-frequency adaptation in 

specific neuronal cell types.

1.5 Sensory neurones

The primary sensory unit, consisting of a single afferent neurone with its receptor 

endings in the periphery, forms the first link in a sensory pathway. The central 

processes of these cells terminate in the spinal cord where they synapse onto 

intemeurones termed second-order neurones. These in turn may synapse onto third 

order neurones, and so on until the information eventually reaches the brain.

Mechanisms affecting the firing of a primary afferent neurone in turn affect, and thus 

regulate, the way sensory information is transmitted from the periphery to the central 

nervous system. The two types of sensory neurone studied in this thesis are those of the 

nodose and dorsal root ganglia.

1.5.1 Properties of nodose ganglion neurones

The nodose (or inferior vagal) ganglion is located at the rostral end of the vagus nerve 

and contains somata of afferents that innervate the abdominal and thoracic viscera. In
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the guinea pig, the majority of nodose neurones (90%) have axonal conduction 

velocities consistent with those of unmyelinated C-fibres and it is among this population 

of cells that sAHPs can be found (Undem & Weinreich, 1993). Approximately 20% of 

guinea pig C-fibre neurones exhibit a sAHP (Cordoba-Rodriguez et al, 1999).

Nodose neurones exhibit a particularly robust sAHP that can often be seen following 

just a single action potential. It is insensitive to a number of potassium channel 

blockers including apamin (100 nM), d-TC (10 pM), Cs+ (5 mM), TEA (30 mM), 4- 

aminopyridine (4 mM) and ChTx (10 nM; Cordoba-Rodriguez et al., 1999). It can 

however, be abolished through regulatory pathways by inflammatory mediators such as 

histamine (Jafri et a l , 1997), bradykinin or serotonin (Leal-Cardoso et a l, 1993; 

Weinreich et al., 1995).

1.5.2 Properties of DRG neurones

The dorsal root ganglia (DRGs) lie within the vertebral column and can be divided up 

into five main groups. The uppermost ganglia comprise those of the cervical region 

(Cl-8) followed by the thoracic (Tl-13), lumbar (in rats Ll-6), sacral (Sl-4) and the 

coccygeal (3) ganglia (Waibl, 1973). DRGs contain the cell bodies of sensory afferent 

neurones originating from various structures including the skin, muscle and visceral 

organs, and terminate in the dorsal hom of the spinal cord, so that information from 

both the internal and external environments is conveyed to the central nervous system. 

Functionally cells can be classified as being one of three different types according to the 

kind of stimulus that is detected:

1. Low threshold mechanoreceptors, which normally detect innocuous touch/pressure 

in the skin, proprioception and kinaesthesis in joints and capsules and stretch in 

muscles.
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2. Thermoreceptors which detect cooling and heating.

3. Nociceptors which detect noxious stimuli but can be sensitive to one or many 

different kinds of stimulus. For example, some cells are excited only by mechanical 

stimuli, others respond equally well to noxious mechanical and thermal stimuli and 

some are very high threshold, stimulated by chemical events associated with chronic 

tissue damage and inflammation.

DRG cells can also be separated into groups based on their conduction velocities and 

various anatomical and immunohistochemical properties as described in the following 

sections.

1.5.2.1 The separation of DRG neurones based on conduction velocities 

The first group, called A-fibre neurones, consists of cells with very large cell bodies 

and myelinated axons. They can be further divided into A«/p and A§ subtypes. As the 

Ao/p fibres are more heavily myelinated, they have considerably faster conduction 

velocities (>14 ms'1 compared with 2.2-8 ms*1 in A§). In contrast, C-fibres have small 

cell bodies and non-myelinated axons, which means that they have much slower 

conduction velocities (< 1.4 ms'1; Harper & Lawson, 1985a). It is generally agreed that 

the majority of Ao/p fibres carry information resulting from innocuous stimuli, that C- 

fibres carry predominantly nociceptive signals and that A§ fibres are sensitive to both 

noxious and non-noxious stimuli. However, there is good evidence to suggest that 

nociceptive signals are also carried by some large diameter Ao/p fibres and that certain 

C-type neurones may respond to low-threshold mechanical stimuli (Lawson, 2002; 

Light & Perl, 2003).
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1.5.2.2 Cell bodies of DRG neurones

Distinctions between A- and C-type cells can be made based on cytological properties. 

When stained with, for example, the dye cresyl violet, the larger cell bodies display 

uneven staining due to large amounts of Nissl substance (aggregations of ribosomes 

with rough endoplasmic reticulum) and are hence referred to as “large light” neurones. 

The smaller somata, however, have a denser distribution of organelles resulting in more 

darkly stained cytoplasm, and the term “small dark” neurones. These two cell types can 

also be differentiated by staining for the intermediate filament proteins neurofilament 

that is predominantly found in large diameter A-type cells (“large light” neurones) and 

for peripherin, which is limited to C-type cells (“small dark” neurones; Lawson et al., 

1984; Ferri et al, 1990; Troy et al, 1990).

1.5.2.3 Electrophvsiolosical differences between A- and C-tvve cells

Electrophysiological recordings show that there are two different types of action

potential that can be recorded from DRG cells. The first is a long duration action 

potential showing an inflection on the falling phase, which is thought to arise due to an 

inward Na2+/Ca2+ current (Gorke & Pierau, 1980; Harper & Lawson, 1985b; Traub & 

Mendell, 1988; Blair & Bean, 2002). The second type has a much shorter duration and 

no inflection. It is thought, at least in the rat, that all C-fibre cells display action 

potentials with inflections whilst only 60% of A§ and 20% of A^p fibres display such 

action potentials (Waddell & Lawson, 1990). It is likely that the presence of such 

action potentials corresponds more to the function of the cell, rather than the type of 

fibre, so inflections are more likely to be seen in high-threshold nociceptors than low 

threshold mechanoceptors, and their presence is thus not limited to C- or A-fibres 

(Waddell & Lawson, 1990, Ritter & Mendell, 1992).
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Further differences are reported in response to long hyperpolarising current steps. The 

majority of C-fibres (87%) show a hyperpolarisation that decays with a single 

exponential timecourse. A-fibres are different in that they initially show a “voltage sag” 

which has been attributed to the anomalous inward-rectifying current or /H (Villiere & 

McLachlan, 1996; see also Chapter 4).

1.5.2.4 Possible roles for SK channels in DRG AHPs

Following one or more action potentials, DRG cells tend to display a robust AHP. As 

with other neurone types, the AHP appears to have several components which have 

durations ranging from a few milliseconds to several seconds, being longer in 

nociceptors and shorter in low threshold mechanoceptors (Villiere & Mclachlan, 1996). 

In guinea pig DRGs cells, the use of the non-selective Ca2+ channel blocker Co2+ blocks 

a prominent outward current (Kameyama, 1983). There is also some evidence that 

DRGs exhibit AHPs sensitive to apamin. For example, Tokimasa et al., (1990) made 

voltage-clamp recordings from bullfrog DRGs and showed that an outward current 

lasting several hundred milliseconds was reduced to approximately 25% in the presence 

of 3 nM apamin.

In rat DRGs, Boettger et al. (2002), provided some evidence to suggest that SK 

channel proteins are expressed, however, the evidence supporting a role for SK channels 

in generating AHPs is inconsistent. Amir & Devor (1997) and Gold et al. (1996a) 

report the presence of apamin-sensitive AHPs in rat DRG cells, albeit at relatively high 

concentrations of the blocker (1 pM) in the case of the latter work. In contrast to these 

studies, Abdulla & Smith (2001) found that apamin had little or no effect on the number 

of action potentials seen in response to a depolarising pulse, suggesting that SK 

channels do not regulate the firing frequency in these cells. Even more striking is the
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work done by Villiere & McLachlan (1996) who found that few AHPs in different sized 

cells were sensitive to block by Co2+ and those cells that were sensitive only showed 

partial block. This would suggest that the conductances underlying AHPs in DRG cells 

are unlikely to be due to the opening of Kca channels. So questions remain: to what 

extent are SK channels involved in AHP generation in rat DRG cells? Indeed, are they 

involved at all?

1.5.3 Termination of DRG fibres in the spinal cord

DRG afferents enter the spinal cord via the dorsal hom where they are distributed 

differentially depending upon the type of cell (i.e. A- or C-fibre). The spinal cord itself 

is divided into several regions, known as laminae, based on the differences in cell 

morphology throughout the butterfly-shaped grey matter. First described by Rexed 

(1952) using transverse sections of cat spinal cord, this laminellar arrangement is 

roughly the same in many different species. Figure 1.4 illustrates the divisions into 

laminae I-IX and the area surrounding the central canal (area X) in a transverse section 

of the lumbar region of rat spinal cord.

It is known that lamina I and lamina II (also known as the substantia gelatinosa) 

receive input from both myelinated and unmyelinated fibres. C-fibres are known to 

terminate in both of these regions (Sugiura et al., 1986; 1989). Ag fibres appear to 

terminate preferentially in the superficial region of lamina II (called lamina Ho where 

the “o” stands for “outer”) but also in lamina V (Nagy & Hunt, 1983). Larger afferent 

fibres terminate more ventrally in laminae IQ to IV. This provides a distribution pattern 

whereby nociceptive nerve terminals are found in the outer layers of the dorsal hom, 

while the non-nociceptive fibres penetrate deeper into the spinal cord.
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Figure 1.4 A schematic representation o f a transverse section o f the lumbar spinal cord with its laminellar organisation. Spinal cord laminae are indicated with roman 

numerals (I-X). Lamina II is further divided into inner (Hi) and outer (II0) sections. Sensory nerves originating in the periphery with cell bodies in the DRGs terminate in 

different regions o f the spinal cord. C fibres terminate in the most superficial laminae, I and II. The intermediate conducting Ap fibres terminate in laminae I, IIG and V while 

fast-conducting A^p fibre terminals are predominantly seen in the deeper laminae (III/IV).



Terminations of DRG afferents are not necessarily limited to the spinal cord. Some 

neurones, for example those entering via lumbar segments of the spinal cord, have 

collaterals that may reach the dorsal column nuclei in the brain. Neurones of this type 

belong to the dorsal column pathways. In general though, DRG afferents synapse onto 

spinal intemeurones giving rise to ascending tracts that terminate in various regions of 

the brain. These intemeurones receive synaptic inputs from both nociceptive and non­

nociceptive fibres, thus playing an important role in modulating the different forms of 

sensory information that converge upon them (Millan, 1999).

Since cutaneous afferents are far more accessible than visceral ones, most of the 

studies examining the transduction of sensory information; including the in vivo work 

described in this thesis, have been performed on neurones that originate in the skin. The 

proportions of Ao/p, A« and C-fibres afferents from the skin are approximately 20 , 10 

and 70% respectively (Millan, 1999).

1-5.4 Pain

There are several types of pain, which have been classified according to their causes 

and physiology. My thesis mainly relates to acute pain, however, the findings may also 

have implications for other painful conditions.

Acute pain, while unpleasant, functions as a useful signal to withdraw from a 

damaging stimulus. In the normal situation, stimulation of nociceptors often leads to a 

withdrawal reflex. Activation of nociceptive neurones does not itself create the 

sensation of pain. However, when they are activated by some noxious stimulus, certain 

pain pathways lead to emotional centres that are responsible for the additional affective 

component of pain.
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In cases involving inflammation or nerve damage, the manner in which painful stimuli 

are processed alters (Dickenson, 1995; Millan, 1999; Holden, 2003). These alterations 

can decrease the threshold of nociceptors to facilitate neuronal firing. This increase in 

sensitivity, termed hyperalgesia, may last for many hours after the original stimulus is 

over. Neuropathic pain is the term used to describe the pain that can be the result of 

disease, nerve trauma or compression, or centrally due to damage in specific brain or 

spinal cord regions (Suzuki & Dickenson, 2000). Symptoms include spontaneous pain 

and allodynia, i.e. pain in response to an innocuous stimulus. The chronic pain resulting 

from nerve damage serves no purpose and often leads to great distress (Scholz & Woolf, 

2002).

Current treatments for chronic pain are often ineffectual, or cause unpleasant side 

effects; clearly the discovery of new analgesics that could overcome these problems 

would fill a significant gap in the treatment of chronic pain. Recent work on the KCNQ 

channels in DRGs has suggested novel pain therapy in the form of a K+ channel opener 

(Passmore et al., 2003). This seems highly logical as K+ channels not only set the 

resting membrane potential, but also hyperpolarise cells to reduce neuronal excitability. 

As DRGs are also thought to express SK channels, these may form an equally important 

target for the development of novel analgesics.

1.6 Aims of experiments

The aim of my thesis was to try to determine whether SK and/or DC channels might 

have a functional role in the transmission of sensory information. Therefore, the ability 

to detect the expression of SK/DC channel proteins forms a pivotal part of this thesis. 

The method chosen to detect expression was that of immunofluorescent staining. The 

first step was to characterise antibodies kindly provided by Dr Mark Chen at
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GlaxoSmithkline, Stevenage. Once the most suitable antibodies had been identified, the 

expression of SK and DC channels was examined in two different tissue types, the 

nodose ganglion of the guinea pig and the rat DRG.

As mentioned earlier, there are conflicting reports about the role of SK channels in 

AHP generation in DRG neurones. For this reason, and to complement the 

immunohistochemistry, these AHPs and their pharmacology were examined further. 

Using various electrophysiological markers to identify the type of cell being recorded 

from, intracellular and perforated-patch recordings were made to examine AHP 

characteristics and pharmacology. These studies were done using enzymatically- 

isolated cells in culture. In order to extend this work, spinal cord slices were stained 

with the SK/IK channel antibodies to establish whether SK channels synthesised in the 

cell body could be transported to DRG processes terminating in the spinal cord and thus 

play a wider role.

Finally, while in vitro studies provide a good basis for determining how SK channels 

work, their part in the transmission of sensory information can only be fully understood 

by observing effects in the whole animal. With the help of Prof Anthony Dickenson 

and Dr Rie Suzuki, extracellular recordings were made from deep spinal neurones of 

adult rats. The firing of these cells in response to innocuous and noxious stimuli was 

recorded and compared with recordings taken in the presence of the Kca channel opener 

1-EBIO and specific SK blocker UCL 1848.

Taken together the work in this thesis looks at SK/IK channel expression in sensory 

neurones and possible functions at both the cellular and the whole-animal level.
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Chapter 2 

Methods

2.X Cell culture methods

2.1.1 Cell lines

All human embryonic kidney 293 (HEK 293) cell lines (including one stably 

expressing the human SKI gene) were maintained in Dulbecco's modified Eagle's 

medium (DMEM), while all Chinese hamster ovary (CHO) cell lines (including one 

stably expressing the human SK4/IK gene) were maintained in alpha minimal essential 

medium (alpha MEM). Both media were supplemented with 10% foetal calf serum 

(FCS), 2 mM L-glutamine, penicillin (100 units/ml) and streptomycin (100 pg/ml). 

Cells were plated onto laminin-coated square glass coverslips a day before staining. All 

tissue culture materials for cell lines were obtained from Gibco BRL (Invitrogen).

2.1.2 Primary culture of peripheral ganglion neurones

Sprague Dawley rats of either sex were used to obtain dorsal root ganglion (DRG) and 

superior cervical ganglion (SCG) tissues. Nodose ganglia were obtained from Duncan 

Hartley guinea-pigs (-300 g) of either sex. All animals were killed in accordance with 

Home Office guidelines for Schedule 1 killing using a rising concentration of CO2 

followed by decapitation for rats or exsanguination for guinea-pigs. DRGs were 

dissected out and placed in L-15 medium. The nerve roots were trimmed off so that 

only the ganglia remained. SCGs and nodose ganglia were also dissected out and left in 

L-15 medium where they were de-sheathed and cut into small pieces. In all cases the
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ganglia were then washed twice in Ca2+- and Mg2+- free Hanks’ balanced salt solution 

(HBSS; mM composition) CaCl2 1.26, KC1 5.37, KH2P04 0.44, MgCl2 0.49, MgS04 

0.41, NaCl 136.89, NaHC03 4.17, Na2HP04 0.34 and D-glucose 5.56) containing 10 

mM N-(2-hydroxyethyl) piperazine-N’-(2-ethanesulphonic acid) (HEPES free acid). 

The ganglia were initially incubated in HBSS buffered with 10 mM HEPES, containing 

400 u/ml type 1A collagenase and 6 mg/ml bovine serum albumin (BSA) for 20 min at 

37 °C applied using a syringe with a 0.2 pm sterile filter (Nalgene). After this 

incubation period, they were washed twice in 10 mM HEPES buffered HBSS. Tissues 

then underwent a second incubation in HEPES buffered HBSS, this time containing 1 

mg/ml trypsin and 6 mg/ml BSA for 30 min at 37 °C. This solution was also filtered. 

The dissociated cells were then transferred to a growth medium consisting of L-15 

medium supplemented with 10% FCS, 0.6% w/v D-glucose, 0.19% w/v NaHC03, 100 

u/ml penicillin, 100 pg/ml streptomycin and 50 ng/ml nerve growth factor (NGF). The 

cell suspension was then plated onto either 35 mm plastic culture dishes, plain glass 

coverslips (13 mm diameter or 15 mm x 15 mm) or CELLocate® coverslips pretreated 

with laminin as follows: laminin was made up in HBSS to a concentration of 10 pg/ml 

and 200 pi of this solution was applied to each coverslip. The coverslips were then 

incubated at 37 °C for 1 hr after which they were rinsed once with LI 5 medium.

All tissue culture reagents for these preparations were obtained from Sigma except for 

HBSS and NaHC03 (Gibco) and D-glucose (VWR). Plasticware was obtained from 

Nunc, plain glass coverslips from VWR and CELLocate® coverslips from Eppendorf.
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2.2 Immunofluorescent antibody staining

2 .2.1 Immunocvtochemi strv

All staining operations were carried out at room temperature (22 °C) unless otherwise 

indicated. First, cells were washed three times in phosphate buffered saline (PBS; 

composition (mM): NaCl 136.9, KC1 2.7, Na2HPC>4 9.2, KH2PO4 1.8, pH to 7.2 with 

HC1). Cell lines were then fixed in PBS containing 4% paraformaldehyde (Sigma) for 

10 min or, in the case of neurones, 1% paraformaldehyde for 20 min. Coverslips were 

then transferred to PBS for 5 min to allow the cells to rehydrate. At this stage, neurones 

underwent two additional steps to reduce excess levels of background staining from the 

secondary antibody. This involved the cells being incubated in a quenching solution 

consisting of 0.37% glycine/0.27% NH4CI (made up in PBS) for 10 min, a process 

which was repeated and followed by another 5 min wash in PBS. In order to 

permeabilise cells, the coverslips were placed in methanol (VWR) for 10 min. After 

another 5 min wash step in PBS, cells were incubated in an antibody blocking solution 

(ABS) consisting of 2% horse serum (Sigma) and 2% BSA (Sigma) in PBS for 1 hr. 

After the blocking step, used to prevent non-specific antibody binding, cells were 

incubated in the appropriate primary antibody for 4 hr. The relevant concentrations of 

primary antibody (see Table 2 .1) were made up in ABS.

Primary antibodies to the SK/IK channels were the kind gift of Dr Mark Chen 

(GlaxoSmithKline, Stevenage). These were polyclonal rabbit antibodies raised to 

specific peptides (see Figure 2.1 for epitopes). Three additional antibodies used to 

stain for rSKl and SK3 were also polyclonal rabbit antibodies. These were UCL55 and 

UCL56 which were raised to two rSKl peptides and an anti-SK3 antibody which was
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Name of antibody Target protein Final antibody concentration

L1551 hSKl 1.0 pg/ml

R bl85 ' rSKl 1.0 pg/ml

R bl96 ' rSKl 1.0 pg/ml

RM 861 rSKl 1.0 pg/ml

Rb2001 rSKl 1.0 pg/ml

M l1 hSK2 and rSK2 0.75 pg/ml

M751 hSK3 and rSK3 0.5 pg/ml

M201 hDC 1.0 pg/ml

M 41 hIK 1.0 pg/ml

R2121 rIK 1.0 pg/ml

R2241 rIK 1.0 pg/ml

UCL56i Rat SKI 20 pg/ml

Anti-SK3* SK3 0.3 pg/ml

Anti-BK channel4 BK Dilution6 1:200

Anti-peripherin3 Reacts with rat peripheral Dilution6 1:200

Anti-capsaicin receptor3 Reacts with rat VR1 receptor Dilution6 1:200

Anti-MAP25 Reacts with microtubule-associated protein 2 Dilution6 1:200

Table 2.1. Primary antibody concentrations used. 'Antibodies obtained from Dr Mark Chen at 

GlaxoSmithKline. 2Antibody raised by Dr Ramine Hosseini, UCL. 3Purchased from Chemicon. 4Kind gift 

from Prof Edward Moczydlowski (Yale University). 5Purchased from Sigma. Concentration not available.

Type of antibody Species Final antibody concentration

TRITC1 conjugated (Alexa 568; Molecular Probes) Goat anti-rabbit 20 pg/ml
C Y2 conjugated (Amersham) Goat anti-rabbit 5 pg/ml

C Y3 conjugated (Amersham) Goat anti-rabbit 5 pg/ml

CY5 conjugated (Amersham) Goat anti-rabbit 5 pg/ml

FITC2 conjugated (Chemicon) Goat anti-guinea pig 5 pg/ml

Fluorescein conjugated (Chemicon) Sheep anti-mouse Dilution3 1:40

Table 2.2. Fluorescent secondary antibodies used to detect primary antibody binding. ’Tetramethyl 

rhodamine isothiocyanate. 2Fluorescein isothicyanate. 3Concentration not available.
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Figure 2.1 Antibody epitopes shown within an 

alignment o l the predicted amino acid sequences 

for rat and human SK and IK channels

This alignment was made with the ClustalW

software (http://www.ebi.ac.uk/clustalw/! using the

Gonnet protein weight matrix with a gap open

penalty of 10.0 and a gap extension penalty of 0.2.

The sequences recognised by the different

antibodies are as follows:

Antibody Epitopes 
Anti-hSKl (L155)
Anti-rSKl (Rbl85 & Rbl96)
Anti-rSKl (Rbl86 & Rb2C■ ■ ■ ■ ■ ■ ■
Anti-h/rSK2 (Ml)________

m h h h hAnti-h/rSK3 (M75)
Anti-hIK (M^^^120) 
Anti-hIK (M4 & M5)
Anti-rIK (R212 & R224) 

CQPPEPIQEAT
UCL55 __________________________

■■MHHHHHHii
UCL56

K1PPPWPGPSHLTAA
Sequence recognised by Chemicon 
anti-rSK3 antibody

The epitopes do not always match the target 

protein sequence perfectly because they are 

frequently altered in order to facilitate 

antibody purification. Deviations from the 

peptide sequences are underlined.

Genbank accession numbers for the sequences used 

in this alignment are as follows:

hSKl AAB0956.2 

rSKl AF000973 

hSK2 NP_067627.2 

rSK2 U69882 

hSK3 CAB61331 

rSK3 AF292389 

hIK NP_002241.1

rIK Sequence reported in this thesis, see Chapter 3 

section 3.2.6.1.
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obtained from Chemicon. The anti-peripherin and anti-VRl antibodies were also 

purchased from Chemicon.

Following the 4 hr incubation, the primary antibody was washed off with three washes 

in PBS containing 1% Tween-20 (Promega). The cells were then incubated in a 

solution containing a fluorescently-labelled secondary antibody for 1 hr. Again, these 

antibodies were diluted to the relevant concentration (see Table 2.2) in ABS. The cells 

then underwent three final washes in PBS with 1% Tween-20 and the coverslips were 

mounted onto clean glass slides using an antifade mount (Vectashield, Vector 

Laboratories Incorporated).

Stained cells were viewed with a Leica TCS confocal microscope or a Zeiss LSM 510 

microscope. Where practical, all images within a single experimental set were recorded 

with the same gain, offset and pinhole settings. However, occasionally, the intensity 

was increased in negative controls so that cell outlines were visible.

2.2.2 Immunohistochemistrv

45 day old (150-200 g) Sprague-Dawley rats of either sex were first deeply 

anaesthetised using 0.5 mg/kg Hypnorm (fentanyl citrate and fluanisone) and 2.5 mg/kg 

diazepam. They then underwent transcardial perfusion with saline prior to a 15 min 

perfusion with 4% paraformaldehyde in phosphate buffer (PB; Na2HPC>4 (124 g/L) and 

NaH2PC>4 (15.6 g/L) with 0.1% sodium azide, final pH of 7.4). Following the perfusion, 

the lumbar section of the spinal cord was dissected out and fixed for a further 4 hr in 4% 

paraformaldehyde solution. The cords were then transferred to a 30% sucrose solution 

(made up in PB) and stored overnight at 4 °C. Serial transverse slices of 40 pm were 

cut using a freezing microtome (perfusion carried out and sections kindly produced by 

Dr Wahida Rahman, Department of Pharmacology, UCL).
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Slices were transferred to separate wells of a four-well culture dish (NUNC). They 

were first incubated in blocking solution consisting of 3% goat serum and 0.3% Triton 

X-100 in PB and left on a horizontal shaker for 1 hr. Primary antibodies were made up 

to the required concentration in the blocking solution and added to the slices which 

were then left shaking overnight. Tissues next underwent three separate washes in PBS. 

Secondary antibodies were then made up to the required dilution in blocking solution 

(see Table 2.2) and left on the slices for 2 hr with shaking. After a final three washes in 

PBS, slices were mounted onto 0.5% gelatin-coated glass slides using Vectashield anti­

fade mount.

Slices were viewed with a Leica TCS confocal microscope or a Zeiss LSM 510 

microscope. As with individual cells, all images within a single experimental set were 

recorded with the same gain, offset and pinhole settings. When high antibody 

concentrations were used, the gain was reduced due to the increased background 

staining..

2.3 Methods for molecular biology and gene expression

2.3.1 SK channel constructs

The rSKl, rSK2 and hIK genes subcloned into pTracer or pcDNA3 plasmids were the 

generous gift of Prof Len Kaczmarek and Dr William Joiner, Yale university, USA. 

The rSK3 gene in pcDNA3.1 zeo was cloned from a rat SCG library as described in 

Hosseini et al., (2001). The hSKl clone used to generate transient transfections cells 

was the generous gift of Prof John Adelman (Vollum Institute, USA). The hSKl stable 

cell line in HEK 293 cells was kindly provided by Dr Mark Chen (GlaxoSmithKline, 

Stevenage).
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2.3.2 Cloning of the rat IK channel

2.3.2.1 PCR of the rat IK channel

The rat IK channel was cloned using cDNA that had been reverse-transcribed from rat 

DRG total RNA obtained from a 43 day old (p43) animal (see sections 2.5.3 to 2.5.7 for 

method). The initial PCR reaction was made up as follows: 1 unit Pfu turbo, 2 pi lOx 

Pfu enzyme buffer, 1 pi dNTPs (final concentration of 0.4 mM for each dNTP), 4 pi 

forward primer 1 (5’caccaagagctcggggccat 3’), 4 pi reverse primer 1

(5’caggcagctatgtggcctcct 3’; final concentration of 1.2 pM for each primer), 1 pi (1 pg) 

template cDNA and 1 pi DMSO made up to 20 pi in nuclease-free H2O. The reaction 

was run using the following conditions: 94 °C for 2 min, then 35 cycles of 65 °C for 1 

min, 72 °C for 2 min and 94 °C for 1 min with a final annealing step at 68 °C for 5 min 

and elongation step of 72 °C for 20 min. The resulting PCR product was run on a 0.9% 

agarose gel. However, at this stage it was not yet possible to visualise the expected 1.5 

kb band so a section of the gel was cut out, where the band was anticipated, using the 1 

kb and 2 kb bands of a marker as a guide. All DNA contained in this section of the gel 

was then purified using the QIAquick gel extraction kit (QIAGEN) following the 

manufacturers instructions. Briefly, the excised gel was incubated at 50 °C in Buffer 

QG. Once dissolved the gel mix was transferred to a QIAquick spin column and 

centrifuged at 13,000 rpm for 1 min. The column was then washed with Buffer PE and 

the cloned IK gene eluted in nuclease-free H2O.

Of the gel purified DNA, 1 pi was used as the template to undergo a second round of 

PCR using the above conditions. A “second round” sample of this was run on a 0.9% 

agarose gel and on this occasion it was possible to see a band of -1.5 kb. In order to 

increase the yield of DNA for subcloning, the gel purified product underwent a third 

round of PCR with an alternative set of primers, forward primer 2
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(5’ggggtaccggggccatgggcggggagc 3’) and reverse primer 2 

(5’gctctagacaggcagctatgtggcctcctggatggg 3’). The conditions for PCR were as for the 

first round, however the reaction was scaled up so that the final volume was 50 pi. The 

PCR product from this reaction was also run on a 0.9% gel and purified using the gel 

extraction method.

Polymerases and dNTPs were obtained from Stratagene. Primers were purchased from 

either Invitrogen or Stratagene, nuclease-free water from Ambion and all other reagents 

from Sigma.

2.3.2.2 Sub-clonirt2 the rat IK into a mammalian expression vector 

As Pfu does not have terminal transferase activity, it was necessary to add the 3’ 

overhangs needed for sub-cloning (Hu, 1993). This was done by incubation of 10 pi of 

gel purified DNA with 0.5 units of Taq polymerase, 1 pi Taq polymerase buffer and 1 

pi dATP (final concentration of 0.8 mM) at 72 °C for 10 min. The resulting DNA was 

sub-cloned into the pcDNA3.1D/V5-His-TOPO® expression vector using the 

pcDNA3.1© Directional TOPO Expression Kit (Invitrogen). The TOPO cloning 

reaction was performed by incubating 4 pi A-tailed DNA, 1 pi of kit salt solution and 1 

pi of the expression vector at room temperature for 30 min then placing on ice.

2 pi of the cloning reaction was added to a vial of One Shot® Chemically Competent 

E.Coli cells, which were incubated on ice for 5 min. The cells were heat-shocked at 42 

°C for 30 sec and transferred to ice. After adding 250 pi of room temperature SOC 

medium (composition: 2% tryptone, 0.5% yeast extract, 10 mM NaCl, 2.5 mM KC1, 10 

mM MgCb, 10 mM MgS0 4 , 20 mM glucose) the tube was left shaking at 37 °C for 1 

hr. Then either 50 pi or 200 pi of the transformation was spread onto an LB plate with 

100 pg/ml ampicillin. The plates were then incubated at 30 °C overnight. The
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following day 10 colonies were picked from the plates. Each colony was grown in 5 ml 

of LB medium containing 50 pg/ml ampicillin at 37 °C overnight (with shaking at ~ 225 

rpm).

2.3.2.3 Miniprevs o f plasmid DNA

Plasmid DNA was isolated from the transformed E.Coli cells using the QIAquick kit 

for minipreps (QIAGEN). 3 ml of each overnight LB culture was spun down at 3500 

rpm for 5 min at 4 °C in a Heraus centrifuge. The medium was then taken off and the 

pellet resuspended in buffer P I. Then 250 pi of P2 (lysis) buffer was added. When the 

cells had lysed, 350 pi of neutralisation buffer (N3) was added and the tubes were then 

spun down at maximum speed in a microcentrifuge for 10 min. The supernatant was 

transferred to a kit spin column and spun down at maximum speed for 1 min. The 

column was then washed in buffer PB followed by a wash in buffer PE. The DNA was 

finally eluted in 50 pi of nuclease-free H2O.

To check which of the minipreps contained a plasmid with the correct sized insert in 

the correct orientation, lpl of each prep was digested with Stul which should have given 

two bands of approximately 2 kb and 4.7 kb in size. Digested DNA was run on a 2% 

agarose gel and clones that seemed to give the correct sized bands were identified.

2.3.2.4 Large scale production of plasmid DNA

The miniprep DNA identified as carrying an appropriate insert was then used to 

transform XL-10 Gold Ultra competent cells (Stratagene). 1 pi of plasmid, 1 pi of beta- 

mercaptoethanol and 30 pi XL-10 Gold were added to a pre-chilled falcon 2027 tube 

and then left on ice for 30 min. The mix was heat shocked at 42 °C for 30 secs and left 

on ice for a further 2 mins. Approximately 1 ml of NZY broth, preheated to 42 °C, was
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added to the transformed cells. These were then left shaking at -250 rpm (shaker model 

G25, New Brunswick Scientific Co. Inc.) at a temperature of 37 °C for 1 hr. 50 pi of 

the mix was plated on LB Agar with 50 pg/ml ampicillin and grown at 37 °C overnight. 

Colonies were picked from the plates and transferred to LB medium containing 50 

pg/ml ampicillin. This was incubated at 37 °C in a shaker (250 rpm) and left overnight.

10 pi of the culture was then transferred to 35 ml of LB medium with 50 pg/ ml 

ampicillin and again left shaking overnight at 37 °C.

Plasmid DNA was then midi-prepped using the Novagen Mobius 200 kit. The method 

was as follows: cultures were centrifuged in a Beckman JZ-M1 centrifuge at 6,000 rpm 

for 10 min with the temperature maintained at 4 °C. The pellet was resuspended with

2.1 ml of Bacterial Resuspension Buffer. 2.1 ml of Bacterial Lysis Solution was then 

added and the mix incubated at room temperature for 5 min. 2.1 ml of the pre-chilled 

Mobius Neutralization Buffer was then added and the mix was left on ice for 5 min. 

The lysate was then centrifuged at 9,000 rpm and 4 °C for 5 minutes. The Mobius 200 

column storage buffer was decanted from a filter unit and 5 ml of the Mobius 

Equilibration Buffer was then poured into the column reservoir and allowed to drain 

through. The lysate was then transferred into the column reservoir and allowed to drain 

through. The column was then washed and the DNA was finally eluted using 2 ml of 

Mobius Elution Buffer.

2.3.2.5 DNA sequencing 

Once the plasmids had been midi-prepped they were then sequenced using the Big Dye

11 sequencing kit (ABI) to confirm that the construct contained the rIK insert. Briefly, 

sequencing reactions were carried out using: 3.2-5 pmol of primer (either the T7 

forward primer or the pcDNA3.1 reverse primer), 4 pi of sequencing buffer (900 mM
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Tris, 5 mM MgCl2, pH to 9.0), 10 pi of sterile H20, 1 pi of plasmid DNA, 4 pi of Big 

Dye II Terminator Mix and the following conditions: 96 °C for 2 min, 25 cycles of 96 

°C for 30 sec, 50 °C for 15 sec and 60 °C for 4 min. The DNA was then separated from 

unincorporated dyes using 2 pi of 3 M NaOAc (pH 4.6) and 50 pi of 95% EtOH (made 

up fresh), vortexed and left at room temperature for 15 minutes. The DNA precipitate 

was then centrifuged at maximum speed for 20 minutes, the pellet rinsed with 250 pL of 

70% ethanol and spun again for 5 min. The ethanol was then removed and the pellet 

was left to dry for 15 minutes at room temperature. The sequencing reactions were then 

resuspended in loading buffer and run on a ABI377 sequencer.

2.3.3 Transfection of cell lines 

Conditions for transfection varied according to the experiment and the exact amounts 

of plasmid are indicated in the appropriate results chapter. However, the general 

method was as follows: HEK 293 cells were grown in 35 mm diameter culture dishes to 

-70% confluency. 1-3 pg of SK/IK channel plasmid DNA and often 1 pg QBI plasmid 

DNA were used. The QBI plasmid expresses green fluorescent protein (GFP) and 

allows identification of transfected cells using fluorescence microscopy. The plasmid 

DNA, along with 2-3 pi (per pg of DNA) of the transfection reagent Lipofectamine™ 

2000 (Invitrogen) were mixed in Optimem (Gibco BRL) and the mixture was then 

added to the cells. Cells were then grown overnight and plated onto 18 mm x 18 mm 

square glass coverslips in preparation of immunocytochemisty experiments.
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2.4 Methods for electrophvsiologv

2.4.1 Cell preparations

All recordings were taken using isolated neurones in primary culture (as described in 

section 2.1.2). DRG and nodose neurones were left in culture for 1-3 days prior to 

recording. Nodose neurones were isolated and plated onto 35 mm plastic culture 

dishes. DRG cells were either plated onto the 35mm plastic culture dishes, 13 mm plain 

glass coverslips or CELLocate® coverslips.

2.4.2 Solutions

During experiments the cells were constantly perfused at a rate of 4-5 ml/min with an 

external solution of the following composition: NaCl 130 mM, KC1 3 mM, CaCh 2.5 

mM, MgCh 1.2 mM, HEPES free acid 5 mM, glucose 10 mM, NaHCC>3 26 mM and the 

pH was maintained at 7.5 by continuously bubbling the solution with 95% (V  5% CO2. 

A stainless steel inlet tube was positioned so that the external solution flowed directly 

over the cell being recorded from. The bathing solution was removed via a second 

stainless steel tube connected to a suction pump. Drugs stocks were made up in either 

DMSO or water as appropriate. These were diluted to the required concentration in the 

external solution and were applied by switching between reservoirs using a multiway 

tap. All experiments were carried out at 29-31 °C by passing the external solution 

through a heated coil.

2.4.3 Pioettes

2.4.3.1 Intracellular electrodes

Microelectrodes for intracellular recording were fabricated from 1.0 mm O.D. x 0.58 

mm I.D. borosilicate glass (code: GC100F-15; Harvard instruments) using either a
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Narishige PN-3 puller or a Brown and Flaming puller (Sutter instruments). When 

backfilled with a solution of 1 M KC1 these microelectrodes had resistances of 90-150 

MO.

2.4.3.2 Patch pipettes

Patch pipettes for perforated patch recordings were pulled from 1.5 mm O.D. x 1.17 

mm I.D borosilicate glass (code: GC150TF-15; Harvard instruments) using an L-MP-30 

vertical puller (List Medical). The tips of the pipettes were coated with Sylgard® (Dow 

Coming, USA) and fire polished using a microforge (Narashige, MF-9). These pipettes 

were dipped into a filling solution consisting of: KMeSC>4 126 mM, KC1 14 mM, 

HEPES free acid 10 mM, MgCb 3 mM, with the pH adjusted to 7.25 using 1 M KOH. 

They were then backfilled with the same solution containing 0.12 mg/ml amphotericin 

B (Sigma) to give resistances of 3-5 M fl The amphotericin “solution” was sonicated 

before use and was prepared on the day of the experiment.

2.4.4 Equipment used for electrophvsiological studies

For experiments performed with cells plated onto plastic culture dishes, the dish was 

mounted onto the stage of a Nikon TMS inverted microscope using a perspex block 

with a circular slot to hold the dish. For later experiments where cells were plated onto 

glass coverslips, these were mounted in a perspex chamber. In these cases the coverslip 

rested on a base and was supported from above by an “o” ring and block of perspex 

with a diamond-shaped well which, when screwed into the base, formed the perfusion 

chamber. This perfusion chamber was mounted on the stage of a Leica DMEL 

microscope. Cells were photographed using a Nikon Coolpix 5000 digital camera 

attached to the microscope and live images could be captured from the camera on a
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computer via a WinTV card (Hauppauge). The microscope was placed on steel and 

concrete slabs supported on a Micro-g vibration isolation table (Technical 

Manufacturing Corporation) to minimise external vibrations. The microscope was also 

shielded by a Faraday cage used to reduce electrical interference.

Recordings were made using an Axoclamp 2A amplifier (Axon Instruments) where 

stimulus pulse protocols were generated by a Master-8 stimulator (Intracel). Signals 

were amplified 5-fold and filtered at 5 kHz using an amplifier/filter built in-house. 

These signals were then digitized at 48 kHz using a VR-10 digital data recorder 

(Instrutech Corporation). Voltage signals were observed using an oscilloscope (Gould 

20 MHz digital storage type 1424) and a computer monitor via pClamp6 software. Data 

were acquired at a sampling frequency of 20 kHz for fast events (action potentials and 

mAHPs) or 1 kHz for sAHPs. Signals were also recorded on a chart recorder (Gould 

Easy Graf TA240) and stored on a computer via the Axon TL1 Labmaster digitizer and 

pClamp6 software.

Patch pipettes and microelectrodes were held in perspex holders (Clark Electromedical 

Instruments). The holders were directly attached to the headstage of the Axoclamp 

amplifier. The headstage itself was mounted on a fine micromanipulator which in turn 

was mounted on a coarse manipulator attached to the microscope via a steel bar. 

Narashige hydraulic micromanipulators (model: MO 203) were used to make fine 

movements of the pipettes.

2.4.5 Methods for recording AHPs

All recordings were made using the patch amplifier in bridge mode. After dipping the 

electrode into the extracellular bathing solution, the resistance of the electrode was 

corrected for by balancing the bridge. Capacitance compensation was also applied.
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Following cell penetration with an intracellular electrode or permeabilisation using a 

patch electrode the membrane potential was allowed to stabilise for at least 5 mins 

before any experimental procedures.

Cells were only deemed suitable for study if the membrane potential was more 

negative than or equal to -50 mV. All examples of recordings presented in this thesis 

are the average of three successive traces.

2.4.6 Pulse protocols

As mentioned already all pulse protocols were generated using the Master-8 

stimulator. For single action potentials a pulse of 5 ms was used. For trains of action 

potentials the number of pulses was increased to 3, 7, 10 or 15 as necessary and pulses 

were generated so they were 50 ms apart. The amplitude of the current pulse (typically 

in the region of 200-300 pA) was adjusted to the lowest level that would initiate action 

potential firing and this was done using the Axoclamp amplifier.

To examine the effect of a hyperpolarising pulse on DRG cells a 200 pA negative 

current pulse was injected for 100 ms. For studies in rat DRG cells from p40-45 

animals a depolarising pulse was employed to generate the AHP. This involved 

injecting 100 pA of current for 100 ms.

2.4.7 Data analysis

2.4.7.1 AHP duration in DRG neurones 

AHPs seen after a single action potential were examined in two ways. The first was to 

measure the time taken for 80% recovery of the AHP relative to the resting membrane 

potential (AHPg0; see Figure 2.2).
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Figure 2.2 A Clampfit trace of an AHP from a DRG cell. The dotted line indicates the membrane 

potential at which the AHP has recovered by 80% (that is 80% of the peak amplitude of the AHP 

relative to the resting membrane potential). The vertical red lines then indicate the duration from 

the development of the AHP (the downstroke o f the AP beyond the resting membrane potential) to 

the point o f 80% recovery (AHPgo).

The second was to fit the AHPs with one or more exponential functions incorporated 

into a modified version o f the Goldman-Hodgkin-Katz (GHK) voltage equation. This 

was done using Clampfit 8.2 (Axon Instruments). The unmodified equation is:
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jj RT,n PK[K]0 +PNa[Na]0 +PCi[CI]i 
m F ^ [K ]i+ P Na[Na]i+ Pci[Cl]0

where R is the gas constant 8.314 J K'1 mol'1, T is the temperature, in this case assumed 

to be 303 °K and F is the Faraday constant 9.6485 x 104 C mol'1. The values for [K]c, 

[K]i, [Na]0, [Na]i, [C1]Q and [Cl]i were set (in mM) to 4, 150, 145, 13, 150 and 31 

respectively.

Several simplifying assumptions were made when fitting the DRG AHPs, one being 

that the resting membrane potential was set largely by K+ and Na+ conductances and 

that any contribution of Cl* was negligible. This simplified the above equation 

somewhat to:

_ RT ln Fk [K]0 + PNa [Na]p 
m F ^ [K ^+ PN jN aJi

A second assumption was that the conductances underlying the AHP decay 

exponentially and the shape of the AHP was due mostly to changes in K+ conductance 

so the Pk values were adapted to try and account for this. For a single component AHP,

t~t o
Pk was substituted with the following expression: Ae T where A is the amplitude of 

the component, t is time, to is the time at the beginning of the decay phase of the AHP 

and x is the decay time constant. So the resulting equation looked as follows:

t- t0
_ R T lnAe * [K]0 + PNa[Na]Q 

m F t-to
Ae * [K]i+ PNa[Na]i

For AHPs which appeared to have two K + components, Pk was substituted with the

t - t0 t~h

expression: Ae T + Afi Tl

so the equation looked as follows:
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t—to t-tP

RT (Ae * +Aie )[K]0 +PNa[Na]Q 
m F t-to iî p

(Ae '  +A ie T] )[K]j + PNa[Na]j

for a three K+ components the following was used:

t-t0 t-tp t-tp
RT (Ae r + A,e r' + A2e )[K]„+ PN,[Na]„

m p t-to Iẑp Izia
(Ae '  +A,e r' +A2e )[K.]j +PN,[Na]j

Finally, for a few AHPs, the best fit was achieved using an equation with two K+ 

components and one depolarising Cl' component. For these, the original GHK equation 

was used and Pk and Pci values substituted to give the following equation.

t- t0 t- t0 t- to
RT. A e ~ + A ie [K]0 +PNa[Na]0 +A2e [Cl]j 

m F t-tp t- t0
Ae * +Aie rt [K]i +PNa[Na]i +A2e r2 [Cl]0

An example of a fitted AHP can be seen in Figure 2.3.
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Figure 2.3 Example of an AHP trace fitted using the modified Goldman-Hodgkin-Katz equation. 

The red line shows the voltage trace from a DRG recording. The blue line shows the fit to two K+ 

components which had decay time constants o f 8.0 ms and 30.9 ms.

2.4.7.2 Nodose cells, dose-response curve to UCL 2027

The duration o f a sAHP was taken as the length o f time, from the last action potential, 

for the membrane potential return to the baseline (before the first action potential in a 

subsequent stimulatory set). The effects o f the blockers used were expressed as the 

maximum amplitude o f the sAHP in the presence o f that drug as a percentage o f  that in 

its absence. (The sAHP amplitudes before drug addition and after washout were 

averaged in order to obtain the sAHP amplitude in the absence o f drug). Data have 

been plotted as means ± the standard error o f the mean (S.EM).

The concentration-inhibition curve generated for UCL 2027 was fitted using the Hill 

equation in the modified form: y / y mtK = IC5 0 ”/ (ICso”+ [I] ")

wherey  is the percentage inhibition, [I] is the drug concentration, y mBX is the maximum 

percentage inhibition and n is the Hill coefficient. The IC50 is the concentration o f drug
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required to cause 50% of the maximal inhibition seen. In this case > w  was taken to be 

100%. Data were analysed using the least squares minimisation routines of Origin 6.1 

(OriginLab Corporation). Where indicated, statistical significance was calculated using 

Student’s paired T test (p < 0.05).

2.4.8 Drugs and reagents 

All drugs used for electrophysiological studies were purchased from Sigma except 

UCL 2027 (2-triphenylmethylaminothiazole), which was synthesised by Z. Miscony, M 

Javadzadeh-Tabatabaie and C.R Ganellin (Dept, of Chemistry, UCL) and UCL 1848 

synthesised by C.R. Ganellin and colleagues (Dept, of Chemistry, UCL). All other 

chemical reagents were obtained from Merck. Stock solutions of the drugs were made 

up in distilled water and stored at -20 °C or in dimethyl sulphoxide (DMSO) and stored 

at 4 °C as appropriate.
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2.5 Quantitative PCR (qPCR)

2.5.1 Primer and probe design for qPCR 

Quantitative PCR (qPCR) was carried out using the TaqMan® method (PE-Applied 

Biosystems) an approach that requires a set o f conventional “outer” primers and a 

central fluorescently-labelled “probe” oligo which has both a “reporter” and a 

“quencher” dye bound (Figure 2.4). The TaqMan® reaction relies upon the 

exonuclease activity o f the DNA polymerase. As with a normal PCR reaction, the 

primers anneal to the denatured template and the DNA polymerase begins to synthesize 

a new strand o f DNA. However, when it reaches the probe oligo, the polymerase 

digests it so that the two dyes are no longer in close proximity. Once the reporter is 

released, a fluorescent signal can be detected and recorded. The probes, labelled at the 

5’ end with 6-carboxyfluorescein (FAM) and at the 3’ end with 6- 

carboxytetramethylrhodamine (TAMRA), along with the primers, were obtained from 

Sigma.

Key:

ProbeForward primer

5’

5’3’

Reverse primer

V.____________________  '

©
Reporter dye (F AM)

Quencher dye (TAM RA)

Amplicon

Figure 2.4 A schematic representation of TaqMan® primer annealing. TaqMan® reactions consist 

of the cDNA of interest, two external primers and a fluorescently labelled probe that hybridizes to the 

gene within the region that will be amplified (the amplicon). Exonuclease activity releases the 

labelled oligos and produces a fluorescent signal.
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Primers and probes for the full length rSK3 channel had previously been designed at 

GlaxoSmithKline (Harlow) by Matthew Hall. Additional sets were designed for rSKl 

to include all splice variants as well as those containing exon 7, and for rSK2 and rIK. 

The rat SKI (rSKl) sequence (Genbank accession NM  019313) was aligned with the 

mouse (mSKl; AF116525) sequence using the ClustalW program (available online at 

http://www. ebi. ac. uk/clustalw/) with the default settings. The aligned sequence was 

used to check where the sequences were conserved and where the splice sites in the 

rSKl gene may lie. Once these had been determined primers were designed to specific 

targets so as to detect: all variants o f rSKl thus including truncated forms (there were 

two primer probe sets for this purpose) and variants containing exon 7 (see Figure 2.5). 

Primer design was limited to these two groups o f  splice variants as the other exons in 

the SKI gene are too small to attempt to amplify using TaqMan® primers and probes. 

Primer design was carried out using the Primer 3 program (available online at 

http://www-genome.wi.mit.edu/cg.i-bin/primer/primer3 www.cgi: Rozen & Skaletsky, 

2000) with the following parameters:

Forward and reverse “outer” primers

I minimum size 9 bases, optimum size 20 bases, maximum size 35 bases 

I optimum melting temperature (Tm) 64 °C, maximum Tm 72 °C 

Internal fluorescent probe

I optimum size 27 bases, maximum size 3 5 bases 

* optimum Tm 72 °C, maximum Tm 75 °C 

Target sequence

I product size range 80-150 bases
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m SK l_l
m SKl_2
m SKl_3
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mSKl_7
mSKl_8
r S K I .10
r S K l.1 6

m SK l_l
m SKl_2
m SKl_3
mSKl_4
mSKl_5
m SKl_6
mSKl_7
mSKl_8
r S K l.1 0
r S K l.1 6

m SK l_l
m SKl_2
m SKl_3
mSKl_4
m SKl_5
m SKl_6
mSKl_7
mSKl_8
r S K I .10
r S K l.1 6

mSKlJL
m SKl_2
m SKl_3
mSKl_4
m SKl_5
m SK l_6
mSKl_7
mSKl_8
r S K l.1 0
r S K l .1 6

GALNRVTFNTRFVTKTLMTICPGTVLLVFSVSSWIVAAWTVRVCERYHDKQEVTSNFLGA 
GALNRVTFNTRFVTKTLMTICPGTVLLVFSVSSWIVAAWTVRVCERYHDKQEVTSNFLGA 
GALNRVTFNTRFVTKTLMTICPGTVLLVFSVSSWIVAAWTVRVCERYHDKQEVTSNFLGA 
GALNRVTFNTR FVTKTLMTICPGTVLLVFSVSSWIVAAWTVRVCERYH DKQEVT SNFLGA 
GALNRVTFNTRFVTKTLMTICPGTVLLVFSVSSWIVAAWTVRVCERYHDKQEVTSNFLGA 
GALNRVTFNTRFVTKTLMTICPGTVLLVFSVSSWIVAAWTVRVCERYHDKQEVTSNFLGA 
GALNRVT FNTRFVTKTLMT I CPGTVLLVFSVSSWI VAAWTVRVCERY HDKQEVT SNFLGA 
GALNRVTFNTRFVTKTLMTICPGTVLLVFSVSSWIVAAWTVRVCERYHDKQEVTSNFLGA 
GALNRVTFNTRFVTKTLMTICPGTVLLVFSISSWIVAAWTVRVCERYHDKQEVTSNFLGA 
GALNRVTFNTRFVTKTLMTICPGTVLLVFSISSWIVAAWTVRVCERYHDKQEVTSNFLGA 

Pore S6

MWLISITFLSIGYGDMVPHTYCGKGVCLLTGIF^PCTALWAWARKLELTI 
MWLISIT FLSI GY GDMVPHTYCGKGVCLLTG IPIjAGCTALVVAWARKLELT 
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MWLISITFLSIGYGDMVPHTYCGKGVCLLTGIM-------------------------------------------------------
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MWLISITFLSIGYGDMVPHTYCGKGVCLLTGIM-------------------------------------------------------
MWLISITFLSIGYGDMVPHTYCGKGVCLLTGIM-------------------------------------------------------
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MWL I SI T FLS I GY GDMVPHT Y CGKGVCLLTGIMGAGCTALWAWARKLELTKAEKHVHN

j?QLTKR 1^'AAANVLRETWLI YKHTRLVKKPDQGRVR KHQI^KFLQAI HQ -  —
c q l t k r v k n a a a :  i  t t  r l v  kk p  r > q g  r  v r  k h q  r ------------  —  s e

Kltkr HHBflHHBnK&fflSSflHHRBI - -■   -------------SE
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'/KNAWJVLRETWIJYKHTRLVKKPDQGRVRKHQR ---------LR SE
VKNAAANVLR ETWI, r Y KHT RLVKKP DQ<GRVRKHQR---------------------------- SE
/KNAAANT/LRETWLIYKKTRLVKKPDQGRYRKRQE- ---------------- --------:-. \  :

■ ■  H U  H H
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 V--------------------------------------------------------------------------------------------------------------------------------
v ---------------------------------------------------------------------------------------------------------
KIEQGKVNDQANTLAELAKAQSIAYEWSELQAQQEELEARLAALESRLDVLGASLQALP 
KIEQGKVNDQANTLAELAKAQSI AY EWSELQAQQEELEARLAALESRLDVLGASLQALP
 V--------------------------------------------------------------------------------------------------------------------------------
 V--------------------------------------------------------------------------------------------------------------------------------
RL----------------------------------------------------------------------------------------------------------------------
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m SK l_l
mSKl_2
m SKl_3
mSKl_4
m SKl_5
m SKl_6
mSKl_7
mSKl_8
r S K l .1 0
r S K l . 1 6

GLIAQAICPLPPPWPGPGHLATATHSPQSHWLPTMGSDCG
GLIAQAICPLPPPWPGPGHLATATHSPQSHWLPTMGSDCG

GLIAQAICPLPPPWPGPGHLATATHSPQSHWLPTMGSDCG 
GLIAQAICPLPPPWPGPGHLATATHSPQSHWLPTMGSDCG

SLIAQAICPLPPPWPGPSHLTTAAQSPQSHWLPTTASDCG

Figure 2.5 Alignment o f the C terminal region of the eight mouse and two rat SKI (mSKl and rSKl 

respectively) splice variants. Exons important in forming different splice variants are highlighted (see 

also Shmukler et al., 2001). The pore region and the last transmembrane domain S6 are also shown. 

The splice variants that result in the truncated isoforms can be seen in bold and italic typeface.
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Primers were then checked for their specificity by performing a BLAST search 

(http://www.ncbi.nlm.nih. gov/BLASTA to ensure that only the appropriate sequences 

would be recognised and thus amplified. The sequences of the TaqMan® primers are 

given in Table 2.3.

2.5.2 Controls for primers and probes

2.5.2.1 Plasmid controls for SKI. SK2 and SK3

Controls for all of the qPCR primers and probes were available in the form of the rat 

genes for full length rSKl (cloned into pcDNA3.1; Invitrogen), rSK2 (cloned into 

pTracer; Invitrogen) and rSK3 (cloned into pcDNA3.1 zeo+). These were diluted to 1 

ng/pl for use.

2.5.2.2 Clonins o f rat IK fragment

As there was initially no rat clone available to test the IK primers and probe with, so a 

small fragment (~1 kb) was cloned using cDNA from rat spleen (Clontech). The 

sequences of the primers used to amplify this fragment were as follows:

Forward 5’ GGAGGTCCAGCTGTTCATGACTG 3’

Reverse 5’ CAGGCAGCTATGTGGCCTCCT 3’

These amplified a fragment from bases 246 to 1425 in the IK sequence. The PCR 

reaction mix comprised 7.5 pi Pfu turbo, 15 pi 10 X Pfu enzyme buffer, 7.5 pi dNTPs 

(final concentration of each dNTP was 0.4 mM), 30 pi of each primer (final 

concentration of 1.2 pM), 7.5 pi of rat spleen cDNA as the template (0.9 ng/pl stock 

concentration), 7.5 pi

80

http://www.ncbi.nlm.nih


Gene Primer Sequence

Rat SKI all variants Forward primer 

Reverse primer 

Internal fluorescent probe

5’ CATTCGCCCTGAAATGCCTA 3’

5’ TCCACCAGGAACAGCTGGAT 3’

5’ CACTGTCATCCTGCTTGGCCTTGTCAT 3’

Rat SKI

alternative all variants

Forward primer 

Reverse primer 

Internal fluorescent probe

5’ CCTGCAGGCCCTACCAAGTC 3’

5’ CACAGTCTGATGCCGTGGTG 3’

5’ AAGCCATATGCCCTCTACCACCACCCT 3’

Rat SKI

including exon 7

Forward primer 

Reverse primer 

Internal fluorescent probe

5’ AAGGGCGTGTGTCTGCTCAC 3’

5’ CCGCTTGGTGAGCTGTGTGT 3’

5’ GGAACTCACCAAGGCTGAGAAACACG 3’

Rat SK2 Forward primer 

Reverse primer 

Internal fluorescent probe

5’ GGCTATAAGCTGGGCCATCG 3’

5’ CCGAACATGCCGAAGATGAG 3’

5’ AGAAGCGCAAGCGGCTCAGCGACTAT 3’

Rat SK3 Forward primer 

Reverse primer 

Internal fluorescent probe

5’ T GG AAT CC AAGCT GG AGC AC 3’

5’ TGGCTAGTTCCCACAGCCAC 3’

5’ AGCTTCAATTCCCTGCCCCTGCTCAT 3’

Rat DC Forward primer 

Reverse primer 

Internal fluorescent probe

5’ CAACAAGGCGGAGAAACACG 3’

5’ TCGGGAGTCCTTCCTTCGAG 3’

5’ TATGCCAAAGAGATGAAGGAGTCGGCC 3’

(3-actin Forward primer 

Reverse primer 

Internal fluorescent probe

5' GAGCTACGAGCTGCCTGACG 3'

5' GT AGTTT CGT GGAT GCC AC AGG A 3' 

5'CATCACCATTGGCAATGAGCGGTTCC 3'

Table 2.3 Sequences of TaqMan primers and probes used for qPCR
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DMSO made up to 150 pi in nuclease-free H2O. The PCR reaction was then performed 

using a PTC 200 Peltier thermalcycler (MJ research) and the following cycling 

conditions: 95 °C for 1 min, followed by 40 cycles of 95 °C for 1 min, 60 °C for 1 min, 

72 °C for 1 min and finally one cycle of 60 °C for 5 min followed by 72 °C for 20 min. 

The product was run on a 1% agarose gel and the DNA extracted using the QIAquick 

gel extraction kit.

2.5.2.3 Transiently transfected HEK 293 cells

Additional controls used were in the form of HEK 293 cells transiently transfected 

with plasmids for rSKl, rSK2 and rSK3. The transfection was performed as described 

in section 2.3.3 using LipofectAMINE 2000™. RNA and cDNA were produced as 

described in sections 2.5.4 and 2.5.7.

2.5.3 Tissue extraction

To look at the developmental aspects of SK/EK channel expression, Sprague-Dawley 

rats of either sex and of three different ages were used. Animals at postnatal day 7, 17 

and 40-45 (p7, p i7 and p40-45 respectively) were terminally anaesthetised using a 

rising concentration of CO2 followed by decapitation. The following tissues were 

dissected out into Ca2+-free, Mg2+-free HBSS: adrenal gland (medulla and cortex) and 

dorsal root ganglia (up to 20 individual ganglia). In addition, one p7 animal was used to 

obtain hippocampal and whole brain tissue, while a p i7 animal was used to obtain a 

section of colon. All tissues were chopped into pieces of approximately 1 mm3, rapidly 

transferred to ciyovials (Nunc) and snap frozen in liquid nitrogen. Samples were stored 

at -80 °C until used (usually within 2 days).
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2.5.4 RNA isolation

RNA was isolated from the above tissues using the Stratagene Absolutely RNA™ 

Isolation kit following the manufacturer’s instructions. Initially tissues were weighed 

out and transferred to a microcentrifuge tube containing lysis buffer.

The samples were then homogenised using an Ultra-Turrax T8 tissue homogeniser 

(IKA Labortechnik) previously washed with lysis buffer. Samples were either stored on 

dry ice or at -80 °C until used (always within 24 hours). The lysed tissue samples were 

first transferred to a prefilter spin cup which was spun in a microcentrifuge (Biofuge 

pico, Heraeus instruments) at maximum speed (13,000 rpm) for 1 min. The filtrate was 

then transferred to a clean RNase-free microcentrifuge tube and an equal volume of 

70% v/v ethanol added. The samples were mixed by vortexing and the solution was 

then transferred to an RNA-binding spin cup placed in a 2 ml collection tube. These 

were then spun at maximum speed for 1 min. Samples were washed and incubated in 

RNase-free DNase I for 15 mins at 37 °C. The matrix was then washed again, first in 

high salt and then in low salt wash buffers. Next the purified RNA was eluted into a 

microcentrifuge tube with Elution Buffer (10 mM Tris-HCl (pH 7.5) and 0.1 mM 

EDTA) and stored at -80 °C. All samples underwent an additional DNase step to ensure 

that there was no genomic DNA contamination as follows, 1 pi of RNase-free DNase I 

(Ambion) was added for each 10 pi of isolated RNA and the samples were incubated at 

37 °C for 10 min followed by an additional 75 °C incubation for 5 min to inactivate the 

enzyme.
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2.5.5 Checking RNA integrity

RNA samples were analysed using an RNA 6000 Nano LabChip kit run on a 2100 

Bioanalyzer (Agilent Technologies). The chip was filled with a gel dye and 1 pi of 

each sample, along with an RNA standard, were run. The results are seen in the form of 

an electropherogram where peaks correspond with different sized fragments of RNA (a 

typical result is shown in Figure 2.6). Results were also “translated” so that they could 

be seen in gel format (Figure 2.6 bottom left-hand comer).

The RNA integrity was determined by examining the peaks for 18S and 28S ribosomal 

RNA. The trace in Figure 2.6 provides three examples of successfully purified total 

RNA and one example of degraded RNA in lane 4 (the electropherogram for “DRG 

cells” shows no peaks and the gel trace appears as a smear which is consistent with the 

RNA being degraded into fragments of various sizes). Samples showing evidence of 

degradation were not used for further study.

2.5.6 RNA Quantitation

The amount of RNA for each sample was quantified using the RiboGreen® RNA 

quantitation kit (Molecular Probes). Initially each sample was diluted 1:100 in water. 

Each of the diluted samples was then transferred to separate wells of a 96-well plate. 

These then underwent serial dilutions in Tris-EDTA (TE) buffer as follows: 1:200; 

1:400; 1:800; 1:1600 and 1:3200. A separate set of wells of the plate also contained 

known standards of RNA in the form of 16S and 23 S rRNA from E. coli (provided with 

kit at a concentration of 100 pg/ml). The standard was diluted in TE buffer so as to 

produce final concentrations of: 1000 ng/ml, 500 ng/ml, 250 ng/ml, 125 ng/ml, 62.5 

ng/ml, 31.25 ng/ml and 15.63 ng/ml
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P17UVERP17HEART

28s

Figure 2.6 An example of a typical electropherogram obtained from samples run on an RNA 6000 

nanochip: (1) p i7 heart, (2) p7 brain, (3) p l7  liver and (4) RNA from isolated DRG cells. Samples 

were deemed suitable for qPCR if they showed two peaks/bands corresponding to 28s and 18s 

ribosomal RNA (see arrows) indicating that samples had not undergone significant degradation. The 

image on the right hand side show the same samples in “gel format”. The left hand lane shows marker 

bands while the four subsequent lanes show the RNA samples p i7 heart, p7 brain, p l7  liver and DRG 

cells respectively.
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once the RiboGreen® dye was added. The dye itself was diluted 1:4000 in TE buffer 

and 100 pi of the resulting solution was dispensed into each well.

The fluorescence of the plate was then measured using an ABI prism 7700 sequence 

detector and the measurements were relayed to a Power Macintosh G3 computer. 

Initially a blank plate was used to measure the background, then the experimental plate 

was read using a protocol that measured the dye fluorescence with excitation and 

emission wavelengths set at -480 nm and -520 nm respectively.

To determine the amount of RNA present in each sample, a standard curve was 

generated by plotting the fluorescence against the RNA concentration (see Figure 2.7). 

The concentration of RNA in a given sample was calculated using the standard curve 

and the following formula: [RNA] in pg/ml = (Fluorescence -  Intercept)/Slope

2.5.7 Reverse Transcription (RT) to produce cDNA

Isolated RNA was reverse transcribed using 1 pg of total RNA. For 10 reactions, a 

reagent mix was made up as follows: 23.3 pi 10X RT buffer, 9.3 pi 25X dNTP mix,

23.3 pi 10X random hexamers and 11.6 pi reverse transcriptase using the High Capacity 

cDNA Archive kit (Perkin-Elmer Applied Biosystems). The reactions were carried out 

using a GeneAmp® PCR system 9700 thermal cycler (PE-Applied Biosystems) and the 

following conditions: 10 min at 21 °C to allow annealing of primers, 60 min at 42 °C for 

the reverse transcriptase activity, 5 min at 70 °C to inactivate the enzyme and 10 min at 

25 °C to store the cDNA once synthesized.
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Figure 2.7 A typical example of a standard curve generated using the RiboGreen assay. 

The line of best-fit is determined by the ABI Prism 7700 software. RNA concentrations 

were determined as described in section 2.5.6.
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2.5.8 qPCR (TaqMan®) 

cDNA from the RT reactions was used at a final concentration of 4 ng/pl. The 

reaction mix for the qPCR consisted of (per sample): 4.6 pi TaqMan® universal PCR 

master mix (containing dNTPs, Taq polymerase from PE-Applied Biosystems), 2 pi of 

cDNA, 0.37 pi of 10 pM forward primer, 0.37 pi of 10 pM reverse primer, 0.19 pi of 5 

pM probe made up to a final volume of 10 pi with nuclease-free water. In addition, 

four sets of standards using rat genomic DNA (Clontech) were set up so that a standard 

curve could be generated. These consisted of 105 copies, 104 copies, 103 copies and 102 

copies of each gene.

The reactions were carried out in 384-well optical plates on an ABI prism 7900HT® 

sequence detection system (PE-Applied Biosystems). The PCR protocol was set up 

using the following conditions: 2 min at 50 °C, 10 min at 95 °C and 45 cycles of 5 min 

at 95 °C followed by 1 min at 60 °C. All data were recorded and analysed on a PC using 

SDS 2.0 software. For each PCR reaction, the cross threshold (Ct) was set to -0.05 to 

ensure that it lay within the exponential phase of the reaction (see Figure 2.8). Copy 

numbers of the SK/IK channels expressed in each sample were calculated by comparing 

fluorescence values for samples with a standard curve generated from rat genomic 

DNA.

In the case of certain primer probe sets it was not possible to use the standards. This 

was because the amplicon region extended across two different exons. In these cases 

the copy number was generated using the following equation which assumes that the

( C - C .)

PCR reaction occurred under ideal conditions: mRNA copy number =10 3 5
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Key:
1 SKI plasmid amplified with the 
SKI all variants primer/probe set

2 IK fragment amplified with IK 
primer/probe set

3 SK 1 plasmid amplified with 
SKI exon 7 primer/probe set

4 SK2 plasmid amplified with the 
SK2 primer/probe set

5 SKI plasmid amplified with the 
SKI alternative all variants 
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6 SK3 plasmid amplified with the 
SK3 primer/probe set

Figure 2.8 A typical TaqMan® trace. The ARn is plotted against the number of reaction cycles. 

ARfl = (Rn+XRn-), where Rn+ denotes the ratio of: reporter emission intensity/quencher emission 

intensity during the reaction and R„- is the emission intensity/quencher intensity before amplification 

begins. The bold horizontal line indicates the cross threshold (CO- The target DNAs and the 

primer/probe sets are identified in the key.
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where C represents a number of PCR cycles during the reaction (in this case 40) and Ct 

represents the cross threshold (see Figure 2.8). In order to ensure that this equation 

gave a reasonable estimate of the copy number, the results for the SK2 primer probe set, 

for which it was possible to obtain a standard curve, were compared to those generated 

by the ABI Prism software based on the standards. It can be seen from Figure 2.9 that 

while the actual copy numbers vary slightly between the data generated from the 

standards and those calculated using the equation, the overall differences in copy 

number between different samples remain about the same. The percentage difference 

between values obtained using the standard curve and those using the equation, for the 

ten observations in Figure 2.9, is about 30 ± 2% (mean ± standard error of the mean).
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results from standard curve 
results from equation

Tissue sample

Figure 2.9 A graph comparing the SK2 cDNA copy numbers calculated using two different 

methods. The red bars show data derived from a standard curve generated by using rat 

genomic DNA with known copy numbers. The green bars show copy numbers generated 

using the equation described in the text. It can be seen that the relative copy numbers for all 

samples are essentially the same for both groups.
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Chapter 3

Characterisation of primary antibodies targeted to SK 

channels and the IK channel

3.1 Introduction

The results presented in this chapter are primarily concerned with the characterisation 

of rabbit polyclonal antibodies raised against both rat and human SK/IK channel peptide 

epitopes. The main focus is on experiments designed to establish the suitability of these 

antibodies for immunohistochemistry, by testing them on recombinant channels. 

However, towards the end of this chapter, I also present some preliminary results on the 

staining of native channels. In addition, there are results from experiments done to 

examine SK channel subunit interactions.

Table 3.1 lists the antibodies by name and gives their intended target subunits as well 

as the peptide epitope used to raise the antibody. Most of the antibodies listed in Table

3.1 (the exception being the anti-rIK antibodies) had been successfully tested in western 

blots but had previously not been used in staining experiments (see Chen et al., 2004 for 

examples). To determine whether these antibodies detect proteins in their folded 

conformations, as opposed to in a denatured state, cell lines transfected with SK/IK 

channels were stained as described in the Methods (Chapter 2). The antibodies which 

gave the best results were subsequently used to try to detect the presence of channels in 

native tissues and investigate the possibility of co-assembly of SK channels in cell lines.
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Name of antibody Target protein Epitope

L155 hSKl C SSP YRWTPVAPSD Y G

rbl85 rSKl PEAGRPRQPT QGPGLQMC

rbl96 rSKl PE AGRPRQPT QGPGLQMC

rbl86 rSKl C SPQSHWLPTT ASD YG

rb200 rSKl CSPQSHWLPTTASDYG

UCL55 rSKl MS SRSHNG S VGRPLGSGPG Y

UCL56 rSKl KLPPPWPGPSHLT AA

M l hSK2 and rSK2 CRRSSSTAPPTSSESS

M75 hSK3 and rSK3 DTSGHFHDSGVGDLDC

Anti-SK3 hSK3 and rSK3 DTSGHFHDSGVGDLDEDPKC

M16 hIK GGDLVLGLGALRRRKC

M20 hIK GGDLVLGLGALRRRKC

M4 hIK CALGPRQLPEPSQQSK

M5 hIK CALGPRQLPEPSQQSK

R212 rIK CQPPEPIQEAT

R224 rIK CQPPEPIQEAT

Table 3.1 A table of the antibodies designed to recognise either human or rat SK/IK channel 

proteins. Each antibody epitope is shown. These epitopes do not always match the target protein 

sequence perfectly because a cysteine is frequently added to the sequence in order to facilitate 

antibody purification. Deviations of the epitopes from the exact peptide sequences are indicated in
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3.2 Results

3.2.1 Negative controls

Several types of “negative” control experiments were carried out. First, experiments 

were performed to confirm that the anti-SK/IK antibodies would not cross react with 

native proteins in the HEK 293 cells. Each individual antibody was therefore initially 

tested on the untransfected HEK cell line. Secondly, as a control for the CY3- 

conjugated secondary antibody, it was applied alone to ensure that levels of background 

staining were suitably low. rSK2 and rSK3 are the most closely related of the rSK 

channels on the basis of sequence similarity. For this reason, a third type of control 

experiment was performed using the anti-rSK2 antibody (Ml) to stain CHO cells stably 

expressing rSK3, to ensure that there was no cross-reactivity of the Ml antibody with 

the rSK3 channel protein. One final experiment was designed to look at whether 

antibodies raised against one species might recognise the channel protein of another. 

For this purpose, the anti-rSKl antibodies were applied to HEK 293 cells stably 

expressing the hSKl channel protein. Although there are similarities between the anti- 

rSKl antibody epitopes and the corresponding regions of the hSKl peptide sequence, 

there may be enough difference to ensure that there is no cross-reactivity between the 

rat-specific antibodies and the hSKl channel protein.

Figure 3.1 (A-D) gives typical examples of the staining produced when the anti-SK/IK 

channel antibodies are used with untransfected HEK 293 cells. In each case it can be 

seen that there is no specific staining and only a fairly minimal level of non-specific 

background staining. This was true for all of the primary antibodies tested in this 

chapter. In addition,
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Figure 3.1 Negative control experiments using anti-SK/IK antibodies and the CY3 secondary antibody. 

Typical examples of staining of cells from two mammalian cell lines; HEK 293 cells (A-D) and CHO cells 

stably transfected with rSK3 (panel E), were stained with primary antibodies for SKI, SK2 and SK3 and 

the CY3 labelled goat anti-rabbit secondary antibody. A, Cells stained with the anti-SKl antibody rb200. 

B, cells stained with the anti-SK2 antibody M l. C, cells stained with the anti-SK3 antibody M75. D, cells 

stained with the CY3-labelled secondary antibody. E, CHO cells stably expressing rSK3 stained with the 

anti-rSK2 antibody (M l) to ensure there is no cross reactivity of the antibody the rSK3 channel protein. 

For A, B and C, the left-hand panel shows the stained cells while the right-hand panel shows the 

corresponding brightfield. The scalebar in A also applies to B, C, D and E.



the staining results for the anti-rSK2 antibody produced negative results in rSK3 CHO 

cells (Figure 3.1 E).

Finally, experiments using the anti-rSKl antibodies show that they did not produce 

any positive staining in the HEK 293 cells expressing hSK l. Figure 3.1 and 3.2 shows 

that the antibodies designed to target the rSKl channel appear to be species specific. 

Also, the results depicted in Figure 3.1 establish the suitability o f HEK 293 cells and 

the Cy3-conjugated secondary antibody for the positive controls.

Figure 3.2 The four different anti-rSKl antibodies do not produce specific staining in a HEK 293 cell 

line stably expressing hSKl. A and B show the results with the two N-terminal antibodies rb l85 and 

rb l96 respectively and C and D with the two C-terminal antibodies rb l86  and rb200.
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3.2.2 rSKl antibodies

Of the six antibodies available to test on the rSKl protein, three were raised against N- 

terminal epitopes (rbl85, rbl96 and UCL55) while the remaining three were designed 

to different regions of the C-terminal domain (rbl86, rb200 and UCL56). Two different 

plasmids were employed to transfect HEK 293 cells in order to determine whether these 

antibodies would be useful in identifying the rSKl channel protein. One plasmid was 

designed to express the native rSKl protein while the other was modified to express a 

fusion protein of rSKl and the yellow fluorescent protein (YFP). To identify 

transfected cells when using the native rSKl, the rSKl plasmid was co-transfected with 

the QBI plasmid which expresses the green fluorescent protein (GFP).

The rSKl channel has been reported not to produce detectable SK current in 

transfected cell lines (Bowden et al, 2001; Benton et al., 2003; D’Hoedt et al., 2004). 

This may have been due to several reasons, one of which is that the channel protein is 

simply not expressed. This makes it difficult to test the antibodies as a negative result 

could occur because the antibody does not work, or because there is no protein to detect. 

It was for this reason that the YFP-tagged rSKl-containing plasmid was used. Figure

3.3 shows that YFP fluorescence can be detected in transfected cells indicating that the 

plasmid is expressed. Furthermore, the C-terminal anti-rSKl antibodies (rbl86 and 

UCL56) produce a pattern of positive staining that closely resembles the distribution of 

the YFP tag, indicating that the antibodies recognise the channel protein. Interestingly 

both the YFP and antibody staining signals indicate that it is mostly within intracellular 

compartments of transfected cells.
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Figure 3.3 The YFP-tagged construct expresses when transiently transfected in HEK 293 cells and is 

recognised by anti-rSKl antibodies. 1A and I1A show YFP fluorescence. The rSK l channel protein 

is also positively stained with the C-terminal antibodies rbl86 (IB) and UCL56 (IIB). The bright- 

field images (C) and overlays of A, B and C (D) are also shown. In both cases the overlay shows that 

the YFP fluorescence and the antibody staining coincide well indicating that the antibodies do indeed 

recognise the channel protein. (YFP fluorescence appears green due to the use of a green filter).
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Next, the C-terminal antibodies were tested on HEK 293 cells expressing the native 

rSKl construct along with a plasmid containing GFP. The positive staining signal seen 

in Figure 3.4 illustrates that the C-terminal anti-rSKl antibodies also recognise the 

native channel protein. As with experiments using the YFP-tagged rSKl construct, the 

rSKl channel protein does not seem to localise at the cell membrane but is frequently 

distributed throughout the cell.

As the YFP-tagged rSKl construct has the tag inserted at the N-terminal end, it was 

decided not to test rbl85, rbl96 or UCL55 using this plasmid as the YFP may have 

prevented antibody binding. However, Figure 3.5 shows the results of staining 

experiments using the N-terminal antibodies on HEK 293 cells transfected with the 

native rSKl plasmid. UCL55 failed to produce specific positive staining, so was not 

used in any further experiments. However, rbl85 and rbl96 produced comparable 

results to the other anti-SKl antibodies in that they gave a bright positive signal with a 

distribution that gives the impression that the majority of the channel protein remains 

trapped intracellularly.
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Figure 3.4 C-terminal anti-rSKl antibodies produce 

positive staining in HEK 293 cells transiently 

transfected with the native rSKl construct. Panel I 

shows results with the rbl86 antibody, II with the 

rb200 antibody and III with the UCL56 antibody. In 

each case A shows the GFP fluorescence, B shows the 

antibody staining, C the brightfield image and D the 

overlay of A, B and C. Each of the C-terminal 

antibodies produces a bright positive signal in 

transfected cells.
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Figure 3.5 Staining with N-terminal anti-rSKl antibodies o f HEK 293 cells transiently transfected with 

the native rSKl construct. I, staining seen with the rbl85 antibody, II with the rb l96 antibody and III 

with the UCL55 antibody. For panels I and II, A shows GFP fluorescence, B the pattern of antibody 

staining, C the brightfield image of cells and D the overlay. For panel III, A shows antibody staining 

results, B the brightfield and C the overlay. While there is a strong positive signal seen in transfected 

cells with the rbl85 and rbl96 antibodies, there does not appear to be any specific positive staining with 

the UCL55 antibody, just a high level o f background.
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3.2.3 rSK2 staining

The Ml antibody is specific to the last seventeen amino acids of the rSK2 sequence 

(see Table 3.1 and Figure 2.1 of Methods). When HEK 293 cells transiently 

transfected with the SK2 plasmid are stained with this antibody, a strong positive signal 

is seen (see Figure 3.6). Interestingly the fluorescence from the SK2 staining is 

dispersed quite densely throughout the cell.

3.2.4 rSK3 staining

There were two antibodies available to test for rSK3 the first being M75 and the 

second a commercial antibody from Chemicon. The two epitopes differ only in that the 

Chemicon antibody includes an additional four amino acids at the C-terminal end. Both 

are directed towards the N-terminal region of the SK3 protein.

Figure 3.7 demonstrates that both M75 and the commercial antibody produce a bright 

and specific positive signal. The vast majority of the protein seems to be present at or 

near the cell surface membrane with comparatively little seen in the intracellular region.

3.2.5 Distribution of SK channel proteins in transfected HEK 293 cells

The distributions of the rSKl, rSK2 and rSK3 channel proteins appear to differ quite 

substantially. This is perhaps best illustrated using intensity profiles of the antibody 

staining seen for the cells depicted in Figures 3.3 IB, IIB, 3.6 B and 3.7 IIB as shown 

in Figure 3.8. The peaks seen correspond with the regions showing the brightest 

fluorescence.
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Figure 3.6 The anti-SK2 antibody (M l) produces positive staining in HEK 293 cells transfected with 

rSK2. A, GFP fluorescence from transfected cells. B, staining with the anti-SK2 antibody M l. C, 

brightfield image. D, overlay of images A, B and C. SK2 appears to be expressed throughout the cell 

with the exception that the signal is excluded from the nucleus.
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Figure 3.7 Anti-SK3 antibodies recognise the channel protein in HEK 293 cells transiently transfected 

with the rSK3 construct. I , staining results seen using the M75 antibody. II, staining seen using the 

Chemicon anti-SK3 antibody. In both I and II, A shows GFP fluorescence from transfected cells. B, 

staining with the anti-SK3 antibodies. C, brightfield image. D, overlay of images A, B and C. SK3 

can clearly be seen at or near the plasma membrane of transfected cells using both anti-SK3 antibodies.
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Of the three different channel proteins, rSKl appears to show the greatest diversity in 

terms of distribution across the cell. Figure 3.8 A shows a cell transfected with rSKl 

where the staining appears as a fine meshwork throughout the cell with the exception of 

a large area excluded by the nucleus. This is reflected in the profile of the intensity of 

staining. In another cell transfected with rSKl, the protein appears to be “clumped 

together” primarily on one side of the cell (Figure 3.8 B). In this case, the intensity 

profile shows one large set of peaks that are relatively uniform in height indicating that 

the fluorescence appears to be restricted to one region. Again there is a large area of the 

profile where there is no staining seen due to the exclusion by the cell’s nucleus, but 

little or no protein appears on the opposite side of the nucleus.

In contrast, the rSK2 and rSK3 channel proteins showed very little variability in their 

cellular distributions. Figure 3.8 C shows a typical example of the rSK2 pattern of 

staining. rSK2 staining consistently had a “web-like” appearance which extended 

throughout most of the cell. This is illustrated well by the intensity profile of a cell 

transfected with the rSK2 plasmid. There are a large number of peaks showing that 

there are high levels of fluorescence across the cell, although the signal is excluded by 

the nucleus.

The rSK3 staining appears as a bright punctate signal at, or close to, the cell 

membrane. There is no bright intracellular staining seen, which makes the pattern of 

staining very different to that of the rSKl and rSK2 channel proteins. The intensity 

profile shows two clear peaks in the region of the cell membrane.

105



Pixel
intensity

Distance (pm)

Pixel
intensity,,

Distance (pm)

Distance (pm)

D

Pixel
intensity

Distance (pm)

Figure 3.8 Intensity profiles show the differences in distribution of fluorescence seen for rSK l, rSK2 and 

rSK3 antibody staining. A, staining seen with the anti-rSKl antibody rbl86. B, staining seen with the anti- 

rSKl antibody UCL56. C, staining seen with the anti-rSK2 antibody M l. D. staining seen with the Chemicon 

anti-SK3 antibody. In each case the staining is shown in the image on the left. The white bar indicates the 

section represented by the profile on the right. Peaks correspond to the regions o f brightest fluorescence.



3.2.6 rIK staining

3.2.6.1 Cloning the rIK channel

Producing positive controls for the anti-rIK antibodies was less straightforward than 

for the SK channels as initially I did not have access to an rIK clone. Therefore, in 

order to test these antibodies, the rat IK channel was cloned from adult rat DRG cDNA 

as described in Chapter 2. The exact nucleotide sequence can be found in Figure 3.9 

along with the predicted amino acid sequence. Figure 3.10 shows an alignment of this 

predicted rIK protein sequence along with several other rIK sequences as previously 

reported in Genbank. The * symbols under this alignment mark positions where in all

sequences predict the same amino acid. There are six positions where the four 

sequences are not identical. In each of these positions, three of the four sequences 

agree. In all cases the rat DRG sequence follows the consensus. Interestingly, it is 

identical to the Genbank clone Q9QYW1.
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M G G E L V T G L G A L R R R K R L L E
atgggcggggagctggtgactggcctgggggccctgagacggagaaagcgcctgctggag
tacccgcccctcgaccactgaccggacccccgggactctgcctctttcgcggacgacctc
Q E K R V A G W A L V L A G T G I G L M
caggagaagagggtggccggctgggcactggtactggcgggaactggcatcggactcatg
gtcctcttctcccaccggccgacccgtgaccatgaccgcccttgaccgtagcctgagtac
V L H A E M L W F L G C K W V L Y L L L
gtgctgcacgctgagatgttgtggttcctgggttgcaagtgggtgctgtacctgctcttg + + + + + +180
cacgacgtgcgactctacaacaccaaggacccaacgttcacccacgacatggacgagaac
V K C L I T L S T A F L L C L I V V F H
gttaagtgtttaatcacgctgtccactgccttcctcctttgtcttattgtggtcttccat
caattcacaaattagtgcgacaggtgacggaaggaggaaacagaataacaccagaaggta
A K E V Q L F M T D N G L R D W R V A L
gccaaggaggtccagctgttcatgactgacaacgggctccgggactggcgcgtggcgctg
cggttcctccaggtcgacaagtactgactgttgcccgaggccctgaccgcgcaccgcgac
T R R Q V A Q I L L E L L V C G V H P V
acccggcggcaggtggcgcagatcctgctggagctgctggtatgcggggtgcacccggtg
tgggccgccgtccaccgcgtctaggacgacctcgacgaccatacgccccacgtgggccac 
P L R S  P H C T L A G E A T D S Q A W P  
cccctacggagcccgcactgcaccctggcgggggaggccacagactcacaggcctggccg
ggggatgcctcgggcgtgacgtgggaccgccccctccggtgtctgagtgtccggaccggc
G F L G E G E A L L S L A M L L R L Y L
ggcttcctgggcgaaggcgaggcgttgctgtccctggccatgctgctacgtctctacctg
ccgaaggacccgcttccgctccgcaacgacagggaccggtacgacgatgcagagatggac
V P R A V L L R S G V L L N A S Y R S I
gtgcctcgcgcggtacttctgcgtagcggggtcctgctcaacgcgtcttaccgcagcatc
cacggagcgcgccatgaagacgcatcgccccaggacgagttgcgcagaatggcgtcgtag
G A L N Q V R F R H W F V A K L Y M N T
ggggcgctcaaccaagtccgattccgccactggttcgtggccaaactatacatgaacacg
ccccgcgagttggttcaggctaaggcggtgaccaagcaccggtttgatatgtacttgtgc
H P G R L L L G L T L G L W L T T A W V
cacccgggtcgcctgcttctgggcctcacgctgggcctntggctcaccacagcttgggtg
gtgggcccagcggacgaagacccggagtgcgacccgganaccgagtggtgtcgaacccac 
L S V A E R Q A V N A T G H L  T D T L W  
ctgtctgtggctgagaggcaggctgtcaatgccacgggacacctcacagacacactgtgg
-----------------+------------------+----------------- +------------------+------------------+------------------+720
gacagacaccgactctccgtccgacagttacggtgccctgtggagtgtctgtgtgacacc 
L I  P I  T F L T I  G Y G D V V P G T L W  
ctgatacccatcacgttcctgaccattggctatggggacgtcgtacctggcaccctatgg
gactatgggtagtgcaaggactggtaaccgatacccctgcagcatggaccgtgggatacc
G K I V C L C T G V M G V C C T A L L V
ggcaagattgtctgcttgtgcaccggagtcatgggggtctgctgcacggctctactagtg
ccgttctaacagacgaacacgtggcctcagtacccccagacgacgtgccgagatgatcac
A V V A R K L E F N K A E K H V H N F M
gctgtggtggcccggaagctggagttcaacaaggcggagaaacacgtgcacaacttcatg
cgacaccaccgggccttcgacctcaagttgttccgcctctttgtgcacgtgttgaagtac 
M D I  H Y A K E M K E S A A R L L Q E A  
atggacatccattatgccaaagagatgaaggagtcggccgctcggctgctgcaggaagcc
tacctgtaggtaatacggtttctctacttcctcagccggcgagccgacgacgtccttcgg
W M Y Y K H T R R K D S R A A R R H Q R
tggatgtactacaaacacactcgaaggaaggactcccgagcggctcgcaggcatcagcgc
acctacatgatgtttgtgtgagcttccttcctgagggctcgccgagcgtccgtagtcgcg 
K M L A A I  H T F R Q V R L K H R K L R  
aagatgctggctgccatccacacgttccgccaggtacggctgaaacatcggaagctccgg
ttctacgaccgacggtaggtgtgcaaggcggtccatgccgactttgtagccttcgaggcc 
E Q V N S M V D I  S K M H M I L C D L Q  
gaacaagtgaattccatggtggacatctccaagatgcacatgatcctgtgcgacctgcag
cttgttcacttaaggtaccacctgtagaggttctacgtgtactaggacacgctggacgtc 
L G L S A S H L A L E K R I  D G L A G K  
ctcgggctcagcgcctcgcaccttgccctggagaagagaatcgatgggctggcagggaag
 + ---------------------+ ---------------------- + -------------------- + --------------------- + ---------------------+ 1200
gagcccgagtcgcggagcgtggaacgggacctcttctcttagctacccgaccgtcccttc 
L D A L T E L L S  T A L Q Q Q Q P P E P  
ctggatgccctgactgaactgctcagtactgccctgcagcagcagcagccgccagaaccc
 +----------------- +------------------ +----------------- +----------------- +----------------- + 1260
gacctacgggactgacttgacgagtcatgacgggacgtcgtcgtcgtcggcggtcttggg
I Q E A T
atccaggaggcca
-----------------+------1273
taggtcctccggt

Figure 3.9 Nucleotide and 

predicted amino acid sequence 

o f the rIK channel cloned from 

rat DRG cDNA as described in 

Chapter 2. The amino acids 

are represented by single letter 

codes.

108



Cloned rlk MGGELVTGLGALRRRKRLLEQEKRVAGWALVLAGTGIGLMVLHAEMLWFLGCKWVLYLLL 60
CAB40141.2 MGGELVTGLGALRRRKRLLEQEKRVAGWALVLAGTGIGLMVLHAEMLWFLGCKWVLYLLL 60
Q9QYW1 MGGELVTGLGALRRRKRLLEQEKRVAGWALVLAGTGIGLMVLHAEMLWFLGCKWVLYLLL 60
NP_075410.1 MGGELVTGLGALRRRKRLLEQEKRVAGWALVLAGTGIGLMVLHAEMLWFLGCKWVLYLLL 60

'k'k'k'k'k'k'k'k'k-k'k'ic'ic'k-ie'te'k-ielr'k'k'k'k-ie'ic'k'k'k'kle'kie'k'k'k'k'k'k'k'k'k'k'k'k'k'kie'k'k'kit'k'ie'ie'k'k'k'ie'k'k

Cloned rlk VKCLITLSTAFLLCLIWFHAKEVQLFKTDNGLRDWRVALTRRQVAQILLELLVCGVHPV 120
CAB4014 1.2 VKCLITLSTAFLLCLIWFHAKEVQLFMTDNGLRDWRVALTRRQVAQILLELLVCGVHPV 120
Q9QYW1 VKCLITLSTAFLLCLIWFHAKEVQLFMTDNGLRDWRVALTRRQVAQILLELLVCGVHPV 120
NP_0754 10.1 VKCLITLSTAFLLCLIWFHAKEVQLFMTDNGLRDWRVALTRRQVAQILLELLVCGVHPV 120

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Cloned rlk PLRSPHCTLAGEATDSQAWPGFLGEGEALLSLAMLLRLYLVPRAVLLRSGVLLNASYRSI 180
CAB40141.2 PLRSPHCTLAGEATDSQAWPGFLGEGEALLSLAMLLRLYLVPRAVLLRSGVLLNASYRSI 180
Q9QYW1 PLRSPHCTLAGEATDSQAWPGFLGEGEALLSLAMLLRLYLVPRAVLLRSGVLLNASYRSI 180
NP_075410.1 PLRSPHCTLAGEATDSQAWPGFLGEGEALLSLAMLLRLYLVPRAVLLRSGVLLNASYRSI 180

'k,jt'iei('k,k 'k 'kie,k'ic'k'ic'k'k'kie"ic,k4e'k'k'k'k'if,jc'k,ie'k'k'k'k'k'ic,k'k'k'k'it'k'ic'k'it'k'k'k'k'i<'k'k'k'k'kie'k'k'k'k'ic'te

Cloned rlk GALNQVRFRHWFVAKLYMNTHPGRLLLGLTLGLWLTTAWVLSVAERQAVNATGHLTDTLW 24 0
CAB40141.2 GALNQVRFRHWFVAKLYMNTHPGRLLLGLTLGFWLTTAWVLSVAERQAVNATGHLTDTLW 24 0
Q9QYW1 GALNQVRFRHWFVAKLYMNTHPGRLLLGLTLGLWLTTAWVLSVAERQAVNATGHLTDTLW 24 0
NP_075410.1 GALNQVRFRHWFVAKLYMNTHPGRLLLGLTLGLWLTTAWVLSVAERQAVNATGHLTDTLW 24 0

'k'k'k'kieir'k'k'k'k'k'k'k'k'ie'k'k'k'k'kir'kie'kie'kie'k'kic'k'k^ie'k'k'k'k'k'k'ie'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k

Cloned rlk LIPITFLTIGYGDWPGTLWGKIVCLCTGVMGVCCTALLVAWARKLEFNKAEKHVHNFM 300
CAB4014 1.2 LIPIT FLTI GY GD W P G T  LWGKIVCLCT GVMGVCCT ALLVAWARKLE FN KAEKHVHN FM 300
Q9QYW1 LIPITFLTIGYGDWPGTLWGKIVCLCTGVMGVCCTALLVAWARKLEFNKAEKHVHNFM 300
NP_075410.1 LIPITFLTIGYGDWPGTLWGKIVCLCTGVMGVCCTALLLAVVARKLEFNKAEKHVHNFM 300

'k'k'k'k'k'k'k'k'k'k'k’k'it'k'k'k'kie'k'ir'k'k'k'k'k'k'k'ic'k'k'k'ic'k'k'k'k'k'k'k •

Cloned rlk MDIHYAKEMKESAARLLQEAWMYYKHTRRKDSRAARRHQRKMLAAIHTFRQVRLKHRKLR 360
CAB4014 1.2 MDIHYAKEMKESAARLLQEAWMYYKHTRRKDSRAARRHQRKMLAAIHTFRQVRLKHRKLR 360
Q9QYW1 MDIHYAKEMKESAARLLQEAWMYYKHTRRKDSRAARRHQRKMLAAIHTFRQVRLKHRKLR 360
NP_0754 10.1 MD IHYAKEMKESAARLLQEAWMYYKHT RRKD SRAARRHQRKMLAAIHT FRQVRLKHRKLR 360

•kieie'ie'ie'k'k'k'k'ie'^r'k'k'k'k'if'k'ie'ie'k'k'k'k'ie'k'k'k'k'k'k'k'ieie'ie'k'k'k'k'k'k'k'k'k'k'k'ie'k'k'ie'icie'k'k'k'ie'k'ic'k'k'ie

Cloned rlk EQVNSMVDISKMHMILCDLQLGLSASHLALEKRIDGLAGKLDALTELLSTALQQQQPPEP 420
CAB4014 1. 2 EQVNSMVDISKMHMILCDLQLGLSASHLALEKRIDGLAGKLDALTELLSTALQQQQPPEP 420
Q9QYW1 EQVNSMVDISKMHMILCDLQLGLSASHLALEKRIDGLAGKLDALTELLSTALQQQQPPEP 4 20
NP_075410.1 EQVNSMVDISKMHMILCDLQLGLSASHLALEKRIHGLARKLDALTELLSSALQQQ-PPEP 419

'k'kieie'kic'k'ie'k'kicic'kie'k'le'k'k'it'ic'k'k'k'k'k'ie-ie'k'k'k'ie'ie'k'ie *  *  *  'k'k'k'k'k'k'k'k'k'k  • *  St *  •Jr *  *  *  St ★

Cloned rlk IQEAT 425
CAB40141.2 IQEAT 425
Q9QYW1 IQEAT 425
NP 075410.1 IQEAT 424

★ ★ ★ ★ ★

Figure 3.10 A comparison of the predicted amino acid sequences of the rK. channel. The 

alignment was performed with ClustalW software using sequences reported under the following 

Genbank accession numbers: CAB40141.2, Q9QYW1 and NP 075410.1 and the sequence of the 

rIK cloned from DRG cDNA reported in this thesis. The cloned rIK sequence is identical to the 

Q9QYW1 sequence. The symbol marks positions where the amino acids are identical in all 

sequences while the and symbols mark conservative or semi-conservative differences 

respectively.
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3.2.6.2 Formation o f functional rIK channels

Once the rIK clone had been sequenced to ensure its integrity and identity, whole-cell 

voltage clamp using transiently transfected HEK 293 cells was carried out (by Dr David 

Benton, Department of Pharmacology, UCL) to determine whether it expressed 

functional IK channels. Typical whole-cell currents seen in response to a series of 

voltage steps are shown in Figure 3.11 Such currents are not seen in untransfected 

wild-type cells. The currents produced when HEK 293 are transfected with the rIK 

channel are substantially blocked in the presence of 10 pM clotrimazole (Figure 3.11), 

a known QC channel blocker

rIK control rIK+lOpM
clotrimazole

B

Untransfected 
HEK cell

40 mV 

- -80 mV

| 2nA

50 ms

Figure 3.11 The DRG rIK clone forms functional channels when expressed in HEK 293 cells. A, typical 

whole-cell currents recorded from a cell transfected with the rIK clone, which are not seen in 

untransfected WT cells (C). The cells were held at -80 mV and subjected to 100 ms voltage steps in 20 

mV increments from -120 mV to +40 mV (see inset). B, the currents are substantially reduced in the 

presence of 10 pM clotrimazole. Channels were activated by including 1 pM free Ca2+ in the pipette 

solution. The composition of the bathing solution was (in mM): NaCl 140, KC1 5, MgCl2 1, CaCl2 2, 

glucose 10, HEPES 10, adjusted to pH 7.4 with NaOH. The pipette solution contained (in mM): KC1130, 

HEPES 10, K2HEDTA 5 and 1.2 CaCl2 adjusted to pH 7.2 with KOH. Data were digitised at 5kHz and 

filtered at 1 kHz.
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(Alvarez et a l , 1992; Brugnara et a l , 1993; Jensen et al, 1998). These results together 

suggest that the rIK pore-forming subunit protein is expressed in HEK 293 cells where 

the protein subunits assemble to form functional channels.

3.2.6.3 Stainins in rIK transfected cells

Having cloned the rIK channel and established that it is functional when expressed in 

mammalian cells, further transfections were carried out to test the anti-rIK antibodies 

R212 and R224. The results are presented in Figure 3.12. Although both antibodies 

are designed to the same C-terminal epitope, the results are quite different. With R224, 

there is no clear sign of any specific staining in the cells that show GFP expression. 

Thus R224 would be unsuitable for the purpose of examining rIK expression in native 

tissues. In contrast, the R212 antibody produces a clear positive stain for the rIK 

channel protein, which correlates well with GFP expression. Figure 3.12 illustrates that 

R212 gives a strong positive signal, most of which appears to be located close to the cell 

surface membrane.
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Figure 3.12 Staining seen with rat specific anti-IK channel antibodies, o f HEK 293 cells transiently 

transfected with the rIK construct. I, staining results seen using the R212 antibody. II, staining seen 

using the R224 antibody. A shows GFP fluorescence from transfected cells. B, staining with the anti-IK 

antibodies. C shows the brightfield image and D an overlay of images A, B and C. Only the R212 

antibody produces a positive signal (IB), which is located at or close to the cell membrane.
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3.2.6 Antibodies to human SK/DC channel proteins

Of the antibodies described so far, Ml (anti-SK2) and M75 (anti-SK3) have been 

raised to epitopes in regions that are conserved between the rat and human sequences 

and so would be expected to work in both species. However the anti-rSKl antibodies 

recognise epitopes in regions that are significantly different in the rat and human 

channels and the staining results in Figure 3.2 showed that the rat specific antibodies 

(rbl85, rbl86, rbl96 and rb200) were not able to recognise the human SKI channel 

protein in a stable cell line established in HEK 293 cells.

An antibody specific to the human isoform was also available. When tested on CHO 

cells stably expressing hSKl this antibody, LI55, did produce a positive signal, albeit 

quite a weak one (see Figure 3.13)

In addition to the anti-SKl channel antibodies, there were also a number of antibodies 

designed to recognise the human IK (hIK) channel. Ml 6 and M20 are N-terminal 

specific antibodies while M4 and M5 are targeted to the C-terminal. Figure 3.14 (A 

and B) illustrates that, in CHO cells, Ml 6 and M20 do not appear to produce staining 

that is specific for the channel protein. The staining appears to be more pronounced in 

the region of the cell nucleus. However, M4 and M5 seem to be more suitable for 

detecting the hIK channel. Panel (C and D) shows that these antibodies produce 

staining that is located at or near the cell membrane.
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Figure 3.13 Positive staining produced by the L I55 anti-hSKl antibody using a CHO cell line stably 

expressing h S K l. The cells show a weak but clearly detectable signal.

Figure 3.14 Staining of hIK CHO cells with antibodies targeted to the hIK channel protein. A, staining 

seen with the M l6 antibody and B, with the M20 antibody. Both of these antibodies produce staining 

that seems to be limited to the nuclei o f the cells. C, the M4 antibody and D, the M5 antibody, both of 

which are designed to a C terminal epitope, detect the channel protein in the area o f the cell membrane. 

The scale bar in A also applies to B, C and D.
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3.2.7 Co-expression of SK channels in HEK 293 cells

As noted earlier, and as shown in Figure 3.15, when expressed alone, the rat SK 

channels show distinctly different distributions within the cell. It is interesting, 

therefore to determine whether the distributions change when two subunits are 

expressed together. If they do, it would provide evidence of subunit interactions, 

possibly indicating co-assembly. This section, therefore, describes experiments using 

HEK 293 cells co-transfected with two different SK channel genes in order to determine 

whether evidence for subunit interactions can be found.

Figure 3.15 shows that rSKl distribution is variable but the protein appears to remain 

trapped intracellularly. rSK2 produces a more constant staining pattern distributed 

across the cell probably reaching cell membrane. rSK3 differs again in that antibody 

staining consistently produces an “outline” of the cell, so appears at or in the region of 

the plasma membrane of transfected cells. This corresponds qualitatively quite well 

with what is known of the functional properties of these three different subtypes of 

channel when they are expressed in Xenopus oocytes or mammalian cell lines. Both 

rSK2 and rSK3 produce functional channels that exhibit typical SK channel properties 

(Kohler et al, 1996; Shah & Haylett, 2000a; Strobaek et al, 2000; Grunnet et al., 2001; 

Hosseini et al, 2001). rSKl, however, is not able to produce functional channels in 

heterologous expression systems (Bowden et al., 2001, D’Hoedt et al., 2004). The 

antibody staining results suggest that the channel protein remains trapped in the 

intracellular compartments of the cell. If rSKl is somehow prevented from reaching the 

cell surface membrane, this would explain why there are no currents detected in cells 

transfected with the rSKl construct (Bowden et al., 2001; Benton et al., 2003).
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Figure 3.15 Different patterns of distribution seen for rat SK channels expressed alone in HEK 293 

cells. A, fluorescence seen due to the YFP-tagged rSKl B, staining o f the untagged rSKl channels 

with the UCL56 antibody. C, SK2 transfected cells stained with the M l antibody. D, SK3 

transfected cells stained with the M75 antibody. All transfections were performed using 1 pg of the 

relevant plasmid.
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3.2.7.1 hSKl and rSK3 co-expression

Since rSKl does not form functional channels in heterologous expression systems but 

hSKl does, much of the work exploring the properties of SKI has, to date, been done 

using the human channel. For the same reason, the first staining experiments examining 

the co-expression of different SK channels were performed using hSKl and rSK3.

Figure 3.16 shows that when cells are co-transfected with hSKl and rSK3, the 

staining for SK3 is very different from that of cells transfected with rSK3 alone (see 

Figure 3.15). It is known that hSKl expresses functional channels at the cell surface, 

however when co-expressed with rSK3, the bright signal for rSK3 appears to be 

clumped in the intracellular regions implying that in the presence of hSKl less of the 

rSK3 protein reaches the cell surface than otherwise. These images strongly imply an 

interaction between the hSKl and rSK3 subunits. However, this situation is somewhat 

artificial because the human SKI clone does not normally encounter the rat SK3 clone.
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Figure 3.16 The rSK3 protein assumes a more intracellular distribution when co-expressed with 

h S K l. A shows the GFP fluorescence in transfected cells. B, staining o f rSK3 with the Chemicon 

antibody. C, brightfield image of cells. D, overlay of images in A, B and C. HEK 293 cells were 

transfected with 2 jig of hSKl and 0.5 pg of rSK3.
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3.2.7.2 rSKl and rSK3 co-expression

To determine whether the intracellular location of rSK3, when co-expressed with 

hSKl, was due to some effect of the human isoform of the channel, rSK3 was also co­

transfected with rSKl. Figure 3.17 shows that the staining pattern for rSK3 in the 

presence of the rat SKI homologue is very similar to that seen when it is co-transfected 

with human SKI. It would thus appear that the presence of rSKl also has the effect of 

changing the distribution of the rSK3 channel protein.

Figure 3.18 shows the pattern of staining for rSKl in cells co-transfected with rSKl 

and rSK3. The rSKl channel protein can be seen to be “clumped” in the intracellular 

regions of the cell. This result is comparable to many of the other examples of rSKl 

staining described in this chapter and shows that while the distribution of rSK3 is 

greatly altered in the presence of rSKl, the pattern of staining for rSKl remains largely 

unchanged by rSK3.
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Figure 3.17 A largely intracellular rSK3 staining pattern is seen when co-transfected with rS K l. 

A, GFP fluorescence used as a marker o f transfected cells. B, staining of rSK3 with the 

Chemicon antibody. C, brightfield image of cells. D, overlay of A, B and C. HEK 293 cells 

were transfected with 2 pg of rSK l and 0.5 pg of rSK3.

Figure 3.18 rSKl staining remains largely unchanged when co-transfected with rSK3. A, 

GFP fluorescence. B, staining of rSKl with the UCL56 antibody. C, brightfield image of 

cells. D, overlay of A, B and C. HEK 293 cells were transfected with 2 pg of rSK l and with 

0.5 pgofrS K 3.
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3.2.7.3 rSKl and rSK2 co-expression

As both the anti-rSKl and rSK2 antibodies had been raised in rabbits, it was not 

possible to use both antibodies to stain cells in a single experiment. For this reason, to 

explore whether there was any interaction between rSKl and rSK2 subunits, HEK 293 

cells were transfected with the YFP-tagged rSKl construct and rSK2. Figure 3.19 

shows that both rSKl (green) and rSK2 (red) can be detected in the cells and that vast 

majority of the fluorescent signal for the two respective channel proteins appears to be 

within intracellular compartments. Looking at panel D of Figure 3.19 it can also be 

seen that the red and green signals show a good degree of overlap suggesting that the 

two subunit proteins may be closely associated in similar regions of the cell. The 

pattern of staining resembles that of rSKl staining alone, however, rSKl and rSK2 co­

expression produces functional channels that are clearly different from those seen with 

rSK2 alone (see discussion).
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Figure 3.19 Distributions of YFP-tagged rSKl and rSK2 in HEK 293 cells co-transfected with cDNAs for 

both proteins. A, fluorescence due to the YFP-tagged rSKl. B, staining of the rSK2 channel protein with 

the M l antibody. C, brightfield image o f cells. D, overlay of A, B and C. HEK cells were transfected with 

0.5 pg of rSKl and 5 pg of rSK2.
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3.2.7.4 rSK2 and rSK3 co-expression 

Figure 3.20 shows the pattern o f staining seen for rSK3 when co-transfected with 

rSK2. Although the pattern o f the fluorescent signal differs greatly from that seen with 

cells expressing SK3 alone, there is some similarity with the staining seen for the cells 

co-transfected with rSK3 and SKI. As with the rSKl/rSK3 transfected cells there is a 

bright intracellular signal for rSK3. These results suggests that there is an interaction 

between the rSK2 and rSK3 subunits.

Figure 3.20 rSK3 staining appears more intracellular in HEK 293 cells when co-transfected 

with rSK2, compared with rSK3 alone. A shows GFP fluorescence, B shows staining of 

rSK3 with the Chemicon antibody, C shows the brightfield image and D shows the overlay 

o f A, B and C. Cells were transfected with 2 pg of rSK2 and 0.5 pg of rSK3.
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3.2.8 Positive controls: staining of neurones

Additional experiments were carried out in order to determine whether the antibodies 

would also stain native SK channels in neurones where the protein will be expressed at 

physiologically relevant levels. These experiments comprised a brief look at both 

superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurones. The reason 

for looking at SCG neurones is that Hosseini et al. (2001) previously described positive 

SK3 staining in cultured SCG cells. This work was done using a commercial antibody 

available from Chemicon. The M75 antibody has an almost identical epitope to the 

Chemicon antibody (see Table 3.1) and so was expected to work in a similar fashion. 

Figure 3.21 shows that this is indeed the case. Clear membranous staining can be seen 

with the M75 antibody in SCGs. Figure 3.21 also shows that some DRG neurones in 

culture display a similar staining pattern. However, while all SCGs appear to be SK3 

positive, only a subset of DRG neurones appear to express the channel protein. This is 

discussed in more depth in Chapter 5.

What is particularly interesting about the SCG staining is the localisation of SK3. This 

was investigated by co-staining with an antibody to the microtubule-associated protein 2 

(MAP2). MAP2 is important in neurite outgrowth and can be utilised as a marker for 

dendrite-like processes (Gordon-Weeks, 2004). In Figure 3.22 it can be seen that while 

there is strong positive staining for SK3 in the cell body, there is also punctate staining 

in the processes that are MAP2-positive. This suggests that SK3 may play a functional 

role not only in the soma but also that the expressed protein is transported to the 

dendritic processes to play a further role there.

At the time these experiments were performed, there were no examples of appropriate 

neurones that would provide good positive controls for SKI, SK2 and IK1.
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Figure 3.21 SK3 positive staining seen with the M75 antibody in peripheral neurones in culture. 

A an SCG cell and B a DRG neurone. In each case, the First panel shows rSK3 staining and the 

second the corresponding brightfield image of that cell. Both cell types show clear staining 

which appears to be at or close to the cell surface.

Figure 3.22 SK3 and MAP2 staining co-localises in the same subcellular regions of SCG 

neurones. A, MAP2 staining (green). B, SK3 staining with the M75 antibody (red). C, brightfield 

image of the SCG cell. D, overlay of A, B and C. The MAP2 staining is restricted to the dendrite­

like processes of the cell. SK3 can be seen in the soma and there is also bright, punctate staining in 

the MAP2-positive processes.
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3.3 Discussion

3.3.1 Antibody screening and cloning of the rat IK channel

The main aim of the work described in this chapter was to ascertain the suitability of a 

number of anti-SK/IK channel antibodies for the purpose of immunocytochemical 

staining. Before these antibodies could be tested on neuronal tissues, it was necessary 

to establish positive controls, which was done using cell lines transfected with SK/DC 

channel constructs. Of the antibodies tested on HEK 293 cells expressing a given SK or 

IK channel, several failed to provide a positive signal and were not used for further 

study. These were: UCL55 (anti-rSKl), R224 (anti-rIK), Ml 6 and M20 (anti-hIK). 

However, most of the other antibodies gave a bright positive signal in transfected cells, 

indicating that these may be useful in examining which SK channels are expressed in 

native tissues. These antibodies were adopted for later studies in DRG neurones: rbl96, 

rb200, UCL56 (anti-rSKl), Ml (anti-SK2), M75, Chemicon (anti-SK3) and R212 (anti- 

rlK).

The rIK channel had to be cloned in order to generate a positive control for the anti- 

rlK antibodies. Only in a very few instances have IK channels been shown to play a 

role in neurones (Greffrath et a l , 1998) so it is interesting that it was possible to PCR 

the rIK gene using cDNA isolated from adult rat DRG tissue because it demonstrates 

that message for the channel protein is present. The sequence for the cloned rIK was 

found to be identical to Genbank entry Q9QYW1 and when expressed in HEK 293 cells 

produced functional channels with currents that were sensitive to block by 10 pM 

clotrimazole, as expected (Alvarez et al, 1992, Jensen et al, 1998).

From the initial experiments carried out to characterise SK channel antibodies it was 

clear that the subcellular distributions of these proteins are quite different. It is known 

that rSK2 forms functional channels at the cell surface (Kohler et al, 1996; Shah &
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Haylett, 2000a; Strobaek et al, 2000) but the staining is largely intracellular. This may 

be due to the very strong promoter systems that mammalian expression vectors contain 

that would result in the channel proteins being greatly over-expressed. It is likely that a 

small proportion of channels are needed at the cell surface and the remainder might 

remain trapped in intracellular compartments such as the endoplasmic reticulum. The 

outcome would be a bright intracellular signal that is likely to mask a signal at the cell 

membrane. However, there are similar distributions are seen for other K+ channels 

(including hSKl, see Figure 3.13), which when expressed in cell lines, form functional 

channels that exhibit robust currents (Ishii et al., 1997b; Kuryshev et al, 2000). 

rSK3 is predominantly seen at or close to the cell membrane with very little present 

intracellularly. This distribution pattern agrees with previous work (Hosseini et al., 

2001). The intracellular distributions of rSK2 and rSKl are also in accordance with 

previously published data (Cingolani et al., 2002; D’hoedt et al, 2004). This gives rise 

to the possibility that the subunit distribution could change when two or more subunits 

are expressed because interactions might occur between the different SK channel 

proteins. To explore this possibility, the anti-SK channel antibodies were used in an 

additional set of experiments where plasmids encoding two different members of the SK 

channel subfamily were co-transfected into the same cell. These were done as part of a 

collaborative study with Drs David Benton and Alan Monaghan (Department of 

Pharmacology, UCL) who examined the electrophysiological properties of the channels 

formed by co-expression of the channel cDNAs. As their results are intimately related 

to the findings in this chapter, I have included some of these in the current discussion.
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3.3.2 hSKl and rSK3 co-expression

The rSK3 staining observed in cells co-transfected with hSKl, reveals that much of the 

SK3 channel protein trapped intracellularly, much more than when it is expressed alone. 

To investigate the interaction between hSKl and rSK3, an rSK3 change-of-function 

mutant was employed, that dramatically alters the sensitivity to block by TEA 

(Monaghan et al, 2004). The valine (V) residue at position 515 of the amino acid 

sequence was changed to a phenylalanine (F) to yield a channel (rSK3VF) that is highly 

sensitive to TEA. The currents produced by hSKl are shown to be blocked by TEA 

with an IC50 of 14.1 ±1.0 mM (Figure 3.23). For the native rSK3 channel this value 

was estimated to be 8.6 ±1.6 mM but for the rSK3VF mutant the IC50 was found to be 

0.31 ± 0.05 mM. This TEA sensitivity varies with the number of mutant subunits. 

Thus, if the rSK3VF subunits are co-expressed with wild-type rSK3 rather than getting 

an “all-or-nothing” TEA sensitivity, channels display an intermediate sensitivity to the 

blocker.

When the TEA-sensitive rSK3 mutant is co-expressed with hSKl, the concentration- 

inhibition curve for the resulting channels was almost identical to that of hSKl alone 

(TEA IC50 when hSKl/rSK3 were co-expressed: 16.0 ± 1.5 mM).

The outcome of this experiment suggests that while functional hSKl channels reach 

the cell surface in co-transfected cells, there appears to be little or no contribution of 

rSK3 subunits to the currents recorded. The staining results suggest a possible 

explanation for this, namely that hSKl causes rSK3 to be retained intracellularly. 

However, the results presented here are not definitive in this regard.
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Figure 3.23 Co-expression of hSKl with the TEA-sensitive rSK3 mutant rSK3VF does not alter 

TEA sensitivity of channels. A, example of a typical current trace showing the effect of 30 mM TEA 

on a cell transfected with hSKl alone. B, typical current traces from an rSK3VF transfected cell 

showing the block seen with 1 mM TEA. C, current traces showing the effect of 30 mM TEA on a 

cell co-transfected with both hSKl and rSK3VF. D, TEA concentration-inhibition curves for hSKl

(•), rSK3VF (u)and hSKl-rSK3 co-expression (V). The lines are fits of the Hill equation with IC50 

values of 14.1 ±1.0  mM, 0.31 ± 0.07 mM and 16.0 ±1.5 mM respectively. Hill coefficients were 1.2 

± 0.1, 0.9 ± 0.2 and 0.8 ±0.1 respectively. (1 pg of each plasmid was used). Each point shows the 

mean of 3-5 observations. Results were obtained by D.C.H. Benton and A.S. Monaghan.
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3.3.3 rSKl and rSK3 co-expression

When expressed alone, rSK3 channels produce robust currents. However, these are 

substantially reduced when rSK3 is co-expressed with rSKl (see Figure 3.24). The 

reason for this may be that rSKl and rSK3 together form a heteromeric channel with a 

reduced conductance. Alternatively it may be that rSKl affects rSK3 trafficking and 

prevents the formation of functional channels in the cell membrane, as appears to be the 

case with hSKl. This is indicated by the staining because when co-transfections were 

repeated using rSKl instead of hSKl, the pattern of staining seen was very similar. To 

test which of these two possibilities was most likely, rSKl was co-expressed with 

rSK3VF and the functional properties of the channels were assessed. When co- 

expressed with rSKl, the size of the current decreased as expected, however there was 

no obvious change in the TEA IC50 (0.24 ± 0.02 mM as compared to 0.31 ± 0.07 mM 

without rSKl). From this it would appear that the reduction in current size is due to a 

reduction in the number of functional rSK3 channels at the cell surface, but of the 

channels that are present there, it is unlikely that the resulting currents arise due to rSKl 

and rSK3 heteromers.

From these results it appears that both the human and rat isoforms of SKI have a 

“dominant negative’Mike effect on rSK3. However, while hSKl forms functional 

channels at the cell surface, rSKl appears not to do so. In either case, when expressed 

with rSK3, SKI is unlikely to form functional heteromeric channels at the cell surface.
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Figure 3.24 Co-expression of rSKl with rSK3VF does not alter the TEA sensitivity. A, typical 

currents from a cell transfected with 1 pg of the native rSK3 alone (left) or co-transfected with 

rSK3 and rSKl (1 pg and 2 pg respectively; right). It can be seen that when rSKl is co-transfected 

with rSK3 the current amplitude is significantly reduced. B, TEA concentration-inhibition curves 

for wild-type rSK3 (A), rSK3VF (•) or rSK3VF co-expressed with rSKl (□). When fitted with 

the Hill equation the curves yielded IC50values of 8 . 6  ± 1.6, 0.31 ± 0.07 and 0.24 ± 0.02 mM 

respectively. Hill coefficients were 0.65 ± 0.12,0.9 ± 0.2 and 1.02 ± 0.08 respectively. Each point 

shows the mean of 3 or more observations.



3.3.4 rSKl and rSK2 interactions

The staining results using HEK 293 cells transfected with the YFP-tagged rSKl and 

rSK2 show that the fluorescence from the YFP and the anti-rSK2 antibody appear to co- 

localise well. While it is difficult to determine, from the current experiments, how well 

the results with the YFP-tagged rSKl might compare with the native rSKl, they provide 

some indication that rSKl and rSK2 interact.

Electrophysiological studies demonstrate that the interaction between SKI and rSK2 is 

quite different from that between SKI and SK3. It has already been shown that human 

SKI subunits and rat SK2 subunits can co-assemble to produce channels with a 

pharmacology different to either of the homomers (Ishii et al, 1997b; Benton et al, 

2003). This also appears to hold true for rSKl and rSK2. When these two genes are co­

expressed, the average current recorded in transfected cells increases two-fold. In 

addition to this consistent increase in the amplitude of the currents recorded, the 

channels expressed have a novel pharmacology clearly different to currents produced in 

cells expressing rSK2 alone. Apamin blocks rSK2 channels with an IC50 in the region 

of 100 pM (Kohler et al, 1996; Grunnet et al, 2001; Benton et al, 2003) which is 

similar to the IC50 value for block by UCL 1848 (-120 pM in Hosseini et al, 2001 and 

-110 pM in Benton et al, 2003). However, as shown in Figures 3.25 and 3.26, co­

expression causes a right-ward shift in the concentration-inhibition curves for apamin 

and UCL 1848. When fitted with the Hill equation, the IC50S for apamin and UCL 1848 

come to 1.4 ± 0.3 nM and 2.9 ± 0.3 nM respectively. There is also a reduction in the 

Hill coefficients for apamin and UCL 1848 when rSK2 is co-expressed with rSKl 

compared with rSK2 alone. Hill coefficients for
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Figure 3.25 Co-expression of rSKl with rSK2 alters sensitivity to block by apamin. A, The effect of 1 

nM apamin on currents produced by transfecting rSK2 alone. B, current traces showing the effect o f 10 

nM apamin on a cell co-transfected with rSK 1 and rSK2. The scale-bar is applicable to both A and B. C, 

apamin concentration-inhibition curves for rSK2 (■) or rSKl and rSK2 (•). IC5 0 values obtained when 

these curves were fit with the Hill equation were: 95 ± 8  pM for rSK2 alone and 1.4 ± 0.3 nM for rSK2 

co-expressed with rSKl. Hill coefficients were 0.8 ± 0.06 and 0.6 ± 0.1 respectively. Each point is the 

mean of 4 to 9 observations.
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Figure 3.26 Co-expression of rSKl with rSK2 alters sensitivity to block by UCL 1848. A, The effect of 

0.1 nM UCL 1848 on currents produced by transfecting rSK2 alone. B, block seen with UCL 1848 of 

currents from cells co-expressing rSKl and rSK2. The scale-bar applies to A and B. C, UCL 1848 

concentration-inhibition curves for cells transfected with SK2 alone (■) or both rSKl and rSK2 (•). 

Curves were fit with the Hill equation to give IC50 values of 110 ± 26 pM for rSK2 and 2.9 ± 0.3 nM for 

rSKl with rSK2. Hill coefficients were 0.7 ±0.1 and 0.49 ± 0.04 respectively. Each point shows the 

mean of 3 to 5 observations.
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rSK2 alone with apamin and UCL 1848 were 0.8 ± 0.06 and 0.7 ±0.1 respectively, 

compared with rSKl and rSK2 where Hill coefficients were 0.6 ±0.1 and 0.49 ± 0.04 

respectively. These shifts in concentration-inhibition curves and reduction of the Hill 

coefficients are consistent with the idea that rSKl and rSK2 form heteromeric channels. 

This implies that whatever the mechanism that allows hSKl, but not rSKl, to reach the 

cell surface alone it doesn’t seem to affect ability of either of these two channel proteins 

to form functional channels with rSK2.

The behaviour of rSKl is similar to that of certain Kv (Post et al., 1996; Ottschytsch, 

et al., 2002) and K* (Krapivinsky et al., 1995) channels that have been referred to as 

being “electrically silent”. That is, while they are not functional alone, they can 

assemble with related channel subunits to form active channels. With rSK3 the effect of 

rSKl is comparable to that of Kv9.1 on Kv3.4 (Stocker et al., 1999b). Kv3.4 expressed 

alone shows robust currents which are reduced or even abolished in the presence of 

Kv9.1. With rSK2 the effect of rSKl is like the effect of Ky6.1 on Ky2.1 (Post et al.,

1996). Kv2.1 alone produces functional channels with characteristic delayed rectifying 

currents. When co-expressed with Ky6.1, a “silent” subunit, the resulting channels 

show altered kinetics and a decreased sensitivity to TEA. The similarities between 

rSKl and rSK2/rSK3 interactions and those previously reported for other K+ channels 

strongly suggests that rSKl is able to form direct interactions with other rat SK channel 

subunits, although it only forms functional channels when co-expressed with rSK2.
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3.3.5 rSK2 and rSK3 interactions

Miller et al (2001) have shown that the N-terminal fragment of SK3 suppresses native 

SK2 currents in Jurkat cells, indicating there may be an interaction between the two 

subunits. This was explored in more depth using rSK2 and a UCL 1848-insensitive 

mutant of rSK3, rSK3VK. The mutant (rSK3VK) has a lysine (K) in place of the valine 

(V) at position 491 of the amino acid sequence. Currents in control cells expressing 

rSK3VK alone were largely unaffected (10 ± 5% inhibition) by 300 nM UCL 1848 

(Figure 3.27). Cells transfected with rSK2 alone, on the other hand, showed currents 

that were blocked by UCL 1848 with an IC50 of 110 ± 26 pM When these two channel 

proteins were expressed together the resulting concentration-inhibition curve was found 

to be shifted to the right (Figure 3,27). This strongly suggests that the co-expression of 

rSK2 and rSK3 leads to the formation of functional heteromeric channels.

The staining patterns for rSKl with rSK2 and rSK2 with rSK3 may, at first sight, seem 

surprising given the electrophysiological data as the former would suggest that there is 

very little protein reaching the cell surface. However, this might be explained by the 

over-expression of plasmids which would make it appear as if all the protein is being 

trapped intracellularly and clearly indicates that the immunostaining experiments must 

be treated with caution.

There are several implications of heteromeric SK channels co-assembly with respect to 

their possible functions in native cells. One of these is that if rSKl is indeed a “silent” 

subunit that needs rSK2 to form functional channels at the cell surface, it would seem 

unlikely that homomeric rSKl underlies the sAHP seen in neurones. There is, as yet, no
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Figure 3.27 Co-expression of rSK2 and rSK3 alters sensitivity to block by UCL 1848. A, current traces 

showing the effect of 0.1 nM UCL 1848 on a cell transfected with rSK2. B, traces showing the effect of 300 

nM UCL 1848 on rSK3VK. C, current recording showing the effect of 0.3 and 10 nM UCL 1848 on cells co­

transfected with rSK2 and rSK3VK. D, UCL 1848 concentration-inhibition curves for cells transfected with 

rSK2 (• )  or those transfected with rSK2 and rSK3VK (■). The effect o f UCL 1848 was tested using a single 

concentration (300 nM) on homomeric rSK3VK transfected cells (A). The rSK2 curve was fitted with the Hill 

equation to give an IC50 value of 110 ± 26 pM. The Hill coefficient was 1.05 ± 0.04. Each point shows the 

mean of 3 or more observations.
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direct evidence to show that rSKl and rSK2 form heteromeric channels in vivo, 

however there are suggestions from in-situ experiments which show that rSKl is almost 

always seen with rSK2 (Stocker & Pederzani, 2000).

There is no putative role for SK2/SK3 heteromers. Co-immunoprecipitation 

experiments using antibodies against rSK2 and rSK3 have been done by Sailer et al 

(2002) using SK channels solubilised from rat brain synaptosomes. However, attempts 

to isolate SK2 using the SK3 antibody failed. The same was true for the SK2 antibody 

which only seemed to detect homomeric SK2 channel and not SK3. While this suggests 

that the two channels probably do not co-assemble frequently in the CNS, it doesn’t 

discount the possibility that SK2/SK3 heteromers may be functional in the periphery.

Although it is possible that the interactions of SK channels may be indirect this seems 

unlikely, particularly in the cases of SKI with SK2 and SK2 with SK3. This is because 

channels formed when SKl/rSK2 and rSK2/rSK3 are co-transfected show an 

intermediate sensitivity to blockers when compared with that of the two channel 

proteins in their homomeric forms. So the work described here supports the hypothesis 

that different members of the SK channel subfamily form heteromers with varying 

properties. However, this type of heteromerisation only offers a limited amount of 

diversity for SK channels as only rSKl/rSK2 and rSK2/rSK3 co-expression appears to 

result in the production of functional heteromeric channels. Further SK channel 

diversity may arise as a result of associations with, as yet unidentified, p subunits 

(Wadsworths a/., 1994; 1996; 1997).

As a first test to see whether the SK antibodies would recognise the channel protein in 

native tissues, isolated SCG and DRG cells in primary culture were stained with the 

anti-SK3 antibodies. Positive SK3 immunoreactivity was seen in both SCG and DRG 

neurones. Importantly, co-staining with MAP2 in SCG cells shows overlap between the
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MAP2 and the SK3 signals. MAP2 is a dentritic marker and is indicative of developing 

neurites. The co-localisation of MAP2 and SK3 in these processes suggests that SK3 is 

transported from the cell bodies of neurones to peripheral dendritic processes. It is not 

clear whether SK3 would also be expected along axonal processes but the presence of 

SK channels in axonal termini has been described in other rat and mouse neurones 

(Sailer et al, 2002; Obermair et a l, 2003; Roncarati et al, 2001; Womack & 

Khodakhah, 2003). The expression of presynaptic SK3 channels in mouse hippocampal 

neurones (Obermair et al., 2003) along with the presence of functional SK2 channels in 

the dendrites of cerebellar purkinje neurones (Womack & Khodakhah, 2003) and the 

work in SCG neurones is interesting as it could imply that the role for SK3 lies in 

regulating neurotransmision in neuronal processes rather than in generating AHPs in the 

cell body.

M75 also gave a positive signal in DRG cells. However, not all DRG cells expressed 

SK3. Given that DRG neurones comprise a hugely diverse group of cell types this is 

perhaps not surprising. The presence of SK3 immunoreactivity suggests it is 

appropriate to look for a functional role for SK channels in DRG cells and this is 

investigated further in Chapters 4 and 6.
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Chapter 4

Characterisation of AHPs in DRG and nodose ganglion

cells

4.1 Introduction

The aim of work reported in this chapter was to examine some of the properties of the 

AHPs seen in rat DRG and guinea-pig nodose afferent neurones and to characterise 

their pharmacology. Specifically, the emphasis was on examining the role of Kca 

channels.

4.1.1 Choice of cell preparation

All of the electrophysiological work described in this chapter was carried out on 

isolated cells grown in culture. There were several reasons for this. While in vivo 

experiments provide the most physiological situation, examining the effects of 

pharmacological compounds is complicated for several reasons. Firstly, it is not easy to 

determine the exact concentration of a given drug at the site of action and secondly, 

once applied, drugs are then difficult to wash out, so it is difficult to confirm that the 

effects are reversible. An isolated cell preparation provides a system whereby drug 

concentrations are known, and application and wash out can be performed with relative 

ease. This allows for several drugs to be applied in order to better characterise the 

properties of a given cell.

In addtion to the advantages of drug application offered by cultured cells, they have 

been shown to retain many of the properties of their counterparts in vivo. This holds

139



true in the case of DRG cells, particularly with respect to nociception. In vitro studies 

have demonstrated that certain populations of cells are activated by the algogenic agents 

capsaicin and bradykinin, express substance P and are sensitised by prostagladin E2, all 

of which are associated with nociceptors in vivo (Baccaglini & Hogan, 1983; Cesare & 

McNaughton, 1996; Gold et al., 1996b). In addition, characteristics such as small cell 

bodies (McCarthy & Lawson, 1989; 1990) and inflections on the falling phase of an 

action potential (Ritter & Mendell, 1992; Traub & Mendell, 1988), which can be seen in 

cultured cells, are all associated with nociceptors in vivo. This shows that at least some 

of the characteristics of isolated cells reflect what occurs in the whole animal. As a 

result they have been used to examine a number of membrane properties in sensory 

neurones including currents generated due to potassium channel opening (Kostyuk et 

al., 1981a; McFarlane & Cooper, 1991; Gold et al, 1996a), Na+ currents (Kostyuk et 

a l, 1981b; Caffrey et al., 1992; Roy & Narahashi, 1992), Ca2+ currents (Kostyuk et al, 

1981c; Scroggs & Fox, 1992) and non-selective cation currents generated by members 

of the TRPV family of channels (Cesare & McNaughton, 1996; Reichling & Levine,

1997).

Finally, since SK channels frequently provide a molecular basis for AHP generation it 

is important to note that isolated neurones in culture often provide good models for 

neuronal AHPs in vivo, particularly those AHPs mediated by Ca2+-activated K+ 

channels. Examples include those from the coeliac ganglion (Coggan et al., 1991), SCG 

neurones (Pennefather et a l, 1985; Kawai & Watanabe, 1986) and hippocampal 

neurones (Shah & Haylett, 2000b; Shah et al, 2001). DRGs and nodose neurones in 

culture also have robust AHPs (Leal-Cardoso et al, 1993; Gold et al., 1996a; Liischer et 

al., 1994; Abdulla & Smith, 2001) which are also seen in cells using whole ganglion in 

vitro preparations (Fowler et al., 1985; Weinreich & Wonderlin, 1987; McCarthy &
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Lawson, 1990; Villiere & McLachlan, 1996) and those from in vivo experiments (Gdrke 

& Pierau; 1980; Harper & Lawson, 1985b; Ritter & Mendell; 1992; Djouhri & Lawson,

1998).

In examining these DRG cultures I have recorded from their cell bodies. This is 

because the possibility of recording from the nerve terminals and the central projections 

of primary afferents, which are likely to be the most informative about sensory 

mechanisms, presents considerable problems. These processes, which can be less than 

1 pm in size, are embedded in tissue thus making them inaccessible for cellular 

recording (Kress & Reeh, 1996). However, cell bodies show many of the properties 

associated with the whole neurone. For instance ion channels, such as members of the 

TRPV family, which are expressed in cell bodies can also be detected in nerve terminals 

(Zhang et a l , 1994; Brumovsky et al., 2002). Furthermore, physiological 

characteristics such as the presence of an AHP, which have been reported in cell bodies 

of hippocampal neurones, have also been recorded in dendrites of these cells (Lancaster 

& Zucker, 1994; Andreasen & Lambert, 1995). Thus, though caution is needed, 

particularly since DRG properties can change with axotomy, recordings from the soma 

can give some indication of the properties of the neurone overall.

4.1.2 Age of cultures

One aim of the present investigation was to determine whether SK channels play a role 

in AHP generation in sensory neurones. As staining results showed that the SK3 

channel protein is expressed in DRG cells within the first 3 days of culture (see 

Chapter 3) and voltage recordings showed that AHPs can also be detected in DRG 

cells this age (Gold et al., 1996a), the electrophysiological data described in this chapter 

has been obtained from cells cultured for 1-3 days. An additional justification for this is
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that there is evidence for up-regulation of SK channels in cultured cells over time 

(Obermair et a l , 2003) so, other things being equal, young cells may be closer to cells 

in vivo. One final reason for using 1-3 day old cultures was that cell survival rate of the 

very large (A-fibre) cells is much lower than that of the smaller diameter cells. Thus to 

have a more heterogeneous and representative population of cells to work with, a 

younger culture was more desirable.

4.1.3 Characterising cells in culture

All studies on guinea-pig nodose cells were done using intracellular recording 

techniques. In the case of rat DRGs, recordings were taken from either p i7 or p45 

animals using the perforated patch technique to characterise AHP duration and either 

perforated patch or intracellular recording to look at AHP pharmacology.

DRG neurones are highly heterogeneous, and as part of this study looks at the 

correlation between the type of cell and the AHP(s) present, it was necessary to be able 

to identify the type of cell being recorded from. Several properties of DRG cells in 

culture have been used to ascribe them to a certain subpopulation of cells in vivo; an 

obvious example is cell size. However, there are also currents that appear to be 

activated specifically in certain cell types and so may be exploited to try and establish 

which cell type is being recorded from. Three properties used to attempt to identify “A- 

type” and “C-type” cells in the current study are outlined below.

4.1.3.1 Cell size

In vivo, neurones with the smallest diameter axonal fibres, which comprise primarily 

nociceptors (Lawson, 2002), tend to have correspondingly small cell bodies (mean cell 

size of -450 pm2; Harper & Lawson, 1985a). At the other extreme, the largest neurones
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(> 1000 pm2 jim) represent Ao/p afferents. Thus cell size can be used as one indicator of 

whether a neurone is of the A- or C-type.

4.1.3.2 Action potential inflection

In some DRG neurones, an inflection on the falling phase of the action potential can be 

seen in the form of a “shoulder” (illustrated in Figure 4.2) that is thought to be due to a 

Ca2+ inward current (Gorke & Pierau, 1980; Harper & Lawson, 1985b; Traub & 

Mendell, 1988) possibly in combination with a Na+ current (Blair & Bean, 2002). 

Harper & Lawson (1985b) have shown from recordings in DRG cells, made using 

whole ganglion preparations, that 76% of Ao/p and 18% of As cells repolarise in a 

monophasic manner. However, 82% of Ag and 100% of C cells show biphasic action 

potential repolarisation. Therefore, the presence of an inflection on the falling phase of 

the action potential indicates a decreased probability that it is an Ao/p.type neurone.

4.1.3.3 The hvDerDolarisation-activated current (1 )̂

The Ih current can be detected as a voltage sag in response to the application of a 

hyperpolarising current pulse (see Figure 4.4). Its presence has been demonstrated in 

90% of Ao/p and 70% of A§ cells and is absent in 87% of C-fibre cells (Villiere & 

McLachlan, 1996). In isolated DRG cells, Abdulla & Smith (2001) report that the Ih 

current is seen in 49/49 large cells, 33/37 medium cells and 14/24 small cells. Thus the 

absence of a voltage sag indicates an increased probability that a cell is of the C-type.
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4.2 Results from studies in DRG neurones

4.2.1 Identification o f DRG cell types in pi 7 rats

4.2.1.1 DRG cell sizes

DRG primary afferents comprise a very mixed group o f cells as is apparent just by 

looking at the sizes o f cell bodies in culture (see Figure 4.1). For p l7  animals, cell 

diameters ranged from 20 to 50 pm. In adult rats this range increased to between 22.5 

and 60 pm.

Figure 4.1 Isolated DRG cells after 1 day in culture showing the variety of cell sizes. The larger 

rounder cells make up the DRG population (L shows a large diameter neurone, S  a small diameter 

neurone) while the smaller flatter cells constitute fibroblast-like supporting cells (see f). A large 

number of cells survive the isolation procedure and they have widely varying diameters. In this 

example the range is from 20 pm to about 50 pm. Sizes were estimated using a calibrated eye-piece 

graticule. The diameters expressed are the means o f the height and width of the cells.
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Villiere & McLachlan (1996) found that the mean cell diameters of C-, A§- and Ao/p- 

fibre neurones, identified on the basis of their conduction velocities, were 25 pm, 36 pm 

and 47 pm respectively. As it was not possible to use conduction velocities in the 

current work, a range of cell diameters were used to group neurones on the basis of size 

(see Table 4.1). Attempts were then made to choose cells with diameters that were 

least likely to overlap with other groups. The values for the division of cell groups were 

chosen to be able to compare certain properties (such as an inflection on the downstroke 

of the action potential) with the literature and are shown in Table 4.1 (see also pi 44 and 

appendix).

Age of animal small cells medium cells large cells
P17 20-25 urn 30-35 pm > 40 pm

P40-45 22.5-27.5 pm 35-40 pm > 45 pm

Table 4.1 Ranges of DRG cell sizes adopted to help identify them as C- or A-type 

cells. DRG cells from p l7  and p40-45 rats were grouped into small (C-type) and 

medium or large (A-type) cells. Medium and large cells are likely to correspond to 

As and A^p types respectively, however due to overlap in cell sizes (Harper & 

Lawson, 1985) these neurones were grouped together as “A-type” neurones.

145



4.2.1.2 Presence o f an action potential inflection

Of the DRG cells obtained from pi 7 animals 82% of the small diameter neurones (20- 

25 pm) showed an inflection (n=45). Harper & Lawson (1985b) report that all C-type 

neurones show an inflection, so the 18% of small cells without an inflection in the 

current study may represent a small number of Ag fibre cells, as some of these cells 

have diameters that overlap with C-fibre cells (Harper & Lawson, 1985b). Inflections 

were also present in 17% of medium diameter cells (30-35 pm; n=35) but absent in 

large cells with diameters > 40 pm (n=38).

4.2.1.3 Presence o f the hvDerDolarisation-activated current (Iy)

A second property that was employed for the purpose of identifying A-type and C-type 

neurones was the presence of the Ih current. Only 13/27 small diameter cells showed a 

voltage sag, however it was present in 20/23 medium diameter cells and 25/25 large 

diameter cells. Again, it is possible that a number of the small cells actually correspond 

to Ag cells. Although these values (from p i7 rat DRGs) are not very discriminatory 

cells with a voltage sag are unlikely to be C-type neurones.
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Figure 4.2 Action potential shapes in two different types of DRG cell recorded from cultured 

neurones. A, an action potential recorded from a large diameter cell (—40 pm) which does not 

show an inflection. B. an action potential recorded from a small diameter cell (~22 pm) which 

shows an inflection on the falling phase. The presence o f an inflection was confirmed by 

differentiating the action potential using Clampfit 8.2 software. Results are shown in the insets 

(dV/dt). The presence of an inflection on the rising phase is likely to be an artefact o f the 

recording technique. The scale-bar in A also applies to B Recordings were made using the 

perforated patch technique.

-re. -  T ----------------------------— ---—

small cells medium cells large cells 
20-25 pm 30-35 pm > 40 pm 

DRG cell size

■  no inflection

■  action potential inflection

Figure 4.3 The presence o f an action potential inflection in different sized 

DRG neurones in culture. 82% of small cells and 17% of medium sized 

cells show an inflection on the falling phase of the action potential. None o f 

the large cells (> 40 pm) showed an inflection.
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Figure 4.4 Response of two different cultured DRG cells to a hyperpolarising current pulse. 

A, a recording from a large diameter cell (>40 pm) showing a voltage sag in response to the 

hyperpolarising pulse. B, a recording from a small diameter cell (25 pm) that does not show a 

pronounced sag. The scale-bar in A also applies to B Recordings were made using the 

perforated patch technique.

small cells medium cells large cells
20-25 |im 30-35 ym >40 pm

DRG c e ll  size

■  no sag
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Figure 4.5 The presence of a voltage sag in different sized DRG neurones in 

culture. 42% of small cells do not show a voltage sag. 87% of medium sized and 

100% of large cells showed a voltage sag in response to a hyperpolarising pulse.
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4.2.1.4 Criteria used to identify A- and C-tvpe neurones

The properties outlined above made it difficult to distinguish between A«yp and A§ 

cells. However, it was possible to use the cell size, the presence of an inflection and the 

presence of a voltage sag to discriminate between A- and C-fibre type cells. In 

principle, the action potential width and overshoot could be used to provide better 

separation, but these cannot be accurately measured with the current stimulation and 

recording methods. Nevertheless, the decision was made to use the absence of a 

voltage-sag and the presence of an action potential inflection to designate a cell as C- 

fibre type.

4.2.2 Variety of AHPs in cultured DRG cells from p!7 rats 

The AHPs recorded from DRG cells varied greatly in their timecourses. Figure 4.6 

illustrates some of the AHPs seen in C-type and A-type cells using the perforated patch 

recording technique. To examine whether certain types of AHP are associated with 

particular cell types, the AHPs seen in response to a single action potential were 

analysed in two ways. First, by measuring the AHPgo and secondly by fitting the AHP 

timecourses (see section 2.4.7 of Methods). The AHPgo was chosen as a parameter to 

analyse because this has been previously quantified for rat cells in intact ganglia 

(Waddell & Lawson, 1990; Lawson et al., 1996). It thus allows a comparison of 

conditions in culture with those in a more physiological setting. It has also been shown 

to provide some correlation with the cell type (Waddell & Lawson, 1990). The second 

approach of fitting the timecourse of the AHP was chosen in an attempt to pursue these 

correlations in greater detail. Both sets of analyses are described below.
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500 ms

Figure 4.6 Different kinetics o f the AHPs recorded from DRG cells grown in culture. A, a very 

fast duration AHP lasting only a few milliseconds. B, an AHP with a duration o f a few hundred 

milliseconds. C, a cell with an AHP similar to that seen in B, but also showing a small, much 

slower component lasting several seconds. D, the AHP seen in the cell depicted in C when 

stimulated to fire a train o f action potentials. A longer, more slowly decaying phase is seen. The 

extremes o f the action potentials have been truncated in order to show the AHPs more clearly.
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4.2.2.1 AHP™

The A H P8o was measured as the time taken for 80% “recovery” from the AHP where 

the downstroke o f  the action potential, as it crosses the resting membrane potential, was 

taken to be t=0. Figure 4.7 shows the range o f  AHPgos seen in DRG cells. It would 

appear that C-fibre cells, in general, lack very short duration AHPs. AHP80 values for 

C-fibres range from about 11 ms to 500 ms. A-type cells seem to have AHP80 values 

that fall into two different populations. The first comprises cells containing very fast 

AHPs which range from 2 to 30 ms. The second group ranges from about 35 ms to 

several hundred milliseconds and closely resembles the spread o f AHP80 values for the 

C-fibres.

A

100 -

I* ■
5 io ,

1-
C fibre cells A fibre cells

Figure 4.7 Range o f AHPgo values for AHPs recorded from DRG cells. A, a scatter plot o f the 

AHPgo values for C and A  fibre cells. B, a histogram showing the range of AHPgo values for C- 

and A-fibre cells (the bars o f  the histogram correspond to a log bin size o f 1.2). The pattern o f 

spread from the scatter plot and the histogram indicate that the C-fibres (red) generally do not have 

fast duration AHPs. Also there seem to be two discrete populations of AHPgo values for the A- 

fibre cells (black) possibly reflecting two different cell types.
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4.2.2.2 AHP decay time constants

One of the possible limitations of using the AHPgo value to compare AHP durations is 

that many of the AHPs in DRG cells appeared to have several components with 

different timecourses. The AHP80 might be dominated by the components with the 

largest amplitude. To explore the timecourses of different AHPs in greater detail, and to 

find out whether certain types were associated with either A- or C-type neurones, the 

AHPs were fitted using a modified version of the Goldmann-Hodgkin-Katz equation 

which assume that the conductances underlying the AHP undergo exponential decay 

(see section 2.4.7 of the Methods). It was also assumed that the resting potential was 

dominated by Na+ and K+ conductances, and that the internal Cl' concentration in DRG 

cells was 31 mM (Kenyon, 2000). These are likely to be substantial over­

simplifications, but for the current purposes provide a means by which it is possible to 

examine the AHP. A number of equations were used to obtain the optimal fit: 

for a single K+ component

Em = — In Ae, V KL + PN‘[NaL Equation 1m p t-tp M
Ae * [K l+ P ^ IN a l

for two K+ components

t - t 0  t - t 0

E = — ln(Ae '  + A’e ' )[K]°+PM‘[Na]° Equation 2
m p t-to !=*o

(Ae * + Aje r’ )[K\ +PNa[Na]i 

for three K+ components

t-tp t-t0 t-t0
i T +Axe n +A2e T2
t-tp t-tp t-tp

(Ae ■■ + A,e r' +A2e )[K]S +PN.[Na]i

K r in(A er  + A , e - ' + A2e ^ ) [ K ] 0 + PNa[Na]0 3
F t-tp t-tQ t-tg
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for two K+ and one Cl' component

Em = M , n ( A e ^  + A ,e ^  )[K]„ + PN,[Na]o + A2e ^  [Cl],
F t-to Izio t-to

(Ae - + A,e r' )[K],+PNl[Na], + A2e ^ [Cl]„

where R  is the gas constant (8.314 J K ' 1 mol'1), T is the temperature (303 °K) and F is 

the Faraday constant (9.6485 x 104 C mol'1). The values for [K]c, [K]i, [Na]0, [Na]i, 

[Cl]0 and [Cl]i were set (in mM) to 4, 150, 145, 13, 150 and 31 respectively. Also, A is 

the amplitude of the component, t is time, to is the time at the beginning of the decay 

phase of the AHP (not equal to the t=0 for the AHPgo values and x, xi and x2 are the 

decay time constants.

In fitting the data there was no set minimum value for the standard deviation of the fit 

because of variable 50 Hz noise and minor fluctuations in the baseline. These 

fluctuations made it impossible to use a single criterion used to decide when a 

satisfactory fit was obtained. The fit was thus assessed by eye and by checking that 

adding an additional component produced either an “A” value not significantly different 

from zero, or both a positive and negative component with identical time constants.

Figure 4.8 shows typical examples of the kinds of fit seen for different AHPs. In total, 

AHPs from 34 (26 A-type and 8 C-type) cells were fitted. Most cells (26) were best 

fitted using two decaying exponential K+-permeability components (Equation 2 above). 

Interestingly, among these were two “fAHPs” (with AHPgo values < 20 ms) which one 

might expect to arise from a single K+ component, but were actually best fit with a two- 

component equation. The x values for these two cells were: 2.14 and 9.26 ms and 3.24 

and 10.36 ms respectively.
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Figure 4.8 Typical examples o f AHP fits using the modified Goldman-Hodgkin-Katz equation. The AHPs from most cells could be fit with a single (A) or a 

double exponential (C) K+-permeability model. One cell was fit with a three K+ component equation (D) and another with a hyperpolarising K+ component 

and depolarising Cl' component model (B). Decay time constants are indicated in the different panels. In each case the red trace shows the AHP and the blue 

shows the fit. The arrows indicate, approximately, regions where components with the indicated time constants are more dominant.
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Figure 4.9 A histogram of the range o f decay time constants for AHPs in DRG cell bodies. Red 

bars show the values for decay time constants in A-type cells and black bars for the C-type cells. 

Bin size was set to 10 ms. There is more than one decay time constant per neurone plotted.

O f the remaining cells, 4 A-fibre AHPs and 1 C-fibre AHP were fitted with a single 

exponential (Equation 1). The decay time constant (x) for the C-fibre AHP was 

markedly longer than those o f the A-fibre AHPs, x = 19.77 ms compared to 0.93 ms, 

1.86ms, 2.63 ms and 6.1 ms. One A-fibre AHP was best fit with a three K+ component 

equation (Equation 3; see ★ in Figure 4.9). For one A-type cell and one C-type cell the 

AHP was best fit with two K+ components and one Cl* component (Equation 4) 

indicating that a depolarising conductance may contribute to the shape o f the AHP. The 

remaining AHPs were all fitted with a two K+ component equation and the x values can 

be seen in Figure 4.9 and Figure 4.10 

As with the AHPgos, there is a broad range o f x values, but it would seem that at least 

some o f the AHP components are associated with a certain cell type. For example, the 

shortest AHP components (where x < 5 ms) are only seen (with one exception) in A- 

type cells (see Figure 4.9). However, looking at the scatter-plot in Figure 4.10 (top),
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Figure 4.10 Scatterplots o f the range o f decay time constants seen for AHPs recorded from DRG cell 

bodies. Upper panel, a scatter-plot of the two-component AHPs seen in A- and C-type cells and one three 

component AHP (★ ) in an A-type cell. Lower panel, there are three main groups of cells based on the 

difference between the two different time constants. Group 1 includes cells with AHP time constants that 

are separated by one order of magnitude, with the first component < 10 ms and a second, slower component, 

of 100-300 ms. Group 2 neurones do not have a fast (< 10 ms) component and their two time constants are 

more closely matched. Group 3 shows the x values for the AHPs that do not fall into either o f these groups. 

The x values for the AHP for any individual cell are plotted using the same colour and symbol. A-type cells 

are shown as circles (# )  and triangles (▼) while C-type cells are cells are shown as squares (■  ).
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the great majority of t values for both A- and C-fibre cells show similar distributions, 

making it difficult to distinguish between the two cell types on the basis of decay time 

constants of their AHPs.

Upon closer examination, it was possible to argue that cells could be grouped on the 

basis of the difference between the timecourses of their first and second components 

(see Figure 4.10 lower panel). Group 1 consisted of cells with a fast K+ component (2- 

8 ms long) and a longer component (-110 ms). The median difference between the two 

components was 115.99 ms (n=ll). Group 2 consisted of cells where the first 

component was tens of milliseconds long and the second component hundreds of 

milliseconds. The median difference for this group was 295.86 ms (n=8). There were, 

however, a number of cells with AHPs with components that did not fit into either of 

these groups (group 3).

4.2.3 Pharmacology of DRG AHPs

The nomenclature for AHPs is somewhat confusing. A very rapid AHP lasting fewer 

than 10 ms is quite consistently referred to as a fast AHP (fAHP; Sah, 1996). However, 

the apamin-sensitive AHP seen in SCG neurones, which has a duration of several 

hundred milliseconds, is often described as the slow AHP (Pennefather et al., 1985; 

Dunn, 1994). This would be fine but for the fact that in many other types of neurone, an 

apamin-sensitive AHP, with the same timecourse, is followed by an AHP lasting several 

seconds and in these cases the two components are termed the medium AHP (mAHP) 

and the slow AHP (sAHP) respectively (Storm, 1989). Further, there is little 

justification for such clear divisions when it comes to identifying mAHPs in DRG 

neurones, as can be seen by the range durations of the AHPs described by Waddell & 

Lawson (1990) and those reported in the preceding sections, as well as the timecourses
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of the underlying currents studied by Villiere & McLachlan (1996). Nevertheless, in 

this thesis, for the purpose of reporting the pharmacology of the AHPs recorded from 

DRG cells, they were separated into two groups. First, AHPs recorded after a single 

action potential, with durations of 50-500 ms, were classified as mAHPs and secondly, 

AHPs lasting several seconds usually evoked by a train of action potentials were 

classified as sAHPs. Whilst this division is somewhat artificial, because in some cases 

it was possible to observe a small sAHP following a single action potential, the 

amplitude was usually far more pronounced after repetitive firing. As a result, a train of 

10 action potentials was used to generate what is referred to in the section as a sAHP to 

examine its pharmacology. Both mAHPs and sAHPs were recorded in small and large 

diameter cells and thus the presence of a sAHP did not appear to correlate with cell 

type.

Of 152 cells recorded from (using DRGs from p i7 animals and perforated patch 

recording), 77 exhibited a mAHP, 50 displayed a sAHP (30 cells showed both a mAHP 

and a sAHP). An additional 11 cells showed a long lasting afterdepolarisation (ADP) 

which, like the sAHP, had a duration of several seconds. One such cell was tested with 

the Cl* channel blocker niflumic acid (125 pM). The ADP was abolished, suggesting 

that there was an underlying Cl* conductance, though this was not investigated further. 

The remaining cells showed only a very fast AHP (AHPgo < 20 ms).

4.2.3.1 mAHPs in neurones from pi 7 rats

As mentioned previously, many studies have described a mAHP with an underlying 

conductance that is due to SK channel activation. To determine whether this was also 

the case in DRG cells, mAHPs were tested using the SK channel blocker UCL 1848. 

This compound has been shown to potently block both recombinant (Benton et al.,
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1999; Shah & Haylett, 2000a) and native neuronal SK channels (Hosseini et al., 2001; 

Shah et al., 2001; Faber & Sah, 2002) with IC50S similar to those for apamin. However, 

UCL 1848 has two major advantages over apamin in that its onset of block is fast and 

its effects are rapidly reversible.

Effects o f UCL 1848

Initially, in order to ascertain whether there was any SK involvement in mAHPs, UCL 

1848 was applied at concentrations of either 10 nM or 50 nM. These values are quite 

high compared with the IC50 values of cloned channels: -120 pM for SK2, -2.1 nM for 

SK3 (Hosseini et al., 2001) and -2.9 nM for channels formed from rSKl and rSK2 co- 

expression (Benton et al., 2003), but were chosen so that any contribution of SK 

channels to the AHP could quickly be established.

At these concentrations, UCL 1848 had no effect on either the resting membrane 

potential or on action potentials. Surprisingly, it also failed to have any significant 

effect on the majority of mAHPs (results are summarised in Table 4.2). Only 1 of 11 

cells tested, appeared to show any UCL 1848 sensitivity and this was seen as the 

reversible block of a component of the AHP (see Figure 4.11). Thus despite the 

evidence for SK channel expression in DRG cells from staining experiments (see 

Chapters 3 and 5), it would appear that they do not contribute substantially to 

generating mAHPs in the cell body.

Effects o f200 nMCd?+

AHPs were also tested with the non-selective voltage-dependent Ca2+ channel (VDCC) 

blocker Cd2+. This was designed to indicate whether the mAHP was calcium- 

dependent. DRG cells exhibit a number of Ca2+ currents including some mediated by
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L-type and N-type Ca2+ channels (Scroggs & Fox, 1992) and these Ca2+ channels are 

known to be sensitive to non-specific blockers such as Ni2+ and Cd2+ (Hagiwara & 

Byerly, 1981). Five of the cells which were insensitive to UCL 1848 were also 

unaffected by Cd2+ suggesting that neither SK nor IK channels are likely to be involved 

in generating the mAHP in these neurones. A further four cells were tested and of 

these, two showed partial sensitivity to Cd2+ (see Figure 4.12).

Effects o f other fC channel blockers

Charybdotoxin (ChTx) is a known blocker of BK and IK channels (Sah & Faber,

2002). As a few cells apparently show some sensitivity to Cd2+ but not to UCL 1848 it 

is possible that this Ca2+-dependent component may have been due to some other Kca 

channel i.e. either of the BK or IK type. For this reason, some of these cells were also 

tested with 10 nM ChTx. In the two cells where the toxin was applied, however, there 

was no sign of any block of the mAHP (Figure 4.13) indicating that Kca channels do 

not make any obvious contribution to the underlying conductance.

TEA when applied at 5 mM should block a number of voltage-activated K+ channels 

including the BK channel (Blatz & Magleby, 1987; Coetzee et al., 1999). As with 

ChTx, there was no effect on the mAHP (n=5) although it was usually possible to 

observe broadening of the action potential (Figure 4.13). One final K+ channel blocker 

tested was 4-amino pyridine (4-AP) which is known to act on a number of members of 

the Kv family of K+ channels (Coetzee et al.9 1999). Again, there was no blocking 

effect of the mAHP observed in the presence of 4-AP (Figure 4.13) ruling out many of 

the Kv family.
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Figure 4.11 Variable sensitivity o f the DRG mAHPs to UCL 1848. A, a typical example of a 

cell that did not show any block in response to the application o f UCL 1848 at a 10 nM 

concentration. B, the mAHP in one cell, out o f eleven tested, showed partial sensitivity, but not 

complete block, on application o f 10 nM  UCL 1848. In these and all subsequent 

electrophysiological figures in this chapter, the black trace shows the control recording, the red 

trace shows the AHP in the presence o f the drug and the green trace shows the recovery.

B

E«= -60 mV

10 mv

200 ms
10 mV
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Figure 4.12 Variable Cd2+ sensitivity of mAHPs in DRG neurones. A, an example o f a cell 

with a mAHP insensitive to block by Cd2+. B, a mAHP showing a small component that is 

blocked by 200 pM Cd2+. Block was only seen in two out o f nine cells.

161



A

10 nM ChTx

B

20 mV
2 m*

5mM TEA

100 pM 4-AP

200 ms

Figure 4.13 Examples illustrating the effect 

o f different K+ channel blockers on the 

mAHPs in DRG cells. A, application o f the 

BK and DC channel blocker ChTx (10 nM) 

has no effect on the mAHP. B, 5 mM TEA 

which would be expected to block a number 

of voltage-gated K+ channels including the 

BK channel has no effect on the mAHP. It 

does, however, increase the duration of the 

AP (shown in inset). The small step in the 

control recording (see arrow) is an artefact 

due to the depolarising pulse out-lasting the 

action potential. The step is seen at the point 

where the depolarising pulse ends. C, the 

mAHP is also resistant to block by the Kv 

channel blocker 4-AP (100 pM).

These recordings were taken from three 

different cells. The scale bar in C also 

applies to A and B.

mV
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Cell type (diameter) UCL 1848 (10/50 nM) 200 pM  Cd2+ 10 nM ChTx 5 mM TEA 100 pM 4-AP
A-type (40 pm) 10 nM no block
A-type (40 pm) 10 nM no block no block

A-type (42.5 pm) 10 nM no block no block
A-type (40 pm) 10 nM partial block

A-type (42.5 pm) 50 nM  no block partial block
A-type (40 pm) 50 nM no block no block

A-type (37.5 pm) 50 nM no block no block
A- type (37.5 pm) no block
A- type (40 pm) no block
A- type (40 pm) no block

A- type (37.5 pm) 10 nM no block no block
A- type (37.5 pm) 10 nM no block no block no block no block
C- type (25 pm) 10 nM no block

Small cell (25 pm) lOnM  no block no block
C- type (22.5 pm) 10 nM no block no block no block
C- type (25 pm) partial block no block no block

Table 4.2 A summary o f various blockers used to characterise the mAHP in both A- and C-fibre cells isolated 

from p i 7 rats. Only one cell showed sensitivity to UCL 1848, and two had mAHPs that were partially blocked 

by Cd2+. Examples o f mAHPs that did display some degree o f block are illustrated in the figures. The great 

majority o f cells, however, had mAHPs that were unaffected by any of the blockers used.

4.2.3.2 mAHPs in cells from p40-45 rats

Chapter 5 o f this thesis presents evidence for an up-regulation o f SK channels in rat 

DRGs with age. As a result, one might expect the likelihood o f observing an apamin- 

sensitive mAHP to be greater in cells isolated from adult animals. For this reason, the 

mAHP was also examined in DRG cells from rats aged p40-45 using intracellular 

recording. Initially the AHP was generated by using a 5 ms current pulse to stimulate 

the cell to fire a single action potential (as with p i7 cells). However, good recordings 

from two cells using this method showed no signs o f block in response to 50 nM UCL 

1848 (see the first two rows o f Table 4.3). A possible reason for a lack o f SK channel 

activity could be that a highly localised rise in intracellular Ca2+ is needed. If this were
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so, a single action potential may not allow enough Ca2+ influx via VDCCs to cause SK 

channel opening. To overcome this possible problem, the pulse protocol for generating 

a mAHP was adjusted to a 100 pA depolarising current pulse lasting 100 ms.

Effects o f blockers on the mAHP 

The effects of different drugs on the mAHPs seen in DRG cells from p40-45 aged rats 

are summarised in Table 4.3. There was no effect of 50 nM UCL 1848 on any of the 

mAHPs recorded from isolated cells (n=8). Two of the cells tested with UCL 1848 also 

proved to be insensitive to 10 pM clotrimazole, a potent blocker of the IK channel 

(Alvarez et a l , 1992; Brugnara et a l , 1993; Jensen et a l, 1998). Furthermore, the 

mAHP in one of these cells also showed insensitivity to 5 mM TEA. However, one 

mAHP (of three tested) from the p40-45 cells had a component sensitive to block by 

200 nM Cd2+.

Effects o f the SK/IK channel enhancer, 1-EBIO 

1-EBIO has been shown to potentiate currents of cloned SK and IK channels (Pedersen 

et a l, 1999; Syme et al, 2000; Pederzani et al, 2001). In addition, Pederzani and 

colleagues (2001) have demonstrated that 1-EBIO increases the amplitudes of medium 

and slow AHP currents in hippocampal neurones. In contrast to these findings in the 

hippocampus, the great majority of DRG mAHPs appear to be unaffected by 1-EBIO 

application (Table 4.3). The frequency of a functional SK channel response appears 

unrelated to age when recording from the cell bodies. One cell, however, that has a 

mAHP enhanced by 300 pM 1-EBIO. This, along with the partial sensitivity of one 

mAHP (see Figure 4.11) to UCL 1848, provides some evidence for functional SK 

channels being formed in DRG cells. It also leaves open the possibility that while SK
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channels may not normally play a substantial role in AHPs of DRG cell bodies, they 

may be brought into play by channel openers such as 1-EBIO. However, it is important 

to note that the effects of 1-EBIO seen in Figure 4.14 could also be mediated by IK 

channels and this could only be ruled out by addition of either UCL 1848 or 

clotrimazole in the presence of 1-EBIO to see if either of these drugs could block the 

activated current.

Although only one cell appeared to be sensitive to 1-EBIO, this could perhaps be an 

underestimate. This is because several cells (3/10) had AHPs that approached the 

expected value for the potassium reversal potential (Ek; expected to be about -96 mV). 

It would then be difficult to observe any enhancement of the AHP due to SK/IK channel 

activation. Against this, 1-EBIO should also have prolonged the AHP so that any 

enhancement would have been evident.
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Figure 4.14 Examples o f mAHPs in DRG 

cells from p40-45 rats, illustrating the 

effects of different drugs. A, no block is 

seen after applying UCL 1848 at a 

concentration o f 50 nM. B, example of a 

g mAHP insensitive to block by 200 pM 

Cd2+. C, a mAHP insensitive to 10 pM 

clotrimazole. D, a mAHP that is 

unaffected by 300 pM 1-EBIO. E shows a 

set o f recordings from a cell with an 

mAHP increased by 300 pm 1-EBIO.

All the AHPs depicted here were 

generated using a 100 pA current pulse that 

was 100 ms long. A, B and D are 

recordings taken from the same cell. C 

and E show recordings from a second cell.

5 mV

100 ms

I 300 pM 1-EBIO

100 ms
2 m V

300 pM 1-EBIO 100 ms
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Cell type (diameter)
50 nM 

UCL 1848 300 pM 1-EBIO 200 pM Cd2+
10 mM 

clotrimazole 5 m M TEA
small cell (25 pm)* no block no change
C- type (25 pm)* no block partial block no block no block
C- type (25 pm) no block no change
C- type (25 pm) no change
C- type (25 pm) no change
C- type (25 pm) no block
C- type (25 pm) no block no change
C- type (25 pm) no block Small increase no block
C- type (25 pm) no block no change No block
C- type (25 pm) no block no change No block

Table 4.3 Characterisation of the mAHP in DRG cells isolated from p40-45 rats. None of the cells 

from p40-45 animals showed any sensitivity to 50 nM UCL 1848, but one had a mAHP that was 

partially blocked by Cd2+. In one cell with a mAHP insensitive to UCL 1848 and clotrimazole, the 

mAHP was enhanced by 300 pM 1-EBIO suggesting Kca channel activation. The great majority of 

cells, however, had mAHPs that were unaffected by any of the drugs used. *AHPs seen in response 

to a single action potential. All other AHPs were generated using a long depolarising current pulse as 

described previously.

4.2.3.3 sAHPs in DRG cells from p i  7 rats

DRG cells were tested for the presence o f a sAHP by stimulating them to fire a train o f  

ten action potentials. Cells were said to have a sAHP if the resulting AHP had a 

duration o f  > 2 sec. In general there was an increase in sAHP amplitude with increasing 

numbers o f action potentials (see Figure 4.15).

As with the mAHP, the sAHP was tested with a number o f known K+ channel blockers 

(UCL 1848, ChTx and TEA) and again, Cd2+ (200 pM) was used to check for Ca2+ 

sensitivity o f the sAHP. Further, since many neuronal sAHPs are abolished by agonists 

for certain G-protein coupled receptors (Vogalis et al., 2003), and since histamine is
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10 action potentials
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2  m v

2000 ms

Figure 4.15 A recording from a C-type p i 7 DRG cell which had a sAHP. This sAHP 

increased in amplitude and duration with increasing numbers o f action potentials (at a 

frequency o f 20 Hz).
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known to produce such an effect in sensory neurones o f the nodose ganglion (Leal- 

Cardoso et al., 1993; Undem & Weinreich, 1993) it was also tested here at a 

concentration o f 10 pM to determine if  it had a similar effect on DRG sAHPs. Finally 

the blocker UCL 2027 was also tested. This compound is an analogue o f clotrimazole 

that inhibited the sAHP current in isolated hippocampal cells in a concentration- 

dependent manner. The IC50 was calculated as being 1.1 ± 0 . 2  pM and 10 pM UCL 

2027 completely abolished the sAHP (Shah et al., 2001). It is selective to the extent 

that it does not affect the mAHP in hippocampal neurones, nor Ca2+ currents generated 

by VDCCs (Shah et al., 2001). Table 4.4 provides a summary o f the effects o f these 

drugs on the sAHPs seen in DRG cells.

Cell type 
(diameter)

10 nM 
UCL 1848

10 pM 
UCL 2027

10 pM 
histamine 5mM TEA

100 nM 
ChTX

200 pM
Cd2+

A-type (40 pm) 3mM no block
A-type (40 pm) no block no block

A-type (40 pm) no block
prominent

block no block no block
A-type (47.5 pm) no block no block no block
A-type (42.5 pm) abolished no block no block no block
A-type (40 pm) no block no block
A-type (40 pm) no block no block
A-type(42.5 pm) no block no block no block
C-type (25 pm) no block abolished prominent block prominent block
C-type (25 pm) no block abolished prominent block prominent block no block
C-type(25 pm) no block no block abolished

Table 4.4 A summary table of the responses to drugs used to characterise the sAHP in DRG cells

isolated from p i 7 rats. A-fibre cells were generally insensitive to all of the blockers used except 

UCL 2027. In contrast three stable recordings from C-type cells, the sAHPs could be blocked by 

UCL 2027, histamine, TEA and in one case Cd2+.

The sAHPs seen in the large diameter A-fibre cells were insensitive to all o f  the 

blockers used over the range o f concentrations tested, with the exception o f 10 pM UCL 

2027 which blocked a small component o f one AHP and abolished a second (see Figure
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4.16). The lack o f Ca2+ sensitivity suggests that these sAHPs are different to those 

described in a variety o f other neuronal cell types (Sah & Faber, 2002; Vogalis et al.,

2003). The sAHPs in C-fibre cells were all insensitive to 10 nM UCL 1848. There 

appeared to be at least two kinds o f sAHP in C-fibre cells, those that were TEA- 

insensitive and those that were TEA-sensitive. The cell that did not have a TEA- 

sensitive sAHP was completely blocked by 200 pM Cd2+ and the sAHP was evident 

after a single action potential (see Figure 4.17). Intriguingly, two cells with sAHPs that 

were sensitive to 10 pM histamine and UCL 2027, could also be almost completely 

blocked by 5 mM TEA (Figure 4.18). A sAHP sensitive to TEA block has not, to my 

knowledge, been previously reported.

A
200 pM Cd

2 mV
2000 ms

B
5 mM TEA

D
10 pM UCL 2027

c
10 pM histamine

Figure 4.16 Pharmacology of a sAHP recorded from an A-type cell. The sAHP was tested with 

the following drugs: 200 pM Cd2+ (A), 5 mM TEA (B), 10 pM histamine (C) and 10 pM UCL 

2027 (D). This sAHP is insensitive to Cd2+, histamine and TEA. It is, however, blocked by UCL 

2027. The scale-bar in A also applies to B, C and D.
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E„= -65 mV

B

10 nM UCL 1848

\   | 2 mV

Figure 4.17 An example of a small Cd2+- 

sensitive sAHP in a C-type DRG cell seen in 

response to a single action potential. A, 

effect seen with 200 pM Cd2+. B, no block 

seen with 10 nM UCL 1848. C, no block 

seen with 5 mM TEA. In fact, if  anything, 

there appears to be an increase in the peak 

amplitude o f the sAHP, possibly due to 

increased Ca2+ entry. In each case the black 

trace shows the control, the red -  application 

o f the drug and the green shows the wash­

out. The scale bar in C also applies to A and 

B. All three sets o f recordings were taken 

from the same cell.

5 mM TEA 2000 ms
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A

10 nM UCL 1848

B

100nM ChTx

Figure 4.18 The pharmacology of a 

sAHP from a C-fibre type cell. A, 

response to 10 nM UCL 1848. B, 

application o f 100 nM ChTx. C, block 

seen in response to 5 mM TEA. D, 

inhibition seen with 10 pM histamine. 

E, effects o f 10 pM UCL 2027. With 

both histamine and TEA there appears to 

be a small component insensitive to 

block by either of these drugs, while 

UCL 2027 seems to block the AHP more 

fully. The scale bar in E also applies to 

A, B, C and D. All recordings were 

taken from the same cell.

10 pM histamine
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4.3 Results from nodose ganglion neurones

In the guinea-pig, -90% of neurones are reported to be of the C-fibre type and it is 

cells among this population that exhibit sAHPs (Undem & Weinreich, 1993). There is 

conflicting evidence for the involvement of SK channels in AHPs in nodose ganglion 

neurones. Morita & Katayama (1989) report that the current underlying the sAHP in 

these cells is depressed by 10 nM apamin. However, others have found that up to 100 

nM apamin has no effect on the sAHP (Cordoba-Rodriguez et al., 1999). The 

possibility that SK channels may be involved in the sAHP has been investigated in the 

current study using 10 nM UCL 1848. As with DRG cells there are several reports 

which suggest that cultured nodose neurones retain many of the properties seen in vivo 

(Fukuda & Kameyama, 1980). The present recordings from guinea-pig nodose 

neurones were also made using isolated cells in culture.

4.3.1 Characteristics of the sAHP

In the work described here sAHPs (see Figure 4.19 for a typical example) were seen in 

approximately 25% (n=102) of nodose cells recorded from. This is close to the value 

obtained from previous work done by Cordoba-Rodriguez and colleagues (1999) where 

approximately 20% of guinea-pig nodose neurones had a sAHP. They also found that 

all sAHPs were preceded by a faster duration AHP. This was also true in the current 

study, although no attempts were made to characterise the f/mAHPs in depth.

The amplitude and duration of the sAHP was dependent upon the number of spikes 

used to initiate it (see Figure 4.20). By increasing the number of action potentials fired 

(a series of 1, 4, and 7 action potentials were used), the duration and amplitude 

increased accordingly (n=3). As seven action potentials were sufficient to produce a
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1000 ms

Figure 4.19 Typical examples o f voltage recordings from two different nodose ganglion cells 

cultured for 1-3 days. A, a cell in which the sAHP is absent even in response to ten action 

potentials. B, a recording from a cell with a robust sAHP, seen in response to seven action 

potentials. The dotted line represents the resting membrane potential. The action potentials in 

B have been truncated to show the AHP more clearly.

1 action potential — — —

4 action potentials - ........

7 action potentials —
Enr -53 mV

500 m s

Figure 4.20 The size and the duration o f the sAHPs seen in nodose ganglion neurones is 

dependent upon the number of action potentials fired. As the number of spikes initiated 

increases, so does the peak amplitude and the duration o f sAHP. Extremes of the action 

potentials have been truncated for clarity.
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sAHP of large enough amplitude to study the pharmacology, all further experiments 

were carried out using a train of seven spikes. The sAHP duration was measured as the 

time taken from the last action potential for the membrane potential to return to the 

baseline. Of the sAHPs observed, the mean duration was 6.9 ± 0.3 s. The peak 

amplitude had an average of 7.7 ± 0.6 mV and this peak occurred 1.2 ± 0.1 s after the 

train of action potentials (n = 26).

Before any novel pharmacology was carried out, the sAHP was tested with histamine 

and bradykinin. These two drugs are known to modulate the sAHP in nodose cells and 

so were used to ensure that responses seen with the neurones in culture were 

comparable to those previously reported in the literature.

4.3.2 Effects of histamine on the sAHP

Histamine, acting through G-protein coupled receptors, has previously been reported 

to abolish the sAHP in nodose ganglion neurones of the guinea-pig (Undem & 

Weinreich, 1993) and the ferret (Jafri et al, 1997). In ferret nodose neurones the EC50 

was reported as 2 pM, while 10 pM histamine was sufficient to abolish the sAHP in 

both ferret and guinea-pig cells. In order to provide a reasonable comparison between 

these results and the sAHPs recorded in the experiments outlined here, a histamine 

concentration of 3 pM was used to test its blocking effect (see Figure 4.21). This 

concentration of histamine reduced the peak amplitude sAHP by 82 ± 13% (n = 2) and 

the block observed was completely reversible upon wash-out. The inhibitory effect of 

histamine was also accompanied by a membrane depolarization of 8.5 ± 1 mV which 

suggests that it may act on more than one kind of channel (those underlying the sAHP 

and those responsible for setting the resting membrane potential). Another possibility is 

that some of the channels underlying the sAHP are open in the resting cell.
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1000 ms

Figure 4.21 Block of the sAHP in a nodose ganglion neurone in response to 3 pM histamine. 

The block o f the AHP was accompanied by a depolarisation of the resting membrane potential 

by 10 mV though this cannot be seen in the current figure, as the traces have been 

superimposed to illustrate the block o f the sAHP.
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4.3.3 Effects of bradvkinin on the sAHP

As with histamine, the effects o f bradykinin have been investigated previously and a 

concentration o f 100 nM has been shown to produce complete inhibition o f the sAHP in 

guinea-pig nodose neurones (Weinreich et al., 1995). Again a single concentration o f  

bradykinin was applied, in this case 10 nM, to try to reproduce this result. 10 nM 

bradykinin produced 58 ± 15% (n=4) block o f the sAHP (see Figure 4.22). In a similar 

manner to histamine this was accompanied by a significant depolarisation o f  7.4 ± 2.2 

mV. The block observed proved to be quite variable between individual cells (range 

25-100%).

Having established that the preparation was behaving with the characteristics 

previously reported, cultured nodose cells were then used to explore some novel 

pharmacology.

5 mV

1000 ms

Figure 4.22 Effect o f bradykinin (10 nM) on the sAHP seen in a nodose ganglion cell. Bradykinin 

completely abolishes the sAHP. This is accompanied by a depolarisation which cannot be seen here as 

the traces have been superimposed to show the effect on the sAHP.
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4.3.4 Effects of UCL 1848 on nodose AHPs

In order to determine whether the sAHP in nodose cells exhibits SK-like 

pharmacology, the response to UCL 1848 was tested. At a concentration o f 10 nM no 

block o f the sAHP observed (n = 4; see Figure 4.23).

1000 ms

Figure 4.23 The absence of effects of UCL 1848 on the nodose ganglion cell sAHP. No block 

produced by a 10 nM bath application o f UCL 1848 on the amplitude o f the sAHP.
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4.3.5 Effects of UCL 2027 on the sAHP

When tested with a high concentration o f UCL 2027 (20 pM; Figure 4.24), the nodose 

sAHP showed obvious block. The majority, but not all, o f  this inhibition was reversed 

upon washout. In order to investigate this further, and to compare the inhibition with 

that reported for the sAHP in hippocampal neurones, UCL 2027 was applied to nodose 

neurones possessing a sAHP at concentrations o f 1, 3, 6  and 10 pM and 20 pM. The 

reduction o f the peak amplitude o f the sAHP was determined and the resulting 

concentration-inhibition curve is shown in Figure 4.25. The Hill equation was fitted to 

the data. The IC50 value was estimated as 6.0 ± 1.4 pM with a Hill coefficient o f 0.9 ± 

0 . 2 .

1000 ms

Figure 4.24 The response of a nodose sAHP to a 20 pM  concentration o f UCL 2027. This particular cell 

exhibits 78% inhibition of the peak amplitude of the sAHP (red trace). The effects are, however, not 

completely washed out up to 1 0  minutes after drug application (green trace).
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Figure 4.25 Inhibition of the nodose ganglion neurone sAHPs by UCL 2027. A, The 

concentration-inhibition curve for the effects of UCL 2027 on the sAHP amplitude. Each 

point shows the mean ± S.E.M of observations from 4-5 different cells (except for the 

20|iM  point where n = 1). The curve has been fitted using the Hill equation where y w  is 

assumed to be 100%. The IC50 value is 6.0 ± 1.4 pM and the Hill coefficient 0.9 ± 0.2. B, 

the effect on two individual cells where it was possible to apply more than one 

concentration o f UCL 2027 which illustrate the dose-dependent inhibition.

There was also a slight depolarisation o f 3.9 ± 1.2 mV (n = 4) with 10 pM applications 

o f UCL 2027 and 9 mV (n = 1) with a 20 pM application. The other concentrations 

produced no statistically significant effects on the resting membrane potential.

There was considerable variability in the extent o f block seen with UCL 2027 as 

evidenced by the large standard errors. This appeared to be due to variation between 

cells. On those cells where it was possible to apply more than just one concentration o f  

UCL 2027 the block was dose-dependent. It was not possible to observe 100% block 

with any o f the concentrations o f UCL 2027 used in the current study.
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4.3.6 Antibody staining of nodose ganglion cells

As mentioned previously, there is data to suggest that the sAHP in nodose ganglion 

cells is mediated by SK channels (Morita & Katayama, 1989). sAHPs in nodose 

neurones also show some similarity to those reported in hippocampal neurones (Shah et 

al, 2001). In addition, neurones of the coeliac ganglion are known to generate a sAHP 

that is at least partially sensitive to block by 100 nM apamin (Martinez-Pinna et al, 

2000). Although, at least in mouse hippocampal cells, it has recently been established 

that SK channels do not underlie the sAHP (see Bond et al, 2004), at the time these 

experiments were pursued, it was believed that SKI may be involved (see section 

1.3.3.2. of Introduction; Vergara et al, 1999; Bond et al, 1999; Bowden et al, 2001). 

Thus, isolated nodose ganglion cells in culture were stained with the anti-SK/IK channel 

antibodies to look for the presence of these channel proteins. All staining results are 

shown in Figure 4.26.

There was no obvious positive staining for SKI, SK2 or the DC channel proteins in 

nodose neurones. The results for the SK3 protein were variable. The M75 did not 

produce clear SK3 immunoreactivity, whilst the Chemicon antibody produced a fine 

punctate staining pattern in the region of the cell membrane.
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I— I
20 pm

SK3 (M75)

SK3 (Chemicon)

Figure 4.26 Staining of guinea pig nodose ganglion cells with anti-SK/DC channel antibodies. In 

each case the left panel shows the antibody staining and the right, the brightfield image (there is no 

brightfield image for panel E). A, SKI staining with the L155 antibody. B, SK2 staining with the 

M l antibody. C, IK staining with the M4 antibody. D and E, SK3 staining with the M75 and 

Chemicon antibodies respectively. There was no positive signal seen except for the punctate staining 

see with the Chemicon anti-SK3 antibody.



4.4 Discussion

This chapter presents results from voltage recordings made from DRG and nodose 

ganglion neurones using either intracellular or perforated patch recording techniques. 

The initial studies examined AHPs in DRG neurones. These were separated into A- and 

C-type neurones on the basis of several properties; cell size, the presence of an 

inflection on the falling phase of the action potential and the presence of the Ih current.

4.4.1 Analysis of AHP kinetics

Following one or more action potentials, DRG cells often displayed a robust AHP. 

The durations of AHPs following a single action potential were examined in two ways, 

firstly by measuring the AHP80 and secondly by fitting a modified version of the 

Goldman-Hodgkin-Katz equation to estimate the decay time constants of the different 

AHP components.

4.4.1.1 AHP™ values

In the cultured cells used for these recordings, the AHP80 values in A-type cells 

AH P80s appeared to cluster into two groups and thus they are similar to those previously 

reported in the literature where Waddell & Lawson (1990) and Lawson et al. (1996) 

showed that the majority of A-fibre neurones without an inflection on the action 

potential had very fast duration AHPs (AHP8o values <7.5 ms). In contrast, they found 

that a large number of A-fibre cells with an inflection showed longer duration AHPs 

(AHP8o values > 9 ms). The two groups of AHP80 values described here, reflect these 

results to some extent. Of the A-type cells with AHP8o values < 30 ms only 5% of cells 

(6/44) had an inflection, but of the cells with an AHP80 > 35 ms 21% (6/28) had an 

inflection.
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C-type cells tended not to have very short duration AHPgoS, with the lowest value 

being -11 ms. As with the A-type neurones, the longest duration AHP had an AHPgo 

value of -500 ms. Again, these results compare well with those of Waddell & Lawson 

(1990) who did not see AHPgo values shorter than 12 ms in C-fibre cells. However, the 

work presented here does differ from previous reports in that some AHP80s were 

considerably longer in both A- and C-type neurones. Waddell & Lawson (1990) found 

that the longest duration AHPgo value was 70 ms in a A-type neurone with an action 

potential inflection compared with -500 ms in the work described here. There are some 

differences in the methods used that may account for this. My work has been carried 

out on adolescent Sprague-Dawley rats using isolated cells in culture and perforated 

patch recording, whereas Waddell & Lawson (1990) worked on adult Wistar rats using 

whole ganglia and intracellular recording techniques.

4.4.1.2 AHPs fitted to a modified GHK equation

AHPs were also analysed by fitting them to a modified GHK equation to determine 

whether there were different temporal components to the AHPs (seen after a single 

action potential) that could be used to associate them with particular cell types. As with 

other types of neurone, the DRG cell AHPs appeared to have several components with 

decay time constants ranging from a few milliseconds to several seconds. In most cells 

the AHP was fitted to an equation with two variable K+ components. As with AHPgo 

values, AHPs with very fast decay time constants (< 5 ms) were generally only seen in 

A-type neurones. Conversely, the slowest decay time constants (> 700 ms) were only 

seen in C-type neurones, although it would be necessary to repeat these experiments to 

determine whether such slow components are restricted to C-type cells. However, there 

were only a few cells from either group which exhibited x values at either of these
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extremes. Overall, there was a large spread of t values which could be seen in both A- 

and C-type neurones. Thus it was not possible to identify a distinct type of AHP 

component, or combination of components, that corresponded to a particular cell type. 

Some cells also appeared to have AHPs with a Cl' component, although again, this 

could not be attributed to a specific cell type.

A similarly large range of AHP durations has also been seen in work by Villiere & 

McLachlan (1996) who examined both AHPs and the underlying currents. They 

showed that currents were generally best fitted by a series of exponentials and that 

decay time constants of similar duration were seen in Ao/p, Ag and C-fibre neurones. 

Apparently there was no particular type of AHP that occurred in a given cell type with 

the exception of very long duration AHPs, several seconds long, which were only seen 

in C-fibre neurones (Villiere & McLachlan, 1996). My results are similar, suggesting 

that there may be a number of different channels involved in the generation of AHPs, 

possibly reflecting the functional diversity of DRG neurones. One point worthy of note 

is that many of the cells with two component AHPs could be separated into different 

groups on the basis of the time difference between their two components. These groups 

were not specific to A- or C-type cells and were therefore not as useful as had been 

hoped for the current work. However, they may provide a basis for future in vivo work; 

it may be possible to associate these groupings with a particular cellular function, for 

example they could be nociceptors or low threshold mechanoceptors.

4.4.2 Pharmacology of AHPs

Attempts were next made to characterise AHPs using a pharmacological approach. As 

described previously, AHPs in many cell types have been shown to be mediated by SK 

channels and these tend to be mAHPs (Kawai & Watanabe, 1986; Sah & McLachlan,
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1991; Stocker et al, 1999a; Faber & Sah, 2002). However, there are conflicting reports 

as to whether or not SK channels play a similar role in DRG neurones. In pigeon 

DRGs, the use of the non-selective Ca2+ channel blocker Co2+ reduces the amplitude of 

the AHP, which is consistent with an SK/DC-like component (Gorke & Pierau, 1980). 

In addition, Co2+ also blocks a prominent outward current in guinea-pig DRG cells 

(Kameyama, 1983). Several groups have also described AHPs sensitive to apamin. 

Tokimasa et al, (1990) made voltage-clamp recordings using bullfrog DRGs and 

showed that an outward current lasting several hundred milliseconds was reduced to 

-25% of the control value in the presence of 3 nM apamin. In rat DRGs, some authors 

report AHPs that were abolished by apamin (Amir & Devor, 1997; Gold et al, 1996a, 

Luscher et al, 1994). There are, however, a number of studies which contradict much 

of this data. Villiere & McLachlan (1996) found that very few medium duration AHPs 

in different sized cells were sensitive to block by Co2+ and those cells that were 

sensitive only showed partial block. This would suggest that the conductance 

underlying AHPs in DRG cells is probably due to something other than Kq, channels. 

Furthermore, Abdulla & Smith (2001) report that apamin application has little or no 

effect on the number of action potentials evoked in dissociated DRG neurones, again 

supporting the idea that SK channels are not involved in the generation of the medium 

duration AHP seen in these cells.

4.4.2.1 Pharmacology o f mAHPs in DRG cells from v l 7 rats

In order to determine whether there was any involvement of SK channels in the mAHP 

in DRG neurones, UCL 1848 was used a concentrations of 10 nM and 50 nM, which are 

known to block both cloned and native channels (Benton et al, 1999; Shah & Haylett, 

2000a; Hosseini et al, 2001; Shah et al, 2001). Only one of twelve cells showed an
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AHP which was sensitive to block by 10 nM UCL 1848, and this AHP was only 

partially blocked. There was no inhibition in the remaining cells. Similarly, most cells 

were insensitive to Cd2+ block, indicating that the channels underlying these AHPs were 

not Ca2+-dependent. Finally cells tested with TEA and ChTx showed AHPs insensitive 

to block by either of these drugs confirming that Kq, channels are unlikely to generate 

the majority of mAHPs in isolated p i7 DRG cells. Cells tested with 4-AP also had 

AHPs insensitive to block by this compound, ruling out the involvement of a number of 

voltage-gated K+ channels (Coet zeeetal., 1999).

4.4.2.2 Pharmacology o f mAHPs in DRG cells from adult rats

The results presented in Chapter 5 show that SK channel mRNA and the SK3 protein 

are up-regulated in rat DRGs with age. For this reason, the mAHP in adult (p40-45) rat 

DRG cells was also examined. However, as with the p i7 cells, these AHPs were 

insensitive to 50 nM UCL 1848, 10 pM clotrimazole and 5 mM TEA suggesting that 

they are unlikely to be generated by SK, DC or BK channels respectively. This was 

supported by the fact that only 1 in 3 cells showed any sensitivity to 200 pM Cd2+.

In addition to the blockers used, the mAHP in p40-45 DRG cells was also tested with 

the SK/DC channel enhancer 1-EBIO (300 pM). Assuming that SK channels are present 

and potentially functional in DRG neurones, it could be that they are not normally 

actived during AHP generation, so 1-EBIO was used in an attempt to enhance SK 

channel opening. Only one cell out of eight tested had an mAHP that was enhanced. 

Since a number of cells had AHPs that approached the expected value for EK, this may 

have masked any small increases in potassium conductance in these cells. However, 

given that 1-EBIO should also have prolonged SK channel opening, this would have
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been reflected as a prolonged AHP which was not seen. So it would thus appear that 

only a small proportion of cultured DRG cells have an AHP affected by 1-EBIO.

4.4.2.3 Possible candidates for the channel undertone the mAHP in DRG cells

What then might be the identity of the channel(s) underlying the mAHP in DRG cells? 

One possible candidate is the M-channel which is known to regulate cell excitability in 

a number of different types of neurone (Marrion, 1997; Robbins; 2001). The presence 

of the M-current and proposed M-channel subunits (KCNQ2 and KCNQ3) have 

recently been demonstrated in rat DRG neurones (Passmore et al, 2003). It is already 

known that M-channels make a significant contribution to the mAHP seen in 

hippocampal neurones (Storm, 1989; Dutar & Nicoll, 1989), thus it is feasible that they 

have a similar role in DRG neurones. However the IC50 for TEA of KCNQ2/3 

heteromers is in the low millimolar range (3.8-4.7 mM; Wang et al., 1998; Hadley et 

al., 2000; Passmore et al., 2003), thus it should have been possible to observe some 

blocking effect of TEA at a concentration of 5 mM. It would thus appear that the M- 

channel does not play a major role in AHP generation.

Another potassium channel which may be involved in mAHP generation is the KNa 

channel which is activated by a rise in intracellular Na+ and Cl' (Bhattachaijee et al., 

2003; Yuan et al., 2003). Franceschetti and colleagues (2003) examined the properties 

of medium duration AHPs (-200 ms long) in intrinsically bursting neurones of the 

neocortex. They found that substituting extracellular NaCl with LiCl reduced the 

amplitude of AHPs in these cells which had the effect of increasing neuronal firing 

frequency. This has led to the suggestion that KNa channels may underlie AHPs which 

regulate the rate of firing in some neurones. Cloned KNa channels are insensitive to 

high concentrations of blockers such as ChTx (100 nM) and apamin (100 nM), and are
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also relatively insensitive to external TEA with currents showing little or no inhibition 

at 1 mM (Bhattachaijee et al., 2003). In this respect Kn8 channels have a profile which 

is consistent with the channel underlying mAHPs in DRG cells, and are thus another 

potential candidate.

Finally, Wittekindt et al. (2004) have recently described an apamin and scyllatoxin- 

insensitive SK3 splice variant which remains sensitive to Ca2+. This isoform may 

account for the mAHPs that were sensitive to Cd2+ or 1-EBIO but insensitive to UCL 

1848.

4.4.2.4 Pharmacology of the sAHP in DRG cells

In addition to the mAHP, some DRG neurones also exhibited a sAHP which was 

usually best seen in response to a train of action potentials. As with the sAHP in other 

types of sensory neurone, the amplitude and duration of this sAHP frequently increased 

with increasing numbers of action potentials (Cordoba-Rodriguez et a l 1999). Based 

on the pharmacological properties, three types of sAHP were observed in DRG cells. 

The first type was only seen in A-type neurones (with cell diameters >35 pm) and was 

insensitive to UCL 1848, TEA and Cd2+ but could be blocked by UCL 2027. One 

common feature of the sAHPs reported to date is that they are modulated by 

neurotransmitters (Vogalis et al., 2003). The sAHP seen in large DRG neurones was 

unusual as it was insensitive to histamine. One possibility for the origin of this AHP is 

the Na+ -K+ ATPase, which is reported to underlie hyperpolarisations following multiple 

action potentials in spinocerebellar and motomeurones of the cat (Kuno et al., 1970; 

Kemell & Monster, 1982).

A second type of sAHP, observed in C-type neurones, was blocked by 200 pM Cd2+ 

implying that it is Ca2+-dependent. This result agrees with previous data which showed
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that very long duration slowly decaying AHPs in C-fibre neurones could be blocked by 

Co2+ (Villiere & McLachlan, 1996). The Ca2+-dependent sAHP reported here was also 

insensitive to 5 mM TEA and 10 nM UCL 1848. Thus the characteristics of this sAHP 

are more typical of the sAHPs known to produce spike-frequency adaptation in other 

neurones (Sah, 1996; Sah & Davies, 2000) and the underlying conductance is unlikely 

to be due to SK channel opening (Vogalis et al., 2003; Bond et al., 2004; Villalobos et 

al., 2004). Interestingly, Gold and colleagues (1996a) found that sAHPs in DRG cells 

were sensitive to block by apamin. However, the relatively high concentrations of 

apamin used (1 pM) may have had a non-specific blocking effect on the channels 

underlying the sAHP.

There was also a third type of sAHP detected in isolated rat DRG cells. It too was 

seen in C-type neurones and was insensitive to UCL 1848 and ChTx though blocked by 

UCL 2027. What was particularly striking about this sAHP, however, was the blocking 

effect of 5 mM TEA which almost completely abolished the sAHP leaving just a small 

insensitive component. A similar effect was seen when histamine was applied. A TEA- 

sensitive sAHP has, to my knowledge, not previously been described. The sensitivity to 

such a low concentration of TEA would suggest that the channels underlying this AHP 

were voltage-gated. However, most channels of this type would not be expected to be 

active at such negative membrane potentials.

Certain KCNQ subunit proteins are known to form channels that are sensitive to TEA 

and the most sensitive of these is KCNQ2 (IC50 0.1-0.3 mM; Hadley et al., 2000; 

Shapiro et al, 2000). This sensitivity has been attributed to a tyrosine residue in the 

pore loop (Wang et al., 1998). KCNQ3 subunits, which have a threonine in the 

corresponding position, are highly insensitive to TEA giving an IC50 value of > 30 mM 

(Wang et al., 1998; Hadley et al., 2000; Shapiro et al., 2000). Thus the intermediate
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sensitivity of the channels formed when KCNQ2 and KCNQ3 genes are co-expressed is 

likely due to arise from co-assembly of the two different subunit proteins (Wang et al, 

1998; Hadley et a l, 2000)

Several factors point to a role for KCNQ2/3 channels underlying the TEA-sensitive 

sAHP. Firstly several studies report that heteromeric KCNQ2/3 channels are blocked 

by relatively low concentrations of TEA (IC50 of 3.8-4.7 mM; Wang et al, 1998; 

Hadley et al, 2000; Passmore et a l, 2003). This may account for the small component 

of the sAHP which remained after applying 5 mM TEA; a higher concentration of the 

drug may have blocked the AHP more fully. Secondly, M-currents are known to be 

attenuated by a number of agonists which bind to G-protein coupled receptors 

including: substance P (Simmons et al, 1994), glutamate (Choi et al, 1996), bradykinin 

(Cruzblanca et al, 1998) and angiotensin (Shapiro et a l, 1994). The TEA-sensitive 

sAHP was significantly reduced by histamine which has also been suggested to inhibit 

M-channel activity via HI receptors (Guo et al., 2002).

In addition to the pharmacology, it is necessary to consider the kinetics of the channels 

underlying the TEA-sensitive sAHP. Recent work on KCNQ2 has shown that there are 

a number of possible splice variants and that transcripts for different isoforms could be 

detected in rat SCG tissue (Pan et al, 2001). One of the intriguing aspects of this work 

was that expressed channels containing exon 15a were found to have much slower 

kinetics than the other isoforms (decay time constants of slow components of activation 

and deactivation were -1600 and -500 ms respectively; Pan et al, 2001). This held 

true when such channel proteins were co-expressed with the KCNQ3 subunit proteins; 

heteromeric channels activated and deactivated 2.5 times more slowly than those 

formed with the other isoforms (Pan et al, 2001). Taken together, these reports and the 

results presented in this chapter provide evidence for a novel sAHP in DRG neurones
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which might well be generated by heteromultimers of KCNQ2 (containing exon 15a) 

and KCNQ3 subunits. The possibility that this is the case could be further explored by 

testing DRG sAHPs with selective blockers of the M-current, such as linopirdine (Aiken 

et al., 1995; Lamas et al., 1997) and XE991 (Wang et al, 1998).

4.4.3 Pharmacology of AHPs in nodose ganglion cells

In addition to the work done on rat DRG cells, a series of experiments was also carried 

out using guinea-pig nodose ganglion neurones in culture. Following a train of seven 

action potentials, -25% of nodose neurones exhibited a robust sAHP. As with the 

sAHPs in DRG neurones, the amplitude and duration of these AHPs increased when the 

cell was stimulated to fire increasing numbers of action potentials. This is in accord 

with the idea that more action potentials increase intracellular Ca2+ concentrations 

further, thus increasing the number of active channels and/or open probability of the 

channels underlying the sAHP (Cordoba-Rodriguez et al, 1999).

As also reported by others, the sAHP in nodose neurones was sensitive to block by 

histamine (Undem & Weinreich, 1993; Jafri et al., 1997) and bradykinin (Weinreich, 

1986; Weinreich et al., 1995), both of which are believed to regulate the sAHP via G- 

protein coupled receptors. The sAHP was insensitive to UCL 1848, which is consistent 

with the report that this sAHP was also insensitive to 100 nM apamin (Cordoba- 

Rodriguez et al., 1999).

The sAHP in nodose neurones was also tested with the clotrimazole analogue UCL 

2027 which blocked the AHP in a concentration-dependent manner. There are, as yet, 

no high affinity sAHP specific blockers, however, this compound has previously been 

shown to block the sAHP in hippocampal pyramidal neurones with an IC50 of -1 pM 

(Shah et al., 2001). In nodose ganglion neurones this value was considerably higher at
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6.0 ±1.4 jiM. One interpretation of this is that it reflects differences in the properties of 

the channels underlying the sAHP in these two cell types. In hippocampal neurones, 

UCL 2027 appeared to show specificity for the current underlying the sAHP in that it 

did not have any effect on Ca2+ entry, the mAHP or currents generated by recombinant 

hSKl or rSK2 channels expressed in HEK 293 cells (Shah et al, 2001). This led to the 

tentative suggestion that UCL 2027 may be a specific blocker for the channel 

underlying the sAHP and may thus provide a useful tool in attempting to ascertain the 

identity of this channel. However, the effects of UCL 2027, described in the work 

presented here, appear to be less specific. For example, this compound almost 

completely abolished three types of sAHP seen in DRG neurones, which otherwise had 

clearly different pharmacologies. In addition, high concentrations (>10 pM) of UCL 

2027 tended to produce a significant depolarisation of the resting membrane potential. 

Shah et al (2001) also reported a small reduction in the outward holding current seen in 

hippocampal cells clamped at -50 mV. Given that UCL 2027 was developed from a 

highly non-selective base compound, namely clotrimazole, which has a number of 

wide-ranging effects on K+ channels (Brugnara et al, 1993; Rittenhouse et al, 1997; 

Wu et al; 1999; Hatton & Peers, 1996) Ca2+ channels (Thomas et al, 1999) and 

cytochrome P450 (Kahl et al, 1980) it is possible that it exerts its effects via a variety 

of targets possibly including both ion channels and second messenger systems.

4.4.4 Staining for SK/IK channel proteins in nodose neurones 

Staining of guinea-pig nodose ganglion neurones showed a small but detectable signal 

for the SK3 channel protein, though this was only seen with the Chemicon antibody. 

While both the M75 and Chemicon antibodies recognise a similar region of the SK3 

protein sequence, the Chemicon antibody has an epitope with an additional 5 amino

193



acids. This may account for the difference in staining seen with the two antibodies. 

There was no positive signal seen with the anti-SKI, SK2 or IK channel antibodies.

There were no full guinea-pig SK channel protein sequences available to determine 

whether the antibodies would be expected to recognise them, although there was a 

partial SK2 sequence. To assess the likelihood of antibody recognition, a number of SK 

channel protein alignments were made using peptide sequences from different species. 

A comparison of the regions, in which the epitopes for the different antibodies lie, can 

be seen in Figure 4.27. There was also a predicted peptide sequence available for the 

guinea-pig IK channel protein (clone obtained from guinea-pig taenia by Dr Ramine 

Hosseini, Department of Pharmacology, UCL). The C-terminal region of this protein 

does differ from the epitope for the M4 antibody: 

guinea-pig C-terminal A A L G P Q Q L P A P S Q E A T

M4 epitope C A L G P R Q L P E P S Q Q S K

From the alignments, it can be seen that the epitope regions for the anti-SK2 and -SK3 

antibodies are highly conserved amongst mammalian species, so these antibodies should 

also be suitable for identifying the guinea-pig channel proteins. Indeed, the Chemicon 

anti-SK3 antibody does seem to produce a punctate staining pattern in the region of the 

cell membrane. However, in the case of the SKI and IK channel proteins, a negative 

result would be likely to arise from a lack of antibody specificity for the guinea-pig 

peptide sequence, even if they are expressed in the nodose neurones.

In any event, in view of the lack of effect of 10 nM UCL 1848 on the sAHP in nodose 

neurones, it is unlikely that SK channels play a role in sAHP generation. There has 

been very little reported in the literature about the nature of the mAHP seen in nodose 

ganglion neurones. Cordoba-Rodriguez et al (1999) found that these 50% of these 

AHPs were Ca2+-sensitive and blocked by 10 mM TEA and have thus suggested that the
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channel responsible is the BK channel. However, the duration o f the AHP (50-300 ms) 

lies in the range o f a typical apamin-sensitive AHP. This may present a role for the 

SK3 channel protein which is apparently expressed in some nodose ganglion neurones 

(Figure 4.26). It would be interesting then, in future experiments, to test the effects o f  

UCL 1848 and apamin on the nodose ganglion mAHP.

r a t  SKI ALPSLIAQAICPLPPPWP GPSHLTTAAQSPQSHWLPTTASDCG 536
mouse SKI ALPGLIAQAICPLPPPWP GPGHLATATHS PQSHWLPTMGSDCG 580
human SKI ALPGLIAQAIRPPPPPLPPRPGPGPQDQAAR^^^^^^^H 561

m ouse SK2 
Rat SK2
g u in e a - p ig  SK2 
human SK2 
Cow SK2 
C h ick en  SK2 
T rou t SK2

RQQQRDFIETQMENYDKHVSYNAERSRSSSRRRRSSSTAPPTSSEŜ  
RQQQRDFIE  T QME N Y DKHVTYNAE RS RS S 5 I^ ;^ ^ S S T A P P f.S S S K
RQQQRDFIEAQMENYDKHVTYNAERSRSSSRRRR------------------------
RQQQRDFIEAQMESYDKHVTYNAERSRSSSRHHHHHIHplfiHj 
RQQQRDFLEAQMDNYAKHIPYDAERSRSSS?<RRRSSSTAPPTSSESS 
SQQHRDFLEAQIQNYDKHVTYSAERSRSLSf\RRRSSSTAPPTSSES3 553 
SQQHRDFLEVQLQPYDKHS — PERSQSVSRRR-SSSTAPPTSSESl 545

human SK3 
P ig  SK3 
mouse SK3 
R at SK3 
T ro u t SK3

DTSGHFHDSGVGDLDEDPKC 
DT SGMFHDSGVGDLBEDPKC

PCPSSGDEQQQQQQQQQQQQPPPPAPPAAPQQPLGPSLQ 60
PCPSSGDEQQQQQPP-------PPPPPPAPPAAPQQPPGPPLQ 57
PCPSSGDEQQQQQQP-----------PPPPAPPAVPQQPPGPLLQ 55
PCPSSGDEQQQQQQP-----------PPPSAPPAVPQQPPGPLLQ 55

-MPKASLPKLPLSSVGGQPLPPLPNALHPTSTPLSS-------- CLGSQHSLSGDNSPVYNALF 55

Figure 4.27 Sequence alignments o f SK peptide sequences from different species in the epitope 

regions. The C-terminal epitope region for the anti-SKl (L I55; region seen in pink) antibody appears 

to be quite different between three species. The SK2 (blue) and SK3 (green) epitope regions, however, 

appear to be highly conserved between the different species. By extension, the guinea-pig SK2 and 

SK3 sequences in these regions are likely to be very similar and the antibodies should be able to detect 

the channel proteins. Genbank accession numbers for rat, mouse and human SKI sequences were 

NP_062186, AAG43216 and AAB09562 respectively. For SK2 accession numbers for mouse, rat, 

human, cow, chicken and trout were AAM88568, AAB09563, AAK84039, BAD08234, NP 990129 

and AAK39560 respectively. Genbank accession numbers for human, pig, mouse, rat and trout SK3 

were NP_740752, NP_999150, NP_536714, AF292389 and AAK39561 respectively.
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Chapter 5

Developmental regulation of SK/IK channel gene 

expression in DRGs

5.1 Introduction

This chapter describes quantitative PCR (qPCR) and immunofluorescent antibody 

staining experiments designed to establish which SK/IK proteins are expressed in rat 

DRG neurones and also to determine whether SK/IK channel expression changes with 

age.

The developmental regulation of SK channels has previously been described in the 

cerebellum (Cingolani et al., 2002), the retina (Klocker et al., 2001) and in 

motomeurone terminals at the neuromuscular junction (NMJ; Roncarati et al., 2001). 

However, to date, there have been no comparable studies of SK channels in neurones in 

sensory pathways.

In cerebellar Purkinje neurones, SK2 expression has been shown to be down-regulated 

with age, and it has consequently been suggested that SK2 plays an important role in 

regulating Ca2+ transients during the early stages of development thus contributing to 

the process of maturation (Cingolani et al., 2002).

In retinal ganglion cells SK2 shows steady up-regulation within the first eight days 

following birth (Klocker et al., 2001). A third situation exists in motomeurone 

terminals at the neuromuscular junction. SK3 is absent from the NMJ until p35, when a 

clear immunofluorescent signal can be detected (Roncarati et al., 2001). As NMJ 

maturation is believed to be functionally complete at this time it has been suggested that
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SK3 probably does not play a role in developmental changes in motomeurones 

following birth (Navarrete & Vrbova, 1993; Roncarati et al., 2001).

In Chapters 3 and 4 1 have already demonstrated that SK3 immunoreactivity is present 

in DRG cells from a pi 7 animal using fluorescent antibody staining (see Chapter 3) so 

to look at possible developmental changes, SK channel expression was also examined at 

two time points either side of this age group i.e. p7 and p40-45. This also covers the 

range of ages used in other SK developmental studies reasonably well. The aim was to 

determine whether SK/DC channels were up- or down-regulated and therefore to 

establish whether, functionally, they might be more important at a certain ages.

5.2 Results

5.2.1 SK/IK channel mRNA expression in DRG cells

5.2.1.1 Positive controls usin2 plasmid DNA

The levels of mRNA present in DRG cells were determined by reverse transcribing the 

RNA to produce complementary DNA (cDNA) and by using quantitative PCR (qPCR) 

as previously described (see Methods, Chapter 2). Positive controls were first carried 

out using plasmids containing each of the SK channels or in the case of the IK channel, 

a small fragment of DNA containing the amplicon for the DC primer/probe set. The 

results are shown in Figure 5.1 where it can be seen that each set of primers and probes 

correctly amplified the target without producing any significant amplification of the 

other control DNAs. Thus, all primer-probe sets appeared to be specific for their 

targets.
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Figure 5.1 Positive controls for qPCR results show that the probes selectively amplify the 

appropriate gene. SK plasmids (2 ng) and the IK fragment were run with primers and probes that 

should amplify all variants (AV) of SKI (A and B), SKI variants containing exon 7 (C), SK2 (D), 

SK3 (E) and IK (F). In each case the appropriate DNA was amplified, while levels o f the other 

control DNAs were all <1500 copies indicating the specificity o f each primer and probe set for its 

target.
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5.2.1.2 SKJIK channel transcripts found in DRG and other tissues 

Choice o f tissues

The next experiments were carried out using a variety of rat tissue samples. Positive 

controls in the form of HEK 293 cells transfected with the rat forms of SKI, SK2 and 

SK3 were used. In addition to DRGs, a number of tissues, reported in the literature as 

expressing certain SK/IK channel genes, were also used as positive controls. These 

included both whole brain and hippocampal tissue which have been shown to contain 

mRNA for SKI, SK2 and SK3 (Kohler et al, 1996; Stocker & Pederzani, 2000; Rimini 

et al, 2000; Tacconi et al., 2001) and the colon, which has been reported to express the 

IK channel gene (Logsdon et al, 1997; Vandorpe et al, 1998). Finally, adrenal gland 

samples were obtained as apamin binding and northern blot studies have shown that 

SK3 mRNA is abundant in rat adrenal gland (Habermann & Fischer, 1979; Hosseini et 

al., 2001).

Controls

The qPCR results from all of these samples were normalised to levels of the house­

keeping gene (3-actin. Figure 5.2 shows the number of copies of mRNA for each gene 

per 100,000 copies of the p-actin gene. Each primer/probe set appeared to be highly 

specific for its target. This can be seen from the results generated using mRNA from 

untransfected HEK 293 cells and those transfected with different SK plasmids. 

Untransfected HEK 293 cell cDNA was not amplified using any of the primer-probe 

sets. However, cDNA from cells expressing one of the plasmids, for example SK2, was 

selectively amplified by the SK2 primer/probe set whilst cDNA from HEK 293 cells 

transfected any of the other plasmids were not. Thus all primer/probe sets specifically 

amplified their targets. However, absolute copy numbers from these HEK cell control
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samples must be interpreted with caution as they depend on the transfection efficiency 

of the HEK 293 cells with each of the plasmids, which is variable. For example, SK3 

mRNA levels in hippocampus appeared to be roughly equal to those in SK3 transfected 

HEK 293 cells (Figure 5.2). Although SK3 mRNA levels are high in the hippocampus, 

it may well be that the transfection efficiency was low, so that the comparison with 

HEK cells is not very informative.

Tissue results

In contrast to the other tissues used in this study, DRGs seemed to show fairly high 

levels of expression for SKI (all variants and those containing exon 7), and for the SK2, 

SK3 and IK channel genes (Figure 5.2). These qPCR reactions demonstrate that the 

primer/probe sets amplify cDNA obtained from physiological levels of mRNA in those 

tissues. As expected SKI (all variants and those including exon 7), SK2 and SK3 were 

all expressed in the whole brain and hippocampal samples (Kohler et al., 1996; Stocker 

& Pederzani, 2000; Rimini et al., 2000; Tacconi et al., 2001). More specifically, there 

appeared to be a very high level of SK3 expression in the hippocampus (>104 copies). 

There were also very low levels of IK channel cDNA seen in these samples. As 

expected, from other work, it was possible to detect comparatively high levels of IK 

channel cDNA from the colonic tissue sample (Logsdon et al., 1997; Vandorpe et al., 

1998). There was, in addition, a small amount of SK3 expression, but there was no sign 

that SKI or SK2 cDNAs were present.

Adrenal gland tissue from a p i7 animal showed only low levels of SKI, SK3 and DC 

gene expression; the estimated number of mRNA copies being a few hundred in each

200



Co
pi
es
 o
f 
RN
A/
10
0,0

00 
co
pi
es
 p

ec
ti
n 

Co
pi
es
 
of 

mR
NA

/1
00,

000
 
co
pi
es
 
p-a
cti
n 

Co
pi
es
 
of 

mR
NA

/1
00,

000
 c

op
ie
s 

p-
ac
ti
n

60000

50000

40000

30000

20000

10000

25000

15000

10000

5000

SK1-AV1

in in
5 B

Tissue sample

SK1-AV2

I  S 8 8 2 1 !  3 3 
s s s e f i s s

C
’g  160000 
9

140000

120000
0
g  100000 
o _

g  80000
T“

1  60000

E 40000
*5

20000a
a
3 0

SK2

Tissue sample

Tissue sample

^  12000-

2  10000

g  6000

fi 3

Tissue sample

10000-

8000-
|

6000-

4000-

2000-

0-

SK1 exon 7

to to to
5 B BX I X
3 5 3

'■g 5000

■5 1000

Tissue sampleTissue sample

Figure 5.2 Levels of SK/IK channel mRNA expressed in different tissues detected by qPCR. 

Tissue samples were run with the six different primer/probe sets alongside cDNA from HEK 293 

cells transfected with SK/IK channel constructs. In addition to the DRG samples, whole brain and 

hippocampal cDNA was included as a positive control for SKI, SK2 and SK3, adrenal gland 

cDNA for SK3 and cDNA from colon tissue was included as a positive control for IK channel gene 

expression. 2 q j



case. SK2 mRNA, on the other hand, was present at much higher levels suggesting that 

it may be more important in the adrenal gland than the SKI, SK3 or IK channels.

5.2.2 Increases in mRNA levels of SK/IK channels in DRG and adrenal eland tissue

Figure 5.3 shows the qPCR results from DRG and adrenal gland tissues from p7, p i7 

and p40-45 aged animals. All SK channel cDNAs could be detected in rat DRG tissues 

from all ages. There was very little amplification of IK channel cDNA from p7 DRG 

tissue, but there are strong detectable signals for IK message at ages p i7 and p40-45. 

For each primer-probe set, it was possible to see a clear increase in mRNA levels 

between p7 and p i7, and a further increase between p i7 and p40-45 (see Table 5.1).

In the adrenal gland the SKI AVI primer/probe set fails to detect any cDNA from p7 

or p i7, although the SKI AV2 set does seem to amplify a small amount of cDNA 

reflecting <1000 copies per 100,000 copies of p-actin for both ages. Similarly, there is 

only a very weak signal for IK channel mRNA at ages p7 and pi 7. In contrast to the 

results for DRG tissues, there was no obvious difference in SK/IK channel message 

between the ages of p7 and p i7, with the exception of SK2. However, there was a clear 

increase in mRNA levels from pl7 to p40-45. So SK/IK channel gene expression 

appears to increase with the age of the animal in both DRG and adrenal gland tissues.
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Figure 5.3 SK/IK channel mRNA expressed in adrenal gland and DRG tissues for three 

different age groups. Adrenal gland and DRG samples were obtained from p7, p l7  and p40-45 

rats. These were run with the six different SK/IK primer-probe sets (described in Chapter 2).
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Primer/probe set
-fold increase of mRNA 

from p7 to p17
-fold increase of mRNA from 

p17 to p40-45
SK1 AV1 1.8 5.0
SK1 AV2 4.3 1.8

SK1 exon 7 7.6 2.4
SK2 3.4 2.9
SK3 1.2 4.0
IK 16.9 3.8

Table 5.1 Increases in levels of SK/IK channel mRNA in rat DRGs with age. There is an 

overall increase in the mRNA copy number between p7 and p l7  animals and a further increase 

between p i7 and p40-45 aged rats.

5.2.3 Reproducibility of qPCR results

The qPCR results presented so far in this chapter represent preparations from a single 

animal. To examine the variability of this procedure, the experiments using pi 7 adrenal 

gland and DRG tissue were repeated a further two times. Figure 5.4 shows the results 

from Figure 5.3 with the data from three different p i7 aged animals. The results 

suggest that the degree of variability seen in levels of mRNA from three different 

animals should not affect the overall trend of an age-dependent increase in SK/IK 

message in DRG tissue. Although there is little difference between adrenal gland 

results at p7 and p i7, there is a clear difference between mRNA levels at p i7 compared 

with p40-45, again demonstrating that message increases as the animal reaches 

adulthood. One possible exception is SK2 where the data show a fairly high scatter and 

only a modest age-dependent increase.
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Figure 5.4 The variability o f the results for different animals should not affect the overall 

trend of an age-dependent increase in DRG mRNA levels. The results from adrenal gland and 

DRG samples obtained from p i 7 rats [p i7 (i), (ii) and (iii)] show data from three different 

animals. With the degree of variability seen, there is still trend for an increase in mRNA levels 

with an increase in age with rat DRG tissue.
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5.2.4 SK/IK channel proteins detected in DRG cells

Having examined the levels of mRNA, antibodies (described in Chapter 3) were used 

to determine whether the SK/IK channel subunit proteins could be detected in DRG 

cells. This was necessary because while mRNA levels give some indication as to which 

genes may be important in a certain tissue type, they do not always relate well to the 

levels of protein expressed (see e.g. Gygi et al., 1999).

For these experiments, cells were co-stained with the anti-peripherin antibody to 

distinguish between small C-type cells, which are peripherin positive, and larger A-type 

cells, which are peripherin negative (Ferri et al., 1990; Troy et al., 1990; Goldstein et 

al., 1991). Figures 5.5, 5.6, and 5.7 show staining results for cells obtained from p7, 

p i7 and p40-45 aged animals respectively. Cells from all three age groups were stained 

with anti-SKl, -SK2 and -SK3 antibodies. P40-45 cells were also stained with the anti- 

IK antibody. There was no positive signal seen for SKI (using the rb200 antibody), 

SK2 (using the Ml antibody) or IK (using the R212 antibody). (The appearance of a 

faint positive signal for any of these SK/IK channel proteins reflects bleed-through from 

the laser for the FITC signal. When this laser was turned off, there was no red signal 

seen.) It is, however, possible to detect staining for the SK3 channel protein, 

particularly in cells from adult rats. Not all cells are SK3 positive, but those that are can 

be seen in both peripherin-positive and peripherin-negative cell populations, indicating 

that SK3 is expressed in C- and A-type neurones.
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D Control

Figure 5.5 SK channel antibody staining in p7 DRG cells. A, staining seen with the anti-SKl 

antibody rb200; there is no clear positive signal. B, cells stained with the M l (anti-SK2) antibody. 

As with SKI, there is no positive staining seen for the SK2 protein. C, SK3 immunofluorescence can 

be detected in a small number of cells stained with the M75 antibody. One example of this is 

highlighted by the arrow and shows a weak but detectable signal at or near the cell membrane. D, 

negative controls, cells stained with the secondary antibodies alone (Cy3 and FITC labelled a and b 

respectively). In A, B and C, a shows staining with the anti-SK channel antibodies, b  shows staining 

for peripherin. c shows the brightfield and d the overlay.
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D Control

Figure 5.6 SK channel antibody staining in p l7  DRG cells. A, staining seen with the anti-SKl 

antibody rb200. B, cells stained with the M l (anti-SK2) antibody. C, staining seen with the anti- 

SK3 antibody (M75). The pattern o f staining seen in cells from a p i 7 animal is the same as for a p7 

animal. There is no staining seen for SKI, or SK2. However there is a bright positive signal with 

the SK3 antibody, highlighting protein close to the cell membrane in some, but not all, cells. In 

panels A, B and C, a  shows staining with anti-SK channel antibodies and b with the anti-peripherin 

antibody. D, shows negative controls; cells stained with the secondary antibodies alone (Cy3 and 

FITC labelled, a  and b respectively). Brightfields (c) and overlays (d) are also shown.



Control

Figure 5.7 SK/IK antibody staining in p40-45 DRG cells. A, staining seen with the anti-SKl antibody rb200. B, 

cells stained with the M l (anti-SK2) antibody. C, pattern of staining seen with the anti-SK3 (M75) antibody. D, cells 

stained with the R212 anti-IK antibody. Cells were co-stained with anti-SK or IK channel antibodies (a) and an 

antibody to peripherin (b). There is no detectable signal for SKI, SK2 or IK. However there is a bright positive stain 

from the anti-SK3 antibody in a large number of cells from adult animals. The SK3 channel protein appears to be 

expressed in peripherin-positive and peripherin-negative cells indicating that it is present in A-type and C-type cells. 

E, negative controls, cells stained with the secondary antibodies alone (Cy3 and FITC labelled). Brightfields (c) and 

overlays (d) are also shown.
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5.2.5 Quantification of the SK3 changes in DRG cells with age 

To see whether the increases in SK/IK channel mRNA reflected changes in the amount 

of translated protein in DRGs, cells isolated from p7, p i7 and p40-45 animals and 

stained with the anti-SK3 and peripherin antibodies were examined more closely. This 

is because the increase in SK3 signal could occur in one of several ways:

1. There might be no change in the number of cells staining positively for SK3, just a 

change in the intensity indicating that the same proportion of cells express higher levels 

of SK3.

2. There could be a greater number of cells expressing SK3 as the animal ages.

3. It could be due to a combination of both 1 and 2.

The co-staining with peripherin allows identification of A- and C-type neurones thus 

making it possible to see whether there is any change in the type of cell that expresses 

SK3

Figure 5.8 shows typical examples of SK3 antibody staining for the three different age 

groups. As before it is possible to see that SK3 appears to be detected in both 

peripherin-positive and peripherin-negative cells. What is particularly striking is that 

not only does the intensity of staining appear brighter, but the number of cells that 

appear to be SK3 positive increase with the age of the animal. The plot in Figure 5.8 

(D) shows the relative proportions of SK3-positive cells for the three different age 

groups. At p7, only 9% of DRG cells showed a detectable SK3 signal. At p i7, the 

number of SK3 antibody-positive cells increased so that 26% gave a positive signal and 

at p40-45 this value rose to 53%. The proportion of SK3 antibody-positive cells that 

were also peripherin-positive was the same for all three age groups, so of all the cells 

that stained positively for SK3, -40% were also positive for peripherin. The different 

populations of cells are shown in Table 5.2.
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A

□  SK3-negative {peripherin positive and 
negative)

■  SK3-posltive peripherin-negative

■  SK3- and peripherin-positive

p7 p17 p45
Postnatal age of animal (days)

Figure 5.8 Age-dependent increase in SK3 staining in DRG cells. Cells were stained with the anti- 

SK3 antibody M75 (a) and the anti-peripherin antibody (b). Brightfields (c) and overlays (d) are also 

shown. A, SK3 staining in cells from a p7 animal, a weak positive signal can be detected in a small 

number of cells. B, cells from a p i 7 animal stained with SK3 show a more intense signal than p7 cells. 

There is also a higher proportion of SK3-positive cells. C, cells from p40-45 animals show a bright and 

easily detectable signal for SK3 in approximately half o f the cells examined. D, the relative numbers of 

SK3 antibody-positive cells at different ages. At p7 only 9% of cells stained positively for SK3. At 

p i 7 this value increased to 26% and at p40-45 it reached 53%. In each case ~40% of the SK3 positive 

cells also expressed the peripherin protein indicating that SK3 was present in roughly equal proportions 

in A- and C-type cells.
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1 mmunoflu orescence Number of cells counted
p7 p17 p40-45

SK3 and peripherin positive
SK3 positive peripherin negative
SK3 negative (peripherin positive and negative)

2 4 11
3 6 16 

47 28 24

Table 5.2 The number of SK3 positive cells increase with age. However the proportions of 

SK3 antibody-positive cells that are also peripherin positive/negative (C-type or A-type) 

remain the same.

5.3 Discussion

There are two major findings of the work presented in this chapter. The first is that by 

qPCR SK and IK channel mRNA expression can be detected in a number of rat tissues, 

including that from DRG, but only antibodies that recognise the SK3 protein showed 

detectable protein levels in isolated DRG cells. The second is that all SK/EK channels 

show an up-regulation of mRNA levels in rat DRGs with age, and for SK3 this closely 

corresponds with an age-dependent increase in the levels of SK3 staining in DRG cells.

5.3.1 qPCR controls using different rat tissues

Primer and probe sets were initially tested on plasmids; these proved to be highly 

specific for their targets. They also recognised the appropriate cDNAs from mRNA 

obtained from HEK 293 cells transiently transfected with the SK/EK plasmids. In 

addition, they amplified cDNA from tissues expressing mRNA for native channels (see 

Figure 5,2).

5.3.1.1 SK/IK mRNA levels in brain tissues

In accordance with the literature, hippocampal and whole brain tissue showed 

detectable levels of SKI, SK2 and SK3 mRNA (Stocker & Pederzani, 2000; Rimini et
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al., 2000). There were also low levels of IK signal. However, functional IK channels in 

the brain have, to date, only been described in neurones of the rat supraoptic nucleus 

(Greffrath et al, 1998).

5.3.1.2 SK/IK mRNA levels in colon 

As expected, there were high levels of IK mRNA seen in rat colon tissue and there was 

also a detectable amount of SK3 mRNA present. However, there was virtually no SKI 

or SK2 mRNA expression. Several other groups have also reported IK mRNA in 

colonic tissue (Logsdon et al., 1997; Vandorpe et al, 1998) and more specifically in the 

epithelium (Furness et al., 2003; Joiner et al, 2003). Transcripts encoding SK channels 

have also been detected in colonic tissue samples (Joiner et al., 2003). Ro and 

colleagues (2001) found that all subtypes of SK channels can be detected in murine 

colon (relative abundances: SK2 > SK3 > SKI) although apparently very little SK 

channel mRNA is present in canine tissue. Northern blots using rat colon also show 

high levels of SK2 expression (Joiner et al, 2003). There may be several reasons for 

the difference in SK channel levels described here with those reported previously. Ro et 

al. (2001) carried out much of their studies on mouse tissue, and as the work described 

in this chapter involved using rat tissue, the levels of SK channels detected may reflect 

species differences. The work by Joiner et al. (2003), however, was also carried out on 

rat colon, but from adults, and they showed that high levels of SK2 mRNA were 

present, which is in contrast with the work presented here which shows that SK2 cDNA 

is not amplified. This may be explained by differences in the ages of the animals; I 

used adolescent animals (pi7) and, as discussed in this chapter, at least in some tissues 

SK and IK channel mRNA is up-regulated as animals get older. This may be why SK2 

is not detected in p i7 rat colon. Joiner et al. (2003) also report that there is no SK3
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detected, however they use northern blots to look at mRNA expression, which needs 

high levels of starting material to be effective. The qPCR technique is able to amplify 

up small amounts of cDNA thus making it more sensitive, which might explain why, in 

this study, it was possible to detect a low level of SK3 in colon tissue.

5.3.1.3 SK/IK mRNA levels in adrenal zland

Adrenal gland tissue shows very low levels of SKI mRNA compared to the brain and 

hippocampal samples. There was virtually no amplification with the SKI-AVI 

primer/probe set, however there was some amplification with the SK1-AV2 and SKI 

exon 7 primer/probe sets suggesting that low levels of these mRNAs were present. 

There were similarly low levels of SK3 and IK mRNA. In contrast to these results, 

there were high levels of SK2 mRNA suggesting that it may be functionally more 

important than the other SK/EK channels. In fact, a recent study has highlighted a role 

for SK2 channels in the hypoxia-evoked catecholamine release from the adrenal 

medulla (Keating et al, 2001).

5.3.1.4 SK/IK mRNA levels in DRG tissue

The qPCR results for the DRG tissues apparently show high levels of mRNA for all of 

the SK channels and also IK channels. There is very little work showing functional 

expression of IK channels in neurones, however, there is some suggestion of a role in 

AHP generation in neurones of the supraoptic nucleus (Greffrath et al, 1998) so it is 

interesting to find evidence for IK channel mRNA expression in DRG cells.
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5.3.1.5 Levels o f SK channel splice variants

One of the primer/probe sets was designed to detect particular SKI splice variants. 

Alternate splicing of SKI transcripts is predicted to generate 16 different polypeptides 

which could generate considerable functional heterogeneity. Several of the putative 

polypeptides would lead to a loss of the calmodulin-binding domain (CaMBD) and 

these are unlikely to form functional channels. One way this could happen is via the 

loss of exon 7. In the currently described experiments, high levels of rSKl mRNA can 

be detected in whole brain, hippocampal and DRG tissue using primer/probe sets 

designed to recognise all variants of SKI and those containing exon 7. Similar levels of 

these transcripts can be seen in brain and DRG tissue with all three primer/probe sets 

suggesting that there are few or no transcripts lacking exon 7 in these tissues.

Since this work was done, there have also been reports of different splice variants of 

SK3 (Tomita et al, 2003; Kolski-Adreaco et al, 2004; Wittekindt et al, 2004). SK3-1B 

and SK3-1C constitute truncated isoforms of the SK3 channel that lack a region of the 

N-terminus and have been shown to have a dominant negative effect on SK/IK channel 

currents (Tomita et al, 2003; Kolski-Adreaco et al, 2004). However, while message for 

SK3-1B has been detected in the brain, SK3-1C mRNA has so far only been described 

in non-neuronal tissues (Tomita et al, 2003; Kolski-Adreaco et al, 2004). A third SK3 

isoform, which has reported by Wittekindt et al (2004), contains an additional 15 amino 

acids inserted between the S5 and P regions (hSK3-ex4). Transcripts for this protein are 

present in both neuronal and non neuronal tissues. What is particularly interesting 

about this splice variant is that whilst these channels and hSK3 channels are activated 

by similar Ca2+ concentrations, hSK3-ex4 is insensitive to block by high concentrations 

of apamin (up to 100 nM) and scyllatoxin (up to 500 nM; Wittekindt et al, 2004).
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However, from the current experiments it is not possible to determine the extent to 

which any of these splice variants might be important in DRG neurones.

5.3.2 Age-dependent changes in mRNA levels

The second aim of the work in this chapter was to examine age-related changes in 

SK/IK expression in rats. The results from qPCR experiments indicate that there are 

increases in mRNA levels in rat DRG and adrenal gland suggesting that the importance 

of a role for SK/IK channels may increase with age.

5.3.3 SK/IK channel proteins expressed in cultured DRG neurones

While studies into mRNA levels provide some indication as to which channels might 

be important in certain tissues, when considered alone they are not sufficient to predict 

levels of channel protein translated. Work in yeast comparing protein and mRNA 

abundances suggests that there is not always a good correlation between the two (Gygi 

et al., 1999), so in addition to the qPCR, DRG cells were stained with SK/IK channel 

specific antibodies. Only the anti-SK3 antibody produced clear detectable staining, 

implicating a role for SK3 in DRG cells. However, the optimal antibody concentrations 

were established using transiently transfected HEK 293 cells over-expressing the SK/IK 

channel genes (see Chapter 3). So it is also possible that the other SK/EK channel 

proteins are present but are expressed at low levels and are below the threshold for 

detection in my experiments.

Interestingly, the SK3 protein can be detected in both peripherin-positive C-fibre cells 

and in peripherin-negative A-fibre cells. This suggests that SK3 may have a functional 

role regulating excitability in a range of different types of sensory neurone. As with 

mRNA levels the number of cells staining positively with the anti-SK3 antibodies
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increases with the age of the animal suggesting that the channel becomes more 

important as the animal reaches adulthood.

5.3.5 Possible mechanisms bv which SK/IK channels are uo-reeulated

K+ channel gene expression is extensively controlled. Regulation occurs by a number 

of means including physiological stimuli e.g. hormones, neurotransmitters etc, drugs 

e.g. opioids, and pathophysiological conditions such as hypertension and epilepsy 

(Levitan & Takimoto, 1998). Gene expression can also be altered during development 

to produce other long term effects (Levitan & Takimoto, 1998). Oestrogen has been 

shown to increase SK3 transcription in guinea pig brain (Bosch et al, 2002) and in a rat 

skeletal muscle cell line (Jacobson et al., 2003). As mammalian development and the 

onset of puberty is associated with an increase in sex hormones such as oestrogen, this 

may explain partially why SK3 protein levels in rat DRG cells appear to increase with 

age. However, given that both male and female rats show age-dependent increases in 

SK/IK expression levels, it is unlikely to be the only mechanism. In addition to 

oestrogen, growth hormone (whose levels also increase with age) has been shown to up- 

regulate Kv channel expression (Chen, 2002) providing another possible means by 

which levels of SK channel transcripts could be regulated.

5.3.6 Possible functional significance of SK3 uo-regulation

What might be the functional significance of this age-dependent increase in SK 

channel expression? One of the major differences in the transmission of sensory 

information between neonates and adults lies in the response to nociceptive stimuli. In 

newborns, reflex responses to even innocuous stimuli are greatly exaggerated compared 

with those of adults (Wolf, 1999; Fitzgerald & Jennings, 1999). Sensory neurones,
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which are functional in neonates, have been shown to form connections with dorsal 

horn cells in the spinal cord in the foetus (Wolf, 1999), so one might expect that sensory 

transduction in neonates would be similar to that in adults. However, this is not the 

case. There are several suggestions for the differences in transmission of sensory 

information. These include changes in the glutamate receptor subunits expressed in 

dorsal hom neurones, which alter cell excitability, and functional changes in GABAa 

and glycine receptors of the dorsal hom (Alvares & Fitzgerald, 1999; Pattinson & 

Fitzgerald, 2004). These changes reflect maturation of cells in the spinal cord. 

However, DRGs are also likely to undergo extensive changes during development as 

highlighted by work on GABAa receptors which show different kinetic properties in 

embryonic and adult DRG cells (Valeyev et al.t 2000).

Cutaneous withdrawal reflexes have long been used to provide information on nervous 

sensitivity to nociceptive stimuli and are particularly pronounced in the newborn rat 

(Fitzgerald & Jennings, 1999). Interestingly, this effect begins to change after the first 

postnatal week (Fitzgerald & Gibson, 1984) and thresholds to mechanical skin 

stimulation decrease with the age of the animal (Fitzgerald & Jennings, 1999) until in 

the adult, only noxious stimuli produce a reflex response (Wolf, 1999). It is possible, 

therefore, that SK3 might have some functional involvement in this process because 

these timings correspond reasonably well with the presence of low levels of SK3 

channel protein in p7 cells, which increase as animals get older. Also, the correlation 

with SK3 expression in the “right direction” i.e. increased levels of the potassium 

channel are expected to reduce excitability.

Although the work described here allows one to speculate that SK channels might be 

important to changes in DRG cell function, their physiological role for them is 

examined further in adult animals in the next chapter.
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Chapter 6

SK/IK channel gene expression in rat spinal cord and 

putative role in sensory nerve terminals

6.1 Introduction

This chapter describes results from immunofluorescent antibody staining experiments 

designed to examine the presence and localisation of different SK/IK channel subunit 

proteins in the lumbar region of rat spinal cord. Some of these localisations within the 

spinal cord are compared with those of the vanilloid receptor (VR1 or more recently 

called TRPV1). Also in this chapter results are presented from in vivo recordings made 

to explore a possible physiological role for SK channels in sensory transmission. These 

later experiments were performed as part of a collaboration with Prof Anthony 

Dickenson and Dr. Rie Suzuki (Department of Pharmacology, UCL).

SK channels in DRG cell bodies may be transported to the peripheral and/or the 

central terminals of these neurones. Many of these central terminals appear in the outer 

laminae of the spinal cord where, for example, the vanilloid receptor VR1 appears in C- 

fibre terminals. Even though the results from isolated cells (presented in Chapter 4) 

suggest that SK channels do not play a prominent role, at least in terms of AHP 

generation, in the cell bodies of DRG neurones, these SK channels may still have a 

significant role in sensory transmission at nerve terminals. Other proteins for example, 

the neuropeptide Y receptors Y1 and Y2, are present in both central terminals and DRG 

cell bodies but they appear to have different degrees of influence at these locations 

(Zhang et al., 1994; Brumovsky et al., 2002; Abdulla & Smith 1999). Thus, it is still
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possible that SK channels have a prominent role in regulating sensory transmission even 

if they have very limited activity in cell bodies.

The VR1 receptor, used as a marker for comparison with SK channel antibody 

staining, is a Ca2+ permeable cation channel that opens in response to heat and ligands, 

such as capsaicin, to increase cell excitability (Catrina et al., 1997). It has recently been 

shown to also respond to endogenous ligands, for example, anandamide and eicosanoids 

(Benham et al., 2003). The protein is expressed in small diameter nociceptive nerve 

fibres (Szallasi & Blumberg, 1999) and is not detected in fast conducting A-fibre cells 

or high threshold mechanoreceptive cells (Szolcsanyi et al., 1988). 

Immunocytochemical experiments suggest that the VR1 protein is present not only in 

DRG peripheral terminals but in cell somata, spinal terminals and also post-synaptically 

in dorsal hom neurones of the spinal cord (Tominaga et al, 1998; Guo et al, 1999; 

Valtschanoff, 2001). The pattern of staining for VR1 protein in the spinal cord is 

largely restricted to the superficial laminae I and II where nociceptive afferents are 

expected to terminate (Tominaga et al., 1998; Guo et al., 1999). Because of the 

extensive characterisation of its distribution and its important functional role in sensory 

transmission, the VR1 receptor makes an interesting comparison with SK channels 

when examining protein distributions.

To investigate further SK channel activity in sensory pathways from the periphery to 

the spinal cord, SK channel activators and blockers were applied while in vivo 

extracellular recordings were made from lamina V wide dynamic range neurones. An 

outline of the methods used in these recordings is described later in this chapter. These 

experiments were carried out by Dr Rie Suzuki as part of a collaborative investigation. 

My role in these experiments included design, in the form of drugs selected and the 

concentrations chosen. I also did some of the subsequent data analysis.
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6.2 Results

6.2.1 Controls

Slices were initially stained with secondary antibodies alone to establish background 

levels of staining (see Figure 6,1). The secondary antibodies did not produce any 

specific pattern of staining and low levels of background were observed in all 

experiments.

6.2.2 SK/EK channel staining in the spinal cord

The anti-SK/DC antibodies used subsequent experiments were: rbl96 (N- terminal 

anti-rSKl), rb200 (C-terminal anti-rSKl), Ml (anti-rSK2), M75 (anti-rSK3) and R212 

(anti-rIK). Neither the anti-rSKl antibodies nor the anti-rSK2 antibody produced any 

positive selective staining in spinal cord slices at concentrations used to stain 

transfected HEK 293 cells (see Figure 6,2).

6.2.3 SK3 staining in the spinal cord

Figure 6.3 shows SK3 immunoreactivity in the spinal cord. In sharp contrast to the 

SKI and SK2 channel antibody results, the anti-SK3 antibody produces a bright positive 

signal in the superficial dorsal hom. This fine fibrous pattern of staining is particularly 

pronounced in lamina I and lamina II and probably also extends into lamina m. Dark 

spots in this pattern of staining correspond to the cell bodies of spinal neurones and thus 

the staining is consistent with SK3 protein being present in the incoming DRG 

terminals.

The ventral hom has a quite different pattern of SK3 antibody staining. Certain cells, 

most likely to be alpha motomeurones, show SK3 immunofluorescence in the region of
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Figure 6.1 Secondary antibodies produce very low levels o f background staining in rat spinal cord 

slices. A negative control where slices were stained with the CY3-labelled goat anti-rabbit secondary 

antibody (a) and the fluorescein-labelled goat anti-guinea pig secondary antibody (b) to determine 

levels o f background staining. A brightfield image (c) and overlay (d) are also shown. The 

illustration to the right indicates the region of the spinal cord depicted in the confocal images.

2 2 2



A SK1 (rb196

B SK1 (rb200)

: 1 , b c

Figure 6.2 Anti-SKl and SK2 antibodies do not produce selective positive staining in rat spinal cord 

slices. A, SKI staining seen with the rb l96 antibody. B, SKI staining seen with the rb200 antibody. 

C, SK2 staining seen with the M l antibody. In each case a  shows SK1/SK2 antibody staining using 

the CY3 labelled secondary antibody, b shows the brightfield, and c  shows the overlay. To the right 

of each image is a schematic of the spinal cord showing the region depicted. The scale bar in A also 

applies to B and C. Illustrations to the right show the region of spinal cord depicted.
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the cell membrane. This signal extends beyond the soma into the processes for these 

cells. Finally, there is a strong SK3 antibody signal at or near the plasma membrane of 

the ependymal cells lining the central canal of the spinal cord. These cells are of the 

epithelial type (Bruni, 1998).

In order to examine the localisation of SK3 immunoreactivity more precisely, spinal 

slices were also co-stained with an antibody to the VR1 receptor. VR1 is expressed in 

the nerve terminals of small diameter C-fibre neurones which terminate predominantly 

within lamina I and Hi of the dorsal hom (Tominaga et al, 1998; Guo et al, 1999). 

Spinal cord sections stained with both SK3 and VR1 are shown in Figure 6.4. The 

overlay of the VR1 and SK3 antibody staining shows that in some regions the two 

proteins might be co-expressed in the same nerve fibres. However, there is also 

extensive SK3 immunoreactivity in regions that are VR1-negative suggesting that SK3 

may also be present in A-fibres. For example, within lamina II the regions where SK3 

appears to be expressed alone most likely correspond to the terminals of incoming Ag 

fibres. Where the SK3 antibody staining extends beyond the VR1 staining, deeper into 

the dorsal hom, it may well reflect SK3 expression in large diameter Ap fibres, which 

are known to terminate in lamina HI (Woolf & Fitzgerald, 1986).

The apparent localisation of SK3 in different types of afferent fibre terminals is 

consistent with staining in isolated DRG cells as shown in Chapter 5 and Figure 6.4 B. 

By using peripherin as a marker for C-type neurones it can be seen that SK3 is present 

in the small diameter peripherin-positive cells. There is also strong staining in the small 

and very large diameter A-fibre cells which are peripherin-negative indicating that SK3 

is likely to be expressed in Ag and Ap type cells. In addition, there are some peripherin- 

positive and peripherin-negative DRG cells that do not show a positive signal for SK3.
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Figure 6.3 SK3 antibody staining is seen in several regions o f the spinal cord. In each set o f images a 

shows the SK3 antibody staining, b shows the brightfield and C shows the overlay of the first two images. 

A, SK3 staining in the superficial dorsal hom. There is a bright positive signal in lamina I and a fainter but 

detectable signal in the outer region of lamina II (II0). There is also a strong SK3 antibody signal in the 

inner region of lamina II (11;) which probably continues into lamina III. B, an example o f staining in a large 

diameter neurone in the ventral hom of the spinal cord. Staining can be seen in the region o f the cell 

membrane o f the soma and this extends into the cell’s processes. C, a bright SK3 antibody signal is 

detected at or near the plasma membrane of the ependymal cells lining the central canal. In each case the 

“boxed” region o f the spinal cord diagram indicates the region shown in the staining images.
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A

Figure 6.4 SK3 antibody staining in spinal cord and cultured DRG neurones is consistent with expression 

in both A- and C-type cells. A, spinal cord slices stained with VR1 (a), and SK3 (b). (c) shows the 

brightfield and (d) the overlay. VR1 antibody staining is seen in lamina I and more faintly in lamina Ilj. 

SK3 antibody staining, can be seen in lamina I, II and most likely III as the SK3 immunoreactivity extends 

beyond the VR1 staining (d). The schematic to the right shows the region o f the spinal cord depicted. B 

isolated DRG cells stained with an antibody to the C-fibre marker peripheral (a) and with the SK3 antibody 

(b). The brightfield is shown in (c) and the overlay in (d). SK3 immunoreactivity can be clearly seen in 

both A- and C-type cells, which is consistent with the termination pattern in the spinal cord. Note that this 

pattern o f staining forms an unbroken ring around the DRG cells suggesting that it is unlikely to be due to 

positive staining of satellite cell sheath.
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6.2.4 Staining for other calcium-activated potassium channels

As well as testing for the presence of SK channels, anti-IK and anti-BK channel 

antibodies were used to look for these channel proteins in the spinal cord. The anti-IK 

antibody produced a striking pattern of staining that was quite different to that seen 

using the anti-SK3 antibody. Figure 6.5 shows that the IK channel protein is present in 

a large number of cells in the spinal cord, but it does not seem to localise with incoming 

terminals. The density of these cells becomes slightly reduced at the edges of the dorsal 

and ventral homs, but it is not clear what cell types are involved and no attempt has 

been made to identify them.

As with the SK3 antibody, there is IK immunoreactivity in the ependymal cells 

although the IK antibody staining signal appears to have a more intracellular 

distribution.

The BK channel antibody appears to detect the channel protein throughout the grey 

matter of the spinal cord (Figure 6.6). It may thus be present in the terminals of 

incoming afferent fibres and also in the cell bodies of spinal neurones. The signal only 

appears weaker in two regions of the spinal cord, in laminae I and n o.

227



A

Figure 6.5 The IK channel antibody produces selective staining in the spinal cord. A, IK 

positive staining o f cells in the dorsal hom and B in the ventral hom. C, positive signal seen in 

the ependymal cells surrounding the central canal of the spinal cord. In each case a shows the IK 

channel antibody staining, b shows the brightfield image and c shows an overlay. The schematic 

to the right indicates the region o f the spinal cord depicted.

F igure 6.6 The BK channel antibody produces positive staining throughout the grey matter o f 

the spinal cord. A, positive staining with the anti-BK channel antibody. There is a strong 

positive signal for the BK channel protein throughout the grey matter of the spinal cord. Thus, it 

may be present in incoming afferent terminals and/or in the somata o f spinal neurones. The 

signal is, however, weaker in the region o f lamina I and lamina II0. B, a brightfield image and C 

an overlay. The schematic to the right shows the spinal cord region depicted.



6.2.5 Staining for SKI and SK2 with higher antibody concentrations

It is possible that the anti-SKl and -SK2 antibodies are less sensitive than the other 

anti-Kca channel antibodies and that this is why they failed to produce any positive 

staining in the spinal cord slices. As a result they were also tested at concentrations lOx 

and 50x higher than the original concentrations.

6.2.5.1 rSKl staining at hinh antibody concentrations

Figure 6.7 shows the results of staining with a lOx higher concentration of the rbl96 

and rb200 antibodies. The N-terminal antibody (rbl96) produces a bright positive stain 

of spinal neurones in both the dorsal and ventral horns but there was no fine staining in 

the dorsal hom indicating an absence of SKI in terminating afferent fibres. As with the 

transfected HEK 293 cells the rSKl signal appears to be largely intracellular (see 

Chapter 3). In contrast, there was no selective staining seen in any of the spinal cord 

regions with the C-terminal antibody (rb200).

6.2.5.2 rSK2 stainine at hish antibody concentrations

SK2 staining was only seen when the Ml antibody concentration was increased to 50x 

the original (Figure 6.8). In the dorsal hom, there was a relatively bright signal in the 

region of lamina I, where the incoming C-fibre afferents are found. In the ventral hom 

there appeared to be some selective staining of large diameter cells. However, there 

was no SK2 signal seen in the ependymal cells.
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A

C

Figure 6.7 Staining of spinal sections with higher concentrations of the anti-SKl antibodies. A 

(dorsal horn) and B (ventral horn) show positive staining with the N-terminal anti-rSKl antibody 

rbl96 and C shows a lack o f selective staining with the C-terminal antibody rb200. In each case 

a  shows the antibody fluorescence, b the brightfield image and c  the overlay. Both antibodies 

were used at a concentration ten times higher than that used to stain HEK 293 cells transfected 

with rSK l. The rb l96  antibody produces bright positive staining of the cell bodies o f neurones 

in the dorsal and ventral horns. As expected, the pattern of staining appears to be intracellular. 

In contrast there is no selective positive staining seen with the rb200 antibody (C).
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A

Figure 6.8 Positive staining o f spinal neurones with higher concentrations of the anti-rSK2 

antibody (M l). The M l antibody was used at a concentration fifty times higher than that used to 

stain HEK 293 cells transfected with SK2. A, shows staining in lamina I of the dorsal hom. B, 

shows staining of large diameter neurones in the ventral hom and C shows staining in the region 

of the ependymal cells. In each case a  shows the antibody staining, b shows the brightfield and 

c  the overlay of a  and b. There appears to be a positive SK2 antibody signal in the region of 

lamina I. In the ventral hom, the motomeurones also show signs o f SK2 immunoreactivity. 

However, the ependymal cells are not stained by the antibody.
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6.2.6 In vivo recordings from adult rat spinal cord

Having established that the SK3 protein appears to be expressed in DRG terminals 

from both A- and C-fibres, the next step was to determine what the possible 

physiological role might be. Electrophysiological experiments in DRG cell bodies 

provided little evidence for the contribution of SK channels to the neuronal AHP in 

these cells. However, in vivo recording from lamina V wide dynamic range (WDR) 

neurones (using techniques developed in Prof Anthony Dickenson’s laboratory, in 

UCL) provides another means to explore SK channel function in sensory neurones. The 

method utilises recordings from individual WDR neurones in lamina V which receive 

inputs via second order neurones from all three different types of DRG nerve fibre i.e. 

Ap, Ag, and C-fibre (see Figure 6.9; Dickenson, 1995). Therefore a possible role for SK 

channel modulation can be examined for all sensory modalities.

C-fibre

A5 fibre

Ap fibre (  H  ) (  )

Dorsal root ganglion

Figure 6.9 A schematic representation of the principal connections between primary 

afferents and spinal neurones. In vivo recordings are made from wide dynamic range 

neurones in lamina V (•) . Stimulation of DRG afferents in the periphery affects spinal 

neurone firing generally via second order neurones ( • )  which synapse upon lamina V cells.
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6.2.6.1 Method for in vivo recordings

The in vivo work described in this thesis was designed in collaboration with and 

carried out by Dr Rie Suzuki and Prof Anthony Dickenson (Department of 

Pharmacology, UCL), therefore only an outline of the methods will be provided here. 

For a fuller description of the technique see Urch & Dickenson (2003).

Anaesthetised adult rats (200-250g) were used in all experiments, in accordance with 

Home Office guidelines. The spinal cord was exposed via a laminectomy at vertebrae 

L1-L3. Single-unit extracellular recordings were made from lamina V wide-dynamic 

range neurones using a parylene-coated tungsten electrode (see Figure 6.10). 

Recordings were made from one neurone in each animal and each animal received a 

single pharmacological treatment.

Head stageEarth

Recording electrode
Stimulating electrode

Figure 6.10 A  diagram illustrating the set-up for in vivo recording from anaesthetised adult rats. 

Lumbar regions L1-L3 o f the spinal cord are exposed and extracellular recordings are made from a 

single lamina V neurone using an electrode inserted into the spinal cord. Various stimuli are 

applied via the hind-paw. Electrical stimulation is produced via two needles inserted into the paw. 

A  number o f naturally evoked responses were also produced; heat (via a 45 °C water jet), 

innocuous touch (via soft brushing of the paw) and noxious pressure (via 9 g and 75 g von Frey 

filaments). Figure adapted from Urch & Dickenson (2003).
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Neurones were stimulated electrically and naturally using a range of noxious and 

innocuous stimuli applied to the rat hind-paw. For electrical stimulation, neurones were 

given a train of pulses, at a magnitude of three times the threshold current for C-fibres 

via two stimulating needles inserted into the receptive field of the hind paw. A post­

stimulus histogram was then constructed and Ap-(0-20 ms), A5- (20-90 ms) and C-fibre 

(90-300 ms) evoked neuronal responses (number of action potentials fired) were 

separated and quantified on the basis of latency (see Figure 6.11). Neuronal responses 

occurring after the C-fibre latency band were taken to be the postdischarge of the cell 

(300-800 ms). The postdischarge (PD) is a result of the phenomenon of “wind-up” 

whereby prolonged C-fibre firing results in sensitisation and increased electrical activity 

of the dorsal hom neurones.

A

80
m 
«33 
C 
©
g. “0 
§

I
200 400 600 800

time (msec)

Figure 6.11 Data separation from a single lamina V neurone. The number of action potentials 

elicited in response to a given stimulus can be recorded and separated on the basis o f their latency to 

determine the effects on Ap ((3), A* (8) and C-fibres (C) and also the post discharge (PD). Figure 

adapted from Urch & Dickenson (2003).

Adult lamina V
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A number of innocuous and noxious stimuli were used to characterise neuronal 

responses to natural (mechanical and thermal) stimuli. For thermal responses, water at a 

temperature of 45 °C was applied to the centre of the receptive field of the hind paw 

using a water jet. For mechanical stimulation, a brush was used to gently stroke the 

hind paw and von Frey filaments (Scientific Marketing Associates) were applied in 

ascending order (9 g then 75g) to provide a mechanical stimulus of increasing intensity. 

A 10 pi volume of the appropriate drug was applied directly into a small well created 

in the spinal cord. Prior to drug administration, three stable control responses were 

obtained at 10 min intervals. All drug effects were followed for 40 minutes per dose 

and tests were carried out at 10 minute intervals to avoid desensitisation.

Responses to natural stimuli cannot be separated into fibre types and so were simply 

recorded as the total number of action potentials.

6.2.6.2 Data analysis

The data from in vivo recordings are shown as the number of action potentials recorded 

in pre-drug controls vs post-drug treatment with each point representing the mean + 

S.E.M. Although this method is quite standard in the field, it has several drawbacks. 

These stem from two problems related to neurone variability. Firstly, neurones vary in 

substantially in the number of action potentials they fire in response to stimulation. 

Secondly, they vary considerably in the individual responses to drug application. This 

means that repeated measurements from individual neurones are not repeated attempts 

to measure the same parameter. For this reason, the S.E.M.s cannot be considered a 

measure of error in the normal way.
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Figure 6.12 Raw data from two different Ap neurones along with histograms generated using the Rantest 

program to calculate the significance of the differences in means of data generated pre- and post- the drug 

application (in this case following the application of 10 nM UCL 1848). A and B show the number of 

action potentials fired relative to the mean control for that cell. UCL 1848 does not appear to have any 

effect the number of action potentials fired in cell shown in A. However, the cell in B appears to show 

an increase in firing, i and ii show the corresponding histograms (for A and B respectively) with the 

distribution of the possible differences in means (following 50,000 randomisations). The red arrow 

shows the difference in means o f the original data. Where the randomised difference between means is 

zero there is no effect of the drug. The Rantest histograms confirm that “A beta  n eu ro n e  2” firing was 

not significantly affected while “A beta  neu ro n e  5” showed a highly significant change in response to 

UCL 1848.

236



Raw data were there fore also analysed using a second method whereby, for each 

neurone, the difference between the mean of its pre-drug control (3 measurements) and 

its post-drug treatment firing rate (4-7 measurements) was tested for a significant 

change by using a randomisation approach (Colquhoun, 1971). This was done using the 

program Rantest (freely available at htto://www.ucl. ac.uk/Pharmacolo gv/dcor9 5. htmP 

written by Prof. D. Colquhoun at UCL. This program pools all the measurements (pre- 

and post-drug) and then “reselects”, at random, two groups; one equal in number to the 

pre-drug control group and the other (consequently) equal in number to the post-drug 

group. The difference between means for these two new groups is then calculated. This 

process of random selection and comparison of means is then repeated 50,000 times and 

a histogram of the distribution of differences is computed (see Figure 6.12). 

Significance is determined from the position of the original difference in means within 

the distribution of possible differences in means; consequently no assumptions are made 

about the original distribution of the data i.e. whether this distribution is normal or not. 

The confidence interval was set to 95% to establish significance. All the significant 

changes referred to in the proceeding sections were calculated using Rantest results.

237

http://www.ucl


6.2.6.3 Effects o f druzs that alter SK channel activity

UCL 1848

To examine possible SK channel involvement in sensory nerve transmission, the first 

set of experiments was done by applying UCL 1848 at two concentrations, first 10 nM 

and then 50 nM. Such low concentrations of UCL 1848 have been shown to block 

neuronal SK3 channels in vitro (Hosseini et al., 2001). The effects of UCL 1848 on the 

responses of a single lamina V neurone were determined by stimulating the rat hind- 

paw both electrically and using a set of natural stimuli. The effects of UCL 1848 on 

responses to electrical stimulation in the periphery, can be seen in Figure 6.13. In the 

simplest model, the application of SK channel blockers should increase the excitability 

of the afferent neurone and thus increase the input to the lamina V neurone and the 

results in Figure 6.13 suggest that this is indeed the case. The averaged results from 

five to six neurones show that the overall trend is for increased excitability o f the lamina 

V neurone in response to UCL 1848 application (Figure 6.13 A and B). This can be 

seen more clearly in recordings from individual dorsal hom neurones (Figure 6.13 a, b, 

C and d). The effects of UCL 1848 proved to be rapid, occurring within -10 mins of 

application, and the increases seen in neurone firing were dose-dependent. There was a 

significant increase in the input for 3 out of 5 lamina V neurones from Ap fibres, 2 out 

of 6 neurones show a significantly increased input from Ag fibres, and 4 out of 6 from 

C-fibres. There is also an increase in the postdischarge of 3 out of 6 neurones. In 

contrast to the cells that showed increased excitability, only one cell showed reduced 

input from C-fibres and another from Ag fibres. The remaining cells showed no 

significant change in response to UCL 1848 application.
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Figure 6.13 UCL 1848 increases spinal cord input from electrically evoked stimuli recorded as the firing of a 

lamina V neurone. A and B show the averaged responses from 6 different neurones, except for Ap which shows 

the results from 5 neurones, a-d show statistically significant effects on individual neurones (data has been 

normalised to the control responses). Overall there is an increase in electrical excitability of the lamina V 

neurones in response to increasing concentrations of UCL 1848. This is true for Ap, A8 and C-fibre input.
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The experiments using electrical stimulation provide some insight into the effects of 

UCL 1848 on the contribution of the different incoming afferent fibres. However, 

electrical responses were obtained using supra-threshold stimulation. To examine the 

effects of UCL 1848 on more physiological stimuli, recordings were also made using 

naturally evoked responses. Figure 6.14 shows the effects that increasing 

concentrations of UCL 1848 have on neurones stimulated by heat, innocuous brush and 

by using von Frey 9 g and 75 g fibres. As with the electrically evoked responses, 

lamina V neuronal responses to natural stimuli appear to increase following the 

application of UCL 1848. Three neurones show a strong positive increase in firing 

activity in response to brush and to heat. There are also three neurones which show 

increases in excitability in response to the von Frey 9 g fibre. Only one cell showed an 

increase in activity in response to von Frey 75 g. The remaining cells showed no 

statistically significant increases or decreases in input from natural stimuli.

The data from naturally evoked responses correspond well with those from electrically 

evoked responses. Brush stimulation is thought to be largely transmitted by Ap fibres 

and both brush and Ap input is increased with SK channel block. A similar situation is 

true for heat which is thought to be conveyed via C-fibres. Again both types of input 

increase lamina V neurone firing when UCL 1848 is added. The effects on As fibre and 

nociceptive mechanical inputs seem to be affected to a much lesser degree. Overall 

these results suggest that SK channels are active and involved, under normal conditions, 

in regulating the transmission of sensory information from the periphery to the spinal 

cord.
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Figure 6.14 UCL 1848 increases spinal input from most naturally evoked responses. A and B show the 

averaged responses from 6 different neurones, a-d show statistically significant effects on individual 

neurones (data has been normalised to the control responses). Overall there is an increase in the number of 

action potentials fired by lamina V neurones in response to increasing concentrations of UCL 1848. This 

is true for several sensory modalities including heat, brush and von Frey 9 g, although with von Frey 75 g 

only one neurone showed a significant increase.
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1- EBIO combined with UCL 1848

The experiments so far suggest that the SK3 protein is expressed in DRG terminals 

and that SK channels are normally activated during sensory nerve transmission thus 

affecting dorsal neurone firing in the spinal cord. To pursue this further, a final set of 

experiments was designed to determine whether the activity of SK channels might be 

enhanced by the addition of 1-EBIO.

This final study was carried out using 300 pM 1-EBIO and natural stimuli to evoke 

responses. A summary of the results is presented in Figures 6.15 and 6.16. There is no 

significant effect on lamina V neurone firing in response to heat when 1-EBIO is 

applied (3/3 cells) nor for 2/3 cells in response to brush stimulation. However, one 

neurone, in response to brush, appeared to show a small increase in the number of 

spikes fired when 1-EBIO was applied.

The effects of 1-EBIO on von Frey evoked responses were dramatically different to 

those seen following heat and brush stimulation. 1-EBIO produced a large decrease in 

lamina V input in response to both von Frey 9 g and von Frey 75 g stimulation. These 

effects were rapid and completely reversible upon application of low concentrations of 

UCL 1848. This strongly suggests not only that SK channels are involved in sensory 

transmission from the periphery to the spinal cord, but that they can be activated in 

order to reduce sensory input to dorsal hom neurones.
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Figure 6.15 1-EBIO and UCL 1848 have very little effect on responses evoked using heat and 

innocuous brush. A and B, averaged responses from three different neurones stimulated using heat or 

brush respectively. C and D show the effects on individual lamina V neurones responses seen as a 

result o f heat or brush stimulation respectively. There was no significant effect o f 1-EBIO on heat 

evoked responses and only one out o f three lamina V cells ( • )  responding to brush showed a possible 

change, an increase.
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Figure 6.16 1-EBIO dramatically reduces nociceptive mechanically induced responses and this effect 

is inhibited by the SK channel blocker UCL 1848. A and B, averaged responses from three different 

neurones stimulated using von Frey 9 g and von Frey 75 g respectively. C and D, effects on individual 

lamina V neurones responses seen as a result o f von Frey 9 g and von Frey 75 g stimulation 

respectively. The application of 300 pM 1-EBIO causes a massive inhibition of lamina V neurone 

firing in response to noxious mechanical stimulation. This effect is clearly reversed by 10 nM UCL 

1848. These data indicate that SK channels involved in sensory transmission can be activated further to 

inhibit spinal cord input and that these effects can then be selectively blocked by UCL 1848.
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6.3 Discussion

6.3.1 Antibody staining for Kr„ channels in the rat spinal cord

SK3 immunoreactivity is found in the dorsal and ventral homs of the spinal cord and 

in the ependymal cells. Positive staining was also seen with the anti-IK and BK 

antibodies. There was no obvious staining for either SKI or SK2 in adult rat spinal 

cord, certainly when antibodies were applied at concentrations that effectively stained 

transiently transfected HEK 293 cells.

6.3.1.1 rSKl stainim

At higher concentrations (1 Ox the concentration used to stain HEK 293 cells) the N- 

terminal anti-SKl antibody appeared to produce positive staining of cell bodies of 

neurones in the dorsal and ventral hom regions. There was no positive signal for rSKl 

seen with the C-terminal antibody rb200. These results contrast with those recently 

reported by Sailer et al (2004). They found SKI-like immunoreactivity in terminating 

fibres in laminae I and II of the mouse spinal cord. This may be due to differences in 

the affinities of the antibodies used. However, it might also reflect differences in 

expression of different splice variants of SKI in rat and mouse spinal cord (Shmukler et 

a l , 2001). The presence of different splice variants may also explain why there is a 

strong positive signal seen with the N-terminal anti-rSKl antibody but not with the C- 

terminal antibody. The N-terminal antibody would be able to detect both full length and 

truncated forms of rSKl. The C-terminal antibody, however, would not be able to 

detect the shorter isoforms. Thus, if high levels of the truncated rSKl were expressed 

they would be detected by the N-terminal but not the C-terminal antibodies.
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6.3.1.2 rSK2 staining

Higher concentrations of the anti-SK2 antibody (50x) also made it possible to detect 

SK2 immunoreactivity in the rat spinal cord, although given the high concentrations 

used, these results must be interpreted cautiously. The few regions staining positively 

are largely in agreement with the results of Sailer et al. (2004). Thus there appears to be 

a signal for SK2 in the region of lamina I and large diameter neurones (possibly 

motomeurones) in the ventral hom. Sailer and colleagues saw staining in both those 

regions but, in addition, found SK2 immunoreactivity in neuronal fibres branching out 

into the white matter. This was not evident in my results.

6.3.1.3 IK and BK stainins

There was a strong positive signal with the anti-DC channel antibody. This staining 

was localised within the cell bodies of spinal neurones throughout the grey matter. 

There was also positive staining seen within the ependymal cells. The role of DC 

channels has been well documented in various epithelia in controlling secretion (Jensen 

et al, 2001). The ependyma likely regulates the transport o f ions, small molecules and 

water between the cerebrospinal fluid and neuronal tissue (Bruni, 1998) so it is probable 

that IK channels have a similar role in controlling secretion here.

BK channels are widely expressed in DRG cells, motomeurones and other types of 

nerve cell (Simonneau et al, 1987; McLamon, 1995; Safronov & Vogel, 1998). So it is 

not surprising to see bright positive staining for this channel protein in spinal cord 

slices.
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6.3.1.4 SK3 stainine

The pattern of staining seen with the SK3 antibody M75 was reproduced by the 

Chemicon anti-SK3 antibody (not shown). Sailer et al. (2004) used a third antibody 

which produced positive staining in the same spinal cord regions. Taken together, the 

results suggest that it is highly likely that SK3 immunoreactivity seen in the current 

report and in previous work corresponds to the presence of the SK3 channel protein.

The SK3 antibody staining in the ventral hom of the spinal cord probably represents 

staining of alpha motomeurones. This staining is similar to that of SK3 in SCG 

neurones in that both the cell body and processes stain positively (Hosseini et al., 2001). 

Like SCGs, motomeurones in the cat and turtle are known to exhibit an apamin- 

sensitive AHP (Zhang & Kmjevic, 1987; Hounsgaard et al., 1988). So, SK3 provides a 

candidate for the channel underlying this apamin-sensitive hyperpolarisation. However, 

Safronov & Vogel (1996) have reported KNa currents which could also play a role in 

AHP generation in rat motomeurones. The relative contributions of these currents 

requires further study.

SK3 antibody staining was also pronounced in the ependymal cells of the central 

canal, which is interesting as recent work on the human lens has shown that SK 

channels may well be important in other epithelial cell types (Rhodes et al., 2003).

With respect to sensory nerve transmission, the most pertinent pattern of staining was 

that seen for SK3 in the dorsal hom of the spinal cord. There was a clear and bright 

positive signal for the SK3 antibody in the superficial laminae. When co-stained with 

VR1, which is known to be expressed in sensory fibres that terminate in lamina I and 

lamina Hi (Tominaga et al., 1998; Guo et al., 1999), it is possible to see that SK3 

immunoreactivity has a similar pattern of termination with some of the SK3 signal co- 

localising with VR1. However, the SK3 antibody signal is also seen in regions which
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are largely VR1-negative. Overall, SK3 antibody staining is seen in lamina I, II (outer 

and inner regions) and it extends beyond the VR1 staining into regions which probably 

form part of lamina ID. This pattern of localisation strongly suggests that SK3 is 

expressed in both C-fibre cells (which also express the VR1 receptor) and A-fibre cells. 

This localisation is thus consistent with the pattern of staining seen in cultured DRG 

neurones. In these co-staining with the C-fibre cell marker peripherin made it possible 

to see that both peripherin-positive and peripherin-negative cells expressing the SK3 

protein. There is also a proportion of cells that do not express SK3 and again these are 

of both the peripherin-positive and peripherin-negative type. So it appears that SK3 is 

expressed in different DRG cell types and is presumably transported from the cell 

bodies to the central terminals in the spinal cord.

6.3.2 In vivo recording from the rat spinal cord

Functional evidence for SK channel activity in sensory transmission was obtained 

using in vivo recordings from dorsal hom neurones of adult rats. There was 

considerable variability seen in the responses to pharmacological treatment. This is 

probably not surprising when one considers the potential number of inputs a single 

lamina V neurone receives from the periphery and the extent to which different types of 

incoming fibres may affect the firing of such a spinal neurone. It is also important to 

note that the concentrations of the drugs applied in these studies were remarkably low 

for an in vivo preparation (chosen in order to maintain specificity for SK channels). The 

finding that some neurones were largely unaffected by drug application could thus 

reflect poor diffusion through the tissue. Higher concentrations of drug may have 

provided greater effects.
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6.3.2.1 Increasing concentrations ofUCL 1848 increase Urine in spinal neurones

Effects at both 10 nM and 50 nM UCL 1848 were observed on electrically and 

naturally evoked responses of a single lamina V neurone. At such low concentrations, 

UCL 1848 is expected to be highly selective for SK channels. At both doses, UCL 

1848 application increased input to the lamina V neurone, an effect which usually more 

pronounced with the higher concentration of 50 nM. Such an increase in excitability is 

most likely to be due to the block of SK3 channels and possibly also SK2 channels in 

the terminals of primary afferents the result of which is an increased input to spinal 

neurones. There are several aspects of my work that support such a role for SK 

channels in the presynaptic terminals. The first is the SK3 staining in the dorsal hom 

which corresponds well with the termination pattern of incoming afferent fibres. The 

second comes from the in vivo recordings. If the effects of UCL 1848 had been on 

postsynaptic SK channels expressed in the lamina V neurone, one would expect all 

types of peripheral nerve stimulation to increase neuronal firing. However, the effects 

on some sensory modalities are greater than on others. For example, only one neurone 

showed significant input in response to von Frey 75 g stimulation. Again, the staining 

experiments, which showed that only a subset of DRG neurones appear to be SK3- 

positive, support the idea that certain types of peripheral stimulation may show 

increased sensory input into the spinal cord in response to UCL 1848, whilst others may 

not.

There are now several well-documented examples of SK3 expression in nerve 

terminals in other types of neurone (Obermair et al., 2001; Roncarati et al., 2001). For 

example, recent work on central neurones has demonstrated the presence of the SK3 

channel protein in the presynaptic glutaminergic terminals of hippocampal neurones 

(Obermair et al., 2001). Given that BK channels, with a similar localisation, have been
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shown under certain conditions to contribute to the modulation of glutamate release 

from such terminals (Hu et al, 2001), this has led to the suggestion that presynaptic 

SK3 channels may serve a similar role (Obermair et al, 2001).

6.3.2.2 Activation ofSK channels bv 1-EBIO is reversed bv UCL 1848

When 1-EBIO was applied in an attempt to activate SK channels, there was 

substantially reduced sensory input in response to von Frey 9 g and 75 g evoked stimuli, 

though little or no effect on brush or heat. This attenuation of excitability appears to be 

attributable to SK channel activation, as it is effectively reversed by 10 nM UCL 1848. 

An interesting point to note is that the firing rate of one lamina V neurone may have 

increased in response to brush stimulation when 1-EBIO was applied. More work is 

needed to see how frequently this effect occurs but it may perhaps be explained by the 

presence of IK channels in certain spinal neurones. 1-EBIO is a non-selective 

compound which acts on a number of channels, including SK and IK channels to 

enhance their activity (Devor et al, 1996; Pedersen et al., 1999; Syme et al, 2000; 

Pederzani et al, 2001). Spinal neurones can form a complex network of inhibitory and 

excitatory synapses converging onto single cells. It is known, for example, that Ap 

fibres synapse onto inhibitory intemeurones which in turn affect the firing properties of 

wide dynamic range neurones in the dorsal hom (Millan, 1999). It is quite possible that 

as well as input from the periphery, certain lamina V neurones receive information from 

IK-expressing spinal neurones. If so, 1-EBIO activation might have the effect of 

increasing cell excitability in the spinal cord. However, the present experiments do not 

allow this to be settled.

One exciting aspect of the work with 1-EBIO is the possiblity for identification of 

novel analgesic drugs. Enhancing SK channel activity has the effect of reducing
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sensory input and this may be utilised to design new drugs that may reduce the 

transmission of painful stimuli. Two possible conditions for treatment with SK channel 

openers would include mechanical allodynia (the perception of pain in response to an 

innocuous stimulus) which can arise by nerve damage resulting in cross-excitation of C- 

fibres by Ap fibres, and hyperalgesia (increased sensitivity to nociceptive input). Both 

of these conditions are most commonly linked with chronic pain states such as those 

arising from nerve injury (neuropathy).

Musso and colleagues (2003a; 2003b) have already provided evidence showing that 

compounds which are structurally very similar to 1-EBIO have muscle relaxant, 

antiinflammatory, and analgesic properties. One particular compound, (E)-2-(4,6- 

difluoro-l-indanylidene) acetamide (GW275919X), developed at GHaxoWellcome, has 

recently been described as a potent enhancer of SK and DC channel activity (Cryan et 

a l , 2003). Similarly, the muscle relaxant and analgesic chlorzoxazone, which is 

thought to be a centrally acting agent, has also been shown to enhance SK channel 

activation (Syme et al, 2000; Cao et al, 2001). Although much work needs to be done 

on determining the exact mechanism of action of these 1-EBIO-like drugs, the work 

described here, and elsewhere by others, points to a role for drugs targeting SK channels 

in the development of novel analgesic agents.

In summary, the work in this chapter demonstrates that SKI immunoreactivity can be 

detected in the lumbar region of the spinal cord, apparently in the terminals of dorsal 

root afferents. Here SK channels appear to be involved in the transmission of sensory 

information and activation of these SK channels can reduce sensory input to the spinal 

cord.
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Chapter 7

Discussion

In this chapter I discuss some of the main findings of my thesis in a wider context and 

examine possible future directions for the work.

At the outset of this PhD little was known about the functional properties of the rat 

rSKl protein and data about the co-assembly of SK channel subunits was also limited. 

Further, there was little firm evidence to suggest that any of these SK channels played a 

role in sensory neurones with the existing reports being both limited and largely 

conflicting. The experimental findings presented in this thesis make advances in each 

of these areas.

7.1 SK channel subunits and their interactions

Several points of interest arise from the experiments with SK channels expressed in 

cell lines. Firstly, given the different subcellular distributions of the subunit proteins, it 

would appear that there are differences in subunit trafficking. Even SK2 and SK3, 

which both reach the cell surface and form functional channels, appear to be transported 

differently within the cell because these two proteins appear (predominantly) in distinct 

compartments. Furthermore, though rSKl has a pattern of staining similar to rSK2, it 

does not form functional channels at the cell surface suggesting that the rSKl protein 

remains trapped intracellularly. Experiments to address this issue specifically, possibly 

by using surface biotinylation stategies, would be an interesting future direction.
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Some progress towards understanding these differences in trafficking has been made 

by D ’hoedt et al., (2004) who describe experiments using rSKl, hSKl and rSK2 

chimeras. Based on their findings they suggest that one reason for the lack of functional 

rSKl channels is that the subunit protein is unable to form assemblies with itself. Since 

assembly is intimately associated with trafficking, this would be likely to contribute 

substantially to the differences seen in SK protein distributions. Further, D’hoedt and 

colleagues highlight the carboxyl terminal region as one that may be responsible for this 

“failure” of rSKl to form functional channels. Although this is clearly an interesting 

suggestion, there is still a great deal of work needed to understand, at the molecular 

level, how SK channel proteins assemble and/or are transported in the cell. One 

noteworthy observation from the work presented in Chapter 3 is that rSKl interacts 

with rSK2 resulting in a complex that appears to be transported to the cell surface, 

possibly more efficiently than rSK2 alone. However, when rSKl (or indeed hSKl) is 

co-expressed with rSK3, the proteins appear to remain trapped inside the cell. These 

results demonstrate that no single subunit dominates the trafficking.

Given the lack of functional expression and the apparently “silent” nature of rSKl, this 

protein seems very unlikely to underlie the neuronal sAHP, as has been suggested in the 

past (Vergara et al, 1998; Bond et al, 1999; Bowden et al, 2001). Work recently 

reported by Bond et al (2004) provide more conclusive evidence for this (see section 

7.3).

Finally, although much of the focus surrounding rSKl has been to suggest that it co- 

assembles with SK2 (e.g Ishii et al, 1997b), it is possible that it also acts to regulate 

rSK3 expression levels. So it may be that rSKl acts in a way that is similar to certain 

Kv channel p subunits which regulate the levels of functional protein reaching the cell 

surface membrane (Martens et al, 1999).
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The co-expression experiments presented in this thesis demonstrate that heteromeric 

assembly could be a means for increased functional diversity of SK channels may arise. 

However, it is not yet known whether such assemblies of SK channel subunits occurs in 

vivo. Sailer and colleagues (2002) report that SK channel subunits do not appear to co- 

assemble in rat brain on the basis of co-immunoprecipitation experiments using 

synaptosomes. However, this does not exclude the possibility of rSKl and rSK3 co­

assembly as one would not necessarily expect these complexes to be found in plasma 

membranes. Furthermore, it remains possible that SK channel heteromers may form in 

peripheral tissues.

7.2 SK/1K channel expression in PRGs

1.2.1 Expression of SK/IK mRNA splice variants in DRGs

mRNA for SKI, SK2, SK3 and IK channels is present in DRG tissue. The abundance 

of exon 7 splice variants of rSKl was examined (Chapter 5) and in general, the levels 

of transcripts containing exon 7 matched the “all variants” levels of SKI. This suggests 

that most SKI transcripts will code for channels containing a calmodulin binding region 

that is intact and should therefore be functional.

Since this work was completed, there have also been reports of splice variants for SK3; 

SK3-1B and SK3-1C that are thought to act as dominant negatives, while hSK3-ex4 

forms a channel that is insensitive to the potent SK blockers apamin and scyllatoxin 

(Tomita et al., 2003; Kolski-Adreaco et al., 2004; Wittekindt et al., 2004). From the 

current work it is not possible to determine the extent to which any of these splice 

variants might be important in DRG neurones. This could be another interesting line to 

pursue.
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7.2.2 Developmental regulation of SK/IK channels

There are many examples of regulated K+ channel expression which reflect important 

developmental changes (Yool et al, 1988; Ribera & Spitzer, 1992; Wang et al, 1996). 

Such developmental changes have also been described for SK channels in the retina, 

where levels of SK channel mRNA increase, and in Purkinje neurones where mRNA 

and protein levels decrease (Klocker et al, 2001; Cingolani et al, 2002). However, 

recent work suggests that the functional significance of these changes in the Purkinje 

neurons may be less than was first thought (Womack & Khodakhah, 2003).

Age-dependent changes in SK channel expression in DRGs were examined using 

qPCR and antibody staining techniques (Chapter 5). Both the message for SK/IK 

channels and the levels of SK3 antibody staining increase with age (in whole rat DRG 

tissues and DRG neurones respectively). This suggests that SK channel-mediated 

effects may increase with age in rats. One of the major differences in the transmission 

of sensory information between neonates and adults lies in the response to nociceptive 

stimuli (Wolf, 1999; Fitzgerald & Jennings, 1999). The cutaneous withdrawal reflex is 

particularly pronounced in the newborn rat but decreases with age until adults only 

show withdrawal in response to a noxious stimulus (Fitzgerald & Jennings, 1999). A 

large number of changes occur in sensory pathways during this period. The net result is 

that the activity of sensory neurones involved in the withdrawal reflex decreases. The 

age-dependent increase in levels of SK3 may play a part in this. Interestingly, the in 

vivo experiments described in Chapter 6 show that UCL 1848, used to block SK 

channels, increases spinal neurone firing in response to innocuous brush and von Frey 9 

stimulation. This indicates that SK channels are normally active in sensory neurones to 

reduce activity in response to innocuous stimuli. Thus, when SK channels are blocked 

we may have a situation similar to that in the neonate.
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7.3 The diversity of AHPs in DRG and nodose ganglion neurones

AHPs in sensory neurones vary greatly in their kinetics. The DRG AHPs described in 

this thesis closely match previous reports with respect to AHPgo values and decay time 

constants (Waddell & Lawson, 1990; Lawson et al., 1996; Villiere & McLachlan, 

1996). Neither AHP80 values nor decay time constants of different durations appear to 

associate with neurones of a particular fibre type i.e. both fast and slow AHPs are seen 

in A- and C-type neurones. Interestingly however, those cells with AHPs that had two 

K+ components could be grouped on the basis of the separation between the two 

different components. While these groups do not correspond to A- or C-type neurones, 

it is still possible that they may reflect certain phenotypes. A similar situation has been 

suggested for action potential inflections, which are believed to correspond quite closely 

to nociceptors (Traub & Mendell, 1988; Ritter & Mendell, 1992).

7.3.1 Which channel (s') underlie the mAHPs in DRG neurons?

One of the most surprising outcomes of the current work was that, despite strong 

positive SK3 staining in DRG cell bodies, there was little indication that SK channels 

play a role in mAHP generation in these cells. Most of the medium duration AHPs in 

DRG cells were not only insensitive to UCL 1848 but also to Cd2+ indicating that the 

underlying channels were not Ca2+-dependent. In addition, there was no block seen 

with TEA or 4-AP which rules out a number of voltage-gated K+ channels. One 

possibility is that KNa channels, which have been shown to underlie AHPs in neocortical 

neurones, may be involved (Franceschetti et al., 2003). However, whilst KNa currents 

have been detected in DRG cells (Bischoff et al., 1998), their role in AHPs has not yet 

been investigated. In the absence of selective blockers, the involvement of KNa 

channels could be explored further using bath solutions with Li+ substituted for Na+
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(Franceschetti et al., 2003). However, the observation of multiple components in the 

AHP decay phase and partial cadmium sensitivity, suggests that there may be multiple 

channel contributions to these DRG hyperpolarisations.

7.3.2 Which channel(s) underlie the sAHPs in DRG and nodose neurones?

There were at least three types of sAHP detected in DRG neurones:

1. Those that were insensitive to Cd2+, histamine and the K+ channel blockers used in 

this study; these were only seen in A-type cells.

2. Those that were insensitive to UCL 1848 and TEA but blocked by Cd2+ and 

histamine.

3. Finally, those that were insensitive to UCL 1848 but blocked by low concentrations 

of TEA (5 mM) and histamine.

The sAHPs described in the current study (in DRG and nodose neurones) along with 

the results of the rSKl experiments support previous work which suggests that SK 

channels do not make any contribution to this AHP type (Vogalis et al., 2003). 

Recently, two different groups have provided more conclusive evidence for this. Bond 

et al. (2004) have shown that in hippocampal neurones from SK channel “knock-out” 

mice the sAHP is unaffected, although SK2 knock-outs no longer generate mAHPs. 

Similarly, Villalobos and colleagues (2004) used a dominant negative strategy to assess 

whether SK channels were involved in the sAHP in cortical neurones. They too found 

that there was a pronounced inhibition of the mAHP without any obvious effect on the 

sAHP. So in central neurones, at least, there appears to be no involvement of SK 

channels in sAHP generation.

One possibility for the first type of DRG sAHP (found in A-type cells) is that it is due 

to an electrogenic pump. To see whether the A-type sAHP is due to the Na+ /K+ ATPase
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activity, the cardioactive steroid ouabain could be used to inhibit the pump and observe 

whether there is any corresponding inhibition of the AHP.

The second type of sAHP recorded from C-type cells, which was blocked by Cd2+ and 

histamine but not by the SK blocker UCL 1848, resembled the sAHPs described in 

hippocampal and nodose neurones (Vogalis et al, 2003). There are few characteristics 

to indicate its likely molecular correlate, but perhaps the apparently weak voltage 

dependence is a useful starting point. This observation could implicate either “two- 

pore” domain potassium channels or Kjr channels. However, other possibilities remain 

open because voltage-dependent channels interacting with beta subunits can become 

voltage independent over the physiological range (Schroeder et al., 2000).

The third type of sAHP, also present in C-type neurones, was sensitive to block by 

relatively low concentrations of TEA. Sensitivity to TEA appears to be dictated 

(primarily) by a single amino acid in the pore of the channel (MacKinnon & Yellen, 

1990). On this basis possible alpha subunit proteins include KCNA1,6, KCNB1,2, 

KCNC1,2,3,4, KCNG3, KCNJ1,3,10,13 and KCNQ2. Of these candidates, two 

observations support the possibility that it might be an M-channel (KCNQ2 containing). 

Firstly, these channels, are composed of KCNQ2 and KCNQ3 subunits and can be 

blocked by low (mM) concentrations of TEA and also by neurotransmitters such as 

histamine. Secondly, certain KCNQ2 splice variants show very slow activation and 

deactivation kinetics which could result in the generation of a sAHP though this has not 

been described before. There are a number of selective blockers (e.g. linopirdine and 

XE991) and openers (e.g. retigabine) which could, in future experiments, be used to 

determine the involvement of these channels (Aiken et al, 1995; Wang et al, 1998; 

Main et al, 2000; Tatulian et al., 2001).

258



7.3.3 SK channels in DRG neuronal cell bodies

As mentioned already, it is intriguing, given the pattern of staining seen with the anti- 

SK3 antibodies, that there is no major role of SK channels in AHP generation. It is 

possible that SK channels in DRG cell bodies might be present in the cell membrane but 

are not functional and/or they may have important roles other than regulation of 

excitability in the cell body. SK channel opening regulates Ca2+ entry and is thus 

thought to affect processes such as gene transcription (Faber & Sah, 2003). One 

specific example where SK channels are thought to be involved in this way is in 

learning and memory. For example, studies using mouse hippocampi have shown that 

apamin induces the expression of c-fos and c-jun genes, which are thought to be initial 

markers for memory formation (Heurteaux et al, 1993).

However, tempting as it is to suggest from the pattern of staining that the localisation 

of SK3 is at the plasma membrane of cell bodies and that the channels are somehow 

activated in specific circumstances, it must be remembered that the resolution of 

confocal microscopy is not sufficient to determine whether this is so. Thus it may be 

that the channel proteins are trapped in organelles that lie just below the cell surface 

membrane before being transported to peripheral terminals. Such a situation appears to 

occur in PC 12 cells (an adrenal pheochromocytoma cell line). Staining with the anti- 

SK3 antibodies produces a bright punctate staining pattern which extends around the 

circumference of the cells (data not included), however, there is little or no current 

detected in these cells (unpublished observations with D.C.H. Benton, see also Kolski- 

Andreaco etal., 2004).
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7.4 SK/IK expression in rat spinal cord and putative role in sensory nerve 

terminals

The anti-SK3 antibody produced the most prominent staining in adult rat spinal cord. 

Of particular interest was the staining seen in the region of incoming DRG afferent 

terminals, which, in conjunction with in vivo recordings, suggests that SK channels 

could be important in controlling sensory transmission from the periphery by regulating 

neurotransmitter release. A similar functional role has been proposed for BK and SK 

channels in terminals of hippocampal neurones (Hu et al, 2001; Obermair et al., 2003). 

While the patterns of staining in Chapter 6 strongly suggest that SK3 is predominantly 

expressed in DRG afferents rather than in spinal neurones, it is important to rule out 

more definitively the possibility that the SK channels involved in sensory transmission 

are present in spinal neurones. One way this could be done is by performing dorsal 

rhizotomy and staining spinal cord slices to observe whether there is any change in the 

pattern of SK3 immunoreactivity. Additionally, the presence of functional SK channels 

in spinal neurones could be explored by making electrophysiological recordings from 

spinal cord slices and examining the effects of SK-specific blockers such as UCL 1848 

and apamin, and openers such as 1-EBIO.

If SK channels were found, unambiguously, to work by inhibiting neurotransmitter 

release it suggests that other important proteins in the control of sensory transmission 

may, like SK3, have a large influence at central terminals but show little activity in the 

cell body. This raises a further interesting question about SK channels; do they have a 

role to play at peripheral terminals that is also not evident from the work carried out to 

date? Again, this is an area where further experiments might be useful.
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7,5 Do SK channels make suitable targets for analgesic drug development?

Initially the idea of using SK channel activation for analgesia does not look promising. 

This is because SK channels are expressed in a wide variety of tissues. In addition, 

drugs which activate these channels including 1-EBIO, chlorzoxazone and the 

GlaxoWellcome compound GW275919X, do not discriminate well between the various 

SK/IK subtypes (Devor et a l , 1996; Syme et al, 2000; Cao et al, 2001; Musso et al, 

2003a; 2003b). It would thus be desirable to develop more selective compounds. 

However, even if more selective drugs were available, so that one could target SK3 

exclusively, the wide expression pattern of this channel suggests at first sight that it is 

an unpromising target. Several observations indicate that things are not as bleak as they 

might appear. First, many drugs, for example, local anaesthetics, can be systemically 

administered (e.g. to treat dysrhythmia), even when their target is found in many 

tissues: clearly multiple tissue expression does not exclude the possibility of drugs 

targeting proteins in a particular tissue for a specific condition. Indeed, Passmore and 

colleagues (2003) were able to demonstrate a therapeutic potential for other K+ (KNCQ) 

channel openers as novel analgesics, even though KCNQ channels occur in a number of 

neuronal tissues. So, SK channel openers might, similarly, be useful analgesics. In 

particular, since 1-EBIO reduces sensory input in response to noxious mechanical 

stimulation, similar compounds may be effective in treating specific conditions such as 

mechanical allodynia and hyperalgesia.

In conclusion, the work presented in my thesis suggests a possible functional link 

between the “centrally acting” analgesic action of drugs such as chlorzoxazone and their 

ability to activate SK channels. It would therefore seem well worthwhile to examine 

further SK channel openers as potentially novel analgesics in certain pain states.
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Appendix 1. A summary of some of the basic properties of all p i7 DRG cells recorded from using the

perforated patch technique.

Cell cell size (urn) Em (mV) AP inflection Voltage sag AHP type present Slow ADP
fast only medium slow

1 25 -51 no ? Yes
2 25 -58 yes ? Yes Yes
3 37.5 -61 yes ? Yes Yes
4 22.5 -52 no ? Yes
5 42.5 -55 no ? Yes
6 25 -60 no ?
7 25 -60 yes ? Yes Yes
8 37.5 -60 ? ? Yes Yes
9 37.5 -55 no ? Yes
10 30 -50 yes ? Yes
11 37.5 -60 no ? Yes
12 25 -65 ? ? Yes
13 32.5 -60 no ? Yes
14 30 -58 yes ? Yes
15 35 -50 no yes Yes
16 37.5 -56 no yes Yes
17 32.5 -60 no ? Yes Yes
18 35 -67 no yes Yes
19 25 -60 ? no Yes Yes
20 35 -60 ? ? Yes
21 35 -50 ? ? Yes
22 40 -50 no yes Yes Yes
23 32.5 -50 no yes Yes
24 42.5 -59 no yes Yes Yes
25 42.5 -60 no yes Yes
26 25 -52 no yes Yes
27 27.5 -52 no yes Yes
28 30 -51 yes yes Yes Yes
29 29 -52 yes no Yes
30 32.5 -58 no ? Yes Yes
31 25 -57 yes ? Yes
32 25 -50 yes ? Yes
33 27.5 -59 yes yes Yes
34 27.5 -55 ? Yes
35 42.5 -50 no yes Yes
36 47.5 -55 no yes Yes
37 45 -53 no yes Yes
38 42.5 -52 no yes Yes Yes
39 47.5 -59 no yes Yes Yes
40 47.5 -64 no yes Yes
41 50 -54 no yes Yes
42 42 -60 no yes Yes Yes
43 42.5 -63 no yes Yes
44 42.5 -67 no yes Yes
45 40 -66 no yes Yes
46 37.5 -68 no ? Yes
47 42.5 -60 no ? Yes
48 40 -60 no yes Yes
49 42.5 -58 no yes Yes

262



Cell cell size (urn) Em (mV) AP inflection Voltage sag AHP type present Slow ADP
fast only medium slow

50 40 -58 no yes Yes
51 42.5 -52 no yes Yes
52 45 -61 no yes Yes
53 42.5 -50 no yes Yes
54 42.5 -56 no yes Yes
55 45 -57 no yes Yes
56 43.8 -56 no yes Yes
57 37.5 -59 no yes Yes
58 27.5 -79 no ? Yes
59 35 -55 no yes Yes Yes
60 35 -58 no yes Yes
61 42.5 -68 ? yes Yes
62 37.5 *52 no ? Yes
63 42.5 -50 no yes Yes
64 40 -65 no yes Yes
65 25 -56 no yes Yes Yes
66 27.5 -50 ? no Yes
67 40 -53 no no Yes
68 42.5 -50 ? yes Yes Yes
69 37.5 -50 ? ? Yes
70 40 -53 no ? Yes
71 42.5 -52 no ? Yes
72 35 -59 no ? Yes Yes
73 42.5 -50 no ? Yes
74 40 -53 no ? Yes
75 42.5 -50 no ? Yes
76 40 -50 no ? Yes
77 37.5 -62 no ? Yes
78 50 -50 no ? Yes
79 50 -50 no ? Yes
80 37.5 -55 no ? Yes
81 40 -50 no ? Yes
82 50 -58 ? ? Yes
83 42.5 -56 no ? Yes Yes
84 37.5 -66 no ?
85 50 -51 no ? Yes
86 40 -56 no ? Yes
87 42.5 ■51 ? ? Yes
88 37.5 -55 ? ? Yes
89 42.5 -62 no ? Yes
90 37.5 -50 no ? Yes
91 30 -50 ? ? Yes
92 25 -65 ? yes Yes Yes
93 35 -52 no yes Yes
94 27.5 -57 ? yes Yes
95 27.5 -65 no yes Yes
96 30 -64 ? ? Yes
97 20 -55 yes ? Yes
98 25 -57 yes ? Yes
99 25 -73 yes yes Yes Yes
100 25 -50 no no Yes Yes
101 25 -50 yes yes Yes
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Cell cell size (um) Em (mV) AP inflection Voltage sag AHP type present Slow ADP
fast only medium slow

102 25 -54 yes no Yes Yes
103 25 -60 no yes Yes
104 27.5 -50 no no Yes Yes
105 25 -60 no ? Yes
106 25 -51 no yes Yes Yes
107 29 -51 ? yes Yes
108 27.5 -53 no yes Yes
109 27.5 -50 ? yes Yes
110 25 -57 _  yes yes Yes Yes
111 25 -64 no yes Yes
112 30 -56 ? yes Yes
113 27.5 -55 no yes Yes
114 27.5 -70 no ? Yes Yes
115 25 -50 yes no Yes
116 27.5 -72 yes ? Yes Yes
117 25 -59 yes ? Yes
118 25 -56 yes ? Yes Yes
119 25 -52 yes ? Yes Yes
120 27.5 -66 7 ? Yes Yes
121 25 -60 ? 7 Yes
122 25 -51 yes 7 Yes
123 25 -65 yes 7 Yes Yes
124 25 -57 yes 7 Yes Yes
125 25 -56 yes yes Yes
126 30 -55 no yes Yes
127 27.5 -56 no 7 Yes Yes
128 25 -58 ? 7 Yes
129 25 -76 ? 7 Yes Yes
130 20 -55 no no Yes
131 20 -54 no no Yes
132 22.5 -56 yes 7 Yes Yes
133 22.5 -60 yes no Yes
134 22.5 -50 yes no Yes
135 20 -56 yes yes Yes Yes
136 20 -65 yes no Yes Yes
137 20 -52 yes 7 Yes Yes
138 25 -53 ? no Yes
139 22.5 -50 yes no Yes
140 25 -56 no 7 Yes
141 25 -66 yes 7 Yes
142 22.5 -59 yes yes Yes
143 20 -55 yes no Yes Yes
144 22.5 -50 yes no Yes
145 20 -60 yes ? Yes
146 22.5 -66 yes 7 Yes Yes
147 25 -56 yes yes Yes
148 25 -57 yes yes Yes Yes
149 25 -55 yes yes Yes
150 25 -52 yes 7 Yes
151 25 -60 yes Yes
152 27.5 -63 yes Yes
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Appendix 2. A summary of the effects of different drugs used to try and identify the K+ channels 

underlying the AHPs in DRG cells.

Effects of drugs on mAHPs from p17 cells
Cell Type

Drug applied A-Type C-type
UCL 1848 1/9 0/2

Cd2+ 1/6 1/3
ChTx 0/2
TEA 0/3 0/2
4-AP 0/1 0/1

Effects of drugs on mAHPs from p45
Drug applied p45 C-type cells

UCL 1848 0/8
Cd2+ 1/3

1-EBIO 1/8
TEA 0/1

Clotrimazole 0/2

Effects of drugs on sAHPs from p17 cells
Celllrype

Drug applied A-Type C-type
UCL 1848 0/4 0/3

Cd2+ 0/6 1/1
ChTx 0/1
TEA 0/7 2/3

UCL 2027 2/2 2/2
Histamine 0/2 2/2

Appendix 3. A summary of the different components underlying the AHPs in DRG cells.

Cell type
AHP components A C
1 hyperpolarising 4 1
2 hyperpolarising 20 6
3 hyperpolarising 1

2 hyperpolarising and 1
depolarising 1 1
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