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Abstract

Each neuron of the nervous system is a machine specialised to appropriately transform its 

synaptic inputs into a pattern of spiking output. This is achieved through the combination of 

specialisations in synaptic properties and location, passive cell geometry and placement of 

particular active ion channels. The challenge presented to the neuroscientist is to, within each 

cell type, identify such specialisations in input distribution and resulting active events, and 

assess their relative importance in the generation of action potential output patterns.

The Purkinje cell, in particular its response to climbing fibre (CF) input, is an excellent setting 

in which to attempt to meet this challenge. The Purkinje cell receives a single, easily isolated 

CF axon, which makes hundreds of synapses across the cell’s highly branched, active 

dendritic tree, resulting in the generation of prominent dendritic calcium spikes and a 

distinctive, reproducible burst of fast action potentials (the complex spike) at the soma. In this 

thesis I have separated out the importance of the size of this input, its location and the active 

dendritic spikes it triggers in the generation of the complex spike.

I have found that, to a large extent, the complex spike pattern is determined by the size of the 

CF input alone. I have characterised the complex spike (its number of spikes, their timing, 

height and reliability) at both constant physiological frequency and across a range of paired- 

pulse depression causing intervals. By alternating between whole cell current and voltage 

clamp in the same cell, I have recorded both the complex spikes and EPSCs generated at 

certain paired pulse intervals. In this way I have been able to construct the EPSC - complex 

spike ‘input - output’ relationship. This demonstrated that there is a straightforward linear 

transformation between the EPSC input amplitude and the number and timing of spikes in the 

complex spike. This applies across cells, explaining a large amount of the inter-cell variability 

in complex spike pattern.

Input location and dendritic spikes have surprisingly little influence over the Purkinje cell 

complex spike. I found that complex spikes generated by dendritically distributed CF input 

can be reproduced by using conductance clamp to inject CF-like synaptic conductance at the 

soma. Both CF input and somatic EPSG injection produced complex spike waveforms that 

can only be easily explained by a model in which spikelets are initiated at a distant site and 

variably propagated to the soma. By using simultaneous somatic and dendritic recording I 

have demonstrated that this distant site initiation site is not in the dendrites. Somatic EPSG 

injection reproduced complex spikes independently of dendritic spikes, and extra dendritic 

spikes triggered by CF stimulation were associated with only 0.24 ± 0.09 extra somatic 

spikelets in the complex spike.
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Rather, I have found that dendritic spikes, generated reliably by the dendritic location of CF 

inputs, have a role in regulating the post-complex spike pause. An extra dendritic spike 

generates a 3.4 ± 0.7 mV deeper AHP and a 52 ± 11 % longer pause before spontaneous 

spiking resumed.

In this way, I have identified specialisations that encode the size, and thus timing, of CF 

inputs in the complex spike burst, whilst allowing the dendritic excitation of Purkinje cells 

(which is strongly associated synaptic and intrinsic plasticity) to be simultaneously encoded in 

the post-complex spike pause. This may reflect the complex spike’s proposed dual role in 

both controlling ongoing movement and correcting for motor errors.
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Introduction

The principle role of a neuron is to appropriately transform its synaptic inputs into a pattern of 

spiking output. This is achieved like clockwork through the combination of specialisations in 

passive geometry and active ion channels. Current flowing in through synaptic conductances 

changes the membrane potential of the neuron in a temporally and spatially graded manner. 

This is amplified, curtailed, spatially restricted or propagated by active and passive ion 

channel conductances. Through the specific location of ion channels of particular 

permeabilities, voltage sensitivities and kinetics, current input is moulded and manipulated 

until ultimately a distinct pattern of output action potentials is produced, abstractly 

representing a transformation of the input pattern.

Although many of the principles underlying this transformation have been elucidated 

(reviewed in many articles, including Hausser et al., 2000; Segev and London, 2000; Migliore 

and Shepherd, 2002; Hausser and Mel, 2003; Williams and Stuart, 2003; Gulledge et al., 

2005; London and Hausser, 2005; Magee and Johnston, 2005 and outlined in the following 

introduction), we are not yet at the point where the spiking out pattern of a chosen neuron can 

be predicted given its inputs. This is an essential step if we are to achieve neuroscience’s 

basic goal of understanding how sensory input is received, pondered upon by the brain and 

transformed into a pattern of muscle output.

In this thesis I have aimed to elucidate the principle factors that determine the Purkinje cell’s 

pattern of complex spike burst production in response to its giant, distributed, dendritic spike 

evoking, excitatory climbing fibre input. I shall first outline what has so far been understood 

about how synaptic inputs are integrated in neurons, focusing in particular on excitatory input, 

and the generation of dendritic spikes and of bursts. I shall then highlight what is known about 

Purkinje cells and their climbing fibre input. Finally, I shall outline the aims of this thesis.



Introduction 11

Single neuron computation

Passive properties

Current injected into a neuron does not uniformly alter the cell’s voltage, either immediately 

after injection or at steady state. The cable equation, initially developed to describe 

propagation of electrical signals through transatlantic telegraphic cables, was first applied to 

dendrites by Rail (1959) and describes the manner in which current is distributed through the 

neuron, and the voltage changes that result.

At steady state, the local voltage change at the point of current injection is determined by the 

local input resistance. Steady state current flow is divided across the relatively low, lateral 

axial resistance of the cytoplasm and the higher resistance, short circuit, routes to earth 

through ion channels in the cell membrane. This results in an exponential decay of 

transmembrane voltage along the length of the cell which, in a cable of uniform diameter and 

infinite length, follows the equation:

(plotted in Intro. Fig. 1a), where k, the electrotonic length constant (the distance in which 

voltage decays to 1/e of its initial value) is determined by both the membrane resistance and 

axial resistance:

During transient changes in current injection, current flow is additionally divided to flow onto 

the cell membrane capacitance; as this capacitance charges, greater proportions of the 

current flows across membrane resistances and the local membrane potential approaches its 

steady state value. The mathematical description of this process results in the cable equation:

where k  is, as before, the cable’s length constant and Tm is the membrane time constant, rmcm. 

This equation can be solved to describe the voltage trajectory towards steady state at any 

chosen distance, *, from the injection site. This trajectory takes the form of an infinite sum of 

multiple exponentials:

V(x,t)=fc,e-^
1=0
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where the time constants % are however independent of location (x), time (t) and current 

injection (/„) (the slowest T is, in fact, the membrane time constant, and faster Ts depend on 

the length of the cable relative to X), but the coefficients C, are dependent on the recording 

location, jc, and the current injection amplitude. The further the recording location, *, is from 

the injection site, the slower its response to a step change in current injection (Rail, 1969; 

Johnston and Wu, 1995).

These analytical equations were shown by Rail to apply to branched cables (Rail, 1959, 1964, 

1969), so long as the total length of all branches is equal and the diameter of the branches 

(from the point of view of the injection site) follows the ‘3/2’ rule:

d = \  d 3/2parent daughter

such that the total membrane and axial resistances remain constant. Where this rule is not 

obeyed, or cable diameter alters, the local input impedance is changed; at such impedance 

mismatches the relationship of the current in the cable to the transient or steady state voltage 

is altered. For example, current flowing from a narrower branch to a wider branch (as is often 

the case as synaptic current flows from dendrites to soma) will result in a smaller 

depolarisation of the wider branch. In such cases, or when non-uniform distributions of 

passive and active, voltage and time dependent conductances are to be considered (as is the 

case in most neuronal processes, be they dendrites or axons), analytical solutions are usually 

no longer feasible. In these circumstances, the neuron can be modelled as a tree of 

connected isopotential compartments consisting of membrane capacitance and resistances 

(in parallel) and connected via resistors representing the axial resistance between 

compartments (Intro. Fig. 1b). The voltage trajectory can then be solved numerically (Rail, 

1964); the NEURON and GENESIS modelling programmes have been developed specifically 

for this purpose (Hines and Carnevale, 1997, www.neuron.yale.edu, Bower and Beeman, 

1998). In cases where analytical solution exists, it can be shown that as the size of these 

compartments reduces to 0, the solution to the continuous cable model approaches the 

numerical solution (Rail, 1964; Segev and Burke, 1998).

Importance of synapse distribution

Passive cable theory predicts that the result of the neurons combined resistances and 

capacitances is that the voltage change at a site distant from current injection (e.g. the EPSP 

recorded at the soma due to dendritic EPSC) will be attenuated in amplitude and filtered in 

timecourse. The degree of attenuation and filtering should depend on the location of the input 

(distant inputs in highly branched dendrites should be most affected), the time course of the 

current injection (brief, rapidly rising events being most affected) and the specific properties of 

the dendrites. This is borne out by direct dendritic and somatic recordings (e.g. in layer V 

pyramidal cell apical and basal dendrites, Williams and Stuart, 2002; Nevian et al., 2007)

http://www.neuron.yale.edu
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Intro. Figure 1: Passive cable properties

A) Illustration of the steady state distribution of voltage in an infinite cable (adapted from Johnston & Wu 1999).
B) Illustration of the way in which neuronal morphologies (top) can be abstractly modelled as a series of connected 
compartments with associated membrane capacitances, membrane resistances and axial resistances (bottom).
C) Amplitude of artificial EPSPs evoked by dendritic current injection at 0 - 800 pm from the soma (from Williams & Stuart, 
2002). The local (green) and somatic (red) voltage changes are shown.
D) Illustration of failure of propagation of an active spike (generated by Hodgkin Huxley conductances) across a branch 
point where the geometric ratio = 10 (from Parnas & Segev 1979). Geometric ratio = ((X d ^ )  / d ^ 73), where d1 is the 
diameter of the branch the spike is propagating from and d2 the diameters of the branches it is propagating to.
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(Intro. Fig. 1c), but can also be somewhat compensated for by synaptic and active properties 

(see Magee, 2000; Williams and Stuart, 2003 for a review).

Passive modelling further predicts that synapse location influences local and distant voltage 

change in a number of other important ways (reviewed in Segev and Rail, 1998; Spruston et 

al., 2008). For example, the placement of a synapse on a spine, a small (=> high resistance 

and low capacitance) compartment, with only a narrow, high axial resistance neck connecting 

it to the dendrites, should cause a much larger local voltage change in the spine head 

(voltage dye recordings have demonstrated this: Palmer and Stuart, 2007). Although this 

cannot on its own increase the voltage change at the soma (Rinzel and Rail, 1974), it may 

recruit active conductances in the spine head that amplify the input (Segev and Rail, 1988, 

1998). As synaptic input applies conductance changes rather than current injection to, large 

voltage deflections in high input resistance compartments can have the disadvantage of 

approaching the synaptic reversal potential, so reducing the driving force for current (Intro. 

Fig. 2a). This is especially pertinent for inhibitory inputs, as resting Vm is usually much closer 

to their reversal; in these cases the main effect of the synapse is to increase the local 

conductance ‘shunt’, attenuating voltage change caused by other current sources (Intro. Fig. 

2b). Synaptic shunt should similarly affect summation of both excitatory and inhibitory input to 

multiple synapses at electrotonically close locations. This should lead to sublinear passive 

summation of spatially and temporally clustered synaptic input (evidence for this is seen in 

Cash and Yuste, 1998, 1999; Gasparini et al., 2004; Losonczy and Magee, 2006) (Intro. Fig. 

2b). Conductance shunt can also shape synaptic input once propagated to the soma. 

Axosomatic action potentials are associated with a brief yet large increase in conductance; 

this can dissipate a significant proportion of the current that reaches the soma, greatly 

curtailing that available to generate the EPSP (Hausser et al., 2001) (Intro. Fig. 2c).

Active dendrites

Dendritic active properties can compensate for or enhance many of the features of passive 

integration; the generation of supralinear active events also adds considerably to the 

computational power of dendrites.

Dendritic Ih, for example, has been shown to normalise the width of synaptic potentials, 

filtered to differing degrees by their path from different locations in the dendritic tree, and so 

standardise temporal integration (Magee, 1999; Berger et al., 2001; Angelo et al., 2007). 

Similarly, dendritic lA can be modulated to alter the attenuation of EPSPs propagating to the 

soma (Hoffman et al., 1997; Cash and Yuste, 1999; Ramakers and Storm, 2002; Kim et al., 

2007). An opposite ‘boosting’ of EPSPs can occur through activation of voltage and glutamate 

gated NMDA channels (Schiller et al., 2000; Polsky et al., 2004; Losonczy and Magee, 2006; 

Nevian et al., 2007), which, in combination with lA and other active conductances, appears to 

be used to compensate for passive shunting effects in cultured hippocampal pyramidal cells,



EPSC EPSG comparison

Bi)

ii)

EPSG 1 EPSG 2

EPSG IPSG

linear sum
EPSG 1 and 2 together

linear sum
EPSG and IPSG together

C)

EPSP AP

|  20 mV J  12 mV

20 msec

EPSP
EPSP and AP together

Intro. Figure 2: Effects of conductance on synaptic integration
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overlay for comparison on right. (EPSPs recorded 200 pm from the site of injection in a 2 pm wide cable, synaptic-like 
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Bi) EPSPs recorded at the same distant site following injection of an EPSG to the same site as in A (left), a second EPSG 
to a nearby site (2 pm distant, middle) or to both together (green trace, right). The linear sum of EPSG 1 and 2 applied 
separately is shown in black (right).
ii) PSPs recorded as in (Bi) except that an IPSP was injected to site 2 (middle). The black trace (right) again shows the 
linear sum of the two events, green, the actual combined PSP; the red dotted line marks the amplitude of the EPSP alon>
C) Data (taken from Hausser, Major & Stuart, 2001) illustrating the shunting of somatic EPSPs by the somatic action 
potentials conductance. The somatic voltage is shown following activation of either dendritic synaptic input (left), of a 
somatic action potential (middle, 2 msec, 1.4 nA current pulse) or stimulation of the action potential 10 msec after the 
EPSP (right, shown together with the EPSP alone, for comparison).
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tuning summation to linearity (Cash and Yuste, 1998, 1999, similar active compensations are 

seen in Gasparini etal., 2004).

Temporal and spatial summation is greatly enhanced by the presence of regenerative 

channels, through the generation of dendritic spikes. The rapid activation a large number of 

synapses clustered within the same dendritic branch can cause sufficient depolarisation to 

open these channels, thus generating active events and a supralinear increase in voltage, 

promoting axo-somatic action potential firing. These mechanisms allow individual 

compartments in the dendrites to report the coincident activation of synapses, and provide the 

elements for the neuron to behave as a ‘two layer neural network’, increasing the range of 

computations it can perform on its inputs (Poirazi et al., 2003; Polsky et al., 2004; London and 

Hausser, 2005). In addition, dendritic active events can be promoted by the coincidence of 

synaptic inputs and backpropagating action potentials (Larkum et al., 1999, 2001; Stuart and 

Hausser, 2001; Letzkus et al., 2006; Sjostrom and Hausser, 2006) (the extent of which can 

also be modulated; Spruston et al., 1995; Colbert et al., 1997; Hoffman et al., 1997; Jung et 

al., 1997; Xiong and Chen, 2002; Christie and Westbrook, 2003; Loftis et al., 2003; Gentet 

and Williams, 2007), providing a further substrate for coincidence detection.

Dendritic spikes

So far, 3 classes of dendritically initiated spikes have been observed: local NMDA spikes; 

rapid dendritic sodium spikes that can, given favourable circumstances, forwards propagate 

and prolonged dendritic calcium spikes that can support/trigger a burst of firing at the soma.

NMDA spikes have been observed in finely branched terminal dendrites: in the basal and 

apical oblique dendrites of layer 5 pyramidal cells (Schiller et al., 2000; Nevian et al., 2007) 

(Polsky et al., 2004) and the basal, radial oblique and distal tuft dendrites of CA1 pyramidal 

cells (Wei et al., 2001; Ariav et al., 2003; Losonczy and Magee, 2006; Losonczy et al., 2008). 

They occur when strong, spatially and temporally clustered synaptic stimulation, often 

boosted by a local dendritic sodium spike (Schiller et al., 2000; Schiller and Schiller, 2001; 

Polsky et al., 2004; Losonczy and Magee, 2006), provides sufficient depolarisation to relieve 

the Mg2+ block of glutamate bound NMDA receptors, triggering supralinear current influx 

(Schiller et al., 2000) and a local voltage plateau. This is often further prolonged by the 

recruitment of dendritic calcium channels (Schiller et al., 2000; Wei et al., 2001; Losonczy and 

Magee, 2006). Such spikes are usually confined to individual branches by the inherently local 

nature of the glutamate bound NMDA receptor contribution, by dendritic morphology and by 

potassium and KCa channel activation (Schiller and Schiller, 2001; Wei et al., 2001; Cai et al., 

2004; Losonczy et al., 2008). Similarly local, calcium (non-NMDA), spikes can be generated 

by strong parallel fibre input to the spiny branchlets of Purkinje cells, and are again restricted 

by dendritic branching and BK channel activation (Vetter et al., 2001; Rancz and Hausser,
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2006). In pyramidal cell, these local spikes do not often trigger axo-somatic spiking (Schiller et 

al., 2000) (Losonczy et al., 2008); input to selected, particularly regenerative, electrically well 

connected branches can reliably trigger one well timed action potential, while input to weaker 

branches can increase the precision of timing of spikes triggered by concomitant stimulation 

elsewhere in the dendrites (Ariav et al., 2003; Losonczy et al., 2008).

In contrast, fast, largely sodium current dependent spikes, often observed in larger ‘trunk’ 

dendrites, are capable of forward propagation, directly transforming into axo-somatic spikes 

(Stuart et al., 1997a). Their success of forward propagation is variable and depends strongly 

on dendritic morphology; as with other active events, they are susceptible to failure at 

impedance mismatched branch points (Goldstein and Rail, 1974; Parnas and Segev, 1979; 

Segev and Schneidman, 1999; Vetter et al., 2001) (Intro. Fig. 1d). In the apical branches of 

layer V and CA1 pyramidal neurons, isolated dendritic sodium spikes are often observed 

(Stuart et al., 1997a; Golding and Spruston, 1998; Gasparini et al., 2004), with somatic 

failures occurring in -40% of the 83% of CA1 pyramidal cells where dendritic spikes could be 

evoked (Golding and Spruston, 1998; Gasparini et al., 2004). In the unbranched principle 

dendrite of olfactory bulb mitral cells, somatic propagation of dendritic spikes triggered by 

strong distal stimulation is highly secure (Chen et al., 1997). It is worth noting that, in all these 

cases, it is likely that the dendritic spike propagates forwards to trigger a spike in the low 

threshold axonal initiation zone, which then backpropagates to the soma (Stuart et al., 1997a; 

Shen et al., 1999).

The third class of dendritic spike, prolonged dendritic calcium spikes, have the most dramatic 

effect on axo-somatic spiking, triggering up to -2.5 extra spikes at the soma in layer V 

pyramidal neurons (Williams and Stuart, 2002). Such spikes have been most heavily studied 

in the apical dendrites of layer V pyramidal neurons, though similar mechanisms appear to 

exist in e.g. inferior olive neurons (Llinas and Yarom, 1981a, b). Strong, synchronous distal 

synaptic input can trigger these powerful dendritic spikes (Larkum et al., 1999; Williams et al.,

2002). Alternatively, the coincidence of weaker distal synaptic input and a backpropagating 

action potential can trigger a long lasting calcium spike, which in turn promotes further rapid 

somatic spiking (Larkum et al., 1999, 2001); a sequence termed ‘BAC firing’. The success of 

BAC firing depends on coincidence of synaptic input (Williams and Stuart, 2002), 

depolarisation of the proximal dendrites (Larkum et al., 1999, 2001) and dendritic morphology 

(Schaefer et al., 2003), with both forward propagation of any initial dendritic sodium spike and 

backpropagation of axo-somatic action potentials being liable to fail in the proximal apical 

dendrite (Larkum et al., 2001; Vetter et al., 2001; Schaefer et al., 2003).
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Burst generation

Bursts of somatic spikes can, however, be produced by a range of mechanisms. In its 

simplest form, bursting is produced by the interaction of a slowly changing process with the 

more rapidly cycling, spike generating mechanism (Rinzel and Ermentrout, 1998). The slow 

process modulates the system between a stable quiescent state, stable repetitive firing state 

and back again. Burst generation can thus act as a ‘feature detector’ signalling the 

occurrence of events that recruit the slow process, such as inputs of rapidly rising slope 

(Kepecs et al., 2002). The generation of the ‘slow process’ is achievable in neurons in a 

number of different ways. Many involve the use of a dendritic compartment and/or the slow 

currents generated by calcium channels, but similar effects can also be achieved by many 

combinations of parameters in single compartment neurons (Goldman et al., 2000; Izhikevich, 

2003, 2004; Taylor et al., 2006) or in networks of recurrent excitatory and inhibitory neurons 

(Prinz et al., 2004).

Reduced compartmental models show that bursting can be produced by a fast spiking 

‘somatic’ compartment partially coupled to a more slowly spiking dendritic compartment 

(Pinsky and Rinzel, 1994; Mainen and Sejnowski, 1996) (Intro. Fig. 3a, b). Current from the 

somatic spike spreads to the dendrite, triggering a slower spike, which feeds current back to 

the soma, supporting a burst of spiking; the limits of this mechanism have been analysed 

(Pinsky and Rinzel, 1994; Mainen and Sejnowski, 1996; Doiron et al., 2002). This, or a 

comparable, mode of bursting occurs in layer V and CA1 pyramidal cells following tonic 

somatic current injection (Magee, 1999; Williams and Stuart, 1999; Larkum et al., 2001), and 

BAC firing has strong similarities (Intro. Fig. 3c). In an interesting variation, in pyramidal cells 

of the electrosensory lateral line lobe, repetitive firing is terminated when backpropagation 

into the dendrite fails to follow the frequency of firing built up in the soma, so ceases to 

proved the depolarising after potential that supports somatic firing (Doiron et al., 2002; Turner 

et al., 2002).

One method of bursting that does not rely on dendritic spikes is that caused by T-type calcium 

channels. If these channels are relieved of inactivation, depolarisation can evoke a ‘rebound 

burst’ of spiking, riding on the transient T-type current (reviewed in Perez-Reyes, 2003) (Intro. 

Fig. 3d). This mechanism is observed in a diverse group of cells (including, curiously, many in 

the cerebellar circuit), such as CA1 pyramidal cells (Higashima et al., 1998), thalamic relay 

neurons (Deschenes et al., 1984; Jahnsen and Llinas, 1984), inferior olive cells (Llinas and 

Yarom, 1981a, b), cells of the deep cerebellar nucleus (Aizenman and Linden, 1999; 

Molineux et al., 2006), unipolar brush cells (Diana et al., 2007) and even in Purkinje cells in 

culture (Cavelier et al., 2002a).
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Intro. Figure 3: Neuronal Bursting

A) Illustration (from Mainen & Sejnowski, 1996) of a reduced neuronal model that, with the correct parameters, produces 
bursts of spikes. Model consists of two compartments, soma and dendrite (left), that, when uncoupled and allowed to fire 
on their own, generate fast and slow action potentials, respectively (middle). When partially coupled, tonic spiking or 
bursting can be produced in the soma (in response to current injection), depending on the ratio of somatic and dendritic 
active membrane area (right).
B) Close up of bursting produced by a similar model (from Pinsky & Rinzel, 1994), showing the somatic sodium spike burst 
(Vs), the dendritic calcium spike (Vd) and the calcium concentration (Ca, note different y axis, right), which terminates the 
burst through its activation of KCa channels.
C) Coupling of distal synaptic-like current injection (right, top) with a backpropagating action potential (right, middle) 
generates a dendritic spike and a burst of somatic action potentials (bottom, right) in a layer V pyramidal cell (left) (from 
Larkum & Sakmann, 1999). Simultaneous recordings from the soma (black electrode and traces), and apical dendrite, 400 
pm (blue) and 770 pm (red) from the soma.
D) Example of a rebound burst in a DCN cell (from Aizenman & Linden, 1999) produced following relief from a hyperpola- 
rising current step (top). The t-type calcium spike that drives this type of bursting is revealed (bottom) after block of sodium



intrinsic plasticity (Loftis et al., 2003; Losonczy et al., 2008). Physiologically relevant chai 

in the way in which input is distributed and synchronised can also alter output e.g. the ch< 

from theta state distributed input to sharp wave clustered input in hippocampal CA1 cells 

switch the cell from linear integration to coincidence detection mode (Gasparini and Ma 

2006); increased perisomatic (basal dendrite) conductance can separate apical dendritic 

somatic synaptic integration in pyramidal cells (Williams, 2004). Even changes in the stati 

of tonic synaptic bombardment (as occurs in vivo Destexhe et al., 2003) can alter the s\ 

of the relationship between input and output. Increasing input conductance a 

subtractively shifts the relationship between input current and output firing frequency (th 

curve’), whereas co-varying input variance divisively alters the gain of the relationship < 

and Koch, 1997; Chance et al., 2002; Mitchell and Silver, 2003). This malleability of ir 

output relationships allows the same, fixed network of neurons to function in different v 

(Gellman et al., 1985; Grammer, 1993; Nusbaum et al., 2001; Dean et al., 2005), extra( 

different features from its input, depending on e.g. the context in which stimuli are receive^ 

the behavioural state of the animal.
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The aim of this thesis is to understand the subcellular processing that results in complex spike 

production following climbing fibre activation of the cerebellar Purkinje cell. Having introduced 

the principles of dendritic integration derived from a range of neuronal types, I shall now 

describe the specific properties of the system in with the complex spike is generated. I shall 

outline

- the position of the CF -  Purkinje cell connection in the cerebellar anatomy

- the patterns of CF input activation seen in vivo

- the distribution and release properties of the CF synapse

- the post-synaptic receptors properties and other factors that shape the CF EPSC

- the passive behaviour of the Purkinje cell

- the firing properties of compartments within the Purkinje cell

- the active ion channels expressed that determine these firing properties

- the functional roles of CF input and complex spike generation.

These provide the building blocks of knowledge necessary to begin to question how climbing 

fibre input might result in the somatic complex spike burst of action potentials, and what the 

functional implications of this mechanism might be.

The anatomy of the cerebellum

The cerebellum is the large, horizontally foliated structure at the back of the brain, above the 

brainstem. It consists of a central midline structure, the vermis, paired with two lateral 

hemispheres and the flocculonodular lobe tucked underneath. The upper, folded surface of 

the cerebellar cortex surrounds a number of deep cerebellar nuclei. Inputs to and outputs 

from the cerebellum are made through the three connecting cerebellar peduncles.

Purkinje cells are at the heart of the cerebellar circuit (Intro. Fig. 4a). They receive the two 

main excitatory inputs to the cerebellum, monosynaptically through the powerful climbing fibre 

(CF) - Purkinje cell synapse and disynaptically through the distributed mossy fibre - granule 

cell - Purkinje cell connections. They are also the sole output of the cerebellar cortex, 

summing the excitatory and inhibitory processing of the cerebellar cortex and projecting the 

result to the deep cerebellar nuclei (DCN), where it makes robust inhibitory connections 

(Palay and Chan-Palay, 1974). Principal DCN neurons then project excitatory axons out of 

the cerebellum to innervate brainstem motor control areas, collectively termed the 

mesodiencephalic junction (De Zeeuw et al., 1998).

The cerebellar circuit is not, however, an open loop. CF axons arise from the inferior olive (IO) 

in the brainstem, but these axons also project collaterals to the DCN; mossy fibres make a 

similar branching to innervate the DCN. The DCN, in turn make connections back to the IO, 

with inhibitory DCN neurons projecting monosynaptically, and excitatory DCN projections 

feeding back disynaptically to the IO via some of the mesodiencephalic junction nuclei
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Intro. Figure 4: The anatomy of the cerebellum

A) Diagram of the olivocerebellar circuit (blue), with climbing fibre input to the Purkinje cell highlighted in red. The parallel 
circuit formed by mossy fibre (mf) input to the cerebellar cortex shown in gray. External sensory input (to inferior olive and 
pontine nuclei (PN)) highlighted by bold arrows. Abreviations: MJ -  mesodiencephalic junction; PN -  pontine nuclei; m f -  
mossy fibre; gr. c -  granule cell; go. c -  golgi cell; pf -  parallel fibre; sc/bc -  stellate cell or basket cell.
B) Illustration of the cell types of the cerebellar cortex, as revealed by Golgi staining (modified from Ramdn y Cajal (1909) 
by Nolte (1999)).
C) Drawing by Ramon y Cajal of the tendrils of the CF axon wrapping round the Purkinje cell (drawing held by the Instituto 
de Neurobiologia “Ramdn y Cajal", Madrid, Spain).
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(reviewed in Ruigrok, 1997; De Zeeuw et al., 1998; Bengtsson and Hesslow, 2006). Some 

DCN neurons have also been suggested to project excitatory connections back to the pontine 

nuclei sources of mossy fibres (reviewed in Kistler and De Zeeuw, 2003). Similarly, in the 

cerebellar cortex, local interneurons (mostly inhibitory) project backwards and forwards to 

control the excitation of granule cells and Purkinje cells (Voogd and Glickstein, 1998).

Climbing Fibre input

The neurons of the inferior olive, which project CF axons to Purkinje cells, are electrically 

coupled and show synchronous intrinsic oscillations (Llinas and Yarom, 1981b; Devor and 

Yarom, 2002b, a; Leznik et al., 2002, Long et al., 2002; De Zeeuw et al., 2003). Neighbouring 

IO cells project topographically to parasagittal bands of Purkinje cells, demarcated laterally by 

alternating aldolase C (zebrin) expression (Llinas and Sasaki, 1989; Sugihara and Shinoda, 

2004; Sugihara et al., 2007; Sugihara and Quy, 2007). Their collaterals also project 

topographically, innervating the region of the DCN to which their Purkinje cell targets also 

connect. The olivocerebellar loop is closed by the topographic projection of these same DCN 

regions back to the appropriate IO regions (Bengtsson and Hesslow, 2006).

Individual IO axons branch, when mature, to innervate ~7 Purkinje cells each (Sugihara et al., 

2001), some within the same folium, others projecting into other regions of the cortex, again 

orienting in a parasagittal direction. Each climbing fibre branch, again when mature, 

innervates only a single Purkinje cell, and does so incredibly strongly, entwining the Purkinje 

cell proximal dendritic tree and making hundreds of synaptic contacts (Palay and Chan-Palay, 

1974), resulting in a ~200 nS peak synaptic conductance (Silver et al., 1998). There is also 

anatomical and increasing physiological data that suggests climbing fibres innervate a 

number of glial cells and inhibitory interneurons in the cerebellar cortex (Palay and Chan- 

Palay, 1974).

The Purkinje cell

Purkinje cells form a distinct monolayer of several millions of cells in the mature cerebellum 

(Palay and Chan-Palay, 1974), 200-300 (j.m below the surface of the cortex (Intro. Fig. 4b). 

They extend their dendrites upwards into the ‘molecular layer’, which also contains inhibitory 

interneurons, excitatory axons and numerous glia. Their myelinated axons project through a 

densely packed layer of small granule cells to the white matter tracts in the centre of the folia, 

and out to the DCN. In addition, CF axonal collaterals are seen to branch within the granule 

cell layer and project back up to the Purkinje cell layer, innervating Purkinje cells (Orduz and 

Llano, 2007; Watt et al., In review) and potentially other Purkinje layer structures (Ramon y 

Cajal, 1911; Chan-Palay, 1971).

The mature Purkinje cell is a planar structure, orienting its dendrites in the parasagittal plane. 

Usually, a single primary dendrite extends from the soma; the dendrites then branch
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recursively producing first thicker main dendritic trunks and then finer ‘spiny branchlets’. It is 

the smoother main dendritic trunk which receives CF input (in fact onto small stubby spines), 

and the spiny branchlets, which as their name suggests have abundant synaptic spines, 

which receive the axons of granule cells. These are both the ascending axons of granule 

cells, projecting upwards with the Purkinje cell, and their later perpendicularly bifurcated 

collaterals/branches, termed parallel fibres because of their striking parallel alignment in the 

molecular layer, projecting several mm horizontally across the planes of many hundred 

Purkinje cell’s dendrites. It is estimated that the parallel fibre synaptically contacts every 

second Purkinje cell, and that, in the rat, each Purkinje cell receives ~200,000 granule cell 

synapses (Palay and Chan-Palay, 1974; Napper and Harvey, 1988). These synapses are all 

either weak (< 30 pA), or functionally silent (Isope and Barbour, 2002).

Cerebellar cortex interneurons

A number of interneurons interpose between the mossy fibre -  granule cell -  Purkinje cell 

connection, forming feedforward and feedback loops that shape excitatory input (Voogd 

Glickstein 1998). Golgi cells, which inhibit granule cells, receive feedforward mossy fibre and 

feedback parallel fibre input. Stellate cells, which inhibit Purkinje cell dendrites and basket 

cells, which inhibit Purkinje cell somata and axons, both receive feedforward parallel fibre 

input. A number of other, rarer interneurons exist, such as the unipolar brush cells that amplify 

mossy fibre input to the granule cell layer, and Lugaro cells which inhibit Purkinje cells (Dean 

et al., 2003).

The DCN

Purkinje cells project, again topographically, to a number of distinct deep cerebellar nuclei, 

including the dentate, fastigius, interpositus and lateral vestibular nuclei (Chan-Palay, 1977). 

These amorphous structures contain both inhibitory and excitatory projection neurons, as well 

as local interneurons. Work is ongoing to identify the subtypes of neurons present in the DCN 

(Sekirnjak and du Lac, 2002; Sekirnjak et al., 2003, McKay et al., 2006; Molineux et al., 2006; 

Gittis and du Lac, 2007, 2008).

At least 30 Purkinje cell axons are estimated to converge onto one DCN cell (Chan-Palay, 

1977). These form large, multirelease site synapses, mostly at the DCN cell somata (Chan- 

Palay, 1977; Telgkamp and Raman, 2002).

The monosynaptic and disynaptic connections from the DCN to the inferior olive are made 

onto the gap junction containing dendritic spines which connect IO neurons, thus providing an 

excellent mechanism whereby the general level of input excitation and the coupling of groups 

of IO neurons might be controlled (De Zeeuw et al., 1998, Devor, 2002, Bengtsson and 

Hesslow, 2006). The excitatory projections from the DCN are the principle output of the 
cerebellum.
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Ciimbinq Fibre input patterns

The in vivo rate of CF input to individual Purkinje cells is low. Complex spikes are triggered at 

a frequency of ~1 Hz, on average, though this can vary from cell to cell, and there is 

considerable intracell irregularity (Eccles et al., 1967; Bell and Grimm, 1969; Armstrong and 

Rawson, 1979). Inter complex spike intervals can typically be as low as 50 - 100 ms or as 

long as 3 s (Eccles et al., 1967; Bell and Grimm, 1969; Armstrong and Rawson, 1979). 

Although Purkinje cells are mono-innervated by single CFs, and Eccles et al. (1966a) 

demonstrated that a single presynaptic CF action potential/stimulation is sufficient to trigger a 

complex spike, CF input is not always received as discrete, single spikes. As IO cells can 

intrinsically generate bursts (Crill and Kennedy, 1967; Llinas and Yarom, 1981a, b), CF input 

often consists of a burst up to 6 spikes at interspike intervals of ~2 ms (Armstrong et al., 

1968; Armstrong and Rawson, 1979; Maruta et al., 2007). This bursty input can be seen in 

the bursts of EPSPs that remain once in vivo Purkinje cell sharp electrode recordings degrade 

beyond spike generation capability (Eccles et al., 1966a; Armstrong and Rawson, 1979; 

Maruta et al., 2007). Estimates of the fraction of IO output that is bursty vary from ~1/3 

(Armstrong and Harvey, 1966) to >70 % ((Maruta et al., 2007), see also (Armstrong and 

Rawson, 1979)). This fraction has also been found to vary with sensory stimulation, and with 

the interval between CF events (Maruta et al., 2007), with bursts been less common and 

composed of fewer spikes at short inter-event intervals. Armstrong and Rawson (1979) found 

that the variance of the number spikelets in the complex spike was usually less than the 

variation in the number of EPSPs that remained in a decayed sharp electrode recording. The 

direct relationship between the number of CF inputs in a burst, or the interval between CF 

events and the Purkinje cell complex spike has not been fully explored.

The Ciimbinq Fibre to Purkinje cell synapse

The mature CF to Purkinje cell synapse is a remarkable connection, in terms of its strength, 

its distribution and its singularity. After the ~P15 (in both rats and mice), most Purkinje cells 

are innervated by only a single axon from the inferior olive. This branches, following and 

entwining the dendritic arborisations of the postsynaptic Purkinje cell, making hundreds of 

synaptic contacts in the dendrites. These synapses release, with a high probability, glutamate 

onto postsynaptic AM PA receptors, generating an enormous excitatory post synaptic potential 

(EPSC).

Development of the CF synapse

The unitary, closely entwined, dendritic distribution of the CF - Purkinje cell connection is the 

result of dynamic axonal and dendritic outgrowth together with synapse formation and pruning
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during their co-development. Differentiating Purkinje cells migrate into the cerebellar anlage 

from the metencephalic neuroepithelium to meet axons from the nascent inferior olive (Hatten 

and Heintz, 1995). From as early as embryonic day 19, they are multiply innervated by a 

large number of widely ramifying inferior olive axons, which synapse perisomatically on the 

short, thin dendrites that radiate in all directions from the Purkinje cell somata (Morara et al., 

2001; Lohof et al., 2005; McKay and Turner, 2005). In the early postnatal days (P2 - P5) 

electrophysiological measurements resolve at least 3 - 4 CF separate inputs to a Purkinje cell 

(Mariani and Changeux, 1981; Hashimoto and Kano, 2003; Scelfo and Strata, 2005), and 

anatomical evidence suggests that there are as many as 14 CFs per Purkinje cell (Sugihara, 

2005). Between the 5th to 10th postnatal days, multiple innervation is greatly reduced and a 

single CF input begins to dominate in strength over its competitors (Mariani and Changeux, 

1981; Hashimoto and Kano, 2003; Scelfo and Strata, 2005). Anatomically, there is a 

reduction of the number of CFs in the cerebellum, and ‘nest’ like specialisations of CF 

ramifications and swellings form around Purkinje cell somata during the second postnatal 

week (O'Leary et al., 1970; Sugihara, 2005, 2006). During this period, the developing Purkinje 

cell retracts its multiple, unoriented dendrites and extends a single primary dendrite into the 

molecular layer; CF innervation follows, moving into the dendrite (Ramon y Cajal, 1911; 

O'Leary et al., 1970; Mason et al., 1990). Multiple innervation initially persists, with at least 

two CFs synapsing in overlapping areas in the dendrites (Scelfo and Strata, 2005), but as 

some CFs become strengthened to cause calcium entry across the dendrites, the weaker 

input’s Ca2+ influx becomes confined to the very proximal dendrites and soma (Hashimoto 

and Kano, 2003). From ~P10 onwards, elimination of the remaining few weaker inputs 

continues in a distinct second stage, which is dependent on the presence of parallel fibres, 

NMDA receptor triggered activity presumably in these presynaptic cells, and the on the 

mGluRI to PKC pathway downstream of parallel fibre activity in Purkinje cells (reviewed in 

Hashimoto and Kano, 2005). By the beginning of the third postnatal week, in both rats and 

mice, the majority of Purkinje cells are innervated by a single CF (Mariani and Changeux, 

1981; Scelfo and Strata, 2005). From this stage onwards the CF shows its mature distribution, 

wrapping around the main Purkinje cell dendritic branches in the proximal ~2/3rds of the 

molecular layer, with few remaining functional contacts at the soma (Palay and Chan-Palay, 

1974; Mason et al., 1990; Chedotal and Sotelo, 1992; Nishiyama and Linden, 2004; Scelfo 

and Strata, 2005) (Intro. Fig. 5a). Even in adulthood, however, some form of plasticity of this 

synapse remains, as high levels of stimulation of the CF itself can depress CF input amplitude 

(Hansel and Linden, 2000).

CF distribution

Throughout this development, the Purkinje cell has extended and elaborated its highly 

branched, planar dendritic tree (Altman, 1972; Berry and Bradley, 1976; Roth and Hausser, 

2001; McKay et al., 2005). A mature rat Purkinje cell dendritic tree reaches >200 jaiti to the
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surface of the cerebellar folium and >200 urn horizontally, branching recursively within this 

area (Berry and Bradley, 1976; Roth and Hausser, 2001; McKay and Turner, 2005). The 

spines of its fine terminal spiny branchlets are occupied by -200,000 parallel fibre synapses 

(Palay and Chan-Palay, 1974; Napper and Harvey, 1988), confining the -300-500 climbing 

fibre contacts to the thicker dendritic trunks, the proximal ~2/3 of the dendrites (Palay and 

Chan-Palay, 1974) (Intro. Fig. 5a). The large (-2 (j.m diameter) CF axon follows the main 

Purkinje dendrites, with fine axonal ‘tendrils’ extending to ensheath the main dendrites in a 

network of varicosities (Ramon y Cajal, 1888; Palay and Chan-Palay, 1974; Xu-Friedman et 

al., 2001). Eccles et al. (1966) have estimated, from their recordings at different depths of the 

molecular layer, that the CF action potential spreads through its terminal arbour at 150-500 

(im/ms. The CF axonal varicosities are packed with hundreds of excitatory synaptic vesicles 

(Intro. Fig. 5b), and are invaded by clusters of 1-6 short, stubby ‘thorn’ like spines extending 

from the Purkinje cell dendrite, onto which the CF synapses are made (Palay and Chan- 

Palay, 1974; Xu-Friedman et al., 2001). Anatomical estimates indicate that the average 

separation of these clustered thorns is 7nm, and that -300 synaptic contacts are made (Llinas 

et al., 1969b); quantal analysis suggests this is an underestimate, calculating -500 functional 

release sites (Silver et al., 1998).

CF synaptic release

Each of the several hundred CF synaptic contacts has an extremely high release probability, 

estimated by quantal analysis to be -0.9 in physiological extracellular calcium concentrations 

(Silver et al., 1998). This is due to both a high release probability for each vesicle (Foster et 

al., 2002) and a large number of readily releasable vesicles (on average 7 vesicles are 

docked at the presynaptic membrane, (Xu-Friedman et al., 2001)) (Intro. Fig. 5c). Together, 

these factors also combine to result in multivesicular release (Wadiche and Jahr, 2001) and a 

high concentration of glutamate in the synaptic cleft, usually sufficient to cause postsynaptic 

receptor saturation (Foster et al., 2002; Harrison and Jahr, 2003; Foster and Regehr, 2004). 

This mature, adult situation develops through an increase in multivesicular release at 

synapses with already high individual vesicular release probability (Hashimoto and Kano,

2003). Multivesicular release causes both highly reliable transmission and, to some extent, 

mitigates the high level of paired pulse depression seen at this synapse (Eccles et al., 1966d; 

Latham and Paul, 1971; Konnerth et al., 1990; Perkel et al., 1990; Dittman and Regehr, 1998; 

Hashimoto and Kano, 1998; Silver et al., 1998). Paired pulse depression, where a second 

stimulation of the synapse closely following the first results in a smaller postsynaptic EPSC, is 

a common feature of many high release probability synapses, due to depletion of their readily 

releasable pool of vesicles (Betz, 1970; Dittman et al., 2000; Foster and Regehr, 2004; Xu- 

Friedman and Regehr, 2004). At CF synapses, under physiological temperature and calcium, 

EPSC paired pulse depression of >40% is seen at interstimulus intervals of <40 ms (Dittman 

and Regehr, 1998; Hashimoto and Kano, 1998) (Intro. Fig. 5d). Although this reduction is
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Intro. Figure 5: The Climbing Fibre - Purkinje cell synapse

A) Image (taken from Kreitzeret al., 2000) of a fluorescently labelled Purkinje cell (red) and its innervating climbing fibre 
(green). Purkinje cell labled by Alexa Fluor 568 hydrazide via a patch pipette, climbing fibre labled by calcium green 
dextran injection into the inferior olive.
B) Electron microscope image (taken from Xu-Friedman et al., 2001) illutrating the large number of vesicles in a CF 
presynaptic bouton (shaded blue) where it synapses onto a Purkinje cell spine (pink). Surrounding astrocytic processes 
shaded yellow.
C) Serial EM sections of the active zone of the synapse shown in (B) (from Xu-Friedman et al., 2001). Docked vesicles 
(directly touching the presynaptic membrane) are highlighted in green, nondocked vesicles labelled with arrows.
D) Example (taken from Silver et al., 1998) of the prominent paired pulse depression of CF -  Purkinje cell EPSCs 
(interstimulus interval 50 msec, recording made at room temperature).
E) An experiment (taken from Harrison & Jahr, 2003) illustrating the effect of Purkinje cell post-synaptic receptor saturation 
in response to multivesicular release at the CF synapses. The incredibly large degree of depression of glutamate release 
from the CF is seen in extrasynaptic Bergmann Glial responses (top), but is partially masked by AMPA receptor saturation 
in the Purkinje cell response (bottom).
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substantial, it is considerably less than the synapse’s >75% depression of glutamate release, 

as postsynaptic AMPA receptor saturation following the first stimulation masks the full 

presynaptic effect (Foster et al., 2002; Harrison and Jahr, 2003; Foster and Regehr, 2004) 

(Intro. Fig. 5e). Recovery from paired pulse depression occurs with a triple exponential time 

course at the CF synapse, the fast component of which has a time constant of ~40 ms 

(though this rate, and its amplitude, is calcium dependent) and the intermediate component 

of ~1.2 s at 35 °C (the third, even slower component was not quantified at this temperature) 

(Dittman and Regehr, 1998).

CF post-svnaptic receptors

The large concentrations of glutamate released by CF synapses are received principally by 

AMPA receptors. Initial investigations had shown that CF EPSPs have a linear current voltage 

(IV) relationship (Eccles et al., 1966a); voltage clamp later confirmed this and showed that 

they reverse around 0 mV (Perkel et al., 1990; Llano et al., 1991). Pharmacological 

experiments have demonstrated that the bulk of the CF EPSC is sensitive to AMPA receptor 

blockers (Konnerth et al., 1990; Perkel et al., 1990). It was thought that functional NMDA 

receptors were not present in Purkinje cells (Perkel et al., 1990; Farrant and Cull-Candy, 

1991; Llano et al., 1991), however, recently it has been found that, in mice, a small NMDA 

receptor current appears with development (becoming observable at 3 weeks, and increasing 

to a few 100 pA in adulthood), adding an after-depolarisation to the CF response (Piochon et 

al., 2007). Further, immunocytochemistry and electrophysiology has shown the presence 

mGluRI metabotropic glutamate receptors at the CF synapse (Nusser et al., 1994; Petralia et 

al., 1998), though these contribute at most only a few 10s of pA of current to the normal CF 

response, only becoming significant when glutamate uptake is blocked (Dzubay and Otis,

2002).

The AMPA receptor subunits of the Purkinje cell have been identified and characterised 

though a combination of PCR, immunocytochemistry, calcium imaging and electrophysiology. 

Single cell PCR has found that, of the four AMPA receptor subunits that can combine to form 

a functional ion channel, GluRs 1, 2 and 3, but not 4, are expressed in Purkinje cells, both in 

culture (Lambolez et al., 1992; Brorson et al., 1999) and in acute slices (Tempia et al., 1996). 

Light and electron microscopy of immunostaining has confirmed the presence of GluR 1, 2 

and 3 in the Purkinje cell at both parallel fibre and CF synapses, and has found no evidence 

of the presence of GluR 4 (Baude et al., 1994; Bergmann et al., 1996; Petralia et al., 1998; 

Ripellino et al., 1998). Of these subunits, the highest expression levels (~70%, Lambolez et 

al., 1992; Brorson et al., 1999) are of GluR2. The result of this is to ensure that most Purkinje 

cell AMPA receptors contain a GluR2 subunit, giving the CF EPSC its linear, non-rectifying IV 

relationship (Bowie and Mayer, 1995; Kamboj et al., 1995). More pertinently, it gives the net 

response to glutamate a very low level of calcium permeability (Jonas and Burnashev, 1995),
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as assessed by Ca2+ imaging (Tempia et al., 1996) and electrophysiological measurement of 

reversal potential during ion substitution experiments (Hausser and Roth, 1997b; Brorson et 

al., 1999). CF EPSCs have similar properties (linear IV, low Ca2+ permeability) throughout 

development, indicating that their postsynaptic receptor composition is likely to be similar 

(Tempia et al., 1996; Momiyama et al., 2003). The low Ca2+ permeability of the CF synapse, 

due to low levels of NMDA receptor expression and the high levels of GluR2, have important 

implications for the manner in which CF excitation causes associative synaptic plasticity, 

which will be discussed later.

Purkinje cell AMPA receptor kinetics and density have been characterised 

electrophysiologically. Measurements of the macroscopic current in outside-out patches 

pulled from the soma or dendrites of P12-18 Purkinje cells have been used to create a kinetic 

model of the AMPA current, firstly at room temperature (Hausser and Roth, 1997b) and later 

at more physiological temperatures (Wadiche and Jahr, 2001). Among other features, the 

model reflects the channels’ rapid desensitisation and their single channel conductance of 

~8pS; AMPA receptors in situ in the post-synaptic membrane may however show different 

properties (e.g. slower desensitisation and faster recovery from desensitisation (DiGregorio et 

al., 2007)). Analysis of spontaneous and miniature EPSCs in whole cell recordings of P2-4 

Purkinje cells reports a quantal synaptic conductance of -300 pS, due to glutamate acting on 

postsynaptic densities containing >66 AMPA receptors (Momiyama et al., 2003). Similar 

numbers of AMPA receptors have been counted at immature (10 -  207 receptors) and mature 

(69 ± 43 receptors) CF synapses using sensitive immunogold labelling of freeze fractured 

sections (Tanaka et al., 2005; Masugi-Tokita et al., 2007). This, together with the observation 

that the concentration of glutamate released by a single vesicle remains constant from at 

least P3 onwards (Hashimoto and Kano, 2003), is in accord with quantal conductance 

remaining similar at -0.55 nS (Silver et al., 1998). Although the later number may be an 

underestimate of the synaptic conductance, due to poor voltage clamp of distant synaptic 

events (the ‘space clamp’ problem, Spruston et al., 1993; Williams and Mitchell, 2008), it is 

approximately consistent with the ~200 nS conductance (also measured somatically, with 

similar associated errors) caused by activation of the whole CF axon, releasing glutamate at 

-500 contacts with a synaptic release probability of -0 .9  (Silver et al., 1998).

The CF EPSC

The result of the near coincident, high probability, multivesicular release of saturating 

concentrations of glutamate onto these hundreds of AMPA receptor containing synapses is 

an enormous post-synaptic current. Although the ability to faithfully record such large, 

distributed currents is limited both by the quality and speed of somatic voltage clamp and by 

the poor space clamp of the highly branched Purkinje cell dendritic tree (Roth and Hausser, 

2001; Spruston, 2003; Williams and Mitchell, 2008, discussed further in the discussion of 

Chapter 1), the CF input is estimated to be -  200 nS, resulting in EPSCs of several nA at
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resting membrane potentials. Reports of amplitude measured under slightly differing 

conditions range from ~2-4 nA (Konnerth et al., 1990; Hashimoto and Kano, 1998; Hansel 

and Linden, 2000), through ~6-12 nA (Llano et al., 1991; Silver et al., 1998; McKay et al.,

2005) up to ~10-20 nA (Dittman and Regehr, 1998; Wadiche and Jahr, 2001) (all values 

normalised to -70 mV). Thus, the CF-Purkinje cell connection is one of the largest in the 

nervous system. Its kinetics have been most accurately characterised using voltage jump 

experiments (Hausser and Roth, 1997a; Wadiche and Jahr, 2001), in which the sensitivity of 

the recorded EPSC to step changes in voltage made throughout its timecourse is used to 

infer the continued activation of the synaptic conductance. A rise time of 0.22 ± 0.7 ms and a 

biexponential decay time course of Tfast 1.3 ± 0.7 ms (57.4 ± 25 %) TS|0W 5.0 ± 0.9 ms was

reported at 32-35 °C (Wadiche and Jahr, 2001). This gives a weighted mean single 

exponential decay (2.9 ms) slightly faster than that reported under voltage clamp at similar 

temperatures (Hashimoto and Kano, 1998; McKay et al., 2005), and parameters around twice 

as fast as recorded at room temperature (Silver et al., 1998 (double exponential decay), 

Perkel et al., 1990; Llano et al., 1991; Barbour et al., 1994; Takahashi et al., 1995; Dittman 

and Regehr, 1998).

The relatively slow time course of the CF EPSC is determined both by the desensitisation of 

the postsynaptic AMPA receptors and by the timecourse of glutamate in the synaptic cleft 

(Barbour et al., 1994; Takahashi et al., 1995). Addition of drugs which slow the 

desensitisation of AMPA receptors, prolongs the CF EPSC (Barbour et al., 1994; Takahashi 

et al., 1995; Takayasu et al., 2005), confirming that the desensitisation measured in outside 

out patches (Hausser and Roth, 1997b; Wadiche and Jahr, 2001), while not necessarily 

accurately reflecting synaptic AMPA receptor kinetics (DiGregorio et al., 2007), does play a 

role in sharpening CF EPSC decay. This prolongation of the EPSC also suggests that 

glutamate may be present long enough in the cleft to cause continued AMPA receptor 

activation in the absence of desensitisation (though this is complicated by the drugs’ 

additional effects on AMPA receptor deactivation and glutamate affinity (Patneau et al., 1993; 

Yamada and Tang, 1993; Barbour et al., 1994)). The clearance of glutamate from the 

synaptic cleft is not left only to diffusion; glutamate transporters in the perisynaptic Purkinje 

cell membrane (Takahashi et al., 1996; Otis et al., 1997; Tanaka et al., 1997) and in the 

ensheathing Bergmann glial membrane (Chaudhry et al., 1995; Bergles et al., 1997; Clark 

and Barbour, 1997) increase the rate of removal of the neurotransmitter. Either 

pharmacologically blocking or genetically knocking out these transporters slows the CF EPSC 

(Barbour et al., 1994; Takahashi et al., 1995; Takayasu et al., 2005; Takatsuru et al., 2006). 

Purkinje cell EAAT4 transporters operate more slowly, determining the slow tail of the EPSC, 

while Bergmann glial cell GLAST and GLT-1 transporters operate on a similar timescale to 

AMPA receptor desensitisaion (Otis et al., 1997; Auger and Attwell, 2000; Brasnjo and Otis, 

2004; Takayasu et al., 2005; Takatsuru et al., 2006).
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The CF - Purkinie cell synapse: a uniquely specialised connection

The CF - Purkinje cell synapse is remarkable in terms of its size, distribution, release 

probability, receptor expression and kinetics. Throughout the nervous system, there are 

relatively few examples of such large, reliable synapses. These, often labelled “detonator 

synapses”, tend to occur where the faithful, temporally accurate transmission of information is 

required, and can be seen as little more than an effective ‘relay’ between cells. Examples of 

such high release probability, effective synapses include the calyx of Held (which accurately 

relays high frequency auditory input to higher brain areas (Borst et al., 1995; Taschenberger 

and von Gersdorff, 2000)), the neuromuscular junction (which causes the rapid, dependable 

contraction of the muscle, end effector of all prior neuronal processing (Katz, 1966; Ruff,

2003)) and the Drosophila olfactory receptor neuron -  projection neuron synapse (which 

creates a sharp onset, high signal to noise olfactory signal (Kazama and Wilson, 2008)). In 

most of these cases, unambiguous binary transmission is achieved by the precise triggering 

of a single spike. In the calyx of Held, for example, this may be aided by the location of the 

synaptic input, clasped around the postsynaptic cell’s soma, electrotonically close to the spike 

generation site, together with especially brief EPSCs (Taschenberger and von Gersdorff,

2000). In contrast, the CF ‘detonator synapse’ reliably amplifies presynaptic input into a burst 

of precisely timed spikes, generating a salient ‘feature’ in the Purkinje cell’s spike train, which 

has the potential to encode (through modification of the burst) more than just the occurrence 

of the input. Potentially, features of the Purkinje cell’s passive and distributed active 

properties, outlined in the next section, help it achieve this amplification.

Purkinie cell properties

The complex spike is the result of the combination of the giant, distributed CF input with the 

active and passive properties of the Purkinje cell. Decades of study have created a wealth of 

data (outlined below) describing the Purkinje cell. Its highly branched geometry and passive 

characteristics have been detailed. A large amount is known about the ion channels it 

expresses, their biophysical properties and how they are distributed. Together, these equip 

the Purkinje cell to spontaneously fire axosomatic sodium spikes and to be capable, giving 

suitable current stimuli, of firing at very high axosomatic firing frequencies, of intrinsically 

generating bursts and of generating prominent dendritic calcium spikes. However, this 

information, which has been incorporated into some of the most biophysically accurate 

models developed to date, has failed to provide a complete understanding of how the 

complex spike is generated (Schmolesky et al., 2002).

Purkinie cell passive structure
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The timecourse and amplitude of the EPSC recorded at the soma, and of the resulting 

depolarisation in the soma and dendrites is determined in part by the geometry of the Purkinje 

cell dendritic tree. With development, Purkinje cells become progressively more branched, 

increase in dendritic surface area (to >12,000 um2) and decrease in somatic input resistance 

(to <20 MQ), reaching near adult levels after P18 (Roth and Hausser, 2001; McKay and 

Turner, 2005). As CF synapses are distributed across these highly branched dendritic trees, 

the synaptic current must be transmitted along the leaky electrical cable of the dendrites 

towards the soma (see cable theory section earlier).

Although even mature Purkinje cells are electrically compact at steady state, the large 

capacitance of the dendritic tree and the many points of impedance mismatch created by its 

highly branched structure mean that brief inputs are greatly attenuated and slowed in time 

course by their propagation to distant sites (Rail, 1964; Rapp et al., 1994; Roth and Hausser, 

2001; Vetter et al., 2001). At P21, the distal tips of Purkinje cell dendrites are -0 .3  X from the 

soma, meaning that the leak of the relatively short, high membrane resistance dendrites 

causes a maximum tonic voltage attenuation from soma to dendrites to only 74% (Roth and 

Hausser, 2001). However, steady state attenuation from dendrites to soma is worse (due to 

impedance mismatch being worse when viewed from points in the dendrites), with <25% of 

the voltage at the distal tips of the dendrites propagating to the soma (though from the main 

dendrites, attenuation is to only >75%). Transient voltage changes are far more poorly 

propagated to distant sites. In these cases, it is the capacitance increase at branch points that 

is particularly unfavourable to propagation. Membrane capacitance causes voltage changes 

at distant sites to occur more slowly (Rail, 1969, see also earlier cable theory section), so 

that, if not fully charged before the end of the transient, their peak (steady state) voltage is not 

reached i.e. their voltage change is attenuated. The increase in membrane area at most 

branch points makes this charging particularly slow, and passive attenuation of transients in 

Purkinje cells particularly great (Vetter et al., 2001). Further, because of these factors, branch 

points are particularly unfavourable to propagation of active events, as, past the branch point, 

voltage changes are often not fast enough or large enough to cross threshold for continued 

spike generation (Goldstein and Rail, 1974; Parnas and Segev, 1979; Segev and 

Schneidman, 1999; Vetter et al., 2001). In the case of Purkinje cells, parallel fibre EPSPs 

from the spiny dendrites are greatly attenuated in their propagation to the soma (Roth and 

Hciusser, 2001), fast axo-somatic spikes are poorly and passively propagated into the 

dendrites (Stuart and Hausser, 1994; Vetter et al., 2001), and brief action potentials in the 

dendrites are predicted to forwards propagate to the soma poorly (Vetter et al., 2001).

Although similar constraints apply to the CF EPSC, the wide distribution of many synapses in 

the larger, more proximal dendrites may help mitigate these effects through the rapid, local 

charging of the dendritic capacitance, the reduction of axial current flow at branch points due 

to distributed depolarisation and their favourable location on electrotonically close, low axial
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resistance dendrites. In fact, voltage jump measurements of the time course of the EPSG give 

decay time constants (of Tfast 1.3 ± 0.7 ms (57.4 ± 25 %) and TS|0w 5.0 ± 0.9 ms (Wadiche and

Jahr, 2001)) that do not differ significantly from those of the EPSC measured by somatic 

voltage clamp. This suggests that dendritic filtering does not significantly alter the recorded 

EPSC time course; the resulting EPSP will of course be filtered by the time constants of the 

cell from the viewpoint of the soma. The distributed nature of CF synapses and their location 

on stubby spikes is also suggested to reduce somewhat the conductance shunt and reduction 

in driving force that might be experienced by more clustered synaptic input (Palay and Chan- 

Palay, 1974), increasing the size of the EPSC. Further, the dendritic distribution of inputs also 

provides a more effective depolarisation of the dendrites than somatic input would (Segev 

and Rail, 1988; Vetter et al., 2001) . This would aid the recruitment of dendritic active events 

by the CF input. The site of action potential generation is also influenced by Purkinje cell 

geometry, with small capacitance, high input impedance, high axial resistance isolated 

compartments, such as the axon or the central region of spiny branchlet dendritic clusters 

being favoured (Stuart and Hausser, 1994; Khaliq et al., 2003; Roth and Hausser, 2004; Clark 

et al., 2005). Thus, it appears that the synaptic distribution of CF input is perfectly placed to 

globally depolarise the dendrites and provide a massive current input to the soma, triggering 

both dendritic and axonal spikes.

Purkinie cell firing patterns

The passive properties of the Purkinje cell dendrites serve to compartmentalise the cell, 

separating the dendrites and the soma. The cell’s active properties (first thoroughly described 

using sharp electrode recording in slice (Llinas and Sugimori, 1980b, a; Hounsgaard and 

Midtgaard, 1988)) emphasise the distinction.

Purkinje cell somata fire narrow (< 0.2 ms), fairly small (reaching ~0 mV) TTX sensitive 

sodium action potentials at high frequencies, both in vitro (Llinas and Sugimori, 1980a; 

Hounsgaard and Midtgaard, 1988; Clark and Barbour, 1997) and in vivo (Granit and Phillips, 

1956; Eccles et al., 1967; Bell and Grimm, 1969; Latham and Paul, 1971; Armstrong and 

Rawson, 1979; Nitz and Tononi, 2002) (Intro. Fig 6a). The Purkinje cells characteristic tonic 

high frequency ‘simple spike’ firing (~50 Hz) is intrinsically generated, continuing (indeed 

becoming more regular) in the absence of synaptic input (Hausser and Clark, 1997). Paired 

axonal and somatic whole cell recording demonstrated that fast action potentials (both simple 

spikes and the first spike of the complex spike) are, at room temperature, initiated in the axon 

before propagating into the soma (Stuart and Hausser, 1994). This was confirmed for simple 

spikes at physiological temperatures using paired cell-attached axonal and somatic 

recordings (Clark et al., 2005), though whether the initiation site is at the first node of Ranvier 

(Clark et al., 2005) or in the axonal initial segment (Khaliq and Raman, 2006) has been 

contested.
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These spikes backpropagate poorly into the Purkinje cells highly branched dendrites (Llinas 

and Sugimori, 1980b, a; Hounsgaard and Midtgaard, 1988; Stuart and HSusser, 1994) (Intro. 

Fig 6a and b). Indeed, the dendrites act as a passive capacitative brake on spiking, which 

continues at a higher rate after dendrotomy (Bekkers and Hausser, 2007). The dendrites are, 

however highly electrically excitable; tonic depolarisation generates trains of gradualy rising, 

rapidly repolarising Ca2+ spikes, insensitive to TTX, but blocked by cadmium (Llinas and 

Sugimori, 1980b; Hounsgaard and Midtgaard, 1988) (Intro. Fig 6c). These can be seen at the 

soma if sodium channels are blocked (Llinas and Sugimori, 1980a) and underlie the bursting 

of sodium spikes seen with somatic depolarisation in the absence of sodium channel block 

(Llinas and Sugimori, 1980b, a; Womack and Khodakhah, 2004; Bekkers and Hausser, 

2007).

This pattern of excitability develops over the first 3 postnatal weeks in rats. At P0 the majority 

of Purkinje cells are silent (McKay and Turner, 2005; Fry, 2006). With development, somatic 

sodium channel density increases, their voltage activation becomes more negative and a 

greater proportion of resurgent current (see later) is expressed (Fry, 2006), resulting in 

spontaneous spiking, higher firing frequencies and faster rising, lower threshold, narrower 

action potentials and (McKay and Turner, 2005; Fry, 2006). Initially, current injection leads to 

a transient ‘low threshold burst’ pattern of firing. This develops into the mature pattern of 

steady firing of linearly increasing frequency with increasing current injection, followed by Na- 

Ca2+ spike bursting, which acts to ‘clamp’ the average firing frequency at a maximum around 

200-300 Hz (McKay and Turner, 2005; Rancz and Hausser, 2005). Also, it was found that, in 

slices, Na+- Ca2+ bursting can occur spontaneously, as part of a cycle of bursting, silence and 

tonic spiking (Womack and Khodakhah, 2002a; Womack and Khodakhah, 2004) which 

increases in prevalence with age and size of the dendritic tree (McKay and Turner, 2005). As 

these patterns indicate a more depolarised state, and are not seen in vivo (unless the cell is 

damaged by microelectrode impalement (Granit and Phillips, 1956; Eccles et al., 1966c), or 

CF input is prevented (Cerminara and Rawson, 2004)), it is possible that they might reflect 

either slicing damage to the Purkinje cell, or the acute result of CF input removal.

In vivo, Purkinje cells fire repetitively at frequencies that are modulated by parallel fibre and 

interneuron sensory input (e.g. Granit and Phillips, 1956; Gilbert and Thach, 1977; 

Loewenstein et al., 2005; Schonewille et al., 2006; Barmack and Yakhnitsa, 2008). Whole cell 

recording (under anaesthesia) has demonstrated that Purkinje cells in vivo are bistable, and 

that CF input can trigger the cell to switch from tonic firing to silence and vice versa 

(Loewenstein et al., 2005, though see Schonewille et al., 2006), illuminating the bistable 

behaviour recorded by extracellular electrodes (Bell and Grimm, 1969; Latham and Paul, 

1971; Armstrong and Rawson, 1979; Nitz and Tononi, 2002, among others). This bisability 

can be seen in vitro, where the firing rate to a current input depends on whether increasing or
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Intro. Figure 6: Firing behaviour of the cerebellar Purkinje cell

A) Example (taken from Hounsgaard & Midtgaard, 1988) of the axosomatic sodium spiking (bottom) that is barely visible 
in dendritic recordings (top), due to its lack of active backpropagation.
B) Examples of Na-Ca bursting produced by intense current injection (also from Hounsgaard & Midtgaard 1988). In 
dendrites (top) rhythmic calcium spikes are generated; somata (bottom) generate cycles of rapid spiking that increase in 
frequency and decreases in amplitude before complete inactivation.
C) Measurement (from Stuart & Hausser 1994) of the rapidly diminishing amplitude of axosomatic spikes as they 
backpropagate into the dendrites.
D) Example responses (from Crepel et al., 1981) to CF stimulation. Prominent calcium spikes are seen in a dendritic 
recording (top), and a highly reproducible complex spike is seen at a soma (bottom). A single stimulation failure is shown 
in both dendrites and soma.
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decreasing amounts of current are being injected, and is enhanced by blockers of Ih, where 

similar rapid switches between silent and tonic firing can be made (Williams et al., 2002).

The CF evoked firing pattern- the complex spike

The result of strong, distributed CF input to the Purkinje cell dendrites is to evoke electrical 

responses in both somatic and dendritic compartments (Eccles et al., 1966a). 1-3 dendritic 

spikes are triggered together with the somatic complex spike burst, composed of an initial fast 

spike followed by a number of high frequency spikelets of varying height generated on top of 

an envelope of depolarisation (Intro. Fig 6d) (Eccles et al., 1966a; Fujita, 1968; Martinez et 

al., 1971; Llinas and Sugimori, 1980b, a; Crepel et al., 1981; Campbell and Hesslow, 1986a; 

Chan et al., 1989; Hashimoto and Kano, 1998; Schmolesky et al., 2002; Khaliq and Raman, 

2005; Monsivais et al., 2005). The somatic complex spike is ‘all-or-none’, being highly 

reproducible when evoked repeatedly in the same cell (Eccles et al., 1966a; Crepel, 1971; 

Puro and Woodward, 1977; Armstrong and Rawson, 1979; Llinas and Sugimori, 1980a). The 

complex spike is often followed by a pause in the simple spike firing of the cell (Bloedel and 

Roberts, 1971; Latham and Paul, 1971; Armstrong and Rawson, 1979; Sato et al., 1992). The 

simple spike firing rate following this pause can be modulated both up and down following this 

pause (Sato et al., 1992; Bloedel and Bracha, 1998).

The adult characteristics of this response develop early on in the maturation of the Purkinje 

cell and its CF input. By P3 a burst of spikes is seen (Crepel, 1971, 1974; Puro and 

Woodward, 1977), though these last longer, are of lower frequency and have fewer spikes 

than in the adult complex spike (Crepel, 1971). The adult number of spikes in the complex 

spike is reached by P7 and adult frequency reached by P16 (Crepel, 1971), neatly paralleling 

the development of the CF input and Purkinje cell excitability (Hashimoto and Kano, 2005; 

McKay and Turner, 2005; Fry, 2006; Sugihara, 2006). It has also been noted that before P11 

the spontaneous and evoked CF response is more variable and sensitive to stimulus intensity 

(Puro and Woodward, 1977); this is again consistent with CF maturation and the major 

pruning of multiple innervation that occurs in this period (Hashimoto and Kano, 2005; 

Sugihara, 2006).

The initial fast spike of the complex spike is, at room temperature, generated in the axon 

(Stuart and Hausser, 1994) and is usually faithfully propagated down the axon (physiological 

temperature, Khaliq and Raman, 2005; Monsivais et al., 2005). The origin of later spikelets in 

the complex spike, in particular the role of dendritic calcium spikes in their generation, is 

unclear, and often small spikes generated at short interspike intervals fail to propagate down 

the axon (Khaliq and Raman, 2005; Monsivais et al., 2005).

Although the complex spike observed in any one Purkinje cell is highly reproducible, a large 

variety is generated across cells (Eccles et al., 1966a; Armstrong and Rawson, 1979;
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Campbell and Hesslow, 1986a; Schmolesky et al., 2002; Khaliq and Raman, 2005). It is not, 

as yet, clear how this variety of spikes is generated. The relationship between the strong, yet 

modulable (Dittman and Regehr, 1998; Hashimoto and Kano, 1998; Silver et al., 1998; 

Hansel and Linden, 2000) dendritic CF input, the intrinsic properties of the Purkinje cell and 

the eventual somatic complex spike production is not understood, and will be explored in this 

thesis.

The output spiking patterns generated in response to input current, both synaptic or artificially 

injected by the experimenter, are the product of the interact between geometry and channel 

expression. The following is an outline of what is known about Purkinje cell ion channel 

expression and what is understood of the specialisations that produce the distinct dendritic 

and somatic patterns of firing observed.

Purkinie cell voltage gated ion channel expression

The principle distinction in ion channel distribution between the somatic and dendritic Purkinje 

cell compartments is the lack of sodium channels in the dendrites. In the axon and soma, 

sodium channels specialised for high frequency repetitive firing are expressed, but these are 

absent from the dendrites. Both compartments contain calcium channels of a subtype more 

usually responsible for the discrete presynaptic calcium events that cause rapid 

neurotransmitter release, together with a compliment of potassium and calcium activated 

potassium channels specialised to produce brief active events and a dynamic range of high 

frequency firing.

Sodium channels and fast spiking initiation

Outside-out patches pulled from the soma and dendrites of Purkinje cells has demonstrated 

that there are very low densities of sodium current in Purkinje cell dendrites, but high levels at 

the soma (Stuart and Hausser, 1994). This, together with the unfavourable dendritic 

geometry, prevents sodium spike initiation and active backpropagation into the dendrites 

(Stuart and Hausser, 1994; Vetter et al., 2001); passive attenuation ensures that action 

potential height diminishes rapidly with distance (47 exponential decay constant (Stuart 

and Hausser, 1994)).

The sodium currents measured in acutely dissociated Purkinje cell somata have three notable 

features: rapid activation and inactivation that gives a transient current; a resurgent current, 

briefly generated following depolarising, inactivating steps (-10 % of the peak transient 

current), and a persistent, noninactivating current (0 - 3 % of the peak transient current) 

(Raman and Bean, 1997; Kay et al., 1998; Raman and Bean, 1999, 2001; de Ruiter et al., 

2006; Fry, 2006). These currents are due to the combined expression of high levels of Nav1.6
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and Nav1.1 channels, potentially some Nav1.2 (Felts et al., 1997; Vega-Saenz de Miera et al., 

1997; Shah et al., 2001; Schaller and Caldwell, 2003; Kalume et al., 2007) together with the 

effects of the auxiliary 04 subunit (Grieco et al., 2002; Grieco and Raman, 2004; Grieco et al.,

2005). There is now good evidence to suggest that the resurgent current is due to recovery of 

sodium channels from inactivation via an open state, due to a blocking particle entering the 

pore in its open state (Raman and Bean, 2001). Disruption of the 04 peptide (through 

proteolysis, later rescued by 04 resubstitution) abolished the resurgent current, indicating that 

it might act as the open pore blocking particle (Grieco et al., 2005). Further, lack of expression 

of the relatively slowly inactivating Nav1.6 subunit results in a great reduction of resurgent 

current (Raman et al., 1997; Khaliq et al., 2003; Levin et al., 2006). However, slowing of 

inactivation of the remaining sodium channels (with 0-Pompilidotoxin) allows a 04 sensitive 

resurgent current to develop (Grieco and Raman, 2004). The source of the persistent sodium 

current is hypothesised be similar to that of resurgent (Kay et al., 1998; Raman and Bean, 

2001; Fry, 2006), and it appears to develop in parallel with upregulation of resurgent current, 

but independently of total transient current (Fry, 2006).

These subthreshold sodium currents play an important role in the generation of high 

frequency spontaneous action potential in Purkinje cells. Reduction of resurgent current 

through lack of Nav1.6 expression prevents spontaneous spiking (Raman et al., 1997; Khaliq 

et al., 2003; Levin et al., 2006) while knockout of Nav1.1, which reduces sodium current 

density by a similar amount (~60%) but does not affect the characteristics of resurgent 

current, only slows spontaneous spiking (Kalume et al., 2007). This is supported by modelling 

of lack of the resurgent component (Khaliq et al., 2003). Further, voltage clamp of dissociated 

Purkinje somata to an action potential train waveform demonstrates that the principle inward 

current flowing between spikes is resurgent current, with some small component of persistent 

current (Raman and Bean, 1997, 1999; Fry, 2006). In intact Purkinje cells, this may be 

augmented by capacitative and active currents from the dendrites (Jaeger et al., 1997; Clark 

et al., 2005; Fernandez et al., 2007). The loss of spontaneous spiking through Purkinje cell 

specific Nav1.6 knockout shows the distinct phenotype of cerebellar ataxia (Levin et al.,

2006).

While rapid sodium channels are important for rapid firing, burst generation and thus for 

complex spike generation (Raman and Bean, 1997; Khaliq et al., 2003; Swensen and Bean, 

2003, 2005; Levin et al., 2006; Kalume et al., 2007), burst generation is maintained after 

sodium channel reduction, through the compensatory balance of other ion channel activation 

(Swensen and Bean, 2005), and vastly different complex spike patterns are produced across 

species with very similar sodium channel properties (de Ruiter et al., 2006).
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Calcium channels and dendritic excitability

While the low levels of sodium channels in the dendrites of Purkinje cells cannot support 

sodium spikes, they have been known for many years to have a prominent, calcium 

dependent electrical excitability (Llinas et al., 1968; Calvin and Hellerstein, 1969; Llinas et al., 

1969c; Llinas et al., 1969a; Llinas and Nicholson, 1971; Nicholson and Llinas, 1971; Llinas 

and Sugimori, 1980b, a; Hounsgaard and Midtgaard, 1988; Rancz and Hausser, 2006). The 

calcium channels responsible were, in fact, first identified in Purkinje cells and were thus 

named ‘P-type’ (Llinas et al., 1989), and are now known to correspond to Cav2.1, or the 

alphalA subunit (Dolphin, 2006). P-type channels form the bulk of calcium channels 

expressed, although some lower levels of L, N, R and T type channels exist in Purkinje cells 

(Ahlijanian et al., 1990; Regan, 1991; Mintz et al., 1992; Westenbroek et al., 1992; Yokoyama 

et al., 1995; McDonough and Bean, 1998; Chung et al., 2002; Yunker et al., 2003; Gruol et 

al., 2006; McKay et al., 2006; Molineux et al., 2006), and low threshold spikes generated by 

T-type excitability have been reported in young animals, perhaps localised to the distal, spiny 

dendrites (Mouginot et al., 1997; Pouille et al., 2000; Cavelier et al., 2002b; Cavelier et al., 

2002a; Isope and Murphy, 2005).

P-type channels have been characterised as high voltage activating channels present at a 

high conductance density in both the soma and larger dendrites amenable to patching 

(Regan, 1991; Usowicz et al., 1992), and immunocytochemistry and the Ca2+ influx recorded 

by imaging suggests they are also present in the distal spiny branchlets (Ross and Werman, 

1987; Miyakawa et al., 1992; Westenbroek et al., 1995; Rancz and Hausser, 2006), though 

lack of direct electrical measurement does not preclude that their channel characteristics or 

excitability might differ somewhat (Ekerot and Oscarsson, 1981; Tank et al., 1988; Isope and 

Murphy, 2005; Rancz and Hausser, 2006). The Cav2.1 subunit exists as a number of different 

splice variants in Purkinje cells (Kanumilli et al., 2006), the expression of which changes 

during development (Chaudhuri et al., 2005). Pertinently, this leads to increased expression 

of subunits that display Ca-calmodulin dependent facilitation (Chaudhuri et al., 2004; 

Chaudhuri et al., 2005), which suggests a positive feedback mechanism whereby prior 

excitation can increase e.g. the number calcium spikes in the CF response (Christensen, 

2002). Further, it might underlie the slightly altered pharmacology of P-type channels in 

mature rat Purkinje cells (Tringham et al., 2007).

The lack of functional Cav2.1 subunits, due to block, mutation or knockout, prevents the 

generation of dendritic calcium spikes and the resulting Na+- Ca2+ bursting of spikes seen at 

the soma, but also leads to more irregular simple spiking due to the consequent lack of 

activation of KCa channels (Cavelier et al., 2002b; Hoebeek et al., 2005; Donato et al., 2006; 

Walter et al., 2006; Ovsepian and Friel, 2008). The behavioural phenotype of these mice is 

ataxia, apparently due to the lack rhythmicity in Purkinje cell firing, but the potential role in 

altered synaptic plasticity due to altered calcium influx does not seem to have been explored
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(Jun et al., 1999; Hoebeek et al., 2005; Dolphin, 2006; Walter et al., 2006; Ovsepian and 

Friel, 2008).

Potassium channels and fast spiking

Excitable channels carrying inward current, such as sodium and calcium channels, are only 

part of what determines the firing capabilities of a neuron. The outward current carrying 

channels of the large, diverse voltage gated potassium channel family display a large variety 

of voltage sensitive and kinetic properties that control neuronal excitability in a number of 

different ways (Coetzee et al., 1999). In Purkinje cells potassium channels (both voltage and 

calcium dependent) make a strong contribution to fast somatic spiking and dendritic calcium 

spike generation. Recently, a large amount of progress has been made to identifying and 

characterising the conductances responsible. In 1991, it was known from single channel 

recordings that at least 6 separate potassium channel conductances were expressed (in slice 

culture, Gruol et al., 1991). It is now known that Purkinje cells prominently express Kv3 and 

KV1 channels and have some properties consistent with Kv4 channels, together with the 

expression of BK and SK calcium activated potassium channels, most with an apparently 

uniform somatodendritc distribution. The following outlines what is known about the 

expression and functional role of these subunits.

Ky3

In general, Kv3 channels are high threshold activating (>-20 mV), rapidly activating and 

rapidly deactivating (Rudy and McBain, 2001). As such, they are usually only activated by 

action potentials, curtailing spike height and width, so limiting sodium channel inactivation. 

This, together with their rapid kinetics, which avoid prolonged potassium conductance 

between spikes, serves to increase the firing frequency of the neuron (Rudy and McBain,

2001). Purkinje cells express high densities of Kv3.3 and 3.4 channels (Kv3.1 expression is 

negligible and Kv3.2 appears to be absent, (Goldman-Wohl et al., 1994; Weiser et al., 1994; 

Rashid et al., 2001; Martina et al., 2003; McMahon et al., 2004; Sacco et al., 2006)).

The properties of potassium channels in outside-out patches from the soma and dendrites are 

consistent with a high density of Kv3 channels (Martina et al., 2003); TEA (in the absence of 

Ca2+ and presence of internal and external EGTA, to avoid Kca currents) has been used to 

separate out and characterise the high voltage activated (V1/2 ~-5 mV), rapidly activating and 

deactivating (1-8 ms, depending on Vm) Kv3 component (Sacco et al., 2006). These currents 

are activated at the soma during action potentials, carrying most of the potassium current 

during the spike (Martina et al., 2007), and are activated in the dendrites by action potential 

backpropagation and CF-stimulus-like depolarisations (Martina et al., 2003). They are largely 

responsible for the Purkinje cell somatic action potentials’ characteristic brief duration and
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small amplitude (McKay and Turner, 2004; Akemann and Knopfel, 2006; Martina et al., 2007), 

and also limit the amplitude and duration of calcium spikes (McKay and Turner, 2004).

Their removal (either pharmacologically or genetically) causes an increase in somatic and 

dendritic spike width, slower spontaneous simple spiking or evoked calcium spiking, and 

longer post-complex spike pauses (McKay and Turner, 2004; McMahon et al., 2004; 

Akemann and Knopfel, 2006; Hurlock et al., 2008). They may promote rapid tonic firing in a 

novel manner in Purkinje cells, by causing an accumulation of the Nav1.6 resurgent current 

acting between spikes (Akemann and Knopfel, 2006). The rapid transient burst of spiking 

during the complex spike relies on somatic Kv3.3 channels for interspike repolarisation; their 

removal results in a plateau of depolarisation in place of the complex spike secondary 

spikelets (Hurlock et al., 2008; Zagha et al., 2008). The knockout of Kv3.3 channels across 

the whole mouse brain causes ataxia; interestingly this can be rescued (together with rescue 

of the Purkinje cells electrophysiological phenotype) by Purkinje cell specific rescue of Kv3.3 

expression (Hurlock et al., 2008). This illustrates the importance of appropriate ion channel 

expression and demonstrates that Purkinje cell spike width, spontaneous spike rate and/or 

the number of spikelets in the complex spike have an important role to play in motor 

coordination.

K yl

In contrast to Kv3 channels, KV1 channels tend to have low activation thresholds. In addition, 

many do not show inactivation (Coetzee et al., 1999). In other neuron types they have been 

seen to determine sodium spike threshold, width, timing and frequency and can influence the 

site of calcium spike initiation (Storm, 1988; Brew and Forsythe, 1995; Trussed, 1997; Golding 

et al., 1999; Kupper et al., 2002; Rothman and Manis, 2003). Purkinje cells express some KV1 

channels, in particular having strong Kv1.5 and Kv1.1 staining across their soma and 

dendrites (Veh et al., 1995; Chung et al., 2001). McKay and Turner (2005) have found 

margatoxin (a KV1 blocker) sensitive KV1 currents in outside-out patches from Purkinje cell 

somata. They found KV1 current to be active both during and between action potentials, and 

its block to cause faster spiking, more rapid accumulation of spike inactivation, a greater 

propensity to fire Na+-Ca2+ bursts at an increased interburst rate (McKay et al., 2005; 

Haghdoust et al., 2007). These effects are consistent with the removal of a repolarising 

conductance between spikes (Fernandez et al., 2005). Kv1 action on the complex spike is to 

curtail the burst; their block increases spikelet frequency, number and total burst duration 

(McKay et al., 2005)). The somatic presence of KV1 has been contested, however; Southan 

and Robertson (2000) did not find dendrotoxin (another Kv1 blocker) sensitive currents in 

outside out patches from Purkinje soma, and Khavandgar et al., (2005) argue that the effect 

of KV1 blockers, at concentrations at which they are specific, is at the dendrites, where they 

increase calcium spiking, promoting high frequency bursts in a background of unaltered 

steady state firing. Overall, the effects of KV1 channels appears to be to dampen tonic 

excitability, in opposition to Kv3 channels, which promote higher frequency firing and allow
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rapid bursts of spikes. These may act together to increase the dynamic range of Purkinje cell 

responses, keeping the cell at rest below its high maximum firing frequency, but above zero 

firing frequency.

1*
A-type currents are inactivating potassium currents and have been found to have a role in 

controlling the spread of synaptic and active events within neuronal dendritic arbours 

(Hoffman et al., 1997; Ramakers and Storm, 2002; Cai et al., 2004; Kim et al., 2007). In turtle 

Purkinje cells, Midtgaard has reported the slow development of depolarisation with dendritic 

current injection, characteristic of the inactivation of an A-type current (though other factors 

may account for this (Fernandez et al., 2007)), which influences the number of dendritic 

calcium spikes generated in response to CF or strong parallel fibre stimulation ((Midtgaard, 

1995)). He also found that 4-AP (an lA blocker) greatly increases the degree and spatial 

spread of dendritic excitability (Midtgaard et al., 1993; Midtgaard, 1995, see also Cavelier et 

al., 2002a). However, identification of lA in Purkinje cells is controversial. A-type inactivating 

current can be generated by a number of potassium channels, given the appropriate cellular 

environment (e.g. some KV1 subunits, especially in combination with p subunits (Rettig et al., 

1994)), but is usually ascribed to Kv4 channels. However, there does not appear to be 

prominent K v 4 .1  or 4.2 mRNA or protein expression in Purkinje cells, and although there is 

K v 4 . 3  in the molecular layer (Tsaur et al., 1997; Serodio and Rudy, 1998; Wang and 

Schreurs, 2006), this may be due to expression in interneurons at sites opposed to the CF 

(Kollo et al., 2006), as it reported that Purkinje cell Kv4.3 expression is lost with development 

(Hsu et al., 2003). Further, some groups report failing to find evidence for an lA current at the 

classically expected range of voltage sensitivities (Martina et al., 2003; McKay and Turner, 

2004; Fernandez et al., 2007). Other groups, however, have reported lA, which is TEA 

insensitive and has some 4AP sensitivity, in the Purkinje somata of P3-9 rats (Sacco and 

Tempia, 2002), developed rats (Wang et al., 1991; Southan and Robertson, 2000) and in the 

soma and dendrites of mature rabbit Purkinje cells (Wang and Schreurs, 2006). It has even 

been suggested that a change in lA underlies the change in dendritic excitability that 

accompanies parallel fibre plasticity and classical conditioning in rabbits (Schreurs et al., 

1997; Schreurs et al., 1998), altering the spiking pattern following parallel fibre input.

Kra and rhvthmoaenesis

Both strong dendritic input (e.g. CF stimulation) and spontaneous tonic spiking or bursting 

causes some level of calcium influx through voltage gated channels (Raman and Bean, 1999; 

Swensen and Bean, 2003, 2005). The calcium influx through P-type channels (Edgerton and 

Reinhart, 2003; Womack et al., 2004) during both modes of activity activates calcium 

dependent potassium channels, and in fact, during spontaneous spiking, calcium 

conductances lead to a net outward current (Raman and Bean, 1999; Williams et al., 2002; 

Edgerton and Reinhart, 2003). Purkinje cells express both BK and SK calcium activated
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potassium channels, each of which have distinct, important roles in controlling dendritic and 

somatic spike repolarisations, and in regulating rhythmic firing, all of which have 

consequences for electrogenesis in response to CF stimulation.

BK

BK, so called after its “big” single channel conductance channels are both voltage and 

calcium sensitive (reviewed in Salkoff et al., 2006). Purkinje cells stain for BK in both their 

somata and dendrites (Knaus et al., 1996) and its levels of expression are upregulated during 

the first two weeks of development (Muller et al., 1998). Its voltage and calcium dependent 

properties (characterised from single channel recordings in outside-out patches (Jacquin and 

Gruol, 1999; Womack and Khodakhah, 2002b)) are such that there is little conductance at 

rest. Open probability can, however, be regulated by PKA or PKC dependent phosphorylation 

(Widmer et al., 2003). BK channels are activated by both somatic sodium spikes and dendritic 

calcium spikes and play a prominent role in generating both their AHPs (Edgerton and 

Reinhart, 2003; Sausbier et al., 2004); this fast hyperpolarisation also serves to restrict the 

spread of dendritic calcium spikes (Rancz and Hausser, 2006). As the voltage sensitivity of 

the BK conductance restricts its activating stimuli to spikes, it plays only a weak role in 

dampening spontaneous firing frequency, but this role becomes more important when SK 

channels are absent (Edgerton and Reinhart, 2003). The knockout of BK channels leads to 

reduced AHP generation, reduced spontaneous firing due to inactivation of sodium spiking 

and increased paired pulse depression and the Purkinje cell-DCN synapses (Sausbier et al.,

2004). These properties are thought to underlie the cerebellar motor coordination and eye- 

blink conditioning abnormalities seen in the BK knockout mice (Sausbier et al., 2004).

SK

SK channels have a smaller conductance than BK and are calcium, but not voltage sensitive 

(reviewed in Stocker, 2004). They are formed by homo- or heteromultimers of SK 1, 2 or 3 

subunits (Stocker, 2004). Purkinje cells express only SK2 subunits (Stocker and Pedarzani,

2000), which are highly calcium sensitive. Staining for both mRNA and protein shows that its 

levels decrease during development, reducing to nearly nothing in adulthood (following the 

opposite trend to BK expression) (Cingolani et al., 2002). SK block (by apamin) causes faster, 

more irregular spontaneous Purkinje cell firing, and increases the occurrence of spontaneous 

spike bursting, with each burst being of shorter duration but composed of higher frequency 

sodium spikes (Cingolani et al., 2002; Edgerton and Reinhart, 2003; Womack and 

Khodakhah, 2003, 2004). SK block does not significantly alter sodium or calcium spike AHPs, 

except in the absence of BK channels, where a slower SK dependent AHP becomes 

apparent (Edgerton and Reinhart, 2003). Interestingly, the effect of apamin block is similar if it 

is applied only to the dendrites, where somatic action potentials do not backpropagate to 

cause significant calcium influx (Womack and Khodakhah, 2003). This suggests that SK is 

activated by resting levels of calcium in the cell, and thus is probably the Kca conductance
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reported at rest by Crepel and Penit-Soria (1986). It has been suggested that SK 

conductance, modulated by Purkinje cell spiking and the consequent calcium influx to the 

proximal dendrites, might act as a conductance ‘gate’ controlling the electrical coupling of the 

soma and dendrites (Womack and Khodakhah, 2003). Enhancement of SK conductance with 

the drug EBIO can rescue spiking irregularities and the propensity to burst caused by block of 

SK channels or indeed by loss of function of calcium channels (Cingolani et al., 2002; Walter 

et al., 2006). This has been found to rescue the ataxic phenotype of the calcium channel 

mutants (Walter et al., 2006), again suggesting a role for accurate Purkinje cell spiking in 

motor coordination.

Ih and bistability

The final prominent conductance in the Purkinje cell’s repertoire is the hyperpolarisation 

activated mixed cation conductance, lh. This is responsible for the ‘sag’ in membrane potential 

visible following hyperpolarising or subthreshold depolarising current injection steps, rectifying 

Vm back towards its initial value (Crepel and Penit-Soria, 1986; Roth and Hausser, 2001). It 

has been characterised by whole cell recordings at room temperture (Roth and Hausser,

2001), or, more accurately by cell attached dendritic recording at physiological temperature 

(Angelo et al., 2007). In Purkinje cells, as in other neurons (Magee, 1999; Williams and 

Stuart, 2000; Berger et al., 2001), this conductances serves to make synaptic integration 

independent of dendritic input location, in a manner that is independent of its dendritic 

distribution. The block of lh in vitro emphasises the Purkinje cell’s bisability, where brief 

current pulses, synaptic inhibition, or indeed CF stimulation, can switch the cell from silence 

to tonic firing and back again. A similar phenomenon occurs in vivo, as observed by whole­

cell patch clamp recording (under anaesthesia, Loewenstein et al., 2005), but in the absence 

of lh block. Curiously, conductances with properties similar to lh may be responsible for this 

bistability (Loewenstein et al., 2005), though other combinations of conductance and 

capacitance parameters can generate a similar phenomenon (Fernandez et al., 2007). The 

whole brain knockout of lh leads to deficits including reduction of cerebellar motor 

coordination and classical conditioning, which has been ascribed to the inconsistencies 

introduced into input-output behaviour of the Purkinje cell (Nolan et al., 2003).

Ion channels acting in consort

The ion channels expressed by Purkinje cells result in a beautifully balanced system, capable 

of generating repetitive fast spiking at the soma, rapid bursts of somatic spikes and also brief, 

repetitive dendritic calcium spikes. This balanced system has been particularly elegantly 

revealed in experiments that isolated, pharmacologically, the currents underlying action 

potential generation by voltage clamping dissociated Purkinje cell somata to the waveforms of 

action potential trains or of spontaneous bursts (Raman and Bean, 1999; Swensen and Bean, 

2003, 2005). These illuminate the sequence of current activation during somatic spiking;
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showing the rapid activation of inward sodium currents, coloured with regenerative calcium 

influx, followed rapidly by high voltage potassium channels activation, together with calcium 

activated potassium currents. It also demonstrated that, during interspike intervals within both 

tonic spiking and spontaneous bursting, there is a careful balance of low voltage activated 

potassium current, calcium activated potassium current and resurgent sodium current, the 

kinetics and voltage sensitivities of which ensure that there is usually only a small net inward 

current triggering the next spike.

The importance of appropriate ion channel expression in this elegantly balanced system is 

made apparent the numerous knockout and mutation studies that result in disrupted Purkinje 

cell spiking together with cerebellar ataxias.

Modelling

A number of biologically realistic models have attempted to capture the essence of active and 

passive interactions. In 1994, the available biophysical data was combined into Purkinje cell 

morphologies and tuned to successfully reproduce Purkinje cell patterns of somatic simple 

spiking (which backpropagate poorly to the dendrites, although are not spontaneously 

generated) and Na+-Ca2+ somato-dendritic bursting in response to strong current injection (De 

Schutter and Bower, 1994c). Synaptic responses are also reproduced; the response to strong 

CF distributed input is a single dendritic spike and a burst of somatic spikes, followed by a 

pause (De Schutter and Bower, 1994a). Details of the complex spike waveform (height and 

timing) and dendritic response (timing and variable number of spikes) were not matched. The 

model has been used, however, to make interesting predictions and interpretations of 

Purkinje cell response to parallel fibre and inhibitory input (De Schutter and Bower, 1994b; 

Jaeger et al., 1997; Steuber et al., 2007). The family of conductance densities that reproduce 

Purkinje cell behaviour to a similar degree of accuracy has also recently been explored 

(Achard and De Schutter, 2006).

A more recent biophysically accurate model of the Purkinje cell soma has been described, 

that incorporates accurate descriptions of ion channel behaviour taken from recordings in 

dissociated cell bodies (Khaliq et al., 2003). This accurately reproduces the details of simple 

spiking at room temperature, and has been used to explore the contribution of resurgent 

sodium channels to spontaneous firing (Khaliq et al., 2003), and the interactions between 

persistent sodium and high voltage activated potassium conductances that produce high 

frequency firing (Akemann and Knopfel, 2006). It has also been integrated into a full Purkinje 

cell model which reproduces the initiation of simple spikes at the first branch point (Clark et 

al., 2005) (dendritic electrogenesis or complex spike production was not explored or 

accurately matched in this study).
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The dynamics of Purkinje cell firing has also recently been analysed with a reduced model 

based on physiological behaviour (Fernandez et al., 2007). It explores the parameters that 

are necessary to explain the Purkinje cell’s bistability (triggered by strong inputs such as the 

CF), its inability to begin firing at a non-zero firing frequency and its hysteresis of firing 

frequency response to increasing or decreasing current injection (Llinas and Sugimori, 1980a; 

Williams et al., 2002; Fernandez et al., 2007). Much of this can be achieved through the 

combination of brief spike inactivation (due to e.g. rapidly deactivating potassium channels or 

resurgent sodium current) with a long membrane time constant (due to e.g. extensive 

dendrites), which together lead to a spike after-depolarisation that drives repetitive firing once 

spiking is initiated. Details of the complex spike waveform were not investigated.

So far, these models most successfully capture simple spiking, especially at room 

temperature. The difficulty of gathering good voltage clamp data of rapidly activating channels 

at more physiologicial temperatures, together with the difficulty of capturing physiological 

dendritic calcium channel behaviour, limit these models. Thus, none have been able to 

completely reproduce the complex spike rapid burst of spikes of differing amplitudes and the 

burst of 1-3 dendritic spikes that accompany it.

Functions of CF input

Despite abundant and well-trodden evidence on the anatomy and physiology of the 

cerebellum, the exact function of the cerebellar system, and of CF signalling within it, is 

difficult to pin down.

There is now good evidence that Purkinje cell spike timing precision is required for accurate 

motor coordination. Ablation or damage to the cerebellum have been known for over 200 

years to cause ataxias (Rolando, 1809; Flourens, 1824; Holmes, 1917), typically involving 

lack of muscle tone, imprecise, decomposed movements, disrupted fine motor coordination 

and timing (Hore et al., 2002), and tremor. Similar ataxias are also caused by knock out or 

mutation of specific ion channels that lead to disruptions to Purkinje cell firing, such as 

Nav1.6, Kv3.3, HCN1 (lh), Cav2.1 (the P-type calcium channel), BK and also the calcium 

buffer calbindin (Nolan et al., 2003; Sausbier et al., 2004; Hoebeek et al., 2005; Servais et al., 

2005; Donato et al., 2006; Levin et al., 2006; Hurlock et al., 2008). Further, the rescue of 

spiking precision in the Cav2.1 mutant Ducky through the pharmacological enhancement of 

SK (Walter et al., 2006), and the similar rescue of Purkinje cell spiking by the Purkinje specific 

reexpression of Kv3.3 in the Kv3.3 knockout background (Hurlock et al., 2008), both lead to 

the restoration of motor performance. These mutations strongly indicate a role for accurate 

Purkinje firing in motor coordination, though as, between them, the simple spike rate, post 

complex spike pause and complex spike pattern is also altered, the exact contribution of each 

is hard to demarcate.
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Motor timing

Many investigators have suggested way in which the cerebellum might be involved in 

controlling motor timing. One of the first was posed theoretically by Braitenberg, (1961), 

based on the anatomy of the cerebellar cortex. He proposed that the ‘delay lines’ formed by 

parallel fibre axons could convert distance in the cerebellum into a timing delay between 

signals, with the coincidence of climbing fibre and parallel fibre input (or of two parallel fibre 

pathways) triggering activity in the appropriate Purkinje cell.

More recently, a role has been suggested for synchrony of CF input across Purkinje cells 

(Llinas and Sasaki, 1989; Welsh et al., 1995), which is proposed to aid coordination of 

synergistically acting muscle groups within movements. This idea also has anatomical 

support. Cells within the olive are electrically coupled to their neighbours via gap junctions 

and show synchronous subthreshold 2-12 Hz oscillations that are supported by a combination 

of intrinsic and network properties (Llinas and Yarom, 1981a, b, 1986; De Zeeuw et al., 1998; 

Devor and Yarom, 2002b, a; Leznik et al., 2002; Long et al., 2002; De Zeeuw et al., 2003). 

Distinct regions of the inferior olive (IO) project topographically into parasagittal bands in the 

cerebellar cortex, aligning with, and causing gap junction dependent synchrony within, the 

intriguing aldolase C (zebrin) staining bands (Llinas and Sasaki, 1989; Sugihara and Shinoda, 

2004; Blenkinsop and Lang, 2006; Sugihara et al., 2007; Sugihara and Quy, 2007). This 

synchrony can be seen powerfully when inferior olive oscillations are potentiated by 

harmaline (Llinas and Sasaki, 1989), is also observed at rest under anaesthesia (Llinas and 

Sasaki, 1989), in awake recordings (Lang et al., 1999) and has been reported to occur during 

the generation of rhythmic movements in rats (Welsh et al., 1995). However, Purkinje cell 

synchrony could not be detected during isolated movements in monkeys or following visual 

stimulation in rabbits (Keating and Thach, 1995; De Zeeuw et al., 1998), and the uniform CF 

conduction time required for IO driven synchrony across the rat cerebellum has been 

questioned (Baker and Edgley, 2006).

The completion of the olivocerebellar loop (see earlier cerebellar anatomy section), has been 

proposed to have a feedback role in controlling CF synchrony (De Zeeuw et al., 1998). 

Convergence onto DCN cells of synchronous Purkinje cell complex spike inhibition and post­

complex spike pause inhibitory relief should provide an apt stimulus for rebound bursting 

(Aizenman and Linden, 1999). This subsequent topographic projection of inhibition and 

excitation from the DCN to the area of the IO that innervated the original Purkinje cell group 

has been shown to theoretically support a synchronous, self regenerating oscillation 

throughout the olivocerebellar loop, which can be disrupted by externally generated CF or 

mossy fibre impulses (Kistler et al., 2000; Kistler and De Zeeuw, 2003). Indeed inhibitory input 

from the DCN to the IO has been found to damp oscillations and control the generation of CF
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activity in a manner that increases with development (Llinas and Sasaki, 1989; Nicholson and 

Freeman, 2003a, b), perhaps helping the selection of appropriate, well timed CF activity in 

response to salient external stimuli (De Zeeuw et al., 1998; Devor, 2002, though see 

Bengtsson and Hesslow, 2006).

Currently, the clearest evidence that synchrony within the IO and the control of oscillatory CF 

input to Purkinje cells is crucial to well timed motor control comes from mice in which 

connexin-36, the IO gap junction protein, is knocked out (Kistler et al., 2002; Van Der Giessen 

et al., 2008). These animals shown no ataxia and have no prominent general motor deficits, 

but are impaired in performance and learning of new movements that require accurate timing. 

Purkinje cell complex spike responses to sensory stimulation showed abnormal timing, with 

an increased tendency towards firing of doublets due to the compensatory increase in intrinsic 

oscillation of uncoupled DCN cells (De Zeeuw et al., 2003; Van Der Giessen et al., 2008). 

Thus, it appears that while well timed, synchronous CF input is required for accurate motor 

control, and plasticity of motor output (discussed in the next paragraph), the appropriate 

damping of intrinsic oscillations of the circuit is also required.

Motor learning

There is also good evidence that the complex spike can carry a sensory, error signal. CF 

input can be triggered by unexpected stimuli, such as gentle touch of the skin while at rest or 

interruption of a step by the presence of a barrier or the absence of a support, but is not 

produced by expected stimuli, such as touch of the skin to a surface during an accurate, 

voluntarily made movement (Gilbert and Thach, 1977; Gellman et al., 1985; Andersson and 

Armstrong, 1987, reviewed in Bloedel and Bracha, 1998). In the influential models of 

cerebellar motor learning proposed by Marr and Albus (Marr, 1969; Albus, 1971), such an 

error signal is proposed to ‘teach’ parallel fibres their appropriate weights such that the 

appropriate Purkinje cell output is produced without the CF error signal and later movements 

are executed more accurately. This has been supported by the finding that CF input, and 

more specifically the calcium influx caused by dendritic spike activation, causes LTD of 

concomitantly activated parallel fibre inputs (Ito and Kano, 1982, reviewed in Ito, 2002).

Such models have been used to understand the acquisition of well timed motor responses 

during tasks such as classical eye-blink conditioning (reviewed in Medina and Mauk, 2000) 

but appear to apply equally well to other cerebellar cortex dependent motor learning tasks, 

such as the vestibulo-occular reflex (reviewed in Raymond et al., 1996). In the classical eye- 

blink conditioning paradigm, parallel fibres active at the end of the unconditioned stimulus 

(e.g. a tone) presentation are depressed by the occurrence of the CF, signalling the 

conditioned stimulus (e.g. air puff to the eye). When combined with CF independent LTP of 

the parallel fibres activated earlier in the unconditioned stimulus, this can explain the
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acquisition of a pause in Purkinje cell firing just before the expected conditioned stimulus 

presentation, mimicking the post-complex spike pause and thus reproducing the CF triggered 

motor output (e.g. eyeblink) (Medina and Mauk, 2000). That a Purkinje cell may operate in 

such a manner as a ‘perceptron’, recognising patterns of parallel fibre input, is supported by 

the finding that parallel fibre weights appear to be distributed in a similar manner to that 

predicted for the optimal perceptron, with many silent synapses (Isope and Barbour, 2002; 

Brunei et al., 2004). There is good evidence from lesion studies that motor learning does 

occur within the cerebellum, and that mossy fibre and climbing fibre stimulation can replace 

the conditioned and unconditioned stimuli, respectively (Raymond et al., 1996). However, the 

site, within the cerebellar system, where learning initially occurs and where the motor memory 

might finally reside, is less easy to dissect (Raymond et al., 1996; Attwell et al., 2002). The 

conjunction of mossy and climbing fibre input at the DCN and the plasticity induced there, 

perhaps under the instruction of Purkinje cell input, may also be responsible for controlling the 

updated motor output (Raymond et al., 1996; Attwell et al., 2002).

These two, apparently opposite viewpoints of the CF signal as an impetus for ongoing motor 

signalling and as a sensory signal for motor plasticity, are not mutually exclusive. As a 

concept, this is elegantly synthesised by the work of Kitazawa et al., (1998). They showed 

that CF input contains information about both intended movement direction (if active at the 

beginning of the task) and actual movement error (if active at the end of the task), but in 

opposite directions (e.g. active before movements to the left and after errors to the right). 

Thus, as movement is initiated, the complex spike can signal an error appropriate to ongoing 

motor control (“hand is too far right: move left to target”) and after the movement ends can 

signal a similar error appropriate to updating future movements (“hand went too far right: 

move further left next time”).

Despite these two elegant and well supported theories (and many more besides; Bloedel and 

Bracha, 1998; De Zeeuw et al., 1998), it is still difficult to interpret or predict the behaviour of 

most cerebellar cells in vivo. For example, the modulation of Purkinje cell simple spiking does 

not seem to follow mossy fibre input, as conceptualised in the Marr-Albus-lto model, but 

appears to be driven by the inhibitory interneurons of the cerebellar cortex (Barmack and 

Yakhnitsa, 2008). More importantly for theories of how CF input might influence motor output, 

the post- complex spike pause is not a consistent phenomenon (Murphy and Sabah, 1970; 

Bloedel and Roberts, 1971; Latham and Paul, 1971; Armstrong and Rawson, 1979), the 

regulation of simple spiking following the complex spike - pause sequence is not consistent in 

vivo (Bloedel and Roberts, 1971; Latham and Paul, 1971; Armstrong and Rawson, 1979; 

Sato et al., 1992), and the response of the DCN is not simply correlated to complex spike 

activity (McDevitt et al., 1987). Thus a more thorough understanding of the firing dynamics 

and the input-output functions of these cells, both in vivo and in more carefully controlled in 

vitro situations, are required.
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Aims of the thesis

This thesis aims to understand the manner in which cerebellar Purkinje cells transform their 

CF input into the distinctive complex spike waveform. It examines the relative importance of 

the CF’s amplitude, its widespread distribution across the dendrites and its triggering of 

dendritic calcium spikes in the generation of the burst of somatic spikes that form the complex 

spike. The contribution of the intrinsic excitability of Purkinje cell; its variety across cells, its 

voltage sensitivity and roles of distant sites of action potential generation, is also described. 

Finally, a new role for dendritic calcium spikes in controlling the Purkinje cell’s spiking output 

is presented.

This work is divided across three chapters:

Chapter 1: The relationship between CF input size and the complex spike.

The complex spike is first characterised in whole cell recordings from Purkinje cells in slice at 

physiological temperature. The effect on the complex spike of paired-pulse depression of the 

CF synapse is described, together with the effect of /n-v/Vo-like bursts of CF stimulation. 

Through the alternate recording of CF EPSCs in voltage clamp and of complex spikes in 

current clamp, the relationship between the complex spike and its underlying EPSC amplitude 

is drawn.

Chapter 2: The relationship between Purkinje cell geometry and the complex spike.

The importance of the dendritic distribution of CF input to the generation of the complex spike 

is addressed by using conductance clamp to artificially apply CF-like synaptic conductances 

directly to the soma. This is also used as a tool to assess inter-cell differences in Purkinje cell 

excitability. The complex spike waveform is described in detail by quantifying the relationship 

between spike height and interspike interval. Compartmental modelling is used to 

demonstrate that these patterns can only be easily explained as the result of variable spike 

propagation from a site distant to the soma.

Chapter 3: The relationship between CF triggered dendritic calcium spikes and the complex 

spike.

Dendritic whole cell recording is used to record and manipulate the number of dendritic spikes 

made during complex spike generation. The effect of the absence of dendritic spikes and of 

additional dendritic spikes is described. The influence of dendritic spikes on the resulting burst 

is quantified and understood through an analysis of its attenuation and timing. A new role for 

dendritic spikes is revealed by examining the post- complex spike pause.

A general discussion of the contribution of this work to the understanding of Purkinje cells 
follows.
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Methods

Electrophysiological data in this thesis was obtained from whole cell patch clamp recordings 

of the somata and dendrites of rat Purkinje cells in acute slices maintained at 34-35 °C. 

Experiments involved the use of current, voltage and/or conductance clamp. Most current and 

conductance clamp data was obtained from Purkinje cells in slices from P18-24 rats; dual 

voltage and current clamp recordings were made in P12-16 cells. Slices and recordings were 

made according to standard techniques (Stuart et al., 1993; Silver et al., 1998; Geiger et al., 

2002; Williams, 2004; Davie et al., 2006), which are outlined below.

In addition, modelling was carried out using NEURON simulation software (Hines and 

Carnevale, 1997), using parameters outlined below.

Solutions

Slices were bathed in artificial cerebrospinal fluid (ACSF) bubbled to saturation with carbogen 

(95% oxygen, 5% carbon-dioxide, BOC, UK) in order to maintain tissue oxygenation and pH 

buffering.

ACSF contained (in mM): NaCI 125, KCI 2.5, NaHC03 26, NaH2P04 1.25, glucose 25, MgCI2 

1, CaCI2 2.

Internal solution (280-285 mOsm) contained (in mM): KMeS04 133, KCI 7.4, MgCI2 0.3, 

HEPES 10, EGTA 0.1, Na2ATP 3, Na2GTP 0.3, pH adjusted to 7.2 with KOH. 0.5 % biocytin 

was added during some experiments. All chemicals were purchased from Sigma (Dorset, 

UK). Although the internal solution was prepared with the minimisation of disruption to cell 

metabolic processes in mind (Ca2+ buffering was, for example, chosen with the high levels of 

mobile and immobile Ca2+ buffering in Purkinje cells in mind (Maeda et al., 1999; Schmidt et 

al., 2003)), most patch-clamp internal solution principle anion are associated with some 

effects on neuronal physiology (Zhang et al., 1994; Vargas et al., 1999) and dialysis of the 

neuron’s ionic and the more mobile cytoplasmic contents is an inevitable drawback of the 

technique.

Slice Preparation

P12-24 Sprague-Dawley rats were anaesthetised by isoflourane inhalation (Baxter Healthcare 

Ltd, Thretford, UK) and decapitated, in accordance with UK Animal Scientific Procedures Act 

(1996). Under ice cold, carbogen saturated ACSF, the scalp was retracted, the top of the skull 

lifted off and the brain quickly removed. After securing the brain (with dissecting needles 

through the forebrain) to a sylgard based dish filled with ACSF (again ice cold, carbogen 

saturated), the meninges covering the cerebellum were carefully peeled away using fine 

forceps (Dumont No. 5). The vermis of the cerebellum was then dissected with one coronal
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cut behind the forebrain, one transverse cut above the brainstem and two parasagittal cuts on 

either side of the vermis. One of these parasagittal surfaces was attached to a pre-cooled 

slicing stage using cyanoacrylate glue and transferred to the cooled, ACSF filled slicing 

chamber. 150-300 urn thick slices were made using either a Leica VT1000S or VT1200S 

(Nussloch, Germany) and transferred to a carbogen bubbled, ASCF filled slicing chamber 

(Gibb and Edwards, 1994) heated to 35 °C for 1 hour. Slices were then kept at room 

temperature until being transferred to the microscope chamber and recorded from within the 

next 3-5 hours. It should be noted that apart from the obvious physical damage that slicing 

imposes on the in vitro brain slice, the number of dendritic spines can be increased by the 

procedure (Kirov et al., 1999), possibly due to reduced synaptic activity (as axonal inputs 

have been severed), which itself can lead to alterations in neurons’ intrinsic properties (Desai 

et al., 1999; Cerminara and Rawson, 2004; McKay et al., 2007).

Patch clamp recording

A diagram of a recording setup analogous to the one used is shown in Methods Fig. 1. The 

slice chamber was perfused at 5 -10  ml/min (to ensure good oxygenation of the tissue, Hajos

2004) with carbogen bubbled ACSF heated to 34-35 °C. Slices were held flat in the chamber 

by a ‘harp’ with a U-shaped frame made of platinum and strings made of fine threads pulled 

from nylon tights. Slices were imaged using IR-DIC optics on an AxioSkop microscope (Zeiss, 

Gottingen, Germany) with a 40x, 0.75 NA lens which projected, through a 2x magnifier, to a 

Hamamitsu C2400-7 Vidicon tube camera transmitting to a video monitor. The surface of the 

slice was scanned for clearly visible, ‘healthy’, smooth, connected somata and dendrites, the 

microscope being moved by a XY table that allowed the field of view to be manipulated 

without moving the slice or the recording pipettes. The pipette-holder-headstage assemblies 

movement was also controlled remotely, using motorised micromanipulators (LN SM1, Luigs 

and Neumann, Germany). This equipment was mounted on a pneumatic vibration-isolation 

table (Technical Manifacturing Corporation). Pipettes were connected, via silver chloride 

coated silver electrodes, to either Axoclamp 2B or 2A amplifiers (Molecular Devices, Palo 

Alto, CA) (current and conductance clamp recordings) or to an Axopatch 200B amplifier 

(Molecular Devices, Palo Alto, CA) (voltage clamp recordings), and recordings were made 

with reference to a silver/silver chloride earth pellet placed in the recording bath. Junction 

potential (~7 mV) was not corrected. Recordings were preamplified (10 x) and low-pass 

filtered at 3 kHz before being sampled at 20 - 50 kHz using Axograph 4.9 software (Axograph 

Scientific) and an ITC-18 interface (Instrutech).

Pipettes were pulled from thick walled, filamented borosilicate glass capillaries (GC150F, 

Harvard Apparatus, Edenbridge, UK) using a two-stage, vertical puller (PC-10, Narishige, 

Japan) to a resistance of 7-10 MQ (dendritic pipettes), 4-5 MQ (somatic current and 

conductance clamp pipettes) or 1-2 MQ (somatic voltage clamp pipettes) when filled with



A)

Methods Fig 1: Patch-clamp setup

A) Composite photograph of a typical patch-clamp setup (in a Faraday cage) used for dendritic recording.
B) Schematic sketch of the image in a. Red, imaging equipment; blue, electrode manipulators and pressure controlling 
equipment; black, perfusion system; green, vibration isolation table, (a) an upright microscope equipped with a40 objec­
tive and IR-DIC optics, mounted on an XY stage; (b) magnifier; (c) video camera; (d) black and white video monitor; (e) 
three micromanipulators (oriented so that each pipette can be changed independently); (f) micromanipulator remote 
control panels, mounted on a bench which is well separated from the vibration isolation table (boxes containing microman­
ipulator controller electronics are below the vibration isolation table); (g) manometers; (h) switchable pressure valves; (i) 
reservoir of carbogen-bubbled ACSF; (j) oxygen-impermeable Teflon tubing providing inflow to the recording chamber 
(heating jacket prior to chamber inflow not visible); (k) dripper, interrupting solution inflow; (I) outflow from chamber, 
connected to suction via a collection reservoir; (m) temperature monitor (connected to a thermocouple element placed in 
the recording chamber, not illustrated); (n) vibration isolation table.
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internal solution. Gigaohm seals between cell and pipette were achieved using standard 

techniques (Stuart et al., 1993; Davie et al., 2006) before using suction to rupture the cell 

membrane. This resulted in initial whole cell access/series resistances of ~30 MQ (dendritic 

pipettes), 10-15 MQ (somatic current and conductance clamp pipettes) and 5-10 M£2 (somatic 

voltage clamp pipettes).

Current clamp

Current clamp recordings were made from the soma, usually together with a second somatic 

current or voltage clamp electrode, in order to perform conductance clamp or voltage clamp 

experiments on the same cell, and, in some experiments, simultaneously from a position 60- 

155 urn distant in the dendrites. Capacitance compensation and access resistance ‘bridge- 

balance’ compensation was used in all recordings to minimise the filtering by the pipettes 

capacitance and resistance.

Conductance clamp

In this method, a membrane conductance is simulated by injecting current that scales with the 

potential difference between membrane potential and the applied conductance’s chosen 

reversal potential:

/  = G x f y  - v  )V m rev)

(Robinson and Kawai, 1993; Sharp et al., 1993). This was implemented using custom analog 

hardware (SM-1, Cambridge Conductance). Two electrode conductance clamp, where one 

electrode records voltage and a second injects the calculated current (Williams 2004), was 

used in order to ensure voltage measurements were not contaminated by poor bridge 

balance and thus to prevent oscillation of the command circuitry.

Voltage clamp

All voltage clamp recordings were made from the soma and were performed together with a 

simultaneous somatic current clamp recording from a second electrode connected to an 

Axoclamp 2B amplifier. This allowed somatic voltage to be monitored and thus the quality of 

the somatic voltage clamp to be optimised (Silver et al., 1998). It also allowed the climbing 

fibre EPSC and the resulting complex spike at the soma to be recorded within the same cell.

EPSCs were clamped at between -70mV and -90mV. Series resistance and cell membrane 

capacitance compensation were used (compensation lag 7-10 us). Their values were initially 

set by eye, while examining a 5 mV hyperpolarising step. During CF stimulation, series 

resistance compensation was adjusted (usually to ~80 %) so that minimal voltage escape, 

either in the depolarising or hyperpolarising direction, was seen at the soma with the current 

clamp electrode (this method is illustrated further in Chapter 1). Only records with < 2 mV 

somatic escape were analysed. This small escape was then compensated for offline (Silver et 

al., 1998) using the equation:



Methods 56

I  = I x
corrected uncorrected

/ V - Vactual rev

V  -  V\  command rev /

The resulting EPSC amplitude was normalised to -70 mV. Vrev of the AMPAergic CF EPSC 

was taken to be 0 mV (Perkel etal., 1990; Llano etal., 1991; HSusserand Roth, 1997b).

The voltage clamp amplifier was switched into l=0 mode to allow current clamp recording 

(from the second somatic electrode, connected to an Axoclamp 2B amplifier) of the complex 

spike.

CF stimulation

CF input was stimulated by placing a patch electrode filled with ACSF in the granule cell layer 

(0.2 ms, 20-80 V square pulses; 1 Hz stimulation frequency). The location of the stimulation 

electrode and the stimulation intensity were adjusted until an isolated CF input was excited 

without evoking an antidromic action potential in the Purkinje cell axon. Recordings Purkinje 

cells innervated by multiple CF axons (as evidenced by step increase in the voltage clamp 

EPSC or a step change in the complex spike waveform) were rejected (~5% of P12-16 cells, 

less in P18-24 cells). Complex spikes preceded by a simple spike within ~1.5 ms were 

excluded from analysis (typically ~5-10 % of all recorded complex spikes) as these were 

found to have a disrupted complex spike pattern.

Protocols

Paired pulse depression

Pairs of stimuli at intervals of 20-3000 ms were given every 5 seconds in alternate voltage 

and current clamp recording periods. In purely current clamp experiments, pairs of stimuli at 

intervals of 20-300 ms or of 1-20 ms were given every 1 s.

Burst stimulation

Bursts of 1, 2, 3, 5 or 7 CF stimulations at interstimulus intervals of 1, 2 or 3 ms were given 

every 1 s. Alternatively, physiological burst patterns (3, 4 or 5 stimuli), as recorded from 

inferior olive axons in slice, at 35 °C, were applied. Interstimulus intervals were

3 stimuli: 2.7, 2.5 ms

4 stimuli: 2.5, 2.1, 3 ms

5 stimuli: 2.6, 2.4, 2.6, 3.4 ms 

Voltage dependence

Somatic average membrane potential, as recorded by one current injection electrode, was 

altered by tonic hyperpolarising or depolarising current injection through a second, non­

recording, current clamp electrode. Periods of tonic calcium spiking were followed by periods 

of hyperpolarisation, without recording. In some experiments, tonic somatic current was
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adjusted until the dendritic CF response was, by chance, either 1 or 2 (or in some cases 2 or 

3) calcium spikes.

Svnaptic-like conductance injection

Conductance waveforms were biexponential, with x ^ e  0.3 ms and x decay 3 ms, and peak 

amplitude 100 - 500 nS and a reversal potential of 0 mV. Unless otherwise specified, these 

were given every 1 s. In some experiments the effect of conductance time course was 

investigated, varying xnse from 0.2 - 0.5 ms and x deCay from 2 - 5  ms.

In some experiments, dendritic spikes were evoked during somatic conductance clamp; these 

spikes were triggered by dendritic current injection (biexponential current waveform, Xnse 0.5 

ms and xdeCay 5 ms, peak amplitude of 2 - 5 nA together with tonic current of 0 - 330 pA).

Analysis

Data were analysed using custom programs, together with NeuroMatic data analysis software 

(http://www.neuromatic.thinkrandom.com/), in Igor Pro (Wavemetrics, Lake Oswego, 

Oregon). Curves were fitted with the Igor ‘curvefit’ function.

Spikelets in the complex spike were detected using a height or dV/dt threshold adjusted until 

all spikes identified by eye were captured. Spikelet times were measured at their peak and 

amplitudes were measured with respect to baseline membrane potential (averaged over 50 

ms before the complex spike). The resulting amplitudes were sometimes normalised to the 

amplitude of the first spike in the complex spike. Where somatic spike threshold was 

measured, it was taken as the point at which the 2nd derivative of the spike reached 10% of its 

peak value during the rising phase of the spike; threshold amplitude was measured as the 

voltage at this point minus the minimum voltage reached in the preceding trough.

Propagation of complex spike spikelets down the Purkinje cell axon was predicted using the 

separatrix based on spikelet height and interspike interval derived in Monsivais et al. (2005). 

Dendritic spike width was measured at half the height of the spike peak above the preceding 

trough in membrane potential. Attenuation was measured in records in which extra dendritic 

spikes did not trigger extra somatic spikelets, allowing the depolarisation due to the 

propagated dendritic spike to be seen in isolation. The amplitude of the propagated event was 

found by subtracting from these records the average somatic waveform of corresponding 

responses of a similar somatic spiking pattern but without the extra dendritic spike (see Fig. 

3.5 in Chapter 3). Analogously, the amplitude of the dendritic spike was found by subtracting 

the average dendritic waveform of the same dataset from the individual records with extra 

dendritic spikes. Attenuation was calculated as the somatic event amplitude as a percentage 

of the dendritic event amplitude.

The dendritic integral was calculated between where the response crossed 3 mV above 

baseline membrane potential on its rising and falling phases.

The post complex spike pause was measured as the interval between the last spike of the 

complex spike and the next simple spike. Spontaneous interspike intervals (ISIs) were

http://www.neuromatic.thinkrandom.com/
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calculated as the average of 3 consecutive intervals between simple spikes occurring in the 

same trace as the post-complex spike pause. Post-complex spike after-hyperpolarisations 

were quantified by finding the minimum voltage during the post-complex spike pause in 

spontaneous firing and subtracting mean baseline membrane potential (as measured above). 

Data was tested for statistical significance using Student’s t-test (paired or unpaired as 

appropriate). Data were reported as the mean (in some cases weighted by the number of 

observations in each dataset (Bland and Kerry, 1998)) ± S.E.M unless otherwise indicated.

Modelling

NEURON simulation software ((Hines and Carnevale, 1997), www.neuron.yale.edu) was 

used to simulate the waveform of spikes in single compartments, spikes propagated from a 

distant site in a simplified multicompartmental model and of spikes propagated from the axon 

of a biologically realistic model of a Purkinje cell (Clark et al., 2005).

Single compartment model

Spikes waveform was investigated in a 20 p.m diameter sphere (Cm 1p,F/cm2, Rm 20,000 

Qcm2, Rj 150 Qcm) furnished with either standard Hodgkin Huxley Na+, K+ and leak channels 

(www.neuron.yale.edu) or channels modelled on those recorded in Purkinje cells (Khaliq et 

al., 2003) (full channel descriptions given below). Densities of these channels was varied from 

0 - 8  times ‘standard’ density, together with an additional tonic (linear, reversal 0 or -60 mV) 

conductance of 0 - 30 nS. The voltage deflections caused by brief current (0.5 - 1 ms) 

injection were analysed.

Multicompartment model of distant spike initiation site

Waveforms were recorded in a 1.2 urn diameter cable (Cm VF/cm 2, Rm 20,000 Qcm2, Rj 150 

Qcm). The recording site (‘soma’) was 10000 p,m from the cable’s sealed end and 100 nm (in 

the other direction) from the ‘hotspot’ of spike initiation. A symmetrical length of cable 

followed the ‘hotspot’ on the other side. The ‘somatic’ compartment (20 fim long) was either of 

uniform diameter (1.2 ^m) with the rest of the cable, or varied to 20 p,m. The ‘hotspot’ was 

made to initiate voltage deflections through either (i) voltage clamp to a square pulse (2 ms, 

65 mV), a sample Purkinje cell somatic simple spike or sample Purkinje cell somatic complex 

spike spikelets (ii) brief current injection to an active compartment, with Hodgkin Huxley active 

channels at 16 times standard density. The somatic spike waveform was recorded under 

varying somatic active Hodgkin Huxley channel densities (0 -1 6  times standard density; the 

16x condition, where the compartment fired 80 mV action potentials was considered 1x ‘full’ 

channel density), and varying tonic somatic conductance (0 -100  nS, -60 mV reversal).

http://www.neuron.yale.edu
http://www.neuron.yale.edu
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Purkinie cell model

The Purkinje cell model developed by Dr Mickey London (Clark et al., 2005) was adapted for 

these simulations. In this model, the dendritic, somatic and axonal morphology was 

reconstructed from a representative P19 Purkinje cell and given passive parameters of Rm 

20,000 Qcm2, Rj 150 Qcm and Cm VF/cm 2 (or 0.21 ^iF/cm2 in myelinated sections). In the 

simulations presented in this thesis, axon collaterals were removed to improve simulation 

speed. Nodes of Ranvier were placed at the main axon branchpoint and then at 350 p,m from 

the soma, and thereafter in 350 urn intervals. Juxtaparanodal sections (5 jim) were placed 

between each myelin and node sections. Dendritic spines were incorporated by scaling 

membrane capacitance (scaling factor in spiny branchlets 5, in main trunk 1.2 (Roth and 

Hausser, 2001).

The Purkinje cell ion channel models of Khaliq et al., 2003 were inserted to the soma and 

initial segment, with densities scaled as by 8 and 16, respectively. Nodes of Ranvier 

contained only Na channels at a density 14 fold higher than the soma. Myelinated sections 

were passive, and juxtaparanode sections were identical to myelinated sections, except for 

additional delayed-rectifier K current at 1.6-fold the somatic density. In contrast to the model 

used in Clark et al., 2005, Ih was not present in the dendrites, preventing spontaneous axonal 

spike initiation. Spikes were initiated at the first node (as occurs spontaneously in the full 

model) by either voltage clamping the site to an action potential or injecting a brief current 

step. Waveforms were recorded at the soma; the density of active channels varied from 0 -1  

times full density and passive conductance (-60 mV) reversal was varied from 0 - 2000 nS.



Methods 60

Hodakin Huxlev channel parameters

The parameters of the standard Hodgkin Huxley channels (Hodgkin and Huxley, 1952b), as 

provided by NEURON, were:

Channel gates Gmax
(S/cm2)

Erev
(mV)

Na+ m3h 0.120 50

K+ n4 0.036 -77

Leak 1 0.0003 -54.3

where each gate approached its equilibrium value of (substituting m or h for n as appropriate):

< v)
a.(v) + p.(v)

with the time course:

/ oi>i \
exp

10 J -1
\ /

' - V - 6 5 '

and a  and p for each gate were given by: 

am “  0. l( - \ /  -  40)

Pm = 4 exp 

ah =0.07 exp

Ph =

18

20
/

['-V -3 5 'j \
exp

10 j + 1
\ /

an = 0 .0 l(-\/ -55) 

= 0.125 exp

/
f -V -5 5 ]

\
-1exp

10 J\

'-V -6 5 ^
80
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Khalia et al. 2003 Purkinie soma model parameters

Ion channel behaviours, based on voltage clamp data from isolated Purkinje cell somata, 

were modelled using the Hodgkin-Huxley gate formalisation (Hodgkin and Huxley, 1952b), 

except in the case of the resurgent sodium channels, which required a more complex state 

model (Khaliq et al., 2003).

For the sodium current, the following state model and parameters were used:

C l
C off

4a

0
C o f fb

C2
3 a

Con

I I
4 a a  

0  b

20
C o f fb

C3
2 a

12 -

Con-a  

3 a -a

3 0  

C o f fb

2 0  b
13

C on-a2 
2a -a

4/3

C o f fb

C5 o OB

3 0  b
14 t

Con-a3 
a -a

O o ff

4 0  b
15

C on-a4
7

Oon

16

where C, I, O and OB represent closed, inactivated, open and open-blocked states, 

respectively.

Parameter Value

a 150 e (V/20) ms'1

P 3 e (V/20) m s1

Y 150 ms’1

6 40 ms'1

E 1.75 ms’1

s 0.03 e ("v/25) m s1

Con 0.005 ms"1

Coff 0.5 ms"1

Oon 0.75 ms"1

Ooff 0.005 ms"1

a Oon/Con 1/4

b Ooff/Coff1/4

Gmax 0.015 S/cm2

egzLU +60 mV
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Models for other currents were based on the Hodgkin-Huxley formalisation for each activation 

or inactivation gate (m or h). The steady state value of m was expressed as:

i - y 0mx = y 0 +
1 + exp

and was approached with the time course:

171 = 171̂ - -m 0)exp|-— j

which combine to give a conductance of:

G = Gmaxmxhy 

resulting a current flow determined by ohms law:

/ - G x ( V - E „ )

or, in the case of calcium current, by the Goldman-Hodgkin-Katz equation:

,_4p VF^ i - i c ^ l e x p j - l F V / R T )

Cfl2* RT /\-exp(-2FV/RT)

The following channels and parameters were used:

m h

Channel gates Gmax
(S/cm2)

Frev

(mV)

v1/2
(mV)

k

(mV)
yo

(S/cm2)

v1/2
(mV)

k

(mV)

K +fast m3h 0.04 -88 -24 15.4 0.31 -5.8 -11.2

K +mid m4 0.02 -88 -24 20.4

V C *IX slow
4m 0.04 -88 -16.5 18.4

P-type Ca2+ m see below -19 5.5

BK ^3 2.m z h 0.07 -88 -28.9 6.2 0.085 -32 -5.8

lh m 0.01 -30 -90.1 -9.9

Leak 1 0.005 -60

For all activation gates (m), y0 was 0.

For the P-type calcium current, PCg2+ = 5 x 10'5 cm/s, [Ca2+J = 100 nM, [Ca2+j = 2 mM, T 

= 295 K. F and R had their usual values.
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The activation and inactivation time constants (xr 

K +fast

0.000103 + 0.0149exp(0.035Vm)

0.000129 + Vm +100.7) (Vm- 56 exp —-  —  + exp
12.9 -23.1

1.22x1 O’5 +0.012 exp
/  /  \  2 \  

V„ + 56.3
49.6

0.0012 + 0.0023 • exp(-0.141\/m)

K+,mid

0.000688 + exp{V_ + 64.2\ /V_-141.5+ exp
6.5 -34.8

0.00016+0.0008 • exp(-0.0267V„)

K+slow

r  =0.000796 +
11.7

, V + 73.2] IV _-306.7 exp| — | + exp
-74.2

.2+P-type Ca

0.000264 + 0.128- exp(o. 103Vm)

0.000191+0.00376-exp
T = / / \2\ 

VL. + 41.9
27.8

BK

Tm = 0.000505 + 

t„ = 0.0019+1/

/ [Vm + 86.4] t
exp

\ I 1 0 . 1  J
+ exp

V
^ -3 3 .3

( (Vm + 48.5) /
exp —--------

I I 5.2 J
+ exp

\

-10 

-  54.2
-12.9

r m = 0.19 + 0.72 -exp
/  /  i 2 \

Vm + 81.5
11.9

and xh) were as follows:

Vm < -35mV 

Vm 2- -35mV 

Vm <; OmV 

Vm > OmV

Vm < -20mV 

Vm * -20mV

Vm s -50mV 

Vm > -50mV

The calcium dependent gate (z) of the BK channel had a time constant (tz) of 1 ms. Its steady 

state value was determined by
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z„ =
■j ^  coef

[ea-l

where zcoef = 0.001 mM. Internal calcium concentration was modelled as uniform entry to a 

100 nm shell beneath the cell membrane, and was calculated as

-100 i
2 F dA - 4 Ca !*L

where p = 1ms'1. [Ca2+] is in mM, At is in ms, d is depth in nm, A is area in nm2, and lCa in nA. 

[Ca2+] was constrained to be £ 100 nM.
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Abbreviations used in this thesis

4-AP 4-Aminopyridine

ACSF artificial cerebrospinal fluid

AMPA a-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid

Ca calcium

Cd cadmium

CF climbing fibre

CV coefficient of variation

DCN deep cerebellar nuclei

EPSC excitatory post synaptic potential

EPSG excitatory post synaptic conductance

EPSP excitatory post synaptic potential

f-l curve relationship between firing frequency and injected current

IO inferior olive

IPSC inhibitory post synaptic current

IPSG inhibitory post synaptic conductance

IPSP inhibitory post synaptic potential

Kca calcium activated potassium channel

Na sodium

NMDA N-Methyl-D-aspartic acid

PCR polymerase chain reaction

QX-314 N-(2,6-Dimethylphenylcarbamoylmethyl)triethylammonium

SD standard deviation

SEM standard error of the mean

TTX tetrodotoxin

Vm membrane potential
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Chapter 1:

Relationship between CF input size and the complex spike 

Introduction

The high frequency burst of spikes known as the complex spike is a salient signal amongst 

the spontaneous spiking of a Purkinje cell, thought to represent sensory and motor timing 

signals (Gilbert and Thach, 1977; Gellman et al., 1985; Andersson and Armstrong, 1987; 

Llinas and Sasaki, 1989; Welsh et al., 1995; Bloedel and Bracha, 1998; Van Der Giessen et 

al., 2008). Within cells the complex spike waveform is highly reproducible (Eccles et al., 

1966a; Crepel, 1971; Puro and Woodward, 1977; Llinas and Sugimori, 1980a), but across 

cells a wide variety of complex spike patterns are seen (Eccles et al., 1966a; Armstrong and 

Rawson, 1979; Campbell and Hesslow, 1986a; Schmolesky et al., 2002; Khaliq and Raman, 

2005). Further, by stimulating the CF at high frequencies, or by blocking a proportion of the 

CF’s AMPA receptors with NBQX (Foster et al., 2002), complex spikes composed of fewer, 

larger spikes spikes can be generated (Eccles et al., 1966d; Bloedel and Roberts, 1971; 

Campbell and Hesslow, 1986a; Hashimoto and Kano, 1998; Servais et al., 2004; Khaliq and 

Raman, 2005, though see also Campbell and Hesslow, 1986b). However, the exact 

relationship between the complex spike pattern and its underlying CF input and, 

consequently, the degree to which this can account for inter and intra- cell diversity of the 

complex spike is not yet understood.
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The nature of the transformation between CF synaptic input and complex spike bursting 

output is not easy to predict. Although the Purkinje cell displays a linear input-output 

relationship in response to tonic current injection (even after the removal of its dendrites, 

Bekkers and Hausser, 2007) and to parallel fibre stimulation (both clustered and distributed, 

Walter and Khodakhah, 2006; Mittmann and HSusser, 2007), this relationship can alter with 

the appearance of dendritic calcium spikes (Womack and Khodakhah, 2004; McKay et al., 

2005; Rancz and Hausser, 2005). Further, the CF synaptic conductance is extremely large, 

orders of magnitude larger than even strong parallel fibre input (Konnerth et al., 1990; Llano 

et al., 1991; Dittman and Regehr, 1998; Hashimoto and Kano, 1998; Silver et al., 1998; 

Wadiche and Jahr, 2001). Thus, increasing the amplitude of this conductance may lead to a 

sublinear increase in synaptic current as conductance shunt increases and the resulting 

EPSP approaches the AMPA receptor reversal potential of 0 mV. This could lead to a 

saturating, sublinear ‘input - output' relationship (see Fig. above). In contrast, the relationship 

might become supralinear (Fig. above), through amplification of the synaptic input by the 

recruitment of the active properties of the Purkinje cell, such as the prominent dendritic spikes 

activated by CF input (Eccles et al., 1966a; Fujita, 1968; Llinas and Sugimori, 1980b; Crepel 

et al., 1981; Chan et al., 1989; Callaway et al., 1995), or the intrinsic bursting mechanisms of 

the axon and soma (Raman and Bean, 1997; Swensen and Bean, 2003, 2005; Bekkers and 

Hausser, 2007)

The size of CF input is modulated by short and long term synaptic plasticity. In vivo CF input 

occurs at ~1 Hz, but with a large standard deviation such that intervals of 50-100 ms to >3 s 

are observed during normal activity (Eccles et al., 1967; Bell and Grimm, 1969; Gilbert and 

Thach, 1977; Armstrong and Rawson, 1979; Lang et al., 1999; Maruta et al., 2007). Repeated 

stimulation of the CF at these interstimulus intervals results in paired pulse depression of the 

CF EPSC. Such behaviour was originally observed using sharp electrode recording in vivo by 

measuring EPSPs once the spiking mechanism had been impaired (Eccles et al., 1966d; 

Latham and Paul, 1971). This has been found to be due to depletion of the presynaptic 

readily releasable vesicle pool (Foster and Regehr, 2004), and thus reduced synaptic release 

probability (Silver et al., 1998), combined with postsynaptic receptor saturation (Wadiche and 

Jahr, 2001). Together these result in ~50% depression at short interpulse intervals (Dittman 

and Regehr, 1998; Hashimoto and Kano, 1998; Silver et al., 1998) which recovers in a 

calcium dependent manner with a tri-exponential time course, the fast and intermediate 

components of which have time constants of ~40 ms and ~1.2 s, at near physiological 

temperatures (Dittman and Regehr, 1998). CF input can also undergo longer term plastic 

changes in amplitude; stimulation of the CF itself at moderate frequencies (5 Hz) leads to 

LTD of the CF input (Hansel and Linden, 2000). Finally, differences in CF input arise in vivo 

due to the transmission of high frequency bursts of action potentials by the CF axon from the 

intrinsically bursting inferior olive cells (Eccles et al., 1966a; Crill and Kennedy, 1967; 

Armstrong and Rawson, 1979; Llinas and Yarom, 1981a, b; Maruta et al., 2007). Thus, the in
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vivo stimulus driving the complex spike is likely to be widely modulated during normal 

behaviour.

In this chapter, I have addressed the effect that such input modulation has on the Purkinje cell 

complex spike. I have, firstly, described the range and reproducibility of complex spikes 

evoked in Purkinje cell’s by isolated CF input in vitro. I have then explored the effect of paired 

pulse CF stimulation and of rapid bursts of CF stimulation on the somatic complex spike and 

the CF evoked dendritic calcium spikes. Finally, through the recording of both EPSCs and 

complex spikes in the same cell at a variety paired pulse intervals, I have characterised the 

input-output relationship between CF EPSC size and the complex spike waveform. This has 

revealed surprisingly linear relationships between the CF input and both the number and 

timing of spikelets in the complex spike. Across cells, this accounts for a large proportion of 

the variability of the complex spike waveform.
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Chapter 1: Results

Characteristics of the Purkinje ceil complex spike

The complex spike is a reproducible high frequency burst of spikes that can be evoked by a 

single activation of a Purkinje cell’s climbing fibre (Eccles et al., 1966a; Thach, 1967; Crepel, 

1971, 1974; Llinas and Sugimori, 1980a) . A broad range of complex spike waveforms have 

been recorded in Purkinje cells (Eccles et al., 1966a; Crepel, 1971; Puro and Woodward, 

1977; Armstrong and Rawson, 1979; Llinas and Sugimori, 1980a; Campbell and Hesslow, 

1986a; Schmolesky et al., 2002; Khaliq and Raman, 2005); however, the intracellularly 

recorded, in vitro, isolated waveform has not been fully characterised. Fig. 1.1a shows 

example complex spikes from 12 cells together with the concomitant dendritic calcium spike 

(Llinas and Sugimori, 1980b) responses to CF stimulation (when simultaneously recorded). 

The examples are ordered by the number of spikes in the complex spike, and are 

representative of the range of complex spikes I recorded from Purkinje cells at rest, in slices 

from P 12-24 rats (34-35 °C), in response to repeated CF stimulation given at a 1 s 

interstimulus-interval.

I found that the complex spike was, on average, composed of 3.64 ± 0.93 spikes (mean ± SD, 

n = 38, Fig. 1.1b), and ranged between 2 ± 0 and 6.2 ± 0.4 somatic spikelets (within cell 

averages: maximum observed = 8). The number of spikes in the complex spike did not 

depend on age, within the range used (r = -0.17, p = 0.31, P12-24), or on baseline membrane 

potential (averaged over 50 ms, including spikes, r = 0.03, p = 0.87, bVm = - 54.1 ± 4.8 mV 

(mean ± SD), range -66 to -45 mV) and depended only weakly on spontaneous firing rate (r = 

0.36, p = 0.03, rate = 53 ± 22 Hz (mean ± SD), range 17 -110  Hz). Concomitantly with the 

complex spike at the soma, Purkinje cells fire dendritic calcium spikes (Llinas and Sugimori, 

1980b; Crepel et al., 1981; Chan et al., 1989; Rancz and Hausser, 2006); I recorded on 

average 1.7 ± 0.5 dendritic spikes (mean ± SD, n = 24 cells, age P18-24, range 1 ± 0 to 2.97 

± 0.17, maximum observed = 3, Fig. 1.1c). The number of spikes in the complex spike was 

not correlated with the number of spikes in the dendritic response (r = -0.12, p = 0.59). I found 

that the complex spike burst of spikes lasted on average 4.8 ± 2.0 ms (mean ± SD, range 1.4 

± 0.05 to 11.1 ± 1.2 ms, n = 38, Fig. 1.1 d), and indeed was high frequency; average 

instantaneous firing rate was 620 ± 96 Hz (mean ± SD) and the average maximum and 

minimum firing rates were 448 ± 114 Hz and 801 ± 184 Hz, respectively.
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Fig 1.1 Characteristics of Complex Spikes across Purkinje cells

A) Example somatic complex spike responses of 12 different Purkinje cells to 1 Hz climbing fibre stimulation at resting 
membrane potential (black), together with, where recorded, concomitant dendritic calcium spike responses (blue). 
Responses are ordered by the number of spikes in their complex spike, and were chosen to reflect the range of complex 
spikes seen across cells. B) Somatic complex spike responses to 1 Hz CF stimulation were composed of between 2 and 
7 spikes (population mean ± SD, blue bar, 3.7 ± 1.1, n = 38 cells). Individual cell’s averages shown as black circles (places 
side by side where many cells showed the same or similar numbers of spike).
C) Purkinje cells displayed between 1 and 3 dendritic spikes in response to 1 Hz CF stimulation. Mean ± SD: 1.7 ± 0.5, n 
= 24 cells. Symbols as in B. D) Average duration of the complex spike (interval between first and last spike peaks) ranged 
between 1.4 and 13.9 ms; mean ± SD: 5.0 ± 2.4 ms (n = 38 cells). E) All complex spikes were high frequency bursts, 
though mean, maximum and minimum instantaneous firing frequencies (illustrated) varied across cells.
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Complex spike waveforms within each cell are highly reproducible

Despite this cell to cell diversity of the complex spike, for each individual cell the complex 

spike is highly reproducible, when triggered at a constant frequency. The responses of 5 

different Purkinje cells (shown in Fig 1.1a) to 10 repetitions of 1 Hz CF stimulation are shown, 

overlaid, in Fig. 1.2a. It is clear from these examples that the waveform of the complex spike 

remains remarkably constant from trial to trial. The number of spikes varies little (Fig. 1.2b); 

most variation was seen in the final spike, which would sometimes fail to be generated (as in, 

for example, Fig. 1.2a iii). The timing and amplitude of the spikelets was also highly 

reproducible, as can be seen from the measurements made of individual spikes and the small 

standard deviations around their means (Fig. 1.2c). Across the population of data (n = 38), 

the standard deviation in the number of spikes in the complex spike was always < 0.6, and in 

15/38 cases was 0; on average it was 0.24 ± 0.22 (Fig. 1.3a, CV = 6.6 ± 6.5 %, mean ± SD). 

The standard deviation of spike timing was always < 1.5 ms (Fig. 1.3bi), though later spikelets 

of the complex spike were less precisely timed than earlier spikes (r = 0.82, p < 10'16). The 

coefficient of variation (CV) normalises variation by the mean; I found that most spikes varied 

by <10 % of their mean time (Fig. 1.3b ii, average CV = 5.9 ± 3.4 %, mean ± SD), though 

there was still a tendency for later spikes to acquire more variation per ms (r = 0.41, p < 10'5). 

The height of the majority of spikes had a standard deviation of < 10% of the height of the first 

spike of the complex spike (Fig. 1.3c, average CV = 8.3 ± 9.2 %, mean ± SD). Spikes that 

were less precisely timed tended to be of more variable amplitude (Fig. 1.3c, r = 0.54, p = 10' 

9). This may to some extent be understood by the observation that spikes changed amplitude 

together with their timing; later spikes were usually taller (see e.g. example iii in Fig. 1.2a and 

c). This relationship between spike timing and amplitude will be explored more fully in 

Chapter 2.

These results demonstrate that each Purkinje cell generates its own distinctive, highly 

reproducible complex spike waveform in response to stimulation of its CF, but that across 

cells a wide range of complex spike patterns are seen. In this thesis, I have attempted to 

understand what underlies these differences across cells. Specifically, I have quantified to 

what extent can variations in input size, input location, axo-somatic and dendritic excitability, 

or the interactions between the two, are responsible for the generation of different complex 

spike patterns. In this chapter I have investigated how varying the CF input to the Purkinje cell 

influences the complex spike.
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A) Standard deviation (SD) of the number of spikes in the complex spike (n = 38 cells, black markers show the SD of 
individual cell’s complex spikes, blue bar the population mean).
Bi) SD of the timing of spikes in the complex spike plotted against the latency of the spike (ms after the average time of 
the first spike). Black line: linear fit, r = 0.82, p < 10'16. Note that even long latency spikes were precisely timed, with SDs 
of <1.5 ms.
ii) Coefficient of variation (CV) of spike timing plotted against spike latency. Note that the coefficient of variation was 
usually <10% of the spike latency, and increased weakly with spike latency (linear fit: black line, r = 0.41, p < 10'5).
C) SD of the height of spikes in the complex spike plotted against the SD of the time of the spikes. Spikes of larger timing 
variability tended to have larger height variability (r = 0.54, p < 10'9). The majority of spike heights had a SD of <10 % 
(relative to the height of the first spike in the complex spike).
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Influence of CF paired-pulse interval on the complex spike

As discussed in the introduction, the CF to Purkinje cell synapse shows strong paired-pulse 

depression (Eccles et al., 1966d; Latham and Paul, 1971; Dittman and Regehr, 1998; 

Hashimoto and Kano, 1998; Silver et al., 1998), resulting in ~ 50% smaller CF EPSCs at short 

interstimulus intervals, recovering significantly over tens to hundreds of milliseconds. In vivo, 

while complex spikes are observed on average at 1 Hz, there is considerable irregularity in 

the occurrence of complex spikes, with inter-complex spike intervals of <50 ms or >3 s being 

observed (Eccles et al., 1967; Bell and Grimm, 1969; Armstrong and Rawson, 1979; Maruta 

et al., 2007). I therefore investigated how the complex spike waveform depended on inter CF 

stimulus interval. An example is shown in Fig. 1.4a. Pairs of CF stimulations were given every 

1 s, and the interstimulus interval was varied between 20 and 300 ms while simultaneously 

recording the response at the soma and in the dendrites. The number of spikes in the second 

complex spike was halved at the shortest interval (20 ms); this recovered exponentially with 

longer intervals (Fig. 1.4b), returning to baseline values at 300 ms. At shorter intervals, the 

spikes within the complex spike also occurred at longer latencies (therefore at lower 

frequencies); this effect also recovered exponentially with interstimulus interval (Fig. 1.4c). 

Concomitantly in the dendrite, the number and amplitude of dendritic spikes was depressed, 

and their latency increased at short paired-pulse intervals and recovered with increasing 

interval (Fig. 1.4a).

A similar trend was seen in all Purkinje cells’ responses to paired pulse stimulation of CF 

input (P18 - 24). The average number of spikes in the second complex spike reduced to 2.4 ± 

0.1 (mean ± SEM, n = 14) at an interstimulus interval of 20 ms and recovered exponentially 

towards the 3.5 ± 0.2 spikes seen for the first of paired stimuli given every 1 s (Fig. 1.5a). For 

some cells (P12-16, used in later voltage clamp experiments; see Fig. 1.11, 1.14 and 1.15), 

paired stimuli were given every 5 s. This resulted in a similar number of spikes in the complex 

spike at an interstimulus interval of 1 s (p > 0.99); however this recovered even further to 3.8 

± 0.5 spikes (first stimulus of the pair given every 5 s, Fig. 1.5a ii) and depressed even more 

strongly at shorter intervals (down to 1.9 ± 0.2 at 20 ms interstimulus intervals). This may 

reflect the lower level of tonic of depression of the synapse at 0.2 Hz, and perhaps the 

speeding of fast recovery from depression at 1 Hz due to its calcium dependence (Dittman 

and Regehr, 1998), or perhaps an age dependence of recovery from PPD.

Across cells, the latency of all spikes in the complex spike increased at short paired-pulse 

intervals, with the largest change occurring for the later spikes (Fig. 1.5b). For cells in which 

the 1 Hz inter-sweep interval protocol was used, the first spike latency following CF 

stimulation was increased on average by 0.12 ± 0.02 ms at the shortest interstimulus interval, 

the second spike by 0.39 ± 0.05, the third by 1.5 ± 0.5 and the fourth by up to 4.9 ms (there 

were insufficient numbers of occurrences of later spikes to record the change in
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Fig 1.4 Paired-pulse stimulation of the CF reduces the number and increases the latency of spikes in the complex 
spike.

A) Example of responses to paired stimulation of the CF, recorded in the soma and concomitantly in the dendrite (80 pm 
from the soma). Every 1 s a pair of CF stimulations was given; the interval between these two stimulations was varied 
between 20 and 300 ms. The Purkinje cell’s responses to the first and second stimulations are shown in the upper and 
lower panels respectively.
B) Relationship between the number of spikes in the complex spike and the paired-pulse stimulation interval (markers 
show mean ± SD). The values measured for the complex spike following the first stimulation (which occurred at a baseline 
rate of 1 Hz) are plotted at the 1000 ms interval.
C) Relationship between spike time and paired-pulse stimulation interval (markers show mean ± SD). The time of each of 
the spikes (spikes 1 -  4, coloured red, yellow, green and blue respectively) was measured relative to the average latency 
of the first spike of the complex spike following the first CF stimulation. Note that although the complex spike pattern is 
changed with stimulation frequency, it remains reliable.
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Ai) Population average (± SEM) number of spikes in CS at different paired-pulse stimulation intervals. Data where pairs 
of CF stimulation were given every 1 s are shown in black (n = 14); a further data set where pairs were given every 5 s is 
shown in blue (n = 8). ii) The same expanded time scale to illustrate the full recovery in the number of spikes when pairs 
were stimulated every 5 s. B) Average change in spike timing with paired-pulse stimulation interval. The times of spike 1 
-  4 of the complex spike are calculated relative to the times of spike 1 - 4  (respectively) of the complex spike response to 
the first CF stimulation. For spike 3, outliers with decreases in spike latency (see D) were either included (open circles) or 
excluded (filled circles) from the average). Ci) Change in spike timing expressed as a % of the latency of the spike after 
the first spike of the first complex spike. Pairs stimulated every 1 s. ii) Change in spike timing expressed as %, as in (i), 
but where CF stimulated every 5 s.
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their latency with interstimulus interval). The normalised, % change in latency after the first 

spike of the complex spike was also largest for later spikes (Fig. 1.5d i). A similar, though less 

dramatic trend was seen when paired stimulation was given every 5 s (Fig. 1.5d ii). It is likely 

that the reduced frequency of spiking in the complex spike reflects smaller EPSCs being 

generated at short interpulse intervals (Dittman and Regehr, 1998; Hashimoto and Kano, 

1998; Silver et al., 1998 , see also later).

Although very short inter-complex spike intervals are only rarely observed in vivo (Bell and 

Grimm, 1969; Armstrong and Rawson, 1979), inferior olive cells (the origin of the CF axon) 

are known to fire in bursts themselves on some occasions (Crill and Kennedy, 1967; 

Armstrong et al., 1968; Llinas and Yarom, 1981a, b), giving rise to bursts of input to the 

Purkinje cells (Eccles et al., 1966a; Armstrong and Rawson, 1979; Maruta et al., 2007). 

These occur at intra-burst intervals of ~2 ms (Eccles et al., 1966a; Armstrong et al., 1968; 

Armstrong and Rawson, 1979; Maruta et al., 2007). I therefore investigated the effect on the 

complex spike of paired CF stimuli given at shorter (1 - 20 ms) intervals. An example is 

shown in Fig. 1.6a. Again, at decreasing interstimulus intervals, fewer, later spikes are seen 

in the complex spike, both in the example data (Fig. 1.6a and b) and in the population as a 

whole (Fig. 1.6c) (since the second stimulus mostly occurs within the first complex spike and 

the resulting complex spikes are inseparable, the number of spikes calculated was the total 

resulting from both stimuli). The amplitude of the second response in the dendrites was also 

decreased by increasingly short intervals (n = 3). In the example shown in Fig. 1.7a, a second 

stimulus at these very short intervals usually evokes an EPSP, but fails to evoke any further 

dendritic spikes. At the shortest interstimulus interval (1 ms), neither the dendritic nor the 

somatic response could be distinguished from the response to a single CF stimulus (Fig. 

1.7b). The integrals of the dendritic responses were indistinguishable, as were the amplitudes 

and timings of the somatic complex spikes (Fig. 1.7c, d and e, p > 0.5, 0.2 and 0.3, 

respectively). At slightly longer interstimulus intervals a small second EPSP could be detected 

in the dendrite (2 ms interval in Fig. 1.7a, b and c) and the somatic waveform was altered; the 

number of spikes remained constant (Fig. 1.6a and b), but later spikes were advanced in time 

and smaller in amplitude (2 ms interval in Fig. 1.7 b, d and e). These changes are in line with 

the faster spiking triggered by the presumably larger inputs evoked at long interstimulus 

intervals.

The net effect of this small increase in excitation of the Purkinje cell may, paradoxically, be to 

decrease spiking output. It has been found (Khaliq and Raman, 2005; Monsivais et al., 2005) 

that not all of the spikelets in the complex spike are successfully propagated down the 

Purkinje cell axon; small spikelets at short interspike intervals tend to fail at some point in the 

axon. Propagating and non-propagating spikes (as assessed by paired somatic and axonal 

recording) can be predicted with a high degree of accuracy, according to a combination of 

somatic interspike interval (ISI) and spike height or rate of rise (Khaliq and Raman, 2005;
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Fig 1.6 Paired-Pulse stimulation of the complex spike at short intervals

A) Example of CF stimulation at short intervals, starting at 20 ms and decreasing to the within the range of the interspike 
interval within bursts of CF activity seen in vivo. Yellow arrows indicate stimulation times, blue circles encapsulate the 
peaks of spikes that are predicted to propagate down the axon.
B) Quantification of the number (mean ± SD) of spikes in the example shown in A. Filled circles indicate spikes recorded 
in the soma, open circles indicate spikes predicted to propagate down the axon (see fig 1.8). Note that at 2 ms interstimu­
lus intervals the number of somatic spikes remains unchanged but the number predicted to propagate down the axon is 
reduced due to the decrease in interspike interval and spike height at the soma.
C) Quantification of the average number of spikes following paired-pulse stimulation in the population of data (mean ± 
SEM, n = 11). As in B, filled circles indicate spikes actually recorded in the soma, open circles indicate spikes predicted to 
propagate down the axon.
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A) Illustration of dendritic recordings made simultaneously with the somatic recordings shown in Fig 1.6a. B) Overlay of 
the responses in dendrite (left) and soma (right) to the isolated first response to paired stimulation at 20 ms interstimulus 
intervals (dark blue traces in the background) and to paired stimulation at 5 -  1 ms interstimulus intervals. C) Integral of 
dendritic voltage responses to the first CF stimulation at 20 ms interstimulus intervals and to the response to both stimula­
tions at 1 and 2 ms interstimulus intervals. The integral at 1 ms interstimulus interval is indistinguishable from the isolated 
first CF stimulation (p > 0.5), whereas the response at 2 ms interstimulus interval is significantly larger (p < 10'5). D) Height 
of somatic spikes in response to the 3 stimulation paradigms detailed in (C). Heights of each spikelet are not significantly 
different between any of the data sets (p > 0.2). E) Time of somatic spikes in response to the same 3 stimulation 
paradigms. The timing third spikelet of the response to paired stimulation at a 1 ms interval is not distinguishable from the 
response to isolated first CF stimulation (p > 0.3), but following paired stimulation at a 2 ms interval is significantly earlier 
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Fig 1.8 Algorithm used to predict axonal propagation of somatic spikelets

These data were gathered by Dr. Pablo Monsivais and Dr. Beverley Clark and fitted by Dr. Arnd Roth (Monsivais et al. 
2005).
The ability of spikelets in the complex spike to propagate down the axon was measured using simultaneous whole-cell 
somatic and cell-attached axonal recording.

A) Left; probability of axonal propagation of a spikelet in the complex spike plotted against the preceding somatic ISI 
(pooled data from 7 cells). Right; probability of axonal propagation plotted against the amplitude of the corresponding 
somatic spikelets (pooled data from 7 cells). Data fitted with sigmoid functions.
B) Plot of somatic spike amplitude against ISI. Data points representing spiklets that propagated down the axon are 
coloured green, non-propagating spikes are coloured black. These two classes of spikelet could be separated with 85% 
accuracy by the best-fit separatrix (blue) defined by Equation 1 (see text), with T = 2.0 ms, k = 0.056 mV’1, and V1/2 = 18.1 
mV.
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Monsivais et al., 2005; see Fig. 1.8a). A curve, drawn through a plot of spike height vs ISI, 

with the equation:

(l -  e'Ŝ j( l  + tanh(k(V -  Vy2))) = 1

where x = 2.0 ms, k = 0.056 m V 1 and V1/2 =18.1 mV, separated propagation failures and 

success with 85 % accuracy (Fig. 1.8b). I used this separatrix to predict which spikelets of the 

complex spike resulting from paired-pulse CF stimulation might propagate (Fig. 1.6a and b). 

At a 2 ms interstimulus interval, the total number of spikes predicted to propagate down the 

axon was reduced by 0.6 spikes, both in the example data shown (Fig. 1.6b) and in the 

dataset as a whole (Fig. 1.6c, n = 16).

These results demonstrate that complex spikes evoked at high stimulus frequencies are 

composed of fewer spikelets, and that a limit of 2 ms between pairs of stimuli exists at which 

doublets of CF spike input can increase the output of a Purkinje cell. The apparent absolute 

limit of effective transmission or CF stimulation is 1 ms between paired CF stimulations. This 

may arise either because any CF EPSC is so small it has negligible effect, or because of 

failure of release or action potential generation in the presynaptic axon.

Influence of bursts of CF input on the complex spike

CF axons do not fire only one or two spikes, but can generate bursts of up to 6 spikes (Eccles 

et al., 1966a; Armstrong et al., 1968; Armstrong and Rawson, 1979; Maruta et al., 2007). I 

therefore investigated the effect of these bursts on the Purkinje cell response. An example of 

bursts of 1 -  7 stimuli given every 1, 2 or 3 ms, recorded simultaneously in the soma and 

dendrite, is shown in Fig. 1.9 a, b and c, respectively. It can be seen that, while two stimuli 

given at an interstimulus interval of 1 ms do not elicit any change in Purkinje cell voltage 

trajectory (as detailed above), trains of 3 -  7 stimuli given every 1 ms do further depolarise 

the dendrites and alter somatic spiking (Fig. 1.9 a and di). Extra dendritic spikes are, 

however, only triggered by > 5 stimuli at 2 or 3 ms interstimulus intervals. Bursts of >3 inputs 

at all interstimulus intervals increased the firing frequency of the complex spike and, in some 

cases, triggered additional spikes (Fig. 1.9a, b, c, di). The number of spikes in the soma 

increases by 0.9 per additional CF stimulus for stimuli given every 2 ms, and by 1.3 per 

stimulus for stimuli given every 3 ms (the slopes in this example are similar to the average 

population data values of 0.4, 1.1 and 1.6 spikes per stimulus for 1, 2 and 3 ms interstimulus 

intervals). Note, however, that the patterns evoked by bursts of ^ 3 inputs still appear very 

similar to complex spikes evoked by single spikes, and might not be easily distinguished by a 

post-synaptic cell.

Again, as above, the increase in firing frequency and the small amplitude of the spikelets 

evoked are predicted to reduce the number of spikes propagated down the Purkinje cell axon
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Fig 1.9 Regular bursts of CF input adds some 
extra spikes to the somatic and dendritic 
response.

A) Bursts of 1, 2, 3, 5 or 7 CF stimulations at an 
interstimulus interval of 1 ms recorded in the 
soma (right) and dendrite (85 pm, left) simultane­
ously. Yellow arrows inticate time of synaptic 
stimulation. Note that only with 5 stimuli is an 
extra spike added to the soma and that, while the 
dendrite receives further depolarisation that 
advances the second dendritic spike, the 
dendrite is not prompted to generate any further 
dendritic spikes. B) As in A, but at an interstimu­
lus interval of 2 ms. Note that spikes are more 

readily added to the soma, and 
with 5 stimuli, an extra spike is 
added to the dendrite.
C) As in A, but at an interstimulus 
interval of 3 ms.
Di) Quantification of the number of 
somatic spikes recorded in the 
examples data sets illustrated in A, 
B and C (1, 2 and 3 ms interstimu­
lus intervals marked in black, blue 
and green respectively). Red line 
indicates ‘unity’, where the number 
of CF stimulations and Purkinje cell 
somatic spikes is identical, 
ii) Quantification of the number of 
spikes predicted to propagate 
down the axon. Red line indicates 
‘unity’, where the number of CF 
stimulations and predicted axonal 
spikes is identical. Note that, in 
many cases, stimulating a burst of 
CF input reduces the number of 
spikes predicted to propagate 
down the axon.
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Fig 1.10 Physiological patterns of CF burst stimulation lead to a ‘one in, one out’ relationship between CF input 
and predicted axonal output.

A) Recordings, made by Mr Alex Mathy, from the soma (upper traces, whole cell recordings) and simultaneously from the 
axon (middle traces, cell attached recordings) during injection of steps of current to the soma (lower traces).
B) Example of dendritic (upper traces) and somatic (lower traces) simultaneous recordings from a Purkinje cell in 
response to the burst patterns recorded in (A) (CF stimulation times indicated by yellow arrows). The spikes predicted to 
propagate down the Purkinje cell axon are indicated by blue circles beneath the somatic traces.
C) Population averages of the number of dendritic spikes (left, n = 4), number of somatic spikes (middle, n = 11) and 
predicted number of axonal spikes (right, n = 11) in response to regular bursts of CF stimulation (1, 2, 3 ms interstimulus 
interval marked in black, dark blue and green respectively) and to bursts of CF input with physiological timings (turquoise). 
Red ‘unity’ lines as in Fig 1.9. Note that physiologically timed bursts are predicted to lead to an equal number of CF axon 
input and Purkinje cell axon output spikes.
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(Fig. 1.9 dii). Only at 3 ms interstimulus intervals does the number of predicted propagating 

output spikes start to exceed the number of input stimuli (the unity, ‘one in, one out’ line is 

shown in red in Fig. 1 9d i and ii).

Similar trends were seen (Fig. 1.10) when the Purkinje cell was stimulated with a pattern of 

CF input that matched that recorded in Inferior Olive cell axons in slice (data collected by 

Alexandre Mathy, see Fig. 1.10 and Methods for protocol). Excitation of the Purkinje cell with 

these bursts of CF input triggered some extra spikes in the complex spike, only some of 

which were predicted be propagated by the axon. Interestingly, with ‘physiological’ patterns of 

CF input, the number of spikes predicted to propagate lay on the unity line, such that number 

of Purkinje cell output spikes was the same as the number of CF input spikes. Thus the 

complex spike does not amplify bursts of CF input (as it does for single CF inputs), but acts 

as a reliable relay.

The influence of EPSC amplitude on complex spike pattern

I have assumed, based on numerous published studies (Eccles et al., 1966d; Latham and 

Paul, 1971; Dittman and Regehr, 1998; Hashimoto and Kano, 1998; Silver et al., 1998), that 

varying the interval between CF stimuli alters the size of the CF EPSC, and is thus 

responsible for the observed changes in complex spike pattern. The exact relationship 

between EPSC amplitude and complex spike spiking is, however, unknown. Is it linear? Does 

the relationship saturate at large EPSC amplitudes? Or does it, perhaps become supralinear 

as dendritic spikes are recruited, potentially boosting the synaptic input? Finally, do these 

relationships hold across cells? How much can variation in input amplitude explain the 

variation in complex spike pattern seen across cells?

In order to address these questions, I made voltage clamp recordings of the CF evoked 

EPSCs at different paired-pulse stimulation intervals, and, in the same cell, alternated this 

with current clamp recordings of CF-evoked complex spikes at the same paired-pulse 

intervals (Fig. 1.11 d). In order to achieve good somatic voltage clamp and current clamp of 

the CF responses, I made double somatic recordings using a voltage clamp and a current 

clamp amplifier (an Axopatch 200B and Axoclamp 2B, respectively) (Fig. 1.11a). When 

recording complex spikes, the voltage clamp amplifier was set to l=0 mode, and thus did not 

influence the spikes recorded by the current clamp electrode. When EPSCs were recorded in 

voltage clamp mode, the current clamp electrode was used to monitor the membrane 

potential at the soma, ensuring good local voltage clamp. In voltage clamp, pipette series 

resistance compensation was adjusted online until as little voltage escape as possible was 

recorded with the somatic current clamp electrode (typical values were 80 - 95 % 

compensation of 5 - 10 MQ series resistances); the effect of under and over compensating 

series resistance on the somatic membrane potential and the recorded EPSC is shown in



A)

I ClampV Clamp

CF stim
C)

• Vm -78 mV
•  Vm -94 mV>

E

&03

LU

205 10 150

B)

Series resistance

under­
compensated

V Clamp 
somatic 
current

5 nA

good
compensation

over­
compensated

5 ms

I Clamp 
somatic Vm 

monitor

5 m V

5 ms

EPSC amplitude (nA)

D)

I Clamp

T
40 600 20

10 mV

10 ms

200180

V Clamp 
(same cell)

I Clamp 
somatic Vm monitor

» I-------------1 " ' ' T  I » I----------------   1 I------------- 1-------------1-----

0 20 40 60 180 200

Time after firs t CF stimulation (ms)

Fig 1.11 Method used to measure complex spikes and their underlying EPSCs

A) Illustration of recording configuration. The soma was patched twice, with one electrode (grey) connected to an 
Axopatch 200B voltage clamp amplifier and another (blue) to an Axoclamp 2B current clamp amplifier. Paired pulse 
stimulation of the climbing fibre (green electrode) was recorded in voltage clamp at a Vm of <-70 mV (with the current 
clamp electrode monitoring the voltage control of the soma) or in current clamp at rest (with the voltage clamp amplifier 
switched to l=0 mode).
B) Achieving good somatic voltage clamp. By adjusting voltage clamp series resistance compensation, the somatic Vm 
(right hand column, blue) during the EPSC either deflects positively (under-compensation, top), negatively (over­
compensation, bottom) or remains relatively constant (good compensation, middle); the recorded EPSC (left) grew in 
parallel with increased compensation. Note that the stimulus artefact and a fast positive voltage escape remain, even with 
good series resistance compensation.
C) Example of relationship between the fast escape voltage (during optimum series resistance compensation) and EPSC 
amplitude (varied by paired-pulse stimulation of the CF), recorded at two voltages (-78 mV: green markers, and -94 mV: 
blue markers). Note that the fast voltage escape varies linearly with EPSC amplitude and is reduced at the more depolar­
ised Vm, suggesting that it does not reflect active escape current.
D) By varying the interval between CF paired-pulse stimulations, EPSCs of differing amplitude were evoked (voltage 
clamp record; middle trace, current clamp monitor; lower trace); at the same intervals, complex spikes of differing 
waveform were recorded (current clamp; upper traces). As the EPSCs evoked are highly reproducible (see later figures 
and Silver et al 1998, Dittman Regehr 1998, Hashimoto Kano 1998), it can be concluded that the complex spike 
waveforms are triggered by the currents recorded at the same intervals, but in separate trials.
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Fig. 1.11b. As can be seen here, even with optimal series resistance compensation, a fast 

component of depolarising voltage escape remains. This fast escape voltage does not reflect 

the activation of any active currents as its amplitude varies linearly with measured EPSC 

amplitude and membrane holding potential (Fig. 1.11c). It is most likely to be due to the lag 

(7-10 us) of the series resistance compensation circuit used to avoid oscillation of the voltage 

clamp at high compensations. Thus, by adjusting series resistance online, and selecting for 

analysis only the records in which the slow component of voltage escape was <2 mV (this 

small, measured voltage escape could also be compensated for during analysis of the EPSC 

amplitude (Silver et al. 1998)), optimal somatic voltage clamp could be ensured. The voltage 

escape in the branched dendritic tree (the ‘space clamp’ problem) could not be compensated 

for, but was reduced by recording from Purkinje cells from P12-16 rats, which have a smaller 

and less branched dendritic tree.

An example of the CF EPSCs recorded by this method, together with the membrane potential 

at the soma during their voltage clamp, are shown in Fig. 1.12a. At a holding potential of -85 

mV, CF stimulation resulted in CF EPSC amplitudes of 28.1 ± 0.5 nA (first stimulus, given 

every 5 s). This amplitude, although large, is comparable to that carefully recorded previously 

(Dittman and Regehr, 1998; Silver et al., 1998; Wadiche and Jahr, 2001). At the shortest 

paired-pulse interval (20 ms), the second stimulus evoked a 17.2 ± 0.3 nA EPSC; equating to 

paired-pulse depression (PPD) to 60.9 ± 1 .4  %. The recovery from PPD with increasing 

intervals was fit with a biexponential with a fast time constant of 120 ms (23 %) and a slow 

time constant of 1490 ms (20 %). Note that at each paired-pulse interval the CF EPSC 

showed remarkably little variation in amplitude (as noted by Silver et al., 1998), making it 

suitable for comparison with interposed recordings in current clamp.

This example (23.3 ± 0.4 nA, normalised to -70 mV, assuming an AMPAergic reversal 

potential of 0 mV (Perkel et al., 1990; Llano et al., 1991)) is towards the upper end of the 

EPSC amplitudes recorded. CF EPSC amplitudes of 15.4 -  25.4 nA (19.5 ± 3.7 nA mean ± 

SD) were observed across cells in response to the first stimulus (Fig. 1.13a, n = 11), and 

depressed to 7.4 -  14.9 nA (10.8 ± 2.9, mean ± SD, paired-pulse interval 20 ms), a PPD of 

between 44 and 61 % (Fig. 1.13b). Recovery from PPD was fitted with an average 

biexponential curve with Tfast of 15 ms (39 %) and a t Siow of 485 ms (36 %). The wide range of 

EPSC amplitudes that occur as a result of PPD at this synapse, both within and across cells, 

together with their trial-to-trial reproducibility, provided an apposite tool with which to 

investigate the dependence of the complex spike on EPSC amplitude.
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Fig 1.12 Paired pulse depression of CF EPSCs (example)

A) Example recordings of CF EPSCs evoked in a P14 Purkinje cell held in voltage clamp at -85 mV (upper traces; lower 
traces shown simultaneous current clamp monitor of the somatic voltage. Several traces are overlayed (black) and a 
single example highlighted in red). CF stimulations at paired pulse intervals of 20 - 500 ms were given every 5 seconds; 
intervals of 1000 - 3000 ms were given every 8 seconds. Intervals of 20, 80, 200 and 1000 ms are illustrated.
B) Average (± SD) EPSC amplitude at paired-pulse intervals of 20 -  3000 ms. Recovery is fitted with a biexponential (Xfast 
142 ms (6 nA), ts(ow 1042 ms (4.4 nA)).
C) Average (±SD) paired pulse depression (PPD, second EPSC at a % of first EPSC) of EPSCs. Recovery is fitted with a 
biexponential (xfast 120 ms (23 %), Tstow of 1490 ms (20%)).
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Fig 1.13 Paired pulse depression of CF EPSCs (population average)

A) Average EPSC amplitude recorded in P12-16 Purkinje cells at paired-pulse intervals of 20 -  1000 ms (light blue open 
circles) (n = 11). Population average ± SEM is overlayed (dark blue filled circles). Inset shows recovery over a longer time 
scale, 20 -  3000 ms (data 1000 -  3000 ms intervals was collected from fewer cells, n = 3).
B) Average paired pulse depression of EPSCs in the same 11 Purkinje cells (light blue circles). Within each data set, 
recovery is fitted with a biexponential (dark blue lines); the biexponential described by the average of these fits is 
overlayed in black (Xfast 15 ms (39 %), 485 ms (36%)). Again, inset shows recovery on the longer time scale.
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An example of the experiments in which both EPSC amplitudes and complex spikes were 

measured in the same cell is shown in Fig. 1.14. The first stimulus (given every 5 s) triggered 

an EPSC with an amplitude of 25.4 ± 0.8 nA at -70 mV, and evoked a highly elaborate 

complex spike composed of on average 7.3 ± 1.4 spikes at rest (-57 ± 1.7 mV). At a 20 ms 

paired-pulse interval an EPSC of 14.9 ± 0.3 nA was triggered and a complex spike with 3 ± 0 

spikes evoked. Examples of the recovery of EPSC amplitude and the complex spike with later 

paired-pulse intervals are shown in Fig. 1.14a. The number of spikes at each paired pulse 

interval is plotted against the EPSC amplitude evoked at the same interval in Fig. 1.14b. This 

gave a linear relationship (except for one outlier at the very top end of EPSC measurement) 

with a slope of 0.35 spikes per nA. The timing of the spikelets in the complex spike is plotted 

against underlying EPSC amplitude in Fig. 1.14c. Again, there are remarkably linear 

relationships between spike timing and EPSC amplitude.

Fig 1.15 displays the data from all cells in which voltage clamp and current clamp data were 

both successfully recorded (n = 8). The data from different cells overlays remarkably well. 

Except for the one outlier at the top end of the EPSC amplitude range measured (shown in 

Fig. 1.14), the relationship between the number of spikes in the complex spike and the EPSC 

amplitude across cells is linear with a slope of 0.17 spikes/nA. The timing of spikes in the 

complex spike recorded at rest (61 -  52 mV) varied remarkably consistently and linearly with 

EPSC amplitude. The slope of the relationship of each spike with EPSC amplitude tended to 

increase (spikes 1 - 6 advanced their timings by 0.02, 0.11, 0.15, 0.15, 2.4 and 6.5 ms/nA, 

respectively), perhaps reflecting the decayed synaptic current driving these later spikes. This 

indicates that a large part of the variability of the complex spike waveform across cells can be 

explained by the differences in EPSC amplitude. It also suggests that non-linear events in the 

Purkinje cell, such as e.g. shunting of synaptic input or the evocation of dendritic calcium 

spikes, do not have a strong non-linear effect on the somatic spiking produced. This will be 

explored further in the following chapters.
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Fig 1.14 Example of complex spike pattern dependence of EPSC amplitude

A) Example responses to paired-pulse CF stimulation recorded in current clamp (top panels) or in voltage clamp (middle 
panels, current clamp monitor of somatic voltage clamp shown in bottom panels) at the interstimulus intervals marked 
below the traces (20 - 1000 ms), in a P15 Purkinje cell.
B) Relationship between the number of spikes in the complex spike and the EPSC measured at the same interstimulus 
interval (normalised to -70 mV), for the cell shown in A.
C) Relationship between time of spikes in the complex spike (coloured according to spike number) and the EPSC 
measured at the same interstimulus interval (normalised to -70 mV), for cell shown in A.
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Fig 1.15 Complex spike pattern dependence of EPSC amplitude

A) Average number of spikes in complex spike plotted against the underlying EPSC amplitude recorded at the same 
paired-pulse stimulation interval (normalised to -70 mV) (n = 8 cells). Black line shows linear fit of the total data, with a 
slope of 0.17 spikes per nA peak EPSC.
B) Average time of spikes (± SD) in complex spike plotted against the underlying EPSC amplitude (± SD, normalised to 
-70 mV). Time was measured relative to the average time of the first spike of the complex spike; data from different cells 
(n = 8) was aligned so that the time of the first spike lay along the same sloping relationship. For each spiklet in the 
complex spike a line was fitted; spikes were advanced by 0.02,0.11, 0.15,0.15, 2.4 and 6.5 ms/ nA peak EPSC for spikes 
1-6,  respectively.
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Chapter 1: Discussion

By recording, in the same cell, both complex spike patterns and the underlying CF EPSCs, I 

have shown that the somatic complex spike waveform is a surprisingly linear function of the 

CF excitatory input. It is also striking that this relationship holds across cells, demonstrating 

that a large amount of the inter-cell variability of the complex spike can be explained by 

variability in the size of CF input. Despite the variability across cells, I have shown that there 

exists a high safety factor for burst generation. Highly reliable and reproducible waveforms of 

2 - 8  spikes were produced in each Purkinje cell and, following paired pulse depression at 

physiological inter complex spike intervals, the CF response remained a multispike burst. 

Further, I have shown that the synapse is capable of following bursts of input of at least 500 

Hz, generating additional spikes in a linear manner. Physiological patterns of CF input 

bursting are predicted to lead to a ‘one in, one out’ faithful transformation of CF input bursts 

into Purkinje cell axonal output bursts. Thus it seems that complex spike generation, to a first 

approximation, is tuned to faithfully produce bursts in response to all physiological CF inputs. 

At a more detailed level, its reproducible, precisely timed waveform is capable of encoding 

the interval between CF events and/ or the number of CF spikes in a single input burst.

The linear CF EPSC -  complex spike relationship

Both the number of spikelets in the complex spike and their timings relate linearly to the size 

of the CF input. Larger EPSCs result in complex spikes with more, higher frequency spikes. 

The relationship neither saturates at large input conductance amplitudes nor shows any 

supralinear amplification of the input. If any of the effects of conductance shunt of synaptic 

current or active amplification of synaptic input by dendritic spikes or intrinsic bursting of the 

soma are significant, they appear to be evenly balanced against each other. These 

possibilities will be explored further in the following chapters. The linear conversion of input 

into somatic spikes is also likely to be supported by the mechanisms responsible for Purkinje 

cell high frequency firing without adaptation (McKay and Turner, 2005, also see main 

Introduction), that similarly give the Purkinje cell a linear f/l curve and a linear parallel fibre 

input - spike output relationship (Llinas and Sugimori, 1980a; Walter and Khodakhah, 2006; 

Bekkers and Hausser, 2007; Mittmann and Hausser, 2007). The number or timing of spikes 

within complex spikes from different cells overlay well when plotted against EPSC amplitude, 

allowing generalised, linear ‘input-output’ functions to be made. This shows that, to a large 

extent, the differences in complex spike pattern across cells are caused by differences in CF 

input strength. However, there is a fairly large scatter of the data about the these linear fits 

due to differences between cells, suggesting that inter-cell differences in Purkinje excitability
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also contribute to the complex spike pattern generated by a CF input of a certain amplitude; 

this will also be addressed in the following chapters.

The Purkinje cell excitability, complex spikes and CF EPSCs that I recorded, and drew the 

above conclusions from, were consistent with previous reports of their characteristics. 

Spontaneous firing frequencies were similar to those reported in Hausser and Clark, 1997. 

Somatic complex spikes and dendritic calcium spikes were of similar waveforms to those 

previously observed in vivo (using extracellular recording: Crepel, 1971; Puro and Woodward, 

1977; Armstrong and Rawson, 1979; Campbell and Hesslow, 1986a; or intracellular sharp 

electrode recording: Eccles et al., 1966a; Campbell and Hesslow, 1986a) and at rest in vitro 

(recorded using sharp electrodes: Llinas and Sugimori, 1980b, a; Crepel et al., 1981; Chan et 

al., 1989; or patch clamp electrodes: Foster et al., 2002; Khaliq et al., 2003). I have here 

given a quantification of these waveforms. The remarkably large CF EPSC amplitudes (15 — 

25 nA, normalised to -70 mV) are similar to the CF EPSC amplitudes reported by some 

groups (Dittman and Regehr, 1998; Wadiche and Jahr, 2001, reported values normalised to - 

70 mV), though somewhat larger than the 14 ± 6.4 nA (mean ± SD) EPSCs reported by Silver 

et al. (1998), who also monitored and corrected for somatic voltage escape. These latter 

EPSCs were, however, recorded at room temperature: EPSC amplitudes can be increased at 

more physiological temperatures by a number of factors, including increased receptor 

channel open probability, more rapid transmitter binding rates and channel kinetics and 

increases in the size of the vesicle pool (Silver et al., 1996; Micheva and Smith, 2005; 

Postlethwaite et al., 2007).

The average biexponential fit to EPSC PPD recovery in my data yielded a greater contribution 

of the fast component, and faster time constants of both the fast and slower components, 

than measured by Dittman & Regehr in P9-13 Purkinje cells at 34°C (1998):

t-i (ms) Ai (%) x2 (ms) a 2 (%)

My data 17 38 550 35

Dittmann and Regehr’s data 44 15 1200 36

The differences observed may be due to the difference in the rate of CF stimulation: I

presented pairs of CF stimuli every 5 s, whereas Dittman & Regehr used an interval of at 

least 10 s between presentations. As Dittman & Regehr found that the fast component of 

recovery was speeded and increased in amplitude by residual presynaptic calcium, this is a 

likely cause for my measurement of a larger, more rapid fast component of PPD recovery. 

The parameters that I recorded are also in close agreement with those measured for recovery 

of EPSPs in sharp electrode recordings once spiking had decayed (Ai ~20%, ~20 ms, A1

~30%, xi ~500 ms; Dittman and Regehr, 1998, taken from Eccles et al., 1966a; Eccles et al.,
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1966d, see also Latham and Paul, 1971). It is also possible that there may be a 

developmental difference in PPD (I recorded from slightly older Purkinje cells, P12-16, rather 

than P9-13) (Hashimoto and Kano, 2003). Both of these factors may also be, in part, 

responsible for the differences in paired-pulse depression of the complex spike waveform 

recorded when presenting pairs of stimuli every 1 s to P18-24 Purkinje cells (see Fig. 1.5).

Voltage clamp recordings were restricted to P12-16 Purkinje cells in order to make more 

accurate recordings of the CF EPSCs, and somatic membrane potential was simultaneously 

monitored to control for errors arising from voltage escape. Although I was able to verify good 

somatic voltage clamp, the passive properties of the highly branched Purkinje cell lead to 

unavoidable problems of poor space clamp of the dendrites (Spruston et al., 1993; Roth and 

Hausser, 2001; Williams and Mitchell, 2008). The time taken to charge the membrane 

capacitance, together with the leak of current through the membrane resistance and the 

voltage drop across the dendrites axial resistance limit ability of the somatic voltage clamp 

circuit to control the dendritic voltage; electrically distant synapses can therefore depolarise 

the local dendritic membrane. This voltage escape in the dendrites could lead to either 

underestimation or overestimation of the CF EPSC. Passive depolarisation would reduce the 

synaptic driving force, reducing the recorded EPSC (Spruston et al., 1993; Roth and Hausser, 

2001; Williams and Mitchell, 2008) (this may, however, reflect the current that reaches the 

soma during synaptic input more accurately than that measured given perfect voltage clamp 

of the dendrites). Depolarisation that leads to a Ca2+ spike in the dendrites would generate 

extra current that would contribute to the ‘EPSC’ at the soma (though the bulk of this 

distortion may be limited to the decay, as calcium spikes occur after the peak of the EPSC). 

Large EPSC amplitudes exacerbate these problems, thus the EPSC-complex spike 

relationship derived may undersample large CF inputs or those that trigger the largest, 

unclampable excitable responses. I have attempted to reduce these problems by holding at 

very hyperpolarised levels (-70 to -90 mV), so that the latter problem of active voltage escape 

is less likely, and by the restricting recordings to younger Purkinje cells, which are smaller 

and less branched.

P12-16 Purkinje cells are, however, not fully mature in terms of their dendritic branching 

pattern (Roth and Hausser, 2001; McKay and Turner, 2005) or their excitability (McKay and 

Turner, 2005; Fry, 2006). Purkinje cells increase in dendritic width and height with 

development, only begin to level off after P18 (Berry and Bradley, 1976; McKay and Turner, 

2005); over this time they also increase in their excitability (Muller et al., 1998; Cingolani et 

al., 2002; McKay and Turner, 2005; Fry, 2006). Further, although synaptic properties such as 

quantal content, vesicular release probability, multivesicular release, post-synaptic receptor 

density, AMPA receptor properties and synaptic distribution across the main dendrites are 

mature once mono innervation has been achieved (Palay and Chan-Palay, 1974; Mason et 

al., 1990; Chedotal and Sotelo, 1992; Tempia et al., 1996; Silver et al., 1998; Hashimoto and
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Kano, 2003; Momiyama et al., 2003; Nishiyama and Linden, 2004; Scelfo and Strata, 2005; 

Tanaka et al., 2005; Masugi-Tokita et al., 2007), it is likely that the total number of synaptic 

contacts, and thus synaptic conductance, increases somewhat as the Purkinje cell dendritic 

tree expands to its full extent. Such an increase has been observed empirically (Hashimoto 

and Kano, 2005; Sugihara, 2006) but has not yet been quantified for direct comparison, 

perhaps because of the increasing inaccuracy in EPSC measurement introduced by the 

worsening space clamp problem with age.

With development, complex spike pattern has also been found to alter, decreasing slightly in 

duration and increasing in spikelet frequency (Crepel, 1971, 1974; Puro and Woodward, 

1977). These changes are likely to reflect the increasing excitability of the Purkinje cell 

(McKay and Turner, 2005; Fry, 2006; Muller et al., 1998; Cingolani et al., 2002) and 

increasing amplitude of CF input (Hashimoto and Kano, 2005; Sugihara, 2006). The in vivo, 

sensory evoked complex spike has also been found to increase in reproducibility with age 

(Puro and Woodward, 1977); this might be aided by the aforementioned increases in synaptic 

amplitude and Purkinje cell excitability, but can be ascribed largely to the loss of CF multi­

innervation. My results indicate that the smaller CF inputs to a multiply innervated cell should 

produce a complex spike of fewer spikes, at a lower frequency than that produced by the 

largest input; observation of both together in one cell would greatly increase the measure of 

variability of the response. As I took care to avoid multiply innervated cells, and thus recorded 

the result of selection of a single strong input, this variability was not seen in my recordings. 

In addition to this reduction of intracell variability of CF input, there are reasons why the 

amplitude of CF input might be stabilised with development to produce a response of a 

certain amplitude after development, reducing intercell variability. For example, excessive CF 

activity leads to a reduction (LTD) of the CF input (Hansel and Linden, 2000) but some CF 

activity is required to maintain CF input strength to adult Purkinje cells (Kakizawa et al., 

2005). Further, homeostatic feedback, via the activity triggered in the cell, can act both to 

regulate synaptic activity (Turrigiano, 2007) and postsynaptic excitability (Cerminara and 

Rawson, 2004; McKay et al., 2007). Indeed, there are suggestions in my data that the 

complex spike might vary across cells to a greater extent at P12-16 vs P18-24. The intercell 

variability of EPSC amplitude and complex spikes deserves further exploration at CF identical 

stimulation frequencies across a continuous range of ages.

Overall, the developmental changes that occurred during my P12-16 recording window (see 

Results and Crepel, 1971) did not prevent the finding of a common EPSC - complex spike 

relationship across cells. Further, although some developmental changes continue after P12- 

16, my recordings of complex spikes in more developed Purkinje cells from older animals 

(P18-24) do not suggest that there is a fundamental change in the nature of the complex 

spike pattern or its relationship with paired pulse depression of the CF input.

Reliability of the complex spike pattern
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Complex spikes in a single Purkinje cell, generated by the whole range of EPSC sizes 

measured, whether depressed or not, are highly reproducible. The standard deviation of the 

total number of spikes was usually <0.5 and that of the spike times was similarly usually <0.5 

ms. The timing of later spikes is more variable (although SD was always <1.5 ms) due to an 

accumulation of timing jitter; throughout the burst the CV of spike timing is usually <10%. 

Thus, rapid spiking during strong CF input is even more precise than that driven by intrinsic 

pacemaker currents alone (CV = 10 ± 0.9%, Hausser and Clark, 1997). The reliability of spike 

timing is probably due to the large conductance, large synaptic release site, sharp onset 

synaptic input (Silver et al., 1998), in combination with the high density of transient sodium 

channels available for triggering spikes and of fast potassium channels active between spikes 

(Kay et al., 1998; Raman and Bean, 1999; McKay et al., 2005; Akemann and Knopfel, 2006; 

de Ruiter et al., 2006; Fry, 2006; Zagha et al., 2008), all of which are ideal for reducing spike 

timing jitter (Schneidman et al., 1998; Schreiber et al., 2004; Xu-Friedman and Regehr, 

2005)) (though the presence of persistent sodium current (Kay et al., 1998) may act 

somewhat against these factors, as it increases spike timing jitter of synaptically evoked 

spikes (Schneidman et al., 1998; Vervaeke et al., 2006)). The increase in spike timing 

variance throughout the burst is likely to be due to the cumulative actions of noise (from e.g. 

the stochastic properties of the spike generation mechanisms) randomly perturbing spike 

generation, especially during its highly non-linear, regenerative initiation (Schneidman et al., 

1998). Robinson & Harsch (2002) found (experimentally and theoretically) that, during the 

suprathreshold period of decreasing current injections, noise uniformly perturbs a stable firing 

limit cycle of gradually decreasing frequency. This results in a fairly constant accumulation of 

noise, and a fairly constant CV of spike timing, as seen initially during complex spikes. 

However, when inputs fall below threshold, noise randomly drives spiking out of the attractor 

cycle round threshold, triggering spikes at less regular intervals; this results in an increase in 

spike timing variance (Robinson and Harsch, 2002). These factors may underlie the 

increases in the CV of spike timing observed in the final phase of the complex spike, where 

the EPSC - complex spike relationships become more noisy. The amount of time spent in this 

more noisy phase may be limited by the termination of CF triggered bursts by a variety of 

potassium and calcium activated potassium conductances in the soma and dendrites, as 

suggested by Robinson & Harsh (2002) (Edgerton and Reinhart, 2003; McKay et al., 2005; 

Zagha et al., 2008) and by the fact that the spontaneously firing Purkinje cell is not below 

threshold even with zero current input (Hausser and Clark, 1997). Thus, the CF input in 

combination with the intrinsic properties of the Purkinje cell are ideally suited to create a 

accurately timed, reliable complex spike burst.

Coding with the complex spike pattern

The complex spike generated at the soma is not the final output of the Purkinje cell. Paired 

axonal and somatic recordings have shown that only spikelets that are sufficiently rapidly
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rising, large amplitude and at a sufficient delay after the previous spikelet are successfully 

propagated by the Purkinje cell axon, to the deep cerebellar nuclei (DCN) (Khaliq and 

Raman, 2005; Monsivais et al., 2005). Thus the nature of the true input-output curve of the 

Purkinje cell might be altered. During bursts of input, predictions based on spikelet height and 

relative timing, suggest that the number of spikes in the Purkinje cell axon might reflect the 

number of inputs in a burst, carrying this information to the DCN. An in vivo pattern of CF 

activation timing, with inter-activation intervals ranging between 50 ms and several seconds 

(Eccles et al., 1967; Bell and Grimm, 1969; Armstrong and Rawson, 1979; Maruta et al., 

2007), generates a complex spike pattern where spike timing represents the paired pulse 

depression interval of the CF input. Khaliq et al’s (2005) axonal recordings have shown that 

although some of these spikes fail to propagate down the axon, a constant fraction of the 

somatic burst is propagated. Campbell and Hesslow (1986b), however find that more 

spikelets are seen in the axon following paired stimulation at short intervals. Even considering 

these potential propagation failures in the first and second climbing fibre response, the timing 

and number of propagated spikes could convey not just the occurrence of a motor error signal 

or motor coordination command, but the time since the previous such command.
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Chapter 2:

The relationship between Purkinje cell geometry and the complex spike 

Introduction

While the large, singular connection between the calyx of held and postsynaptic MNTB cell is 

clasped around the soma, and seems specialised to faithfully and temporally accurately 

transmit a single spike (Borst et al., 1995; Brew and Forsythe, 1995; Wang et al., 1998; 

Taschenberger and von Gersdorff, 2000; Gittelman and Tempel, 2006), CF input is 

distributed across the thick primary branches of the Purkinje cell. It is not yet clear what the 

functional implications of this distribution are. As outlined in the main introduction, the location 

of a synapse in the dendrites can strongly influence its effect at the soma. There are a 

number of reasons why the CF’s dendritic, distributed input location might be critical to 

complex spike burst generation. Firstly, clustering of the enormous ~200 nS synaptic 

conductance at the <20 MQ (> 50nS) soma should create a large conductance shunt, which 

might detrimentally dissipate both the synaptic current and the active currents responsible for 

burst generation (see main Introduction). Conversely, somatic spiking conductances are 

themselves large (Raman and Bean, 1999; Khaliq et al., 2003; Swensen and Bean, 2003, 

2005), and might detrimentally shunt out somatically injected synaptic current (Hausser et al.,

2001). Further, clustering CF input at the soma will generate a large local depolarisation, but 

a much smaller distributed depolarisation of the dendrites:

a) CF distribution b) Somatic placement

soma
dend 93 pm
dend 201 pm

10 msec

Simulation of the spread of depolarisation in a passive Purkinje cell model (from Roth and 
Hausser, 2001) with conductance injection (0.3 msec xrjse, 3 msec xdecay, 0 mV Erev)
a) distributed across the main dendrites (500 x 1 nS)
b) clustered at the soma (500 nS)

Active dendritic conductances may therefore be recruited to a much lesser extent and 

dendritic calcium spikes may not be generated (Callaway and Ross, 1997). Although 

dendritic calcium spikes are known to cause burst generation in a number of neuronal types
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(Llinas and Yarom, 1981a, b; Pinsky and Rinzel, 1994; Mainen and Sejnowski, 1996; Larkum 

et al., 1999; Magee, 1999; Williams and Stuart, 1999; Larkum et al., 2001; Doiron et al., 2002; 

Williams and Stuart, 2002), the contribution of dendritic calcium spikes to the generation of 

the somatic complex spike burst is not yet understood (Schmolesky et al., 2002). By 

potentially failing to generate dendritic spikes, a clustered somatic CF input may fail to 

produce a complex spike. In this chapter I have investigated these possibilities by using 

conductance clamp hardware to artificially inject CF like synaptic conductances into Purkinje 

cell somata.

It is not only the location of synapses that can have a strong influence on neuronal firing: the 

site of spike initiation and their subsequent propagation also strongly influences the spiking 

waveforms produced. The Purkinje cell is a particularly interesting example of this, as axon, 

soma and dendritic compartments are all electrically excitable (Llinas and Sugimori, 1980b, 

a), but there are clear limits on propagation both through the dendritic tree (Stuart and 

Hausser, 1994; Vetter et al., 2001; Rancz and Hausser, 2006) and along the axon (Khaliq 

and Raman, 2005; Monsivais et al., 2005). As in most neurons, the axon is a highly 

favourable site for spike initiation (Stuart and Hausser, 1994; Stuart and Sakmann, 1994; 

Colbert and Johnston, 1996; Stuart et al., 1997a; Stuart et al., 1997b; Clark et al., 2005; 

Khaliq and Raman, 2006; Palmer and Stuart, 2006; Meeks and Mennerick, 2007; Schmidt- 

Hieber et al., 2008). This is due in part to its isolation from the capacitative load of the soma 

and dendrites (Dodge and Cooley, 1973; Mainen et al., 1995; Colbert and Pan, 2002) and its 

high local impedance and low capacitance, which make it easy to charge and discharge. In 

addition, specializations of axonal voltage-gated channels, such as increased densities, 

differential subunit expression or negatively shifted voltage sensitivities of Na+ channels, 

promote axonal spike initiation (Dodge and Cooley, 1973; Mainen et al., 1995; Colbert and 

Pan, 2002; Boiko et al., 2003; Kole et al., 2008). Further, in Purkinje cells it is clear that CF 

input makes dendritic spike initiation highly favourable, generating 1-3 calcium spikes in the 

main dendrites. It is not, as yet, clear how the propagation of these distant events contributes 

to the spiking pattern at the soma.

Active propagation is limited by several factors. Availability of a suitable density of active 

channels is necessary (Khodorov and Timin, 1975; Migliore, 1996); this is a limiting factor in 

e.g. the active backpropagation of axosomatic spikes into the dendrites (Colbert et al., 1997; 

Jung et al., 1997, reviewed in Johnston et al., 1999). Conversely, active channels that curtail 

or dampen active events can limit propagation, for example the transient potassium channel 

Ia  has been found to attenuate and narrow action potentials, often leading to the failure of 

active propagation (Hoffman et al., 1997; Cai et al., 2004; Kim et al., 2005; Gentet and 

Williams, 2007). Further, the conductance shunt caused by strategically placed inhibitory 

input in the axon or dendrite can cause such a current leak that active propagation past the 

site becomes impossible (Atwood et al., 1984; Segev, 1990; Lowe, 2002; Xiong and Chen,
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2002). Modulation of such active and passive conductances is particularly effective at points 

at which geometry makes active propagation more unstable, e.g. at branch points or 

increases in neuronal diameter (one pertinent such widening is the junction between the axon 

or dendrite and the soma), where the impedance mismatch is unfavourable (Goldstein and 

Rail, 1974; Parnas and Segev, 1979; Segev and Schneidman, 1999). These constraints can 

be so strong as to either slow spike propagation, enforce saltatory conduction over the 

unfavourable section, or to entirely prevent propagation (Segev, 1990; Hoffman et al., 1997; 

Vetter et al., 2001; Xiong and Chen, 2002; Cai et al., 2004; Engel and Jonas, 2005; Kim et al., 

2005; Gentet and Williams, 2007), leaving just the passively propagated ‘prepotential’ (Katz, 

1950; Granit and Phillips, 1956; Coombs et al., 1957a, b; Fuortes et al., 1957; Spencer and 

Kandel, 1961; Dodge and Cooley, 1973; Stuart et al., 1997b). This can divide a neuron into a 

number of functional subcompartments which require the favourable coincidence of events 

(such as appropriately distributed synaptic input (Larkum et al., 1999, 2001; Gasparini et al., 

2004; Polsky et al., 2004; Gasparini and Magee, 2006; Losonczy and Magee, 2006; Roth and 

Hausser, 2007; Losonczy et al., 2008)) in order to interact in a linear or supralinear manner 

and boost the neuron’s output (Chen et al., 1997; Golding and Spruston, 1998; Larkum et al., 

1999, 2001; Williams and Stuart, 2002; Ariav et al., 2003; Gasparini et al., 2004).

In this chapter, I have characterised the pattern of the complex spike in detail, in particular the 

dependence of the amplitude of the spikelets on their timing. I show, using modelling, that the 

relationships I have demonstrated cannot arise from a spike generation in a single 

compartment. I have examined the effect altering somatic conductance and active channel 

availability and have found that the complex spike waveform is easily understood as the result 

of variable propagation from a distant compartment. The final results chapter will address the 

role of the dendrites as a possible source of these spikelets; this work, together with direct 

axonal recording (carried out by Beverley Clark and reported in Davie et al., 2008), 

demonstrates that the distant source of these spikes is the axon rather than the dendrite.
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Chapter 2: Results

The CF input to Purkinje cells triggers an extremely large synaptic conductance (as shown in 

Chapter 1 and by many other studies (Konnerth et al., 1990; Llano et al., 1991; Dittman and 

Regehr, 1998; Hashimoto and Kano, 1998; Silver et al., 1998; Foster and Regehr, 2004; 

McKay et al., 2005)). This conductance is distributed, on stubby, ‘thorn’-like spines, across 

the highly branched main dendrites (Palay and Chan-Palay, 1974; Xu-Friedman et al., 2001). 

This separation of synapses from each other and from the fast spiking mechanisms of the 

axon and soma may support the generation of the complex spike rapid burst of spikes and 

allow the linear relationship between input size and somatic spiking seen in Chapter 1. 

Further, CF input to the dendrites triggers active spikes, which may contribute to the 

generation of the complex spike burst at the soma.

The complex spike can be reproduced by a somatic synaptic-like conductance

To determine whether the dendritic distribution of CF synaptic contacts is necessary to 

generate the distinctive spiking pattern of the complex spike, I examined if concentrating the 

synaptic conductance at the soma is sufficient to mimic the complex spike waveform. 

Conductance clamp was used to inject a biexponential conductance (EPSG), based on the 

physiological CF synaptic conductance (Chapter 1 and Perkel et al., 1990; Llano et al., 1991; 

Silver et al., 1998; Wadiche and Jahr, 2001), via two somatic patch-clamp electrodes. By 

adjusting the amplitude of the somatic EPSG (Fig. 2.1d), a remarkably good match could be 

achieved with the CF-evoked complex spike (Fig. 2.1b). This matching was achievable in 

most cells, not only in those exhibiting complex spikes consisting of relatively few spikes (e.g. 

Fig. 2.1b), but also for neurons with elaborate complex spikes consisting of > 5 spikes (Fig. 

2.2). The mean value of the ‘optimal’ synaptic conductance was 170 ± 58 nS (range 80 - 325 

nS, n = 40 cells), which is similar to the conductance values measured in Chapter 1 using 

somatic voltage-clamp recording of CF EPSCs (265 ± 13 nS; p = 0.12). Decreasing the 

synaptic conductance from the optimal value reduced the number of evoked spikes in the 

complex spike, while increasing the conductance ultimately led to inactivation of spiking, 

associated with voltage ripples on top of an envelope of depolarisation. This depolarisation 

rarely exceeded -30 mV, even at conductance values of 500 nS, thus maintaining a driving 

force for the synaptic conductance. The ‘optimal’ synaptic conductance produced a highly 

quantitative match to the physiological complex spike in the same cells, with the number of 

spikes being indistinguishable between physiological and synthetic complex spikes (differing 

by -0.03 ± 0.05 spikes, on average, n = 40 cells, p = 0.62, paired t-test). Furthermore, details 

of the spike waveform could also be closely matched. In some cells (27/40) a highly accurate 

match was found, with amplitudes being matched with an average error of only 16.8 ± 2.5 % 

and times being match with only 10.4 ± 1.3 % error. Even in the
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Figure 2.1 CF-evoked complex spikes can be reproduced by somatic dynamic clamp

A) Recording configuration illustrated using an image of a biocytin-filled Purkinje cell. Somatic electrodes (blue), CF 
stimulating electrode in the granule cell layer (grey). B) Complex spike responses of Purkinje cell shown in (A), evoked 
by 1 Hz stimulation of its CF. Overlay of multiple sweeps (grey) and a single representative example (red). C) Simultane­
ous dual somatic dynamic clamp configuration, with one electrode used to record voltage (red) and the other to inject 
current (blue). D) Responses (left) of the cell shown in A to injection of synaptic-like conductances of increasing amplitude 
(right, biexponential waveform, Trise 0.3 ms, Tdecay 3 ms, peak amplitudes as indicated beside traces). Note that by choos­
ing the appropriate conductance amplitude (150 nS) the complex spike evoked by CF stimulation could be mimicked. E) 
Timing and F) amplitude of spikes (measured with respect to the first spike, for the 1st, 2nd and 3rd spike) within the 
complex spikes evoked by CF stimulation and by the 150 nS synaptic-like conductance. Spike times differed by <17 %; 
amplitudes differed by <4 %.
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Figure 2.2 Even elaborate complex spikes can be reproduced by somatic dynamic clamp

A) An elaborate complex spike elicited in response to 1 Hz CF stimulation in a Purkinje cell (different cell to that shown 
in Fig. 1).
B) A range of complex spike-like events evoked by synaptic-like dynamic clamp at the soma of the cell recorded from in 
(A). Note that the CF-evoked complex spike was mimicked by 200 nS peak conductance injection.
C) Timing and D) amplitude of spikes (measured relative to the first spike) within the complex spikes evoked by CF 
stimulation and 200 nS synaptic-like dynamic clamp. Spike times differed by <12%, amplitudes by <20%.
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remaining cells, where less accurate matches were found with the conductances tested, the 

match in height had an error of 25.6 ± 2.8 % and the time matched with only 20.5 ± 3.1 % 

error.

To ensure that the reproduction of the complex spike was not strongly dependent on the 

choice of time course of synaptic input (which has been noted to vary by up to 2-fold in vitro, 

Dittman and Regehr, 1998, see also Wadiche and Jahr, 2001), in some cells (n = 4) I injected 

synaptic waveforms of faster and slower timecourses (varying from 0.2 ms T riSe , 2 ms r decay to 

0.5 ms Trise, 5 ms Tdecay)- Although faster synaptic input of the same peak conductance lead, 

unsurprisingly, to fewer, spikes of initially higher frequency, and slower input caused more 

prolonged spiking, all spiking waveforms within this 2.5 range of synapse speeds had 

complex spike-like patterns (Fig. 2.3).

Together, these observations demonstrate that the distribution of the CF synaptic 

conductance across the dendrites is not necessary to permit burst firing or to maintain 

synaptic driving force, since the complex spike can be reproduced simply by concentrating a 

similar synaptic conductance at the soma.

It thus also appears that the shunt of this synaptic conductance is not a strong impediment to 

complex spike bursting. In order to quantify the effect of this somatic conductance, in some 

cells (n = 5), I compared injection of a synaptic conductance to injection of a synaptic current 

of similar peak current injection (differing by 0.07 ± 0.18 nA, Fig. 2.4). Interestingly, the shunt 

of the synaptic conductance by fast spiking in the burst actually slightly enhances the burst 

firing produced. It appears that the relief from current injection during the spike allows the 

soma to repolarise its membrane to a greater depth between spikes and subsequently 

generate the next spike at a slightly shorter interspike interval (troughs depth was smaller by 

4.6 ±1 .4  % of the first spike of the complex spike, n = 14 interspike troughs in 5 cells, p < 

0.01, spikes were made earlier by 0.1 ± 0.16 ms, p = 0.56). This effect is not strong, however, 

and the total number of spikes in the complex spike generated did not differ between current 

and conductance injection (a -1 ± 2 % change when current rather than conductance was 

injected, p=0.65).

The conductance clamp mimicry of complex spikes allowed me to test another limit on 

complex spike generation; the inactivation of the currents responsible for bursting at short 

interpulse intervals. In Chapter 1 I made use of paired pulse depression at short interstimulus 

intervals to decrease the size of the synaptic input; at some of the shortest intervals, the 

reduction in spiking of the second complex spike may be enhanced to some extent by the 

inactivation of channels during the initial complex spike. To test the extent of this effect, I 

injected two identical somatic synaptic-like conductances separated by an interval of 20 ms 

(the shortest interval used in most paired pulse CF stimulation experiments). Two examples
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Figure 2.3 Dynamic clamp o f different time courses produces complex spike like waveforms

A) Example of injection of 2 0 0  nS peak conductance synaptic-like biexponential waveforms of increasingly rapid kinetics. 
Rise and decay time constants were co-varied from 0 .5  ms t rise, 5  ms Tdecay to 0 .2  ms TrjSe, 2  ms Tdecay (the waveform used 
for the majority of experiments in this thesis was 0 .3  ms TriSe- 3 ms xdecay).
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Figure 2.4 Comparison of conductance and current based synaptic-like injections.

A) Example of somatic injection of either a 150 nS peak conductance (black traces and red example trace) or a 8 nA peak 
current (green traces and blue example trace) synaptic-like waveform. The amplitudes were chosen such that the peak 
currents injected were similar. Left hand panels show multiple overlayed traces with a single highlighted example; right 
hand panels show the example traces in isolation. Lower panels show the current injected to the cell, upper traces show 
the voltage trajectories triggered.
B) Analysis of the change in (i) number, (ii) interspike trough amplitude, (iii) timing and (iv) height of spikes, and of the, 
caused by injection of a synaptic-like current rather than conductance. Data from 5 data sets in 4 cells shown. Red circles 
indicate analysis of the example shown in A.
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Figure 2.5 ‘Paired-puise’ injection of two synaptic-like conductances.

A) Example of repeated injection of two 200 nS peak synaptic-like conductances, separated by 20 ms (the shortest 
interval used in the majority of experiments investigating the paired stimulation of CFs). (i) Several repetitions of this 
injection (given every 1 s) are shown overlaid (grey, a single example highlighted in red), (ii) first and second injections are 
overlaid to illustrate that channel inactivation by the first complex spike does strongly affect the second complex spike 
waveform. B) Analysis of the probability of occurrence (upper graph) and the height and time (lower graph) of each spike 
in the complex spikes evoked by the first and second conductance injections (black and green edged bars, respectively).
C), D) as A, B, but from a second example cell (two 300 nS peak conductances were presented), where the second 
complex spike is more affected by the occurrence of a prior complex spike. E) Average % change in the number, timing 
and amplitude of spikes evoked by a second conductance injection of the same amplitude (n = 8 different conductance 
amplitudes in 4 cells).
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are shown in Fig. 2.5. Both demonstrate that spike inactivation contributes only very weakly to 

the reduction of the number and height of spikes in the complex spike seen with paired pulse 

depression, and does not significantly alter spike timing. Fig 2.5a shows one example where 

the complex spike is almost entirely unchanged by paired conductance injection. In the 

example shown in Fig. 2.5c the some of the later spikelets in the complex spike occur with 

lower probability (reducing the number of spikes by 17 ± 17 %, p < 0.05) and are reduced in 

amplitude by on average 16 ± 5 %, p < 0.05 (Fig. 2.5d). The average reduction in number of 

spikes across the population of data (n = 8 different conductance amplitudes in 4 cells) was 

only 7 ± 2 % (p < 0.05), significantly less than the 29 ± 5 % seen at the same interval with 

paired pulse depression (p < 0.005). This indicates that Purkinje cell spiking conductances 

recover rapidly following each complex spike.

Input-Spiking relationship of the somatic EPSG

Although I have demonstrated that CF elicited complex spikes can be reproduced by somatic 

conductance injection, it is not clear that the linear relationship between input amplitude and 

somatic spiking, characteristic of CF input (Chapter 1), should also apply to somatic 

conductance injection too. Somatic shunt or possible differences in recruitment of dendritic 

activity may alter this relationship. Further, by recording the relationship between known 

amplitudes of input conductance and cell firing, the intrinsic variability in excitability across 

Purkinje cells can be assessed, independently of CF input size.

Fig 2.6a-d illustrates the relationship between peak synaptic-like conductance amplitude and 

the number and timing of spikes in the complex spike, across 31 cells tonically firing simple 

spikes (Fig. 2.6a and c show all data points; b and d show the population means, ± SEM; b 

also shows the population SD). On average, although the number of spikes in the complex 

spike monotonically increased with input amplitude, the relationship flattens at higher 

amplitudes (slope of 1.6 spikes per 100 nS at the start of the relationship and 0.8 per 100 nS 

at the end). This is in contrast to CF input, where the number of spikes in the somatic 

response increases linearly with input size (0.17 spikes per nA Fig. 1.15). This difference may 

reflect the reduced driving force for synaptic current at large amplitudes of the somatic EPSG 

or the inactivation of spiking by the largest inputs that drive the cell to fire more rapidly than 

most physiological CF inputs. The contribution of the latter is further suggested by the 

transformation of the curve to a more linear relationship (1.2 spikes per 100 nS) by 

hyperpolarisation of the cell that prevents tonic spiking, thus removing a possible level of tonic 

inactivation (Fig. 2.6e,f). The relationships between spike timing and input amplitude was also 

similar for somatic conductance clamp and CF stimulation. Spike latencies decrease 

monotonically with increasing conductance, but again the rate of decrease flattened out at 

higher conductances.
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conductances. E), F), G), H) as A, B, C, D, except cells hyperpolarised with tonic current injection to prevent spontaneous 
firing (n = 33).
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It can be observed from these conductance injections that there is a range of Purkinje cell 

excitability across different cells, with different numbers of spikes being evoked for the same 

conductance amplitude (Fig. 2.6 a, e). The standard deviation of number of spikes across the 

population was between 17 and 45 % of the mean (CV). (There was no relationship between 

CV and conductance amplitude, but CV was slightly lower when the cells were hyperpolarised 

to prevent spontaneous spiking.) This results in a 1.4 - 2.6 fold range (between standard 

deviations) in the number of spikes produced. Thus, although synaptic input amplitude can 

explain a large amount of the intercell variability in the complex spike, another portion can be 

assigned to differences in intrinsic excitability.

Height of spikelets within the conductance clamp complex spike as a function of time

I have so far described the input-spiking function of Purkinje cell complex spikes in terms of 

the number and timing of spikes in the complex spike. However, a striking feature of the 

complex spike is that spikelet amplitude, while being highly reproducible from trial to trial, 

varies greatly within and across complex spikes (see Chapter 1, 2 and Eccles et al., 1966d; 

Bloedel and Roberts, 1971; Puro and Woodward, 1977; Armstrong and Rawson, 1979; 

Campbell and Hesslow, 1986a; Hashimoto and Kano, 1998; Schmolesky et al., 2002; Khaliq 

and Raman, 2005; Monsivais et al., 2005). As spike height is also an important determinant of 

propagation down the Purkinje cell axon (Khaliq et al., 2003; Monsivais et al., 2005), the 

relationship between spike amplitude and CF input size, which is noisier than that between 

CF input and number or timing of spikelets, should be understood. Here I will show that spike 

height in the complex spike is an s-shaped function of spike time. I will then go on to show 

that this can be understood as the combination of the recovery of regenerative channel 

availability at a distant site of spike initiation and propagation of this spike into a slightly more 

refractory soma.

In the complex spikes presented so far there are many examples where spikes that occur at 

lower frequencies are of larger amplitude e.g. complex spikes triggered by small EPSCs (at 

short paired-pulse intervals) (Fig. 1.4) or by small conductances (Fig. 2.1 and 2.2). I explored 

this phenomenon, firstly, by examining the large range of complex spike patterns easily 

evoked by conductance clamp.

An example of the increasingly high frequency complex spikes evoked by increasing amounts 

of somatic synaptic conductance is shown in Fig. 2.7a. At a larger time scale (Fig. 2.7b) it is 

apparent that, as ISI decreases, the absolute height of the second spike does indeed initially 

decrease, but at the shortest intervals gradually increases in amplitude again. This occurs in 

parallel with an increase in the inter-spike trough height. This trend applies not only the 

second spike of the complex spike but to later spikes as well (Fig. 2.7ci). A monotonic 

relationship is however revealed by plotting the spike height as peak amplitude minus the 

preceding interspike trough depth (Fig. 2.7cii). Such s-shaped relationships were measured
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A) Examples of complex spikes evoked by increasing conductance injection to the same cell as shown in fig 2.1 (from 100 
-  500 nS). Note that as conductance amplitude increases and the second spike occurs earlier, its amplitude tends to 
decrease and the preceding trough tends to increase in height.
B) Overlay of the first two spikes of the traces shown in A, at an expanded time scale. Black circles mark the peak 
amplitude of the second spike and the depth of the preceding trough.
C) Relationship between spike amplitude and interspike interval, for all complex spike secondary spikes evoked (at rest) 
by conductance clamp in the cell shown in A (coloured according to spike number within the complex spike). Amplitude 
was measured as either as (i) peak minus baseline Vm, or as (ii) peak minus preceding interspike trough.
D) Relationship between interspike trough height and (i) conductance injected at the time of the trough minimum or (ii) 
interspike interval (between the spike following the trough and that preceding it).
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for all spikelets in these complex spikes, but became shifted further to the right for 

progressively later spikelets (Fig. 2.7cii). The total spike amplitude could be reconstituted 

given the finding that interspike trough depth was a simple linear function of the amount of 

conductance injected at the time of the trough (Fig. 2.7di), or a simple exponential function of 

interspike interval (Fig. 2.7dii). Troughs between later spikelets became progressively larger 

(Fig. 2.7dii). These trends are consistent with the triggering of active spikes on top of an 

envelope of depolarisation arising from the balance between the ongoing synaptic-like 

conductance injection and repolarising potassium current.

In order to fully characterise the generation of complex spikes across cells, I explored the 

recovery of spikelet height with time across 16 cells (Fig. 2.8a). As the resulting clouds of 

data points did not tightly constrain a sigmoidal fit, the population data was described (black 

dotted lines) by averaging the fits from data sets to which sigmoids could be well constrained 

(i.e. sets contained data points at the top, bottom and middle of the relationship, grey lines). 

In general, these data sets were representative of the population as a whole (though one 

exception might be spikelet 3, where the spread of ‘sigmoidal’ data sets is biased to the left of 

the population, giving an average recovery of spike height that is probably unrepresentatively 

early). On average, at rest, spikelet 2 recovered to half amplitude after 1.6 ± 0.3 ms, at a rate 

of 0.2 ±0 .1  mV/ms. Later spikelets tended to have a progressively more delayed recovery 

(see table 2.1). This trend is clearly seen by overlaying all data points (Fig. 2.9a) or overlaying 

the resulting population fits (Fig. 2.9c; only the first six spikelets are shown as there was 

insufficient data from later spikelets to be well fit as above). This trend may reflect a slowing 

of recovery from inactivation of the spiking mechanism following multiple inactivating events. 

A similar pattern of recovery was seen while the cell was hyperpolarised to prevent 

spontaneous spiking (n = 13), though recovery times were more advanced than at rest (see 

table 2.2). Again this is consistent with a lower level of steady-state inactivation due to lack of 

tonic spiking.

The trough depth can also be well described for the population of data (Fig. 2.10). In this 

case, the data gathered at rest and during hyperpolarisation below tonic spiking threshold 

overlaid (Fig. 2.10a). Both sets of data were, therefore, fitted together. The total population 

data could also be well fit all together, by either a line (when plotted against conductance at 

the time of the trough) or a single exponential (when plotted against interspike interval). 

Overlay of the data from all spikelets (Fig. 2.11a, b) or of the population fits (Fig. 2.11c, d) 

illustrates that, as in the example in Fig. 2.7d, the interspike trough becomes relatively higher 

between progressively later spikelets.
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Figure 2.8 Generalised relationships between spike height and time in dynamic clamp evoked complex spikes.

A) Relationship between spike amplitude (peak -  trough) and ISI for spikelets 2 -  6 of dynamic clamp evoked complex 
spikes in 16 cells, at rest, during spontaneous simple spiking. Red crosses mark data points from cells in which the data 
points from to top, bottom and rising phase of the relationship were evoked, and could thus be fitted with a sigmoid. Grey 
lines show these sigmoid fits; the population of data is described by a sigmoid (black dashed line) whose coefficients are 
the average of all these grey individual fits.
B) As in A, but for data collected during tonic somatic current injection to prevent spontaneous spiking (n = 13).



A) Spiking
100

80 -

a) 60 
a) 2

40 -

20 -

0 -

B) Not
100 -

^  80 -

‘o)'o) 60 
a> 2

40 -J

20 -

0 -

•Spk 2 
•Spk 3
• Spk 4 
•Spk 5
•  Spk 6 
•Spk 7 
•Spk 8
•  Spk 9
• Spk 10

C) Spiking

100 -i

D) Not Spiking

100 -i 

_  80

-c jc a) o  60
I P
<D

1
Q .
00 s

Q.

40

20

1--------------- 1------------1--------------- 1------------- 1------------ 1
1 2 3 4 5 6

ISI (ms)

I
0 1 2  3

ISI (ms)
Spiking

0 )0 ) 60 

I I
a) ■M' 40 -
Q-^
”  s

CL

ISI (ms) ISI (ms)
Figure 2.9 Spike height recovers more slowly w ith respect to ISI in later spikelets o f the dynamic clamp evoked 
complex spike.

A) Overlay of the relationships between spike height (peak - trough) and ISI for all the spikelets (2 -1 0 )  recorded in 16 
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to have a half maximum at a longer ISI. D) As in C, but for data gathered at hyperpolarised membrane potentials (shown 
in B and fig 2.8B).



Somatic EPSG (cell spiking) 
spike height sigmoid f it params.

x half rate
2nd spike 1.6 ± 0.3 0.2 ± 0.1

3rd spike 1.5 ±0 .3 0.2 ± 0.2

4th spike 1.8 ± 0.5 0.2 ± 0.1

5th spike 2.0 ± 0.2 0.9 ± 1.0

6th spike 2.2 ± 0.8 0.2 ± 0.1

Somatic EPSG (cell not spiking] 
spike height sigmoid fit params.

x half rate
2nd spike 0.7 ± 0.3 0.2 ±0.1

3rd spike 1.2 ± 0.2 0.3 ± 0 .2

4th spike 1.0 ± 0.5 0.4 ± 0.5

5th spike 1.4 ± 0.8 0.6 ± 0.4

6th spike 1.2 ± 0.4 0.3 ± 0.4

Tables 2.1 and 2.2
Parameters (half maximum and rate) of the sigmoidal fits to the spike amplitude vs time relationships shown in fig 2.9. 
Table 2.1 shows fit parameters for the complex spike evoked by somatic conductance clamp during tonic spiking; table 2.2 
shows parameters while the cell is hyperpolarised to prevent spontaneous firing.
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Figure 2.10 Generalised relationships between interspike troughs and conductance or time in dynamic clamp 
evoked complex spikes.

A) Relationship between the troughs (mV above baseline Vm) preceding spikelets 2 - 6  and the conductance injected at 
the time of the trough minimum. Data points recorded while the cell was hyperpolarised and prevented from firing sponta­
neously are outlined in red. As these lay along the same line as those recorded at rest, they were fitted together. For each 
interspike trough, the population as a whole was fit with a line (black lines).
B) Relationship between troughs and the ISI between the spikelets that surround them (both at rest and while hyperpolar­
ised). For each interspike trough, the population as a whole was fit with an exponential (black lines).
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clamp evoked complex spike.
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C) Overlay of the lines that describe the population data shown in A and fig 2.10A, coloured as in A. Note that the lines for 
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Height of spikelets within the CF evoked complex spike is a function of time

These trends in spike amplitude were found in complex spikes evoked with synaptic-like 

somatic conductance injection. To ensure similar trends apply to complex spikes evoked by 

CF stimulation, I analysed the spike amplitudes of complex spikes evoked in 21 cells. An 

example of a range of complex spikes produced at increasingly long interstimulus intervals 

(and thus by progressively larger inputs) is illustrated in Fig. 2.12a, and shown on a longer 

time scale in Fig. 2.12b. Again, at short ISIs, absolute spike amplitude increases (due to 

trough depth increasing more rapidly than spikelet peak-trough amplitude decreases), but a 

monotonic, s-shaped relationship exists between spike amplitude (peak - trough) and ISI (Fig. 

2.12ci). This relationship again appears to be more delayed for later spikes (though 

insufficient numbers of spikes were evoked in this cell to generate the full range of these 

curves). Trough amplitude is, again a decreasing exponential function of ISI (Fig. 2.12 cii; in 

this cell, as in many others, no voltage clamp data was recorded so input amplitude cannot be 

used to predict trough amplitude). Fits of the population data at rest followed similar trends to 

those found using conductance clamp (Fig. 2.13 and 14; later spikes were not described as 

the average of individual data set’s averages, as insufficient suitable data was analysed, but 

as a fit to the total population data). Unfortunately, complex spikes recorded while 

spontaneous spiking was prevented by tonic hyperpolarisation did not show a sufficient 

spread of amplitudes to allow sigmoidal relationships to be fit to many individual data sets, 

and population data sets did not constrain sigmoids well. No fits could be made to describe 

this data, though the total data appears to behave similarly to conductance clamp induced 

complex spikes. Population trough depth could, as with conductance clamp, be fit with a 

single exponential of increasingly slow decay and baseline depth (Fig. 2.15).

Fitting the data in this manner allows the complex spike waveform to be predicted. Given the 

time of spikelets in the complex spike (which could be predicted to some degree of accuracy, 

given the underlying EPSC amplitude), spike amplitude (peak - trough) together with 

interspike trough depth can be fairly well predicted, resulting in an estimate for absolute spike 

height. Examples (from 4 different Purkinje cells) are shown in Fig. 2.16.

This analysis has removed some element of the ‘mystery’ of complex spike waveforms 

generated by either conductance clamp or CF stimulation; their number and timing of spikes 

are simple linear or sublinear functions of their input amplitude and intrinsic cell excitability, 

and their exotic spike amplitudes are a simple function of interspike interval and spikelet 

number.
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Figure 2.12 Spike height is an s-shaped function of spike time in CF evoked complex spikes.

A) Examples of complex spikes evoked by CF stimuli at increasing paired pulse intervals (from 60 -  5000 msec between 
stimuli). Note that as the paired pulse interval increases, the second spike occurs earlier (as seen in Fig. 1.4), its amplitude 
tends to decrease and the preceding trough tends to increase in height, in a similar manner to conductance injection 
evoked complex spikes.
B) Overlay of the first two spikes of the traces shown in A, at an expanded time scale. Black circles mark the peak 
amplitude of the second spike and the depth of the preceding trough.
Ci) Relationship between spike amplitude (peak - trough) and interspike interval for all complex spike secondary spikes 
evoked (at rest) by dynamic clamp in the cell shown in A (coloured according to spike number within the complex spike), 
ii) Relationship between interspike trough height (mV above baseline Vm) and interspike interval (msec) between the 
spike following the trough and that preceding it.
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Figure 2.13 Generalised relationships 
between spike height and time in CF 
evoked complex spikes.

A) Relationship between spike amplitude 
(peak -  trough) and ISI for spikelets 2 -  8 of 
CF evoked complex spikes in 19 cells, at 
rest, during spontaneous simple spiking. 
Red crosses mark data points from cells in 
which the data points from to top, bottom and 
rising phase of the relationship were evoked, 
and could thus be fitted with a sigmoid. Grey 
lines show these sigmoid fits; the population 
of data for spikelets 2 - 5 is described by a 
sigmoid (black dashed line) whose 
coefficients are the average of all these grey 
individual fits. For spikelets 6 - 9  few 
individual data sets contained a sufficient 
spread of points to be fitted with a sigmoid, 
however sigmoidal fits to the population data 
together constrained to 0 described the data 
well.
B) As in A, but for data collected during tonic 
somatic current injection to prevent sponta­
neous spiking (n = 11). Insufficent spread of 
data points were available to allow the data 
to be fit.
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Figure 2.14 Spike height recovers more slowly with respect to  ISI in later spikelets of the CF evoked complex 
spike.

A) Overlay of the relationships between spike height (peak - trough) and ISI for all the spikelets (2 -  10) from CF evoked 
complex spikes recorded in 19 cells at rest. Points coloured according to spikelets number. Note that, as with dynamic 
clamp evoked complex spikes, the later spikelets tend to occur further to the right of this relationship, having smaller 
amplitudes for the same ISI. B) As in A, but in complex spikes recorded while the cell was hyperpolerised and prevented 
from firing by tonic somatic current injection (n = 11 cells). C) Overlay of the sigmoids that describe the population data 
shown in A and fig 2.13A, coloured as in A. Note that the sigmoids for the later spikes tend to have a half maximum at a 
longer ISI and a small maximum.



Table 2.3
CF stim. (cell spiking) 

spike height sigmoid fit params.

x half (ms) rate (mV/ms)
2nd spike 1.6 ± 0.3 0.2 ± 0.3

3rd spike 2.3 ± 1.2 0.6 ± 0.7

4th spike 2.2 ± 0.8 0.5 ± 0.3

5th spike 2.4 ± 0.1 0.6 ± 0.1

6th spike 2.2 ± 0.2 0.5 ± 0.1

7th spike 2.6 ±0.1 0.4 ±0.1

8th spike 2.0 ± 0.4 0.7 ± 0.3

Tables 2.3
Parameters (half maximum and rate) of the sigmoidal fits to the spike amplitude vs time relationships shown in fig 2.14. 
Table 2.3 shows fit parameters for the complex spike evoked by CF stimulation during tonic spiking.
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Figure 2.15 Generalised relationships between interspike troughs and conductance or time in CF evoked 
complex spikes.

A) Relationship between the troughs (mV above baseline Vm) preceding spikelets 2 - 5 and the ISI (ms) between the 
spikelets that surround them. Data points from complex spikes recorded at rest and during hyperpolarisation overlapped 
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troughs tend to decay more slowly.



Actual

A )

10 mV

3 ms

10 mV
3 ms

10 mV

3 ms

10 mV

i )

<D 1 0 0  -
Q.in 8 0  -
to

6 0  -

£ 4 0  -
■M
sz
O) 2 0  -
<u

-C 0  -

oT
1 0 0  -

Q.in 8 0  -
to

6 0  -

£ 4 0  -
*-»
S I
05 2 0  -
‘<D
-C 0  -

'oT
1 0 0  -

Q.
in
a_a 8 0  -
in

6 0  -

£ 4 0  -
4->
sz
O) 2 0 -

-C 0  -

•  Spk 1
• Spk 2
• Spk 3
• Spk 4
• Spk 5

o Predicted 
spike height

0)
j* 1 0 0  -
Q-
in 8 0  -4->
in

6 0 -

v—' 4 0  -
4->
SZ
05 2 0  -
QJ

SZ 0  -

— i--------------- r~

5 10
time (ms)

• • •
§3°0

O
9o

• •
— I------------1—

5 10
time (ms)

—i
15

—i
15

if
-i------------- 1---------- 1------------ 1
0 5 10 15

time (ms)

OOOCODO

. * ! *

~l--------------1---------- 1------------1
0 5 10 15

time (ms)

Figure 2.16 Height of spikelets in complex spike predicted from their tim ing.

A) Example complex spikes in response to 1 Hz CF stimulation in 4 different cells.
B) Height and time of spikelets in the complex spikes shown in A. Actual values shown with filled, coloured circles; values 
predicted from the relationships shown in fig 2.15 and 2.13 shown open black circles.
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Voltage dependence of complex spike pattern

As suggested by some of the previous analysis, the complex spike waveform depends on 

voltage. The number of spikes in the complex spike increases with depolarisation from, on 

average, 2.5 ± 0.3 at -71 mV (n = 8 cells) to 3.9 ± 0.3 at -51 mV (n = 14 cells) (an increase of 

0.7 spikes per 10 mV depolarisation) (Fig. 2.17). Within this voltage range simple spiking also 

changed, from no spikes at -70 mV to spiking of increasing frequencies at more depolarised 

voltages. Above -51 mV, depolarisation leads to inactivation of the complex spike burst, 

reducing the number of spikes in the complex spike at a rate of -1.2 per 10 mV (2.7 at -43 

mV, n = 4 cells). At these depolarised voltages the spontaneous simple spiking of the cell 

began to inactivate, leading simple spiking to cease and, in soma cases, rhythmic calcium 

spiking to begin (Llinas and Sugimori, 1980b, a; Hounsgaard and Midtgaard, 1988).

However, at a more detailed level, trends across cells were not entirely homogeneous. The 

timing of spikes in the complex spike varied from depending strongly on voltage (e.g. Fig. 

2.18) to having no voltage dependence (e.g. Fig. 2.19). When the voltage dependence was 

strong, spike timing became progressively earlier with depolarisation (Fig. 2.18a, b). This 

occurred in an exponential fashion, with later spike timing often having a steeper exponential 

dependence on voltage. Spike height was also dependent on voltage, tending to decrease 

both in absolute amplitude and height above the preceding trough (Fig. 2.18 and 19). This 

inactivation was seen even in cases where interspike interval did not decrease with 

depolarisation (e.g. Fig. 2.19). In most cells, a steep sigmoidal change in amplitude occurred 

at around the same voltage for each of the spikelets (Fig. 2.18dii and 19dii).
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A) Examples of CF evoked complex spikes at increasingly more depolarised membrane potentials in the same cell. B) 
Number of spikes in the complex spike at different baseline membrane potentials. Grey circles mark individual complex 
spikes; black circles with error bars show the mean ± SD of the number of spikes in 5 mV bins C) Time (msec after 1st 
spike at resting Vm) of spikes in the complex spike at different baseline Vms. Red circles mark points at which the cell was 
spontaneously firing simple spikes; blue circles mark lack of simple spiking. The time of each spikelet in the complex spike 
vs baseline Vm was fitted with an exponential (black lines). D) Height of spikes in the complex spike, measured as either
(i) peak Vm reached or (ii) spike peak minus preceding interspike trough, plotted against baseline membrane potential. 
The decrease of the second spikelet is fit with a sigmoid with half maximum at -56 mV.
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Figure 2.19 Example 2 of voltage dependence of complex spike waveform; spike tim ing is not dependent on 
baseline Vm.

A) Examples, in a second sample Purkinje cell, of CF evoked complex spikes at increasingly more depolarised 
membrane potentials. B) Number of spikes in the complex spike at different baseline membrane potentials. Grey circles 
mark individual complex spikes; black circles with error bars show the mean ± SD of the number of spikes in 2 mV bins.
C) Time (msec after 1st spike at resting Vm) of spikes in the complex spike at different baseline Vms. Red circles mark 
points at which the cell was tonically firing; blue circles mark lack of smiplefiring. The time of each spikelet in the complex 
spike vs baseline Vm was fitted with a line (black lines). D) Height of spikes in the complex spike, measured as both (i) 
peak Vm reached or (ii) spike peak minus preceding interspike trough, plotted against baseline membrane potential.
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Understanding trends in spikelet waveform with a model of distal initiation

The s-shaped relationship between spikelet height and ISI is not predicted by a simple model 

of recovery of sodium channel inactivation in a single compartment. Both spike amplitude and 

maximum spike rate of rise (dV/dt) have been shown to depend hyperbolically on sodium 

channel availability, in experiments which have recorded both sodium current and action 

potentials over a range of submaximal TTX concentrations (Cohen et al., 1984; Madeja, 

2000, see Fig. 2.20, and also Hodgkin and Katz, 1949). Availability of channels that have only 

a single transition between the inactivated and deinactivated state recovers exponentially with 

time (e.g. Hodgkin and Huxley, 1952c; Baranauskas and Martina, 2006). Even in Purkinje 

cells, where resurgent sodium channels recover from inactivation block via an open state 

(Raman and Bean, 2001), the recovery of current from inactivation can be fitted with a single 

or double exponential (Raman and Bean, 1997; Fry, 2006). The multiplication of an 

exponential recovery of sodium channel availability with a hyperbolic dependence of height 

on sodium channel availability cannot lead to an s-shaped recovery of spike height with time 

(Fig. 2.21). Further, without resorting to making assumptions about the kinetics of recovery of 

sodium channels, it is clear that the relationship between spike height and spike maximum 

dVdt should also be hyperbolic (as both are sigmoidal functions of TTX concentration (Cohen 

et al., 1984; Madeja, 2000)) (Fig. 2.22b), and not an s-shape. Thus a simple, single 

compartment model (containing either Hodgkin Huxley channels or channels that reproduce 

dissociated Purkinje soma behaviour (Khaliq et al., 2003)) cannot capture the relationship 

between spike height and ISI, or between spike height and maximum dV/dt that I see in 

complex spikes evoked by either CF stimulation or somatic conductance clamp (Fig. 2.21 and 

22).

Here I propose that the kinetics of recovery of spike height with ISI, or the relationship 

between spike height and dV/dt can be explained by a model of propagation of the spike from 

a distal initiation site (e.g. the axon) together with variation in the conductance (synaptic or 

active) of the recorded compartment.

Passively propagated events

The relationship between height and maximum dV/dt of passively propagated waveforms was 

investigated in a cable model in NEURON (www.neuron.yale.edu), based on the Purkinje cell 

axon (for parameters, see Methods). A voltage waveform was imposed, by voltage clamp, on 

a ‘hotspot’ in the centre of the cable and the passively propagated voltage was recorded at a 

‘soma’ 100 gm away (10000 urn of cable continued on the other side of the ‘soma’, to avoid 

the distortion of end effects, see Fig. 2.23a). The effect of varying the conductance of the 

soma was investigated. The relationship between maximum height and maximum dV/dt in 

response to a square pulse imposed upon the ‘hotspot’ (of sufficient duration to allow the 

‘soma’ membrane potential to reach a steady state) had a slight upwards curve; this was

http://www.neuron.yale.edu
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Figure 2.20: Spike height and maximum dV/dt are related hyperbolically to sodium channel availability.

The data shown in this figure are taken from Cohen, Bean & Tsien, 1984 and Madeja, 2000.

Ai) Dose response relationships between sodium current (peak current in response to voltage steps from -104 mV to -44 
mV, filled circles) or ‘Vmax (maximum rate of Vm change during upstroke of evoked action potentials, open circles) and 
TTX concentration in rabbit heart Purkinje fibres (fig 2, Cohen, Bean & Tsien, 1984). Data was fit with equations of the form 
y = 1 / (1 + [TTX]/KD), where KD = 0.82 pM for sodium current and 8.4 pM for "Vmax.
ii) Transformation of data in (A), demonstrating the dependence of maximum action potential dV/dt ("Vmax) on sodium 
channel availability (gNa) (taken from fig 3, Cohen, Bean & Tsien, 1984). The hyperbola is obtained by rearranging the 
equations fitting sodium current and "Vmax TTX dose response curves, giving "Vmax =10 gNa / (1 + 9 gNa). Error bars 
show collected experimental SEM.
Bi) Relationship between sodium current (peak current in response to voltage steps from -80 mV to -20 mV, filled circles) 
or action potential amplitude (open circles) and TTX concentration in dissociated hippocampal CA1 neurons (fig 1B, 
Madeja, 2000). Data are fitted with Langmuir equations with IC50 values and Hill coefficients of 6.4 nM and 0.91 for 
sodium currents and 104 nM and 1.23 for action potential heights.
ii) Transformation of data in C showing the dependence of action potential height of sodium channel availability.
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C) Examples of the real relationships found between spike height and maximum dV/dt in complex spikes generated by 
dynamic clamp (left) and CF stimulation (right).
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more pronounced when the size 'soma’ compartment was increased and thus charged more 

slowly to the same steady state (Fig. 2.23b and c, upper panels). The relationship was, 

however, approximately linear when more rapid events (that did not allow the ‘somatic’ 

voltage to reach a steady state) were imposed on the hotspot e.g. action potential waveforms. 

I voltage clamped the ‘hotspot’ to action potential waveforms recorded at the soma -  either a 

full simple spike or spikes of differing heights and widths taken from within a complex spike 

(Fig. 2.23b and c, lower panels). (Although these are unlikely to have exactly the same 

waveforms as are generated in the axon of Purkinje cells, they should be of a similar time 

course). This linear maximum height-dV/dt relationship appears to be similar in structure to 

the foot of the relationships measured during Purkinje cell complex spikes (see e.g. Fig. 

2.22c). Further, it was often observed that spikelets generated at times of larger conductance 

during somatic EPSG injection were smaller and had lower absolute maximum rates of rise 

(data not shown), following a similar trend to these passively propagated events.

Actively propagating events

The effect of making the ‘somatic’ recording site progressively more active was investigated 

by inserting Hodgkin-Huxley channels (as provided by NEURON) (Fig. 2.24). As channel 

density was increased, the waveform propagating from the ‘hotspot’ triggered first spikelets 

and then full-blown spikes at the soma (Fig. 2.24b and c), all of which showed the second 

rising phase in their voltage derivatives that is characteristic of propagated action potentials 

(data not shown, Katz, 1950; Granit and Phillips, 1956; Coombs et al., 1957a, b; Fuortes et 

al., 1957; Spencer and Kandel, 1961; Dodge and Cooley, 1973; Stuart et al., 1997a). The 

maximum height vs dV/dt relationship took off from the point of the passively propagated 

event and followed a curve similar to the hyperbolae predicted and simulated in single active 

compartments (see red points in Fig. 2.24c, lower panel). Increasing tonic conductance at the 

‘soma’ increased the density of active channels required to generate spikelets and spikes, 

and decreased the amplitude and rate of rise of spikes generated by a set density of channels 

(Fig. 2.24b and c). (The tonic conductance applied had a reversal potential of -60 mV. While 

the reversal potential did not affect the passive relationships seen above, a depolarising 

reversal potential triggered spontaneous firing, and complicated measures of channel 

availability. Additional simulations, not shown here, suggest that the reversal potential of the 

additional conductance does not have a significant effect on the trends observed). The 

additional tonic conductance did not disrupt the general shape of the active part of the 

maximum height vs dV/dt relationship, but did add a roughly linear section to the initial part of 

the relationship, where again passively propagated events were decreased in amplitude and 

absolute maximal rate of rise. Similar results were seen when the action potential waveform 

at the ‘hotspot’ was generated not by voltage clamp but by inserting Hodgkin Huxley channels 

at the ‘hotspot’ and applying a current injection (Fig. 2.24d-f). The resulting s-shaped 

maximum height vs dV/dt relationships were similar to those seen with both conductance 

clamp and CF evoked complex spikes. This suggests that the relationships seen during the
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Figure 2.23 Height and maximum dV/dt o f passively propagated voltages in a cable.

A) Illustration of the morphologies in which the propagation of a voltage waveform (imposed by voltage clamp at the 
‘hotspot’, green) was recorded (at the ‘soma’, blue). ‘Soma’ and ‘hotspot’ were separated by a 100 pm long, 1.2 pm 
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morphology was symmetrical about the ‘hotspot’; an identical morphology was used in a further set of simulations (right) 
except that ‘soma’ compartment was increased from 10 x 1.2 pm to 20 x 20 pm.
Throughout, Ri = 150 Qcm, Cm = 1 pF/cm2 and Rm = 20000 Qcm2.
B) Voltage clamp waveforms imposed on the ‘hotspot’ (left) and resulting ‘somatic’ voltages (right) while 0 - 500 nS of 
additional tonic conductance was placed the soma. Waveforms are a 2 msec square pulse, a Purkinje cell action potential 
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Figure 2.24: Height and maximum dV/dt of actively and passively propagated voltages in a cable.

A) Illustration of the uniform cable morphology used to record propagation of a Hodgkin-Huxley action potential waveform 
(imposed by voltage clamp at the ‘hotspot’) while the ‘soma’ was made increasingly active (0 -1 6  times standard density 
of Hodgkin-Huxley channels) and tonic conductance as varied (0 -100  nS).
B) Voltage waveforms recorded in the ‘soma’ as HH channel density was increased from 0 -1  x full density (steps of 0.1 
x) in a background of either no (left) or 10 nS (right) additional tonic conductance at the soma.
C) Relationships measured between spike height and channel density (top), maximum dV/dt and channel density (middle) 
and between spike height and maximum dV/dt (bottom), in a background of 0 - 100 nS tonic conductance at the soma 
(red - purple markers, as in legend).
D-F) As in A-C, but action potential waveform at the ‘hotspot’ evoked by current injection to the compartment (0.4 nAfor 
0.2 ms), which was made active by addition of Hodgkin-Huxley channels (16 times standard density).
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complex spike are the result of both active and passive propagation of spikes from a distant 

initiation site. This is supported by the lack of second positive deflection in the derivative of 

some small spikelets of the complex spike (data not shown). The suggested failure of active 

propagation of some spikes may parallel the failure of the Purkinje axon to transmit all high 

frequency spikes generated at the axon initiation site.

In order to investigate if similar relationships held in a full model of Purkinje cell morphology 

and fast spiking behaviour, I took advantage of the model produced by Dr. Mickey London, 

which reproduces Purkinje cell simple spike initiation (Clark et al., 2005). I modified the 

model, removing axon collaterals (as they were not the focus of the study and were 

computationally expensive) and Ih from the dendrites (in order to prevent spontaneous 

spiking, which complicated measures of channel availability). Spikes were initiated by current 

injection to the first node (Fig. 2.25a). Increasing somatic conductance modified spike height 

together with maximum dV/dt in a linear manner, as previously (Fig. 2.25b and c). An s- 

shaped height vs dV/dt relationship again emerged as the soma was made more active in the 

presence of differing levels of tonic conductance (Fig. 2.25d and e). These results were not 

dependent on the lack of tonic firing; similar trends were seen when dendritic Ih was restored 

to the model and when the additional somatic conductance was made more depolarising 

(data not shown).

I have demonstrated that an s-shaped relationship exists between propagated action potential 

height and maximum dV/dt in both simple, reduced models and in full Purkinje cell like 

models. This relationship, which can be measured without assuming or measuring the 

recovery of channel availability from inactivation, is very similar to those seen during both 

conductance clamp and CF generated complex spikes. Further, these investigations help to 

explain the waveform of complex spikes recorded at the soma. The previously characterised 

(Fig. 2.8 and 2.13) s-shaped relationships between spike height and interspike interval can 

thus be understood as the composition of the relationship between spike height and sodium 

channel availability and an exponential recovery of sodium channel availability following a 

spike (Fig. 2.26). The more delayed height vs ISI relationships seen for later spikes of the 

complex spike (Fig. 2.9 and 2.14) might be explained by either an increase in the 

conductance seen by the soma or a more prolonged sodium channel recovery time constant 

(caused by e.g. multiple spikes causing entry into a further inactivated state) (Fig. 2.26).
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A) Illustration of the P19 Purkinje cell morphology in which active and passive propagation of a spike initiated at the first 
node (right most electrode) was recorded at the soma (left most electrode). The model is adapted from Clark et al 2005; 
axonal collaterals were removed, dendritic Ih was omitted, preventing tonic spiking and current injection to the first node 
(0.2 nA for 1 ms) was used to evoke a spike. Tonic somatic conductance was varied from 0 - 2000 nS and somatic channel 
density was varied from 0 -1 times full density.
B) Examples of the action potential initiated at the first node (left) and recorded at the passive soma under increasing 
amounts of tonic conductance (0 - 5000 nS).
C) Relationship measured at the soma between passively propagated spike height and maximum dV/dt.
D) Examples of the action potentials propagated to the soma as the soma is made increasingly active (0 -1 x full channel 
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E) S-shaped relationship measured at the soma between actively passively propagated spike height and maximum dV/dt.
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Figure 2.26: Distant spike initiation can explain height vs time relationship.

A) Illustration of the hypothetical exponential recovery of sodium channel availability with time since an inactivating pulse, 
and of the increase in action potential height with sodium channel availability in a multicompartment model of the Purkinje 
cell. Differing levels of tonic somatic conductances are shown, coloured as in the legend.
B) Composition of the functions shown in A, generating an s-shaped relationship between action potential height and time 
since an inactivating.
C) Slowing the time constant of the exponential recovery of sodium channel recovery does not affect the overall shape of 
the composition, but slows the recovery of action potential amplitude.
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Spike width

This model can also help to explain trends in the width of spikelets in the complex spike. As 

somatic channel density is decreased, action potential amplitude initially increases, as the 

rate of rise repolarisation slows (the latter presumably due to reduced recruitment of 

potassium channels by the smaller action potential) (Fig. 2.27a). As channel density is further 

decreased, smaller events are triggered by the propagated waveform that are not prolonged 

by active currents, so spike width becomes narrower. A similar trend is seen as somatic 

conductance is increased; full blown action potential generation becomes harder and spikes 

become wider, eventually failing, leaving passive events that are made narrower by increased 

somatic conductance (Fig. 2.27a). This leads to a non-monotonic, wedge shaped relationship 

between spike height and width (Fig. 2.27b). Very similar relationships were seen in complex 

spike waveforms generated by somatic conductance clamp and by CF stimulation (Fig. 2.27c 

and d). Thus the relationship between spike height and width in the complex spike can also 

be understood as the result of a combination of active and passive propagation from a distant 

initiation site.
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Figure 2.27: W idth of actively and passively propagated voltages in a model o f the Purkinje cell.

A) Illustration of the way in which propagated spike width is initially increased but then decreased again by decreasing the 
somatic active channel density (left, 1 - 0 x full density) or increasing the somatic passive conductance (right, 0 - 1000 
nS). Purkinje cell model as in Fig 2.25A.
B) Relationship measured at the soma between spike height and spike width as the soma active channel density and 
passive conductance is varied.
C) Example of spikelets of increasing amplitude taken from the CF evoked complex spikes.
D) Example relationships between somatic spike height and width during complex spikes evoked by dynamic clamp (left) 
or CF stimulation (right, same cell as in C).
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Chapter 2: Discussion

In this chapter I have explored the importance of Purkinje cell geometry in complex spike 

generation. I have shown that the dendritic location of the CF synapses is not essential for 

complex, as the complex spike waveform can be reproduced by simple somatic biexponential 

conductance injection. I have fully characterised the complex spikes generated by both 

conductance clamp and CF stimulation. This demonstrated that spike number and timing can 

be easily understood as a simple functions of input amplitude. I have also found that spike 

amplitude and rate of rise depends largely on spike timing. The s-shaped nature of this 

height-ISI relationship can only be easily understood as the result of a combination of active 

and passive propagation of spikes from a distant initiation site; further, this model predicts the 

wedge-shaped relationship between spike width and height. In the final chapter I shall 

demonstrate that the site from which these action potentials propagate is most likely to be the 

axon, with dendritic action potentials adding surprisingly little to somatic waveform.

Complex spike generation and synaptic input location

By using conductance clamp circuitry to concentrate CF-like synaptic input at the soma, I 

have shown that a dendritic location of synaptic input is not required for complex spike burst 

generation. By adjusting the amplitude of the somatic synaptic-like conductance, the complex 

spike of the same cell can usually be reproduced. Only with extraordinarily large synaptic 

inputs (> 500 nS), above the normal physiological range of CF inputs, does spike generation 

begin to inactivate. This saturation of spiking capacity is likely to contribute to the sublinear 

somatic EPSG - complex spike relationship seen during spontaneous spiking. In addition, the 

sublinear injection of synaptic current, as net depolarisation levels during the complex spike 

approach the reversal potential, may also contribute to this sublinearity. Apart from this 

discrepancy at the top end of the synaptic input -  spiking relationships, somatic and dendritic 

synaptic conductance location result in qualitatively very similar synaptic input - complex 

spike relationships. It is, however, unlikely that the somatic conductance necessary to 

reproduce the complex spike of a particular Purkinje cell is identical to the actual conductance 

of the CF input. The EPSP caused by somatically concentrated synapses is predicted to be 

larger than that caused by distributed inputs of the same amplitude, which are attenuated by 

their propagation through the dendrites (Roth and Hausser, 2001, see also figure in the 

introduction to Chapter 2). In addition, although the shape of the synaptic input - complex 

spike relationships were similar for somatic and dendritic synapse locations, the transient 

conductance of the somatic EPSG may change the gain of the input-output relationship 

(Chance et al., 2002; Mitchell and Silver, 2003). In order to investigate this possibility, the 

input - output relationships for somatic current injection and conductance injection should be 

compared in the same cells, together with knowledge of the cell’s input resistance. It is 

notable, however, that the average somatic conductance injection needed to reproduce the
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complex spike was only slightly smaller than the (somatically measured) average 

conductance of CF input (170 ± 58 nS vs 265 ± 13 nS (as measured in Chapter 1); p = 0.12).

The robustness of the complex spike in the face of somatic conductance reflects a number of 

Purkinje cell specialisations. Firstly, the timecourse of the physiological CF EPSC does not 

seem to be strongly affected by its propagation to the soma (Wadiche and Jahr, 2001; 

timecourses assessed by voltage clamp and voltage jump protocols are similar). This may be 

due, in part, to its distributed nature, which readily charges the entire proximal dendritic tree, 

perhaps reducing current flow between dendritic branches; the proximal location of the 

synapses on the wide main branches of the dendrites may also make the effects of 

propagation through the dendrites small. The similarity of timecourses assessed by voltage 

clamp and voltage jump methods helps explain why somatic conductances with timecourses 

similar to that measured for the dendritic CF EPSG can mimic complex spikes. The rapid 

spiking of the soma also does not have a strong deleterious effect on somatic input, perhaps 

partly because the rapid spikes cause only a very brief drop in EPSC driving force, so 

allowing very similar bursts to be generated by somatic current or conductance injection (see 

fig 2.4 and McKay et al., 2005). The effect of spike shunting of the excitatory current reaching 

the soma is therefore also likely to be similar for both the directly somatically injected EPSC 

and that propagated in from the dendrite (HSusser et al., 2001). The shunt imposed by the 

somatic synaptic conductance itself appears to be easily accommodated by the Purkinje cell 

soma, and only inhibits firing at the upper end of the EPSG - complex spike relationship at the 

depolarised potentials of spontaneous spiking (see Fig. 2.6). This is due in part to the distant 

initiation site of complex spikelets (suggested in this chapter by modelling, and shown by the 

experiments in the next chapter and by Dr Beverley Clark (Davie et al., 2008) to be in the 

axon), which provides electrical isolation from the somatic shunt. Furthermore, the powerful 

and fast somatic voltage-gated Na+ conductances in Purkinje cells (Raman and Bean, 1997, 

1999), together with the K+ conductances (Raman and Bean, 1999; Edgerton and Reinhart, 

2003; Martina et al., 2003; McKay and Turner, 2004; Zagha et al., 2008), which balance large 

depolarising currents (Swensen and Bean, 2005; Zagha et al., 2008) and help maintain high- 

frequency firing, appear to predominate over the synaptic conductance during complex spike 

generation.

Variation in Purkinje cell intrinsic excitability

As somatic conductance clamp allows the synaptic input amplitude at a controlled location to 

be systematically manipulated, this method allowed the range of Purkinje cell somatic 

excitability to be measured independently of CF input. The 1.4 - 2.6 fold variability in the 

number of somatic spikes in the complex spike in response to a set conductance can help to 

account for the inter-cell complex spike variability that is not due EPSC size differences. As 

plasticity of intrinsic excitability has been found to be triggered by large excitatory inputs (both
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in Purkinje cells (Cerminara and Rawson, 2004; McKay et al., 2007; Cerminara Rawson 

2004, McKay Turner 2007) and other neurons (Desai et al., 1999; Zhang and Linden, 2003), it 

is likely that these two sources of variability of the complex spike might co-vary. This could 

have the result of making the response to a CF input of a certain size more similar across 

cells than might be expected given the population range of excitabilities. This can help explain 

why the CF input- complex spike relationship holds so well across cells while the parallel 

fibre- Purkinje cell spike relationships, and the slope of f-l curves differ between Purkinje cells 

(Llinas and Sugimori, 1980a; Walter and Khodakhah, 2006; Mittmann and HSusser, 2007).

Complex spike pattern and spikelet initiation site

The initiation of spikelets at site distant to the soma appears to play an important role in the 

complex spike pattern. Neither the s-shaped recovery of spike height with time, the similarly 

s-shaped relationship between spike height and maximum rate of rise, nor the wedge shaped 

relationship between spike height and width can be reproduced in a simple single 

compartment model with classic Hodgkin-Huxley channels, or with Khaliq et al.’s (2003) 

model of Purkinje somata channels. They can however be readily explained as the result of 

spike propagation and generation graded by the conductance and active channel availability 

in the soma. The inactivation of somatic channels in the period following a spikelet, together 

with the somatic or perisomatic synaptic and active interspike conductances (Raman and 

Bean, 1999; Swensen and Bean, 2003, 2005) can cause a spike propagated from a distant 

site to diminish in amplitude and rate of rise and increase in width (Hodgkin and Huxley, 

1952b; Engel and Jonas, 2005; Scott et al., 2007). Failed spike propagation leaves its mark at 

the soma as an isolated ‘prepotential’ (Katz, 1950; Granit and Phillips, 1956; Coombs et al., 

1957a, b; Fuortes et al., 1957; Spencer and Kandel, 1961; Dodge and Cooley, 1973; Stuart et 

al., 1997b) with only a single component to its voltage derivative. The amplitude, absolute 

maximum rate of rise and width of this prepotential can be decreased by increase 

conductance of the somatic recording site. This implies that the soma can follow a lower 

frequency of firing than the initiation site can generate, in a manner analogous to the failed 

propagation of some spikelets down the axon (Khaliq and Raman, 2005; Monsivais et al.,

2005). There are several reasons why this should be so, some a direct consequence of 

initiation being favoured at a distant site. Firstly, the soma is a large, wide compartment, and 

propagation from a distant site (either the axon or the dendrites) will face a significant 

impedance mismatch, making active propagation liable to failure (Goldstein and Rail, 1974; 

Parnas and Segev, 1979; Segev and Schneidman, 1999). Secondly, the very specialisations 

that favour spike initiation (small, isolated, readily charged and discharged compartments, 

with higher densities of active channels, of specialised subtypes or negatively shifted voltage 

sensitivities) should also favour higher firing frequencies (Kuba et al., 2006).
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Describing the complex spike waveform

The modelling that lead to the prediction that the complex spike pattern is the result of active 

events, variably propagated from a distant site, to some extent assumes that sodium channel 

recovery kinetics follow a simple exponential or multiexponential recovery time course that 

cannot alone account for the s-shaped recovery in spike height with interspike interval. 

Although there is good evidence that this is a reasonable approximation of Purkinje cell 

sodium channel behaviour, even considering the open blocked state thought to lead to the 

resurgent current (Raman and Bean, 1997; Kay et al., 1998; Raman and Bean, 2001; Fry, 

2006), the availability of somatic and axon sodium channels throughout the complex spike is 

not known. One effect that remains to be explained is the slowing of spikelet height recovery 

with ISI throughout the complex spike; while the second spikelet of the CF evoked complex 

spike recovers to 50% amplitude by 1.6 ± 0.3 ms (during spontaneous spiking), the fourth 

spikelet, for example, only recovers by 2.2 ± 0.8 ms. While increased conductance of the 

soma due e.g. to voltage and/or calcium activated potassium channel activation may account 

for this slowing (see e.g. Fig. 2.26), another possibility is the progressive increased 

inactivation of sodium channels, perhaps through entry to a longer lived inactivation state, or 

the voltage dependence of Purkinje cell sodium channel recovery from inactivation (Colbert et 

al., 1997; Jung et al., 1997; Raman and Bean, 2001; Vilin and Ruben, 2001; Do and Bean, 

2003; Baranauskas and Martina, 2006; Fry, 2006).

The total depolarisation envelope of the complex spike at the soma is the result of propagated 

action potentials being generated together with a baseline of depolarisation arising from the 

combination of synaptic current and interspike active channel current. The minimum reached 

between spikes depends exponentially on interspike interval, and this relationship decays 

more slowly and to more depolarised baseline levels with spikelet number. This again may be 

related to channel inactivation (both sodium, potassium and others); somatic conductance 

clamp allows us to see that for the same amount of external conductance injection at the time 

of the trough, the depolarisation caused is greater, indicating a greater total somatic 

resistance. However, we have no definitive measurement of membrane resistance or channel 

behaviour during the complex spike and currently no models, even those incorporating the 

best available Purkinje cell channel behaviour data (Khaliq et al., 2003; Clark et al., 2005; De 

Schutter and Bower, 1994a, c) satisfactorily reproduce the complex spike. Improved models 

of ionic current during spiking behaviour (generated by e.g. the dynamic IV method of Badel 

et al., 2008), which should also incorporate a distant site of spike initiation during the complex 

spike, are required.

My recordings and descriptions of complex spikes evoked by both CF and somatic 

conductance clamp now allow the pattern of spiking within a cell to be predicted. Given the 

amplitude of the synaptic input, the number and timing of spikelets in the complex spike can
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be predicted. As there is some variability across cells and height depends steeply on inter- 

spikelet interval, the height of the spikelets within the complex spike can then be predicted 

once their actual timing is confirmed.

Voltage dependence of the complex spike waveform

These descriptions and predictions apply mostly to the complex spike recorded at rest (no 

external current injection, allowing spontaneous simple spike firing). However, it has 

previously been observed that the number of spikes in the complex spike is increased, and 

that their amplitude is decreased, at depolarised membrane potentials or during fasted simple 

spike firing periods (Martinez et al., 1971; Gilbert and Thach, 1977; Llinas and Sugimori, 

1980a; Chan et al., 1989; Hounsgaard and Midtgaard, 1989; Servais et al., 2004; Khaliq and 

Raman, 2005; Monsivais et al., 2005). I have described and quantified these effects over a 

continuous voltage range. The balance between channel activation and inactivation is again 

likely to underlie these relationships. As the cell is depolarised from hyperpolarised potentials, 

increase in the number of sodium (and calcium) channels activated by the CF is likely to be 

responsible for the monotonic increase in the number of spikes in the complex spike seen 

between -80 mV and -50 mV baseline Vm (Hodgkin and Huxley, 1952b, a, d; Raman and 

Bean, 1997, 1999; Khaliq et al., 2003; Fry, 2006). Above this point, spiking inactivation, which 

tends to silence tonic spiking in the cell and lead to the generation of Na+- Ca2+ bursts (Llinas 

and Sugimori, 1980b, a; Hounsgaard and Midtgaard, 1988; McKay and Turner, 2005), causes 

a decrease in the number of spikelets recorded. Inactivation of both sodium and potassium 

channels might contribute to this inability to maintain rapid burst firing (Hodgkin and Huxley, 

1952c, b; Wang et al., 1991; Raman and Bean, 1997, 2001; Sacco and Tempia, 2002; 

Martina et al., 2003; Fry, 2006; Sacco et al., 2006). The pattern of spikelet time and height 

dependence on baseline Vm is not constant across cells, perhaps because it relies on the 

balance of many different ion channel types in multiple locations, the expression of which may 

differ somewhat across cells (Goldman et al., 2000; Achard and De Schutter, 2006; Taylor et 

al., 2006). Often, however, the height of spikelets decreases with depolarisation in a 

sigmoidal manner, potentially reflecting the progressive inactivation of the somatic sodium 

channels, and so the decline of the somatic active spike until only the passively propagated 

‘prepotential’ remains (as in e.g. Hodgkin and Huxley, 1952b; Engel and Jonas, 2005; Rancz 

et al., 2007).

Purkinje cell specialisations

It is clear that the specialisations that cause Purkinje cells to fire bursts in response to their 

powerful distributed CF input, and MNTB neurons, clasped round their somata by giant 

calyceal synapses, to fire only single spikes, go far beyond the geometry of their inputs. While 

the widespread synaptic input to the Purkinje cell seems specialised to produce a global
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depolarisation of the Purkinje cell’s excitable dendrites, the experiments in this chapter show 

that this is not the critical element required to support burst generation. A more likely 

candidate for differentiating between precise single spike firing and reproducible burst firing is 

the combination of EPSC time course with the complement of ion channels expressed in the 

cell. EPSCs from the calyx of Held are of extremely rapid time course (Tdecay *  1 ms), helping 

to ensure a single precisely timed action potential is generated (Borst et al., 1995; Trussell, 

1999; Brenowitz and Trussell, 2001), while CF EPSCs in Purkinje cells are relatively long 

lasting (Barbour et al., 1994). In addition, the low resting input resistance of MNTB neurons, 

together with rapidly activating delayed rectifier conductances, ensure a rapid EPSP, and 

rapid spike repolarisation (reviewed in Trussell, 1999). The strong KV1 delayed rectifier 

potassium channel expression also acts to ensure a single, precisely timed action potential is 

generated in MNTB neurons (Brew and Forsythe, 1995; Dodson et al., 2002; Brew et al., 

2003; Gittelman and Tempel, 2006), while high voltage activated Kv3 channels allow repeated 

single action potential generation to rapidly repeated EPSC input (Wang et al., 1998; Song et 

al., 2005). In Purkinje cells, KV1 conductances are not sufficient to prevent multiple spike 

generation in response to CF input, but curtail the burst, while strong Kv3 expression is 

required to sustain high frequency bursting in Purkinje cells (Hurlock et al., 2008; Zagha et al., 

2008). In addition, the benefits of a distant site of spike initiation in supporting high frequency 

firing (Kuba et al., 2006; Scott et al., 2007) are likely to be of benefit to both cell types. A 

direct exploration of relative importance of these variables, through e.g. systematic variation 

(using modelling and/ or conductance clamp) of synaptic time course and of the different 

conductances expressed in the two cell types, would further illuminate this conundrum.

Although the role of the dendritic distribution of inputs does not appear to be in burst 

generation, there may be other reasons for this location. One strong candidate is its potential 

role in generating dendritic calcium spikes, which, among other roles, are required for 

associative plasticity in the Purkinje cells, which lack the backpropagating action potentials 

and NMDA receptors that often subserve this role in other neurons (reviewed in Sjostrom and 

Nelson, 2002). This, together with the role of dendritic calcium spikes in CF electrical 

signalling, will be examined in the next chapter.
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Chapter 3:

The relationship between CF triggered dendritic calcium spikes and the complex spike. 

Introduction

In the previous chapters, I have shown that the complex spike pattern is a linear reflection of 

input size that does not depend upon the dendritic location of CF synapses for its generation. 

However, I have also demonstrated that the complex spike waveform can be best understood 

as the result of spike propagation from a distant initiation site, and Purkinje cells are well 

known for their conspicuously active dendrites, especially during complex spike generation 

(Llinas and Nicholson, 1971; Nicholson and Llinas, 1971; Llinas and Sugimori, 1980b; Crepel 

et al., 1981; Ross and Werman, 1987; Hounsgaard and Midtgaard, 1988; Chan et al., 1989; 

Miyakawa et al., 1992). Further, in many other neuronal types, dendritic spikes have a strong, 

amplifying influence on synaptic integration, and can trigger one or even a burst of axo- 

somatic action potentials (see the main Introduction and Chen et al., 1997; Golding and 

Spruston, 1998; Larkum et al., 1999, 2001; Williams and Stuart, 2002; Gasparini et al., 2004). 

Although Purkinje cells were the first neurons in which such dendritic excitability was directly 

demonstrated (Llinas and Nicholson, 1971), the role of Purkinje cell dendritic spikes in the 

generation of the somatic burst of action potentials is not yet clear.

In their seminal papers of 1964 and 1966, Eccles, Llinas & Sasaki showed that the complex 

spike burst could be generated in response to a single CF EPSP (Eccles et al., 1964; Eccles 

et al., 1966a). This pioneering investigation (Eccles et al., 1966a) also provided evidence, 

from field electrode recordings at the depth of the dendrites, that the dendrites generate 

active responses during CF input. Further work proved that Purkinje cell dendrites are 

capable of generating and actively forward-propagating action potentials in response to 

parallel fibre stimulation (Llinas et al., 1968; Llinas and Nicholson, 1971; Nicholson and 

Llinas, 1971), that the electroresponsiveness of the dendrites is mediated by calcium 

channels (Llinas and Sugimori, 1980b) and that CF stimulation leads to active responses in 

the dendrites (Fujita, 1968; Llinas and Sugimori, 1980b; Crepel et al., 1981; Chan et al., 

1989).

These demonstrations of active dendrites added complexity to the initial suggestions (Granit 

and Phillips, 1956; Eccles et al., 1966a) that spikelets represented action potentials 

generated in the axon (while the soma and dendrites were inhibited by excessive 

depolaristion) which backpropaged into the soma, in a similar manner to simple spike axo- 

somatic propagation (Granit and Phillips, 1956; Eccles et al., 1966b). Indeed, the similarity 

between the multiple regenerative potentials seen in the dendrites and the soma following CF 

stimulation lead Fujita to suggest that each spike in the somatic response might reflect an 

action potential generated in a separate dendritic subcompartment. Martinez, Crill &



Chapter 3: Dendritic calcium spikes and the complex spike 148

Nicholson (1971) noted that antidromic spikes generated by axonal stimulation appeared not 

to collide with complex spike spikelets, so suggested that spikelets were not generated in the 

axon, but in the dendrites (although closer examination of the data presented (Martinez et al. 

Fig. 8) shows that simulation either failed to produce an antidromic spike, perhaps reflecting 

axonal collision, or disrupted, rather than just adding to the following complex spike pattern). 

Campbell and Hesslow (1986b) also examined the secondary spikelets of the complex spike 

and concluded they were dendritic. They observed (in extracellular recordings) that, during 

paired pulse stimulation, the secondary spikelets of the complex spike could be manipulated 

separately from the first, presumably axonal spike. Following the second of two CF 

stimulations separated by 10 -  150 ms, the amplitudes of the secondary spikelets were 

increased while the amplitude of the first spike was decreased. They hypothesised that a 

separate dendritic origin of the later spikelets would allow them to be boosted by dendritic 

active conductances remaining on following the first CF stimulation. However, as I have 

shown in Chapters 1 and 2, this effect is readily explained by the paired pulse depression of 

the second CF response (Eccles et al., 1966d; Latham and Paul, 1971; Dittman and Regehr, 

1998; Hashimoto and Kano, 1998; Silver et al., 1998) reducing the frequency of spikelet 

generation, thus reducing inactivation of the fast spiking mechanism and increasing the 

amplitude of the later spikelets.

These proposals for dendritic generation of complex spike spikelets have been opposed by 

more recent manipulations of dendritic spikes (Callaway et al., 1995; Callaway and Ross, 

1997). These studies found that inhibition of dendritic spikes appears to have only a weak 

effect on the somatic complex spike waveform and that somatic bursts of spikes can be 

triggered without significant dendritic calcium entry. Nevertheless, the contribution of dendritic 

spikes to the complex spike remains unresolved (Schmolesky et al., 2002).

I have addressed this question through direct recording from the dendrites during complex 

spike generation. I have shown that dendritic spikes are not necessary for complex spike 

generation, and that their presence following CF stimulation adds little to the complex spike. I 

have demonstrated that the depolarisation propagated to the soma is small and often within 

the axo-somatic refractory period of previous spikelets of the complex spike. I have found that 

the net effect of calcium conductances during the somatic burst is to reduce excitability, and 

that the calcium spikes following CF stimulation have a far greater role in prolonging the post­

complex spike pause in simple spike firing than in generating the complex spike burst.
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Chapter 3: Results

Dendritic calcium spikes are not necessary for complex spike generation

In some cell types, bursts of spikes at the soma are triggered by activation of dendritic 

calcium spikes (Williams and Stuart, 1999; Larkum et al., 1999; Magee, 1999; Larkum et al., 

2001). Physiological CF input typically triggers 1-3 dendritic calcium spikes (Fujita, 1968; 

Llinas and Sugimori, 1980b; Crepel et al., 1981; Chan et al., 1989; Rancz and HSusser,

2006). It is not clear if these dendritic spikes are necessary to generate the complex spikes. 

To address this question I made simultaneous dendritic recordings (104 ± 6 pm from the 

soma) during the ‘optimal’ somatic EPSG for mimicking the physiological complex spike (Fig. 

3.1a). Activation of the CF produced rapidly rising, large amplitude dendritic calcium spikes in 

addition to the somatic complex spike (Fig. 3.1b; Llinas and Sugimori, 1980b; Crepel et al., 

1981; Chan et al., 1989; Rancz and HSusser, 2006). However, the somatic EPSG which 

mimicked the complex spike in the same cell was not associated with generation of a 

dendritic calcium spikes (Fig. 3.1c; 13 out of 13 cells): only a small, slow dendritic 

depolarisation was observed (Fig. 3.1d; peak amplitude 4.6 ± 0.5 mV vs 40.2 mV ±1.2 mV for 

the physiological CF input; p < 10"12, peak dV/dt 6.3 ± 0.4 mV/ms vs 60.2 mV ± 4.4 mV/ms for 

the physiological CF input; p < 10"7), reflecting in part the passive backpropagation of the 

somatic spikes (see Fig. 3.1c inset).

A similar result could be seen in all dendritic recordings made during somatic EPSG injection 

(n = 53, recorded at 110 ± 24 ^m). However, on occasion (in 15/53 cells), strong EPSG 

injection to the soma could eventually trigger dendritic spikes in the dendrites (Fig. 3.2a). 

These dendritic spikes, nevertheless, always occurred at some considerable delay after the 

end of somatic burst generation, indicating that they could not be responsible for burst 

generation (Fig. 3.2b). Their timing was also later than the end of conductance clamp 

generated bursts in which no dendritic spike was seen at the recorded dendritic location (Fig. 

3.2b). This makes it unlikely that dendritic spikes were indeed present (and responsible for 

somatic burst generation) at some unrecorded dendritic location during successful 

conductance clamp mimic of the complex spike.
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Figure 3.1: Dendritic spikes are not necessary fo r the generation of the CS

A) The electrode configuration during paired dendritic and somatic patch clamp recording during both climbing fibre 
stimulation (via the grey electrode) and two electrode synaptic-like conductance injection. Illustrated on an image of the 
biocytin filled Purkinje cell recorded from in B and C.
B) CF response recorded simultaneously at the soma (lower traces) and 110 pm away in the dendrites (upper traces). CF 
stimulations evoked CSs in the soma together with characteristic dendritic calcium spikes.
C) Response to 150 nS somatic dynamic clamp in the same cell as shown in A, recorded simultaneously in the soma and 
dendrites. At the soma, CSs are generated that are well matched to those evoked by CF stimulation (spike times differed 
by < 18 %, heights by <10 %), but no spikes are recorded in the dendrites.
D) Average height and dV/dt of events recorded in the dendrites in response to CF stimulation or somatic dynamic clamp 
of an amplitude that matched the CS at the soma (n = 13 cells, significant difference by both measures, p < 10"7). Circles 
show the within-cell averages (averages of the data shown in B and C highlighted in red); bars show the average ± SEM 
of the total data.
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Figure 3.2: Somatic Gsyn occasionally triggers late dendritic spikes, but these are not responsible fo r somatic 
CS-like bursts.

A) Example of 300 nS somatic Gsyn which occasion triggered dendritic spikes, simultaneously recorded at the soma 
(bottom) and 110 pm away in the dendrites (top). Trials where no dendritic spikes were recorded (left) separated from 
those displaying a dendritic spike (right).
Note that when dendritic spikes were recorded they occurred well after the end of the CS-like bursts (their peak time was 
later than the end of bursts both in the examples displaying dendritic spikes and those that had no evidence of spikes in 
the dendritic recordings).
B) Timing of dendritic spikes and the final spikes of somatic bursts (both when dendritic spikes were simultaneously 
recorded and when they were not) relative to the beginning of somatic Gsyn injection. Black circles and lines; averages 
from individual data sets (n = 10) (red highlights data from example shown in A), blue bars; population mean ± SEM.



Chapter 3: Dendritic calcium spikes and the complex spike 152

Contribution of dendritic calcium spikes to somatic output during CF triggered 

complex spikes

These dendritic recordings have demonstrated that the somatic complex spike can be 

generated independently of a dendritic calcium spike, i.e. that dendritic calcium spikes are not 

necessary for complex spike generation. How then do dendritic calcium spikes contribute to 

the complex spike? I addressed this question by taking advantage of the stochastic nature of 

spike generation at threshold, where, by setting the tonic holding current at the appropriate 

value, the dendritic CF response could alternate by chance between one and two (or 

sometimes between two and three) dendritic spikes. In this way the effect of adding a 

dendritic calcium spike could be assessed on the somatic complex spike. Using this 

approach, I found that an extra calcium spike had a surprisingly small effect on the complex 

spike waveform at the soma. Two examples, taken from the lower and upper quartiles of the 

data range, are shown in figure 3.3. In the Purkinje cell shown in Fig. 3.3a, the addition of a 

second dendritic calcium spike did not produce any additional spikelets in the somatic 

complex spike, only a small additional depolarisation (~5 mV) following the last spikelet. In 

contrast, in the Purkinje cell shown in Fig. 3.3b, an extra dendritic calcium spike could, in 

some trials, trigger an additional spikelet in the somatic complex spike. On average, 0.81 ± 

0.10 extra somatic spikes were induced by the extra dendritic calcium spike in this neuron; 

Fig. 3.3c, p < 10'6). Thus, even in a cell where a calcium spike had relatively strong effects, it 

added less than one spike on average to the somatic complex spike. Across the population of 

cells, an extra dendritic calcium spike added only 0.24 ± 0.09 spikes to the somatic complex 

spike burst of 3.3 ± 0.4 spikes (Fig. 3.3c, weighted mean ± SEM, n = 21, p < 0.01). The 

strength of the effect of an extra dendritic spike was not dependent on age (P18-24, r = 0.05, 

p = 0.82) or on dendritic recording distance (r = 0.2, p = 0.37).

The failure of axonal propagation of some spikelets in the complex spike (Khaliq and Raman, 

2005; Monsivais et al., 2005) might further weaken the effect of extra dendritic spikes on 

Purkinje cell output. Small spikelets that occur at short interspike intervals tend to fail at some 

point in the axon. I again applied the separatrix based on spike height and ISI (Monsivais et 

al., 2005, see Fig. 1.8) to the events triggered by dendritic spikes (Fig. 3.4a,b). This predicts 

that only ~25 % of the extra somatic spikelets are tall enough and at a sufficiently long interval 

after the preceding spike to successfully propagate down the axon.

These experiments demonstrate that, in contrast to the strong influence of the size of the 

massive CF input (see Chap 1), dendritic spikes have only a weak effect on the somatic 

complex spike, and an even weaker influence on the axonal burst output.
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Figure 3.3: Dendritic spikes have only a very weak influence on the somatic CS triggered by CF stim ulation

Ai) Recording configuration of experiment. The dendritic recording electrode was 80 pm from the soma, (ii) Multiple 
superimposed CF responses recorded at the soma (bottom) and dendrite (top) of cell in A. Left, responses with one 
dendritic spike (4 sweeps); right, responses with two dendritic spikes (5 sweeps). Note that in this example, somatic 
spiking is the same regardless of the number of dendritic spikes, and that the second dendritic spike only produces a 
small response at the soma.
Bi) A second example where dendritic spikes have a stronger effect on the soma. The dendritic recording electrode was 
125 pm from the soma, (ii) Threshold for a second dendritic spike occurred when a somatic holding current of -160 pA 
was applied (left, 1 spike, 29 sweeps; right, 2 spikes, 32 sweeps). In some CF responses, a second dendritic spike 
triggered an additional somatic spike (0.81 ± 0.10 spikes added). Responses in which the second dendritic spike occurred 
<2 ms after a somatic spike are shown in red; in these cases, either no further somatic spike, or only a small somatic 
spikelet occurred. Scale bar in A also applies to B.
C) Average number of somatic spikelets triggered by an extra dendritic spike. "A", "B", mean ± SD of the data shown in 
A and B; "all data", averages from individual datasets (circles) and weighted mean ± SEM of all datasets (n = 21; bar). On 
average, 0.24 ± 0.09 additional somatic spikes (significantly different from 0, p<0.01) were triggered by an extra dendritic 
spike.
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Figure 3.4: Predicted axonal propagation of dendritic spike triggered som atic s p ik e le ts

A) Height of somatic events triggered by extra dendritic spikes plotted against their la tency after the preceding somatic 
spikelet. Cases where a spike is successfully triggered coloured blue; failures coloured red.
B) The separatrix derived in Monsivias et al 2005 (black, derivation shown in fig 1.9) w a s  used to predict which of the 
somatic spikelets might be propagated down the axon. Only ~25% of the somatic sp ike le ts  triggered by dendritic spikes 
are predicted to propagate down the axon (blue). Events that are not predicted to propagate are shown in red (filled 
circles; somatic spikelets, open circles: somatic subthreshold depolarisations).
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Determinants of dendritic spike influence on somatic spiking

Why are dendritic calcium spikes so ineffective at triggering somatic spikelets, given the 

relatively short distance to the soma and the strong influence of synaptic input size on 

somatic spiking? There are several reasons for this. Firstly, dendritic spikes in Purkinje cells 

are relatively small and brief to begin with. I estimated the amplitude of dendritic spikes 

triggered by CF input relative to just-subthreshold events on alternating trials (Fig. 3.5ai and ii) 

and measured their width at 20% of their height above the preceding trough (Fig. 3.5ai; this 

measure was made as an alternative to measuring width at half their height above baseline 

membrane potential, as this could be confounded by the lack of hyperpolarisation between 

dendritic spikes). On average, peak amplitude was only 10.6 ±1.4 mV (Fig. 3.5c), and 20%- 

width only 3.2 ± 0.4 ms (Fig. 3.5b) (n = 9). Secondly, dendritic spikes experience substantial 

attenuation between the dendrite and the soma. Dendritic spikes measured at 115 ± 11 pm (n 

= 9) from the soma were attenuated to 34.5 ± 4.6 % of their original size by the time they 

reached the soma (Fig. 3.5a and c; note that this measure provides an upper limit on the 

degree of attenuation during a complex spike, as I rejected the occasional events which 

triggered somatic spikes). Thirdly, dendritic spikes often arrived at the soma within the 

apparent refractory period for somatic spikes. When the dendritic spike occurred < 0.8 ms 

following a preceding somatic spikelet, no additional somatic spikelet was triggered. 

Furthermore, while later dendritic spikes could successfully trigger somatic spikelets, there 

was a sigmoidal relationship between the amplitude of these somatic spikelets and the 

latency of the dendritic spike (as measured in Fig. 3.6a). An example of this is shown in Fig. 

3.6b (which corresponds to the data shown in Fig. 3.3b); early dendritic spikes fail to generate 

any active somatic events, slightly later dendritic spikes trigger small, slowly rising somatic 

spikelets while the latest dendritic events trigger full-blown spikes at the soma. A similar 

sigmoidal relationship was seen across all data sets (Fig. 3.6c), with the half-maximum of 1.4 

ms. However, even when the dendritic spike occurred well outside the apparent refractory 

period for a somatic spikelet, it was still often unable to trigger an additional somatic spikelet. 

This was because the somatic depolarisation caused by the dendritic spike was below 

threshold for generating a somatic spikelet (Fig. 3.6e, p < 0.03, paired t-test).

Together, these characteristics explain why dendritic spikes have a relatively weak influence 

on somatic spikelet generation. As a consequence, there was not a consistent temporal 

relationship between a dendritic spike and the somatic spikelets within the complex spike. 

Specifically, the peaks of individual dendritic spikes could either occur both before or after a 

the somatic complex spikelet that they triggered (Fig. 3.7a). This indicates that somatic 

spikelets are not simply reflections of forward propagated dendritic spikes. In fact, the timing 

of the extra somatic spike appears to be strongly influenced by intrinsic axosomatic 

properties. The later a dendritic spike occurs after the penultimate somatic spike, the earlier 

the extra spike occurs relative to the dendritic spike (Fig. 3.7b). If the somatic ISI was 

independent of the dendritic Ca2+ spike time, the slope of this relationship would be -1 

(conversely, if it was entirely dependent on the Ca2+ spike time, the slope would be 0):
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Figure 3.5: Dendritic spikes during the CS are small, brief and highly attenuated.

A) Illustration of the method used to measure the duration, amplitude and attenuation of dendritic spikes during the 
complex spike.
i) Example of an event with an extra dendritic spike recorded simultaneously in the dendrite (light blue) and soma (red), 
together with the dendritic and somatic averages of events that lacked extra dendritic spikes but had a similar somatic 
firing pattern (black). Spike width was measured at 20% of the height of the dendritic spike above the preceding trough 
(blue arrow). To measure the amplitude of individual extra dendritic spikes and the somatic depolarisations they cause, 
the ‘no extra spike’ dendritic and somatic averages, respectively, were subtracted. The peak differences in depolarisation 
(blue circles) were measured (blue arrows). The somatic height as a percentage of dendritic height yielded attenuation.
B) Average extra spike width at 20% height. Individual data set averages; black circles (red circle highlights data set 
shown in A, population average ± SEM (n=9).
C) Average extra dendritic spike and somatic depolarisation height above ‘no extra spike’ events (left) and extra dendritic 
spike attenuation (right).
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Figure 3.6 Dendritic spikes are often w ith in a refractory period or below threshold fo r triggering a som atic spike 
in the CS.

A) Illustration of the measurements made of dendritic spike time and resulting somatic event height. Horizontal arrow: 
time between the extra dendritic spike and the spike preceding the somatic event. Vertical arrow: somatic event height, 
measured as difference between preceding trough minimum and event maximum; this height is normalised by the height 
(above average baseline Vm) of the first spike of the CS.
B) Dependence of somatic event height on dendritic spike time, measured as shown in A, for the data shown in (fig 3.3 
Bii). Red points: cases where an extra dendritic spike failed to trigger a spike, generating only a subthreshold depolarisa­
tion; blue points: cases where an extra spike triggered a somatic spike. Refractory trend highlighted by sigmoidal fit 
(black); half maximum was at 1.7 ms.
C) Dependence of somatic event height on dendritic spike time, total data from 19 data sets plotted together, binned 
according to the time intervals marked by the x axis ticks. Red and blue points as in C. Refractory trend highlighted by 
sigmoidal fit to blue points, constrained to a baseline height of 0; half maximum was at 1.4 ms.
D) Illustration of the measurements made in order to compare the amplitude of events where no somatic spikes were 
triggered (red) to the threshold for generating somatic spikes in the same cell (blue). See methods for details of threshold 
location. Amplitude was calculated by subtracting the preceding trough’s minimum from the peak of spike failure 'bumps’ 
or from the voltage at threshold.
E) Height of spike failures compared to spike threshold in the same cell. Red circles highlight averages from the data-set 
illustrated in (fig 3.3 Bii). Bars show total data average ± SEM (n = 7, sig. diff p < 0.03, paired t-test).
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Figure 3.7: Lack of temporal relationship between dendritic spikes and somatic spikelets

Ai) Illustration of measurements made to investigate temporal relationship between extra dendritic spikes and the somatic 
spikelets they succeed in triggering. Left-most arrow, interval A: time between the penultimate somatic spike and the extra 
dendritic spike; right-most arrow, interval B: time between the extra dendritic spike and somatic spike it triggers, 
ii) Example of a complex spike in which the triggered somatic spike occurs before the peak of the dendritic spike.
B) Relationship between the latency of triggered somatic spikes (interval B) and dendritic spike latency (interval A). Note 
that the somatic spikes neither occur at a consistent latency after the dendritic spikes (as would be expected if the somatic 
spikes were direct reflections of dendritic spikes) nor in an inverse latency relationship with a slope of -1 (as would be 
expected if the somatic firing interval was unaffected by the timing of the dendritic spike). The slope of -0.5 indicates that 
somatic spike timing was influenced, but not wholly determined by dendritic spike time.
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I find a slope of -0.54, indicating that the somatic spike timing was influenced, but not wholly 

determined, by the dendritic spike time.

Effect of dendritic spikes on somatic spike generation during somatic conductance 

injection

By recording the chance occurrence of extra dendritic calcium spikes during climbing fibre 

stimulation I have found that these dendritic spikes have a weak influence on the complex 

spike as they propagate poorly to the soma. One limitation on their propagation might be the 

dendritic distribution of synaptic conductance, which should make the dendritic transmission 

path considerably more leaky. To address this limitation, I carried out an analogous set of 

experiments in which dendritic current injection was used to trigger, at threshold, varying 

numbers of dendritic calcium spikes during somatic EPSG injection evoked complex spikes 

(Fig. 3.8a). This had a similar, but even weaker effect than physiologically-triggered dendritic 

spikes; adding a single dendritic spike, triggered only 0.1 ±0.1 additional spikelets in the 

somatic complex spike (Fig. 3.8b, not significantly different, p = 0.37). This indicates that the 

influence of dendritic spikes on somatic spiking is weak even when the CF synaptic 

conductance is not widely distributed in the dendritic tree, along the path of propagation.

Similarly, dendritic spikes generated during somatic conductance clamp failed to trigger extra 

somatic spikes as they too often arrived within the somatic refractory period or were below 

spike threshold (Fig. 3.9a and b). There was again a sigmoidal relationship between triggered 

somatic spike amplitude and dendritic spike latency (Fig. 3.9a), indicating that only if the 

dendritic spike occurred sufficiently long after the previous somatic spike could it generate 

and extra somatic spike. In combination with this, the somatic depolarisations caused by extra 

dendritic spikes were often below somatic spike threshold (Fig. 3.9b, p < 0.04, paired t-test). 

Further, any extra somatic spikelets were again not direct reflections of dendritic spikes, 

occurring both before and after the extra dendritic spikes. Within most data sets there was a 

negative relationship (of a similar slope to that seen during CF stimulation) between dendritic 

spike timing (latency after the previous somatic spike) and somatic spike timing (relative to 

the dendritic spike) (Fig. 3.9c). The lack of a single relationship between dendritic and somatic 

spike timing across the population of experiments is likely to be because dendritic spikes 

occurred at a much more variable latency after somatic spikes. The timing of these spikes 

were determined by inputs of unrelated amplitude, whereas, following CF stimulation the 

common underlying synaptic input is likely to influence the timing of both dendritic and 

somatic spikes.
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Figure 3.8: Dendritic spikes have a very weak influence on the somatic CS triggered by somatic conductance 
injection.

Ai) Biocytin staining of a Purkinje cell illustrating the experimental setup. Two somatic patch clamp electrodes (blue) were 
used for two-electrode dynamic clamp injection of synaptic-like conductance (xri?e 0.3 ms, t decay 3 ms), a dendritic 
electrode (125 pm from the soma, in this case) was used to inject current a phasic biexponential of xrjse 0.5 ms and xdecay 
5 ms, which triggered dendritic calcium spikes, together with a tonic current adjusted to take the cell to threshold for 
triggering a second dendritic spike.
ii) Recordings made from the cell shown in Ai while injecting 200 nS peak synaptic-like conductance to the soma, together 
with 3 nA peak phasic current and 80 pA tonic current to the dendrite. This took the cell to threshold for generating a 
second dendritic calcium spike. Layout as in (fig 3.3 Aii). The second dendritic spike (right hand column) triggered no 
further somatic spikelets.
B) Average number of somatic spikelets triggered by an extra dendritic spike during somatic dynamic clamp. Average ± 
SD of the data shown in Aii labelled CSA’; individual data-set averages (circles) and weighted mean ± SEM of all data 
sets (bar) (n = 19) labelled ‘all data’. On average, 0.1 ± 0.1 somatic spikes (not sig. diff. to zero, p = 0.37) were triggered 
by an extra dendritic spike.
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Figure 3.9: Dendritic spikes are often within the somatic refractory period during somatic dynamic clamp gener­
ated CSs.

A) Dependence of somatic event height on dendritic spike time, measured as shown in (Fig. 3.6 A). Red points: cases 
where an extra dendritic spike failed to trigger a spike, generating only a subthreshold depolarisation; blue points: cases 
where an extra spike triggered a somatic spike. Refractory trend highlighted by sigmoidal fit to blue points, constrained to 
a baseline height of 0.
B) Height of spike failures compared to spike threshold in the same cell (measured as in (fig 3.6 D)). Red circles highlight 
averages from the data-set illustrated in (aii). Bars show total data average ± SEM (n = 6, sig. diff p < 0.04, paired t-test).
C) Relationship between timing of somatic spikes triggered by extra dendritic spikes and dendritic spike time. Individual 
data sets coloured and fit separately. Fit from (fig 3.7 B) appended in blue for comparison. The negative relationships 
between these two timings illustrates that the spikes triggered at the soma are not direct reflections of dendritic spikes; 
that slopes are <-1, however, indicates that somatic spike timing was not entirely independent of dendritic spike timing.
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Net effect of calcium channels on complex spike generation during somatic 

conductance injection

The experiments presented so far in this chapter have demonstrated that dendritic calcium 

spikes are not required for complex spike generation and indeed are poor promoters of 

somatic spiking when they are present (regardless of the distribution of synaptic input). One 

further method is available to assess the net effect of Purkinje cell calcium conductances on 

the somatic EPSG triggered complex spike; as this does not rely on synaptic transmission, 

calcium channels can be pharmacologically blocked. This was achieved by washing in 

sufficient concentration of CdCI2 to block the CF stimulation evoked EPSP (400 p,M). CdCI2 

wash-in lead to depolarisation of the cells resting membrane potential to ~40 mV, and thus to 

inactivation of spontaneous spiking: tonic holding current (-50 to -500 pA) was therefore used 

to hyperpolarise to cell to ~-65 mV both before and during CdCI2 application. I found that, 

under these conditions, blocking calcium channels surprisingly lead a more excited complex 

spike (n = 10 cells). Spikelets in the complex spike occurred at a higher frequency, and 

continued for a longer time following somatic EPSG injection, both factors contributing to an 

increase in the number of spikelets in the complex spike (Fig. 3.10a and b). On average 

(across all amplitudes of EPSG injection, n = 20; increases were similar for injections of 100, 

200, 250, 300 and 500 nS peak synaptic-like conductance injection), the frequency of 

spikelets (measured in the initial four spikelets) increased by 132 ± 54 %, the duration of 

spiking by 1023 ± 254 % and the total number of spikes by 637 ± 125 %.
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Figure 3.10: Blocking Ca2+ channels enhances excitable response to Gsyn

A) Example of responses of a Purkinje cell to a 300 nS EPSG before (top) and after (bottom) calcium channels were 
blocked with 400 pM CdCI2. Tonic current injection was used to hold the cell at ~ -65 mV as CdCI2 changed the resting 
membrane potential. Inset (right) shows same data on a longer time scale in order to illustrate not just the increase in firing 
frequency in CdCI2, but the increased duration of the response, which together lead to an increased number of spikes in 
the complex spike.
B) Average number of spikes, duration of spiking and firing frequency of the response to a 100 nS EPSG (at -65 mV) 
before and after addition of 400 pM CdCI2 (n = 7 cells). Average firing frequency calculated from the first four spikes in the 
complex spike.
C) Average % increase in number of spikes, duration of spiking and firing frequency in response to all EPSG amplitudes 
(a selection from 100, 200, 250, 300 and 500 nS in each of 7 cells). All increases are significantly above 0 (p < 0.0005, p 
< 0.001, p< 0.05 respectively).
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Dendritic spikes in the complex spike modulate the post-complex spike pause

The effect of CdCI2 highlights one further way in which CF triggered dendritic calcium spikes 

might influence Purkinje cell output: by modulating spontaneous firing. While I have 

demonstrated that dendritic spikes have a remarkably weak electrical effect on the somatic 

complex spike waveform, CF stimulation is also associated with a pause in spontaneous 

spiking following the complex spike (Bloedel and Roberts, 1971; Latham and Paul, 1971; 

Armstrong and Rawson, 1979; Sato et al., 1992; Karakossian and Otis, 2005). The 

mechanisms underlying the generation and duration of this pause are not well understood. 

Armstrong and Rawson (1979) found, in vivo, that pause length depends on the spontaneous 

simple spike firing rate (data reproduced in Fig. 3.11a); I found this to hold true in vitro. Only 

at fairly low spontaneous firing rates (> 20 - 25 ms ISI in the majority of cells) did the length of 

the pause start to exceed one spontaneous ISI (Fig. 3.11b).

The dependence of the post-complex spike pause on dendritic calcium spikes was 

investigated by examining my somatic and dendritic recordings (Fig. 3.12a). I found that an 

extra dendritic spike lengthened the post-complex spike pause by 15.3 ± 3.1 ms (Fig. 3.12b, p 

< 0.001), representing a 47 ± 11 % increase in pause duration (Fig. 3.12c) or a further 0.59 ±

0.14 ISIs quiescence before spontaneous spiking resumed. The effect of the extra dendritic 

spike on the pause was independent of the number of extra spikelets added to the somatic 

complex spike (r = 0.36, p = 0.30), and was also independent of the spontaneous firing rate (r 

= -0.35, p = 0.29). The effect of dendritic spikes on the post-complex spike pause could also 

be assessed by comparing CF evoked events to those generated by somatic EPSG injection, 

and so lacking dendritic spikes (Fig. 3.13a). The pause following climbing fibre stimulations 

that evoked only 1 dendritic spike was, on average, 3.8 ± 1.6 ms longer than that following 

EPSG evoked complex spikes (Fig. 3.13b, p < 0.05, n = 11), corresponding to a 31 ± 12 % 

(Fig. 3.13c) increase in pause duration or a further 0.22 ± 0.09 ISIs worth of pause.

One way in which dendritic calcium spikes might influence the post-complex spike pause is 

through activation of hyperpolarizing conductances (e.g. calcium activated potassium 

channels). I therefore measured the amplitude of post-complex spike after-hyperpolarisations 

(AHPs) (Fig. 3.14a). A second dendritic spike increased dendritic AHPs by 3.4 ± 0.7 mV ((Fig. 

3.14 b and c, weighted mean ± SEM, p < 0.001); a similar change in somatic AHPs was also 

seen. Pause duration was correlated with the amplitude of the dendritic AHP across all data 

sets (Fig. 3.14d, n = 11, r = -0.89, p < 10'16) and an extra dendritic spike caused both larger 

AHPs and longer pauses.

These data suggest that, from the point of view of the postsynaptic deep cerebellar nuclei 

(DCN) neurons, the most salient effect of dendritic spikes may be to increase the pause 

following the complex-spike rather than the number and timing of spikelets in the complex 

spikes themselves.
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Figure 3.11: Post-complex spike pause duration depends on spontaneous firing rate

A) Data from Armstrong & Rawson, 1979 demonstrating the relationship between spontaneous simple spike firing and 
post-CS pause duration in vivo. The unity line, where the post-CS pause is identical to one spontaneous ISI, is shown 
(dotted line). These examples (n = 3 cells) were used to illustrate their observation that pauses only tended to exceed one 
spontaneous ISI when the firing rate was low; “less than 40-50/s”.
B) Relationship between spontaneous firing and the post-CS pause duration in vitro (n = 17 cells, colours highlight data 
from 5 individual cells). Dotted line: unity line. Note that the trend is similar to that found in vivo, and the generalisation 
that pauses only exceed one spontaneous ISI when spontaneous firing rates are below 40-50/s applies to most cells.
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Figure 3.12: Dendritic calcium spikes have a strong influence on the post-complex spike pause.

A) Example of data collected at threshold for generating a second dendritic calcium spike in response to CF stimulation, 
on a time scale that shows the post-complex spike pause, separated according to the number of dendritic spikes. Upper 
panels: one dendritic spike, lower panels: two dendritic spikes; left panels: dendritic recordings (60 pm from the soma), 
right panels: somatic recordings. Arrows indicate pause length measurement (time between the last spikelets in the 
complex spike and the next spontaneous spike) made in the red example traces. An extra dendritic spike increased the 
pause from 28.0 ± 17.9 ms to 50.0 ± 12.7 ms (p < 0.01).
B) Average increase in pause length triggered by an extra dendritic calcium spike (in msec). Circles show averages of 
individual datasets (dataset shown in (A) highlighted in red), bar indicates weighted mean ± SEM of the population data 
(n = 11, significantly different from 0, p < 0.0005).
C) Average increase in pause length triggered by an extra dendritic calcium spike (as % of pause length without extra 
dendritic calcium spike). Circles and bars as in (B) (n = 15, significantly different from 0, p < 0.005).
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A) Example experiment where somatic EPSG injection was tuned to match the somatic firing pattern, shown on a longer 
time scale to illustrate the length of the post-complex spike pause. Upper panels, 100 nS somatic EPSG (hence no 
dendritic spikes), lower panels, 1 Hz CF stimulation stimulating one dendritic spike; left hand panels dendritic recordings 
(110 pm from the soma), right hand side, somatic recordings. Arrows indicate pause length measurement (time between 
the last CS spikelets and the next spontaneous spike) made in the red example traces. The presence of a dendritic spike 
lengthened the pause from 8.4 ± 1.3 ms to 13.3 ± 1.1 ms (p < 10'10).
B) Average pause length increase following CF stimulation above that following somatic EPSG injection (in ms). Circles 
show averages of individual data sets (data set shown in A highlighted in red), bar indicates mean ± SEM of the population 
data (n = 12, sig diff from 0, p < 0.05).
C) Average pause length increase following CF stimulation above that following somatic EPSG injection (as % of pause 
length without extra dendritic calcium spike). Circles and bars as in B (n = 12, sig diff from 0, p < 0.05).
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Figure 3.14: Dendritic spikes regulate the AHP follow ing the complex spike

A) Dendritic recording (155 pm from the soma) of responses to CF stimulation collected at threshold for generating a 
second dendritic calcium spike (blue: one dendritic spike, red: two dendritic spikes). The black arrow indicates the 
measured difference in AHP amplitude; red and blue arrows mark the time of somatic action potentials (reflected as small 
depolarisations in the dendritic recording) that terminate the post-complex spike pause in the one and two dendritic spike 
traces, respectively.
B) Average dendritic AHP (minimum dendritic membrane potential reached during the pause minus average baseline 
dendritic membrane potential preceding CF stimulation) following CF stimulation that evokes, at threshold, 1 or 2 dendritic 
calcium spikes. Lines connect 1 and 2 spike data from the same set; the data set shown in A is highlighted in colour.
C) Average change in AHP amplitude caused by an extra dendritic spike. Circles show averages of individual datasets 
(dataset shown in A highlighted in red), bar indicates weighted mean ± SEM of the population data (n = 11, significantly 
different from 0, p < 0.001).
D) Relationship between post-complex spike pause duration and dendritic AHP amplitude. Each datapoint represents a 
single measurement made following CF stimulation at threshold for generating an extra dendritic spike (n = 11 cells; blue 
symbols: sweeps with 1 dendritic spike trials, red symbols: sweeps with 2 dendritic spikes). Black line indicates the 
negative correlation between pause length and AHP depth (r = -0.89, p < 10'16).
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Modulation o f post-com plex spike pausing by bursts o f CF stim ulation

As I found that bursts of CF stimulation could somewhat increase the number of spikes 

triggered in both the soma and dendrite (Fig. 1.9 and 1.10), I examined their effect on the 

pause following the compound complex spike response. In general, increasing the number of 

CF stimuli in a burst tended to decrease the duration of the post-complex spike pause. In 4/10 

somatic recordings, a decrease in pause duration was seen with every additional CF 

stimulation (over 1 - 7  stimuli with an interstimulus interval of 1, 2 or 3 ms); however in the 

remaining cells an increase in pause duration was observed in some instances. Simultaneous 

dendritic recordings (e.g. Fig. 3.15a) revealed that the post-complex spike pause tended to 

decrease with further CF stimulations in the burst (Fig. 3.15b), unless an additional dendritic 

calcium spike was triggered (as marked with star symbols in Fig. 3.15b). Addition of an extra 

two stimuli to the burst of CF input (increasing the number of stimulations from 1 to 3, 3 to 5 

or 5 to 7, at an interstimulus interval of 1, 2 or 3 ms) decreased the post-complex spike pause 

by 31 ± 4 % (n = 29 data sets, p < 10"7), unless an extra dendritic spike was triggered, when 

the pause was increased by 106 ± 26 % (n = 7 data sets, p < 0.01). The decrease following 

further CF stimulation without evoking further dendritic spikes was smallest at the highest 

frequency of CF stimulation (1 ms interstimulus interval, grey bar on Fig. 3.15c; a 18 ± 5 % 

decrease compared to a 38 ± 6 % decrease with an interstimulus interval of 2 ms, p < 0.05). 

These differences in pause length provide an example of the circumstances in which the 

appearance of an extra dendritic spike might be used to communicate to the DCN the 

strength and plasticity producing potential of the input to the Purkinje cell.
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Figure 3.15: The pause follow ing bursts of CF input

A) Example of data recorded simultaneously from the dendrite (left 85 pm) and the soma during bursts of CF stimulation. 
Dendrite shown on a larger time scale to show the number of dendritic spikes evoked. The cell’s CF was stimulated 1, 2, 
3, 5 or 7 times (top to bottom) every 2 ms (yellow arrows). Post-CS pauses of red example traces highlighted by blue 
arrows. Note that pause duration decreases with increasing number of CF-stimulations, except in the when further 
dendritic calcium spikes are also evoked, when pause duration increases.
B) Average pause duration vs number of CF stimulations for the data shown in (A) (blue); pauses resulting from bursts of 
CF stimulation at higher and lower frequencies in the same cell also shown (grey and green). Responses where further 
dendritic calcium spikes were evoked marked by *.
C) Change in pause duration following addition of two CF stimulations to the burst of input (n = 4 data sets). When no 
further dendritic spike was evoked (left), additional CF stimulation shortened the length of the post-CS pause; when extra 
dendritic spikes were stimulated, pause length increased (right). Data separated according to burst frequency (grey, dark 
blue and green bars) or at all stimulation frequencies (light blue bar).
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Chapter 3: Discussion

These results address the long-standing question of the role of the Purkinje cell’s 

conspicuously active dendrites in complex spike generation. Surprisingly, the prominent 

dendritic spikes triggered by CF activation play only a very minor and indirect role in the 

generation of this stereotyped axonal burst. I found that dendritic spikes propagated poorly to 

the soma and were often below spikelet threshold or within its refractory period, and thus 

usually failed to trigger an additional axo-somatic spike. Consistent with these findings, I 

found that a distributed pattern of dendritic synaptic input, while triggering dendritic calcium 

spikes, is not necessary for generation of the complex spike burst. These results support a 

model of the Purkinje cell in which the dendrites are functionally separate from the axon and 

soma during complex spike burst generation. I have identified a new role for the pronounced 

dendritic spikes as a regulator of the pause following the complex spike, which complements 

their roles as local triggers for synaptic plasticity and regulators of intrinsic firing.

Dendritic spikes are neither necessary nor sufficient to produce the complex spike

The weak effect of dendritic spikes on complex spike generation is shown dramatically by the 

ability of a somatic synaptic-like conductance to closely mimic the complex spike waveform 

independently of the generation of dendritic spikes. I find that, although on some occasions 

somatic conductance clamp can depolarise the cell sufficiently to produce dendritic spikes, 

these spikes are not responsible for producing the complex spike-like burst at the soma. They 

may, however be responsible for the modulation of Purkinje cell intrinsic properties that 

(McKay et al., 2007) observe is possible with both with CF stimulation and somatic synaptic- 

like current injection. McKay et al. note that following their somatic current injections, events 

resembling dendritic calcium spike discharge were generated. They also found that increasing 

the buffering of internal calcium or blocking KCa channels prevented the state transitions 

(between silent and tonic firing modes of the Purkinje cell in slice) and the stabilisation of 

trimodal firing patterns (silence -  tonic sodium spike firing -  tonic calcium spike triggered 

bursting (Womack and Khodakhah, 2002a; Womack and Khodakhah, 2004)) that were 

triggered by CF stimulation or somatic current injection, respectively. I demonstrate that the 

Ca2+ spikes that appear to be necessary for intrinsic firing regulation, and for synaptic 

plasticity (reviewed in Ito, 2002) are not an integral part of complex spike generation. 

Furthermore, I have found that they are far more readily evoked by CF stimulation than by 

somatic conductance injection. This is likely to be because dendritically distributed synaptic 

input effectively depolarises the dendrites to calcium spike threshold (Roth and Hausser, 

2001, see also Introduction to Chap 2), whereas somatic EPSG injection results in a burst of 

rapid somatic spikes, which are poorly backpropagated (Stuart and Sakmann, 1994), together 

with a slower, small increase in baseline depolarisation, which is more effectively
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backpropagated, but usually of insufficient amplitude to trigger dendritic calcium spikes (Fig 

3.1). In addition, the isolation of the dendrites from the fast spiking conductances of the soma 

allows sufficiently large input to trigger full blown, slower time course calcium spikes. I 

propose that it is this reliable generation of calcium spikes, necessary for modulation of 

spontaneous firing and intrinsic and synaptic plasticity, that is the limiting factor on the 

positioning of CF inputs on the Purkinje cell, rather than the generation of the complex spike 

burst.

The calcium spikes that are triggered after somatic conductance injection also illustrate the 

fact that they are not sufficient to generate the complex spike: they do not on their own trigger 

this characteristic burst of firing (see e.g. Fig. 3.2). This is true of the many other situations in 

which spikes are triggered in Purkinje cell dendrites e.g. strong parallel fibre stimulation 

(Llinas and Nicholson, 1971; Callaway and Ross, 1997; Rancz and HSusser, 2006; Walter 

and Khodakhah, 2006; Mittmann and HSusser, 2007; Steuber et al., 2007) depolarising 

current injection to the soma or dendrites (Llinas and Sugimori, 1980b, a; Hounsgaard and 

Midtgaard, 1988) or during the bursting phase of the trimodal firing pattern sometimes seen in 

Pukinje cells in slice (Womack and Khodakhah, 2002a; Womack and Khodakhah, 2004). In all 

these situations dendritic spikes can accelerate somatic firing, but in none is the characteristic 

burst of the complex spike reproduced. Dendritic spikes are therefore neither necessary nor 

sufficient to generate the complex spike.

Propagation of dendritic spikes

Our simultaneous somatic and dendritic recordings directly demonstrate that the dendritic 

spikes triggered by CF input do not directly trigger somatic spikelets in the complex spike. 

Rather, by manipulating the number of dendritic spikes, I have shown that they have a 

surprisingly weak influence on the somatic complex spike, only generating a fraction of an 

extra spike at the soma. These findings parallel the relatively weak effect of local suppression 

of the dendritic complex spike by dendritic inhibition on the somatic complex spike (Callaway 

etal., 1995).

The irrelevance of dendritic spikes for somatic spiking during the complex spike may initially 

seem puzzling given the relatively short dendrites of the Purkinje cell, their predominantly 

large calibre, and the widespread nature of dendritic spikes during the complex spike. 

However, I have demonstrated that the weak efficacy of dendritic spikes in these neurons is 

due to a combination of factors. Dendritic spikes in Purkinje cells are relatively brief and of 

small amplitude, in striking contrast to the ~80 mV, ~60 ms dendritic Ca2+ spikes recorded in 

layer 5 pyramidal cells (Zhu, 2000). This alone reduces their spike triggering potency. Further, 

the propagation of dendritic spikes to the soma and axon is associated with substantial 

attenuation in Purkinje cells. This is due in part to the unfavourable impedance mismatches
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associated with the highly branched geometry of the Purkinje cell dendritic tree; this is 

particularly unfavourable to the forward propagation of brief, active events (Vetter et al., 2001, 

see also Main Introduction). Additionally, the strong synaptic and voltage-gated shunting 

conductances active during the climbing fibre response may also enhance attenuation 

(indeed the attenuation may be greater during later dendritic spikes, due to the activation of 

active conductances by previous spikes, as suggested in Llinas and Nicholson, 1971). 

However, isolated dendritic spikes, generated in the absence of distributed CF stimulation of 

the Purkinje cell, are attenuated to a similar, or indeed more severe, extent (see Fig. 3.8 and 

Rancz and Hausser, 2006). This suggests that the widespread nature of dendritic spike 

initiation during the complex spike may actually aid propagation to the soma, by reducing the 

axial current between branches and thus partially mitigating the impedance mismatch. The 

last point at which further attenuation may occur is in the soma itself, where the conductances 

underlying fast spikelet generation may shunt out the propagated depolarisation (Hdusser et 

al., 2001). These conductances are large (Raman and Bean, 1999; Swensen and Bean, 

2003, 2005), and unpublished data (Christensen, 2002) has found that dialysis of the sodium 

channel blocker QX-314 reveals somatic spiking very similar to that of the dendritic calcium 

spike, suggesting axo-somatic conductances could indeed significantly shunt out a 

propagated dendritic calcium spike. Finally, I have demonstrated that the highly attenuated 

somatic counterpart of the small dendritic spike is usually subthreshold, or within the 

refractory period of the previous spikelet. These factors acting in concert explain why dendritic 

spikes in Purkinje cells have a far weaker influence on axonal spiking than in cortical and 

hippocampal pyramidal neurons (Schiller et al., 1997; Golding and Spruston, 1998; Larkum et 

al., 1999, 2001) where a calcium spike can trigger 2.5 axonal spikes (Williams and Stuart, 

2002).

Pyramidal-cell like sequence of dendritic spike propagation

Although I have found that Purkinje cell dendritic spikes are worse triggers of somatic spikes 

than the dendritic sodium and calcium spikes of other cell types, their mode of propagation 

and spike triggering does not appear to fundamentally differ. In layer 5 pyramidal cells it has 

been found that even a dendritically initiated forward propagating spike triggers a spike first in 

the axon which then backpropagates into the soma (Stuart et al., 1997a; Stuart et al., 1997b). 

A similar scenario is predicted to occur in mitral cells (Shen et al., 1999) and, by analogy, 

CA1 pyramidal cells (Colbert and Johnston, 1996; Golding and Spruston, 1998). In Purkinje 

cells, at room temperature, the first spike of the complex spike occurs first in the axon (Stuart 

and Hausser, 1994). Direct proof that all spikelets initiate in the axon has been found by Dr 

Beverly Clark, who has made cell-attached recordings from the proximal axon (<, 75 ^m) and 

has found that every spikelet of the complex spike occurs first in the axon (in Davie et al., 

2008). This confirms that spikelets of the complex spike do not directly reflect dendritic spikes. 

It also implies that even when a dendritic spike does promote an extra somatic spike, (which
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can occur either before or after the dendritic spike, see e.g. Fig. 3.7), axonal spiking precedes 

somatic spiking; thus the pyramidal cell-like pattern of spike initiation is maintained.

That the axon continues to be the most favourable site of spike initiation throughout the 

complex spike, despite the enormous CF-triggered current that charges the soma and 

proximal dendrites, highlights the specialisations that make it the site of initiation even during 

high frequency spontaneous spiking (Stuart and Hausser, 1994; Clark et al., 2005; Khaliq and 

Raman, 2006). The axon’s narrow diameter aids initiation as it bestows both a high axial 

resistance, isolating it from the conductance and capacitance of the soma and dendrites, and 

a small, readily charged surface area (Dodge and Cooley, 1973; Mainen et al., 1995; Colbert 

and Pan, 2002). Further, specialisations of axonal voltage-gated ion channels, such as 

increased densities, specific subunit expression or negatively shifted voltage sensitivities of 

sodium channels, can also help to account for a lower axonal threshold (Wollner and 

Catterall, 1986; Mainen et al., 1995; Jenkins and Bennett, 2001; Colbert and Pan, 2002; 

Boiko et al., 2003; Meeks and Mennerick, 2007; Ogiwara et al., 2007; Kole et al., 2008). In 

fact, the very specialisations that lead to axonal initiation make it likely that the initiation site 

can follow higher firing frequencies than soma, or indeed the distal axon. As is predicted in 

Chapter 2, some spikelets may not fully actively invade the soma, particularly at the shortest 

ISIs within the complex spike; this parallels the failure of small, slowly rising spikelets 

generated at short ISIs to propagate down the Purkinje cell axon (Khaliq and Raman, 2005; 

Monsivais et al., 2005).

Functional role of dendritic calcium spikes triggered by CF inputs

The net effect of perisomatic calcium conductance activation by the complex spike appears to 

be inhibitory. Their blockage by CdCI2 causes an increase in the number and frequency of 

spikes in the complex spike generated by somatic conductance injection. This paradoxical 

effect is most likely to be the result of reduced activation of KCa channels, both during the 

complex spike and tonically, due to removal of the calcium influx necessary to activate these 

channels. This finding is consistent with the trends of initially increased firing frequency in 

Purkinje cells in slice and prolonged, more rapid spiking in response to a brief current 

injection in dissociated cells (Edgerton and Reinhart, 2003; Swensen and Bean, 2003).

In the experiments in this thesis, the CdCI2 concentration added was high (400 jiM) and 

potentially may have had non-specific effects e.g. mM CdCI2 concentrations are known to 

block neuronal sodium channels (Frelin et al., 1986; Swensen and Bean, 2003), and more 

pertinently, it has recently been found that both lA and delayed rectifier potassium channels in 

pyramidal cells are blocked by CdCI2, with IC50S of 500 - 800 ^M (Wang et al., 2008). 

However, the concentration was chosen empirically as that required to block the calcium 

dependent CF EPSP. Indeed the effective concentration of CdCI2 in solution is likely to have 

been lower than calculated, due to precipitation with the phosphate used as a pH buffer in the
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ACSF. Experiments with lower CdCI2 concentrations (in e.g. HEPES buffered ACSF) or more 

specific channel blockers (e.g. the P-type calcium channel blocker w-Agatoxin IVA) would 

ensure the reported result was indeed not due to non-specific effects.

The increased excitability observed here is likely to be due to both an increase in input 

resistance and a reduction of hyperpolarising post-spike currents. One indication that tonic 

channel activation was altered by CdCI2 wash-in was the depolarisation of resting membrane 

potential, as has previously been observed by Edgerton and Reinhart (2003) (using 100 |iM 

CdCI2). During tonic spontaneous spiking, calcium channels, BK and SK channels are all 

activated (Cingolani et al., 2002; Womack and Khodakhah, 2002; Edgerton and Reinhart, 

2003; Swensen and Bean, 2003; McKay and Turner, 2004; Swensen and Bean, 2005; Walter 

et al., 2006) and indeed the net current through Ca2+ and KCa channels together is outward 

during this simple spiking (Raman and Bean, 1999; Swensen and Bean, 2003, 2005). At the 

hyperpolarised voltage at which these experiments were carried out (-65 mV), BK and P-type 

calcium channels are not expected to be open, but an outward calcium sensitive current 

carried by SK channels may remain, due to their lack of voltage sensitivity and their greater 

calcium sensitivity (Raman and Bean, 1999; Womack and Khodakhah, 2002; Khaliq et al., 

2003; Stocker, 2004). The absolute amplitude of the input resistance change was regrettably 

not quantified in these experiments. However, it is unlikely that an increase in input resistance 

alone is responsible for the increased excitably of the complex spike response to somatic 

conductance injection. Firstly, it is known that additional calcium and KCa conductances are 

recruited by Purkinje cell spiking, especially in rapid bursts (Edgerton and Reinhart, 2003; 

Swensen and Bean, 2003; McKay and Turner, 2004; Swensen and Bean, 2005; Walter et al., 

2006). Further, our experiments found that the original complex spike patterns could not be 

restored by simply injecting smaller conductances, as might be expected if a higher input 

resistance caused only a greater voltage deflection in response to somatic EPSGs (data not 

shown). At similar initial firing frequencies, spike amplitudes were larger and the total duration 

of spiking was prolonged. This first observation was reflected in analyses of the spike height 

vs ISI (as in chapter 2), which still showed s-shaped relationships, but recovered more rapidly 

under CdCI2. Both observations are consistent with the removal of spike activated KCa 

hyperpolarising currents. Curiously, the peak depth of the AHP following e.g. the first spike of 

the complex spike pattern was not greatly altered (a similar result was observed by Edgerton 

and Reinhart (2003)). Changes in AHPs of slower timecourses could not be easily quantified 

as they were accluded by the rapid spiking evoked under CdCI2. There are several ways in 

which the source of the increased excitability of the complex spike under calcium channel 

block might be further investigated. Differences in channel activation could be investigated by 

voltage clamp, using either classical techniques or the ‘spike clamp’ method (Raman and 

Bean, 1999, 2001; Swensen and Bean, 2003, 2005). Additionally, alterations in the amplitude 

and time course conductances activated following spikes could be assessed using the 

recently described dynamic IV method (Badel et al., 2008). Dynamic clamp could also be
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engaged further; the isolated effect of removing conductances of particular kinetics (e.g. BK, 

SK or P-type calcium conductances) could be mimicked (Lien and Jonas, 2003; Vervaeke et 

al., 2006), or the difference in input resistance under CdCI2 compensated by injection of tonic 

baseline conductance.

Although these experiments do not tell us anything about the influence of dendritic spikes on 

somatic spiking (as dendritic spikes are not usually generated by somatic EPSG injection), 

they do highlight an additional route by which calcium spikes during the complex spike might, 

through the activation of KCa channels, effect the final output of the Purkinje cell.

I have demonstrated a new functional role for dendritic spikes in Purkinje cells: regulation of 

the pause in spiking following the complex spike. This pause is a well-known feature of the 

complex spike in vivo (Bloedel and Roberts, 1971; Latham and Paul, 1971; Sato et al., 1992), 

but its underlying mechanisms are unknown. My findings suggest that the calcium entry 

elicited by CF input-triggered dendritic spikes (Ross and Werman, 1987; Miyakawa et al., 

1992) may activate calcium-dependent potassium conductances (Hounsgaard and Midtgaard, 

1989; Rancz and Hausser, 2006) causing a prolonged pause before the resumption of 

spontaneous firing, analogous to the recently described pause in spiking triggered by strong 

parallel fibre input (Steuber et al., 2007). This is supported by the finding that disruption of 

calcium buffering in Purkinje cells (Schiffmann et al., 1999; Servais et al., 2005), or of calcium 

channel expression (Hoebeek etal., 2005), alters the post-complex spike pause duration.

The greatly reduced pause in the absence of dendritic calcium spikes (when the complex 

spike is evoked by somatic EPSG injection) is consistent with a much lower total KCa outward 

current, due to lack of dendritic channel activation. Similarly, the CdCI2 block of any remaining 

calcium dependent conductances during somatic EPSG injection removed the 

hyperpolarisation that terminated the complex spike, causing it to flow, without pause, into 

repeated, full amplitude spikes. However, the increase in pause duration seen when 

comparing 0 to 1 dendritic calcium spikes (somatic conductance clamp vs CF stimulation 

evoking 1 dendritic spike ) was less than the increase between 1 and 2 spikes (CF stimulation 

at threshold for generating an extra dendritic spike), and, further, a single dendritic spike does 

not always generate a large dendritic AHP (blue points in Fig. 3.14d; in fact in some cases, 

the minimum dendritic voltage during the pause was not less than baseline Vm). This may be 

due to a threshold (voltage and/or calcium concentration) for the activation of the 

conductances responsible for this AHP. If calcium spikes are not of sufficient amplitude or 

duration, the calcium influx and presumed subsequent KCa activation may not provide 

adequate outward current to arrest intrinsic simple spike generation, especially at high 

baseline firing frequencies (Fig. 3.11). The BK conductance, with its requirement for the 

depolarised voltages and high calcium concentrations (several ^M, Womack and Khodakhah, 

2002) evoked by strong calcium spike evoking stimuli (0.5 - 30 jxM, Eilers et al., 1995; Maeda
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et al., 1999), is well placed to create such a threshold. However, BK conductances close 

rapidly after depolarising events (Khaliq et al., 2003; Swensen and Bean, 2003) and the 

pause can last for 10s of ms. SK conductances show a more prolonged timecourse (~100 ms 

at room temperature, Cingolani et al., 2002, see also Swensen and Bean, 2003), and 

although they carry some resting current, the steepest part of their activation is expected to 

be at the concentrations seen following CF stimulation (EC50 of ~0.6 fiM, Xia et al., 1998; 

Hirschberg et al., 1999; Stocker, 2004). It is possible that the two conductances act in consort 

to initiate and then prolong the pause. As both these conductances are altered in density by 

development (Muller et al., 1998; Cingolani et al., 2002), together with an increase in the 

calcium buffering of the cell (Fierro and Llano, 1996), the relative contribution of each 

conductance and the calcium influx required to generate the pause might differ with 

development. In order to understand the conductances responsible for the post-complex 

spike pause at each stage of development, careful pharmacological experiments are 

required, together with the characterisation of the post-complex spike change in somatic and 

dendritic conductances (e.g. using the dynamic IV method (Badel et al., 2008)), and accurate 

modelling of the Purkinje cell calcium current, intracellular calcium buffering and Kca channel 

activation.

The CF input’s location in the dendrites is well placed to recruit the currents that create the 

post-complex spike pause. Firstly, the dendrites are isolated from fast action potential 

generation, allowing calcium spike generation. Further, the CFs distributed nature also 

ensures a large, global dendritic calcium response; similar dendritic spike waveforms are 

evoked simultaneously at electrically distant points on the main dendrites (Christensen, 2002) 

and calcium influx is seen across the cell (Ross and Werman, 1987; Miyakawa et al., 1992; 

Callaway et al., 1995; Eilers et al., 1995), aided by the distribution o f P-type calcium channels 

in all compartments of the cell (Westenbroek et al., 1995). Calcium activated potassium 

channels (both BK and SK) are, however, concentrated in the main dendrites and soma 

(Knaus et al., 1996; Cingolani et al., 2002), well placed to react to CF input and complex spike 

generation. Their apparent lower concentration in finer dendrites raises the possibility that 

there might be some non-uniformity in the dendritic recruitment of conductances. There are 

indications that CF stimulated calcium concentrations may differ in the spiny branchlets 

(Miyakawa et al., 1992; Callaway et al., 1995; Eilers et al., 1995, though careful ratiometric 

studies are required) and the downstream physiological effect of CF evoked calcium spikes 

differs from that evoked by parallel fibre simulation or local current injection (Rancz and 

Hausser, 2006). To investigate if the spiny dendrites might play a different role in the 

generation of the pause, pharmacological agents could be applied specifically to the distal 

dendrites, where spiny dendrites predominate, or to the proximal dendrites, where the main 

dendrites are located.
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I have found that the balance of currents following the complex spike is also modulated by the 

number of CF inputs stimulated. The greater the number of CF stimulations, the shorter the 

pause. Such a decrease in the length of the pause is likely to reflect the increase in excitatory 

current provided by further CF inputs. This decreasing trend continues until the point where 

further calcium spikes are added, when pause length is again increased. The duration of the 

pause thus reports the number of dendritic spikes triggered by CF input, both when a single 

CF input is triggered or during bursts of CF activation. The further modulation, by bursts of CF 

input, of both the pause length and the number of axonally propagated spikes in the complex 

spike (see Chapter 1) adds a further layer of information to the transmitted spiking pattern.

The pause is likely to be a potent signal to downstream DCN neurons, perhaps more so than 

the complex spike itself, which is often poorly propagated down the axon (Khaliq and Raman, 

2005; Monsivais et al., 2005). The relief of DCN cells from persistent inhibition triggers 

rebound firing (Aizenman and Linden, 1999; Sekirnjak and du Lac, 2002; McKay et al., 2006), 

which is both a salient electrical signal and a trigger for plasticity at the DCN (Aizenman et al., 

1998; Nelson et al., 2003; Pugh and Raman, 2006).

This new role for dendritic spikes in regulating the post-complex spike pause complements 

their already well-known role in triggering prominent dendritic calcium signals (Ross and 

Werman, 1987; Miyakawa et al., 1992). In particular, the calcium influx associated with CF- 

induced dendritic spikes can trigger LTD of CF input and plays an important role in short-term 

and long-term regulation of parallel fibre and inhibitory synaptic strength (Hansel et al., 2001; 

Brenowitz and Regehr, 2005). Further, CF stimulation also regulates intrinsic firing behaviours 

in ways likely to involve calcium influx, e.g. triggering bistability (Loewenstein et al., 2005; 

McKay et al., 2007) and modulating spontaneous firing rate and pattern (Colin et al., 1980; 

Cerminara and Rawson, 2004; McKay etal., 2007).

Thus, the finding that dendritic calcium spikes regulate Purkinje cell spiking, not during the 

complex spike, but during the post-complex spike pause, illuminates a mechanism linking the 

plasticity and the spiking output of the cerebellum.
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General Discussion

Purkinje cell functional compartments

The work in this thesis suggests a new framework for considering the behaviour of the 

Purkinje cell following CF input. During complex spike generation the Purkinje cell is 

composed of (at least) 3 functional compartments; soma, axon and dendrites. The proximal 

axon initiates all spikelets (Davie et al., 2008), which propagate, with differing degrees of 

success, to the soma to form the distinctive, reproducible complex spike; the separation of 

these two compartments is required to explain the details of complex spikelet height and 

width. The dendrites, meanwhile, because of their relative electrical isolation from the soma 

and axon, are able to generate one or more calcium spikes in response to the CF input they 

receive. Backpropagating somatic action potentials fail to actively invade the dendrites (Stuart 

and Hausser, 1994), and dendritic calcium spikes propagate forwards poorly, having very little 

impact on burst generation in the axon and soma. Further functional compartments that might 

be considered are the distal axon, which selectively propagates only sufficiently fully formed 

spikelets of the complex spike (Clark et al., 2005; Khaliq and Raman, 2005), and potentially 

the many spiny branchlets which, though veiled by lack of direct patch-clamp recordings, 

have been shown by imaging studies to act separately, according to the concomitant parallel 

fibre or inhibitory input (Eccles et al., 1966d; Eccles et al., 1967; Callaway et al., 1995; Wang 

et al., 2000; Brenowitz and Regehr, 2005; Isope and Murphy, 2005; Rancz and Hausser, 

2006).

During the post-complex spike pause, the soma, dendrites and axon become less functionally 

separated. The AHP promoted by dendritic calcium spikes is more effectively spread through 

the cell, probably because of its slower timecourse (Rail, 1967; Jack et al., 1983; Spruston et 

al., 1994; Roth and Hausser, 2001), and so contributes to the pause in axonally generated 

spontaneous spiking (Stuart and Hausser, 1994; Clark et al., 2005; Khaliq and Raman, 2006).

Simultaneous dendritic spike and somatic burst production

The transiently separated compartments of the Purkinje cell allow for two of its principal 

characteristics, rapid spike firing and dendritic calcium spike generation, to occur in parallel 

following CF input. This mirrors the role of CF input of providing both a timing signal for online 

motor control (Welsh and Llinas, 1997; Kitazawa et al., 1998) and an error signal enabling 

synaptic plasticity at parallel fibre and mossy fibre-DCN synapses (Gilbert and Thach, 1977; 

Gellman et al., 1985; Kitazawa et al., 1998; Pugh and Raman, 2006).
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Dendritic calcium spikes are reliably generated by distributed CF input to the dendrites. The 

distributed EPSC readily charges the dendritic membrane above threshold, and the extensive 

branching and lack of sodium channels in the dendrites efficiently isolates both synaptic and 

active currents from the shunt associated with the Purkinje cell’s specialized high-frequency 

firing mechanisms (Stuart and Hausser, 1994; Raman and Bean, 1999; Hausser et al., 2001). 

Where mechanisms for both calcium spike and sodium spike generation coexist in the same 

compartment, as in the soma, rapid spiking can prevent slower calcium spike generation: 

block of sodium channels with QX-314 reveals a somatic CF very similar to that of the 

dendrites (Christensen, 2002). The mutual isolation of the soma and dendrites also allows the 

number of dendritic calcium spikes -  and the resulting downstream effects of dendritic activity 

following CF input -  to be modulated by parallel fibre or inhibitory input without strongly 

influencing the burst pattern at the soma (Callaway et al., 1995). The slow electrical effect of 

dendritic spikes on the post-complex spike pause provides a link between excitability and 

plasticity in the Purkinje cell dendritic tree, the regulation of Purkinje cell output, and plasticity 

in its downstream DCN targets.

The axo-somatic complex spike burst is also highly reliably generated in response to CF input 

and linearly represents CF input strength. This linearity may be a reflection of the weak effect 

that dendritic calcium spikes (recruited by larger inputs in paired pulse depression 

experiments) have on the somatic complex spike. Alternatively, any small sublinearity that 

might be caused by reduced dendritic driving force for larger inputs, or increased 

conductance shunt, might be compensated for by the appearance of dendritic spikes. This 

small, but measurable effect of dendritic calcium spikes may also be the reason that some 

complex spikes were more accurately reproduced by somatic conductance clamp than others 

(see Chapter 2).

Although there is a clear linear relationship between input strength (either CF synaptic input 

or somatic EPSG injection) and the complex spike burst produced, there is some variability in 

these relationships, due to differences in the intrinsic excitability of the cells (Figs 1.15 and 

2.6). One source of these difference is input resistance variability. Synaptic input to a cell of 

smaller input resistance would be expected to produce a smaller driving voltage for spike 

production, and so a complex spike burst of fewer spikes and lower frequency. Across the 

ages used in these studies (P12-24), input resistance is known to decrease, from 58-111 MQ 

(depending on cell morphology) at P12, to 16 ± 1 MQ after P18 (McKay and Turner, 2005). 

However, across a similar age range, intrinsic excitability is known to increase (McKay and 

Turner, 2005; Fry, 2006), due to changes in channel expression (e.g. increases in sodium 

channel density (Fry, 2006), see also Main Introduction). Changes in input resistance and 

channel expression may act in consort to maintain similar complex spike patterns across 

cells, but both may clearly contribute to differences in intrinsic excitability and complex spike 

pattern. Input resistance was not measured in these studies and could have been used, 

together with e.g. generation of steady state firing f-l curves, to help explain differences in
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complex spikes seen across cells, both within age groups and across age groups. As 

discussed in Chapter 3, knowledge of input resistance could also aid understanding of the 

increased excitability under CdCI2 application. Further, measurement of dendritic and somatic 

input resistance, their electrotonic transfer responses, and reconstruction of neuronal 

morphology could have increased understanding of dendritic spike propagation using 

neuronal modelling.

Reliable burst production

CF triggered complex spike burst generation occurs with a high safety factor. Mechanisms 

appear to be in place to maintain burst generation at hyperpolarised or depolarised 

membrane potentials, and at short inter-IO event intervals, where both the size of CF input 

and the number of stimuli in the CF burst are decreased (Dittman and Regehr, 1998; 

Hashimoto and Kano, 1998; Silver et al., 1998; Maruta et al., 2007). At the same time, the 

systematic, linear variation of the complex spike with input amplitude and number (and so 

input timing) appears capable of encoding some information other than the simple occurrence 

of CF input. As reliable, graded burst generation is not the inevitable outcome of a large input 

onto a high frequency firing cell, as demonstrated by e.g. the calyx of Held to MNTB neuron 

synapse, the potential role of the Purkinje cell complex spike burst in the cerebellar circuit 

should be considered.

Implications for cerebellar circuit behaviour

The neurons of the DCN receive convergent input from at least 30 Purkinje cells, mostly onto 

their somata (Chan-Palay, 1977). In vivo, even after considering the bisability of Purkinje cells 

(Loewenstein et al., 2005), the tonic spiking of multiple Purkinje cell inputs should lead to a 

tonic inhibitory input to the tonically spiking DCN. Thus, the only Purkinje cell signal available 

at the DCN to differentiate between spontaneous firing and CF input is the brevity of the ISI, 

and the variable occurrence of a post-complex spike pause. Therefore the reliable generation 

of a burst of Purkinje cell spikes is essential to convey CF occurrence. It would appear that 

the system is designed not to ‘lose’ CF signals, even when they occur at brief intervals or in 

weakly excitable Purkinje cells with small CF inputs.

The graded nature of the somatic complex spike and the propagated axonal signal with CF 

input size and the number of CF inputs in a burst (this thesis and Khaliq and Raman, 2005), 

both of which increase with inter-CF event interval (Dittman and Regehr, 1998; Hashimoto 

and Kano, 1998; Silver et al., 1998; Maruta et al., 2007), may serve to ‘downplay’ the 

importance of CF signals generated at brief intervals. Both reduced input number and 

reduced interspike interval may make short-interval CF input a less salient signal. This would 

tend to damp any oscillation set up in the olivo-cerebellar loop (see Introduction and Kistler
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and De Zeeuw, 2003), especially within groups of synchronously activated, so perhaps 

synchronously depressed Purkinje cells that converge onto similar areas of the DCN. As 

aberrant repeated CF activation, due partially to reverberant 10 activation, is associated with 

the poorly timed motor learning exhibited by connexin-36 knockout mice (Van Der Giessen et 

al., 2008), this dampening could serve as a safety mechanism. Similarly, the voltage 

dependence of complex spike pattern may serve as a feedback mechanism to help control 

the average level of IO input to the cerebellar cortex; the reduced excitability of Purkinje cells 

due to increased levels of CF input (Colin et al., 1980; Cerminara and Rawson, 2004; McKay 

et al., 2007) should result in fewer spikelets in the complex spike and thus less recurrent input 

to the IO. More importantly, both the voltage and timing dependence of the complex spike is 

likely to result in a similar dependence of the motor output signal of the DCN. This could help 

damp the tendency of the olivocerebellar system to produce motor tremor, both physiological 

and harmaline induced (Llinas and Volkind, 1973).

The effect of post-complex spike pause modulation on the DCN is easier to envisage. 

Although the timing, amplitude and duration of inhibitory input to the DCN influences the 

strength of the rebound burst that follows (Aizenman and Linden, 1999; Sekirnjak and du Lac, 

2002), the expression of increased DCN firing should be strictly controlled by the duration of 

any post-complex spike pause. The power of this burst-pause signal will be greatly enhanced 

by the synchronous convergence of multiple Purkinje cell inputs (Chan-Palay, 1977). The 

anatomy of the olivocerebellar loop gives CF input a distinct advantage, in this respect, over 

the burst-pause sequence that can be generated by strong parallel fibre input to the Purkinje 

cell (Steuber et al., 2007). As dendritic calcium spike generation is more labile than complex 

spike burst generation, and the post-complex spike pause is likely to be influenced by both 

intrinsic Purkinje cell properties and cortical inhibitory input (Murphy and Sabah, 1970; 

Bloedel and Roberts, 1971; Sato et al., 1992; Barmack and Yakhnitsa, 2008) its potential to 

encode the general excitatory state of the cerebellar cortex is greater. The occurrence of the 

post-complex spike pause in a large proportion of the Purkinje cells converging on a DCN 

neuron would produce a greatly more salient signal both for spiking output and motor control 

and for plasticity in the DCN (Aizenman et al., 1998; Nelson et al., 2003; Pugh and Raman, 

2006).

The only way to be sure of the effect of complex spike like patterns of input to the DCN is to 

test it. The effect of paired pulse depression of the Purkinje cell to DCN synapse (Telgkamp 

and Raman, 2002), of relative contribution of I PSP conductance shunt or hyperpolarisation 

following temporally clustered input, the importance of spike timing and reproducibility of input 

to the spiking pattern produced etc cannot be entirely predicted given current data. Further, 

the effect of IO excitatory input, which should occur shortly before complex spike inhibitory 

input (as it arises from CF axon collaterals thought to project topographically to the 

appropriate DCN area (Ruigrok, 1997)), is also not clear (though see McDevitt et al., 1987; 

Rowland and Jaeger, 2008). It is also likely that there are a variety of responses to such input
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displayed by the heterogeneous populations of DCN neurons, which include both feedback 

inhibitory outputs and feedforward excitatory outputs, as well as local interneurons (Sekirnjak 

and du Lac, 2002; Aizenman et al., 2003; Sekirnjak et al., 2003; McKay et al., 2006; Molineux 

et al., 2006; Gittis and du Lac, 2007, 2008). These parameters could be explored in slice, 

perhaps more easily with artificial somatic conductance or current injections that with 

extracellular stimulation, as the appropriate axons are hard to isolate in the more amorphous 

DCN structure. In short, in order to get one further step closer understanding to the motor 

output of the cerebellum, the input-output function of the neurons one further step closer to 

the motor system must be characterised.
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