
REFERENCE ONLY
2809288634

UNIVERSITY OF LONDON THESIS

D egree p V vb Year Z o c n Nam e of Author

^ irv ja to A L L - T\j

COPYRIGHT
This is a thesis accepted for a Higher D egree of the University of London. It is an
unpublished typescript and the copyright is held by the author. All persons consulting
the thesis must read and abide by the Copyright Declaration below.

COPYRIGHT DECLARATION
I recogn ise that the copyright of the above-described thesis rests with the author and
that no quotation from it or information derived from it may be published without the
prior written consent of the author.

LOAN
T h eses may not be lent to individuals, but the University Library may lend a copy to
approved libraries within the United Kingdom, for consultation solely on the prem ises
of those libraries. Application should be m ade to: The T h eses Section, University of
London Library, S en ate H ouse, Malet Street, London WC1E 7HU.

REPRODUCTION
University of London th e se s may not be reproduced without explicit written
perm ission from the University of London Library. Enquiries should be addressed to
the T h eses Section of the Library. Regulations concerning reproduction vary
according to the date of accep tan ce of the thesis and are listed below as guidelines.

A. Before 1962. Perm ission granted only upon the prior written consent of the
author. (The University Library will provide a d d resses where possible).

B. 1 9 6 2 - 1974. In many c a s e s the author has agreed to permit copying upon
completion of a Copyright Declaration.

C. 1975 - 1988. Most th e se s may be copied upon completion of a Copyright
Declaration.

D. 1989 onwards. Most th e se s may be copied.

This thesis com es within category D.

□
□ This copy has been deposited in the Library of _ u i u _______

This copy has been deposited in the University of London Library, S enate
H ouse, Malet Street, London WC1E 7HU.

Bound By
Blissett Bookbinders

020 8992 3965
w ww .blissetts.com

http://www.blissetts.com

Department of Computer Science
University College London

University of London

Run-Time Monitoring of Goal-Oriented
Requirements Specifications

Andrew Ross Dingwall-Smith

Submitted for the degree of Doctor of Philosophy
at the University of London

June 2006

UMI Number: U59193B

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U591933
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

2

I, Andrew Dingwall-Smith, confirm that the work presented in this thesis is my
own. Where information has been derived from other sources, I confirm that this has
been indicated in the thesis.

Signed: Date:

Abstract

The environment in which a software system operates is as important to the correct
operation of the system as the software itself. Most software development involves
making assumptions about the environment in which the resulting system will oper
ate. These assumptions may cease to be valid if the environment changes, causing the
system to fail to operate correctly.

One solution to this problem is to use run-time requirements monitoring to deter
mine, as a system operates, whether it is satisfying the requirements specified for it and
to take action to rectify these problems.

This thesis describes work that has been carried out in the area of run-time re
quirements monitoring. A framework has been developed for monitoring requirements
which are formally specified using temporal logic and the KAOS goal-oriented require
ments specification language. The framework uses AspectJ to instrument the monitored
system so that events are emitted which are used to determine whether the monitored
system satisfies the requirements specification. The framework also provides a lan
guage which can specify a mapping between requirements and implementation which
can be used to generate instrumentation code.

The monitoring framework supports monitoring of soft goals by allowing the for
mal specification of metrics which can be used to determine whether soft goals are in
fact being satisfied.

These contributions are validated using a workforce scheduling system as a case
study. This is a real world system and the requirements monitored were those consid
ered useful by the developers of the system. The case study shows that the monitoring
framework can be used to instrument a system to monitor hard and soft goals and that
those goals can be monitored with reasonable performance overhead. Goal failures due
to changes in the environment can be detected using the information supplied by the
monitoring framework.

Acknowledgements

I would especially like to thank my supervisor Anthony Finkelstein for his invaluable
ideas, support, encouragement and guidance. I would like to thank Cecilia Mascolo,
Wolfgang Emmerich and David Rosenblum for their help, advice and suggestions. I
also wish to thank David Lesaint from BT for making the case study possible, for
organising my time working at Adastral Park and for his help and advice.

Also many thanks to everyone from the software systems engineering group, in
cluding: Andy Maule, Ben Butchart, Ben Chen, Bozena, Bruno, Carina, Christian,
Clovis, Costin, Daniel, Genaina, Ilias, James, Javier, Jidtima, Licia, Martin, Mirco,
Miro, Nima, Panu, Rami, Stefanos, Torsten, Vito and Vladimir, who have all made my
time at UCL so enjoyable.

I particularly want to thank my parents. Without their support, getting this far
would have been impossible.

Finally, I want to gratefully thank BT and the EPSRC for providing sponsorship
for this work.

Contents

1 Introduction 11
1.1 C o n te x t ... 11
1.2 Run-Time M onitoring... 11
1.3 Problem Description ... 12
1.4 Scope and Assumptions... 13
1.5 C ontribu tions.. 14

1.5.1 Monitoring Fram ework... 14
1.5.2 Evaluation of R esu lts .. 16

1.6 Thesis O utline.. 16

2 Literature Review 18
2.1 Areas Related to Run-time M onitoring... 18

2.1.1 D e b u g g in g .. 18
2.1.2 Logging.. 19
2.1.3 Assertions... 20

2.2 Specification of Monitorable Requirements ..21
2.3 Instrum entation.. 23
2.4 Monitor A rch itectu re .. 25

2.4.1 Monitor Im plem entation... 25
2.4.2 Distributed M onitoring...26

2.5 Formal Specification and Monitoring of Soft G o a l s 27
2.6 Display of Monitoring R e s u l ts ...27
2.7 S u m m a ry .. 27

3 Background 29
3.1 Goal-Oriented Requirements E ng ineering ... 29

3.1.1 The KAOS A pproach.. 29
3.1.2 Soft Goals .. 33

3.2 Aspect-Oriented Program m ing...34
3.2.1 A sp e c tJ .. 35
3.2.2 H y p e r/J .. 36
3.2.3 Dynamic Aspect W e a v in g .. 36
3.2.4 Domain Specific Aspect L an g u ag es .. 36

3.3 Peer-to-Peer File Sharing E xam ple .. 37
3.3.1 The Gnutella Protocol .. 37
3.3.2 Goal-Oriented Requirements Specification40

Contents 6

4 Monitoring Temporal Logic Goals 43
4.1 Design C o nsidera tions..44

4.1.1 Message T ran s la tio n ..45
4.1.2 Active and Passive Instrumentation ..46
4.1.3 Instrumentation M e th o d ... 47
4.1.4 Message Ordering ... 48
4.1.5 Synchronous and Asynchronous Temporal L o g ic51
4.1.6 Object Id e n ti ty ..53
4.1.7 Effects of Instrum entation.. 54

4.2 Monitor Server Implementation ..55
4.2.1 Monitor A rchitecture.. 56
4.2.2 Requirements Instance M o d e l .. 57
4.2.3 Goal Checker Im plem entation..62

4.3 Instrumentation for Monitoring
KAOS Goals ... 64
4.3.1 Instrumentation P r o c e s s ..65
4.3.2 Instrumentation and Translation Using A sp e c tJ67
4.3.3 Instrumentation Using M ap p in g ...73
4.3.4 Comparison Of Instrumentation M e th o d s .. 76

4.4 Monitor D isplay... 76
4.5 S u m m ary ... 77

5 Monitoring Soft Goals 79
5.1 Goal Instance M etrics... 81

5.1.1 Built-in M etrics ..81
5.1.2 User Defined M etrics.. 82

5.2 Goal Aggregate M etrics.. 88
5.2.1 Formal Definition of Aggregate Functions.. 88
5.2.2 Goal Aggregate Metric S y n tax .. 89
5.2.3 Examples of Goal Aggregate M e tr ic s ..90

5.3 Display of Soft Goal M etric s ...92
5.3.1 Specification of D isp lays.. 93
5.3.2 Development of Additional Gauge T y p e s ... 97

5.4 S u m m a ry ... 99

6 NGDS Case Study 100
6.1 O bjectives... 102

6.1.1 Performance .. 102
6.1.2 Instrumentation...102
6.1.3 Soft Goal Specification..103
6.1.4 Utilisation of Monitoring Results ...103

6.2 Formally Define Hard G o a l s ... 103
6.3 Formally Define Soft Goal M etrics ..105

6.3.1 Define Goal Instance M etrics.. 106
6.3.2 Define Soft Goal D isp la y s ... 108

6.4 Instrument the Target S ystem ... 109
6.5 Results.. 115

6.5.1 Performance .. 115

Contents 7

6.5.2 Instrumentation...117
6.5.3 Soft Goal Specification..118
6.5.4 Utilisation of Monitoring Results .. 118

6.6 S u m m a ry ...119

7 Conclusions and Future Work 121
7.1 Contributions and R esults ...122

7.1.1 Instrumentation... 122
7.1.2 Architecture... 123
7.1.3 Monitoring Soft G o a l s .. 124
7.1.4 Display of Monitoring R e su lts ... 124
7.1.5 Comparison with Related W o r k ..125

7.2 Critical Evaluation ..126
7.2.1 Correctness of Instrumentation... 126
7.2.2 Scalability ..127
7.2.3 Usefulness of Monitoring ..127

7.3 Open Questions and Future W ork ..129
7.3.1 Improvements to Monitoring F ram ew o rk .. 129
7.3.2 Architecture Specific Monitoring ...129
7.3.3 Utilisation of Monitoring Results ...130
7.3.4 Mapping Requirements to Implementation 130

A Lime wire Formal Specifications 132

B Mapping Language DTD 134

C Goal Instance Metric Query Generation 136

List of Figures

1.1 Basic monitoring system.. 13

3.1 An example of a goal graph, showing AND/OR refinements......................... 31
3.2 An example of a goal graph, showing agent responsibility links..................... 32
3.3 The propagation of a Gnutella query, with an initial TTL of two,

through a Gnutella network.. 38
3.4 The path taken by a Gnutella query reply through a Gnutella network. . 39
3.5 Downloading a file in a Gnutella network. Files are downloaded by

establishing a direct connection between a peer which sent a query and
a peer which replied to that query..39

3.6 Goal refinement for the goal ‘Achieve[Search For File]’.................................40
3.7 Goal refinement for the goal ‘Achieve[Download File]’..................................41

4.1 Approaches to message translation...46
4.2 A failure is erroneously detected for P=> 0<bQ...48
4.3 A failure is not detected for P=> 0<bQ..49
4.4 A failure is erroneously detected for P=> D<bQ........................ 49
4.5 A failure is not detected for P=> D<bQ..49
4.6 A failure is erroneously detected for P=> 0 <bQ because the event Q is

not received until after the time bound..50
4.7 A failure is not detected for P=> n<bQ because event -iQ is not re

ceived until after the time bound..50
4.8 This ordering of events will satisfy the goal P=> □ <*,Q in the syn

chronous view but the goal will fail in the asynchronous view...................... 52
4.9 This ordering of events will again satisfy the goal P=> D</,Q in the

synchronous view but will not be satisfied in the asynchronous view. . . 52
4.10 This ordering of events will fail to satisfy the goal P=> 0<bQ in the

synchronous view but the goal will be satisfied in the asynchronous view. 53
4.11 The architecture used by the run-time monitoring framework....................... 56
4.12 The database schema for the requirements model instance............................ 59
4.13 Classes used in the object based implementation of the requirements

level object model..61
4.14 The object model for a goal checker which is checking the goal ‘Down

load File’...63
4.15 State diagram showing the implementation of a checker for bounded

achieve goals (P=> 0<bQ.. 64
4.16 State diagram showing the implementation of a checker for ‘after’ in

variant maintain goals (P=> D<bQ...65
4.17 The instrumentation process.. 66

List o f Figures 9

4.18 Type model generated from requirements specification for Limewire
system..68

4.19 Generation of classes from the specification of the goal DownloadFile. . 69
4.20 Output from monitoring the goal ‘Download File’ .. 77

5.1 An example of a distribution gauge.. 95
5.2 An example of a history gauge.. 96
5.3 An example of a min-max gauge.. 97

6.1 Goals refinements and agent responsibilities for the NGDS system. . . .104
6.2 The soft goal model for NGDS system..105
6.3 Average execution times for NGDS system in various configurations.

From left to right: execution time without monitoring, monitoring over
a local area connection with a Java implementation of the requirements
instance model, over a wide area connection with the Java implementa
tion, over a local area connection with the database implementation of
the requirements instance model, over a wide area connection with the
database implementation... 116

6.4 Display of the quality of service over time... 119

List of Tables

5.1 Built-in goal instance metrics.. 81
5.2 Possible parameters for the distribution gauge... 94
5.3 Possible parameters for the history gauge... 96
5.4 Possible parameters for the min-max gauge..98

6.1 The average performance overhead per requirements instance model
modification for different monitoring configurations.................................... 117

Chapter 1

Introduction

1.1 Context
The current trends in software engineering are considered in[Finkelstein 00] where the
authors state that software systems are becoming ever more complex and that as a result,
the way software systems are developed is also changing. Fewer software systems are
built from the ground up. Many systems are instead extensions of existing systems
or are built using off-the-shelf components which are configured to interact with each
other.

The demands of the organisations which utilise these systems are also changing
and becoming more demanding. Business processes change frequently which can affect
both the requirements of a software system and the environment which an existing
system operates in.

The ability of a system to satisfy its requirements is dependent on both the system
itself and the environment in which it operates [Jackson 95]. This means that a system
that has been deployed successfully can still subsequently fail to satisfy requirements
for two reasons; the system itself can evolve after deployment or the environment in
which the software operates can change.

The demands of business for rapid and cost effective change can make it difficult
to ensure that systems continue to satisfy requirements as they evolve. Good software
engineering practices can help but these approaches can be slow and expensive to im
plement [Bennett 00].

Change in the environment in which a software system operates can be an even
larger problem. Software systems are built based on assumptions about the environment
in which they will operate. If the system is required to operate in environments subject
to frequent changes which cannot be easily anticipated, it becomes a particular problem
to ensure that no unwarranted assumptions about the environment are made. If changes
in the environment cannot be anticipated during the design process then the behaviour
of the system cannot be guaranteed to satisfy the requirements of the system.

These problems create the need for run-time requirements monitoring which is the
subject of this thesis.

1.2 Run-Time Monitoring
Monitoring encompasses the gathering of information from a system about its execu
tion, the analysis of that information and the final presentation of the results of the
analysis. The results may be presented either to a human actor or to a computer system
which is responsible for handling them in some way, such as modifying the system in

1.3. Problem Description 12

response to the information obtained.
Run-time monitoring refers specifically to monitoring in which all three stages

happen at run time, while the system is executing. In particular the analysis of gathered
information happens at run time in an incremental manner as information is received
by the monitor.

Requirements monitoring is a form of monitoring which seeks to determine if a
requirements specification is satisfied by the execution of a system. If this monitoring
happens after deployment of the monitored system in its operating environment, as part
of the normal operation of the system, then it is referred to as on-line monitoring. If re
quirements monitoring happens during the testing phase, to verify that the requirements
specification has been satisfied, then it is referred to as run-time verification.

Requirements monitoring can be used to detect the failure of a system to satisfy
its requirements due to changes in the implementation of the system or due to changes
in the environment that the system operates in. It is a pragmatic approach to detect
ing problems in a system as failures will only be detected after they occur, allowing
remedial action to be taken and changes made to prevent future re-occurrence.

In the case of changes to a system, it may be cheaper to monitor for requirement
failures as and when they occur rather than to verify that all requirements are still
satisfied after changes have occurred. This will be particularly true if changes to the
system occur frequently and for requirements which are not critical to the operation of
the system.

For systems which operate in dynamic environments, the case for requirements
monitoring is stronger still. It is difficult and expensive to anticipate all changes which
could occur to the environment which could affect the system and to design the system
to deal with these changes.

1.3 Problem Description
The aim of this work is to provide a monitoring framework which allows monitors to be
created which, at run time, determine whether the behaviour of the system being mon
itored satisfies a requirements specification. The monitors should provide information
which helps to identify what changes need to be made to the system so that its be
haviour will satisfy the requirements in future. The monitoring framework is intended
to make as few assumptions as possible about the architecture of the monitored system
so that it should be possible to monitor any system written using the Java programming
language.

Run-time requirements monitoring involves a number of problems. It is neces
sary to decide on a suitable formalism for specifying the requirements against which
the system is monitored. The system being monitored needs to be instrumented so
that it will send information about the execution of the monitored system to the moni
tors. The monitors themselves need to be able to determine whether the requirements
specification is satisfied from the information supplied by the instrumentation. There
are additional complications which arise if the system being monitored is a distributed
system such as ensuring that instrumentation information is processed in the correct
order. It is further necessary to ensure that the monitoring process does not impact the
performance of the system being monitored to an unreasonable degree.

Determining whether the system has satisfied the requirements from the infor
mation obtained by the instrumentation requires some way of interpreting information

1.4. Scope and Assumptions 13

Monitor Instrumentation Target System

Figure 1.1: Basic monitoring system.

relating to the execution of the system in terms of the requirements specification. This
can be thought of as a translation process in which information and events gathered by
the instrumentation are translated into information and events described in terms of the
requirements model. Depending on how closely related the requirements specification
is to the actual implementation, this translation process can be trivial or very complex.

The basic structure of a monitoring system is shown in figure 1.1. A monitoring
system consists of a monitored or target system and a monitor server. This view of a
monitoring system is quite simplified. The target system may be made up of distributed
components. The monitor server will generally have a number of different monitors for
monitoring different requirements. These monitors may also be distributed although a
review of the literature shows that this is not a widely adopted approach. The translation
between implementation and requirements level information may take place in either
the instrumentation part of the target system or in the monitor server.

Execution of the monitor server can either be synchronous or asynchronous with
the target system. Asynchronous operation is normally used when the monitor server
operates on a different machine from the target system. Communication can either be
bi-directional or single directional, from the target system to the monitor server.

The target is instrumented in some way so as to allow the monitor to gather in
formation about the execution of the target. The instrumentation may actively send
information to the monitor or it may wait until the monitor server requests information.
Instrumentation is sometimes thought of as being made up of sensors with each sensor
being responsible for gathering a particular type of information from the target system.

1.4 Scope and Assumptions
There are many reasons to use run-time monitoring. In [Schroeder 95] Schroeder de
scribes seven areas in which run-time monitoring is used. The focus of this thesis is
requirements monitoring, which most obviously comes under the heading of correct
ness checking in Schroeder’s scheme. Schroeder defines correctness checking as

.. . monitoring an application to ensure consistency with a formal specifi
cation.

Requirements monitoring is correctness checking where the formal specification being
checked is the requirements specification. In fact this definition is rather narrow as
several other areas of monitoring can be related to requirements monitoring.

Of the other areas identified by Schroeder, control and performance enhancement
involve modifying the system in response to information obtained through monitoring.
This thesis only deals with checking requirements. It does not consider using the results
of requirements checking to modify the behaviour of the target system.

Performance evaluation is related to the work in this thesis but is not a core con
cern. This work tries to determine conformance with specific requirements which may
include performance related requirements but does not involve detailed performance

1.5. Contributions 14

analysis. This framework assumes that high performance is not a crucial issue as the
performance overhead is not necessarily small enough for these applications. Systems
with looser performance constraints can be monitored using the framework.

Debugging and testing refers to monitoring activities which take place during test
ing. This work focuses on monitoring which takes place after deployment as part of
the normal operation of a system. Debugging and testing techniques do however have
relevance to requirements monitoring, particularly techniques which use high level de
bugging to abstract the information collected.

Dependability and security monitoring are relevant to the work in this thesis. Such
concerns can be monitored using the framework described in this thesis if these con
cerns can be expressed formally in the requirements specification language. The work
on monitoring soft goals may be useful in monitoring these types of requirements.

Two important considerations when monitoring a system is whether the results of
monitoring are correct and whether the operation of the system is affected by the pro
cess of monitoring. In the monitoring framework described here, these considerations
are largely left to the developer of instrumentation code. The monitor server will pro
duce correct results given correct input but it is up to the instrumentation developer to
provide the correct input. Similarly, there is nothing to stop the instrumentation devel
oper functionally altering the behaviour of the monitored system although in practice
this problem has been relatively easy to avoid.

1.5 Contributions
The goal of this thesis is to investigate run-time requirements monitoring and to provide
a framework which assists developers in implementing run-time requirements monitor
ing. This section describes the contributions of this thesis.

1.5.1 Monitoring Framework
This thesis provides a framework for monitoring goal-oriented requirements specifica
tions specified using temporal logic. Aspect-oriented programming techniques are used
to instrument the target system so it can be monitored. Goal failures and the results of
monitoring soft goals are displayed graphically to the user of the framework. The
framework has been implemented, primarily using the Java programming language.

The notable features of the framework are:

Goal-Oriented Specification The monitoring framework uses KAOS, a goal-oriented
requirements specification language, for specifying requirements. This language
includes formal specification of hard goals in temporal logic which allows the
goals to be monitored.

An existing requirements specification language was chosen so that the moni
toring framework can more easily be integrated into the development process.
The requirements specification language needs to take account of all the needs
of the developers, not just the need for a requirements specification that can be
monitored, so the needs of monitoring should not determine the requirements
specification language. It is however necessary to have a formal specification to
allow requirements monitoring to take place. KAOS is particularly useful here
because it combines informal specification with formal specification which can
be used where necessary. The developer could, if desired, use informal specifica

1.5. Contributions 15

tion in the development of the system and formally define only those goals which
need to be monitored.

Instrumentation Mechanism An important part of the framework is the method for
instrumenting the target system to emit events which the monitor can then use to
check the requirements are satisfied. The instrumentation carries out two tasks:
gathering data on the execution of the system and translating that implementation
level data into requirements level events which can be understood by the monitor.
The approach is one that is generally applicable to any Java system rather than to
systems with specific architectures or which operate in specific domains.

The framework uses AspectJ, an aspect-oriented extension to the Java Program
ming language, to instrument the target system. This allows the target system
to be instrumented in a non-invasive manner, without modifying the source code
of the system. AspectJ provides a powerful set of language constructs for se
lecting execution events in the target system. The aspects which implement the
instrumentation are also effective at encapsulating the relationship between im
plementation level events and requirements level events.

Generation of Instrumentation From Mapping In addition to being able to specify
instrumentation in AspectJ, the framework also allows the instrumentation to be
specified by defining a mapping between implementation and requirement level
events. This mapping is used to automatically generate instrumentation aspects.
While not as powerful as defining instrumentation using AspectJ, this approach
makes it easier to define instrumentation for simple cases and makes the mapping
between implementation and requirements levels explicit.

Architecture Suitable architectures for monitoring systems are examined. This in
cludes considering problems such as distribution and performance. A general
monitoring architecture has been developed in which the monitored system sends
events, to a monitor server, which indicate changes to a requirements model
which represents the monitored system at the instance level. Monitors respon
sible for checking particular goals then use the requirements instance model to
detect violations and monitors for soft goal metrics use it to calculate a value for
the metric. The framework can use one of two implementations for the require
ments instance model. The first uses a database to store an instance of the KAOS
object model while the second uses in memory data structures. Monitors can be
constructed automatically from the requirements specification as they only have
to communicate with the requirements instance model.

Specification of Soft Goal Metrics While KAOS allows hard goals to be formally de
fined, it does not offer any assistance in specifying soft goals in such a way that
they can be monitored. Soft goals are likely to be of importance to stakeholders
in the target system so it is important to monitor them. A method for formally
specifying metrics which allow satisfaction of soft goals to be determined has
been developed to allow monitoring to take place.

The approach used in the monitoring framework is to define metrics which are
associated with soft goals. These metrics should capture the degree to which a
goal is satisfied. The monitoring framework provides a language for specifying

1.6. Thesis Outline 16

soft-goal metrics at the requirements level. These metrics are defined using the
same KAOS goal and object models which are used to specify the hard goals for
the system.

Graphical Display of Monitoring Results The results of monitoring are graphically
displayed to the user of the framework. Hard goals are displayed using the goal
tree from the KAOS requirements model of the target system to indicate which
goal has failed. Soft goal metrics are displayed using standardised gauges which
are configurable by the developer so that users of the framework can determine
at run time whether the associated soft goals have been satisfied. Developers can
also use a standard interface and plug-in mechanism to implement new types of
gauges.

These features combined and implemented make this monitoring framework a
novel contribution to run-time requirements monitoring. The framework combines As
pectJ instrumentation with KAOS requirements specification and builds on this foun
dation to allow monitoring of soft goals metrics.

1.5.2 Evaluation of Results
The contribution is validated using a substantial case study in which requirements are
monitored for a work force scheduling system. This system was chosen because it is a
real system which is reasonably large and complex and because there are requirements
which the developers are interested in monitoring.

The case study aims to determine whether the monitoring framework meets the
following criteria:

Performance Monitoring a system will inevitably result in the monitored system in
curring some performance overhead. The monitoring framework is required to
operate after deployment of the monitored system, so that failures due to incor
rect assumptions about the environment can be detected. This means that the
performance overhead must be as small as possible as any overhead will affect
the actual operation of the system.

Ease of Specification It should be as easy as possible to specify what the requirements
are that need to be monitored by the monitoring framework. For hard goals this
is achieved using the KAOS goal-oriented requirements engineering language.
For soft goals, a specialised language for formally specifying soft goal metrics is
used and the ease of use of this language is evaluated.

Ease of Development It should be as easy as possible to implement run-time require
ments monitoring for a system. As the monitor server is able to interpret the re
quirements specification directly, only the development of instrumentation code
has to be evaluated here.

1.6 Thesis Outline
Chapter 2 — Literature Review In this chapter the literature related to run-time

monitoring, particularly the literature most closely related to the contributions
of this thesis, is reviewed.

1.6. Thesis Outline 17

Chapter 3 — Background This chapter describes background information which is
useful for understanding the rest of the thesis. Goal-oriented requirements en
gineering using KAOS is briefly explained. AspectJ, which is used to develop
instrumentation, is also described.

A peer-to-peer file sharing program, Limewire, a Gnutella client, was used as a
test bed application for this work and examples from this system appear through
out this thesis this example is introduced here.

Chapter 4 — Monitoring Temporal Logic Goals This chapter describes the moni
toring framework for hard goals. This includes a discussion of the design deci
sions which were made in the creation of the framework, how goals are checked
and how the target system is instrumented.

Chapter 5 — Monitoring Soft Goals The extension of the monitoring framework to
monitor soft-goal metrics is described in this chapter. This chapter discusses how
metrics associated with soft goals are specified, how those metrics are evaluated
at run time and how the results of monitoring the metrics are displayed to the
user of the monitoring framework.

Chapter 6 — NGDS Case Study A case study was conducted using a workforce
scheduling system. This system is a real application designed by BTexact. The
implementation of monitoring for the case study and the results which were ob
tained are described in this chapter.

Chapter 7 — Conclusions and Future Work Finally, overall conclusions are dis
cussed and suggestions of future work are made.

Appendix A — Limewire Formal Specification Presents the complete formal
KAOS specification for the Limewire system.

Appendix B — Mapping Language DTD Presents the XML document type defini
tion which defines the syntax of the mapping language used to generate instru
mentation code.

Appendix C — Goal Instance Metric Query Generation The XSLT code used to
generate SQL queries which evaluate soft goal metrics from XML specifications
of those metrics.

Chapter 2

Literature Review

This chapter describes work related to the contributions made by this thesis in the area
of run-time requirements monitoring. Work on run-time monitoring is found in a vari
ety of locations, often associated with applications of monitoring rather than the topic
of run-time monitoring itself. This means that locating related work can be difficult.
While every effort has been made to ensure this is a comprehensive review it is possible
that some work could have been overlooked.

In section 2.1, work is described in areas which are related to run-time monitoring
but which generally precede the bulk of the work on run-time monitoring. These areas
are debugging, logging and assertions. These areas are relevant because they overlap
with run-time monitoring to some extent and the boundary between these types of ap
proaches and run-time monitoring is not always clear. Generally debugging, logging
and assertions tend towards low-level implementation details. Run-time monitoring
uses higher level, abstract specifications. This sections does not provide a comprehen
sive review of these areas but instead presents work which is most relevant to the area
of run-time monitoring.

The rest of the chapter reviews literature which is relevant to particular facets of
run-time monitoring which are relevant to the work in this thesis. Section 2.2 looks at
approaches to specifying monitorable requirements. Section 2.3 reviews approaches to
instrumenting a system so that it can be monitored. Section 2.4 looks at different archi
tectures for monitoring and approaches to monitoring distributed systems. Section 2.5
looks at work on specifying and monitoring soft goals. Section 2.6 looks at approaches
to display of monitoring results to the user of the monitoring framework.

2.1 Areas Related to Run-time Monitoring
2.1.1 Debugging
An area which has been researched for several decades and is now in wide spread use
is debugging. Debugging involves display of information at run time so that developers
can understand the behaviour of a system and discover errors in the implementation. It
may also be possible to modify the state of the system at run time using the debugger.
Debuggers now form a standard part of most programming integrated development
environments.

Debugging has several limitations which, while they do not hinder the aims of
debugging, make the approach unsuitable for run-time requirements monitoring. De
bugging provides complete information on the execution of a system. The instrumen
tation to obtain this information is normally inserted as part of compilation so that the

2.1. Areas Related to Run-time Monitoring 19

debugger is informed of every change of state in the system. Providing such a level
of information implies a significant performance penalty which prevents the use of the
debugger in a deployed system.

Debuggers normally provide low-level implementation details. In particular, they
usually provide the current point in the execution of the program and the value of
all variables in the current scope. In most development environments, no attempt is
made to link events which are reported at the implementation level to any higher level
specification.

A further development of debugging is to try and provide more abstract views
of a system. This is of particular interest in distributed systems where understanding
execution is considerably more difficult than single process systems.

In [Bates 83 J a distributed systems’ behaviour is viewed as a stream of events. Ab
straction is obtained by expressing higher level events as sequences of low-level events
and by filtering out certain low-level events based on attributes of those events. This is
important as it represent an attempt to move from implementation level information to
higher level information although the developer is left to determine what higher level
events are of interest. This is a similar idea to the translation of implementation level
events to requirements level events in the monitoring framework although the actual
details of the translation are very different.

A further development of this approach is to provide visual displays of the exe
cution of a distributed system as in the POET system[Kunz 97]. This approach also
uses abstract events which are described by combining primitive debugging events.
This is important because visual displays of primitive debugging events are likely to
be too complex to interpret meaningfully. The abstract events and their relative order
are displayed, along with which execution trace or traces the events belong to. This
idea of abstract events is important in the development of the monitoring framework
in this thesis, although in POET abstract events are generated by combining primitive
events rather than a more general translation. The POET system also attempts to pro
vide graphical feedback to the user although that feedback has a different form and a
different aim than that provided by the work in this thesis.

2.1.2 Logging
Another area related to monitoring is logging which refers to the process of instrument
ing a system to output events. The term normally suggests that these events are output
to a file for later analysis although it is sometimes used to refer to systems in which log
files are analysed at run time, which is one way of implementing run-time monitoring.

The log file analyser described in [Qiao 99] is used to find errors in parallel pro
grams. The monitored system is built using MPI(Message Passing Interface), a stan
dardised library for message passing. Each process produces its own log file of com
munication events. These log files are analysed after execution completes to detect
errors.

Instrumentation is easy to implement here because there is a standardised com
munication method provided by the MPI library. Instrumentation is simply a matter
of adding a wrapper around the library which writes to a log file when communication
functions are invoked. The log file analyser finds common communication problems,
rather than checking the log files against a specification. It also does not operate at run
time.

In [Andrews 98] log files are analysed to determine whether they are compatible

2.1. Areas Related to Run-time Monitoring 20

with formally specified requirements. The requirements are specified by describing
state machines. These descriptions are compiled into an executable program which can
be run on the log file to discover if the state machines enter illegal states. If they do
then a violation is detected.

The log file analyser developed as part of this work can be run concurrently with
the execution of the monitored system. This effectively makes it a run-time monitoring
system. While the approach uses a separate formal specification, the specification is
still quite low-level and closely related to the design and implementation. The system
to be monitored has to be instrumented manually.

The most basic logging systems are simply a way to record information about
the execution of a system. What is interesting about them is that they often involve
some form of abstraction so that events are not described simply in terms of function
execution and similar implementation level events. More complex systems, such as
those described above, begin to resemble run-time monitoring systems as they check
the output logs against some form of specification, possibly at run time. In general,
using a log file is not a particularly efficient or well structured way of implementing
complex monitoring so other approaches are preferred.

2.1.3 Assertions
Also related to monitoring are assertions. Assertions are statements that something
should be true at a particular point in the execution of a system. They are embedded
directly in the code at the point where they apply although they are not part of the logic
of the system itself. They are checked at run time and some action occurs if they are
not true. The term suggests that the assertions are evaluated by the same process and
thread as the code which they apply to.

Assertions can be part of a programming language, as with the Java assert key
word introduced in Java 1.4. In this case, the normal syntax of the language is used to
specify the boolean condition to be satisfied. Alternatively, assertions can be written in
their own specialised language and embedded in comments. Often such comments are
transformed to code in the language of the source by a pre-processor.

Regardless of whether assertions are written in the language of the source code
or a different language, they are are distributed throughout the source code and their
location in the source code determines what part of the execution the assertion applies
to. They do not form a separate specification so they are not a good way to monitor an
existing requirements specification such as a KAOS specification.

Assertions are normally used to enforce parts of the system design which are not
otherwise enforced by the programming language. For example, assertions can be used
to enforce pre- and post-conditions of methods in the Java programming language. The
Java type system has no way to declare that an object parameter should be non-null or
that an integer parameter should be less than ten but a method may be written assuming
these conditions to be true. Assertions allow these conditions to be checked at run
time (as opposed to compile time, which is when type errors are detected in the Java
language).

An example of this approach is [Rosenblum 95] where assertions are added to
C code. The assertions are specified inside special comments, although they use C
syntax for expressions. The assertions can be used to check pre- and post- conditions,
function return values and intermediate states of function bodies. The comments are
pre-processed to generate standard C code. The problems which are uncovered by these

2.2. Specification o f Monitorable Requirements 21

assertions are typical programming errors.
Another common situation is that methods of classes need to be called in a partic

ular order. For example, an initialisation method may need to be called before any other
method can be called on an object. Assertions can help deal with such situations. This is
the type of problem which can be handled by the Temporal Rover tool[Drusinsky 00].
Assertions are specified in temporal logic and then transformed into code which can
then be compiled. This has some similarities to the work in this thesis in that tempo
ral logic specification is used but the specification is inserted directly into the code as
annotations and are checked synchronously with the code.

In general, assertion systems are intended to discover low level problems in the
implementation. Typically these are inconsistencies between the design of the system
and its implementation. The work in this thesis aims to discover failures due to erro
neous assumptions about the environment which requires considering failures in terms
of early stage requirements.

2.2 Specification of Monitorable Requirements
A requirements monitor needs to be told what requirements should be monitored in an
unambiguous way. This allows the monitor to process information from the monitored
system to determine whether that information is consistent with the requirements spec
ification. This section looks at different approaches to specification of requirements for
monitoring which have appeared in related work.

The requirements can be specified implicitly by writing monitoring code specif
ically for each monitored requirement, as in [Dasgupta 86]. This code receives in
formation from the monitored system and uses it to determine whether a particular
requirement is satisfied. This is an approach which is relatively quick to implement in
the absence of a monitoring framework and is suitable for monitoring small numbers
of requirements which can be translated directly from their specifications to code by
the developer. This approach is not used in this thesis because it requires rewriting the
monitoring logic for each new requirement, leading to both greater work in the long
term and a greater probability of incorrect monitoring code.

It is more common when carrying out requirements monitoring to formally specify
requirements in a suitable language. This allows monitoring code to be written once
which takes a formal requirements specification as input and then checks information
from the monitored system against that specification.

If formal specification of requirements is not required during development of the
monitored system then the formal requirements specification can be tailored to the
needs of monitoring. One way this can be done is by using informal requirements
during development of the system and then formally specifying the requirements after
implementation so that the requirements can be monitored. This allows the require
ments to be formally specified in terms of properties of the implementation of the sys
tem, which would clearly not be possible until the system was implemented. This
approach makes instrumentation easier as the necessary code can be automatically de
termined from the requirements specification. The formalised specification is not really
a requirements specification though as it refers to the implementation and so could not
be used as part of the development of a system. The specification is instead an expres
sion of requirements or constraints related to those requirements at the implementation
level.

2.2. Specification o f Monitorable Requirements 22

An example of this type of specification is found in [Liao 92] where the require
ments specification is written using predicates which are true at particular points in the
execution of the target system or are true between two points in the execution. These
events can also have parameters such as the value of variables at the time an event oc
curs. The requirements are then written using a formal language (the example given is
domain relational calculus) to define more complex predicates from these basic predi
cates.

In the work by Sanker and Mandal [Sankar 93] Ada programs are annotated with
formal requirements specifications which use a combination of normal Ada syntax and
extensions based on first order logic. As the requirements are written as annotations to
the source code, and the interpretation of those requirements depend on their position
with respect to the source code, this type of formal requirements specification depends
on the implementation of the target system.

Both these approaches depend on the developer taking a requirements specifica
tion and, after the target system has been implemented, translating the specification into
the form used by the monitoring framework. This approach is not used in this thesis
because it is preferable to be able to use a requirements specification directly in the
monitoring framework.

In [Chodrow 91] the requirements specification is independent of the implementa
tion, referring instead to labels which are added to the source code. This means that the
requirements specification can be written formally before the system is implemented as
the labels can be added to the code during or after implementation. The specification
language itself uses real-time logic. The separation of implementation and monitored
specification is a good one and is the general approach used in this thesis. The actual
mechanism of referring to labels which are used to annotate the source code is not used
because it involves modifying the source code and because it is quite limiting in terms
of what relationships between implementation and requirements can be expressed.

Monitoring frameworks in which the monitored requirements specifications are
independent of the implementation of the monitored system also include the Java-MaC
framework [Kim 01], the Java Path Explorer framework [Havelund 01] and the Dy-
naMICs framework [Gates 01]. Java-MaC uses a specification language which focuses
on specifying safety properties. Java Path Explorer uses a more general requirements
specification which uses linear temporal logic. DynaMICs monitors constraints which
are extracted from the requirements specification and includes extensive support for
obtaining those constraints. The work in this thesis builds upon these approaches but
instead of using a specialised specification language selected with monitoring in mind,
it uses an existing requirements engineering language.

In {Chen 03] the authors describe their approach to what they call monitoring-
oriented programming. Their monitoring framework allows developers to choose the
logic they wish to use to formalise requirements. The developer specifies rewriting
rules which specify how the logic should be interpreted by the monitor at run time.
Allowing developers to specify the formal language they wish to use in addition to
the specification is a powerful approach but is not used in this thesis as it was felt that
concentrating on a single specification language would better allow progress to be made
in other areas such as instrumentation.

In [Skene 04a] service level agreements(SLAs) are used as the requirements speci
fication which is to be monitored. This is a specialised application of monitoring which

2.3. Instrumentation 23

is more focused on checking that a service a user is provided with meets that user’s
requirements rather than allowing a developer to check their own system. The lan
guage used to define the SLA which is monitored is named SLAng and is described
in [Skene 04b]. The language uses models using classes relationships and attributes to
define the domain to which the SLA applies and uses the Object Constraint Language
to define the constraints placed on the model by the SLA. This is a specialised approach
which is able to effectively monitor particular types of system is not applicable for more
general cases.

Of particular relevance to the work in this thesis are monitoring frameworks which
monitor requirements specified using the KAOS goal-oriented requirements engineer
ing language [Fickas 95, Feather 98, Robinson 03]. Unlike the requirements specifica
tions used in the works described previously, KAOS is a complete requirements engi
neering language with an associated visual language, methodology and formal specifi
cation. It is intended to be used in the development of systems, rather than as a language
for monitoring, but it is still allows formal specifications which are quite suitable for
monitoring. One effect of this is that the language is quite complex compared to most
formalisms chosen specifically for monitoring.

The work in this thesis adopts the same approach as the other work mentioned in
using KAOS to specify monitorable requirements but builds on this work by supporting
instrumentation of the monitored system to a greater extent and by allowing metrics for
soft goals to be specified using the KAOS specification.

KAOS has several attributes which make it a good specification language for run
time monitoring. Goals are identified at an early stage in the requirements engineering
process and provide a very abstract view of the system. Particular attention is given to
the interaction between the system and its environment. This is described in terms of
goals and agents which are responsible for achieving them.

KAOS incorporates formal specification using linear temporal logic which is suit
able for monitoring although such formal specification is considered optional. Even if
requirements are not defined formally during development, KAOS still makes it easy to
add formal specification for requirements which need it by providing a framework into
which formal specifications fit easily.

Monitoring a requirements language which is suitable for use during development
is desirable as it is not necessary to then write a requirements specification specifically
for monitoring. This has the potential to lower the cost of using requirements monitor
ing for developers.

2.3 Instrumentation
Instrumentation is code which emits events about the execution of a computer system.
Depending on the implementation, this information can be used to monitor the execu
tion of a system in a separate thread, process or machine. This differs from approaches
which use assertions, which are checked in immediately in the same thread of execu
tion as the event which triggers the check. Some approaches to instrumentation are
reviewed here.

In CARISMAJCapra 03], the physical properties of mobile devices such as battery
life remaining, bandwidth available, display properties and so on are monitored. This is
possible because the devices monitored come with the capability for such monitoring.
In this case, instrumentation is not necessary because the information needed for the

2.3. Instrumentation 24

sort of requirements being monitored is already made available. This approach is par
ticularly powerful as it allows some aspect of the environment to be measured directly
using the capabilities of the hardware. This approach is, however, only really relevant
in particular domains such as mobile devices and robotic control [Peters 02].

There has been some work on monitoring which makes use of object-oriented op
erating systems [Dasgupta 86, Snodgrass 88]. Such operating systems represent system
resources, such as data and program files, as objects which code can be added to. All
objects created by a program are created through the operating system. The operat
ing system itself provides the support for passive, but not active, instrumentation by
allowing objects to be queried for their status. It is obviously not usable with operating
systems other than object-oriented operating systems which provide the instrumenta
tion support. It is however a very simple and powerful approach when such operating
systems are used. The lower level instrumentation at the operating system level, rather
than the application level, may also be better able to detect problems which occur as the
instrumentation is closer to the boundary between the system and its environment. This
approach is not really relevant to the sort of systems which are currently developed as
object-oriented operating systems are not in general use.

A similar approach uses a law-governed architecture[Minsky 96] which controls
the interactions between classes. This architecture can prevent classes from making
calls which are not explicitly permitted or to perform operations whenever a call is
made. The system is instrumented by defining rules which require a monitor to be
informed when calls are made which need to be monitored. An important advantage
of this approach is that it can guarantee that instrumentation is side-effect free meaning
that the monitored system will not be modified by the instrumentation. This is done
by writing a rule which prevents the monitor code from calling functions which create
objects or modify variables. This approach has similar advantages and disadvantages
as the use of object-oriented operating systems to instrument the system. The approach
makes instrumentation quite straightforward but it requires the use of a law-governed
architecture which is not something which is widely used in general computing.

Several authors have published work relating to run-time monitoring of web-
services[Robinson 03, Mahbub 04, Lazovik 04] and in the Cremona architecture
[Ludwig 04]. Instrumenting web services tends to be easier than a solution for in
strumenting any type of system as assumptions can be made as the instrumentation can
be built into the architecture that supports the web services.

For example, in the work by Mahbub and Spanoudakis, the monitored system is
made up of web services which are composed into a system using BPEL4WS to specify
a business process. An execution engine serves as a central controller for the system and
contains the instrumentation necessary to monitor requirements which are expressed at
the same level of abstraction as the BPEL4WS specification.

The obvious downside of this approach to instrumentation is that the approach
only works for the specific class of web service applications. Other types of systems
do not have the same degree of standardisation as web services which would allow a
similar approach in these domains.

There are several approaches which instrument systems at the application level.
A simple way to do this is to add annotations to the source code as in [Chodrow 91]
where labels are added to the source code in comment statements which indicate when
events should be emitted. These comments are transformed into instrumentation code

2.4. Monitor Architecture 25

in the implementation language as a pre-compilation step.
This approach, where source code is annotated, is also used in [Chen 03,

Sankar93] where the code is annotated with actual formal requirements. A pre
compilation step is also used to generate instrumentation code to emit events which
will allow the requirements to be checked.

Approaches which instrument a system by annotating the source code are similar
to assertions but events are emitted to a monitor instead of being checked as part of the
execution of the monitored system. This is important for more complex requirements
specifications as the processing overhead involved in checking these requirements can
be relatively large. This approach separates instrumentation and code to an extent as
the instrumentation is placed in comments and so is clearly identifiable as such. There
are limitations on the type of events which can be identified easily in this way. For
example, it is easy to place an event which should occur at the start of a method but
hard to capture calls to that method which originate only from another object or to
capture all calls which modify an object member variable. To provide greater flexibility,
instrumentation is written using AspecU in the monitoring framework described in this
thesis.

In [Liao 92] the requirements are separated from the implementation code al
though these requirements are still written in a way that is dependent on the details of
the implementation. The requirements specification is used to modify the source code
in a pre-compilation step in a similar way to the approaches which use code annotation.

In Java PathExplorer[Havelund 01] the target system is instrumented using a tool
which modifies Java byte code. This allows the instrumentation to be defined separately
from the source code. It also allows for a greater range of events to be captured. For
example, it is much easier to find all the modifications of a variable in byte code as byte
code is simply a series of operations and only a small number of these operations can
modify a variable.

Both Java PathExplorer and the work by Liao and Cohen implement instrumenta
tion systems which work in a similar way to AspecU, by modifying either source code
during pre-compilation or byte code after compilation. This allows modification of the
target system without altering the original source code. The development of AspecU
means that such approaches are no longer necessary as AspecU provides a general so
lution to the need for non-invasive modification of the behaviour of a system.

An important way of approaching instrumentation is presented in the work on
Java-MaC [Kim 01] in which instrumentation is generated from mapping between re
quirements specification and the implementation. This is done by specifying when
the boolean variables used in the requirements specifications are true by referring to
variables and methods in the implementation. The work in this thesis build on this
approach. In particular, the idea of a mapping language, which is used to generate in
strumentation code comes from here. This idea is adapted to allow mapping of KAOS
requirements to implementation code and to automatically generate AspecU code from
this mapping.

2.4 Monitor Architecture
2.4.1 Monitor Implementation
In I Snodgrass 88] makes use of a historical database which is an extension of a rela
tional database which also stores previous values of fields as well as the most recent

2.4. Monitor Architecture 26

value. The database is accessed using a specialised query language which can retrieve
this historical information. This is an effective way of implementing a monitoring
system as it provides exactly the capabilities needed to monitor requirements which in
clude temporal specifications. Unfortunately, historical databases and query languages
are not readily available.

In the absence of historical databases in wide use, plain relational databases have
been usedlRobinson 03] and this is also the approach taken in this thesis. Obviously
normal relational databases can still be used to store historical information although
not as simply as a historical database.

2.4.2 Distributed Monitoring
There is some published work which deals specifically with the problems associated
with distributed monitoring. The problem of message ordering when monitoring dis
tributed systems is the focus of the GEM systemlMansouri-Samani 971. GEM assumes
a globally synchronised clock which allows events to be time stamped and put in the
correct order once all relevant events have been received. The difficulty is determining
when it is safe to start processing events as it is not known if there is still a delayed
event with a time stamp earlier than the latest event which has been received.

One approach to this problem is to delay every message by the maximum possible
communication delay before processing it. This ensures that messages will be pro
cessed in order if the delay introduced really is the maximum possible. This approach
is rejected on the grounds that it may introduce unnecessary delays, it is inefficient be
cause it orders messages that may not need to be ordered with respect to each other and
it delays messages which may already be ordered, for example if they were generated
locally.

The approach adopted in GEM is to delay only those messages necessary. This still
requires a maximum tolerated delay to be specified but this delay is applied to specific
messages rather than to every message. The user of the framework may specify delays
for individual messages where necessary.

The event correlation approach in GEM puts some extra work on the user of the
framework by requiring individual delays to be specified for each message used by each
rule. It is also necessary to determine maximum tolerated delays. It is clear that there
is a trade-off to be made between the responsiveness of the monitoring system and the
failure rate caused by delayed messages.

The approach used in this thesis is to explicitly inform the monitor server when
each distributed component has no more messages to send. This approach focuses on
accuracy at the expense of responsiveness but is well suited to the needs of monitoring
temporal logic specifications.

The work described in [Sen 041 deals particularly with the problems associated
with distributed monitoring. An interesting feature is that the monitoring algorithm
is itself distributed. The work uses past-time temporal logic to specify requirements.
This is extended with operators that refer to the last known state of a remote process.
The monitors communicate with each other by piggy-backing monitoring information
on the existing message which are passed by the system as part of its normal execu
tion. This is an interesting approach, particularly when communication overhead is
a concern, but it is not used in this thesis where distributed monitoring is not a core
concern.

2.5. Formal Specification and Monitoring o f Soft Goals 21

2.5 Formal Specification and Monitoring of Soft Goals
In [Robinson 03] the monitoring framework includes aggregate monitors which look
for repeated failure of hard goals. This is an approach to monitoring soft goals. A for
mally specified hard goal can be made soft by only requiring that it is satisfied in most
cases. This approach is built on in this thesis by providing a more complex language
for specifying soft goals, including the concept of aggregating results from many hard
goal instances.

Soft goal specification is tackled in [Letier 04] which is an extension of the KAOS
methodology to soft goals. The approach works by defining quality variables for goals
using natural language definitions. Objective functions are then defined which specify
quantities to be maximised or minimised. The objective functions are mathematically
defined using the quality variables. Target values are also specified for objective func
tions.

The approach includes guidelines for identifying relevant quality variables and
objective functions. Propagation rules allow the degree of satisfaction of a goal to be
determined from its sub-goals.

This approach is similar to the approach adopted to specifying soft goal metrics
described in this thesis although the quality variables are not defined formally. The
work in this thesis builds on the approach in the work of Letier and van Lamsweerde,
which is not primarily intended to allow monitoring, by formally specifying goal in
stance metrics. These metrics, which are similar to quality variables, are formally
defined using the KAOS object model so that they can be monitored.

2.6 Display of Monitoring Results
There has been relatively little work done in providing visual feedback from monitor
ing. There is a particular lack of research in what sort of feedback is useful to the user
of a monitoring framework.

The work described in [Robinson 03] provides some visual feedback. Goal hierar
chies can be displayed which show which goals have suffered failure. UML sequence
diagrams can also be used with additional information such as average response times
and failure rates for the messages added to the diagram. The display for hard goal
failures in this work is essentially similar.

2.7 Summary
This chapter has reviewed work on run-time monitoring and some relevant work in
other related areas. The areas of debugging, logging and assertions all have similarities
to run-time monitoring although the aims are different and so the solutions which are
arrived at are not necessarily suitable for run-time monitoring.

Run-time requirements monitoring differs from debugging and other forms of ex
ecution monitoring because run-time requirements monitoring aims to provide an ab
stracted view of system execution. The aim of debugging is to provide an implemen
tation level view of the execution. Requirements monitoring tries to abstract this low
level view to provide a view at the same level of abstraction as the requirements model.
The advantage of this abstraction is that it allows developers to see large scale issues
which affect the monitored system. In particular, failures caused by changes in the
environment in which the system operates are likely to be easier to identify at the re
quirements level as the environment is modelled explicitly at this level.

2. 7. Summary 28

There have been a number of frameworks for run-time monitoring proposed. Some
of these frameworks deal with monitoring requirements specified in temporal logic.
Checking these goals once the necessary information has been gathered is relatively
straightforward and the work in this thesis follows a similar approach.

Most run-time monitoring frameworks do not provide any support for the instru
mentation of the monitored system. A few frameworks do provide some support al
though they use their own particular requirements specifications. The work in this
thesis combines much more extensive support for instrumentation, using AspecU or a
mapping language, with an existing requirements engineering language.

Another common approach is to include instrumentation code as part of a middle
ware or other implementation of a domain specific architecture such as web services
architectures. This allows any system which uses the middleware or architecture to be
monitored without the need to write new instrumentation code for each new system. Of
course, the instrumentation is specific to that one domain. In contrast, the monitoring
framework described in this thesis is intended to allow instrumentation of any system.

There has been some work on specifying soft goals more rigorously, although a
completely formal definition is not really compatible with the definition of a soft goal.
Only a small amount of work has been done on actually monitoring soft goals.

Little research has been done on communicating monitoring results back to the
user or using monitoring results to directly modify a system. Some work has been done
using goal graphs and sequence diagrams to display monitoring results.

Chapter 3

Background

3.1 Goal-Oriented Requirements Engineering
Goal-oriented requirements engineering forms an important foundation for the work
in this thesis as it is used to specify the requirements which are monitored. This sec
tion gives a brief outline of goal-oriented requirements engineering and a description
of the KAOS goal-oriented requirements approach which is used to formally specify
hard goals so that they can be monitored. KAOS also forms the basis for the formal
specification of soft goal metrics which are discussed in chapter 5.

An overview of the area of goal-oriented requirements engineering is given in
[van Lamsweerde 01], in which van Lamsweerde defines a goal as follows:

A goal is an objective the system under consideration should achieve. Goal
formulations thus refer to intended properties to be ensured; they are opta
tive statements as opposed to indicative ones ...

Goals are normally identified in the early stages of the requirements engineering
process. They can be derived directly from stakeholders, from an existing system or
from requirements documentation provided by stakeholders. Once an initial set of goals
has been identified it is possible to elaborate this model by identifying additional goals
related to the initial goals.

Goals can be categorised into functional and non-functional goals as well as hard
and soft goals. Soft goals are goals which do not have formal criteria for satisfaction
while hard goals do. So, for example, a goal stating that users want to be able to
download a file which appears in a search result is a functional, hard goal. A goal
stating that users want download times for those files of no more than one minute
per megabyte is a non-functional, hard goal. If the goal states only that users want
download times which are reasonably fast then that is a non-functional soft goal.

Satisfaction of soft goals often involves trade-off with other soft goals. The stake
holders in the system want each soft goal to be optimised to as great a degree as possible
but improving one soft goal can have a negative impact on another. For example, us
ability and security are two areas which often conflict with each other. Adding features
which support a security soft goal such as adding password protection and enforcing
password changes make the system harder to use, as users must remember their pass
words and change them regularly, but should improve security.

3.1.1 The KAOS Approach
The KAOS approach[Dardenne 93, Letier 01] is a goal-oriented requirements ap
proach. It includes a visual language for specifying relationships between goals, objects

3. 1. Goal-Oriented Requirements Engineering 30

and agents, a formal specification layer for goal specification and a methodology for
developing requirements specifications using these tools. This section summarises only
those parts of the KAOS approach which are relevant to the work in this thesis.

KAOS uses five different models to represent different views of a system. The
models which are most relevant to monitoring are the goal and object models. These
two models form the core of the requirements specifications which are monitored by
the monitoring framework described in this thesis. The other models are the agent
responsibility model, which defines which agents are responsible for satisfying which
goals, the operation model, which defines operations which need to be carried out to
satisfy goals, and the agent interface model which defines what variables an agent has
access to and what variables it controls.

KAOS models involve three levels of specification. The KAOS meta-model de
fines the concepts which are used in KAOS such as entities, agents, relationships and
the type of associations which are permitted between the concepts. For example, an
agent may be associated with a goal through a responsibility link. This level specifies
the KAOS language and is used in the specification of the KAOS methodology.

The domain model is created by instantiating the KAOS meta-model for a partic
ular domain. For example, in the domain of file-sharing applications, concepts such as
files and file-sharing clients will appear in the domain model. This is the level which is
normally used during requirements engineering.

The instance model contains instances of concepts in the domain model. These
instances represent individual objects. A specific file is an example of an instance
concept. Instance models are not often used during requirements engineering but they
are important for run-time requirements monitoring. At run time, the monitor is able
to construct an instance model of the running system. This model is modified as the
actual system changes to reflect those changes.

The Goal Model
The goal model identifies the goals for a system and shows the relationship between
them. In the KAOS methodology this is the starting point for the development of the
requirements specification. Once initial goals have been identified from stakeholders,
the goal model is elaborated to identify additional goals.

KAOS goals are related to each other using AND/OR links. An AND refinement
means that if all the sub-goals of the refinement are satisfied then the parent goal will
also be satisfied. An OR refinement means that if any of the sub-goals in the refinement
are satisfied then the parent is satisfied. OR refinements represent alternative strategies
for implementing a parent goal. Normally only one alternative OR refinement is se
lected to be implemented. The decision of which refinement should be implemented
is often determined by which alternative best satisfies the soft goals which affect the
system.

The goals and the AND/OR refinements that relate them form goal graphs. These
can be represented graphically as shown in figure 3.1. Here goal A is AND refined into
two sub goals, goal B and goal C, which is shown by the horizontal line linking the
branches of the tree. Goal C has two alternate refinements, goal D and goal E. This is
an OR refinement which is indicated by the lack of a horizontal line. Goal E is further
refined but the sub-goals are not shown in the diagram.

The refinement of the goal model is guided by asking ‘How?’ and ‘Why?’ ques
tions about the initial goals. ‘How?’ questions ask how an existing goal should be

3.1. Goal-Oriented Requirements Engineering 31

Goal B

Goal A

Goal C

Goal EGoal D

Figure 3.1: An example of a goal graph, showing AND/OR refinements.

satisfied. This results in one or more alternative AND refinements which satisfy the
existing goal. ‘Why?’ questions ask why the stakeholders want to satisfy a goal. These
questions result in the identification of parents of existing goals and the identification
of siblings of the initial goal which are necessary to satisfy the new parent goal. It may
also result in the identification of alternative strategies for satisfying the new parent
goal which do not involve the initial goal.

The elaboration of the goal graph continues until each leaf goal can be assigned to
a single agent which is responsible for satisfying it. Agents can be humans or devices
which are capable of carrying out operations which satisfy goals. They may be part of
the system or part of the environment in which the system operates. Goals which are
the responsibility of an agent which is part of the system are requirements while those
that are the responsibility of agents which are part of the environment are assumptions.

In the visual modelling part of KAOS, agents are indicated by hexagons. It is
often useful to add agents to goal graphs and to display the responsibility links between
agents and goals. Figure 3.2 shows an example of this. Goal B is the responsibility of
Agent 1 while goal D is the responsibility of Agent 2.

Goal Specification
KAOS has two levels of specification for goals; semi-formal and formal. At the semi-
formal level of specification, goals are specified informally using natural language
while at the formal level, temporal logic is used to specify goals.

In the semi-formal specification of goals, each goal is assigned a pattern depending
on what type of behaviour should be exhibited to satisfy the goal. There are four goal
patterns in KAOS: achieve, cease, maintain and avoid. Achieve goals require that some
property should hold at some time in the future. Cease goals require that a property
should no longer hold at some point in the future. Maintain goals require that a property
should always hold. Finally, avoid goals require that a property should never hold.

Formal specification of goals uses real-time linear temporal logic.The following
temporal operators are used in KAOS to formally specify goals:

3.1. Goal-Oriented Requirements Engineering 32

Agent 1

Agent 2

Goal B

Goal E

Goal A

Goal C

Goal D

Figure 3.2: An example of a goal graph, showing agent responsibility links.

0 some time in the future
□ always in the future
W always in the future unless
U always in the future until
o in the next state

♦ some time in the past
■ always in the past
B always in the past back to
S always in the past since
• in the previous state

The temporal logic specification of a goal is related to the goal pattern. Typical
goal patterns for achieve and maintain goals from [Letier 01] are:

achieve: P =4> 0 Q P => 0<tQ P => O Q
maintain: P =► Q P => U\Q P ^ Q W R

The predicates in KAOS goal specifications are based on the KAOS object model.
Predicates are typically either the existence of a relationship, a binary comparison be
tween attributes or the occurrence of an event.

Object Model
The specification of individual goals leads to the creation of the KAOS object model.
This models the agents, entities and relationships between them which are used in the
specification of the goals.

If goals are specified formally, then the object model can be derived from the goal
specification. Any object which is used in a goal specification must be present in the
object model. In practice, the formal specification of goals and the elaboration of the
object model is likely to happen simultaneously.

KAOS has four types of objects: agents, entities, relationships and events. All
objects have a name and can, in principle, have attributes. Agents are objects which
can perform operations and goals are satisfied by agents which perform operations.
Agents are related to goals through responsibility links which show which goals need
to be satisfied by a given agent. Entities are similar to agents except that they are passive
objects which cannot perform operations.

Relationships are also considered objects. A relationship links two or more other
objects, called roles. The linked objects are almost always agents and entities although
strictly they can also be other relationships or events. In formal goal specifications, the
predicate:

3.1. Goal-Oriented Requirements Engineering 33

R(rj, r 2, ... rn)

is true when an instance of relationship ‘R’ exists, which links roles r\ to r n.
Relationships are frequently used in the definition of KAOS goals. For example, the
following specification:

V a:A, b:B
P(a, b) =>> 0 Q(a, b)

says that whenever any instance of relationship P exists, a corresponding instance
of relationship Q, with the same objects as roles, should exist at some time in the future.

The final type of object are events which are objects which exist only instanta
neously. These are not considered further in this thesis as event monitoring can be
implemented by a relationship which is created and then immediately destroyed, re
sulting in a relationship which only exists instantaneously.

3.1.2 Soft Goals
The monitoring framework described in this thesis also takes attempts to monitor soft
goals to determine if they are satisfied by a monitored system. The work on which the
notion of soft goals is based is described below.

The i* Framework
The i* framework[Yu 97] is a framework for early-phase requirements engineering.
The organisation in which a software system is to operate is modelled using dependency
relationships between actors and tasks, goals and resources. More complex models
describe the interests of actors and how their needs are addressed by the proposed
system.

The work in this thesis builds on the notion of soft goals in i* and other work. In
i*, soft goals are related to other concepts in the model using contribution links which
show that a concept contributes negatively or positively to a soft goal. Soft goals may
also be used in task decompositions where they contribute to the completion of a task.

NFR Framework
The NFR framework [My lopoulos 92, Mylopoulos 99] is a framework for modelling
non-functional requirements which makes use of soft goals. Rather than satisfaction,
the concept of satisficeability is used when analysing soft goals. These concepts are
defined as follows:

Soft goals are goals that do not have a clear-cut criterion for their satis
faction. We will say that soft goals are satisficed when there is sufficient
positive and little negative evidence for this claim, and that they are un-
satisficeable when there is sufficient negative evidence and little positive
support for their satisficeability.

The simple examples of the NFR framework use four types of relationship between
soft goals to analyse their satisficeability. Negative and positive influences, where one
goal contributes negatively or positively to the satisficing of another goal, are used as
described in the definition of satisficeability above. The other two types of relationship
are AND and OR relationships. In the case of the AND relationship, the parent goal is
satisficed when all the child goals are satisficed and no goal exerts a negative influence

3.2. Aspect-Oriented Programming 34

on the parent goal. For the OR relationship, the parent goal is satisficed when one of
the child goals is satisficed and there is no negative influence on the parent goals.

The methodology proceeds by first identifying very abstract soft goals for the sys
tem being constructed. Two examples are usability and flexibility. These soft goals are
then refined using AND/OR refinement in a process which is similar to that followed
for hard goals in KAOS. Once this process has been carried out for all the abstract soft
goals, lateral links are made between the goals in these goal trees. This shows how non
functional requirements constructively and destructively interfere with one another.

The next step is to relate the hard goals for the system to the soft goals using
positive and negative relationships. These relationships are then used to select between
alternate hard goal refinements.

While this approach is effective for the analysis of soft goals, it is not designed
to allow monitoring of these goals, which requires some form of formal specification.
The concepts of soft goals which are developed in the NFR framework and other work
are built on in this thesis to allow the development of formal specifications for metrics
which can be monitored.

Tropos
Tropos[Castro 02] is a software development methodology, based on soft goals and re
lated concepts described in the NFR and i* frameworks. This methodology extends
these concepts from early stage requirements engineering through to late stage require
ments engineering, architectural design and detailed design. It is further suggested that
the detailed design can be naturally implemented in using an agent-oriented program
ming platform.

Such a development process would certainly make monitoring easier to implement
as it solves a number of problems which arise in requirements monitoring. In partic
ular, the problem of tracing requirements to implementation is made easier as there is
good traceability from requirements to detailed design and a clear link from detailed
design to implementation using an agent-oriented platform. However, the methodol
ogy is still in development and is considerably different to most software development
methodologies which are in current use so this work is not used in this thesis.

3.2 Aspect-Oriented Programming
Aspect-oriented programming is a technique designed to aid the separation of concerns.
In particular, it aims to separate concerns which are ‘cross-cutting’ in object-oriented
programs. A concern is cross-cutting if the code to implement that concern is split
up among different modules in the system. A related problem, which is also solved
by modularising cross-cutting concerns, is ‘tangling’, in which code which addresses
several different concerns is found in a single module.

The problems of cross-cutting and code tangling are a particular problem for con
cerns which are related to non-functional requirements. For example, concerns such
as synchronisation and persistence may be difficult to encapsulate in object-oriented
programs and may be best encapsulated using aspects.

Aspect-oriented programming adds additional abstractions to those normally used
in object-oriented programming. The aim of these abstractions is to allow cross-cutting
concerns to be encapsulated. They are also intended to allow the modules which are
cross-cut to remain oblivious to the cross-cutting module. This principle is essential to
removing tangling when several cross-cutting concerns are related to a single module.

3.2. Aspect-Oriented Programming 35

In the monitoring framework, aspect-oriented programming is used to allow in
strumentation code to be modularised and to ensure that the code in the monitored
system is oblivious to the instrumentation code. There are several proposed approaches
to aspect-oriented programming which are summarised below. The approach adopted
in this thesis is AspecU, which is the approach which currently has most development
behind it.

3.2.1 AspectJ
AspecU[Kiczales 01] is an extension to the Java language which adds a new language
construct called an ‘aspect’. An aspect is a modular unit much like a class or interface.
The purpose of an aspect is to modularise a concern which cuts across the structure of
the base code.

Aspects contain pointcuts and advice. These are defined in[Kiczales 01] as fol
lows:

Join points are well-defined points in the execution of the program; point
cuts are a means of referring to collections of join points and certain values
at those join points; advice are method-like constructs used to define addi
tional behaviour at join points.

AspecU pointcuts are constructed by combining primitive pointcuts which select
different types of join points. The principle primitive pointcuts which are used in this
thesis, and generally the most commonly used primitive pointcuts, are:

call / execution These primitive pointcuts match the execution of methods which
match a pattern. The pattern can use wild card characters to, for example, match
all the methods of a particular class. Call and execution pointcuts have slightly
different meanings but the distinction is not particularly important to the work
presented in this thesis.

get / set Primitive pointcuts which match reading and modifying fields respectively.
The fields which are matched are selected by a pattern, in a similar way to the
call and execution pointcuts.

cflow This primitive pointcut takes another pointcut as a parameter. It matches all join
points which are within the control flow of join points matched by the parameter
pointcut.

this Pointcut which matches at any join point where the executing object is an instance
of a given type. This is an example of a dynamic pointcut as it is evaluated at run
time. The argument to this pointcut can be a pointcut parameter of a specified
type, in which case the value of the parameter is set to the currently executing
object whenever the pointcut matches.

target This pointcut is similar to the ‘this’ pointcut except that it matches when the
target object is an instance of a specific type. For ‘call’ pointcuts, the target object
is the object being called and for ‘set’ pointcuts it is the object being modified.

args The ‘args’ pointcut matches any join point in which the arguments at the join
point match the pattern supplied. In the case of a method call, the arguments are
the method arguments. At a ‘set’ pointcut, the argument is the value which the
field is being set to. The pattern may include pointcut parameters.

3.2. Aspect-Oriented Programming 36

Primitive pointcuts are combined into more complex pointcuts using AND, OR and
NOT operators. Pointcuts may be anonymous, in which case they must be associated
directly to advice which executes at them, or named, in which case they can be asso
ciated with advice by name or used in the definition of other pointcuts. Whenever a
pointcut matches a join point, the advice associated with that pointcut is executed. The
code in the body of the advice has access to the parameters of the pointcut.

As well as this dynamic behaviour, AspecU also allows static cross-cutting. This
is done using inter-type declarations. An aspect may declare fields and methods which
belong to another class, thereby modifying the interface of the class.

AspecU is the most developed of the aspect technologies and is still under active
development as an eclipse.org project. This means that new capabilities are constantly
being added to the project. Recent additions include byte code weaving, which allows
class files rather than source files to be used when compiling aspects; incremental com
pilation which means that only files which have changed need to be recompiled and
IDE support in eclipse. The active development also means that AspecU has kept up
with changes in the Java language, such as the in the Java 1.5 release.

3.2.2 Hyper/J
Hyper/J[Tarr 99] concerns are programmed using normal Java classes. A separate
specification in a custom language then describes how the different classes should be
merged with each other to create a composite system which implements all the con
cerns.

In Hyper/J the implementation of a concern and the mapping with respect to other
concerns are separated, unlike AspecU in which they are combined within an aspect.

3.2.3 Dynamic Aspect Weaving
Both AspecU and Hyper/J perform aspect weaving at compile time. There are also
proposals for dynamic aspect weaving, which would allow aspects to be added or re
moved from a system while the system is running. In [Popovici 03], aspects are woven
into a running system using a just-in-time compiler. In [Baker 02], language constructs
are used to allow the system to add aspects to itself at run time using hooks which are
woven into the program. In [Pawlak 01], hooks are also added to the program to allow
aspects to be added and removed dynamically. Similar functionality may be incorpo
rated into AspecU at some time in the future.

3.2.4 Domain Specific Aspect Languages
The technologies described previously all handle aspects in a general purpose way. An
other approach is to use domain specific aspect languages. An example of this is found
in the precursor to the AspecU project[Kiczales 97]. For example, synchronisation is
described in a language which defines sets of methods to be mutually exclusive. In
another example, a numerical algorithm is defined in the base language while the type
of data structures to use, such as sparse matrices, are defined in a separate aspect.

The advantage of this approach is that aspects become very easy to program for a
programmer with knowledge of the domain the aspect language is designed to address.
The disadvantage is that there is a large up front cost in witting an aspect weaver for a
new domain specific language. The approach adopted in this thesis, where a mapping
language is used to generate AspecU code is based to some extent on the idea of domain
specific aspect languages. By building this language on top of AspecU, work is saved
in writing a specialised weaver to implement the language.

3.3. Peer-to-Peer File Sharing Example 37

3.3 Peer-to-Peer File Sharing Example
This thesis uses a running example in which goals were monitored for a peer-to-peer
file sharing program. The program used was Limewire which is an open source peer-
to-peer client written in Java, which uses the Gnutella protocol. This section provides
background information on the Gnutella protocol before introducing the goal-oriented
requirements specification against which the program was monitored.

The Limewire example was selected to assist in development of the monitoring
framework and it is used to provide examples in this thesis. Limewire was chosen
because it is open source, written in Java and is reasonably complex. It is not intended
to be an evaluation of the monitoring framework but to serve to illustrate the monitoring
framework.

There are some issues with monitoring Gnutella networks which are not explored
in this example. There are many different Gnutella client implementations available
and a Gnutella network is typically composed of many different types of client com
municating with each other. As only Limewire peers are instrumented, it is not possible
to monitor the whole network.

Another problem is the scalability of the approach. As the monitoring framework
uses a central server to receive results, performance of the monitoring system is likely
to degrade as the number of peers increases. As a peer-to-peer network can be made up
of thousands of nodes, scalability problems are likely.

While developing the monitoring framework, testing was done using very small
Gnutella networks which were artificially constructed. Many goals can be monitored
by considering only a single peer. Goals which involve multiple peers were monitored
by connecting two or three peers which were all monitored. Deploying monitoring in
a real network would require some way of determining which goals can be monitored
using the available information. Deploying large scale monitoring would require a
solution to the scalability problem, most likely using distributed monitoring.

3.3.1 The Gnutella Protocol
Peer-to-peer file sharing programs allow users to search for files stored by other peers
in the network and download those files. They also allow the user to make their own
files available for download. The first successful example of a peer-to-peer file sharing
network was based on the Gnutella protocol.

When using the Gnutella protocol, peers connect to several neighbours. The exact
method by which they find and connect to these neighbours is not covered here. Once
a peer is connected to a suitable number of neighbours it is able to take advantage of
the network.

A Gnutella search starts when a user enters a search query. This search is com
municated to other peers as shown in figure 3.3. Each neighbour forwards the query
to all its neighbours and so on until the query has been forwarded on a set number of
times. The query has a field, called the time-to-live (TTL), which is decremented each
time the message is forwarded. If a peer receives a query with a TTL of zero it is not
forwarded to any neighbours. Normally the TTL is set to an initial value around six
although the example in the diagram shows the progression of a query with an initial
TTL of two.

In addition to forwarding queries, peers should also reply to queries which match
files which they are sharing. The path taken by a query reply is shown in figure 3.4.
The query reply travels along the reverse path of the query, back to the original sender.

3.3. Peer-to-Peer File Sharing Example 38

Peer Peer
Peer

Peer
Peer

Peer

Peer

Peer

Peer

Peer

Peer
Peer

Peer

Figure 3.3: The propagation of a Gnutella query, with an initial TTL of two, through a
Gnutella network.

To do this, each peer must keep track of the GUID (Globally Unique Identifier) of each
query which it has recently forwarded, along with the peer which sent it. Query replies
have the same GUID as the query they answer. Each peer can then forward a query
reply that it receives to the peer from which it received the matching query.

A query may match several files on a particular peer so each query reply may
contain several results, each one of which details a file which may be downloaded. The
user can select one or more results to download. The client will then connect directly
to the peer which generated the query reply (using the IP address included in the query
reply), as shown in figure 3.5.

There are two examples of ways in which the Limewire implementation of the
Gnutella protocol has evolved which are interesting in the context of monitoring. These
examples illustrate what types of evolution can occur which will have impact at the
requirements level and which monitoring of soft goals can potentially help with.

The first change which has occurred in the Limewire client is the introduction of
super nodes. The purpose of this change was to reduce the bandwidth used in passing
messages, particularly search queries, for clients which are connected to the network
by slow connections. In this scheme, most clients connect to a single super node. Each
super node is connected to a large number of other clients and a small number of other
super nodes. This shields normal clients from the need to forward large numbers of
queries and route query replies. The network still remains a peer-to-peer network as
normal clients are appointed as super nodes if an existing super-node drops from the
network and they have a high speed and reliable connection.

The second change which occurred was the introduction of segmented downloads.

3.3. Peer-to-Peer File Sharing Example 39

query replyPeer Peer
Peer

Peer
Peer

Peer

Peer query reply

Peer

Peer

Peer

Peer Peer

Peer

Figure 3.4: The path taken by a Gnutella query reply through a Gnutella network.

Peer Peer
Peer

Peer
Peer

Peer

Peer

Direct Connection
Peer

Peer

Peer

Peer
Peer

Peer

Figure 3.5: Downloading a file in a Gnutella network. Files are downloaded by estab
lishing a direct connection between a peer which sent a query and a peer which replied
to that query.

3.3. Peer-to-Peer File Sharing Example 40

A c h : e ve
?ofnmunica t.e Q u e r y

A c h l e v e
F o r w a r d Q u e r yB r o a d c a s t Q u e r y

A c h l e v e
C o m m u n ic a te Q u e r y R e p l y

A c h i e v e
F o r w a r d Q u e r y R e p l y

Client
A c h i e v e

T r a n s m i t Q u e r y R e p l y

A c h i e v e
Se n d Q u e r y R e p l y Q u e r y S o u r c e Conru

Network

Figure 3.6: Goal refinement for the goal ‘Achieve[Search For File]’.

The purpose of this change was to improve download performance by allowing parts
of a file to be downloaded from several clients simultaneously. When several query
results for the same file are received, a client can request different segments of the file
from different peers. As each peer is likely to have limited upload bandwidth, higher
download speeds can be obtained by downloading from multiple peers.

3.3.2 Goal-Oriented Requirements Specification
The main functions of a peer-to-peer file sharing program are to search for files and to
download files. Satisfying these goals requires the cooperation of many peers. These
two functions can be represented as goals and these goals can be refined, thereby gen
erating the goals trees in figure 3.6 and figure 3.7.

The goal tree in figure 3.6 shows the goal ‘Achi eve [Search For File]’ and its sub
goals. This goal expresses that the desire that the system should allow users to find
files which match a search criteria and display those results. This is achieved through
three sub goals. The first, ‘Achieve[Communicate Query]’ requires that queries should
be propagated from the originating peer to other peers within a specified number of
hops. The goal ‘Achieve[Communicate Query Reply]’ requires that any peer which

3.3. Peer-to-Peer File Sharing Example 41

Achieve
Download File

Achieve
Download File

From Multiple Peers

Achieve
Download File

From Single Peer

Achieve
Upload File

Achieve
Store File

Achieve
Send File Request

Achieve
Transmit File Request

Achieve
Transmit File

Client

Figure 3.7: Goal refinement for the goal ‘Achieve[Download File]’.

received a query should reply with any matches it has and that these matches should
be returned to the originator of the query. Finally, the goal ‘Achieve[Display Search
Result]’ requires that the peer which originated a query should display the results of
the query to the user. The formal definitions of these goals are found in appendix A,
although specific examples will be introduced as they become necessary in the text.

The goal tree in figure 3.7 shows the goal refinement for the goal ‘AchievefDown-
load File’J, which expresses the desire of the user that a file should be downloaded
when it is requested.

There are two alternative refinements for this goal. As explained previously, files
can either be downloaded from a single client or segments can be downloaded from
multiple clients. Only the refinement for downloading from a single client is shown
here as the refinement for multiple clients is similar.

The goal ‘Achieve!Download From Single Peerj’ is satisfied by five sub-goals,
three of which are requirements which are the responsibility of peer-to-peer clients
and two of which are assumptions which are the responsibility of the network which
the clients use to communicate. The requirement ‘Achieve[Send File Request]’ re
quires that when a file is requested by the user, a request is sent to the client referred
to by the file descriptor of the requested file. The assumption ‘Achieve[Transmit File
Request]’ requires that a file request sent by one client will be received by its recip

3.3. Peer-to-Peer File Sharing Example 42

ient. The requirement ‘Achieve[Upload File]’ requires that when a file request is re
ceived, the corresponding file will be sent to the source of the request. The assumption
‘Achieve[Transmit File]’ requires that if a file is sent then it will be received. Finally,
the requirement ‘Achi eve [Store File]’ requires that when a file has been received that it
is saved by the client which received it.

The goal trees also show the agent responsibility links which identify which agents
are responsible for satisfying which leaf goals. The agents used here are ‘Client’ and
‘Network’. It is not altogether clear where the boundary between the system and the
environment lies with respect to the ‘Client’ and ‘Network’ goals. The view taken
here is that all the clients make up the system. The network is part of the environment
which the system has to operate in. This is not the only possible view. It is also
possible to consider the network to also be part of the system, particularly if it were
a closed network, but as the network in question is the public Internet, it seems most
appropriate to treat it as part of the environment. Another view is that a single client
should be considered as the system and all other clients should be considered part of the
environment but given the cooperative nature of the Gnutella protocol it seems more
appropriate to consider all clients as part of the system.

Given this choice of which agents are considered to be in the system and in the
environment, those leaf goals assigned to the ‘Client’ agent are considered to be re
quirements while those assigned to the ‘Network’ agent are assumptions. The network
is responsible for various assumptions that Gnutella messages will be delivered to their
recipients.

Chapter 4

Monitoring Temporal Logic Goals

This chapter describes how the monitoring framework implements run-time monitoring
for KAOS goals which are formally expressed using temporal logic. There are three
main tasks which are carried out by the monitoring framework. The first is to instrument
the target system. The second is to represent the state of the monitored system using a
requirements level model of the system. The third is to use that model to check whether
the requirements specification is satisfied.

The target system (the system to be monitored) is instrumented using AspectJ. This
is used to both collect information from the system and to translate that information
into requirements level events. Instrumentation can be specified directly in AspectJ
or a separate mapping language can be used to describe the relationship between the
implementation and requirements levels. Aspects are automatically generated from this
mapping to instrument the target system. These two approaches are complementary;
the mapping approach clearly shows the relationship between the implementation and
requirements level for simpler cases but does not have the same flexibility as using
aspects directly.

The monitoring framework uses the events, provided by the instrumentation in
the target system, to build a model of the state of the target system. This model is
an instantiation of the KAOS object model of the system. The monitoring framework
includes two different implementations of this requirements instance model. The first
implements the model in a relational database. The second implements the model using
Java objects which are stored in memory. The developer is free to choose which of these
two implementations to use depending on the particular situation.

The monitor framework automatically construct monitors from the goal specifica
tions which check for failure of those goals. These goal checkers use the requirements
instance model to determine whether individual goals have been satisfied by the target
system. Goal checkers can attach listeners to the requirements level object model so
that they are informed if changes occur. This then starts the execution of the listening
goal checker which can make additional queries if it needs more information from the
model. The goal checkers forward their results to a live display which shows any goal
failures which have occurred in the target system and information about those failures.

Section 4.1 describes design issues which need to be considered when building a
monitoring framework and the design decisions which were made for the monitoring
framework described in this thesis. Section 4.2 describes the overall architecture of
the monitoring system and the implementation of the requirements level object model
and the goal checker. Section 4.3 describes how the target system is instrumented.
Section 4.4 describes how the information obtained by monitoring is displayed to the

4.1. Design Considerations 44

users of the framework.

4.1 Design Considerations
Constructing a monitoring framework requires that various design decisions are made.
Chapter 2 contained reviews of a range of monitoring frameworks which have made
various different choices when considering these issues. Most of these decisions have
advantages and disadvantages and the best choice will depend on assumptions about
what the target system and what the monitoring system is intended to achieve.

The target system is assumed to be written in Java. This is an assumption made
more for convenience than anything else. Similar techniques could be applied to other
languages although the instrumentation used in the monitoring framework relies on
AspectJ which is specific to Java. There are also aspect extensions in development for
other programming languages which would allow a similar approach to be adopted for
these languages.

It is assumed that while performance may be important it is not critical. There are
generally two types of system where performance is critical in different ways. Some
systems have hard real-time constraints. The system cannot, under any circumstances,
take longer to carry out an operation than the maximum time allowed. An example of a
system with this type of constraint is an aircraft control system. Monitoring can be used
in these types of applications as long as the real-time constraints can be applied to the
instrumentation code. Unfortunately, the instrumentation code used in the monitoring
framework described in this thesis is not subject to hard real-time constraints and so is
not suitable for monitoring systems with such constraints.

Performance is also critical in systems where calculations take a long time to run
and the execution time should be minimised. A common example of this is in scien
tific computing contexts. Instrumentation cannot be applied to the part of the system
responsible for the calculations without having some impact on the performance of the
system. It is, however, possible to monitor the parts of such a system which are not
performing the actual scientific calculations to gain high level information about the
execution of the system.

Discounting these types of systems still leaves many other useful applications for
run-time monitoring. In general, systems written in Java will not fall into the categories
described above in any case as the use of a virtual machine and garbage collection make
the language unsuitable when performance is a critical issue. Most business systems
are not time critical to the same extent as the types of systems mentioned previously.
Interactive systems are normally limited by the speed at which the user interacts with
them rather than the performance of the system. It is still useful to monitor how long
tasks take to perform in such environments but the constraints are much less rigorous.

It is also assumed that timing of events will not be overly critical. Events related
to a single goal are likely to have a separation of a second or more if they are gen
erated by different distributed components, meaning that available systems for clock
synchronisation should be adequate.

Another assumption that the instrumentation there may be several developers
working on a system. It is possible that instrumentation code and system code will
be written by different developers. This means that it is beneficial if these concerns can
be separated as much as possible.

This section discusses the issues which are involved in building a monitoring

4.1. Design Considerations 45

framework and what choices were made in the design of the monitoring framework
described in this thesis, taking account of the above assumptions.

4.1.1 Message Translation
An important issue in run-time requirements monitoring, and a key feature which dis
tinguishes requirements monitoring from other types of monitoring, is the need to trans
late events which are collected by instrumentation into events which relate to the re
quirements model in which the requirements are specified. The complexity of this
translation depends on both the formalism of the requirements specification and the
implementation language. The closer the two are related, the easier it is to translate
from one to the other.

The KAOS language has an object model which is used in the temporal logic
specification of goals. As the target system is assumed to be written in Java, which is
an object-oriented language, translation of events between the two involves translating
from one object model to the other. While the KAOS object model forms the basis
of the translation for the framework, the translation problem is still not easy. KAOS
requirements are very abstract and the object model reflects this fact. The actual ob
ject model which corresponds to the implementation of the target system will be far
more complex. The translation is not trivial and needs to be explicitly defined by the
developer.

There are three possible locations to handle translation in the system. The transla
tion can take place in the monitor server (figure 4.1a), in a separate stage between the
two (figure 4.1b) or in the instrumentation of the target system (figure 4.1c).

In the first of these options, the target system is instrumented to emits messages
which contain implementation level events. These events are received by the moni
tor server which must use these events to evaluate the satisfaction of the requirements
specification. To do this, the monitor server must have some knowledge of the relation
ship between implementation and requirements events. As a consequence, the monitor
server is dependent on the implementation of the target system. This is undesirable as
it means the monitor server has to change to reflect changes in the target system. This
approach is most often used when the requirements specification itself is dependent on
the implementation so that changes to the implementation already necessitate changes
to the monitor.

In figure 4.1(b) an intermediate message translation stage is added to the archi
tecture. This translates implementation level events to requirements level events. This
is the approach taken in [Kim 01] for example. This approach means that the monitor
server is only dependent on the requirements model, not on the implementation of those
requirements.

The approach taken by the monitoring framework described in this thesis is the one
in figure 4.1 (c). The translation of implementation level events to requirements level
events is performed as part of the instrumentation of the target system. The messages
emitted by the instrumentation are then requirements level events. This approach also
means that the monitor server is independent of the implementation of the system. This
approach is chosen over the second one because of the good fit with the AspectJ lan
guage which is used for instrumentation. In the monitoring framework, implementation
level events are captured using AspectJ pointcuts. Examples of implementation level
events are then calling a method, modifying a member variable and reading a member
variable as well as more complex combinations of events which can be specified using

4. 1. Design Considerations 46

Implementation
Level Messages

Target Monitor
System Server

(a) When translation takes place in the monitor, implementation level messages are exchanged be
tween the monitor and the target.

Implementation
Level
Messages

Requirements
Level
MessagesTarget

System
Monitor
Server

Implementation
to Requirements

Translation

(b) When translation takes place in the target system, the exchanged messages are requirements level
messages.

Level

Target 4 Messages Monitor
System W Server

(c) With a separated message translations stage, messages are translated from the implementation
level to the requirements level between the target and the monitor.

Figure 4.1: Approaches to message translation.

AspectJ.
Requirements level events are modifications to the KAOS object model. Examples

of such events are creating a new instance of a relationship or entity and modifying the
value of an attribute. The translation between these two types of events is achieved by
advice which is attached to the pointcuts. This advice is called when an implementation
level event occurs and creates the corresponding requirements level events.

4.1.2 Active and Passive Instrumentation
The purpose of instrumentation code is to allow properties of the system to be mea
sured. There are two approaches which can be taken to this measurement; active and
passive instrumentation. Active instrumentation produces messages when the value of
a measured property changes. When the target system is instrumented using active in
strumentation it is said to be traced. Passive instrumentation supplies the value of the
measured property when requested, usually at regular intervals. A system instrumented
with passive instrumentation is said to be sampled.

The main advantage of active instrumentation is that changes to a property will
never be missed by the goal checker. With passive instrumentation, the goal checker
can miss a property change if the property changes twice or more between samples.
The monitor for a temporal logic specification cannot tolerate missed events if it is
to accurately check the requirements specification. The monitoring framework must
therefore either use active instrumentation or passive instrumentation which is sampled
at a sufficiently high rate that events are never missed. It is difficult to determine exactly
what sampling rate is necessary to ensure that no events are missed. This is likely to
lead to a higher rate of sampling than is actually necessary as the target system will be
sampled even when no change has occurred. Even then, it is difficult to be sure that

4.1. Design Considerations 47

no event has been missed. The overhead of active instrumentation, in contrast, is the
minimum possible for the rate at which events occur[Kaelbling 90].

A secondary advantage of active instrumentation is that the time between a prop
erty changing and the change being detected by the goal checker will normally be less
than for passive instrumentation. Active instrumentation will communicate a change in
a property immediately while the delay for passive instrumentation can be as large as
the sampling period.

The disadvantage of active instrumentation is that it is more complicated to im
plement as it must be determined both when the property has changed and what the
value of the property is. Passive instrumentation only has to determine the value of the
property in response to a query from the monitor. Despite this greater complexity, the
likely improved performance and guaranteed accuracy of active instrumentation mean
that this is the approach which was taken for the monitoring framework.

4.1.3 Instrumentation Method
There are several ways to implement instrumentation. The most straightforward is to
include instrumentation as part of the development of the system. This means that
instrumentation code will be entangled with the rest of the system code. This is a
particular problem because instrumentation code is likely to be found in many parts of
the system.

Another approach is to use tools which modify byte code to instrument the system.
This can be automated using some mechanism to specify what should be instrumented.
This is easier than instrumenting at the source code level because byte code is simpler
and therefore easier to process automatically. This also keeps instrumentation code
separate from the code of the target system. The disadvantage of this approach is that it
only provides a way to extract information from the system. The extracted information
must still be translated to the requirements that are being monitored.

The approach used in this work is to use aspect-oriented programming techniques
to implement instrumentation. AspectJ does the same basic job as other instrumenta
tion approaches, in that it captures execution events in the instrumented system while
keeping instrumentation code separate from the code of the monitored system. There
are however a number of advantages in using AspectJ.

AspectJ provides a rich set of language constructs for defining pointcuts, which se
lect execution events, and for constructing complex pointcuts from primitive pointcuts.
For example, AspectJ allows a pointcut to be defined which selects all events which
occur within the control flow of a particular method. As the language has evolved, new
primitive pointcuts have been added, increasing the power of the language.

As AspectJ is an existing language, developers may already have experience in
using it. If this is the case, it reduces the difficulty in implementing instrumentation
code.

The structure of AspectJ code naturally fits the instrumentation code which is
needed for the requirements monitoring framework where implementation level events
are captured and then translated into requirements level events. Using AspectJ, point
cuts capture implementation level events while the advice attached to those pointcuts
translated the events to requirements level events.

Finally, AspectJ instrumentation code is not dependent on the mechanism used to
include that instrumentation in the system. For example, AspectJ is capable of both
source code weaving, where aspects are included in the system at compile time, and

4.1. Design Considerations 48

M1

M2

S

tim e
 >

Figure 4.2: A failure is erroneously detected for P=*> 0<bQ-

byte code weaving, where aspects are added to code which is already compiled.

4.1.4 Message Ordering
There are particular problems which need to be addressed when monitoring a dis
tributed system. One problem is that there is a delay between a message occurring
in the target system and the message being received by the monitor. These delays will
generally be variable and unpredictable. The delay may not always be the same for a
particular source, although it is assumed that all messages from a particular source will
arrive in the order they were sent. This problem can however result in messages from
different sources being received in a different order than they were sent.

Such ordering problems can result in both false positives,where failures are de
tected erroneously, and false negatives, where failures are not detected when they
should be. A situation where a failure is detected erroneously is demonstrated in fig
ure 4.2 which shows two distributed machines, Ml and M2, communicating with a
monitor server, S, which is checking the goal P=» 0<bQ- It is assumed that the condi
tions P and Q are initially false. The machine Ml sends a message, Qt to the monitor
server telling it that Q is true. The machine M2 then sends a message saying that P is
true. Ml subsequently sends a message Q F , telling S that Q is no longer true. The er
ror occurs because the message from M2 is delayed, arriving after the second message
from M l. The true order of events is thus Q T P t Q f but the events are received in the
order Qt Q f Pt - This results in a false positive as failure is detected when the goal is
actually satisfied.

The monitor will fail to detect a failure for the same type of goal in the situation
shown in figure 4.3. In this case, the actual ordering of the messages is Q t Q f P t - This
means that the goal fails because the condition ‘Q’ never holds again after ‘P’ holds.
The order the events are received is Q t P t Q f which appears to the monitor as though
the goal has not failed because ‘Q ’ holds at the time the event ‘P’ is received.

These types of problems can also occur with maintain goals of the form P=> IH<&Q.
In figure 4.4 a failure is detected when none has occurred because the ordering of events
received by the monitor is PT Qt which means that ‘Q’ does not hold until after ‘P’
does, violating the goal. The correct ordering, Qr Pt means that ‘Q’ already holds
before ‘P’ does and the goal does not fail.

In figure 4.5, the monitor will not detect a failure even though a failure has oc
curred. The order of events are P t Q t which means that ‘Q’ did not hold when ‘P’
became true. The order of events received by the monitor was Q T P t which does not
register as a failure.

4. 1. Design Considerations 49

M1

M2

S

tim e
 >

Figure 4.3: A failure is not detected for P=> 0<bQ.

M1

M2

S

tim e
 >

Figure 4.4: A failure is erroneously detected for P=^ □ <6Q.

Delays in message transmission can also cause problems when a message is sent
just before the time bound of a goal is reached. For example, in figure 4.6, an achieve
goal is being monitored. The event Qt is sent just before the time bound is reached
but is not received until after the time bound. This means that the monitor will detect a
failure because it will not have detected a Qt before the time bound is reached. In fact,
no failure occurred, because the event QT actually occurred before the time bound.

A similar situation occurs in figure 4.7 where the event Q f is sent before the time
bound but not received until after. The order of events should result in a failure of the
goal because ‘Q’ ceased to hold before the time bound was reached. The monitor does
not detect this failure because it does not receive the message Q f until after the time
bound is reached.

M2

S

tim e
 >

Figure 4.5: A failure is not detected for P=> D<bQ.

4.1. Design Considerations 50

M1

M2

S

Q T

tim e
 >

Figure 4.6: A failure is erroneously detected for P=> 0 <bQ because the event Q is not
received until after the time bound.

M1

M2

S

tim e
 >

Figure 4.7: A failure is not detected for P=£> IU<&Q because event -iQ is not received
until after the time bound.

Approaches to Message Ordering
There are several possible approaches which can be taken to this problem of message
ordering. The simplest approach is to simply ignore the communication delay com
pletely and treat communication as instantaneous. Using this approach, all events are
considered to have occurred when they are received by the monitor server and are
processed as they arrive in order of arrival. As has been shown, this approach can re
sult in both erroneous detection of failures and non-detection of failures if events are
closely spaced compared to the communication delays and delays between distributed
components are variable. If the communication is sufficiently quick compared to the
separation between events, or the delays are uniform for different components, then this
approach is feasible and has the benefit of being far simpler than the other options. Such
an approach is not suitable if absolute accuracy is required but may be good enough,
particularly when the goals are being monitored to facilitate soft goal monitoring rather
than to detect individual failures.

Ideally, rather than assuming events occur at the time they are received by the mon
itor, the event messages should be time stamped with the time the event occurred in the
target system. The problem with this is that it requires the clocks of the distributed com
ponents to be synchronised. This is a difficult problem to solvef Lamport 78J because
physical clocks do not run at a uniform rate and because synchronisation messages for
setting the clocks are also subject to delays. Fortunately considerable work has been
done in this area resulting in the Network Time Protocol\M\\\s 911, which has been
implemented on most operating systems. This protocol allows the local clocks of the
distributed machines to be synchronised to a high degree of accuracy (typically within

4.1. Design Considerations 51

a few milliseconds). This accuracy should be sufficient for the types of systems which
the monitoring framework is intended to operate with.

By synchronising the clocks of the machines in a distributed system, and adding
the time stamp to the event message, the monitor can determine what time events oc
curred rather than when they are received. There is however still a problem determining
when an event can be processed as events can no longer be processed in order of arrival
but must instead be processed in order of their time stamps. It is always possible that
another event could be received with an earlier time stamp than an existing message
which would change the result determined by the monitor.

The easy solution to this problem is to set a maximum delay which will be tol
erated. Messages are sorted by their time stamps as they are received. They are then
processed in order of their time stamps once those time stamps are older than the max
imum allowable delay. This approach has the disadvantage that there is always a possi
bility that a message will exceed the maximum delay which could invalidate messages
which have already been processed.

The approach used in this thesis is more complex, but guarantees accuracy as long
as the local clocks are synchronised. In this approach all the machines in the target
system inform the monitor at regular intervals that they have no more messages to
send before a given time stamp by sending a coordination message. The server then
stores the time stamp of the most recent coordination message for each target machine.
Normal messages can be processed, in order from oldest to most recent, as long as their
time stamp is earlier than all these time stamps.

This approach requires that the messages from a given machine are received in
the same order they are sent. This is a reasonable assumption as most communica
tion systems can satisfy this requirements. TCP guarantees this for Internet Protocol
communications for example.

This approach is also more complex than other approaches and requires additional
messages to be sent over the network resulting in greater bandwidth usage and a greater
performance penalty for the target system. This approach does however guarantee that
messages are processed in the correct order as long as the clock synchronisation is
sufficiently good.

An additional benefit of this approach is that it can detect communication failures
between the target system and the monitor server as it will always be expecting a mes
sage even if no events have occurred. A maximum period can be set after which the
monitor will report a failure if a coordination has not been received. This could either
be caused by a failure in the target system which, has prevented the coordination mes
sage from being sent, or it could be a failure of the communication channel between
the target system and the monitor. Regardless of the cause, the users of the monitoring
framework need to be informed so that the problem can be investigated.

4.1.5 Synchronous and Asynchronous Temporal Logic
KAOS uses a synchronous temporal logic, in which the system is viewed as a series of
states at fixed time intervals. Zero, one or more events may occur during the transition
from one state to the next. In contrast, asynchronous temporal logic views the system
as states which change after each event occurs. Exactly one event occurs during each
state transition!Letier 05J. This is the model used by the monitoring system.

This issue can cause problems in monitoring. In KAOS, several events can happen
in the transition from one system state to the next, within one time unit. In the system,

4.1. Design Considerations 52

Time
Interval b

(< ^1 I I I

1 2 3 4 5

Figure 4.8: This ordering of events will satisfy the goal P=> D<bQ in the synchronous
view but the goal will fail in the asynchronous view.

Time
Interval b

l< I I I

I I I I I
i i i i------------1 i i i-----------r ~
1 Q T PT 1 1 Q f Q t ' 1
I I I I I
1 2 3 4 5

Figure 4.9: This ordering of events will again satisfy the goal P=> D<feQ in the syn
chronous view but will not be satisfied in the asynchronous view.

the monitor will update after each event. This problem can cause some failures to be
detected erroneously and other failures to be missed.

Figure 4.8 shows a timeline in which the states in a synchronous temporal logic
are shown as dotted lines. Two events, Pt and Qt occur between states one and state
two. In the synchronous view, the goal P=> D<bQ is satisfied by this ordering as in
state one neither of the conditions P or Q are true and in state two they are both true.
In the asynchronous view, this goal fails after PT occurs because the condition Q does
not hold in the interval between the two events. To satisfy this goal in the asynchronous
view, Q must be true before Pt occurs.

Figure 4.9 shows another time line with four events. The goal P=> D<bQ will
again be satisfied by the synchronous view but will fail in the asynchronous view. The
events between states three and four cause the condition Q to be false briefly but Q is
true in both state three and four so the goal does not fail in the synchronous view. In
the asynchronous view, the state changes after each event so the goal fails when Qp
occurs.

Figure 4.10 shows a case where the goal P=> 0 <bQ fails in the synchronous view
but is satisfied in the asynchronous view. In the synchronous view, Q is not true in state
three or four (or any other state) as the event Qp sets it to false before the next state
occurs. In the asynchronous view, as soon as the event Qt occurs, the goal is satisfied.

Despite these problems, the monitoring system uses an asynchronous view of
the temporal logic specifications. This is done because although KAOS takes a syn
chronous view, the discrete nature of time is a convenience for modelling rather than a

4.1. Design Considerations 53

Time
Interval

l< >1

' 1
q tq f '

Figure 4.10: This ordering of events will fail to satisfy the goal P=> 0<bQ in the syn
chronous view but the goal will be satisfied in the asynchronous view.

feature which is desired in the implementation. KAOS does not define the size of the
time interval used but rather leaves this as an implementation detail. At the implemen
tation level, the discrete nature of time is likely to disappear as different decisions are
made as to allowable intervals for different goals. The monitoring framework accepts
that some inconsistencies between the two views may occur and leaves it to users to
intelligently interpret monitoring results.

4.1.6 Object Identity
When the system being monitored is made up of distributed components, a problem
which can occur is that the several of the monitored components may refer to the same
entity. The same requirements level entity may be represented in different ways in
different distributed components but the monitor must have a consistent way of recog
nising each entity so that it tell when different components are referring to the same
entity. This is done by giving each entity instance an identifier string. If two distributed
components refer to the same entity then they should use the same entity identifier.
Similarly, if they refer to different entities then they should use different entity identi
fiers.

An example of this problem in the Limewire example is the relationship ‘Con-
nectedTo(Client c l, Client c2)’ which indicates indicates that one client is connected
to another so that they can pass Gnutella messages between themselves. To create
an instance of this relationship, it is necessary to identify the client objects involved.
At the implementation level, a remote client is represented by a Connection ob
ject which manages the connection to a particular client. The local client is not re
ally represented explicitly but it can be considered to be represented by any object for
which a single instance is created for a single client, such as the single instance of the
RouterService class which connects the back end client to the graphical user in
terface. The problem is solved by using the IP address of the machine which a client is
running on to identify the client. As clients should know their own IP address and will
know the address of any client they are connected to, they will be able to use the same
identifiers to refer to the same client. As there should be only one client running on each
machine, each client entity will have a unique IP address. There are additional prob
lems which might occur due to the use of network address translation(NAT), meaning
that each client does not in fact have a unique IP address. In this situation, some other
approach has to be found. One possible solution would be to combine the IP address
of the peer on the local network with the global IP address of the NAT router.

4.1. Design Considerations 54

If two distributed components both refer to the same entity, it should be possible
to determine an identifier that can be used by both components to refer to the entity. In
the worst case, it should be possible to construct an identifier from all the values of the
attributes of an entity which will identify it.

In cases where a particular entity only needs to be referred to by a single dis
tributed component, it is not necessary for the instrumentation developer to choose
an identifier as any random identifier can be used as long as it is used consistently. An
identifier which is unique across all distributed components can be constructed by com
bining a randomly generated, locally unique identifier with the IP address on which the
component is running.

4.1.7 Effects of Instrumentation
When monitoring a system, a serious concern is the effect instrumentation can have on
the execution of the target system. These changes impact the validity of the monitoring
results as the monitored system can behave differently from the un-monitored system.
This is actually a less severe problem when monitoring is a permanent feature of the
deployed system as when monitoring is used during testing only, and the instrumenta
tion is removed prior to deployment, there is a danger that the system behaviour can
change when the instrumentation code is removed thereby invalidating the monitoring
results. When monitoring is also used in the deployed system there is no change in the
system and so no change in behaviour caused by monitoring. Monitoring after deploy
ment does however place greater demands on the performance of the instrumentation
code. When monitoring takes place only during testing, a performance penalty can
sometimes be tolerated which would not be acceptable in the deployed system.

The only way to achieve instrumentation with absolutely no effect on the moni
tored system is to use dedicated hardware which allows execution data to be collected
as the system runs with no performance overhead. This is a valid approach for some
high performance embedded systems but is not possible with most computer systems
which run on general purpose hardware.

Performance Impact
The performance overhead caused by instrumentation is limited in the monitoring
framework because the instrumentation only emits significant events. Significant events
are those which correspond to changes in the requirements level object model. This is
in contrast to systems which operate using a typical debugging approach in which ev
ery method call and the value of every variable are tracked. The performance impact of
such debugging systems is generally too high to be used in a deployed system.

The instrumentation approach used means that it is hard to quantify what the im
pact of instrumentation is on the performance of a target system because it is heavily
dependent on exactly what parts of the system are monitored. Instrumentation could
generate events many times a second or only a few times an hour depending on the
system and what is instrumented. It is however useful to evaluate the average perfor
mance overhead of a single message. This gives some indication of what performance
overhead can be expected in a given scenario assuming the frequency with which mes
sages will be emitted can be estimated, although there could be scalability issues which
occur when messages are generated at a high frequency. It should also be possible to
determine typical overheads for specific types of systems.

The performance overhead of an individual message depends on the method used

4.2. Monitor Server Implementation 55

to capture information from the system, the complexity of the instrumentation code
itself and the method used to communicate with the monitor. This last issue is a partic
ular problem for distributed systems as it is necessary to send messages over a network
connection which can be a source of significant performance overhead. It can however
be advantageous to use a remote monitor, even when the target system is not distributed.
The gain in performance by avoiding remote communication can be offset by the loss
caused by running the monitor on the same machine as the target system.

A concern when monitoring distributed or multi-threaded systems is that changes
in performance can also affect the behaviour of a system because changes in perfor
mance can actually affect the order in which actions occur within the system. Systems
which behave in this way are generally undesirable in any case but it is possible that
the instrumentation can mask such problems, by changing the behaviour of the system,
rather than detecting them. This is not such a big concern when monitoring is part of
the deployed system because the instrumentation will continue to have the same af
fect on the system after deployment and any failure which actually occurs will still be
detected.

Functional Impact
As well as affecting the performance of a monitored system, instrumentation can
change the actual behaviour of the system directly which is obviously undesirable.
The purpose of instrumentation should be to observe the system not to change it. This
problem is handled quite effectively in [Minsky 96] which allows the developer of the
target system to specify that certain methods should be side effect free. The target sys
tem operates within an environment which ensures that these methods really are side
effect free by checking that they fulfil certain conditions such as not assigning a value
to an object attribute. This approach limits the target system to operating within a law-
governed architecture and so it is a significant restriction on the developer. It still also
requires the developer of the target system to mark methods as being side effect free,
although it automatically checks that they remain so in the future.

The approach used by the monitoring framework described in this thesis uses the
much less restrictive AspectJ language for instrumentation. Unfortunately, AspectJ
has no way to ensure that actual behaviour is not affected. The developer must take
care, particularly when calling methods in the target system. These methods should
obtain information only and should not have side effects. Accessor type methods which
simply return a value stored by a class are generally the safest type of method but it may
sometimes be necessary to call methods which perform more complex calculations to
return a value. This may involve calling other methods on other classes and these must
be side effect free if the calling method is to be side effect free. It is also possible that a
method which was side effect free when the instrumentation was developed could later
be modified so that it has side effects. To avoid this, all developers should carefully
document their methods to specify whether they are allowed to have side effects. A
method which has been documented as being side effect free should not be changed to
have side effects at a later date.

4.2 Monitor Server Implementation
This section discusses the implementation of the monitor server part of the monitor
ing framework. The architecture of the monitor server is first discussed. The monitor
server is split into two parts; the requirements instance model component and the goal

4.2. Monitor Server Implementation 56

C om ponent

C om ponent

C om ponent

Requirements
Instance Model

Target System

R equirem ents Model Q ueries

Display
U pdates

Figure 4.11: The architecture used by the run-time monitoring framework.

checker component. The requirements instance model component represents a partic
ular instance of the KAOS object model which reflects the state of the target system at
run time. The goal checker uses this model to check whether specific KAOS goals are
violated. These two components of the monitor server are described in detail in this
section.

4.2.1 Monitor Architecture
The requirements monitor is made up of the requirements instance model and goal
checkers as shown in figure 4.11. At run time, the instrumented system emits messages
which are received by the monitor server. These messages contain requirements level
events which describe changes which should be applied to the KAOS object model of
the system so that it reflects the current state of the target system. These messages are
received by the requirements instance model component which updates its model of the
system using the events it receives.

The goal checker communicates with the requirements instance model to check

4.2. Monitor Server Implementation 57

specific KAOS goals, specified in temporal logic, and determine whether these goals are
satisfied or have failed. This is done by a combination of listeners and queries. When
using a listener, the goal checker asks the requirements instance model component to
inform it whenever certain types of events occur. A listener might inform the checker
which registered it whenever a new instance of a particular relationship is instantiated
or the value of an attribute changes. The goal checker can also query the requirements
instance model component for some piece of information about the current state of the
model. An example would be to ask for all the instances of a particular entity type.

The requirements instance model component only stores information about the
current state of the requirements model so individual goal checkers must store the spe
cific temporal information that is needed to monitor particular goals. This ensures that
the historical information which needs to be recorded is kept to a minimum as only
information which is relevant to a monitored goal is stored.

4.2.2 Requirements Instance Model
At run time, the state of the system is represented by the requirements instance model.
This model is an abstract representation of the state of the system (at the level of the
requirements specification). The requirements instance model contains instances of
KAOS entities and relationships. The values of entity attributes are also stored.

There are two different implementations of the requirements instance model in
cluded in the monitoring framework. The first uses a relational database to implement
the model. The database itself cannot contain listeners so this component also has
additional code to query the database at regular intervals to detect changes which are
relevant to the goal checker. The goal checker uses SQL to query the database directly.
The instrumentation also uses SQL to modify the requirements instance model.

The second implementation stores the requirements instance model in system
memory as Java objects which represent instances of entities, requirements and at
tributes in the KAOS object model. Listeners inform the goal checker of changes and
the model can be queried by calling methods on the model which allow details of the
model to be accessed.

The monitoring framework makes both these alternatives available so that the
monitor developer can decide which implementation best suits a given monitoring prob
lem. These two approaches each have their own advantages and disadvantages. The
object approach is more responsive, at least for small systems. This is the case because
the database approach involves querying the database at intervals whereas the object
approach informs the goal checker immediately that a change occurs. The database ap
proach may scale better to larger systems and be more robust although it has not been
possible to test if this is true.

There are some limitations of these two approaches as they are implemented. The
object approach only implements monitors for hard goals. Soft goal monitoring is not
implemented as the method used for the implementation of soft goals relies on gener
ating SQL queries to calculate the value of the soft goal metric, as will be described in
chapter 5. There is no reason that soft goal monitoring could not be implemented for
the object approach but this would require a separate strategy for interpreting the soft
goal specification and evaluating it by calling methods on the requirements instance
model component.

The database approach assumes that there is no delay in receiving instrumenta
tion messages. Events are assumed to occur when they are received by the database.

4.2. Monitor Server Implementation 58

The object approach, in contrast, implements message ordering and uses coordination
messages to determine when they can be processed.

The database approach is likely more suited to long running target systems where
instrumentation messages are relatively infrequent. The object approach is likely more
suited to systems with frequent instrumentation messages but smaller systems.

Database Implementation
In this implementation, the requirements instance model is represented using a rela
tional database. The database used in the monitoring framework is MySQL which was
chosen primarily because it is open source and is available for free. There is no par
ticular reason why the monitoring framework should not work with other relational
databases which use SQL as a query language. MySQL is relatively lacking in fea
tures compared to commercial relational databases so most other databases should also
implement the features which are used by the monitoring framework.

Because the database itself is unable to register listeners and inform the listening
object when changes occur, it is necessary to include code which carries out these tasks
by periodically checking the database for changes and informing the goal checkers of
these changes. This approach also increases the complexity of the database as it must
keep track of which changes have still to be processed and allow them to be processed
in the correct order.

The database schema is shown in figure 4.12. The entity table in the schema stores
instances of KAOS entities with each row in the table representing one instance. The
entity instance is an instantiation of the entity named in the ‘type’ field. The ‘idString’
field is used to identify the entity instance as discussed in 4.1.6.

The ‘attribute’ table is used to store changes to attribute values. All attribute values
are stored in the ‘value’ field, represented as strings regardless of their actual type. The
type of the attribute is stored in the ‘value.type’ field and determines how the value
is interpreted. For example, if the ‘value’ field contains the string ‘100’ the it can be
interpreted as a string or if the type of the value is an integer it will be interpreted as
a number. The identifier of the entity to which the attribute belongs is stored in the
‘ entity J d ’ field and the name of the attribute is stored in the ‘name’ field.

Each entry in the ‘attribute’ table represents a change in the value of that attribute.
The ’new‘ field is set to ‘TRUE’ by default when a row is added to the ‘attribute’ table.
The current value of an attribute always has the ‘new’ field set to ‘FALSE’ and this
value is always used when the goal checker wants to obtain the current value of an
attribute. When a change to an attribute value is processed, the row for the old value
is first deleted. The ‘new’ field of the new value is the set to ‘FALSE’ to show that it
is now the current value. The ‘time’ field is automatically set to the time at which the
attribute change occurs and is used to process attribute changes in the correct order.

This mechanism of creating a new row whenever the attribute value changes is nec
essary because the value of an attribute can change several times between the database
being checked for changes. If the attribute is used in the specification of a goal then
missing one of these changes could prevent the monitor from operating correctly. To
prevent this, each changes in the value of an attribute must be stored individually. If the
attribute is not used in the specification of a goal, but is instead only used in soft goals
then it is not necessary to capture every change in value. In these cases, a single row
can be used to store an attribute. Changes in the value of the attribute are implemented
by modifying the ‘value’ attribute of the table row.

4.2. Monitor Server Implementation 59

+ id: UNSIGNED INT
+idString: VARCHAR(IOO)
+type: VARCHAR(100)

entity

+ id: UNSIGNED INT
+role: VARCHAR(100)
+relationship_id: UNSIGNED INT
+entity_id: UNSIGNED INT_______

role_entity

+id: UNSIGNED INT
+type: VARCHAR(100)
+deletion_time: TIMESTAMP
+creation_time: TIMESTAMP
♦new: {TRUE, FALSE}
+deleted: {TRUE, FALSE}

relationship

+ id: UNSIGNED INT
+name: VARCHAR(100)
+entity_id: VARCHAR(IOO)
+value: VARCHAR(100)
+value_type: CHAR(10)
+time: TIMESTAMP
+new: {TRUE, FALSE}_____

attribute

Figure 4.12: The database schema for the requirements model instance.

The relationship table stores KAOS relationship instances. The ‘type’ field stores
the name of the relationship which is instantiated. The ‘creation_time’ field stores the
time at which the relationship instance is created and the ‘deletion.time’ stores the time
at which it is deleted. These two fields are used to process relationship creation and
deletion in the correct order. Two fields are necessary because the database is checked
for changes at intervals and a relationship could be created and deleted between two
checks.

The remaining two fields are boolean values. The ‘new’ field is set to ‘TRUE’ by
default for each row which is added to the table. This tells the goal checker that a new
relationship instance has to be processed. Once the goal checker has finished processing
the new relationship instance, the ‘new’ field is set to ‘FALSE’. The ‘deleted’ field is
set to ‘TRUE’ when the monitored system indicates that a relationship instance has
been destroyed. This also tells the goal checker to process the relationship instance,
after which the table row is deleted.

Each relationship has two or more roles. Each entity can be a role in zero or more
relationships. To allow this many-to-many association, a junction table, ‘role.entity’,
is used. Each row of the table represents a single role in a relationship instance. The
field ‘relationshipJd’ identifies the relationship instance to which the role belongs to.
The field ‘entity J d ’ identifies the entity instance which fills the role. Additionally, the

4.2. Monitor Server Implementation 60

name of the role is stored in the ‘role’ field.
The requirements instance model database has to be regularly checked for

changes. To find relationships which have been created or destroyed since the last
check, a query is executed which returns all the rows of the relationship table for which
the ‘new’ or ‘deleted’ field are set to true. These rows represent relationship instances
which have been created or destroyed since the last time the database was checked. The
rows are returned, sorted by the ‘time’ field which holds the time at which the row was
created or modified. The relationship instances are processed starting with the earliest
one which was modified.

When a new relationship instance is processed, the ‘new’ field is first set to false.
Goal checkers which have listeners for the relationship type are then informed of the
new instance. For relationship instances which have been destroyed, the relationship
listeners are also informed and the row for that relationship instance is deleted from the
database.

Object Based Implementation
In this implementation, the requirements instance model is represented using Java ob
jects which are stored in memory. The instrumentation messages are sent to the monitor
using TCP sockets, using a single TCP socket for each machine in the distributed sys
tem.
Message Ordering Implementation The messages are sorted into the correct order
using the system of ordering described in 4.1.4 which uses coordination messages to
help ensure messages are processed in the correct order. The sorting algorithm is im
plemented by creating an ordered queue to store messages which are waiting to be
processed. Messages are inserted into this queue in order of their time stamps with the
oldest message at the front of the queue.

When messages are processed they are taken from the front of the queue. Associ
ated with each TCP socket is the time of the last coordination message received by that
socket. Whenever a new coordination message is received, the message queue is com
pared to the coordination messages last received by each TCP socket. If any messages
are older than the oldest coordination message then those messages are processed by
taking them from the front of the queue.
Object Model Implementation The monitoring framework builds an instance of the
requirements level object model using the classes shown in figure 4.13. The classes
KAOSEntity and KAOSRelationship represent the KAOS meta-model concepts
of entities and relationships. Agents are not necessary here because for these pur
poses they can be treated identically to entities. During initialisation of the monitoring
framework, these classes are instantiated for each entity and relationship mentioned in
the requirements specification. These instances represent the KAOS object model for
the target system.

The classes KAOSEntitylnstance and KAOSRelationshipInstance
are instantiated at run time to store the information sent by the instrumentation in the
target system. These classes model the current state of the target system.

The goal checkers are informed of changes in the requirements instance model by
attaching listeners to the parts of the model that they are interested in. If a goal checker
wants to be informed about all new instances of a particular entity or relationship type,
the method addlnstanceListener of KAOSEntity is used to add a listener. If a
checker want to know whenever a particular entity attribute changes, for all instances of

4.2. Monitor Server Implementation 61

KAOSCIass

+addInstanceListener(1:InstanceListener)
+getName(): String

KAOSEntity

+addAttributeListener(attributeName:String,1:Attribute
+getInstanceAttribute(instanceld:String,name:String):
♦getlnstances(): KAOSEntitylnstance[]

Listener)
KAOSAttributeValue

1

0 . . *

KAOSObjectlnstance

+getldentifier(): String

KAOSRelationship

+getlnstances(): KAOSRelationshipInstance[]
+getMatching!nstances(rolesToIds:Map) : KAOSRelationshipInstnace []

1

0 ..*

KAOSRelationshipInstance

+isMatchingInstance(rolesToIds:Map): boolean
+getLinkedInstance(roleName:String): String
+getRole!ds(): String[]

Figure 4.13: Classes used in the object based implementation of the requirements level
object model.

4.2. Monitor Server Implementation 62

a particular type, the method addAttributeListener of KAOSEntity is used
to add an attribute listener. These listeners are then informed whenever the relevant
event occurs.

As well as detecting changes through listeners, goal checkers can also request
information about the current state of the model. For example, the checkers can ob
tain all instances of a particular type by calling the get All Instances method of
KAOSClass or KAOSRelat ionship. The instances can then be used to obtain fur
ther information such as what entities are linked by a particular relationship instance.

4.2.3 Goal Checker Implementation
The goal checker is responsible for detecting when goals are violated or satisfied. This
is determined by examining the requirements instance model to determine the state of
the target system.

The requirements instance model only stores the current state of the system. The
goal checker is responsible for storing the historical information necessary for checking
goals. This means that whenever a goal is instantiated, the goal checker has to store
some information about the instantiation of the goal. This information is then used to
determine when the goal is satisfied or fails.

A goal checker is constructed by parsing the temporal logic specification, stored
in an XML format, and building up a tree of objects which correspond to the structure
of the temporal logic formula. These objects together evaluate whether the system has
satisfied the monitored goals. The temporal logic specification of the monitored goals
are stored in an XML format so that they are easier for the monitoring framework to
parse.

The root of the checker tree is always an object responsible for monitoring a par
ticular goal pattern. The type of this object depends on the goal pattern of the monitored
goal. This object will store information associated with each goal instance, particularly
the time bounds associated with those goals. The root object will have a number of
children which correspond to the predicates which appear in the goal specification.

An example object model, for the goal ‘Download File’ from the Limewire exam
ple, is shown in figure 4.14. This goal is formally defined as:

Achieve[Download File] V c:Client, f:File, fd:FileDescriptor
RequestingFile(c, fd) => 0 SavedFile(c, f) A f.name = fd.name

In this case, the goal is an ‘achieve’ goal so an instance of the AchieveMonitor
class is created to check this goal.

The root object has references to objects representing predicates which appear
in the temporal logic formula. There are two types of predicates in the tree; atomic
predicates and compound predicates which are created by combining atomic predicates.
The atomic predicates available are relationship predicates and comparison predicates.
A relationship predicate is true if for a given set of objects if the relationship exists for
those objects. A comparison predicate compares the value of an attribute to another
attribute or a constant using operators such as ‘equals’, ‘greater than’ and ‘less than’.
The predicate is true if the comparison is true. Compound predicates are combinations
of atomic predicates using the ‘AND’, ‘OR’ and ‘NOT’ operators. The checker in the
example has objects for checking the relationships ‘Requesting File’ and ‘Saved File’
and an EqualityMonitor object which is a comparison predicate responsible for
checking the equality ‘f.name = fd.name’.

4.2. Monitor Server Implementation 63

:DB Checker

fileNam esEqual:

EqualityMonitor

AchieveM onitor

downloadFile:

RelationshipMonitor

requestingFile:

RelationshipM onitor

savedFile:

Figure 4.14: The object model for a goal checker which is checking the goal ‘Download
File’.

As KAOS predicates are parameterised, a predicate object is responsible for de
termining the truth of the predicate for any set of parameters. The parameters of a
predicate are indicated by a set of labels. For example, the relationship ‘SavedFile’ in
the example above has parameter labels ‘c’ and ‘f \ The compound predicate ‘Saved-
File(c, f) A f.name = fd.name’ has parameter labels ‘c \ ‘f ’ and ‘fd’. The predicate is
parameterised by assigning entities to these labels.

Predicate monitors have two responsibilities. First, they must inform their parent
monitor whenever the monitored predicate becomes true for a given set of parameters
and what those parameters are. Secondly, when presented with a list of labels and enti
ties which are bound to those labels, they must be able to determine if the predicate is
true for those labels. The list of label bindings does not need to contain values for every
label in the predicate. If an incomplete list is provided, there may be several possible
bindings for the unbound labels which would satisfy the predicate and the predicate
object should reports what these values are. For example, the predicate monitor for
the relationship ‘Requesting File’ must determine whether the predicate is true for any
given value of the labels ‘c’ and ‘fd’. It must also be able to determine whether a re
lationship instance exists for which only one of the labels ‘c’ or ‘fd’ is fixed and what
values are allowable for the unbound label.

Each atomic predicate object registers a listener with the requirements instance
model. Relationship predicate objects register listeners with the relationship type they
are checking. Comparison predicate objects need to register attribute listeners for any
attributes used in their definitions. The goal checker begins to execute whenever one of
the listeners informs the checker of an event.

4.3. Instrumentation for MonitoringKAOS Goals 64

updateTime
updateTrue [P AND -O] / [t > instantiationTime + b] /
informNewlnstance() informFailedlnstance()

updateTrue [Q] /

inform Satisfiedlnstance() remove Instance

updateTrue [P AND Q] /
informNewlnstance()

informSatisfiedlnstance() removelnstance
Satisfied

FailedInstantiated

Figure 4.15: State diagram showing the implementation of a checker for bounded
achieve goals (P=4> 0<bQ-

Evaluation of Temporal Logic
The monitoring framework does not implement checkers for arbitrary temporal logic
formulae but instead is capable of checking only those formulae relating to specific
goal patterns which are part of KAOS. This choice was made mainly because it was
decided that it was easier to implement specialised checkers for specific patterns than
to implement a generalised checker which can handle any temporal logic formulae.
Since KAOS encourages the use of a restricted set of temporal logic formulae there is
little need for a generalised checker.

Each temporal logic checker corresponds to one of the goal patterns in KAOS.
A state diagram illustrating the operation of the checker for bounded achieve goals is
shown in figure 4.15. A goal instance is instantiated when the condition P becomes
true. That goal instance is satisfied immediately if Q is already true. If it is not then the
goal is satisfied if Q subsequently becomes true. The goal fails if the time bound t is
exceeded.

The state diagram for goals of the ‘after’ invariant type, which is the most common
type of maintain goal used in KAOS specifications, is shown in figure 4.16. An instance
of the goal is created when P becomes true. If Q is not already true then the goal
immediately fails. The goal also fails if Q subsequently becomes false. The goal is
satisfied when the time bound is reached without the goal entering the failure state.

4.3 Instrumentation for Monitoring
KAOS Goals

Instrumentation performs two roles within the monitoring framework. Firstly, the in
strumentation code is responsible for collecting information from the target system
about the execution of the system. Secondly, the instrumentation has to translate that
information into a form which can be used by the monitor to determine whether the
goals in the requirements specification are being satisfied by the target system.

The type of events which the monitor understands are creation of a KAOS rela
tionship or entity instance, destruction of an instance or a change in the value of the
attribute of an entity. The instrumentation must then gather events from the target sys
tem such as execution of method, creation of an object and changes to a variable. The
instrumentation must then translate these implementation level events into requirements

4.3. Instrumentation for MonitoringKAOS Goals 65

updateTrue [P AND Q] /
inform NewlnstanceQ

Instantiated

updateTime
[t > instantiationTime + b] /
informSatisfiedlnstanceO

Satisfied

updateFalse [Q] /
informFailedlnstance()

removelnstance

updateTrue[P AND -Q] /
informNewlnstance()
informFailedlnstanceQ

Failed

removelnstance

Figure 4.16: State diagram showing the implementation of a checker for ‘after’ invari
ant maintain goals (P=> D<bQ.

level events.
Two approaches have been provided for creating this instrumentation code. Both

attempt to simplify the task of creating instrumentation for requirements monitoring
using KAOS goals. The first approach described is to write instrumentation code us
ing AspectJ. These instrumentation aspects are supported by classes generated from
the requirements specification. The second approach described is to use a mapping
from the requirements level relationships and entities to the implementation level to
automatically generate instrumentation aspects. These two approaches each have their
advantages and the two can be used in combination if necessary.

The rest of this section describes these two approaches to mapping with the help
of an example based on the Limewire system. The example uses the relationships
and entities used in the specification of the goal ‘Achieve[Download File]’ which was
initially described in section 3.3.2 and formally defined in section 4.2.3. This goal
specification makes use of the entities ‘Client’, ‘File’ and ‘FileDescriptor’ as well as the
relationships ‘SavedFile’ and ‘RequestingFile’. To allow the goal ‘Achieve[Download
File]’ to be monitored, it is necessary to create instrumentation code which allows these
entities and relationships to be monitored.

4.3.1 Instrumentation Process
The instrumentation process is illustrated in figure 4.17. The instrumentation code is
arranged into three packages, arranged in layers, with classes in the lower layers being
extensions of classes in the upper layers. These layers correspond to the three levels of
KAOS models. The top layer contains classes which correspond to the KAOS meta
model, the middle layer contains classes which correspond to the KAOS domain model
and the lower layer contains classes which correspond to the KAOS instance model.

The classes in the top layer represent the concepts of entities, relationships and
attributes. These classes are responsible for communicating changes in the KAOS in
stance model to the monitor server. Because these classes represent the KAOS meta
model concepts, they are the same for all monitored systems.

The classes in the domain level package represent specific relationships and entity
types. These classes support the developer in writing the instance level aspects by
providing an interface which contains all the allowable events which can occur for the

4.3. Instrumentation for MonitoringKAOS Goals 66

XSL.T G en era tio n

Manual
C onstruction M anual

C onstruc tion

KAOS Domain
Level C lasses

KAOS Instance
Level A spects

KAOS Meta-Level
C lasses

R equirem ents
M apping

KAOS
Specification

In stru m en ta tio n
Packages

A utom atic
G enera tion

A utom atic
G eneration

Java Source
C ode

UML/XMI
Specification

Figure 4.17: The instrumentation process.

particular domain model for the monitored system. For example, only relationships,
entities and attributes which are named in the KAOS object model can be referred to in
changes to the instance model. Similarly, when new relationships are instantiated, they
must have the correct number and types of roles.

The classes in the domain level package are generated automatically from the
KAOS specification. This is done by reading an XML representation of the specifica
tion and generating Java source code from it using XSLT[W3C 05]. A class is gener
ated for each entity and relationship type which exists in the KAOS specification. These
classes have methods which can are called to create relationships and update attribute
values. These classes pass these changes to the meta-level classes which communicate
this information to the monitor.

The KAOS instance level aspects do the job of actually instrumenting the mon
itored system to obtain information on its execution. The aspects then translate this
implementation level information into events relating to the KAOS instance model by
calling methods in the domain level package. These calls represent the creation, de
struction or modification of individual instances in the KAOS model.

There are two ways of creating the instance level aspects, as shown in the di

4.3. Instrumentation for MonitoringKAOS Goals 67

agram. The first method is for the instrumentation developer to write AspectJ code
manually, making use of the KAOS domain level classes to do so. AspectJ pointcuts
are used to obtain implementation level events. The advice attached to these pointcuts
translates implementation level events to requirements level events by calling methods
in the domain level package. This is done by using information contained in the pa
rameters of the pointcut and additional information which can be obtained from the
monitored system to determine the values which should be passed to the classes in the
domain level package. The second method is for the instrumentation developer to man
ually construct a requirements mapping which maps relationships and entities in the
requirements specification to Java classes, methods and attributes. AspectJ code is then
automatically generated from this mapping and information about the implementation
coded in UML/XM1 format.

Example Class Model
An example of the classes generated from the specification for the goal ‘Download-
File’ for the Limewire system is shown in figure 4.18. In this case there are three
entities called ‘Client’, ‘FileDescriptor’ and ‘File’. A class is generated to represent
each of these types. The monitor is informed of the new entity when the method
in it Instance is called. The no argument version of this method automatically gen
erates a globally unique identifier for the entity. The other version of the method pro
vides a String argument which is used as the identifier for the entity. The ‘File’ en
tity has an attribute called name which can be modified by calling the nameUpdated
method of the FileType class.

There are also two relationships called ‘RequestingFile’ and ‘SavedFile’ in the
specification of the goal and a class is generated for each of these relationships. The
roles of these relationships are set, and the relationships created in the monitor’s re
quirements model, by calling the initInstance methods on the classes represent
ing these relationships. The instances are removed from the requirements model by
calling the destroylnstance method.

An example of generation of the domain level classes is illustrated in figure 4.19.
The upper-left of the diagram shows the specification of the goal ‘DownloadFile’ repre
sented in XML (the requirements specification only contains goal as the object model is
derived implicitly from the goal specification). This goal contains a relationship called
‘RequestingFile’ and the lower-right part of the diagram shows the class that is gener
ated for this relationship. The arrows show the areas of the domain level class which
are filled in using information from the requirements specification.

4.3.2 Instrumentation and Translation Using AspectJ
An instrumentation aspect is required for each relationship and entity in the KAOS
object model. As stated previously, instrumentation aspects can either be written man
ually or they can be generated automatically from a mapping between the requirements
model and the implementation of a system. In either case it is necessary to consider
how KAOS relationships and entities relate to the implementation in code.

Entities
KAOS entities are mapped onto the implementation level by relating a KAOS entity
to one or more implementation classes. A KAOS entity can often be mapped onto
an implementation level class on a one-to-one basis. Entity attributes may also map
onto member variables of the implementation object. Such mappings are very easy to

4.3. Instrumentation for MonitoringKAOS Goals 68

EntityType

“ 5 5 5 “

ClientType

initInstance(idst ring:String)
initInstance(): void

FileType

#initInstance(idString:String): void
#initlnstance(): void
tnameUpdated(name:String): void

FileDescriptorType

#initlnstance(idString:String):
#initlnstance(): void
#nameUpdated(name:String): void

RelationshipType

J T
RequestingFileType

#initlnstance(requeBtedByObject:ClientInstance,
requestedFileDownloaderObject:FileDescriptorlnstance): void

#destroy!nstance1): void

SavedFileType

#initInstance(savedBy:ClientInstance,
savedFileObject:Filelnstance): void

tdestroylnstance(): void

Figure 4.18: Type model generated from requirements specification for Limewire sys
tem.

specify as it is simply necessary to show which entities correspond to which imple
mentation classes and which attributes map to which member variables. An example
of this type of mapping is demonstrated by the instrumentation aspect for the entity
‘FileDescriptor’ in the specification of the goal ‘Achieve[Download File]’.

1 p u b l i c a s p e c t F i l e D e s c r i p t o r l n s t a n c e
2 e x t e n d s F i l e D e s c r i p t o r T y p e
3 p e r t a r g e t (e x e c u t i o n (R e m o t e F i l e D e s c . n e w (. .))) {
4
5 a f t e r (R e m o t e F i l e D e s c f) :
6 e x e c u t i o n (R e m o t e F i l e D e s c . n e w (. .)) &&
7 t a r g e t (f) {
8
9 S t r i n g name = f . g e t F i l e N a m e () ;

10 i n i t I n s t a n c e (n a m e) ;
11 n a m e U p d a t e d (n a m e) ;
12 }

13 }

The entity ‘FileDescriptor’ maps directly to the RemoteFileDesc class in

4.3. Instrumentation for MonitoringKAOS Goals 69

(Goal uap="DownloadFile" type="achieue" tii*C onstrain t="20">
(A ntecedent)

(R e la tion sh ip ■ane="RM uestingFile">
(U ariable r 0 lr="re%uestedBy" la b e l= Mc" typ e=" C lien t’7>
(U ariab le role=■,^■eqne^edFi^e,, label="fd" tjH»e="FileDescriptor'7>

(/R e la tio n sh ip)
(/A n teced en t)
(Consequent)

(And)
(R e la tion sh ip »

(U ariab le r « le
(U ariab le r o le

(/R elation sh ip Q
(Equals paraneterTjpe

type='’C lie n t '7)
j J f c r tN f" tf^ e= ,,F i le ’7>

(A ttr ib u te la b e l
(A ttr ib u te la b e l= ”f

(/E q u a ls)
(/And)

"name"/)
attribute="naBe'7>

(/C onsequent)
(/G oal)

u estibq F ilyT
a lR elatioX sh ip

'requestedftUt?"};
uV tinqf ile " 7sroleNai#es);

RelationshipMapping {p u blic ab stract c l
p riu a te s t a t i c

p u blic R equesting iu leT ype() {
S tr in g f] roleHanes = { “requflst.edB(
type = n et LocalRelationshipT|pe("R^

>

p rotected vo id in itIn sta n c e(C lien tIn sM n ce rStprtetedByObjecO
F ileD escr ip to rIn sta n ck req u ested F iftO b ject) {

in sta n ce = ty p e .in it In s ta n c e (r e q u e s « d B y O b je c t \e tI n s ta n c e () ,
req u e sted F ile O b jecr .g e tln sta n cef));

}

p rotected uoid d estroyIn stan ce() {
ty p e .d estro y R ela tio n sh ip In sta n ce(in sta n ce);
in sta n ce = nu ll;

>

Figure 4.19: Generation of classes from the specification of the goal DownloadFile.

the Limewire implementation. To implement this in AspectJ it is necessary to use
a pertarget clause (line 3) so that an instance is created for each instance of
RemoteFileDesc which is created. The advice at line 5 executes after the con
structor of the RemoteFileDesc class. This advice indicates that the monitor server
should be informed that the entity has been instantiated by calling the init I nst ance
method (line 10). The value of the ‘name’ attribute is also set at this time by calling
the nameUpdated method (line 11). Since the file name does not change, it is not
necessary to change the value of this attribute after the initial instantiation of the aspect.

More complex mappings are also a possibility. For example, a KAOS entity can
map onto more than one implementation class or onto a particular state of an imple
mentation class. An example of a more complex mapping is the ‘Client’ entity in the
Limewire example. Each client has knowledge about both itself and the other clients
it is directly connected to. Each client is identified in the monitoring system by the IP
address of the machine it is running on. This is represented in the following aspect.

1 p u b l i c a s p e c t C l i e n t I n s t a n c e e x t e n d s C l i e n t T y p e
2 p e r t a r g e t (e x e c u t i o n (D o w n l o a d M a n a g e r . n e w (. .)) I I
3 e x e c u t i o n (C o n n e c t i o n M a n a g e r . n e w (. .)) | |
4 e x e c u t i o n (* C o n n e c t i o n . i n i t i a l i z e (. .))) {
5
6 b e f o r e () : e x e c u t i o n (D o w n l o a d M a n a g e r . n e w (. .)) | |

4.3. Instrumentation for MonitoringKAOS Goals 70

1
8
9

10
initInstance(Util.getLocalIP()) ;

execution(ConnectionManager.new(..)) {

1 1
12
13
14
15
16
17
18

after (Connection c) returning :
e x e c u t i o n (* C o n n e c t i o n . i n i t i a l i z e (. .)) &&
t a r g e t (c) {

initlnstance(c.getInetAddress () .getHostAddress());

Instances of this aspect are created for each DownloadManager and
Connect ionManager which are created. Each of these classes are instantiated once
for each client so the client can be associated with either of these objects. Both objects
are used for convenience as in some cases it is easier to use the DownloadManager
object to identify the client instance and in other cases the Connect ionManager
object is easier to use. On line 9, an entity instance, identified by the IP address of the
machine the client is running on, is created whenever either of the objects is instan
tiated. In a normal execution of the system, both of these classes will be instantiated
once meaning either object can be used to access the client entity representing the local
client. As the entity created will have the same identifier (the IP address) in either case,
there will only be one ‘Client’ entity created on the monitor server. The second call
to initlnstance will have no effect on the instance model stored on the monitor
server.

Instances of the ‘Client’ entity are also created for each ‘Connection’ object which
is instantiated. These entities represent the remote client which the local client is con
nected to. On line 16 a ‘Client’ entity is created for each connection, identified by
the IP address of the remote end of the connection. If the remote client is also being
monitored and is connected to the same monitor server then an entity on the server may
already be created with the same identifier. In this case, the second attempt to create
the entity is ignored as in both cases, the same ‘Client’ entity is being referred to.

Relationships
The aspects written to provide instrumentation for KAOS relationships make use of the
aspects for entities as these aspects identify the roles in the relationships. The aspect
representing the entity instance can be recovered from the implementation object it is
associated with, using the aspectOf method. The aspectOf method is a static
method which is automatically added to all aspects by AspectJ. It gets the aspect in
stance of a particular type which is associated with the object provided as a parameter.
For example, if the aspect A is defined as:

aspect A pertarget(execution(B.n e w (..))) {}

then given an object b which is an instance of B, the corresponding aspect instance is
returned by the call:

A .aspectOf(b)

4.3. Instrumentation for MonitoringKAOS Goals 71

It has been found that KAOS relationships normally map onto the implementation
level in one of two ways. A KAOS relationship can either maps onto a member variable
of an class or it can map onto a method call.

In the first of these two cases, the relationship is true when a member variable has
a certain range of values. This could simply be when a member variable which is a
reference to another object is non-null, representing a relationship with another class at
the implementation level. In this case the object referred to is likely to represent one of
the roles in the KAOS relationship. Alternatively the relationship could be true when
the member variable has a particular range of values which would represent a particular
state of the object.

An example of such a mapping is the aspect for the relationship ‘SavedFile’, used
in the specification of the goal ‘Achieve[download File]’, which is shown below:

1 p u b l i c p r i v i l e g e d a s p e c t S a v e d F i l e l n s t a n c e
2 e x t e n d s S a v e d F i l e T y p e
3 p e r t a r g e t (e x e c u t i o n (M a n a g e d D o w n l o a d e r . n e w (. .))) {
4
5 p r i v a t e p o i n t c u t s e t S t a t e (M a n a g e d D o w n l o a d e r d o w n l o a d e r ,
6 i n t s t a t e) :
7 s e t (i n t M a n a g e d D o w n l o a d e r . s t a t e) &&
8 a r g s (s t a t e) &&
9 t a r g e t (d o w n l o a d e r) ;

10
11 a f t e r (M a n a g e d D o w n l o a d e r d o w n l o a d e r , i n t s t a t e) :
12 s e t S t a t e (d o w n l o a d e r , s t a t e) &&
13 i f (s t a t e == M a n a g e d D o w n l o a d e r . COMPLETE) {
14 i n i t l n s t a n c e (
15 C l i e n t I n s t a n c e . a s p e c t O f (d o w n l o a d e r . m a n a g e r) ,
16 F i l e l n s t a n c e . a s p e c t O f (d o w n l o a d e r)) ;
17 }
18 }

This instrumentation aspect uses a p e r t a r g e t clause so that one instance of
the relationship is associated with each ‘ManagedDownloader’ object. The relation
ship does not actually hold as soon as an instance is created but when the object enters
the ‘COMPLETE’ state, represented by the ‘state’ member variable. This is imple
mented by the pointcut named setState which is defined on line 5 which matches
any change to the state variable. The advice, defined on line 11, executes when
this pointcut is matched and the state variable has the value ‘COMPLETE’. When the
advice is called, a new instance of the relationship is created.

When i nit Instance is called to create an instance of the relationship, the
instrumentation aspect has to supply the objects which represent the roles of the re
lationship as parameters of the method. The ‘Client’ entity maps onto a class in the
implementation and so can be accessed using aspectOf with that object as a parame
ter. The second role is a ‘File’ which corresponds to the ManagedDownloader class
as one instance of this class is responsible for a single download.

In the second type of relationship mapping, the relationship holds during the ex
ecution of a method; from the time the method is called until the time that execution
completes. This execution period includes the time spent executing method calls made
from within the original method. In this case, the roles in the KAOS relationship are

4.3. Instrumentation for MonitoringKAOS Goals 12

likely to be represented at the implementation level by parameters of the method or by
member variables of the class which contains the method.

An example of this second type of mapping can be seen in the aspect for the
‘RequestingFile’ relationship:

1 p u b l i c p r i v i l e g e d a s p e c t R e q u e s t i n g F i l e l n s t a n c e
2 e x t e n d s R e q u e s t i n g F i l e T y p e
3 p e r c f l o w (e x e c u t i o n (* M a n a g e d D o w n l o a d e r . d o D o w n l o a d (. .))) {
4
5 p o i n t c u t d o w n l o a d P o i n t c u t (M a n a g e d D o w n l o a d e r d o w n l o a d e r ,
6 H T T P D o w n lo a d e r h t t p D o w n l o a d e r) :
7 e x e c u t i o n (★ M a n a g e d D o w n l o a d e r . d o D o w n l o a d (. .)) &&
8 t a r g e t (d o w n l o a d e r) && a r g s (h t t p D o w n l o a d e r , *) ;
9

10 b e f o r e (M a n a g e d D o w n l o a d e r d o w n l o a d e r ,
11 H T T P D o w n l o a d e r h t t p D o w n l o a d e r) :
12 d o w n l o a d P o i n t c u t (d o w n l o a d e r , h t t p D o w n l o a d e r) {
13
14 i n i t l n s t a n c e (
15 C l i e n t I n s t a n c e . a s p e c t O f (d o w n l o a d e r . m a n a g e r) ,
16 F i l e D e s c r i p t o r I n s t a n c e . a s p e c t O f (
17 h t t p D o w n l o a d e r . g e t R e m o t e F i l e D e s c ())) ;
18 }
19
20 a f t e r (M a n a g e d D o w n l o a d e r d o w n l o a d e r ,
21 H T T P D o w n l o a d e r h t t p D o w n l o a d e r) :
22 d o w n l o a d P o i n t c u t (d o w n l o a d e r , h t t p D o w n l o a d e r) {
23
24 d e s t r o y l n s t a n c e () ;
25 }
26 }
27

Here the aspect is instantiated during the execution of the method doDownload.
The relationship is instantiated when this method is called, using the pointcut
downloadPointcut, defined on line 5, which matches the execution of the
doDownload method. There are two pieces of advice. The first is a ‘before’
advice, on line 10, which creates an instance of the relationship while the sec
ond, on line 20, is an ‘after’ advice which destroys the relationship after the
doDownload method completes its execution. The ‘Client’ roles in the relationship
is associated with the ManagedDownloader object on which the doDownload
method is called and so is easily obtainable. The ‘FileDescriptor’ role is associ
ated with the RemoteFileDescriptor class corresponding to the file which
is requested. The entity corresponding to this role is obtained on lines 15-16.
The HTTPDownloader object which is the first parameter of the method call is
obtained. The ManagedDownloader object is obtained by calling the method
getRemoteFileDesc on this object.

Of the two types of relationship mapping, it is the second type of mapping, in
which the relationship exists only during the execution of a method, which has been
found to be more common. This is not what was expected as the first type of mapping,

4.3. Instrumentation for MonitoringKAOS Goals 73

in which relationships are mapped to particular values of attribute, is closer to the con
cept of the relationship at the implementation level as, relationships in UML designs
are normally implemented by adding a member variable to a type.

4.3.3 Instrumentation Using Mapping
The monitoring framework provides an alternative approach to writing aspects directly.
This approach is to provide a specialised mapping language which allows the relation
ship between the requirements specification and the implementation of a system to be
specified explicitly. This is then used to generate instrumentation aspects similar to
those described previously.

The language is written using XML so that it is easy to parse and also that it can
easily interact with other tools if necessary. The implementation of the system is also
described using an XML file, in this case a UML/XMI description of the implemen
tation. This document specifies every class, attribute and method in the target system
but does not contain any details of the implementation of the methods. The XMI file
can be automatically generated from the source code of the target system using a UML
case tool which is able to reverse engineer source code and export in XMI format.

The mapping language links KAOS entities and relationships to corresponding
classes, attributes and method calls in the implementation using XPaths which refer to
elements in the XMI document which describes the implementation. The syntax of the
language is described by the DTD in appendix B.

The following listing shows the mapping for the ‘FileDescriptor’ entity from the
example presented previously.

1 < O b j e c t n a m e = " F i l e D e s c r i p t o r "
2 o b j e c t E l e m e n t = " / /UML: C l a s s [@ n a m e = ' R e m o t e F i l e D e s c '] " >
3 < O b j e c t I D o b j e c t = " . / / U M L : A t t r i b u t e [@name = ' _ f i l e n a m e '] " / >
4 < A t t r i b u t e n a m e = " n a m e "
5 a t t r i b u t e O b j e c t = " . / /UML: A t t r i b u t e [@ n a m e = ' _ f i l e n a m e '] " / >
6 < / O b j e c t >
7

On line 1 the ‘Object’ element specifies that this is a mapping for an object (i.e.
agent or entity) and that the name of the entity is ‘FileDescriptor’. The ‘objectElement’
attribute on line 2 is an XPath which points to the element for the R e m o te F ile D e s c
class in the XMI document. This specifies that an instance of the entity should be cre
ated whenever a new instance of the class R em o teF ileD e s c r i p t o r is instantiated.
The identifier which should be used for the entity is specified by the ‘object’ attribute
of the ‘ObjectID’ element on line 3. The XPath in this attribute is relative to the node
identified by the ‘objectElement’ attribute of the ‘Object’ element. It is a general prin
ciple of the language that XPaths in child elements are relative to the nodes identified
by XPaths in parent elements. The ‘object’ attribute thus identifies the . f i l e n a m e
member of the R e m o te F ile D e s c class as identifying the object. Finally, lines 4 and
5 specify that the ‘name’ attribute is also associated with the . f i l e n a m e member of
the R e m o te F ile D e sc class.

This mapping will generate a single aspect which is functionally identical to the
‘FileDescriptorlnstance’ aspect in section 4.3.2 although the generated aspect is not
quite as concise. One difference is that the aspect generated by the mapping language
accesses the . f i l e n a m e member directly, as it seems more natural to think of map

4.3. Instrumentation for MonitoringKAOS Goals 74

ping entity attributes to member variables, while the hand written aspect uses an acces
sor function as is normal when writing Java code.

The mapping language is only able to handle simple, one-to-one mappings be
tween entities and implementation classes. More complex mappings, such as required
for the ‘Client’ entity in the Limewire example, need to be coded directly in AspecU.
This is a limitation of the mapping language rather than a fundamental limitation and
further development of the language might allow it to handle such cases.

The mapping language also allows instrumentation code for relationships to be
generated. The mapping for the relationship ‘SavedFile’ from the Limewire example is
shown below:

1 < R e l a t i o n s h i p n a m e = " S a v e d F i l e " >
2 < S t a t e M a p p i n g
3 c l a s s = " / /UML: C l a s s [@ n a m e = ' M a n a g e d D o w n l o a d e r '] ”
4 a t t r i b u t e = " . / /UML: A t t r i b u t e [@ n a m e = ' s t a t e '] " >
5 < S t a t e v a l u e = " t r u e "
6 v a l u e O b j e c t = " / /UML: I n t e r f a c e [@ n a m e = ' D o w n l o a d e r '] / /
7 U M L : A t t r i b u t e [@ n a m e = ' C O M P L E T E '] " / >
8
9 < R o l e n a m e = " s a v e d B y "

10 t y p e = " C l i e n t "
11 r o l e O b j e c t = " . / / UML : A t t r i b u t e [@name=' m a n a g e r '] 11 / >
12 < R o l e n a m e = " s a v e d F i l e "
13 t y p e = " F i l e "
14 r o l e O b j e c t = " . " / >
15 < / S t a t e M a p p i n g >
16 < / R e l a t i o n s h i p >

As stated in section 4.3.2, the ‘SavedFile’ relationship is true while the
ManagedDownloader class is in a particular state, represented by the state
member variable. The mapping for the relationship is contained in the ‘Relationship’
element, on line 1, which states the name of the KAOS relationship which is mapped.
The ‘StateMapping’ element on line 2 indicates that this is a mapping related to a
particular state of an object. The ‘class’ attribute indicates that the class in question
is the ManagedDownloader class, by referring to the node corresponding to that
class in the XMI file. The attribute on which the relationship depends is the state
attribute of that class, which is specified by ‘attribute’, which contains an XPath rela
tive to the ‘class’ XPath. The ‘StateMapping’ element can contain one or more ‘State’
elements which indicate in what states of the object the relationship is instantiated or
destroyed. In this case there is only one ‘State’ element, on line 5, as once an instance
of the relationship ‘SavedFile’ is instantiated it is never destroyed. The ‘value’ attribute
indicates that in this state, the relationship is created, as it has the value ‘true’. If the
‘value’ attribute is ‘false’ then the relationship is destroyed when the object enters that
state. The ‘valueObject’ attribute of the ‘State’ element, on line 6, indicates that the
relationship will be instantiated when the state attribute has the value COMPLETE,
which is represented by the static member variable referred to by the XPath.

The two ‘Role’ elements in this example indicate the values for the roles in the
relationship. The ‘Role’ elements specify the names of the roles they refer to in
the ‘name’ attribute and the type of the entity which fills the role in the ‘type’ at
tribute. The ‘roleObject’ attribute identifies the object which the entity which ful

4.3. Instrumentation for MonitoringKAOS Goals 75

fils the role is associated with. In this case, the ‘savedBy’ role is associated with
the DownloadManager object, referred to by the manager member variable of
the ManagedDownloader object. The ‘savedFile’ role is associated with the
ManagedDownloader object itself, so the XPath simply points to the same node
as the ‘class’ attribute in the parent ‘SateMapping’ element.

The ‘RequestingFile’ relationship is instrumented by mapping the KAOS rela
tionship to the execution of a method. This is the second type of mapping described
in section 4.3.2. In the mapping language, this difference is made explicit by using
a ‘Transition’ element, rather than a ‘StateMapping’ element, as can be seen in this
example:

1 < R e l a t i o n s h i p n a m e = ” R e q u e s t i n g F i l e " >
2 < T r a n s i t i o n p o s i t i o n = " a r o u n d ”
3 l o c a t i o n = " / /UML: C l a s s [@ n a m e = ' M a n a g e d D o w n l o a d e r '] / /
4 UML: O p e r a t i o n [@ n a m e = 'd o D o w n l o a d '] " >
5
6 < R o l e n a m e = " r e q u e s t e d B y "
7 t y p e = " C l i e n t "
8 c o n t e x t = " c l a s s "
9 r o l e O b j e c t = " . / /UML: A t t r i b u t e [0 n a m e = ' m a n a g e r '] " / >

10 < R o l e n a m e = " r e q u e s t e d F i l e "
11 t y p e = " F i l e D e s c r i p t o r "
12 c o n t e x t = " m e t h o d "
13 r o l e O b j e c t = " . / /UML: P a r a m e t e r [@ n a m e = ' d o w n l o a d e r '] "
14 o b j e c t I D = " g e t R e m o t e F i l e D e s c () " / >
15 < / T r a n s i t i o n >
16 < / R e l a t i o n s h i p >

This relationship is created when execution of the method doDownload of the
ManagedDownloader class begins and is destroyed when it ends. The ‘position’
attribute of the ‘Transition’ element has the value ‘around’ to show that the relationship
is true before this execution and false afterwards. Alternative values are ‘before’ and
‘after’ which are used in conjunction with a ‘value’ attribute to indicate either the cre
ation or destruction of a relationship, when the mapping is not just to the execution of a
single method. The ‘location’ element identifies the method at which the relationship is
created or destroyed. In this case it is an XPath identifying the doDownload method.

The two roles for the ‘RequestingFile’ relationship are mapped by the two ‘Role’
elements in this example. Here, the ‘Role’ elements have ‘context’ attributes which
determine what the context node is for the XPath in the ‘Role’ element. If the ‘context’
attribute has the value ‘method’ then the node for the method at which the transition
occurs, in this case the doDownload node, is used as the context node. If the ‘context’
attribute has the value ‘class’ then the node corresponding to the class to which the
method belongs, in this case the ManagedDownloader node, is used as the context
node. The ‘roleObject’ elements identify the objects associated with the entities which
fill the roles, as in the previous example. In the case of the ‘requestedFile’ role, there is
also an ‘objectID’ attribute on line 14. This specifies additional code which should be
called to get the object associated with the entity. In this example, the generated code
will find the appropriate RemoteFileDesc object by calling:

downloader.getRemoteFileDesc()

4.4. Monitor Display 16

Obviously, any extra code added in the ‘objectlD’ element has to be very simple as it
can only call methods which do not have parameters.

4.3.4 Comparison Of Instrumentation Methods
The two approaches to instrumentation presented here complement each other. The
method which is based around a mapping expressed in XML is the preferred method
for simpler cases which correspond to the types of mappings which it is designed to
represent. It is more concise in simpler cases, is also easier to integrate into other tools
which might assist in creating the mapping and represents the mapping explicitly.

The mapping language approach is limited in that it can only express mappings of
the types which are included in the design. It is not able to specify some more complex
mappings. For example, a relationship may map to calls to a particular method, but
only from within some other method. The mapping language does not support this
type of mapping. If such mappings are necessary then they can be expressed directly
in Aspectl. The structure within which these aspects are written and the generation
of code from the requirements specification help to keep this code concise and well
structured.

If it is found that there are common cases in which the mapping language is unable
to express the mapping then it suggests areas in which the language could be expanded.
Without a large amount of real world experience to draw on to identify these areas, the
capability to write instrumentation aspects directly ensures that it will be possible to
handle these cases regardless.

4.4 Monitor Display
The monitoring framework displays the results of monitoring the target system to the
users of the framework. This should allow failures to be identified and information
obtained which can assist in determining the severity of the problem and what action
should be taken.

The display shows two types of information. First, it displays goal violations and
details about those violations. It is assumed that goal violations are the most relevant
information. Goals which are satisfied are obviously of less interest. Secondly, the
total number of instances of a goal which have been instantiated, satisfied and failed
are displayed. This gives an overall picture of how severe the number of goal failures is,
as compared to the total number of goals. This is particularly useful in situations where
some failure can be tolerated, which is in effect a simple form of soft goal monitoring.

Goal violations are displayed using a KAOS goal model diagram, showing goal
refinements. Goals which are not being monitored are outlined in black, Goals which
are being monitored and for which no violations have been detected are outlined in
green unless a violation has been detected in which case it is outlined in red. A screen
shot of the goal monitor display is shown in figure 4.20.

When no goal is selected, a summary of all the goal violations that have been
detected is shown below the goal model. This shows the name of the goal violated, the
time at which the goal was instantiated and the time at which the violation occurred.

When a goal is selected, all violations of that particular goal are displayed. This
display shows the instantiation and violation times and additionally shows the values
of all the parameters of the goal instance which caused the violation.

4.5. Summary 77

R Hard Goal Display

DownloadFilei

7 / 71/ / UploadFile/DisplaySearthResul

0/0/0
TransmilFile/ / Storefile/

0 / 0/ 0 0 / 0 / 0

i t a l e O u e i y R e p l y ; SendFileRequesI

0/0/0
TransmitF ileRequest;

0 / 0 / 0

FoiwardGueryRepty

tH oip .
SendQueiyRepiy/ / UueiySourceConnection,

0 / 0/0 0 / 0/0

4 1 . n r. .«! II — —-■ 1. -.... . ■■■ -n-- *
Goal Instantiated 3osl Violated I _________ __ __ . M c......

ThuJunOI 21 5 9 '/BEST 2006 ThuJunOI 21 53 45 B3T 2006_______ I l r i i in e Skating - Kns T a if l O ia v i tv Games 0 I a 0 011

Figure 4.20: Output from monitoring the goal ‘Download File’

4.5 Summary
This chapter has described the monitoring framework for monitoring hard goals which
are specified using KAOS goal-oriented requirements specifications and temporal logic.
There are various issues which need to be considered in designing a monitoring frame
work such as how to instrument the system, how to deal with distributed components
and the performance impact of monitoring code on the target system. The choices
which were made for the monitoring framework were described and justified with ref
erence to the types of system which it is intended that the monitoring framework should
be used with.

A major part of the monitoring framework is the monitor server which is responsi
ble for evaluating whether goals are satisfied at run time. The monitor operates entirely
at the requirements level and has no knowledge of the implementation of the system.
The monitor uses a live instance of the KAOS object model of the system which is
updated as changes occur at run time. This separates the monitor from any knowledge
of the implementation of the target system.

A requirements monitoring framework has to relate events which are detected at
run time, described at the implementation level, to events which can be understood
in terms of the requirements specification. This is done in the monitoring framework
by translating implementation level events into events which represent changes in the
KAOS object model of the monitored system. Implementation level events are captured
using AspectJ pointcuts and then translated into changes to the KAOS object model, in
advice which is associated with those pointcuts.

The monitoring framework provides two methods for instrumenting the monitored
system. The first is to write AspectJ code directly, which translates events from imple
mentation to requirements level. The second is to write a mapping which describes
how KAOS entities and relationships are related to methods, attributes and classes at
the implementation level. The mapping is then used to automatically generate AspectJ
code which instruments the system. The mapping approach is the preferred approach
as the it is usually more concise and it makes the relationship between requirements
and implementation levels explicit. Unfortunately, the mapping language is not able to
handle all situations so the option to write instrumentation code directly in AspectJ is
retained. This provides greater flexibility but loses some of the benefits of using the

4.5. Summary

mapping language.

C h a p t e r 5

Monitoring Soft Goals

Soft goals are goals for which formal criteria for satisfaction cannot be established.
An example is searching for files using a file sharing network. If the user searches for
songs by a particular artist then the user wants the search results to be relevant results
on servers which will enable the file to be downloaded quickly. It is not possible to for
mally define what constitutes a successful search in these circumstances. In practice the
user may need to compromise between different soft goals. Soft goals are considered
to be satisfied when sufficient evidence for their satisfaction exists that the stakeholders
in those goals are convinced that they are satisfied.

Soft goals can be handled during requirements engineering by relating soft goals
to hard goals which impact positively or negatively on the satisfaction of the soft goals.
For example, a soft goal relating to security could be supported by goals requiring the
implementation of passwords and encryption. The same hard goals might hinder soft
goals requiring usability and performance. These relationships between hard goals and
soft goals provide evidence, at the requirements stage, that soft goals will be satisfied
or not.

While analysis during requirements engineering can help developers to implement
soft goals, run-time monitoring is useful to ensure that soft goals are actually satisfied
once the system is deployed. This is particularly necessary when the environment in
which the system operates is subject to change which could result in soft goals failing
in the same way that hard goals are subject to failure in those circumstances. Even ex
cluding changes in the environment, it is relatively hard to ensure that a system satisfies
soft goals during development so run-time monitoring is also useful in this case. It is
also often the case that while a soft goal is judged to be satisfied by the stakeholders
in the system, it would still be desirable to satisfy it to a greater extent if possible.
Run-time monitoring of soft goals tells the developers and stakeholders in the system
to what extent the system is satisfying soft goals.

Monitoring is used to provide evidence which will allow stakeholders to determine
whether a soft goal has been satisfied in the deployed system and to determine if at some
time in the future the system is no longer satisfying the goal.

To monitor something, it is necessary to formally define what is to be monitored.
Soft goals cannot be formally defined so it is necessary to monitor something which
can be formally defined. The role of monitoring is then to provide evidence which will
allow stakeholders to determine whether a soft goal has been satisfied or not. This is
done by formally defining metrics which are indicative of the satisfaction of soft goals.
A soft goal metric is a value which will tend towards a higher (or lower) value the better
a soft goal is supported by the system. These metrics are then evaluated as the system

80

runs and the results displayed in such a way that stakeholders and developers can use
then to determine whether the associated soft goals are satisfied.

Soft goal metrics must be formally defined so that they can be monitored at run
time. The monitoring framework uses the existing KAOS model of the system to assist
in the specification of soft goals. This has the benefit that the amount of extra instru
mentation that needs to be developed is reduced, as instrumentation already exists for
those parts of the KAOS model which are already monitored. It may still be necessary
to write additional instrumentation if the soft goals use parts of the KAOS model which
are not otherwise monitored but it is still beneficial that the instrumentation process
works in the same way as for hard goals.

There are three stages involved in the specification of soft goal metrics. Goal
instance metrics are properties of individual goal instances which provide additional
information about those goals beyond the binary success or failure results; for example,
the time taken to download a file or the total amount of data that has been downloaded
by a particular client. Goal instance metrics are typically related to non-functional
properties which can be evaluated on an instance by instance basis. These metrics
can either be built-in or user defined. The built-in metrics provide generic information
which makes sense for any goal instance, such as how long a goal instance took to
satisfy. User defined metrics provide additional information for particular goal types.
They are defined by the developer in terms of the KAOS object model of the system
they apply to. For example, for the goal ‘Achieve[Download File]’ from the Limewire
example, the amount of data downloaded by each instance of the goal could be defined
as a goal instance metric.

Goal aggregate metrics are defined using goal instance metrics, either built-in
or user defined, by aggregating the values of metrics from many goal instances. A
goal aggregate metric can aggregate the results of one goal instance metric or several.
These goal instance metrics can be from a single goal type or from different goal types.
Goal aggregate metrics allow the overall ability of a system to satisfy non-functional
requirements to be monitored. This is important as soft goals are not concerned with
individual hard goal instances but with the general behaviour of a system over a period
of time. In addition, not all non-functional requirements make sense when applied
to individual goal instances. For example, reliability requirements are non-functional
requirements which cannot be defined meaningfully for a single goal instance. A single
hard goal instance can either be satisfied or fail. Reliability requires that the system
consistently satisfies instances of a particular goal type and so can only be measured by
aggregating many goal instances.

The third part of specifying a monitor for a soft goal is specifying a display for
the soft goal metric so that the users of the monitoring framework can evaluate the
performance of the system with respect to the soft goal. A display is specified by
selecting a gauge and configuring it to display a soft goal metric. Gauges include
simple numeric displays of the value of a metric, bar charts of the distribution of values
of a metric and line graphs which show the values of a metric over a period of time.
Both goal instance metrics and goal aggregate metrics can be used as input to a gauge.
Generally different types of gauges are suitable for different types of metric. Goal
aggregate metrics have a single value which is modified by each update while goal
instance metrics have a completely new value generated by each update.

It is not always necessary to define goal aggregate metrics. Goal instance metrics

5 .1. Goal Instance Metrics 81

Name Type Valid Explanation
instantiationTime int instantiated Time at which goal was instanti

ated.
satisfaction^ me int satisfied Time at which goal was satisfied.
failureTime int failed Time at which goal failed.
satisfactionPeriod int satisfied Time between goal instantiation

and satisfaction.
failurePeriod int failed Time between goal instantiation

and failure.
satisfied boolean instantiated Whether the goal instance has been

satisfied.
failed boolean instantiated Whether the goal instance has

failed.

Table 5.1: Built-in goal instance metrics.

can be used directly as input to soft goal metric displays. As the displays will make
use of many goal instances to generate their output, the display provides a form of
aggregation in itself. There are still, however, cases where goal aggregate metrics are
useful.

Section 5.1 describes how goal instance metrics are formally specified and eval
uated. Section 5.2 describes how goal aggregate metrics are specified, making use of
goal instance metrics. Section 5.3 describes how the results of monitoring soft goal
metrics are displayed to the users of the monitoring framework.

5 .1 G o a l I n s t a n c e M e t r i c s
There are two types of goal instance metric; built-in and user defined. Built-in metrics
are automatically created for all goals. They represent important properties related to
the instantiation, satisfaction and failure of goals which cannot be described using the
language for user-defined metrics as they are not based on the object model. User
defined metrics are developed for individual goal types and are formally defined using
the KAOS object model of the system to describe properties which are specific that
goal type.

5.1.1 Built-in Metrics
The built-in goal instance metrics are shown in table 5.1. Each goal instance metric has
a name which is used to refer to it in the specification of goal aggregate metrics. Each
metric has a particular data type, which for built-in metrics is either integer or boolean.

A goal instance metric is undefined until the goal reaches a certain state at which
the value of the metric can be calculated. If the metric is valid when the goal is instan
tiated then the metric always has a value which is updated when the goal is satisfied or
fails. Otherwise it is not valid unless the goal instance reaches either the satisfied or
failed state.

The first three built-in metrics in the table are set to the time at which the goal
enters the instantiated, satisfied and failed state. The metrics ‘satisfactionPeriod’ and
‘failurePeriod’ are set to the time between when the goal was instantiated and when
it entered the satisfied or failed state. Finally, the ‘satisfied’ and ‘failed’ metrics are

5 .1. Goal Instance Metrics 82

boolean values which are false when the goal is instantiated and are set to true when
the goal enters the relevant state. These metrics are used to build goal aggregate metrics
which count how many instances of a goal type are satisfied or fail.

5.1.2 User Defined Metrics
User defined instance metrics are based on the values of attributes of entities in the
KAOS object model. A user defined goal instance metric is linked to a particular hard
goal and is calculated whenever that goal enters a valid state for the metric. Part of
the specification of a user defined metric is to decide what states the metric should be
calculated in. These states are the usual instantiated, satisfied and failed states that
apply to all goal instances.

The simplest user defined metric is simply the value of an attribute belonging to
one of the entities which are referred to in the goal specification. The value of the metric
is not updated whenever the value of the attribute changes, only when the goal the
metric is linked to enters a state for which the metric is valid. For more complex metrics
this becomes important as it stops the value of the metric from being continuously
recalculated whenever an attribute changes which would involve a complex SQL query
for each change.

More complex metrics can be defined using standard mathematical functions such
as ‘average’, ‘standard deviation’ and ‘max’ to define a goal instance metric based on
the values of many entity attributes. Several sets of attribute values can be used where
each set contains values for a particular attribute of an entity type. All entities which
match given conditions are used in the calculation of the goal instance metric.

A condition can require that only entities which satisfy a given relationship are
considered in the calculation of the metric. To satisfy the condition, all role labels in
the relationship which correspond to labels in the goal definition must have the same
values assigned to them as the labels in the goal specification. A condition can also be
based on the value of an attribute. In this case the condition is satisfied if the value of
the attribute satisfies a binary comparison operator.

To try and better define goal instance metrics, some formal definitions of these
metrics are now introduced. This serves to provide a more precise definition of the
semantics of the language.

A soft goal instance metric is defined by a function F(A) where A is a set of
attributes. F is one of the functions ‘average’, ‘standard deviation’, ‘sum’, ‘max’,
‘min’ and ‘count’. All of these are standard mathematical functions, except for ‘count’
which simply returns the size of the set of attributes A. The set of attribute values A is
defined by a set of conditions C so that the value of an entity attribute e.a is contained
in A if all the conditions are satisfied:

Ve : E
e.a G A V(c : C) : c is true

where E is the set of all entities of a particular type. By specifying no conditions (C is
the empty set), all entities of a certain type are included in the calculation of the metric.

If conditions are used, they can be one of three types. The first type of condition
requires that a specific entity in the goal instance, g, that the metric belongs to, refers
to the same entity as e. An entity in the goal instance is referred to by a label and the
notation g[l] means the entity used in g referred to by label I. This type of condition is

5 .1. Goal Instance Metrics 83

then formally specified as:

if g[l] = e
ci (^ e) = , , , •otherwise

This results in a single entity matching the condition and so the goal instance metric is
just the value of a particular attribute. The function F can be ignored here by treating
it as a ‘sum’ function with one value.

The second type of condition requires that the entity e should be a role in a par
ticular relationship and that all other roles in the relationship which are assigned labels
used in the goal g should have the same entities associated with those labels.

r2(r e) = I*™6 if r ^ [; i]. ■ •e- • • • ff[U)
1 false otherwise

where the relationship r has labels l\toln and one of those labels refers to the entity e.
Finally, the third type of condition requires that an attribute of the entity e satisfies

a certain comparison function b where b is one of = , < , > , < , > , The condition is
defined as:

. I true if b(e.a, v)
c3(e.a, o, v) = <

[false otherwise

where v is some constant value.
In practice, a goal instance metric either uses a single condition of type c\ or it

uses a set of conditions of types c2 and c3.

Syntax
Goal instance metrics are specified using an XML language. In particular, goal instance
metrics are implemented by using XSLT to transform goal instance metrics written in
this language to SQL queries.

Goal instance metric specifications are incorporated into a goal specification which
also includes the temporal logic definition of the goal. This makes sense as the goal
instance metric specification needs to make reference to the labels used in the goal
specification.

A goal instance metric specification is a representation of the mathematical de
scription above. The syntax is based on this description although it does not represent
it literally but rather attempts to provide a usable representation for developers.

The syntax of the specification language for soft goal metrics is described by the
following XML document type definition:

<!ELEMENT G o a l (A n t e c e d e n t , C o n s e q u e n t , V a l u e *) >1 <!ELEMENT
2
3 <!ELEMENT
4 <!ELEMENT
5
6 <!ELEMENT
7 <!ATTLIST
8
9

10

type (int|float|string|boolean)
trigger (instantiated!satisfied!failed)>

5 .1. Goal Instance Metrics 84

11 <!ELEMENT Function (Attribute)+>
12 <!ATTLIST Function name (avg|std|sum|min|max)>
13
14 <!ELEMENT Attribute (Conditions)*>
15 <!ATTLIST Attribute
16 label CDATA #IMPLIED
17 type CDATA #REQUIRED
18 attribute CDATA #REQUIRED
19 attributeType (int|float|string|boolean)>
20
21 <!ELEMENT Conditions (Relationship)+ >
22
23 <!ELEMENT Relationship (Variable)*>
24 <!ATTLIST Relationship name CDATA #REQUIRED>
25
26 <!ELEMENT Variable EMPTY>
27 <!ATTLIST Variable label CDATA #REQUIRED
28 role CDATA #REQUIRED
29 type CDATA #REQUIRED>
30
31 <!ELEMENT BinaryRelation (Attribute, Constant)
32 <!ATTLIST BinaryRelation relation (eq|ne|gt|le
33
34 <!ELEMENT Constant EMPTY>
35 <!ATTLIST Constant type (string|int|float|bool

Goal instance metrics are contained in ‘Value’ elements within the ‘Goal’ element
which the metric belongs to. The ‘Value’ element can contain either an ‘Attribute’
element, in which case the value of the metric will be the value of that attribute, or a
‘Function’ element, in which case the value of the metric is calculated from the child
elements of the ‘Function’ element. Each ‘Attribute’ element can contain conditions
inside a ‘Conditions’ element. Conditions can either be ‘Relationship’ conditions or
‘BinaryRelation’ conditions.

An ‘Attribute’ element actually represents all attributes of the same name which
belong to any instance of a particular entity. The conditions determine which instances
are included in the calculation. An ‘Attribute’ element specifies a label which is used
in evaluating conditions. If the label is used in the specification of the goal then only
the entity instance which corresponds to that label is used in the calculation. This is a
ci type condition in the formal definition above. If the label is not present in the goal
specification then all entities which match the conditions contained in the ‘Attribute’
entity are used in the calculation.

The conditions also refer to labels. If the label is from the goal specification then
the label used in the condition must have the same value as the goal instance if the
attribute, specified by the enclosing ‘Attribute’ element, is to be included in the calcu
lation of the metric. If the label matches the label of the enclosing ‘Attribute’ then the
entities referred to by these labels must also match. If the label is not referred to else
where then the any entity is allowed.

5 .1. Goal Instance Metrics 85

Example Specification
To illustrate the previous explanation, an example is provided here. An example of a
goal instance metric defined for a goal in the Limewire case study is the metric ‘total-
Downloaded’. This metric is evaluated whenever the goal ‘Achieve[Download File]’
is satisfied. The value of the metric is the sum of the sizes of all the files which have
been downloaded by the client which has just completed a download, including the one
which has just been downloaded.

The goal instance metric is specified by the following XML fragment:

1 < G o a l n a m e = " D o w n l o a d F i l e " t y p e = " a c h i e v e " >
2 <Antecedent>
3 < R e l a t i o n s h i p n a m e = " R e q u e s t i n g F i l e " >
4 < V a r i a b l e r o l e = " r e q u e s t e d B y " l a b e l = " c " t y p e = " C l i e n t 11/ >
5 < V a r i a b l e r o l e = " r e q u e s t e d F i l e " l a b e l = " f d "
6 t y p e = " F i l e D e s c r i p t o r " / >
7 < / R e l a t i o n s h i p >
8 < / A n t e c e d e n t >
9 <Consequent>

10 <And>
11 < R e l a t i o n s h i p n a m e = " S a v e d F i l e H>
12 < V a r i a b l e r o l e = " s a v e d B y " l a b e l = " c " t y p e = " C l i e n t " / >
13 < V a r i a b l e r o l e = " s a v e d F i l e " l a b e l = " f " t y p e = " F i l e " / >
14 < / R e l a t i o n s h i p >
15 < E q u a l s p a r a m e t e r T y p e = " s t r i n g " >
16 < A t t r i b u t e l a b e l = l,f " t y p e = " F i l e " a t t r i b u t e = " n a m e " / >
17 < A t t r i b u t e l a b e l = " f d " t y p e = " F i l e D e s c r i p t o r "
18 a t t r i b u t e = " n a m e " / >
19 </Equals>
20 </A nd>
21 < / C o n s e q u e n t >
22
23
24 < V a l u e l a b e l = " t o t a l D o w n l o a d e d " t y p e = ,,i n t "
25 t r i g g e r = " s a t i s f i e d " >
26 < F u n c t i o n n a m e = " s u m " >
27 < A t t r i b u t e l a b e l = " d f " t y p e = " F i l e " a t t r i b u t e = " s i z e n
28 a t t r i b u t e T y p e = " i n t ">
29 < C o n d i t i o n s >
30 < R e l a t i o n s h i p n a m e = ,,S a v e d F i l e " >
31 < V a r i a b l e l a b e l = " c " r o l e = " s a v e d B y "
32 t y p e = " C l i e n t " / >
33 < V a r i a b l e l a b e l = " d f " r o l e = " s a v e d F i l e "
34 t y p e = ,,F i l e " / >
35 < / R e l a t i o n s h i p >
36 < / C o n d i t i o n s >
37 < / A t t r i b u t e >
38 </Function>
39 </Value>
40 < / G o a l >

5 .1. Goal Instance Metrics 86

This XML specification corresponds to the following formal specification:

Vg : DownloadFile where g.satisfied
totalDownloaded(g) = s u m (f i .size, / 2 -size,. . . f n.size)
where / e { /i, / 2, . . . /„} «=> SavedFile(/, g.c)

The whole goal instance metric specification is contained inside the element for the
goal ‘Achieve[DownloadFile]’ along with the formal specification of that goal. The
temporal logic specification of the goal ‘AchievefDownload File]’ is found on lines
2-21. The ‘Value’ element, on line 24, contains the specification of the goal instance
metric. The value itself has a label which can be used to refer to it in the specification
of aggregate metrics and soft goal gauges. The value also has a type, integer in this
case, and a trigger condition which determines when the goal instance metric should be
evaluated. In this case the trigger has the value ‘satisfied’ which means the metric will
be evaluated for each instance of the goal ‘Achieve!DownloadFileJ’ when the instance
is satisfied. If the goal fails then the metric will never be evaluated for that instance.
Triggers with the value ‘failed’ work in a similar way but are evaluated if a goal instance
fails. The third type of trigger is the ‘instantiated’ trigger which is evaluated once when
the goal is instantiated and again when it is satisfied or fails.

Inside the ‘Value’ element is a ‘Function’ element (line 26) which specifies a func
tion which should be applied to the set of values returned by its child elements. In this
case the function is the ‘sum’ function which obviously adds all the values together.

The function element contains an ‘Attribute’ element in line 27. The ‘Attribute’
element specifies an attribute, in this case the ‘size’ attribute of the ‘File’ entity. This el
ement specifies that a set of values should be passed to the parent function correspond
ing to the value of the attribute for the entity instances which satisfy the conditions
contained in the ‘Conditions’ element.

The attribute has the label ‘df’ (for downloaded file). Although the goal specifi
cation refers to ‘File’ entities, it does so using the label ‘f ’ so in this case the label is
not used in the goal specification. The metric will thus be calculated using the ‘size’
attribute of all ‘file’ entities which match the specified conditions.

In this example there is a single condition, on lines 29-36, which specifies that
the relationship ‘SavedFile’ should exist between all the ‘File’ entity instances used in
the calculation of the metric and the ‘Client’ agent referred to by the label ‘c’. The
role ‘downloadedFile’ uses the same label as the enclosing ‘Attribute’ indicating that
the relationship should be true for any entity which is used in the calculation. The
label ‘c’ is used in the specification of the goal to refer to the ‘Client’ entity which
is performing the download. This means that only instances of ‘SavedFile’ in which
the role ‘downloadedBy’ is filled by this ‘Client’ entity should be tested against the
attribute.

Evaluation of Goal Instance Metrics
Goal instance metrics are evaluated as the monitored system runs. Whenever a goal is
instantiated, satisfied or fails, all the relevant goal instance metrics which are associated
with that goal are evaluated by querying the requirements object model, which is stored
in a database, using SQL. The query used to evaluate a goal instance metric is generated
automatically from the specification of that goal instance metric. This generation is
done using XSLT to transform from the XML specification to an SQL query. The
XSLT transform which carries out this process is included in appendix C.

5 .1. Goal Instance Metrics 87

As an example, the SQL query which is generated for the goal instance metric
‘totalDownloaded’ is:

1 < V a l u e l a b e l = " t o t a l D o w n l o a d e d " t y p e = " i n t "
2 t r i g g e r = " s a t i s f i e d " g o a l = " D o w n l o a d F i l e " >
3 < B o u n d L a b e l > c < / B o u n d L a b e l >
4 < V a l u e Q u e r y >
5 SELECT S U M (v a lu e) AS v a l FROM a t t r i b u t e , e n t i t y
6 WHERE n a m e = ' s i z e ' AND e n t i t y . t y p e = ' F i l e '
7 AND e n t i t y . i d = a t t r i b u t e . e n t i t y _ i d
8 AND n e w ! = ' TRUE'
9 AND e n t i t y _ i d IN

10 (SELECT e n t i t y _ i d FROM r o l e _ e n t i t y , r e l a t i o n s h i p
11 WHERE r e l a t i o n s h i p . t y p e = ' S a v e d F i l e '
12 AND r e l a t i o n s h i p . i d = r o l e _ e n t i t y . r e l a t i o n s h i p _ i d
13 AND r o l e = ' s a v e d F i l e '
14
15 AND r e l a t i o n s h i p . i d IN
16 (SELECT r e l a t i o n s h i p _ i d FROM r o l e _ e n t i t y
17 WHERE r o l e = ' s a v e d B y '
18 AND e n t i t y _ i d = ?
19)
20)

21 < / V a l u e Q u e r y >
22 < / V a l u e >

The query is contained inside an XML document which contains additional infor
mation about the query. A query is generated for each goal instance metric. Each query
is contained in a ‘Value’ element which specifies the label of the goal instance metric,
the type of the metric (i.e. integer, float etc.), when the metric should be evaluated and
the goal which the goal instance metric belongs to.

The ‘Value’ element contains two types of element. ‘BoundLabel’ elements indi
cate which labels in the specification of the goal instance metric have the same values
as labels in the goal specification itself. These labels will already be bound to a value
when the goal instance metric is evaluated. Unbound labels are labels which are used
in the specification of the goal instance metric but not in the goal specification. These
labels may potentially have many possible values when the goal instance metric is eval
uated and the value of the metric is found by aggregating the values calculated for each
possible value of the unbound labels.

Bound label elements are used at run time when an SQL query is evaluated. The
values bound to these labels for a particular goal instance are inserted into the query
to replace the unspecified values (the *?’ symbols in the query). The ‘BoundLabel’
elements occur in the order that these values should be inserted into the SQL query.
When a goal instance metric is evaluated, the monitor goes through the unspecified
values in order and assigns the values bound to these labels in the order they appear.

The actual SQL query which calculates the value of the goal instance metric is
contained inside the ‘ValueQuery’ element and the query itself starts on line 5. This
is a fairly complex query but the relationship to the specification of the goal instance
metric is reasonably simple. Line 5 calculates the sum of the values returned by the
query and uses the name ‘val’ to refer to the sum. The query uses the ‘attribute’ and

5.2. Goal Aggregate Metrics 88

‘entity’ tables to evaluate the query. This part of the query roughly corresponds to the
‘Function’ element of the goal instance metric specification.

Line 6 specifies that the name of the entity attribute which should be used in the
calculation which in this case is the ‘size’ attribute of the ‘File’ entity. Line 7 joins the
entity and attribute tables so that the name of the entity type can be retrieved from the
entity table.

Line 8 specifies that ‘new’ attributes should not be included in the calculation. If
an attribute has the value ‘new’ set to true then the updated value occurred after the time
that the goal instance metric refers to and so it should not be used in the calculation.
When attribute values are processed the ‘new’ attribute is set to false and the old value
deleted so that the updated value becomes eligible for inclusion in goal instance metrics
calculations from that time onwards. Lines 6 to 8 correspond to the ‘Attribute’ element
of the goal instance metric specification.

The rest of the query corresponds to the contents of the ‘Conditions’ element of
the goal instance metric specification, which in this case is a single relationship. Lines 9
and 1 0 restrict the entities which are used in the calculation of the metric to those which
satisfy additional conditions contained in the sub-query. Lines 11 and 12 corresponds
to the ‘Relationship’ element from the specification and ensures that the entity is tested
against instances of the ‘SavedBy’ relationship. Line 13 ensures that the entity being
tested is tested against the role ‘savedFile’, as the label from the ‘Attribute’ element and
the label of that role are the same. Finally, lines 15 to 19 correspond to the ‘savedBy’
role in the ‘SavedFile’ relationship. The label on this role ‘c’ is a bound label which
matches a label in the specification of the goal ‘DownloadFile’. The name of the role
is identified on line 17 and on line 18 the value bound to the label needs to be inserted
into the query. This is done at run time for each goal instance individually as the value
of the bound label can vary from instance to instance.

5.2 Goal Aggregate Metrics
Goal aggregate metrics are soft goal metrics which are calculated by combining goal
instance metrics from many goal instances. A Goal aggregate metric can be defined
over all instances of a particular goal or instances of more than one goal type. Goal
aggregate metrics make use of an aggregation function to calculate values from a num
ber of goal instances. Obvious examples are functions such as ‘average’ and ‘standard
deviation’. Some additional functions which are specific to goal monitoring are pro
vided such as ‘Count’, ‘Interval’ and ‘Rate’, which measures the frequency at which
events occur. The values returned by these aggregation functions can be combined us
ing standard arithmetic operators (e.g. +, -, *, /) to calculate the overall value of the
goal aggregate metric.

5.2.1 Formal Definition of Aggregate Functions
An aggregate function is a function defined for a set of goal instances which is time
dependent. Consider a set of goal instances, G, with instances {<70, 9\ ,•••}, all of which
have a goal instance metric v defined for them. The set GtQit = {gm, . . . gn} is a sub
set of G where gm is the first goal instance after t0 for which v was set and gn is the
last goal instance for which v was set before time t. When an aggregate metric is
evaluated, the time t is the current time and the time t0 is either a fixed time in the past,
in which the time period over which the metric is evaluated is variable, or an earlier
time defined relative to the current time, in which case the time period is fixed. An

5.2. Goal Aggregate Metrics 89

aggregate function is then a function F (G toj, v).
The monitoring framework provides a number of aggregate functions. The ‘Avg’

function is defined as:

a / x J o ifG to,t = 0Avg(Gto,*, v) = <I 2m,■ +... + gn. otherwise^ n —m + 1

so that it calculates the average of the values of the goal instance metrics for all the
goal instances considered. The functions max, min and sum are similarly defined in the
normal mathematical way.

The ‘Count’ function is equal to the number of goal instances for which a boolean
valued goal instance metric is true. Its main purpose is to count the number of instances
of a goal which have been satisfied or have failed, using the ‘satisfied’ and ‘failed’ built-
in goal instance metrics. The aggregate function is defined as:

Count(Gf0j(, v) = \S\ where S C G and gi E S <=$ gt.v

The ‘Rate’ function is used to calculate the rate at which some event is occurring.
It can be used, for example, to find the rate at which instance of a goal are being
satisfied. It is defined as:

Rate(Gl0,„ ,) = C°Uf G;— ^
t — t o

The ‘Interval’ function calculates the difference between the most recent goal in
stance metric to be defined and the previous one. It is useful in combination with
built-in goal instance metrics such as ‘satisfactionTime’ and ‘failureTime’ to calcu
late the intervals between goal satisfaction or failure. No start time has to be set for
this function as it only uses the time between the two most recent goal instances in its
calculation. The ‘Interval’ function is defined as:

Interval(Gof,tO = if |Go,t| _
- gn- \ .v otherwise

5.2.2 Goal Aggregate Metric Syntax
The soft goal specifications are represented using an XML language which can be un
derstood by the monitoring system. The syntax of this language is defined by the
document type definition for the language:

1 < ! ELEMENT C o u n t (V a l u e) *>
2
3 < ! ELEMENT R a t e (V a l u e) *>
4 < ! ATTLIST R a t e s a m p l e P e r i o d CDATA #IMPLIED>
5
6 < ! ELEMENT I n t e r v a l (V a l u e) *>
7
8 < ! ELEMENT Avg (V a l u e | A v g | C o u n t | I n t e r v a l | R a t e |
9 S u m | R a t i o | D i f f | P r o d u c t)* >

10
11 < ! ELEMENT Sum (V a l u e | A v g | C o u n t | I n t e r v a l | R a t e |
12 S u m | R a t i o | D i f f | P r o d u c t)* >

5.2. Goal Aggregate Metrics 90

13
14 <!ELEMENT Product (Value|Avg|Count|Interval|Rate|
15 Sum|Ratio|Diff|Product)*>
16
17 <!ELEMENT Ratio
18 ((Avg| Count| Interval|Rate|Sum|Ratio IDiff |Product)9

19 (Avg |I Count| Interval I Rate|Sum|Ratio IDiff I Product)) >

20
21 <!ELEMENT Diff
22 ((Avg I Count | Interval|Rate|Sum|Ratio IDiff I Product)
23 (Avg I Count I Interval|Rate|Sum|Ratio IDiff I Product)) >

24
25 <!ELEMENT Value EMPTY>
26 <!ATTLIST Value name CDATA #REQUIRED
27 goal CDATA #REQUIRED>

There are three types of elements which are used to described a goal aggregate
metrics. Aggregate functions are specified by the elements ‘Count’, ‘Rate’, ‘Interval’,
‘Avg’, ‘Sum’ and ‘Product’. All of these elements can contain ‘Value’ elements which
specify goal instance metrics which should be used in the calculation of the aggregate
functions. The ‘Value’ element specifies the name of a goal and the name of a goal
instance metric. The aggregate function is calculated over all instances of the goal.
Several ‘Value’ elements can be contained inside a single aggregate function element if
desired, in which case the function is calculated for all instances of the goals specified
by all the ‘Value’ elements.

The results of the aggregate functions can be combined using the ‘Diff’ and ‘Ra
tion’ functions to calculate the ratio or difference of values. The ‘Avg’, ‘Sum’ and
‘Product’ functions can also be used in this way as well as their use as aggregate func
tions for goal instance metrics.

5.2.3 Examples of Goal Aggregate Metrics
There are a number of examples of soft goal aggregate metrics which can be defined
for the Limewire example. The use of the ‘Interval’ operator is demonstrated by the
soft goal ‘Min[Routing Failures]’ from the Limewire example. The informal definition
of this goal is:

The number of times that a client fails to correctly route a query reply
message to the source of the corresponding query should be minimised.

This goal is related to the hard goal ‘Maintain[Query Source Connection]’ which
requires that when a client receives a reply to a previously routed query the client should
still be connected to the peer which forwarded the query.

The goal ‘Maintain[Query Source Connection]’ is actually rather idealised as it is
perfectly legitimate for a user to disconnect from a peer between forwarding a query
and query replies coming back. In such cases, any messages which should have been
routed to that peer are simply dropped. Similarly, the application tolerates failures in
the network which cause a peer to become disconnected by dropping messages for that
peer and connecting to a new peer. These actions are made possible by the robustness
of the Gnutella protocol in which none of the messages are critical to the operation of
the system. Dropping messages only affects the overall quality of service delivered by

5.2. Goal Aggregate Metrics 91

the system. Rather than specifying non-idealised hard goals, it is more useful from the
perspective of monitoring to specify soft goals related to these idealised goals which
can be monitored.

A routing failure occurs whenever the goal ‘Maintain[Query Source Connec
tion] fails. There are several metrics which could be used to evaluate the soft goal
‘Min[Routing Failures]’. These include a simple count of the number of failures and
the rate at which failures occur. The measure which is used here is the average interval
between failures. The soft goal is specified by the following XML fragment:

1 <Avg>
2 < I n t e r v a l >
3 < V a l u e g o a l = " Q u e r y S o u r c e C o n n e c t i o n " n a m e = " f a i l u r e T i m e " / >
4 < / I n t e r v a l >
5 < /A vg>

The value of the ‘Interval’ element is the time between the two most recent failures
of the goal ‘Maintain[Query Source Connection]’. The ‘Avg’ element then results in
the average interval being calculated. The metric represented by the ‘Interval’ element
is described by the following specification:

Interval (Go,failureTime) where g G G iff g e Query SourceConnection

An example of the use of the rate operator is found in the specification of a metric
for the soft goal ‘Min[Search Communication Overhead]’ in the Limewire example.
This goal is informally defined as:

The bandwidth used to communicate the searches of other users should be
minimised.

In this case there are three hard goals which impact negatively on this soft goal. These
are:

• Achieve[Forward Query]

• Achieve[Respond To Query]

• Achieve[Forward Query Reply]

All these goals involve the communication of queries from other users and the re
sponses to those queries. While these messages are essential to the operation of the
Gnutella network, from the point of view of an individual user of the network they
add no value so should be minimised. The metric for this soft goal is calculated by
combining the impact of these three hard goals.

For the purposes of this example, it is decided to measure the bandwidth in terms
of the number of messages which are routed by the client. Another approach would be
to define goal instance metrics which measure the actual size of each message (along
with appropriate instrumentation to discover the size of each message). As the mes
sages should all be approximately the same size, the results should give more or less
similar results so the first, easier approach is adopted.

Each of the three goals which result in communication overhead cause a single
message to be sent if they are satisfied. The communication overhead is specified in
terms of messages sent per minute using the rate operator.

This soft goal metric is specified using the following XML fragment:

5.3. Display o f Soft Goal Metrics 92

<Rate samplePeriod="60000">
<Value goal="ForwardQuery" name="satisfied"/>
<Value goal="RespondToQuery" name="satisfied"/>
<Value goal = "ForwardQueryReply11 name="satisfied"/>

</Rate>

This specifies that the value of the soft goal metric should be the rate at which instances
of any of the named goals are satisfied. The three ‘Value’ elements specify what the
three goals are at that the metric should be evaluated when these goals are satisfied. The
sample period attribute of the ‘Rate’ element specifies that the rate should be calculated
by considering goals which were satisfied in the last minute.

The formal definition of this soft goal metric, which is represented by the above
XML fragment is:

Min[Search Communication Overhead]
Rate(G't_6oooo,t, satisfactionTime) where g e G iff
g 6 ForwardQuery U RespondToQuery U ForwardQueryReply

5.3 Display of Soft Goal Metrics
The final stage in run-time monitoring is to provide feedback to the user about the
execution of the system. The monitoring framework described in this thesis provides
visual feedback to the user. This takes the form of a number of gauges, each of which
displays the value of one or more soft goal metrics. Three gauges have been developed
as part of the framework, which provide the most obvious types of feedback for the soft
goals used in the Limewire and NGDS systems. The framework also allows additional
gauges to be developed easily using a plug-in architecture. Any gauge class which is
installed in the plug-in folder is automatically loaded and can be referred to by name in
the specification of the display for a particular soft goal. The gauges which have been
developed are the distribution gauge, the history gauge and the min-max gauge.

A distribution gauge shows a distribution of values using a bar chart of the fre
quency with which a soft goal metric reports different ranges of values. The range of
possible values is split into a number of divisions with each division covering an equal
range. The y-axis of the chart shows the relative number of values which fall into each
division as a percentage of the total number of values. Distribution gauges are a good
choices for showing the range and distribution of values of a particular goal instance
metric.

A history gauge displays the value of a goal instance metric over time. This gauge
allows several metrics to be displayed using the same gauge with each metric being
represented by a different line. This type of gauge is particularly suitable for displaying
the value of a goal aggregate metric as it changes over time.

A min-max gauge displays the current value of one or more soft goal metrics as
bars, along with indicators of the minimum and maximum values which each metric
has reached in the past. It is suitable for showing the current value of a goal aggregate
metric, without historical information (other than the min and max values). This may
be a better choice in some circumstances, particularly when a large number of different
metrics need to be compared with each other.

5.3. Display o f Soft Goal Metrics 93

5.3.1 Specification of Displays
The display for a soft goal metric is specified manually as part of the same document in
which goal aggregate metrics are defined. The following DTD describes the additional
elements which are used to specify a display:

1 < ! ELEMENT P r o j e c t (D i s p l a y) *>
2 < ! ATTLIST P r o j e c t name CDATA #REQUIRED>
3
4 < ! ELEMENT D i s p l a y (V a l u e I A v g | C o u n t | I n t e r v a l | R a t e I
5 S u m | R a t i o | D i f f 1 P r o d u c t | G a u g e P a r a m e t e r)* >
6 < ! ATTLIST D i s p l a y t i t l e CDATA # REQUIRED
7 c l a s s CDATA #REQUIRED>
8
9 < ! ELEMENT G a u g e P a r a m e t e r EMPTY>

10 < ! ATTLIST G a u g e P a r a m e t e r name CDATA #REQUIRED
11 v a l u e CDATA #REQUIRED>
12

The ‘Project’ element is the root element of the document. It gives a name to the
monitoring project and contains all the display specifications which are specified using
‘Display’ elements. The ‘Display’ element specifies a title for the display and the name
of the class which implement it. The ‘class’ attribute of the ‘Display’ element specifies
the name of the Java class which implements the gauge which should be used to display
the monitor result. The named class is loaded at run time using a Java class loader which
allows new gauge types to be added to the framework easily. The ‘Display’ element
can contain ‘GaugeParameter’ elements which allow values to be passed to the gauge
class This allows the developer to configure the gauge so that is displays the correct
information for the metric which is displayed. For example, the gauge parameters
could modify the labels on the axes or the range of values along an axis. The allowable
parameters are specific to each gauge type. Gauge parameters should have default
values specified inside the display class that will be used if the parameter is omitted.

Each ‘Display’ element also contains one or more specifications of goal aggregate
metrics. A goal instance metric can also be displayed directly by placing a ‘Value’
element directly inside the ‘Display’ element. Although aggregate metrics and goal
instance metrics can be treated identically by gauges, it is important to remember that
they actually represent different thing conceptually and so the types of displays that are
suitable may be different. Each time a goal instance metric passes a value to a gauge,
the value is a completely new value which is unrelated to previous values of the metric.
An appropriate type of gauge for goal instance metrics is a distribution gauge which
shows the distribution of results as a bar chart. The values passed by an aggregate
metric are updates to the previous value of the metric. An example of a suitable gauge
for this type of metric is a history gauge which shows the history of the gauge over
time.

An example of a display specification from Limewire is the following:

1 < P r o j e c t n a m e = " l i m e w i r e " >
2 < D i s p l a y t i t l e = " M i n i m i s e D o w n l o a d T im e"
3 c l a s s = " D i s t r i b u t i o n G a u g e " >
4 < G a u g e P a r a m e t e r n a m e = " x L a b e l "
5 v a l u e = " D o w n l o a d T i m e / m i n " / >

5.3. Display o f Soft Goal Metrics 94

Parameter Type Default Explanation
divisions long 1 0 Number of divisions to use
interval long 1 0 0 0 Size of each division
labelFreq long 2 Frequency at which divisions should be

labelled
xLabel String ’’time / s” Label on the x-axis
yLabel String ”y-axis” Label on the y-axis
xScaleFactor long 1 0 0 0 The value of x-axis labels are divided by

this amount
rescale boolean true True if the size of the divisions should be

recalculated if a value is out of range

Table 5.2: Possible parameters for the distribution gauge.

6 < G a u g e P a r a m e t e r n a m e = " i n t e r v a l " v a l u e = " 6 0 0 0 0 " / >
7 < G a u g e P a r a m e t e r n a m e = " x S c a l e F a c t o r " v a l u e = " 6 0 0 0 0 M/ >
8 < V a l u e n a m e = " s a t i s f a c t i o n P e r i o d " g o a l = " D o w n l o a d F i l e " / >
9 < / D i s p l a y >

10 < / P r o j e c t >

This specification tells the monitoring system to display a gauge showing the dis
tribution of download times for files which are successfully downloaded. The ‘Display’
element is used to describe how the soft goal metrics of its child elements should be
displayed. The ‘title’ attribute of this element provides a title for the display. The
‘class’ attribute specifies which gauge class should be used to display the metrics. In
this example, the class selected is the ‘DistributionGauge’ class. The gauge displays
the distribution of download times for different file downloads. It normally takes a
few minutes to download a file so the display will show what percentage of files are
downloaded in one minute, two minutes and so on up to ten minutes.

The ‘Display’ element contains a number of ‘GaugeParameter’ elements as well
as elements which represent soft goal metrics. The ‘GaugeParameter’ elements are
used to set up the gauge selected by the ‘Display’ element. The allowable parameters
depend on which gauge is used as each gauge has its own set of parameters which
it understands which allows new gauges to have whatever parameters the developer
decides are necessary. The parameters which the distribution gauge understands are
shown in table 5.2. Each parameter is referred to by its name, which is specified in
the ‘name’ attribute of the ‘GaugeParameter’ element. The value of the parameter is
specified by the ‘value’ attribute. Each gauge parameter has an allowable range of
values, indicated by the type entry in the above table. If a parameter is not specified
for a particular display, the value of that parameter is set to the default value shown in
the table. In the example, only three parameters are set; the rest will be automatically
set to the default values. The first of these three parameters, the ‘xLabel’ parameter,
sets the label on the x-axis of the gauge to indicate that it shows the download time.
The ‘interval’ parameter sets each interval on the x-axis to a size of one minute (or
sixty thousand milliseconds). The ‘xScaleFactor’ parameter tells the gauge to scale the
labels on the x-axis so that the labels will show minutes rather than milliseconds.

The soft goal metric to be monitored by the display is specified by the ‘Value’
element in this example. This element tells indicates that the gauge should take the

5.3. Display o f Soft Goal Metrics 95

FI Minimise Download Time

Frequency

100 0 %

75 0%

50 0%

25 0%

i ' 6 1 ib
Download Time I mm

Figure 5.1: An example of a distribution gauge.

‘satisfactionPeriod’ goal instance metric of the goal ‘DownloadFile’ as input. This will
result in the gauge displaying the distribution of the time taken to download files as this
corresponds to the time taken to satisfy the goal ‘DownloadFile’. The typical output
from this gauge is shown in figure 5.1.

An example of the use of a history gauge is shown in the following example:

1 < D i s p l a y t i t l e = " R o u t . ing O v e r h e a d " c l a s s = " H i s t o r y G a u g e " >
2 < G a u g e P a r a m e t e r n a m e = " y L a b e l " v a l u e = " M e s s a g e s / m i n " / >
3 < G a u g e P a r a m e t e r nam e= "y M ax " v a l u e = " 3 0 " / >
4 < G a u g e P a r a m e t e r n a m e = " y I n t e r v a l " v a l u e = " 5 " / >
5 < G a u g e P a r a m e t e r n a m e = " p e r i o d " v a l u e = " 1 8 0 0 0 0 " / >
6 <GaugeParameter name="xlnterval" value="6 0 0 0 0 " / >
7
8 < G a u g e P a r a m e t e r n a m e = " l a b e l l " v a l u e = " a l l m e s s a g e s " / >
9 < R a t e s a m p l e P e r i o d = " 6 0 0 0 0 " >

10 <Value goal="ForwardQuery" name="satisfied"/>
11 < V a l u e g o a l = " R e s p o n d T o Q u e r y " n a m e = " s a t i s f i e d " / >
12 < V a l u e g o a l = " F o r w a r d Q u e r y R e p l y " n a m e = " s a t i s f i e d " / >
13 < / R a t e >
14
15 < G a u g e P a r a m e t e r n a m e = " l a b e l 2 " v a l u e = " f o r w a r d q u e r y " / >
16 < R a t e s a m p l e P e r i o d = " 6 0 0 0 0 " >
17 <Value goal="ForwardQuery" name="satisfied"/>
18 < / R a t e >
19
20 < G a u g e P a r a m e t e r n a m e = " l a b e l 3 " v a l u e = " r e s p o n d t o q u e r y " / >
21 <Rate samplePeriod="6 0 0 0 0 " >
22 < V a l u e g o a l = " R e s p o n d T o Q u e r y " n a m e = " s a t i s f i e d " / >
23 </Rate>
24
25 < G a u g e P a r a m e t e r n a m e = " l a b e l 4 "
26 v a l u e = " f o r w a r d q u e r y r e p l y " / >
27 <Rate samplePeri o d = " 6 0 0 0 0 " >
28 < V a l u e g o a l = " F o r w a r d Q u e r y R e p l y " n a m e = " s a t i s f i e d " />
29 < / R a t e >
30 </Display>

5.3. Display o f Soft Goal Metrics 96

Parameter Type Default Explanation
period long 60000 Period of time to display history for in ms
xLabel String “time / s” Label on the x-axis
yLabel String “y-axis” Label on the y-axis
xlnterval long 2 0 0 0 0 Interval between ticks on x-axis
ylnterval float 1 .0 Interval between ticks on y-axis
yMin float 0 . 0 Minimum value on y-axis
yMax float 5.0 Maximum value on y-axis
rescale boolean true True if y-axis should be rescaled if a value

is out of range
label [n] String Label for individual line

Table 5.3: Possible parameters for the history gauge.

O Routing Overhead

M essages 1 mm

30 0

25 U '

20 0 "

1 5 0 “

r ~ \ ^

^ ^ m e s s a g e ;

forward quer)
r

- / - r r - ' ' ' ' -

1 0 0 "

5 0 ~
7^ 1— . forward quer)

- Tssporid to qi

180 -120 '-60 b
time / s

Figure 5.2: An example of a history gauge.

The example specification shows the number of search messages passed by a
Limewire client over time. This is useful to know as passing large number of search
messages can impair other aspects of network performance, particularly the speed of
file downloads. The display should show four different lines, one representing the over
all rate at which messages are being passed by the client and the others representing the
rate of different types of messages.

The parameters which a history gauge understands are shown in table 5.3. The
most important parameter is the ‘period’ parameter which determines how far into the
past the gauge should display values. If the ‘rescale’ parameter is set to true then when
a metric exceeds the maximum value on the y-axis, the axis will be modified to fit the
new, higher, value. The ‘label[n]’ parameters are used to specify labels for the lines for
individual metrics.

The goal aggregate metrics to be displayed by the history gauge are specified in
side the ‘Display’ element. There are four goal aggregate metrics which calculate the
rate at which different goals relating to search message passing are satisfied. Typical
output for this display is shown in figure 5.2.

An example of the use of a min-max gauge is the following specification:

1 < D i s p l a y t i t l e = " R o u t i n g O v e r h e a d Min -M ax"
2 c l a s s = " M i n M a x G a u g e " >

5.3. Display o f Soft Goal Metrics 91

□ Routing Overhead Min-Max

M essag es / min

20 0

10 0 ”

I
forward q respond forward qr

Figure 5.3: An example of a min-max gauge.

3 < G a u g e P a r a m e t e r n a m e = " y I n t e r v a l " v a l u e = " 1 0 " / >
4 < G a u g e P a r a m e t e r n a m e = " y L a b e l " v a l u e = " M e s s a g e s / m i n " / >
5
6 < G a u g e P a r a m e t e r n a m e = " l a b e l l " v a l u e = " f o r w a r d q " / >
7 < R a t e s a m p l e P e r i o d = " 6 0 0 0 0 " >
8 < V a l u e g o a l = " F o r w a r d Q u e r y " n a m e = " s a t i s f i e d " / >
9 </Rate>

10 < G a u g e P a r a m e t e r n a m e = " l a b e l 2 " v a l u e = " r e s p o n d " / >
11 <Rate samplePeriod="6 0 0 0 0 " >
12 < V a l u e g o a l = " R e s p o n d T o Q u e r y " n a m e = " s a t i s f i e d " / >
13 </Rate>
14 < G a u g e P a r a m e t e r n a m e = " l a b e l 3 " v a l u e = " f o r w a r d q r " / >
15 < R a t e s a m p l e P e r i o d = " 6 0 0 0 0 " >
16 <Value goal="ForwardQueryReply" name="satisfied"/>
17 < / R a t e >
18 </Display>

The example display specification will created a min-max gauge which displays
the rate at which different types of Gnutella messages are being passed by a client as in
the previous example of the history gauge. The current value of each metric is displayed
in a bar, along with an indication of the maximum value it has achieved. As the rate
starts off at zero, the minimum value is not relevant in this example as it will always be
zero. An example screen shot of this display is shown in figure 5.3.

The allowable parameters for a min-max gauge are shown in table 5.4. These
parameters work in a similar way to the parameters for the previous two gauge types.
The parameters allow the y-axis label, maximum y-axis value and space between tick
marks to be set. Additionally, the y-axis can be set to be rescaled if the largest value
of one of the bars is greater than the initial maximum value by setting the ‘rescale’
parameter.

5.3.2 Development of Additional Gauge Types
The monitoring framework allows developers to easily add new gauge types to the
framework. This allows gauges to be developed which are specific to particular do
mains so that information from run-time monitoring can be effectively communicated.

A gauge class must implement the G a u g e interface:

5.3. Display o f Soft Goal Metrics 98

Parameter Type Default Explanation
yLabel String ”y-axis” Label on the y-axis
yMax float 5.0 Maximum value on y-axis
ylnterval float 1 .0 Interval between ticks on y-axis
rescale boolean true True if y-axis should be rescaled if a value

is out of range

Table 5.4: Possible parameters for the min-max gauge.

1 p u b l i c i n t e r f a c e G a u g e {
2 p u b l i c v o i d i n i t (S o f t G o a l M o n i t o r [] m o n i t o r s ,
3 Map p a r a m M a p) ;
4 p u b l i c J P a n e l g e t G a u g e P a n e l () ;
5 }

The init method is called when the gauge is created. The monitors parameter
tells the gauge what metrics to display and the paramMap parameter tells it what
the parameters passed by the ‘GaugeParameter’ elements are. The getGaugePanel
method should return an object which is responsible for displaying the gauge.

Normally gauge classes will extend the Abstract Gauge class which handles
the creation of the display area for the gauge and attaches a listener to the monitor for
the soft goal metric so that the gauge is informed of value changes. The interface of the
AbstractGauge class is:

1 a b s t r a c t p u b l i c c l a s s A b s t r a c t G a u g e i m p l e m e n t s G a u g e {
2 p u b l i c a b s t r a c t v o i d d r a w G a u g e (i n t w, i n t h ,
3 G r a p h i c s 2 D g) ;
4 p u b l i c a b s t r a c t v o i d u p d a t e V a l u e s (N u m b e r v a l u e ,
5 i n t m o n i t o r I n d e x ,
6 l o n g t i m e) ;
7
8 p u b l i c v o i d i n i t (S o f t G o a l M o n i t o r [] m o n i t o r s ,
9 Map p a r am M ap) { . . . }

10 p u b l i c J P a n e l g e t G a u g e P a n e l () { }
11 p r o t e c t e d S t r i n g g e t S t r i n g P a r a m (S t r i n g k e y ,
12 S t r i n g d e f) { . . . }
13 p r o t e c t e d b o o l e a n g e t B o o l e a n P a r a m (S t r i n g k e y ,
14 b o o l e a n d e f) { . . . }
15 p r o t e c t e d i n t g e t I n t e g e r P a r a m (S t r i n g k e y ,
16 i n t d e f) { . . . }
17 p r o t e c t e d l o n g g e t L o n g P a r a m (S t r i n g k e y ,
18 l o n g d e f) { . . . }
19 p r o t e c t e d f l o a t g e t F l o a t P a r a m (S t r i n g k e y ,
20 f l o a t d e f) { . . . }
21 }

The AbstractGauge class implements the init and getGaugePanel
methods and adds some methods which allows the gauge class to access the gauge
parameters in a convenient manner. This class also adds to abstract methods which
need to be implemented by the gauge implementation. The drawGauge method

5.4. Summary 99

is called whenever the gauge needs to be drawn and should render the gauge. This
method is passed a Graphics 2D object which allows the gauge window to be ren
dered to as well as the width and height of the gauge. The second abstract method is
the updateValues method which is called whenever one of the metrics being moni
tored changes. The parameters tell the gauge the new value of the metric, which metric
has changed and the time the change occurred. This method should store the new state
of the gauge so that the change can be rendered by the drawGauge method.

5.4 Summary
This chapter has discussed the specification of monitorable metrics which are indicative
of the satisfaction of soft goals. These metrics are monitored at run time and the results
displayed to users of the monitoring framework so that it can be determined whether
these goals are satisfied by a running system in a deployment environment.

The specification of soft goal metrics involves two types of metrics: goal instance
metrics and goal aggregate metrics. The former are evaluated for individual goal in
stances while the latter are evaluated over sets of goal instances. This approach allows
the specification of complex soft goal metrics in a structured manner and provides a
great deal of flexibility in the types of metrics which can be specified.

The formal specification of soft goal metrics makes use of the KAOS object and
goal models. Goal instance metrics make use of the KAOS object model while goal
aggregate metrics make use of the KAOS goal model and the goal instance metrics
which have been defined. This means that no additional instrumentation is required
as long as soft goal metrics make use of entities, relationships and goals which are
already monitored. Even if the specifications use parts of the KAOS models which
are not already monitored, the instrumentation process is the same as for hard goals so
existing processes can be used.

Goal instance metrics are implemented as SQL queries. This has made them rela
tively easy to implement using XSLT to generate the query from the specification. This
was particularly valuable during development of the specification language for goal
instance metrics as it made it possible to rapidly make changes to the language and
implement those changes in SQL. This also means that it should be relatively easy to
change or extend the specification language if it should become necessary. The down
side of this approach is that user defined goal instance metrics are only usable if an SQL
database is used to store the KAOS object model during monitoring. While there is no
reason why an implementation of the goal instance metric specification language could
not be written for a KAOS object model implemented as Java objects, it would have
been more time consuming and harder to modify as the language was developed. Now
that a reasonably stable version of the language has been developed and implemented
for the object model stored in a database, an implementation for an object model im
plemented in Java is more feasible. Built in goal instance metrics and goal aggregate
metrics which use them are still usable with either implementation of the KAOS object
model.

Chapter 6

NGDS Case Study

The monitoring framework which has been described in the previous chapter was eval
uated using a case study to determine whether the framework achieves the objectives set
out in chapter 1. This was done by implementing monitoring for a workforce schedul
ing system.

The system used for this case study is a prototype workforce scheduling system
being developed by BTexact called the Next Generation Dynamic Scheduler(NGDS).
The purpose of the system is to allocate BT’s field technicians to jobs, taking account
of the varying lengths of jobs and the travel time between jobs. A job may need to be
split over a break if it is too long. Some jobs may also need to be performed in parallel
with a related job at another location.

The system is an improved version of the existing dynamic scheduling system
which is already deployed by BT. This system runs at the start of the day to create a
schedule for the day and at regular intervals throughout the day to update the schedule
as new jobs are added or existing jobs slip back in the schedule. The NGDS system
improves on the existing system by providing much greater flexibility in the algorithm
used to generate the schedule, allowing it to be customised to the specific environment
in which it operates and to be easily modified if that environment changes.

This system was chosen for the case study because it is a real system which is
relatively large and complex. The soft goals which were monitored were based on the
needs of the developers of the system to understand the operation of the scheduling
system as well as the customer’s need to get an overall picture of the operation of
the scheduling system. The soft goals which are monitored are thus related to real
requirements.

The NGDS system uses a series of algorithms to construct a schedule containing
tasks which are either jobs or breaks. Initially, tasks are inserted into the schedule one
at a time. For each task, the scheduler tries to find the best available position for the
task so that tasks are not late or are as close as possible to their desired completion
time. The scheduling algorithm must also obey functional requirements such as allow
ing sufficient travel time between jobs at different locations and correctly scheduling
parallel jobs. Jobs are typically inserted into the schedule in three stages. First jobs
which need to be performed at multiple locations by multiple technicians in parallel are
inserted into the schedule. Secondly, jobs which will take a long time and need to be
split over breaks are inserted. Finally, the remaining jobs are inserted. The schedule is
constructed in this order so that the most difficult jobs to schedule are inserted first, fol
lowed by simpler jobs. Having constructed a schedule, the system then tries to optimise
it using one of a choice of local search algorithm which rearrange items in the schedule

101

to try and improve the quality of the schedule. For example, a good schedule should
minimise the time technicians spend travelling by assigning jobs which are closely
spaced geographically to the same technician where possible. The schedule should
also try and minimise waiting time for customers and take account of the priority given
to different types of jobs. Local search algorithms have a number of parameters which
can be modified to provide fine tuning of the algorithm.

Because the schedule runs at regular intervals throughout the day, there is a time
limit on how long the scheduler can run. The scheduler is called every ten minutes so
the time limit is a few minutes.

The goals which were considered most interesting to monitor by the developers
of the system were soft goals related to the quality of the search results produced. The
functional aspects of the system are fairly straightforward as the main functional goal
is to construct a schedule which satisfies certain conditions such as allowing sufficient
travel time between jobs. The main area of interest was to determine what effect each
search stage has on the quality of the schedule using various measures.

There are three types of metric which are of interest. The first are metrics asso
ciated with the assignment of tasks. The second are metrics associated with the tech
nicians who carry out the tasks. The third type of metric is involves the movement of
tasks which happens when a schedule is optimised and the number and types of moves
that an algorithm performs.

For each task there is a quality of service value which is already defined in the
system. This takes into account lateness in scheduling the task as well as complete
failure to schedule the task to any technician, taking into account the priority of the
task. There is also a value for the travel time taken for the technician to reach the
location at which the task needs to be carried out.

Technician metrics include the number of tasks assigned to an individual techni
cian, the amount of time technicians spend travelling and the number of technicians
which have not been assigned any tasks. Generally, the more tasks assigned to each
technician, the more efficiently the technicians are being used. The amount of time
each technician spends travelling indicates how well the algorithm is routing techni
cians to jobs which are closely spaced geographically. Technicians which have not
been assigned any jobs suggests that the algorithm may not be assigning tasks effi
ciently unless there are very few jobs to assign.

The task and technician metrics are goal instance metrics which are associated
with goals which require that each search stage completes. These metrics can be com
bined over many executions of the scheduler to build up a picture of the performance
of each search stage.

Once a schedule has been constructed, it is optimised by rearranging tasks so that
the quality of service increases. NGDS uses two types of moves to do this. Insertion
moves insert a task before or after another task in the schedule. Swap moves exchange
the positions of two tasks in the schedule. It is useful to measure the number of each
type of move performed in each search stage and their relative proportions.

Generally, there are likely to be several assumptions about the environment which
are made in selecting an algorithm and configuring its parameters. Assumptions include
the expected number of technicians and tasks, the relative proportions of high and low
priority tasks and the relative numbers of parallel and long jobs. As the system is
designed with a lot of flexibility in the algorithms, some of these assumptions are made

6.1. Objectives 102

when the system is configured rather than when the system is implemented. These
assumptions are also soft so, for example, the expected proportions of high and low
priority tasks is a vague amount rather than a precise figure.

The rest of this chapter proceeds through the process for monitoring a system us
ing the monitoring framework. Section 6.1 outlines the objectives of the case study.
Section 6.2 describes the formal definition of hard goals for the NGDS system. Sec
tion 6.3 formally defines soft goal metrics corresponding to the soft goals described
above. Section 6.4 shows how the NGDS system is instrumented using Aspect!. Sec
tion 6.5 presents the results of the case study.

6 .1 O b j e c t i v e s

This case study aims to validate the contributions claimed in section 1.5 by using the
features of the monitoring framework to monitor the NGDS system and by assessing
how successful these features were.

There are three areas which are assessed by the case study: performance, instru
mentation and soft goal specification.

6.1.1 Performance
The most important performance issue is the affect instrumentation code has on the
performance of the monitored system. The performance overhead must be low enough
that monitoring can be used as part of the normal operation of the system, so that
failures due to changes in the environment of the monitored system can be detected.

The performance overhead will depend on the configuration of the monitoring sys
tem. The performance of the monitoring system is likely to vary depending on which
implementation of the requirements instance model is used; the database implementa
tion or the implementation using Java classes. The performance is also likely to depend
on the characteristics of the network connection between the monitored system and the
monitor server. The instrumentation overhead is likely to be lower if the connection is
faster.

Evaluating the performance of the monitoring framework thus requires perfor
mance data to be collected for a number of different configurations. Unfortunately, the
performance of the monitoring framework will likely vary greatly from application to
application so the results from this case study will not be able to predict the performance
overhead due to monitoring in other applications. The results should however be able
to provide some insight into the relative performance of the different configurations of
the monitoring system and show that monitoring in the deployment environment is at
least feasible using the monitoring framework.

6.1.2 Instrumentation
The second objective of the case study is to show that the system can be effectively in
strumented using the monitoring framework, allowing goals to be monitored. As there
are two approaches to instrumentation within the framework (the mapping approach
and instrumentation using AspectJ directly), it is necessary to determine how these two
approaches compare in practice. The case study should identify how much instrumen
tation can be implemented using the mapping language and how often it is necessary to
fall back on AspectJ. It should also determine whether the amount of code which has
to be written is reasonable.

6.2. Formally Define Hard Goals 103

Ensuring the correctness of instrumentation code is largely left to the instrumenta
tion developer so demonstrating correctness is not an objective of the case study other
than to show that given correct instrumentation, the monitoring framework correctly
processes the generated instrumentation messages.

6.1.3 Soft Goal Specification
The final objective is to demonstrate the use of the soft goal specification language to
formally specify metrics, to show that the language is suitable for specifying metrics
related to real soft goals. This suitability needs to be considered in terms of whether it is
possible to express those metrics which are desired, how easy the metrics are to specify
and how much additional instrumentation needs to be written so that those metrics can
be monitored.

6.1.4 Utilisation of Monitoring Results
The case study should demonstrate that the monitoring framework can be used to detect
when failures have occurred due to changes in the environment of the NGDS system.
In the case of soft goals, this means determining whether the goals have failed using
the information provided by soft goal displays. These displays should allow users of
the monitoring framework to decide when the system is failing to satisfy a soft goal and
give some indication of why that failure is occurring.

6 . 2 F o r m a l l y D e f i n e H a r d G o a l s
The goal refinement for the hard goals of the NGDS system is shown in figure 6.1
along with the agent responsibility links for those goals. The top level goal is
‘Achieve[Construct Schedule]’ which requires that the system should try to construct a
schedule. This goal has two sub goals. The first, called ‘Achieve[Assign Jobs]’, cor
responds to the initial phase of creating a schedule in which as many jobs as possible
are placed in the schedule. The second goal, called ‘Achieve[Optimise Schedule]’, re
quired that a local search algorithm should be run on the schedule to optimise it with
respect to the non-functional requirements for the schedule. The goal ‘Achieve[Assign
Jobs]’ has three sub-goals which require parallel jobs, long jobs and normal jobs to be
inserted into the schedule. Jobs are placed in this order as parallel jobs have the greatest
constraints on them as they must be scheduled at the same time as another job and long
jobs are harder to place than normal jobs as they require a large gap in a schedule.

All of these goals are assigned to agents which are responsible for running these
algorithms, which inherit from the ‘Algorithm’ agent. In the NGDS system, these
agents all run on the same system but they are modelled as separate agents due to their
importance at the requirements level.

All the leaf goals in this graph are assigned to agents in the system so they are all
requirements not assumptions. As a result, it is not particularly interesting to monitor
these goals for their own sake. It is however necessary to monitor these goals so that soft
goals can be defined using them. These soft goals are of interest as they are affected by
the environment, specifically by the types of schedules that are submitted to the system.
The actual hard goals are fairly trivial to specify as there are so few limits on what
behaviour is allowed by the scheduler. The only real requirements is that once a search
has started it should eventually finish, although this is sufficient to allow specification
of soft goals which depend on the hard goals as it makes the start and end of a search
explicit in the requirements model.

6.2. Formally Define Hard Goals 104

Achieve
C onstruct Schedule

Achieve
Assign Jo b s

Achieve
Optim ise Schedule

Local S earch
Algorithm

Achieve
A ssign Parallel Jo b s

Achieve
A ssign Normal Jo b s

Achieve
A ssign Long Jo b s

Normal Jo b Insertion
AlgorithmParallel Job Insertion

Algorithm
Algorithm

Long Job Insertion
Algorithm

C onstructive
S earch Algorithm

Figure 6.1: Goals refinements and agent responsibilities for the NGDS system.

The formal definition of the leaf goals are as follows:

Goal: Achieve [Assign Parallel Jobs]
V a:ParallelJobInsertionAlgorithm, s:Schedule
RunningParallelJobInsertionAlgorithm(a, s) =4>
0<io min-1 RunningParallelJobInsertionAlgorithm(a, s)

Goal: AchievefAssign Long Jobs]
V a:LongJobInsertionAlgorithm, s:Schedule
RunningLongJobInsertionAlgorithm(a, s) =>
0<io min-1 RunningLongJobInsertionAlgorithm(a, s)

Goal: Achieve[Assign Normal Jobs]
V a:NormalJobInsertionAlgorithm, s:Schedule
RunningNormalJobInsertionAlgorithm(a, s) =>•
0<io min^ RunningNormalJobInsertionAlgorithm(a, s)

Goal: Achieve[Optimise Schedule]
V a:LocalSearchAlgorithm, s:Schedule
RunningLocalSearchAlgorithm(a, s)
0< iq min^ RunningLocalSearchAlgorithm(a, s)

6.3. Formally Define Soft Goal Metrics 105

Max
Quality of Service

avgqoshigh

avgqos

Min
Unscheduled Tasks

Min

Travel Time
Min

Late Tasks

travelTime
unscheduledTaskCount

Min
Tasks Per Technician

techTravelTime

unusedTechnicians

tasksPerT echnician

Figure 6.2: The soft goal model for NGDS system.

As can be seen, these definitions follow a similar pattern. Once each algorithm is
running, it should finish running within a time limit. Because all the agents which rep
resent the different algorithms extend the ‘Algorithm’ agent and because no additional
attributes are monitored in the individual specialisations of the ‘Algorithm’ agent, it is
possible to ignore the specialised agents and just monitor these goals with the labels ‘a’
representing a generic ‘Algorithm’ agent. This simplifies the monitoring problem as it
means that several agents do not need to be represented.

6 .3 F o r m a l l y D e f i n e S o f t G o a l M e t r i c s
There are a number of soft goals which are of interest in the NGDS system and are the
focus of run-time monitoring in this case study. These soft goals, which are related to
the quality of the schedule which is generated by the scheduler, are shown in figure 6 .2 .
In this figure, soft goals are shown using the normal soft goal notation. The metrics
associated with those soft goals are shown using a non-standard notation with the met
rics in rounded rectangles and the associations with soft goals shown by the thick lines
connecting them. It is possible for more than one metric to be associated with a single
soft goal which provides the user of the framework with different ways of evaluating
the satisfaction of a soft goal.

The basic measure of the quality of service of the system is the quality of service
attribute, which the scheduler tries to maximise. This is represented by the soft goal
‘Max[Quality of Service]’. A quality of service measure exists for each individual task
in the schedule which indicates how well it has been scheduled, taking into account
how late the task is or the failure to schedule the task. The quality of service for the
schedule is calculated by combining the quality of service for the individual tasks in

6.3. Formally Define Soft Goal Metrics 106

the schedule. The metric ‘avgqos’ calculates the average quality of service of all the
tasks in the schedule. The metric ‘avgqoshigh’ calculates the average for only those
tasks with high priority. Metrics for only those tasks with medium or low priority are
also obviously possible as well as any combination of task groups. This allows users
of the framework to see the success of the system in satisfying the soft goals from the
perspective of different groups of tasks which share specific properties.

The soft goals ‘Min[Unscheduled Tasks]’ and ‘Min[Late Tasks]’ together satisfy
the goal ‘Max[Quality of Service]’. The metric ‘unscheduledTaskCount’ is associated
with ‘Min[Unscheduled Tasks]’ and has as its value the number of tasks in a schedule
which are left unassigned by the schedule.

The soft goal ‘Min[Tasks Per Technician]’ requires that as few tasks as possible
should be assigned to each technician. This soft goal contributes positively to the soft
goal ‘Min[Late Tasks]’ as technicians which have fewer tasks assigned to them are
likely to have better quality of service. This soft goal has two metrics associated with
it. The metric ‘tasksPerTechnician’ calculates the average number of tasks which are
assigned to each technician. The metric ‘unusedTechnicians’ counts the number of
technicians which have not had any tasks assigned to them.

Another property of a schedule which is desirable is that the travel time between
tasks can should be minimised, which is represented by the goal ‘Min[Travel Time]’.
This soft goal conflicts to some extent with the goal ‘MaxfQuality of service]’ in that a
schedule optimised to minimise travel time is likely to be different from one optimised
for quality of service, although in many cases decreasing travel time is also likely to
increase quality of service. To demonstrate this conflict, consider two tasks which need
to performed in locations which are close to each other geographically. Quality of ser
vice can be maximised by having a different technician perform each task. Travel time
will be minimised by having one technician perform both tasks but this will delay the
second task. Two metrics associated with this soft goal are shown in the diagram. The
metric ‘travelTime’ considers travel time from the perspective of a task by calculat
ing the average time taken to reach each task. The metric ‘techTravelTime’ considers
these metrics from the point of view of technicians by calculating the average time each
technician has to travel to satisfy the schedule.

6.3.1 Define Goal Instance Metrics
To monitor the goal instance metrics described above, it is necessary to formally define
them and express them in the XML language for specifying goal instance metrics. All
of the goal instance metrics are associated with the four leaf goals in figure 6 .1 and they
are evaluated whenever an instance of one of these goals is satisfied.

The goal instance metric ‘avgqos’ is associated with the soft goal ‘Max[Quality
Of Service]’ and is the average quality of service value of all tasks in a schedule after a
search algorithm has finished running a search stage. It is defined as:

V g : As si gn Par all el Jobs U AssignLongJobsU
AssignNormalJobs U Optimiseschedule,

t : Task
avgqos(g) = Avg(fi.qos, t2.qos,. .. tn.qos)
where t E { t i , t2, .. . t n} InSchedule(£, g.s)

This definition uses the relationship ‘InSchedule’ which is true for a task that belongs
to a particular schedule. It is true whether or not that task has actually been success

6.3. Formally Define Soft Goal Metrics 107

fully assigned a technician and time slot as long as the task is one which should be
assigned. This is an example of a relationship which is not used in the definition of
the hard goals which are monitored but which appears in the definition of a soft goal
metric. Instrumentation code must be written for these relationships in addition to the
code necessary to monitor the hard goals. The ‘Task’ entity also appears only in the
specification of soft goals and requires additional instrumentation code.

The value of the goal instance metric ‘unscheduledTaskCount’, which is associ
ated with the soft goal ‘Min[Unscheduled Tasks]’, is the number of tasks which have
not been scheduled at the end of a search stage. The metric is formally defined as:

V g : AssignParallelJobs U AssignLongJobsU
AssignNormalJobs U O ptim ises chedule,

t : Task
unscheduledTaskCount(g) =
Count(£i . unscheduled, t2.unscheduled, . . . tn.unscheduled)
where t £ { t \ , t2, ...£„}<=> InSchedule(£, g.s) A unscheduled = fa lse

The goal instance metric ‘travelTime’ is associated with the soft goal ‘Min[Travel
Time]’ and measures the average time taken to reach a task in a schedule. The metric
is defined as:

V g : AssignParallelJobs U AssignLongJobsU
AssignNormal Jobs U Optimiseschedule,

t : Task
travelTime(p) = Avg(t i. travelTime, t2.travelT im e,.. . t n. travelTime)
wheref £ { t \ , t2, ■ ■ - tn} ^ InSchedule(t,g.s)

The soft goal model also contains three metrics associated with technicians, which
can be measured using three goal instance metrics. Associated with the soft goal
‘Min[Travel Time]’ is the goal instance metric ‘techTravelTime’ which measures the
average travel time of each technician which is used by a schedule. It is formally de
fined as:

V g : AssignParallelJobs U AssignLongJobsU
A ssignN ormal Jobs U O ptim ises chedule,

t : Technician
techTravelTime(g) = A\g{ t\ .travelT im e,t2. trave lT im e,.. , t n.travelTime)
where t £ { t \ , t2, . . . tn} «=> UsableBySchedule(t, g.s)

The goal instance metric ‘unusedTechnicians’ is associated with the soft goal
‘Max[Tasks Per Technician]’ and simply counts the number of technicians which
are available to a schedule but are not assigned tasks in that schedule. It is defined as
follows:

V g : AssignParallelJobs U AssignLongJobsU
A ssignN ormal Jobs U O ptim ises chedule,

t : Technician
unusedTechnicians(g) =
Count(£ 1 .allocatedTasks, t2.allocatedTasks,. . . tn.allocatedTasks)
where t £ {t\, t2, . . . tn} UsableBySchedule(£, g.s) A t.allocatedT asks = 0

6.3. Formally Define Soft Goal Metrics 108

Finally, ‘tasksPerTechnicians’ is the goal instance metric associated with the soft goal
‘Max[Tasks Per Technician]’. It measures the average number of tasks assigned to a
technician. It is formally defined as:

V g : AssignParallelJobs U AssignLongJobsU
AssignN ormal J obs U O ptim ises chedule,

t : Technician
tasksPerTechnician(^) =

allocatedT asks, t2-allocated! 1 a sks , . . . tn. allocatedTasks)
where t E {ti, t2, . . . £„} <=> UsableBySchedule(£, g.s)

It is also possible to define goal instance metrics which make use of the attributes
of the ‘Task’ and ‘Technician’ entities to restrict the set of entities which are used in the
calculation of the metric. For example, it is possible to calculate the average quality of
service for only those tasks which have a high priority:

V g : AssignParallelJobs U AssignLongJobsU
A ssignN ormal Jobs U O ptim ises chedule,

t : Task
avgqoshigh(g) = Avg(t1.qos,t2.qos,. . . tn.qos)
where t E {t\, t2, . . . tn} InSchedule(£, g.s) A Apriority = ‘high’

Other attributes of the task metric which it makes sense to use in this way are ‘jobType’,
‘commitType’ and ‘dueDate’ attributes. It is also possible to use more than one of these
attribute so that it is possible, for example, to calculate the average quality of service
for tasks with high priority which are due to be completed by the end of the next day,
although a new goal instance metric needs to be defined for each combination which is
monitored.

6.3.2 Define Soft Goal Displays
The soft goal metrics can be displayed to the users of the monitoring framework so
that they can assess the operation of the system with respect to the soft goals. The
goal instance metrics described previously can be displayed using a history gauge to
show the value of the metrics over time. An example of such a display specification
is the following listing which defines a display which uses a history gauge to show the
average quality of service value after each search completes.

1 < D i s p l a y t i t l e = " Q o S on c o m p l e t i o n " c l a s s = " H i s t o r y G a u g e " >
2 < G a u g e P a r a m e t e r n a m e = " y M i n " v a l u e = " 1 9 " / >
3 < G a u g e P a r a m e t e r n am e= "y M ax " v a l u e = " 2 3 " / >
4 < G a u g e P a r a m e t e r n a m e = " y I n t e r v a l " v a l u e = " l " / >
5 < G a u g e P a r a m e t e r n a m e = " p e r i o d " v a l u e = " 2 4 0 0 0 0 0 " / >
6 < G a u g e P a r a m e t e r n a m e = " x l n t e r v a l " v a l u e = " 5 0 0 0 0 0 " / >
7 < G a u g e P a r a m e t e r n a m e = " l a b e l l " v a l u e = " q o s " / >
8 < V a l u e n a m e = " a v g q o s " g o a l = " O p t i m i s e S c h e d u l e " / >
9 < / D i s p l a y >

Similar displays can be defined for other goal instance metrics.

6.4. Instrument the Target System 109

6.4 Instrument the Target System
Monitoring the NGDS system requires that instrumentation code is inserted into the
system. There are two approaches to this within the monitoring framework, as de
scribed in chapter 4. The simplest approach, from the point of view of the developer,
is to write a mapping between entities and relationships in the requirements model
and corresponding classes, methods and attributes in the implementation of the system.
This mapping is used to generate instrumentation code written in AspectJ. The second
approach is to write the instrumentation in AspectJ directly. This approach is more
flexible but also has a greater degree of complexity from the developers perspective.

The instrumentation of the NGDS system was performed using a combination of
both of these approaches. This is reasonably simple to achieve as the two methods are
complementary since mappings are used to generate AspectJ code which can interact
with manually written AspectJ code as necessary. Instrumentation is written individ
ually for each entity and relationship in the requirements model so the choice can be
made individually for each entity and relationship as to whether to use a mapping or a
instrumentation aspect to develop the instrumentation.

Instrumentation needs to be written for the four leaf goals in the goal graph in
figure 6.1. Each of these goals has a relationship for which instrumentation needs
to be written as well as for the entities ‘Algorithm’ and ‘Schedule’. The relationship
‘InSchedule’ and the entities ‘Task’ and ‘Technician’ are also used in the definition of
the soft goal metrics so these also require instrumentation code.

The instrumentation necessary for the entity ‘Schedule’ is very simple as this en
tity has no attributes and is associated directly with an implementation level object. The
instrumentation for this object is generated from the following mapping:

1 < M ap p in g n a m e = " n g d s ">
2 < ! — Map t h e KAOS e n t i t y S c h e d u l e t o t h e
3 J a v a c l a s s D S _ S c h e d u l e — >
4 < O b j e c t n a m e = " S c h e d u l e ”
5 o b j e c t E l e m e n t = " / / U M L r C l a s s [0 n a m e = ' D S _ S c h e d u l e '] " >
6 < / O b j e c t >
7 < / M a p p i n g >

The aspect generated for the entity ‘Schedule’ creates an aspect instance for each
instance of the Java class D S _ S c h e d u l e . The monitor is told to create a new instance
of the entity ‘Schedule’ as soon as the aspect instance is created. The entity is cre
ated without providing an identifier for the instance so a globally unique identifier is
automatically generated. This mapping is used to generate the aspect shown below:

1 p a c k a g e m o n i t o r . n g d s . m a p p i n g ;
2
3 p r i v i l e g e d p u b l i c a s p e c t S c h e d u l e l n s t a n c e
4 e x t e n d s S c h e d u l e T y p e p e r t a r g e t (
5 e x e c u t i o n (c o m . b t . n g d s . m d l . D S _ S c h e d u l e . n e w (. .))) {
6
7 p o i n t c u t i n i t P o i n t c u t (c o m . b t . n g d s . m d l . D S _ S c h e d u l e
8 t a r g e t C l a s s) :
9 e x e c u t i o n (c o m . b t . n g d s . m d l . D S _ S c h e d u l e . n e w (. .)) &&

10 t a r g e t (t a r g e t C l a s s) ;
11

6.4. Instrument the Target System 110

12 a f t e r (c o m . b t . n g d s . m d l . D S _ S c h e d u l e t a r g e t C l a s s) :
13 i n i t P o i n t c u t (t a r g e t C l a s s) {
14 i n i t I n s t a n c e () ;
15 }
16 }

In this case, the generated aspect is quite a bit longer than the three line mapping,
although a hand written aspect might be a bit more concise.

The mapping aspect for the ‘Task’ entity is the most complex aspect. The listing
for this aspect is:

1 / / R e l a t e s t h e T a s k e n t i t y t o t h e i m p l e m e n t a t i o n
2 / / by e x t e n d i n g t h e T a s k T y p e c l a s s .
3 / / An a s p e c t i n s t a n c e i s c r e a t e d f o r e a c h i n s t a n c e o f
4 / / DS_Tas k w h i c h i s c r e a t e d .
5 p u b l i c p r i v i l e g e d a s p e c t T a s k l n s t a n c e e x t e n d s T a s k T y p e
6 p e r t a r g e t (e x e c u t i o n (D S _ T a s k . n e w (. .))) {
7
8 / / The KAOS T a s k e n t i t y r e p r e s e n t e d b y t h i s a s p e c t
9 / / maps t o t h i s o b j e c t .

10 p r i v a t e D S _ T ask t a s k ;
11

12 / / When t h e D S _ T ask o b j e c t i s c r e a t e d , t h i s a d v i c e
13 / / s e n d s a m e s s a g e t o c r e a t e a new T a s k e n t i t y
14 / / i n s t a n c e .
15 a f t e r (D S _ T a s k t a s k) : e x e c u t i o n (D S _ T a s k . n e w (. .)) &&
16 t a r g e t (t a s k) {
17 i n i t l n s t a n c e () ;
18 t h i s . t a s k = t a s k ;
19 }
2 0

21 / / R e c a l c u l a t e s t h e v a l u e s o f t h e a t t r i b u t e s o f t h e
22 / / t a s k e n t i t y a n d i n f o r m s t h e m o n i t o r o f t h e new
23 / / v a l u e s .
24 p u b l i c v o i d r e s e t A t t r i b u t e s () {
25 / / S e t QoS
26 q o s U p d a t e d (t a s k . g e t Q o s C o s t ()) ;
27
28 / / S e t j o b t y p e
29 i f (t a s k . i s L o n g J o b ()) {
30 j o b T y p e U p d a t e d (" L o n g ") ;
31 } e l s e i f (t a s k . h a s P a r a l l e l J o b P a r e n t () | I
32 t a s k . i s P a r a l l e l J o b H e a d ()) {
33 j o b T y p e U p d a t e d (" P a r a l l e l ") ;
34 } e l s e {
35 j o b T y p e U p d a t e d (" N o r m a l ") ;
36 }
37
38 / / S e t c o m m i t t y p e
39 c o m m i t T y p e U p d a t e d (t a s k . g e t C o m m i t T y p e ()) ;
40

6.4. Instrument the Target System 111

41
42
43
44
45
46
47
48
49
50
51
52
53

/ / S e t p r i o r i t y

/ / S e t d u e d a t e

/ / S e t t r a v e l t i m e

/ / S e t u n a s s i g n e d

An instance of this aspect is created for each instance of the DS_Task class.
When an instance of the aspect is created it stores the instance of DS.Task with
which it is associated so that the values of attributes can be obtained from it when
reset At tributes () is called. The system is instrumented in this way so that the
attribute values are not reported to the monitor every time they change but are instead
only reported when they are needed, which is whenever a search stage is complete.
This approach is necessary for performance reasons, as otherwise a very large num
ber of changes to these attribute values would occur during the execution of a search
stage which are not necessary for the monitoring of the system. The need for this op
timisation is the reason why it is not possible to use the mapping approach to provide
instrumentation for these entities.

The aspect for the ‘Technician’ entity follows a similar pattern to that of the ‘Task’
entity. An aspect is instantiated for each instance of the DS_Technician class and
the attributes are set by calling a reset Attributes () method on the object.

The aspect for the ‘Algorithm’ entity is:

1 / / R e l a t e s t h e A l g o r i t h m e n t i t y t o t h e i m p l e m e n t a t i o n
2 / / b y e x t e n d i n g t h e A l g o r i t h m T y p e c l a s s .
3 / / An a s p e c t i n s t a n c e i s c r e a t e d f o r e a c h i n s t a n c e o f
4 / / S i n g l e S o l u t i o n M e t h o d w h i c h i s c r e a t e d .
5 p u b l i c a s p e c t A l g o r i t h m l n s t a n c e e x t e n d s A l g o r i t h m T y p e
6 p e r t a r g e t (e x e c u t i o n (S i n g l e S o l u t i o n M e t h o d . n e w (. .))) {
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21

/ / P o i n t c u t w h i c h d e t e c t s when a move h a s b e e n p e r f o r m e d
p u b l i c p o i n t c u t s u c c e s s f u l M o v e (M o v e move) :

/ / T e l l s m o n i t o r t h a t a new i n s t a n c e o f t h e A l g o r i t h m
/ / e n t i t y h a s b e e n c r e a t e d w h e n e v e r a n i n s t a n c e o f
/ / t h i s a s p e c t i s c r e a t e d ,
p u b l i c A l g o r i t h m l n s t a n c e () {

/ / Keep t r a c k o f t h e n u m b e r o f s w ap a n d i n s e r t m o v e s
/ / w h i c h t h e a l g o r i t h m h a s p e r f o r m e d ,
p r i v a t e i n t i n s e r t M o v e s = 0;
p r i v a t e i n t sw apM ove s = 0;

i n i t l n s t a n c e () ;

6.4. Instrument the Target System 112

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 }
44

The algorithm entity corresponds to the S i n g l e S o l u t i o n M e t h o d class so an
instance of this aspect is created for each instance of this class. The ‘Algorithm’ entity
has attributes for the number of swap and insert moves which have been performed
by the algorithm. The aspect contains a pointcut which matches whenever a move
operation is performed on the schedule. This pointcut does not update the attribute
immediately, as this would be an excessive drain on the performance of the scheduling
system, but instead keeps a count as moves are performed and updated and provides a
method which is called once the algorithm has completed. This allows the number of
moves to be detected when an algorithm completes but not during a search.

The aspect for the relationship ‘RunningParallelJoblnsertionAlgorithm’ handles
both updates the status of this relationship and triggers the update of the attributes of
the tasks, technicians and the algorithm instance. The listing is as follows:

// Relates the RunningParallelJoblnsertionAlgorithm
// relationship to its implementation by extending the
// relevant appropiate helper class.
// An instance of this aspect exists during each execution
// of the runAlogrithm method.
public aspect RunningParallelJoblnsertionAlgorithmlnstance

extends RunningParallelJoblnsertionAlgorithmType
percflow(execution(

void NGDSParallelJoblnsertion.runAlgorithm())){

// Pointcut which matches when the runAlgorithm method
// is called and gets the implementation object
// associated the algorithm entity,
public pointcut

1

2
3
4
5
6
7
8
9

10
1 1
12
13
14

execution(double HeuristicSolution.
performMove(Move)) &&

args(move);

// Whnever a move is eprformed, this advice updates the
// move counter.
before(Move move) : successfulMove(move) {

if (move instanceof InsertMove) {
insertMoves++;

} else if (move instanceof SwapMove) {
swapMoves++;

}
}

// Method which informs the monitor of the number
// of moves which have been performed,
public void resetAttributes() {

insertMovesUpdated(insertMoves) ;
swapMovesUpdated(swapMoves) ;

}

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

6.4. Instrument the Target System 113

r u n A l g o r i t h m (S i n g l e S o l u t i o n M e t h o d s e a r c h M e t h o d) :
e x e c u t i o n (v o i d N G D S P a r a l l e l J o b l n s e r t i o n .

r u n A l g o r i t h m ()) &&
t a r g e t (s e a r c h M e t h o d) ;

b e f o r e (S i n g l e S o l u t i o n M e t h o d s e a r c h M e t h o d) :
r u n A l g o r i t h m (s e a r c h M e t h o d) {
D S _ S c h e d u l e s c h e d u l e = (D S _ S c h e d u l e) s e a r c h M e t h o d .

g e t H e u r i s t i c P r o b l e m () . g e t P r o b l e m () ;

/ / I n f o r m s t h e m o n i t o r t h a t a new i s n t a n c e o f t h e
/ / r e l a t i o n s h i p h a s b e e n c r e a t e d ,
i n i t l n s t a n c e (

A l g o r i t h m l n s t a n c e . a s p e c t O f (s e a r c h M e t h o d) ,
S c h e d u l e l n s t a n c e . a s p e c t O f (s c h e d u l e)) ;

}

/ / A d v i c e w h c i h r u n s a f t e r e x e c u t i o n o f t h e a l g o r i t h m
a f t e r (S i n g l e S o l u t i o n M e t h o d s e a r c h M e t h o d) :

r u n A l g o r i t h m (s e a r c h M e t h o d) {

/ / I n f o r m m o n i t o r o f t h e c u r r e n t v a l u e o f t h e
/ / a t t r i b u t e s o f a l l t h e T a s k e n t i t i e s i n t h e
/ / s c h e d u l e .
D S _ S c h e d u l e s c h e d u l e = (D S _ S c h e d u l e) s e a r c h M e t h o d .

g e t H e u r i s t i c P r o b l e m () . g e t P r o b l e m () ;

f o r (i n t i = 0; i < s c h e d u l e . g e t N T a s k s () ; i + +) {
D S _ T as k t a s k = (DS_T ask) s c h e d u l e . g e t T a s k (i) ;
T a s k l n s t a n c e . a s p e c t O f (t a s k) . r e s e t A t t r i b u t e s () ;

}

/ / I n f o r m m o n i t o r o f t h e c u r r e n t v a l u e o f t h e
/ / a t t r i b u t e s o f a l l t h e T e c h n i c i a n e n t i t i e s i n t h e
/ / s c h e d u l e
f o r (i n t i = 0; i < s c h e d u l e . g e t N R e s o u r c e s () ; i + +) {

DS_WTM t e c h = (D S _ W T M) s c h e d u l e . g e t R e s o u r c e (i) ;
T e c h n i c i a n l n s t a n c e . a s p e c t O f (t e c h) .

r e s e t A t t r i b u t e s () ;
}

/ / I n f o r m m o n i t o r o f t h e c u r r e n t v a l u e o f t h e
/ / a t t r i b u t e s o f t h e A l g o r i t h m e n t i t y
A l g o r i t h m l n s t a n c e . a s p e c t O f (s e a r c h M e t h o d) .

r e s e t A t t r i b u t e s () ;

/ / T e l l t h e m o n i t o r t h a t t h i s r e l a t i o n s h i p i n s t a n c e
/ / h a s b e e n d e s t r o y e d .

6.4. Instrument the Target System 114

65 d e s t r o y l n s t a n c e () ;
66 }

67 }
68
69

The aspects for the other relationships: ‘RunningLongJoblnsertionAlgorithm’,
‘RunningNormalJoblnsertionAlgorithm’ and ‘RunningLocalSearchAlgorithm’, are
similar to this one. An instance of this aspect is instantiated whenever the
runAlgorithm method of the NGDSParallelJoblnsertion class, which
starts the parallel job insertion algorithm, is called. A relationship instance is cre
ated with the init Instance method immediately after the aspect is created. The
two objects passed as roles to the method are the SingleSolutionMethod object
which represents the algorithm and the DS.Schedule object which represents the
schedule. After the search is complete, the relationship instance is destroyed with a
call to destroylnstance () . Additionally, the task and technician and algorithm
objects are updated at this stage by calling resetAttributes () on them. As
these attributes are only updated when these methods are called, at the end of each
algorithm’s run, the value of these attributes is only actually correct at this time. This
is a trade-off which provides better performance in the target system at the expense
of more limited monitoring information. In practice, only the monitoring information
which is provided is really necessary.

The soft goals use the relationships ‘InSchedule’ and ‘UsableBySchedule’ which
identify which tasks need to be scheduled and which technicians are available to per
form those tasks. The aspect for the relationship ‘InSchedule’ is:

1 / / R e l a t e s t h e I n S c h e d u l e r e l a t i o n s h i p t o t h e
2 / / i n s t a n c e s o f t h e r e l a t i o n s h i p w h i c h e x i s t a t
3 / / t h e i m p l e m e n t a t i o n l e v e l . T h i s i s d o n e u s i n g
4 / / a s i n g l e a s p e c t i n s t a n c e w h i c h u s e s i n t r o d u c t i o n s
5 / / t o a s s o c i a t e a n i n s t a n c e o f t h e I n S c h e d u l e t y p e
6 / / w i t h e a c h D S _ T as k i n s t a n c e .
7 p u b l i c p r i v i l e g e d a s p e c t I n S c h e d u l e l n s t a n c e {
8 p r i v a t e I n S c h e d u l e T y p e D S _ T a s k . i n s t a n c e ;
9

10 p u b l i c I n S c h e d u l e T y p e D S _ T a s k . g e t I n S c h e d u l e l n s t a n c e () {
11 r e t u r n i n s t a n c e ;
12 }
13
14 / / E n s u r e s t h a t t h e " a f t e r " a d v i c e i n t h i s a s p e c t w i l l
15 / / b e e x e c u t e d a f t e r t h a t i n T a s k l n s t a n c e s o t h a t
16 / / t h e T a s k i s c r e a t e d b e f o r e t h e r e l a t i o n s h i p i n
17 / / w h i c h i t i s a r o l e .
18 d e c l a r e p r e c e d e n c e : I n S c h e d u l e l n s t a n c e , T a s k l n s t a n c e ;
19
20
21 / / C r e a t e s a new i n s t a n c e o f t h e I n S c h e d u l e
22 / / r e l a t i o n s h i p w h e n e v e r a D S _ T ask o b j e c t i s c r e a t e d
23 a f t e r (D S _ T a s k t a s k) :
24 e x e c u t i o n (D S _ T a s k . n e w (. .)) && t h i s (t a s k) {

6.5. Results 115

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

/ / D e s t r o y s t h e I n S c h e u d l e i n s t a n c e when t h e t a s k i s
/ / r e m o v e d f r o m a s c h e d u l e ,
a f t e r (D S _ T a s k t a s k) :

t a s k . i n s t a n c e = new I n S c h e d u l e T y p e () ;
t a s k . i n s t a n c e . i n i t l n s t a n c e (

T a s k l n s t a n c e . a s p e c t O f (t a s k) ,
S c h e d u l e I n s t a n c e . a s p e c t O f (t a s k . g e t S c h e d u l e ())) ’,

e x e c u t i o n (v o i d S c h e d u l e . r e m o v e T a s k (T a s k)) &&
a r g s (t a s k) {

t a s k . i n s t a n c e . d e s t r o y I n s t a n c e () ;

Because each task is assigned to a schedule as soon as it is created, the relationship
instance should be created when a DS_Task object is created, although it is necessary
to use ‘declare precedence’ to make sure that the aspect for the ‘Task’ entity executes
before this one. It is generally the case that when two instrumentation aspects have
advice that executes at the same time, advice associated with entities should execute
before advice associated with relationships. This is because the relationship may have
the entity as a role while the entity will not generally be affected by changes to the state
of the relationship.

This aspect does not use a ‘pertarget’ clause, so there is only a single aspect in
stance. The information for each instance is added to the DS_Task class using the
AspectJ inter-type declaration facility which allows additional methods and fields to
be defined for existing classes. This is necessary because the pointcut at which this
relationship is destroyed is defined at a method of the DS_S chedule class rather than
the DS.Task class and so would not match for an aspect which is instantiated for each
DS.Task instance.

The aspect uses an inter-type member declaration, at line 8, to add an instance of
InScheduleType directly to the DS_Task class. At line 23, a new relationship in
stance is created whenever a new DS.Task object is created. This advice creates a new
instance of the InScheduleType class and stores it in the DS.Task object which
has been created. The relationship is destroyed when the advice at line 35 executes,
when the removeTask method is called.

The aspect for the relationship ‘UsableBySchedule’ follows the same pattern as
the aspect for the ‘InSchedule’ relationship.

6.5 Results
6.5.1 Performance
Instrumentation of source code will inevitably affect the performance of the monitored
system. It needs to be determined for each application individually whether the perfor
mance penalty is acceptably small. When monitoring takes place during development,
significant performance penalties can be tolerated. The aim of the monitoring frame
work is that monitoring should take place “on-line”, as part of the normal operation of

6.5. Results 116

Performance comparison for NGDS system
1600

i i t i

no instrumenta- O t^ect-local Object -rem ote D B -loca l D B -rem ote
tion connection connection connection connection

configuration

Figure 6.3: Average execution times for NGDS system in various configurations. From
left to right: execution time without monitoring, monitoring over a local area connec
tion with a Java implementation of the requirements instance model, over a wide area
connection with the Java implementation, over a local area connection with the database
implementation of the requirements instance model, over a wide area connection with
the database implementation.

the system in the deployment environment, so the performance overhead must be much
smaller.

The performance of the NGDS system while being monitored was evaluated by
measuring the time taken for a complete run, in which a single schedule is created
using the same input data each time. This measurement was made for a number of
different configurations. In each configuration, the NGDS system was executed five
times and the average execution time is presented in figure 6.3.

The first result shows the average time taken to execute the NGDS system in the
absence of instrumentation code. This result can be compared with the time taken to
execute the system when it is monitored. The monitor was run on a different machine
than the target system and results were obtained using two different machines to run the
monitor. In the first case, the monitor was run on a machine connected to the one run
ning NGDS over a local area network. This provided a low low latency (less than one
millisecond), high bandwidth, connection.In the second case, the monitor was run on a
machine in a remote location, connected to the machine running NGDS over the Inter
net, with a latency of ten to twenty milliseconds and a bandwidth of around 1 Mbit/s.
The monitoring framework also provides two different architectures for storing the re
quirements instance model, as described in 4.2.2. Both of these architectures were
tested, giving four four possible configurations for which results were obtained, cor
responding to the different combinations of requirements instance model and network
connection.

The results show that the architecture in which the object model instance is repre-

6.5. Results 117

no instrumentation Oms
Object - local connection 0.196ms
Object - remote connection 0.604ms
DB - local connection 6.44ms
DB - remote connection 38.5ms

Table 6.1: The average performance overhead per requirements instance model modi
fication for different monitoring configurations.

sented using Java classes is considerably faster than the model using an SQL database.
The implementation using classes has an overhead of around 3%, relative to the ex
ecution time without instrumentation, for a local connection and around 10% for the
remote connect. In comparison, the overhead for the database implementation is 102%
for a local connection and 513% for a remote connection.

The NGDS system generates a large number of instrumentation messages, mainly
due to the need to update the attributes of the tasks and technicians in the schedule
at the end of each stage in the search. In one execution run of the NGDS system,
40747 modifications are made to the requirements model instance, of which 95% are
modifications to attribute values. Using this information, it is possible to calculate
approximate figures for the performance overhead incurred for each modification to
the requirements instance model (table 6.1).

In this situation, the database implementation of the requirements instance model
clearly has performance problems, particularly when using a slower connection rather
than a high speed, local area connection. The implementation of the requirements
instance model using Java classes does provide sufficiently good performance to be
used in during normal operation of the system.

6.5.2 Instrumentation
The instrumentation of the goals for the NGDS system requires a total of 377 lines of
code. This provides instrumentation for a total of four entities and six relationships.
Of those lines of code, 129 are used to write instrumentation for the four entities and
the other 248 are used to write instrumentation for the five relationships. This gives an
average of 32.25 lines of code for an entity and 41.33 lines for a relationship.

The greatest concern which emerges is that writing the instrumentation aspects is
quite time consuming, despite the fairly modest requirements in terms of actual code.
The most difficult part of the process is writing the pointcuts which determine when
the instrumentation executes. In practice, this requires looking at the source code of the
implementation in addition to the documentation automatically generated by Javadoc.
It might also be possible to work from detailed design documents if these are available.

As can be seen from the example instrumentation aspects presented, the aspects
can become quite complex. For example, the ‘RunningSearchStage’ aspects includes
loops over all tasks and technicians and the ‘Task’ aspect requires calling various meth
ods on the task objects to determine the values of attributes. This sort of complexity
is the reason why the approach of generating the translation aspects from a mapping
between the requirements level and the implementation level is not able to capture all
the mappings which are necessary. The approach works when the design of the imple
mentation system is fairly simple. When a real world system of sufficient complexity
is examined, cases emerge which are not covered by the mapping language.

6.5. Results 118

In this case study, the mapping language was only able to be used for one of the
entities, the ‘Schedule’ entity, and none of the relationships. This was mainly due to
performance problems with the ‘Task’ and ‘Technician’ entities which also affected the
four relationships related to running the search stages. These four relationships oth
erwise map to the implementation so that the relationship is true during the execution
of the method r u n A l g o r i t h m , which is one of the types of mapping supported by
the mapping language. The relationships ‘InSchedule’ and ‘UsableBySchedule’ could
not make use of the mapping language because they do not match the types of map
pings supported by the mapping language as these relationships become true when one
method is executed and false when a different method of a different class is executed.

6.5.3 Soft Goal Specification
The case study demonstrated that the soft goal metrics in this example could be success
fully specified using the soft goal specification language and that instrumentation could
be developed to allow these metrics to be monitored. These specifications made use
of goal instance metrics rather than goal aggregate metrics. The use of goal aggregate
metrics were demonstrated in the Limewire example. These specifications required 81
lines of additional specification in XML for the six different metrics. The specification
of these metrics made use of two additional relationships, two additional entities and
11 additional attributes which would not otherwise have to be monitored. The speci
fication of the soft goal metrics was found to be relatively easy but implementing the
additional instrumentation necessary to monitor the soft goal metrics was more time
consuming.

6.5.4 Utilisation of Monitoring Results
Soft goal displays were defined to demonstrate the display of soft goal metrics and
how these metrics can be used to identify problems. An example scenario was used
in which the number of tasks which need to be assigned by a schedule is gradually
increased from 771 tasks to 851 tasks. The results of this are shown in figure 6.4.
In figure 6.4(a) the number of tasks remains constant and the quality of service also
remains constant. In figure 6.4(b), the number of tasks increases with time, resulting in
a deterioration of quality of service (higher values indicate worse quality of service).

If the user of the monitoring framework decides that the quality of service is too
poor, it might be necessary to investigate the reasons for the problem. In this case, the
problem can be discovered by examining the display on the right side of figure 6.4(b),
which shows the history of the soft goal metric ‘tasksPerTechnician’. This shows that
the average number of tasks assigned to a technician is increasing. As the graph of
soft goals in figure 6.2 shows, the metric ‘tasksPerTechnician’ is related to the soft goal
‘Min[Tasks Per Technician]’, so the satisfaction of this soft goal is getting worse. This
also results in a reduction of the satisfaction of ‘Max(Quality Of Service]’ as the soft
goal ‘Min[Tasks Per Technician]’ is positively associated with the goal.

If the quality of service is considered to be too poor then something must be done
to rectify the situation. As the problem is too few technicians, the most obvious solution
is to increase the number of technicians. In this case, the environment is changed to
ensure that the system continues to function. It is likely that this solution will not be
possible so other solutions might need to be considered. It may be that there exists a
scheduling algorithm which will give better results with limited numbers of technicians
or which will emphasis high priority tasks by cancelling low priority tasks. If this is the

6.6. Summary 119

F I QoS on completion

y-axis

23 0 “

22.0 “

21.0 “

20.0 ~
■— ■— ■— b -QW

-2000 -1500'-1000 -500 b
tim e / s

(a) With a constant number of tasks in the schedule,
the quality of service remains the same.

□ QoS on completion I I Avg Tasks / Technician

y-axis y-axis

23 0 “ 5.0 -

22.0 -
C1»'

4.0 “

3 0 -
21.0 -

2.0 -

20.0 “
1.0 “

-2000 -1500'-1000 -500 b
tim e / s

-2000 -1500 -1000 -500 b
tim e / s

(b) With an increasing number o f tasks, the quality of service declines.

Figure 6.4: Display of the quality of service over time.

case then it is a straightforward modification to the system to select the new algorithm
so that it is used for future scheduling operations. In this case, the system is modified
so that it can continue to satisfy the requirements.

6 . 6 S u m m a r y

In this case study, the capabilities of the monitoring framework were evaluated by im
plementing monitoring for the NGDS system. The case study evaluated the perfor
mance of the monitoring framework, the success of the instrumentation mechanism
and the use of the soft goal specification language.

The performance of the NGDS system was tested using the two implementations
of the requirements instance model which are provided by the framework. The imple
mentation making use of a Java classes to store this information was found to have a
performance overhead of only a few percent. This means that it should be suitable for

6.6. Summary 120

most “on-line” monitoring situations. The database implementation was much slower,
particularly when operating over a wide area network. This would seem to be mainly
due to the large number of modifications to the requirements instance model which oc
cur in this case study, combined with less efficient communication between the target
system and the monitor. It had been anticipated that the number of modifications to
the model would be relatively small but this does not seem to be the case in practice,
at least in this example. A database implementation may still have advantages in some
situations, such as providing greater reliability, but this has not been demonstrated.

It was found to be reasonably easy to instrument the NGDS system using AspectJ
and all the necessary instrumentation could be written in a non-invasive manner, mak
ing use of the framework of support classes. The mapping language was of only limited
use in this example. In part, this may be attributed to the need to optimise the instru
mentation code. In other cases, this is due to the mapping language not supporting
certain types of mapping.

The soft goal specification language was successfully used to formally specify
soft goal metrics for the NGDS system. These metrics made use of quite complex goal
instance metrics. Some additional instrumentation was required to allow these metrics
to be evaluated.

Soft goal displays were defined which were able to show failure to satisfy soft
goals at run time in an example scenario. By using a number of goal instance metrics
associated with different soft goals, it is possible to investigate reasons why a system is
failing to satisfy soft goals.

Chapter 7

Conclusions and Future Work

The aim of the work which has been presented in this thesis is to provide a frame
work for monitoring computer systems at run time to determine whether they satisfy
a KAOS goal-oriented requirements specification. This framework covers both hard
goals, formally defined using temporal logic, and soft goals, for which metrics are for
mally defined which can be used to evaluate the satisfaction of these goals at run time.
The monitoring framework requires the monitored system to be instrumented so that
it emits events at run time to a monitor server. The monitor server uses the events
it receives to determine whether the monitored system has violated hard goals and to
calculate the value of soft goal metrics.

Instrumentation of the monitored system is achieved using AspectJ, an aspect-
oriented extension to the Java programming language, to obtain information about the
execution of the system and to translate that information into events which represent
changes in the requirements level instance model of the running system. The use of
AspectJ for instrumentation allows instrumentation code to be kept separate from the
code of the target system and allows instrumentation of any system programmed in
Java, rather than of particular types of system such as those that use a specific architec
ture or middleware. As AspectJ advice has all the capabilities of the Java language, it is
possible to describe complex translations from implementation level events to changes
in the requirements instance model.

In addition to the approach using AspectJ directly, a mapping language which re
lates a KAOS object model to the implementation of a system can be used to generate
the AspectJ code necessary to instrument a system, as long as the mapping from KAOS
objects to implementation objects is relatively simple. Where the mapping language
does not support a particular type of mapping, the mapping language cannot be used
and the instrumentation developer must fall back on the AspectJ language. Similarly,
the need to optimise instrumentation to minimise the performance overhead in the mon
itored system may prevent the use of the mapping language.

The monitor server detects failure of the monitored system to satisfy goals and cal
culates the value of soft goal metrics at run time, while the monitored system executes.
This is done using the requirements instance model which represents the current state
of the monitored system as a concrete instance of the requirements model, thus link
ing the run-time behaviour of the system back to the requirements specification. The
requirements instance model is modified by instrumentation messages from the mon
itored system and whenever a changes oceurs, goals which reference that part of the
model are checked for failure and soft goal metrics are recalculated. The requirements
instance model of the monitored system is stored either in a database or in memory

7.1. Contributions and Results 122

using Java objects. It is was not initially clear which was the better approach so two
approaches are provided giving the developer flexibility to determine which implemen
tation is most appropriate in a given situation. One of the aims of the evaluation was to
asses the two implementations of the requirements instance model.

Soft goal monitoring requires that metrics are formally defined which are indica
tive of the satisfaction of soft goals. To allow this, a soft goal specification language
has been developed. This language makes use of the KAOS goal and object models,
which are used to defined hard goals, allowing simpler specification and reuse of exist
ing instrumentation code. Soft goal metrics are visually displayed using configurable
gauges so that the users of the monitoring framework can evaluate whether the soft
goals associated with metrics are satisfied.

The suitability of this framework for run-time monitoring of KAOS requirements
specifications has been demonstrated in a substantial case study using a work force
scheduling system. The performance overhead of instrumentation code was evaluated
in different configurations. The capabilities of the mapping language and direct instru
mentation using AspectJ were also investigated.

This final chapter reviews the contributions which have been made by this the
sis, evaluates how well the initial aims of the work have been satisfied and considers
possible future work in this area.

7.1 Contributions and Results
The contribution made by this thesis is the development of a framework for monitoring
a system against a goal-oriented requirements specification at run time which supports
instrumentation of the monitored system to allow monitoring to take place. The frame
work supports monitoring for both hard and soft goals and provides graphical feedback
so that satisfaction of soft goals can be determined by users of the framework. The
remainder of this section offers some conclusions relating to the main features of the
monitoring framework and compares these results with related work on monitoring.

7.1.1 Instrumentation
Instrumentation of the target system is a crucial part of run-time monitoring. The re
sults of monitoring are only as good as the information which the instrumentation code
provides to the monitor.

The monitoring framework described in this thesis uses AspectJ to implement in
strumentation. The framework includes code to allow instrumentation to communicate
with the monitor, hiding the details of this communication from the instrumentation
developer. Helper code is automatically generated which allows the instrumentation
developer to translate implementation level events to requirements level events by call
ing methods in the generated classes which correspond to changes in the requirements
instance model. The developer does not need to worry about how the requirements
instance model is represented in the monitor. The interface provided by the generated
helper code ensures that the messages generated by the instrumentation code are valid
changes to the requirements instance model which helps to ensure that the instrumen
tation code is correct. These helper classes also help to structure the instrumentation
code with one aspect for each relationship or entity type.

A mapping language was also created which allows the instrumentation developer
to express the relationship between the requirements and implementation levels. The
mapping language an XML application as a concrete syntax and makes use of XPaths

7.1. Contributions and Results 123

to identify elements of the implementation. This mapping is used to automatically
generate AspecU instrumentation code.

These two approaches complement each other. The mapping approach allows a
concise and explicit expression of the mapping between the requirements and imple
mentation levels but is not able to express more complex mappings. The AspecU ap
proach provides complete freedom to express these mappings using all the capabilities
of the Java programming language and AspecU but at the expense of some clarity.

The two instrumentation approaches are demonstrated in the case study presented
in chapter 6. In this case study, the mapping language was found to be of only limited
usefulness. Most of the instrumentation was written directly in AspecU, allowing more
complex mappings to be specified and for the instrumentation code to be optimised so
that the generated messages are minimised. In the Limewire example, it was possible
to make much more use of the mapping language, in part because the performance
demands were less significant as far fewer instrumentation messages were generated.

The performance overhead of the instrumentation code depends on both the effi
ciency of the instrumentation code and the speed of communication with the monitor
but generally the communication speed will be the dominant factor. The speed of com
munication with the monitor depends on both the speed of the network connection and
the implementation of the requirements instance model which is used. The database
implementation of the requirements instance model was found to result in a consider
ably larger communication overhead due to the less efficient communication protocol.

7.1.2 Architecture
A general architecture for monitoring was developed, consisting of an instrumented
system, a requirements instance model and monitors. The core of the architecture is the
requirements instance model which stores an instantiation of the requirements model
which corresponds to the state of the monitored system. The instrumentation code
generates messages which inform the requirements instance model of changes which
it should make to the model so that the model will reflect changes in the monitored
system. Monitors use the requirements instance model to detect failures of hard goals
and to evaluate soft goal metrics. The monitoring system provides two alternate imple
mentations of the requirements instance model, one implemented using a database and
the other using Java classes.

The database implementation represents KAOS relationships, entities and at
tributes as tables. The instrumentation code communicates directly with the database to
update the model to reflect the state of the system. The monitor periodically checks the
database to discover changes which have occurred in the model. This implementation
is made more complex because the monitor is not informed of changes to the model as
soon as they occur. It is therefore necessary to store each change which has occurred
since the last time the database checked the model. So for example, when a relationship
is destroyed, it is initially only marked as deleted and is not removed from the model
until the monitor checks the database.

The other implementation of the requirements instance model uses Java classes
which represent instances of KAOS relationships and entities. This approach allows
the monitor to be immediately informed whenever the model changes. This implemen
tation takes into account problems which might occur due to delays in communicating
instrumentation messages in a distributed system, as discussed in section 4.1.4. This
implementation attempts to sort messages into the correct order and ensure that they

7.1. Contributions and Results 124

are processed in that order although this still requires that the clocks of any distributed
components are synchronised with a sufficiently high degree of accuracy.

These two implementations were evaluated using the case study. The database
implementation was found to impose a significantly higher performance overhead on
the monitored system than the implementation using Java classes. This appeared to
be due to the less efficient communication between the monitor server and the target
system when using the database implementation. However, the case study involved
large number of changes to the requirements instance model over a short period of
time. Other applications may involve far fewer changes, making the database imple
mentation a viable option. The database implementation may have other benefits such
as greater reliability but these have not been assessed. Currently, the most important
benefit of the database implementation is that goal instance metrics are only supported
on this implementation, although this is not an inherent limitation of the Java object
implementation.

7.1.3 Monitoring Soft Goals
One of the objectives of the monitoring framework is to use monitoring to help evaluate
whether soft goals are satisfied by a system. This was done by formally defining metrics
which are indicative of the satisfaction of soft goals. By presenting the values of these
metrics to the users of the monitoring system, they can decide whether the system has
failed to satisfy the soft goals associated with the metrics. This allows users to make
complex decisions about soft goals, using information which is not available to the
monitoring system.

A language was developed for specifying soft goal metrics which is built on top of
the KAOS goal-oriented requirements engineering language. This language allows the
definition of two types of metric. Goal instance metrics are associated with a particular
instance of a hard goal and are defined using the KAOS object model of the monitored
system. Goal aggregate metrics are associated with a set of hard goal instances and are
defined using the KAOS goal model and goal instance metrics which are defined for
those goals. By combining these two type of specification, it is made easy to define
complex metrics.

This approach was successfully used to specify soft goal metrics in the case study
using the NGDS system. The case study established that the language for specifying
soft goal metrics was able to formally specify the necessary soft goals and that this
specification was reasonably clear and concise. The amount of code needed to instru
ment the system so that the soft goal metrics could be monitored was also found to be
reasonable.

7.1.4 Display of Monitoring Results
The monitoring framework includes graphical displays which show the results of mon
itoring at run time. Hard goal failures are displayed using a goal tree which shows
details about individual failures. The displays for soft goal metrics are configured by
the developer. A number of default gauges are provided which can be customised as
necessary or the developer can use the interface provided to write new gauges.

The framework provides a lot of flexibility in display of results in part because it
is still not clear what type of feedback is useful to users and developers of a system in
terms of run-time monitoring. The displays should, where possible, assist the develop
ers in modifying the system so that failures will not occur in future. The final stage of

7.1. Contributions and Results 125

communicating monitoring information back to the developer is a difficult one and the
problem requires further work.

7.1.5 Comparison with Related Work
The monitoring framework described in this thesis uses the KAOS goal-oriented re
quirements engineering approach which provides formal specification of goals in
temporal logic. The use of a requirements engineering approach which incorpo
rates formal specification is an advantage of this work. Other related work such as
[Sankar 93, Chodrow 91, Kim 01, Havelund 01, Gates 01] do not integrate so well with
an existing requirements engineering approach. A possible disadvantage of the ap
proach in this thesis is that formal specifications chosen specifically for monitoring
may be easier to use than KAOS, which is designed for specifying and analysing re
quirements, but it is advantageous to be able to use the same requirements specifications
for both requirements analysis and monitoring.

An area of particular focus in this work has been to support instrumentation. This
issue was not covered in any detail in [Fickas 95, Feather 98], which also use KAOS
to specify requirements to be monitored. Support for instrumentation is not necessary
in all cases, such as where monitoring is implemented using an object-oriented op
erating system[Dasgupta 86, Snodgrass 88], law-governed architecture [Minsky 96] or
for monitoring web services [Robinson 03, Mahbub 04, Lazovik04]. There is, how
ever, value in a general approach to instrumentation which is not tied to a particular
architecture, which is provided by the work in this thesis.

Some other approaches do support instrumentation to some extent. Work such
as[Chodrow 91, Chen 03, Sankar 93] use source code annotations. This results in in
strumentation code which is tangled with system code. Other approaches use source
code modification[Liao 92] or byte code modification[Havelund 01] to separate instru
mentation code from system code. None of these approaches are coupled to a compre
hensive approach to requirements engineering, such as KAOS, as in this thesis. These
approaches also lack the expressive power of AspectJ as an instrumentation mecha
nism.

The most interesting other piece of work on instrumentation for monitoring is
the Java-MaC system[Kim 01]. In Java-MaC, a formal requirements specification is
related to the implementation level through an intermediate language which defines
conditions and events which depend on the state of the execution of the monitored
system. This intermediate language allows the formal requirements specification to
remain independent of the implementation details. The intermediate language is also
used to automatically generate instrumentation by byte code modification. The work in
this thesis uses a similar idea in using AspectJ as an intermediate language to translate
implementation events to requirements level events. The relative disadvantages of Java-
MaC are that the intermediate language is limited in its expressiveness and that the
requirements specification is also fairly limited in scope.

In comparison with other work in this area, a weakness of the approach in this
thesis may be the comparative complexity of the instrumentation process and the in
strumentation code itself. This also makes it harder to ensure that instrumentation code
is itself correct. In part this is because our requirements specification is richer and more
complex than other approaches. In addition, keeping the instrumentation code separate
from system code increases the complexity of the instrumentation code, as it is nec
essary to identify where in the system instrumentation code should be executed. This

7.2. Critical Evaluation 126

extra complexity is necessary to support the separation of system and instrumentation
code and to support the rich KAOS requirements specification.

Another important contribution made by this work is in monitoring of soft goals
and in specifying metrics to allow monitoring of soft goals. This is a topic that has
received relatively little attention. The work in this thesis builds on ideas from two
sources. In [Robinson 03], aggregate monitors are included which detect situations
such as repeated failures of a goal. In [Letier 04], the KAOS methodology is extended
to more precisely specify soft goals. This is done not for monitoring but to improve
analysis of soft goals at the requirements stage. Quality variables are defined, using
natural language, and combined using objective functions which indicate quantities to
be maximised or minimised. The work on monitoring soft goals in this thesis com
bines these two ideas so that aggregate metrics can be written which use goal instance
metrics. The idea of quality variables is formalised, resulting in goal instance metrics
which are defined using the KAOS object model.

In this thesis, the problem of displaying the results of monitoring to users of the
monitoring framework was discussed. This is something which has had little attention.
One place where this problem is discussed is in the ReqMon system[Robinson 03],
where the idea of using visual gauges to display monitor output to human users is
suggested. In this thesis, display of monitoring results for soft goals is handled using
user defined gauges which can display soft goal metrics in a variety of ways. A few
pre-defined gauges were developed and users can code additional gauges in Java. This
leaves the user to determine how best to display results. What types of gauges are most
useful remains an open question in this area which has not been solved by this thesis
and is a possible direction for future work.

7.2 Critical Evaluation
The aims of the monitoring framework have generally been satisfied in that the features
described previously have been successfully implemented and the system performs rea
sonably well. There are two areas of concern which may limit the effectiveness of the
monitoring framework which are described here.

7.2.1 Correctness of Instrumentation
One problem with the approach described in this thesis is that it is difficult to guarantee
correctness of the results which are produced by the monitoring system. The source of
this problem is the actual instrumentation code. The output produced by the monitor
server will only be as good as the information it is provided by the instrumentation
code. If the mapping from requirements to implementation, whether explicit in the
mapping language or implicit in AspectJ instrumentation code, is incorrect then the
results produced by the monitor server may also be incorrect.

In practice, this process of mapping from requirements to implementation was
found to be by far the hardest task in monitoring a system. It was also necessary to
experiment to a degree before the correct mapping was found. This is likely to leave the
developer with reduced confidence in the results produced by the monitor server as the
possibility for errors is clear. Good documentation of the software engineering process,
including requirements, architecture and design were found to be extremely helpful in
instrumenting both the Limewire and the NGDS systems. Good tools were also helpful
in developing instrumentation code, such as the ability of some software development
environments to find all uses of a particular method. Perhaps tools specifically designed

7.2. Critical Evaluation 127

to assist in the development of instrumentation code would give greater confidence in
the correctness of instrumentation code as well as speeding up development.

Instrumentation can be incorrect due to it providing incorrect information or be
cause instrumentation does not exist for some event where it should exist. The first
problem might be dealt with by testing instrumentation code, in a similar way to unit
tests. This would be done by executing the part of the target system where an in
strumentation message should be generated and checking that the generated message
matches the expected message. Some additional support from the monitoring frame
work would most likely be useful in implementing this. A particular problem is gener
ating a valid execution of a particular part of the target system so that instrumentation
can be checked. This would likely be much easier if unit tests already exist as the
instrumentation test code could make use of these.

The problem of missing instrumentation is a challenging one. It is very difficult
to prove that the existing instrumentation is complete. Testing is a possibility here al
though it would be necessary to work with more complex tests than unit tests. It might
be possible to write a test for which some sequence of instrumentation messages is
expected and compare this with the instrumentation messages which are actually gen
erated. Missing instrumentation messages from the sequence could then be detected.

Another problem with instrumentation code is the danger that it may functionally
alter the behaviour of the monitored system. The most serious case where this could
occur is if instrumentation code calls methods which have side effects beyond returning
a value, such as changing the state of an object or causing output operations to take
place. It may be possible to perform some analysis of the instrumentation code which
would help detect whether methods with side effects have been called or to detect such
problems at run time during testing.

7.2.2 Scalability
No analysis of the scalability properties of the monitor server has been performed. As
the monitoring framework uses a centralised server to gather information and evaluate
satisfaction of requirements, scalability will probably be a concern if large distributed
systems are monitored. This is not a problem which will exist for all systems which
it might be desirable to monitor so the monitoring framework is still useful without a
solution to this problem. In the NGDS case study, scalability is not a problem as only
a single machine is monitored. Monitoring a Gnutella network, as in the Limewire
example, makes scalability an issue. If a full scale Gnutella network were monitored,
rather than a network of a few clients, then scalability would likely become a major
issue.

One approach to solving the scalability problem might be to have a separate mon
itor server for each agent in the system which monitors the goals for which that agent
is responsible. This does create greater complexity in instrumenting the system as it
becomes necessary to determine which monitor server to send each message to. It
may also be necessary to send some messages to multiple servers. It might be possible
to reduce communication overhead by using existing communications to piggy-back
information, as in [Sen 04].

7.2.3 Usefulness of Monitoring
The aim of this work is that developers of a system should be able to use the monitoring
system to detect failures in the system caused by changes in the environment. This

7.2. Critical Evaluation 128

alerts the developers of the need to modify the system so that it can continue to satisfy
its requirements. The information provided by the monitoring system should assist
developers in doing this.

The case study has shown that requirements monitoring can detect failures due to
changes in the environment and that it is possible to use additional metrics, along with
knowledge of the soft goal model, to determine the cause of these failures.

Once the cause of a failure is known, it becomes possible to consider possible
ways of rectifying the problem. To prevent failures from occurring, the system can be
modified so that it will satisfy requirements in the new environment or the environment
can be modified so that it again conforms to the assumptions made by the system. In
general, the best solution is likely to be to change the system as computer systems are
normally easier to modify than the environment in which they operate.

It is left to the developers or administrators of the monitored system to determine
what changes are necessary and how to implement them using their existing knowledge
of the system and the problem domain. Knowledge of exactly what the failures are and
why they have occurred should make this process easier.

It is certainly useful to alert developers or administrators of the failure of a sys
tem to satisfy requirements as it may not be obvious that such a failure has occurred.
In particular, monitoring soft goals provides information which may not otherwise be
easily available as it can tie together disparate information from different parts of the
system. For example, individual users of a system may experience occasional perfor
mance problems with certain tasks but only by collating results from many users can
it be determined which tasks have consistent performance problems which need to be
addressed.

Making changes to a system to prevent failure due to changes in the environment
requires a large amount of knowledge. Much of this knowledge is specific to the prob
lem domain. It may not be explicitly represented in any of the design artifacts but may
be general knowledge about the problem domain which should be known to developers
and administrators of the monitored system.

Modifying a system at the implementation level is also likely to require informa
tion at a lower level than the requirements level information provided by the monitoring
framework. Nonetheless, requirements level information is not useless in this context.
Perhaps using requirements monitoring to discover when changes are necessary and
then relating those requirements to architecture and design would help in this situation.
Such links are already created to some extent between requirements and implementa
tion as part of the instrumentation process so perhaps this information could be used in
presenting the results of monitoring to the user of the monitoring framework.

This thesis has provided a demonstration of the feasibility of run-time require
ments monitoring as a strategy for detecting failure of a system to satisfy requirements
due to changes in the environment in which the system operates. There is still some
way to go in demonstrating that requirements monitoring provides concrete benefits in
the real world which justify the costs of implementation.

Demonstrating the usefulness of monitoring in the real world is a difficult prob
lem. Doing so would involve implementing monitoring for a real system in its oper
ating environment and using monitoring to detect failures which occur. Depending on
the system being monitored, it could take a significant time before failures emerged, es
pecially failures due to changes in the environment. Having detected failures, it would

7.3. Open Questions and Future Work 129

then be necessary to take action to rectify them, making use of the information provided
by monitoring where possible. Finally, it would be necessary to compare to benefits as
sociated with monitoring to the costs, such as performance overhead and work involved
in implementation, to determine in it is of overall benefit. Ideally, this process should
be repeated for a number of different systems.

Realistically, before such a complex study is possible, further development of run
time requirements monitoring is probably necessary. Further case studies can provide
evidence of usefulness and failures due to changes in the environment can be simulated.
It might then be possible to examine how a system could be changed to prevent failures
occurring again and what information would help developers or administrators carry
out those changes.

7.3 Open Questions and Future Work
7.3.1 Improvements to Monitoring Framework
The monitoring framework could be extended in various ways to provide more func
tionality. An obvious extension would be to allow formalisms other than KAOS to be
used for requirements specification. This would be relatively easy to achieve as long as
an object model can be defined for the formalism. These models may be explicitly de
fined as part of the formal language or implicitly defined, in which case the model must
be explicitly defined before the language can be used within the monitoring framework.

The mapping language was found to provide savings in terms of lines of code
when it was able to be applied but these situations were limited. It is also beneficial
because it makes the relationship between KAOS relationships and entities and the Java
implementation explicit. The language could be further developed to provide additional
types of mappings, hopefully extending its usefulness. It would also be desirable to
include some capability within the language for caching changes to the model and then
communicating them at an appropriate time as this was found to be a useful approach
in the case study.

7.3.2 Architecture Specific Monitoring
The monitoring framework described in this thesis has problems guaranteeing correct
ness of instrumentation. Writing instrumentation code can also be time consuming.
A different approach which overcomes these problems is to provide monitoring for a
limited set of systems which share a common architecture. Instrumentation can then
be defined at the architecture level using architectural knowledge to inform the place
ment of instrumentation at the interface between components in the system. Software
is increasingly being written using middleware to help implement architectures and in
strumentation code could be included in middleware to allow systems built using the
middleware to be monitored without writing additional instrumentation code for each
new system. The downside of this approach is that it only works for systems which are
built using a particular middleware.

An example of this type of approach is monitoring web services. Because web
services are specified at a high level and then implemented at a high level by an execu
tion engine, instrumentation can be built into the execution engine in a way which can
be used to monitor any web service which runs on the execution engine.

Further research in including requirements monitoring capabilities as part of mid
dleware is a possible direction for future work.

7.3. Open Questions and Future Work 130

7.3.3 Utilisation of Monitoring Results
There is still uncertainty as to what the best way to deal with the results of run-time
requirements monitoring. The monitoring results can either be presented to the user, as
in the monitoring framework in this thesis, or they can be used to automatically modify
the target system to rectify problems or prevent them occurring in future.

The user of the monitoring framework may be able to deal with some problems by
manually altering settings in the target system or by otherwise intervening to fix prob
lems. Other problems may require rewriting parts of the system to prevent problems
from occurring in the future. It is an open question how best to communicate monitor
ing results to allow the user to perform these tasks. The graphical gauges which form
part of the monitoring framework are intended to provide this information although the
it largely left to users of the framework to create their own gauges which are most suit
able for a particular task. A possible direction for further work is to try and determine
what sort of information is needed to modify a system and how to provide it through
monitoring.

Using automatic modification of the target system is another possible approach.
Combining this approach with run-time requirements monitoring is potentially very
powerful but the target system has to be sufficiently flexible that it can be automatically
modified to respond to the environment. This flexibility is not necessarily present in
existing systems and it may not be easy to implement.

7.3.4 Mapping Requirements to Implementation
The mapping of requirements to the implementation of those requirements is of great
importance to run-time requirements monitoring. The accuracy of the monitor is de
pendent on the quality of the instrumentation from which it obtains its information.
The quality of the instrumentation is itself dependent on the quality of the requirements
to implementation mapping, whether that mapping is used to automatically generate
implementation or is used by the instrumentation developer to manually build instru
mentation.

The approach taken in this thesis was to allow the instrumentation developer to
retrospectively develop the mapping between requirements and implementation. This
is done manually by the instrumentation developer. The mapping language and helper
classes used when developing directly in AspectJ provide some assistance in formally
defining these mappings.

A possible approach to this problem is to ensure traceability links between require
ments and implementation are maintained during development of the target system.
Traceability is itself a subject of research and the problem is far from solved[Gotel 94].
The quality of traceability from requirements to implementation is therefore likely to
vary from system to system and the presence of such links cannot be assumed.

More extensive work on manually mapping implementation to requirements is a
possible area for future work. An obvious start would be to create a tool to assist in
writing the mapping. A good approach might be to automatically extract a UML / XMI
model of the implementation and present it to the instrumentation developer. The other
necessary input would be the KAOS requirements specification. The tool could then
provide a graphical interface for relating elements of the requirements specification to
the implementation. Further development might involve trying to automatically detect
mapping between requirements and implementation, for example using similarity of
name of elements in requirements and implementation. As such automatic mappings

7.3. Open Questions and Future Work 131

will never be completely reliable, the graphical interface would still be necessary to
check the automatic mappings and correct them as necessary. This leads to the possi
bility of an iterative process where the automatic mapper uses the developers correction
to further improve the quality of the automatic mappings.

An approach to discovering mappings between requirements and implementation
which might be useful is to make use of the relationships in the KAOS object model.
By looking at relationships which exist in the KAOS object model, it should be possible
to look for similar relationships which exist in the implementation. These relationships
are likely to be obscured by implementation details (such as through the use of list and
hash table objects in Java to model one to many relationships) but it might still be possi
ble to match patterns of relationships in the KAOS object model to the implementation
code.

Appendix A

Lime wire Formal Specifications

Achieve[Search For File]
V cl:Client, c2:Client, q:Query, f:File, fd:FileDescriptor
QueryRequested(q, c l) A InCommunicationRange(c 1, c2) A Sharing-
File(c2, f) A
MatchesFile(q, f) =>• 0 DisplayingResult(cl, fd) A ReferencesFile(f, fd)

Achievef Communicate Query]
V cl:Client, c2:Client, q:Query
QueryRequested(q, c l) A InCommunicationRange(cl, c2) => 0 Received-
Query(c2, c l, q)

A chi eve[Broadcast Query]
V cl :Client, c2:Client, q:Query
QueryRequested(q, c l) A Connected(cl, c2) => 0 SentQuery(cl, c2, q)

Achieve[Transmit Query]
V cl iClient, c2:Client, qiQuery
SentQuery(cl, c2, q) => 0 ReceivedQuery(c2, c l, q)

Achieve[Forward Query]
V cl:Client, c2:Client, c3:Client, qiQuery
ReceivedQuery(cl, c2, q) A Conencted(cl, c3) A c l^ c 2 A
-i HopsLimitReached(q, c l) => 0 SentQuery(cl, c3, q)

AchievefCommunicate Query Reply]
V cl:Client, c2:Client, c3:Client, c4:Client, q:Query, fd:FileDescriptor,
f:File
QueryRequested(q, c l) A ReceivedQuery(c2, c3, q) A
SharingFile(c2, f) A MatchesFile(q, f) =>
0 ReceivedQueryReply(c 1, c4, fd) A ReferencesFile(f, fd)

Achieve[Respond To Query]
V cl:Client, c2:Client, qiQuery, fd:FileDescriptor, f:File
ReceivedQuery(cl, c2, q) A SharingFile(cl, f) A MatchesFile(q, f) =>
0 SentQueryReply(cl, c2, fd) A ReferencesFile(f, fd)

Achieve[Tranmit Query Reply]
V cl:Client, c2:Client, fd:FileDescriptor
SentQueryReply(cl, c2, fd) =>• 0 ReceivedQueryReply(c2, c l, fd)

Achieve[Forward Query Reply]
V cl:Client, c2:Client, c3:Client, q:Query, fd:FileDescriptor
ReceivedQueryReply(c 1, c2, fd) A ReceivedQuery(c 1, c3, q) A Respon-
seTo(fd, q) =>
0 SentQueryReply(c 1, c3, fd)

Achieve[Send Query Reply]
V cl:Client, c2:Client, c3:Client, q:Query, fd:FileDescriptor
ReceivedQueryReply(cl, c2, fd) A ReceivedQuery(c 1, c3, q) A
Connected(cl, c3) A ResponseTo(fd, q) => 0 SentQueryReply(c 1, c3, fd)

Maintain[Query Source Connection]
V cliClient, c2:Client, c3:Client, q:Query, fd:FileDescriptor
ReceivedQueryReply(c 1, c2, fd) A ReceivedQuery(c 1, c3, q) A
ResponseTo(fd, q) => 0 Connected(c 1, c3)

Achieve[Display Search Result]
V cl :Client, c2:Client, fd:FileDescriptor
ReceviedQueryReply(cl, c2, fd) A QueryRequested(q, c l) =>•
0 DisplayingResult(cl, fd)

Achieve [Download File]
V c:Client, f:File, fd:FileDescriptor
RequestingFile(c, fd) => 0 SavedFile(c, f) A f.name = fd.name

Achieve[Send File Request]
V cl :Client, c2:Client, fd:FileDescriptor
RequestingFile(cl, fd) A FileStoredBy(fd, c2) =>• 0 SentFileRequest(cl,
c2, fd)

Achieve[Transmit File Request]
V cl :Client, c2:Client, fd:FileDescriptor
SentFileRequest(cl, c2, fd) => 0 ReceviedFileRequest(c2, c l, fd)

Achieve[Upload File]
V cliClient, c2:Client, fd:FileDescriptor, f:File
ReceivedFileRequest(cl, c2, fd) => 0 SentFile(cl, c2, f) A f.name =
fd.name

Achieve [Transmit File]
V cl:Client, c2:Client, fd:FileDescriptor, f:File
SentFile(cl, c2, f) =» 0 ReceivedFile(c2, c l, f)

Achieve[Store File]
V cl :Client, c2:Client, f:File
ReceivedFile(cl, c2, f) => 0 SavedFile(cl, f)

Appendix B

Mapping Language DTD

< ! ELEMENT M a p p i n g (R e l a t i o n s h i p | O b j e c t)* >
< ! ATTLIST M a p p i n g name CDATA #REQUIRED>

<!ELEMENT R e l a t i o n s h i p (R o l e | T r a n s i t i o n | S t a t e M a p p i n g) *>
< ! ATTLIST R e l a t i o n s h i p name CDATA #REQUIRED>

<!ELEMENT T r a n s i t i o n (R o l e) *>
< ! ATTLIST T r a n s i t i o n

p o s i t i o n (b e f o r e | a f t e r | a r o u n d) #REQUIRED
l o c a t i o n CDATA # REQUIRED
v a l u e CDATA #IMPLIED>

< ! ELEMENT S t a t e M a p p i n g (S t a t e T r a n s i t i o n) *>
< ! ATTLIST S t a t e M a p p i n g c l a s s CDATA # REQUIRED

a t t r i b u t e CDATA #REQUIRED>

< ! ELEMENT S t a t e (R o l e) *>
< ! ATTLIST S t a t e v a l u e (t r u e | f a l s e) #REQUIRED

v a l u e O b j e c t CDATA #IMPLIED
v a l u e C o n s t CDATA #IMPLIED>

< ! ELEMENT R o l e EMPTY>
< ! ATTLIST R o l e name CDATA #REQUIRED

t y p e CDATA #REQUIRED
c o n t e x t CDATA #IMPLIED
r o l e O b j e c t CDATA #IMPLIED
o b j e c t I D CDATA #IMPLIED>

<!ELEMENT O b j e c t (O b j e c t I D , (A t t r i b u t e) *)>
< ! ATTLIST O b j e c t name CDATA # REQUIRED

o b j e c t E l e m e n t CDATA #REQUIRED>

< ! ELEMENT O b j e c t I D EMPTY>
< ! ATTLIST O b j e c t l d o b j e c t CDATA #REQUIRED>

135

< ! ELEMENT A t t r i b u t e EMPTY>
< ! ATTLIST A t t r i b u t e nam e CDATA #REQUIRED

a t t r i b u t e O b j e c t CDATA #REQUIRED>

Appendix C

Goal Instance Metric Query
Generation

<?xm l v e r s i o n = " 1 . 0 " e n c o d i n g = " U T F - 8 " ?>
< x s l : s t y l e s h e e t

x m l n s : x s l = ” h t t p : / / w w w . w 3 . o r g / 1 9 9 9 / X S L / T r a n s f o r m "
x m l n s : x s = " h t t p : / / www. w 3 . o r g / 2 0 0 1 / X M L S c h e m a "
v e r s i o n = " 2 . 0 " >

< x s l : t e m p l a t e m a t c h = ” / " >
< V a l u e S e t >

< x s l : a p p l y - t e m p l a t e s / >
< / V a l u e S e t >

< / x s l : t e m p l a t e >

< x s l : t e m p l a t e m a t c h = " V a l u e " >
< V a l u e l a b e l = " 0 1 a b e l " t y p e = " @ t y p e "

t r i g g e r = " @ t r i g g e r " g o a l = " a n c e s t o r : : G o a l / @ n a m e " >
< x s l : v a r i a b l e n a m e = " b o u n d - l a b e l s " s e l e c t =

" (. . / (A n t e c e d e n t | C o n s e q u e n t) / / R e l a t i o n s h i p / V a r i a b l e
e x c e p t . / / C o n d i t i o n s / / R e l a t i o n s h i p / V a r i a b l e) / @ l a b e l " / >

< x s l : f o r - e a c h - g r o u p
s e l e c t = " . / / (V a r i a b l e | A t t r i b u t e) [@ l a b e l = $ b o u n d - l a b e l s] "
g r o u p - b y = " . " >
< B o u n d L a b e l > < x s l : v a l u e - o f s e l e c t = " @ l a b e l " / > < / B o u n d L a b e l >

< / x s l : f o r - e a c h - g r o u p >

< x s l : v a r i a b l e n a m e = " a t t r - t y p e " >
< x s l : c h o o s e >

< x s l : w h e n t e s t = " @ t y p e = ' f l o a t ' " > ' f l o a t ' < / x s l : when>
< x s l : w h e n t e s t = ” @ t y p e = ' i n t ' " > ' i n t ' < / x s l : w h e n >
< x s l : w h e n t e s t = " 0 t y p e = ' s t r i n g ' " > ' s t r i n g ' < / x s l : w h e n >
< x s l : when t e s t = " 0 t y p e = ' b o o l e a n ' " > ' b o o l e a n ' < / x s l : when>

< / x s l : c h o o s e >
< / x s l : v a r i a b l e >

< V a lu eQ uer y> SE L E CT

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema

13 7

< x s l : c h o o s e >
< x s l : when t e s t = " . / / F u n c t i o n [@ n a m e = ' a v g '] " >

A V G (v a l u e)
< / x s l : when>
< x s l : when t e s t = " . / / F u n c t i o n [@ n a m e = ' s t d '] " >

S T D (v a l u e)
< / x s l : when>
< x s l : when t e s t = " . / / F u n c t i o n [@ n a m e = ' m a x '] " >

M AX(val ue)
< / x s l : when>
< x s l : when t e s t = ” . / / F u n c t i o n [0 n a m e = ' m i n '] " >

M I N (v a l u e)
< / x s l : when>
< x s l : when t e s t = " . / / F u n c t i o n [@ n a m e = ' s u m '] " >

SU M (v a lue)
< / x s l : when>
< x s l : o t h e r w i s e > v a l u e < / x s l : o t h e r w i s e >

< / x s l : c h o o s e >
AS v a l FROM a t t r i b u t e , e n t i t y

WHERE n a m e = ' < x s l : v a l u e - o f
s e l e c t = " . / / A t t r i b u t e / @ a t t r i b u t e " / > '

AND n e w ! = ' TRUE'
AND e n t i t y . i d = a t t r i b u t e . e n t i t y _ i d AND e n t i t y . t y p e =
' < x s l : v a l u e - o f s e l e c t = " . / / A t t r i b u t e / @ t y p e " / > '

< x s l : v a r i a b l e n a m e = " a t t r i b u t e - l a b e l "
s e l e c t = " . / / A t t r i b u t e / 0 1 a b e l " / >

< x s l : f o r - e a c h s e l e c t = " . / / C o n d i t i o n s / / R e l a t i o n s h i p " >
AND e n t i t y _ i d IN

(SELECT e n t i t y _ i d FROM r o l e _ e n t i t y , r e l a t i o n s h i p
WHERE r e l a t i o n s h i p . t y p e =
' < x s l : v a l u e - o f s e l e c t = " @name11 / > '
AND r e l a t i o n s h i p . i d = r o l e _ e n t i t y . r e l a t i o n s h i p _ i d
AND r o l e = ' < x s l : v a l u e - o f s e l e c t =

" . / V a r i a b l e [@ l a b e l = $ a t t r i b u t e - l a b e l] / @ r o l e " / > '

< x s l : f o r - e a c h
s e l e c t = " . / V a r i a b l e [@ l a b e l = $ b o u n d - l a b e l s] ">

AND r e l a t i o n s h i p . i d IN
(SELECT r e l a t i o n s h i p _ i d FROM r o l e _ e n t i t y

WHERE r o l e = ' < x s 1 : v a l u e - o f s e l e c t = " @ r o l e " / > '
AND e n t i t y _ i d = ?)

< / x s l : f o r - e a c h >
)

< / x s l : f o r - e a c h >
< x s l : f o r - e a c h s e l e c t = " . / / C o n d i t i o n s / / E q u a l s ">

AND e n t i t y _ i d IN (SELECT e n t i t y _ i d FROM a t t r i b u t e WHERE

138

n a m e = ' < x s l : v a l u e - o f s e l e c t = " . / A t t r i b u t e / @ a t t r i b u t e " / > '
AND v a l u e = ' < x s l : v a l u e - o f s e l e c t = " . / S t r i n g / t e x t () " / > ')

< / x s l : f o r - e a c h >
< / V a l u e Q u e r y >
< / V a l u e >

< / x s l : t e m p l a t e >
< / x s l : s t y l e s h e e t >

Bibliography

[Andrews 98]

[Baker 02]

[Bates 83]

[Bennett 00]

[Capra 03]

[Castro 02]

[Chen 03]

[Chodrow 91]

[Dardenne 93]

James H. Andrews. Testing Using Log File Analysis: Tools,
Methods, and Issues. In the 13th IEEE International Con
ference on Automated Software Engineering, pages 157-166,
1998.

Jason Baker & Wilson Hsieh. Runtime Aspect Weaving
Through Metaprogramming. In the 1st International Confer
ence on Aspect-Oriented Software Development, pages 86-95.
ACM Press, 2002.

Peter Bates & Jack C. Wileden. An Approach to High-Level
Debugging o f Distributed Systems. SIGSOFT Software Engi
neering Notes, vol. 8, no. 4, pages 107-111, 1983.

Keith Bennett & Vaclav Rajlich. Software Maintenance and
Evolution: A Roadmap. In Anthony Finkelstein, editor, The
Future of Softrware Engineering, pages 73-87. ACM Press,
2000.

Licia Capra, Wolfgang Emmerich & Cecilia Mascolo.
CARISMA: Context-Aware Reflective Middleware System for
Mobile Applications. IEEE Transactions on Software Engi
neering, vol. 29, no. 10, pages 929-945, 2003.

Jaelson Castro, Manuel Kolp & John Mylopoulos. Towards
Requirements-Driven Information Systems Engineering: The
Tropos Project. Information Systems, vol. 27, no. 6, pages
365-389, 2002.

Feng Chen & Grigore Rosu. Towards Monitoring-Oriented
Programming: A Paradigm Combining Specification and Im
plementation. Electronic Notes in Theoretical Computer Sci
ence, vol. 89, no. 2, 2003.

Sarah Chodrow, Farnam Jahanian & Marc Donner. Run-Time
Monitoring o f Real-Time Systems. In the IEEE Real-Time Sys
tems Symposium, pages 74-83, 1991.

Anne Dardenne, Axel van Lamsweerde & Stephen Fickas.
Goal-Directed Requirements Acquisition. Science of Computer
Programming, vol. 20, no. 1-2, pages 3-50, 1993.

Bibliography 140

[Dasgupta 86]

[Drusinsky 00]

[Feather 98]

[Fickas 95]

[Finkelstein 00]

[Gates 01]

[Gotel 94]

[Havelund 01]

[Jackson 95]

[Kaelbling 90]

[Kiczales 97]

Partha Dasgupta. A Probe-Based Monitoring Scheme fo r an
Object-Oriented Distributed Operating System. In the Interna
tional Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 57-66. ACM Press, 1986.

Doron Drusinsky. The Temporal Rover and the ATG Rover. In
the 7th International SPIN Workshop on SPIN Model Checking
and Software Verification, pages 323-330, 2000.

Martin S. Feather, Stephen Fickas, Axel van Lamsweerde &
C. Ponsard. Reconciling System Requirements and Runtime
Behavior. In the 9th International Workshop on Software Spec
ification and Design, pages 50-59, 1998.

Stephen Fickas & Martin S. Feather. Requirements monitoring
in dynamic environments. In the 2nd IEEE International Sym
posium on Requirements Engineering, pages 140-147, 1995.

Anthony Finkelstein & Jeff Kramer. Software Engineering: A
Raodmap. In Anthony Finkelstein, editor, The Future of S o ft
ware Engineering, pages 3-22. ACM Press, 2000.

Ann Q. Gates, Steve Roach, Oscar Mondragon & Nelly Del
gado. DynaMICs: Comprehensive Support fo r Run-Time Mon
itoring. In Klaus Havelund & Grigore Rosu, editors, Electronic
Notes in Theoretical Computer Science, volume 55. Elsevier
Science Publishers, 2001.

Orlena Gotel & Anthony Finkelstein. An analysis o f the re
quirements traceability problem. In the 1 st International Con
ference on Requirements Engineering, pages 94-101, 1994.

Klaus Havelund & Grigore Rosu. Monitoring Java Programs
with Java PathExplorer. Electronic Notes in Theoretical Com
puter Science, vol. 55, no. 2, 2001.

Michael Jackson. The World and the Machine. In the Inter
national Conference on Software Engineering, pages 283-292,
1995.

Michael J. Kaelbling & David M. Ogle. Minimizing monitoring
costs: choosing between tracing and sampling. In the Hawaii
International Conference on System Sciences, volume 1, pages
314-320. IEEE Press, 1990.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier & John Irwin.
Aspect-Oriented Programming. In Mehmet Ak§it & Satoshi
Matsuoka, editors, the 11 th European Conference on Object-
Oriented Programming, volume 1241, pages 220-242, New
York, NY, 1997. Springer-Verlag.

Bibliography 141

[Kiczales 01]

[Kim 01]

[Kunz 97]

[Lamport 78]

[Lazovik 04]

[Letier 01]

[Letier 04]

[Letier 05]

[Liao 92]

[Ludwig 04]

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm & William G. Griswold. An Overview o f AspectJ.
Lecture Notes in Computer Science, vol. 2072, pages 327-355,
2001 .

Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky &
Mahesh Viswanathan. Java-MaC: a Run-time Assurance Tool
fo r Java Programs. In Klaus Havelund & Grigore Rosu, ed
itors, Electronic Notes in Theoretical Computer Science, vol
ume 55. Elsevier Science Publishers, 2001.

T. Kunz, J. P. Black, D. J. Taylor & T. Basten. Poet: Target-
System Independent Visualizations o f Complex Distributed-
Application Executions. The Computer Journal, vol. 40, no. 8,
pages 499-512, 1997.

Leslie Lamport. Time, clocks, and the ordering o f events in
a distributed system. CACM, vol. 21, no. 7, pages 558-565,
1978.

Alexander Lazovik, Marco Aiello & Mike Papazoglou. Associ
ating assertions with business processes and monitoring their
execution. In the International Conference on Service Oriented
Computing, pages 94-104. ACM Press, 2004.

Emmanuel Letier. Reasoning about Agents in Goal-Oriented
Requirements Engineering. PhD thesis, Universite catholique
de Louvain, 2001.

Emmanuel Letier & Axel van Lamsweerde. Reasoning about
partial goal satisfaction fo r requirements and design engineer
ing. In ACM SIGSOFT Foundations of Softawre Engineering
12,pages 53-62, 2004.

Emmanuel Letier, Jeff Kramer, Jeff Magee & Sebastian Uchi
tel. Fluent temporal logic fo r discrete-time event-based models.
In ESEC/FSE-13: Proceedings of the 10th European software
engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineer
ing, pages 70-79. ACM Press, 2005.

Yingsha Liao & Donald Cohen. A specificational approach to
high level program monitoring and measuring. IEEE Transac
tions on Software Engineering, vol. 18, no. 11, pages 969-978,
1992.

Heiko Ludwig, Asit Dan & Robert Kearney. Cremona: an
architecture and library fo r creation and monitoring o f WS-
agreents. In the International Conference on Service Oriented
Computing, pages 65-74. ACM Press, 2004.

Bibliography 142

[Mahbub 04]

[Mansouri-Samani 97]

[Mills 91]

[Minsky 96]

[Mylopoulos 92]

[Mylopoulos 99]

[Pawlak 01]

[Peters 02]

[Popovici 03]

[Qiao 99]

[Robinson 03]

Khaled Mahbub & George Spanoudakis. A framework fo r re-
quirents monitoring o f service based systems. In the Interna
tional Conference on Service Oriented Computing, pages 84-
93. ACM Press, 2004.

Masoud Mansouri-Samani & Morris Sloman. GEM: a gener
alized event monitoring language fo r distributed systems. Dis
tributed Systems Engineering, vol. 4, no. 2, pages 96-108,
1997.

David L. Mills. Internet time synchronization: the network
time protocol. IEEE Transactions on Communications, vol. 39,
no. 10, pages 1482-1493, 1991.

Naftaly H. Minsky. Independent on-line monitoring o f evolv
ing systems. In the 18th International Conference on Software
Engineering, pages 134-143. IEEE Press, 1996.

John Mylopoulos, Lawrence Chung & Brian A. Nixon. Rep
resenting and Using Nonfunctional Requirements: A Process-
Oriented Approach. Software Engineering, vol. 18, no. 6,
pages 483-497, 1992.

John Mylopoulos, Lawrence Chung & Eric Yu. From object-
oriented to goal-oriented requirements analysis. Communica
tions of the ACM, vol. 42, no. 1, pages 31-37, 1999.

Renaud Pawlak, Lionel Seinturier, Laurence Duchien & G6rard
Florin. JAC: A Flexible Solution fo r Aspect-Oriented Program
ming in Java. In Lecture Notes in Computer Science, Metalevel
Architectures and Separation of Crosscutting Concerns : Third
International Conference, REFLECTION 2001, volume 2192,
pages 1-24. Springer-Verlag Heidelberg, 2001.

Dennis K. Peters & David Lorge Pamas. Requirements-based
monitors fo r real-time systems. IEEE Transactions on Software
Engineering, vol. 28, no. 2, pages 146-158, 2002.

Andrei Popovici, Gustavo Alonso & Thomas Gross. Just-in-
time aspects: efficient dynamic weaving fo r Java. In the 2nd
International Conference on Aspect-Oriented Software Devel
opment, pages 100-109. ACM Press, 2003.

Sanzheng Qiao & Haitong Zhang. An Automatic Logfile An
alyzer fo r Parallel Programs. In the International Conference
on Parallel and Distributed Processing Techniques and Appli
cations, pages 1371-1376,1999.

William N. Robinson. Monitoring Web Service Requirements.
In the 11th IEEE International Requirements Engineeging
Conference, pages 65-74, 2003.

Bibliography 143

[Rosenblum 95]

[Sankar 93]

[Schroeder 95]

[Sen 04]

[Skene 04a]

[Skene 04b]

[Snodgrass 88]

[Tarr 99]

[van Lamsweerde 01]

[W3C 05]

[Yu 97]

David S. Rosenblum. A practical approach to programming
with assertions. IEEE Transactions on Software Engineering,
vol. 21, no. 1, pages 19-31, 1995.

Sriram Sankar & Manas Mandal. Concurrent runtime monitor
ing o f formally specified programs. IEEE Computer, vol. 26,
no. 3, pages 32-41,1993.

Beth A. Schroeder. On-line monitoring: a tutorial. IEEE Com
puter, vol. 28, no. 6, pages 72-78, 1995.

Koushik Sen, Abhay Vardhan, Gul Agha & Grigore Rosu. Ef
ficient Decentralized Monitoring o f Safety in Distributed Sys
tems. In the International Conference on Software Engineering,
pages 418^427. IEEE Computer Society, 2004.

James Skene & Wolfgang Emmerich. Generating a Contract
Checker fo r an SLA Language. In EDOC Workshop on Con
tract Architectures and Languages. IEEE, 2004.

James Skene, D.Davide Lamanna & Wolfgang Emmerich. Pre
cise ServiceLevel Agreements. In the International Conference
on Software Engineering, pages 179-188, 2004.

Richard Snodgrass. A relational approach to monitoring com
plex systems. ACM Transactions on Computer Systems, vol. 6,
no. 2, pages 157-195, 1988.

Peri L. Tarr, Harold Ossher, William H. Harrison & Stanley
M. Sutton Jr. N Degrees o f Separation: Multi-Dimensional
Separation o f Concerns. In the International Conference on
Software Engineering, pages 107-119, 1999.

Axel van Lamsweerde. Goal-Oriented Requirements Engi
neering: A Guided Tour. In the 5th IEEE International Sympo
sium on Requirements Engineering, pages 249-262, 2001.

W3C. XSL Transformations (XSLT) Version 2.0. h t t p : / /
www . w3 . o r g / T R / x s l t 2 0 / , 2005.

Eric Yu. Towards Modelling and Reasoning Support fo r Early-
Phase Requirements Engineering. In the 3rd IEEE Interna
tional Symposium on Requirements Engineering, pages 226-
235,1997.

