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Abstract 

 

This paper presents a method for recognising spherical shapes in 3D point cloud 

XYZ coordinate data obtained by scanning an indoor environment using a LIDAR 

scanner. Firstly, bilateral smoothing is performed to smooth the surfaces consisting of 

points. Then, the surface curvature and surface roughness of each point in the scan are 

extracted by analysing the point cloud data. Finally, a three layer multilayer perceptron 

neural network trained by the Levenberg-Marquardt algorithm is used to automatically 

distinguish points belonging to spheres from all the other points making use of 

extracted features. A novel feedback technique is applied in which the neural network 

is used several times on the recognised data. This method can be applied to automate 

3D scan alignment. 
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1 Introduction 

 
The development of 3D scanning and camera projection technology make it possible for people to 

have better access to large amounts of accurate 3D point cloud data. The point cloud data, recorded 

by 3D LIDAR scanners, is used in a variety of fields, including architecture, medical science, 

surveying and mapping. It is widely applied in generating 3D models, undertaking metrology 

inspection and performing medical imaging.  

In general, point cloud data itself is not directly usable in most 3D applications as it occupies 

a lot of memory and storage, requiring further analysis and processing. For example, point clouds 

can be converted to mesh models or CAD models for further use. In the field of architecture, the 

Building Information Modelling (BIM) concept was introduced in recent years. BIM describes the 

whole life cycle of a project and gives very detailed information of everything related to the 

building, including cost, construction, project and facility management. Currently, BIM is mainly 

used at the start of construction projects where laser scanning may not be that useful since 3D 

models of buildings would normally already exist. However, with the expansion of the BIM 

industry, existing buildings will require BIM as well, and that will offer a market for laser scanning 

and modelling automation. At present, the conversion from point cloud data obtained from a 

scanned building to BIM is typically performed by manual means, which is time consuming and 

labour intensive. In order to facilitate the procedure, S. Oesau et al. [1] proposed a method using 

feature sensitive primitive extraction and graph-cut for automatic reconstruction of permanent 

structures, such as walls, floors and ceilings. X. Xiong et al. [2] succeeded in identifying and 

modelling the main visible structural components of an indoor environment. Apart from large 

planar areas, windows and doorways are also able to be identified by applying this method. The 

question is whether other shapes such as spheres can also be automatically identified. 

This paper focuses on indoor sphere recognition. Spheres have the characteristic of rotational 

symmetry, which can be regarded as a distinctive feature for alignment between different scans. As 
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a basic geometric shape, spheres of small or large radius appear everywhere in buildings. Being 

able to recognise spherical objects can be seen as a start for the recognition of more complex 3D 

objects. The Hough transform is a powerful tool in shape analysis. O. Ogundana et al. [3] extended 

the strategy for detecting circles in 2D images to detecting spheres in 3D point clouds. RANSAC is 

also a useful tool for 3D sphere extraction [4]. This paper proposes a new method for sphere 

recognition. Our algorithm can be divided into four main steps: 1) bilateral smoothing, in which the 

point clouds are smoothed; 2) calculation of the surface curvature and the surface roughness; 3) 

multilayer perceptron neural networks are trained using supervised learning by the Levenberg-

Marquardt algorithm, and used to distinguish points belonging to spheres from other points; 4) low-

density filtering, in which low-density points are removed from the point cloud. 

 

2 Methodology 
 

2.1  Bilateral smoothing  
 

The 3D point cloud data is obtained by Faro Focus 3D LIDAR. Due to the tolerances of the scanner 

itself, the 3D data, inevitably, contains range noise. In order to improve the accuracy and reliability 

to point cloud computation, it is important to de-noise and smooth the point cloud. The bilateral 

filter, introduced by Tomasi and Manduchi [5], is a non-linear, edge-preserving and noise-reducing 

filter, which was first used to filter images. It has a simple and intuitive formulation and can be 

adapted to point cloud data easily and successfully [6-7]. 

In 3D point cloud data smoothing, let, p , be the 3D coordinates of a point in the scan. After 

the application of the filter, updating, p , as is given in Eq. (1): 

                                                                npp  b'  (1) 

Where, n , is the surface normal of the point, b  , is the bilateral smoothing factor defined as 

follows: 
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Where, R , is the spherical neighbourhood of p , Rip apart from the point p , ipp  is the 

distance between point p  
and ip , inn, is the angle between vector n  and in . The closeness 

smoothing filter is a standard Gaussian filter with parameter c :  
22 2/ cx

c exW


 . A feature-

preserving weight function with parameter s  is defined as:  
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 . 

 

2.2  Surface curvature and surface roughness 
 

The surface curvature (SC) of each point of the scan is computed from eigenvalues of a local 3 by 3 

covariance matrix [8] of a certain region of interest around the point. This region is usually taken to 

be a sphere. The radius of the sphere is required to be chosen wisely. It should be much smaller 

than the size of the scanned spheres while relatively larger than the surface thickness of the scanned 

objects. The surface roughness can be obtained by comparing surface normals of neighbouring 

points. Again this is calculated over a spherical region of interest whose radius is set to be the same 

as that for the SC calculation. The surface normal of each point is calculated using principle 

component analysis and covariance analysis [9] with an Octree-based 3D-grid method [10] for 

efficient neighbouring point searching.   

Theoretically, the average SC of a sphere should be invariant despite the any changes in the 

distance between the parts of the sphere and the scanner and the variable density of points, and the 

SC of each point on one sphere should be the same. However, in practice this is not the case. The 

point cloud data in the experiments is from a single scan, so objects are partially scanned and will 

have point cloud boundary edges. The discrepancy in surface curvature calculation is mainly due to 

the effect of edges and the spatially varying range noise. 

  



2.3  Neural networks trained by the Levenberg-Marquardt algorithm 
 

Artificial neural networks (ANN) can detect complex nonlinear relationships between dependent 

variables and separate and distinguish different classes of pattern. Several algorithms can be used 

for the training procedure of an ANN. The Levenberg-Marquardt (LM) algorithm [11] is selected 

for this research. The LM algorithm is a combination of the steepest descent method and the Gauss-

Newton algorithm. It inherits the stability of the steepest descent method and the speed advantage 

of the Gauss-Newton algorithm. 

In this research, two features, surface curvature and surface roughness, are extracted from 

point cloud data for each point. They are used for the inputs of a 3 layer multilayer perceptron 

ANN for each point. Four spheres and two non-sphere backgrounds selected from the scan are used 

for training this ANN. After being well trained but not overtrained, the ANN model is applied to 

each point in a sample area in order to identify points belonging to spheres. Repeated application of 

the ANN helps in obtaining better discrimination results. Each time after the ANN model is 

applied, the points identified by the ANN as not belonging to a spherical surface are removed from 

the scene. This reduction of number of points results in the modification of the curvature and the 

roughness values for points remaining in the scene when they are recalculated before putting back 

into the same ANN. As a result each time the ANN acts as a filter removing non-sphere points and 

the SC and SR are recalculated and the ANN is applied again. After applying the ANN for several 

times, there still remain some points that do not belong to spheres, so a low-density filter is applied, 

which is described in section 2.3, to remove these points. 

 

2.3 Low-density filtering 
 

For each point, the number of its neighbouring points within a certain spherical volume of radius,  

r , around that point is calculated. The distance, d , between each point and the LIDAR is also 

computed. Points, whose neighboring points count is smaller than a threshold number, th , are 

removed from the point cloud. The threshold, th , is calculated as follows: 
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where,  , is the number of points per unit area at 1 metre away from the scanner.  

 

2.4 Flowchart of methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Figure 1: Flowchart of methodology 
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3 Experimental results 
 

In the experiment, eight spheres were randomly placed in an indoor environment. The scene was 

then scanned with Faro Focus 3D LIDAR. Figure 2 shows a side view of a partially captured 

sphere. After applying bilateral smoothing, the surface of this sphere appears smoother and better 

defined. A quantitative comparison of the calculated surface thicknesses for spherical objects and 

the scene floor before and after smoothing is presented in Table 1. Filtering improves the accuracy 

in computing the curvature and the roughness measures for each point, which are illustrated in 

Figure 3 and Figure 5. Figure 4 shows the calculated curvature value distribution on the surface of 

a partially captured sphere. Near the edges of the partial sphere, the curvature is relatively low, 

with a value close to that of a flat surface. Conversely, points on the sphere, located further away 

from the edges possess relatively higher curvature. Figure 6 plots both the curvature and the 

roughness of a sphere after smoothing shows that there exists a relationship between the two. These 

two different properties of the sphere surface have a similar tendency. 

 

                                                
a. Before smoothing                                  b. After smoothing 

Figure 2: Comparison of a scanned sphere before/after smoothing  
 

 

  Surface thickness 

Sphere (2 m 

away from 

the scanner) 

Sphere (4.5 

m away from 

the scanner) 

Floor (2 m 

away from 

the scanner) 

Floor (4.5 m 

away from 

the scanner) 

Before smoothing (mm) 20 15 12 3 

  After smoothing (mm) 8 6 2 1 
Table 1: Comparison of the surface thicknesses of scanned objects before and after smoothing    

 

                            
 

Figure 3: Comparison of surface curvature value (a) before and (b) after smoothing. The curvature is 

calculated for each point on a selected sphere and for each point on a selected area of floor 

 

                
                                       a. Front view                                             b. Side view 

Figure 4: Calculated surface curvature distribution over a sphere 

a. Before smoothing     b. After smoothing 



             
      a. Before smoothing                                     b. After smoothing 

Figure 5: Comparison of surface roughness before and after smoothing. The roughness is calculated for 

each point on the selected area of the sphere and for each point on the selected area of the floor 

 

 
Figure 6: Surface curvature and roughness for points of a selected area of the sphere after smoothing 

 

The distance between each of these eight scanned spheres and the scanner was in the range 

from 2 m to 6 m. As is shown in Figure 7 and Figure 8, the implementation of bilateral smoothing 

reduces the variability of average curvature and average roughness for spheres placed at different 

distances with respect to the LIDAR scanner. For detecting objects, it is desirable that the 

calculated curvature and roughness are independent of their distances to the scanner. 

 

            
 

 

 

Four of these scanned spheres and two non-sphere volumes were selected to train the ANN 

model. Parameters for the ANN chosen for this experiment are presented in Table 2. Figure 9 (a) 

shows the sample area selected from a scan, which includes a sphere, a lamp and a flat surface. 

This data was not used in the training of the ANN model. Figure 9 (a) - (c) show the effect of 

repeatedly applying the ANN to the data. After this, low-density filtering described in section 2.3 is 

applied to the remaining points. The result of this is shown in Figure 9 (d). 

Table 2: Parameters for ANN 

 

 

Number of neurons for input/hidden/output layer 2; 10; 2 

Transfer function Tan-sigmoid, Log-sigmoid 

Percentage of data for training/validation/testing 70%; 15%; 15% 

Figure 8: Comparison of the average roughness 

before/after smoothing between spheres 

 

Figure 7: Comparison of the average curvature 

before/after smoothing between spheres 

 



       
                       a. Selected sample              b. Applying ANN once             c. Applying ANN 3 times  

       
                  d. Recognised sphere     e. Points other than the recognised sphere     f. Overview 

Figure 9: Recognition process. (a) Input data. (b)-(c), result of applying ANN repeatedly to input data. (d) 

remaining points after ANN and density filtering of input data. (e) and (f) Points identified to lie on non-

spherical surfaces (black) and Points classified to lie on surface of sphere (white). 

 

4 Conclusions 
 

In this paper, we presented an artificial neural network pattern recognition approach to detect 

points in a point cloud that define the surface of a spherical object. Our method is able to correctly 

distinguish points belonging to spheres from other points in the environment which may also 

include other curved surfaces present. A novel feedback technique is applied in which the neural 

network is used several times on the input data.  
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