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Clinical  datasets  are  commonly  limited  in size,  thus  restraining  applications  of  Machine  Learning  (ML)
techniques  for predictive  modelling  in  clinical  research  and  organ  transplantation.  We  explored  the
potential  of Decision  Tree  (DT)  and Random  Forest  (RF)  classification  models,  in the context  of  small
dataset  of 80 samples,  for outcome  prediction  in  high-risk  kidney  transplantation.  The  DT  and  RF  models
identified  the  key  risk  factors  associated  with  acute  rejection:  the  levels  of  the  donor  specific  IgG  anti-
bodies,  the  levels  of  IgG4  subclass  and  the number  of  human  leucocyte  antigen  mismatches  between
the  donor  and  recipient.  Furthermore,  the  DT  model  determined  dangerous  levels  of  donor-specific  IgG
achine Learning
mall data sets
iomedical systems
ecision Tree
andom Forest
idney transplants

subclass  antibodies,  thus  demonstrating  the  potential  of discovering  new  properties  in the data  when
traditional  statistical  tools  are  unable  to capture  them.  The  DT  and  RF  classifiers  developed  in this  work
predicted  early  transplant  rejection  with  accuracy  of  85%,  thus  offering  an  accurate  decision  support
tool  for  doctors  tasked  with  predicting  outcomes  of kidney  transplantation  in  advance  of the  clinical
intervention.

© 2017  The  Authors.  Published  by  Elsevier  Ltd.  This  is  an  open  access  article  under  the  CC  BY license

ntibody-mediated acute rejection

. Introduction

Machine Learning (ML) pertains to the ability of data-driven
odels to “learn” information about a system directly from

bserved data without predetermining mechanistic relationships
hat govern the system. ML  algorithms are able to adaptively
mprove their performance with each new data sample and
iscover hidden patterns in complex heterogeneous and high
imensional data [1–3]. ML  has become the core technology for
umerous real-world applications: from weather forecasting and
NA sequencing, to Internet search engines and image recognition

1,4–6].
In clinical and biomedical engineering domain ML  offers pre-

ictive models, such as Artificial Neural Networks (ANNs), Support
Please cite this article in press as: T. Shaikhina, et al., Decision tree
incompatible kidney transplantation, Biomed. Signal Process. Control

ector Machines (SVMs), Decision Trees (DTs), and Random Forests
RFs), which are able to map  highly non-linear heterogeneous
nput and output patterns even when physiological relationships

∗ Corresponding author.
E-mail address: N.Khovanova@warwick.ac.uk (N. Khovanova).
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746-8094/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

between model variables could not be determined due to com-
plexity, pathologies, or lack of biological understanding [6,5,7,8].
Nevertheless, ML  models are rarely viewed in the context of small
data, where insufficient number of training samples can compro-
mise the learning success [9,10]. Among various ML  classifiers, DTs
are particularly well suited for clinical classification task. DTs are
easy to interpret by non-statistician and are intuitive to follow. They
cope with missing values and are able to combine heterogeneous
data types into a single model, whilst also performing an automatic
principal feature selection [8,11].

With advances in immunosuppressive drugs and surgical tech-
niques organ and tissue transplantation is recognised as an effective
treatment for many pathologies including end-stage kidney (renal)
disease. Organ transplantation can dramatically improve patients’
quality of life, often offering the only solution for their survival [12].
This area, however, does not generate large patient datasets due to
the severity of accompanying diseases and the complexity of clini-
 and random forest models for outcome prediction in antibody
 (2017), http://dx.doi.org/10.1016/j.bspc.2017.01.012

cal operations, thus preventing wide application of ML  techniques
for the prediction of transplant outcomes. There are few studies
available in the literature demonstrating recent advances in the
emerging area of ML  applications to kidney transplantation.

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Greco et al. studied long-term kidney allograft survival and came
o the conclusion that “decision trees in clinical practice may  be a
uitable alternative to the traditional statistical methods, since it
ay  allow one to analyse interactions between various risk factors

eyond the previous knowledge” [13]. Their DT model, based on
94 patients with 9 known clinical indicators, predicted a 5 year
llograft survival with test accuracy of 74%–88%.

Krikov et al. in their large-scale, multi-centre study [14] ana-
ysed 92,844 patient records from the US Renal Data System. Their
T model for long-term kidney allograft survival was  based on 31
redictors and the accuracy of the model was measured by the Area
nder the Receiver Operating Characteristic (ROC) Curve (AUC)

15]. The DT models achieved AUC of 0.63, 0.64, 0.71, 0.82, and 0.90
note that an AUC of 1 corresponds to the perfect model accuracy)
or the 1, 3, 4, 5, and 10 year predictions, respectively. The trend

 the further into the future the forecast scope is, the better its
ccuracy – appears unintuitive to those working with real-world
orecasts. This phenomenon can be explained in part by the way
he model accuracies were measured and how this was  influenced
y the reduced follow-up and class imbalance dynamics over the
ears as more allografts fail.

Decruyenaere et al. compared traditional logistic regression
ethod with 8 different ML  algorithms for prediction of delayed

raft function (DGF) following kidney transplantation [16]. Their
odels were developed on 497 single-centre (Belgium) patients

rom deceased donors and used 24 parameters related to the
onor and recipient characteristics, preservation and operation.
he authors found that tree-based models achieved low accuracy:
UC of 0.53 for DT and 0.74 for RF respectively, which again can be
ttributed to high class imbalance between DGF + ve (12.5%) and
GF-ve samples. Out of 10 classifiers, a linear SVM performed best
ith AUC of 0.84.

The models in the above studies were developed with a few
undreds to a few tens of thousands of samples involving national
atabases. The ratio of the number of observations x to the num-
er of predictor features p was greater than 20 in the four above
pplications. Such ratio may  not, however, be feasible for smaller
ransplant units wishing to analyse their samples without having
o wait for decades until enough operations are conducted. In such
ases, when x/p < 10, ML  modelling faces the challenges of volatility
f outcomes among models of the same design due to insufficient
ata.

For example, Lofaro et al. attempted to predict chronic allograft
ephropathy within 5 years post-transplant from 23 clinical indi-
ations based on only 80 samples (x/p = 3.5) [17]. The authors used
T model and chose to report one of the tree models that has the

argest AUC (AUC = 0.847, 62.5% sensitivity, 7.2% false-positive rate)
nd another tree with a different structure (AUC = 0.824, 81.3% sen-
itivity and 25% false-positive rate). The volatility among the DT
rials were not explicitly disclosed, but the two presented DT mod-
ls showed significant variation in performance and hierarchy.

Such volatility in performance of ML  models is not unique to
he study by Lofaro et al. [17]. On the contrary, high variablitity
mong the models of the same design is characterisic of small-data
pplications of ML  algorithms which have embedded degrees of
andomness in their training and initialisation routines. In previous
ork we have shown that identical ANNs suffer from large discrep-

ncies in their predictions due to randomised initial conditions,
raining order and the split between the training and validation
amples [18]. Large descripances in predictions based on small
atasets are common for other ML  approaches. To extend the ben-
fits of ML  to a wider range of models for clinical applications, it
Please cite this article in press as: T. Shaikhina, et al., Decision tree
incompatible kidney transplantation, Biomed. Signal Process. Control

s essential to develop methods that would cope with the limited
ata size. We  have previously developed a framework for applica-
ion of ANN to regression tasks based on small data, which enabled
onsistent comparisons between various ANN designs and quantifi-
 PRESS
ssing and Control xxx (2017) xxx–xxx

cation of random effects and led to successful and robust regression
models [18–20].

The current study aims to adress small-data applications of
ML models for classification tasks. Specifically, the paper considers
Decision Trees (DTs) and Random Forests (RFs) for early prediction
of acute antibody-mediated rejection (ABMR) in kidney transplan-
tion based on pre-operative (baseline) clinical indicators.

For a successful transplantation outcome, the recipient and
donor should be matched for tissue proteins called human leuko-
cyte antigen (HLA). HLA mismatches between the transplant
recipient and their donor may  cause the development of antibodies
aginst HLA, which can subsequently lead to transplant failure and
endanger a future transplant if it has an HLA type reactive with the
antibodies. HLA antibodies can also be stimulated by pregnancy and
blood transfusion. Patients with preformed HLA donor-specific anti-
bodies (DSAs) have longer waiting times for surgery or are unable
to receive a renal transplant. Antibody incompatible transplanta-
tion (AIT), now well-established [21,22], allows one to decrease
DSA levels prior to transplantation and operate on patients with
HLA mismatches. However, above 40% of kidneys still experience
a rejection episode, because complete elimination of DSAs and
immunological memory is not practical. Neither types of harmful
DSAs nor their acceptable levels before transplantation are known.
Among isotypes of HLA antibodies, Immunoglobulin IgG is predom-
inant and is considered to be the agent of humoral rejection. Its
four subclasses (IgG1-4) exhibit functional differences and asso-
ciate with differences in clinical outcome [23]. Our  earlier work
using conventional statistical analysis based on logistic regression
revealed that IgG4 subclass presents a significant risk factor for
ABMR in AIT [23].

The primary objectives of this study is by using ML  to indepen-
dently confirm the key risk factors associated with early (within
first 30 days following the transplantation) ABMR and to find base-
line levels of DSAs for safe transplantation, i.e. how much of DSAs
can be tolerated to make certain that the donor kidney is safely
accepted. Note that the solution of the latter task is not feasible by
conventional statistical analysis. The secondary objective is to pro-
duce an accurate patient-specific predictive model using DT and
RF-based methods in order to support clinical decision-making.

2. Methods

2.1. The data

80 patients who  received HLA incompatible renal allo-
grafts between 2003 and 2012 are included in the study: 49
female and 31 male patients with average age 41.8 ± 11.6 years
(range = 18–68 years) at time of transplantation. Full description
of patients’ baseline characteristics can be found in [23]. Antibody
levels were measured in serum taken before antibody reduction
treatments using a fluorescence immunoassay and are given as
Median Fluorescence Intensity (MFI) [24].

The following 14 baseline (measured before transplantation)
parameters comprised the input feature set for the model:

• 7 continuous: highest IgG DSA MFI  level, patient’s age, years on
dialysis (ESRD duration), and 4 total IgG subclass (1–4) MFI  levels

• 4 categorical: cytometery cross-match (1 = bead, 2 = flow or
3 = CDC), total number of HLA mismatches between donor and
recipient (0–6), the number of class II HLA-DR mismatches (0–2),
 and random forest models for outcome prediction in antibody
 (2017), http://dx.doi.org/10.1016/j.bspc.2017.01.012

and the number of previous transplants (0–2),
• 3 binary: gender (male/female), the presence of both HLA Class I

and Class II DSA (yes/no), and a marker of whether the transplant
was  from live or deceased donor.

dx.doi.org/10.1016/j.bspc.2017.01.012
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The output, i.e. occurrence or absence of ABMR, was  a two-
lass binary variable, where ABMR + ve corresponded to the early
ejection of kidney (class ‘1′), and ABMR-ve corresponded to
ejection-free outcome (class ‘0′).

Data from 60 patients, sampled at random, were used for model
raining and the remaining 20 samples were reserved for indepen-
ent tests. Same test cohort was used for both the final DT and RF
odels. The data were well balanced (46 ABMR + ve and 34 ABMR-

e samples), but contained 3 samples with partially missing fields.
n one of the samples the ESRD duration was lost upon collection; in
wo other samples IgG1-3 values were not recorded. The 3 missing
amples were included in our study to ensure that the models are
ble to make predictions on incomplete data, which are commonly
ncountered in clinical setting [11].

.2. Decision Tree (DT)

As implied in its name, DT is a tree-like structure, where leaves
epresent outcome labels, i.e. ABMR + ve (1) or ABMR-ve (0), and
ranches represent conjunctions of input features that resulted in
hose outcomes.

A  binary DT separates the data (parent node) into two subsets
child nodes) by calculating the best feature split determined by a
hosen split criterion. The two resulting subsets become the new
arent nodes and are subsequently divided further into two child
odes. The binary split continues until all observations are classi-
ed. The algorithm is nonparametric, i.e. no assumptions are made
egarding the underlying distribution of the predictor variables.

.2.1. DT design in this study
The DT design in the present study was based on the standard

ART algorithm implemented using MATLABTM [25]. Throughout
he training process, the dataset was recursively divided according
o the split criterion until the optimal DT hierarchy of nodes was
eached. The split optimisation criterion used in this DT model is the
ini’s Diversity Index (GDI), which is a measure of node impurity.
he node is considered pure when it contains only observations
f one class (either ABMR + ve or ABMR-ve); the GDI of a pure
ode is equal to 0 [26]. The following additional constraints were

mposed on the DT size: minimum 10 observations for the node to
ecome a branch node and at least 1 observation per a leaf node.
he experiment with DT was repeated 600 times and each time a
ifferent model subset was sampled out of the original samples. It
as expected to observe high volatility among the performance of

hose 600 DTs.

.2.2. Categorical vs continuous predictors
Notably, for a DT classifier, finding an optimal binary split for a

ontinuous predictor is far less computationally intensive than for a
ategorical predictor with multiple levels. In the former case, DT can
plit between any two adjacent values of a continuous vector, but
or a categorical predictor with i levels, all of the 2i–1–1 splits need
o be considered in order to find the optimal one. As an example: to
dentify the optimal split for the total number of HLA mismatches
i = 7) the DT had to consider 63 possibilities.

.2.3. Pruning
Pruning is a ML  technique which can reduce the size of a DT and

revents overtraining. Pruning is achieved by removing the nodes
Please cite this article in press as: T. Shaikhina, et al., Decision tree
incompatible kidney transplantation, Biomed. Signal Process. Control

hat have least effect on the overall classification performance [25].
n this work pruning was applied in order to penalise complex-
ty of the DT, thus to ensuring only the most significant splits are
iscovered by the model.
 PRESS
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2.3. Random Forest (RF)

RF (or Bagged DTs) is an ensemble method in machine learning
which involves construction (growing) of multiple DTs via boot-
strap aggregation (bagging) [27–29]. In other words, each time
an input is supplied to RF that input is passed down each of the
constituent DTs. Each tree predicts a classification independently
and “votes” for the corresponding class. The majority of the votes
decides the overall RF prediction [8,30]. This aggregate vote of sev-
eral DTs is inherently less noisy and less susceptible to outliers than
a single DT output, which mitigates the volatility due to small data
and improves the robustness of predictions [28,29,31].

RF has a built-in feature selection system and thus can handle
numerous input parameters without having to delete some param-
eters for reduced dimensionality. Variable importance scores for
RF can be computed by measuring the increase in prediction error
if the values of a variable under question are permuted across the
out-of-bag observations (this is called permutation test). This score
is computed for each constituent tree, averaged across the entire
ensemble and divided by the standard deviation.

The RF was comprised of 600 fully grown trees. This number of
trees was  selected to correspond to the number of individual DTs
considered in Section 2.2.1. Although it was expected that the RF
model would produce substantially more robust results than 600
DTs, the experiment with RF was repeated 10 times to monitor for
the variance due to small data.

A constituent tree of RF is different from a DT in 2.1.1 in following
ways:

• Overfitting was controlled by out-of-bag validation at 90% of the
samples, as opposed to DT pruning

• Minimum number of samples per leaf node was increased to
3 in order to compensate for otherwise very large trees grown
without pruning

• Only a subset of 14 original input parameters, i.e. 9 predictor
variables, was  used. The reduction in the number of the input
parameters was  according to the classical model developed in our
previous study [23]. In particular, it was demonstrated [23] that
recipients age, ESRD duration, the number of class II HLA-DR mis-
matches, the number of previous transplants, and the marker of
whether the donor was  a live/diseased were found to be statisti-
cally insignificant and their inclusion into consideration reduced
the quality of the ABMR model. Out of the nine, six predictor vari-
ables were sampled at random for each partial-feature tree in the
RF.

2.4. Performance metrics

Predictions made by a DT are continuous real-valued numbers
in the range between 0 and 1, which describe the probability of
ABMR, however, the expected values recorded for each patient are
binary (1 = ABMR + ve, 0 = ABMR-ve). In order to convert the contin-
uous predictions into binary class labels, a 50% (0.5) cut-off point
was applied. The difference between predicted and expected binary
outcomes was then described by the number of True Positives (TP),
True Negatives (TN), False Positives (FP), and False Negatives (FN),
where the sum of TP + TN + FP + FN = n is the total number of obser-
vations. The following standard performance metrics were used to
assess the accuracy of both RF and DT:
 and random forest models for outcome prediction in antibody
 (2017), http://dx.doi.org/10.1016/j.bspc.2017.01.012

• Correct classification rate, C, measures the proportion of correctly
identified observations of both classes: C = (TP + TN)/n

• Positive predictive value (or precision), PPV = TP/(TP + FP)
• Negative predictive value,  NPV = TN/(TN + FN)

dx.doi.org/10.1016/j.bspc.2017.01.012
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Fig. 1. DT model schematic showing the split hierarchy with 7 branch nodes and 8 leaf nodes based on 6 variables X1 to X6.

Fig. 2. Confusion matrices for the training dataset (left) and the test samples (right)
for DT model, where the squares provide the performance metrics described in Sec-
tion 2.4. In each confusion matrix, the green squares correspond to TP and TN values,
and the red squares represent FP and FN values. The four grey squares (from the top
right, clockwise) represent the NPV, PPV (or precision), Sensitivity and Specificity.
The blue square provides the overall Correct Classification Rate, C. (For interpreta-
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Sensitivity (or recall, or TP rate), Sn, measures the proportion of
positives that are correctly identified as such: Sn = TP/(TP + FN)
Specificity (or TN rate), Sp,  measures the proportion of negatives
that are correctly identified as such: Sp = TN/(TN + FP)
Area under the ROC curve [15], AUC. ROC curve depicts TP rate
versus FP rate at various discrimination thresholds and is com-
monly used in medical statistics. On the unit ROC space, a perfect
prediction would yield an AUC of 1.0. A random coin flipping
would result in points along the diagonal and the corresponding
AUC of 0.5. AUC is also known as c-statistic.

. Results

.1. Decision Tree (DT) model

The DT model in Fig. 1 was developed after considering 600 DTs
uilt on different subsets of the data by permuting the test and
odel datasets with each other. The DT was able to correctly pre-

ict incidence of ABMR in C = 85% cases on both training and test
atasets (Fig. 2). When evaluated on the test cohort, the DT identi-
ed ABMR + ve patients with 81.8% sensitivity and ABMR-ve cases
ith 88.90% specificity (Fig. 2). Fig. 3 shows the classifier ROC curves
ith AUCtrain = 0.849 on training samples and AUCtest = 0.854 for the
T predictions on tests (Fig. 3).

Out of 14 possible predictors, the DT identified the following 6
Please cite this article in press as: T. Shaikhina, et al., Decision tree
incompatible kidney transplantation, Biomed. Signal Process. Control

ariables as key to ABMR prediction (Fig. 1): the highest IgG MFI
evel, total IgG4 MFI  level, number of HLA mismatches, total IgG2

FI  level, the total IgG1 MFI  level and cytometery cross-match.
his was consistent with the results obtained using classical statis-
Fig. 3. ROC curves for DT classification accuracy on the training dataset (left) and
on  the test samples (right).

tical methods on the same dataset [23]. None of the remaining 8
variables were used by the DT to predict ABMR.

Additionally, the node splits in the DT model (Fig. 1) provide
an indication as to what specific levels of the HLA DSA antibodies
were statistically associated with each of the ABMR + ve/ABMR-ve
classes. For instance, the DT identified that all patients with the
highest IgG levels below MFI  1062 belonged to the ABMR-ve group
(no rejection), while those with the highest IgG level ≥1062 and the
IgG4 MFI  level ≥80 had a high (85%) likelihood of early transplant
rejection. Similarly, 85% of patients with 4 or 5 HLA mismatches,
the highest IgG level ≥1062, and IgG4 MFI  level <80 belonged to
the ABMR + ve group.

As expected, considerable volatility in performance and struc-
ture could be observed among the 600 DTs. However, a persistent
pattern was  noticed: 14 out of 600 DTs used the same 6 variables
for classification as the model in Fig. 1. Further comparison of the
performances of these 14 instances and the remaining 586 DTs was
carried out. Fig. 4 shows that despite the large variance (� = 0.013)
in performance of DTs, those 14 DTs based on the 6 variables iden-
tified in our DT model have a significantly higher predictive power
(p < 0.002).

3.2. Random Forest (RF) model

A RF of 600 trees achieved C = 91.7% during the training phase
and correctly classified 85% of test cases, which is analogous to the
DT model performance on the same test cohort presented in 3.1
(Table 1). When further evaluated on the test cohort, RF performed
with 92.3% sensitivity, 71.4% specificity (Fig. 5) and the AUCtest of
0.819 (Fig. 6).

Experiment with RF was repeated 10 times in order to determine
 and random forest models for outcome prediction in antibody
 (2017), http://dx.doi.org/10.1016/j.bspc.2017.01.012

whether the consistency improved compared to the DT model. The
results showed significantly reduced variance (� = 0.002), and over-
all consistently high performance (Fig. 7).

dx.doi.org/10.1016/j.bspc.2017.01.012
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Table  1
Predictive performance of the two ML  models.

Performance measures
as defined in Section
2.4

DT RF

training test training test

Correct classification rate, C (%) 85.0 85.0 91.7 85.0
Sensitivity, Sn (%) 85.7 81.8 93.9 92.3
Specificity, Sp (%) 84.0 88.9 88.9 71.4
Positive Predictive Value, PPV (%) 88.2 90.0 91.2 85.7
Negative Predictive Value, NPV (%) 80.8 80.0 92.3 83.3
Area  under the ROC curve, AUC 0.849 0.854 0.914 0.819

Fig. 4. Wilcoxon rank sum test [32] for median C based on 600 DTs and on the
subset of DTs with repeating pattern. The DTs are of identical training parameters
and  design and only vary in the split between training and testing subsets.

Fig. 5. Confusion matrix for the training dataset (left) and the test samples (right)
for  RF model. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web  version of this article.)

Fig. 6. ROC curves for RF classification accuracy on the training (left) and test (right)
samples.

Fig. 8. Variable importance scores evaluated
 and random forest models for outcome prediction in antibody
 (2017), http://dx.doi.org/10.1016/j.bspc.2017.01.012

Fig. 7. Distributions of performance measures Ctrain , Ctest , AUCtrain , AUCtest for 10 RFs.

The variable importance scores were computed in order to iden-
tify the key important parameters used by the RF classifier. As

 by a permutation test across 10 RFs.

dx.doi.org/10.1016/j.bspc.2017.01.012
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hown in Fig. 8, IgG4 level is the single most important factor,
ollowed by the highest MFI  IgG level, and the number of HLA mis-

atches. This result further confirms our hypothesis that IgG4 is a
ey risk factor in kidney rejection in early post-transplant period
23].

. Discussion

The test classification accuracy of 85% achieved by the mod-
ls demonstrates that the ML  approach can be effectively applied
o predictive modelling in renal transplantation despite the small
umber of observations and heterogeneous input parameters.
ased on only 80 cases, our DT model achieved a similarly high level
f performance for acute ABMR as the model of Krikov et al. [9] for
idney allograft survival, which was built on a national database of
2,844 patient records. The proposed models outperform in their
ccuracy (AUC of 0.819 for RF and 0.854 for DT) some of the highest-
erforming models in the area of kidney transplantation discussed

n Section 1 [13,14,16,17].
Our DT model, chosen from the group of DT models with the

ighest prediction power, was able to successfully determine the
ptimal set of parameters associated with early rejection. The 6
ey predictors identified by the DT are confirmed by previously
eveloped logistic regression likelihood multivariate model [23],
hich is a tool of choice in medical statistics for binary classifica-

ion [24,33,34]. The superiority of the DT model is that it was also
ble to determine the level of antibodies associated with ABMR,
hich conventional statistical methods were unable to provide. It is

mportant to note that it has been intuitively known by transplant
octors that harmful highest IgG antibody levels were at around
000 MFI  [35–37] which our model confirmed to be at 1062 MFI
Fig. 1). Additionally, the harmful levels of IgG4 were identified
o be at 80 MFI  (Fig. 1) addressing the clinical aim as set in the
ntroduction.

The RF model provides an extension to the DT model with the
urpose of improving the robustness of the classification tool. A
F is so-called black-box model and less interpretable than DT, but
llows for better consistency of results and robustness of predic-
ions. Our DT and RF are equally well-equipped to handle partially

issing data and managed to classify correctly the 3 cases with
ncomplete data.

Tree-based models can be implemented in the electronic
ecision support system by means of standard computational
esources. When used for clinical decision support, our models can
rovide a simulation tool to explore various clinical scenarios and

dentify patients at risk of ABMR prior to the operation, and thus
eaving more time to make essential adjustment to treatment.

It is important to state that outcomes from this single-centre
tudy may  not generalise on a larger population in and outside of
he United Kingdom. They may  be affected by institutional bias,
nd therefore a further work comparing the results on extended
atasets from other centres would be beneficial. Despite this lim-

tation, the achieved outcomes remain significant to the area of
idney transplantation.

To our best knowledge, this study is the only work aimed at
eveloping ML  models for prediction of acute ABMR based on spe-
ific MFI  levels of IgG subclasses. Predictions made by our DT and
F models are patient-specific yielding an accurate and robust tool

or ABMR risk stratification preceding transplantation.

. Conclusions
Please cite this article in press as: T. Shaikhina, et al., Decision tree
incompatible kidney transplantation, Biomed. Signal Process. Control

) The incidence of acute antibody mediated rejection was suc-
cessfully modelled from 14 clinical baseline characteristics,
including pre-transplant DSA levels, using a DT. Despite a small

[

[

 PRESS
ssing and Control xxx (2017) xxx–xxx

dataset of 80 samples, this graphical and easily-interpretable
DT model revealed that the highest MFI  DSA levels, the total
IgG4 subclass MFI  and the number of HLA mismatches are the
highest discriminating factors between ABMR + ve and ABMR-ve
patients.

2) This research identified that patients with (a) the highest MFI
DSA levels below 1062 belong to the ABMR-ve group (rejec-
tion rate of 0%), while those with (b) the highest MFI  DSA
levels ≥1062 AND the total IgG4 subclass MFI  level ≥80 have a
high likelihood of early ABMR (rejection rate of 85%). Similarly,
patients in (b) with 4 or 5 HLA mismatches are likely to develop
ABMR (rejection rate of 85%).

3) We  developed a RF model of 600 bagged DTs, which provided a
robust classification with 85% accurate predictions in determin-
ing the acute ABMR of kidney transplants for each individual
patient characterised by the presence of DSAs with high MFI
levels, high IgG4 subclass MFI  levels and a large number of HLA
mismatches.
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