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ABSTRACT

We present a Bayesian estimator that performs log-spectrum esti-
mation of both speech and noise, and is used as a Bayesian Kalman
filter update step for single-channel speech enhancement in the mod-
ulation domain. We use Kalman filtering in the log-power spectral
domain rather than in the amplitude or power spectral domains. In
the Bayesian Kalman filter update step, we define the posterior dis-
tribution of the clean speech and noise log-power spectra as a two-
dimensional multivariate Gaussian distribution. We utilize a Kalman
filter observation constraint surface in the three-dimensional space,
where the third dimension is the phase factor. We evaluate the re-
sults of the phase-sensitive log-spectrum Kalman filter by comparing
them with the results obtained by traditional noise suppression tech-
niques and by an alternative Kalman filtering technique that assumes
additivity of speech and noise in the power spectral domain.

Index Terms— Speech enhancement; noise suppression

1. INTRODUCTION

Single-channel speech enhancement in non-stationary noise envi-
ronments remains a challenging task since algorithms encounter the
tradeoff between noise reduction and speech distortion. An overview
of statistical-based algorithms is given in [1]. Whereas model-based
statistical algorithms treat each time-frame independently, an alter-
native approach performs filtering in the modulation domain, which
models the temporal/inter-frame correlation of speech and utilizes
information in speech that is carried by the modulation of the spec-
tral envelopes rather than by the envelopes themselves [2] [3].

Modulation-domain Kalman filtering refers to sequentially up-
dating the statistics of clean speech using a Kalman filter (KF) pre-
diction step that involves modulation frames. The algorithms in [3]
[4] operate in the modulation domain, use overlapping modulation
frames and the KF. In [5] [6], KF tracking of speech (and noise in
[7]) is presented. Based on [2] and [8], researchers perform speech
Kalman filtering in the amplitude spectral domain assuming addi-
tivity of speech and noise in the amplitude domain, which is a de-
liberate approximation, and assuming that speech and noise follow
Gaussian distributions in the amplitude domain. In [2], speech-noise
additivity in the amplitude domain assumes that the phase factor, the
cosine of the phase asynchrony between speech and noise, is unity.

Considering KF-related algorithms, many papers, such as [9],
[10] and [11], use the observation model and the non-linear log-
spectral distortion equation relating clean speech and noisy speech in
the log-power spectral domain or in other spectral domains. Specifi-
cally, in [9] and [10], the non-linear environment distortion model in
the cepstral domain is utilized. Amongst other technical papers, the
non-linear log-power distortion equation is used in [12] and in [13].

The algorithms in [9] and [10], which are also described in [12],
re-estimate the distortion parameters of the noise mean and variance
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Fig. 1. The flowchart of the algorithm. The term z−1 refers to one-
frame delay. The blocks in the dotted rectangle constitute the speech
Kalman filter (KF) and, in Fig. 2, the KF over time t is illustrated.

using a variant of the EM algorithm. Based on [10], the noise re-
estimation heuristic is not successful in low SNR levels and in non-
stationary noise conditions. The iterative re-estimation heuristic of
the noise mean and variance in [10] would not be needed if the noise
posterior distribution given the noisy observation was defined.

A phase-sensitive model is employed in the non-linear log-
spectral distortion equation in [14]. The phase factor is the cosine
of the difference between the clean speech and noise STFT phases.
At local SNR levels around 0 dB, the phase term should not be ne-
glected [13] [15]. Amongst other technical papers, the phase factor
is used in [12] and in Sec 4.8.2 of [14]. Many algorithms, such
as logNMF [16] due to the max approximation method, ignore the
phase factor and assume the additivity of speech and noise powers.

In this paper, as main innovation, we create a speech-noise KF in
the log-power spectral domain and we advance the KF update by per-
forming Bayesian estimation of both speech and noise. We approx-
imate the non-Gaussian posterior distribution of the clean speech
and noise log-power spectra with a Gaussian distribution, using the
theoretical distribution of the phase factor. In the two-dimensional
Gaussian, the off-diagonal term of the state covariance matrix mod-
els the correlation between speech and noise log-powers. Using the
KF state as the log-power spectrum of clean speech, we minimize
the log-power spectrum estimation error. Having a Gaussian in the
non-nonnegative log-power domain leads to good speech modeling
since researchers use super-Gaussian distributions that resemble the
log-normal, such as the Gamma [3] [4], in the amplitude domain.

2. THE SPEECH ENHANCEMENT ALGORITHM

The flowchart of the algorithm is shown in Fig. 1. The algorithm’s
first step is to perform windowing and the short time Fourier trans-
form (STFT). After the STFT, we perform three different actions: we
first do pre-cleaning and estimate an autoregressive (AR) model for
clean speech using modulation frames. We secondly do (observa-
tion) noise power spectrum estimation using an existing algorithm;
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Fig. 1 shows the algorithm without KF noise tracking. Thirdly, we
perform speech Kalman filtering in the log-power spectral domain.

In Fig. 1, the blocks in the dotted rectangle constitute the KF.
The inputs to the KF are: the noisy speech in the log-power STFT
spectral domain that constitutes the KF observation, the estimated
noise log-power and the KF transition matrix At that is created from
autoregressive AR modeling of order p on the pre-cleaned modu-
lation frame. The output of the dotted rectangle in Fig. 1 is the
p-dimensional KF state. The algorithm’s next step is to keep the first
element of the KF state mean that is the estimated speech log-power
spectrum, and transform it to the amplitude spectral domain. Finally,
we reconstuct the estimated clean speech signal in the time domain
using the inverse STFT (ISTFT) with the noisy STFT phase.

2.1. The signal model and the speech KF prediction step

We assume that in the complex STFT domain, the noisy speech is:

ȳt(k)ejθt(k) = x̄t(k)ejφt(k) + n̄t(k)ejψt(k) (1)

In (1), we use the time index t and the frequency index k and,
from now on, we omit k. The amplitudes of the noisy speech, clean
speech and noise are respectively ȳ, x̄ and n̄. The noisy speech phase
is θ, the clean speech phase is φ and the noise phase is ψ. The log-
powers of the noisy speech, clean speech and noise are respectively
y = 2 log (ȳ), x = 2 log (x̄) and n = 2 log (n̄). In Fig. 1, we
denote the noisy and clean speech log-powers and amplitudes.

Figure 2 shows the speech KF state at time step t before and after
the KF prediction and update steps. We use the linear KF prediction
equations in (2) based on AR modeling [17]. In (2), the transition
noise wQt

is zero-mean Gaussian, the KF transition noise covariance
matrix is Qt and the KF transition matrix is At. The vector of speech
AR coefficients is at and the AR modeling error variance is q.

x−t = Atxt−1 + wQt
, xt = (xt xt−1 . . . xt−p+1)T ∈ <p (2)

At =

(
−aTt
I 0

)
,Qt =

(
q 0
0 0

)
, At,Qt ∈ <

p×p

As seen in Figs. 1-2 and (2), At and Qt are created from AR(p)
modeling on the pre-cleaned modulation frame using the covariance
method [18] [19], estimating the AR coefficients and the AR mean.

2.2. KF noise tracking and the joint speech-noise KF state

We now use a joint speech-noise state with a full covariance matrix.
As in (2) and in Sec. 2.1, we do KF noise tracking in the log-power
spectral domain based on AR(r) modeling and on the estimated SNR
in the modulation frame [3]. After the noise KF prediction step,
we decorrelate the joint KF state and, then, we multiply the noise

log-power Gaussian with the Gaussian that is obtained from external
noise estimation and log-normal noise power modeling [20] [21].

As in (2), we now use a joint speech-noise state x(j)
t ∈ <p+r

in (3). The superscripts (j) and (n) denote the joint speech-noise KF
state/parameters and the noise KF state/parameters respectively.

x(j)−
t = A(j)

t x(j)
t−1 + w(j)

Qt
, A(n)

t ,Q(n)
t ∈ <r×r, x(n)

t ∈ <r (3)

A(j)
t =

(
At 0
0 A(n)

t

)
, Q(j)

t =

(
Qt 0
0 Q(n)

t

)
∈ <(p+r)×(p+r)

2.3. The phase factor and the Bayesian KF update step

The Bayesian KF update step estimates the posterior distribution of
clean speech and noise log-powers given the noisy observation log-
power. The KF update step considers the Gaussian clean speech and
noise prior distributions from the KF prediction step, the distribution
of the STFT phase difference between clean speech and noise and the
observation constraint surface in the three-dimensional space, where
the third dimension is the phase factor α ∈ [−1, 1] [13]. The phase
factor α = cos(φ− ψ) affects the power spectral domain [13]:

ȳ2 = x̄2 + n̄2 + 2α n̄x̄ (4)

Based on Sec. 5.2 in [22], for a uniform phase difference, the
phase factor α distribution is: p(α) =

(
π
√

1− α2
)−1

for −1 <

α < 1, and E{αn} =
2−n × n!

((0.5n)!)2
for even n and zero otherwise.

We work in the complex STFT domain. We have a prior distri-
bution for p (x, n, α) and we wish to apply a constraint on y to get a
posterior distribution. Using log-powers, as in Sec. 2.1, we obtain:

ey = ex + en + 2e0.5(x+n)α (5)

From which: α =
ey − ex − en

2× e0.5(x+n)
. We use: u = n − x, v =

n + x, α = 0.5 exp (y − 0.5v) − cosh (0.5u). Using u, v, α and
v = 2 (y − log (2(α+ cosh(0.5u)))), we change variables v ⇒ y:

 u
y
α

 =

 u
0.5v + log (2(α+ cosh(0.5u)))

α


We do the variable transformation from (u, v, α) to (u, y, α).

The Jacobian determinant is ∆ = 0.5. From this, the posterior is:

p(u, α | y) =
p(u, α, y)

p(y)

∣∣∣∣
y

∝
(
p(u, v)p(α)× |∆|−1)∣∣

y
∝ p(α)×

×N

((
u

2 (y − log (2(α+ cosh(0.5u))))

)
; mu, Su

)
In the preceding equation, we use a two-dimensional Gaussian

distribution for p(u, v) with mean mu and covariance matrix Su.
Next, we use E{uavb|y} to calculate the first and second

moments of the posterior distribution of (u, v), which determines
(x, n). The aim is to compute E{xanb|y} where 0 ≤ a+ b ≤ 2.

E{uavb | y} =

∫ 1

α=−1

∫ ∞
u=−∞

uavb p(u, α | y) du dα =

=
1

|∆| p(y)

∫ 1

α=−1

p(α)

∫ ∞
u=−∞

uavb p(u, v) du dα (6)



In (6), the inner integration over u is performed with straight
line segments and truncated Gaussians, thus obtaining a closed-form
solution. In (6), the outer integration overα is done using nweighted
sigma points [23] [24]. We use the Unscented transform [25] [26]
and n = 3 weighted sigma points for approximating integration with
summation. We fit the first three even moments of the phase factor
α using (7). The outer integral in (6) is exact to f(α) polynomials
up to the fifth order in (7) when we use three sigma points.

E{f(α)} =

∫ ∞
α=−∞

p(α) f(α) dα =

n∑
i=1

wi f(αi) (7)

We now use the left-hand and right-hand side expressions of the
equation in (7). We utilize n = 3 sigma points and we have:

1 =

3∑
i=1

wi, 0.5 =

3∑
i=1

wi a
2
i , 0.3750 =

3∑
i=1

wi a
4
i

w1 = w2 = w3 =
1

3
, a1 =

√
3

2
, a2 = −

√
3

2
, a3 = 0

For n sigma points, we observe thatwi = n−1, i ∈ {1, 2, . . . , n}.
We now integrate over α in (6) by summing over the n = 3 sigma
points using (7). In (7), noting that v = v(u, α), we compute:

f(α) =

∫ ∞
u=−∞

uavbN

((
u
v

)
; mu, Su

)
du (8)

In the KF update, we update the mean and covariance matrix of
the current speech-noise KF state. We calculate the first and second
moments of the posterior distribution of the current speech and noise
log-power spectra using E{xanb|y} where 0 ≤ a+ b ≤ 2. We uti-
lize p(u, v) instead of p(x, n) since (u, v) uniquely defines (x, n),
which is the current speech-noise KF state. In (6), we find the mo-
ments to find the posterior of the speech-noise KF state in the rotated
u-v domain. In (6)-(8), we use the six cases with 0 ≤ a+ b ≤ 2.

In the phase-sensitive KF update step, we compute the two-
dimensional Gaussian posterior distribution of clean speech and
noise log-power spectra using sigma points for integration over α,
considering the phase difference between speech and noise. We use
the phase factor α with the KF observation employing an observa-
tion constraint surface for α ∈ [−1, 1], rather than a constraint line
for α = 0 (or α = 1), in the three-dimensional space of x, n, α.

Figure 3 shows the posterior distribution when the prior distribu-
tion is in the curvy triangle, which is defined in (9), and on the u = 0
line that corresponds to SNR = 0 dB. Likewise, Fig. 4 illustrates the
posterior distribution when the prior distribution is out of the curvy
triangle and on the u = 0 line and Fig. 5 when the prior distribution
is in the curvy triangle and off the u = 0 line. Figure 6 depicts two
cases when the prior distribution is out of the curvy triangle and off
the u = 0 line. In Fig. 6, prior 1 is at the upper left side out of the
curvy triangle and thus at a negative SNR position. The background
in Figs. 3-6 is based on the Gaussian posterior covariance matrix.

Figure 5 is the most important from Figs. 3-6 since it examines
a frequent positive SNR case. Based on Fig. 5, the algorithm works
as expected. In prior 2 of Fig. 6, we have a rare positive SNR case.
The equations of the curvy triangle in the u-v domain are (9). The
surface of the curvy triangle is related to the different values of α.

α = 1, cosh(0.25u) = 0.5 exp(−0.25v)

α = −1, |sinh(0.25u)| = 0.5 exp(−0.25v) (9)
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Fig. 3. Plot of the KF poste-
rior distribution, the prior distri-
bution, the a = −1, 0, 1 con-
straints and the u = 0 line. The
prior distribution is in the curvy
triangle and on the u = 0 line.
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Fig. 4. Plot of the KF posterior
distribution and the prior distri-
bution. In this case, the prior dis-
tribution is out of the curvy trian-
gle and on the u = 0 line, which
indicates an SNR of 0 dB.
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Fig. 5. Plot of the KF posterior
distribution and the prior distri-
bution. In this case, the prior dis-
tribution is in the curvy triangle
and at the right of the u = 0 line.
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Fig. 6. Plot of two KF posteriors
and two priors that are out of the
curvy triangle and off the u = 0
line. The background is the log-
probability of posterior 1.

As seen in Figs. 3-6, the maximum point of the α = 1 constraint
is at u = 0 and v = −12 dB. The power constraint α = 0 equation,
which is in the curvy triangle, is: v = −2 log (2cosh(0.5u)).

In Figs. 3-6 (and not in the actual algorithm), we assume prior
speech and noise independence since the prior distribution is diago-
nal in Figs. 3-6. Based on Figs. 3-4, when the KF predicted prior
distribution is on the u = 0 line and has a diagonal covariance ma-
trix (i.e. a diagonal ellipse as a covariance matrix in the u−v rotated
domain), the KF posterior distribution must be on the u = 0 line and
have a diagonal covariance matrix. On the contrary, if the mean of
the KF predicted prior distribution is not on the u = 0 line, we can
say that the mean of the KF posterior distribution is also not on the
u = 0 line. In the actual algorithm, as presented in Sec. 2.2 and
in (3), we do not assume prior speech-noise independence; we track
the speech-noise correlation in the log-power spectral domain.

To sum up, we model the inter-frame correlation between adja-
cent clean speech samples in the log-power spectral domain using a
KF prediction step, as explained in Sec. 2.1. We model the corre-
lation between adjacent noise samples using a noise KF prediction
step, as presented in Sec. 2.2, and we model the correlation between
speech and noise using full covariance matrices. Finally, based on
Sec. 2.3, we do a Bayesian KF update step and compute a two-
dimensional Gaussian for the speech and noise log-power spectra.

3. IMPLEMENTATION, RESULTS AND EVALUATION

We use acoustic frames of length 32 ms, modulation frames of length
64 ms and a 4 ms acoustic and modulation hop. We use the TIMIT
database [27] and the sampling frequency of 16 kHz. We use 40
sentences and 15 noise types from the noise database in [28] at SNR
levels of−20 dB to 30 dB. Random segments of noise from the noise
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signals are utilized. We also use the code from [29], [30] and [31].
We use noise estimation on a frame and frequency basis based on
[32]. In Fig. 1, for pre-cleaning, we use the traditional log-MMSE
approach [33] and, in Sec. 2.1 and 2.2, we use p = 2 and r = 2.

We compute the PESQ improvement ∆PESQ in Figs. 7-11. For
the KF algorithms, we ignore the initial 0.12 s needed for conver-
gence. We denote our algorithm without noise tracking as PA3SP
that refers to the proposed algorithm using three sigma points, as ex-
plained in Sec. 2.3. In addition, we denote our algorithm with noise
tracking as PA3SPNT that refers to the presented algorithm using
three sigma points and noise tracking, as discussed in Sec 2.2.

For comparison purposes, we denote the traditional MMSE
approach [34] as TMMSE and the log-MMSE approach [33] as
TLMMSE in Figs. 7-11. We implement the TMMSE and TLMMSE
algorithms with the same acoustic frame length as our algorithm,
which is 32 ms, but with an acoustic frame increment of 16 ms.

In addition, for comparison purposes, in Figs. 7-11, we also
use Kalman filtering with a KF update step in another domain: we
assume additivity of clean speech and noise in the power domain AP
(i.e. α = 0), using Gaussian distributions in the log-power domain.
We use log-domain speech and noise distributions, as in PA3SP, and
we use α = 0 in Eq. (5) in Sec. 2.3 in the Bayesian KF update step.

Overall, the alternative possible ways for the KF update step are
to: 1) assume speech-noise additivity in the power domain and that
speech/noise follow a Gaussian distribution in log-power domain, 2)
assume additivity in the amplitude domain (i.e. α = 1) and that
speech/noise follow a Gaussian distribution in log-power domain, 3)
assume additivity in the power domain and that the speech/noise are
Gaussian in the power domain, and 4) assume additivity in the ampli-
tude domain and that the speech/noise are Gaussian in the amplitude
domain. In [2] and [8], (4) is used and hence α = 1 is assumed.

In Figs. 8-11, we also examine the (unrealistic) case when the
noise log-power n is perfectly known: PNPA refers to the perfect
noise proposed algorithm. Based on the oracle-noise PNPA results,
KF-based noise tracking does improve the results of speech enhance-
ment and helps the modified Bayesian KF update step reach a per-
formance that is close to its maximum possible performance.

Figures 7-11 show the ∆PESQ for babble, white Gaussian, f16
and factory noise types. Based on Figs. 7-11, for certain noise types
and for a wide SNR range, PA3SP is better than the other algorithms
in terms of speech quality with the PESQ metric. In particular, based
on Figs. 8-11, the ∆PESQ of PA3SP is better for −5 < SNR ≤ 30
dB than the ∆PESQ scores of TMMSE, TLMMSE and AP.
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Fig. 13. Plot of the spectrogram
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Fig. 14. Plot of the spectrogram
of the enhanced speech. We use
PA3SP and ∆PESQ = 0.49.

Figures 7-11 also show the ∆PESQ scores of PA3SPNT for
babble, white Gaussian, f16 and factory noise types. Noise track-
ing improves speech enhancement and the speech quality of the en-
hanced speech signal. The ∆PESQ curves of PA3SPNT approach
the ∆PESQ curves of PNPA more than the ∆PESQ curves of PA3SP.
Based on Fig. 8, PA3SPNT achieves a ∆PESQ score that is slightly
higher than 0.52 at 15 dB SNR at babble noise conditions.

Figure 12 shows the (absolute) PESQ for the noisy speech in
Figs. 8-11. Figures 13-14 illustrate spectrograms (power per decade)
for noisy and enhanced speech. We use PA3SP and ∆PESQ = 0.49
at 15 dB SNR babble noise. In Figs. 13-14, the noise segments (e.g.
at 1.5 kHz and 1.25 s) are removed. Finally, it should be noted that
the KF algorithms in [2] and [8] are not tested with babble noise.

4. CONCLUSION

In this paper, we presented an algorithm that uses modified Kalman
filtering to track speech and noise in the log-power spectral domain.
The presented KF update step models the effect of (observation)
noise on the clean speech log-power spectrum using phase-sensitive
Bayesian estimation. Integration over the phase factor is performed
using sigma points. Finally, the results show that the algorithm is
better than denoising KF algorithms that assume α = 0 or α = 1.
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