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We consider a smooth, spanwise-uniform forward-facing step defined by a Gauss error
function of height 4 %–30 % and four times the width of the local boundary layer
thickness δ99. The boundary layer flow over a smooth forward-facing stepped plate
is studied with particular emphasis on stabilisation and destabilisation of the two-
dimensional Tollmien–Schlichting (TS) waves and subsequently on three-dimensional
disturbances at transition. The interaction between TS waves at a range of frequencies
and a base flow over a single or two forward-facing smooth steps is conducted by
linear analysis. The results indicate that for a TS wave with a frequency F ∈[140,160]
(F = ων/U2

∞ × 106, where ω and U∞ denote the perturbation angle frequency and
free-stream velocity magnitude, respectively, and ν denotes kinematic viscosity), the
amplitude of the TS wave is attenuated in the unstable regime of the neutral stability
curve corresponding to a flat plate boundary layer. Furthermore, it is observed that
two smooth forward-facing steps lead to a more acute reduction of the amplitude
of the TS wave. When the height of a step is increased to more than 20 % of the
local boundary layer thickness for a fixed width parameter, the TS wave is amplified,
and thereby a destabilisation effect is introduced. Therefore, the stabilisation or
destabilisation effect of a smooth step is typically dependent on its shape parameters.
To validate the results of the linear stability analysis, where a TS wave is damped
by the forward-facing smooth steps direct numerical simulation (DNS) is performed.
The results of the DNS correlate favourably with the linear analysis and show that
for the investigated frequency of the TS wave, the K-type transition process is altered
whereas the onset of the H-type transition is delayed. The results of the DNS suggest
that for the perturbation with the non-dimensional frequency parameter F = 150 and
in the absence of other external perturbations, two forward-facing smooth steps of
height 5 % and 12 % of the boundary layer thickness delayed the H-type transition
scenario and completely suppressed for the K-type transition. By considering Gaussian
white noise with both fixed and random phase shifts, it is demonstrated by DNS that
transition is postponed in time and space by two forward-facing smooth steps.
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1. Introduction
1.1. Motivation behind the study of steps in boundary layers

In environments with low levels of disturbances, transition to turbulence is initiated by
the exponential amplification of the Tollmien–Schlichting (TS) waves followed by the
growth of secondary instabilities. When the r.m.s. amplitude of the TS waves exceeds
a threshold value of typically 1 % of the free-stream velocity, three-dimensional (3D)
structures evolve, which are characterized by nearly periodic spanwise alternating
peaks and valleys (Λ-shaped vortex loop) (Herbert 1988; Cossu & Brandt 2002).
Growth of these 3D structures is very rapid (over a convective time scale), which is
explained by secondary instability theory. Fundamental and subharmonic instabilities
lead respectively to aligned and staggered patterns of Λ-structures. Because of the
dramatic growth of the 3D disturbances, nonlinear deformation of the flow field
produces embedded highly inflectional instantaneous velocity profiles. The highly
inflectional instantaneous velocity profiles are unstable with respect to high-frequency
disturbances that cause spikes (intensive streamwise velocity fluctuation; Klebanoff,
Tidstrom & Sargent 1962). The onset of spikes initiates the ultimate breakdown of
the laminar flow into turbulence. This path to transition was explained by Herbert
(1988) and more recently by Cossu & Brandt (2004).

The classical process of the laminar–turbulent transition is subdivided into three
stages: receptivity, linear eigenmode growth and nonlinear breakdown to turbulence. A
long-standing goal of laminar flow control (LFC) is the development of drag-reduction
mechanisms by delaying the onset of transition. The process of laminar to turbulent
transition has been shown to be influenced by many factors, such as surface
roughness elements, slits, surface waviness and steps. These surface imperfections can
significantly influence the laminar–turbulent transition by influencing the growth of TS
waves in accordance with linear stability theory and then nonlinear breakdown along
with 3D effects (Kachanov 1994). Since the existence of TS waves was confirmed by
Schubauer & Skramstad (1948), numerous studies aiming to stabilise or destabilise
the TS modes have been carried out in order to explore and explain different paths
to transition. If the growth of the TS waves is reduced or completely suppressed,
and providing no other instability mechanism comes into play, it has been suggested
transition could be postponed or even eliminated (Davies & Carpenter 1996). Despite
roughness elements being traditionally seen as an impediment to the stability of the
flat plate boundary layer, recent research has shown this might not always be the case.
Reibert et al. (1996) used spanwise-periodic discrete roughness elements to excite the
most unstable wave and found unstable waves occur only at integer multiples of the
primary disturbance wavenumber and no subharmonic disturbances are destabilised.
Following this research, Saric, Carrillo & Reibert (1998) continued to investigate the
effect of spanwise-periodic discrete roughness whose primary disturbance wavenumber
did not contain a harmonic at λs= 12 mm (the most unstable wavelength according to
linear theory, where λs denotes the crossflow disturbance wavelength in the spanwise
direction). By changing the forced fundamental disturbance wavelength to 18 mm,
the 18, 9 and 6 mm wavelengths were present. Saric et al. (1998) found the linearly
most unstable disturbance (12 mm) was completely suppressed. Shahinfar et al. (2012)
showed that classical vortex generators, known for their efficiency in delaying, or even
inhibiting, boundary layer separation can be equally effective in delaying transition.
An array of miniature vortex generator (MVGs) was shown experimentally to strongly
damp TS waves at a frequency F = ων/U2

∞ × 106 = 102 (where ω and U∞ denote
the perturbation angle frequency and free-stream velocity magnitude, respectively,
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140 H. Xu, J.-E. W. Lombard and S. J. Sherwin

and ν denotes kinematic viscosity) and delay the onset of transition. Similar results
were obtained for F = 135 and 178. Downs & Fransson (2014) found that the
amplitudes of TS wave F ∈ {100, 110, 120, 130} over spanwise periodic surface
patterns can be reduced, and demonstrated substantial delays in the onset of transition
when TS waves are forced with large amplitudes.

Over the past two decades, most investigations on topics of laminar–turbulent
transition in a boundary layer have focused on two kinds of problem: the receptivity
mechanism (Wu 2001a,b; Saric, Reed & Kerschen 2002; Ruban, Bernots & Pryce
2013) and stabilisation/destabilisation of TS waves (Cossu & Brandt 2002, 2004;
Fransson et al. 2005, 2006; Garzon & Roberts 2013). Meanwhile, we need to
point out that TS waves are important basically in two-dimensional (2D) subsonic
boundary-layers on flat or convex surfaces, while in many other cases other
instabilities dominate and are being extensively investigated. In contrast to the 2D
case, the 3D boundary layer exhibits both streamwise and crossflow components.
The study of flow stability in boundary layers with transverse pressure gradients is
traced back to the experiments of Gray (1952). An early review work on crossflow is
attributed to Reed & Saric (1989) and a more recent review on crossflow instability
was made by Saric, Reed & White (2003). In 2D boundary layer flows over concave
walls, Görtler vortices are thought to be the cause of transition (Saric 1994). In order
to improve our understanding of the underpinning role of TS waves we choose to
focus our attention on their effect by leveraging the fact that DNS investigation allows
us to neglect other forms of perturbation. Therefore this case is not intended to be
representative of the richer transition scenario on an actual aircraft wing cruising in
a natural environment.

Receptivity is the initial stage of the uncontrolled (‘natural’) transition process,
first highlighted by Morkovin (1969a), where environmental disturbances, such as
acoustic waves or vorticity, are transformed into smaller-scale perturbations within
the boundary layer (Morkovin 1969b). For an uncontrolled transition process, these
disturbances may initially be too small to measure, and are observed only after the
onset of an instability, and the nature of the basic state and the growth (or decay) of
these disturbances depends on the nature of the disturbance (Saric et al. 2002). The
aim of receptivity studies is to assess the initial condition of the disturbance amplitude,
frequency and phase within the boundary (Morkovin 1969b; Saric et al. 2002). So far,
only a small fraction of various possible receptivity mechanisms has been investigated
for the cases of either: (i) direct excitation of stationary instability modes (such as
crossflow or Görlter modes) by stationary surface roughness or (ii) transformation of
various unsteady external disturbances (such as various free-stream vortices, acoustic
waves, etc.) on various 2D and 3D streamwise-localised surface roughness elements
resulting in excitation of various 2D and 3D non-stationary instability modes (such
as TS modes, crossflow modes, Görtler modes, etc.) (Gaster 1965; Murdock 1980;
Goldstein 1983; Ruban 1984; Goldstein 1985; Goldstein & Hultgren 1987; Kerschen
1989, 1990; Hall 1990; Denier, Hall & Seddougui 1991; Bassom & Hall 1994;
Choudhari 1994; Saric 1994; Bassom & Seddougui 1995; Duck, Ruban & Zhikharev
1996; Dietz 1999; Wu 2001b; Saric et al. 2002; Templelmann 2011). The receptivity
mechanism shows that the deviation on the length scale of eigenmodes from a
smooth surface can excite TS waves by interacting with free-stream disturbances or
acoustic noise. Kachanov, Kozlov & Levchenko (1979a), Kachanov et al. (1979b)
first performed the quantitative experimental study of the boundary layer receptivity
to unsteady free-stream vortices for the case of a 2D problem with the spanwise
orientation of the disturbance vorticity vector. The result of Kachanov et al. (1979a,b)
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Influence of localised smooth steps on the instability of a boundary layer 141

was consistent with the theoretical study by Rogler & Reshotko (1975). Considering
steady vortices, Kendall (1985, 1990, 1991) obtained the first qualitative data, which
was compared with numerical results generated by Bertolotti (1996, 2003).

From a theoretical point of view, Ruban (1984), Goldstein (1985), Goldstein
& Hultgren (1987), Duck et al. (1996) studied the interactions of free-stream
disturbances with an isolated steady hump within the viscous sublayer of a triple-deck
region. As indicated by Borodulin et al. (2013), almost all investigations related to
unsteady vortex receptivity of boundary layers performed after the early experiments
were theoretical ones until the end of the 1990s. For distributed roughness receptivity,
considering a weak waviness, Zavol’skii, Reutov & Rybushkina (1983) theoretically
investigated the problem of resonant scattering of a periodical vortex street on a wall,
based on the framework of a locally parallel theory. Subsequently, the theoretical
approach was developed by Choudhari & Streett (1992) and Crouch (1994) for
localised and distributed vortex receptivity. Based on asymptotic theory, Goldstein
(1983, 1985), Ruban (1985) and Wu (2001a) carried out the studies for acoustic
receptivity and Kerschen (1990), Goldstein & Leib (1993), Choudhari (1994) and Wu
(2001a,b) for localised and distributed boundary layer receptivity. A detailed review
work was done in the introduction of Borodulin et al. (2013).

However, theoretical studies of the interaction between instability modes and a
distorted base flow have received less attention. For distributed roughness Corke,
Sever & Morkovin (1986) further inferred that the faster growth of TS waves on the
rough wall was not attributable to the destabilization effect of roughness, such as an
inflectional instability, but claimed that the growth was due to the continual excitation
of TS waves on the rough wall by free-stream turbulence. More recently, important
theoretical work on the interaction of isolated roughness with either acoustic or
vortical free-stream disturbances was investigated by Wu & Hogg (2006). Brehm et al.
(2011) investigated the impact of 2D distributed roughness on the laminar–turbulent
transition process, and found that the roughness spacing has a drastic effect on the
growth of disturbances. Borodulin et al. (2013) discussed the influence of distributed
mechanisms on amplification of instability modes. As indicated by Brehm et al.
(2011), for isolated roughness some basic understanding of the physical mechanisms
promoting transition has been obtained, but the relevant physical mechanisms driving
the transition process in the presence of distributed roughness are not well understood.

In this paper, we investigate the effect of a smooth forward-facing step on the
growth properties of TS waves excited by forcing the boundary layer at different
unstable non-dimensional frequencies. The amplitude of the forcing was chosen such
that the velocity profiles of the resulting TS waves are well resolved but weak enough
such that no secondary instabilities are introduced. For the domain of the flat plate
considered in the test cases presented here the unstable frequencies span F ∈ [27, 250]
for displacement thickness Reynolds number Reδ∗ ∈ [320,1500] (Reδ∗ =U∞δ∗/ν, where
U∞ and ν denote streamwise free-stream velocity magnitude and kinematic viscosity,
respectively, and δ∗ denotes the displacement thickness). We denote frequencies as
high for F ∈ [100, 250]. These high-frequencies are of particular interest because they
can lead to transition towards the leading edge of the flat plate (Downs & Fransson
2014). Note, the difference between the smooth step considered in this paper and
a traditional sharp step is that the geometry for a smooth step is described by no
less than two parameters (height and width) whereas for a traditional sharp step only
one parameter (height) is required. Nenni & Gluyas (1966) first explicitly gave a
critical height for sharp forward-facing steps corresponding to a Reynolds number,
defined according to the step height H, of ReH,critical = U∞Hcritical/ν = 1800, where
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Hcritical correlates to the measured onset of transition such that the transition location
first begins to move upstream as H increases above the critical value Hcritical, and
below Hcritical the transition location is generally unaffected by the presence of the
step. ReH,critical is only a rough number without considering variation of the streamwise
location or pressure gradient.

As discussed by Edelmann & Rist (2015), research on the influence of steps on
the stability of the boundary layer can be divided into two approaches: one focuses
on finding a critical step height ReH,critical (Nenni & Gluyas 1966) whereas the other
is based on the idea that the effect of a protuberance can be incorporated in the
eN method (Perraud et al. 2004; Wang & Gaster 2005; Crouch, Kosorygin & Ng
2006; Edelmann & Rist 2013, 2015). It is worth mentioning that Wu & Hogg (2006)
showed that as the TS wave propagates through and is scattered by the mean-flow
distortion induced by the roughness, it acquires a different amplitude downstream.
They introduced the concept of a transmission coefficient. A further numerical study
by Xu et al. (2016) confirms the localised isolated roughness has a local stabilising
effect, but overall a destabilising effect. Additionally an alternate expression of the
transmission coefficient is introduced which can be incorporated into the eN method.

Recently, based on the second approach, Edelmann & Rist (2015) found that
generally, for transonic flows, sharp forward-facing steps led to an enhanced
amplification of disturbances. They also found subsonic and supersonic results
showed significant differences in the generation mechanism of the separation bubbles.
A different phenomenon was found for incompressible flows when investigated
numerically, by using an immersed boundary technique (Wörner, Rist & Wagner
2003). The authors observed that for a non-dimensional frequency F = 49.34, the
amplitude of the TS wave is reduced throughout the domain considered by the
forward-facing step. They attribute this stabilising effect to the thinner boundary layer
evolving on the step in comparison to the boundary layer without a step. They also
claimed that when a small separation zone appears in front of the step it has no
influence on the TS wave.

The presence of separation bubbles gives rise to a destabilising effect on a
boundary layer. Generally, the separated shear layer will undergo rapid transition
to turbulence and, even at rather small Reynolds numbers, separation provokes an
increase in velocity perturbations and laminar flow breakdown, taking place in the
separation region or close to it. The first observation of laminar separation bubbles
was undertaken by Jones (1938) and the structure of a time-averaged bubble was
given by Horton (1968); the interested reader can find a detailed review of the
experimental work on the subject in Young & Horton (1966). Hammond & Redekopp
(1998) found that a separation bubble could become absolutely unstable for a peak
reversed flow velocity in excess of 30 % of the free-stream velocity. Theofilis (2000)
subsequently reported on the shape of the globally unstable mode in recirculation
bubbles. A separation bubble can have important impact on the global stability of
a boundary layer. In the following, we shall only focus on amplification of the TS
wave by a separation bubble. Numerically, with laminar separation bubbles, Rist
(1993) suggested a 3D oblique mode breakdown rather than a secondary instability
of finite-amplitude 2D waves. Xu et al. (2016) investigated the behavior of TS
waves undergoing small-scale localised distortions and found even a small separation
bubble can amplify a TS wave. When a sharp forward-facing step of sufficient
height is present in a boundary layer, a separation bubble can easily be generated. In
particular, the effective transformation or scattering of the free-stream disturbances to
TS waves occurs preferably alongside sudden changes of the mean flow (e.g. over
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Disturbance strip

h

FIGURE 1. Overview of the computational setup with the Blasius boundary layer profile
at the inflow and the disturbance position.

the leading edge, separation region or suction slits). The external acoustics, surface
vibrations and vortical disturbances in the form of localised flow modulations or
free-stream turbulence are those which most frequently contribute to the boundary
layer receptivity, as reviewed by Nishioka & Morkovin (1986), Kozlov & Ryzhov
(1990), Saric (1990), Bippes (1999). Additionally, a smooth step is less receptive than
a sharp step (Kachanov et al. 1979a). Another benefit of using a smooth step is to
circumvent biglobal instability (Hammond & Redekopp 1998).

1.2. Problem definition
The smooth step considered in this paper, illustrated in figure 1, is located in
the unstable regime of the neutral stability curve close to the leading edge.
In the following study we consider medium-frequency and frequencies F ∈
{100, 140, 150, 160} 2D TS waves but also investigate a low-frequency case with
forcing F = 49.34 for comparison with Wörner et al. (2003). The low-frequency
forcing is particularly interesting because it offers, in the context of the neutral
stability curve of the zero-pressure-gradient flat plate, a much larger unstable regime
compatible with the so-called critical amplification factor N = 8 (Edelmann &
Rist 2015). Recently, Downs & Fransson (2014) studied TS wave growth over
spanwise-periodic surface patterns excited at F ∈ {100, 110, 120, 130}. They report
that TS waves excited by high frequencies and large amplitudes (Aint,I

TS < 0.48 %U∞),
producing well-resolved profiles without triggering secondary instabilities, can be
reduced by spanwise-periodic surface patterns compared to the flat plate case.
Therefore, over a smooth step, understanding growth properties of the TS waves
with high frequencies is also likely to be pertinent. The linear analysis shows that in
the presence of a single smooth step, the TS wave can be attenuated for steps below
a critical height and smoothness but amplified above this critical height. Further, the
linear stability investigation of two separated smooth steps, instead of a single step,
with the same geometrical configuration revealed further reduction of the amplitude
of the TS wave can be obtained compared to a single smooth step. Again, past a
critical height, two forward-facing smooth steps can have a destabilising effect on
the 2D TS mode. Furthermore, a smooth step can tolerate a greater height scale
compared with a sharp step and does not introduce separation bubbles. In order to
validate the stabilising effect of the smooth forward-facing steps seen in the linear
stability analysis, fully nonlinear DNS of both the K- and H-type transition scenarios
are conducted. These two transition scenarios are insightful because they exhibit a
long region of linear growth particularly suitable for the investigation of the effect
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of the forward-facing smooth step in the boundary layer on the TS wave (Sayadi,
Hamman & Moin 2013). The results from the DNS confirm the findings from the
linear analysis. For both K- and H-type transition scenarios the forward-facing smooth
steps configuration has a stabilising effect, even avoiding transition for the K-type
scenario. Further, by introducing Gaussian white noise with both fixed and random
phase shifts into the DNS, robustness of the strategy is demonstrated.

The paper is organised as follows. In § 2, we give fundamental definitions and
describe the numerical tools. In § 3, we present results of linear analysis for TS wave
frequencies F ∈ [42, 160] for the 2D linear stability problem. In § 4, the results from
the DNS are presented and discussed for 3D nonlinear stability problem. A further
discussion is then given in § 5 where the work is concluded.

2. Mathematical formulations and numerical approach
2.1. Fully nonlinear and linearised Navier–Stokes equations

The non-dimensional momentum and continuity equations governing unsteady viscous
flow with constant density are given as follows

∂tui − Re−1∂2
j ui + uj∂jui + ∂ip= 0,
∂juj = 0,

}
(2.1)

where ui is one component of the velocity field along the ith direction, ∂t denotes the
derivative with respect to time, ∂j is the derivative in the jth spatial direction, Re is the
Reynolds number defined by LU∞/ν where L is the distance from the leading edge,
ν is the kinematic viscosity and p is the pressure. For a 2D problem, i = 1, 2 and
(u1, u2)= (u, v) and for a 3D problem, i= 1, 2, 3 and (u1, u2, u3)= (u, v,w).

Considering a steady state ūi of (2.1) about which a small perturbation ũi, such
that ui= ūi+ ũi, and dropping the second-order terms in ũi, (2.1) can be linearised as
follows

∂tũi − Re−1∂2
j ũi + ūj∂jũi + ũj∂jūi + ∂ip̃= 0,

∂jũj = 0.

}
(2.2)

With suitable boundary conditions, in a linear regime, the system (2.2) can be used
to exactly simulate evolution of a small perturbation ũi in a boundary layer.

In the flat-plate simulations undertaken, with the assumptions of relatively large
Re and no pressure gradient, the base flow can be approximated by the well-known
Blasius equation

f ′′′(η)+ 1
2 f (η)f ′′(η)= 0, (2.3)

subject to the following boundary conditions

f (η)= f ′(η)= 0 at η= 0, f ′ = 1 at η→∞, (2.4a,b)

where the prime denotes the derivative with respect to the similarity variable η.
Specifically in the above, the dimensionless variables are defined by

f =Ψ/√νU∞x and η= y
√

U∞/(νx), (2.5a,b)

where Ψ is the stream function. The streamwise and vertical velocity profiles of the
Blasius boundary layer can be calculated by

ūB =U∞ f ′(η) and v̄B = 1
2

√
νU∞

x
(η f ′(η)− f (η)). (2.6a,b)
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Under the assumption of streamwise parallel flow in two dimensions, the
perturbation assumes the normal form

(ũ, ṽ, p̃)= (û, v̂, p̂) exp(i(αx−ωt))+ c.c., (2.7)

where α and ω denote wavenumber and frequency of a perturbation, respectively. The
mode (û, v̂, p̂) in (2.7) generally can be obtained by solving the well-known Orr–
Sommerfeld (O–S) equation, the solution of which for eigenvalues and eigenfunctions
has been well studied (Stuart 1963; Schlichting & Gersten 1968; Drazin & Reid
1981). When temporal stability is studied, the perturbation (2.7) can be obtained by
solving the O–S equation with the imposed condition that α is real, and then the
complex speed ω/α is calculated; when spatial stability is studied, the condition
of real frequency ω is imposed and the wavenumbers are calculated. For spatial
stability, by integrating the spatial growth rate −Im(α) of convective perturbations,
amplification of their amplitude can be obtained along the streamwise direction. When
a surface imperfection occurs, the same notations û and v̂ are used to denote the TS
mode.

Generally, for numerical solutions of the linearised Navier–Stokes equations,
considering spatial convective instability and a perturbation (2.7) propagating along
the positive x direction, the frequency is real (ω ∈R+). Assuming that the TS mode
is dependent on both x and y, the TS wave envelope is defined by the absolute
maximum amplitude of the TS wave as follows

A(x)=max{|ũ(x, η, t)| : ∀η ∈ [0,∞), ∀t ∈R+}. (2.8)

2.2. Definitions correlated with a surface imperfection
In order to rescale the step, we introduce a reference boundary layer thickness
δ99 = 4.91xcRe−1/2

xc
and displacement thickness scales δ∗|xc = 1.7208xcRe−1/2

xc
, defined

according to a flat plate boundary layer, where xc is the distance from the leading
edge to the centre position of a surface imperfection and Rexc = U∞xc/ν. We also
let Reδ∗ = U∞δ∗/ν be the displacement Reynolds number. Now, we consider a
forward-step-like surface imperfection, which is defined by

fs(X, ĥ)= ĥ
2

(
1+ erf

(
X√
2d̂

))
, (2.9)

where d̂ and ĥ(>0) are the streamwise width scale and the normal direction length
scale defined by the corresponding physical scales d and h as

ĥ= h/δ99, d̂= d/δ99, (2.10a,b)

and X is a streamwise local coordinate defined as follows

X = (x− xc)/δ99. (2.11)

For multiple smooth steps, the wall profile is formally defined by
n∑

i=0

fs(X − Xi, ĥ), (2.12)

where Xi denotes the relative position of each individual step with respect to the first
step located at X0 = 0, and n+ 1 is the number of steps.
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In order to characterise or quantify geometrical steepness of a continuous function
f (x), assuming that f (x) ∈C1, we introduce the following quantity

γ (x)= max |∂x f (x)|√
max |∂x f (x)|2 + ε−2

, (2.13)

where ε is a smooth parameter. It is clear that γ ∈ [0, 1). For a smooth step, ε is
defined by the ratio ĥ/d̂= h/d ∈ [0,∞) and the formula (2.13) can be interpreted in
the following limits:

γ (X)=
{

1, ĥ/d̂→∞ for ĥ 6= 0
0, ĥ/d̂→ 0

, for f (X)= fs(X, ĥ), X ∈ [−d̂/2, d̂/2]. (2.14)

When γ = 1 the step is sharp, whereas for γ = 0 the smooth step tends to a flat plate.
In this paper, the width scale d̂, which is fixed, is comparable to the TS wavelength.
As indicated for an isolated roughness in Wu & Hogg (2006), this choice of d̂ leads
to a direct significant interaction between an isolated step and the TS wave. Therefore,
step height ĥ remains as a unique free parameter, which determines the value of γ (X).

2.3. Numerical strategy
A spectral/hp element discretisation, implemented in the Nektar++ package (Cantwell
et al. 2015), is used in this work to solve the linear as well as nonlinear Navier–
Stokes equations. A stiffly stable splitting scheme is adopted, which decouples the
velocity and pressure fields, and time integration is achieved by a second-order
accurate implicit–explicit scheme (Karniadakis, Israeli & Orszag 1991).

For 2D simulations, a convergence study by p-type refinement is performed to
demonstrate resolution independence. For 3D calculations, the same 2D mesh in the
x–y plane is used with the addition of a hybrid Fourier-Spectral/hp discretisation in
the third direction, yielding a hybrid Fourier/spectral/hp discretisation of the full 3D
incompressible Navier–Stokes equations.

To obtain the best fidelity in representing the curved surface of the smooth step,
high-order curved elements are defined by means of an analytical mapping. The
governing equations are then discretised in each curved element by seventh-order
polynomials. The choice of polynomial order is guaranteed by the mesh independence
study. Figure 2 compares the horizontal and vertical velocity profiles over a smooth
step at different positions for polynomial order ranging from sixth to eighth. In the
whole domain, the L2 relative error of velocity fields is lower than 10−6, which is
consistent with the convergence tolerance of the base flow generation defined by

‖(∂d
t u, ∂d

t v)‖0/‖(u, v)‖0Tc < 10−6, (2.15)

where ‖ · ‖0 means the standard L2 norm, ∂d
t denotes the discrete temporal derivative

and Tc is the convective time scale based on the free-stream velocity and a unit length.
Once 2D steady base flows are generated by using the nonlinear Navier–Stokes
equations (NSEs), the TS waves are simulated by the linearised Navier–Stokes
equations (LNSEs). As discussed below, for base flow generation, the inlet position
is located sufficiently far from the first step to allow the base flows to recover the
Blasius profile. Following the experimental methodology used by Downs & Fransson
(2014), the TS waves are excited by periodic suction and blowing on the wall.
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FIGURE 2. (Colour online) Streamwise (a–c) and wall-normal (d–f ) velocity profiles
(around the step located at X= 0) for three different streamwise locations: (a,d) Reδ∗ = 821
at X=−20.87, (b,e) Reδ∗ = 866 at X= 0 and (c, f ) Reδ∗ = 897 at X= 15.11. The physical
parameters corresponding to each case are from case D in table 2.

3. 2D linear-stability problem
3.1. Linear analysis in a narrow unstable regime of the neutral stability curve

As already mentioned, in order to detect the effect of smooth steps on the 2D stability
of the boundary layer, three different frequency perturbations (F ∈ {140, 150, 160}) are
excited within the boundary, upstream of the unstable region, by spanwise-uniform
periodic blowing and suction (see figure 3). As an illustration, we show changes of
the base flow for case D (ĥ=30 %) in table 1 and the contour plots of u/U∞, u/U∞−
ūB, v/U∞ and v/U∞ − v̄B are given in figure 4. We observe that in the presence of
the smooth step, the contour lines of u/U∞ and v/U∞ are altered in the following
manner. The streamwise velocity decreases slightly in front of the step and increases
slightly over the step, while the vertical velocity is only increased around the step. As
a further comparison, we show the horizontal and vertical velocity profiles at three
different positions in figure 5. Moreover, figure 6 shows that δ∗ increases in front of
the step and decreases over the step. We observe that when the TS wave propagates
over a smooth step, the amplitude of the TS wave is generally amplified in front of
the step and attenuated over the step. The following linear analysis is used to elucidate
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FIGURE 3. Positions of exciters (+) as well as (a) the location of an isolated smooth step
and (b) the location of two smooth steps in terms of the flat plate neutral stability curve.
The three different excitation frequencies of the TS wave, based on the step location, are
also shown by horizontal dashed lines.

Case Reδ∗i Reδ∗c1
Reδ∗c2

F1 F2 F3 ĥ(%) d̂ γ × 104 Lx/δ99 Ly/δ99

A 320 680 786 140 150 160 5.48 4 0.74 250 30
B — — — — — — 10.96 — 2.99 — —
C — — — — — — 20.00 — 9.97 — —
D — — — — — — 30.00 — 22.44 — —

TABLE 1. Parameters for smooth steps where Reδ∗i , Reδ∗c1
and Reδ∗c2

are, respectively,
the inlet Reynolds number, the Reynolds number at the centre of the first step and
the Reynolds number at the centre of the second step. F denotes the non-dimensional
perturbation frequency. Lx and Ly denote the streamwise extent and height of the domain
for which the 2D base flow field obtained was independent of domain size.

this phenomenon. Hereafter, for each perturbation frequency studied, let A0 indicate a
reference maximum TS mode amplitude at the lower branch of the neutral stability
curve in a flat plate boundary layer. The contours of |ũ|/A0 are given in figure 7 for
three different non-dimensional frequencies (F ∈{140,150,160}) and for four different
single smooth steps of varying heights ĥ= 5.45 %, 10.96 %, 20 % and 30 % all located
in Reδc1∗ = 680. A summary of the parameters of these computations can be found in
table 1.

First, we observe that around the smooth step, the TS mode is energised and
subsequently weakened (figure 7a–l). By energising we mean that around the step,
there exists a local maximum of |ũ|/A0. Secondly, a higher step height ĥ gives a
stronger local maximum. Finally, increasing the height of the step moves the location
of maximum amplitude of the TS mode downstream. For example, for the excitation
frequency F = 150 the maximum is located at Reδ∗ = 920 for ĥ= 5.48 % (figure 7c)
but at Reδ∗ = 950 for ĥ= 30 % (figure 7j).

The results of our linear analysis reveal behaviour distinct from the results for a
sharp step (γ = 1) of height h/δ∗= 0.235 (ĥ= 8.24 %) given by Wörner et al. (2003),
where they claim that a forward-facing sharp step showed a stabilising effect without
a local destablisation regime despite a separation bubble being reported in front of
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FIGURE 4. (Colour online) Changes of velocity fields from the Blasius profile: (a) u/U∞;
(b) u/U∞− ūB; (c) v/U∞; (d) v/U∞− v̄B for a step of height ĥ= 30 % (case D in table 1).
The vertical red line represents the location of the forward-facing smooth step.
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FIGURE 5. Comparison of base flow profiles of the boundary layers over a flat plate
(dotted lines) and a smooth step (solid lines): (a) streamwise velocities u/U∞ and ūB;
(b) vertical velocities v/U∞ and v̄B. The physical parameters are from case D in table 1.
u/U∞ and ūB are rescaled by a factor 20. v/U∞ and v̄B are rescaled by a factor 1000.

the step. Recently, through further numerical calculations, Edelmann & Rist (2015)
observed that, for subsonic Mach numbers and larger height (h/δ∗= 0.94 or ĥ= 33 %),
two separation bubbles, in front and on top of the step, were observed and strong
amplification of the disturbances was found in front of and behind the step. The results
from the linear analysis, and more generally the results from the DNS presented in § 4,
underline the attractiveness of replacing a forward-facing sharp step (γ = 1) with large
ĥ by a smooth one (γ < 1) because the smooth step with the same ĥ does not lead
to a separation bubble. We attribute the discrepancy between the current findings and
the work of Edelmann & Rist (2015) to a step-induced separation bubble that has a
strong destabilising effect on the TS mode. Furthermore, for a forward-facing smooth
step of fixed height, the position of the global maximum value of a contour varies
with respect to the given frequency, which is consistent with the relative position of
the step with respect to the position of the upper branch when changing frequency
in the neutral curve diagram (figure 7(g,i,k) for example). For two isolated smooth
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FIGURE 6. (Colour online) Displacement thickness δ∗ rescaled by δ∗c1
. The vertical grey

line represents the location of the forward-facing smooth step and the arrow indicates ĥ
is increasing. The solid coloured lines correspond to cases A, B, C and D in table 1. The
dashed dark line indicates ĥ= 0.

steps, a similar phenomenon is observed in figure 8(g,i,k) except that two distinct local
maxima are observed around each smooth step for large ĥ. From figures 7 and 8, it
can be concluded that both for single- and two-step configuration global maximum
values of |ũ|/A0 depended on the frequencies, ĥ and smoothness.

By extracting the maximum values of the envelope of the TS mode at each
streamwise location, the A/A0 profiles for both the single and double smooth steps
cases are shown in figure 9. We notice that a high enough smooth step significantly
locally amplifies the TS wave in the vicinity of the step. From figure 9(a,c,e), we
observe that when ĥ < 20 %, the TS waves are stabilised downstream for small ĥ.
However when ĥ > 20 %, the most amplified flat plate TS modes corresponds to the
lowest frequency F = 140. The reason for this may well lie in that, for this fixed
step position, this lower frequency has a higher instability even for the flat plate
cases, which are indicated by the open circles in this figure. Obviously from this
figure we also observe that larger step heights have an influence on the Reδ∗ for
which instability starts and the rate at which the TS waves grow in the single-step
case shown in figure 9(a,c,e).

In figure 10, a comparison of the TS modes at sections before the step, in the
middle of the step and after the step are shown, for F = 150, to help elucidate the
stabilisation effect. From this figure we observe in figure 10(a) that before the step,
as ĥ is increased, the profiles have a similar pattern but are amplified. However, at the
centre of the step and after the step (figure 10b,c), the profiles again retain a similar
pattern to the flat plate profiles but are less amplified.

From figure 9(a,c,e), assuming the local growth (or destabilisation) of the TS wave
does not trigger any nonlinear phenomena, a smooth step of low height is not harmful
for TS waves with a slightly high frequency (1406F 6 160). In fact, to some extent,
a boundary layer can benefit from a smooth step since the net instability can be
reduced. In figure 9(b,d, f ) envelopes of the TS waves over two isolated smooth
steps at the same frequencies are shown. The positions of the two smooth steps are
provided in table 1 and schematically illustrated in figure 3(b). For the frequencies
considered, the second steps still lie in the unstable regime of the flat plate neutral
stability curve. We observe that, surprisingly, the second steps do not locally lead to
further amplification of the TS waves when ĥ< 20 %; in contrast, the amplitudes of
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FIGURE 7. (Colour online) Contour plots of |ũ|/A0 for steps of different magnitudes and
exposed to TS waves of frequencies F = {140, 150, 160}. (a,c,e) ĥ= 5.48 %, (b,d, f ) ĥ=
10.96 %, (g,i,k) ĥ = 20 % and (h,j,l) ĥ = 30 %. The step position is determined by Reδc1∗ .
The red cross + indicates the location of the maximum amplitude of the TS-wave and the
vertical grey line represents the location of the forward-facing smooth step.
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FIGURE 8. (Colour online) Contour plots of |ũ|/A0 for two equal height steps of different
magnitudes and exposed to TS waves of frequencies F = {140, 150, 160}. (a,c,e) ĥ =
5.48 %, (b,d, f ) ĥ= 10.96 %, (g,i,k) ĥ= 20 % and (h,j,l) ĥ= 30 %. The step positions are
determined by Reδc1∗ and Reδc2∗ . The red cross + indicates the location of the maximum
amplitude of the TS-wave and the vertical grey line represents the location of the
forward-facing smooth step.
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FIGURE 9. (Colour online) Relative amplitude of the TS modes A/A0 as a function
of streamwise location for each of step heights ĥ = 5.48 %, 10.96 %, 20 % and 30 %
for single-step (a,c,e) and double-step (b,d, f ) cases. (a,b) F = 140, (c,d) F = 150 and
(e, f ) F = 160. The vertical grey lines represents the locations of the smooth steps.

the TS waves are further dampened compared to the amplitude of the TS waves over
both the single-step boundary layers and a flat plate boundary. Destabilisation of the
TS mode is only introduced by the larger height steps.

From the results of the linear stability analysis presented above, we deduce that
stabilisation or destabilisation behaviour of smooth steps depends strongly on the
smoothness of the step as well as its height. For a suitable range of parameters
the influence of smooth steps on a boundary layer can certainly lead to notable
stabilisation. It is interesting to note that if the step was extremely smooth, a
region of favourable pressure gradient would exist over the whole domain we have
considered, also leading to suppression of the 2D TS-instability. However, in our
study we obviously investigated the influence of a localised favourable pressure
gradient introduced by a smooth forward-facing step of length scale comparable to
the TS wavelength, which potentially has more practical applications.
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FIGURE 10. (Colour online) Comparison of the ũ (a–c) and ṽ (d–f ) profiles of the
TS modes at different location over a single smooth step at F = 150. (a,d) Re∗δ = 680;
(b,e) Re∗δ = 750 and (c, f ) Re∗δ = 800. ũ and ṽ are, receptively, normalised by max(ũf ) and
max(ṽf ) from the corresponding flat plate boundary.

3.2. Linear analysis of smooth steps at a lower excitation frequency of F = 100
In the previous section, investigations of the effect of a smooth forward-facing step on
the 2D stability of a boundary layer focused on the frequencies F ∈ {140, 150, 160}.
The flat plate unstable regions corresponding to these frequencies are relatively
narrow compared with lower frequencies (see figure 3). For example, for F = 160
the unstable region of the TS-mode on the flat plate ranges from Reδ∗ = 580 to
Reδ∗ = 830, whereas for a perturbation frequency of F = 100 the unstable region
ranges from Reδ∗ = 700 to Reδ∗ = 1100. We therefore will now consider an incoming
TS wave with a frequency F = 100 in a boundary layer over a single smooth step
for the cases with the parameters given in table 2. Physically, the step sizes at Reδc′∗
are kept the same as those at Reδc∗ ; however, we are now interested in assessing
the effect of the position of the step on the excitation of the TS mode. Figure 11
provides the comparison of the TS envelopes for different height steps for an isolated
step in two different locations. Clearly, figure 11(a) demonstrates again that small
ĥ (i.e. <5 %) does not induce significant destabilisation. However, as ĥ is increased,
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FIGURE 11. (Colour online) Comparison of the normalised amplitude of the perturbation
for steps at different locations. The parameters for (a–d) are provided in table 2. The red
dotted line denotes a single step at Reδ∗c = 866 whose location is indicated by the left
vertical line; the blue solid line denotes a single step at Reδ∗

c′ = 988 whose location is
indicated by the right vertical line.

as seen in figure 11(b–d), a destabilisation effect emerges and larger ĥ gives rise to
larger global maximum amplitude of the TS wave. Meanwhile, figure 11(c,d) indicates
that moving the location of the smooth step downstream (yet not close to the neutral
curve of the upper branch) induces a slightly stronger maximum amplification than
for the more upstream location.

This means that for a low-frequency TS wave, the smooth step can certainly have a
destabilising role on the TS wave downstream of the step. As already mentioned when
considering this type of lower-frequency TS wave, the spatial extent of the unstable
regime of the neutral stability curve is larger compared to that of a higher-frequency
wave. The localised stabilisation effect of the smooth step is then unable to generate
a sufficiently large stabilising downstream influence such that an amplification effect
is eventually induced. Furthermore, the maximum values of the TS waves’ envelopes
for the upstream case are less than those for the downstream ones. This may well be
expected since the TS wave has a low spatial growth rate when the wave is close
to the lower branch of the neutral stability curve. In contrast, when the TS wave
propagates towards the centre region of the unstable regime of the neutral stability
curve, it has a larger spatial growth rate. In this study, the upstream step, located at
Reδ∗c , is closer to the lower branch of the neutral stability curve compared with the
step located at Reδ∗

c′ , which is nearly at the central position of the unstable regime
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FIGURE 12. (Colour online) Comparison of the normalised amplitude of the perturbation
for a low frequency TS wave at F = 100: (a) one single step at Reδc1∗ ; (b) two steps
at Reδc1∗ and Reδc2∗ . The vertical grey lines represents the locations of the forward-facing
smooth steps. Physical parameters are provided in table 3.

Case Reδ∗i Reδ∗c F ĥ(%) d̂ γ × 104 Lx/δ99 Ly/δ99

A 388 866 100 5.16 4 0.66 287 30
B — — — 10.32 — 2.65 — —
C — — — 20.00 — 9.97 — —
D — — — 30.00 — 22.44 — —

Reδ∗i Reδ∗
c′ F ĥ′(= ĥδc

99/δ
c′
99)(%) d̂′ = d̂δc

99/δ
c′
99 γ × 104 Lx/δ99 Ly/δ99

A′ 388 988 100 4.52 3.51 0.66 287 30
B′ — — — 9.05 — 2.65 — —
C′ — — — 17.54 — 9.97 — —
D′ — — — 26.31 — 22.44 — —

TABLE 2. Parameters for smooth steps: Reδ∗i is the inlet Reynolds number, Reδ∗c and Reδ∗
c′

indicate two different locations of a step of the same physical dimension. F denotes the
non-dimensional perturbation frequency.

of the neutral stability curve. Therefore, the destabilisation effect in front of the step
at Reδ∗

c′ is to be expected to be greater than that in front of the step at Reδ∗c . This is
consistent with what we observe in the TS waves’ envelopes of figure 11.

This destabilisation phenomenon is further illustrated in figure 12 for the parameters
defined in table 3, where we use the same non-dimensional value of ĥ as in table 2.
When ĥ= 5 % and 10 %, once a second smooth step is introduced downstream, some
stablisation relative to the flat plate conditions is observed, as shown in figure 12(b).

The correlation between the position of the step and the TS mode amplification
acts as a guideline for choosing the ideal location of a smooth step. For large ĥ, the
effect of a step located in a larger growth rate region clearly gives rise to a larger
amplification of the TS wave. However, it is worth noting that when the height is
reduced to less than 10 %, there no longer exists a strong destabilisation effect from
a single smooth step, independent of the position within the unstable region which we
have explored.
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Case Reδ∗i Reδ∗c1
Reδ∗c2

F ĥ (%) d̂ γ × 104 Lx/δ99 Ly/δ99

A 388 988 1096 100 5.00 4 0.58 287 30
B — — — — 10.00 — 2.30 — —
C — — — — 20.00 — 9.26 — —
D — — — — 30.00 — 20.84 — —

TABLE 3. Comparison of the normalised amplitude of the perturbation with parameters
for smooth steps where Reδ∗i , Reδ∗c1

and Reδ∗c2
are, respectively, the inlet Reynolds number,

the Reynolds number at the centre of the first step and the Reynolds number at the centre
of the second step. F denotes the non-dimensional perturbation frequency.

3.3. Ability of smooth steps to amplify the very low-frequency TS waves at F = 42
The studies by Wörner et al. (2003) and Edelmann & Rist (2015) considered the
effect of low-frequency TS modes for a long range from the leading edge of the
flat plate with Reδ∗ = 2200. In Edelmann & Rist (2015), the N-factor, defined as
N = ln(A/A0), got close to the transition criterion of N = 8.

To further assess the effect of a forward-facing smooth step on a similar problem
we consider a TS wave with F = 42. In addition, we consider an upstream problem
where the TS wave has been amplified by a recirculation bubble inside an indentation,
located at Reδ∗r = 1519, far upstream of the transition location where N = 8. We then
introduce a smooth forward-facing step downstream of the indentation in the unstable
region of the TS mode. The indentation is defined by

fr =
{
−ĥr cos(πXr/λ̂)3, Xr ∈ [−λ̂/2, λ̂/2],
0, Xr /∈ [−λ̂/2, λ̂/2], (3.1)

where Xr = x − xr
c/δ

r
99. The parameters of this computation are given in table 4.

Note that the width scale λ̂ is comparable with the corresponding TS wavelength.
A separation bubble is induced in the indentation region, and when a base flow
undergoes this distortion, the TS wave is strongly amplified. In figure 13(a), we
observe that the TS waves are strongly amplified around the indentation and the
N-factor in the computational domain reaches N = 8. Downstream of the roughness,
for Reδ∗ > 1800, the smooth forward-facing step only has weak, local, stabilising or
destabilising effect for all four cases (see figure 13b).

In contrast, a strong destabilisation of the TS wave by the sharp step (γ = 1) for
low frequency is reported by Edelmann & Rist (2015), where the separation bubble
induces a strong increase in N-factor from N = 4 to N = 6 because of the existence
of separation bubbles in front of the step. This contrasts with the weak destabilisation
influence of a smooth step on the TS wave in a boundary layer, where negligible
variation of the N-factor can be seen in figure 13 even for a large ĥ > 20 % step
height.

4. 3D nonlinear-stability problem
4.1. DNS investigation of the effect on K- and H-type transition of two

forward-facing smooth steps excited by a TS wave with a frequency F = 150
Secondary instabilities and transition to fully developed flow is highly three-
dimensional. To this end, further investigation of the influence of smooth steps
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FIGURE 13. (Colour online) Effect of a smooth step for the TS wave with a very low
frequency of F = 42. N = ln(A/A0). The indentation is located at the first vertical line
and the smooth step is located at the second vertical line. (a) Overview of the TS waves’
envelopes. (b) Local view of the TS waves’ envelopes around the smooth steps. The full
parameters are given in table 4.

Case Reδ∗i Reδ∗r Reδ∗ F ĥr(%) ĥ(%) λ̂ d̂ Lx/δ99 Ly/δ99

◦ 596 1519 1885 42 74.77 0 5.5 4 312 30
A — — — — — 5.00 — — — —
B — — — — — 10.00 — — — —
C — — — — — 15.00 — — — —
D — — — — — 30.00 — — — —

TABLE 4. Parameters for a wall with an indentation and a smooth step. Reδ∗i , Reδ∗r and
Reδ∗ are, respectively, the inlet Reynolds number, the Reynolds number at the centre of
the indentation and the Reynolds number at the centre of the smooth step. F denotes
the non-dimensional perturbation frequency. ĥr and λ̂ are used to define the indentation
(3.1), which are normalised by the boundary layer thickness at the centre position of the
roughness.

on two transition scenarios is achieved with a hybrid Fourier-spectral/hp discretisation
to solve 3D incompressible Navier–Stokes equations. The spanwise direction was
assumed to be periodic and discretised by 80 Fourier modes and the streamwise and
wall normal plane was discretized using 5576 elements (quad and triangle) within
which a polynomial expansion of degree 7 is imposed. K- and H-type transitions
are simulated for the flow over a flat plate and with smooth steps. A Blasius profile
is imposed at the inflow and, for both scenarios, a wall-normal velocity along the
disturbance strip is prescribed by the blowing and suction boundary condition (Huai,
Joslin & Piomelli 1997),

v(x, z, t)= Af (x) sin(ωAt)+ Bf (x)g(z) sin(ωBt+ ϕ), (4.1)

where ωA and ωB are the frequencies of the 2D TS waves and the oblique waves,
respectively. A and B are the disturbance amplitudes of the fundamental and the
oblique waves. We denote by ϕ the phase shift between two modes. As considered
by Huai et al. (1997) and Sayadi et al. (2013), we consider the simplest case in the
present study, with ϕ equal to 0. As indicated by Sayadi et al. (2013), the above
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Reδ∗i Reδ∗c1
Reδ∗c2

FA FB A/U∞ B/U∞ ĥ(%) Lx/δ99 Ly/δ99 Lz/δ99 λz/δ99 T

320 680 786 150 150 0.5(%) 0.03(%) 0 340 30 8 4 20
— — — — 75 — — — — — — — —
— — — — 150 — — 5.48 — — — — —
— — — — 75 — — 5.48 — — — — —
— — — — 150 — — 12.79 — — — — —
— — — — 75 — — 12.79 — — — — —

TABLE 5. Parameters used for the DNS simulations. FA and FB denote non-dimensional
perturbation frequencies of the disturbance strip. A/U∞ and B/U∞ are the relative
amplitudes of the disturbance amplitudes of the fundamental and oblique waves,
respectively. The spanwise Lz extent of the domain is expressed as a function of the
boundary layer thickness δ99. T is the finial non-dimensional time length scale which we
simulate, which is defined by T = tU∞/L. λz is non-dimensionalised by the inlet boundary
layer thickness, which almost has the same non-dimensional value as the scale used in
Sayadi et al. (2013). The choice of λz/δ99 is equivalent to a spanwise wavenumber of
approximately 0.35 at Reδ∗c1

.

function models the effect of vibrating ribbon-induced disturbances. The function f (x)
is defined by Fasel & Konzelmann (1990)

f (x)= 15.1875ξ 5 − 35.4375ξ 4 + 20.25ξ 3, (4.2)

with the parameter ξ

ξ =


x− x1

xm − x1
for x1 6 x 6 xm

x2 − x
x2 − xm

for xm 6 x 6 x2,

(4.3)

where xm = (x1 + x2)/2 and g(z) = cos(2πz/λz) with the spanwise wavelength λz.
At x1 and x2, Reδ∗x1

and Reδ∗x2
are equal to 591.37 and 608.51, respectively. The

distribution f (x) can produce clean localised vorticity disturbances and have negligible
time-dependent changes of the mean flow (Fasel & Konzelmann 1990). For the K-type
transition, the oblique waves have the same frequency as the 2D wave (ωA = ωB).
Also, for the H-type transition, the oblique waves are sub-harmonic (ωB =ωA/2). All
parameters used in the investigation are given in table 5. Note that the frequencies
used for the perturbation are consistent with the parameters used for the linear
analysis in table 1. The schematic of the computational domain is illustrated in
figure 14.

4.2. Effect of smooth forward-facing steps on K- and H-type transitions
The validation of the DNS results for both K- and H-type transitions is corroborated
by recovering the aligned arrangement of the Λ vortices for the K-type transition (see
figure 15a) and the staggered arrangement for the H-type transition (see figure 15b),
as experimentally observed by Berlin, Wiegel & Henningson (1999) for the flat
plate boundary layer. Figure 16 shows the evolution of the skin-friction coefficient
versus Reδ∗ for two different normalized height scales. We observe that, for a flat
plate boundary layer, the skin friction coefficient diverges from that of the Blasius
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h

h

Disturbance strip

FIGURE 14. Overview of the computational setup with the Blasius boundary layer profile
at the inflow, the disturbance strip and two smooth steps used for the DNS.

0.27

u

0.64(a)

0.27

u

0.64(b)

FIGURE 15. (Colour online) Instantaneous contours of streamwise velocity in the xz-plane
at height y= 0.6δi

99 in Reδ∗ ∈ [963, 1111] for the K- (a) and H-type (b) transition scenarios
for a flat plate ĥ= 0.

(a) (b)
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FIGURE 16. (Colour online) Comparison of time- and spanwise-averaged skin friction
versus streamwise position Rex for K- (a) and H-type (b) transition scenarios for a flat
plate (—) and two smooth steps of height ĥ = 5.48 % (— · —) and ĥ = 12.79 % (– –).
The skin-friction profile of the Blasius boundary layer (u) is given for reference.

boundary layer where Λ vortices are clearly observed, as illustrated in figure 15. In
fact, Λ vortices appear further upstream, but here we only show the Λ vortices from
the location where the skin friction coefficient diverges. The streamwise evolution of
the skin-friction (see figure 16) shows the K-type transition is fully inhibited by the
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FIGURE 17. (Colour online) Comparison of the energy in modes (0,1) in blue and (0,2)
in black versus streamwise position Reδ∗ over a flat plate (–) and two smooth steps with
height ĥ= 5.48 % (– –) and ĥ= 12.79 % (— · —) for the K- (a) and H-type (b) transition
scenarios.

two smooth steps, whereas the H-type transition is delayed. Additionally, increasing
the height ĥ (<20 %) further reduces the skin friction coefficient Cf in both scenarios.
The observation of these phenomena supports the result of linear analysis.

To gain further insight into the different impacts on the two transition scenarios
of the two forward-facing smooth steps we consider the energy growth of the main
modes. We label these modes using the notation (ω, β) (Berlin et al. 1999), where ω
and β are, respectively, the frequency and spanwise wavenumber, each normalized by
the corresponding fundamental frequency/wavenumber. It has been observed that the
K-type transition scenario has its main initial energy in the (1, 0) mode. The (1,±1)
mode also generates the (0, ±2) mode with a small amplitude through nonlinear
interaction (Berlin et al. 1999). At the late stage, the (0,±2) mode can grow to an
amplitude comparable to that of the (0, ±1) mode. Laurien & Kleiser (1989) and
Berlin et al. (1999) have shown that the initial condition for the H-type transition has
its main energy in the (1, 0) mode with a small amount in the oblique subharmonic
(1/2, ±1) mode. The important mode is the vortex-streak (0, ±2) mode, which is
nonlinearly generated by the subharmonic mode and vital in the transition process.
As illustrated in figure 17, the (0, 2) mode plays a significant role in the late stages
of transition for both transition scenarios with the two smooth steps. For the K-type
scenario, in the transition regime, the energy of mode (0, 2) grows and exceeds the
energy of mode (0, 1). For the flat plate, the energy of mode (0,1) finally grows again
until turbulence occurs. The energy of mode (0, 2) with the two smooth steps is less
than that of mode (0, 2) for the flat-plate, and increasing the normalised smooth step
height ĥ yields stronger reduction of the energy. A similar reduction in energy is
also observed for mode (0,1). Furthermore, the energy of mode (0,2) exceeds that of
mode (0,1) in Reδ∗ = 1080 for ĥ= 5.48 % to Reδ∗ = 1100 for ĥ= 12.79 % (figure 17a)
and from these points onwards the energy of mode (0,1) decays. Based on the results
presented in figure 17(a), we observe that the spanwise modulation induced by mode
(0,1) with energy decaying on the smooth steps leads to stabilisation of the boundary
layer.

In the above, we did not consider the influence of the smooth steps and other
parameters (e.g. ϕ) on other modes at the weakly nonlinear stages of transition.
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Group Case FA FB A/U∞ B/U∞ ĥ(%) ϕ N (0, σ 2) (PDF of ξ )

A 150 N/A 0.5 % N/A 0 N/A σ = 5 % · A
1 B — — — — 5.48 % — —

C — — — — 12.79 % — —
A 150 N/A 0.5 % N/A 0 N/A σ = 10 % · A

2 B — — — — 5.48 % — —
C — — — — 12.79 % — —

3 A 150 75 0.5 % 0.03 % 0 π/4 σ = 10 % · A
B — — — — 12.79 % — —

4 A 150 75 0.5 % 0.03 % 0 U(0, 2π) σ = 10 % · A
B — — — — 12.79 % — —

TABLE 6. Parameters used in (4.4) and (4.5) for the DNS simulations. U(0, 2π) denotes
a random number between 0 and 2π with a uniform distribution. The probability density
function (PDF) of the random variable ξ(·, t) is in a normal distribution N (µ, σ 2) with
mean µ and standard deviation σ . The parameters defined by Groups 1 and 2 are used
for (4.4) and the parameters defined by Groups 3 and 4 are used for (4.5). ‘N/A’ means
‘not applicable’.

Experimentally, Kachanov & Levchenko (1984) and Borodulin, Kachanov & Koptsev
(2002) discussed the influence of the initial phase shift between the fundamental
wave and the sub-harmonic pair on the resonant amplification. The phase shift has
particular importance for the H-type interaction. Addressing how the smooth step
influences this phase shift will be done in the next section.

4.3. Effect of smooth forward-facing steps on transition with white noise
In view of the possible deployment of such flow control strategies, it is pertinent to
assess the effect of smooth forward-facing steps on a more general transition route
than the K- and H-type transition analysed so far in this paper. To understand the
transition delay effect of smooth forward-facing steps with noise akin to environmental
noise, we introduce Gaussian white noise into the DNS. The white noise is introduced
into the boundary conditions by a Gaussian temporal δ-correlated process {ξ(x, t)}
with E[ξ(·, t)] = 0 and E[ξ(·, t + dt)ξ(·, t)] = σ 2δ(dt), where σ is constant. The
disturbance strip expression (4.1) is replaced by the following expressions

vξ (x, z, t; ξ)= Af (x) sin(ωAt)+ ξ(x, t), (4.4)

or

vϕ,ξ (x, z, t; ϕ, ξ)= Af (x) sin(ωAt)+ Bf (x)g(z) sin(ωBt+ ϕ(t))+ ξ(x, t), (4.5)

where ϕ is a given phase shift or a uniform random phase shift. In table 6,
configurations of the parameters in (4.4) and (4.5) are given. The computational
geometry, the disturbance position and the two step positions are kept the same as
defined in table 5.

In figure 18(a,b), we show the skin friction profiles for two different noise levels
without considering sub-harmonic disturbance before downstream fully developed
turbulence is reached. We observe that in the flat plate boundary layers, transition to
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FIGURE 18. (Colour online) Comparison of time- and spanwise-averaged skin friction
versus streamwise position Rex for transition induced by different white noise levels at the
early stage, which here indicates that the non-dimensional time t∈ [2, 4] (a,b) (the average
is implemented over two convective time scales before turbulence is fully developed) and
at the fully developed stage (c,d) (the average is implemented over two convective time
scales after fully developed turbulence is reached downstream) for a flat plate (—) and
two smooth steps of height ĥ = 5.48 % (— · —) and ĥ = 12.79 % (– –): (a,c) the noise
standard variation σ = 5 % · A and the parameters are given by Group 1 in table 6; (b,d)
the noise standard variation σ = 10 % · A and the parameters are given by Group 2 in
table 6. The skin-friction profile of the Blasius boundary layer (u) is given for reference.
The disturbance is defined by vξ (x, z, t; ξ) in (4.4) (without phase shift).

turbulence is much quicker than that in the boundary layers over two smooth steps.
The skin friction of the flat plate boundary is greater than that of the boundary layer
over two smooth steps. By considering the time scale to reach a turbulent state, two
smooth steps have the ability to increase this time scale. Further, we assume that
the environmental white noise is always present. In figure 18(c,d), we give the skin
friction profiles calculated after fully developed downstream turbulence is reached.
We notice that there still exists a transition delay effect, although the effect is not
significantly strong. From figure 18, we also observe that a higher ĥ (larger steepness
γ (x)) has a stronger delay effect and a higher noise level induces a more upstream
transition position.
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FIGURE 19. (Colour online) Comparison of time- and spanwise-averaged skin friction
versus streamwise position Rex for transition induced by different white noise levels at the
fully developed stage (the average is implemented over two-convective time scales after
fully developed turbulence is reached downstream) for a flat plate (——) and two smooth
steps with height ĥ= 12.79 % (– –): (a) the noise standard variation σ = 10 % · A with a
fixed phase shift (ϕ =π/4) and the parameters are given by Group 3 in table 6; (b) the
noise standard variation σ = 10 % ·A with a random phase shift ϕ and the parameters are
given by Group 4 in table 6. The skin-friction profile of the Blasius boundary layer (u)
is given for reference. The disturbance is defined by vϕ,ξ (x, z, t; ϕ, ξ) in (4.5).

A phase relation between the fundamental and subharmonic modes is very important
in transition. We now consider phase shift with white noise (σ = 10 % · A) in the
disturbance defined by (4.5). Calculations are implemented by considering two
situations: (i) a fixed phase shift ϕ = π/4; (ii) uniform random phase shift. We
here only consider one height parameter ĥ = 12.79 % because of the significant
computational cost of these DNS. In figure 19, the skin friction profiles are given
for two settings of the phase parameter ϕ. Figure 19(a) shows that with a fixed
phase shift and white noise, the two smooth steps configuration has a transition delay
effect. When uniform random phase shift is considered, the transition delay is also
observed, as shown in figure 19(b). Moreover, by comparing the skin friction profiles
in figure 19(a,b), we notice that the skin friction profiles with a fixed phase ϕ =π/4
diverge from that of the Blasius boundary layer earlier than those with a random
phase shift.

In order to further investigate the phenomenon in figure 18(a,b) and analyse the
transient property of the skin friction, the following expression is introduced

Cf (x, t)= ω

2π

∫
s∈Iπ/ω(t)

Cf (x, s) ds, (4.6)

where ω is the typical frequency in (4.4) or (4.5) and Cf (x, s) represents transient
spanwise-averaged skin friction at the time s. Iδ(t) indicates a closed δ (=π/ω)
neighbourhood centred at t. We set ω=ωA and ω=ωB for the disturbances (4.4) and
(4.5), respectively.

In figure 20, the Cf (x, t) profiles are provided for the disturbances with and without
a phase shift when white noise is present. From figure 20(a,b), without phase shift,
we observe that at the time t1, in the flat plate boundary layer, downstream turbulence
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FIGURE 20. (Colour online) Comparison of transition property of spanwise-averaged skin
friction Cf (x, t) without (a,b) and with (c,d) phase shift: (a) the flat plate boundary layer
corresponding to case A of Group 2 in table 6; (b) the boundary layer with two smooth
steps (ĥ = 12.79 %) corresponding to case C of Group 2 in table 6; (c) the flat plate
boundary layer corresponding to a random phase shift given in case A of Group 4 in
table 6; (d) the boundary layer with two smooth steps (ĥ = 12.79 %) corresponding a
random phase shift given in case B of Group 4 in table 6. The noise standard variation
σ = 10 % · A for all cases (a–d). The non-dimensional time parameters {ti}5i=1: (a,b) t1 =
3.42, t2 = 3.66, t3 = 3.90, t4 = 4.14 and t5 = 4.38; (c,d) t1 = 3.60, t2 = 3.84, t3 = 4.08,
t4 = 4.32 and t5 = 4.56.

is well developed and the Cf (x, t) profiles approach a saturated state much earlier
than those profiles in the boundary layer over two smooth steps. Until the time t5
is reached, the turbulence is not fully developed downstream in the boundary layer
over two smooth steps. The Cf (x, t) profile almost needs one more convective time
scale to reach fully developed turbulence from a laminar state, compared with the flat
plate boundary transition. The similar phenomenon is observed for the disturbances
with uniform random phase shift in figure 20(c,d). With two smooth steps, although
a random phase shift is introduced, the transition to turbulence in the boundary layer
over two smooth steps is still slower than that in the flat plate boundary layer and the
transition is postponed more than one convective time scale by two smooth steps.

By considering white noise and phase shift in disturbances, we demonstrate the near-
practical effect of the smooth steps on delaying laminar–turbulent transition.
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5. Conclusions

In this paper we considered smooth steps of varying heights and their stabilising
and destabilising role on TS waves. Linear stability analyses were conducted for
140 < F < 160, F = 100 and F = 42 frequency forcing (where an upstream
indentation was also introduced) with respect to the neutral stability curve of the
flat plate boundary layer. One- and two-step configurations with different heights
and smoothness were analysed. Finally, DNS of various transition situations are
undertaken for frequencies 140 < F < 160 forcing cases to confirm the results from
the linear analysis.

The net effect of a smooth forward-facing step on the stability of the TS mode
clearly depends on height. Small height smooth steps (ĥ < 10 %) caused minimal
amplification for TS waves of frequency ranging from F ∈ [42, 160]. For ĥ= 5, 10 %
both configurations with single and two forward-facing steps lead to a stabilising
effect at high frequencies F ∈ [140, 160] of the TS-mode, which is a notable
improvement when two steps were considered. Although for ĥ > 20 % destabilisation
was generally observed, when considering a smooth step γ < 1 it appears to have
a weaker destabilising effect than previous papers that have reported of sharp-step
configurations where γ = 1. When considering lower frequencies F ∈ [42, 100] we
again observe that small height smooth steps ĥ< 10 % are relatively safe in the sense
they do not significantly amplify the TS wave. Again this result contrasts with results
reported for a sharp forward-facing step, and we attribute the large amplification of
the TS wave by a sharp step to the occurrence of separation bubbles. This effect is
similar to the destabilisation effect induced by separation bubbles in an indentation
or behind a hump or a bump (Gao, Park & Park 2011; Park & Park 2013; Xu et al.
2016). From a global stability point of view, a smooth step, even with a relatively
large height, does not lead to recirculation bubbles, meaning that global instability is
unlikely to be introduced.

The results obtained by DNS, for a frequency forcing F = 150, support the
conclusion that smooth steps can have non-negligible and positive impact on the
stability of the boundary layer. For ĥ= 5.48 and ĥ= 12.79, the transition to the fully
developed turbulent state is delayed for the H-type transition scenario and suppressed
for the K-type scenario. Finally, even in the more general case, when Gaussian white
noise with fixed and random phase shift is present, the transition is delayed by
smooth steps, leading us to believe the configuration of two smooth steps presented
in this paper shows great potential in delaying transition.
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