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Abstract

The purpose of the present paper is to provide an overview of Asymptotic-
Preserving methods for multiscale plasma simulations by addressing three sin-
gular perturbation problems. First, the quasi-neutral limit of fluid and kinetic
models is investigated in the framework of non magnetized as well as magne-
tized plasmas. Second, the drift limit for fluid descriptions of thermal plasmas
under large magnetic fields is addressed. Finally efficient numerical resolutions
of anisotropic elliptic or diffusion equations arising in magnetized plasma simu-
lation are reviewed.
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1. Introduction

Plasma physics is by essence a multiscale problem [8, 74, 93] mixing micro-
scopic to macroscopic scales. The microscopic space scales describe the motion
of particles, their collisions on the mean free path scale, and the interaction
with the electromagnetic fields over the plasma skin depth or the Debye length
and the Larmor radius. The macroscopic scales are characteristic of the field
and the plasma macroscopic evolution. The diversity in the time scales is also
very wide. They range from high frequency phenomena defined by the propa-
gation of electromagnetic waves at the speed of light as well as the cyclotron
and the plasma frequencies; to the evolution of the coupled system composed
of the plasma and the fields on the time scales of the plasma mean flow evolu-
tion. The simulation of these systems on large scales have been the source of an
intense and fruitful research, with the derivation, analysis and implementation
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of models relating different description levels, from the microscopic scales to
mesoscopic and macroscopic descriptions [17, 27, 28, 30, 103, 130].

Alongside, numerical methods have also been intensively developed with the
same aim to produce simulations on large scales. Implicit methods [116, 35, 89,
97, 107, 144, 32] allow, to some extent, the de-correlation of the discretization
parameters from the smallest scales described by the equations. The objective is
thus to derive numerical methods with stability properties less restrictive than
explicit methods. This gains the advantage of larger simulation parameters,
chosen according to the scales of interest, rather than the small parameters
described by the system.

However implicit discretizations may be ineffective when the stiffness of the
problem leads to a degeneracy of the model. Fluid limits of kinetic equations
are a good example of such frameworks. In the limit of a vanishing mean
free path, the kinetic equation degenerates, constraining the distribution func-
tion to belong to the kernel of the collision operator. Unfortunately this only
information does not permit to determine uniquely the distribution function.
Therefore, the kinetic model becomes singular, while, in the limit of infinite
collision rates, a fluid description is sufficient. A similar difficulty occurs for
the diffusion equation derived in Sec. 3 as illustrated by the investigations of
Sec. 4 addressing the associated steady state problem. This issue is usually
overcome thanks to domain decomposition strategies, consisting in using P 0

the asymptotic (macroscopic) description everywhere P ε the multiscale (micro-
scopic) model is not compulsory. However, this coupling strategy is still an
open question, at least in specific contexts (see for instance [99, 125] and the
references therein for examples of domain decomposition). The main difficulty
raised by this strategy is twofold. First, it is not necessarily straightforward to
match the unknowns advanced by the multiscale model with those of the limit
one [99]. Second, the interface delimiting the sub-domains may be evolving with
the system, its location computation being a problem by its own. On top of
that, this interface should be immersed in a part of the domain where both
the multiscale and the limit models are valid. The existence of such a region
supposes that the approximation error of the numerical method dominates the
modelling error produced by the use of the limit model for non vanishing asymp-
totic parameter values. For refined numerical parameters this requirement may
not be met (an example of such a situation is discussed in [39]), or at the price
of important computational efforts.

An alternative approach has been introduced in the frame of Asymptotic-
Preserving methods originally designed to cope with fluid and diffusive limits of
kinetic equations [98]. The purpose is to derive numerical methods bridging the
microscopic description and the asymptotic model when this latter is derived
as a singular limit of the former model. Fluid and diffusive limits of kinetic
equations remain the most active field of developments for AP schemes outlined
by numerous publications [58, 124, 9, 111, 45, 125, 38, 67, 120, 67, 19, 26, 96,
95, 43, 104]. Other singular limits are however addressed, among which the low
Mach regime for fluid systems [60, 63, 82, 37, 140, 122], with applications to
semiconductors [68, 13], nano-structures and quantum systems [59, 10, 46, 92]
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this list being non exhaustive. We also refer to [99, 48] for reviews on AP
methods. Note also related works on relaxation limit of hyperbolic systems
[100], radiative transfer [109, 108] and low Mach regimes [85, 3, 36] sharing
analogies with AP-methods.

Asymptotic-Preserving numerical methods are constructed to offer a con-
sistent discretization of the multiscale model (P ε) when the discretization pa-
rameters resolve the small scales. Conversely, for vanishing ε, AP-methods are
consistent with the limit model (P 0), verified by the limit of the solution of
(P ε). This is represented by the celebrated diagram depicted on Fig. 1. In
addition to these consistency properties, AP-schemes have stability properties
independent of ε.

P ε,h P ε

P 0,h P 0

ε→
0

ε→
0

h→ 0

h→ 0
Figure 1: Consistency properties of
Asymptotic-Preserving methods [99] (h
denoting the discretization parameters):
AP schemes are consistent discretizations
of the multiscale problem (P ε) for large
ε-values, while defining a consistent dis-
cretization (P 0,h) of the limit problem for
vanishing ε.

In this document AP-Schemes are constructed as discretizations of a refor-
mulated system: a set of equations equivalent to the multiscale problem but,
in which, the limit ε → 0 is regular. This differs from classical derivations of
implicit discretizations. Indeed, AP-methods are constructed to bridge several
sets of equations describing the system in different regimes, rather than alle-
viating the stability constraints of the numerical methods. The aim here is to
shape a single set of reformulated equations unifying these regimes. In this refor-
mulated system the macroscopic problem is recovered for vanishing asymptotic
parameters, hence the regular nature of the limit ε→ 0 in this set of equations.
Three main steps can be identified in the derivation of these methods. The first
one consists in elaborating the limit problem. This system is defined as the set
of well posed equations providing the limit of the solution in the asymptotic
regime. In the framework of singular perturbation problems, the limit problem
is not readily obtained by setting the asymptotic parameter to zero in the mul-
tiscale problem. The second step consists in deriving the reformulated set of
equations mentioned above. In this aim a good understanding of the derivation
of the limit problem is mandatory. Finally the time discretization is designed
to meet consistency requirements with all regimes. This necessitates a suffi-
cient implicitation level in order to guarantee the consistency with the different
regimes, providing thus a means of computing all the unknowns whatever the
values of the asymptotic parameter.

The purpose of the present paper is to illustrate these concepts thanks to
three singular perturbation problems.

The first one is related to the quasi-neutral limit of fluid and kinetic plasma
models coupled to the Maxwell system. In many applications the charge sep-
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arations can be disregarded at the scales of interest, the plasma being thus
considered as quasi-neutral. This property is harnessed to derive reduced mod-
els, filtering the scales describing the charge separations out from the equations.
However, an accurate description of the whole system on large scales generally
requires the resolution of the complex physics occurring in limited regions, for
instance near the plasma boundary or, to describe the interaction of the plasma
with a wall (see [106, 126, 137]) where electrostatic sheathes may appear. In
these regions the assumptions used to derive quasi-neutral models are not valid.
More complex models are needed to account for the physics prevailing in these
regions, calling for numerical methods able to treat efficiently quasi-neutral
models with local break down. The difficulty of this asymptotic is explained by
the degeneracy of the equation providing the electric field. In non quasi-neutral
models, the electric field is computed from the Maxwell system [14, 91, 138]. In
the quasi-neutral regime, these equations being degenerate, the electric field is
computed from the equations describing the evolution of the electrons and the
ions. These regimes translate thus two different physical phenomena, accounting
for the singular nature of this limit addressed in Sec. 2.

The second context is specific to hot plasmas evolving in the presence of
strong magnetic fields. These investigations are limited to fluid descriptions
with an external magnetic field. The purpose here, is to address the so called
gyro-fluid regime [83] which bears some analogies with drift approximations
[15, 103, 135, 130, 79, 139, 127, 110] largely used for the modelling of tokamak
plasmas on large time scales. The drift regime is characterized by a vanishing
inertia, which is responsible of the momentum equation degeneracy. Along the
magnetic field lines, this equation imposes a zero force regime with the pressure
gradient balancing the electric force. No explicit occurrence of the parallel
momentum survives in the drift asymptotic which explains the singularity of
this limit. A regimes transition is observed near the wall, with a significant
decrease of the plasma temperature and more importantly an acceleration of
the particles by the electrostatic field existing in the sheath ([33, 137]). In this
area the particle inertia becomes again significant breaking the drift assumption.
The derivation of asymptotic preserving methods in this framework is detailed
in Sec. 3.

Finally, we propose a review of AP-methods for anisotropic elliptic or dif-
fusion equations arising in the simulation of tokamak [44] and ionospheric [12]
plasmas. In a plasma under large magnetic fields, the diffusion along the mag-
netic field lines is almost infinite in the time scale of the dynamic in the per-
pendicular directions [81, 134, 64, 73]. The difficulty raised by this anisotropy
in the context of tokamaks is due to the periodicity of the torus. Indeed, in
the limit of an infinite diffusion in the aligned direction, the parallel diffusion is
dominant, this operator being supplemented with periodic boundary conditions
at each ends of the magnetic field lines. Therefore, its kernel is not reduced
to zero, leading to a difficulty comparable to the one referred above concerning
the limit of infinite collisions for kinetic descriptions. This issue is illustrated
thanks to a simplified problem in the beginning of Sec. 4 and investigated by
means of AP-methods in the sequel of the section.
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2. Quasi-neutral limit of kinetic and fluid plasma descriptions

2.1. Introduction

The quasi-neutral limit can be related to the so-called plasma approximation
as defined in [30] which consists, for dense plasmas, in assuming equal ionic and
electronic densities ni = ne together with an electric field that is not divergence
free ∇ · E 6= 0. This might appear as a paradox since it breaks the Gauss
equation ∇ · E = q(ni − ne)/ε0 (ε0 being the vacuum permittivity and q the
elementary charge). The full set of equations defining the Maxwell system writes

1

c2
∂E

∂t
−∇×B = −µ0J , (1a)

∂B

∂t
+∇× E = 0 , (1b)

∇ · E =
ρ

ε0
, (1c)

∇ ·B = 0 . (1d)

It consists of the Ampère (1a), the Faraday (1b), the Gauss (1c) and the
Maxwell-Thomson (1d) equations. In this system (E,B) is the electromag-
netic field, c the speed of light, µ0 and ε0 being the vacuum permeability and
permittivity, with ε0µ0c

2 = 1. The sources of Maxwell’s equations, namely the
charge and current densities (ρ, J), are defined by the electronic and ionic den-
sities and mean velocities as ρ = q(ni−ne) and J = q(niui−neue). They verify
the continuity equation

∂ρ

∂t
+∇ · J = 0 . (2)

Note that computing formally the divergence of Eq. (1a), owing to the continuity
equation (2), the time derivative of Eq. (1c) is recovered. This means that the
Gauss equation is verified for t > 0 if it holds true at initial time. The same
remark applies for the Maxwell-Thompson equation (1d) which is a consequence
of Eq. (1b). The only Ampère and Faraday equations are thus sufficient to
advance the electromagnetic field.

The plasma approximation ambiguity is clarified in Sec. 2.2 thanks to the
analysis of the different orderings revealed by a scaling of the Maxwell system.
The inter-relations of the dimensionless parameters occurring in this set of re-
scaled equations define different regimes. The first one relates the propagation
of an electromagnetic wave at the speed of light and is referred to as the Maxwell
regime. In this ordering, the Maxwell sources vanish and do not contribute to
the changes in the electromagnetic field, the electric field being computed by
means of the displacement (1/c2)(∂E/∂t) current in Eq. (1a). On the contrary,
the evolution in the quasi-neutral regime is dominated by the sources with a
negligible displacement current. Therefore, the transitions between the Maxwell
and the quasi-neutral regimes rely on the relative influence of the displacement
current (1/c2)(∂E/∂t) and the current of particles J . The vanishing of the
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displacement current in the Ampère equation is at the origin of the singular
nature of the quasi-neutral limit. Finally the electrostatic limit of the Maxwell
system is discussed. It defines the electric field for vanishing magnetic fields,
the Maxwell system thus reducing to the only Gauss equation (1c). The aim is
to characterize the quasi-neutral limit in this regime. In particular, the singular
nature of the quasi-neutral limit is illustrated also in this framework, with the
degeneracy of the Gauss equation.

In the quasi-neutral asymptotic, the degeneracy of the Ampère and the
Gauss equations call for new means of computing the electric field. This is
classically achieved thanks to a generalized Ohm law. Ohm’s law is derived
from the equations describing the plasma evolution thanks to either the quasi-
neutral constraint ∇·J = 0 or, the electronic momentum conservation, in which
the inertia is neglected. In its simplest form it reduces to E = −ue×B, ue being
the electron velocity. We refer to [106] for some seminal works on quasi-neutral
models, to [88] for a short review, [148, 102, 149, 40, 42, 143, 142] and the
references therein for implementations of quasi-neutral plasma models.

However quasi-neutral descriptions have a limited range of validity. In par-
ticular these models are not valid in vacuum or low plasma density regions where
high frequency phenomena may occur [141]. The purpose of the Asymptotic-
Preserving methods reviewed in this paper is to bring the two regimes into a
single set of equations, making possible the transition between the evolution of
the electric field in the Maxwell regime, by means of the displacement current
and, that of the quasi-neutral regime, with an electric field computed thanks
to a generalized Ohm law. In this respect, AP methods implement the guide
line stated in [30] “do not use Maxwell’s equations to compute the electric field
unless it is unavoidable !”.

The derivation of the AP methods is addressed in Sec. 2.3. One key point is
to identify the equations describing the system in the quasi-neutral regime. The
Ohm’s law heavily relying on the equations describing the particles evolution,
the plasma models, either fluid or kinetic, are therefore an important aspect to
consider in designing AP methods. In Sec. 2.3 a unified presentation of the dif-
ferent regimes is proposed by means of the “augmented” Vlasov-Maxwell system.
This choice offers different advantages. First, the augmented system contains
the difficulty of both the electromagnetic and the electrostatic regimes. Second,
the Ohm law being derived from equations driving the evolution of macroscopic
quantities, the construction of AP methods can be readily transposed from the
kinetic to the fluid framework. Finally an overview of the numerical implemen-
tations of AP-methods is proposed in Sec. 2.3.2.

2.2. Outlines of the quasi-neutral and electrostatic limits of the Maxwell system

The objectives of this section are twofold. On the one hand, the quasi-neutral
limit is investigated thanks to a scaling of the equations in order to explain
the paradox raised in the introduction. On the other hand, some consistency
properties, relating the Ampère and the Gauss equations are outlined. The
electrostatic limit of the Maxwell system is also discussed.
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The model is first stated thanks to dimensionless variables. The aim of
this procedure is to highlight the stiff terms in the equations thanks to the
introduction of dimensionless parameters. The physical variables are scaled by
their typical value, x̄ and t̄ being the space and time scales, the following identity
holds x = x̄ x′ and t = t̄ t′, x′ and t′ denoting the dimensionless variables.
These scales define ϑ̄ = x̄/t̄ the reference velocity, it is related the velocity
characterizing the changes in the electromagnetic field. The typical magnitude of
the electric and magnetic fields are denoted Ē and B̄. The plasma characteristics
are denoted T̄ , ū and n̄ for the typical temperature, mean velocity and density,
allowing the definition of the electronic thermal velocity and plasma frequency

vth,e =

(
kBT̄

me

)1/2

, ωp,e =

(
q2n̄

ε0me

)1/2

(3)

with me the electronic mass, and the Debye length

λD =
vth,e
ωp,e

=

(
ε0kBT̄

q2n̄

)1/2

, (4)

kB denoting the Boltzmann constant. The Maxwell sources are scaled with
ρ̄ = qn̄ and J̄ = qn̄ū for the charge and current densities. The introduction of
the re-scaled variables into the equations reveals some dimensionless parameters:





α =
ϑ̄

c
, the reference velocity to the speed of light ;

ζ =
ū

ϑ̄
, the plasma mean velocity relative to the speed of interest ;

M =
ū

vth,e
the electronic Mach number;

η =
qĒx̄

meū2
, the ratio of the electric and plasma kinetic energies ;

β =
ϑ̄B̄

Ē
, the induced electric field to the total electric field ;

λ =
λD
x̄
, the dimensionless Debye length.

(5)

With these dimensionless parameters, the scaled system is recast into

λ2
∂E

∂t
− β

λ2

α2
∇×B = − ζ

ηM2
J , (M-A)

β
∂B

∂t
+∇× E = 0 , (M-F)

λ2ηM2∇ · E = ρ , (M-G)

∇ ·B = 0 , (M-T)

∂ρ

∂t
+ ζ∇ · J = 0 , (C)

7



where, for sake of readability, the primes are omitted for the scaled variables.
Two regimes can be identified accordingly to the frequency range character-

izing the system evolution, which is related to the assumptions made on the
reference velocity In the high frequency limit, referred to as the Maxwell regime
in the sequel, the reference velocity is assumed comparable to the speed of light
and large compared to both the mean velocity of the plasma and the particles
thermal velocity. The Debye length is assumed to be large compared to the
typical space scale which amounts to consider low plasma densities, the other
parameter being assumed to be the same order of magnitude. This translates
into the following scaling relations

ζ ≪ 1 , α2 ∼ β ∼ η ∼M2 ∼ 1 , λ2 ≫ 1 . (6)

The system reduces to the homogeneous Maxwell equations with the propaga-
tion of the electromagnetic wave at the speed of light with an electromagnetic
field non affected by the plasma evolution

∂E

∂t
−∇×B = 0 ,

∂B

∂t
+∇× E = 0

∇ · E = 0 ,

∇ ·B = 0 ,

The electric field is computed by means of the displacement current in (M-A).
The quasi-neutral limit is defined by a reference velocity comparable to the

plasma mean velocity and the particles thermal velocity, these velocities being
assumed small compared to the speed of light. The regime is therefore a low
frequency asymptotic. The scaled Debye length is also assumed to define a small
scale in this regime which finally yields to the scaling relations

λ2 ∼ α2 ≪ 1 , ζ ∼ β ∼ η ∼M2 ∼ 1 . (7)

The scaling relation Ē ∼ ūB̄ (β ∼ 1, ζ ∼ 1) is common to all Magneto-Hydro-
Dynamic (MHD) models and referred to as the frozen field assumption. It trans-
lates that, in a dense plasma, the magnetic field is convected with the plasma
flow at the typical velocity is ū. In particular, the propagation of electromag-
netic waves at the speed of light is not possible in a dense plasma [103, 30, 17, 74]
and therefore not described by quasi-neutral models. The other dimensionless
parameters may be assumed of order one. In the quasi-neutral limit (α, λ) → 0,
the equations write

∇×B = J ,

∂B

∂t
+∇× E = 0

0 = ρ ,

∇ ·B = 0 ,
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the continuity equation providing ∇·J = 0. The Gauss equation (M-G) provides
the quasi-neutral assumption ρ = 0, the electric field contribution vanishing in
this equation. Therefore, this allows for the computation of non divergence
free electric field and explains the paradox raised by a crude review of the
dimensional equations. The Ampère equation also degenerates in the asymptotic
λ2 → 0 along with α2/λ2 = O(1), with a vanishing displacement current. In this
equation too, the occurrence of the electric field vanishes in the quasi-neutral
limit which leads to the conclusion that the (homogeneous) Maxwell equations
cannot be used to compute the electric field. More precisely, the electric field
must be found from J [30] by means of a generalized Ohm’s law, explaining
how the current of particles J and the electric field relate to each other. This is
routinely implemented in quasi-neutral descriptions of plasmas, the most widely
used being the Magneto-Hydro-Dynamic (MHD) models [15, 47, 76, 135].

The Maxwell system may be simplified when the magnetic component of the
field is a constant or vanishes, the regime being referred to as electrostatic. The
quasi-neutral limits of electrostatic plasma descriptions are also singular. This
features is highlighted in the next lines. In this aim, the electrostatic limit of
the Maxwell system is first derived by letting α → 0. Indeed, by the equation
(M-A) the magnetic field is curl free (∇×B = 0), which together with ∇·B = 0
and assuming adequate boundary conditions, provides a constant magnetic field.
The equation (M-F) provides thus a curl free electric field ∇× E = 0 assumed
to derive from a potential E = −∇φ. In this regime, the Ampère equation can
be decomposed into a curl free and a divergence free identity

λ2
∂

∂t
∇φ =

ζ

ηM2
JL ,

β
λ2

α2
∇×B =

ζ

ηM2
JT ,

(8)

where J = JL + JT , ∇ · JT = 0 and ∇ × JL = 01. While ∇ × B vanishes in
the electrostatic limit α → 0, the quantity ∇× B/α2 remains finite as long as
the current transverse part JT does not vanish. However it does not contribute
to the definition of the electrostatic field, as outlined by the decomposition (8).
This feature can also be recovered by computing formally the divergence of the
Ampère equation (M-A), providing

λ2
∂

∂t
∆φ =

ζ

ηM2
∇ · J .

This equation together with the continuity equation (C) provides

−λ2ηM2 ∂

∂t
∆φ =

∂ρ

∂t
.

1Performing a Fourier transform of these identities yields k ·JT = 0 and k×JL = 0, with k
the wave vector associated to x, hence the terminology “Transverse” and “Longitudinal” with
respect to k.
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This outlines that the Gauss equation is a consequence of the Ampère (M-A) and
the continuity (C) equations. It remains verified if it holds true at initial time.
Consequently, in the electrostatic regime, the only Gauss equation is sufficient
to compute the entire electric field, this equation being usually substituted to
the whole Maxwell system to give rise to the so-called Poisson equation

−λ2ηM2∆φ = ρ . (9)

Note that, the quasi-neutral limit is thus defined by λ2 → 0 together with
λ2/α2 → 0, in contrast to λ2 → 0 and λ2/α2 = O(1) for the electromagnetic
framework.

2.3. Asymptotic-Preserving formulation of the Vlasov-Maxwell system

2.3.1. The scaled Vlasov-Maxwell system

The model investigated here consists of the Maxwell system (1) coupled to a
Vlasov equation for the electrons, the ions being assumed at rest with a uniform
density to simplify the notations. The distribution function, denoted f , depends
on x ∈ Ωx ⊂ R3, the microscopic velocity v ∈ Ωv ⊂ R3 and on time t ∈ R+.
The function is the solution to

∂f

∂t
+ v · ∇f − q

me
(E + v ×B) · ∇vf = 0 . (10)

In order to address straightforwardly the asymptotic regime, the scaling defined
by Eq.(5) is again harnessed, but to simplify, with ū = ϑ̄, where ϑ̄ = x̄/t̄ and
ū is the mean plasma velocity, which amounts to setting ζ = 1. The particles
velocity v being scaled with the electronic thermal velocity (3). In the sequel
similar scaling relations as the ones defining the quasi-neutral regime (7) will be
considered. To simplify further the writing, the two small scales α and λ will
be denoted by a single parameter λ, so that the quasi-neutral regime is easily
identified by the limit λ→ 0. The dimensionless Vlasov-Maxwell system is

(VM)λ





∂f

∂t
+ v · ∇f − (E + v ×B) · ∇vf = 0

λ2
∂E

∂t
−∇×B = −J,

∂B

∂t
+∇× E = 0,

λ2∇ · E = 1− n,

∇ ·B = 0 ,

(11a)

(11b)

(11c)

(11d)

(11e)

with

n =

∫

Ωv

f(x, v, t) dv , J = −
∫

Ωv

f(x, v, t)v dv . (11f)
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The sources of the Maxwell system verify a continuity equation derived from
the moments of the Vlasov equation (11a) giving rise to

∂n

∂t
−∇ · J = 0 , (12a)

∂J

∂t
−∇ · S = (nE − J ×B) , S =

∫

Ωv

f(x, v, t)v ⊗ v dv . (12b)

As outlined in section 2.2, the Gauss equation is a consequence of the Ampère
equation (11b) and the continuity equation (12a). However, the consistency with
this latter is not always satisfied by numerical methods. This is for instance a
common flaw of Particle-In-Cell methods largely documented (see for instance
[14, 5]). The most widely adopted solution is the correction of the electric
field predicted by the Ampère equation. This correction is computed by an
electrostatic potential p verifying the Gauss equation (11d). This is the so-called
Boris correction [18] decomposed in two steps. First the predicted electric field
Ẽ is computed by means of the Ampère equation. Second the correction is
applied to this field, defining the corrected field E = Ẽ − ∇p in order for the
Gauss equation to be satisfied:

λ2∇ · E = 1− n , E = Ẽ −∇p , (13a)

This gives rise to the dimensionless Vlasov-Maxwell system augmented with the
corrector p

(aVM)λ





∂f

∂t
+ v · ∇f − (E + v ×B) · ∇vf = 0

λ2
∂Ẽ

∂t
−∇×B = −J,

∂B

∂t
+∇× Ẽ = 0,

λ2∆p = λ2∇ · Ẽ − (1− n) ,

∇ ·B = 0 ,

E = Ẽ −∇p .

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

In this system, the corrected field is used to advance the distribution function.
Note that either E or Ẽ may be used in equation (14c) owing to the property
∇×∇p = 0. The right hand side of Eq. (14d) can be interpreted as the consis-
tency default with the Gauss equation. The corrector p vanishes, subject to the
boundary conditions, if the electric field carried out by the Ampère equation
verifies the Gauss equation.

The difficulty in handling the quasi-neutral limit is thus twofold. In addition
to the degeneracy of the Ampère equation (14b), a means of computing the
corrector needs to be worked out for the limit regime, the Gauss equation (14d)
also degenerating in the quasi-neutral limit. This last difficulty is similar to
the one posed by the computation of the electric potential in the electrostatic
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framework. The investigation of the augmented Vlasov-Maxwell system is thus
a good means of offering a unified presentation of the quasi-neutral limit for
both the electrostatic and electromagnetic regimes.

2.3.2. Quasi-neutral model and reformulation of the augmented Vlasov-Maxwell
system

The objective here is to restore a means of computing the electric field in the
quasi-neutral regime. As mentioned above, in the Maxwell regime, the electric
field is computed thanks to the displacement current. The displacement current
being multiplied by λ2 it is dropped out of the Ampère equation in the quasi-
neutral limit. Therefore a Ohm law needs to be considered in order to express
how the electric field relates to J the current of particles. This finally restores a
means of computing the electric field in the Ampère equation. Letting λ2 → 0
in (14b) and taking the formal time derivative of this equation together with
the curl of Faraday’s law (14c) yields

∇×∇× E =
∂J

∂t
. (15)

In this equation a link between the electric field and the electric sources is
restored. However, it does not allow for the computation of the entire electric
field. Indeed, the solution of this equation can be augmented by any gradient
without changing the equality: the electrostatic component of the field cannot
be uniquely determined from (15). This is corrected thanks to the expression
of the current of particles which translates the response of the particles to the
electric field, with

∂J

∂t
= ∇ · S+ nẼ − J ×B .

Inserting this definition into (15), the quasi-neutral equation providing the entire
electric field in the quasi-neutral regime can be precised, with

∇×∇× Ẽ + nẼ = J ×B −∇ · S .

A similar reformulation can be performed for the correction potential p.
Indeed, Eq. (14d) degenerates into the quasi-neutrality relation 1−n = 0. This
constraint is operated together with the moments of the Vlasov equation in
order to derive the equation verified by the corrector. Following the spirit of
the Boris procedure, a correction of the electric field is introduced in order for
the continuity equation to be verified. Taking the double time derivative of
this equation together with the moments of the Vlasov equation, in which the
electric field is corrected, the following equation is derived

∂2n

∂t2
= ∇ · ∂J

∂t
= ∇2 : S+∇ ·

(
n(Ẽ −∇p)

)
−∇ · (J ×B) , (16)

where ∇2 : S := ∇ · (∇ · S). This finally provides the equation verified by the
corrector in the limit λ2 → 0, so that it is possible to state the quasi-neutral
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Vlasov-Maxwell system

(aVM)0





∂f

∂t
+ v · ∇f − (E + v ×B) · ∇vf = 0

∇×∇× Ẽ + nẼ = J ×B −∇ · S ,
∂B

∂t
+∇× Ẽ = 0,

−∇ · (n∇p) = ∂2n

∂t2
−∇2 : S−∇ · (nẼ) +∇ · (J ×B) ,

∇ ·B = 0 ,

E = Ẽ −∇p .

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

In the quasi-neutral limit, the electric field can be interpreted as the Lagrange
multiplier of the equilibrium ∇×B = J , the corrector potential as the Lagrange
multiplier of the constraint ∇ · J = 0, or, more precisely to the time derivative
of these identities. The equation (17b) outlines the singular nature of the quasi-
neutral limit: the electric field verifies a hyperbolic equation in the Maxwell
regime defined in section 2.1 while it is computed thanks to an elliptic equation
in the quasi-neutral limit. On top of that, these two equations relate different
physical phenomena, the propagation of an electromagnetic wave at the speed
of light on the one hand, the response of the charged particles to the electric
field on the other hand. The quasi-neutral regime investigated with this limit
model is close to a kinetic description of the so-called Electron MHD [78] and
the quasi-neutral model identified in [142]. In this system the scale of interest is
that of the electron, rather than the ion dynamics in the classical MHD models,
with a finite electron inertia. Moreover the model defined by (17) remains a
fully kinetic description for the plasma.

The aim of the reformulation, leading to an asymptotic preserving method, is
to bring these two regimes into a single set of equations with a smooth transition
from one to the other one according to the values of λ. With this aim, a
derivation similar to that of the limit problem (17) is performed but keeping
λ > 0. This yields the reformulated Vlasov-Maxwell system

(RaVM)λ





∂f

∂t
+ v · ∇f − (E + v ×B) · ∇vf = 0

λ2
∂2Ẽ

∂t2
+∇×∇× Ẽ + nẼ = J ×B −∇ · S ,

∂B

∂t
+∇× Ẽ = 0,

− λ2
∂2

∂t2
∆p−∇ · (n∇p) =

∂2n

∂t2
−∇2 : S−∇ · (nẼ) +∇ · (J ×B) ,

∇ ·B = 0 ,

E = Ẽ −∇p .

(18a)

(18b)

(18c)

(18d)

(18e)

(18f)
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Remark 2.1. a) The reformulated Ampère equation (18b) is well posed (pro-
vided adequate boundary conditions) for all values of λ2. Indeed in the limit
λ → 0 the plasma density is large and the operator ∇ × ∇ × E + nE is
elliptic. Conversely, when n → 0 the scaled Debye length is large and the
equation remains well posed. These remarks also apply to the reformulated
Gauss equation (18d) providing the corrector.

b) The quasi-neutral Vlasov-Maxwell system (17) is recovered from the reformu-
lated system when λ → 0. The quasi-neutral limit is a regular perturbation
of the reformulated system (18).

c) The right hand side of the equation (18d) can be interpreted as the default
of consistency with the continuity equation a common feature with the Boris
correction [18]. In this respect, this equation can be regarded as a generaliza-
tion of the Boris correction.

2.4. Overview of the numerical methods

2.4.1. Asymptotic-Preserving time discretization

The purpose here is to use the concepts introduced in the precedent section
for the continuous system and to transpose them to the discrete equations.
Generally, the time discretization is a key point in the derivation of an AP
numerical method. Due to the singular nature of the quasi-neutral limit several
quantities must be computed thanks to an implicit time discretization in order
to secure the consistency with both the Maxwell and the quasi-neutral regimes
and to provide a means of computing the electric field in every regime.

The level of implicitness is controlled by three parameters (a, b, c), the value
of each one being equal to either 1 or 0 and commented in the following lines.

1

∆t
(nm+1 − nm)−∇ · Jm+a = 0, (19a)

1

∆t
(Jm+1 − Jm)−∇ · Sm = nm+1−aEm+1 − Jm ×Bm, (19b)

1

∆t
(Bm+1 −Bm) +∇× Em+b = 0, (19c)

λ2
1

∆t
(Ẽm+1 − Em)−∇×Bm+c = −Jm+a, (19d)

λ2∇ · Em+1 = (1− nm+1) , (19e)

Em+1 = Ẽm+1 −∇p . (19f)

supplemented with ∇ ·Bm+1 = 0.
At this stage, different remarks can be stated:

a) The quasi-neutral regime is recovered for vanishing λ which stands for both
the scaled Debye length and the ratio of the reference velocity to the speed of
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light. The stability with respect to λ requires therefore an implicit discretiza-
tion of the (homogeneous) Maxwell equations, yielding to b = c = 1. This
is related to the assumption that the reference velocity is small compared to
the speed of light (α→ 0).

b) The consistency property with respect to the quasi-neutral regime requires
an implicit particle current J in the Ampère equation (19a) with an implicit
electric field in the definition of J . Accordingly, an implicit electric field must
be used in the Lorentz force defining the source of the momentum equation
Eq. (19b). These requirements are met for a = 1. Note that the scaling
assumptions imply that the dimensionless Debye length also represents the
scaled plasma period. Therefore, the uniform stability property with respect
to λ brings the stability of the method for time steps lager than the plasma
period.

c) The density occurring in the Lorentz force is made explicit when the mass
flux is implicit in order to uncouple the resolution of the Eqs. (19a) and
(19b).

d) The consistency with the Gauss equation at the discrete level, requires the
same level of implicitness for the mass flux in Eq. (19a) and the current J in
the Ampère equation (19d). This point will be detailed further in the sequel.

The linear stability proposed in [56] demonstrates that the AP property can-
not be achieved with an implicitness level weaker than (a, b, c) = (1, 1, 1). This
choice defines a consistent discretization of the reformulated system (18). In-
deed, Eqs. (19c), (19d) and (19b) in which the correction is omitted yield

λ2

∆t2

(
Ẽm+1 − Em

)
=

1

∆t

(
∇×Bm − Jm

)

−∇×∇× Ẽm+1 − nmẼm+1 −∇ · Sm + Jm ×Bm .

(20)

Owing that the Ampère equation is initially verified: ∇×Bm−Jm = λ2

∆t

(
Em − Em−1

)
,

the following identity holds

λ2

∆t2

(
Ẽm+1 − 2Em + Em−1

)
+∇×∇× Ẽm+1+

nmẼm+1 +∇ · Sm − Jm ×Bm = 0 ,

which defines a time semi discretization of the reformulated Ampère equation
(18b). A similar result can be obtained for the Gauss equation, with Eqs. (19a),
(19b), (19e), (19f) and (20) providing

−∇ ·
(( λ2

∆t2
+ nm

)
∇p
)
=

1

∆t2

(
1− ñm+1 − λ2∇ · Em

)
+

1

∆t
∇ · Jm

+∇2 : Sm −∇ · (Jm ×Bm) +∇ · (nmẼm+1) ,

(21)
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where ñm+1 = nm+1 + ∆t2∇ · (nm∇p). Assuming that the Gauss and the
continuity equations are satisfied at the previous time step λ2∇ ·Em = 1− nm

and ∆t∇ · Jm = nm − nm−1 the following identity holds

−∇ ·
(( λ2

∆t2
+ nm

)
∇p
)
=

1

∆t2

(
− ñm+1 + 2nm − nm−1

)

+∇2 : Sm −∇ · (Jm ×Bm) +∇ · (nmẼm+1) .

(22)

This defines a time discretization of the reformulated Gauss equation (18b)
provided that the correction at time level m and m− 1 vanishes.

Remark 2.2. In the semi discrete system (19), the Ampère and Gauss equa-
tions are not formulated with second order time derivatives as their continuous
counterparts. They are solved thanks to Eqs. (20) and (21). However, implicit
time discretizations are used in order to recover the consistency with the con-
tinuous reformulated system (18) as demonstrated by Eqs. (20-22). Another
approach would consist in deriving the discrete system as a discretization of the
reformulated continuous system. These two different methodologies have been
implemented in the frame of the Vlasov-Poisson system giving rise to the PIC-
AP1 and PIC-AP2 schemes proposed in [52, 53]. Working the discrete equations
(20) and (21) gains the advantage to remove the need of a second initial con-
dition, which may be difficult to derive. This is thus the path followed in this
document and most of the related works.

2.4.2. Overview of the spatial discretizations

Different space discretizations have been considered. For kinetic descrip-
tion, either Particle-In-Cell [52, 53, 49] or semi-Lagrangian [7] discretizations
have been implemented, while, for fluid descriptions finite volume (on Carte-
sian meshes) is used [41, 56]. In this last series of works dedicated to the
Euler-Maxwell system, an exact consistency with the Gauss equation can be
obtained. To this end, the numerical flux associated to the mass flux must be
used to construct the current of particles used in the Ampère equation. This
property is sketched in the next lines in a simplified one-dimensional framework,
with Bx = 0. We refer to [56] for the details. Denoting Fm+1

k+1/2 the numerical

flux associated to the mass flux evaluated at the center of the cell k, nmk and
Em

x |k+1/2 being the density and the electric field at time tm = m∆t, with ∆t
and ∆x the time and space mesh intervals, a discretization of the system (19a)
and (19d) is written as

nm+1
k = nmk +

∆t

∆x

(
Fm+1

k+1/2 −Fm+1
k−1/2

)
, (23)

λ2
1

∆t
(Em+1

x |k+1/2 − Em
x |k+1/2) = Fm+1

k+1/2 . (24)
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Evaluating Eq. (24) at the cell interfaces xk+1/2 and xk−1/2 together with (23)
yields

λ2
1

∆x
(Ex|m+1

k+1/2 − Ex|m+1
k−1/2) + n|m+1

k = λ2
1

∆x
(Ex|mk+1/2 − Ex|mk−1/2) + n|mk .

This expression defines a discretization of the equation ∂
∂t

(
λ2∂Ex/∂x

)
= −∂n

∂t .

A similar property cannot be obtained with standard PIC methods. Indeed
the implicit computation of the electric field is achieved by predicting the parti-
cles motion thanks to implicit discretization of the moments of the kinetic equa-
tions. The macroscopic quantities predicted on the grid are not exactly realized
by the particles, which creates deviations between these quantities, preventing
an exact consistency with the Gauss equation, although the implementation of
the correction. This point is analyzed in [49].

2.5. Related works

Pioneering works on Asymptotic-Preserving methods for the quasi-neutral
limit have been first devoted to the Euler-Poisson system [41], then extended
to kinetic electrostatic descriptions by means of the Vlasov-Poisson system [52,
53, 7]. Electromagnetic fields have been considered in the frame of the bi-
fluid isothermal Euler-Maxwell system in [56] (extended to the M1-Maxwell
model in [80]) and finally with the Vlasov-Maxwell system [49] (see figure 2).

Some analogies exist with implicit methods, specifically in the framework
of Particle-In-Cell discretizations for kinetic plasma descriptions, including the
direct implicit methods [105, 35, 34, 89] and the moment implicit methods [116,
20, 145, 117, 128]. These methods have been derived to perform numerical
simulations on large scales without the constraints of explicit methods, with
time steps limited by the plasma period ω−1

p,e and the mesh sizes by the Debye
length. These are commonly the most stringent restrictions on the discretization
parameters that are also removed thanks to AP-methods. Indeed, the scaling
relations defining the quasi-neutral regime imply that, beside the dimensionless
Debye length and the ratio of the reference velocity to the speed of light, the
asymptotic parameter λ carries the scaled plasma period t̄ω−1

p,e as well. Indeed,
the following identity λ2 = λ2D/x̄

2 =M2/(t̄ω−1
p,e)

2, together with the assumption
M = 1 proves the above assertion. The uniform stability with respect to λ
ensures that AP-methods remain stable for discretization that do not resolve the
plasma period, hence common properties with implicit or semi implicit methods
outlined in more details in [49, section 4]. We also refer to [115] for related works
on asymptotic limits of the Maxwell system.

3. Drift limit for fluid descriptions of hot plasmas under large mag-

netic fields

3.1. Introduction

This section is devoted to the design of fluid models and numerical methods
for thermal plasmas evolving under a strong magnetic field. The targeted appli-

17



(a) Magnetic field at time t = 3.67 ns.

(b) Current density at t = 2.58 ns. (c) Current density at t = 3.67 ns.

Figure 2: Propagation of a magnetic choc wave into a dense plasma simulated thanks to the
Vlasov-Maxwell system discretized by an Asymptotic-Preserving Particle-In-Cell method in
the quasi-neutral limit. These computations are carried out with λD/h ∼ 2 · 10−4, h being
the typical space step; (a) Magnetic field magnitude (Tesla) and (b), (c) electronic current
density (A· m−2, in decimal log-scale) as functions of the space coordinates (see [49]).

cations are tokamak plasmas and magnetically confined fusion [31, 119, 136, 75].
Its principle consists in heating a plasma to hundreds of thousands of degrees in
order for the thermal agitation to overcome the Coulomb repulsion. Indeed, for
the nuclear reaction to occur, the distance between the nuclei has to be lower
than 10−15 m. Simultaneously, the plasma expansion is prevented by confining
the particles thanks to an intense magnetic field.

This section presents asymptotic preserving methods developed for simulat-
ing these hot plasmas evolving in the presence of strong magnetic fields. The
magnetization of the plasma induces a severe anisotropy, with different parallel
and perpendicular (with respect to the magnetic field) dynamics. The dynamic
of interest is the perpendicular one, which is, compared to the parallel dynamic,
a low frequency regime driven by the drift waves. Along the magnetic field lines,
the acoustic waves are very fast, balancing almost instantly the electric field in
order to enforce a zero force regime. The first purpose of the AP methods
described in this section is to follow the slow perpendicular dynamic while ac-
counting for the parallel force balance as well. The second aim is to explore the
effectiveness of numerical methods that do not use coordinate systems adapted
to the magnetic field geometry by contrast to standard approaches (see for in-
stance [6, 69, 71, 83, 123, 127, 131, 132, 4, 86]). Indeed standard approaches
have some difficulties in specific areas such as the so-called “O point” or “X
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point” [84, 72, 133] where the coordinate system is singular. Moreover, the goal
pursued here is to easily account for changes in the magnetic field topology, with
for instance the creation of magnetic islands [16, 8, 86, 90, 65, 146, 129, 147]. To
this end, the numerical methods developed within this section are free from any
assumption relating the magnetic field to the mesh or the coordinate system.

The collisions within tokamaks are weak, therefore the reliability of fluid de-
scriptions is questioned [79] especially in the case of devices such as ITER and
DEMO, with investigations [70] demonstrating that fluid models underestimate
instability thresholds and overestimate turbulent fluxes. However, numerous
fluid descriptions are implemented for tokamak plasmas [113, 94], in particular
for the study of the plasma edge physics (see for instance [71, 139, 25]). Ad-
ditionally, kinetic corrections may be formulated for fluid models in order to
correct some of their flaws [79]. The main argument, however, seems to be the
huge cost needed for the numerical resolution of kinetic models which is chal-
lenging in term of computational time as well as memory usage. Even in the
gyro-kinetic approximation [110, 77, 25] kinetic models consider a distribution
function in a five dimensional phase-space. Though their accuracy may be im-
proved, fluid models provide access to a rich physics which helps understanding
the various regimes that prevail within tokamaks and allows for the study of
instability mechanisms [118, 136, 15].

The purpose of this section is thus to detail the Asymptotic-Preserving
methodology in this framework. The plasma is described by two sets of fluid
equations. The density, momentum and energy associated to the electrons and
the ions are denoted (nα, qα,Wα) (α = e for the electrons and i for the ions),
the charge of the particle being denoted qα. These quantities verify the Euler-
Lorentz system

∂nα
∂t

+∇ · qα = 0 , (25a)

mα

(
∂qα
∂t

+∇ ·
(
qα ⊗ qα

nα

))
+∇pα = qα (nαE + qα ×B) , (25b)

∂Wα

∂t
+∇ ·

(
(Wα + pα)

qα
nα

)
= qαE · qα , (25c)

where kB is Boltzmann constant, mα the particle mass, Tα and pα the temper-
ature and the pressure of the gas, with the following expression of the energy

Wα =
1

2
mα

|qα|2
nα

+
3

2
pα , pα = nαkBTα . (25d)

The given magnetic field is assumed static, i.e. satisfying

∂B

∂t
= 0 , ∇ ·B = 0 .

The electronic and ionic conservation equations are coupled to the electro-static
field defined as

−∆φ =
q

ε0
(ni − ne) , with E = −∇φ , (26)
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with ε0 the vacuum permeability and q the elementary charge. The purpose
here is to investigate the drift limit of this system also referred to as gyro-fluid
approximation [57]. While the drift limit may be derived as a mass-less regime
with a vanishing particle inertia, it is derived as a low Mach limit combined
with an assumption of large magnetic field strengths. Therefore the drift limit
shares some analogies with the low-Mach regime and the difficulty investigated
here consists in the transition of this low Mach flow which prevails in the plasma
core, to regimes with an increased mean velocity and a lower temperature. This
dynamical transition is observed in the Scrape-Off Layer (SOL), precisely in
the magnetic pre-sheath and the sheath where the plasma temperature drops
and the ions are accelerated by the electrostatic field [126, 137], the flow being
potentially supersonic [33]. This section is organized as follows. The drift regime
for the Euler-Lorentz system is stated, with the definition of the scaling relations.
The magnetic field is assumed to be a given data that does not depend on time.
Two Asymptotic-Preserving reformulations are thus proposed with, finally, the
detailed computation of the self-consistent electric field.

3.2. The Euler-Lorentz model in the drift regime

In order to identify the drift regime, the system is rewritten using dimen-
sionless variables. Denoting n̄, q̄, T̄ the typical values for the plasma den-
sity,momentum, and temperature, the identities n = n̄n′, q = q̄q′ and T = T̄ T ′

hold for the physical (n, q, T ) and dimensionless (n′, q′, T ′) quantities. The
space and time scales of the observed phenomenon are x̄ and t̄, defining ū = x̄/t̄
the reference velocity. The re-scaled system is stated thanks to the following
dimensionless parameters





ε =
me

mi
, the electron to ion mass ratio ;

t̄ωc = t̄
qB

mi
, the dimensionless ion cyclotron frequency ;

λ =
λD
x̄
, the dimensionless Debye length ;

M2 =
ū2

c2s
=
ū2mi

kBT̄
, the squared ionic Mach number .

(27)

The number of free parameters is reduced thanks to scaling relations defining
the regime in which the system is observed. In this aim, the scales of interest
are precised in Tab. 1.
The following scaling defines the drift regime investigated in the sequel:

ū ∼ q̄

n̄
, Ē ∼ ūB̄ ,

1

M2
∼ t̄ωc ∼

1

τ
. (28)

The reference velocity is the mean plasma velocity. The plasma is close to
quasi-neutrality (λ ≪ 1), hence the frozen field scaling discussed in Sec. 2.1
(see Eq. (7)). Finally, the Mach number and the reciprocal of the dimensionless
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Table 1: Characteristics of the ITER and DEMO tokamaks [114, 75] and typical values of the
dimensionless parameters.

ITER DEMO

External radius (m) 6.2 6.1-9.55
Inner radius (m) 2

Magnetic field intensity (T) 5.3 7

Plasma density (m−3) 1020 1.5 1020

Plasma Temperature (eV) 104

Discharge duration (s) 400 1000

Dimensionless Par.

ε 10−4

λ 10−5

(t̄ωc)
−1 10−6

M2 10−8

ion cyclotron frequency define two small scales defining the force balance in the
limit regime. To simplify the presentation these two small scales are unified in
a single parameter denoted τ .

The Euler-Lorentz-Poisson system (25–26) can thus be written using three
dimensionless parameters ε, λ and τ . To simplify the notations, the subscript
will be dropped for the ions, the electronic quantities being indexed by e. The
re-scaled system writes

∂n

∂t
+∇ · q = 0 , (29a)

∂q

∂t
+∇ ·

(
q ⊗ q

n

)
+

1

τ
∇p = 1

τ
(nE + q ×B) , (29b)

∂W

∂t
+∇ ·

(
(W + p)

q

n

))
= E · q , (29c)

W = τ
1

2

q2

n
+

3p

2
, p = nT . (29d)

A similar system is written for the electrons

∂ne
∂t

+∇ · qe = 0 , (30a)

ε

(
∂qe
∂t

+∇ ·
(
qe ⊗

qe
ne

))
+

1

τ
∇pe = −1

τ
(neE + qe ×B) , (30b)

∂We

∂t
+∇ ·

(
(We + pe)

qe
ne

))
= −E · qe , (30c)

We = ετ
1

2

q2e
ne

+
3pe
2
, pe = neTe . (30d)

The electric field is provided by

−λ2∆φ = n− ne , E = −∇φ . (31)

The quasi-neutrality is recovered from the Poisson equation (31) in the limit
λ → 0. The Poisson equation cannot be used to compute the electric potential
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in this regime. Two alternatives have been investigated and detailed in Sec. 3.5.
The drift limit consists in letting τ → 0. This limit is singular, the momentum
equation (29b) being degenerate for τ = 0. To highlight this feature, some
notations are introduced.

Notations. B denoting the magnetic field, b the unit vector pointing in the di-
rection of B, with b := B/|B|, for all scalar p and vector q, we define

q‖ := (q · b) , q⊥ := q − bq‖ = (Id − b⊗ b)q = b× q × b ,

∇‖p := b · ∇p , ∇⊥p := (Id − b⊗ b)∇p = ∇p− (∇p · b)b , (32)

∇‖ · q‖ := ∇ · (q‖ b) , ∇⊥ · q⊥ := ∇ · (q⊥) .

Inserting formally τ = 0 into (29) yields to

∂n

∂t
+∇ · q = 0 , (33a)

∇p = nE + q ×B , (33b)

∂W

∂t
+∇ ·

(
(W + p)

q

n

))
= E · q , W = 3/2 p . (33c)

Eq. (33b) translates a “zero force regime”, that does not allow for the com-
putation of the parallel momentum. Indeed, projecting onto the parallel and
perpendicular directions, the following balances occur

q⊥ =
b

|B| × (−nE +∇p) , (34a)

∇‖p = nE‖ , (34b)

In the drift regime, the perpendicular momentum component q⊥ instantly ad-
justs to cancel the perpendicular electric and pressure forces. These two forces
give rise to the classical drift velocities, namely the “E ×B” drift (E ×B)/|B|2
and the diamagnetic drift −(∇p×B)/(n|B|2).

Along the magnetic field lines, the electric field balances the pressure gradient
and the system becomes singular for the computation of the parallel momentum.
To understand more precisely the parallel dynamic, it is informative to establish
the acoustic wave equation. Using Eq. (29c) together with (29b), provides an
equation for the ionic pressure

3

2

∂2p

∂t2
+∇·

(
H
∂q‖

∂t

)
= −∇⊥ ·

(
H
∂q⊥
∂t

)
−∇·

(
∂H

∂t
q

)
+
∂

∂t
(E · q)− ∂2

∂t2

(τ(q)2
2n

)
,

where H = W + p/n is the system enthalpy. Projecting Eq. (29b) onto the
magnetic field lines gives

∂

∂t
q‖ +∇ ·

(
q ⊗ q

n

)

‖
=

1

τ

(
−∇‖p+ nE‖

)
,
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which leads to

3

2

∂2p

∂t2
− 1

τ
∇ ·
(
H(b⊗ b)(∇p− nE)

)
= −∇ ·

(
(b⊗ b)

(
q ⊗ q

n

))

−∇ ·
(
H
∂q⊥
∂t

)
−∇ ·

(
∂H

∂t
q

)
+
∂

∂t
(E · q)− ∂2

∂t2

(τ(q)2
2n

)
. (35)

This equation reveals a speed of sound along the magnetic field lines scaling as
1/
√
τ , which demonstrate that in the limit τ → 0 the pressure waves travel at

infinite speed to adjust instantly to the electric force, securing thus the force
balance.

Two difficulties need to be overcome in order to efficiently address the drift
regime in the context of tokamaks.
The first one relates to the vanishing of the inertia in the momentum equa-
tion which prevents from computing the parallel momentum explicitly. Two
alternatives have been proposed. The first one consists in using the aligned
momentum as the Lagrange multiplier of the parallel force balance. The second
one is constructed on ideas borrowed from the low Mach regime [63, 82] with a
computation of the pressure securing the force balance along the magnetic field
lines. By these means, the singularity of the problem can be overcome at the
price of the resolution of an anisotropic diffusion problem.
The second difficulty addressed here is related to the periodicity of the torus
containing the plasma. The anisotropic diffusion equations derived to transform
the drift limit into a regular limit are supplemented with periodic boundary con-
ditions at each end of the magnetic field lines. This defines an ill posed problem
in the limit regime. This is a characteristic issue for tokamak simulations, with
highly magnetized plasmas evolving in a periodic geometry. For this class of
anisotropic problems, Asymptotic-Preserving techniques have been developed.
Their presentation is postponed to Section 4.

3.3. Momentum based reformulation
This approach makes use of the parallel momentum as a Lagrange multiplier

associated to the parallel force balance (34b). The method is sketched for the
ions, the equation (29b) providing

∂2

∂t2
q‖ −

1

τ

(
− ∂∇‖p

∂t
+
∂(nE‖)

∂t

)
= − ∂

∂t

(
∇ · S‖

)
, S = q ⊗ q

n
. (36)

Working the energy equation (29c), the following identity can be written

∂∇‖p

∂t
= −∇‖∇ ·

(2
3
Hq‖

)
+∇‖G ,

G :=
2

3

(
−∇ · (Hq⊥) + E · q − ∂

∂t

(τ(q)2
2n

))
.

(37)

Substituting the left hand side of this equation into Eq. (36) finally gives a wave
like equation for the parallel momentum:

τ
∂2

∂t2
q‖ −

(
∇‖∇ ·

(2H
3
q‖

))
= −∇‖G +

∂(nE‖)

∂t
− τ

∂

∂t

(
∇ · S‖

)
. (38)
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Note that, in the drift limit, Eq. (38) guarantees the zero force regime along
the magnetic field lines. Indeed, inserting τ = 0 into (38), we get

−
(
∇‖∇ ·

(2H
3
q‖

))
= −∇‖G +

∂(nE‖)

∂t
,

which, owing to (37) reduces to

∂

∂t

(
∇‖p− nE‖

)
= 0. (39)

Remark 3.1. The second order operator involved in Eq. (38) is non standard.
It is constructed as the gradient of a divergence. However, being applied to
a scalar field, it translates the double derivative in the parallel direction. This
equation is therefore well posed provided it is supplemented with adequate bound-
ary conditions.

3.4. Pressure based reformulation

Another approach proposed in [48] and implemented in [23] solves the acous-
tic equation in order to impose that the force imbalance along the magnetic field
lines is bounded by τ , with

−∇‖p+ nE‖ = O(τ) . (40)

This equilibrium is computed in order to prevent the degeneracy of the parallel
momentum equation, with, in the drift limit, the set of equations

∂n

∂t
+∇ · q = 0 , (41a)

q⊥ =
b

|B| × (nE +∇p) , (41b)

∂

∂t
q‖ +∇ ·

(
q ⊗ q

n

)

‖
= lim

τ→0

(1
τ

(
− T∇‖n+ nE‖

))
, (41c)

providing all the quantities, including q‖ if the condition (40) is met.
This procedure has only been developed in the context of an isothermal

plasma description. The set of equations considered does not incorporate the
energy equation and the pressure gradient reduces to ∇p = T∇n. The refor-
mulation is derived from the momentum conservation (29b) projected along the
magnetic field lines

∇‖ ·
∂q‖

∂t
=

1

τ
∇‖ ·

(
−T∇‖n+nE‖

)
−∇2

‖ : S , ∇2
‖ : S := ∇‖ ·

(
∇ ·
(
q ⊗ q

n

)

‖

)
.

together with the density conservation (29a), rather than the energy equation
(29c) (see section 3.2) yielding to the equation of the acoustic waves for isother-
mal descriptions

τ
∂2n

∂t2
−∇‖ · (T∇‖n) = ∇‖ · (nE‖)− τ

(
∇ · q⊥ −∇2

‖ : S
)
.
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This last equation provides a way to compute the plasma density which secures
Condition (40). This reformulation is implemented and validated in [23]. It
borrows some of the concepts of low-Mach regime numerical methods (see for
instance [63]) that could be transposed to this framework.

3.5. Self-consistent electric field computation

The difficulty stemming from the computation of the electric field is related
to the quasi-neutrality assumption. This is the issue addressed in Sec. 2.3.2 with
the degeneracy of the Poisson equation (31) in the limit λ → 0. This equation
degenerates into ρ = 0 and therefore cannot provides a means of computing the
electric potential.

To derive the equation verified by the electric potential φ, the conservation
of the ionic (29a) and electronic (30a) densities are combined to provide the
continuity equation defined as

∂ρ

∂t
+∇ · J = 0 , (42)

with ρ = n − ne and J = q − qe. In the quasi-neutral limit, this equation
degenerate into the constraint ∇ · J = 0. Time differentiating this identity,
yields

∇ ·
(
∂q

∂t
− ∂qe

∂t

)
= 0 , (43)

so that the momentum equations can be used to introduce a contribution of the
electric field into this relation by means of the electric force definition. This is
similar to the reformulation derived in the section 2.3.2 and detailed in the next
lines thanks to a time semi-discretization of the system following [23]

1

∆t

(
nm+1 − nm

)
+∇‖ · qm+1

‖ +∇ · qm⊥ = 0 , (44a)

1

∆t

(
qm+1 − qm

)
+∇ · S+

1

τ
T∇nm+1 =

1

τ

(
nm+1∇φm+1 + qm+1 ×B

)
,

(44b)

1

∆t

(
qm+1
e − qme

)
+∇ · Se +

1

ετ
T∇nm+1 =

− 1

ετ

(
nm+1∇φm+1 + qm+1

e ×B
)
.

(44c)

On the discrete level, the quasi-neutrality constraint can be discretized as

∇ · (qm+1 − qm+1
e ) = 0 ,

giving rise to an equation for φm+1

−∇‖ ·
(
nm+1(1 + ε−1)∇‖φ

m+1
)
= τS . (45)

We refer to [23] for the detailed algebra and the expression of S.
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An alternative is proposed in [66]. It relies on the so-called Boltzmann re-
lation for the electrons. This approximation consists in neglecting the particle
inertia in the electronic momentum equation (30), which amounts to letting
ε → 0, assuming a temperature with vanishing gradients in the parallel direc-
tion. This last assumption is justified by the heat flux responsible for a rapid
balancing of the temperature along the magnetic field lines [21, 93]. With these
assumptions, the electronic momentum equation gives rise to the following equi-
librium

Te∇‖ne = ne∇‖φ ,

Assuming the quasi-neutrality of the plasma n = ne, the Maxwell-Boltzmann
relation [106] can be stated

n = n0 exp

(
φ

T

)
, (46)

with n0 an equilibrium density verifying ∇‖n0 = 0. This system closure is used
to derive an equation for the electric potential that is not degenerate in the
quasi-neutral limit. Indeed, inserting Eq. 46 into Eq. (30) yields

−λ2∆φ = n− n0 exp

(
φ

T

)
. (47)

A second occurrence of the electric field is introduced into the Poisson equa-
tion which prevents its degeneracy in the quasi-neutral limit. This property is
thoroughly analyzed in [61].

3.6. Related works

The first implementation of the “parallel momentum” reformulation is pro-
posed in [55] for an isothermal description of the plasma with an external con-
stant electric field. The set up does not exactly suit tokamaks requirements,
the periodicity of the domain is indeed not addressed in this first work. For
isotherm descriptions,the energy equation being dropped out in the model, the
reformulation is therefore derived thanks to the density and the momentum
equations. This equation is supplemented with Dirichlet boundary conditions
and discretized in a two dimensional computation domain with a magnetic field
aligned with one coordinate.

The generalization to magnetic field geometries uncorrelated to either the
coordinate system or the mesh in first addressed in [22]. The Dirichlet boundary
conditions are substituted with Neumann ones, reproducing the difficulty to
account for the periodicity of the torus. This brings a real difficulty in developing
efficient numerical methods since the anisotropic equations stemming from the
reformulation are not well posed in the drift limit τ → 0. This issue is overcome
thanks to the “solution via the primitive” method described in section 4.3.

The “Pressure based” reformulation, proposed in [48] has been developed for
isothermal descriptions with one species of particles (the ions being thus assumed
at rest) in [55, 22]. It has been brought to a more elaborated context in [66], for
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a complete set of equations for the ions, incorporating an energy equation, gyro-
viscous terms from the Braginskii closure [21] and an adiabatic response for the
electron, the so-called Boltzmann relation (see section 3.5). The magnetic field is
constant and aligned with one coordinate, periodic boundary conditions being
prescribed at each end of the field lines. The anisotropic diffusion equation
stemming from the reformulation is solved thanks to the duality based AP
method (see section 4.2) for the three dimensional simulation of the slab ion
temperature gradient instability (ITG [79, 101, 90, 87]) as depicted in figure 3

(a) Density at t=1. (b) Density at t=2.

(c) ITG growth rate.

Figure 3: Three dimensional slab
ITG simulation thanks to a numer-
ical method implementing the par-
allel momentum reformulation on a
40 × 200 × 20 mesh: density per-
turbation contour plots at times t=1
(a) and t=2 (b) as functions of the
space variables; and (c) ITG growth
rate estimated from the simulations
against the analytic values (solid line)
as functions of the scaled wave num-
ber of the initial perturbation and
for different mesh refinements (see the
discussion in [66]).

4. Numerical methods for strongly anisotropic elliptic and diffusion

equations

4.1. Introduction

This section is devoted to an overview of methods designed for the numerical
resolution of elliptic (or diffusion) equations with large anisotropies. This is a
class of problems representative of the difficulty stemming from the simulation
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of plasmas under a large magnetic field. Tokamak plasmas are a good example
of this kind of problems. In this framework the difficulty lies in the periodic
boundary conditions applied at the field line extremities in order to account for
the periodicity of the torus. Other fields of application can be named, with for
instance ionospheric plasma simulation [12] presenting the same difficulty, how-
ever with Neumann boundary conditions prescribed at each end of the magnetic
lines.

The difficulty just mentioned is outlined on a simplified toy model, con-
sisting of an anisotropic elliptic equation posed in a cuboid domain Ωx × Ωz,
the boundaries being Γx = ∂Ωx and Γz = ∂Ωz. The anisotropy strength is
denoted ε,

(P ε)





− ∂

∂x

(
A⊥

∂φε

∂x

)
− 1

ε

∂

∂z

(
A‖

∂φε

∂z

)
= fε , in Ωx × Ωz ,

∂φε

∂z
= 0 , on Γz×Ωx ,

φε = 0 , on Γx×Ωz ,

(48)

A⊥ and A‖ being two positive functions. In the Dynamo-3D model mentioned
above, the electrostatic potential computed by means of the quasi-neutrality
equation, verifies an analogous anisotropic elliptic equation, when the magnetic
field is assumed aligned with the z coordinate.The problem associated to the
dominant operator in the limit of infinite anisotropy strength is ill-posed, its
kernel being populated by the functions that do not depend on the z coordinate.
Indeed, multiplying (48) by ε and considering formally the limit ε→ 0 yields

(D)





∂

∂z

(
A‖

∂φ0

∂z

)
= 0 , in Ωx × Ωz ,

∂φ0

∂z
= 0 , on Γz×Ωx, .

(49)

This degenerate system admits an infinite number of solutions namely all func-
tions ψ̄ only depending on x. However, φ0 defined as the limit of φε, the solution
of the problem (48), verifies a well posed problem [54, 50]. This system is ob-
tained by integrating the elliptic equation (48) along the z coordinate. Thanks
to the boundary conditions applied on Γz, one can write, in the limit ε→ 0

(P 0)





− ∂

∂x

(
Ā⊥

∂φ0

∂x

)
= f̄0 , in Ωx ,

φ0 = 0 , on Γx×Ωz .

(50)

In this equation f̄ is the mean value of f along the z direction:

f̄(x) =
1

mes(Ωz)

∫

Ωz

f(x, z) dz , (51)

and similarly for Ā⊥.
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The system (50) is obtained as the limit problem of the anisotropic equa-
tion. At this point the singular nature of the problem is clearly outlined. The
limit problem (50) is a one dimensional elliptic problem integrated along the
anisotropy direction, while the initial problem (48) is a two dimensional elliptic
equation. For small values of the asymptotic parameter, standard discretiza-
tions of the singular perturbation problem (48) will become consistent with the
degenerate problem (49). The conditioning of the system matrix is thus ex-
pected to blow up with vanishing ε-values as reported on the plots of Fig. 4(a).
Jointly with the conditioning blow up, the precision of the numerical approxi-
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(a) Condition number estimate (mesh 50 ×
50).
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(b) Norm of the relative error between the ex-
act solution and the numerical approximations
(mesh 50× 50).
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(c) Norm of the relative error between the
exact solution and the numerical approxima-
tions (mesh 500× 500).

Figure 4: Property of standard discretiza-
tions of the singular perturbation problem
(48) (P ε) and the limit problem (50) (P 0)
compared to an AP-method (AP) : condition
number of the linear system obtained thanks
to a Q1 finite element method, relative error
computed between the exact solution and the
numerical approximation as functions of the
anisotropy strength [54, 11].

mation cannot be preserved for large anisotropy strength. This loss of accuracy
is found for ε values all the larger that the mesh is more refined, as shown by
approximation errors displayed on Figs. 4(b) and 4(c).

The principle of AP-Schemes [54, 50, 11, 62, 112, 121] is to secure the consis-
tency of the discrete system with the limit problem (50) when ε→ 0. In order to
harness the microscopic information lost in the degenerate problem (49), these
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methods implement a decomposition of the solution into a part belonging to the
kernel G of the dominant operator, supplemented by a correction, giving rise to

φ(x, z) = φ̄+ φ′(x, z) , ∀(x, z) ∈ Ωx × Ωz ,

where φ̄ ∈ G is the mean of the function φ as defined by (51) and φ′ is the
fluctuating part verifying

φ̄′ = 0 .

The difficulty lies now in the discretization of the properties verified by these
two components. Different approaches have been developed and detailed in the
next sections.

4.2. Duality based reformulation

The first implementation of the AP concepts have been carried out in [54]
with a system consisting of an equation for the mean part of the solution coupled
to an equation for the fluctuation:





− ∂

∂x

(
Ā⊥

∂φ̄

∂x

)
= f̄ +

∂

∂x

(
A′

⊥

∂φ′

∂x

)
, in Ωx ,

φ̄ = 0 , on Γx ,

(52)





−ε ∂
∂x

(
A⊥

∂φ′

∂x

)
− ∂

∂z

(
A‖

∂φ′

∂z

)
+ ε

∂

∂x

(
A′

⊥

∂φ′

∂x

)
=

εf ′ + ε
∂

∂x

(
A′

⊥

∂φ̄

∂x

)
, in Ωx × Ωz ,

∂zφ
′ = 0 on Ωx × Γz , φ′ = 0 on Γx × Ωz , φ′ = 0 in Ωx .

(53)

In the limit ε → 0 the degenerate problem (49) is recovered from the equa-
tion (53), however this equation is verified by only the fluctuating part rather
than the entire solution. The zero mean property verified by the fluctuation
restores the well posedness of the system for ε = 0 with φ′ = 0 as unique solu-
tion. Inserting this identity into (52), the limit problem (50) is recovered. This
demonstrates that, the limit ε → 0 is regular in the reformulated system and
consequently, that the formulation (52-53) is Asymptotic-Preserving.

When the anisotropy direction is aligned with one coordinate, the discretiza-
tion of the functional space containing the mean function is straightforward. A
weak formulation of the system (52) can be stated as

Find φ̄ ∈ G :=
{
ψ̄ ∈ H1(Ωx) | ψ̄ = 0 on Γx

}

(A⊥∂xφ̄, ∂xψ̄) = (f̄ , ψ̄) + (A′
⊥∂xφ

′, ∂xψ̄) , ∀ψ̄ ∈ G .
(54)

with (φ, ψ) :=
∫
Ω
φψ dxdz. The task is more intricate for the discretization of

the functional space A populated by the fluctuations. Introducing

V :=
{
ψ′ ∈ H1(Ωx × Ωz) |ψ′ = 0 on Γx × Ωz

}
,
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a weak formulation of the problem (53) providing φ′ is

Find φ′ ∈ A :=
{
ψ′ ∈ V | ψ̄′ = 0

}
,

(A‖∂zφ
′, ∂zψ

′) + ε(A⊥∂xφ
′, ∂xψ

′)− ε(A⊥∂xφ′, ∂xψ
′) =

ε(f ′, ψ′)− ε(A′
⊥∂xφ̄, ∂xψ

′) , ∀ψ′ ∈ A .

The discretization of the functional space A is quite intricate. It is indeed
not straightforward to construct a basis of finite element functions that guaranty
the zero mean property of the fluctuations. An alternative approach is therefore
implemented, thanks to the introduction of a Lagrangian aimed at penalizing
the zero mean constraint. The weak formulation of the problem can thus be
recast into

Find φ′ ∈ V and P̄ ∈ G such that




(A‖∂zφ
′, ∂zψ) + ε(A⊥∂xφ

′, ∂xψ)− ε(A⊥∂xφ′, ∂xψ) + (P̄ , ψ) =

ε(f ′, ψ)− ε(A′
⊥∂xφ̄, ∂xψ) , ∀ψ ∈ V ,

(χ̄, φ′) = 0 , ∀χ̄ ∈ G

(55)

In the weak formulation (55) the fluctuations are functions of the space V which
is readily discretized thanks to classical methods. Note that if φ′ verify (53)
then (φ′, 0) is the solution of (55). Conversely if (φ′, P̄ ) is the solution of (55),
then choosing a test function ψ verifying ψ̄ = 0, and noting that the right hand
side of Eq. (55) has a zero mean, it is straightforward to prove that φ̄′ = 0. We
refer to [54] for more details and the demonstration of the equivalence of the
reformulated system (54),(55) with the singular perturbation problem (48).

A finite element discretization of the system (54),(55) gives rise to an aug-
mented linear system with the matrix denoted by MO,

MO

(
Φh

P̄h

)
=

(
Fh

0

)
, MO =

(
Ā B
BT 0

)
,

This matrix sparsity pattern is represented on Fig. 5. If Nx × Nz denotes
the number of cells of the mesh, the block-matrix Ā denotes the finite ele-
ment discretization of the integro-differential operator applied to φ′ on the left
hand side of the equation (55), Ā ∈ RNx(Nz+2)×Nx(Nz+2), B ∈ RNx×Nx(Nz+2)

being the discretization of the Lagrangian contribution in the system matrix,
(Φh, Fh) ∈ RNx(Nz+2) × RNx(Nz+2) and Ph ∈ RNx denoting the vectors associ-
ated to φ′, the right hand side of the system and to the Lagrangian P̄ .

The integral discretization in the fluctuation equation (the last term of the
left hand side) induces a fill-in of the system matrix, with a negative impact on
the numerical method efficiency with respect to the memory requirements and
the computational time. To improve the efficiency of the method a, this term is
removed from the fluctuation equation using Eq. (52). This provides a second

31



reformulation, proposed in [11], in which the equation (53) is substituted by




−ε ∂
∂x

(
A⊥

∂φ′

∂x

)
− ∂

∂z

(
A‖

∂φ′

∂z

)
= εf + ε

∂

∂x

(
A⊥

∂φ̄

∂x

)
,

∂zφ
′ = 0 on Ωx × Γz ,

φ′ = 0 on Γx × Ωz , φ′ = 0 in Ωx .

(56)

The matrix obtained after a FEM discretization of the system (52),(56) gives
rise to the linear system




A εC B
εCT εA2 0
BT 0 0






Φh

Φ̄h

P̄h


 =




F1

F2

0


 ,

A ∈ RNx(Nz+2)×Nx(Nz+2) being the matrix discretizing the singular perturbation
problem (48), A2 ∈ RNx×Nx the one obtained after the discretization of the
mean part equation (51), C ∈ RNx×Nx(Nz+2) being the coupling term with the
fluctuation. Finally Φ̄h ∈ RNx is the vector associated with the mean part,
(F1, F2) ∈ RNx(Nz+2) ×RNx define the right hand side of the system. The plots
of figure 5 show the benefits of this modified formulation, in which the equation
for the fluctuation φ′ does not involve any integral operator. On a 500×500 mesh
the number of non zeros elements stored in the matrix discretizing the equation
(53) is 168 times larger than that of Problem (48), this ratio increasing further
with mesh sizes [11]. In contrast, for Problem (52),(56) the non zeros elements
remain 2.3 times larger that of Problem (48) whatever the mesh size.

(a) M1 = A (b) M2 (c) M3 (d) MO

Mat. M1 = A M2 =
(

A B

BT 0

)

# rows Nx(Nz + 2) Nx(Nz + 3)

Nnz (3Nz + 4)(3Nx − 2) (5Nz + 8)(3Nx − 2)

Mat. M3 =

(

A εC B

εCT εA2 0

BT 0 0

)

MO =
(

Ā B

BT 0

)

# rows Nx(Nz + 4) Nx(Nz + 3)

Nnz (7Nz + 13)(3Nx − 2) (N2

z + 6Nz + 8)(3Nx − 2)

Figure 5: Matrices obtained thanks to a Q1-FEM discretization of (a) the singular perturbation
problem (48), (b) the fluctuation equation (56), (c) the AP formulation (52),(56), (d) the
original fluctuation equation (53): plots of the structure pattern for a grid (Nx, Nz) = (5, 5)
cells, matrix number of rows (# rows) and number of non zeros elements (Nnz).
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4.3. Solution via the primitive

Another approach is proposed in [24] implementing the following character-
ization of the fluctuation space

ψ′ ∈ A ⇐⇒ ∃χ ∈ W |ψ′ = ∂zχ with

W :=
{
η ∈ L2(Ω) | ∂2zzη ∈ L2(Ω), ∂2xzη ∈ L2(Ω) , η = 0 on ∂Ω

}
,

(57)

with Ω = Ωx × Ωz, the equation (56) can thus be recast into

Find χ ∈ W such that

(A‖∂
2
zzχ, ∂

2
zzη) + ε(A⊥∂

2
xzχ, ∂

2
xzη) = ε(f, ∂zη)− ε(A⊥∂xφ̄, ∂

2
xzη) , ∀η ∈ W ,

For homogeneous coefficients A⊥, a strong formulation of the problem can be
stated as





− ∂2

∂z2

(
A‖

∂2χ

∂z2

)
− εA⊥

∂2

∂x2

(
∂2χ

∂z2

)
= ε

∂f̃

∂z
, in Ω ,

χ = 0 , on ∂Ω ,

(58)

with f̃ = f + ∂
∂x

(
A⊥

∂φ̄
∂x

)
. This system is transformed into two nested elliptic

problems for φ′ = ∂ξ/∂z

− ∂2

∂z2
(
A‖ζ

)
− εA⊥

∂2ζ

∂x2
= ε

∂f̃

∂z
, in Ω , ζ = 0 , on ∂Ω (59a)

−∂
2ξ

∂z2
= −ζ , in Ω , ξ = 0 , on Γz × Ωx . (59b)

The system (59b) is well posed and does not depend on ε. Moreover, in the
problem (59a), the dominant operator in the limit ε → 0 is supplemented with
Dirichlet boundary conditions. Its kernel is thus reduced to zero. These two
properties define a well posed problem for all ε. The implementation realized in
[24] for anisotropic diffusion equations (with A⊥ = 0) show that the numerical
method is AP (see figure 6) providing computations with a precision independent
of ε.

The advantage of this approach is to allow the resolution of the anisotropic
problem by means of three standard elliptic problems, two nested elliptic prob-
lems for the fluctuation and one for the mean part, for which very efficient
and proven methods exist. The recast of the fourth order problem (58) into
two nested elliptic problems is straightforward for Neumann boundary condi-
tions. However, the generalization to other kinds of boundary conditions and
non homogeneous perpendicular coefficients remains to be done.

4.4. Generalization to non adapted coordinates

The generalization of the methods introduced in the preceding sections to
anisotropy directions not aligned with one coordinate is documented in this
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Figure 6: Relative error (L2 and L∞ norms) between the exact solution and the numerical
approximation carried out thanks to “Solution via the primitive” of the fluctuation space, as
a function of the mesh size and, for different anisotropy strengths [24].

section. The singular perturbation problem (48) is recast into





−∇⊥ · (A⊥∇φε)−
1

ε
∇‖ ·

(
A‖∇‖φ

ε
)
= fε , in Ω ,

1

ε
n‖ · ∇‖φ

ε + n⊥ · ∇⊥φ
ε = 0 , on ΓN ,

φε = 0 , on ΓD .

(60)

with for v ∈ R3, v‖ := (b · v)b, v⊥ := (Id− b⊗ b)v, and ∇‖ · v := ∇· v‖ ,∇⊥ · v :=
∇ · v⊥ , where b is the unit vector pointing in the direction of the magnetic field
b = B/|B| (see equation (32)). The domain boundary Γ = ∂Ω, Ω = Ωx × Ωz is
decomposed into Γ = ΓN ∪ ΓD with ΓD = {x ∈ Γ, b(x) · n(x) = 0}, n(x) being
the outward normal.

The method implementing “Solution via the primitive” is straightforwardly
extended to this framework. This approach has been genuinely developed for
non adapted coordinates [23, 22]. More details are available in [24]. The plots
of Fig. 7 report the precision of the numerical method as a function of the pa-
rameter α defined as the angle of the vector b with the horizontal axis. From
these computations, the precision of the method is observed to be almost inde-
pendent of the anisotropy orientation, with a variation in the error norm lower
than 10%.

The extension of the duality based formulation is more intricate. Indeed,
when one of the coordinates is not aligned with the anisotropy direction, the
functional space for the mean value along the anisotropy direction is not easily
discretized. The first generalization proposed in [50] implements a computation
of the mean by duality. Introducing V :=

{
φ ∈ H1(Ω) |φ = 0 on ΓD

}
and the

34



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1.35

1.4

1.45

1.5

1.55

1.6

x 10
−4

Angle α

E
rr

o
r

Error on p
ε

 

 

L
∞

 norm

L
1
 norm

L
2
 norm

(a) ‖pε − pε,app‖ℓp / ‖pε‖ℓp , ε = 10−3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1.35

1.4

1.45

1.5

1.55

1.6

x 10
−4

Angle α

E
rr

o
r

Error on p
ε

 

 

L
∞

 norm

L
1
 norm

L
2
 norm

(b) ‖pε − pε,app‖ℓp / ‖pε‖ℓp , ε = 10−8.

Figure 7: Numerical implementation of the “Solution via the primitive” with anisotropies non
aligned with one coordinate: Relative error between the exact solution pε and the numerical
approximation pε,app as a function of the α the angle measured between the magnetic field
direction and the x-axis for different anisotropy strength ε = 10−3 (left) and ε = 10−8 (right).

space of the mean functions G :=
{
ψ ∈ V |∇‖ψ = 0

}
, the space A of the

fluctuations is defined by duality

A :=
{
ϕ ∈ V | (ϕ,ψ) = 0 , ∀ψ ∈ G

}
,

using the orthogonal decomposition V = G ⊗⊥ A, the L2-scalar product being
(f, g) :=

∫
Ω
fg dx .

With these definitions, the weak formulation of the singular perturbation
problem (60) writes

Find (pε, qε) ∈ G ×A , such that
{

(A⊥∇⊥p
ε,∇⊥η) + (A⊥∇⊥q

ε,∇⊥η) = (f, η) , ∀η ∈ G ,
(A‖∇‖q

ε,∇‖ξ) + ε(A⊥∇⊥(q
ε + pε),∇⊥ξ) = (f, ξ) , ∀ξ ∈ A

Following the methodology used to derive the system (55), the discretization of
the functional space A can be avoided thanks to the introduction of a Lagrange
multiplier. This gives rise to the equivalent formulation

Find (pε, qε, lε) ∈ G × V × G , such that




(A⊥∇⊥p
ε,∇⊥η) + (A⊥∇⊥q

ε,∇⊥η) = (f, η) , ∀η ∈ G ,
(A‖∇‖q

ε,∇‖ξ) + ε(A⊥∇⊥(q
ε + pε),∇⊥ξ) + (lε, ξ) = (f, ξ) , ∀ξ ∈ V ,

(qε, χ) = 0 , ∀χ ∈ G ,

where the fluctuations are functions of the non constrained space V, easily dis-
cretized by standard numerical methods. This feature comes at the price of an
additional unknown, namely lε ∈ G penalizing the property qε ∈ A.
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Finally, the same methodology is harnessed to penalize the property η ∈ G
and χ ∈ G. To this end, the functional space of Lagrange multipliers L is
introduced:

L :=
{
λ ∈ L2(Ω) | ∇‖λ ∈ L2(Ω), λ = 0 on Γin

}
, with Γin :=

{
x ∈ Γ | b(x) · n(x) < 0

}

such that the weak formulation of the problem can be stated as

Find (pε, qε, lε, λε, µε) ∈ V × V × V × L × L , such that




(A⊥∇⊥p
ε,∇⊥η) + (A⊥∇⊥q

ε,∇⊥η) + (A‖∇‖η,∇‖λ
ε)

= (f, η) , ∀η ∈ V ,
(A‖∇‖p

ε, κ) = 0 , ∀κ ∈ L ,
(A‖∇‖q

ε,∇‖ξ) + ε(A⊥∇⊥(q
ε + pε),∇⊥ξ) + (lε, ξ)

= (f, ξ) , ∀ξ ∈ V ,
(qε, χ) + (A‖∇‖χ,∇‖µ

ε) = 0 , ∀χ ∈ V ,
(A‖∇‖l

ε,∇‖τ) = 0 , ∀τ ∈ L .

(61)

In this weak formulation of the singular perturbation problem, the discretization
of the functional spaces A and G is not necessary. This is obtained thanks to
the introduction of three auxiliary variables, namely lε penalizing the constraint
qε ∈ A, as well as λε and µε for the constraints η ∈ G and χ ∈ G.

Another route is proposed in [62] operating a “Micro-Macro” decomposition
of the solution. It consists in splitting φε into two non orthogonal components:
φε = pε + εqε, with q

ε ∈ L. The fluctuation space A is replaced by a space
populated with functions vanishing on one part of the boundary. This space is
readily discretized by standard numerical methods. On top of that, the prob-
lem is formulated for the unknowns (φε, qε), so that the discretization of the
functional spaces is straightforward. The weak formulation of the problem is
thus

Find (φε, qε) ∈ V × L , such that
{

(A⊥∇⊥φ
ε,∇⊥v) + (A‖∇‖q

ε,∇‖v) = (f, v) , ∀v ∈ V ,
(A‖∇‖φ

ε,∇‖w) = ε(A‖∇‖q
ε,∇‖w) , ∀w ∈ L .

This system is Asymptotic-Preserving. Indeed, letting ε→ 0, the limit problem
is recovered with

Find (φ0, q0) ∈ V × L , such that
{

(A⊥∇⊥φ
0,∇⊥v) + (A‖∇‖q

0,∇‖v) = (f, v) , ∀v ∈ V ,
(A‖∇‖φ

0,∇‖w) = 0 , ∀w ∈ L .

In this formulation q
0 is the Lagrangian associated to the constraint ∇‖φ

0 = 0.
Both methods provide the same Asymptotic-Preserving properties with coor-

dinates and meshes not related to the anisotropy. They offer the same precision
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Table 2: Comparison of of the Micro-Macro (M.-M.) and Duality Based (D. B.) methods with
a FEM discretization of the singular perturbation problem (P) for coordinates non aligned
to the anisotropy direction: number of rows, number of non zeros elements in the system
matrix, computational time for the linear system resolution (thanks to the sparse direct solver
MUMPS [1, 2]) relative to that of the singular perturbation problem and L2-error norm. The
computations are carried out on a 100 × 100 mesh with a Q2 finite element method and
ε = 10−6.

Meth. # rows # Nnz Time L2-error

(M.-M.) 20× 103 623× 103 231% 3.34× 10−4

(D. B.) 50× 103 1563× 103 1478% 3.34× 10−4

(P) 10× 103 156× 103 100% 3.27× 10−4

but not at the same computational cost. To highlight their properties, the effi-
ciency of the Micro-Macro and the Duality based formulations is compared, in
table 2, to a standard FEM discretization of the singular perturbation problem
for two dimensional computations. This later entry is aimed at providing a ref-
erence in term of memory and computational effort required to solve a standard
elliptic problem. However, standards FEM discretizations of the singular per-
turbation problem only provides accurate solutions for moderate anisotropies
while both AP methods are unaffected by the anisotropy strength. The intro-
duction of the three Lagrangians increases significantly both the system matrix
size and the number of non zero elements. The Micro-Macro scheme is much
more efficient with a matrix size only twice as big as that of the standard method
and a computational time increasing roughly to the same extent.

4.5. Related works

The versatility if the methods has been improved by developing the Micro-
Macro as well as the Duality-based methods to heterogeneous anisotropy ratios
[62] with application to ionospheric plasma physics [11]. The Micro-Macro ap-
proach has been extended to closed magnetic field lines thanks to a regulariza-
tion of the problem introduced in [121] and also implemented in [65] in the frame
of resistive reduced MHD (see figure 8). Note that, an asymptotic preserving
method based on a Lagrangian integration along the anisotropy direction is
proposed in [29].

The efficiency of the Duality-based method has been significantly improved
thanks to an hybrid method coupling the AP reformulation (52),(56) and the
limit problem [51, 39]. The development of this method is motivated by the
results displayed on Figs. 4(b) and 4(c). The numerical approximation com-
puted by either the limit problem (50) or an AP discretization have the same
precision for small ε-values: the modelling error due to the use of (P 0) for ε > 0
may be negligible compared to the discretization error. However, the numerical
resolution of the limit model is much more efficient in term of computational
efforts, since the solutions of P 0 do not depend on z. The hybrid method relies
on a domain decomposition, using an AP scheme for the sub-domain with the
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Figure 8: Evolution of a magnetic island simulated by an Asymptotic-Preserving discretization
of the resistive reduced Magneto-Hydro-Dynamic implementing the stabilized Micro-Macro
method. Plots of the stream function carried out on a mesh with Nx ×Ny = 256× 256 cells
(see [65]).

largest values of ε and the limit model elsewhere. It is thus all more efficient
than the sub-domain on which the limit model is used can be enlarged. Table 3
provides some elements relating the gain brought by this coupling strategy. As

Table 3: Efficiency of the hybrid (HYB.) and the Asymptotic-Preserving (AP) methods
compared to a FEM discretization of the problem (48) (P ε): Number of cells of the grid
(N = Nx = Nz), resolution time (with the sparse direct solver MUMPS [1]) relative to that
of the singular perturbation problem (48) (T), number of non zero elements stored in the
factorized matrix (Nnz fact.), number of rows (# rows), number of non zero elements stored
in the system matrix (Nnz Mat.) and precision of the numerical approximation (L2-error
norm of the relative error), for Ωz = Ω1

z ∪ Ω2
z , where mes(Ω2

z) = 7/10 mes(Ωz), Ω2
z being the

sub-domain of the limit problem [39].

Met. N T Nnz (fact.) #rows Nnz (Mat.) error (L2)

(HYB.) 500 53% 9 861 960 77 000 1 592 374 1.4× 10−5

(AP) 500 203% 40 655 248 252 000 5 262 474 1.4× 10−5

(P ε) 500 100% 26 940 422 251 000 2 252 992 3.4× 10−3

(HYB.) 2000 26% 206 531 976 1 208 000 25 269 574 1.2× 10−6

(AP) 2000 137% 804 867 106 4 008 000 84 049 974 8.8× 10−7

(P ε) 2000 100% 557 859 738 4 004 000 36 011 992 1.5× 10−2

mentioned above, the overhead of the AP method compared to the numerical
resolution of the singular perturbation problem, with respect to the memory
requirements is roughly 2.3 for the most refined meshes. The fill-in of the fac-
torized matrix does not scale as badly, with an increase of the number of non
zero elements stored from 50% to 80%. When the limit problem is discretized
on a large enough sub-domain, the fill-in of the hybrid method is lower than
that of the singular problem (48) with a computational time necessary for the
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linear system resolution being divided by 3.

5. Conclusions

In this document, Asymptotic-Preserving methods are reviewed in the frame
of three singular perturbation problems. First the concept of Asymptotic-
Preserving methods are outlined for the quasi-neutral limit of plasma descrip-
tions. The scale of interest here is the Debye length measuring the typical size
of the space charge creations. In this context, the derived AP-schemes offer the
possibility to choose the model harnessed accordingly to the needs of the physics.
Indeed, when the discretization parameters are large compared to the Debye
length, AP-schemes define a consistent discretization of a quasi-neutral model,
with properties similar to Magneto-Hydro-Dynamic descriptions (however with
a finite electron inertia and eventually a kinetic description). Conversely, local
up-scaling are possible, by adjusting the mesh size to the local Debye length,
the numerical methods becoming consistent with the non quasi-neutral model
(either the Vlasov-Maxwell or the Euler-Maxwell system depending on the de-
scription used for the plasma, electrostatic models being also proposed).

The systematic methodology implemented to derive AP scheme is decom-
posed in different steps. First the limit regime needs to be clearly identified. It
consists of a set of equations providing the limit of the solution in the asymptotic
regime. In the framework of singular perturbation problem, this set of equa-
tions is not readily obtained from the initial multiscale problem. The asymptotic
analysis is a crucial tool to clarify the inter relations of the multiscale and the
limit problems. More importantly, the derivation of the limit (quasi-neutral)
problem from the multiscale (non quasi-neutral) set of equations is a key point
in the construction of Asymptotic-Preserving methods. This preliminary work is
thus capitalized on to manufacture a set of reformulated equations in which the
quasi-neutral limit is regular: the limit problem is recovered by setting formally
the asymptotic parameter to zero in the reformulated system. In this specific
context, the asymptotic parameter is defined as the ratio of the Debye length
and the typical length of interest, or equivalently the mesh size. Until this stage
all the analysis are free from any numerical method. Finally, the question of the
discretization is addressed. Performing the same analysis but with discretized
equations, allows to derive an asymptotic preserving numerical method.

Two other frameworks are also addressed in the present document. The first
one is related to the drift regime for fluid description of tokamak plasmas, also
referred to as the gyro-fluid limit. The asymptotic regime investigated is the
limit of infinite acoustic wave speeds (low Mach regime) with local transitions
to flows characterized by Mach numbers close to one. In the low Mach regime,
the parallel momentum equation degenerates into an equilibrium relation, with
a pressure gradient balancing the electric force. No contribution of the parallel
momentum appears explicitly in this equation anymore, which is at the origin
of the singular nature of the drift limit. The applications envisioned here are
more specifically related to the tokamak plasma edge physics, with a different
dynamic in the plasma core compared to that of the sheath created in the

39



vicinity of the wall. The derivation of asymptotic preserving schemes, in both
the frameworks of the quasi-neutral and the drift regimes, involves the resolution
of anisotropic elliptic or diffusion problems. This class of equations define a
singular perturbation problem when the boundary conditions supplementing
the diffusion operator in the aligned direction (with respect to the magnetic
field) translate, for instance, the periodicity of the torus. Finally, section 4 is
dedicated to the last framework dedicated to asymptotic preserving methods
developed to address efficiently these problems.

The systematic derivation of AP-methods can be extended to more singular
limits. Some examples can be named, with an extension of the quasi-neutral
limit investigations aiming to bridge the Vlasov-Maxwell system and a Magneto-
Hydro-Dynamic model or the Vlasov-Poisson system and the Boltzmann relation
for the electrons. The adiabatic response as well as MHD models are successfully
operated for the simulation, because they filter out from the equations most of
the high frequencies and give access to the macroscopic evolution in an efficient
way. In both cases the limit is much more singular, since in addition to the quasi-
neutral asymptotic, a fluid and a mass-less (for the electron) limits are necessary
to define the reduced models. Another extension can be considered in the gyro-
fluid framework, with the investigation of the quasi-neutrality break down, in
order to address extensively the regimes transition between the plasma core and
the sheath. A more distant issue can also be envisioned, with the extension of
AP-methods to other scientific fields where multiscale problems are common,
namely biology and complex systems for instance, where this class of methods,
if already investigated, lacks significant developments.
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