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The gravitational field of a galaxy can act as a lens and deflect
the light emitted by a more distant object such as a quasar. Strong
gravitational lensing causes multiple images of the same quasar to ap-
pear in the sky. Since the light in each gravitationally lensed image
traverses a different path length from the quasar to the Earth, fluc-
tuations in the source brightness are observed in the several images
at different times. The time delay between these fluctuations can
be used to constrain cosmological parameters and can be inferred
from the time series of brightness data or light curves of each image.
To estimate the time delay, we construct a model based on a state-
space representation for irregularly observed time series generated
by a latent continuous-time Ornstein-Uhlenbeck process. We account
for microlensing, an additional source of independent long-term ex-
trinsic variability, via a polynomial regression. Our Bayesian strategy
adopts a Metropolis-Hastings within Gibbs sampler. We improve the
sampler by using an ancillarity-sufficiency interweaving strategy and
adaptive Markov chain Monte Carlo. We introduce a profile likeli-
hood of the time delay as an approximation of its marginal posterior
distribution. The Bayesian and profile likelihood approaches comple-
ment each other, producing almost identical results; the Bayesian
method is more principled but the profile likelihood is simpler to
implement. We demonstrate our estimation strategy using simulated
data of doubly- and quadruply-lensed quasars, and observed data
from quasars Q0957+561 and J1029+2623.
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1. Introduction. Quasars are the most luminous active galaxies in the
Universe that host an accreting supermassive black hole at the center. The
path that light takes from a quasar to Earth can be altered by the gravi-
tational field of a massive intervening galaxy, acting as a lens and bending
the trajectory of the emitted light; see the first panel of Figure 1. When the
quasar, lensing galaxy, and Earth are geometrically aligned, multiple images
of the quasar can appear in slightly different locations in the sky, from the
perspective of an observer on Earth. This phenomenon is known as strong
gravitational lensing (Schneider, Ehlers and Falco, 1992; Schneider, Wamb-
sganss and Kochanek, 2006). In this case, there are typically two or more
replicate images, referred to as doubly- or multiply-lensed quasars. Since
quasars are highly luminous, they can be seen at great distances, which
both enhances the possibility of lensing by an intervening galaxy and makes
them useful for cosmology.

The light rays forming each of these gravitationally lensed quasar images
take different routes from the quasar to Earth. Since both the lengths of the
pathways and the gravitational potentials they traverse differ, the resulting
multiple images are subject to differing lensing magnifications and their light
rays arrive at the observer at different times. Because of this, any fluctuations
in the source brightness are observed in each image at different times. From
a statistical perspective, we can construct a time series of the brightness of
each image, known as a light curve. Features in these light curves appear to
be shifted in time and these shifts are called time delays.

Obtaining accurate time delay estimates is important in cosmology be-

Fig 1. The gravitational field of an intervening galaxy acts as a lens deflecting two light
rays of a quasar image towards the Earth as shown in the left panel. The arrival times
can differ owing to the different lengths of pathways and different gravitational potentials
they pass through. An optical V-band image of the doubly-lensed quasar Q0957+561 ob-
tained with the Canada France Hawaii telescope (Fischer et al., 1997; Munoz et al., 1998)
(https://www.cfa.harvard.edu/castles) appears in the right panel. The two bright sources
at the top and bottom are the lensed images of the quasar, and the small red point towards
the top-left of the lower quasar image is the lensing galaxy.
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cause they can be used to address fundamental questions regarding the origin
and evolution of the Universe. For instance, Refsdal (1964) suggested using
time delay estimates to constrain the Hubble constant H0, the current ex-
pansion rate of the Universe; given a model for the mass distribution and
gravitational potential of the lensing galaxy, the time delay between multi-
ple images of the lensed quasar is inversely proportional to H0 (Blandford
and Narayan, 1992; Suyu et al., 2013; Treu and Marshall, 2016). Also, Lin-
der (2011) showed that an accurate time delay estimate could substantially
constrain cosmological parameters and the equation of state of dark energy
characterizing the accelerated expansion of the Universe.

The upcoming large-scale astronomical survey to be conducted with the
Large Synoptic Survey Telescope (LSST, LSST Science Collaboration, 2009)
will monitor thousands of gravitationally lensed quasars beginning in 2022.
The LSST is the top-ranked ground-based telescope project in the 2010
Astrophysics Decadal Survey, and will produce extensive high-cadence time
series observations of the full sky for ten years. The LSST will produce multi-
band light curves (observed via multiple optical filters centered at different
wavelengths) that form a vector time series for each image. In preparation
for the era of the LSST, Dobler et al. (2015) organized a blind competition
called the Time Delay Challenge (TDC) which ran from October 2013 to
July 2014 with the aim of improving time delay estimation methods for
application to realistic observational data sets. As a simplification for the
first competition, the TDC organizers simulated thousands of single-band
datasets, i.e., scalar time series for each image, that mimic real quasar data.
We are among 13 teams who took part in the TDC, each of which analyzed
the simulated data using their own methods to estimate the blinded time
delays1.

1.1. Data and challenges. We plot a pair of simulated light curves from
a doubly-lensed quasar in Figure 2; the light curves are labeled as A and
B. Each observation time is denoted by vertical dashed lines, at which the
observer measures the brightness of each gravitationally lensed quasar im-
age. In a real data analysis, these images would correspond to the two
bright sources in the second panel of Figure 1. The brightness is reported on
the magnitude scale, an astronomical logarithmic measure of brightness, in
which smaller numbers correspond to brighter objects. The magnitudes in

1In the last stage of the TDC (called rung4 in the TDC), an earlier version of our
method achieved the smallest average coefficient of variation (precision), the TDC target
for the average error level (accuracy) within one standard deviation, and acceptable aver-
age squared standardized residual (χ2) after analyzing the second highest number of data
sets (f). See Liao et al. (2015) for detailed results of the TDC.
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Fig 2. The red squares and blue circles indicate the observed magnitudes of the two simu-
lated images at each observation time. The half lengths of vertical lines around the symbols
represent the uncertainties (standard deviations) of the observed magnitudes. The conven-
tion in Astronomy is to plot the magnitude inversely so that smaller magnitudes (brighter
object) appear on the top and larger ones (fainter object) on the bottom. The quasar mag-
nitudes are vertically offset by an overall calibration constant, the value of which is unim-
portant for time delay estimation.

Figure 2 are presented up to an overall additive calibration constant as was
the case in the TDC. Since the time delay is estimated via relative compar-
ison between fluctuations in the two light curves, our analysis is insensitive
to this overall additive constant.

For a doubly-lensed quasar, there are four variables recorded on an irregu-
larly spaced sequence of observation times t = (t1, t2, . . . , tn)>; the observed
magnitudes x = (x1, x2, . . . , xn)> for light curve A and y = (y1, y2, . . . , yn)>

for light curve B as well as standard deviations, δ = (δ1, δ2, . . . , δn)> and
η = (η1, η2, . . . , ηn)>, representing their uncertainties due to heteroskedas-
tic measurement error. In Figure 2, x and y are represented by red squares
and blue circles, and their standard deviations by the half lengths of vertical
lines around the symbols. Similarly, for a quadruply-lensed quasar, there are
four light curves, each with their own measurement errors.

Since a quasar exhibits fluctuations in its brightness, it is possible to esti-
mate time delays between different views of those fluctuations. In Figure 2,
for example, the bottom of the V-shaped valley of light curve A at around
900 days precedes that of light curve B by around 50 days. Other features
in the light curves exhibit a similar time shift of about 50 days.

However, a number of aspects of the light curves in Figure 2 make accurate
time delay estimation statistically challenging. First, irregular observation
times are inevitable because observations may be prevented in poor weather
or during the day. Second, the motion of the Earth around the Sun causes
seasonal gaps because the part of the sky containing the quasar is not visible
at night from the location of a particular telescope during certain months.
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Third, since the light of each gravitationally lensed image traverses different
paths through the gravitational potential, they are subject to differing de-
grees of lensing magnification. Thus, the light curves often exhibit different
average magnitudes. Finally, observed magnitudes are measured with error,
leading to relatively larger measurement errors for fainter images.

Moreover, some quasar images exhibit additional independent extrinsic
variability, an effect called microlensing2. Significant microlensing occurs
when a path of light passes unusually close to a star that is moving within
the lensing galaxy. Lensing by this star introduces independent brightness
magnification variations into the corresponding image in addition to the
overall magnifications caused by strong lensing of the galaxy (Chang and
Refsdal, 1979; Tewes, Courbin and Meylan, 2013). The timescale of the
microlensing variability is typically much larger than that of the intrinsic
quasar variability if the lens is on a galaxy scale (Liao et al., 2015). Thus
the individual light curves may exhibit different long-term trends that are
not related to the intrinsic variability of the source3. In Figure 3, as an
illustration, we plot the same simulated light curves A and B plotted in
Figure 2 but with different added linear trends to simulate the effect of
microlensing.

1.2. Other time delay estimation methods. Conventional methods for
time delay estimation have involved grid-based searches. One-dimensional
grid methods estimate the time delay, ∆AB,4 by minimizing the χ2 dis-
tance or by maximizing the cross-correlation between two light curves, x
and y∆AB

, on a grid of values of ∆AB (Fassnacht et al., 1999), where y∆AB

denotes y shifted by ∆AB days to the right. Both techniques require an in-
terpolation scheme. The dispersion method (Pelt et al., 1994) combines two

2Microlensing is conceptually similar to strong lensing except that the lens is a star
moving within the intervening galaxy. However, the lensed images produced by microlens-
ing cannot be separately seen because their angular separation is too small for us to resolve
with a telescope. Instead, astronomers observe only the combined magnification of both
images, which changes with time due to the relative motions of the source and lensing
star.

3MacLeod et al. (2010) who analyzed about 9,000 quasars obtained from the Sloan
Digital Sky Survey (Berk et al., 2004) show that the timescale of quasar intrinsic variability
varies from days to years, and Mosquera and Kochanek (2011) indicate that the five
shortest timescales of microlensing among 87 lensed quasars are between 8 and 12 years
with respect to Einstein crossing timescales and are between 1 and 8 weeks with respect
to source crossing timescale. Since the microlensing timescale is not always longer than
the quasar intrinsic variability timescale, it is not always the case that we see the extrinsic
long-term trends in the presence of microlensing.

4A positive value of ∆AB indicates that features in light curve A appear before they
appear in light curve B.
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Fig 3. The light curves of two lensed images can have different long-term trends caused
by microlensing due to stars moving within the lensing galaxy. This effect independently
introduces a long-term magnification trend in each image. Here, we simulate the effect of
two different long-term linear microlensing trends on the light curves in Figure 2. The
dotted lines depict the linear microlensing trend for each image.

light curves by shifting one of them in time and magnitude by ∆AB and
β0, respectively. This is called the curve-shifting assumption. The method
estimates ∆AB and β0 on a two dimensional grid by minimizing the sum
of squared differences between consecutive pairs of magnitudes on the com-
bined curve. A bootstrapping method is used to produce standard errors
of the time delay estimates. These methods account only for the intrinsic
variability of a quasar. (When it is clear from the context, we suppress the
subscript on ∆AB and simply use ∆.)

Model-based methods have also been proposed in past to avoid the com-
putational burden of evaluating the fit on a fine grid. For example, Tewes,
Courbin and Meylan (2013) model the intrinsic and extrinsic variabilities of
light curves using high-order and low-order splines, respectively. They ob-
tain the least square estimate of ∆ by iterating a two-step fitting routine in
which splines are first fit given ∆ and then ∆ is optimized given the model
fit. They also use parametric bootstrapping for the standard error of the
time delay estimate.

Harva and Raychaudhury (2006, hereafter H&R) introduced the first fully
Bayesian approach, though they do not account for microlensing. They as-
sume each observed light curve is generated by an unobserved underlying
process. One of the latent processes is assumed to be a shifted and scaled
version of the other, with the time and magnitude shifts and the magnitude
scale treated as unknown parameters. They use a collapsed Gibbs-type sam-
pler for model fitting, with the latent process integrated out of the target
posterior distribution. Unlike other existing methods this approach unifies
parameter estimation and uncertainty quantification into a single coherent
analysis based on the posterior distribution of ∆.
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1.3. Our Bayesian and profile likelihood approaches. The TDC moti-
vated us to improve on H&R’s fully Bayesian model by taking advantage
of modeling and computational advances made since H&R’s 2006 proposal.
Specifically, we adopt an Ornstein-Uhlenbeck (O-U) process (Uhlenbeck and
Ornstein, 1930) to model the latent light curve. The O-U process has been
empirically shown to describe the stochastic variability of quasar data well
(Kelly, Bechtold and Siemiginowska, 2009; Koz lowski et al., 2010; MacLeod
et al., 2010; Zu et al., 2013). We address the effect of microlensing by in-
corporating a polynomial regression on time into the model. We specify
scientifically motivated prior distributions and conduct a set of systematic
sensitivity analyses; see Appendix E for details of the sensitivity analyses.
In contrast to H&R’s strategy of sampling from a marginal distribution
with the latent process integrated out, we use a Metropolis-Hastings (M-H)
within Gibbs sampler (Tierney, 1994) to sample the posterior in the full
parameter space. We improve the convergence rate of our MCMC (Markov
chain Monte Carlo) sampler by using an ancilarity-sufficiency interweaving
strategy (Yu and Meng, 2011) and adaptive MCMC (Brooks et al., 2011).

To complement the Bayesian method, we introduce a simple profile like-
lihood approach that allows us to remove nuisance parameters and focus
on ∆ (e.g., Davison, 2003). We show that the profile likelihood function of
∆ is approximately proportional to the marginal posterior distribution of
∆ when a Jeffreys’ prior is used for the nuisance parameters (Berger, Liseo
and Wolpert, 1999), see Appendix D. For the problems we investigate the
profile likelihood is nearly identical to the marginal posterior distribution in
most cases, validating the approximation.

Our time delay estimation strategy combines these two complementary
approaches. We first obtain the profile likelihood of ∆, which is simple to
compute. A more principled fully Bayesian analysis focuses on the dominant
mode identified by the profile likelihood and provides joint inference for the
time delay and other model parameters via the joint posterior distribution.

The rest of this paper is organized as follows. We describe our Bayesian
model in Section 2 and the MCMC sampler that we use to fit it in Section 3.
In Section 4, we introduce the profile likelihood approach. We then specify
our estimation strategy and illustrate it via a set of numerical examples in
Section 5. An R package, timedelay, that implements the Bayesian and
profile likelihood methods is publicly available at CRAN5.

5https://cran.r-project.org/package=timedelay
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2. A fully Bayesian model for time delay estimation.

2.1. Latent time series. We assume that each time-delayed light curve
is generated from a latent curve representing the true source magnitude in
continuous time. We denote these latent curves by X = {X(t), t ∈ R}
and Y = {Y (t), t ∈ R}, respectively, where X(t) and Y (t) are unob-
served true magnitudes at time t. We use the vector notation X(t) =
(X(t1), X(t2), . . . , X(tn))> and Y (t) = (Y (t1), Y (t2), . . . , Y (tn))> to denote
the n magnitudes of each latent light curve at the irregularly-spaced obser-
vation times t.

A curve-shifted model (Pelt et al., 1994; Kochanek et al., 2006) assumes
that one of the latent light curves is a shifted version of the other, that is

(2.1) Y (t) = X(t−∆) + β0,

where ∆ is a shift in time and β0 is a magnitude offset. For example, in
Figure 4, we displayed the solid red and dashed blue latent curves of images
A and B, respectively, generated under the model in (2.1). Thus the two
curves exactly overlap if the solid red curve is shifted by ∆ days and by
β0 magnitude units. (For illustration purposes, X is depicted as a solid red
smooth curve; a more realistic model is described in Section 2.3.) The key
advantage of this model is that a single latent light curve, hereX, is sufficient
to represent the true magnitude time series of the two (or more) lensed
images. This model is a special case of H&R’s scaled curve-shifted model,
Y (t) = sX(t−∆)+β0, where s is a magnitude scale change, mentioned at the
end of Section 1.2. Setting s = 1 is reasonable because gravitational lensing

Fig 4. The solid red and dashed blue latent curves of images A and B, respectively, are
generated under the model in (2.1). These two curves are superimposed on Figure 2. The
curve-shifted model in (2.1) specifies that the dashed blue curve is a shifted version of the
solid red curve by ∆ (=70) days in time and by β0 (=0.07) in magnitude. For illustration
purposes, X is depicted as a solid red smooth curve; a more realistic model is described in
Section 2.3.
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only deflects the source light and magnifies it, i.e., multiplies the source flux.
Because magnitude is on the log10 scale of source flux, we expect an additive
offset, i.e., β0, rather than a scale change. The curve-shifted model captures
the essential physical effects of strong gravitational lensing (at least in the
absence of microlensing), and thus is an appropriate model for estimating
the time delay.

Microlensing causes additional long-term extrinsic variability unrelated to
the intrinsic quasar variability driving the dynamics of X. Thus, the curve-
shifted model is not appropriate in the presence of microlensing. To account
for microlensing, we assume that one of the latent light curves is a time-
shifted version of the other, but with an additional polynomial regression of
order m on t−∆, that is

(2.2) Y (t) = X(t−∆) +w>m(t−∆)β,

where wm(t−∆) ≡ (1, t−∆, (t−∆)2, . . . , (t−∆)m)> is a covariate vector
of length m+ 1, and β ≡ (β0, β1, β2, . . . , βm)> is a vector of regression coef-
ficients6. The polynomial regression term in (2.2) accounts for the difference
in the microlensing trends of the two light curves, i.e., the difference between
the long-term trends of Y (t) and X(t−∆). The microlensing model in (2.2)
reduces to a curve-shifted model in (2.1) if β1 = β2 = · · · = βm = 0.

The best choice for the order of the polynomial regression depends on
the extent of microlensing, and this varies from quasar to quasar. We set
m = 3 as a default because the third order polynomial regression has been
successfully applied to model lensed quasars (Kochanek et al., 2006; Courbin
et al., 2013; Morgan et al., 2012). If we find evidence via the profile likelihood
that a third order polynomial regression is not sufficient to reduce the effect
of microlensing (see Section 5.1 for details), we can impose a reasonable
upper bound of m by running preliminary regression on the observed light
curves, and comparing the fits.

2.2. Distribution of the observed data. Observing the gravitationally-
lensed images with a telescope, an astronomer measures the magnitude in
each image, xj and yj , and reports standard deviations, δj and ηj , represent-
ing the uncertainties of the magnitudes due to measurement errors7 at time

6An orthonormal basis is more compatible with an independent prior on the regression
coefficients and thus may be preferred if a higher degree polynomial regression is used.

7The magnitude estimate and standard deviation typically summarize a Gaussian ap-
proximation to the likelihood of the latent magnitude for the flux data of an image. The
standard deviation does not necessarily represent a standard error of a repeated sampling
measurement error distribution.
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tj , j = 1, 2, . . . , n. We assume that these measurements have independent
Gaussian errors centered at the latent magnitudes X(tj) and Y (tj), i.e.,

xj | X(tj)
indep.∼ N[X(tj), δ

2
j ],(2.3)

yj | Y (tj)
indep.∼ N[Y (tj), η

2
j ],(2.4)

where N[M,V ] is a Gaussian distribution with mean M and variance V , and
x and y are independent given their true magnitudes. Using the model in
(2.2), we can express (2.4) as

(2.5) yj | X(tj −∆),∆,β
indep.∼ N[X(tj −∆) +w>m(tj −∆)β, η2

j ].

Given ∆, we define t∆ = (t∆1 , t
∆
2 , . . . , t

∆
2n)> as the sorted vector of 2n times

among the n observation times, t, and the n time-delay-shifted observation
times, t − ∆. Also, X(t∆) = (X(t∆1 ), X(t∆2 ), . . . , X(t∆2n))> is the vector of
2n latent magnitudes at the times in t∆. The joint density function of the
observed data given X(t∆), ∆, and β is

(2.6) p(x,y |X(t∆),∆,β) =
n∏
j=1

p(xj | X(tj))× p(yj | X(tj −∆),∆,β),

where the two distributions in the product are given in (2.3) and (2.5).

2.3. Prior distribution of the latent magnitudes. We assume the latent
continuous-time light curve, X, is a realization of an O-U process (Uhlen-
beck and Ornstein, 1930) as proposed in Kelly, Bechtold and Siemiginowska
(2009). The stochastic differential equation,

(2.7) dX(t) = −1

τ

(
X(t)− µ

)
dt+ σdB(t),

defines the O-U process, where µ and σ are on the magnitude scale and
govern the overall mean and short-term variability of the underlying process,
τ is a timescale (in days) for the process to revert to the long-term mean µ,
{B(t), t ≥ 0} is a standard Brownian motion, and dB(t) is an interval of
the Brownian motion, whose distribution is Gaussian with mean zero and
variance dt. We denote the three O-U parameters by θ = (µ, σ2, τ)>.

Kelly, Bechtold and Siemiginowska (2009) empirically demonstrated that
the power spectrum of the O-U process is consistent with the mean power
spectrum of 55 well-sampled quasar light curves at a specific frequency range
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with timescales shorter than τ . They also investigated the associations be-
tween model parameters and the physical properties of quasars. For exam-
ple, τ has a positive correlation with black hole mass, which is consistent
with previous astrophysical studies. Koz lowski et al. (2010) and MacLeod
et al. (2010) were concerned about a possible selection bias in the sample
of quasars used in Kelly, Bechtold and Siemiginowska (2009) and thus they
analyzed thousands of light curves. Koz lowski et al. (2010) found further sup-
port for the O-U process in their analyses of about 2,700 quasars obtained
from the Optical Gravitational Lensing Experiment (OGLE, Koz lowski and
Kochanek, 2009). They showed that the distribution of the goodness of fit
statistic obtained by fitting the O-U process to their light curves was con-
sistent with the expected distribution of the statistic under the assumption
that the light curve variation was stochastic. MacLeod et al. (2010) further
verified the argument about the correlations between model parameters and
physical properties in Kelly, Bechtold and Siemiginowska (2009) by analyz-
ing about 9,000 quasars obtained from the Sloan Digital Sky Survey (Berk
et al., 2004). Zu et al. (2013) also supported the O-U process by comparing
it to the Gaussian process with three different covariance functions in fitting
about 200 OGLE light curves. Their numerical results based on the F -test
and Bayesian information criterion supported the O-U process. These stud-
ies popularized the O-U process among astrophysicists to the extent that
the TDC simulated its quasar light curves under an O-U process8 (Dobler
et al., 2015). The earlier approach of H&R (2006) preceded these more recent
advances in astrophysical and statistical modeling of quasars.

The solution of the stochastic differential equation in (2.7) provides the
prior distribution for the time-sorted latent magnitudesX(t∆) via its Marko-
vian property. Specifically,

X(t∆1 ) | ∆,θ ∼ N

[
µ,

τσ2

2

]
, and for j = 2, 3, . . . , 2n,

X(t∆j ) | X(t∆j−1),∆,θ ∼ N

[
µ+ aj

(
X(t∆j−1)− µ

)
,
τσ2

2
(1− a2

j )

]
,

(2.8)

8The TDC organizers generated 500 10-year-long light curves by using the O-U pro-
cess (µ = 0, log(τ) ∈ [1.5, 3.0], and log(σ) ∈ [−1.1,−0.3]), and re-used these to make
about 5,000 doubly- or quadruply-lensed light curves with different starting points, differ-
ent seasonal gaps, etc. Microlensing is simulated via a catalog convergence of Oguri and
Marshall (2010), shear, and surface density. The measurement errors were heteroskedastic
Gaussian. The organizers intentionally contaminated the data to make the time delay esti-
mation difficult; the reported standard deviations may be under-estimated, measurement
errors may be correlated due to time-dependent calibration error, and magnitudes may be
temporarily offset due to time-dependent systematic effects in the telescope optics.
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where aj ≡ exp(−(t∆j − t∆j−1)/τ) is a shrinkage factor that depends on the
observational cadence and τ . If two adjacent latent magnitudes are close
in time, i.e., t∆j − t∆j−1 is small, aj is close to unity and under this prior

X(t∆j ) borrows more information or shrinks more towards the previous latent

magnitude, X(t∆j−1), and exhibits less uncertainty. On the other hand, if
neighboring latent magnitudes are distant in time, e.g., due to a seasonal
gap, aj is close to zero, and under this prior X(t∆j ) borrows little information

from the distant value X(t∆j−1) and instead approaches the overall mean µ
with more uncertainty. This is known as the mean reversion property of the
O-U process.

The joint prior density function of the 2n latent magnitudes is

(2.9) p(X(t∆) | ∆,θ) = p(X(t∆1 ) | ∆,θ)×
2n∏
j=2

p(X(t∆j ) | X(t∆j−1),∆,θ),

where the distributions on the right-hand side are given in (2.8).

2.4. Prior distributions for the time delay and the magnitude offset. We
adopt independent proper prior distributions for ∆ and β,

(2.10) p(∆,β) = p(∆)p(β) ∝ I{u1≤∆≤u2} ×Nm+1(β | 0, 105 × Im+1),

where I{D} is the indicator function of D, Nm+1(β | 0, 105×Im+1) is an m+1
dimensional Gaussian density evaluated at β whose mean is 0, a vector of
zeros with length m+ 1, and variance-covariance matrix is 105× Im+1, with
an m+ 1 dimensional identity matrix Im+1. We put a diffuse Gaussian prior
on β to minimize impact on the posterior inference and to ensure posterior
propriety.

The range of the uniform prior distribution on ∆, [u1, u2], reflects the
range of interest. One choice is the entire feasible range (or feasible range)
of ∆, [t1 − tn, tn − t1]; only values of ∆ in this range can correspond to
adjusted light curves that overlap by at least one data point. (H&R uses
a diffuse Gaussian prior distribution on ∆ that is defined even outside this
range.)

In some cases, information about the likely range of ∆ is available from
previous analyses or possibly from astrophysical probes. For example, we
can find the likely range of ∆ using a physical model for the mass and
gravitational potential of the lens, as well as the redshifts (an astronomical
measure of distance) and relative spatial locations of a quasar and lens.

In reality, the time delay and lensing magnification may be correlated a
priori. We assume a priori independence, however, because it is difficult to



BAYESIAN TIME DELAY ESTIMATION 13

construct an informative joint prior distribution without more information
about the lens system, i.e., image positions, distances, and a lens model.

2.5. Prior distributions for the parameters in the O-U process. Consid-
ering both scientific knowledge and the dynamics of the O-U process, we
put a uniform distribution on the O-U mean µ, an independent inverse-
Gamma (IG) distribution, IG(1, bσ), on its short-term variance σ2, and an
independent IG(1, bτ ) distribution on its timescale τ , i.e.,

p(µ, σ2, τ) = p(µ)p(σ2)p(τ) ∝ exp(−bσ/σ2)

(σ2)2
× exp(−bτ/τ)

τ2

× I{−30≤µ≤30} × I{σ2>0} × I{τ>0}.

(2.11)

The units of bσ are magnitude squared per day, hereafter mag2/day, and the
scale parameter of the IG distribution on τ is fixed at one day, i.e., bτ = 1
day.

Here the uniform distribution on µ encompasses a magnitude range from
that of the Sun (magnitude = −26.74) to that of the faintest object visible
with the Hubble Space Telescope (magnitude = 30). The IG distributions
on τ and σ2 set soft lower bounds9 to focus on practical solutions in which
∆ can be constrained. For example, in the limits when τ is much less than
the observation cadence or when σ2 is much smaller than the measurement
variance divided by the cadence, the discrete observations of the continuous
latent light curve appear as serially uncorrelated white noise sequence. In
these limiting cases it is impossible to estimate ∆ by matching serially cor-
related fluctuation patterns. The soft lower bounds for τ and σ2 discount
these limiting cases, and allow us to focus on the relevant parameter space
in which we expect time delay estimation to be feasible.

We set the shape parameter of the IG prior distribution on τ to unity
and the scale parameter bτ to one day to obtain a weakly informative prior.
The resulting soft lower bound on τ is 0.5 day and is smaller than all of the
estimates of τ in MacLeod et al. (2010), who analyzed 9,275 quasars.

For the IG prior distribution of σ2, we set the shape parameter to unity
and the scale parameter to (Mean measurement standard deviation)2 / (Me-
dian cadence), i.e.,

(2.12) bσ =
[{
∑n

j=1 δj +
∑n

j=1 ηj}/2n]2

Median(t2 − t1, t3 − t2, . . . , tn − tn−1)
.

9Because the density function of IG(a, b) decreases exponentially from its mode, b/(a+
1), toward zero and geometrically decreases with a power of a + 1 towards infinity, it is
relatively unlikely for the random variable to take on values much smaller than its mode.
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This scale parameter enables us to search for solutions for which we can
constrain ∆ by avoiding the above limiting case. Another viable choice for
the scale parameter is bσ = 2×10−7 because all estimates of σ2 in MacLeod
et al. (2010) are larger than this value. Sensitivity analyses for the choice of
prior distributions of τ and σ2 appear in Appendix E.

3. Metropolis-Hastings within Gibbs sampler. Our overall hier-
archical model is specified via the observation model in (2.3) and (2.5),
the O-U process for the latent light curve in (2.8), and the prior distribu-
tions given in (2.10) and (2.11). Our first approach to model fitting uses
a Gibbs-type sampler to explore the resulting full posterior distribution.
It is possible to integrate out the latent magnitudes analytically and use
a collapsed sampler based on the marginalized joint posterior distribution
specified in Appendix A as H&R did. However, we treat X(t∆) as latent
variables, alternatively updating X(t∆) and the other model parameters.
(We could formulate our approach as data augmentation with X(t∆) as the
missing data, see van Dyk and Meng (2001).)

Specifically, we use a Metropolis-Hastings within Gibbs (MHwG) sampler
(Tierney, 1994) that iteratively samples five complete conditional distribu-
tions of the full joint posterior density, p(X(t∆),∆,β,θ | x,y), proportional
to the product of densities of observed data in (2.6) and prior densities in
(2.9), (2.10) and (2.11). Iteration l of our sampler is composed of five steps.

Step 1: Sample (X(l)(t∆
(l)

),∆(l)) ∼ p(X(t∆),∆ | β(l−1),θ(l−1))(3.1)

= p(X(t∆) | ∆,β(l−1),θ(l−1))× p(∆ | β(l−1),θ(l−1)) by M-H

Step 2: Sample β(l) ∼ p(β | θ(l−1),X(l)(t∆
(l)

),∆(l))(3.2)

Step 3: Sample µ(l) ∼ p(µ | (σ2)(l−1), τ (l−1),X(l)(t∆
(l)

),∆(l),β(l))(3.3)

Step 4: Sample (σ2)(l) ∼ p(σ2 | τ (l−1),X(l)(t∆
(l)

),∆(l),β(l), µ(l))(3.4)

Step 5: Sample τ (l)∼ p(τ | X(l)(t∆
(l)

),∆(l),β(l), µ(l), (σ2)(l)) by M-H,(3.5)

where we suppress conditioning on x and y in all five steps. The condi-
tional distributions in (3.2), (3.3), and (3.4), are standard families that can
be sampled directly, whereas those in (3.1) and (3.5) require M-H updates.

We use the factorization in (3.1) to construct a joint proposal, (X̃(t∆̃), ∆̃),
for (X(t∆),∆) and calculate its acceptance probability. First, ∆̃ is pro-
posed from N(∆(l−1), ψ2), where ψ is a proposal scale and is set to produce

a reasonable acceptance rate. Given ∆̃, we propose X̃(t∆̃) ∼ p(X(t∆̃) |
∆̃,β(l−1),θ(l−1),x,y); this is a Gaussian distribution and is specified in Ap-
pendix B. Because the proposal for ∆ and that for X(t∆) given ∆ are
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symmetric, (X̃(t∆̃), ∆̃) is accepted with a probability min(1, r), where

(3.6) r =
p(∆̃ | β(l−1),θ(l−1),x,y)

p(∆(l−1) | β(l−1),θ(l−1),x,y)
.

Details of the marginalized density p(∆ | β,θ,x,y) in (3.6) appear in Ap-
pendix A and details of Steps 2–5 appear in Appendix C.

The direct updates for β, µ, and σ2 are based on standard families that
are not available using H&R’s collapsed approach. Thus the collapsed ap-
proach must update each of the model parameters via a Metropolis or M-H
update, which can slow down convergence. (Collapsing Gibbs-type samplers,
however, is known to improve their rate of convergence (Liu, 2008) if the
complete conditionals can be sampled directly.) Also, the collapsed MHwG
(CMHwG) sampler requires about three times more CPU time per itera-
tion than the (non-collapsed) MHwG sampler that we propose. In Figure 5,
we compare the autocorrelation functions (ACFs) of ∆, β0, µ, σ2, and τ
obtained by the CMHwG sampler (first row) and those obtained by our
MHwG sampler (second row). The sampler in the third row is discussed in
Section 3.1. All algorithms are run using the curve-shifted model in (2.1) fit
to data for quasar Q0957+561 (Hainline et al., 2012). Except for that of β0,
the ACFs generated with CMHwG (first row), decay more slowly than those
obtained with MHwG (second row). The effective sample sizes per second

Fig 5. The autocorrelation functions for ∆, β0, µ, σ
2, and τ (columns from left to right)

based on 10,000 posterior samples after a burn-in of 10,000. Results are obtained us-
ing three different posterior samplers (CMHwG, MHwG, and MHwG + ASIS, rows from
top to bottom). We use the curve-shifted model for simplicity and the data from quasar
Q0957+671 analyzed in Section 5.3.
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(ESS/sec) tend to improve with MHwG over CMHwG. For example, for ∆
the ESS/sec is 5.23 with CMHwG and 21.09 with MHwG. The exception is
β0, for which ESS/sec is 6.33 with CMHwG, but only 1.74 with MHwG. The
mixing for β in our microlensing model is slow in general. In the following
section, we discuss a way to improve the convergence rate of β0 (or β in
general) for the MHwG sampler, while retaining its fast running time.

3.1. Ancillarity-sufficiency interweaving strategy. To improve the con-
vergence rate of β, we adopt the ancillarity-sufficiency interweaving strat-
egy (ASIS, Yu and Meng, 2011). In a general hierarchical modeling setting,
ASIS interweaves trajectories of the Markov chains obtained by two dis-
cordant parameterizations of the unknown quantities, which reduces depen-
dence between the adjoining iterates. A different parameterization for the
location parameters, e.g., β in our case, can be derived by shifting, and that
for scale parameters by rescaling. The two parameterizations are designed
so that the original and transformed parameters can be viewed as ancillary
and sufficient statistics for β, respectively. ASIS is always faster to converge
than the slower of the data augmentation samplers based on either of the
two parameterizations and is geometrically convergent even when neither of
the two data augmentation samplers is.

In the parameterization used up until now, X(t∆) is an ancillary aug-
mentation (AA) for β in that it is an ancillary statistic for β. That is, the
distribution of X(t∆) in (2.8) does not depend on β. On the other hand, a
sufficiency augmentation (SA) for β is based on a transformation of X(t∆)
that have sufficient information to estimate β, that is, a sufficient statistic
for β. To derive an SA for β, we introduce the parameterization,

(3.7) K(t∆j ) ≡ X(t∆j ) +w>m(t∆j )β × It−∆(t∆j ), for j = 1, 2, . . . , 2n,

where

(3.8) It−∆(t∆j ) =

{
1, if t∆j ∈ t−∆,

0, if t∆j ∈ t.

This indicator is one if t∆j is an element of t−∆ = {t1−∆, t2−∆, . . . , tn−∆}
and zero otherwise. Thus, K(t∆) represents the time-sorted latent magni-
tudes of X(t) and of microlensing-adjusted Y (t), i.e., X(t−∆) +w>m(t−
∆)β. Using (3.7), we express the observation model in (2.3) and (2.5) as

xj | K(tj)
indep.∼ N[K(tj), δ

2
j ].(3.9)

yj | K(tj −∆),∆
indep.∼ N[K(tj −∆), η2

j ].(3.10)
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The distributions for the latent light curve in (2.8) are replaced by

K(t∆1 ) | ∆,β,θ ∼ N

[
µ+w>m(t∆1 )β × I{t−∆}(t

∆
1 ),

τσ2

2

]
,

K(t∆j ) | K(t∆j−1),∆,β,θ ∼ N

[
µ+w>m(t∆j )β × I{t−∆}(t

∆
j )

+aj
(
K(t∆j−1)− µ−w>m(t∆j−1)β × I{t−∆}(t

∆
j−1)

)
,
τσ2

2
(1− a2

j )

]
.

(3.11)

Under this reparameterization of the model in terms of K(t∆), β appears
only in (3.11), which means that K(t∆) contains sufficient information to
estimate β and thus K(t∆) is an SA for β. In contrast, β appears only
in the distribution of observed magnitudes in (2.6), not in that of latent
magnitudes in (2.8), and thus X(t∆) is an AA for β. Because the param-
eterization does not affect the prior distributions of the model parameters
in (2.10) and (2.11), the full joint posterior density in terms of K(t∆), i.e.,
p(K(t∆),∆,β,θ | x,y), is proportional to the product of densities of ob-
served data given in (3.9) and (3.10) and prior densities in (3.11), (2.10)
and (2.11). Consequently, the marginal posterior distribution of the model
parameters, {∆,β,θ}, is unchanged.

ASIS interweaves the trajectory of β from a sample constructed under
AA and that constructed under SA. This can be accomplished by replacing
Step 2 in (3.2) with the following four steps:

Step 2a : Sample β
(l)
AA ∼ p(β | θ

(l−1),X(l)(t∆
(l)

),∆(l))(3.12)

Step 2b : Set K(l)(t∆
(l)

j )= X(l)(t∆
(l)

j ) +w>m(t∆
(l)

j )β
(l)
AAIt−∆(l)(t∆

(l)

j )(3.13)

Step 2c : Sample β
(l)
SA ∼ p(β | θ

(l−1),K(l)(t∆
(l)

),∆(l))(3.14)

Step 2d : Set X(l)(t∆
(l)

j )= K(t∆
(l)

j )−w>m(t∆
(l)

j )β
(l)
SAIt−∆(l)(t∆

(l)

j )(3.15)

Again, we suppress the conditioning on x and y. In Step 2c, we set β(l) to

β
(l)
SA sampled from its conditional posterior distribution specified in (C.2). In

Step 2d, ASIS updatesX(l)(t∆
(l)

) to adjust for the inconsistency between the

updates sampled in (3.3)–(3.5) that are based on X(l)(t∆
(l)

) and the update

β(l) that is based on K(l)(t∆
(l)

). Updating X(l)(t∆
(l)

) in (3.15) synchronizes
this inconsistency and preserves the stationary distribution (Yu and Meng,
2011). The additional computational cost of ASIS is negligible because the
conditional updates in (3.12) and (3.14) include quick multivariate Gaussian
sampling; see (C.1) and (C.2) for details.
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ACFs of the model parameters obtained by MHwG equipped with ASIS,
denoted by MHwG+ASIS, appear on the third row of Figure 5; the ACF of
β0 in the second column shows a noticeable improvement compared to that
obtained by MHwG sampler. The ESS/sec for β0 is 20.95 with MHwG+ASIS
and 1.74 with MHwG. In general, ASIS improves the mixing of all the re-
gression coefficients in our microlensing model. Although it improves the
ACF for the components of β, ASIS has little effect on the ACF of ∆. The
ESS/sec for ∆ is 21.35 with MHwG+ASIS and 21.09 with MHwG. This
small improvement implies that the dependence between ∆ and β may be
weak a posteriori; this is confirmed by our data analyses in Section 5.1. Nev-
ertheless, ASIS improves overall convergence of the chain which we expect
to improve the reliability of all inferences based on the chain.

3.2. Adaptive MCMC. Our MHwG sampler (either with or without ASIS)
requires a proposal distribution in each of its two Metropolis steps, that is,
N
[
∆(l−1), ψ2

]
used to update ∆(l) in (3.1) and N

[
log(τ (l−1)), φ2

]
used to

update log(τ (l)) in (3.5), where ψ and φ are the proposal scales. To avoid
burdensome off-line tuning of the proposal scales, we implement an adap-
tive MCMC sampler (Brooks et al., 2011) that allows automatic adjustment
during the run. The steps of the adaptive MHwG+ASIS sampler are spec-
ified in Algorithm 1. Specifically, we implement an algorithm that updates
the two proposal scales every 100 iterations, based on the most recent 100
proposals as outlined in Step 6 of Algorithm 1. The Markov chains equipped
with the adaptive MCMC converge to the stationary distribution because
the adjustment factors, exp(±min(0.01, 1/

√
i)), in Step 6 of of Algorithm 1

approach unity as i goes to infinity. This condition is called diminishing
adaptation condition (Roberts and Rosenthal, 2007). We set the lower and
upper bounds of the acceptance rate to 0.23 and 0.44, respectively (Gelman
et al., 2013).

All of the numerical results presented in Figure 5 were obtained using
algorithms that similarly adapted their M-H updates, i.e., the M-H updates
of all the parameters in CMHwG and of ∆ and τ in both MHwG and
MHwG+ASIS.

4. Profile likelihood of the time delay. We use the profile likelihood
of ∆ (e.g., Davison, 2003) to obtain a simple approximation to its marginal
posterior distribution, p(∆ | x,y). This profile likelihood is

(4.1) Lprof(∆) ≡ max
β,θ

L(∆,β,θ) = L(∆, β̂∆, θ̂∆),



BAYESIAN TIME DELAY ESTIMATION 19

Algorithm 1. Steps of the adaptive MHwG+ASIS sampler.

Set X(0)(t∆
(0)

), ∆(0), β(0), µ(0), (σ2)(0), τ (0), ψ(0), φ(0).
For l = 1, 2, . . .
Step 1: Sample ∆(l) using a Metropolis step with proposal rule N[∆(l−1), (ψ(l−1))2].

If a new proposal for ∆(l) is accepted, then sample X(l)(t∆
(l)

),

or otherwise set X(l)(t∆
(l)

) to X(l−1)(t∆
(l−1)

).

Step 2: (ASIS) Update β(l) and X(l)(t∆
(l)

) via (3.12)–(3.15).
Step 3: Sample µ(l) via (3.3).
Step 4: Sample (σ2)(l) via (3.4).
Step 5: Sample τ (l) using an M-H step with proposal rule N[log(τ (l−1)), (φ(l−1))2].
Step 6: (Adaptation) If l mod 100 = 0

if the acceptance rate of ∆ in iterations l − 99, l − 98, . . . , l > 0.44 then
ψ(l) ← ψ(l−1) × exp(min(0.01, 1/

√
(l/100)))

else if the acceptance rate of ∆ in iterations l − 99, l − 98, . . . , l < 0.23 then
ψ(l) ← ψ(l−1) × exp(−min(0.01, 1/

√
(l/100)))

end if

if the acceptance rate of τ in iterations l − 99, l − 98, . . . , l > 0.44 then
φ(l) ← φ(l−1) × exp(min(0.01, 1/

√
(l/100)))

else if the acceptance rate of τ in iterations l − 99, l − 98, . . . , l < 0.23 then
φ(l) ← φ(l−1) × exp(−min(0.01, 1/

√
(l/100)))

end if

Otherwise ψ(l) = ψ(l−1) and φ(l) = φ(l−1).

where L(∆,β,θ) is the marginal likelihood function of the model parameters
with the latent light curve integrated out, i.e.,

L(∆,β,θ) = p(x,y | ∆,β,θ)(4.2)

=

∫
p(x,y |X(t∆),∆,β)× p(X(t∆) | ∆,θ) dX(t∆),

and (β̂∆, θ̂∆) are the values of (β, θ) that maximize L(∆,β,θ) for each ∆.
The profile likelihood of a parameter, say ϕ, may asymptotically approx-

imate its marginal posterior distribution with a uniform prior on ϕ. This
happens, for example, if the log likelihood of the model parameters is ap-
proximately quadratic given ϕ under standard asymptotic arguments. The
prior distribution on the parameters other than ϕ is chosen in such a way
as to approximately cancel the determinant of Hessian matrix of the log
likelihood, e.g., as happens asymptotically with the Jeffreys’ prior, see Ap-
pendix D for details.

Treating Lprof(∆) as an approximation to p(∆ | x,y), we evaluate Lprof(∆)
on a fine grid of values over the interesting range of ∆. We set w val-
ues from ∆1 to ∆w, i.e., {∆1,∆2, . . . ,∆w}, where e.g., ∆j − ∆j−1 = 0.1
(j = 2, 3, . . . , w) for a high-resolution mapping. Unfortunately this can be
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computationally burdensome due to the large number of values on the grid.
For example, if the feasible range for ∆ is [−1500, 1500], the grid consists of
30,001 values. At one second per evaluation this requires about 8 hours and
20 minutes. Though computationally expensive, the high-resolution mapping
of Lprof(∆) is useful because it clearly identifies the likely (modal) values of
∆. In practice, we use multiple cores in parallel to reduce the computation
time and optimization is implemented using a general-purpose quasi-Newton
method, optim, in R (R Core Team, 2016). Initial values for numerical op-
timization at the first grid point are set just as with the Bayesian method
described in Section 5 and the initial values for subsequent grid point are
set to the values that maximize the profile likelihood at the previous grid
point.

The profile likelihood evaluated on the grid can be used to approximate
the posterior mean E(∆ | x,y),

(4.3) ∆̂mean ≡
∑w

j=1 ∆j × Lprof(∆j)∑w
j=1 Lprof(∆j)

,

and the posterior variance Var(∆ | x,y),

(4.4) V̂ ≡
∑w

j=1 ∆2
j × Lprof(∆j)∑w

j=1 Lprof(∆j)
−

[∑w
j=1 ∆j × Lprof(∆j)∑w

j=1 Lprof(∆j)

]2

.

Moreover, the posterior mode of ∆ can be approximated by a value of ∆ in
the grid that maximizes the profile likelihood, which is a discrete approxi-
mation to the maximum likelihood estimator, ∆̂MLE ≡ arg max∆ Lprof(∆).
If the profile likelihood exhibits multiple modes, however, the (approximate)
posterior mean, mode, and variance can be misleading. Instead each mode
requires separate investigation based on their (approximate) relative size.

5. Time delay estimation strategy and numerical illustrations.
The first step of our analysis is to plot Lprof(∆) over the range of ∆ to check
for multi-modality that may indicate multiple modes (e.g., Brooks et al.,
1997) in the marginal posterior distribution of ∆. For some quasars, the
interesting range of ∆ can be narrowed using the results of past analyses or
information from other astrophysical probes as discussed in Section 2.4. If
prior information for ∆ is unavailable, we explore the feasible range.

In our numerical studies, we find that when Lprof(∆) is dominated by one

mode, the moment estimates of ∆ based on Lprof(∆), i.e., ∆̂mean in (4.3)

and V̂ in (4.4), are almost identical to the posterior mean and variance ob-
tained via MCMC. On the other hand, modes near the margins of the range
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of ∆ may indicate microlensing; see Section 5.1. In this case, the order of
polynomial regression must be increased. If there are multiple modes that
are not near the margins of the feasible range, each mode merits investiga-
tion; evaluating Lprof(∆) divided by the square root of the observed Fisher
information at each mode provides an approximation of the relative size of
each mode. If the modes are so close that the MCMC chain readily jumps
between them, it is easy to estimate their relative size; see Section 5.3.

As a cross-check, in all of our numerical examples we run three MCMC
chains near each of the major mode(s) identified by Lprof(∆); The three
starting values for each mode are {mode, mode ± 20 days}. Each chain is
run for 510,000 iterations and the first 10,000 iterations are discarded as
burn-in; the Gelman-Rubin diagnostic statistics (Gelman and Rubin, 1992)
of all of the model parameters computed from the post burn-in chains in all
of our numerical examples are smaller than 1.001, which justifies our burn-in
size. Because the smallest effective sample size of the parameters computed
from the post burn-in chains across all of our examples is about 11,000,
we thin each chain by a factor of fifty (from length 500,000 to 10,000). We
combine the three thinned chains to obtain our Monte Carlo sample from
the posterior distribution. For all chains, we set the starting value of β to
the estimated regression coefficients obtained by regressing y−

∑
j xj/n on

a covariate matrix Wm(t − ∆(0)) whose jth row is w>m(tj − ∆(0)), where
∆(0) is the initial value of ∆. The initial value of X(t∆) is the combined
light curve, that is, {x,y−∆(0) −W>

m(t − ∆(0))β(0)} sorted in time. The
starting value of µ is set to the mean of x, that of σ2 to 0.012, and that of τ
to 200. We set the initial standard deviations of the proposal distributions
to ψ = 10 days for ∆ and φ = 3 for log(τ). (The unit of τ is days.)

We use simulated data of doubly- and quadruply-lensed quasars publicly
available at the TDC website (http://timedelaychallenge.org) to illustrate
our time delay estimation strategy when prior information for ∆ is not avail-
able. We also analyze observed data of quasars Q0957+561 and J1029+2623
over the feasible range of ∆ for illustrative purpose, though prior information
is available to limit the range of ∆.

We report the CPU time in seconds using a server equipped with two
8-core Intel Xeon E5-2690 at 2.9 GHz and 64 GB of memory. We report the
entire mapping time for Lprof(∆).

5.1. A doubly-lensed quasar simulation. The simulated data for a doubly-
lensed quasar are plotted in the first panel of Figure 6; the median cadence
is 3 days, the cadence standard deviation is 1 day, observations are made for
4 months in each of 5 years for 200 observations in total, and measurement
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Fig 6. The first panel shows a TDC data set suffering from microlensing that results in light
curves with different long-term trends. The dashed lines denote fitted linear regression lines.
In the second panel, we combine the two light curves by shifting light curve B by E(∆ | x,y)
in the horizontal axis and by subtracting the estimated third-order polynomial regression
based on E(β | x,y) from light curve B. The microlensing model finds matches between
the intrinsic fluctuations of the light curves after removing the relative microlensing trend
from light curve B. We plot the posterior sample of X(t∆) in gray in the right panel to
represent the point-wise prediction interval for the combined latent light curve. The gray
areas encompass most of the combined observed light curve, indicating that the fitted model
predicts the observed data well.

errors are heteroskedastic Gaussian. The light curves suffer from microlens-
ing which can be identified from their different long-term linear trends and
similar short-term (intrinsic) variability.

To show the effect of microlensing on the time delay estimation, we fit
both the curve-shifted model (m = 0) in (2.1) and the microlensing model
with m = 3 in (2.2). We plot log(Lprof(∆)) and Lprof(∆) based on the curve-
shifted model over the feasible range, [t1−tn, tn−t1] = [−1575.85, 1575.85],
in the two panels of Figure 7. The profile likelihood exhibits large modes near
the margins that overwhelm the profile likelihood near the true time delay
(5.86 days denoted by the vertical dashed line).

In the presence of microlensing, the curve-shifted model cannot identify
the time delay because the latent curves are not shifted versions of each
other. The modes of Lprof(∆) near the margins of the range of ∆ occur
because, in the small overlap between the tips of two light curves, spurious
matches may be made by chance between similar fluctuation patterns. In
Figure 8, for instance, we shift light curve B in the x-axis by the three values
of ∆ indicated by three arrows in the second panel of Figure 7. In the first
panel of Figure 8, the two light curves shifted by the true time delay do not
match for any shift in magnitude. However, given the time delays at around
−1,200 or 1,360 days, the two light curves look well-connected as shown in
the second and third panels. Thus, the profile likelihood near the true time
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Fig 7. The profile log likelihood (left) and the profile likelihood (right) of ∆ over its
feasible range under the curve-shifted model (m = 0). We exponentiate and normalize
log(Lprof(∆i)) as exp[log(Lprof(∆i))−maxj(log(Lprof(∆j)))] for all i. The vertical dashed
line indicates the true time delay. The profile likelihood near the true time delay (5.86
days) is overwhelmed by the modes near margins.

delay is overwhelmed by the values of the profile likelihood near −1,200 and
1,360 days.

To correct this effect, we fit the microlensing model with a third-order
polynomial regression (m = 3). Both log(Lprof(∆)) and Lprof(∆) are plotted
in Figure 9. One mode clearly dominates Lprof(∆). Using a uniform prior
for ∆ over its feasible range and setting σ2 ∼ IG(1, 2/107), we initialize
three MCMC chains near ∆̂mean = 6.36 days. It took 14,457 seconds to
map Lprof(∆) and 5,115 seconds on average for each MCMC chain. The
profile likelihood and marginal posterior near the dominant mode are almost

Fig 8. We shift light curve B (blue) by the true time delay (5.86 days) in the first panel,
by −1,199.85 days in the second panel, and by 1363.35 days in the third panel. These
three time delays correspond to three arrows in the second panel of Figure 7. The shift
in magnitude used is the value of β0 that maximizes the profile likelihood given each time
delay. Without accounting for microlensing, the curve-shifted model fails because the light
curves do not match even at the true time delay. The curve-shifted model may produce
large modes near the margins because, in the small overlap between the tips of two light
curves, spurious matches may be made by chance between similar fluctuation patterns as
shown in the second and third panels.
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Fig 9. The profile log likelihood (first panel) and the profile likelihood (second panel) of ∆
over its feasible range under the microlensing model (m = 3). The profile likelihood shows
one mode near the true time delay (5.86 days). The third panel shows the marginal poste-
rior distribution of ∆ as a histogram of the MCMC samples with re-normalized Lprof(∆)
superimposed. The vertical dashed line indicates the true time delay.

identical and are consistent with the true value of ∆ as shown in the third
panel of Figure 9.

In the second panel of Figure 6, we combine two light curves by shifting
light curve B by the posterior mean of ∆ in the horizontal axis and by sub-
tracting the estimated polynomial regression based on the posterior means
of β from light curve B. The microlensing model finds matches between
the intrinsic fluctuations of the light curves after removing the relative mi-
crolensing trend from light curve B. We also plot the posterior sample of
X(t∆) in gray in the right panel of Figure 6. The gray regions represent the
point-wise prediction intervals for the combined latent light curve. The gray
areas encompass most of the combined observed light curve, indicating that
the fitted model predicts the observed data well.

We summarize the Bayesian and profile likelihood estimates for ∆ in
Table 1. The true delay is within two posterior standard deviation of the
posterior mean; similar accuracy is obtained with the profile likelihood ap-
proximation. This is anecdotal evidence that our model works well when
microlensing is properly accounted for; there is no severe multi-modality
near edges of the range of ∆ in the second panel of Figure 9.

We also conduct a simulation study, generating 1,000 datasets from our

Table 1
Estimates of ∆; the profile likelihood estimates, ∆̂mean and V̂ 0.5 are given in the

E(∆|x,y) and SD ≡ SD(∆|x,y) columns, where Error ≡ |∆true − E(∆|x,y)| with
∆true indicating the true time delay (5.86 days), and χ ≡ Error/SD(∆|x,y).

Method E(∆|Dobs) ∆̂MLE SD ∆true Error χ

Bayesian 6.33 0.28 5.86 0.47 1.68
Profile likelihood 6.36 6.35 0.28 5.86 0.50 1.79
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Table 2
Coverage estimates calculated from 1,000 simulated data sets; we generate these

simulations using (2.3), (2.4), and (2.8) given the posterior median values of
{∆,β, µ, σ2, τ} as generative values. After fitting our Bayesian model on each simulation,

we check the proportion of interval estimates containing the generative values.

∆ β0 β1 β2 β3 µ σ2 τ

Coverage estimate 1.000 0.996 0.997 0.994 0.994 0.959 0.336 0.922

final model with an adjustment for microlensing (m = 3), and report the
frequency coverage of the 95% posterior intervals (Tak, Kelly and Morris,
2017+). The result is over-coverage for ∆, conservatively meeting the spirit
of the frequentist confidence level, reasonable coverage for β, and under-
coverage for both σ2 and τ ; see Table 2. The severe under-coverage for σ2

does not seem to affect the coverage rate of ∆; the scatter plot of ∆ and
log(σ) in Figure 10 indicates that the two parameters are almost independent
a posteriori. In a numerical sensitivity analysis in Appendix E, we show
that the posterior mode of ∆ is close to the true time delay even when the
posterior mode of log(σ) is substantially different from its true value. (See
Figure 17 in Appendix E.)

Figure 10 displays scatterplots of the posterior sample of ∆ against each
of the other model parameters. The time delay ∆ exhibits weak correla-
tions with the regression coefficients and non-linear relationships with µ
and log(τ), though β0 and log(σ) appear nearly independent of ∆.

5.2. A quadruply-lensed quasar simulation. The simulated data for a
quadruply-lensed quasar are plotted in Figure 11 and are composed of four
light curves, A,B,C, and D; the median cadence is 6 days, the cadence

Fig 10. Scatter plots of the posterior sample of ∆ and each of the other model parameters.
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Fig 11. Simulated quadruply-lensed quasar data used in the TDC.

standard deviation is 1 day, observations are made for 4 months in each of
10 years with 200 observations in total, and measurement errors are het-
eroskedastic Gaussian. The feasible range for each ∆ is [−3391.62, 3391.62].

With quadruply lensed data there are three time delay parameters because
the four light curves are generated by one underlying process. Our model,
however, is designed to analyze pairs of light curves independently, and
thus we focus on ∆AB, ∆AC, and ∆AD, where the subscripts index the two
light curves being compared, among the six possible pairs. This pair-wise
approach proceeds by applying the method developed for doubly-lensed data
in Section 5.1 to the pair of light curves corresponding to each of ∆AB, ∆AC,
and ∆AD in turn (Fassnacht et al., 1999).

By focusing on pairwise comparisons of the four time series, we do not ac-
count for the correlations between the time delays. A coherent model would
consider all four light curves in a single model simultaneously (Hojjati, Kim
and Linder, 2013; Tewes, Courbin and Meylan, 2013); the four light curves
are generated from one latent process and the three distinct time delays
may have a posteriori correlations. It is conceptually straightforward, but
properly modeling quadruply lensed data would involve three time delays,
12 regression coefficients (m = 3), and three O-U parameters. Extending
our model to simultaneously consider all of the data is a topic for future
research.

We analyze the quadruply lensed simulated light curves, using the mi-
crolensing model (m = 3). After confirming a single dominating mode in the
profile likelihood for each time delay parameter, we initiate three MCMC
chains near this mode. The posterior distributions of ∆AB, ∆AC, and ∆AD

appear in Figure 12 with Lprof(∆) superimposed. The profile likelihood is
almost identical to the posterior distribution of each parameter and both
estimate the true time delays well. The average CPU time taken to map
Lprof(∆) is about 73,000 seconds (averaging over the three time delays).
The average CPU time taken for each MCMC chain is about 5,500 seconds
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Fig 12. The marginal posterior distributions of ∆AB (first panel), ∆AC (second panel),
and ∆AD (third panel) with re-normalized Lprof(∆) superimposed. Vertical dashed lines
indicate blinded true time delays.

(averaging over nine chains; three chains for each time delay). Our estimation
results are summarized in Table 3. The Bayesian estimates and profile like-
lihood approximations are quite similar and both produce estimates within
two standard deviations of the truth.

5.3. Quasar Q0957+561. The first known gravitationally (doubly) lensed
quasar Q0957+561 was discovered by Walsh, Carswell and Weymann (1979)
who suggested that a strong gravitational lensing may have formed the
two images. Here we analyze the most recent observations of this quasar.
These observations were made by the United States Naval Observatory in
2008–2011 (Hainline et al., 2012). The data were observed on 57 nights
and are plotted in the first panel of Figure 13. The feasible range for ∆ is
[−1178.939, 1178.939].

Inspection of Lprof(∆) reveals four modes close to each other near 425
days. Using a uniform prior distribution of ∆ over its range and σ2 ∼

Table 3
Estimates of ∆AB, ∆AC, and ∆AD; the profile likelihood estimates, ∆̂mean and V̂ 0.5 are

given in the E(∆|x,y) and SD ≡ SD(∆|x,y) columns, where
Error ≡ |∆true −E(∆|x,y)| with ∆true indicating the true time delay, i.e., ∆AB = 59.88,

∆AC = 23.87 and ∆AD = 51.14, and χ ≡ Error/SD(∆|x,y).

Method E(∆|x,y) ∆̂MLE SD ∆true Error χ

∆AB
Bayesian 59.21 0.51 59.88 0.67 1.33

Profile likelihood 59.21 59.38 0.51 59.88 0.67 1.33

∆AC
Bayesian 23.55 0.19 23.87 0.32 1.68

Profile likelihood 23.54 23.58 0.19 23.87 0.33 1.74

∆AD
Bayesian 51.04 0.38 51.14 0.10 0.26

Profile likelihood 51.03 51.08 0.38 51.14 0.11 0.29



28 TAK ET AL.

Fig 13. Observations of Quasar Q0957+561 from Hainline et al. (2012) are plotted in
the first panel. The second panel exhibits the marginal posterior distribution of ∆ with
re-normalized Lprof(∆) superimposed. The vertical dashed lines represent the historical es-
timates given in Table 4 which are concentrated near the highest and the second highest
modes. In the third panel, we combine the two light curves by shifting light curve B by
E(∆ | x,y) in the horizontal axis and by subtracting the estimated third-order polynomial
regression based on E(β | x,y). The gray regions represent the point-wise prediction in-
tervals for the combined latent light curve, i.e., the posterior sample of X(t∆). The gray
areas encompass most of the observed light curve, which shows how well the fitted model
predicts the observed data. HJD indicates the Heliocentric Julian date.

IG(1, 2/107), we ran three MCMC chains near the highest mode. The sec-
ond panel of Figure 13 shows the marginal posterior distribution of ∆ with
Lprof(∆) superimposed. Here the profile likelihood approximation to the
marginal posterior distribution of ∆ is less accurate. This may be because
the approximation depends on an asymptotic argument while the data size
is small. Nonetheless the profile likelihood identifies each of the dominant
modes of the posterior distribution. Mapping Lprof(∆) took 1,243 seconds
and each MCMC chain took on average 1,955 seconds.

In the third panel of Figure 13, we shift light curve B by the posterior
mean of ∆ in the horizontal axis and subtract the estimated third-order
polynomial regression based on the posterior means of β. The fitted mi-
crolensing model matches the intrinsic fluctuations of the two light curves
well. We also plot the posterior sample of X(t∆) in gray which represents
the point-wise prediction intervals for the latent light curves. The gray areas
encompass most of the observed light curve, which shows how well the fitted
model predicts the observed data.

Estimates based on different observations of Q0957+561 appear in Ta-
ble 4. Though the posterior mean and standard deviation may be difficult
to interpret with a multimodal posterior distribution, we include them for
comparison. Our estimates are broadly consistent with the others. We em-
phasize here that our methods reveal several possible time delays in that
there are four modes in the marginal posterior distribution of ∆, whereas
previous analyses report only a single point estimate for ∆ and its stan-
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Table 4
Historical time delay estimates (∆̂) and standard errors (SE) for Q0957+561 (r-band).
We compute the posterior mean and standard deviation of ∆ (423.71± 2.03); the profile
likelihood approximate the posterior mean and standard deviation as 423.21± 2.81. Pelt

et al. (1996), Oscoz et al. (1997, 2001), Serra-Ricart et al. (1999), and Shalyapin,
Goicoechea and Gil-Merino (2014) adopted various methods to estimate ∆ using different

data sets spanning different periods. We report the average measurement standard
deviation (SD) of their data; two average measurement SDs are reported if their data

come from two sources. In all cases except our method, a bootstrapping method was used
to calculate the SE.

Researchers
Number of Observation Measurement

∆̂ SE
observations period SD (mag.)

Pelt et al. (1996) 831 1979–1994 0.0159 423 6

Oscoz et al. (1997) 86 1994–1996 0.01, 0.02 424 3

Serra-Ricart et al.
197 1996–1998 0.023, 0.025 425 4

(1999)

Oscoz et al. (2001) 100 1994–1996 0.009, 0.01

426 5
423 2
420 8
422 3

Shalyapin et al.
371 2005–2010 0.012 420.6 1.9

(2012)

This work 57 2008–2011 0.004
423.71 2.03
423.21 2.81

dard error. By investigating the entire posterior distribution, we learn that
previous estimates, denoted by vertical dashed lines in the second panel of
Figure 13, are located near the highest and the second highest modes of
our marginal posterior distribution of ∆. Thus, our approach is more infor-
mative in that it provides a summary of several possible values of ∆ and
their relative likelihoods, corresponding to locations and sizes of the several
modes of the posterior distribution of ∆.

5.4. Quasar J1029+2623. Inada et al. (2006) discovered the gravitation-
ally lensed quasar J1029+2623 whose estimated time delay is the second
largest yet observed. Though J1029+2623 has three images (A, B, and C ),
Fohlmeister et al. (2013) merged B and C because they overlap significantly
and thus their light curves are difficult to disentangle. They published its
data (A, B+C ) with 279 epochs monitored at the Fred Lawrence Whipple
Observatory from January 2007 to June 2012. The time delay estimate ob-
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tained by analyzing the combined image can be different from that obtained
by analyzing images B or C separately. Nonetheless, we follow Fohlmeister
et al. (2013) in order to provide a fair comparison. The first panel in Fig-
ure 14 shows these data. The feasible range of ∆ is [−2729.759, 2729.759].

We confirm a dominant mode near 735 days and invisibly small modes
near -2,000 and 1,800 days via Lprof(∆). Since the mode near 735 days
overwhelms the other modes, we focus on the dominant mode. We initiated
three MCMC chains near 735 days using a uniform prior distribution of ∆
over its range and σ2 ∼ IG(1, 2× 10−7). We display the marginal posterior
distribution of ∆ in the second panel of Figure 14 with Lprof(∆) superim-
posed. Mapping Lprof(∆) took 33,683 seconds and each MCMC chain took
an average of 8,555 seconds. The posterior distribution and the profile like-
lihood are almost identical. In the third panel, we shift light curve B by
the posterior mean of ∆ in the horizontal axis and subtract the estimated
third-order polynomial regression based on the posterior mean of β. Again,
the fitted microlensing model is a good match of the two light curves and
our graphical model checking shows that the range of our predicted values
for the combined latent light curve, denoted by the gray areas, encompasses
the observed light curve well.

In Table 5 we compare our estimates with historical estimates that are
based on the same data. The Bayesian method uses 5% and 95% quantiles
of the posterior samples of ∆ as the 90% posterior interval. To obtain the
90% interval estimate for ∆ via the profile likelihood, we draw a sample of
size 50,000 of ∆ using the empirical CDF of the normalized profile likelihood

Fig 14. We plot the observations of Quasar J1029+2623 from Fohlmeister et al. (2013)
in the first panel. The second panel exhibits the marginal posterior distribution of ∆ with
re-normalized Lprof(∆) superimposed. In the last panel, we combine the two light curves
by shifting light curve B + C by E(∆ | x,y) in the horizontal axis and by subtracting the
estimated third-order polynomial regression based on E(β|x,y). The gray areas represent
the range of the point-wise prediction intervals for the latent light curve. Comparing the
gray regions with the observed data shows how well the model fits the observed data. HJD
indicates the Heliocentric Julian date.
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Table 5
Historical time delay estimates and 90% confidence intervals for J1029+2623. Our work

provides the posterior mean and 90% posterior interval of ∆ and profile likelihood
approximations to them. Fohlmeister et al. (2013) did not specify how they produced the

sampling distribution of ∆. Kumar, Stalin and Prabhu (2014) used a parametric
bootstrapping method.

Researchers Method Estimate 90% Interval

Fohlmeister et al. (2013) χ2-minimization (AIC, BIC) 744 (734, 754)

Kumar, Stalin, and
Difference-smoothing 743.5 (734.6, 752.4)

Prabhu (2014)

This work
Bayesian 735.30 (733.09, 737.62)

Profile likelihood 733.11 (732.94, 738.44)

and report the 5% and 95% quantiles.
The shape of the posterior distribution of ∆ is almost identical to that of

the profile likelihood in the second panel of Figure 14. However, the posterior
mean of ∆ is larger than the profile approximation, ∆̂mean, by about two
days. This is because of invisibly small modes near -2,000 and 1,800 days.

Overall, our point estimates are smaller than the historical estimates by
about ten days and our 90% posterior intervals are much shorter than the
historical 90% confidence intervals in Table 5. We suspect that the discrep-
ancy between the estimates might arise from the overly simple microlensing
models used in the historical analyses. Fohlmeister et al. (2013), for exam-
ple, combine the output obtained from fitting two different models, one with
a linear model for the microlensing polynomial (which was optimal with re-
spect to AIC) and the other with no adjustment for microlensing (which
was optimal with respect to BIC). Unfortunately, they do not describe how
they combine the fits. Since they also apply high-order splines for each sea-
son in addition to the microlensing polynomial, neither of their models are
directly comparable to ours. Kumar, Stalin and Prabhu (2014), on the other
hand, account for the microlensing by using a Gaussian kernel smoothing
technique.

Figure 15 shows our marginal posterior distribution of ∆ with m = 0, 1, 2,
and 3, respectively. The 90% intervals of Fohlmeister et al. (2013) and Ku-
mar, Stalin and Prabhu (2014) denoted by the lengths of the arrows at the
top of each panel cover all the modes of the posterior distributions of ∆
shown in the first (m = 0) and second (m = 1) panels. This implies that
their microlensing models might have produced results similar to our mi-
crolensing model with either m = 0 or m = 1. As we increase the order of
the polynomial regression for microlensing, the severe multi-modality dis-
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Fig 15. The marginal posterior distributions of ∆ with m = 0, 1, 2, and 3. The 90%
intervals of Fohlmeister et al. (2013) and Kumar, Stalin and Prabhu (2014) are denoted
by the lengths of the arrows at the top of each panel and cover all the modes of the posterior
distributions of ∆ shown in the first (m = 0) and second (m = 1) panels. This implies
that their microlensing models might have produced results similar to our microlensing
model with either m = 0 or m = 1. Their point estimates are denoted by vertical dashed
lines. As we increase the order of the polynomial regression for microlensing, the severe
multi-modality dissipates and one mode becomes dominant. This implies why our point
and interval estimates are quite different from theirs.

sipates and one mode becomes dominant. Thus, the discrepancy between
their estimates and ours with m = 3 might be due to their use of an overly
simple microlensing model.

6. Concluding remarks. Accurately estimating time delays among
gravitationally lensed quasar images is a key to making fundamental mea-
surements of the current expansion rate of the Universe and dark energy
(Refsdal, 1964; Linder, 2011). The Large Synoptic Survey Telescope (LSST
Science Collaboration, 2009) will produce extensive time series data on thou-
sands of multiply lensed quasars starting in 2022. Anticipating this era of
the LSST, we have improved the fully Bayesian model of Harva and Ray-
chaudhury (2006) by leveraging recent advances in astrophysical and statis-
tical modeling. We have added an Ornstein-Uhlenbeck process to model the
fluctuations in quasar light curves, a polynomial regression to account for
microlensing, and a profile-likelihood-guided Bayesian strategy.

We proposed our original model in the context of the Time Delay Chal-
lenge (TDC, Dobler et al., 2015; Liao et al., 2015). This original model
worked well for data without severe microlensing, leading to the best pre-
cision and targeted average bias level among the methods submitted to the
TDC. Our original model, however, did not properly account for microlens-
ing and thus produced poor time delay estimates in some cases resulting in
a mediocre performance in one of the evaluation criteria. This motivated us
to develop our current microlensing model.

The upcoming second TDC, called the TDC2, aims to further improve
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estimation methods under a more realistic setting. Since the LSST will pro-
duce multi-band optical data observed in filters centered at six different
wavelengths for each lens system, proper analysis will require jointly mod-
eling a vector of light curves to estimate the common time delay in each
system. Modeling microlensing will be more challenging in TDC2, because
its effect depends on the wavelength of the quasar light.

There are several opportunities to build upon our work in preparation for
the TDC2 and eventually for the LSST. It is desirable to implement more so-
phisticated methods of model selection such as information criteria to choose
the complexity of the microlensing trend. Though astrophysicists have used
a cubic polynomial trend for microlensing models for some quasars so far,
it would be better to have a fast and principled mechanism to determine
the order given any data of gravitationally lensed quasars. Another avenue
for further improvement is to constrain the range of the time delay by in-
corporating additional astrophysical information such as spatial positions of
the images relative to the lensing galaxy, and an astrophysical model for
the mass distribution of the lens. For quadruply-lensed quasar systems, con-
structing a Bayesian model to simultaneously analyze the four light curves,
would allow us to coherently estimate the relative time delays without loss
of information. Further improvements to the computational efficiency of our
profile likelihood and MCMC strategies for analyzing extensive vector time
series will enhance their effectiveness in the era of the LSST.
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SUPPLEMENTARY MATERIAL

Supplement: R codes and data
(; Rcode data.zip). This zip file contains all the computer code (Rcode.R)
and data (Data.zip) used in this article. An R package, timedelay, that
implements the Bayesian and profile likelihood methods is publicly available
at CRAN (https://cran.r-project.org/package=timedelay).
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APPENDIX A: THE LIKELIHOOD FUNCTION

We define a combined light curve z = (z1, z2, . . . , z2n)> as follows. The
observed magnitude at time t∆i (i = 1, 2, . . . , 2n) is denoted by zi, which
is either xj or yj −w>m(tj −∆)β for some j (j = 1, 2, . . . , n) depending on
whether t∆i is one of the elements of t or of t−∆. The measurement standard
deviation is denoted by ξi, which is either δj for xj or ηj for yj−w>m(tj−∆)β
for some j. We also define z′i as the centered observed magnitude at time
t∆i , which is either xj − µ or yj − w>m(tj − ∆)β − µ for some j. Let Di =
{z′1, z′2, . . . , z′i} and derive the likelihood

(A.1) L(∆,β, µ, σ2, τ) ∝ p(z′1)×
2n∏
i=2

p(z′i | Di−1)

withX(t∆) integrated out. The sampling distribution ofD2n given ∆,β, µ, σ2,
and τ factors as

z′1 ∼ N
[
0, ξ2

1 + τσ2/2
]
,(A.2)

z′i | Di−1 ∼ N
[
aiµi−1, ξ

2
i + a2

iΩi−1 + τσ2(1− a2
i )/2

]
,(A.3)

where µ1 = (1 − B1)z′1, µi = (1 − Bi)z′i + Biaiµi−1, Ωi = (1 − Bi)ξ2
i , B1 =

ξ2
1/[ξ

2
1 + τσ2/2], Bi = ξ2

i /[ξ
2
i + a2

iΩi−1 + τσ2(1− a2
i )/2]. Thus, the likelihood

function of (∆,β, µ, σ2, τ) in (A.1) is the product of the Gaussian densities.
By multiplying (A.1) by the prior density functions for ∆ and β in (2.10)

and those for µ, σ2, and τ in (2.11), we can obtain their joint posterior
density function with the latent magnitudes X(t∆) marginalized out. Given
the values of (β, µ, σ2, τ) and a Uniform[u1, u2] prior distribution for ∆,
L(∆,β, µ, σ2, τ) is proportional to the marginalized conditional posterior
density p(∆ | β, µ, σ2, τ,x,y) used in (3.1) and (3.6).

APPENDIX B: CONDITIONAL POSTERIOR DISTRIBUTIONS OF
THE LATENT MAGNITUDES

We use the same notation for the observed data as is defined in Ap-
pendix A, i.e., z′i and ξi. We introduce the centered latent magnitudes
X ′(t∆) = X(t∆)−µ for notational simplicity. Also, let “< t∆i ” denote the set
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{t∆j : j = 1, 2, . . . , i−1} and “> t∆i ” denote {t∆j : j = i+1, i+2, . . . , 2n}. To

sample p(X ′(t∆) | ∆,β, µ, σ2, τ,x,y) used in (3.1), we sample the following
conditional posterior distributions of each latent magnitude. (We suppress
conditioning on ∆,β, µ, σ2, τ,x,y.)

(B.1) X ′(t∆1 ) |X′(> t∆1 ) ∼ N
[
(1−B1)z′1 +B1a2X

′(t∆2 ), (1−B1)ξ2
1

]
,

where B1 = ξ2
1 / [ξ2

1 + τσ2(1− a2
2)/2]. For i = 2, 3, . . . , 2n− 1,

(B.2) X ′(t∆i ) |X′(< t∆i ),X′(> t∆i )

∼N

[
(1−Bi)z′i +Bi

(
(1−B∗i )

X ′(t∆i+1)

ai+1
+B∗i aiX

′(t∆i−1)

)
, (1−Bi)ξ2

i

]
,

where Bi = ξ2
i

/[
ξ2
i + τσ2

2

(1−a2
i )(1−a2

i+1)

1−a2
i a

2
i+1

]
and B∗i =

1−a2
i+1

1−a2
i a

2
i+1

. Lastly,

(B.3)
X ′(t∆2n) |X′(< t∆2n) ∼ N

[
(1−B2n)z′2n +B2na2nX

′(t∆2n−1), (1−B2n)ξ2
2n

]
,

where B2n = ξ2
2n/[ξ

2
2n+τσ2(1−a2

2n)/2] and ai = exp(−(t∆i −t∆i−1)/τ). Having
sampled X ′(t∆), we set X(t∆) = X ′(t∆) + µ.

APPENDIX C: CONDITIONAL POSTERIOR DISTRIBUTIONS OF β,
µ, σ2, AND τ USED IN ALGORITHM 1

We specify the conditional posterior distributions of β, µ, σ2, and τ used
in Steps 2–5 of the MHwG+ASIS sampler in Algorithm 1. We suppress
explicitly conditioning on x and y in the condition.

Step 2 of Algorithm 1 first samples β from the following Gaussian con-
ditional posterior distribution (Step 2a in (3.12)); with an n by n diagonal
matrix V whose diagonal elements are η2,

(C.1) β | µ, σ, τ,X(t∆),∆ ∼ Nm+1

[
J−1Wm(t−∆)>V −1u, J−1

]
,

where J ≡W>
m(t−∆)V −1Wm(t−∆) + 10−5Im+1 and u ≡ y−X(t−∆).

To implement ASIS, we need the conditional posterior distribution for β
given K(t∆) used in (3.14). Let K ′(t∆) ≡K(t∆)−µ, B be a 2n by (m+ 1)
matrix whose jth row is (wm(t∆j ) − aj × wm(t∆j−1))> with a1 = 0, L be a

2n by 2n diagonal matrix whose jth diagonal element is τσ2(1 − a2
j )/2, b

be a 2n by 1 vector whose j th element is K ′(t∆j )− ajK ′(t∆j−1), and finally

A ≡ B>L−1B + 10−5Im+1. Then,

(C.2) β | µ, σ2, τ,K(t∆),∆,x,y ∼ Nm+1

[
A−1B>L−1b, A−1

]
.
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In Step 3 of Algorithm 1, we sample µ from a truncated Gaussian condi-
tional posterior distribution whose support is [−30, 30];

µ | σ2, τ,X(t∆),∆,β ∼(C.3)

N

X(t∆1 ) +
∑2n

i=2

X(t∆i )−aiX(t∆i−1)

1+ai

1 +
∑2n

i=2
1−ai
1+ai

,
τσ2/2

1 +
∑n

i=2
1−ai
1+ai

.
In Step 4 of Algorithm 1, the parameter σ2 has an inverse-Gamma con-

ditional posterior distribution, i.e.,

(C.4) σ2 | µ, τ,X(t∆),∆,β ∼

IG

(
n+ 1, bσ +

(X(t∆1 )− µ)2

τ
+

2n∑
i=2

[
(X(t∆i )− µ)− ai(X(t∆i−1)− µ)

]2
τ(1− a2

i )

)
.

The conditional posterior density function of τ used in Step 5 of Algo-
rithm 1 is known up to a normalizing constant, i.e.,

(C.5) p(τ | µ, σ2,X(t∆),∆,β) ∝

exp

(
− 1
τ −

(X(t∆1 )−µ)2

τσ2 −
∑2n

i=2

[
(X(t∆i )−µ)−ai(X(t∆i−1)−µ)

]2
τσ2(1−a2

i )

)
τn+2

∏2n
i=2(1− a2

i )
1/2

× I{τ>0}.

To sample τ from (C.5), we use an M-H step with a Gaussian proposal
density N[log(τ), φ2] on a logarithmic scale where φ is a proposal scale tuned
to produce a reasonable acceptance rate.

APPENDIX D: PROFILE LIKELIHOOD APPROXIMATION TO THE
MARGINAL POSTERIOR DISTRIBUTION OF ∆

We show that Lprof(∆) with a uniform prior distribution on ∆ is approx-
imately proportional to p(∆ | x,y). Let ν ≡ (β>,θ>)>. Then,

(D.1) p(∆ | x,y) =

∫
L(∆,ν)p(∆,ν)dν = k

∫
L(∆,ν)p(ν | ∆)dν,

where k is a normalizing constant of the uniform prior distribution for ∆ and
the likelihood function is the marginal likelihood function defined in (4.2) or
(A.1). We specify a Jeffreys’ prior on ν given ∆, i.e., p(ν | ∆) ∝ |I∆(ν)|0.5dν,
where I∆(ν) is the Fisher information defined as−E

[
∂2 log(L(∆,ν))/∂νν>

]
.

The resulting p(∆ | x,y) is a Jeffreys-integrated marginal likelihood under
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a uniform prior (Berger, Liseo and Wolpert, 1999). (With a uniform prior on
ν given ∆, i.e., p(ν | ∆) ∝ 1, the likelihood is a uniform-integrated marginal
likelihood which can be approximated by the Laplace method10.) If we can
approximate l(∆,ν) ≡ log(L(∆,ν)) with respect to ν by a second-order
Taylor’s series, e.g., under standard asymptotic arguments, then

(D.2) l(∆,ν) ≈ l(∆, ν̂∆)− (ν − ν̂∆)>[−l′′(∆, ν̂∆)](ν − ν̂∆)/2,

where ν̂∆ = arg maxν l(∆,ν), and l′′(∆, ν̂∆) ≡ ∂2l(∆,ν)/∂νν>|ν=ν̂∆
, which

results in

(D.3) L(∆,ν) ≈ exp
(
l(∆, ν̂∆)− (ν − ν̂∆)>[−l′′(∆, ν̂∆)](ν − ν̂∆)/2

)
.

Using this, we approximate the marginal posterior density function of ∆ by

p(∆ |x,y) ≈ k × L(∆, ν̂∆)

(D.4)

×
∫

exp

(
− (ν − ν̂∆)>[−l′′(∆, ν̂∆)](ν − ν̂∆)/2

)
|I∆(ν)|0.5dν.

If we replace the Fisher information in (D.4), i.e., I∆(ν), with the observed
information, −l′′∆(ν̂∆), under standard asymptotic arguments, the integral
in (D.4) converges to (2π)2 because the integrand converges to a multivariate
Gaussian density up to (2π)−2. Finally,

(D.5) p(∆ | x,y) ≈ k×(2π)2×L(∆, ν̂∆) = k×(2π)2×Lprof(∆) ∝ Lprof(∆).

APPENDIX E: SENSITIVITY ANALYSES

To assess the influence of prior distributions of τ and σ2 on the posterior
distribution of ∆, we conduct sensitivity analyses, varying the scale and
shape parameters of their IG prior distributions.

As an example, we generate 80 observations with (∆, β0, µ, σ
2, τ) = (50,

2, 0, 0.032, 100). The median observation cadence is 3 days and the mea-
surement standard deviations are set to 0.005 magnitude. When fitting the

10The Laplace approximation based on the uniform prior requires the Hessian but most
optimizers numerically evaluate the Hessian (or its approximation) automatically. How-
ever, the closed-form of the Hessian matrix is not available and a numerical approximation
to the Hessian matrix is unstable in the small data example in Section 5.3. The profile like-
lihood approximation based on the Jeffreys’ prior does not require calculating the Hessian,
which is a computational advantage especially since we must evaluate the profile likelihood
at every point on a grid of values of ∆. We note, however, that the Jeffreys’ prior can be
inappropriate for a reference prior because it sometimes becomes too informative in high
dimensions (e.g., Berger, Bernardo and Sun, 2015).
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Bayesian model, we assume for simplicity that ∆ ∼ Uniform[0, 100] a priori.
We run three Markov chains, each for 10,000 iterations after 10,000 burn-in
iterations.

E.1. Sensitivity analysis of the prior distribution of τ . We in-
vestigate the sensitivity of the posterior distribution of ∆ to the shape pa-
rameter of the IG prior distribution of τ . We denote the shape parameter
by aτ and fix the scale parameter at one day. A reasonably small value of
the scale parameter does not make any differences in the resultant posterior
distributions of τ or ∆ because aj = exp(−(t∆j − t∆j−1)/τ) dominates the
scale parameter in the conditional posterior density of τ in (C.5). We fix
the IG(1, bσ) prior distribution for σ2, where bσ = 2 × 10−7 mag2/day as
described in Section 2.5.

Figure 16 shows the result of sensitivity analysis with three values of the
shape parameter, aτ = 0.1, 10, and 80 (columns). Each column shows the
posterior distribution of ∆ (first row), that of log(τ) (second row), and a

Fig 16. Each column shows posterior distribution of ∆ (first row), that of log(τ) (second
row), and a scatter plot of log(σ) over log(τ) (third row) obtained under three values of
aτ (columns, aτ=0.1, 10, and 80). The generative values of (∆, log(σ), log(τ)) are (50,
-3.5, 4.6) and represented by the dashed lines on each plot. The posterior distribution of
the time delay is robust to the shape parameter (aτ ) as long as it is reasonably small. The
ESS of ∆ is 3235, 3068, 3080, 478, and 3625 from the left.
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scatter plot of posterior samples of log(σ) and log(τ) (third row) obtained
under each shape parameter. The dashed lines indicate the generative true
values.

The modes of the first two posterior distributions of ∆ are near the gen-
erative value of ∆. However, with the informative choice of aτ = 80, the
posterior distribution of ∆ is flat. A large value of aτ concentrates the prior
density on the O-U processes on mean-reversion timescales τ much shorter
than the observational cadence. Moreover, a large value results in a prior
mode, 1/(1 + aτ ), that is close to zero, and a large value of the degrees of
freedom (2× aτ ) for the prior distribution strongly influences the posterior
of τ . Hence, the latent light curves governed by these O-U processes with
small τ will effectively appear as white noise time series. The result is a
model that is ineffective at constraining the time delay because it is unable
to match serially correlated fluctuation patterns in the light curves. The
second row in Figure 16 shows that as aτ increases, the mode of the pos-
terior distribution of log(τ) becomes smaller with a shorter right tail and
thus moves away from the generative value of log(τ) = 4.6. When the mode
of log(τ) reaches −5 (τ = exp(−5) = 0.007 << 3-day observation cadence),
the posterior distribution of ∆ becomes flat.

E.2. Sensitivity analysis of the prior distribution of σ2. We
check the sensitivity of the posterior distribution of ∆ to the scale parame-
ter bσ of the IG(1, bσ) prior distribution for σ2. The effect of the unit shape
parameter is negligible because the resultant shape parameter of the IG
conditional posterior distribution of σ2 in (C.4) is n + 1 so that n plays a
dominant role in controlling the right tail behavior. We fix the IG(1, bτ ) prior
distribution for τ , where bτ is fixed at one day, as described in Section 2.5.

We display the result of the sensitivity analysis in Figure 17, where the
values of bσ are increasing from 0.001 to 10 from the first column. As the soft
lower bound (= bσ/2) increases from the left, the posterior distribution of
the time delay becomes flatter. This is because the generative value of σ2 (=
0.032) is less than the soft lower bound for large values of bσ. For example,
when bσ = 10 in the right most column, the IG(1, 10) prior distribution
of σ2 exponentially cuts off the probability density in the region to left of
the mode, 5 mag2/day, which excludes the generative value of σ2 (= 0.032).
Because the generative σ2 is much smaller than the soft lower bound, the
posterior distribution of σ2 has negligible mass near the generative value of
σ2. Also, because the posterior samples of σ and τ are negatively correlated
a posteriori as shown in the scatter plots, posterior distributions that favor
large values of σ2 also favor small values of τ . As discussed in Appendix E.1,
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Fig 17. Each column shows posterior distribution of ∆ (first row), that of log(σ) (second
row), and a scatter plot of log(τ) over log(σ) (third row) obtained under three values of bσ
(columns, bσ = 0.001, 0.1, and 10). The generative values of (∆, log(σ), log(τ)) are (50,
-3.5, 4.6) and represented by the dashed lines on each plot. The modes of the posterior
distributions of parameters are near the generative values as the scale parameter (soft lower
bound) decreases. The ESS of ∆ is 2957, 3082, 4148, 2459, and 23 from the left.

when the posterior distribution of τ is concentrated on values smaller than
the observational cadence, the posterior latent light curve X(t∆) effectively
becomes a white noise sequence. In this case, it is difficult to constrain ∆.

The second row of Figure 17 shows that as the soft lower bound decreases
from the right, the posterior distribution of log(σ) moves towards the gener-
ative value of log(σ) = −3.5. Though not shown here, posterior distributions
obtained under a value of bσ smaller than 0.001 do not noticeably differ from
that obtained with bσ = 0.001. With the small soft lower bound, the modes
of the posterior distributions of the other parameters tend to be near their
generative values. We also found that the choice of bσ is less important for
large data sets, e.g., with n > 400.

Hyungsuk Tak
SAMSI
19 T.W. Alexander Drive
Durham, NC, USA 27703
E-mail: hyungsuk.tak@gmail.com

Kaisey Mandel
Harvard-Smithsonian Center for Astrophysics
Harvard University
60 Garden Street
Cambridge, MA, USA 02138
E-mail: kmandel@cfa.harvard.edu

mailto:hyungsuk.tak@gmail.com
mailto:kmandel@cfa.harvard.edu


44 TAK ET AL.

David A. van Dyk
Statistics Section
Department of Mathematics
Imperial College London
London SW7 2AZ UK
E-mail: dvandyk@imperial.ac.uk

Vinay L. Kashyap
Harvard-Smithsonian Center for Astrophysics
Harvard University
60 Garden Street
Cambridge, MA, USA 02138
E-mail: vkashyap@cfa.harvard.edu

Xiao-Li Meng
Department of Statistics
Harvard University
1 Oxford street
Cambridge, MA, USA, 02138
E-mail: meng@stat.harvard.edu

Aneta Siemiginowska
Harvard-Smithsonian Center for Astrophysics
Harvard University
60 Garden Street
Cambridge, MA, USA 02138
E-mail: asiemiginowska@cfa.harvard.edu

mailto:dvandyk@imperial.ac.uk
mailto:vkashyap@cfa.harvard.edu
mailto:meng@stat.harvard.edu
mailto:asiemiginowska@cfa.harvard.edu

	Introduction
	Data and challenges
	Other time delay estimation methods
	Our Bayesian and profile likelihood approaches

	A fully Bayesian model for time delay estimation
	Latent time series
	Distribution of the observed data
	Prior distribution of the latent magnitudes
	Prior distributions for the time delay and the magnitude offset
	Prior distributions for the parameters in the O-U process

	Metropolis-Hastings within Gibbs sampler
	Ancillarity-sufficiency interweaving strategy
	Adaptive MCMC

	Profile likelihood of the time delay
	Time delay estimation strategy and numerical illustrations
	A doubly-lensed quasar simulation
	A quadruply-lensed quasar simulation
	Quasar Q0957+561
	Quasar J1029+2623

	Concluding remarks
	Acknowledgements
	Supplementary Material
	References
	The likelihood function
	Conditional posterior distributions of the latent magnitudes
	Conditional posterior distributions of bold0mu mumu program@epstopdf, , 2, and  used in Algorithm 1
	Profile likelihood approximation to the marginal posterior distribution of 
	Sensitivity analyses
	Sensitivity analysis of the prior distribution of 
	Sensitivity analysis of the prior distribution of 2

	Author's addresses

