
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 155.198.12.188

This content was downloaded on 19/05/2017 at 14:59

Please note that terms and conditions apply.

Predicting path from undulations for C. elegans using linear and nonlinear resistive force

theory

View the table of contents for this issue, or go to the journal homepage for more

2017 Phys. Biol. 14 025001

(http://iopscience.iop.org/1478-3975/14/2/025001)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans

R S Berman, O Kenneth, J Sznitman et al.

The hydrodynamics of swimming microorganisms

Eric Lauga and Thomas R Powers

Physics of microswimmers—single particle motion and collective behavior: a review

J Elgeti, R G Winkler and G Gompper

Motility of small nematodes in wet granular media

G. Juarez, K. Lu, J. Sznitman et al.

Shape memory alloy-based small crawling robots inspired by C. elegans

Hyunwoo Yuk, Daeyeon Kim, Honggu Lee et al.

A review on locomotion robophysics: the study of movement at the intersection of robotics, soft

matter and dynamical systems

Jeffrey Aguilar, Tingnan Zhang, Feifei Qian et al.

Propulsive matrix of a helical flagellum

Zhang He-Peng, Liu Bin, Bruce Rodenborn et al.

Highly controllable near-surface swimming of magnetic Janus nanorods

Lamar O Mair, Benjamin Evans, Adam R Hall et al.

Towards terrain interaction prediction for bioinspired planetary exploration rovers

Brian Yeomans and Chakravathini M Saaj

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1478-3975/14/2
http://iopscience.iop.org/1478-3975
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1367-2630/15/7/075022
http://iopscience.iop.org/article/10.1088/0034-4885/72/9/096601
http://iopscience.iop.org/article/10.1088/0034-4885/78/5/056601
http://iopscience.iop.org/article/10.1209/0295-5075/92/44002
http://iopscience.iop.org/article/10.1088/1748-3182/6/4/046002
http://iopscience.iop.org/article/10.1088/0034-4885/79/11/110001
http://iopscience.iop.org/article/10.1088/0034-4885/79/11/110001
http://iopscience.iop.org/article/10.1088/1674-1056/23/11/114703
http://iopscience.iop.org/article/10.1088/0022-3727/44/12/125001
http://iopscience.iop.org/article/10.1088/1748-3182/9/1/016009


© 2017 IOP Publishing Ltd

Introduction

Animals move through their environment by changing 
the shape of their bodies. The connection between 
motion in space and postural change depends on 
the mechanical interaction between an animal and 
its surroundings. For example, a whale performing 
motions optimised for swimming does not get far if 
it is beached. Less extreme differences in an animal’s 
surroundings can nonetheless be important for 
understanding how their gaits are related to their 
behavioural goals, as in the case of snakes climbing 
sand dunes [2] or amoebae crawling through viscous 
fluids [3]. These studies are especially tractable in the 
nematode worm Caenorhabditis elegans because of its 

small size (it can be imaged on standard microscopes) 
and cylindrical morphology (which simplifies analysis).

The mechanics of locomotion of C. elegans has 
been studied in aqueous media [4–7], viscous fluids 
[8–12], granular suspensions [13, 14], and structured 
environments [15–18]. C. elegans is also a commonly 
used genetic model organism with a well described 
nervous system, including the most complete con-
nectome currently available. It thus offers an inter-
esting opportunity to connect studies on the physics 
of behaviour with genetics and neuroscience. Most 
behavioural assays used in biology labs are performed 
with worms  crawling on the surface of an agar plate, 
a mechanically complex medium consisting of a gel, 
with a water layer and air interface. A current challenge 
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Abstract
A basic issue in the physics of behaviour is the mechanical relationship between an animal and 
its surroundings. The model nematode C. elegans provides an excellent platform to explore this 
relationship due to its anatomical simplicity. Nonetheless, the physics of nematode crawling, in 
which the worm undulates its body to move on a wet surface, is not completely understood and 
the mathematical models often used to describe this phenomenon are empirical. We confirm that 
linear resistive force theory, one such empirical model, is effective at predicting a worm’s path from 
its sequence of body postures for forward crawling, reversing, and turning and for a broad range 
of different behavioural phenotypes observed in mutant worms. Worms recently isolated from 
the wild have a higher effective drag anisotropy than the laboratory-adapted strain N2 and most 
mutant strains. This means the wild isolates crawl with less surface slip, perhaps reflecting more 
efficient gaits. The drag anisotropies required to fit the observed locomotion data (70  ±  28 for the 
wild isolates) are significantly larger than the values measured by directly dragging worms along agar 
surfaces (3–10 in Rabets et al (2014 Biophys. J. 107 1980–7)). A proposed nonlinear extension of the 
resistive force theory model also provides accurate predictions, but does not resolve the discrepancy 
between the parameters required to achieve good path prediction and the experimentally measured 
parameters. We confirm that linear resistive force theory provides a good effective model of worm 
crawling that can be used in applications such as whole-animal simulations and advanced tracking 
algorithms, but that the nature of the physical interaction between worms and their most commonly 
studied laboratory substrate remains unresolved.
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is therefore to understand how the postural changes 
observed during free behaviour on an agar surface are 
related by mechanics to the worm’s translation and 
rotation.

Mathematical modelling has played an important 
role in connecting worm body postures with its motion 
through the surrounding environment. For swim-
ming, one can rely on the well-developed theories of 
low Reynolds number hydrodynamics that allows for 
the computation of the fluid flow due to undulations 
and subsequently, the worm’s translation and rotation. 
In particular, due to the slenderness of the worm, one 
can use the approximate reduction of the full hydrody-
namic problem through resistive force theory for which 
the force depends linearly on the velocity and the effects 
of the fluid are bundled into two drag coefficients—one 
for motion along the tangent to the worm’s centreline 
and one for motion perpendicular to it. The drag aniso-
tropy, ratio between the normal and tangential drag 
coefficients, is approximately 2 [19], and values dif-
ferent from unity are essential for swimming to occur. 
This simple model has been shown to be very effective 
in predicting the swimming speeds of worms and has 
allowed for the computation of important quantities 
such as the worm’s elastic properties and power output 
[9, 12, 20, 21].

Crawling on agar, though more relevant from an 
experimental point of view, is more challenging. This 
is due to both the complicated mechanical properties 
of gels, as well as the nontrivial presence of the liquid 
film coating the gel surface. Though there have been 
attempts to construct crawling models from first princi-
ples that incorporate these details [22, 23], the majority 
of crawling models are empirical. The most prevalent 
empirical crawling model is an adaptation of resistive 
force theory. Instead of taking the drag anisotropy to 
be 2 as it is for swimming, it is set to a much higher 
value since the worm will not experience any slippage as 
the drag anisotropy goes to infinity. Though empirical, 
this model has been employed extensively and has been 
shown to produce worm-like locomotion and capture 
several aspects of the crawling kinematics [10, 24–26]. 
These results have been reviewed in [27] including a 
comparison of the results of a physics simulator using 
resistive force theory to analytical results for sinusoidal 
waveforms.

While prevalent and effective, the linear model 
itself is simply inferred rather than based on rational 
construction, be it from first principle theories or hard 
experimental evidence. Recently, there has been work 
to improve upon this and construct a resistive force 
model by measuring the force required to drag the 
worm on a gel surface both along and perpendicular to 
its centreline [1]. It was found that the force has a power 
law dependence on the velocity for motions along and 
perpend icular to the centreline that also depend on the 
percentage of agar in the gel. This reveals that the effec-
tive drag coefficients themselves depend on the velocity. 
The authors tested the model by holding the worm fixed 

as it tried to crawl and compared the force given by the 
model with the measured value.

In this paper, we test both the linear and nonlinear 
models by quantifying how well they reproduce worm 
paths for a number of wild-type and mutant strains. For 
both models, we find optimal parameter values (drag 
coefficients and power law exponents) by minimizing 
the difference between the experimental and computed 
paths. Our computations reveal that both the linear 
and nonlinear model can reproduce the worm paths 
accurately during sinusoidal crawling, reversals, and 
sharp turns and that resistive force theory is applicable 
across strains including uncoordinated mutants. This 
analysis showed that wild strains crawl with less slip 
than the laboratory reference strain or most mutant 
strains. However, to accurately reproduce the observed 
paths, the parameter values are not in agreement with 
the experimentally recorded values [1]. These results 
confirm that the linear model provides a good effec-
tive theory for relating worm undulations to their paths 
that is fast and robust but also highlight our incomplete 
understanding of the physics of worm crawling on the 
surface of agar.

Crawling models

In this section, we summarize the linear and nonlinear 
models and describe how they can be used to compute 
worm paths using undulations measured from 
experiments. A full description of the model is provided 
in the supplementary information. The MATLAB 
implementation of the model is available at https://
github.com/aexbrown/Crawl_Model.

Linear model
In the linear model, it is assumed that the force per unit 
length experienced by the worm at a point  s  along its 
length (figure 1(A)) is linearly related to the velocity 
at which that point is moving. The drag coefficient 
that relates the force to the point’s velocity, however, 
depends on whether the velocity is in the direction of 
the tangent to the worm, or normal to it (figure 1(B)). 
Accordingly, the force–velocity relationship at s can be 
written as

( )  ( )α=f s U s ,t t t

( )  ( )α=f s U s ,n n n

where ft and fn are the force per unit length in the 
tangent and normal directions the worm exerts on the 
environment, respectively, Ut and Un are the tangential 
and normal components of the velocity, respectively, 
and αt and αn are the drag coefficients for tangential and 
normal motion, respectively.

Computing paths
We can use this model to predict the rigid body motion 
(translation and rotation) that results from a given 
shape change. The total predicted motion is then the 

Phys. Biol. 14 (2017) 025001
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combination of the rigid body motion with the motion 
of each point due to undulations. We summarize this 
calculation here and provide a detailed account in 
the supplementary information. To predict the worm 
paths, we first calculate the rigid body motion of the 
worm from the experimental measurements of the 
velocity, ( )U s , following

( )∫=V U
L

s s
1

d ,
L

0

  ( ( )  ) ( )∫Ω= − ×X X U
I

s s s
1

d ,
L

0
CM

where V  is the worm’s translational velocity, Ω is the 
angular velocity, and

  ( ) ∫=X X
L

s s
1

d ,
L

CM
0

  ( ( )    )∫= −X XI s sd .
L

0
CM

2

We then subtract off the rigid body motion so what 
remains is only the velocity due to undulations 
(figure 1(C)),

Ω= − − × −u U V X Xs s s  .CM( )  ( )  ( ( ) )

To this, we add an unknown rigid body motion which 
we find by substituting our new expression for the 
velocity into the linear model and insisting that the total 
force and total torque experienced by the worm are zero,

( )    ∫= =F f s sd 0 ,
L

0

( ( )  )  ( )  ∫τ = − × =X X fs s sd 0 .
L

0
CM

What results is a 3  ×  3 system of linear equations which 
can be solved to find the two components of the worm’s 
velocity and the one component of the angular velocity. 
The worm’s path is then found by integrating the 
translational velocity in time (figure 1(C)).

Figure 1. Model schematic and graphical outline of analysis. (A) A worm is represented by 49 points along its midline at two 
different times. The velocity of each point is calculated by dividing the displacement (black arrow and grey lines) by the time interval 
separating the two postures, Δt. (B) Each point velocity is decomposed into a tangential and normal component. The tangential and 
normal forces are then assumed to be proportional to these velocities, but with different constants of proportionality αt and αn. (C) 
Body undulations cause the worm to move, tracing out a sinuous path (worm head is indicated by the yellow dot). We subtract the 
resulting motion leaving only shape changes over time. We then use resistive force theory to predict the motion that would result 
from the observed shape changes.

Phys. Biol. 14 (2017) 025001
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Nonlinear model
The model introduced by Rabets et al [1] extends the 
linear model by now allowing the force per unit length 
to depend nonlinearly on the tangential and normal 
velocity components such that

( )  ( )β= γf s U s ,t t t
t

( )  ( )β= γf s U s ,n n n
n

where the parameters γt and γn govern the nonlinear 
nature of the model. When γ = 1t  and γ = 1n , one 
recovers the linear model with β α=t t and β α=n n. 
Values of βt, βn, γt, and γn were found by Rabets et al by 
measuring the force required to drag the worm along an 
agar surface at a given speed [1].

As with the linear model, the nonlinear model 
can be used to predict the worm’s path by follow-
ing the same procedure. We subtract the rigid body 
motion from the worm’s velocity data, such that only 
the motion due to undulations remains. Then, adding 
on an unknown rigid body motion, we substitute the 
velocity into the model and impose a condition of zero 
force and zero torque. Now, however, we must solve a 
system of nonlinear equations (due to the nonlinearity 
of the model) to find the unknown velocity and angular 
velocity of the worm. The details of this calculation can 
be found in the supplementary information.

Experimental methods

Worm tracking
The videos analysed in this paper were collected and 
described previously [28]. Briefly, single adult worms 
were placed on the centre of a 2% agar plate and allowed 
to habituate for 30 min. They were then recorded for 
15 min and followed using a tracking stage to keep the 
worm in the camera’s field of view. The data presented 
here are either from short segments of 1000 frames 
containing a given behaviour type (forward crawling, 
reversal, or turn in figures 2 and 4) or from the first 3000 
frames of each video (figure 3). Each worm is segmented 
from the background by thresholding and skeletonised 
by tracing the midline between the two points of 
highest curvature on the outline of the segmented 
object (these two points correspond to the head and tail 
of the animal). The head is then identified using a linear 
classifier that considers the motion and brightness at 
each end. The head is typically brighter than the tail and 
oscillates more. The worm midline is represented by 49 
equally spaced points. In addition to the laboratory 
strain N2, several hundred mutant strains as well as 18 
wild isolates of C. elegans were tracked and skeletonised 
using the same method.

Results

We first used the linear model to predict the motion 
of C. elegans wild isolates. These are worms from the 
same species but isolated from different parts of the 

world. We reasoned that because they have not been 
propagated in the lab for as many generations as the 
reference strain N2, their gait may be more optimised 
for efficient locomotion. The results for several 
randomly chosen bouts of locomotion are shown 
in figure 2(A). Each segment is 1000 frames long 
(just over 33 s at 30 frames per second). The forward 
locomotion segments were selected to have a forward 
distance greater than 1000 µm and an average speed of 
greater than 250 µm s−1. The reversal segments were 
selected to have a backwards distance greater than 
1000 µm and an average absolute speed greater than 
250 µm s−1. The turn segments contained an omega 
turn detected using the method in [28] and also have 
an average speed greater than 250 µm s−1. To move 
forwards, C. elegans propagates waves of dorso-ventral 
curvature along its body from head to tail. The forward 
locomotion segments are approximately sinusoidal 
and are therefore similar to the gaits most commonly 
considered in the literature on slender body swimming 
[19]. We also considered types of behaviour that may 
represent different locomotion regimes than forward 
crawling. Reversal segments are also approximately 
sinusoidal, but worms initially move in their recently 
created agar groove (as opposed to carving a groove as 
they move forwards). Omega turns are characterised 
by sharp body bends with high speeds normal to the 
worm body and it might be possible for the anterior 
part of the body to leave the existing groove during such 
manoeuvres.

The only free parameter in the linear model is the 
ratio of the normal to tangential drag coefficients. We 
used MATLAB’s fminsearch to find a good value 
for the coefficient ratio and the resulting predicted 
midbody paths (gray lines) closely match the exper-
imentally observed paths (black lines) for all of the dif-
ferent behaviour types. We also considered the limiting 
case of α α�n t which corresponds to a no-slip regime 
in which the distance that the wave propagates back-
wards along the worm body is equal to the distance that 
the centre of mass moves forward over one period. The 
no-slip fit is reasonable, but there is a clear and con-
sistent overshoot (red lines and figure 2(B)), indicat-
ing that during crawling on an agar surface covered 
with a lawn of bacteria, C. elegans moves with a small 
amount of slip. Finally, we also used the experimentally 
 determined value of the drag coefficient ratio /α αn t 
(see figure 2 inset in Rabets et al [1]). The drag coef-
ficient ratio measured in Rabets et al for 250 µm s−1 
is less than 5, but we have used a value of 7 to be con-
servative. Using this value with the linear model results 
in more slip in the predicted paths resulting in a sub-
stantial undershoot (green lines and figure 2(B)). This 
difference could be caused by the bacterial lawn that 
the worms crawl through in our experiments. Rabets 
et al did their measurements directly on agar and so we 
also determined the optimal coefficient ratio for worms 
crawling without a bacterial food was 39.2  ±  11.4 
(mean  ±  standard deviation), still larger than the 

Phys. Biol. 14 (2017) 025001
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measured value (see also figure 3(A)). Agar dryness 
could also affect the observed drag coefficient ratio. We 
cannot rule out differences in plate preparation, but 
did confirm that differences in ambient humidity on 
experiment days do not explain the discrepancy (figure 
S1 (stacks.iop.org/PB/14/025001/mmedia)).

We next used the linear model to predict locomo-
tion data for the full set of wild isolates (17 strains, 613 
individuals) as well as a large set of mutants (301 strains, 
8964 individuals) using fminsearch to find the optimal 
drag coefficient ratio. Because dividing the behaviour 
into subtypes (figure 2) did not have a significant effect 

on the best-fitting drag coefficient ratio, we simply 
used the first 3000 frames of data for each individual to 
perform the fits, which included reversals and omega 
turns. The wild-isolates had an optimal coefficient 
ratio of 70  ±  28 while the mutant coefficient ratios 
were comparable, but larger, with a mean of 49  ±  63 
(mean  ±  standard deviation), consistent with the 
hypothesis that their locomotion is more efficient than 
laboratory or mutant strains (figure 3(A)). The list of 
worm strains ordered by median coefficient ratio is 
included in table S1. These values exclude cases where 
the coefficient ratio diverged during optim isation, 

Figure 2. Linear resistive force theory accurately predicts worm paths, but not using experimentally measured drag coefficients. 
(A) Worm mid body paths are shown for three kinds of behaviour: forward locomotion (top), reversals (middle), and sharp turns 
with deep body bends (bottom). The experimental paths are shown in black overlaid with three model fits using an optimal drag 
coefficient ratio (grey, numbers below each trajectory give actual ratio), a high drag coefficient ratio giving a no-slip path (red), and 
the experimentally measured drag coefficient ratio (green). (B) Relative distance travelled for the experimentally measured ratio and 
the large ratio compared to the optimal ratio for 25 trajectories of each behaviour type. (C) The drag coefficient ratios determined 
separately for 25 trajectories of each behaviour type. None of the differences are significant with Bonferroni correction for three rank 
sum tests.

Phys. Biol. 14 (2017) 025001
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which occurred in 1.6% of wild isolate recordings 
and 0.5% of mutant recordings and indicated that the  
no-slip condition gave the best result.

We considered two alternative explanations for the 
difference between the wild isolate and mutant coef-
ficient ratio distributions. The first is that the wild 
isolates are known to move more persistently than the 
laboratory strain N2 as well as most of the mutants, and 
the second is that several of the mutants are known to be 
uncoordinated. Uncoordinated worms typically have 
higher body curvatures and move more slowly. It is not 
unreasonable that body shape could have an impact on 
the coefficient ratio as there is a known shape depend-
ence in the case of low Reynolds number swimming that 
is apparent from the solution of the full hydrodynamics 
problem [29]. However, neither the speed (figure 3(B)) 
nor the mid-body bend angle (figure 3(C)) can explain 
the difference in coefficient ratio across strains. Finally, 
we do not see a systematic difference in fit quality across 
strains that might explain the difference in apparent 
coefficient ratio (figure 3(D)).

Although the linear model fits a wide range of paths 
across wild type and uncoordinated strains, the best fits 
are obtained with parameter ratios larger than those 
measured experimentally in dragging experiments [1]. 
We therefore also used the recently proposed nonlinear 
extension of the model to see if this could explain the 

discrepancy. The nonlinear model has four free param-
eters, as opposed to the linear model’s single parameter. 
To find a fit using parameters as close as possible to the 
experimental parameters and for computational trac-
tability, we took advantage of the fact that each param-
eter changes the effective drag coefficient ratio in a pre-
dictable manner and used a single scaling parameter ϕ 
to adjust the model parameters as follows: βt  =  β ϕt0 , 
βn  =  /β ϕn0 , γt  =  /γ ϕt0

, and γn  =  γ ϕn0 . We used linear 
interpolation of the values reported in Rabets et al [1] as 
a function of agar concentration to estimate the values 
for 2% agar to be  β = 0.31t0 ,  β = 7.1n0 ,  γ =t0

 0.60, and 
 γ =n0
 0.31. We used a starting value for ϕ of 1.15. Even 

with this constraint it is possible to accurately fit worm 
paths using the nonlinear model (figure 4). However, 
like the linear model, the nonlinear model undershoots 
the observed paths when using experimentally deter-
mined drag coefficients and exponents.

Discussion

In this study, we tested linear and nonlinear resistive-
force theory models for crawling, assessing how well 
they can predict worm paths given the undulation 
kinematics. Using an optimisation procedure, we find 
parameter values for the simple linear model and the 
more complex nonlinear model that yield paths nearly 
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Figure 3. Wild isolates have higher drag coefficient ratios than laboratory and mutant strains. (A) The bars show the 25th–75th 
percentile range of drag coefficient ratio for each strain and are ordered by the median value for each strain. The colours indicate the 
strain. The two thicker bars are for N2 with (red) and without (black) a bacterial food lawn. (B) The speed range of each strain sorted 
in the same order as (A). The wild isolates are faster than the other strains, but over all there is not a strong relationship between 
speed and drag coefficient ratio. (C) The mid body bend angle in degrees for each strain with the same ordering as (A). (D) The 
root mean square deviation between the predicted and observed speed for each strain with the same ordering as (A). The RSMD is 
normalised for each worm by the worm length so this is the average deviation per worm length per time step.
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identical to those measured experimentally. For the 
linear model, the drag anisotropy that gives the best fit 
is typically high (~60), but remains finite for the vast 
majority of recordings, indicating that some slip yields 
the best results. For the nonlinear model, while we find 
parameter values that result in an accurate prediction 
of the worm’s path, these parameter values do not 
coincide with those recently measured experimentally 
[1]. When we run the model with the experimentally 
measured values, we find a path with a similar shape, 
but reduced in size (figure 4). This is because the 
effective drag anisotropy ratio for the nonlinear model 
with the experimental parameter values is lower than 
the optimal value found for the linear model, and the 
nonlinear model therefore under predicts the worm’s 
crawling speed. We note that the ability to predict the 
worm paths from the undulations does not give any 
information about the forces the worm exerts on its 
surrounding to produce the undulations. In the linear 
model, for example, the only parameter that matters 
is the ratio of the drag coefficients, a dimensionless 
quantity, rather than the values of the drag coefficients 
themselves. Accurately predicting the forces is essential 
to understand the energy the worm uses to execute 
different changes in posture.

Our results suggest that while we have good effec-
tive models that can accurately connect worm shape 

 trans itions to their motion, our detailed understanding 
of the physical interaction between the worm and the 
gel surface, as well as how to measure it experimentally, 
remains an open question. The role of the groove that 
worms carve in the agar as they crawl and, in particular, 
how it impacts the forces experienced by the worm still 
need to be further characterized. In the experiments 
performed by Rabets et al [1], to establish the param-
eter values for motion normal to the worm’s centre-
line, the worm was dragged along the surface, thereby 
removing it from the groove and, perhaps, not main-
taining the conditions experienced by the worm during 
crawling. Similarly, when testing the model, they hold 
the worm fixed, allowing it undulate along the surface, 
again, outside of any groove. Since the parameter val-
ues from these measurements did not reproduce the 
true worm paths, this suggests that the presence of the 
groove and shape of the gel surface, perhaps including 
a non-uniform worm depth along its length, play an 
important role in the how the worm propels itself.

Additionally, the models tested here are both drag 
based, meaning that the worm must move in order to 
experience any force. Such relationship would require, 
at the very least, a liquid layer between the worm and 
the gel surface. While this scenario seems to have been 
considered in several studies [22, 23], it may be that the 
worm is in contact with the surface and is  exerting a 

Figure 4. An extended nonlinear theory also accurately predicts worm paths, but not using experimentally measured drag 
coefficients. Worm mid body paths are shown for the same paths as figure 2: forward locomotion (top), reversals (middle), and sharp 
turns with deep body bends (bottom). The experimental paths are shown in black overlaid with two model fits; constrained best-fit 
coefficients (grey) and the experimentally measured coefficients (green). The number under each trajectory is ϕ, the fraction that 

each of the four nonlinear model coefficients is scaled by: tβ   =  t0β ϕ, nβ   =  n0/β ϕ, tγ   =  t0
/γ ϕ, and nγ   =  n0

γ ϕ.
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force directly on the gel. This picture would seem to be 
supported by the formation of the groove in the gel. 
Under these circumstances, the constitutive proper-
ties of the gel and how the gel deforms in response to 
applied forces would be directly related to how the 
worm moves. This would suggest that more general 
force relationships that incorporate yield stresses, that 
would allow the worm to exert a force on the surface 
but not move, and elasticity, as well as viscous effects, 
should be explored. It also suggests that variability in 
the worm’s contact surface with the gel may also need 
to be considered in future models.

The ability to accurately predict worm rigid body 
motion from body shape changes will be useful for 
model-based tracking approaches [30, 31]. In these 
algorithms, motion in the current frame is used to 
predict the posture and position of the worm in the 
following frame. Without a quantitative connection 
between body shape and rigid body motion, both must 
be inferred independently. Independent parameter 
prediction increases the computational complexity of 
motion model tracking algorithms because the number 
of hypotheses to check increases exponentially in the 
number of degrees of freedom in the motion model. 
Using a mechanical model to predict the rigid body 
motion from the hypothesised shape changes reduces 
the number of independent degrees of freedom by three 
(x and y velocity and angular velocity). Since the pos-
ture space of C. elegans is already known to be relatively 
low-dimensional [32–34], this makes a full model of  
C. elegans locomotion quite tractable.

Finally, the tight coupling we observe between 
postural changes and rigid body motion shows that 
a direct mapping is possible between the output of 
the worm’s nervous system, which contracts muscles, 
and the resulting motion in the lab frame. This sup-
ports the idea that a posture-focussed representation 
[35, 36] can contain essentially complete information 
about a worm’s locomotion when it is confined to the 
2D surface of an agar plate. This is a welcome simpli-
fication that facilitates computational ethology in C. 
elegans compared to many other animals where their 
base of support can be a critical component of their 
behaviour [37] that is not directly measurable with 
2D imaging.
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