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SUMMARY 

 

The disturbance attenuation and robust disturbance attenuation problems for Hamiltonian 

systems in the discrete-time setting are considered and some new results are presented. The new 

results are derived utilizing the recently presented dissipativity equality obtained by adding the 

dissipation rate function to the classical dissipativity inequality. A selection of the dissipation rate 

function yields the new results.  These results include a condition on the dissipation structure of the 

system to achieve the desired disturbance attenuation level and gives direct construction of optimal 

control laws for any desired disturbance attenuation level. The results remove the need to solve 

Hamilton-Jacobi-Isaacs inequalities.  
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1. INTRODUCTION 

The subject of the modelling and control of complex nonlinear systems has been an important and 

active area of research in control theory and its applications. In this context, the port-controlled 

Hamiltonian (PCH) approach has been introduced for the modelling and control of nonlinear systems, 

especially when electrical and mechanical sub-systems are considered. There is large number of 

publications on this subject, see for example [2, 3, 4]. 

In the literature, the problem of local disturbance attenuation for general continuous time nonlinear 

systems has been studied comprehensively with the H∞ approach, see [5, 6, 7]. In [8, 9] some 

nonlinear H∞ control problems for continuous time Hamiltonian systems have been considered and 

some results have been presented.  The results therein demonstrate that while the disturbance 

attenuation problem characterized by means of the L2 gain requires solving the Hamilton-Jacobi-

Isaacs (HJI) partial differential inequality for general continuous-time nonlinear systems, it can be 

reduced to solve an algebraic Hamilton-Jacobi-Isaacs (HJI) inequality for Hamiltonian systems. 

The development of modelling and control techniques for discrete time nonlinear systems has been 

increasingly important since in engineering practice computer-controlled systems are often preferred. 

There are various studies on discrete time nonlinear systems in the literature. These studies can be 

classified, roughly, in two groups. One group deals with the concepts of losslessness, feedback 

equivalence and the global stabilization of discrete-time nonlinear systems [1, 10, 11, 12, 13]; the 

second deals with the derivation of discrete-time counterpart of the H∞ control technique which is 

developed using the model of the system [11]. 

Additionally, results on the stabilization problem for general sampled-data  nonlinear systems using 

their approximate discrete-time models have been given, for example, in [14] and a direct discrete-

time PBC (Passivity Based Control) method for approximate discrete-time Hamiltonian models have 



been developed in [15, 16, 17]. A discrete-time counterpart of the PBC technique has been developed 

for n-degrees of freedom mechanical systems in [18, 19]. In this study, some new results on the 

disturbance attenuation and robust disturbance attenuation problems for Hamiltonian systems are 

presented in the discrete-time setting. In our previous publications [20, 21] the discrete time 

disturbance attenuation problem and robust disturbance attenuation problem for n-dof Hamiltonian 

systems with energy function uncertainty have been considered. This problem has been formulated 

for the discrete-time Hamiltonian model of the system and sufficient conditions for the existence of 

the solutions of the problems have been given. It has been shown that the solution of the problem can 

be reduced to an algebraic HJI inequality.  

In this study the disturbance attenuation and robust disturbance attenuation problems for Hamiltonian 

systems are reconsidered using the concepts of dissipation rate and dissipativity equality presented by 

Navarro-Lopez in [1] and some new results - that do not require solving an inequality as in our 

previous studies- are presented. The result presented reveals the relation between the dissipation 

structure and the disturbance attenuation level of the system, that is to say a condition is presented 

that gives a lower bound on the dissipation structure of the system to have any specific level of 

disturbance attenuation. The optimal controller construction assigning a dissipation structure that 

satisfies this condition is given. Moreover a relation between this control laws and dissipation 

injection control laws is also established. 

In the sequel, the notation ( )kx x k , ( )kw w k , ( )ky y k , ( )ku u k , ( )kq q k , ( )kp p k is used. 

2. PRELIMINARIES 

This section is devoted to the definitions of dissipativity concepts for nonlinear systems [1, 11] and 

the bounded real lemma [11] used to solve the H  control problem for input affine discrete-time 

nonlinear systems described by equations of the form   
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k k k k

x f x g x w g x u

z h x k x w k x u
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   (1) 

where 
n

kx R  is the state vector, 
r

ky R  is the system output, 
kz is the penalty signal and 1m

kw R , 

2m

ku R are the disturbance and control inputs, respectively. The use of static feedback control law 

( )ku c x  yields a closed-loop system of the form, 

 
1 ( , ),

( , ).

k cl k k

k cl k k

x f x w

z h x w
  (2) 

Consider now the following definition. 

Definition 1 [11] 

The discrete-time nonlinear system (2) is said to be dissipative with supply rate  
2 221( , ) ( )

2k k k ks z w w z  if there exists a nonnegative function :V X R , 
nX R  with 

(0) 0V , which is called storage function, such that 1m

kw R  and 0,1,2,....k the inequality 
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2
k k k kV x V x w z   (3) 



is satisfied. □  

Definition 2 [11] 

Let 0 . The nonlinear system (2) is said to have 
2L  gain less than or equal to , from the input 

kw  
to the output 

kz  if, 

 
2 22

0 0

N N

k k

k k

z w    (4) 

: 1,2,3,........N Z  and 1
2( 0, , )

m

kw l N R .□ 

Lemma (Bounded Real Lemma) [11] 

Suppose that the discrete-time nonlinear system (2) with 
k

w =0   has 0x  as a locally 

asymptotically stable equilibrium. Then the system has an 
2L  gain less than or equal to  if it is 

dissipative with a positive definite storage function V with respect to the supply rate 
2 221 ( )

2 k kw z . Conversely, suppose that system (2) has an 
2L  gain less than or equal to  and 

(2) is reachable from 0x . Then the system (2) is dissipative with a positive definite storage function 

V  with respect to the supply rate 
2 221 ( )

2 k kw z .□ 

In what follows the definitions presented in [1] are restated for the nonlinear system (2). 

Definition 3 [1]  

The system (2) is said to be dissipative (respectively, strictly dissipative) with respect to a real valued 

function ( , )k ks z w  called the supply (rate) function if there exist a positive definite function, 

:V X R , with (0) 0V , called the storage function, and a continuous function 

: X W where 
qW R  with (., )w  is positive (respectively, strictly positive) for each 

w W such that 

                                        
1( ) ( ) ( , ) ( , )k k k k k kV x V x s z w x w    (5) 

for all w W  and 0,1,2,....k  irrespectively of the initial value of the state. The function (., )w  is 

called the dissipation rate function. □ 

Definition 4 

A 
2C  function : X W , such that (., )w  is positive (respectively, strictly positive)  for 

each w W and (0,0) 0 , is a dissipation rate (resp. strict dissipation rate) function in the sense in 

(Hill and Moylan, 1980). □ 

 

Remark 1 

Using the supply rate function 
2 221 ( )

2 k ks w z  in (7) yields 



    
2 22

1

1
( ) ( ) ( ) ( , )

2
k k k k k kV x V x w z x w  (6) 

It is easy to see the correspondence of this equality with the inequality (3), namely, when the equality 

(6) holds the inequality (3) is always satisfied, and vice-versa. □ 

We finally recall the discrete gradient conditions [22], since a gradient-based discrete time model of 

the considered class of Hamiltonian systems is used. 

Definition 6 [22] 

Let H x  be a differentiable scalar function of x . ( , )k 1 kH x x  is a discrete gradient of H  if it is 

continuous in x  and 

                  
1 1 1( , ) ( ) ( ),

( , ) ( ).

T

k k k k k k

k k k

H x x x x H x H x

H x x H x
 (7) 

□ 

3. PROBLEM FORMULATION 

3.1 Disturbance Attenuation 

The direct discrete-time disturbance attenuation problem formulation given in [20] is restated below. 

The considered class of Hamiltonian systems is given by the equations 

 
1 2

1

( ( , )) ( , ) ( ) ( )

( ) ( ) ( , )T

q
J R q p H q p G q w G q u

p

y t G q H q p

 (8) 

where 2( , ) nx q p  is the state vector, 1m
w is the disturbance input, 2m

u  is the control 

input, 1m
y is the output, J  is a skew-symmetric interconnection matrix and 2 2( , ) nx nR q p is  

nonnegative symmetric matrix describing the dissipation structure, given by,  

 
0

0

n

n

I
J

I
,  

1

0 0
( , )

0 ( , )
R q p

R q p
    with  

 1( , ) 0nxnR q p R , and   1

1

0
( )

( )
G q

g q
, 2

2

0
( )

( )
G q

g q
 

in which 1

1( )
nxm

g q , 2

2 ( )
nxm

g q  are the disturbance input matrix and the control input matrix, 

respectively. The notation ( )H  is used for the gradient vector of a scalar function ( , )H q p  with 

respect to the arguments (.).
2: nH  is the Hamiltonian energy function of the system and is 

given by, 

 
11

( , ) ( ) ( ) ,
2

TH q p p M q p P q
  

(9) 



where ( ) ( ) 0TM q M q  is the generalized inertia matrix and ( )P q is the potential energy function 

of the system.  

Employing the discrete-time modelling method given in [18, 19] the discrete-time description of the 

system (9) yields 

 
( ( , )) ( ) ( ) ,

( ) ,

k 1 k

k k 1 k k 2 k k

k 1 k

T

k 1 k

q q
T J R q p H TG q w TG q u

p p

y G q H

  (10) 

where T  is the sampling period with ( , )k 1 kH x x is the  discrete gradient of ( )H x , ( , )x q p , 

( , )k k kx q p  and 
1 1 1( , )k k kx q p . The penalty signal is defined as 

 ( , )
( , )

k

k k

k k k k

y
z q p

d q p u
  (11) 

and the disturbance rejection performance is described by the condition 

 { ( , ) }
N N

2T T 2

k k k k k k k

k 0 k 0

y y u D q p u w   (12) 

where ( , ) ( , ) ( , )T

k k k k k kD q p d q p d q p  is a given weighting matrix, with ( , )k kd q p  full rank, and  is 

the disturbance attenuation level. 

The discrete time disturbance attenuation problem consists in finding a control law ( , )k k ku c q p  

such that the zero equilibrium of system with 0kw  is asymptotically stable and the closed loop 

system satisfies the disturbance rejection performance given in (12), namely the 
2L  gain from the 

disturbance input
kw  to the penalty signal 

kz  is equal or less than the prescribed level . 

3.2 Robust Disturbance Attenuation 

In [21] it has been shown that the robust control problem for n-dof mechanical systems can be 

reduced to a disturbance attenuation problem. The port-controlled Hamiltonian formulation of the 

considered class of uncertain systems is 

 
( ( , )) ( ) ( ) ( ) ( )

( ) ( )

w e u

T

w

q
J R q p H G q w t G q u t

p

y t G q H

 (13) 

 with      

 
0

( )
( )

w

w

G q
g q

,
0

( )
( )

u

u

G q
g q

 

where H H H , 

                                
11

( , ) ( ) ( ) ,
2

TH q p p M q p P q   (14) 



                                 
11

( , ) ( ) ( ).
2

TH q p p M q p P q   (15) 

In [21] the robust disturbance attenuation problem has been formulated as a disturbance attenuation 

problem in which two disturbance inputs affect the system, i.e. 

 
( ( , )) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ,

u w e u

T

u w

q
J R q p H G q w t G q w t G q u t

p

y t G q G q H

  (16) 

                             

where ( )w t and ( )ew t  are the disturbances corresponding to the uncertainty in the energy function 

and the external disturbance, respectively. The discrete time equations of the system (16) can be 

written in the form (10), i.e. 

 

1

1 2

1

1

( ( , )) ( ) ( ) ,

( ) ,

k k

k k k k k k

k k

T

k k

q q
T J R q p H TG q w TG q u

p p

y G q H

        (17) 

where 

 

1 2

( ) ( ) ( )

( ) ( ) ( ) , ( ) ( ).

T

k e

k u k w k k u k

w w k w k w k

G q G q G q G q G q
 (18) 

Thus the discrete-time robust disturbance attenuation problem for the system (13) can be formulated 

as the disturbance attenuation problem for the system (17).  

3.3 Previous Results 

In this section the main results of our previous studies [20, 21] are summarized to exploit them in the 

sequel while obtaining the new results. In [20, 21], it has been shown that a static feedback of the 

form  

                                    1{ } ( )T T

k k k u k pu T d d g q H    (19) 

solves the disturbance attenuation problem, if there exists a positive real number  satisfying the 

inequality  

 

2 2 2 2 2 1

1 1 2 2

1 1 1

( ) ( ) ( ){ } ( )

2 ( , ) ( ) ( ) 0

T T T

k k k k k k

T

k k k k

T g q g q T g q d d g q

TR q p g q g q
 (20)                                  

for a prescribed . Moreover, the robust disturbance attenuation problem is solvable if the condition 

                            

2 2 2

2 2 1

1

( ) ( ) ( ) ( )

( ){ } ( )

2 ( , ) ( ) ( ) ( ) ( ) 0

T T

u k u k w k w k

T T

u k k k u k

T T

k k u k u k w k w k

T g q g q g q g q

T g q d d g q

TR q p g q g q g q g q

   (21)

                        

 

is satisfied for any . To construct the control law (19), a value of  satisfying (20) or (21) should 

be found. There is no direct method to obtain such an .  



4. MAIN RESULTS 

This section presents the new results on the disturbance attenuation and robust disturbance 

attenuation problems. The following proposition gives a lower bound on the “dissipation” that the 

system (10)-(11) needs to have to be able to attenuate the effect of disturbance on the output to the 

level 0 . 

Proposition 1 

Consider  the  discrete  time  port-controlled  Hamiltonian  system  (10)-(11)  with  0ku , 

0,1,2,....k . If  

                          
2

1 1 1

(1 )
( ( , )) ( ) ( )

2

T

k k k kR q p g q g q , ,k kq p  (22)  

then the 
2L  gain of the system, from the disturbance input kw  to the penalty output kz  defined in (11) 

is less than or equal to , namely the condition 

 

2 22

0 0

N N

k k

k k

z w

 

holds.□ 

Proof  

The dissipation equality (5) for the system (10)-(11) with 
2 221 ( )

2 k ks w z
 
 and ˆV H  is 

                          
2 22

1( ( ) ( )) ( )
2

k k k k kH x H x w z   (23) 

where ˆ  and ˆ
k k

. Here , ˆ  and  are positive real numbers, 
k
and ˆ

k
 are functions 

as in Definition 4. To improve performance of the closed loop system, we replace the equality sign in 

(23) with an inequality sign, i.e.   
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1( ( ) ( )) ( ) ( , ), ( , )
2

k k k k k k k k kH x H x w z x w x q p  

then using the system equations (10) and, the  first of the discrete-gradient conditions given in 

Definition 6 yields, 

 

1

1

1

1 1

2

( ( ) ( ))

( , ) ( )

( ) (( , ), ).
2

T

q k k

k k

p k k

T T

p k k p p k k

T T

k k k k k k k

H q q
H x H x

H p p

T H R q p H T Hg q w

w w y y q p w

 

The selection of the dissipation rate function as 

 
2

1 1/2 1/2

1

1

2

T

p kT HG w        (24) 

yields  



                                     
1

2 2 2 2

1 1

2 ( , )

(1 ) ( ) ( ) 0.

T

p k k p

T T

p k k p

T H R q p H

T H g q g q H
  (25) 

Finally selecting T  yields 

                                     
1

2

1 1

2 ( , )

(1 ) ( ) ( ) 0.

T

p k k p

T T

p k k p

H R q p H

H g q g q H
  (26) 

By Remark 1 and the Bounded Real Lemma, if this inequality holds than the 
2L  gain of the system, 

from the disturbance input 
kw  to the penalty output 

kz  is less than  or equal to . Now, it is easy to 

see that the inequality (26) holds if 
1( , )k kR q p  satisfies (22). □  

If condition (22) is not satisfied then a feedback control has to be implemented. The use of PBC 

design allows to obtain any desired ( )d kR q  in the form of 

 ,
( ) ( )

d T

2 k v 2 k

0 0
R

0 g q K g q
  (27) 

selecting 

 
2 ( ) .T

k v k pu K g q H   (28) 

This control law is called damping injection control law [2, 3, 4]. Selecting 

 
( )

( ) ( ) ( ) ( )
2

1 T T

v 2 k 1 k 1 k 2 k

1
K g q g q g q g q

2
  (29) 

yields 
dR R  with 

1R  satisfying (22). Note that this selection is only possible for fully-actuated 

systems since it includes the inverse of the input port matrix. 

Remark 2  

When the open loop system has dissipation structure sysR  [2, 3, 4], the condition on the minimum 

required dissipation structure to be added to the system is obtained as, 

 
2

1 1 1 1

(1 )
( , ) ( ) ( )

2

T

r k k k k sysR q p g q g q R  (30) 

and one could select for fully-actuated systems 

 
( )

( ) ( ) ( ) ( )
2

1 T T

v 2 k 1 k 1 k 1sys 2 k

1
K g q g q g q R g q

2
 (31) 

to assign the dissipation structure that satisfies (22) to the closed-loop system. □ 

The new result on the solution of the disturbance attenuation problem defined in Subsection 3.1 is 

presented in the following theorem. It is explained in Remark 3 that the control law constructed in 

this theorem adds a dissipation structure that satisfies (22) to the system. 



Theorem 1 

Consider the discrete-time port-controlled Hamiltonian system given in (8)-(9), and suppose the 

system satisfies the following conditions. 

I. The system is zero-state detectable.  

II. The weighting matrix ( , )k kd q p has full rank. 

III. The equilibrium point x 0  is a strict local minimizer of ( )H x . 

IV. There exist a discrete gradient, i.e., namely, ( , )k 1 kH x x , { , } 2n

k k kx q p R   which satisfies 

the conditions in Definition 6.  

Then the feedback control law  

                                1

2{ } ( )T T

k k k k pu T d d g q H  (32) 

where 
kd is such that 

                                    

1
2 2 2

1

2 1 1 2

(1 )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )T T T T

k k k k kk

T
d d d g q g q g q g q d

T
 (33) 

       

1m n
d  is a full rank constant matrix, 1

1
ˆ ( )

n m

kg q  and 2
2
ˆ ( )

n m

kg q are  full rank matrices 

such that 
1 1
ˆ( ( )) ( ( )),i k i kg q g q  

2 2
ˆ( ( )) ( ( )), 1,...,i k i kg q g q i n  and ( ) 1TT d d  renders the 

2L  gain of the closed loop system, from the disturbance input 
kw  to penalty output 

kz , equal to or 

less than .  

Proof 

If 
kd  is taken as in (33) the inequality given in (20) becomes 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( , ) .

2 2 2 T 2 2 2 T 1 T T T

1 k 1 k 2 k 2 k 1 k 1 k 2 k k2

1 k k

1 T g q g q T 1 T g q d g q g q g q g q dg q

2 TR q p 0
 

Since 
1 1
ˆ( ( )) ( ( )),i k i kg q g q 2 2

ˆ( ( )) ( ( )), 1,...,i k i kg q g q i n , this inequality is satisfied for any 

( )Td d 1 T  which proves the claim. □ 

Remark 3 

Selecting 1 T  in the control law (32)-(33) yields the damping injection control law 

2 ( )T

k v k pu K g q H  with 2 1

2 1 1 2
ˆ ˆ ˆ ˆ(1 ) ( ) ( ) ( ) ( )T T T

v k k k kK d g q g q g q g q d  which adds to the system 

the dissipation structure 
2 1

1 2 2 1 1 2 2
ˆ ˆ ˆ ˆ( , ) (1 ) ( ) ( ) ( ) ( ) ( ) ( )T T T T

k k k k k k k kR q p g q d g q g q g q g q dg q . 

Considering the conditions given in Theorem 1 on 
1
ˆ ( )kg q , 

2
ˆ ( )kg q  and d   it can be seen that this 

dissipation structure satisfies the condition (22).  Note that the control law (32)-(33) assigns to the 

system a dissipation structure that satisfies (22) in the case of fully actuated systems. If 1

1
( )kg q  and 

1

2 ( )kg q  exist, 
1
ˆ ( )kg q , 

2
ˆ ( )kg q , d  can be selected as 

1 1
ˆ ( ) ( )k kg q g q , 

2 2
ˆ ( ) ( )k kg q g q , nd I  and 

selecting 1 T  in the control law (32)-(33) yields a damping injection control law with 



( ) ( ) ( ) ( ) ( )2 1 T T

v 2 k 1 k 1 k 2 kK 1 g q g q g q g q  that assigns the dissipation structure 

2

1 1 1( , ) (1 ) ( ) ( )T

k k k kR q p g q g q which satisfies the condition (22).□ 

Remark 4 

To obtain a less conservative controller for the systems which have already some dissipation 

structure
1R , 

kd  can be selected such that 

 

1

1 2 2 2

1 1 12 2

1
ˆ ˆ ˆ ˆ( ) (1 ) ( ) ( ) 2 ( )T T T T

k k k k kk
d d d g q T g q g q R g q d

T
 (34)

 

where 
T

k mk
d d I   in the control law (32). To be able to see that this selection gives a less 

conservative controller, consider the case 
1 1

1 1
ˆ n ng g  and 

1 1

2 2
ˆ n ng g  (i.e. fully-actuated 

systems) and select nd I . Thus, the inequality (20) becomes 

 
( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , )

2 2 2 T 2 2 2 T

1 k 1 k 1 k 1 k

1 k k 1 k k

1 T g q g q T 1 T g q g q

2 TR q p 2 TR q p 0
  (35) 

and this inequality is satisfied for 1 T  with the equality sign.  □ 

The new results on the robust disturbance attenuation are now stated. The corollary gives a lower 

bound on the dissipation that the uncertain system needs to have so that its 
2L  gain from the 

disturbance input to the output is at most .  

Corollary  

Consider the uncertain discrete-time port-controlled Hamiltonian system (17)-(18) with 0ku , 

0,1,2,....k . If  

                          
2

1

( ) ( )(1 )
( ( , )) , ,

2 ( ) ( )

T

w k w k

k k k kT

u k u k

g q g q
R q p q p

g q g q
 (36)  

then the 
2L  gain of the system, from the disturbance input kw  to the penalty output kz  defined in (11) 

is less than or equal to .  □ 

Proof: Applying Proposition 1 to the system (17-18) yields (36). □ 

Note that, a dissipation structure that satisfies this condition can be assigned for fully-actuated 

system, namely if ( )1

2 kg q exists, using the damping injection control law (28) by selecting 

 
( )

( ) ( ) ( ) ( ) .
2

1 T T

v u k w k w k u k

1
K I g q g q g q g q

2
  (37) 

Remark 5  

When the open loop system has dissipation structure sysR  [2, 3, 4], the condition on the minimum 

required dissipation to be added is obtained as 



 
2

1 1

( ) ( )(1 )
( , )

2 ( ) ( )

T

w k w k

r k k sysT

u k u k

g q g q
R q p R

g q g q
.  

□ 

For the case of fully-actuated systems one can select 

 
( ) ( )( )

( ) ( ),
( ) ( )

T2
w k w k1 T

v 2 k 1sys 2 kT

u k u k

g q g q1
K g q R g q

2 g q g q
  

which assigns a dissipation structure which satisfies (36).  

The following theorem presents the solution of the robust disturbance attenuation problem considered 

in Section 3.2, namely provides a controller that assigns the closed loop system a dissipation structure 

that satisfies (36). This theorem can be used also for under-actuated systems. 

Theorem 2 

Consider the discrete-time port-controlled Hamiltonian system given in (17)-(18), and suppose the 

system satisfies the following conditions. 

I. The system is zero-state detectable.  

II. The weighting matrix ( , )k kd q p has full column rank. 

III. The equilibrium point x 0  is a strict local minimizer of  ( )H x . 

IV. There exist a discrete gradient, i.e., namely, ( , )k 1 kH x x , { , } 2n

k k kx q p R   which satisfies 

the conditions in Definition 6.  

Then a robust optimal disturbance attenuation control law can be given by 

                                1

2{ } ( )T T

rk rk rk k pu T d d g q H  (38) 

where the parameter 
rkd is such that   

 

1
2 2 2

1(1 )
ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( ))T T T T

rk rk r u k w k w k u k r

T
d d d I g q g q g q g q d

T
      (39) 

  

1m n

rd  is a full rank constant matrix, 1
1
ˆ ( )

n m

kg q  and 2
2
ˆ ( )

n m

kg q  are  full-rank matrices 

such that 
1 1
ˆ( ( )) ( ( )),i k i kg q g q  

2 2
ˆ( ( )) ( ( )), 1,...,i k i kg q g q i n  and ( ) 1T

r rT d d , renders 

the 
2L  gain of the closed loop system, from the disturbance input 

kw  to penalty output 
kz , equal to or 

less than □.  

Proof  

The proof is similar to the proof of Theorem 1. If 
kd  is taken as in (39) the inequality (21) becomes  



 

2 2 2 2 2 2 2 2 2

2 2 2 1

1

(1 ) ( ) ( ) (1 ) ( ) ( ) (1 ) ( ) ( )

ˆ ˆ ˆ ˆ(1 ) ( ) ( ) ( ) ( ) ( ) ( )) 2 ( , ) 0

T T T T

u k u k w k w k u k r r u k

T T T T

u k r u k w k w k u k r u k k k

T g q g q T g q g q T T g q d d g q

T T g q d g q g q g q g q d g q TR q p
 

Since 
1 1
ˆ( ( )) ( ( )),i k i kg q g q 2 2

ˆ( ( )) ( ( )), 1,...,i k i kg q g q i n , this inequality is satisfied for any 

( )T

r rd d 1 T  which proves the claim. □ 

Remark 6 

Selecting 1 T  in the control law (38)-(39) yields the damping injection control law 

2 ( )T

k v k pu K g q H  with  
2 1ˆ ˆ ˆ ˆ(1 ) ( ( ) ( ) ( ) ( ))T T T

v r u k w k w k u k rK d I g q g q g q g q d  which adds the 

dissipation structure 
2 1

1
ˆ ˆ ˆ( , ) (1 ) ( ) ( ) ( ) ( ) ( ) ( )T T T T

k k u k r r u k u k r u k w k w kR q p g q d d g q g q d g q g q g q  

ˆ ( ) ( )T T

u k r u kg q d g q  to the system. Considering the conditions given in Theorem 2 on 
1
ˆ ( )kg q , 

1
ˆ ( )kg q  

and d ,  it can be seen that this dissipation structure satisfies the condition (36).  Note that, it is easier 

to see that the control law (38)-(39) assigns to the system a dissipation structure which satisfies (36) 

in the case of fully actuated systems. If 1

1
( )kg q  and 1

2 ( )kg q  exist, 
1
ˆ ( )kg q , 

2
ˆ ( )kg q , d  can be 

selected as 
1 1
ˆ ( ) ( )k kg q g q , 

2 2
ˆ ( ) ( )k kg q g q , nd I  and selecting 1 T  in the control law (38)-

(39) yields a damping injection control law with 
2 1(1 ) ( ) ( ) ( ) ( )T T

v u k w k w k u kK I g q g q g q g q  that 

assign the dissipation structure  
2

1( , ) (1 ) ( ) ( ) ( ) ( )T T

k k u k u k w k w kR q p g q g q g q g q  which satisfies 

the condition (36).□ 

Remark 7 

Similarly to Remark 4, for the systems which have already some dissipation 
1R , 

kd  can be selected 

such that 

1

1 2 2 2

1

1
ˆ ˆ ˆ ˆ ˆ ˆ( )((1 )( ( ) ( ) ( )) 2 ) ( )T T T T T

rk rk r u k u k u w k w k u k rd d d g q T g q g g q g q R g q d
T

 

with 
T

k mk
d d I  to obtain a less conservative controller. □ 

5. EXAMPLE and SIMULATIONS 

To analyse the performance of the proposed controller we considered the ball and beam system 

illustrated in Figure 1, where x  is the ball position,  the angle of the bar and L  is the bar length. 

The dynamics of the ball and beam system can be described by the Euler-Lagrange equations [24] 

 

2

1 2 1 2

2

1 2 1 1 2 1 2

sin 0,

( ) 2 cos( ) .

q g q q q

L q q q q q gq q u
    (40) 

These equations are scaled in time and masses. 2L  explicitly appears in the equations since it is a 

factor of the moment of the inertia of the bar, for details see [24]. These dynamics without dissipation 

can be expressed in the Hamiltonian system formalism as follows 



 ( ( , )) , ( , )
q 0

J R q p H u R q p 0
p G

 (41) 

with ( , ) ( ) ( )T 11
H q p p M q p P q

2
 in which  

 
2 2

1

1 0

0
M

L q
,    

1 2sinP q gq q , TG 0 1 . (42) 

Note that the state variables are the position of the ball 
1

q = x , the vertical angle of the bar 2
q = θ , 

11p q ,  and 2

1 2( )2p L q q .  

  

 
Figure 1.  The ball and beam system. 

 

We run simulations for the system  obtained applying the energy shaping control law designed in 

[24] that assigns a desired energy function to the system  (41)-(42)  so that 
1* 2* 0q q  is the only 

equilibrium. We consider this closed loop system to test the performance of the disturbance 

attenuation control laws (32)-(33) and (38)-(39), because the objective of the control is to attenuate 

the disturbance. The matrices 
dM , 

dJ  and the shaped potential energy function 
dV  completely 

describe the considered closed loop (desired) dynamics, as follows, 

 
2 2

2 2
1

1 2

2 2

1

2
1 0 ,

, ,
, 0

1 2

d

j p qL qM L q J q p
j p q

L q

  

 
21 cosdV q g q z q  

where T

1 2q q q , T

1 2p p p , 1 1 22 2

1

2
j q p p

L q
, 1

2 arcsin 2
q

z q q h
L

 and 

2

2

pK
z z . We also consider the case in which an external disturbance acts on the system and 

there is uncertainty in the mass of the ball and the bar. Hence the Hamiltonian model of the system 

with external disturbance and uncertainty considered in the simulations is 

 ( ( , )) ( , ) ,
( ) ( )

d d

w u

0 0q
J R q p H q p w u

g q g qp
 

u 

θ 

x 



where ( ) ( )T T

w u
g q g q 0 1 , 

dR 0 , ( , ) ( ) ( )T 1

d d d

1
H q p p M q p P q

2
, ( ) ( )d dM q M q  

Δ ( )dM q  and ( ) ( ) Δ ( )d d dP q P q P q , yielding 

 Δ ( , ) ( ) Δ ( ).T 1

d d d

1
H q p p M q p P q

2
 

The system parameters are taken as 1.0pK , 10L  and g=0.98ms
-2

 as in [24]. Simulations are run 

for 0.1T . The disturbance input considered is 1w N  for [5,7]t  and zero otherwise. The time 

response of the nominal system under the disturbance is shown in Figure 1. Figure 2 illustrates the 

closed loop performances for three cases: attenuation without presence of uncertainty, attenuation in 

presence of uncertainty, and robust attenuation in presence of uncertainty. 60%  per cent of 

uncertainty is considered in the masses of ball and bar ( 60%  less than their nominal values). The 

robust control law to achieve 0.04  is obtained as follows: ˆ
ug and ˆ

wg  are taken as 2
ˆ

ug I , 

2
ˆ

wg I . Thus, selecting 0 1.01Td  and 1 T , yields 

 

2 2 2
1

1

2

2 2

2 2

2

(1 )
ˆ ˆ ˆ ˆ( ( ) ( ) ( ) ( ))

(1 ) ( ) 2(1 )

0
2(1 (0.04) ) 0 1.01 1277.2

1.01

T T T T

k u k w k w k u kk

T T

T
d d d I g q g q g q g q d

T

d I I d d d  

Substituting this value and 1T  in the control law (38) yields  

 

2

1

2{ } ( )

1277.2 0 1 1277.2 .

T T

k k k k p

p p

u T d d g q H

H H
   (43) 

Note that 1.0201Td d , hence ( ) 1.0201 1Td d  and ( ) 1.0201 1TT d d . 

When the uncertainty is ignored, 
kd  is obtained selecting 2

ˆ
ug I , 2

ˆ
wg I , 0 1.01Td  and 

1 T , and substituting (33) as follows 

 

2 2 2
1

1

2 1 1 2

2

2

(1 )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

(1 )

0
(1 (0.04) ) 0 1.01 637.6

1.01

T T T T

k k k k kk

T

T
d d d g q g q g q g q d

T

d d

 

Substituting this value and 1T  in the control law (32) yields  

 

2

1

2{ } ( )

637.6 0 1 637.6

T T

rk rk rk k p

p p

u T d d g q H

H H
 (44) 

since 1T . 



Simulations have been carried out for the control laws (43) and (44). The results are given as a 

comparison between robust design and the design performed ignoring uncertainty for the cases of the 

system with uncertainty and without uncertainty. The generalized positions and the momentums of 

the controlled system versus time are illustrated in the Figure 2 and Figure 3. As can be seen from 

these figures, the controller which is designed ignoring uncertainties is not able to attenuate the 

disturbance while the controller obtained with the robust design successfully attenuates the 

disturbance as expected from the theoretical results. The simulations are run with T=0.01 . 

6. CONCLUSIONS 

The discrete-time disturbance attenuation and robust disturbance attenuation problems for port 

controlled Hamiltonian systems are considered. The condition for the lower bound on the amount of 

dissipation that a system needs to possess to have a disturbance attenuation level equal to or less than 

γ has been given and the discrete-time damping injection control law that assigns a dissipation 

structure that satisfies this condition has been given for fully actuated systems. New solutions for the 

disturbance attenuation and robust disturbance attenuation problems are presented for the worst case 

that the system has no dissipation.  These solutions provide controllers removing the need to solve 

HJI for both fully-actuated and under-actuated systems. Note that, less conservative controllers are 

also given for systems possessing some dissipation. The relation between these control laws and 

damping injection control laws is also established and damping injection equivalents of the 

controllers are provided. The proposed controllers are applied to the ball and beam system. 

Simulation results illustrate that in the absence of uncertainty the proposed disturbance attenuation 

controller successfully attenuates the disturbance whereas in the presence of uncertainty the proposed 

robust disturbance attenuation control law need to be used. 

 

Fig. 2. Time histories of q  and p  for the uncontrolled ball and beam system in the presence of 

disturbance. 

 

 



 

 

Fig. 3. Time histories of q  and p  for the closed-loop system in the presence of disturbance. 
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