
Imperial College London

Department of Electrical and Electronic Engineering

Low-overhead Fault-tolerant Logic for

Field-programmable Gate Arrays

James J. Davis

November 2015

Supervised by Professor Peter Y. K. Cheung

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Electrical and Electronic Engineering of Imperial College London

and the Diploma of Imperial College London

1

Licence

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-commercial No Derivatives licence. Researchers are free to

copy, distribute or transmit the thesis on the condition that they attribute it, that they

do not use it for commercial purposes and that they do not alter, transform or build upon

it. For any reuse or redistribution, researchers must make clear to others the licence terms

of this work.

2

Statement of Originality

The work in this thesis is my own, except where it has been appropriately referenced and

attributed.

3

Abstract

While allowing for the fabrication of increasingly complex and efficient circuitry, tran-

sistor shrinkage and count-per-device expansion have major downsides: chiefly increased

variation, degradation and fault susceptibility. For this reason, design-time considera-

tion of faults will have to be given to increasing numbers of electronic systems in the

future to ensure yields, reliabilities and lifetimes remain acceptably high. Many mathe-

matical operators commonly accelerated in hardware are suited to modification resulting

in datapath error detection and correction capabilities with far lower area, performance

and/or power consumption overheads than those incurred through the utilisation of more

established, general-purpose fault tolerance methods such as modular redundancy. Field-

programmable gate arrays are uniquely placed to allow further area savings to be made

thanks to their dynamic reconfigurability.

The majority of the technical work presented within this thesis is based upon a bench-

mark hardware accelerator—a matrix multiplier—that underwent several evolutions in

order to detect and correct faults manifesting along its datapath at runtime. In the first

instance, fault detectability in excess of 99% was achieved in return for 7.87% additional

area and 45.5% extra latency. In the second, the ability to correct errors caused by those

faults was added at the cost of 4.20% more area, while 50.7% of this—and 46.2% of the

previously incurred latency overhead—was removed through the introduction of partial

reconfiguration in the third. The fourth demonstrates further reductions in both area

and performance overheads—of 16.7% and 8.27%, respectively—through systematic data

width reduction by allowing errors of less than ±0.5% of the maximum output value to

propagate.

4

Acknowledgements

My thanks, firstly, go to my supervisor, Peter Cheung. I could not have asked for a better

supervisory experience: Peter has allowed me the freedom to explore and develop largely

automomously while always remaining able to provide fresh insight and offer support

when it was needed. As the lead academic of the weekly ‘Reliability Club’ meetings

and supervisor for my current research assistantship, George Constantinides has played a

pivotal role in my previous, and ongoing, research, including much of the content of this

thesis. Both David Thomas and Christos Bouganis have also provided perspective for the

work, for which I am grateful.

To all other members of the Reliability Club, both past and present—Rosella Arcucci,

Sam Bayliss, David Boland, Sumanta Chaudhuri, Rui Duarte, Zhenyu Guan, Eddie Hung,

Josh Levine, Karthick Parashar, Kan Shi, Ed Stott, Michail Vavouras, Justin Wong and

Rong Ye—I owe thanks for guidance and suggestions, without which much of the work

in this thesis would not have been possible. Peter Ogden’s advice and assistance has also

been invaluable.

Members of the Circuits and Systems group, many of whom have already been men-

tioned, have provided help and relief from the stresses of work over the past few years,

for both of which I am thankful. In particular, Wiesia Hsissen has been instrumental in

allowing me to complete my research while never knowingly missing a deadline.

Special thanks go to my friends Ed Stott and Cate Slade for their hospitality over the

recent months. Their kindness and generosity have allowed me to complete this thesis safe

in the knowledge that I have a warm and happy home to return to each evening.

Many thanks to lifelong friends Pete & Carol Miller for their boundless encouragement.

My friends across the Atlantic—particularly Dan & Lisa Albright, Clark & Kelly Grace,

Jo Dee & Carl Schultz and Joe Smith—as well as my sister, Louise, have done a fantastic

job of keeping me entertained during periods of—and please pardon the pun—downtime.

I am of course grateful to my parents, Chris and Mary, for everything that they have

done, and continue to do, for me. I would not be who or where I am today without their

5

encouragement and support.

Last but by no means least, my thanks go to my partner and best friend, Melanie

Albright, for her unwavering support and love.

Thank you.

6

Contents

1 Introduction 18

1.1 Contributions . 19

1.2 Publications . 20

1.3 Outline . 20

2 Background 22

2.1 Introduction . 22

2.1.1 Outline . 22

2.2 Faults & Errors . 23

2.3 Degradation . 23

2.4 Fault Detection . 24

2.4.1 Offline . 25

2.4.2 Online (Roving) . 27

2.4.3 Online (Health Monitoring) . 28

2.5 Fault Mitigation . 30

2.6 Error Correction . 32

2.6.1 Compile-time Provisioning . 32

2.6.2 Runtime Provisioning . 33

2.7 Algorithm-based Fault Tolerance . 37

2.7.1 Matrix Encoding & Decoding . 37

2.7.2 Application to Arithmetic Operations 41

2.7.3 Result Classification . 43

2.8 Conclusion . 44

3 Algorithm-tailored Low-overhead Online Error Detection 46

3.1 Introduction . 46

3.1.1 Contributions . 46

3.1.2 Publications . 47

7

3.1.3 Outline . 47

3.2 Implementation . 47

3.2.1 Hardware-software Platform . 48

3.2.2 Baseline Architecture . 49

3.2.3 Checksum Generation & Verification 52

3.2.4 Fault Location . 56

3.2.5 Error Injection . 57

3.3 Overheads . 58

3.3.1 Area . 58

3.3.2 Performance . 59

3.4 Fault Observability . 61

3.5 Conclusion . 66

4 Error Correction via Runtime Resource Reallocation 68

4.1 Introduction . 68

4.1.1 Contributions . 68

4.1.2 Publications . 69

4.1.3 Outline . 69

4.2 Implementation . 69

4.2.1 Additional Logic . 69

4.2.2 Partial Routing Reconfiguration . 71

4.3 Overheads . 76

4.3.1 Area . 77

4.3.2 Performance . 78

4.3.3 Memory . 80

4.4 Conclusion . 81

5 Fault Observability for Matrix & DSP Operations 84

5.1 Introduction . 84

5.1.1 Contributions . 84

5.1.2 Outline . 85

5.2 Method . 85

5.3 Matrix-matrix Multiplication . 87

5.4 Matrix Addition . 91

8

5.5 Matrix-vector Multiplication . 95

5.6 Conclusion . 96

6 Reduced-precision Algorithm-based Fault Tolerance 103

6.1 Introduction . 103

6.1.1 Contributions . 103

6.1.2 Publications . 104

6.1.3 Outline . 104

6.2 Principles of RP-ABFT . 104

6.2.1 MSB-first Truncation . 104

6.2.2 LSB-first Truncation . 105

6.3 Implementation . 107

6.3.1 Baseline Architecture . 107

6.3.2 MSB-first Truncation . 108

6.3.3 LSB-first Truncation . 109

6.4 Overheads . 110

6.4.1 Area . 111

6.4.2 Performance . 112

6.5 Fault Observability . 114

6.6 Conclusion . 123

6.6.1 Future Work . 125

7 Conclusion 136

7.1 Summary . 136

7.2 Future Work . 137

9

List of Tables

2.1 Comparison of fault detection methods . 45

3.1 Baseline & ABFT-protected accelerator resource usage 59

3.2 Baseline & ABFT-protected accelerator performance 61

4.1 Baseline & ABFT-protected accelerator with additional logic & DPR error

correction resource usage . 82

4.2 ABFT-protected accelerator with additional logic & DPR error correction

performance . 83

4.3 ABFT-protected accelerator with DPR error correction bitstream storage

requirements . 83

6.1 Baseline, MSB-first & LSB-first truncated accelerator LUT usage 127

6.2 Baseline, MSB-first & LSB-first truncated accelerator FF usage 128

6.3 Baseline, MSB-first & LSB-first truncated accelerator BRAM & DSP usage 128

6.4 Baseline, MSB-first & LSB-first truncated accelerator total resource usage . 129

6.5 Baseline, MSB-first & LSB-first truncated accelerator fmax 129

6.6 RP-ABFT input & output checksum widths 130

10

List of Figures

2.1 Test arrangement used by Stroud et al. [1] 26

2.2 Delay measurement method proposed by Wong et al. [2] 27

2.3 Visualisation of the roving test scheme proposed by Abramovici et al. [3] . . 28

2.4 Timing slack measurement method proposed by Levine et al. [4] 31

2.5 Wear-levelling strategies proposed by Stott et al. [5] 31

2.6 Visualisation of the repair scheme proposed by Lach et al. [6] 33

2.7 Visualisation of the repair scheme proposed by Hanchek et al. [7] 34

2.8 Visualisation of the repair scheme proposed by Emmert et al. [8] 35

2.9 Evolutionary repair scheme proposed by DeMara et al. [9] 36

3.1 Top-level system block diagram . 48

3.2 Baseline datapath for matrix multiplication 49

3.3 Pipelined accumulator . 51

3.4 ABFT-protected matrix multiplication datapath 53

3.5 Checksum generation logic for matrix multiplication accelerator 53

3.6 Checksum verification logic for matrix multiplication accelerator 54

3.7 ABFT-protected accelerator resource usage overhead versus baseline 60

3.8 ABFT-protected accelerator latency overhead versus baseline 62

3.9 Fault proportions for ABFT-protected matrix multiplication 65

3.10 Fault proportions for ABFT-protected matrix multiplication scaled by area 66

4.1 ABFT-enabled datapath with circular shifters 70

4.2 Resource reallocation for s = 2 with single fault using circular shifters . . . 71

4.3 Circular shifter . 72

4.4 System block diagram with DPR . 73

4.5 ABFT-enabled datapath with DPR . 74

4.6 Routing configurations available for s = 2 74

4.7 Resource reallocation for s = 2 with single fault using DPR 75

11

4.8 Example double-fault routing reconfigurations when s = 4 76

4.9 Example quadruple-fault routing reconfigurations when s = 8 76

4.10 ABFT-protected accelerator with additional logic & DPR error correction

resource usage overhead versus baseline . 78

4.11 ABFT-protected accelerator with additional logic & DPR error correction

combined resource usage overhead versus baseline 79

4.12 ABFT-protected accelerator with additional logic & DPR error correction

latency overhead versus baseline . 80

5.1 Matrix-matrix multiplication permanent fault observability 89

5.2 Matrix-matrix multiplication permanent fault locatability 90

5.3 Matrix-matrix multiplication transient fault observability 91

5.4 Matrix-matrix multiplication transient fault locatability 92

5.5 Matrix addition permanent fault observability 93

5.6 Matrix addition permanent fault locatability 94

5.7 Matrix addition transient fault observability 95

5.8 Matrix addition transient fault locatability 96

5.9 Matrix-vector multiplication permanent fault observability 97

5.10 Matrix-vector multiplication transient fault observability 98

6.1 Datapath with zero truncation . 107

6.2 Checksum generation logic with zero truncation 107

6.3 Checksum verification logic with zero truncation 108

6.4 Datapath with MSB-first truncation . 108

6.5 Checksum generation logic with MSB-first truncation 109

6.6 Checksum verification logic with MSB-first truncation 109

6.7 Datapath with LSB-first truncation . 110

6.8 Checksum generation logic with LSB-first truncation 111

6.9 Checksum verification logic with LSB-first truncation 112

6.10 RP-ABFT with MSB-first truncation-protected accelerator resource usage

overhead versus baseline . 113

6.11 RP-ABFT with MSB-first truncation-protected accelerator combined re-

source usage overhead versus baseline . 114

12

6.12 RP-ABFT with LSB-first truncation-protected accelerator resource usage

overhead versus baseline . 115

6.13 RP-ABFT with LSB-first truncation-protected accelerator combined re-

source usage overhead versus baseline . 116

6.14 RP-ABFT with MSB-first truncation-protected accelerator fmax versus

baseline . 117

6.15 RP-ABFT with LSB-first truncation-protected accelerator fmax versus

baseline . 118

6.16 Detected fault proportions for RP-ABFT-protected accelerator 119

6.17 False positive fault proportions for RP-ABFT-protected accelerator 120

6.18 False negative fault proportions for RP-ABFT-protected accelerator 121

6.19 Masked fault proportions for RP-ABFT-protected accelerator 122

6.20 Located fault proportions for RP-ABFT-protected accelerator 123

6.21 Means of maximum absolute errors for RP-ABFT-protected accelerator . . 124

6.22 Area-scaled detected fault proportions for RP-ABFT-protected accelerator . 125

6.23 Area-scaled false positive fault proportions for RP-ABFT-protected accel-

erator . 126

6.24 Area-scaled false negative fault proportions for RP-ABFT-protected accel-

erator . 130

6.25 Area-scaled masked fault proportions for RP-ABFT-protected accelerator . 134

6.26 Area-scaled located fault proportions for RP-ABFT-protected accelerator . 135

13

List of Symbols & Abbreviations

a accumulator latency

⌈ ⌉ ceiling

csc column-wise checksum vector

csr row-wise checksum vector

csin input checksum element

csout output checksum element

csout, c corner output checksum element

d distance

∆ change in

din input data element

dout output data element

ǫ maximum absolute error

f number of simultaneous faults

⌊ ⌋ floor

fmax timing model-inferred maximum operating frequency

m multiplier latency

µ mean

n data width

r truncation width

s square matrix size

θ output checksum element error threshold

θc corner output checksum element error threshold

14

∨ maximum absolute value

ABFT algorithm-based fault tolerance

AMD Advanced Micro Devices

ARM Acorn reduced instruction set computer machine

ASIC application-specific integrated circuit

AXI Advanced eXtensible Interface

BIST built-in self-test

BRAM block random-access memory

BUT block-under-test

CAD computer-aided design

CLK clock

CPU central processing unit

CTR counter

CUT circuit-under-test

DFT discrete Fourier transform

DMA direct memory access

DPR dynamic partial reconfiguration

DRAM dynamic random-access memory

DSP digital signal processing block

EEPROM electronically erasable programmable read-only memory

EM electromigration

FF flip-flop

FFT fast Fourier transform

FIR finite impulse response

FPGA field-programmable gate array

FSM finite state machine

GPU graphics processing unit

HCI hot carrier injection

15

HDL hardware description language

I/O input/output

IIR infinite impulse response

ISE Integrated Synthesis Environment

LB logic block

LR launch register

LSB least-significant bit

LU lower- and upper-triangular

LUT look-up table

MAC multiply-accumulator

MOS metal oxide semiconductor

MSB most-significant bit

MUX multiplexer

NBTI negative-bias temperature instability

NMOS n-type metal oxide semiconductor

OpenCL Open Computing Language

ORA output response analyser

PBTI positive-bias temperature instability

PCAP processor configuration access port

PL programmable logic

PLB programmable logic block

PMOS p-type metal oxide semiconductor

PS processor subsystem

PUT paths-under-test

RAM random-access memory

RP-ABFT reduced-precision algorithm-based fault tolerance

SA set of healthy spare logic cells

SA0 stuck-at-zero

16

SA1 stuck-at-one

SG sample register

SM set of logical functions assigned to faulty logic cells

SoC system-on-chip

SP signal path

SRAM static random-access memory

STAR self-testing area

TAC transition activity counter

TCG test clock generator

TDDB time-dependent dielectric breakdown

TMR triple modular redundancy

TPA transition probability analyser

TPG test pattern generator

TVG test vector generator

VHDL very high-speed integrated circuit hardware description language

XOR exclusive-OR

17

1 Introduction

Aggressive process scaling leads to increasing uncertainty in the behaviour of metal oxide

semiconductor (MOS) transistors, in turn decreasing their reliability. Above transistor

level, such phenomena and the faults they induce can lead to reduced yield, decreased

system reliability and, in extreme cases, total failure after a period of successful operation.

Although error detection and correction are almost always considered for highly sensitive

and susceptible applications such as those to be deployed in space or the battlefield, they

are often overlooked for other, more general-purpose applications; this is likely to have to

change in the future as the effects caused by such scaling continue to worsen. Self-testing

and -repairing reconfigurable circuits may well present themselves to be viable facilitators

for overcoming the reliability problems that transistor scaling causes.

Modern field-programmable gate arrays (FPGAs) are often exploited for their ability to

realise high-performance hardware, typically through parallelisation and pipelining, with-

out the high setup costs associated with application-specific integrated circuits (ASICs).

As devices built from many millions or even billions of transistors, FPGAs are at least as

susceptible to the mechanisms degrading the switching performance, eventually leading to

the inoperability, of those devices as ASICs. Furthermore, FPGAs’ reliance upon random-

access memory (RAM) for configuration storage intensifies the potential for damage from

radiation-induced upsets, since such occurrences can alter circuit-defining configuration

in addition to corrupting data. They do, however, make ideal platforms upon which

to develop and verify fault-tolerant techniques: their resource abundances, hierarchical

structures and runtime reconfigurability present many exciting possibilities not only for

the creation of elaborate configurations, but also for the ability to prevent, detect, analyse

and/or correct faults (from) occurring during their lifetimes.

While the use of common fault tolerance strategies frequently causes the incursion of

significant overheads in area, performance and/or power consumption, options exist that

buck these trends. In particular, algorithm-based fault tolerance (ABFT) embodies a

proven family of low-overhead error mitigation techniques able to be built upon to create

18

self-verifying circuitry. ABFT protection can be applied to a wide range of linear algebraic

mathametical operations—commonly accelerated in hardware—making it a suitable basis

for the hardening of custom logic.

This thesis is representative of several years’ research into the design, implementation

and verification of ‘bolt-on’ error detection logic used to facilitate runtime fault tolerance

of FPGA-implemented hardware accelerators. ABFT is shown to be an effective error

detection tool through a case study, which is expanded upon to allow for the reduction

of algorithmic parallelisation in order to maintain accurate operation under faulty con-

ditions. Further case studies are considered when analysing the fault observability of

ABFT-protected operators. The sacrification of some detectability, particularly of faults

associated with low-magnitude errors, is explored in order to achieve additional gains in

area and power efficiency.

1.1 Contributions

The original contributions of the work presented in this thesis are:

• The implementation of a complete hardware-software platform for the verification

of ABFT protection of a benchmark matrix multiplication accelerator.

• A quantitative analysis of the overheads—in terms of area and performance—

incurred through the incorporation of ABFT protection within that benchmark

circuit.

• Insight into the hardware fault tolerance of ABFT upon that benchmark.

• The first implementation of custom logic for error correction in the presence of faulty

resources guided by an ABFT error detection mechanism.

• The first implementation of ABFT-protected hardware using dynamic partial recon-

figuration (DPR) for recovery.

• A quantitative analysis of the overheads—of resources, performance and memory—

incurred through the incorporation of those error correction strategies into a bench-

mark hardware accelerator.

• A software framework for fault simulation in hardware-accelerated linear algebra

operators protected with ABFT.

19

• A thorough analysis of the fault tolerance of three benchmark ABFT-protected op-

erators.

• The first consideration of distance-x, for x > 2, ABFT application in custom logic.

• The first consideration of distinct data and checksum bit-widths within

ABFT-protected operations: reduced-precision algorithm-based fault toler-

ance (RP-ABFT).

• The first implementation of circuitry incorporating RP-ABFT for resilience against

hardware faults.

• Analysis of the costs and benefits of applying two forms of RP-ABFT to various

precisions.

• Insight into the hardware fault tolerance of RP-ABFT.

1.2 Publications

The original contributions made in this thesis and related work have been published as

peer-reviewed conference papers in the following publications:

• J. J. Davis and P. Y. K. Cheung, “Datapath Fault Tolerance for Parallel Accelera-

tors,” in International Conference on Field-programmable Technology (FPT), 2013.

• J. J. Davis and P. Y. K. Cheung, “Reducing Overheads for Fault-tolerant Datapaths

with Dynamic Partial Reconfiguration,” in IEEE International Symposium on Field-

programmable Custom Computing Machines (FCCM), 2014.

• J. J. Davis and P. Y. K. Cheung, “Achieving Low-overhead Fault Tolerance for

Parallel Accelerators with Dynamic Partial Reconfiguration,” in International Con-

ference on Field-programmable Logic and Applications (FPL), 2014.

• J. J. Davis and P. Y. K. Cheung, “Reduced-precision Algorithm-based Fault Toler-

ance for FPGA-implemented Custom Accelerators,” in International Workshop on

Applied Reconfigurable Computing (ARC), 2016.

1.3 Outline

The remainder of this thesis is organised as follows. Chapter 2 primarily consists of a

thorough literature review, with research having been focussed upon schemes proposed

20

to achieve fault tolerance—testing methods, techniques designed to mitigate degradation

and fault-correction schemes—with particular attention paid to those for achieving runtime

fault tolerance in FPGAs. Chapter 2 also introduces ABFT, the error detection mechanism

of which represents the foundation for much of this thesis’ technical content. In Chapter 3,

an implementation for the detection of runtime data errors occurring within an ABFT-

protected hardware accelerator is presented. This work is expanded upon in Chapter 4

in order to create a fault-tolerant hardware platform: logic capable of detecting faults

within its datapath, and autonomously acting to rearrange itself in order to route around

them, at runtime. Chapter 5 forms an in-depth investigation into the observability of faults

within ABFT-protected datapaths, a software simulation framework having been designed

to ascertain fault observabilities for three hardened mathematical operations. Chapter 6,

the final technical chapter, presents research into the application of ABFT at lower levels

of precision than in prior work, introducing a previously unexplored area-to-allowed error

tradeoff. Concluding remarks are presented in Chapter 7.

21

2 Background

2.1 Introduction

In order to establish the current state of the art, and to identify gaps and promising direc-

tions in the literature to date, a thorough review was completed. Research focussed upon

the three aspects vital to the exploitation of runtime reconfiguration for fault-tolerance in

field-programmable gate arrays (FPGAs): testing methods, techniques designed to miti-

gate degradation and fault correction schemes.

2.1.1 Outline

The remainder of this chapter is organised as follows. Section 2.2 contains discussion of

the various types of fault that affect metal oxide semiconductor (MOS) transistors, while

Section 2.3 gives an overview of the mechanisms that contribute to their degradation over

time. Section 2.4 contains details of methods that can be employed for the detection of

faults and monitoring of degradation effects, grouped into either offline (Section 2.4.1),

online via roving scan (Section 2.4.2) or online via health monitoring (Section 2.4.3) cate-

gories, as appropriate. Fault mitigation—pre-emptive action—is discussed in Section 2.5,

while error correction—reactive action—is considered in Section 2.6. Error correction

methods are classified depending on whether they require compile-time provisioning (Sec-

tion 2.6.1) or are free to provision fully at runtime (Section 2.6.2). Section 2.7 introduces

algorithm-based fault tolerance (ABFT); the subsections within it detail the ABFT check-

summing procedures (Section 2.7.1) and demonstrate their application to applicable oper-

ators (Section 2.7.2) by numerical example. A method for classifying results based upon

the locations of incorrectly computed elements is presented in Section 2.7.3. Concluding

remarks are given in Section 2.8.

22

2.2 Faults & Errors

The distinction between various types of faults and the errors they cause is central to the

concepts presented in this thesis.

Broadly speaking, faults fall into one of two categories: permanent and transient. Per-

manent faults are those present as a result of manufacturing defects or, potentially, that

manifest after a period of time due to the effects of degradation. Stuck-at-zero (SA0) or

stuck-at-one (SA1), respectively describing nets that become stuck at low and high logic

levels, and open and short circuits are the permanent faults most often modelled. Timing

faults—slow-switching transistors being the obvious example—represent a subcategory of

permanent fault whereby errors appear only under certain timing-related conditions, such

as at certain operating frequencies. Transient faults are those usually caused by radiation,

generally by the ‘flipping’ of bits within memories. Such faults may lead to knock-on er-

rors occurring until they are corrected, for example by overwriting values stored in affected

memory locations.

The nature of FPGAs blurs the line between permanent and transient faults, since con-

figuration memory upsets—traditionally considered to be transient—can cause continuing

incorrect circuit functionality; classically a symptom of permanent faults. For this reason,

the concept of hard and soft faults is introduced: hard faults are those that change system

behaviour via physical circuit alteration, while soft faults are those that do so through

configuration changes.

In the work presented in the technical chapters of this thesis, data errors (i.e. incorrectly

computed values) are used to infer the presence and location of the faults that cause them,

thus allowing for corrective action to be taken to prevent those faults causing errors in the

future. In terms of error correction, the focus is generally on permanent hard faults since,

as outlined in Sections 2.5 and 2.6, fault tolerance strategies exist that are considered to

combat other types more adequately.

2.3 Degradation

Five main mechanisms contribute to the physical degradation of transistors in FPGAs

and other MOS-based devices [10] [11]: negative-bias temperature instability (NBTI) and

positive-bias temperature instability (PBTI), hot carrier injection (HCI), electromigration

(EM) and time-dependent dielectric breakdown (TDDB). All are predicted to result in

23

worsening effects, shortening device lifetime, as feature sizes decrease due to corresponding

increases in gate field strengths and current densities [12].

NBTI and PBTI, respectively applicable to p-type metal oxide semiconductor (PMOS)

and n-type metal oxide semiconductor (NMOS) transistors, along with HCI, cause charges

to become trapped in their gate-channel interfaces, increasing threshold voltages and re-

ducing channel mobilities [13]. These effects result in decreased switching speeds, leading

to timing faults. EM can lead to bridging faults (short circuits) caused by the movement

of metal ions within and between transistor interconnects, while TDDB gives rise to the

creation of shorts across transistors via a trapping of charges in gate oxides, resulting

in increased gate leakage that promotes further charge trapping, and so on in a cyclical

fashion [10].

NBTI and PBTI are considered to be the dominant mechanisms causing degradation in

modern FPGAs [13] [14]; this is particularly true of those with high-K gate dielectrics and

metal gates. NBTI promoted by static-zero logic inputs has been shown to cause the most

rapid degradation in the look-up tables (LUTs) of Altera Cyclone III [15] FPGAs [5].

2.4 Fault Detection

Before any type of error correction can be applied, the faults causing those errors must

be detected and the offending resources located. The following three subsections describe

testing methods suitable for the detection and location of all fault types, both with regards

to logical function, i.e. correct output, and timing. Schemes can be considered to be either

offline or online depending on whether they are carried out independently to an FPGA’s

application configuration (offline) or not (online). Online methods can be further classified

as operating either in tandem with, but distinct from, the application (roving scans), or

as part of the application configuration itself (health monitoring). Note that many of

the methods presented as offline could be adapted to become online roving schemes and

vice-versa.

Although academic research into the detection of hard fault-causing defects is mature

(focus has now shifted towards the detection of timing faults and process variation, while

some defect-tolerant schemes have been adopted commercially), they are discussed here

since they are still relevant to mitigation and correction schemes that require hard fault

detection and location.

24

2.4.1 Offline

During system start-up, or in applications where periodic downtime of an FPGA is possi-

ble, one or more dedicated testing configurations can be loaded onto a device in order to

test its resources. Self-contained offline testing methods, i.e. ones which operate without

external test hardware, are known as built-in self-test (BIST) schemes. Typically, logic

is configured as test pattern generators (TPGs), circuits-under-test (CUTs) and output

response analysers (ORAs), with placements of these often exchanged across test phases

to verify all resources. Offline testing methods are able to achieve high fault coverage due

to the complete flexibility presented by having an unused array to test, impose no restric-

tions upon the application configurations that can be implemented on the FPGAs they

are designed to test and can locate dormant faults, i.e. those that exist in resources not

used by the application configuration. They do, however, require application circuitry to

be taken entirely offline and, where periodic testing is employed, fault detection latencies

will be limited by the frequency of that testing.

Programmable logic block (PLB) functional testing is a highly researched

area [1] [16] [17]. Groups of logic are often cascaded to form paths-under-test (PUTs) in

order to lower testing times by reducing the numbers of reconfigurations required [16] [17].

Figure 2.1 shows one such test arrangement [1]: C groups of m-bit TPGs, where m is the

number of inputs to each block-under-test (BUT), are used to drive C groups of n BUTs

connected in parallel. The O outputs of each BUT is then fed into the corresponding O

groups of n ORAs in order to compare behaviours across the C groups of BUTs. Testing

covering entire FPGAs has been achieved with detection granularities down to one in five

LUTs [17].

Functional testing specific to the location of interconnect faults has also been dis-

cussed [18] [19] [20], with some originally presented methods [18] extended [21] to allow

fault locations to be established once they have been detected. Hierarchical techniques

suitable for testing cluster-based FPGAs have also been proposed [19]. Recent work [20]

has resulted in a testing scheme for both interconnect and PLBs that obtains 100% fault

coverage.

Consideration to timing fault BIST in PLBs has been given [22], and it has been shown

that LUT propagation delays are dependent upon both the functions they implement

and the input patterns applied to them. The delay measurement method presented by

Wong et al. [2] allows the maximum operating frequency of an arbitrary combinatorial

25

Figure 2.1: Test arrangement used by Stroud et al. [1], exemplifying the functional testing
of PLBs with TPGs, CUTs and ORAs.

and/or sequential circuit to be established by recording the transition probabilities, i.e.

likelihoods that logic levels change between cycles, at its output as the clock frequency

is swept. Steps in plots of transition probability versus frequency allow rising and falling

edge propagation delays to be estimated. Figure 2.2 shows the required arrangement

of measurement circuitry around the arbitrary logic being tested: an N -bit test vector

generator (TVG) is used to supply inputs to the CUT, sandwiched between registers

clocked at varying frequencies by a test clock generator (TCG). The M outputs of the

CUT are then analysed by the transition activity counter (TAC) and transition probability

analyser (TPA) that follow. Frequency estimates have been shown to be within 12% of

those obtainable using an alternative, exhaustive testing procedure [23].

Timing fault testing of FPGA interconnect has also been explored [24] [25] [26]. Two

test configurations are presented by Wang et al. [25]: the first using feedback to alleviate

clock skew and the second for validating that skew across PLBs, with a combination of

the two reported to achieve defect coverage of over 98%. A more recent method [26] was

shown to achieve 100% diagnostic resolution in the presence of individual, and almost

100% with pairs of, defects.

Offline testing methods have also been proposed for testing less frequently considered

FPGA hardware. BIST techniques for embedded multipliers have been presented [27] [23],

while work addressing testing of digital signal processing blocks [28] and embedded memo-

ries [29] has also been completed. Recent publications have addressed timing fault testing

in clock networks [30] [31] and input/output hardware [32].

26

Figure 2.2: Delay measurement method proposed by Wong et al. [2] that allows the maxi-
mum operating frequency of an arbitrary combinatorial and/or sequential cir-
cuit to be established by recording the transition probabilities at its output as
the clock frequency is swept.

2.4.2 Online (Roving)

Dynamic partial reconfiguration (DPR) can be exploited to allow portions of an FPGA to

be tested while the remainder continues to perform its normal functions. Once verification

of particular areas has been completed, test hardware is moved to allow different areas to be

verified. While an entire array does not need to be reconfigured to facilitate testing, as in

offline testing methods, the requirement to introduce temporary testing areas into designs

limits maximum resource usage and forces clock slowdown due to path-lengthening effects:

required slowdowns of around 2.5–15.1% have been reported [3]. Roving scans present

opportunities to detect dormant faults, but often introduce significant fault detection

latency: chip-wise scans have been reported to take 850ms [3], implying worst-case fault

detection latencies of the same amount.

Abramovici et al. presented a roving scheme [3] that tests PLB and interconnect func-

tionality by configuring a chip-wide row and column of PLBs as self-testing areas (STARs).

Complete rows and columns are used to allow testing of horizontal and vertical global

routing resources, respectively. Each PLB within each STAR is used as part of either a

TPG, CUT or ORA, with these roles rotated regularly to allow each PLB to be tested in

all modes. Over time, the STARs are moved in order to test all PLB and interconnect

resources. Figure 2.3 shows the roving principle for a column of resources: application

functionality is shifted to a neighbouring column such that the column-under-test is moved

by one place. Improvements to the diagnosis techniques originally used have been pro-

27

posed [33] [34] [35]. Changes have been suggested that allow individual or pairs of faulty

PLBs to be identified without reconfiguration, reducing the overall diagnosis time [33].

A new testing architecture has been presented [34], reportedly able to identify 96% of

faulty PLBs in an FPGA with up to 10% of randomly distributed faulty logic resources:

a 38% improvement over the original diagnosis scheme. Focussed upon the location of

interconnect faults, another modified testing scheme [35] reduces detection latency by an

order of magnitude over its predecessor by greatly reducing the number of reconfigurations

required. A divide-and-conquer approach is used to identify points of failure and achieve

high diagnosability, including in the presence of multiple faults: 99.3% fault coverage was

reported with a fault density of 10%.

Figure 2.3: Visualisation of the roving test scheme proposed by Abramovici et al. [3], show-
ing the roving principle for a column of resources: application functionality is
shifted to a neighbouring column such that the column-under-test is moved by
one place.

Architectural modifications to facilitate online PLB functional fault detection have been

proposed [36]: a roving scan scheme that reserves a column of resources at design-time to

facilitate testing was suggested. Detection latencies are low—hundreds or thousands of

chip-wise scans per second were reported to be possible—but an additional memory and

multiplexer must be added to each PLB.

The roving STAR scheme [3] was used as an online testing framework for a timing fault

identification method [37] which proposed configuring logic and routing resources to allow

propagation delays between pairs of PUTs to be compared.

2.4.3 Online (Health Monitoring)

While offline and roving methods configure FPGA resources with temporary testing cir-

cuitry to exercise them, health monitoring schemes use permanent, additional hardware

to monitor the state of the application. Faults of all types can be detected in monitored

hardware, and such techniques offer the lowest possible detection latencies at the expense

28

of consuming varying amounts of additional area and/or causing the incursion of various

levels of throughput reduction.

Modular redundancy methods involve the duplication of logic for specific operations,

allowing them to be performed, in parallel, more than once. Voting circuitry is used

at the output of the processing logic to detect discrepancies indicative of faults. Triple

modular redundancy (TMR) [38], in which operations are each performed three times, is

particularly popular. Employing modular redundancy allows faults to be detected almost

immediately, and delays added to signal paths by the voting logic are small. Diagnostic

resolution is, however, limited by the scale of the functional block being replicated, since a

fault can only be attributed to a particular instance of it. Resolution can be improved by

employing redundancy multiple times on subsections of a block, however area overheads

increase rapidly: TMR requires over 200% extra area compared to a single instance of

the same functional logic. Tradeoffs between resolution and area overhead are therefore

necessary.

Recent works sought to lower the area penalties of modular redundancy through the use

of reduced-precision replicated modules [39] [40] and the application of differing numbers

of them—either none, one (for duplicate-with-compare) or two (for TMR)—depending on

real-time upset rates [41].

Work by de Lima et al. [42] aimed to reduce hardware redundancy by introducing time

redundancy: operations are each carried out twice, serially, by the same logic, with the

inputs for every second computation encoded in order to utilise the hardware differently.

Outputs are buffered, decoded and checked for discrepancies. In the sample application

presented, the technique was reported to consume 2.3% less area than an equivalent TMR

approach while introducing 8% extra latency per replicated computation.

Concurrent error detection techniques generally require the addition of less logic than

redundancy methods. Rather than having operations performed multiple times, error cod-

ing information, e.g. parity, is added to data buses, memories, etc., which can then be

verified by testing hardware to detect errors. Such schemes often suffer from confounding

problems: multiple results may have the same error code values, which can mask faults.

A two-rail scheme for combinational logic was introduced [43] to facilitate error detection.

Boolean functions are split into expressions with no more than four inputs each, with these

then mapped to predefined product and/or sum logic cells, each with normal and comple-

mented outputs, implemented in PLBs. Arbitrarily complex designs can be constructed

29

using such cells, and a two-rail checker cell is provided for testing individual or multiple

logic cells’ outputs: matching logic levels on normal and complementary output pairs in-

dicate faults. Area overheads for this method are high: 76% more area was consumed, on

average, than with direct implementation in PLBs.

Methods normally used in offline testing were employed for online testing in work by

Karri et al. [44], in which TPGs and ORAs are added to functional units to be tested.

Clock cycles known to be otherwise unused by those units are then used to apply test

inputs to them, with their outputs checked for invalid results. Detection latencies of a

few milliseconds were reported, but overheads were high: around 25–35% extra area was

consumed, including 50% more registers.

Levine et al. presented a method for the measurement of timing slack in circuit paths

between registers [4], represented diagrammatically in Figure 2.4. For each path under

monitoring (PUM) required, an additional, ‘shadow’ register (S) is added to its terminus in

parallel with the existing register (P), thereby creating two signal paths (SP1 and SP2).

The shadow register is clocked by a phase-shifted version (S CLK) of the system clock

(M CLK), with the phase swept over time: discrepancies between the registers’ outputs

indicate timing faults. Pass/fail data recorded with varying amounts of phase shift can be

used to infer the path’s maximum frequency and, if it exists, the current margin between

its actual and minimal propagation delays: the timing slack. Both an error counter and

first-fail recorder, which latches once the first timing error has been encountered, are

provided. A maximum error in delay measurement of 1.2% was reported, with a 0.28%

negative speed impact incurred by the addition of the monitoring circuitry. An average

PLB overhead of 2.7% was given.

Current monitoring circuits [45] can be added to designs as suggested by Nicolaidis [46]

in order to detect power usage anomalies indicative of hard faults such as stuck-ats. Usage

of such methods may necessitate periodic slowdown of the application hardware in order

to acquire accurate current readings, however.

2.5 Fault Mitigation

The ability to reconfigure FPGAs at runtime presents opportunities to slow degradation

and/or conceal its effects. The wear-levelling approaches detailed by Stott et al. [5] aim

to improve FPGA reliability by periodically loading new configurations onto the target

device. At design-time, alternative configurations for the application are computed that,

30

Figure 2.4: Timing slack measurement method proposed by Levine et al. [4]. Discrepancies
between the registers’ outputs, the secondary register being clocked by a phase-
shifted version of the primary’s, indicate timing faults.

while exhibiting the same functionality, exercise resources differently such that, when

applied alternately at runtime, they aim to mitigate degradation by minimising electrical

hotspots. Examples of the three classes of wear-levelling presented are shown in Figure 2.5.

Alternative mapping involves the inversion of nets within the application, spare resources

involves the swapping of functionality between used and unused PLBs and alternative

placement involves the shifting of functionality between used PLBs. Reductions in timing

degradation over the course of accelerated-life tests in hardware equivalent to five years of

normal usage of over 20% were reported.

Figure 2.5: Wear-levelling strategies proposed by Stott et al. [5]. Alternative configura-
tions for the application are computed that, while exhibiting the same func-
tionality, exercise resources differently such that, when applied alternately at
runtime, they aim to mitigate degradation by minimising electrical hotspots.

31

2.6 Error Correction

2.6.1 Compile-time Provisioning

It is possible for systems to respond to fault detection and location information with-

out resorting to often expensive, both in terms of time and computational resources, re-

placement and -routing. Schemes that avoid such computation at runtime generally offer

lower fault tolerance than their fully dynamic counterparts, described in Section 2.6.2.

A repair strategy involving the application of precompiled alternative configurations

for particular sections of an FPGA, referred to as tiles, was presented by Lach et al. [6].

Alternatives are intended to be computed such that they utilise different resources within

the tiles in order that, when a faulty resource is identified, an alternative that does not

rely upon its functionality can be selected for that tile. In order to achieve this, at

least one resource within each tile must be reserved as spare and configurations that

each avoid the use of at least one of the resources within it computed. The principle

operation is exemplified in Figure 2.6: four alternative configurations, each exhibiting

identical functionality and featuring the same and consistently placed inputs (A to D)

and output (Y), are shown, with each of the alternatives designed such that a different

resource within the tile is left unused. Multiple failures within a single tile cannot be

tolerated without yet more spare resource reservation and the design-time computation

and runtime storage of more configurations.

A fault-tolerant technique based upon cluster shifting in ‘chains’ has also been pre-

sented [7]. Here, functionality in faulty logic is shifted to neighbouring fault-free clusters,

some of which are reserved at design-time, and the strategy for reserved interconnect en-

sures that rerouting is not required and extra delay to data paths is not added following

reconfiguration. An example of this is shown in Figure 2.7: if the cells containing functions

A and E are found to be faulty, all cell functionality is shifted right by one place, with

routing reconfigured to suit the shift, in order to prevent the use of the non-operational

resources. Once the shift has taken place, the rightmost cells—originally reserved as

spares—are then occupied by functions D and H.

An FPGA architecture drawing inspiration from biology, reported to exhibit self-repair

and -healing properties, has been described [47], with analysis of its reliability presented in

later work [48]. Array elements are analogous to biological cells, each storing the functional

configuration for the entire device, and perform certain binary functions dependent upon

32

Figure 2.6: Visualisation of the repair scheme proposed by Lach et al. [6], in which four
alternative configurations, each exhibiting identical functionality and featuring
the same and consistently placed inputs (A to D) and output (Y), are shown,
with each of the alternatives designed such that a different resource within the
tile is left unused.

their position. It was proposed that fault combating should be attempted via shifting

of functionality between cells, with circuitry added to allow those found to be faulty to

be bypassed: a minimal level of reconfiguration would therefore be required to overcome

faults. Significant area overhead is introduced by the requirement to store a functional

description for the entire array within each of its elements, however.

2.6.2 Runtime Provisioning

Repair schemes that require placement and/or routing to be performed at runtime, while

dependent upon the availability of often significantly powerful reconfiguration controllers,

offer the most potential for repair since they are amongst the least restricted in terms of

33

Figure 2.7: Visualisation of the repair scheme proposed by Hanchek et al. [7]. Functionality
in faulty logic is shifted to neighbouring fault-free clusters, some of which are
reserved at design-time, and the strategy for reserved interconnect ensures that
rerouting is not required and extra delay to data paths is not added following
reconfiguration.

resource utilisation.

Computationally expensive and time-consuming chip-wide placement and routing can

be avoided in cases where faults are contained, and repair can be successfully completed,

within a single logic cluster [49]. Although the application of such schemes does not have

drastic effects upon system timing, many faults cannot be tolerated and they are reliant

upon spare resources being available within each cluster for use during repair.

The concept of pebble-shifting [50] was introduced as a means to bypass faulty clusters

while minimising timing degradation by shifting functionality between them, consuming

fault-free spares where necessary, while attempting to keep interconnect lengths between

clusters as short as possible. Average timing degradation of 0.13% after such shifting had

taken place was reported [51].

34

The roving STAR testing architecture has also been used as the basis for repair [3]. A

combination of in-cluster reconfiguration and pebble shifting, with preference of applica-

tion in that order, is used, and the proposed fault-tolerant techniques also allow for, in

some cases, the use of partially defective resources. A worst-case figure for the proportion

of time the system clock must be frozen—halting the application—in order to test for,

diagnose and correct repairable faults of 6.25% was given.

Faults in PLBs can also be dealt with at the cluster level [8]: functionality in faulty

clusters is moved to fault-free resources, while interconnect faults are corrected via rip-up

and rerouting. A representation of such a repair is presented in Figure 2.8: if the leftmost

cluster is found to be faulty, functionality is moved in order to restore correct operation

while keeping the wire lengths between clusters as short as possible. This is achieved,

in this case, by shifting each of the three functions one place to the right. Configuration

memory readback is exploited to avoid having to store a netlist for the application, however

significant computational resources are required for the compilation of new configurations.

Figure 2.8: Visualisation of the repair scheme proposed by Emmert et al. [8]. Functionality
in faulty clusters is moved to fault-free resources, while interconnect faults are
corrected via rip-up and rerouting.

An evolutionary approach to repair has also been taken [9]: here, pairs of alternative

configurations of the same functional module, taken from a group of competing candidate

configurations, are tested against each other. When particular instances of a module

35

are found to produce incorrect output, they are randomly mutated and readded to the

group for analysis. Figure 2.9 represents the proposed layout: the positions of the pair

of active configurations are shown, along with the surrounding control logic. Note that

each competing configuration contains circuitry—a discrepancy checker—to compare its

output to its neighbour’s; this is done such that errors within the testing circuitry itself

can be detected and potentially repaired. Although such systems may be able to ‘discover’

novel repair strategies, their random nature makes them entirely indeterministic: there

is no guarantee of finding suitable repairs within particular times nor, indeed, that such

repairs even exist.

Figure 2.9: Evolutionary repair scheme proposed by DeMara et al. [9]. When particular
instances of a module are found to produce incorrect output, they are randomly
mutated and readded to a group of competing candidate configurations for
analysis through being tested against each other.

Fault-tolerant architectures based around microprocessor cores residing on FPGAs have

been analysed [52] [53]. In work by Girau et al. [52], an array of 156 simple, identical

cores was proposed, with each core able to detect faults within itself and its neighbours;

36

functionality within faulty cores is simply moved to fault-free spares. A software framework

allowing faulty hardware peripherals to be replaced with soft-core equivalents has also been

presented [53].

2.7 Algorithm-based Fault Tolerance

By applying fault-tolerant techniques at a level above transistors, gates or small circuits—

at the algorithmic layer—it is possible to produce robust designs capable of detecting the

presence of faults during their normal operation with low impacts upon both area and

performance. A wide range of linear algebra operators, including matrix operations and

Fourier transformations, can be protected with ABFT techniques [54] [55]. ABFT was re-

cently applied to matrix multiplication in FPGAs [56] with promising results: the authors

reported a 99% decrease in design vulnerability at the expense of 25% area overhead.

While ABFT has traditionally been used to protect fixed-point operations, the methods

are compatible with floating-point arithmetic as well. Of relevance to Chapter 6 are the

errors, in this case introduced by floating-point operations, which necessitate error bound-

ing to distinguish them from those caused by other mechanisms [57]. Recent work [58]

sought to lower the required bounds in a graphics processing unit (GPU)-accelerated

floating-point benchmark by analysing input data prior to each computation.

2.7.1 Matrix Encoding & Decoding

Any m×n data matrix, D, can be augmented with distance (d) additional rows of column-

wise checksums to produce an (m+ d)× n column checksum-encoded matrix, Dc. This is

achieved by performing Dc = GcD, where generator matrix Gc is constructed as shown

in Equation 2.1. I is the identity matrix.

Gc =





























Im×m

20 20 · · · 20

20 21 · · · 2m−1

...
...

. . .
...

20 2d−1 · · · 2(d−1)(m−1)





























(2.1)

The final d rows of Gc are linearly independent [59]; thus, they represent a distance-

37

(d+ 1) code and are consequently capable of facilitating the detection of at least d errors

per column. An example of Gc’s application, in which m = n = d = 2, is given in

Equation 2.2.

Dc = GcD =

















1 0

0 1

1 1

1 2





















1 2

3 4



 =

















1 2

3 4

4 6

7 10

















(2.2)

Note that D itself is a sub-matrix within Dc, occupying the uppermost m× n elements.

The added column-wise checksums are shown in red.

Row- rather than column-wise checksums can be added to a data matrix by performing

the complementary operation, Dr = DGr, where generator matrix Gr is as shown in

Equation 2.3.

Gr =

















In×n

20 20 · · · 20

20 21 · · · 2d−1

...
...

. . .
...

20 2n−1 · · · 2(n−1)(d−1)

















(2.3)

Gr’s application to data matrix D will lead to the addition of d columns of row-wise

checksums, producing an m × (n + d) row checksum-encoded matrix Dr. The linear

independence property of the final d rows of Gc also applies to the final d columns of

Gr. Equation 2.4 contains an example of Gr’s application in which m = n = d = 2.

Dr = DGr =





1 2

3 4









1 0 1 1

0 1 1 2



 =





1 2 3 5

3 4 7 11



 (2.4)

Row-wise checksums are shown in green. In parallel to the application of Gc, note that

D itself occupies the leftmost m× n elements of Dr.

An (m + d) × (n + d) full checksum-encoded matrix Df can be formed by performing

column and row checksum generation simultaneously: Df = GcDGr. For the same data

matrix D used in Equations 2.2 and 2.4 with d = 2, the corresponding Df is as shown in

Equation 2.5.

38

Df = GcDGr =

















1 0

0 1

1 1

1 2





















1 2

3 4









1 0 1 1

0 1 1 2



 =

















1 2 3 5

3 4 7 11

4 6 10 16

7 10 17 27

















(2.5)

Note that the elements of D appear as before, and that column- and row-wise checksums

present in Df are identical to those obtained in Equations 2.2 and 2.4, respectively. The

additional elements, shown in yellow, are both column- and row-wise checksums since they

can be formed from elements in either dimension.

Decoding a checksum-encoded matrix of any type is a trivial process, requiring simply

stripping off the final d rows (for a column checksum-encoded matrix), columns (for row)

or both (for full) to leave the data sub-matrix only.

Following storage, transmission or computation that preserves the form of checksum-

encoded matrices, integrity can be verified by comparing the checksum elements within a

checksum-encoded matrix to those produced from the data elements. Non-zero differences

are indicative of the presence, locations and magnitudes of errors within checksum-encoded

matrices. Column and row checksum-encoded matrices, respectively, can be multiplied by

verification matrices V c and V r, shown in Equations 2.6 and 2.7, to produce discrepancy

matrices ∆c and ∆r for this purpose.

V c =

















20 20 · · · 20

−Id×d

20 21 · · · 2m−1

...
...

. . .
...

20 2d−1 · · · 2(d−1)(m−1)

















(2.6)

V r =





























20 20 · · · 20

20 21 · · · 2d−1

...
...

. . .
...

20 2n−1 · · · 2(n−1)(d−1)

−Id×d





























(2.7)

39

∆c is produced by performing ∆c = V cDc, yielding a d × n discrepancy matrix, while

performing ∆r = DrV r produces an m×d discrepancy matrix ∆r. Equations 2.8 and 2.9

respectively show the verification process for the checksum-encoded matrices Ac and Ar

obtained in Equations 2.2 and 2.4.

∆c = V cAc =





1 1 −1 0

1 2 0 −1





















1 2

3 4

4 6

7 10

















=





0 0

0 0



 (2.8)

∆r = ArV r =





1 2 3 5

3 4 7 11





















1 1

1 2

−1 0

0 −1

















=





0 0

0 0



 (2.9)

Verification of a full checksum-encoded matrix is done by considering column- and row-

wise checksums independently, producing two discrepancy matrices: column-wise ∆f, c

and row-wise ∆f, r. For the full checksum-encoded matrix obtained in Equation 2.5, ∆f, c

and ∆f, r are calculated as shown in Equations 2.10 and 2.11, respectively.

∆f, c = V cDf =





1 1 −1 0

1 2 0 −1





















1 2 3 5

3 4 7 11

4 6 10 16

7 10 17 27

















=





0 0 0 0

0 0 0 0



 (2.10)

∆f, r = DfV r =

















1 2 3 5

3 4 7 11

4 6 10 16

7 10 17 27

































1 1

1 2

−1 0

0 −1

















=

















0 0

0 0

0 0

0 0

















(2.11)

40

2.7.2 Application to Arithmetic Operations

Matrix-matrix Multiplication

Assuming dimensional compatibility, the multiplication of a column checksum-encoded

matrix Ac by a row checksum-encoded matrix Br will yield a full checksum-encoded

matrix Cf. As an example, consider the matrix-matrix multiplication in Equation 2.12.

















1 2

3 4

4 6

7 10





















5 6 11 17

7 8 15 23



 =

















19 22 41 63

43 50 93 143

62 72 134 206

105 122 227 349

















(2.12)

Matrix Addition

The addition of two encoded matrices of identical type will produce a result of the same

form. For example, consider the matrix addition shown in Equation 2.13.

















1 2 3 5

3 4 7 11

4 6 10 16

7 10 17 27

















+

















5 6 11 17

7 8 15 23

12 14 26 40

19 22 41 63

















=

















6 8 14 22

10 12 22 34

16 20 36 56

26 32 58 90

















(2.13)

Matrix-vector Multiplication

The multiplication of a column checksum-encoded matrix Ac by a column vector b will

produce a checksum-encoded column vector cc. Note that the multiplication of a row

vector by a row checksum-encoded matrix will produce a checksum-encoded row vector.

For example, consider the matrix-vector multiplication shown in Equation 2.14.

















1 2

3 4

4 6

7 10





















5

6



 =

















17

39

56

95

















(2.14)

41

Matrix-scalar Multiplication

The scalar multiplication of any type of encoded matrix will yield a result of identical

form. Consider Equation 2.15 as an example.

5

















1 2 3 5

3 4 7 11

4 6 10 16

7 10 17 27

















=

















5 10 15 25

15 20 35 55

20 30 50 80

35 50 85 135

















(2.15)

LU Decomposition

Any matrix A decomposable into lower- and upper-triangular (LU) matrices L and U

can be decomposed into checksum-encoded matrices Lc (with column-wise checksums)

and U r (row-wise) with identical information content if A is first transformed into its full

checksum-encoded equivalent Af. As an example, consider the LU decomposition shown

in Equation 2.16.

















4 5 9 14

8 28 36 64

12 33 45 78

20 61 81 142

















=

















1 0

2 3

3 3

5 6





















4 5 9 14

0 6 6 12



 (2.16)

Transposition

Checksums of all types are preserved through the transposition of a matrix. A full

checksum-encoded matrix will remain as such, while a row or column checksum-encoded

matrix will become the opposite type. For example, consider the transposition shown in

Equation 2.17.

















1 2 3 5

3 4 7 11

4 6 10 16

7 10 17 27

















T

=

















1 3 4 7

2 4 6 10

3 7 10 17

5 11 16 27

















(2.17)

42

Linear Filtering

The result shown in Section 2.7.2 is of particular significance since any one-dimensional

linear filter—finite impulse response (FIR), infinite impulse response (IIR), discrete Fourier

transform (DFT) (including fast Fourier transform (FFT)), etc.—can be represented in

state-space form as a matrix-vector multiplication [54].

2.7.3 Result Classification

Once operations have been performed upon checksum-encoded matrices, the positions of

incorrectly computed elements allow the classification of each result into one of a number

of categories. Consider the outcomes for operations performed that result in the generation

of distance-2 full checksum-encoded 2× 2 matrices shown in Equation 2.18.











✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓











,











✓ ✓ ✓

✓ ✓ ✓

✗ ✓ ✓











,











✗ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓











,











✗ ✓ ✗

✓ ✓ ✓

✗ ✓ ✗











(2.18)

Assuming that one or more faults occurred along the datapath that generated each result,

they respectively represent examples of masked, false positive, false negative and detected

faults. Note that the same classification holds for all other checksumming types and

distances discussed in Section 2.7.1.

Masked faults are those that have no observable external effect. The addition of two

even integers with an adder whose least-significant output bit is stuck at zero represents

a trivial example for such a result. False positives are those that affect only checksum

elements, leaving information unaffected. Faults that manifest within circuitry used solely

for checksumming, not within the associated dathapath, are responsible for their occur-

rence. While undesirable since they will force unnecessary corrective action, such results

are safe since their information elements remain valid. False negatives, on the other hand,

are unsafe since they represent results in which incorrectly computed information elements

are undetectable due to checksums being valid. Faults occurring along datapath logic are

always responsible for false negative result occurrence. In the case of a single distance-2

checksum, a single information element of value one higher than expected, along with

equal checksum discrepancies, represents a simple numerical example of a false negative

result. Faults are considered to be successfully detected when at least one information

43

element, and at least one checksum, are invalid.

2.8 Conclusion

This chapter presented an overview of the current state of the art in relation to fault toler-

ance, with discussion focussing upon techniques applicable to, and developed for, FPGAs.

Distinctions between various types of faults and the errors they cause was presented first,

with discussion of degradation following. Methods for fault detection—both offline and

online—were presented, with fault mitigation and correction—methods both involving and

avoiding re-placement and -routing at runtime—discussed afterwards. The final section

focussed upon ABFT; an online fault tolerance technique tailored to particular algorithms.

The mathematical prerequesites for ABFT were given, followed by examples of its applica-

tion to various linear algebraic operators. Finally, a method of classifying results obtained

from ABFT-protected operations was presented.

As a result of this background research, ABFT was identified as a promising area for

further exploration, with the high-level aim of keeping overheads—in terms of area, per-

formance and power—low while maintaining sensitivity, and the ability to react, to faults

high. To validate this decision, Table 2.1 places ABFT within a side-by-side comparison

of competing families of fault detection strategies, comparing their respective abilities to

detect certain types and proportions of potential faults. ABFT can be seen to compare

favourably to its competitors by striking a balance between these factors that the others

cannot: mixing high fault coverage with low detection latency while keeping application

overheads—both in terms of area and latency—relatively low at the cost of being tailored

to a limited number of specific algorithms.

44

Method
Fault type(s) Fault Detection Application overheads Other
targetted coverage latency Area Latency limitations

BIST Permanent
Moderate–

High None None
Requires

high downtime
Roving

Permanent High High
Low–

Low
scans moderate

Modular
Both High Low High Low

redundancy

Re-execution Transient
Low–

Moderate Moderate High
moderate

Concurrency Both Low Low Low Low
Datapath-
unsuitable

Cycle-
Permanent

Moderate– Low– Moderate–
Low

stealing high moderate high

ABFT Both High
Low– Low–

Low
Algorithm-

moderate moderate specific

Table 2.1: Comparison of fault detection methods, showing ABFT to compare favourably
to its competitors by striking a balance between factors that the others cannot:
mixing high fault coverage with low detection latency while keeping application
overheads—both in terms of area and latency—relatively low at the cost of
being tailored to a limited number of specific algorithms.

45

3 Algorithm-tailored Low-overhead

Online Error Detection

3.1 Introduction

In order to assess the impacts of applying algorithm-based fault tolerance (ABFT) to

a benchmark accelerator, an application circuit to which ABFT could be applied was

required. Matrix multiplication was chosen as the case study for the work described

in this thesis since the operator is used in many hardware-accelerated applications and

because the adaptation of its operation for ABFT is straightforward. This chapter details

the design, implementation and evaluation of an ABFT-protected matrix multiplication

accelerator running in hardware on an field-programmable gate array (FPGA).

The findings herein include that, for the largest-implemented accelerator tested, datap-

ath fault detectability in excess of 99% was achieved in return for area and performance

overheads of 7.87% and 45.5%, respectively, demonstrating that the achievement of high

fault observability does not necessitate the incursion of, in particular, huge area overheads.

Note that the focus of this chapter is intended to be upon design and implementation.

With regards to observability testing, in paticular, analysis is relatively brief and focusses

upon permanent faults only; a far more detailed analysis of this operator’s robustness,

including against transient faults, is presented in Chapter 5.

3.1.1 Contributions

The original contributions of the work presented in this chapter are:

• The implementation of a complete hardware-software platform for the verification

of ABFT protection of a benchmark matrix multiplication accelerator.

• A quantitative analysis of the overheads—in terms of area and performance—

incurred through the incorporation of ABFT protection within that benchmark

46

circuit.

• Insight into the hardware fault tolerance of ABFT upon that benchmark.

3.1.2 Publications

The work presented in this chapter has been peer-reviewed and appeared in the 2013 pro-

ceedings of the International Conference on Field-programmable Technology (FPT) [60].

3.1.3 Outline

The remainder of this chapter is organised as follows. Section 3.2 details the development

of, primarily, hardware needed to evaluate the fault-hardening of an application circuit.

Section 3.2.1 describes the platform, while Section 3.2.2 focusses upon the design and

operation of the chosen matrix multiplication benchmark. Section 3.2.3 explains the steps

taken to modify the benchmark to achieve fault tolerance, with Sections 3.2.4 and 3.2.5

giving implementational details concerning fault location inference and fault injection,

respectively. Section 3.3 deals with the encountered overheads for the fault-tolerant design

over its unprotected equivalent, with Section 3.3.1 focussing upon area and Section 3.3.2

upon performance. An analysis of the hardened circuit’s fault observability is presented

in Section 3.4, and concluding remarks are given in Section 3.5.

3.2 Implementation

A platform was required upon which custom hardware could be implemented and tested

quickly. Particularly for the testability requirement, as well as for the potential of realising

hybrid hardware-software solutions to fault tolerance in the future due to the availability

of hard central processing unit (CPU) cores, a relatively new system-on-chip (SoC) was

used: a member of the Xilinx Zynq [61] family. The baseline or reference accelerator was

first to be designed, with hardware operation confirmed using one of the available CPUs

for oversight. Following this, ABFT logic was added to the baseline design, and the CPU

was further used for targetted error injection to exercise the error detection circuitry and

ensure accurate fault location.

47

3.2.1 Hardware-software Platform

Figure 3.1 gives a high-level overview of the developed platform. All boxed components

shown are contained within a Xilinx Zynq-7000 XC7Z020 SoC [62].

DRAM

ARM core
DRAM

controller

PS

PL

Interrupt

controller
AXI4-Lite
interface

AXI4
interface

DMA
controller

Memory

controller
Accelerator

Memory

controller

b

b
b

b

Figure 3.1: Top-level system block diagram. All boxed components shown are contained
within a Xilinx Zynq-7000 XC7Z020 SoC [62], with a custom-designed matrix
multiplication accelerator wrapped by several Xilinx IP blocks on the PL side
of the device.

The Zynq SoC is split into two distinct halves: the processor subsystem (PS), housing

a pair of hard Acorn reduced instruction set computer machine (ARM) Cortex-A9 CPU

cores, and programmable logic (PL): a modestly sized (53,200-look-up tables (LUTs))

FPGA. Many available hard peripherals on the device, such as memory and high-speed

input/output (I/O) controllers, are multiplexed so as to be accessible to either the ARM

cores or custom logic, while others are tied directly to the PS or PL. High-speed config-

urable interconnect is provided for facilitating PS-PL communication.

Throughout the hardware development and testing described in this thesis, a single CPU

core was used in ‘bare-metal’ (without operating system) fashion, primarily as a controller

for the FPGA-implemented logic but also for test vector generation, result verification and

latency measurement. The hard dynamic random-access memory (DRAM) controller on

the PS side was configured in order to allow fast shared memory access by both the ARM

core and soft logic.

Several Xilinx IP blocks—a direct memory access (DMA) controller [63], two mem-

ory controllers [64] and interfacing logic to service data transfers [65] and interrupts [66]

across the PS-PL boundary—sit to control and feed data into and out of a custom-designed

48

matrix multiplication accelerator, described in Section 3.2.2. Software-accessible control

registers within the accelerator are connected to the CPU with a low-bandwidth Ad-

vanced eXtensible Interface (AXI)-Lite bus, while data transfers are achieved via a high-

bandwidth AXI bus operated in burst mode. Interrupts are triggered by status register

changes within the accelerator.

3.2.2 Baseline Architecture

The architecture developed for accelerating matrix multiplication is shown in Figure 3.2.

It, along with all other hardware developed as part of the work presented in this thesis, was

written in platform-independent very high-speed integrated circuit hardware description

language (VHDL). The following parameters are customisable:

• Square matrix size (s).

• Data width (n) (bits).

• Data memory resource type.

• Multiplier resource type.

• Multiplier latency (m) (cycles).

• Accumulator latency (a) (cycles).

Throughout the hardware development conducted as described in this thesis, matrices are

always square with dimensions s × s, however this is not a requirement imposed by the

fault tolerance methods presented.

In
p
u
t
R
A
M

2s× ns

n
s

b

n
s

B

ns s : 1

A

n

b

× + b

b

× + b

.

.

.
.
.
.

.

.

.

× + b

C

n
s

O
u
tp

u
t
R
A
M

s× ns

Figure 3.2: Baseline datapath for matrix multiplication. A full matrix row’s contingent of
MACs are used to create an efficient inner loop-unrolled architecture.

49

Multiplier pipelining is achieved automatically via retiming of register chains instan-

tiated on the multipliers’ outputs by the computer-aided design (CAD) tools used for

compilation; registers are ‘pushed backwards’ through each multiplier to balance combina-

torial logic latency between stages, increasing timing model-inferred maximum operating

frequency (fmax), without affecting cycle latency. Accumulator pipelining must be imple-

mented more explicitly since feedback is required. To allow accumulator pipelining, the

architecture shown in Figure 3.3 was developed, allowing latency to be increased from 1

to a and maximum adder widths to be reduced from n to ⌈n/a⌉. Adder widths are chosen

to be as close to optimal (i.e. n/a) as possible, with wider adders used first, if necessary.

From all but the final stage, an overflow (bit ⌈n/a⌉) signal is tapped off the adder to feed

into the subsequent stage. A shift register—not shown in Figure 3.3—bubbles reset signals

from input to output, allowing consecutive accumulations to occur with only a single cycle

used for reset, regardless of the value of a. The finite state machine (FSM) controlling the

datapath—not shown in Figure 3.2—adjusts itself to accommodate for changes in m and

a.

Before the accelerator runs, input data is transferred, triggered by a command from the

CPU, from DRAM to FPGA fabric random-access memory (RAM). FPGA RAM words

represent full matrix rows (ns bits each) to increase data parallelism: for the largest-

implemented matrix size (s = 32), with n = 32 as mentioned previously, 1024-bit words

were used. A single RAMwas used on the input side rather than two (one per input matrix)

since the increased memory transfer times were found to outweigh potential speedup. The

input RAM therefore consists of 2s ns-bit words, while the output RAM has s ns-bit words.

To allow connection to the memory controllers for PS access, the RAMs are asymmetric:

regardless of n or s, memory access ports presented to the external memory controllers

are always 64-bit to match the maximum width of the high-performance AXI interconnect

available on the target device [67]. To achieve this, address decoding drives either byte

write enables (for the write port of the dual-ported input RAM) or read data multiplexing

(for the read port of the dual-ported output RAM).

With reference to Figure 3.2 and the accompanying pseudocode, Algorithm 1, com-

putation proceeds as follows following an input data transfer. Once the first row of

matrix A is fetched (Line 2) and buffered into a register (Line 3) and the multiply-

accumulators (MACs) are reset (Line 4), each row of matrix B is fetched from RAM in

turn (Line 7) and presented to a full row’s contingent of MACs (Lines 8 to 11), along with

50

Input
n

+ b b . . .

[

⌈n/a⌉ − 1 : 0
]

[

⌈n/a⌉ − 1 : 0
]

+ b b . . .

[

⌈n/a⌉ − 1 : 0
]

[

⌈n/a⌉ − 1 : 0
]

..
.

..
.

..
.

..
.

..
.

..
.

+ b. . .

[

⌈n/a⌉ − 1 : 0
]

Output
n

[

⌈n/a⌉ − 1 : 0
]

[

2⌈n/a⌉ − 1 : ⌈n/a⌉
]

[

n− 1 : (a− 1)⌈n/a⌉
]

[

⌈n/a⌉
]

[

⌈n/a⌉
]

[

n− (a− 1)⌈n/a⌉ : 0
]

Figure 3.3: Pipelined accumulator, in which a adders each up to ⌈n/a⌉ bits wide are used to achieve pipelining at the expense of increased
latency.

51

the corresponding element of A (Line 6), for computation. Once the final row of B has

been consumed, the computation of C’s first row is complete: it is stored into the output

RAM (Line 13) and the process is repeated for the remaining rows of A and C. Once a

multiplication has been completed in its entirety, an interrupt occurs, triggering a second

DMA transfer to copy data back from the FPGA’s RAM to DRAM.

Algorithm 1 Baseline matrix multiplication

1: for i = 0 to s− 1 do
2: fetch A[i]
3: buffer A[i]
4: C[i]←

(

0 0 · · · 0
)

5: for j = 0 to s− 1 do
6: select A[i][j]
7: fetch B[j]
8: C[i][0]← (C[i][0] +A[i][j]×B[j][0]) mod 2n

9: C[i][1]← (C[i][1] +A[i][j]×B[j][1]) mod 2n

10: · · ·
11: C[i][s− 1]← (C[i][s− 1] +A[i][j]×B[j][s− 1]) mod 2n

12: end for
13: store C[i]
14: end for

3.2.3 Checksum Generation & Verification

To support error detection, several additions and modifications were made to the acceler-

ator presented in Section 3.2.2; these are shown in Figures 3.4, 3.5 and 3.6 and described

algorithmically in Algorithms 2, 3 and 4. Aside from lengthening accelerator latency, the

changes made have no effect upon normal operation: data transferred between DRAM

and FPGA RAM, and vice-versa, is identical in both quantity and form to that moved

previously.

The checksum generation logic shown sandwiched between the input RAM and MACs

in Figure 3.4 is detailed in Figure 3.5. The input buffer and multiplexer (MUX) serve

the same purpose as those shown in Figure 3.2 and described in Section 3.2.2, while

the adder, register, RAMs and two additional MUXes form the logic responsible for the

transformation of A and B into checksum-encoded matrices Ac and Br. Within the

datapath itself, an extra MAC is added to mirror the expansion of the matrices being

multiplied: what was an s × s multiplication is now effectively (s + 1) × (s + 1). On the

output side, a buffering register is added to hold rows of Cf as they are computed; this

is shown in Figure 3.4. The checksum verification logic shown in Figure 3.6, consisting

52

In
p
u
t
R
A
M

2s× ns

n
s

C
h
ec
k
su

m
g
en

er
a
ti
o
n
lo
g
ic

Ac

n
n
(s

+
1
)

Br

b

× + b

b

× + b

.

..
.
..

.

..

× + b

Cf

n
(s

+
1
)

n(s+ 1)

b

n
s

O
u
tp

u
t
R
A
M

s× ns

n
(s

+
1
)

C
h
ec
k
su

m
v
er
ifi
ca

ti
o
n
lo
g
ic

Figure 3.4: ABFT-protected matrix multiplication datapath. Aside from lengthening ac-
celerator latency, the changes made have no effect upon normal operation:
data transferred between DRAM and FPGA RAM, and vice-versa, is identical
in both quantity and form to that moved previously. An extra MAC is added
to mirror the expansion of the matrices being multiplied: what was an s × s
multiplication is now effectively (s+ 1)× (s+ 1).

of a MUX, two adders, a register, RAM and two comparators, are added following the

buffer. The results generated by this logic are used to inform the accelerator’s controller

of any checksum discrepancies that occur during computation. The resource used for the

implementation of small RAMs needed for checksum generation and verification is also

parameterisable.

I
n
p
u
t
R
A
M

n
s

b

ns s : 1

n

b

+ b

b

csc RAM

s× n

b

csr RAM

s× n

n

Ac

n
(s

+
1
)

Br

Figure 3.5: Checksum generation logic for matrix multiplication accelerator, responsible
for the transformation of A and B into checksum-encoded matrices Ac and
Br.

The operations performed during each multiplication are largely unchanged following

the addition of this ABFT logic: results are computed row-by-row, as before, with input

checksums generated as input data is accessed and output checksums verified as output

data is computed. The exception to this is that, due to the need to access complete rows

of Br on a one-per-cycle basis, its checksums are computed before multiplication begins.

53

Cf

n
(s

+
1
)

(s+ 1) : 1

n

b + b =
· · ·

· · ·

s
+

1

c
s
r
s
O
K

b b

+

c
s
c
R
A
M

(s+ 1)× n

b =
· · ·

· · ·

s
+

1

c
s
c
s
O
K

Figure 3.6: Checksum verification logic for matrix multiplication accelerator, responsible
for checking checksums contained within Cf. The results generated by this
logic are used to inform the accelerator’s controller of any checksum discrep-
ancies that occur during computation.

Algorithm 2 details the operation of Figure 3.5’s logic during this precomputation. Rows

of B are fetched from RAM (Line 2) and buffered in turn, with their elements selected

sequentially by a MUX (Line 6) in order to be accumulated (Line 7). As each row’s check-

sum is computed, it is stored (Line 9) in the row-wise checksum vector (csr) RAM. While

some performance penalty results from the decision to have row checksums precomputed,

the area overhead saving is significant since an s-input adder would otherwise be required

to complete those computations at speed.

Algorithm 2 ABFT-protected matrix multiplication Br[0 · · s− 1][s] precomputation

1: for i = 0 to s− 1 do
2: fetch B[i] as Br[i][0 · · s− 1]
3: buffer Br[i][0 · · s− 1]
4: Br[i][s]← 0
5: for j = 0 to s− 1 do
6: select Br[i][j]
7: Br[i][s]← (Br[i][s] +Br[i][j]) mod 2n

8: end for
9: store Br[i][s]

10: end for

Only one adder is needed in the checksum generation logic since its function switches

to Ac column checksum generation once Br’s row checksums have been generated. Algo-

rithm 3 details the operation of both the checksum generation logic and main datapath,

shown in Figure 3.4, following Br precomputation. Here, the MAC component of the

algorithm (Lines 15 to 18) covers the ‘additional’ Br and Cf column, s, not present in

either B nor C. As rows of A[i] are fetched from RAM (Line 3) then buffered and their

54

elements selected (Line 9), checksums are computed using Figure 3.5’s adder and column-

wise checksum vector (csc) RAM as an accumulator (Lines 20 to 26). A RAM is required

here rather than a register since the particular column’s checksum being calculated changes

every cycle. Rows of Br must be sourced from both the input RAM (Line 13) and csr

RAM (Line 14) simultaneously. The final row of Ac is treated differently (Line 11) since

it originates from the csc RAM rather than the input RAM. Sections of Cf that form

part of C, i.e. all but the final row and column, are stored in the output RAM (Line 31)

after buffering.

Algorithm 3 ABFT-protected matrix multiplication main computation

1: for i = 0 to s do
2: if i < s then
3: fetch A[i] as Ac[i]
4: buffer Ac[i]
5: end if
6: Cf[i]←

(

0 0 · · · 0
)

7: for j = 0 to s− 1 do
8: if i < s then
9: select Ac[i][j]

10: else
11: fetch Ac[s][j]
12: end if
13: fetch B[j] as Br[j][0 · · s− 1]
14: fetch Br[j][s]
15: Cf[i][0]← (C f[i][0] +Ac[i][j]×Br[j][0]) mod 2n

16: Cf[i][1]← (C f[i][1] +Ac[i][j]×Br[j][1]) mod 2n

17: · · ·
18: Cf[i][s]← (C f[i][s] +Ac[i][j]×Br[j][s]) mod 2n

19: if i < s then
20: if i = 0 then
21: Ac[s][j]← 0
22: else
23: fetch Ac[s][j]
24: end if
25: Ac[s][j]← (Ac[s][j] +Ac[i][j]) mod 2n

26: store Ac[s][j]
27: end if
28: end for
29: buffer Cf[i]
30: if i < s then
31: store Cf[i][0 · · s− 1] as C[i]
32: end if
33: end for

Checksum verification occurs in parallel with Ac checksum generation and normal com-

55

putation. With reference to Figure 3.6 and Algorithm 4, verification is completed as

follows. As rows of Cf become available (Line 2), their elements are selected in turn

(Line 5) and accumulated in both row- (Line 7) and column-wise (Line 17) fashions simul-

taneously. Once the final column (for row-wise checksums, Line 9) or row (for column-wise

checksums, Line 21) of Cf is reached, the appropriate checksum is compared with its corre-

sponding element. These results are stored in software-accessible registers for analysis by

the accelerator’s driver. Note that the verification of Cf’s column-wise checksums requires

an accumulator constructed using a RAM, rather than a register, since the column index

changes once per cycle.

Algorithm 4 ABFT-protected matrix multiplication Cf verification

1: for i = 0 to s do
2: wait until Cf[i] available
3: csr[i]← 0
4: for j = 0 to s do
5: select Cf[i][j]
6: if j < s then
7: csr[i]← (csr[i] +Cf[i][j]) mod 2n

8: else
9: csrs OK[i]← csr[i] = Cf[i][s]

10: end if
11: if i < s then
12: if i = 0 then
13: csc[j]← 0
14: else
15: fetch csc[j]
16: end if
17: csc[j]← (csc[j] +Cf[i][j]) mod 2n

18: store csc[j]
19: else
20: fetch csc[j]
21: cscs OK[j]← csc[j] = Cf[s][j]
22: end if
23: end for
24: end for

3.2.4 Fault Location

Consider the simple ABFT-protected matrix multiplication shown in Equation 3.1. Had

the multiplication resulted in, for example, one of the alternative outputs shown in Equa-

tion 3.2 instead, the positioning of incorrect checksum values would have revealed location

information regarding the MACs that caused the errors. Each of these three cases is syn-

56

onymous with a single MAC register’s least-significant bit (LSB) experiencing a stuck-at-

one (SA1) fault. Elements that have been calculated incorrectly are shown in bold, while

italics mark error-indicating checksum values. Note that column checksum mismatches

relate one-to-one with faulty MACs, since each MAC is responsible for computing exactly

one output column’s elements. Simultaneous faults occurring both within an individual

MAC and across multiple MACs would yield equally informative results: a single column

checksum mismatch in the former case and multiple in the latter.











1 2

3 4

4 6















5 6 11

7 8 15



 =











19 22 41

43 50 93

62 72 134











(3.1)











21 22 41

45 50 93

63 72 134











,











19 23 41

43 51 93

62 73 134











,











19 22 43

43 50 95

62 72 135











(3.2)

3.2.5 Error Injection

Rather than opting to directly cause faults, whether by purposefully upsetting configura-

tion bitstreams or otherwise, it was instead chosen to emulate datapath faults by causing

data errors at MAC outputs. This is accomplished by issuing error injection instructions

on the controlling CPU, which cause one or more specified bits of one or more particular

MAC outputs to be flipped using an array of exclusive-OR (XOR) gates in hardware.

While not particularly representative of any real-world fault type, this simple scheme was

chosen for hardware testing since it allows different errors to be injected tens of thousands

of times per second without causing confounding, or masking, issues to occur which would

skew performance results by allowing errors to go undetected.

It should be emphasised that, as is also the case for the remaining hardware and software

(fault observability) testing described later in this thesis, errors emulated at MAC outputs

are not indicative of faults occurring merely at those locations. Occurrences of faults at

any point along the datapath, whether in logic or routing, are liable to produce errors

at MAC outputs since those are the points through which all data must travel prior to

storage.

57

3.3 Overheads

Experiments were performed to assess the impacts of adding ABFT protection to the

baseline accelerator in terms of area and performance. All designs were compiled using

version 14.7 of Xilinx’s Integrated Synthesis Environment (ISE) toolchain. The following

range of implementation variables was used:

• Target device: Xilinx Zynq-7000 XC7Z020.

• s: {2, 4, 8, 16, 32}.

• n (bits): 32 (signed, fixed-point).

• Data memory resource type: block random-access memory (BRAM).

• Checksum memory resource type: distributed RAM.

• Multiplier resource type: digital signal processing block (DSP).

• m (cycles): 15.

• a (cycles): 1.

Since triplets of DSPs—each optimally pipelined when they absorb five register

stages [68]—were required to implement each two-input 32-bit multiplier, 15-stage

multipliers were used consistently. Achieved fmax were found to be highest when

accumulators were not pipelined, allowing DSP block absorption, so single-stage

accumulators were used throughout.

3.3.1 Area

Table 3.1 contains the raw resource usage figures obtained for all implementations. Per-

centages of the total number of each of these resources for the target device are also in-

cluded, along with means of the individual proportions—each calculated as the mean (µ)

of LUT (%), flip-flop (FF) (%), BRAM (%) and DSP (%)—to give an indication of the

overall resource utilisation. Figure 3.7 presents a visual summary of the combined resource

usage data. Trendlines, shown dashed, have been included to counter the effects of CAD

tool noise.

It can be seen from Table 3.1 that BRAM and DSP overheads are fixed while register

and LUT overheads increase with s. Fixed BRAM overheads are due to the requirement

for three small (s, s and s + 1 32-bit words), separate dual-port RAMs for checksum

58

Matrix size ABFT Resource type
s enabled LUT FF BRAM DSP Total

2
✗

239 210 2 6
1.02%

(0.449%) (0.197%) (0.714%) (2.73%)

✓
618 476 5 9

1.69%
(1.16%) (0.447%) (1.79%) (4.09%)

4
✗

441 406 8 12
2.38%

(0.829%) (0.382%) (2.86%) (5.45%)

✓
757 749 11 15

3.22%
(1.42%) (0.704%) (3.93%) (6.82%)

8
✗

604 794 16 24
4.63%

(1.14%) (0.746%) (5.71%) (10.9%)

✓
877 1286 19 27

5.49%
(1.65%) (1.21%) (6.79%) (12.3%)

16
✗

613 1566 30 48
8.79%

(1.15%) (1.47%) (10.7%) (21.8%)

✓
1159 2352 33 51

9.85%
(2.18%) (2.21%) (11.8%) (23.2%)

32
✗

2115 3105 58 96
17.8%

(3.98%) (2.92%) (20.7%) (43.6%)

✓
3072 4472 61 99

19.2%
(5.77%) (4.20%) (21.8%) (45.0%)

Table 3.1: Baseline & ABFT-protected accelerator resource usage, containing the raw re-
source usage figures obtained for all implementations. Percentages of the total
number of each of these resources for the target device are also included, along
with means of those proportions to give an indication of the overall resource
utilisation.

storage, while the same number of extra DSPs is required for any s due to the need for a

single additional MAC in all cases. While additional register and LUT requirements both

increase with s, proportionately they decrease.

The impact upon area incurred through the introduction of checksum generation and

verification circuitry clearly shows it to be one of the most attractive properties of ABFT.

For the largest-implemented design, capable of multiplying pairs of 32× 32 matrices with

32-bit data elements, the overall area overhead was just 7.87%. Of this, the majority of the

overhead lies in the least-used resources, LUTs and FFs: more minimal overheads of 5.17%

and 3.13% were encountered for scarcer BRAMs and DSPs resources, respectively. Ap-

plications involving linear algebraic operations efficiently implemented on modern FPGAs

tend to be DSP-heavy, so the minimal DSP overhead is particularly beneficial.

3.3.2 Performance

Impacts in terms of performance are presented in Table 3.2. 10,000 tests were performed

for each value of s, with operating frequency kept at 50MHz throughout, and results

59

1

10

100

1000

2 4 8 16 32

∆
ar
ea

(%
)

Matrix size s

LUT
FF
BRAM
DSP
All

Figure 3.7: ABFT-protected accelerator resource usage overhead versus baseline, showing
the changes in resource utilisation for each design versus its equivalently sized
unprotected, baseline implementation.

were averaged across all tests completed. Figure 3.8 presents a visual summary of the

encountered latency overheads.

Slowdown over the baseline design is caused by the requirement to precompute row

checksums before multiplication itself takes place, while the column checksum generation

and checksum validation have no impact upon performance since they operate in parallel

with the MACs. The trend-reversal seen after s = 16 can be attributed to data transfer

throttling: once s passes 16, memory copies begin to dominate accelerator execution

for proportional runtime. Changes in fmax are largely unmeaningful and can likely be

attributed to the stochastic nature of the CAD tools used for compilation.

The latency overheads encountered were, while not huge, also not insignificant. For

the largest-implemented design, with s = 32 and n = 32, a latency penalty of 45.5%

was measured. A clear tradeoff exists across the spectrum of hardware fault tolerance

techniques: for example, while triple modular redundancy (TMR) necessitates very large

(> 200%) area overhead in comparison to ABFT’s small figures (< 10% for reasonably

sized matrices), its application forces virtually no latency penalty.

60

Matrix size ABFT Execution time fmax

s enabled (µs) (MHz)

2
✗ 254 90.2
✓ 272 77.9

4
✗ 314 80.1
✓ 339 81.7

8
✗ 348 76.9
✓ 546 77.1

16
✗ 497 50.5
✓ 1350 60.7

32
✗ 3100 58.2
✓ 4510 65.2

Table 3.2: Baseline & ABFT-protected accelerator performance. Averaged execution
times and maximum operating frequencies achieved are shown for each design
to allow side-by-side comparison of unprotected and protected implementations.

3.4 Fault Observability

In order to assess the fault observability of the chosen detection method, fault injection

simulations were performed to ascertain the hardware’s ability to correctly detect and

locate faults. Detectable faults are those that result in one or more checksum mismatches—

in one or more rows, columns or both—while those that are locatable cause mismatches

within the columns corresponding to the MACs they have affected.

The fault model chosen was that of individually targetted SA1 accumulator output

bits. Such faults were chosen since they are representative of a range of phenomena,

e.g. worn transistors or bridged interconnects. In terms of location, accumulator outputs

were chosen since these components lie at the ends of the datapaths of interest, affording

them maximal opportunity to impact the results. Note that the choice of fault model

was different to that used during hardware testing as explained in Section 3.2.5; while

that used for hardware testing used MAC output bit inversion in order to avoid masking,

software simulation uses stuck-ats since such avoidance was not desirable.

Results gleaned from this testing were, as is the case in the remainder of the fault

observability testing performed in this thesis, independent of fault rate, area and latency:

they demonstrate the proportions of total accelerator executions that should be expected

to result in particular classes of outputs under fixed fault conditions. They cannot be used

to directly ascertain the expected rates of certain output classes’ occurrence, although

this can be achieved by scaling the proportions to take fault rate, area and/or latency, as

required, into account.

Simulations were performed in software rather than in hardware since hundreds of mil-

61

0

20

40

60

80

100

120

140

160

180

2 4 8 16 32

∆
la
te
n
cy

(%
)

Matrix size s

Figure 3.8: ABFT-protected accelerator latency overhead versus baseline, showing the
change in execution time for each design versus its equivalently sized unpro-
tected, baseline implementation.

lions of tests could be run within a reasonable time period across a wide range of im-

plementations with relatively little up-front effort (versus hardware design) and minimal

intervention required at runtime. Since the faults emulated affect the operation being

performed at an algorithmic level, and that the fault tolerance being verified also acts at

that level, fault injection experimentation in hardware was considered to be unnecessary

and software simulation sufficient.

Algorithm 5 details the steps executed for each simulation. Arrays for s× s matrices A

and B are provisioned first (Lines 1 and 2), with the elements of each filled with random

n-bit signed values selected from a uniform distribution (Lines 3 and 4). Matrices Ac and

Br are created (Lines 5 and 6), with A and B encoded to form them as explained in

Section 2.7.1 (Lines 7 and 8) and the output array, representing matrix Cf, is provisioned

(Line 9). An (s + 1)-element bit mask array is created (Line 10) to represent the faults

present during the simulation. Across the array’s s+1 n-bit elements, number of simulta-

neous faults (f) bits, at random locations, are non-zero. Matrix multiplication to generate

Cf’s values—performed modulo-2n to represent overflow—proceeds as normal but, both

before (Line 13) and during (Line 15) each multiply-accumulate step, the corresponding

62

column’s bit mask is ‘or’ed with the (intermediate) result to emulate either one or two

SA1 MAC register output bits. A result was recorded as detected (Line 19) if one or more

of the checksums present within Cf contained mismatches, and as located (Line 20) if,

additionally, those mismatches corresponded to the columns chosen for fault injection.

Algorithm 5 Fault injection simulation

1: create s× s matrix A

2: create s× s matrix B

3: A.rand fill()
4: B.rand fill()
5: create (s+ 1)× s matrix Ac

6: create s× (s+ 1) matrix Br

7: Ac ← A.add cs(‘col’)
8: Br ← B.add cs(‘row’)
9: create (s+ 1)× (s+ 1) matrix Cf

10: bit mask, faulty cols← generate bit mask(s, n, f)
11: for i = 0 to s do
12: for j = 0 to s do
13: Cf[i][j]← bit mask[j]
14: for k = 0 to s− 1 do
15: Cf[i][j]←

(

(C f[i][j] +Ac[i][k]×Br[k][j]) mod 2n
)

bitwise or bit mask[j]
16: end for
17: end for
18: end for
19: detected← not Cf.check cs()
20: located← detected and Cf.diagnose cs() = faulty cols

Algorithm 6 details the procedure used to generate the bit mask called as

generate bit mask() in Algorithm 5. An array for the bit mask (Line 1) and another

to represent faulty columns (Line 2) are provisioned, with target column and bit pairs

randomly selected (Lines 7 and 8) and checked for uniqueness (Line 9) before being set

high (Line 10). The column affected is also flagged (Line 11).

The simulation framework was written in Python and threaded [69] to allow efficient

parallel execution on a 64-core Advanced Micro Devices (AMD) Opteron [70]-based server.

The test steps described were completed 1,024,000 times for each combination of the

following variables:

• s: {2, 4, 8, 16, 32}.

• n (bits): {2, 4, 8, 16, 32} (signed, fixed-point).

• Fault type: permanent.

• f : {1, 2}.

63

Algorithm 6 generate bit mask() procedure used in fault injection simulation

Require: s, n, f
1: create s+ 1 vector bit mask
2: create s+ 1 vector faulty cols
3: bit mask.zero fill()
4: faulty cols.zero fill()
5: for i = 0 to f − 1 do
6: repeat
7: col = rand(0 to s)
8: bit = rand(0 to n− 1)
9: until not bit mask[col] bitwise and 2bit

10: bit mask[col]← bit mask[col] bitwise or 2bit

11: faulty cols[col]← true
12: end for
13: return bit mask, faulty cols

This testing represented a total of several days of computional effort. Proportions of

detected and located faults for each value of s, n and f were averaged across all simulations

performed. The results are presented in Figure 3.9.

For single fault injection, in all cases except for s = 2, n = 2, the proportion of unde-

tected faults dropped off with both s and n. For s ≥ 16, undetectable fault proportions fell

below 0.1% for all data widths and, for s = 32, undetectable faults ceased to be encoun-

tered. As expected, proportions of unlocatable faults were higher than those that were

undetectable due to the lack of redundancy in checksums used for location. In all cases

except for s = 2, n = 2, however, the proportion of unlocated faults observed dropped

with increasing data width for each value of s. For larger s, the locatability of faults is

largely independent of s itself.

Similar trends were seen for double fault injection testing. The rates of both undetected

and unlocated faults were all lower, however, for each combination of s and n. This is ex-

pected of undetected faults since the likelihood of errors being masked in multiple columns

simultaneously decreases as the number of affected columns increases. The proportions

of unlocatable double faults encountered were again significantly higher than those which

were undetectable but, for all cases except for s = 2, n = 2, dropped off with increasing

data width for all s.

It should be noted that the results shown in Figure 3.9 do not take area into account;

that is, designs are subjected to single (or double) faults regardless of their physical size.

While time was not explicitly considered in the fault observability testing, it is nevertheless

accurate to say that designs of different area experience different fault rates under oth-

64

0.0001

0.001

0.01

0.1

1

10

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Data width n (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) Undetected single faults

0.0001

0.001

0.01

0.1

1

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Data width n (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) Undetected double faults

1

10

100

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Data width n (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) Unlocated single faults

0.01

0.1

1

10

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Data width n (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) Unlocated double faults

Figure 3.9: Fault proportions for ABFT-protected matrix multiplication. Each figure
shows the proportion of matrix multiplication results, for a particular s and
n, for which a particular outcome was observed.

erwise identical conditions. For this reason, additional plots, shown in Figure 3.10, were

produced to attempt to capture the effect of area upon likelihood of fault manifestation,

thereby scaling the previously seen fault proportions. Both s and n have an impact upon

area. For s, total ABFT-enabled resource usage figures from Table 3.1 were used to scale

the results, with s = 2 taken as the baseline. For example, an otherwise-equivalent accel-

erator with s = 4 consumes 3.22/1.69 = 1.91× the area of that with s = 2, and is therefore

considered likely to experience 1.91× the fault rate. For n, linear scaling was used, with

n = 2 taken as the baseline, for further scaling. The latter tends to penalise designs with

larger n since a proportion of logic, particularly that for the FSM, is independent of n,

however this was considered to be a minor concern.

The results presented in Figure 3.10 tend to show similar but flatter curves than those

in Figure 3.9. Area-scaled detectability results are promising, with proportions falling as

s rose in value under both single and double fault injection. Unfortunately, area-scaled

locatability was found to decrease as s increased, however the effect upon locatability of

increases in n were found to be either minimal (for single fault testing), with all curves

65

0.001

0.01

0.1

1

10

2 4 8 16 32

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Data width n (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) Undetected single faults

0.001

0.01

0.1

1

10

2 4 8 16 32

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Data width n (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) Undetected double faults

1

10

100

1000

2 4 8 16 32

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Data width n (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) Unlocated single faults

1

10

100

1000

2 4 8 16 32

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Data width n (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) Unlocated double faults

Figure 3.10: Fault proportions for ABFT-protected matrix multiplication scaled by area,
with total resource usage figures used to scale for s and linear scaling used
for n.

flattening off around n = 8 apart from that for s = 2, or positive (for double fault testing).

3.5 Conclusion

This chapter detailed the design, implementation and evaluation of an ABFT-protected

matrix multiplication accelerator running in hardware on a hybrid CPU-FPGA SoC plat-

form. Specifics of the hardware-software platform developed were presented first, followed

by the baseline accelerator and modifications made to harden the design against faults.

Architectural details governing the inference of fault locations and the method of error

injection were also given. Results were presented with an emphasis on implementational

overhead in terms of area, frequency and latency, and a fault injection simulation method

was described and used to evaluate the fault observability of the developed system.

The results showed significant promise for ABFT’s application in hardware: for the

physically largest-implemented (s = 32, n = 32) accelerator tested, the area overhead

incurred was 7.87% averaged across all resources, comparing favourably with competing

66

fault tolerance techniques such as TMR. For the same s and n, the latency penalty incurred

was 45.5%, and fault injection simulation suggested single datapath fault locatability of

96.7% with detectability well in excess of 99%.

The work presented in this chapter represents a solid foundation upon which further

enhancements could, and can still, be made. In particular, the ABFT implementation for

error detection and fault location, as well as the simulation framework for fault injection,

completed represent significant output upon which the work presented in Chapters 4, 5

and 6 is based.

67

4 Error Correction via Runtime

Resource Reallocation

4.1 Introduction

In this chapter, the foundational work presented in Chapter 3, which focussed upon er-

ror detection and fault location inference, is built upon to allow those errors to be cor-

rected using two distinct strategies. A combination of ‘bolt-on’ algorithm-based fault

tolerance (ABFT) error detection logic and resource reallocation serve to provide low-

overhead datapath fault tolerance at runtime. Initially, the latter is achieved through

the use of additional logic which, guided by information gleaned from ABFT, reduces

algorithmic parallelisation at runtime in order to maintain accurate operation. Field-

programmable gate arrays (FPGAs) are uniquely placed to allow further area savings to

be made when incorporating error correction mechanisms thanks to their dynamic re-

configurability; dynamic partial reconfiguration (DPR) is therefore called upon for the

purpose of error correction as well. For ease of comparison, the benchmark, platform and

design tools used for the work described in this chapter are identical to those in Chapter 3.

The results in this chapter demonstrate that rapid yet accurate fault diagnoses along

with low hardware (area), performance (latency) and, where necessary, software (memory

storage) penalties are achievable through algorithm-tailored error correction strategies.

The results shown in this chapter include that, for the largest-implemented circuit able

to detect, diagnose and correct errors within its datapath, area overheads of 12.4% (with

additional logic for error correction) or 10.1% (with DPR) are achievable in return for

latency penalties as low as 24.5% under fault-free operation.

4.1.1 Contributions

The original contributions of the work presented in this chapter are:

68

• The first implementation of custom logic for error correction in the presence of faulty

resources guided by an ABFT error detection mechanism.

• The first implementation of ABFT-protected hardware using DPR for recovery.

• A quantitative analysis of the overheads—of resources, performance and memory—

incurred through the incorporation of those error correction strategies into a bench-

mark hardware accelerator.

4.1.2 Publications

The work presented in this chapter has been peer-reviewed and appeared in the 2014

proceedings of the IEEE International Symposium on Field-programmable Custom Com-

puting Machines (FCCM) [71] and International Conference on Field-programmable Logic

and Applications (FPL) [72].

4.1.3 Outline

The remainder of this chapter is organised as follows. Section 4.2 details the development

and functionality of two alternative hardware error correction strategies, with Section 4.2.1

considering the use of additional logic to achieve this aim and Section 4.2.2 making use of

DPR to achieve the same goal. Overheads of the two methods are analysed in Section 4.3,

with area considered in Section 4.3.1 and performance in Section 4.3.2. For DPR-facilitated

error correction, an additional overhead—memory utilisation—is studied. Concluding

comments are given in Section 4.4.

4.2 Implementation

4.2.1 Additional Logic

Once one or more errors have been detected in the accelerator described in Chapter 3,

and the resources causing those errors identified, the matrix multiplication can be rerun

in a modified fashion such that the faulty resources are bypassed. Initially, a data-shifting

strategy was employed: by effectively reducing the level of parallelism, i.e. not making use

of all previously available multiply-accumulators (MACs), and dynamically reallocating

data to the remaining resources, correct computation can be achieved at the expense

of elongated computation time. To achieve this, the datapath shown in Figure 3.4 was

69

modified to that shown in Figure 4.1: the two are identical save for the two circular

shifters, shown in Figure 4.3, present in the latter.

Figure 4.2 demonstrates the operation of this data-shifting strategy to route around a

single faulty MAC in an s = 2 matrix multiplier. In each case, Br input data—signified

by boxed numbers which correspond to their original places—is captured in the circular

shifter inserted onto the path for Br as shown in Figure 4.1. This additional logic is

capable of rotating input data ‘downwards’ by x places in x clock cycles before it is

fed to the MACs—signified by circled numbers—for processing. No modifications to the

flow of Ac input data are required since the same values of Ac are presented to all MACs

simultaneously. Post-computation, the second circular shifter, this one configured to rotate

data ‘upwards,’ replaces the buffering register shown in Figure 3.4 that captures rows of

Cf. In the presence of a single faulty MAC, a single-place data shift is all that is required

to bypass it.

In
p
u
t
R
A
M

2s× ns

n
s

C
h
ec
k
su

m
g
en

er
a
ti
o
n
lo
g
ic

Ac

n
n
(s

+
1
)

Br

�

n(s+ 1)

b

× + b

b

× + b

..

.
..
.

..

.

× + b

Cf

n
(s

+
1
)

�

n(s+ 1)

b

n
s

O
u
tp

u
t
R
A
M

s× ns

n
(s

+
1
)

C
h
ec
k
su

m
v
er
ifi
ca

ti
o
n
lo
g
ic

Figure 4.1: ABFT-enabled datapath with circular shifters, allowing the dynamic realloca-
tion of data to resources.

Note that in all three cases the operation is the same: during the first execution, input

data is rotated downwards by one place, computed, and output data rotated upwards

by one place to correct for the input shift. During the second execution, no shifting is

required, however only the result from the MAC directly above that found to be faulty

is stored, overwriting the value outputted during the first execution. These steps remain

the same for any value of s.

While the current control hardware is only able to work around single faulty MACs,

the same shifting logic is capable of performing data rotations to prevent the use of any

number of faulty MACs up to s, i.e. all-but-one unavailable. Again, only latency would

be affected by such occurrences. Latency would scale proportionately to the number of

70

Step 1 Step 2

MAC 1 faulty

1

2

3

3

1

2

1

2

3

–

1

2

1

2

–

1

2

3

1

2

3

1

2

3

MAC 2 faulty

1

2

3

3

1

2

1

2

3

3

–

2

–

2

3

1

2

3

1

2

3

1

2

3

MAC 3 faulty

1

2

3

3

1

2

1

2

3

3

1

–

1

–

3

1

2

3

1

2

3

1

2

3

Figure 4.2: Resource reallocation for s = 2 with single fault using circular shifters. Br

input data—signified by boxed numbers which correspond to their original
places—is captured in the circular shifter inserted onto the path for Br, ro-
tated and fed to the MACs—signified by circled numbers—for processing. The
mirrored equivalent occurs on the output side for Cf.

faults that need to be tolerated, since multiple faults will require multiple data shifts to

be routed around.

It should be emphasised that the accelerator does not retain state between computations.

For this reason, the hardware defaults to its normal, fault-unaware mode at the beginning

of every computation: only if one or more errors are detected does it run in a fault-

bypassing state. A more practical implementation might retain error counts for each MAC

and, once one or more of those counts cross a predetermined threshold value, prevent

any use of the associated MACs from that point onward, thus decreasing the average

computation time.

4.2.2 Partial Routing Reconfiguration

While the modified accelerator described in Section 4.2.1 made use of additional logic to

dynamically reallocate data to the MACs in order to bypass faults, in this section the

means to achieve the same end result with partial routing reconfiguration are presented.

During accelerator executions in which at least one error is detected, fault location data is

sent back to the controlling software driver in order to facilitate corrective action. Based

upon the locations of faults observed and, conversely, the locations of remaining functional

71

Br or Cf in
n(s+ 1)

Shift
Capture

s+ 1

en b

en b

en b

.

..

Br or Cf out
n(s+ 1)

Figure 4.3: Circular shifter, capable of rotating data by x places in x clock cycles and used
to allow dynamic resource reallocation.

MACs, one or more rounds of routing reconfiguration followed by accelerator executions,

together called ‘corrective executions,’ can be performed in order to re-establish accurate

operation.

Routing reconfiguration, rather than dynamic relocation of MACs themselves, was cho-

sen for three reasons:

• The datapath (MACs) represents the vast majority—well over 90% in designs with

higher s—of the area consumed by the accelerator.

• Routing bitstreams are small, as is quantified in Section 4.3.3, and so can be applied

more quickly (and, consequently, frequently) than those for MAC reconfiguration

could be.

• The reservation of regions of fabric (to accommodate replacement MACs) is rendered

unnecessary, allowing full use of the available resources.

In order to facilitate routing reconfiguration via DPR, several modifications needed

to be made to the system described in Section 3.2 and accompanying block diagram,

Figure 3.1. These are shown in Figure 4.4. A region of the accelerator—represented by a

dashed rectangle—is made reconfigurable. Reconfiguration is handled by one of the hard

Acorn reduced instruction set computer machine (ARM) central processing unit (CPU)

cores on the Zynq system-on-chip (SoC) through the processor configuration access port

(PCAP) [73].

72

DRAM

ARM core
DRAM

controller

PS

PL

Interrupt

controller

Config.
port

AXI4-Lite
interface

AXI4
interface

DMA
controller

Memory

controller
Accelerator

Memory

controller

b

b
b

b

Figure 4.4: System block diagram with DPR. A region of the accelerator—represented by
a dashed rectangle—is made reconfigurable. Reconfiguration is handled by one
of the hard ARM CPU cores on the Zynq SoC through the PCAP [73].

Reconfiguration is considerably slower than modifying multiplexer (MUX) addressing—

even for small, partial bitstreams—due to the need to set up and execute a memory transfer

each time a new configuration is to be loaded. For this reason, the datapath shown in

Figure 4.1 was modified further to, as shown in Figure 4.5, relocate the checksum verifi-

cation logic such that it took its source from the output random-access memory (RAM)

rather than the (buffered) MAC outputs. With this arrangement, partially faulty outputs

need only be partially overwritten, thus saving reconfiguration cycles. Whereas previously

an s = 2 accelerator required six changes in MUX addressing to route around a single

fault—two changes per row computed—during an execution, only two reconfigurations

are needed with this arrangement as the routing can stay the same while correcting all

errors caused by that fault before being reset prior to the next computation.

The relocation of checksum verification logic also necessitated the expansion of the

output RAM. Whereas until now the output RAM only needed to store the s× s output

matrix C, not the output checksum elements, the output RAM shown in Figure 4.5 needs

to store the full (s+1)× (s+1) output matrix Cf. To achieve this with zero impact upon

the software, which expects to receive only C as output, a hybrid RAM was designed.

Within it, the first s rows and columns are stored in a dual-ported RAM, intended to

be implemented in block random-access memory (BRAM) as before, whose read port is

accessible from the processor subsystem (PS) via a memory controller. Two small RAMs,

intended to be implemented in distributed RAM, were added to store the elements within

73

the (s + 1)th row and column of the output matrix. Control logic was added such that,

from the accelerator side, all three RAMs appeared to be a single, contiguous storage block

for the entitiry of Cf.
In
p
u
t
R
A
M

2s× ns

n
s

C
h
ec
k
su

m
g
en

er
a
ti
o
n
lo
g
ic

Ac

n
n
(s

+
1
)

Br

b

× + b

b

× + b

.

..
.
..

.

..

× + b

Cf

n
(s

+
1
)

O
u
tp

u
t
R
A
M

(s+ 1)×

n(s+ 1)

C
h
ec
k
su

m
v
er
ifi
ca

ti
o
n
lo
g
ic

n
(s

+
1
)

Figure 4.5: ABFT-enabled datapath with DPR. The input and output halves of the recon-
figurable partition are shown as dashed rectangles. The movement of check-
sum verification logic from the input to output side of the output RAM is also
shown, where the output RAM now stores the full (s + 1) × (s + 1) output
matrix Cf.

At compile-time, routing configurations representing different amounts of data-shifting

are compiled along with the rest of the design, which remains static. Nets Br and Cf—

shown in Figure 4.5—are broken and routed via a single reconfigurable partition, which

then dictates the data connections on both the input and output sides of the accelerator’s

datapath. Figure 4.6 shows the configurations available for the multiplier when s = 2.

Circled numbers represent MACs, while the input and output halves of the reconfigurable

partition are shown as dashed rectangles. In each case, the output shifting arrangement

mirrors that on the input side.

Zero-place shift

1

2

3

Single-place shift

1

2

3

Double-place shift

1

2

3

Figure 4.6: Routing configurations available for s = 2. Circled numbers represent MACs,
while the input and output halves of the reconfigurable partition are shown as
dashed rectangles. In each case, the output shifting arrangement mirrors that
on the input side.

When routing reconfiguration is required, the accelerator’s driver initiates a partial

bitstream transfer, via the PCAP, from dynamic random-access memory (DRAM) to

74

the FPGA fabric. In order to lower the total number of configurations required, only

configurations with equal-place shifting per MAC are generated at compile-time. The

number of configurations stored for each accelerator is therefore s+ 1.

The driver supports two levels of safety for error correction. When operating in the

safer mode, all incorrectly computed columns of Cf are recalculated, after which checksum

verification is repeated to confirm successful correction. In the less safe mode, the ABFT

mechanism is essentially turned off: the (s + 1)th MAC becomes a usable spare and the

output is assumed to be accurate once all corrective executions complete. As a consequence

of this, faults that affect only the (s + 1)th MAC are ignored in the less safe mode. The

choice made between these modes as part of a larger application would be based upon the

likelihood of additional faults developing in different MACs during the time it takes to

complete a corrective execution. Note that re-transfer of input data and input checksum

regeneration are not required in either mode.

Figure 4.7 demonstrates the application of routing reconfiguration in order to bypass

a single faulty MAC—labelled 2—when s = 2. Intuitively, one corrective execution is

required to overwrite the second column’s elements. A single-place shift allows MAC 3 to

perform the recalculation required.

Step 1

1

2

3

Step 2

1

2

3

Figure 4.7: Resource reallocation for s = 2 with single fault using DPR, demonstrating
the application of routing reconfiguration in order to bypass a single faulty
MAC—labelled 2—when s = 2. A single-place shift allows MAC 3 to perform
the recalculation required.

In cases of multiple faults, differing amounts of data-shifting are required. This is

exemplified in Figure 4.8, in which six different combinations of double-fault locations are

shown for s = 4. In the three leftmost cases, one single-place shift is required, while in

the three rightmost cases, one double-place shift is required. Curved arrows represent the

reallocation of resources necessary during a corrective execution.

Intuition may suggest that the number of corrective executions required is only depen-

dant upon the ratio of faulty to functional MACs. When s ∈ {2, 4}, this is indeed true, but

for s ≥ 8 the situation is more complicated since there are cases in which a configuration

75

Single-place shift required

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Double-place shift required

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 4.8: Example double-fault routing reconfigurations when s = 4. In the three left-
most cases, one single-place shift is required, while in the three rightmost cases,
one double-place shift is required. Curved arrows represent the reallocation of
resources necessary during a corrective execution.

with an equal-place shift per MAC can no longer match all faulty MACs to remaining

functional ones. In Figure 4.9, where s = 8, six combinations of quadruple-fault locations

are shown. In the three leftmost cases, only a single corrective execution is required; in

the three rightmost cases, however, two are needed: resource reallocations which cannot

be performed in the first execution are represented by dashed lines.

1 corrective run needed

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

2 corrective runs needed

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

Figure 4.9: Example quadruple-fault routing reconfigurations when s = 8, demonstrating
cases where the same number of faults require differing numbers of corrective
executions to be bypassed.

4.3 Overheads

Experiments were performed to assess the impacts of adding ABFT-informed error cor-

rection, implemented both with additional logic and DPR, to the fault-intolerant, baseline

accelerator in terms of area and performance. All designs were compiled using version

76

14.7 of Xilinx’s Integrated Synthesis Environment (ISE) toolchain. The following range of

implementation variables was used:

• Target device: Xilinx Zynq-7000 XC7Z020.

• s: {2, 4, 8, 16, 32}.

• Data width (n) (bits): 32 (signed, fixed-point).

• Data memory resource type: BRAM.

• Checksum memory resource type: distributed RAM.

• Multiplier resource type: digital signal processing block (DSP).

• Multiplier latency (m) (cycles): 15.

• Accumulator latency (a) (cycles): 1.

4.3.1 Area

Table 4.1 contains the raw resource usage figures obtained for all implementations—

including the fault-intolerant, fault-tolerant via additional logic and fault-tolerant via DPR

versions of the accelerator—per resource type. Percentages of the total number of each of

these resources for the target device are also included, along with a mean of the individual

proportions to give an indication of the overall resource utilisation. Figures 4.10 and 4.11

present a visual summary of the resource usage data, with the former showing overheads

of individual resources and the latter overheads across all resource types.

With the exception of s = 16, it is clear from Figure 4.11 that the DPR-shifting accel-

erator performs better than its additional logic-shifting counterpart for overall resource

usage across the range of s tested. Since BRAM and DSP usage are identical between

the two versions, look-up table (LUT) and flip-flop (FF) counts are responsible for all

differences in utilisation. As expected, FF overhead for the DPR design decreases pro-

portionally as s increases thanks to the elimination of the circular shifters present in the

additional logic-shifting version. Conversely, LUT overhead tends to increase slightly; this

is due to LUTs being used to implement distributed RAMs for output checksum storage

as described in Section 4.2.2. For the largest-tested design, s = 32, the DPR-shifting

accelerator achieved an overall area overhead of 10.1%—17.7% lower than its additional

logic-shifting equivalent. Between these two fault-tolerant designs, FF overhead decreased

by 77.5% while LUT overhead increased by 7.7%.

77

10

100

1000

2 4 8 16 32

∆
ar
ea

(%
)

Matrix size s

Additional logic
DPR

(a) LUT

10

100

1000

2 4 8 16 32

∆
ar
ea

(%
)

Matrix size s

Additional logic
DPR

(b) FF

1

10

100

1000

2 4 8 16 32

∆
ar
ea

(%
)

Matrix size s

Additional logic
DPR

(c) BRAM

1

10

100

2 4 8 16 32

∆
ar
ea

(%
)

Matrix size s

Additional logic
DPR

(d) DSP

Figure 4.10: ABFT-protected accelerator with additional logic & DPR error correction
resource usage overhead versus baseline, showing the change in individual
resource utilisations for each design versus its equivalently sized unprotected,
baseline implementation.

4.3.2 Performance

Testing was performed on the hardware in order to measure its impact upon performance

under a number of conditions. Table 4.2 summarises the results of all of these performance

tests. Each test was completed 10,000 times; the mean of these executions is given in all

cases. Prior to each test, new uniformly distributed random input data was generated

to form A and B. Execution times were measured using a cycle-accurate ARM timer

peripheral. In all cases, the FPGA fabric was clocked at 50MHz. Included in Table 4.2 are

execution times for the fault-intolerant multiplier, the fault-tolerant via additional logic-

shifting accelerator and DPR-enabled version running in both of its operating modes.

Where appropriate, latency increases relative to the equivalently sized fault-intolerant

design are given for comparison. Execution times are given for the occurrences of singular

and double MAC failures—the former for both the additional logic-shifting and DPR

hardware, and the latter for the DPR version only. Permanent faults were emulated

through the targetted inversion of a single accumulator output bit within either one or

78

10

100

2 4 8 16 32

∆
ar
ea

(%
)

Matrix size s

Additional logic
DPR

Figure 4.11: ABFT-protected accelerator with additional logic & DPR error correction
combined resource usage overhead versus baseline, showing the change in
combined resource utilisation for each design versus its equivalently sized
unprotected, baseline implementation.

two MACs per execution, with fault locations also randomly chosen. Plots of the latency

increases over the fault-intolerant hardware under fault-free, singly and doubly faulty

conditions are given in Figure 4.12.

The results show that, for all s > 4, the DPR-shifting accelerator outperforms the

additional logic-shifting version under normal, fault-free operation as well as that in the

presence of a single failure. When comparing the performance of the two error correction

implementations side-by-side, recall that the routing’s construction is not the only imple-

mentational difference them. The lower penalties seen during fault-free operation are due

to the relocation of the checksum verification logic from the input to the output side of the

output RAM described in Section 4.2.2, allowing return programmable logic (PL)-to-PS

data transfers to begin (and end) sooner than they had previously, while gains under single

failure mode are realised for larger s as reconfiguration times proportionately fall. The

relationship between the performance plots for the DPR-shifting version working in its two

modes demonstrates the near-fixed performance cost paid by operating more safely. The

trend-reversal seen on all plots after s = 16 can be attributed to data transfer throttling:

79

30

40

50

60

70

80

90

100

2 4 8 16 32

∆
la
te
n
cy

(%
)

Matrix size s

Additional logic
DPR (less safe)
DPR (more safe)

(a) Fault-free

20

30

40

50

60

70

80

90

2 4 8 16 32

∆
la
te
n
cy

(%
)

Matrix size s

Additional logic
DPR (less safe)
DPR (more safe)

(b) Single failure

30

35

40

45

50

55

60

2 4 8 16 32

∆
la
te
n
cy

(%
)

Matrix size s

DPR (less safe)
DPR (more safe)

(c) Double failure

Figure 4.12: ABFT-protected accelerator with additional logic & DPR error correction
latency overhead versus baseline, showing the change in execution time for
each design versus its equivalently sized unprotected, baseline implementation
under a range of fault conditions.

once s passes 16, memory copies begin to dominate accelerator execution for proportional

runtime. Performance impacts arising from the use of partial reconfiguration are negligi-

ble due to the bitstreams’ small size and infrequent application per accelerator execution.

For the largest-tested design, s = 32, the DPR-shifting accelerator incurred a 24.5% la-

tency penalty under fault-free operation—46.1% lower than its additional logic-shifting

equivalent.

Timing model-inferred maximum operating frequency (fmax) changes are not well cor-

related, likely due to the stochastic nature of the placement and routing tools used, al-

though decreases between the additional logic- and DPR-shifting designs, likely due to

path-lengthening incurred through the reconfigurable partition, are seen for larger s.

4.3.3 Memory

From a software perspective, the primary overhead of the DPR-based fault tolerance strat-

egy is partial bitstream storage. Since accelerator data and bitstream transfers, as well as

80

accelerator executions, are interrupt-driven, their impacts upon CPU performance are neg-

ligible. Table 4.3 summarises the DRAM storage requirements for each value of s tested.

The size of each partial bitstream is given along with the total storage requirement for

that value of s. The memory occupation is also expressed, for each s, as a proportion of

the DRAM available (512MB) on the development board used, an Avnet ZedBoard [74].

4.4 Conclusion

In this chapter, two error correction strategies using additional logic and DPR to achieve

runtime resource reallocation were presented, both of which are capable of routing data

around resources found to be faulty at runtime by ABFT error detection circuitry. Imple-

mentational details were described first, followed by results of experiments performed to

assess the hardware’s overheads in terms of area, performance and, for the fault-tolerant

accelerator using DPR, memory utilisation.

For the largest-implemented design, capable of multiplying pairs of 32×32 matrices with

an inner loop-unrolled accelerator, area overheads of 12.4% and 10.1% were encountered

through the use of additional logic and DPR for achieving resource reallocation, respec-

tively; a 22.8% reduction for the latter. The additional logic-shifting design with the same

s experienced a 45.5% latency penalty during fault-free operation, while its DPR-shifting

version achieved 24.5%; a 46.2% reduction, suggesting that DPR betters the use of addi-

tional logic in terms of both area and performance for larger-sized accelerators. Again for

s = 32, mean performance penalties found under faulty conditions were 51.0% and 77.1%

over the baseline, fault-free execution time for single and double faults, respectively, for

operating in the less safe mode. When operating in the more safe mode, those figures rose

to 75.5% and 102%, respectively.

The work presented in this chapter has demonstrated that error detection and correction

based upon ABFT, and in particular the combination of ABFT and DPR, is a powerful

contendor for low-overhead hardware fault tolerance. The application of error detection at

lower levels of precision, thereby introducing an area-to-allowed error tradeoff, is explored

in Chapter 6.

81

Matrix size ABFT Fault Resource type
s enabled avoidance LUT FF BRAM DSP Total

✗
239 210 2 6

1.02%
(0.449%) (0.197%) (0.714%) (2.73%)

2
Additional 665 597 5 9

1.92%
✓

logic (1.25%) (0.561%) (1.79%) (4.09%)

DPR
711 406 5 9

1.90%
(1.34%) (0.382%) (1.79%) (4.09%)

✗
441 406 8 12

2.38%
(0.829%) (0.382%) (2.86%) (5.45%)

4
Additional 855 945 11 15

3.31%
✓

logic (1.61%) (0.888%) (3.93%) (6.82%)

DPR
898 620 11 15

3.25%
(1.69%) (0.583%) (3.93%) (6.82%)

✗
604 794 16 24

4.63%
(1.14%) (0.746%) (5.71%) (10.9%)

8
Additional 2037 1625 19 27

6.10%
✓

logic (3.83%) (1.53%) (6.79%) (12.3%)

DPR
1375 1036 19 27

5.65%
(2.58%) (0.974%) (6.79%) (12.3%)

✗
613 1566 30 48

8.79%
(1.15%) (1.47%) (10.7%) (21.8%)

16
Additional 1674 2970 33 51

10.2%
✓

logic (3.15%) (2.79%) (11.8%) (23.2%)

DPR
2273 1874 33 51

10.3%
(4.27%) (1.76%) (11.8%) (23.2%)

✗
2115 3105 58 96

17.8%
(3.98%) (2.92%) (20.7%) (43.6%)

32
Additional 4203 5643 61 99

20.0%
✓

logic (7.90%) (5.30%) (21.8%) (45.0%)

DPR
4363 3675 61 99

19.6%
(8.20%) (3.45%) (21.8%) (45.0%)

Table 4.1: Baseline & ABFT-protected accelerator with additional logic & DPR error cor-
rection resource usage, containing the raw resource usage figures obtained for
all implementations. Percentages of the total number of each of these resources
for the target device are also included, along with means of those proportions
to give an indication of the overall resource utilisation.

82

Matrix size ABFT Fault Execution time (µs) fmax

s enabled avoidance Fault-free Single failure Double failure (MHz)

2

✗ 254 90.204
Additional logic 272 300 88.992

✓ DPR (less safe) 280 366 451 95.712
DPR (more safe) 280 392 477 95.712

4

✗ 314 80.103
Additional logic 339 398 88.168

✓ DPR (less safe) 351 448 544 82.102
DPR (more safe) 351 486 581 82.102

8

✗ 348 76.941
Additional logic 546 712 77.042

✓ DPR (less safe) 422 557 690 85.918
DPR (more safe) 422 631 764 85.918

16

✗ 497 50.495
Additional logic 1350 1910 56.850

✓ DPR (less safe) 710 982 1254 52.062
DPR (more safe) 710 1195 1467 52.062

32

✗ 3100 58.156
Additional logic 4510 6600 55.857

✓ DPR (less safe) 3860 4680 5490 53.101
DPR (more safe) 3860 5440 6260 53.101

Table 4.2: ABFT-protected accelerator with additional logic & DPR error correction
performance. Averaged execution times and maximum operating frequencies
achieved are shown for each design to allow side-by-side comparison of unpro-
tected and the range of protected implementations.

Matrix size Bitstream size (kB)
s Each Total
2 15.2 45.7 (0.00871%)
4 29.4 147 (0.0281%)
8 43.6 393 (0.0749%)
16 87.1 1480 (0.282%)
32 158 5220 (0.995%)

Table 4.3: ABFT-protected accelerator with DPR error correction bitstream storage re-
quirements, summarising the DRAM partial bitstream storage requirements for
each s tested. The size of each partial bitstream is given along with the total
storage requirement, absolute and proportional, for that value of s.

83

5 Fault Observability for Matrix & DSP

Operations

5.1 Introduction

In this chapter, work completed to generalise the fault observability testing introduced in

Chapter 3 is presented. Three common matrix manipulation algorithms, each highly suited

to hardware acceleration—one of which being representative of linear filtering operations—

are studied in detail from an implementational perspective to gauge their susceptibility to,

observability of and recoverability from faults occurring within their datapaths. Results

presented herein capture the impacts of differing operating conditions along with the range

of parameters available to be specified by a hardware designer. Rather than by hand,

they could equally be used by an automated design tool capable of creating low-overhead

fault-tolerant hardware from high-level functional descriptions, thus allowing informed

decisions to be made. In all cases in this chapter, an inner loop-unrolled (i.e. (s + d)

parallel multiply-accumulators (MACs) or adders, depending on the operator) hardware

architecture is assumed.

5.1.1 Contributions

The original contributions of the work presented in this chapter are:

• A software framework for fault simulation in hardware-accelerated linear algebra

operators protected with algorithm-based fault tolerance (ABFT).

• A thorough analysis of the fault tolerance of three benchmark ABFT-protected op-

erators.

• The first consideration of distance-x, for x > 2, ABFT application in custom logic.

84

5.1.2 Outline

The remainder of this chapter is organised as follows. Section 5.2 details the fault in-

jection simulation method devised for ascertaining fault observability. Sections 5.3, 5.4

and 5.5 describe the results of the fault observability testing performed for three target

operations: matrix-matrix multiplication (Section 5.3), matrix addition (Section 5.4) and

matrix-vector multiplication (Section 5.5). In each of the latter three sections, results are

presented and analysed across a wide range of variables. The chapter is summarised in

Section 5.6.

5.2 Method

Software simulations were performed to assess the fault observabilities of several operators

across the following range of variables:

• Operator: {matrix-matrix multiplication, matrix addition, matrix-vector multipli-

cation}.

• Fault type: {permanent, transient}.

• Number of simultaneous faults (f): {1, 2, 3}.

• d: {1, 2, 3}.

• s (or vector length): {2, 4, 8, 16, 32}.

• Data width (n) (bits): {2, 4, 8, 16, 32}.

For each combination of these, the steps detailed in either Algorithm 7 (for matrix-matrix

multiplication), 10 (for matrix-matrix addition) or 11 (for matrix-vector multiplication)

were repeated 960,000 times.

In all cases, the fault model applied was that of individually targetted stuck-at-one (SA1)

accumulator output (for multiplicative operations) or adder (for additional) bits. For

permanent faults, such SA1s are representative of, for example, worn transistors or bridged

interconnects, while they mimic effects including register and memory upsets in the case

of transients.

Results gleaned from this testing were, as is the case in the all of the fault observability

testing performed in this thesis, independent of fault rate, area and latency: they demon-

strate the proportions of total accelerator executions that should be expected to result in

85

particular classes of outputs under fixed fault conditions. They cannot be used to directly

ascertain the expected rates of certain output classes’ occurrence, although this can be

achieved by scaling the proportions to take fault rate, area and/or latency, as required,

into account.

Algorithm 7 details the steps performed for each matrix-matrix multiplication simula-

tion. The procedure is largely similar to that shown in Algorithm 5 in Section 3.4, but

expanded to support transient as well as permanent faults—selectable via the fault type

variable—and generalised for d. Changes were also made to allow for more detailed re-

sult classification. Following the creation of randomly filled matrices A and B, reference

matrix Cref—containing the correct result—is created (Line 5) and calculated (Line 6).

Checksumming is performed on A and B to create Ac and Br (Lines 9 and 10) with d

additional rows (for Ac) or columns (for Br) added as shown in Section 2.7.1. Once Cf

is provisioned (Line 11), control splits depending on whether fault type indicates that

permanent (from Line 12) or transient (from Line 22) fault emulation is required. For

permanent faults, a one-dimensional (vector) bit mask is created (Line 13) to represent

the faults. This is an (s + d)-element array of n-bit zero-initialised values with f ‘1’s

randomly scattered throughout. Computation proceeds with column j’s bit mask applied

both before (Line 16) and during (Line 18) each multiply-accumulation. Transient faults

each affect a single bit during a single multiply-accumulation step only, so a larger bit

mask is created (Line 23) to represent them. This is an
(

(s+d)×(s+d)×(s+d)
)

-element

three-dimensional array; hence the 3 in the procedure call. Calculation proceeds with

the bit mask value for the particular row, column and multiply-accumulation step applied

before (Line 26) and during (Line 28) each iteration. Note that the zeroth elements in the

outermost dimension correspond to faults that occur during the resetting of variables be-

fore accumulation commences. Following fault-emulated computation, the data elements

in Cf are compared with Cref (Line 33) and checksums verified (Line 34) in order to clas-

sify the result by calling procedure classify result() (Line 35). Finally, checksums are

compared to the faulty columns array created in order to determine whether or not faults

were successfully located (Line 36).

Procedure gen bit mask() is detailed in Algorithm 8. Depending on whether

dimensions is 1, 2 or 3, a one-, two- or three-dimensional array of n-bit values, with

s + d elements per dimension, is created. Initially these values are zero, but f ‘1’s

are scattered randomly throughout them to represent faults. In multiply-accumulation

86

with permanent fault emulation, for example, each ‘1’ is representative of a single bit

of a single MAC’s registers remaining high throughout a complete multiplication. For

transient fault emulation with the same operator, however, each ‘1’ represents a single

bit of a MAC register being forced high for a single clock cycle.

Algorithm 9 details the steps involved in procedure classify result(), which are

independent of the operation performed. This procedure serves to classify the result,

as explained in Section 2.7.3, as either detected, erroneous (false positive), missed (false

negative) or undetectable (masked).

Algorithm 10 shows the steps taken to emulate faulty matrix addition. The layout is

identical to that in Algorithm 7, with relatively minor changes made to suit the different

operator. Element-wise addition is performed modulo-2n (Line 6) to produce Cref, with

d rows and columns of checksums added to both A and B to form Af and Bf (Lines 9

and 10), as exemplified in Section 2.7.2. Under transient fault injection, a two-, rather

than three-, dimensional bit mask array is created (Line 20) and applied (Line 23) since

matrix addition is a two-, rather than three-, loop procedure.

The simulation of matrix-vector multiplication is detailed in Algorithm 11. The steps

here are also similar to those in Algorithms 7 and 10, with changes made to suit the

checksumming steps exemplified in Section 2.7.2. s-element vector a is created (Line 1)

rather than a matrix, with checksumming—row-wise—performed only upon B to create

Br (Line 8). Fault-free and -prone outputs cref and cr, created on Lines 5 and 9, respec-

tively, are also vectors rather than matrices. Following multiplication, results are classified

(Line 29) as normal but fault location is not determined since cr, a row vector, does not

contain any column-wise checksums from which to determine location; faults are therefore

only able to be detected within a matrix-vector multiplication.

5.3 Matrix-matrix Multiplication

Figure 5.1 summarises the results of matrix-matrix multiplication simulations performed

under the influence of permanent faults. Proportions of detected faults are displayed

relative to s, f and d; n was found to have little impact upon the results in this case, so

those obtained were averaged across the range of n tested. The plots of detected faults

show that their proportions increase with s and f but decrease with d.

False positives account for the majority of results not classified as detected. n was

also found to be of little significance to these results; it is therefore not shown here. The

87

prevalence of false positives is largely controlled by the ratio of checksum to total elements

within each matrix row (or column). In the s = 2, f = 1, d = 1 case, for example, this is

1/3—approximately the value of the corresponding point in Figure 5.1. Since d increases

this ratio, false positives become more common as it scales; as f increases, however, they

become scarcer since multiple faults occurring simultaneously are less likely to be masked

by data within the information matrix. That the likelihood of false positives decreases as

s (and consequently area) increases is a desirable outcome. Assuming a steady fault rate,

this implies that proportionally less time will be spent unnecessarily recomputing results

as s scales.

The occurrence of false negatives was found to decrease across all variables tested. f

and d had lower impacts upon the results than s and n, however, so the plots shown are

averaged across f and d. Not shown within the plots due to this averaging is the fact

that no false negatives were encountered across the range of variables tested when f = 1.

This is a powerful result, inferring that if single permanent faults can be either bypassed

or repaired before subsequent faults develop, it should be possible to operate indefinitely

without allowing incorrect results to go unnoticed. Zero false negatives were observed

for s = 32 with any n. This also held true for s ≥ 16 with n ≥ 4 and for s ≥ 8 with

n = 32. While perhaps somewhat high for the smallest s and n, it is encouraging that

for more reasonable values of those variables, i.e. ones for which hardware acceleration is

worthwhile, the likelihood of encountering false negatives due to multiple faults is low. In

the s = 8, n = 8, f = 2, d = 1 case, for example, this was approximately 0.001%.

Finally from Figure 5.1 it can be seen that fewer masked faults were encountered as

s and n increased. f and d are also not reflected here; they were again found to be of

little significance to the results. While their frequencies of occurrence dropped off less

sharply than those of false negatives, no masked faults were observed for s = 32 with any

n or for s = 16 with n = 32. As noted in Section 2.7.3, masked faults are purely data-

dependent: while it may be desirable to observe them from a fault detection perspective,

their occurrence in none of the experiments performed led to incorrectly computed data,

nor to having to recalculate any results.

Figure 5.2 shows the proportions of successfully located results for the same operator

under the same fault injection conditions. Note that the data these plots represent, along

with that for the remainder of located results’ plots in this chapter, was scaled such that

it excluded masked faults. This was done since masked faults represent results that can

88

30

40

50

60

70

80

90

100

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(a) Detected

0

10

20

30

40

50

60

70

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(b) False positive

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(c) False negative

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(d) Masked

Figure 5.1: Matrix-matrix multiplication permanent fault observability. Each plot shows
the proportion of total accelerator execution’s results that led to a particular
class of output for a particular combination of s, n, f and d.

(only be) ignored; they are by definition unlocatable. The results were found to be largely

independent of s and were thus averaged across the range of s tested. This is where the

advantage of d ≥ 1 becomes clear; successful fault location is more likely with multi-

ple independent checksums. This, coupled with the opposite dependency found for false

positives—where their likelihood scaled with d—implies a tradeoff: larger d allows more

faults to be targetted for repair at the expense of increased unnecessary recomputation.

Finally reflected here is the difficulty of locating simultaneous faults; as f increases, the

proportion of faults able to be located decreases.

The results obtained for matrix-matrix multiplication under transient fault injection,

presented in Figure 5.3, are rather different to those seen with permanent faults. Plots of

detected transient faults, shown here averaged across the range of n tested due to being

largely independent of its value, follow similar patterns to those for detected permanent

faults—proportions increasing with s and f but decreasing with d—but they reach clearly

defined upper limits. The reason for this is hinted at from the masked faults plots. Triv-

ially, individual bits are likely to be masked 50% of the time with uniformly distributed

89

50

55

60

65

70

75

80

85

90

95

100

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Data width n (bits)

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

Figure 5.2: Matrix-matrix multiplication permanent fault locatability. Each plot shows
the proportion of total accelerator execution’s results that gave a one-to-one
mapping between faulty MACs and incorrectly computed column-wise check-
sums for a particular combination of s, n, f and d.

data under the influence of single SA1 faults since a bit is 50% likely to already be high.

Hence, for f = 1, masked faults approach an upper limit of 50%. For f = 2 they ap-

proach 25%—expected here since data and fault locations between computations were

both independent—and, similarly, 12.5% for f = 3. The proportion of false positives

was found to decrease with s and f but increase with d, as for permanent faults. Their

dropoffs with f , in particular, are less pronounced. Zero false negatives were encountered

for matrix-matrix multiplication testing under transient fault injection across the range

of variables tested. These results are particularly encouraging, suggesting that transient

fault detection for matrix-matrix multiplication is hampered only by the occurrence of

false positives. In the s = 32, n = 32, f = 1, d = 1 case, however—representative of a

realistically sized implementation—the likelihood of their occurrence is only around 3%.

The results of the same operator’s locatability testing during transient fault injection

are shown in Figure 5.4. These are very different to those obtained under permanent fault

injection. In particular, localisation was successful 100% of the time when f = 1, however

it dropped sharply for f > 1. The data obtained was found to be largely independent of

90

10

20

30

40

50

60

70

80

90

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(a) Detected

0

10

20

30

40

50

60

70

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(b) False positive

−1

−0.5

0

0.5

1

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(c) False negative

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(d) Masked

Figure 5.3: Matrix-matrix multiplication transient fault observability. Each plot shows
the proportion of total accelerator execution’s results that led to a particular
class of output for a particular combination of s, n, f and d.

n, so was combined across its range of values. It can be seen that, in the transient fault

case, fault location becomes a more difficult problem with increasing s as well as f , and

that d has little impact upon its success, particularly for larger s.

5.4 Matrix Addition

Figure 5.5 represents the classification of results for matrix addition testing under the

presence of permanent faults. Side-by-side comparison of Figure 5.5 and Figure 5.1, for

matrix-matrix multiplication under the same fault conditions, shows that the results were

similar. Indeed, in the detected, false positive and false negative fault cases this is partic-

ularly true; the only difference of any significance is that the lower and upper bounds seen

for detected and false positive faults were fractionally lower and higher, respectively, for

matrix addition. Note that all plots shown here are presented in the same forms as the cor-

responding plots for matrix-matrix multiplication. The primary dissimilarity between the

two operators’ results can be seen in the plots of masked faults: where for matrix-matrix

91

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

Figure 5.4: Matrix-matrix multiplication transient fault locatability. Each plot shows the
proportion of total accelerator execution’s results that gave a one-to-one map-
ping between faulty MACs and incorrectly computed column-wise checksums
for a particular combination of s, n, f and d.

multiplication their likelihood dropped as n grew, here the opposite is true. Despite this,

no masked faults were encountered for s = 32 with any tested value of n.

The results of fault locatability testing for the same operator under the same fault

conditions are presented in Figure 5.6. These are also largely similar to those obtained

for matrix-matrix multiplication with permanent fault injection shown in Figure 5.2; this

was expected since the output matrices for the two operators are of the same form. The

primary difference between the two sets of plots is that upper limits appear to be lower

in the matrix addition case, indicating that faults are less likely to be successfully located

for that operator.

The classification of results obtained from matrix addition simulations performed under

the influence of transient faults is shown in Figure 5.7. These, as expected, are similar to

those seen in Figure 5.3 for matrix-matrix multiplication under the same fault conditions.

The explanation for the masked fault proportionalities observed under transient fault

injection given in Section 5.3 is exemplified even more clearly in Figure 5.7, where it can

be seen that the frequency of occurrence is exclusively dependent upon f . Zero false

92

30

40

50

60

70

80

90

100

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(a) Detected

0

10

20

30

40

50

60

70

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(b) False positive

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(c) False negative

0

0.5

1

1.5

2

2.5

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(d) Masked

Figure 5.5: Matrix addition permanent fault observability. Each plot shows the proportion
of total accelerator execution’s results that led to a particular class of output
for a particular combination of s, n, f and d.

negatives were encountered during matrix addition with transient fault injection testing.

The primary difference in both detected and false positive results obtained here and for

matrix-matrix multiplication under the same fault conditions was that the lower bounds

observed were lower in the matrix addition case.

The results of locatability testing for the same operator under transient fault injection

are shown in Figure 5.8. Note that these are comparable to those presented in Figure 5.4

for matrix-matrix multiplication under the same fault conditions. As was the case for that

operator, all faults were locatable when f = 1 and their proportions thereafter decreased

as f rose. The plots shown for f > 1 in the matrix addition case are shallower than

those in the matrix-matrix multiplication case, with lower bounds for low s but similar

locatability proportions for higher s.

93

50

55

60

65

70

75

80

85

90

95

100

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Data width n (bits)

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

Figure 5.6: Matrix addition permanent fault locatability. Each plot shows the proportion
of total accelerator execution’s results that gave a one-to-one mapping between
faulty adders and incorrectly computed column-wise checksums for a particular
combination of s, n, f and d.

94

0

10

20

30

40

50

60

70

80

90

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(a) Detected

0

10

20

30

40

50

60

70

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(b) False positive

−1

−0.5

0

0.5

1

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(c) False negative

10

15

20

25

30

35

40

45

50

55

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(d) Masked

Figure 5.7: Matrix addition transient fault observability. Each plot shows the proportion
of total accelerator execution’s results that led to a particular class of output
for a particular combination of s, n, f and d.

5.5 Matrix-vector Multiplication

Figure 5.9 summarises the results of matrix-vector multiplication simulations performed

under the presence of permanent faults. Although the proportions of detected faults

decreased with f and d, they were seen to be most dependent upon s and n; they are

therefore displayed after being averaged across f and d. Note that detectability also

increased with both s and n. The proportions of observed false positives did not vary

significantly with n, hence these are averaged across the range of results for that variable.

In line with previous operators, the occurrence of false positives was seen to increase

with d but decrease with s and f . False negatives were not observed for f = 1, but

are presented here averaged over both f and d since variations in s and n were more

significant. Unfortunately, the proportions of false negatives encountered increased with

s. They did, however, reduce with n, and increased with s less significantly as n fell in

magnitude. Masked faults, displayed here averaged over the range of s tested, were found

to be independent of d, decreasing with both n and f .

95

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

Figure 5.8: Matrix addition transient fault locatability. Each plot shows the proportion of
total accelerator execution’s results that gave a one-to-one mapping between
faulty adders and incorrectly computed column-wise checksums for a particular
combination of s, n, f and d.

Figure 5.10 presents the final fault injection simulation results; for the computation

of matrix-vector multiplications in the presence of transient faults. Results shown here

for detected, false positive and masked faults are combined across the range of n tested

since they were found to be largely independent of that variable’s value. False negative

proportions are given by s and n with results combined across the range of f and d for the

same reason. The asymptotic behaviour of the detected plots is largely dictated by the

numbers of masked faults encountered; these are similar to those seen for transient fault

injection in both the matrix-matrix multiplication and matrix addition cases. Masked

fault occurrences can be seen to be independent of d, with their upper bounds dependent

upon f . s can be seen to have little impact upon the likelihood of encountering false

negative results, particularly for larger n.

5.6 Conclusion

In this chapter, the results of fault injection simulations performed upon a trio of ABFT-

protected linear algebra operators—matrix-matrix multiplication, matrix addition and

96

50

55

60

65

70

75

80

85

90

95

100

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(a) Detected

0

10

20

30

40

50

60

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(b) False positive

0

2

4

6

8

10

12

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(c) False negative

0

5

10

15

20

25

30

35

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Data width n (bits)

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(d) Masked

Figure 5.9: Matrix-vector multiplication permanent fault observability. Each plot shows
the proportion of total accelerator execution’s results that led to a particular
class of output for a particular combination of s, n, f and d.

matrix-vector multiplication—across a range of implementational parameters and operat-

ing conditions were presented. Details of the software framework developed to simulate

those operations under the influence of both permanent and transient faults were also

given. Analysis of the results obtained suggested high fault tolerance across the three op-

erators, the majority of which improve as hardware compexity grows. The results cement

ABFT’s status as a credible alternative to more established fault tolerance techniques

despite its comparatively low overheads, particularly in terms of area.

Of the variables considered, d has proven to be somewhat disappointing: small, if any,

gains were realised for distance-x, with x > 2, checksumming. Consequently d will remain

fixed at 1 for the work presented in Chapter 6.

97

20

30

40

50

60

70

80

90

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(a) Detected

0

5

10

15

20

25

30

35

40

45

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(b) False positive

0

1

2

3

4

5

6

7

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

n = 2
n = 4
n = 8
n = 16
n = 32

(c) False negative

0

5

10

15

20

25

30

35

40

45

50

2 4 8 16 32

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Matrix size s

f = 1, d = 1
f = 1, d = 2
f = 1, d = 3
f = 2, d = 1
f = 2, d = 2
f = 2, d = 3
f = 3, d = 1
f = 3, d = 2
f = 3, d = 3

(d) Masked

Figure 5.10: Matrix-vector multiplication transient fault observability. Each plot shows
the proportion of total accelerator execution’s results that led to a particular
class of output for a particular combination of s, n, f and d.

98

Algorithm 7 Matrix-matrix multiplication fault injection simulation

1: create s× s matrix A

2: create s× s matrix B

3: A.rand fill()
4: B.rand fill()
5: create s× s matrix Cref

6: Cref ← AB

7: create (s+ d)× s matrix Ac

8: create s× (s+ d) matrix Br

9: Ac ← A.add cs(‘col’, d)
10: Br ← B.add cs(‘row’, d)
11: create (s+ d)× (s+ d) matrix Cf

12: if fault type = ‘perm’ then
13: bit mask, faulty cols← generate bit mask(s, n, d, 1, f)
14: for i = 0 to s+ d− 1 do
15: for j = 0 to s+ d− 1 do
16: Cf[i][j]← bit mask[j]
17: for k = 0 to s+ d− 2 do
18: Cf[i][j]←

(

(Cf[i][j] +Ac[i][k]×Br[k][j]) mod 2n
)

bitwise or bit mask[j]
19: end for
20: end for
21: end for
22: else
23: bit mask, faulty cols← generate bit mask(s, n, d, 3, f)
24: for i = 0 to s+ d− 1 do
25: for j = 0 to s+ d− 1 do
26: Cf[i][j]← bit mask[i][j][0]
27: for k = 0 to s+ d− 2 do
28: Cf[i][j] ←

(

(Cf[i][j] + Ac[i][k] × Br[k][j]) mod 2n
)

bitwise or
bit mask[i][j][k + 1]

29: end for
30: end for
31: end for
32: end if
33: data ok ← Cf.get data() = Cref

34: cs ok ← Cf.check cs()
35: result type← classify result(data ok, cs ok)
36: located← Cf.diagnose cs() = faulty cols

99

Algorithm 8 generate bit mask() procedure used in fault injection simulations

Require: s, n, d, dimensions, f
1: create s+ d vector faulty cols
2: if dimensions = 1 then
3: create s+ d vector bit mask
4: for i = 0 to f − 1 do
5: repeat
6: col = rand(0 to s+ d)
7: bit = rand(0 to n− 1)
8: until not bit mask[col] bitwise and 2bit

9: bit mask[col]← bit mask[col] bitwise or 2bit

10: faulty cols[col]← true
11: end for
12: else if dimensions = 2 then
13: create (s+ d)× (s+ d) matrix bit mask
14: for i = 0 to f − 1 do
15: repeat
16: col = rand(0 to s+ d)
17: step = rand(0 to s+ d)
18: bit = rand(0 to n− 1)
19: until not bit mask[col][step] bitwise and 2bit

20: bit mask[col][step]← bit mask[col][step] bitwise or 2bit

21: faulty cols[col]← true
22: end for
23: else
24: create (s+ d)× (s+ d)× (s+ d) 3D matrix bit mask
25: for i = 0 to f − 1 do
26: repeat
27: row = rand(0 to s+ d)
28: col = rand(0 to s+ d)
29: step = rand(0 to s+ d)
30: bit = rand(0 to n− 1)
31: until not bit mask[row][col][step] bitwise and 2bit

32: bit mask[row][col][step]← bit mask[row][col][step] bitwise or 2bit

33: faulty cols[col]← true
34: end for
35: end if
36: return bit mask, faulty cols

100

Algorithm 9 classify result() procedure used in fault injection simulation

Require: data ok, cs ok
1: if data ok and cs ok then
2: result type← ‘masked’
3: else if data ok and not cs ok then
4: result type← ‘false pos’
5: else if not data ok and cs ok then
6: result type← ‘false neg’
7: else
8: result type← ‘detected’
9: end if

10: return result type

Algorithm 10 Matrix addition fault injection simulation

1: create s× s matrix A

2: create s× s matrix B

3: A.rand fill()
4: B.rand fill()
5: create s× s matrix Cref

6: Cref ← A+B

7: create (s+ d)× (s+ d) matrix Af

8: create (s+ d)× (s+ d) matrix Bf

9: Af ← A.add cs(‘full’, d)
10: Bf ← B.add cs(‘full’, d)
11: create (s+ d)× (s+ d) matrix Cf

12: if fault type = ‘perm’ then
13: bit mask, faulty cols← generate bit mask(s, n, d, 1, f)
14: for i = 0 to s+ d− 1 do
15: for j = 0 to s+ d− 1 do
16: Cf[i][j]←

(

(Af[i][j] +Bf[i][j]) mod 2n
)

bitwise or bit mask[j]
17: end for
18: end for
19: else
20: bit mask, faulty cols← generate bit mask(s, n, d, 2, f)
21: for i = 0 to s+ d− 1 do
22: for j = 0 to s+ d− 1 do
23: Cf[i][j]←

(

(Af[i][j] +Bf[i][j]) mod 2n
)

bitwise or bit mask[i][j]
24: end for
25: end for
26: end if
27: data ok ← Cf.get data() = Cref

28: cs ok ← Cf.check cs()
29: result type← classify result(data ok, cs ok)
30: located← Cf.diagnose cs() = faulty cols

101

Algorithm 11 Matrix-vector multiplication fault injection simulation
1: create s vector a
2: create s× s matrix B

3: a.rand fill()
4: B.rand fill()
5: create s vector cref
6: cref ← aB

7: create s× (s+ d) matrix Br

8: Br ← B.add cs(‘row’, d)
9: create s+ d vector cr

10: if fault type = ‘perm’ then
11: bit mask, faulty cols← generate bit mask(s, n, d, 1, f)
12: for j = 0 to s+ d− 1 do
13: cr[j]← bit mask[j]
14: for k = 0 to s+ d− 2 do
15: cr[j]←

(

(cr[j] + a[k]×Br[k][j]) mod 2n
)

bitwise or bit mask[j]
16: end for
17: end for
18: else
19: bit mask, faulty cols← generate bit mask(s, n, d, 2, f)
20: for j = 0 to s+ d− 1 do
21: cr[j]← bit mask[j][0]
22: for k = 0 to s+ d− 2 do
23: cr[j]←

(

(cr[j] + a[k]×Br[k][j]) mod 2n
)

bitwise or bit mask[j][k + 1]
24: end for
25: end for
26: end if
27: data ok ← cr.get data() = cref

28: cs ok ← cr.check cs()
29: result type← classify result(data ok, cs ok)

102

6 Reduced-precision Algorithm-based

Fault Tolerance

6.1 Introduction

In this chapter, research into the application of algorithm-based fault tolerance (ABFT)

in an field-programmable gate array (FPGA)-implemented accelerator at reduced levels of

precision is presented. This allows for the introduction of a previously unexplored tradeoff:

sacrificing some observability, preferably of faults associated with low-magnitude errors,

for gains in area, performance and efficiency by reducing the bit-widths of logic used for

error detection. The implementation of two distinct truncation techniques is described,

with their effects upon overheads and allowed data error compared. The methods intro-

duced in this chapter lend themselves to FPGAs thanks to their efficient simultaneous

implementation of multiple arbitrary-precision datapaths. Here, as a case study for the

investigation into reduced-precision ABFT, hardware-accelerated matrix multiplication is

called upon once more.

While previous fixed-point ABFT-related work has assumed all data and checksums to

be data width (n)-bit integer (i.e. modulo-2n), it is possible to break this relationship

and consider data and checksum precision independently. By making informed decisions

regarding exactly which information to discard when forming and manipulating check-

sums, the incurred overheads can be reduced at the cost of accepting some degree of data

error. This is achieved by effectively bounding allowed data error: in this chapter, levels

of checksum truncation are used to infer maximum error propagation, however such a

derivation could equally be performed in reverse.

6.1.1 Contributions

The original contributions of the work presented in this chapter are:

103

• The first consideration of distinct data and checksum bit-widths within ABFT-

protected operations: reduced-precision algorithm-based fault tolerance (RP-ABFT).

• The first implementation of circuitry incorporating RP-ABFT for resilience against

hardware faults.

• Analysis of the costs and benefits of applying two forms of RP-ABFT to various

precisions.

• Insight into the hardware fault tolerance of RP-ABFT.

6.1.2 Publications

The work presented in this chapter has been peer-reviewed and will appear in the 2016 pro-

ceedings of the International Workshop on Applied Reconfigurable Computing (ARC) [75].

6.1.3 Outline

The remainder of this chapter is organised as follows. Section 6.2 describes the math-

ematical principles behind RP-ABFT for the two proposed truncation techniques, with

Sections 6.2.1 and 6.2.2 covering truncation from the most-significant bit (MSB) and least-

significant bit (LSB) first, respectively. Impelementational details are given in Section 6.3,

with the small modifications made to the baseline architectures used in Chapters 3 and 4

described first in Section 6.3, followed by those needed to implement the two flavours

of RP-ABFT in Sections 6.3.2 and 6.3.3. In Section 6.4, the overheads associated with

RP-ABFT are analysed, focussing upon area and performance in Sections 6.4.1 and 6.4.2,

respectively. Section 6.5 presents analysis of the impacts the selection of the various im-

plementational options introduced by RP-ABFT has upon fault observability within the

targetted datapath, while Section 6.6 gives concluding remarks.

6.2 Principles of RP-ABFT

6.2.1 MSB-first Truncation

During checksum generation and verification, data element bits from the most-significant

downwards can be sacrificed in order to reduce the size of the logic required to manipulate

them into checksums. All input data elements are n-bit signed integers and the number

of bits of precision removed from each during checksum generation is represented by the

104

truncation width (r). Output data elements are always 2n-bit; this departure from the

norm of all-n bit is elaborated upon in Section 6.3.1. In MSB-first truncation, therefore,

input checksums are reduced to the least significant n−r bits of precision. This also limits

the precision of output checksums to the least significant n− r bits.

6.2.2 LSB-first Truncation

To maintain sensitivity to faults that cause high-magnitude errors, it is possible to perform

truncation from the least, rather than most, significant bits of data elements when forming

and manipulating checksums. The constructions of the inputs and outputs of ABFT-

protected matrix multiplication are shown in Equation 6.1. Each element is marked as

either an input data element (din), output data element (dout), input checksum element

(csin), output checksum element (csout) or corner output checksum element (csout, c), as

appropriate. csout, c is a special form of output checksum: that which is itself formed

exclusively from csin elements. The ‘c’ in csout, c indicates corner.

















din · · · din
...

. . .
...

din · · · din

csin · · · csin



























din · · · din csin
...

. . .
...

...

din · · · din csin











=

















dout · · · dout csout
...

. . .
...

...

dout · · · dout csout

csout · · · csout csout, c

















(6.1)

Symbols for maximum absolute value (∨) and maximum absolute error (ǫ) must be

introduced next. ∨(din) is as defined in Equation 6.2. The r-bit LSB-first truncation of a

din element, performed with bitwise shifts as (din ≫ r)≪ r, is represented as ⌊din⌋r since

rounding, for both positive and negative values, is towards negative infinity. Note that, as

also shown in Equation 6.2, ∨(⌊din⌋r) = ∨(din); the maximum negative value, for which

truncation by any 0 ≤ r < n will have no effect, also represents the maximum absolute

value. ǫ(⌊din⌋r) is as defined in Equation 6.3.

∨(⌊din⌋r) = ∨(din) = 2n−1 (6.2)

ǫ(⌊din⌋r) = 2r − 1 (6.3)

105

Each csin element is formed from square matrix size (s) din elements, each independently

truncated, as shown in Equation 6.4. ∨ and ǫ of each csin element are therefore trivial to

calculate, as shown in Equations 6.5 and 6.6, respectively.

csin = ⌊din⌋r + · · ·+ ⌊din⌋r (6.4)

∨(csin) = s∨(⌊din⌋r) = s2n−1 (6.5)

ǫ(csin) = sǫ(⌊din⌋r) = s(2r − 1) (6.6)

csout elements are comprised of s multiplied pairs of din and csin, summed as shown in

Equation 6.7. Since the din element used within each multiplication is not truncated, it

does not introduce error: this comes purely from each csin, so ǫ(csout) is found from ∨ of

each din and ǫ of each csin, as shown in Equation 6.8.

csout = dincsin + · · ·+ dincsin (6.7)

ǫ(csout) = s∨(din)ǫ(csin) = s2(2r − 1)2n−1 (6.8)

The csout, c element is formed of s multiplied pairs of csin elements, summed as shown

in Equation 6.9. Unlike for each csout element, therefore, error can be introduced by both

of the multiplicands within each product. As a result, the combination of worst-case error

from both csin elements, including their cross-product, within each multiplication must be

taken into account when quantifying ǫ(csout, c): the result is given in Equation 6.10.

csout, c = csincsin + · · ·+ csincsin (6.9)

ǫ(csout, c) = s
(

∨(csin)ǫ(csin) + ǫ(csin)∨(csin) + ǫ(csin)
2)

= s3(2r − 1)(2n + 2r − 1)
(6.10)

106

6.3 Implementation

6.3.1 Baseline Architecture

The baseline architecture used for comparison in this chapter is structurally identical to

that shown in Figure 4.5, less the reconfigurable routing regions. It is shown in Figure 6.1.

The principle difference between this architecture and those described in Chapters 3, 4

and 5 is the output data width: while in previous chapters the output data was always

assumed to be n-bit, the same as input data, here the output data is expanded to 2n-bit

in order to allow the two truncation types developed in this chapter to be compared.

In
p
u
t
R
A
M

2s× ns

n
s

C
h
ec
k
su

m
g
en

er
a
ti
o
n
lo
g
ic

Ac

n
+

⌈l
o
g
2
(s
)⌉

(

n
+

⌈l
o
g
2
(s
)⌉
)

(s
+

1
)

Br

b

× + b

b

× + b

.

.

.
.
.
.

.

.

.

× + b

Cf

2
n
(s

+
1
)

O
u
tp

u
t
R
A
M

(s+ 1)×

2n(s+ 1)

C
h
ec
k
su

m
v
er
ifi
ca

ti
o
n
lo
g
ic

2
n
(s

+
1
)

Figure 6.1: Datapath with zero truncation. While in previous chapters the output data
was always assumed to be n-bit, the same as input data, here the output data
is expanded to 2n-bit in order to allow the two truncation types developed in
this chapter to be compared.

Checksum generation and verification logic, shown in Figures 6.2 and 6.3, respectively,

serves to perform the normal ABFT procedures described in Section 3.2.3.

I
n
p
u
t
R
A
M

n
s

b

ns s : 1

n

b

+ b

b

csc RAM

s× w

b

csr RAM

s× w

w

Ac

w
(s

+
1
)

Br

w = n+ ⌈log2(s)⌉

Figure 6.2: Checksum generation logic with zero truncation, used to perform the ‘normal’
ABFT checksum generation procedures.

107

Cf

2
n
(s

+
1
)

(s+ 1) : 1

2
n

b

b

+ b =

b

· · ·

· · ·

s
+

1

c
s
r
s
O
K

+

c
s
c
R
A
M

(s+ 1)× 2n

b =
· · ·

· · ·

s
+

1

c
s
c
s
O
K

Figure 6.3: Checksum verification logic with zero truncation, used to perform the ‘normal’
ABFT checksum verification procedures.

6.3.2 MSB-first Truncation

Modifications to the logic shown in Figures 6.2 and 6.3 needed to achieve the MSB-first

truncation explained in Section 6.2.1 are straightforward since only bit-widths change.

These changes have some knock-on effects on the top-level overview shown in Figure 6.1:

now, rather than n+ log2(s), the per-element paths for Ac and Br only have to be n bits

wide and the output taken from the output block random-access memory (BRAM) only

has to be n − r, rather than 2n, bits per element. These changes result in the modified

datapath shown in Figure 6.4 and the checksum generation and verification logic shown in

Figures 6.5 and 6.6, respectively. Note that the signs of all elements are preserved, despite

the moniker ‘MSB-first truncation.’

In
p
u
t
R
A
M

2s× ns

n
s

C
h
ec
k
su

m
g
en

er
a
ti
o
n
lo
g
ic

Ac

n
n
(s

+
1
)

Br

b

× + b

b

× + b

.

..
.
..

.

..

× + b

Cf

2
n
(s

+
1
)

O
u
tp

u
t
R
A
M

(s+ 1)×

2n(s+ 1)

C
h
ec
k
su

m
v
er
ifi
ca

ti
o
n
lo
g
ic

(n
−

r
)(
s
+

1
)

Figure 6.4: Datapath with MSB-first truncation. Rather than n+log2(s), the per-element
paths for Ac and Br only have to be n bits wide and the output taken from
the output BRAM only has to be n− r, rather than 2n, bits per element.

108

I
n
p
u
t
R
A
M

n
s

b

ns s : 1

n

b

n− r

+ b

b

csc RAM

s× (w − r)

b

csr RAM

s× (w − r)

w

Ac

w
(s

+
1
)

Br

w = n+ ⌈log2(s)⌉

Figure 6.5: Checksum generation logic with MSB-first truncation. Compared to the zero-
truncation implementation, only bit-widths are different.

Cf

(n
−

r
)(
s
+

1
)

(s+ 1) : 1

n
−

r

b

b

+ b =

b

· · ·

· · ·

s
+

1

c
s
r
s
O
K

+

c
s
c
R
A
M

(s+ 1)×

(n− r)

b =
· · ·

· · ·

s
+

1

c
s
c
s
O
K

Figure 6.6: Checksum verification logic with MSB-first truncation. Compared to the zero-
truncation implementation, only bit-widths are different.

6.3.3 LSB-first Truncation

Achieving the LSB-first truncation described in Section 6.2.2 requires different logic to

that shown in Figures 6.2 and 6.3; the blocks shown in Figures 6.8 and 6.9 stand in their

places. In terms of changes to the top-level overview, Figure 6.1, the per-element paths for

Ac and Br are
(

n+max
(

log2(s)−r, 0
)

)

-bit, rather than
(

n+log2(s)
)

-bit, to optimally fit

the single largest data or checksum element. These changes are represented in Figure 6.7.

Output checksum error must be tolerated up to the levels theorised in Equations 6.8

and 6.10 as a result of the truncation performed. Clearly, there is no reason to actually

perform the left-shifting shown in the explanation of the truncation procedure; for this

reason, the output checksum element error threshold (θ) and corner output checksum ele-

109

In
p
u
t
R
A
M

2s× ns

n
s

C
h
ec
k
su

m
g
en

er
a
ti
o
n
lo
g
ic

Ac

w
w
(s

+
1
)

Br

b

× + b

b

× + b

.

.

.
.
.
.

.

.

.

× + b

Cf

2
n
(s

+
1
)

O
u
tp

u
t
R
A
M

(s+ 1)×

2n(s+ 1)

C
h
ec
k
su

m
v
er
ifi
ca

ti
o
n
lo
g
ic

2
n
(s

+
1
)

w = n+max
(

⌈log2(s)⌉ − r, 0
)

Figure 6.7: Datapath with LSB-first truncation. The per-element paths for Ac and Br

are
(

n+max
(

log2(s)− r, 0
)

)

-bit, rather than
(

n+ log2(s)
)

-bit, to optimally

fit the single largest data or checksum element.

ment error threshold (θc), shown in Figure 6.9 for csout and csout, c elements, respectively,

need to be based upon, not equal to, ǫ(csout) and ǫ(csout, c). csout elements each have

their widths reduced by r bits due to the right-shifter shown in Figure 6.9; as a result,

θ is calculated as shown in Equation 6.11. csout, c elements, however, are constructed

exclusively from csin elements: they are therefore subject to magnitude reduction by the

right-shifters shown in both Figures 6.8 and 6.9. θc is therefore calculated as shown in

Equation 6.12.

θ =
ǫ(csout)

2r
=

s2(2r − 1)2n−1

2r
≈ s22n−1 (6.11)

θc =
ǫ(csout, c)

22r
=

s3(2r − 1)(2n + 2r − 1)

22r
≈ s32n−r (6.12)

6.4 Overheads

Designs were implemented using Xilinx Vivado 2014.4 across the following range of im-

plementation variables:

• Target device: Xilinx Zynq-7000 XC7Z020.

• s: {2, 4, 8, 16, 32}.

• n (bits): 32 (signed, fixed-point).

110

I
n
p
u
t
R
A
M

n
s

b

ns s : 1

n

b

≫ r

n− r

+ b

b

csc RAM

s× w1

b

csr RAM

s× w1

w
2

Ac

w
2
(s

+
1
)

Br

w1 = n− r + ⌈log2(s)⌉

w2 = n+max
(

⌈log2(s)⌉ − r, 0
)

Figure 6.8: Checksum generation logic with LSB-first truncation. Truncation is performed
by the r-bit right-shifter shown.

• Truncation type: {none, MSB-first, LSB-first}.

• r (bits): {0, 4, 8, 12, 16, 20, 24}.

• Data memory resource type: BRAM.

• Checksum memory resource type: distributed random-access memory (RAM).

• Multiplier resource type: digital signal processing block (DSP).

• Multiplier latency (m) (cycles): 15.

• Accumulator latency (a) (cycles): 1.

Note that the majority of parameters—s, n, resource types, m and a—were kept the same

as those used in the experiments described in Chapters 3 and 4 for the sake of comparison.

6.4.1 Area

Tables 6.1, 6.2, 6.3 and 6.4 contain the raw area utilisation figures obtained for all imple-

mentations of the accelerator expressed in terms of look-up tables (LUTs), flip-flops (FFs),

BRAMs, DSPs and total (combined) resources used. The latter is the mean of the four

preceeding proportions, intended to give an indication as to the overall resource utilisation

for a particular design. Absolute and relative (percentage) values are given, the latter in-

dicating proportions of resources used on the target device. Figures 6.10 and 6.11 show the

combined area overhead versus the equivalently sized unprotected design, i.e. that without

111

Cf
2
n
(s

+
1
)

(s+ 1) : 1

2
n

b

≫
r 2
n
−

r

b + b −

b

| | <
· · ·

· · ·

s
+

1

c
s
r
s
O
K

+

c
s
c
R
A
M

(s+ 1)×

(2n− r)

b − | | <
· · ·

· · ·

s
+

1

c
s
c
s
O
K

θ

θc

b

Figure 6.9: Checksum verification logic with LSB-first truncation. Truncation is performed
by the r-bit right-shifter shown.

incorporated ABFT, for RP-ABFT with MSB-first truncation, while Figures 6.12 and 6.13

show the same for LSB-first truncation. Note that r = 0 in both MSB- and LSB-first cases

refers to the same design with ABFT protection but zero truncation applied.

The MSB-first truncation results shown in Figures 6.10 and 6.11 demonstrate clear

area gains for this truncation method. Thanks mostly to the severe effect of the output

truncation described in Section 6.2.1 for any r > 0, a dramatic drop in resource usage is

seen after r = 0 for any s. In the most extreme case tested, for s = 32 and r = 28, overhead

drops from 15.2% to just 2.53%: an 83.3% reduction. The changes in overhead seen for

LSB-first truncation, on the other hand, are more complex: as Figures 6.12 and 6.13 show,

overheads initially increase in all cases other than s = 32. This is primarily due to the

introduction of the subtractors shown in Figure 6.9. Gains are realised in the s = 16 case

for r ≥ 8, r ≥ 16 in the s = 8 case and r ≥ 20 in the remaining two. The maximum

area overhead reduction, again for s = 32 and r = 28, was 23.8%: less than the equivalent

MSB-first truncation’s, but still not insignificant.

6.4.2 Performance

For the same set of designs, the reported timing model-inferred maximum operating fre-

quency (fmax) was also recorded. The raw results obtained are detailed in Table 6.5,

with changes versus the equivalently sized unprotected designs for MSB- and LSB-first

truncation, in the same style as those produced for area in Figures 6.10 and 6.12, shown

in Figures 6.14 and 6.15, respectively. To overcome the effects of computer-aided de-

sign (CAD) noise, trendlines are included for each plot, shown as dashed lines. For the

112

0

20

40

60

80

100

120

140

160

180

200

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) LUT

10

15

20

25

30

35

40

45

50

55

60

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) FF

−1

−0.5

0

0.5

1

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) BRAM

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) DSP

Figure 6.10: RP-ABFT with MSB-first truncation-protected accelerator resource usage
overhead versus baseline, showing the change in individual resource util-
isations for each design versus its equivalently sized unprotected, baseline
implementation.

MSB-first truncation plots shown in Figure 6.14, these begin at r = 4 due to the disconti-

nuities expected prior to that value. Note that neither the type of RP-ABFT nor r affects

the (clock cycle) latency of a design versus its standard ABFT equivalent, allowing fmax

to be used for performance comparison directly.

Due primarily to the wide (64-bit) adders needed to enable checksum verification, fmax

reductions are significant in the zero truncation case: for s = 32, fmax drops by 40.8%.

Such penalties are practically eliminated, and in a few cases become net gains, through

the use of MSB-first truncation; this is shown in Figure 6.14. The large jump seen for all

s to near-zero is due to the elimination of at least 50% of the output bits during checksum

verification explained in Section 6.2.1. To make this point clearer, Table 6.6 lists the input

and output checksum widths for each of the designs compiled. Recall that n = 32 in all

cases. As can be seen, the verification logic’s data width decreases from 64 to just 28

bits for r = 4, and reduces further thereafter: the regression lines demonstrate small but

fairly consistent gains. LSB-first truncation designs exhibit relatively small performance

113

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

Figure 6.11: RP-ABFT with MSB-first truncation-protected accelerator combined re-
source usage overhead versus baseline, showing the change in combined re-
source utilisation for each design versus its equivalently sized unprotected,
baseline implementation.

improvements: for s = 32, a drop in frequency impact of 7.23% was found. Although

trends for smaller s are actually negative, those for larger s are positive. This is a result

of the lack of severe output truncation, as shown in Table 6.6, and the introduction of

additional logic as described in Section 6.4.1. Nevertheless, frequency gains were realised

for larger designs, with the s = 32 case showing increasing gains for each value of r tested

but the last.

6.5 Fault Observability

Functional simulations were performed in software to assess the fault observability of the

proposed designs across the following range of variables:

• Fault type: {permanent, transient}.

• s: {2, 4, 8, 16, 32}.

• n (bits): {2, 4, 8, 16, 32}.

• Truncation type: {none, MSB-first, LSB-first}.

114

100

120

140

160

180

200

220

240

260

280

300

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) LUT

25

30

35

40

45

50

55

60

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) FF

−1

−0.5

0

0.5

1

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) BRAM

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) DSP

Figure 6.12: RP-ABFT with LSB-first truncation-protected accelerator resource usage
overhead versus baseline, showing the change in individual resource util-
isations for each design versus its equivalently sized unprotected, baseline
implementation.

• r (bits): {0, 4, 8, 12, 16, 20, 24}.

For each combination of these, the steps detailed in Algorithm 12 were repeated 1,024,000

times, with results averaged thereafter.

In all cases, the fault model applied was that of individually targetted stuck-at-one

(SA1) accumulator output bits. For permanent faults, such SA1s are representative of,

for example, worn transistors or bridged interconnects, while they mimic effects including

register and memory upsets in the case of transients.

Results gleaned from this testing were, as is the case in the all of the fault observability

testing performed in this thesis, independent of fault rate, area and latency: they demon-

strate the proportions of total accelerator executions that should be expected to result in

particular classes of outputs under fixed fault conditions. They cannot be used to directly

ascertain the expected rates of certain output classes’ occurrence, although this can be

achieved by scaling the proportions to take fault rate, area and/or latency, as required,

into account.

115

10

15

20

25

30

35

40

45

50

55

60

0 4 8 12 16 20 24 28

∆
ar
ea

(%
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

Figure 6.13: RP-ABFT with LSB-first truncation-protected accelerator combined resource
usage overhead versus baseline, showing the change in combined resource
utilisation for each design versus its equivalently sized unprotected, baseline
implementation.

Algorithm 12 is largely similar to that used for matrix-matrix multiplication with em-

ulated fault injection described in Section 5.2 and detailed in Algorithm 7. Changes were

made to suit the introduction of r, and distance (d) was fixed at 1 since only a single

row or column of checksumming was used within the hardware described in Section 6.3.

Checksumming is added to A (Line 9) and B (Line 10) to form Ac and Br as described

in Section 6.2.1 (for MSB-first truncation) or Section 6.2.2 (for LSB-first) via procedure

call add cs(). When multiply-accumulation takes place (Line 18 for permanent fault

injection; Line 28 for transient), each step is performed modulo-22n, rather than 2n, as

explained in Section 6.3.1. Following computation, procedures check cs() (Line 34) and

diagnose cs() (Line 36) are called. While equivalent in purpose, these are somewhat

more complex than their equivalents in Algorithm 7 since they have to be capable of

operating with both truncation types.

Procedure add cs() is described in Algorithm 13. For column-wise checksum genera-

tion, starting from Line 1, a new matrix is provisioned (Line 2) with an additional row

for its checksums, its uppermost s rows being copied from the source matrix (Line 3). For

116

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

0 4 8 12 16 20 24 28

∆
f m

a
x
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

Figure 6.14: RP-ABFT with MSB-first truncation-protected accelerator fmax versus base-
line, showing the change in execution time for each design versus its equiv-
alently sized unprotected, baseline implementation. Trendlines are included
to counter CAD noise.

each column, the appropriate checksum element is zeroed (Line 5) and then accumulated

into, once per row of the source matrix, depending on the type of truncation required

as specified by variable truncation type. If no truncation is needed, accumulations are

carried out modulo-22n (Line 8). For MSB-first truncation, they are instead performed

modulo-2n−r, as explained in Section 6.2.1, while for LSB-first truncation each data ele-

ment of the source matrix is right-shifted by r bits prior to each accumulation (Line 12), as

explained in Section 6.2.2. To prevent overflow, no modulus is used with LSB-first trunca-

tion. One of the reasons Python was chosen as the language with which to implement the

framework was its default use of arbitrary-precision integers [76], thus preventing trans-

parent overflow. For row-wise checksum generation (from Line 17), the steps are identical

to those used for column-wise generation but with row and column indices reversed. Full

checksum generation (from Line 33) is achieved by performing the steps for both column-

and row-wise checksumming. The order this is completed in is irrelevant.

Algorithm 14 details the steps performed in procedure check cs(). To verify the check-

sums, those present within Cf are removed, leaving only data elements, when forming

117

−42

−40

−38

−36

−34

−32

−30

0 4 8 12 16 20 24 28

∆
f m

a
x
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

Figure 6.15: RP-ABFT with LSB-first truncation-protected accelerator fmax versus base-
line, showing the change in execution time for each design versus its equiv-
alently sized unprotected, baseline implementation. Trendlines are included
to counter CAD noise.

Ccopy (Line 2). Ccopy is expanded through the addition of both column- and row-wise

checksums into matrix Ccopy, f (Line 4). Column- and row-wise checksums within Cf and

Ccopy, f are then compared in turn. Vectors cs and cscopy, containing the appropriate

checksum elements from Cf and Ccopy, f, respectively, are created (Lines 8 and 9). If

truncation type indicates that no truncation was performed, cs and cscopy are simply

compared (Line 11). For MSB-first truncation, elements of cs are compared with those

in cscopy after their top n+ r bits have been discarded (Line 16); checksumming is blind

to these bits. For LSB-first truncation, absolute values of differences between checksum

elements are computed and compared to error values θ (Line 21, for non-corner elements)

or θc (Line 22, for the corner element), as derived in Section 6.3.3 and shown in Equa-

tions 6.11 and 6.12, respectively, as appropriate. Element-wise comparison is performed

either modulo-22n−r (Line 24, for non-corner elements) or modulo-22(n−r) (Line 28, for

the corner element) to account for the number of bits remaning post-right shifting. For

non-corner elements this is 2n − r since right-shifting by r bits is performed once during

their computation, while for the corner element it is 2(n − r) since r-bit right-shifting

118

happens twice.

Figures 6.16, 6.17, 6.18 and 6.19 respectively show the results of this testing for the pro-

portions of detected, false positive, false negative and masked faults for each combination

of truncation and fault type.

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)
Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.16: Detected fault proportions for RP-ABFT-protected accelerator. Each plot
shows the proportion of total accelerator execution’s results that led to a
successfully detected output for a particular combination of truncation type,
s and r.

In the broadest sense, the results show that it becomes increasingly common for faults

to be masked or missed entirely (false negative) than detected or flagged erroneously (false

positive) as r grows in all cases. Shapes and proportions of results falling into each of the

four result categories are largely the same for both MSB- and LSB-first truncation since

the error thresholds, explained in Sections 6.2.2 and 6.3.3, used for LSB-first truncation

are not considered when comparing actual and expected output data. Transients exhibit

around half the likelihood of detection due to the fact that they are expected to be masked

in 50% of occasions as a result of the uniformity of the input data. Results tend to be

more positive for larger s since the likelihood of faults being obscured by all surrounding

data decreases as the quantity of that data increases.

119

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

5

10

15

20

25

30

35

40

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

5

10

15

20

25

30

35

40

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.17: False positive fault proportions for RP-ABFT-protected accelerator. Each
plot shows the proportion of total accelerator execution’s results that led to
a false positive output for a particular combination of truncation type, s and
r.

Perhaps the most interesting feature of these results is the shape of the plots seen for

LSB-first truncation under permanent fault injection. Similarly to other plots, jumps

from desirable (high for detected, low for false negative, etc.) to undesirable proportions

of each result type are seen between r = 0 and r > 0, reflecting the inability to detect low-

magnitude errors that begins at r = 1. After this, however, plots remain largely flat until

r = 16, trending in the same directions as they did to begin with thereafter. It is around

this second inflection that the detection logic starts to become ineffective. Consider s = 32

in Equation 6.10. Setting ǫ(csout, c) = 263, i.e. ∨(dout) for n = 32, reveals that at r ≈ 16

corner checksums cease to be effective. Similarly, setting ǫ(csout) = 263 in Equation 6.8

for the same s and n shows that all checksumming is rendered useless at r ≈ 22.

The ability to locate faults, represented by the plots shown in Figure 6.20, is important

for applications requiring correction as well as detection. The accelerator relies upon

column checksum information to infer fault location since, as explained in Section 3.2.4,

output matrix columns have a one-to-one mapping to the multiply-accumulators (MACs)

120

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

5

10

15

20

25

30

35

40

45

50

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.18: False negative fault proportions for RP-ABFT-protected accelerator. Each
plot shows the proportion of total accelerator execution’s results that led to
a false negative output for a particular combination of truncation type, s and
r.

used to compute their elements. As for the previously discussed result classes, the results

show discontinuities—due to the harsh initial output truncation or introduction of error

bounding in MSB- and LSB-first truncation, respectively—followed by steady decreases as

r rises. Instances of masking were ignored when determining locatable faults since masked

results are, by definition, unlocatable.

Results flagged as false negatives were analysed to determine the magnitude of allowed

error in the case of faults being missed. In each of those cases, the maximum absolute

error of each of the output matrix’s data elements was calculated, and Figure 6.21 shows

the means of those results. Assuming that unmissed results are able to be corrected, Fig-

ure 6.21’s results therefore represent the average expected worst-element errors introduced

by RP-ABFT.

The results indicate that MSB-first truncation offers no tradeoff between r and allowed

error: the latter immediately jumps close to ∨(dout) and remains flat thereafter; expected

due to the fact that worst-case errors are introduced as soon as r 6= 0. While MSB-

121

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

30

35

40

45

50

55

60

65

70

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

30

35

40

45

50

55

60

65

70

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.19: Masked fault proportions for RP-ABFT-protected accelerator. Each plot
shows the proportion of total accelerator execution’s results that led to a
masked output for a particular combination of truncation type, s and r.

first truncation necessitates lower overhead incursion than either its LSB-first equivalent

or traditional ABFT, the results confirm that its effectiveness is severely limited when

considering allowed output error; although, for the largest r, the same is also true of LSB-

first truncation. RP-ABFT with LSB-first truncation does, however, allow for area (and

consequently power) and performance improvements while allowing relatively small errors

to pass. Although the mean results may seem high, recall that faults were emulated within

every simulation iteration, and that input data was drawn from a uniform distribution.

The results shown in Figures 6.16, 6.17, 6.18, 6.19 and 6.20 do not take area into account.

Additional plots, shown in Figures 6.22, 6.23, 6.24, 6.25 and 6.26, were therefore produced

to attempt to capture the effect of area upon likelihood of fault manifestation, thereby

scaling the previously seen fault proportions. Both s and r have an impact upon area.

For both variables, total RP-ABFT-enabled resource usage figures from Table 6.4 were

used to scale the results, with s = 2, r = 0 taken as the baseline. Detected and located

fault proportions were scaled down as area increased, while false positive, false negative

and masked fault proportions were scaled up.

122

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

20

40

60

80

100

0 4 8 12 16 20 24 28

P
ro
p
or
ti
on

of
re
su
lt
s
(%

)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.20: Located fault proportions for RP-ABFT-protected accelerator. Each plot
shows the proportion of total accelerator execution’s results that led to a
successfully locatable output for a particular combination of truncation type,
s and r.

The area-scaled plots in Figures 6.22, 6.23, 6.24, 6.25 and 6.26 unfortunately show

undesirable behaviour across the truncation types, fault models and r tested for changes

in s. Due to the increasing likelihood of false positive, false negative and masked faults

occurring as r grows, and the increasing expected fault rate as s rises due to additional area

utilisation, fault detectability and locatability are both expected to erode substantially

as s increases for either MSB- or LSB-first truncation experiencing either permanent or

transient faults.

6.6 Conclusion

This chapter introduced a new control within ABFT allowing for the reduction of precision

within checksumming components. The resulting protection is referred to as RP-ABFT.

The design, implementation and evaluation of an RP-ABFT-protected hardware accelera-

tor were described: the mathematical principles of RP-ABFT were presented first, based

123

257

258

259

260

261

0 4 8 12 16 20 24 28

µ
(M

A
E
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

256

257

258

0 4 8 12 16 20 24 28

µ
(M

A
E
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

225

230

235

240

245

250

255

260

265

0 4 8 12 16 20 24 28

µ
(M

A
E
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

225

230

235

240

245

250

255

260

0 4 8 12 16 20 24 28

µ
(M

A
E
)

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.21: Means of maximum absolute errors for RP-ABFT-protected accelerator. In
each case of a false negative result, the maximum absolute error of each of the
output matrix’s data elements was calculated: this figure shows the means of
those results. Assuming that unmissed results are able to be corrected, these
plots’ results therefore represent the average expected worst-element errors
introduced by RP-ABFT.

upon which informed decisions were made regarding the truncation of parts of the stan-

dard ABFT protection circuitry needed for the chosen operator. Two distinct versions of

RP-ABFT, involving MSB- and LSB-first truncation, were theorised and implemented in

hardware. Experiments were conducted to ascertain the implications of RP-ABFT has

upon area and performance overheads, and fault injection simulations were carried out to

evaluate the fault observability of the developed protection mechanism.

The findings herein include that bit-width reduction of ABFT circuitry within a fault-

tolerant accelerator used for multiplying pairs of 32×32 matrices resulted in the reduction

of incurred area overhead by 16.7% and recovery of 8.27% of fmax versus the equivalent

‘vanilla’ ABFT protection at the cost of introducing average and maximum absolute output

errors of 0.430% and 0.927%, respectively, of the maximum absolute output value under

transient fault injection.

124

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

0.05

0.1

0.15

0.2

0.25

0.3

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

0.05

0.1

0.15

0.2

0.25

0.3

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.22: Area-scaled detected fault proportions for RP-ABFT-protected accelerator,
with total resource usage figures used to scale for s and linear scaling used
for n.

6.6.1 Future Work

Several possible areas of future research regarding RP-ABFT have been identified.

Through the manipulation of output error threshold values, tradeoffs between false

positives and false negatives are achievable. Enhancements to the checksumming logic,

particularly for performance improvement, are also possible, along with the exploration of

output-only truncation to introduce additional tradeoff opportunities between overhead

and maximum allowed output error. Finally, the feasability of hybrid RP-ABFT-online

arithmetic implementations could be explored: by combining LSB-first truncation

RP-ABFT with existing work on online arithmetic [77] [78]—operations whose results

settle from MSB first—it is believed to be possible to create robust, overclocking-friendly

circuitry with self-verifying properties.

125

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.23: Area-scaled false positive fault proportions for RP-ABFT-protected acceler-
ator, with total resource usage figures used to scale for s and linear scaling
used for n.

126

ABFT Truncation Truncation Matrix size s
enabled type width r (bits) 2 4 8 16 32

✗
692 1064 1788 3336 6655

(1.30%) (2.00%) (3.36%) (6.27%) (12.51%)

None
2059 2836 4389 8336 15976

(3.87%) (5.33%) (8.25%) (15.67%) (30.03%)

4
1436 1899 2926 4926 9182

(2.70%) (3.57%) (5.50%) (9.26%) (17.26%)

8
1351 1809 2798 4714 8852

(2.54%) (3.40%) (5.26%) (8.86%) (16.64%)

12
1303 1750 2703 4565 8539

(2.45%) (3.29%) (5.08%) (8.58%) (16.05%)
MSB-

16
1234 1644 2564 4362 8182

first (2.32%) (3.09%) (4.82%) (8.20%) (15.38%)

20
1154 1580 2437 4155 7927

(2.17%) (2.97%) (4.58%) (7.81%) (14.90%)

24
1080 1516 2351 4080 7538

(2.03%) (2.85%) (4.42%) (7.67%) (14.17%)

✓ 28
1005 1415 2218 3873 7272

(1.89%) (2.66%) (4.17%) (7.28%) (13.67%)

4
2655 3394 5011 8496 15694

(4.99%) (6.38%) (9.42%) (15.97%) (29.50%)

8
2516 3245 4825 8289 15401

(4.73%) (6.10%) (9.07%) (15.58%) (28.95%)

12
2378 3102 4634 8092 15056

(4.47%) (5.83%) (8.71%) (15.21%) (28.30%)
LSB-

16
2245 2963 4442 7820 14699

first (4.22%) (5.57%) (8.35%) (14.70%) (27.63%)

20
2107 2830 4277 7597 14385

(3.96%) (5.32%) (8.04%) (14.28%) (27.04%)

24
1958 2633 4102 7368 14103

(3.68%) (4.95%) (7.71%) (13.85%) (26.51%)

28
1766 2527 3942 7097 13704

(3.32%) (4.75%) (7.41%) (13.34%) (25.76%)

Table 6.1: Baseline, MSB-first & LSB-first truncated accelerator LUT usage, containing
the raw resource usage figures obtained for all implementations. Percentages
of the total number of each of these resources for the target device are also
included.

127

ABFT Truncation Truncation Matrix size s
enabled type width r (bits) 2 4 8 16 32

✗
1213 1649 2511 4213 7618

(1.14%) (1.55%) (2.36%) (3.96%) (7.16%)

None
1915 2511 3703 6033 10693

(1.80%) (2.36%) (3.48%) (5.67%) (10.05%)

4
1713 2224 3266 5256 9331

(1.61%) (2.09%) (3.07%) (4.94%) (8.77%)

8
1670 2181 3203 5160 9172

(1.57%) (2.05%) (3.01%) (4.85%) (8.62%)

12
1639 2139 3139 5054 9023

(1.54%) (2.01%) (2.95%) (4.75%) (8.48%)
MSB-

16
1607 2096 3086 4958 8863

first (1.51%) (1.97%) (2.90%) (4.66%) (8.33%)

20
1564 2054 3022 4862 8704

(1.47%) (1.93%) (2.84%) (4.57%) (8.18%)

24
1532 2011 2958 4831 8544

(1.44%) (1.89%) (2.78%) (4.54%) (8.03%)

✓ 28
1490 1958 2905 4735 8395

(1.40%) (1.84%) (2.73%) (4.45%) (7.89%)

4
1883 2479 3639 5958 10544

(1.77%) (2.33%) (3.42%) (5.60%) (9.91%)

8
1841 2426 3575 5863 10385

(1.73%) (2.28%) (3.36%) (5.51%) (9.76%)

12
1809 2383 3511 5778 10225

(1.70%) (2.24%) (3.30%) (5.43%) (9.61%)
LSB-

16
1777 2341 3469 5682 10076

first (1.67%) (2.20%) (3.26%) (5.34%) (9.47%)

20
1734 2298 3405 5586 9916

(1.63%) (2.16%) (3.20%) (5.25%) (9.32%)

24
1702 2245 3352 5490 9757

(1.60%) (2.11%) (3.15%) (5.16%) (9.17%)

28
1660 2202 3288 5394 9597

(1.56%) (2.07%) (3.09%) (5.07%) (9.02%)

Table 6.2: Baseline, MSB-first & LSB-first truncated accelerator FF usage, containing the
raw resource usage figures obtained for all implementations. Percentages of the
total number of each of these resources for the target device are also included.

ABFT
Resource

Matrix size s
enabled 2 4 8 16 32

BRAM
12 24 48 96 192

✗
(4.29%) (8.57%) (17.14%) (34.29%) (68.57%)

DSP
8 16 32 64 128

(3.64%) (7.27%) (14.55%) (29.09%) (58.18%)

BRAM
12 24 48 96 192

✓
(4.29%) (8.57%) (17.14%) (34.29%) (68.57%)

DSP
12 20 36 68 132

(5.45%) (9.09%) (16.36%) (30.91%) (60.00%)

Table 6.3: Baseline, MSB-first & LSB-first truncated accelerator BRAM & DSP usage,
containing the raw resource usage figures obtained for all implementations. Per-
centages of the total number of each of these resources for the target device are
also included.

128

ABFT Truncation Truncation Matrix size s
enabled type width r (bits) 2 4 8 16 32

✗ 2.59% 4.85% 9.35% 18.40% 36.61%
None 3.85% 6.34% 11.31% 21.64% 42.16%

4 3.51% 5.83% 10.52% 19.85% 38.65%
8 3.46% 5.78% 10.44% 19.73% 38.46%
12 3.43% 5.74% 10.38% 19.63% 38.28%

MSB-
first

16 3.39% 5.68% 10.31% 19.52% 38.07%
20 3.35% 5.64% 10.23% 19.40% 37.91%
24 3.30% 5.60% 10.18% 19.35% 37.69%

✓
28 3.26% 5.54% 10.10% 19.23% 37.53%
4 4.13% 6.59% 11.59% 21.69% 42.00%
8 4.05% 6.51% 11.48% 21.57% 41.82%
12 3.98% 6.43% 11.38% 21.46% 41.62%

LSB-
first

16 3.91% 6.36% 11.28% 21.31% 41.42%
20 3.83% 6.29% 11.19% 21.18% 41.23%
24 3.76% 6.18% 11.09% 21.05% 41.06%
28 3.66% 6.12% 11.00% 20.90% 40.84%

Table 6.4: Baseline, MSB-first & LSB-first truncated accelerator total resource usage, con-
taining the means of proportional resource usage figures obtained for all imple-
mentations to give an indication of overall resource utilisations.

ABFT
enabled

Truncation
type

Truncation
width r (bits)

Matrix size s
2 4 8 16 32

fmax (MHz)
✗ 117.10 118.72 113.78 114.29 102.37

✓

None 79.42 78.52 74.48 71.00 60.57
4 118.00 106.17 110.67 103.60 98.39
8 118.20 111.45 114.58 101.63 98.81

MSB-
first

12 115.18 112.90 108.17 104.62 99.86
16 120.27 111.80 115.46 103.54 101.98
20 114.48 110.72 109.53 104.02 100.89
24 110.33 114.64 113.87 107.72 101.84
28 123.31 116.39 109.48 110.04 102.75
4 78.62 77.25 73.45 70.00 61.34
8 81.24 77.32 71.76 69.70 62.31

LSB-
first

12 80.07 78.78 74.61 68.13 62.49
16 77.59 78.60 74.95 69.62 63.14
20 80.03 78.20 72.83 70.97 64.03
24 78.41 76.17 74.04 70.08 64.86
28 78.94 76.57 75.78 70.95 63.59

Table 6.5: Baseline, MSB-first & LSB-first truncated accelerator fmax. Averaged execution
times and maximum operating frequencies achieved are shown for each design
to allow side-by-side comparison of unprotected and the range of protected
implementations.

129

Truncation type Truncation width r (bits) csin width (bits) csout width (bits)
None 32 + log

2
(s) 64

MSB-first

4 28 28
8 24 24
12 20 20
16 16 16
20 12 12
24 8 8
28 4 4

LSB-first

4 28 + log
2
(s) 60

8 24 + log
2
(s) 56

12 20 + log
2
(s) 52

16 16 + log
2
(s) 48

20 12 + log
2
(s) 44

24 8 + log
2
(s) 40

28 4 + log
2
(s) 36

Table 6.6: RP-ABFT input & output checksum widths, listing the input and output check-
sum widths for each of the designs compiled. s = 32 in all cases.

0

1

2

3

4

5

6

7

8

9

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

2

4

6

8

10

12

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.24: Area-scaled false negative fault proportions for RP-ABFT-protected acceler-
ator, with total resource usage figures used to scale for s and linear scaling
used for n.

130

Algorithm 12 RP-ABFT fault injection simulation

1: create s× s matrix A

2: create s× s matrix B

3: A.rand fill()
4: B.rand fill()
5: create s× s matrix Cref

6: Cref ← AB

7: create (s+ 1)× s matrix Ac

8: create s× (s+ 1) matrix Br

9: Ac ← A.add cs(‘col’, truncation type, n, r)
10: Br ← B.add cs(‘row’, truncation type, n, r)
11: create (s+ 1)× (s+ 1) matrix Cf

12: if fault type = ‘perm’ then
13: bit mask, faulty cols← generate bit mask(s, n, 1, 1, 1)
14: for i = 0 to s do
15: for j = 0 to s do
16: Cf[i][j]← bit mask[j]
17: for k = 0 to s− 1 do
18: Cf[i][j]←

(

(Cf[i][j] +Ac[i][k]×Br[k][j]) mod 22n
)

bitwise or bit mask[j]
19: end for
20: end for
21: end for
22: else
23: bit mask, faulty cols← generate bit mask(s, n, 1, 3, 1)
24: for i = 0 to s do
25: for j = 0 to s do
26: Cf[i][j]← bit mask[i][j][0]
27: for k = 0 to s− 1 do
28: Cf[i][j] ←

(

(Cf[i][j] + Ac[i][k] × Br[k][j]) mod 22n
)

bitwise or
bit mask[i][j][k + 1]

29: end for
30: end for
31: end for
32: end if
33: data ok ← Cf.get data() = Cref

34: cs ok ← Cf.check cs(truncation type, n, r)
35: result type← classify result(data ok, cs ok)
36: located← Cf.diagnose cs(truncation type, n, r) = faulty cols

131

Algorithm 13 add cs() procedure used in RP-ABFT fault injection simulation

Require: cs type, trunc type, n, r
1: if cs type = ‘col’ then
2: create (s+ 1)× s matrix Ac

3: Ac[0 · · s− 1][··]← A

4: for j = 0 to s− 1 do
5: Ac[s][j]← 0
6: for i = 0 to s− 1 do
7: if trunc type = ‘none’ then
8: Ac[s][j]← (Ac[s][j] +A[i][j]) mod 22n

9: else if trunc type = ‘msb first’ then
10: Ac[s][j]← (Ac[s][j] +A[i][j]) mod 2n−r

11: else
12: Ac[s][j]← Ac[s][j] + (A[i][j]≫ r)
13: end if
14: end for
15: end for
16: return Ac

17: else if cs type = ‘row’ then
18: create s× (s+ 1) matrix Br

19: Br[··][0 · · s− 1]← B

20: for i = 0 to s− 1 do
21: Br[i][s]← 0
22: for j = 0 to s− 1 do
23: if trunc type = ‘none’ then
24: Br[i][s]← (Br[i][s] +B[i][j]) mod 22n

25: else if trunc type = ‘msb first’ then
26: Br[i][s]← (Br[i][s] +B[i][j]) mod 2n−r

27: else
28: Br[i][s]← Br[i][s] + (B[i][j]≫ r)
29: end if
30: end for
31: end for
32: return Br

33: else
34: {Perform steps for cs type = ‘col’ and ‘row’, returning (s+ 1)× (s+ 1) matrix Cf}
35: end if

132

Algorithm 14 check cs() procedure used in RP-ABFT fault injection simulation

Require: truncation type, n, r
1: create s× s matrix Ccopy

2: Ccopy ← Cf.get data()
3: create (s+ 1)× (s+ 1) matrix Ccopy, f

4: Ccopy, f ← Ccopy.add cs(cs type, ‘full’, n, r)
5: for all cs type in {‘col’, ‘row’} do
6: create s+ 1 vector cs
7: create s+ 1 vector cs
8: cs← Cf.get cs(cs type)
9: cscopy ← Ccopy, f.get cs(cs type)

10: if truncation type = ‘none’ then
11: if cs 6= cscopy then
12: return false
13: end if
14: else if truncation type = ‘msb first’ then
15: for x = 0 to s do
16: if cs[x] mod 2n−r 6= cscopy[x] then
17: return false
18: end if
19: end for
20: else
21: θ = s22n−1

22: θc = s32n−r

23: for x = 0 to s− 1 do
24: if

∣

∣(cs[x]− cscopy[x]) mod 22n−r
∣

∣ > θ then
25: return false
26: end if
27: end for
28: if

∣

∣(cs[s]− cscopy[s]) mod 22(n−r)
∣

∣ > θc then
29: return false
30: end if
31: end if
32: end for
33: return true

133

0

0.05

0.1

0.15

0.2

0.25

0.3

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

1

2

3

4

5

6

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.25: Area-scaled masked fault proportions for RP-ABFT-protected accelerator,
with total resource usage figures used to scale for s and linear scaling used
for n.

134

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(a) MSB-first, permanent faults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(b) MSB-first, transient faults

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(c) LSB-first, permanent faults

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24 28

A
re
a-
sc
al
ed

p
ro
p
or
ti
on

of
re
su
lt
s

Truncation width r (bits)

s = 2
s = 4
s = 8
s = 16
s = 32

(d) LSB-first, transient faults

Figure 6.26: Area-scaled located fault proportions for RP-ABFT-protected accelerator,
with total resource usage figures used to scale for s and linear scaling used
for n.

135

7 Conclusion

The work described in this thesis addresses current hardware reliability concerns. By

employing low-overhead fault tolerance, as the experimental results herein have shown,

engineers can gain highly robust datapaths by sacrificing some throughput and, most

importantly, only limited additional area: critical for power efficiency and to limit the

effect expanding physical size has upon increasing the occurrence of faults. As reliability

becomes of greater concern for a wider variety of applications and settings due to increases

in variability, degradation and fault susceptibility caused by continued process scaling,

reliability mechanisms that necessitate the introduction of only limited overheads, such as

algorithm-based fault tolerance (ABFT) and its derivatives, are likely to prove popular.

While the majority of the applicational focus within the technical content of this thesis

has been on a single mathematical operation—matrix multiplication—the techniques de-

veloped are applicable to a wide range of other operators with relatively minor implemen-

tational changes. Generality has been demonstrated through the exploration of fault ob-

servability for additional operators—matrix addition and matrix-vector addition, the latter

representative of the behaviour of linear filters—and the ABFT-hardening of other linear

algebra-heavy applications, including those featuring lower- and upper-triangular (LU)

decompositions or discrete Fourier transforms (DFTs), remains possible.

7.1 Summary

A benchmark hardware accelerator using ABFT for runtime datapath error detection was

introduced as a case study for demonstrating the ability to achieve high fault detectability

without incurring significant area (and consequently power) or performance overheads.

Near-100% detectability was achieved while an area penalty of just 7.87% was incurred.

Throughput was reduced by 31.3%. The area overhead figure, in particular, compares ex-

tremely favourably with that which would be incurred through using modular redundancy

to achieve similar levels of resilience, with triple modular redundancy (TMR) necessitating

136

in excess of 200% additional area, for example.

Full fault detection and repair was achieved within the same accelerator with

two mechanisms—data-shifting logic and dynamic partial reconfiguration (DPR)—

implemented to allow operands to be routed around resources identified as faulty during

operation. Area overheads for a complete, hardened application of 12.4% and 10.1% were

encountered for additional logic-shifting and DPR, respectively; the latter representing a

50.7% overhead reduction over the former. In the DPR case, area overhead was reduced

at the expense of partial bitstream storage; 5.10MB of memory was required. Single

fault locatability of 96.7% was achieved in return for a 19.7% throughput penalty during

fault-free operation, increasing to an average of 33.8% in order to correct a single fault.

A simulation framework was developed to allow the fault observabilities of several

ABFT-protected operators to be established. By producing efficient simulation software,

hundreds of millions of simulations could be completed within hours, allowing accurate in-

sights into fault observability to be made fairly quickly. Object-oriented and user-friendly,

the framework is extensible; more operators and fault patterns could be added with rel-

ative ease. Analysis of the results obtained demonstrated ABFT to be an effective error

detection mechanism across the three operators considered.

The final technical work presented in this thesis covered the development of reduced-

precision algorithm-based fault tolerance (RP-ABFT); a derivative of ABFT in which

selective bit-width reduction is made in order to trade off incurred area and performance

overheads for limited fault detectability. RP-ABFT using checksum logic truncation from

the least-significant bit (LSB) first was found to be effective in achieving this: 16.7%

of area and 8.27% of the throughput overheads caused by the introduction of ABFT

protection were recovered by allowing low-magnitude errors (sub-1% of the maximum

absolute output value) to propagate while retaining robustness against faults likely to

cause high-magnitude errors. Findings indicate that RP-ABFT with LSB-first truncation

represents a useful addition to the reliability ‘toolbox.’

7.2 Future Work

While matrix multiplication represented a solid case study for the implementation of a

complete hardware fault tolerance solution presented in Chapters 3 and 4, the generalisa-

tion of the techniques developed therein to other linear algebraic operators is considered

to be an important avenue for further work. Refinements to the accelerator design, partic-

137

ularly facilitating more comprehensive pipelining of the checksum generation and verifica-

tion logic to allow timing model-inferred maximum operating frequency (fmax) recovery,

also remain possible.

Several areas of future work have been determined based upon outcomes of Chapter 5’s

fault observability experiments. The first concerns a potential design tool capable of creat-

ing hardware for the acceleration of a range of mathematical operations, and combinations

thereof, for linear algebra and signal processing applications. Basing such a tool upon

an established, and preferably cross-platform, high-level development framework such as

Open Computing Language (OpenCL) [79]—supported by both major field-programmable

gate array (FPGA) vendors [80] [81]—would allow for verification across a wider array of

usage scenarios and facilitate greater awareness of the methods developed. The data un-

derpinning Chapter 5’s results will be fundamental to the selection of design parameters

made by both the tool itself and its users. Additional mathametical operations suitable

for ABFT hardening, particularly the DFT, will also be explored.

Finally, regarding Chapter 6’s discussion of RP-ABFT, developments are planned for

its integration with both a high-level development framework for more accessible area-

performance-reliability tuning and online arithmetic operators to achieve bounded over-

clocking error in ‘reliably unreliable’ circuitry.

138

Bibliography

[1] C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-in Self-test of Logic Blocks

in FPGAs (Finally, a Free Lunch: BIST without Overhead!),” in IEEE VLSI Test

Symposium, 1996.

[2] J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, “A Transition Probability-based Delay

Measurement Method for Arbitrary Circuits on FPGAs,” in International Conference

on Field-programmable Technology (FPT), 2008.

[3] M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya, and V. Verma, “Using Roving

STARs for On-line Testing and Diagnosis of FPGAs in Fault-tolerant Applications,”

in IEEE International Test Conference (ITC), 1999.

[4] J. M. Levine, E. Stott, G. A. Constantinides, and P. Y. K. Cheung, “Online Measure-

ment of Timing in Circuits: for Health Monitoring and Dynamic Voltage & Frequency

Scaling,” in IEEE International Symposium on Field-Programmable Custom Comput-

ing Machines (FCCM), 2012.

[5] E. Stott and P. Y. K. Cheung, “Improving FPGA Reliability with Wear-levelling,”

in International Conference on Field-programmable Logic and Applications (FPL),

2011.

[6] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Low-overhead Fault-tolerant

FPGA Systems,” IEEE Transactions on VLSI Systems, vol. 6, no. 2, 1998.

[7] F. Hanchek and S. Dutt, “Node Covering-based Defect and Fault Tolerance Methods

for Increased Yield in FPGAs,” in International Conference on VLSI Design, 1996.

[8] J. M. Emmert and D. K. Bhatia, “A Fault-tolerant Technique for FPGAs,” Journal

of Electronic Testing: Theory and Applications (JETTA), vol. 16, no. 6, 2000.

139

[9] R. F. DeMara and K. Zhang, “Autonomous FPGA Fault-handling through Compet-

itive Runtime Reconfiguration,” in NASA/DoD Conference on Evolvable Hardware

(EH), 2005.

[10] S. Srinivasan, P. Mangalagiri, Y. Xie, N. Viiaykrishnan, and K. Sarpatwari, “FLAW:

FPGA Lifetime Awareness,” in ACM/IEEE Design Automation Conference, 2006.

[11] S. Zafar, Y. Kim, V. Narayanan, C. Cabral, V. Paruchuri, B. Doris, J. Stathis,

A. Callegari, and M. Chudzik, “A Comparative Study of NBTI and PBTI (Charge

Trapping) in SiO2/HfO2 Stacks with FUSI, TiN, Re Gates,” in IEEE Symposium on

VLSI Technology, 2006.

[12] E. Stott, P. Sedcole, and P. Y. K. Cheung, “Fault Tolerance and Reliability in Field-

programmable Gate Arrays,” IET Computers & Digital Techniques, vol. 4, no. 3,

2010.

[13] S. Kiamehr, A. Amouri, and M. B. Tahoori, “Investigation of NBTI- and PBTI-

induced Aging in Different LUT Implementations,” in International Conference on

Field-Programmable Technology (FPT), 2011.

[14] E. Stott, J. S. J. Wong, and P. Y. K. Cheung, “Degradation Analysis and Mitigation in

FPGAs,” in International Conference on Field-programmable Logic and Applications

(FPL), 2010.

[15] Altera, “Cyclone III FPGAs.” http://www.altera.com/products/fpga/cyclone-

series/cyclone-iii/overview.html.

[16] C. Stroud, E. Lee, S. Konala, and M. Abramovici, “Using ILA Testing for BIST in

FPGAs,” in IEEE International Test Conference (ITC), 1996.

[17] A. Alaghi, M. Sadoughi Yarandi, and Z. Navabi, “An Optimum ORA BIST for Mul-

tiple Fault FPGA Look-up Table Testing,” in IEEE Asian Test Symposium (ATS),

2006.

[18] C. Stroud, S. Wijesuriya, C. Hamilton, and M. Abramovici, “Built-in Self-test of

FPGA Interconnect,” in IEEE International Test Conference (ITC), 1998.

[19] I. G. Harris and R. Tessier, “Testing and Diagnosis of Interconnect Faults in Cluster-

based FPGA Architectures,” IEEE Transactions on Computer-aided Design of Inte-

grated Circuits and Systems, vol. 21, no. 11, 2002.

140

http://www.altera.com/products/fpga/cyclone-series/cyclone-iii/overview.html
http://www.altera.com/products/fpga/cyclone-series/cyclone-iii/overview.html

[20] C.-L. Hsu and T.-H. Chen, “Built-in Self-test Design for Fault Detection and Fault

Diagnosis in SRAM-based FPGAs,” IEEE Transactions on Instrumentation and Mea-

surement, vol. 58, no. 7, 2009.

[21] J. Liu and S. Simmons, “BIST Diagnosis of Interconnect Fault Locations in FPGAs,”

in Canadian Conference on Electrical and Computer Engineering, 2003.

[22] P. Girard, O. Heron, S. Pravossoudovitch, and M. Renovell, “Defect Analysis for

Delay-fault BIST in FPGAs,” in IEEE On-line Testing Symposium (IOLTS), 2003.

[23] J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, “Self-measurement of Combinatorial

Circuit Delays in FPGAs,” ACM Transactions on Reconfigurable Technology and

Systems (TRETS), vol. 2, no. 2, 2009.

[24] I. G. Harris, P. R. Menon, and R. Tessier, “BIST-based Delay Path Testing in FPGA

Architectures,” in IEEE International Test Conference (ITC), 2001.

[25] C.-C. Wang, J.-J. Liou, Y.-L. Peng, C.-T. Huang, and C.-W. Wu, “A BIST Scheme

for FPGA Interconnect Delay Faults,” in IEEE VLSI Test Symposium, 2005.

[26] Y.-L. Peng, C.-W. Wu, J.-J. Liou, and C.-T. Huang, “BIST-based Diagnosis Scheme

for Field-programmable Gate Array Interconnect Delay Faults,” IET Computers &

Digital Techniques, vol. 1, no. 6, 2007.

[27] M. A. Lusco, J. L. Dailey, and C. E. Stroud, “Built-in Self-test for Multipliers in

Altera Cyclone II Field-programmable Gate Arrays,” in Southeastern Symposium on

System Theory (SSST), 2011.

[28] M. D. Pulukuri and C. E. Stroud, “Built-in Self-test of Digital Signal Processors in

Virtex-4 FPGAs,” in Southeastern Symposium on System Theory (SSST), 2009.

[29] Z. Zhang, Z. Wen, and L. Chen, “BIST Approach for Testing Embedded Memory

Blocks in System-on-Chips,” in IEEE Circuits and Systems International Conference

on Testing and Diagnosis (ICTD), 2009.

[30] P. Sedcole, J. S. J. Wong, and P. Y. K. Cheung, “Characterisation of FPGA Clock

Variability,” in IEEE Computer Society Symposium on VLSI (ISVLSI), 2008.

[31] C. E. Stroud and N. S. Da Cunha, “Built-in Self-test of Programmable Clock Buffers

in Virtex-4, Virtex-5 and Virtex-6 FPGAs,” in Southeastern Symposium on System

Theory (SSST), 2011.

141

[32] S. Sunter and A. Roy, “Adaptive Parametric BIST of High-speed Parallel I/Os via

Standard Boundary Scan,” in IEEE International Test Conference (ITC), 2011.

[33] M. Abramovici, C. Stroud, B. Skaggs, and J. Emmert, “Improving On-line BIST-

based Diagnosis for Roving STARs,” in IEEE International On-line Testing Work-

shop, 2000.

[34] S. Dutt, V. Verma, and V. Suthar, “Built-in Self-test of FPGAs with Provable Diag-

nosabilities and High Diagnostic Coverage with Application to Online Testing,” IEEE

Transactions on Computer-aided Design of Integrated Circuits and Systems, vol. 27,

no. 2, 2008.

[35] V. Suthar and S. Dutt, “Efficient On-line Interconnect Testing in FPGAs with Prov-

able Detectability for Multiple Faults,” in Design, Automation and Test in Europe

(DATE), 2006.

[36] N. R. Shnidman, W. H. Mangione-Smith, and M. Potkonjak, “Fault Scanner for

Reconfigurable Logic,” in Conference on Advanced Research in VLSI, 1997.

[37] M. Abramovici and C. Stroud, “BIST-based Delay-fault Testing in FPGAs,” in IEEE

International On-line Testing Workshop, 2002.

[38] S. D’Angelo, C. Metra, S. Pastore, A. Pogutz, and G. R. Sechi, “Fault-tolerant Voting

Mechanism and Recovery Scheme for TMR FPGA-based Systems,” in IEEE Inter-

national Symposium on Defect and Fault Tolerance in VLSI Systems, 1998.

[39] M. A. Sullivan, H. H. Loomis, and A. A. Ross, “Employment of Reduced-precision

Redundancy for Fault-tolerant FPGA Applications,” in International Symposium on

Field-Programmable Custom Computing Machines (FCCM), 2009.

[40] B. Pratt, M. Fuller, M. Rice, and M. Wirthlin, “Reduced-precision Redundancy for

Reliable FPGA Communications Systems in High-radiation Environments,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 49, no. 1, 2013.

[41] R. Glein, B. Schmidt, F. Rittner, J. Teich, and D. Ziener, “A Self-adaptive SEU Mit-

igation System for FPGAs with an Internal Block RAM Radiation Particle Sensor,”

in International Symposium on Field-Programmable Custom Computing Machines

(FCCM), 2014.

142

[42] F. G. de Lima Kastensmidt, G. Neuberger, R. F. Hentschke, L. Carro, and R. Reis,

“Designing Fault-tolerant Techniques for SRAM-based FPGAs,” IEEE Design & Test

of Computers, vol. 21, no. 6, 2004.

[43] A. L. Burress and P. K. Lala, “On-line Testable Logic Design for FPGA Implemen-

tation,” in IEEE International Test Conference (ITC), 1997.

[44] R. Karri and N. Mukherjee, “Versatile BIST: an Integrated Approach to On-line/Off-

line BIST,” in IEEE International Test Conference (ITC), 1998.

[45] P. Nigh and W. Maly, “A Self-testing ALU using Built-in Current Sensing,” in IEEE

Custom Integrated Circuits Conference, 1989.

[46] M. Nicolaidis, “On-line Testing for VLSI,” in IEEE International Test Conference

(ITC), 1997.

[47] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, S. Durand, P. Marchal, and

P. Nussbaum, “Embryonics: a New Family of Coarse-grained FPGA with Self-repair

and Self-reproducing Properties,” in IEEE International Symposium on Circuits and

Systems (ISCAS), 1996.

[48] C. Ortega-Sanchez, A. Tyrrell, D. Mange, A. Stauffer, and G. Tempesti, “Reliability

Analysis of a Self-repairing Embryonic Machine,” in Euromicro Conference, 2000.

[49] V. Lakamraju and R. Tessier, “Tolerating Operational Faults in Cluster-based FP-

GAs,” in ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA), 2000.

[50] J. Narasimham, K. Nakajima, C. Rim, and A. T. Dahbura, “Yield Enhancement

of Programmable ASIC Arrays by Reconfiguration of Circuit Placements,” IEEE

Transactions on CAD of Integrated Circuits and Systems (TCAD), vol. 13, no. 8,

1994.

[51] A. Mathur and C. L. Liu, “Timing-driven Placement Reconfiguration for Fault Tol-

erance and Yield Enhancement in FPGAs,” in European Design and Test Conference

(DATE), 1996.

[52] B. Girau, P. Marchal, P. Nussbaum, A. Tisserand, and H. F. Restrepo, “Evolvable

Platform for Array Processing: a One-chip Approach,” in International Conference

on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro), 1999.

143

[53] A. Miele and P. di Torino, “A Software Framework for Dynamic Self-repair in Em-

bedded SoCs Exploiting Reconfigurable Devices,” in IEEE International Conference

on Automation, Quality and Testing, Robotics (AQTR), 2010.

[54] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix Op-

erations,” IEEE Transactions on Computers, vol. C-33, no. 6, 1984.

[55] S.-J. Wang and N. K. Jha, “Algorithm-based Fault Tolerance for FFT Networks,”

IEEE Transactions on Computers, vol. 43, no. 7, 1994.

[56] A. Jacobs, G. Cieslewski, and A. D. George, “Overhead and Reliability Analysis of

Algorithm-based Fault Tolerance in FPGA Systems,” in International Conference on

Field-programmable Logic and Applications (FPL), 2012.

[57] J. Rexford and N. K. Jha, “Algorithm-based Fault Tolerance for Floating-point Op-

erations in Massively Parallel Systems,” in International Symposium on Circuits and

Systems (ISCAS), vol. 2, 1992.

[58] C. Braun, S. Halder, and H. J. Wunderlich, “A-ABFT: Autonomous Algorithm-based

Fault Tolerance for Matrix Multiplications on Graphics Processing Units,” in Inter-

national Conference on Dependable Systems and Networks (DSN), 2014.

[59] J.-Y. Jou and J. A. Abraham, “Fault-tolerant Matrix Arithmetic and Signal Process-

ing on Highly Concurrent Computing Structures,” Proceedings of the IEEE, vol. 74,

no. 5, 1986.

[60] J. J. Davis and P. Y. K. Cheung, “Datapath Fault Tolerance for Parallel Accelera-

tors,” in International Conference on Field-programmable Technology (FPT), 2013.

[61] Xilinx, “Zynq-7000 All Programmable SoC.” http://www.xilinx.com/products/

silicon-devices/soc/zynq-7000.html.

[62] Xilinx, “Zynq-7000 AP SoC (XC7Z010 and ZC7Z020) Data Sheet.” http://www.

xilinx.com/support/documentation/data_sheets/ds187-XC7Z010-XC7Z020-

Data-Sheet.pdf.

[63] Xilinx, “LogiCORE IP XPS Central DMA Controller (v2.03a).” http://www.

xilinx.com/support/documentation/ip_documentation/xps_central_dma.pdf.

144

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/support/documentation/data_sheets/ds187-XC7Z010-XC7Z020-Data-Sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds187-XC7Z010-XC7Z020-Data-Sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds187-XC7Z010-XC7Z020-Data-Sheet.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_central_dma.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_central_dma.pdf

[64] Xilinx, “LogiCORE IP AXI Block RAM (BRAM) Controller (v1.03a).” http://

www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/

v1_03_a/ds777_axi_bram_ctrl.pdf.

[65] Xilinx, “LogiCORE AXI Interconnect IP (v1.01.a).” http://www.xilinx.com/

support/documentation/ip_documentation/ds768_axi_interconnect.pdf.

[66] Xilinx, “LogiCORE IP Interrupt Control (v2.01a).” http://www.xilinx.com/

support/documentation/ip_documentation/interrupt_control.pdf.

[67] Avnet, “Introduction to the Zynq-7000 Extensible Processing Platform.” http://

www.em.avnet.com/en-us/design/trainingandevents/Documents/X-FEST

%202012%20PRESENTATIONS/xfest12_pdf_zynq_intro_v1_1_april29.pdf.

[68] Xilinx, “7 Series DSP48E1 Slice, UG479.” http://www.xilinx.com/support/

documentation/user_guides/ug479_7Series_DSP48E1.pdf.

[69] Python, “16.6. multiprocessing – Process-based ‘Threading’ Interface.” http://docs.

python.org/2/library/multiprocessing.html.

[70] AMD, “AMD Server Processors.” http://www.amd.com/en-us/products/server.

[71] J. J. Davis and P. Y. K. Cheung, “Reducing Overheads for Fault-tolerant Datapaths

with Dynamic Partial Reconfiguration,” in IEEE International Symposium on Field-

programmable Custom Computing Machines (FCCM), 2014.

[72] J. J. Davis and P. Y. K. Cheung, “Achieving Low-overhead Fault Tolerance for Paral-

lel Accelerators with Dynamic Partial Reconfiguration,” in International Conference

on Field-programmable Logic and Applications (FPL), 2014.

[73] Xilinx, “Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All-

programmable SoC Devices.” http://www.xilinx.com/support/documentation/

application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.

pdf.

[74] Avnet, “Avnet Product Brief – ZedBoard.” http://zedboard.org/sites/default/

files/product_briefs/PB-AES-Z7EV-7Z020_G-v12.pdf.

[75] J. J. Davis and P. Y. K. Cheung, “Reduced-precision Algorithm-based Fault Toler-

ance for FPGA-implemented Accelerators,” in International Workshop on Applied

Reconfigurable Computing (ARC), 2016.

145

http://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v1_03_a/ds777_axi_bram_ctrl.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v1_03_a/ds777_axi_bram_ctrl.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_bram_ctrl/v1_03_a/ds777_axi_bram_ctrl.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds768_axi_interconnect.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ds768_axi_interconnect.pdf
http://www.xilinx.com/support/documentation/ip_documentation/interrupt_control.pdf
http://www.xilinx.com/support/documentation/ip_documentation/interrupt_control.pdf
http://www.em.avnet.com/en-us/design/trainingandevents/Documents/X-FEST%202012%20PRESENTATIONS/xfest12_pdf_zynq_intro_v1_1_april29.pdf
http://www.em.avnet.com/en-us/design/trainingandevents/Documents/X-FEST%202012%20PRESENTATIONS/xfest12_pdf_zynq_intro_v1_1_april29.pdf
http://www.em.avnet.com/en-us/design/trainingandevents/Documents/X-FEST%202012%20PRESENTATIONS/xfest12_pdf_zynq_intro_v1_1_april29.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
http://docs.python.org/2/library/multiprocessing.html
http://docs.python.org/2/library/multiprocessing.html
http://www.amd.com/en-us/products/server
http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
http://zedboard.org/sites/default/files/product_briefs/PB-AES-Z7EV-7Z020_G-v12.pdf
http://zedboard.org/sites/default/files/product_briefs/PB-AES-Z7EV-7Z020_G-v12.pdf

[76] Python, “5. Built-in Types.” http://docs.python.org/2/library/stdtypes.html.

[77] K. Shi, D. Boland, E. Stott, S. Bayliss, and G. Constantinides, “Datapath Synthe-

sis for Overclocking: Online Arithmetic for Latency-accuracy Tradeoffs,” in Design

Automation Conference (DAC), 2014.

[78] K. Shi, D. Boland, and G. Constantinides, “Efficient FPGA Implementation of

Digit-parallel Online Arithmetic Operators,” in International Conference on Field-

Programmable Technology (FPT), 2014.

[79] K. Group, “OpenCL – Khronos Group.” http://www.khronos.org/opencl.

[80] Altera, “Altera SDK for OpenCL.” http://www.altera.com/products/design-

software/embedded-software-developers/opencl/overview.html.

[81] Xilinx, “Xilinx SDAccel.” http://www.xilinx.com/publications/prod_mktg/

sdnet/sdaccel-wp.pdf.

146

http://docs.python.org/2/library/stdtypes.html
http://www.khronos.org/opencl
http://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
http://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-wp.pdf
http://www.xilinx.com/publications/prod_mktg/sdnet/sdaccel-wp.pdf

	Introduction
	Contributions
	Publications
	Outline

	Background
	Introduction
	Outline

	Faults & Errors
	Degradation
	Fault Detection
	Offline
	Online (Roving)
	Online (Health Monitoring)

	Fault Mitigation
	Error Correction
	Compile-time Provisioning
	Runtime Provisioning

	Algorithm-based Fault Tolerance
	Matrix Encoding & Decoding
	Application to Arithmetic Operations
	Result Classification

	Conclusion

	Algorithm-tailored Low-overhead Online Error Detection
	Introduction
	Contributions
	Publications
	Outline

	Implementation
	Hardware-software Platform
	Baseline Architecture
	Checksum Generation & Verification
	Fault Location
	Error Injection

	Overheads
	Area
	Performance

	Fault Observability
	Conclusion

	Error Correction via Runtime Resource Reallocation
	Introduction
	Contributions
	Publications
	Outline

	Implementation
	Additional Logic
	Partial Routing Reconfiguration

	Overheads
	Area
	Performance
	Memory

	Conclusion

	Fault Observability for Matrix & DSP Operations
	Introduction
	Contributions
	Outline

	Method
	Matrix-matrix Multiplication
	Matrix Addition
	Matrix-vector Multiplication
	Conclusion

	Reduced-precision Algorithm-based Fault Tolerance
	Introduction
	Contributions
	Publications
	Outline

	Principles of RP-ABFT
	MSB-first Truncation
	LSB-first Truncation

	Implementation
	Baseline Architecture
	MSB-first Truncation
	LSB-first Truncation

	Overheads
	Area
	Performance

	Fault Observability
	Conclusion
	Future Work

	Conclusion
	Summary
	Future Work

