
Credit Modelling and Regime-Switching

A thesis presented for the degree of

Doctor of Philosophy of Imperial College

by

Richard Bell

Department of Mathematics

Imperial College

180 Queen’s Gate, London SW7 2AZ

SEPTEMBER 2015



i

I certify that this thesis, and the research to which it refers, are the product of my

own work, and that any ideas or quotations from the work of other people, published

or otherwise, are fully acknowledged in accordance with the standard referencing

practices of the discipline.

Signed:



ii

COPYRIGHT

The copyright of this thesis rests with the author and is made available under a Cre-

ative Commons Attribution Non-Commercial No Derivatives licence. Researchers are

free to copy, distribute or transmit the thesis on the condition that they attribute it,

that they do not use it for commercial purposes and that they do not alter, transform

or build upon it. For any reuse or redistribution, researchers must make clear to

others the licence terms of this work.



iii

In memory of Margaret Newton Bell.



iv

ABSTRACT

This thesis is concerned with some issues arising in relation to the capital structure

and pricing of credit risk of a firm partly financed by debt. Three related models

are presented. The first extends the existing literature on structural credit models

of firms financed by the so called roll-over debt structure to allow for dependence

between interest rates, asset volatility and the probability of default by incorporating

regimes via the introduction of a Markov chain. The asset returns of a firm are

modelled by a regime-switching geometric Brownian motion. An optimised capital

structure is generated and the associated credit spreads analysed. The second model

adds to recent work on regime-switching in the case of consol, or infinite maturity

debt, by incorporating jumps into the asset process. The asset process of the firm is

modelled as a phase-type Lévy process which affords a flexible framework capable of

accommodating a wide range of stochastic dynamics. An optimal capital structure

is identified. The contribution of the first two models is that that they are highly

flexible and allow for an arbitrary number of market regimes to be combined in an

intuitive way. The final model extends the literature on endogenous default to a firm

which is partly financed by a single finite maturity bond. The assets of the firm are

modelled as a geometric Brownian motion which pays a continuous dividend. By

solving the associated optimal stopping problem, a default boundary is characterised

in terms of an integral equation.
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CHAPTER 1 INTRODUCTION

This thesis is concerned with some issues arising in relation to the capital structure

and pricing of credit risk of a firm partly financed by debt. This subject remains of

topical interest in financial mathematics particularly in view of recent financial market

events. In early 2009, observed credit spreads1 rose to levels not seen since the Great

Depression of the 1930s. Poor lending standards, particularly in housing finance,

coupled with a high level of leverage in the banking system, itself associated with

the introduction of new and innovative financial instruments, resulted in significant

financial distress. What had been regarded as normal financial market relationships

appeared to breakdown, significantly exposing potential weaknesses in both asset

pricing models and financial risk systems.

The primary objective of this thesis is to contribute to the understanding of the

underlying mechanisms which determine firm capital structure and credit spreads.

Ever since Modigliani and Miller [1958], economists and financial mathematicians

have devoted considerable effort to understanding firms’ financing policies. Structural

models of credit risk provide a framework within which to explore issues related to

corporate capital structure, and, for this reason, occupy a pivotal role in this report.

The structural approach to credit risk attempts to model the default event2 of a

firm under varying conditions upon assuming the assets of the firm obey some given

stochastic dynamics. Structural models are characterised by a default event occurring

when the value of a firm’s assets fall below some boundary. The so called reduced-form

credit approach, which attempts to model the default probability of a firm directly,

1The term credit spread refers to interest paid by an entity in excess of the risk free interest rate.

2Default event refers to a situation in which an entity is unable, or unwilling, to repay contractual
debt obligations.
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will not be considered. In Chapter 2, following a brief description of corporate bonds

terminology, a literature review of the major developments in structural models of

credit risk is presented.

That historically observed financial market behaviour has been so at odds with re-

cent experience has lead to the question as to whether existing models are flexible

enough to capture financial market behaviour in a wide range of circumstances. Being

necessarily an abstraction, arguably financial models may never be able to capture

the complexity of the real world. Recent interest in the literature to model economic

regime shifts has largely been motivated by the work of Hamilton [1989] in which

it was suggested that economies are subject to period regime-shifts between distinct

business cycles. In the latter regard, there may be some advantage in viewing finan-

cial markets as operating in a variety of different regimes at different times. Allowing

model parameters that are otherwise typically fixed, to vary according by regime,

may provide a convenient mechanism to capture changing behaviour in an elemental

way and provide a framework within which to accommodate a wide range of financial

market conditions.

The topic of endogenously determined optimal capital structure also remains an active

area of research. Understanding how and when companies refinance and the associ-

ated implications for default risk continues to be of significant interest. In an effort to

understand long term financing behaviour, and to avoid the technical complications

related to time dependencies, many authors have sought to examine optimal cap-

ital structure in the context of an assumption of a stationary, or time-independent,

debt framework3. The so called roll-over debt model introduced by Leland [1994b],

which will be outlined in Chapter 2, has become the benchmark upon which many

recent contributions in the area of structural credit models have been based. The

main advantage of the roll-over debt framework, as will be explained in sequel, is

that it affords a mechanism to analyse corporate debt profiles of differing structure

or maturity.

3In a stationary debt framework, a firm’s debt repayments are constant through time.

2
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Chapter 3 builds on the roll-over debt framework literature by presenting a model

of corporate capital structure under a regime-switching setting, which, potentially,

affords a convenient mechanism to be able to combine a number of different market

conditions in a simple and intuitive way. The model will focus on only two regimes,

but allows firm asset volatility, risk free interest and dividend rates to be regime-

dependent, via the firm’s asset value process being modelled as a regime-switching

geometric Brownian motion4. Tax relief on interest payments is known to be an

important element in determining corporate capital structure, since it effectively gen-

erates a stream of positive future cash flows that add to a firm’s net worth. Indeed,

the essence of the contribution of Modigliani and Miller [1958] is that, without any

tax advantages, there may be little incentive for corporate entities to leverage their

balance sheets at all. In Chapter 3 the case of also allowing tax rates and bankruptcy

costs to vary by regime is investigated. Default is modelled as the first time that the

asset value process of the firm falls below a barrier, also regime-dependent, whether

given exogenously and fixed, or, endogenously determined by the firm in order to

optimise equity value. An optimised capital structure and associated financing costs

are identified.

In Chapter 4, the model of Chapter 3 is extended to allow the asset price process

of the firm to jump in the negative direction. Moreover, the jump process is also

allowed to be regime-dependent motivated by the conjecture that during times of

economic stress, negative jumps of the asset process might be expected to be larger

in magnitude. Unlike Chapter 3, however, the firm in Chapter 4, is financed by a

single infinite maturity, or consol, bond. While the latter assumption unfortunately

loses the richness of term structure inherent in the roll-over model, it implies that

the debt profile is fully stationary, which allows an optimal capital structure to be

identified. The model also allows firm asset volatility, risk free interest and dividend

rates as well as tax rates and bankruptcy costs to be regime-dependent. An interesting

4A geometric Brownian motion where one, or more, of the process parameters are regime-
dependent

3
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feature of the model is that the payout5 a firm might expect to receive on default also

becomes regime-dependent, which has the implication that, under certain conditions,

it may never be optimal for a firm to endogenously declare default in certain regimes.

When an optimal default boundary is known to exist, optimal capital structure and

credit spreads are also identified.

Naturally, the assumption of time-homogeneity outlined above affords significant ana-

lytical benefits and allows insights to be gained in relation to aspects of corporate

capital structure that persist through time. However, the fact that the vast ma-

jority of lending agreements mature at a fixed date implies that there may also be

significant time dependencies to consider in relation to the determination of capital

structure. Not only does virtually all debt issued by corporate entities mature at a

fixed date, finite maturity debt contracts are also prevalent in areas such as private

equity, infrastructure finance and the insurance industry.

For the above reason, in Chapter 5, attention is turned to focus on a firm financed by

finite maturity debt. As in the earlier chapters, the firm is assumed to be endowed

with an asset process, but one which is modelled by a single geometric Brownian

motion. The firm still receives tax advantages on coupon payments and is assumed

to choose a default policy which maximises the equity value of the firm or structure.

The main implication of time dependence in the structure of debt for the model in

Chapter 5 is that the endogenously determined level of asset at which it is optimal to

declare default is also time dependent. The primary focus of the analysis, is therefore,

in identifying the time dependent default boundary for a firm’s asset process.

It has been typical of structural models in the recent literature to restrict the benefit

accrued to a firm in terms of tax relief on coupon payments to situations in which

the asset value of a firm is in excess of some boundary level. The latter restriction

has typically been motivated by the observation that tax relief on interest payments

is only afforded to companies in many cases under the proviso that positive profits

5The payout on default will include the value of debt that the firm would otherwise have been
obligated to pay.

4
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are being generated. While such an assumption is entirely reasonable, in view of the

complications of incorporating regime shifts into the analysis described above, the so

called tax-threshold restriction on tax relief related to debt servicing costs will not

feature in the analysis presented in this thesis, and in the context of regime-switching

models, remains an area for future research. Other such potential areas of future

study arising from the conclusions of this thesis are offered in Chapter 6 along with

some concluding remarks.

5
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CHAPTER 2 STRUCTURAL MODELS OF

CREDIT RISK

2.1 Modelling Credit Risk

The term to default refers to the event under which a counterpart to a financial

contract fails to meet an obligation under the terms of the contract. An obvious

example would be that of a debtor failing to meet a payment specified in a loan

agreement. More generally, the term credit risk refers to an event which directly

effects the likelihood of a default occurring. Examples of the latter might be an

increase in the amount of debt owed by a company or perhaps a deterioration in the

economic performance of a company, both of which may impair the ability to repay

debt. Naturally one might expect that higher credit risk should be associated with

an increased cost of borrowing.

There have been two distinct approaches taken towards pricing securities which are

subject to credit risk. The so called reduced form or hazard rate approach is based on

the idea that default events occur by surprise and therefore focuses on modelling the

probability of default directly (see for example Turnbull and Jarrow [1995], Lando

et al. [1997], Duffie and Singleton [1999] and the associated literature). Typically, the

default event is modelled using a hazard process where the intensity of the process

reflects the infinitesimal likelihood of a default. The intensity associated with the

default of a given financial contract may be, for example, estimated by an empirical

analysis of historical default events. Such models will not be considered in this report.

By contrast, structural models concentrate on modelling financial characteristics of

the borrower which may influence whether a default event occurs. The probability
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of default is determined within the framework of the model itself, and in this sense,

the structural approach attempts to model not only when a default will occur but

also why a default occurs. Section 2.3 onwards of this chapter will focus on the

major developments in the literature on structural models as they pertain to pricing

corporate bonds. Before doing so, some salient terminology and definitions relating

to corporate bonds are outlined.

2.2 Corporate Bonds

A bond is a financial contract under which a borrower commits to making future re-

payments in return for receiving a payment when the contract is issued. The maturity

date of a bond refers to the date of the final promised payment of the bond and the

maturity to length of time until that final payment. The par value or face value of

a bond is repaid at maturity. Typically, a bond will pay a sequence of smaller inter-

mediate payments at regular intervals, for example annually, called coupons, which

may be either a fixed or variable amount. Bonds which pay no coupons are referred

to as discount bonds. Bonds which never mature and pay coupons in perpetuity are

refereed to as perpetual or consol bonds. The price paid to acquire ownership of a

bond is referred to as its market value.

Corporate bonds are issued by companies to raise funds and form part of the capital

structure of a company. Since a corporation may fail to deliver the payments promised

under the terms of a bond, corporate bonds are subject to risk of default and therefore

to credit risk as well. Clearly, a bond cannot be defaulted upon after its maturity

date.

2.2.1 Recovery Rules Under the circumstances of a default a creditor will at-

tempt to recover debt which is owed, the sum recovered being referred to as the

recovery value. In practice, the procedures surrounding the recovery process can be

very complex and will depend upon both the terms of the financial contract which

7
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has been defaulted upon, together with applicable laws in force in the jurisdiction of

the default. For example, certain debt may be classified as senior, which will receive

priority over junior debt, and may therefore attract a higher recovery value. Some

classes of debt may be secured against another asset allowing the debtor to take full

or partial control of the asset, while other debt may be subordinated, meaning that it

is not secured or has a lower priority than another claim.

Factors such as those above will effect the recovery payment which is the amount

that will be paid to creditors following a default. Typically, the recovery payment

is defined in terms of a recovery rate which specifies the fraction of some valuation

of the debt outstanding which will be paid to the creditor should a default occur.

In practice, a wide variety of recovery rules are applied. For example, the recovery

amount can be paid for valuation at either maturity of the debt, or at the time of

default, and the recovery rate may be applied to either the face or market value of the

debt. The loss given default refers to loss in value suffered by the creditor following

a default and is often specified as one minus the recovery rate.

2.2.2 Exogenous Default and Safety Covenants Borrowers are often forced

to incorporate covenants into a bond contract which afford creditors a certain degree

of protection over and above the commitment of the borrower to repay its debt. For

example, creditors may be afforded the right to take control of a company should

the net worth of a company fall below a specified level. In this case, the decision

to default is referred to as being exogenous to the company. A decision taken by a

company to default of its own volition is referred to as an endogenous default.

2.3 Structural Models

The rest of this chapter is concerned with the major developments in the literature on

structural models of corporate default. The majority of the models in the literature

share the same following general framework.

8
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2.3.1 General Framework A single firm is assumed to hold tradeable1 assets,

the total value of which can be represented by a single stochastic process, V = {V
t

}
t�0.

The value of the firm refers to the total value of all future contingent claims of the

firm. The firm is partly financed by debt with a value process given by D = {D
t

}
t�0

which is also a tradeable asset. The Equity value of the firm is simply the value of

the firm minus the total value of debt and the holders of equity are referred to as

the shareholders. For the most part, shareholders and the firm can be regarded as

synonymous. Firms can raise finance either by issuing more debt or dilute existing

shareholders by selling more equity. Some models will assume the existence of taxes

and costs associated with bankruptcy as well as restrictions on the ability of firms to

raise additional finance.

The structural approach to pricing corporate bonds is concerned with directly model-

ling the capital structure of a firm. The behaviour of the asset price and the associated

implications for the net worth of the firm in relation to the level of debt outstanding,

is naturally a key determinant of the probability that a firm will default. However, as

will be seen, restrictions on how firms can raise additional finance, bankruptcy costs

and taxes all play key roles in the valuation of corporate debt.

2.3.2 Technical Considerations The market is assumed to contain a savings

account process with the value at time t of a deposit maturing at time T given by

B (t, T ) = E


exp

✓

�
ˆ

T

t

r (s) ds

◆

|F
t

�

, (2.3.1)

where r = {r
t

}
t�0 is the risk free interest rate process and E [·] is the expectation

taken under the risk neutral measure. In many cases r will be assumed to be either

constant or deterministic. It is also assumed that the stochastic processes (V,B) are

defined on some filtered probability space (⌦,F ,P,F) where F = {F
t

}
t�0 denotes the

completed filtration generated by (V,B). In addition, the financial market is assumed

1Tradeable assets can be hedged in the financial market and therefore priced using standard no
arbitrage pricing techniques.

9
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to be frictionless2 and complete3.

2.3.3 Merton (1974) In a seminal paper by Merton [1974], it was shown that

the value of a finite maturity discount debt obligation of a firm, which can only default

at maturity, can be characterised as the value of a risk free bond minus the value of

a European put on the assets of the firm with a strike equal to the nominal value of

the debt. The classical solution to the European option problem in the case of asset

prices being assumed to follow a log-normal distribution, originally outlined by Black

and Scholes [1973], was then applied to provide an explicit formula for the value of a

corporate discount bond.

The rich literature on the subject of corporate capital structure is testimony to the

insight provided by the model in Merton [1974] which captures the very essence of

the problem of pricing corporate debt. In view of the central role played in the

literature, the model presented in Merton [1974] is outlined below using the now

familiar techniques of risk neutral pricing. Expressions for bond prices, yields and

credit spreads are derived and the sensitivity of these metrics to changes in leverage,

asset volatility and interest rates, as well as implications for the term structure are

examined.

The value of the assets of the firm is assumed to evolve under the risk neutral measure

according to a geometric Brownian motion

dV
t

V
t

= (r � �) dt+ �dW
t

, (2.3.2)

where r > 0 is a constant risk free rate, � > 0, W = {W
t

}
t�0 is a standard Brownian

motion, � > 0 represents the dividend rate and V
t

= v. The firm is partly financed by

a single discount bond with face value fixed at K which is non-callable and matures

2A frictionless market supports unlimited borrowing and lending at the same interest rate, allows
short sales of all assets with full use of proceeds, has no transactions costs or indivisibilities of assets
and trades continuously in time.

3The market is complete if every contingent claim can be hedged by a tradeable asset.

10
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at time T > 0. The firm can only default at time T if V
T

< K, in which case the

residual assets become the property of the bond holder.

According to standard financial theory, the value of the firm’s debt at time t will be

given by

D (v, t, T ) = e�r(T�t)
�

E
t,v

⇥

{VT>K}K
⇤

+ E
t,v

⇥

{VTK}VT

⇤�

= Ke�r(T�t) � e�r(T�t)E
t,v

⇥

(K � V
T

)

+⇤

= KB (t, T )� P (v, t, T ) , (2.3.3)

where (·)+ = max(·, 0), {A} is the indicator function of the set A, E
t,v

[·] = E [·|V
t

= v]

and

P (v, t, T ) = e�r(T�t)E
t,v

⇥

(K � V
T

)

+⇤

is the value of a European put option on the assets of the firm with strike equal to

the face value of debt, in this case fixed at K, also maturing at time T .

Equation (2.3.3) shows the value of the debt is equal to a risk free discount bond

maturing at time T minus the value of a put option on the assets of the firm with a

strike equal to the value of the debt with maturity T . If the probability of default is

zero, the price of a corporate bond is equal to the price of a risk free discount bond.

If the probability of default is one, a corporate bond represents a claim on the assets

of the firm. Clearly, as the probability of default increases, a corporate bond becomes

more and more like a claim on the firm’s assets.

Using (2.3.2), the value of the firm’s debt in equation (2.3.3) can be expressed expli-

citly as

D (v, t, T ) = V
t

(L
t

� (⇣2) + � (�⇣1)) , (2.3.4)

11
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where leverage4 is defined as L
t

=

KB(t,T )
Vt

,

⇣1 =
� log (L

t

) +

�

r � � + 1
2�

2
�

(T � t)

�
p
T � t

,

⇣2 = ⇣1 � �
p
T � t,

and � (·) is the standard normal distribution. Merton [1974] worked primarily with

an adjusted bond price

¯D (v, t, T ) = D (v, t, T ) /B (t, T )

= � (⇣2) + L�1
t

� (�⇣1) , (2.3.5)

which is the discounted value of the risky bond price, a quantity which features in

the formula for the credit spread or term premium associated with the firm.

The yield of the firm’s debt at time t which matures at time T , y (v, t, T ), is defined

by the relation D (v, t, T ) = Ke�y(t,T )(T�t) from which it follows that

y(v, t, T ) = � log (D (v, t, T ) /K)

T � t
. (2.3.6)

The term premium or the credit spread at time t for a bond which matures at time

T , s (v, t, T ) , which is the additional yield a firm must offer on risky debt over and

above the risk free interest rate, is given by

s (v, t, T ) = y (v, t, T )� r (2.3.7)

= �
log

�

¯D (v, t, T )
�

T � t
,

where the latter equality follows directly from (2.3.4).

One of the key characteristics of Merton [1974] is that credit spreads either converge

to zero or infinity as time converges to maturity. To see this observe from (2.3.4) and

4A firm is typically regarded as leveraged when the value of debt exceeds the value of the firm.
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(2.3.7) that

lim

t!T

� (�⇣1) =
(

1, {V
T

< K} ,
0, {V

T

> K} ,

lim

t!T

� (⇣2) =

(

0, {V
T

< K} ,
1, {V

T

> K} ,

from which it easily follows that

lim

t!T

s (v, t, T ) =

(

+1, {V
T

< K} ,
0, {V

T

> K} .

The cause of this predicted behaviour of spreads is the assumption of a geomet-

ric Brownian motion for the asset price process, (2.3.2), from which the continuity

properties of Brownian motion imply that the asset value at maturity will be revealed

immediately prior to maturity. Once the asset value at maturity is known, the default

event becomes predictable.

Table 2.3.1 details the static sensitivities of bond prices, yields and credit spreads

to changes in leverage, asset volatility and interest rates. As would be intuitively

expected, bond prices/yields fall/rise in response to increases in leverage, asset volat-

ility and interest rates. Higher interest rates make distant cash flows less valuable

and therefore reduce bond prices (increase yields). Greater volatility or leverage both

act to make default more likely, and therefore, a higher yield (lower bond price)

is required to compensate for increased risk, which is also reflected in higher credit

spreads. Contrary to yields however, higher interest rates act to reduce credit spreads.

2.3.4 Critiques of Merton’s Approach The approach taken in Merton [1974]

is attractive from the perspective of analytic tractability but has been criticised in

terms of the unrealistic nature of the required assumptions of the model. In particular,

the model assumes that asset price returns are normally distributed and that the asset

price process is continuous, implying that for un-leveraged firms credit spreads are

13
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Bond Price (D) Yield (y) Spread (s)

Leverage

@/@L  0 � 0 � 0

Volatility
�

�

2
�

@/@

�

�

2
�

 0 � 0 � 0

Interest Rate (r)

@/@r  0 � 0  0

Table 2.3.1: Merton (1974) Comparative Static Analysis
This table shows the directionality of the sensitivity of Merton [1974] bond prices, yields
and credit spreads to changes in leverage, asset volatility and interest rates.

approximately zero for very short maturities which is wholly at odds with observed

data. Furthermore, default may only occur in the model at maturity, and, only if

the asset price is less than outstanding nominal debt. Whereas in practice, firms

routinely declare bankruptcy prior to the maturity of their debt. In addition, both

volatility and interest rates are assumed to be constant which also implies that the

probability of default is independent of the risk free term structure. Since default

depends on the economic performance of the firm, which may in turn be related to

the economy as a whole, the latter assumption would appear to be unrealistic.

In response to these criticisms, Merton [1974] has been extended in the literature in

a number of ways. For example, Geske [1977, 1979] applied methodology associated

with valuing compound options to address the issue of multiple bonds, each maturity

being viewed as one of the compound options. Ho and Singer [1982] examine the

effect of a number of bond indenture provisions, concluding that risk is transferred

from stockholders to bondholders, as the tenor and size of debt increase.

One major difficulty is the unobservable nature of the asset value process which may

be contrary to the assumption in Merton [1974] that the asset value can be hedged

in the market. Moreover, difficulties arise from an empirical standpoint in relation to

calibrating models to market data. Since data for the asset process is not normally

available, typically some filtering method is used to extract estimates of the volatility
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of the asset value from proxy data, normally equity prices. As an alternative to

modelling the value of a firm’s assets, Buffet [2000] instead proposed to maximise the

value of equity based on assumed stochastic dynamics of a firm’s profits. As a result,

expressions for the value of debt were obtained that depended only on the current

value of assets and the stochastic dynamics of profits, both of which are observable

in the market.

Perhaps the most important extensions to Merton [1974] have been to allow for both

early and endogenously determined default, the addition of stochastic risk free interest

rates and for discontinuities in the asset price process. In the subsequent sections

some of the major contributions which have been suggested in the literature in these

regards are reviewed.

2.4 First Passage Models

First passage models allow default to occur at any time prior to the maturity of debt.

Such models focus on the first passage time of a random process related to a relevant

financial metric, typically the net worth of the borrower, below some specified barrier

level. The barrier may be deterministic or random and either determined exogenously

or endogenously to the firm.

The introduction of first passage times greatly enriches the structural approach in

allowing not only the probability, but also the timing of the default event to be

determined within the context of the model. In addition, more realistic recovery

payments can be modelled by specifying that the securities of a firm take on specific

values at the time of first passage.

First passage models for credit risk were first introduced by Black and Cox [1976] and

have subsequently been extended by many authors. See for example, Longstaff and

Schwartz [1995], Cathcart and El-Jahel [1998], Hsu et al. [2004], Zhou [1997] amongst

many others. In addition, first passage models laid the foundations for developments
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in relation to optimal capital structure 5. In view of the importance of the contribution

of Black and Cox [1976] to the understanding of credit risk, the model is outlined

below.

2.4.1 Black and Cox (1976) In Merton [1974] the value of the firm could rise

and fall to arbitrarily high and low levels without triggering any reorganisation of

the finances of the firm. Black and Cox [1976] suggested that this was unrealistic

and argued that some mechanism to force a reorganisation, should the firm perform

poorly according to some set standard, should be adopted.

One standard for enforcing a reorganisation of the firm prior to maturity could be the

omission of interest payments on the debt. However, such a restriction would not be

very effective if the company were allowed to sell assets to meet interest payments.

For this reason Black and Cox [1976] introduced boundaries for the value of the firm’s

assets at which the securities of the firm could take on specific values, and in doing

so, extended Merton [1974] to allow for safety covenants.

To incorporate safety covenants, Black and Cox [1976] introduced a time dependent

deterministic barrier, ˆKe��(T�t) for some ˆK, � > 0, and assumed that default occurred

if the value of the firm’s assets fell below this barrier prior to maturity. Following

Merton [1974], it was also assumed that the firm would only default at maturity

should the face value of debt exceed the value of the firm.

More specifically, for a firm financed by a single bond with face value K maturing

at time T , default occurred the first time, ⌧ , that the value of the firm falls below a

barrier b (t)

⌧
b

= inf {t 2 [0, T ] | V
t

< b (t)} , (2.4.1)

5See 2.5 below.
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where

b(t) =

(

ˆKe��(T�t) for t < T

K for t = T, ˆK  K.

The usual convention that inf {;} = 1 is adopted in (2.4.1) meaning that, if the

value of the firm does not fall below the barrier, default does not occur. It is natural

to assume that the barrier is no greater than the face value of the debt.

Under the assumptions in Black and Cox [1976], the value of a discount bond with

face value K maturing at time T is given by

D (v, t, T ) = E
t,v

⇥

Ke�r(T�t)
{⌧b�T,VT�K}

⇤

+ E
t,v

⇥

V
T

e�r(T�t)
{⌧b�T,VT<K}

⇤

+E
t,v

h

ˆKe��(T�⌧)e�r(⌧�t)
{⌧b<T}

i

. (2.4.2)

The first two terms in (2.4.2) are analogous to Merton’s model. The last term in

(2.4.2) reflects the payment the debt holder receives should default occur prior to

maturity. Under the assumption that the value of the firm obeys (2.3.2), the expect-

ations in (2.4.2) can be readily explicitly calculated using standard results pertaining

to the first passage times of Brownian motion. 6

Black and Cox [1976] observed that the basic properties of company debt such that

D (v, t, T ) is an increasing function of v and a decreasing function of �2 and r remain

the same as in Merton [1974]. However, while in Merton [1974], the value of a corpor-

ate debt can be zero at maturity, Black and Cox [1976] showed that safety covenants

provide a floor for the value of the bond which limits the gains that can be made by

stockholders by somehow circumventing other indenture provisions.

Firms frequently issue debt with different levels of seniority whereby the claim of

a junior debt holder will be subordinated to that of a senior debt holder. In the

event of a default, the junior debt holders will only receive a payment after the senior

debt holders have been paid in full. Such an arrangement is often referred to as the

6The explicit formula is somewhat complex and is therefore omitted here for purposes of clarity.
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Claim V

T

< K

s

K

s

 V

T

 K

s

+K

j

V

T

> K

s

+K

j

Senior Bonds V

T

K

s

K

s

Junior Bonds 0 V

T

�K

s

K

j

Equity 0 0 V

T

�K

s

�K

j

Table 2.4.1: Debt Subordination: Values of Claims at Maturity
This table shows the shareholder and bondholder claims at maturity where total debt outstanding
is comprised of senior, K

s

, and junior, K
j

, under the strict priority rule.

strict priority rule: The senior debt holders having strict priority over the junior debt

holders.

For example, assume that the principal values of senior and junior debt outstanding

are K
s

and K
j

respectively. At maturity, the payoff to the respective classes of bonds

will be as shown in Table 2.4.1

Black and Cox [1976] showed the value of junior debt could easily be written in terms

of the difference between value of total and senior debt. Using (2.4.2) and the notation

D (v, t, T,K) for the value of a (T � t) maturity corporate bond with principle value

K, the total value of debt is given by D (v, t, T,K
s

+K
j

), whereas the value of senior

debt is given by D (t, T,K
s

). Therefore, the value of junior debt is clearly equal to

D (v, t, T,K
j

) = D (v, t, T,K
s

+K
j

)�D (v, t, T,K
s

) .

Black and Cox [1976] observed that subordination affords senior bond holders larger

value than would be obtained from an undifferentiated bond issue. Junior bonds,

however, have characteristics which are different from those normally associated with

bonds. While the value of senior bonds is always an increasing function of asset

value, the same is not true of junior bonds. This means that bondholders as a

group may under certain circumstances have conflicting interests. In highly leveraged

circumstances, junior bondholders may be incentivised to act more like shareholders

than senior bondholders.
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2.5 Optimal Capital Structure

A debt financed firm which in not constrained in any way by safety covenants will

only declare bankruptcy when required repayments cannot be made by issuing new

equity. The latter case will only occur when the value of equity falls to zero. However,

under the conditions of an absolute priority rule, any level of the assets of the firm

that triggers bankruptcy will also imply that the value of equity at that asset value

is zero.

This latter observation led Black and Cox [1976] to argue that restrictions on a firm’s

financing arrangements could mean that there is a critical value of the assets of a

firm below which no additional equity can be sold. For example, in the case where

a firm pays a continuous coupon, should the value of the firm fall below the coupon,

under a strict priority rule, equity value may fall to zero even though the value of

the firm’s assets may still be substantially positive. Since the firm will be unable to

sell more equity, if raising funds by selling assets is prohibited, the firm will be forced

into bankruptcy.

The level of assets at which a firm is declared bankrupt can either be specified exo-

genously, for example as a term in the indentures of the bond, or determined endo-

genously by the firm in the course of some optimisation procedure. Black and Cox

[1976] derived the optimal value of assets at which to declare bankruptcy for a firm

financed by a single continuous (fixed) coupon perpetual bond for an asset process

given by (2.3.2) with � = 0 based on the assumption of absolute priority. Under these

assumptions, Black and Cox [1976] were also able to show that the value of debt is

always less when asset sales are permitted than when they are not. Leland [1994a]

replicated and extended Black and Cox [1976] in an important paper which will now

be outlined in some detail.

2.5.1 Leland (1994) Following Black and Cox [1976], Leland [1994a] also con-

sidered the case of a firm financed by a single consol bond, of face value P , paying
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a continuous fixed coupon rate, c, so long as the firm remains solvent, where the

assets of the firm obey the stochastic dynamics given in (2.3.2) with � = 0. The

latter condition ensures that any net cash outflows from the firm must be financed by

selling additional equity, while the chief advantage of assuming a constant perpetual

coupon rate is that the value of debt has no time dependency. It will become appar-

ent in sequel that the assumption of a time homogeneous debt structure represents a

significant modelling advantage.

Leland [1994a] also extended Black and Cox [1976] in two ways. First, a fraction ⇠ 2
[0, 1] of asset value is lost to costs associated with reorganising the firm if bankruptcy

occurs. Second, the firm benefits from tax relief at a rate ⇡ 2 [0, 1] on coupon

payments made prior to default. The latter assumption means the the firm receives

an additional continuous income stream at a fixed rate equal to c (1� ⇡) where

0  ⇡  1 is a constant tax rate.

Default occurs the first time, ⌧
b

, that the value of assets falls below a constant barrier,

b,

⌧
b

= inf {t � 0 | V
t

< b} . (2.5.1)

The convention that inf {;} = 1 is adopted in (2.5.1). Default does not occur if the

value of the firm does not fall below the barrier.

The value of debt, D (v, b), is the present value of the sum of all coupon payments

paid up until the time of bankruptcy plus the residual value of the assets of the firm

should default occur,

D (v, b) = E
v

ˆ 1

0

cPe�ru

{u<⌧b}du

�

+ E
v

⇥

(1� ⇠) e�r⌧bV
⌧b

⇤

(2.5.2)

=

cP

r
+

✓

(1� ⇠) b� cP

r

◆

⇣v

b

⌘� 2r
�2

(2.5.3)

where ⇠ is cost of reorganising the firm on default.

The value of the firm, F (v, b), is made up of the assets of the firm and the present
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value of future tax rebates minus the reorganisation costs incurred in the event of

bankruptcy

F (v, b) = v + E
v

ˆ 1

0

(1� ⇡) cPe�ru

{u<⌧b}du

�

� E
v

⇥

⇠e�r⌧bV
⌧b

⇤

= v +
⇡cP

r

✓

1�
⇣v

b

⌘� 2r
�2

◆

� ⇠b
⇣v

b

⌘� 2r
�2

, (2.5.4)

where ⇡ is the tax rate.

The explicit formulas in (2.5.2) and (2.5.4) follow directly from well known results

pertaining to the first passage time of a Brownian motion with drift to a constant

boundary 7.

The equity value of the firm, Q (v, b), is simply the total value of the firm minus the

value of debt

Q (v, b) = F (v, b)�D (v, b)

= v � (1� ⇡)
cP

r
+

✓

(1� ⇡)
cP

r
� b

◆

⇣v

b

⌘� 2r
�2

. (2.5.5)

It is interesting to note from (2.5.5) that cost of reorganisation on bankruptcy does

not feature in the value of equity and is thus borne entirely by the bond holders.

In the case where there are no protective covenants, the firm will endogenously de-

termine the optimal asset level at which to declare bankruptcy. An inspection of

(2.5.5) indicates that equity value will be maximised by setting b as low as possible.

However, as discussed above, the strict priority rule prevents b from being arbitrarily

small because Q (v, b) must be non-negative for all v > b. Leland [1994a] observes

that since Q (v, b) is convex in v when b < (1� ⇡) cP/r, the lowest possible value

for b consistent with positive equity value for all v > b must be consistent with the

smooth pasting condition, dQ (v, b) /dv|
v=b

= 0, which applied to (2.5.5), yields the

7See for example Borodin and Salminen [2002].
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optimal default boundary

b⇤ =
(1� ⇡) cP

r + 1
2�

2
. (2.5.6)

The optimal default barrier is proportional to the coupon rate, c, decreases in the

corporate tax rate, ⇡, the risk free interest rate, r, and the riskiness of the firm, �2,

but is independent of the bankruptcy costs, ⇠, and the current value of assets, v.

The latter fact is significant in that it allows the barrier to be estimated from the

coupon payment without needing to know the firm’s current asset value. And, as

expected, Q (b⇤, b⇤) = (1� ⇠) b⇤. Using (2.5.6), (2.5.5) and (2.5.4), and (2.5.2) closed

form equations for the values of the firm, equity and debt can also easily be derived8.

Table 2.5.1 is an excerpt from Leland [1994a] which summarises the effects on debt

value, yields and credit spreads of changes in the coupon rate, volatility of assets,

risk free interest rate and current asset value9. Since Leland [1994a] is an extension

of Black and Cox [1976] and Merton [1974], it is to be expected that the comparative

statics of the model are broadly in line with prior results, and, for low leverage10

firms, this is indeed the case. Bond prices/yields fall/rise in response to increases in

leverage (i.e. lower asset value), asset volatility and interest rates. Credit spreads

also increase as the probability of default rises (higher asset volatility or lower assets)

but fall as interest rates increase.

However, as the asset value approaches the default boundary, meaning that the firm

becomes more leveraged, provided that either bankruptcy costs or the tax rate are

positive, the effect of higher asset volatility and risk free interest rates are reversed:

higher asset volatility and risk free interest rates increase the value of debt (and

reduce yields). In addition, for highly leveraged firms, an increase in volatility can

8See the original paper, Leland [1994a] for formulae.

9The table in Leland [1994a] also includes the sensitivities of firm and equity value to the
same variables as well as to changes in tax rates and bankruptcy costs. Higher/lower bankruptcy
costs/taxes reduce the value of the debt.

10 Low leverage in the sense that v is substantially higher than b

⇤.
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Variable Sign of Change in Instrument for Increase In

c �

2 r v

Bond Price > 0 < 0 < 0 > 0
D (v, b⇤) < 0 as v ! b

⇤
> 0 as v ! b

⇤
> 0 as v ! b

⇤

Yield > 0 > 0 > 0 < 0
y (v, b⇤) < 0 as v ! b

⇤
< 0 as v ! b

⇤

Spread > 0 > 0 < 0 < 0
s (v, b⇤) < 0 as v ! b

⇤

Table 2.5.1: Leland (1994) Comparative Static Analysis
This table shows the directionality of the sensitivity of Leland [1994a] bond prices, yields
and credit spreads to changes in coupon rate, asset volatility, interest rates asset value under
endogenous bankruptcy.

reduce credit spreads. Moreover, while as would be expected, bond prices are typically

increasing in the coupon rate, for highly leveraged firms a higher coupon can cause

bond prices to fall. Thus the behaviour of the bond prices of highly leveraged firms can

be quite different to that of firms with a low level of leverage when either bankruptcy

and/or taxes are positive11.

The reason for these apparently counter intuitive results is that a lowering of the

default boundary will make the arrival of bankruptcy costs less imminent and the

value of debt will be very sensitive to such changes when v is close to b⇤. Higher risk

free rates, higher asset volatility and a lower coupon rate all act to lower b⇤ which has

a dominating positive effect on D (v, b⇤) at values of v close to b⇤. Leveraged debt

holders are thus incentivised to act like shareholders.

2.5.2 Leland and Toft (1996) Leland and Toft [1996] extend Leland [1994a]

to examine the optimal capital structure of a firm financed by debt with a specific

maturity profile, by introducing a model which assumes that a firm refinances itself

in a rather ingenuous way. At time t, it is assumed that debt of a given par value p is

11The bonds of highly leveraged firms are typically referred to as ’junk’ bonds or high yield bonds
and normally trade at much lower prices than less leveraged investment grade bonds
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redeemed, and new debt instantaneously issued, with the same par value, according to

a specific maturity profile, with the face value of debt issued with maturity s given by

p (s) where  (s)  1 and
´1
0  (s) ds = 1. The latter approach, which is commonly

referred to in the literature as roll-over debt, has subsequently been used by many

authors. The primary advantage of the roll-over debt model is that, as is the case

with a single infinite maturity bond, principal value of outstanding debt remains fixed

at a given level P and debt service costs are time invariant12. However, because debt

is being issued with a specific maturity profile, the model is rich enough to permit an

analysis of the term structure of debt.

Apart from the assumption of roll-over debt, the firm structure in Leland and Toft

[1996] remains the same as Leland [1994a]. The value of assets is assumed to obey

(2.3.2) with � > 0. On default, a proportion of assets ⇠ 2 [0, 1] is lost in the reor-

ganisation of the firm and prior to default, the firm receives a tax relief benefit at a

rate of (1� ⇡) c, where 0  ⇡  1. Default is again assumed to occur at time ⌧
b

as

in (2.5.1).

The price of a risky bond at time 0, paying 1 at maturity time t, is made up of the

discounted value of coupon income up until maturity or default, the principle value

of the bond if default does not occur before maturity and the recovery value should

default occur prior to maturity given by

d (v, b, t) =

ˆ
t

0

E
v

⇥

e�rs

{s<⌧b}
⇤

ds+ E
v

⇥

e�rt

{t<⌧b}
⇤

+

(1� ⇠)

P
E

v

⇥

e�r⌧bV
⌧b {t�⌧b}

⇤

. (2.5.7)

The total value of all outstanding debt is then given by integrating (2.5.7) over all

12A formal description of the roll-over debt approach is outlined in Subsection 3.2.2.
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possible maturity times

D (v, b) =

ˆ 1

0

p (s) d (v, b, s) ds

=pcE
v

ˆ
⌧b

0

e�rs

b

 (s) ds

�

+ pE
v

ˆ
⌧b

0

e�rs

 (s) ds

�

+

(1� ⇠) p

P
E

v

h

e�r⌧bV
⌧b
b

 (⌧
b

)

i

, (2.5.8)

where b

 (t) :=
´1
t

 (s) ds.

Leland and Toft [1996] assumed a form of the maturity profile was given by, �
T

,

the Dirac delta function concentrated at time T . Leland [1994a] assumed that the

maturity profile given by

 (t) = me�mt (2.5.9)

from which it follows that  (t) = mb

 (t) = exp (�mt) , and in which case, the total

value of debt simplifies to,

D (v, b) =
(m+ c)

(m+ r)
PE

v

⇥

1� e�(m+r)⌧b
⇤

+ (1� ⇠)E
v

⇥

e�(m+r)⌧bV
⌧b

⇤

, (2.5.10)

with the total value of the firm is given by

F (v, b) = v + E
v

ˆ 1

0

(1� ⇡) cPe�ru

1{u<⌧b}du

�

� E
v

⇥

⇠e�r⌧bV
⌧b

⇤

= v +
⇡cP

r
E

v

⇥

1� e�r⌧b
⇤

� ⇠E
v

⇥

e�r⌧bV
⌧b

⇤

. (2.5.11)

The firm is assumed to choose the bankruptcy level, b, to maximise the value of equity

Q (v, b) = F (v, b)�D (v, b). Leland and Toft [1996] also achieve this by invoking the

smooth fit condition
@Q (v, b)

@v

�

�

�

�

v=b

= 0

and solve to derive a constant barrier at which it is optimal for the firm to declare

default. Using this barrier Leland and Toft [1996] then proceed to investigate optimal

leverage, debt capacity and credit spreads deriving broadly similar conclusions to
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Leland [1994a].

2.6 Stochastic Interest Rates

It is well known that empirical observation is broadly consistent with the negative

relationship between risk free interest rates and credit spreads which is a feature of

Merton [1974] 13. Attempts to incorporate this feature have led many authors to

assume that risk free interest rates obey stochastic dynamics of the general form

dr = ↵ (r
t

) dt+ � (r
t

) dW
t

. (2.6.1)

In order to introduce a dependence between the risk free rate and the asset price

process it has been suggested that the Brownian motions in (2.3.2) and (2.6.1) can

be correlated. It is worth noting that this latter assumption has typically been im-

plemented as a constant instantaneous correlation which has the obvious implication

that the relationship between interest rates and asset valuations remains invariant

through time.

There have been a number of popular interest rate models which are distinguished

by the form of the drift and volatility terms in (2.6.1). Vasicek [1977] assumed that

↵ (r
t

) =  (✓ � r
t

) where ✓, > 0 and � (r
t

) = � whereas in Cox et al. [1985], the

so called CIR model, the drift term is the same but the volatility term is given

by � (r
t

) = �
p
r
t

. In the generalised Vasicek model, ↵ (r
t

) =  (t) (✓ (t)� r
t

) and

� (r
t

) = �
r

(t) where a, b, � : [0, T ] ! R+\ {0} are deterministic functions.

Many authors have extended structural models to include stochastic interest rates.

For example, Jamshidian [1989], Shimko et al. [1993], Briys and de Varenne [1997],

Longstaff and Schwartz [1995], all assume the interest rates follow Vasicek dynamics

whereas Wang [1999], Kim et al. [1993a], Cathcart and El-Jahel [1998] assume interest

13See Table 2.3.1.
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rates follow the CIR model. Hsu et al. [2004], on the other hand, assumed that interest

rates follow a simple Itô process driven by a Brownian motion.

Some authors have suggested that interest rates have significant effects on credit

spreads. Longstaff and Schwartz [1995], for example, numerically verified model pre-

dictions that credit spreads exhibited a negative relationship with interest rates and

that the durations of risky bonds can significantly depend on the correlation of a firm’s

assets with interest rates. Other authors have found weaker relationships between in-

terest rate volatility and spreads 14.

2.7 Discontinuous Asset Price Processes

The assumption that assets follow a diffusive process in Merton [1974] results in credit

spreads for solvent firms being close to zero for short maturities, which is at odds with

empirically observed behaviour. Brownian motion is a continuous process which in

turn implies that the asset value process associated with (2.3.2) is also continuous.

As a result, immediately prior to maturity, the value of assets at maturity is already

revealed, at which point, if the value of assets exceeds the level of debt, the bond

becomes effectively risk free and the credit spread collapses to zero.

In order to overcome this issue many authors have suggested incorporating discon-

tinuities into the asset value process. Intuitively, if the asset process can jump at

unpredictable times, then even if the asset value exceeds the level of debt immedi-

ately prior to maturity, there may still be a chance that the asset process can jump

below the level of debt before maturity. Positive credit spreads may be required

to compensate for this gap risk even for apparently solvent firms. In some respects,

structural models with jump risk represent somewhat of a reconciliation with reduced

form models in the sense that the default event may come by surprise.

14See Kim et al. [1993b], Brennan and Schwartz [1980]
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While discontinuities in asset price processes were studied as early as Merton [1976]

they have only been applied in the context of structural models of credit risk more

recently. Typically, in order to introduce jumps into structural models, the asset

value process (2.3.2) is replaced by a process of the form

dV
t

V
t

=(r � �) dt+ �dW
t

+ dJ
t

, (2.7.1)

where {J
t

}
t�0 is some jumping process. Naturally there is a wide range of modelling

possibilities for the jumping process and the choice of such has varied amongst authors

and differentiated recent contributions.

In terms of first passage models, Zhou [2001] extends Black and Cox [1976] to incor-

porate jumps by including a Poisson process into the asset value process and assuming

a normal distribution for the value of the jumps. The resulting model is seen to be

able to generate credit spreads and credit spread term structures which more closely

reflect those observed empirically. In addition, recovery rates, rather than being exo-

genously specified, are linked to the firm value at default and specifically the overshoot

of the asset value should default occur as a result of a jump in the asset value process.

The capital structure model of Leland and Toft [1996] was extended by Hilberink

and Rogers [2002] and Surya and Kyprianou [2007] to the case of a general Lévy

process with only downward jumps, finding that credit spreads do not collapse to

zero for short maturities. Chen and Kou [2009] and Dao and Jeanblanc [2012] also

extend Leland and Toft [1996] but allow for two-sided jumps where the jump size has

a double-exponential density. Optimal leverage was found to be lower in the presence

of downward jumps, and indeed, Chen and Kou [2009] observed that highly risky

firms would optimally hold very little debt.

2.8 Regime-Switching Models

In the recent literature, there has been considerable interest in so called ’regime-

switching’ models which allow modelling parameters such as asset volatility to be
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dependent of some state of the economy. There has been substantial empirical re-

search reported in the literature going back as far as Hamilton [1989] suggesting that

the aggregated economy is subject to period regime-shifts between distinct business

cycles. It is natural, therefore, to conjecture that regime-shifts between different eco-

nomic regimes may have an important influence on the capital decisions and credit

profile of a firm. Academic interest in the relationship between capital structure and

credit quality has only been increased by the advent of the recent global financial

crisis.

Alexander and Kaeck [2008] empirically studied the impact of equity returns and

volatility on Credit Default Swap (CDS)15 spreads and found strong evidence that

theoretical determinants of credit spreads has a regime dependent behaviour. It was

observed that during volatile regimes, credit spreads were more sensitive to changes

in asset volatility, whereas during tranquil regimes, stock market returns were the

influence on credit spreads. Similar results were reported by Tang and Yan [2010] who

empirically studied the interaction between CDS spreads and GDP 16 growth rates

and the volatility of GDP growth rates, identifying investor sentiment at the aggregate

level and asset volatility at the firm level as the most important determinants of credit

spreads. However, evidence was also reported suggesting an important relationship

between economic conditions and firm-specific characteristics. In particular, it was

found that firms with cash flows, that had a positive correlation to GDP growth,

exhibited lower credit spreads during economic expansions and vice versa during

economic contractions.

In terms of capital structure, Lemmon et al. [2008] reported long-term stability and

convergence of leverage ratios across sectors of the economy and a weak relation-

ship between a number of firm specific financial metrics and leverage ratios, leaving

a large unexplained residual. However, building on the latter study, Akhtar [2012],

after incorporating the effect of four different stages of the business cycle, including

15Credit Default Swap (CDS) is a type of financial instrument where the seller insures the buyer
against losses accrued as a result of a default type event effecting a firm.

16Gross Domestic Product.
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expansion, peak, contraction and trough, found business cycles to be an important de-

terminant of the unexplained variation in leverage ratios reported earlier by Lemmon

et al. [2008]. In particular, it was found that business cycle phases become far more

important in explaining variation in leverage after having controlled for the effect

of firm specific financial characteristics. The latter study suggests that the business

cycle may indeed have an important impact on firm capital structure decisions and

therefore credit quality.

In one of the more extensive empirical studies conducted in relation to corporate

default risk, Giesecke et al. [2011] reported on a 150-year of history of corporate

default rates. Using a regime-switching framework, the latter study found that both

stock market returns and stock market volatility have significant forecasting power

in relation to default rates. In addition, it was found that changes in GDP have a

strong relationship with subsequent default rates. The latter observations suggest

that important relationships may exist between the macro economy and the firm

credit quality. In a follow-up study. Giesecke et al. [2014] focused more specifically

on the effects of banking crisis and default rates and found that, despite the size of

the corporate bond market being in the same order of magnitude as the bank lending

market, banking crisis appear to have much graver implications for the macroeconomic

environment than crises in corporate bond markets.

Motivated by the above empirical justifications, a number of authors have recently

proposed models of capital structure and credit risk which incorporate regime-switching

features. Hackbarth et al. [2006] considered the effect of a macroeconomic shock on

capital structure and credit risk. The firm’s EBIT17 was modelled as the product

of two random variables, one reflecting the aggregate state of the economy and one

an idiosyncratic shock reflecting firm-level productivity uncertainty. The aggregate

shock was assumed to take one of two values according to two-state Markov chain

and firm level uncertainty was reflected as a geometric Brownian motion. Adopting

the Leland and Toft [1996] rollover debt structure, Hackbarth et al. [2006] derived

17The firm’s profitability defined as earnings before interest and taxes.
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analytic expressions for equity, firm and debt values of a firm and then imposed a

smooth-fit condition to derive endogenous default boundaries which maximised equity

value. The authors found that the firm’s optimal default policy was characterised by

different default threshold in each regime. Default was more likely in the recessionary

regime and credit spreads were higher.

Siu et al. [2008] investigated the pricing of CDS using a structural model where the

asset process of the firm was assumed to be Markov modulated with the interest rate

process, firm’s asset volatility and drift being driven by a two state Markov chain to

distinguish between good and bad states of the economy. Based on numerical calcu-

lations for assumed levels of asset volatility, drift and default boundaries, the authors

conclude that CDS spreads increase substantially in the bad state of the economy

characterised by higher asset volatility and lower asset returns. In addition, it was

argued that the inclusion of regime-switching effects provide a potential mechanism

to improve the underestimation of default probabilities which are often associated

with the standard Merton structural model.

Optimal capital structure under regime-switching was also investigated by Elliott

and Shen [2015] using a model in which the firm’s asset process was modelled as a

regime-switching geometric Brownian motion. As in the case of Siu et al. [2008], both

the firm’s asset price volatility and drift, as well as the risk free interest rate, were

assumed to be modulated by an finite state Markov chain. The firm was, however,

assumed to be financed by a single consol bond and to benefit from tax relief on

coupon payments, adding a stream of positive cashflows to the value of the firm.

Once again, assuming a two-state economy with regime shifts being controlled by

a Markov chain, analytic expressions for optimal endogenously determined default

barriers and the optimal capital structure were identified.
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2.9 Summary

The initial seminal paper by Merton [1974] has spawned a rich literature on the subject

of capital structure and credit risk. There have since been considerable advances made

in terms of default at first passage and the inclusion of jumps into the asset value

process. Leland [1994a], Leland and Toft [1996] made significant advances in terms

of characterising the optimal capital structure of a firm financed by debt and thereby

initiated a new line of research enquiry. However, while these initial advances were

now made some time ago, in view of continued contributions in literature, it is clear

that structural models of credit risk remain an active area of interest in financial

mathematics research.
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CHAPTER 3 ROLL-OVER DEBT UNDER

REGIME-SWITCHING

3.1 Introduction

The topic of endogenously determined optimal capital structure remains an active

area of research. Since its introduction by Leland [1994b], the roll-over debt model,

outlined in Subsection 3.2.2 below, has been the motivation a large volume of research

in the area of structural models of credit. The key facet of the roll-over debt framework

is that debt of a given maturity profile is constantly being issued and redeemed in

such a way that the outstanding nominal value of debt remains constant. The main

advantage of the roll-over debt approach is that it combines the analytical tractability

of a time invariant or stationary debt structure with a debt maturity profile. The

latter allows the term structure of debt to be analysed.

The roll-over debt model has been adopted by numerous authors and extended in

many ways. The approach was first introduced by Leland [1994b] first with an ex-

ponentially driven maturity profile and later in Leland and Toft [1996] extended to

the case of a finite maturity profile. Originally formulated with the firm’s asset price

modelled as a geometric Brownian motion Hilberink and Rogers [2002], Surya and

Kyprianou [2007] extended the generality of the approach by modelling the asset price

process as a spectrally negative Lévy process. More recently, Chen and Kou [2009]

and Dao and Jeanblanc [2012] extended further the approach to allow for two-sided

jumps where the jump size had a double-exponential density.

The approach taken in this chapter follows one that has been adopted by many

authors in the literature. The assertion that, on default, the value of a firm’s equity
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should be zero, normally referred to as the strict priority rule, provides a boundary

condition that the equity price process must satisfy on default. The assumption

underlying many implementations of the roll-over debt framework is that default

occurs at first passage of the asset price process below a fixed boundary. If using the

latter two criteria, the value of equity can be identified in terms of the boundary, then

in principle, the boundary can be chosen so as to maximise the value of equity. In

many cases, including the original formulation by Leland [1994b], the value of equity

in terms of the default boundary can be identified in closed form.

Motivated by the empirical research outlined in Section 2.8, the model presented in

this chapter contributes to the literature by presenting the roll-over debt structure

in the context of a regime-switching. The model will focus on a single-asset firm

partly financed by debt in two economic regimes, one good and one recessionary. It

will be assumed that the asset process of the firm follows a regime-switching geo-

metric Brownian motion. Asset volatility, risk free interest and dividend rates will

be assumed to be regime-dependent. Default is modelled as the first time that the

asset value process of the firm falls below a fixed barrier, also regime-dependent.

Capital structure is first identified for fixed boundaries given exogenously before the

boundaries are selected in order to maximise the value of equity in line with the com-

ments above. Credit spreads associated with the maximised capital structure are also

identified.

The firm will also be assumed to benefit from tax relief on interest payments generat-

ing an income stream which is additive to the value of the firm. If the firm defaults,

it is assumed to suffer bankruptcy costs modelled as a fixed proportion of asset value

at time of default. The existing literature is extended by also allowing tax rates and

bankruptcy costs to vary by regime. As already noted, it has been customary on the

literature to incorporate a tax threshold for the asset value under which tax relief

on interest payments is not accrued. This feature is not modelled in this chapter.

It has been noted by Leland and Toft [1996] that without this feature, a firm may

be incentivised by the additional cashflows to undertake very high levels of leverage.

In the model presented in this chapter, however, lower tax rates in the recessionary
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regime will act as a disincentive for the firm to undertake leverage.

The outline of this chapter is as follows. The model formulation is outlined in Section

3.2. In Section 3.3, the capital structure associated with exogenously given regime-

dependent boundaries is identified. Endogenously determined regime-dependent bound-

aries which maximise equity value are characterised along with optimised credit

spreads in Section 3.4. Finally, Section 3.5 presents some numerical calculations.

Auxiliary results are collected in Section 3.6.

3.2 Model Formulation

3.2.1 Asset Processes Let W = {W
t

}
t�0 be a standard Brownian motion and

{Z
t

}
t�0 a continuous time Markov chain with finite state space E = {1, 2} and gen-

erator matrix G given by

G =

 

��1 �1

�2 ��2

!

with �
i

> 0, i 2 E which is independent of W . It is assumed the value of a firm’s

assets, V = {V
t

}
t�0, evolve according to a regime-switching geometric Brownian

motion with stochastic dynamics given by

dV
t

V
t

= (r (Z
t

)� � (Z
t

))dt+ � (Z
t

) dW
t

, V0 = v > 0, Z0 = i 2 E, (3.2.1)

where r (i) , � (i) : E 7! R+\ {0} are the compound risk free interest and dividend

rates respectively and � (i) : E 7! R+\ {0} are the volatility coefficients. The value of

Z represents the state of the economy at a given time in which the compound interest

and dividend rates and the volatility parameter are assumed to be known constants.

Where there is no scope for ambiguity, the notation a
i

will be used to denote the

value of parameter a in regime i.

It is assumed that the stochastic processes V and Z are defined on some filtered

probability space (⌦,F ,P,F) where F = {F
t

}
t�0 denotes the completed filtration
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jointly generated by V and Z. Conditional expectations will be denoted by writing

E
v,i

[·] = E [·|V0 = v, Z0 = i].

Furthermore, it is assumed that there exists a savings account process {B
t

}
t�0 satis-

fying

B
t

= exp

✓

�
ˆ

t

0

r (Z
s

) ds

◆

. (3.2.2)

Defining X = log(V ), Theorem 1 in Mijatovic and Pistorius [Preprint] implies that

the discounted moment generating function of the process (X,Z) is given by

E0,i



euXt

B
t

{Zj=j}

�

= 1

i

0et(K(u)�⇤r)
1

j

, u 2 R,

where k (u) := G + ⇤ (u), ⇤
r

is a 2 ⇥ 2 diagonal matrix with diagonal elements r(i)

for i 2 E and ⇤ (u) is a 2 ⇥ 2 diagonal matrix where the ith element is equal to the

characteristic exponent of the process X in regime i 2 E given by

�
i

(u) = u

✓

r
i

� �
i

� 1

2

�2
i

◆

+

1

2

�2
i

u2.

It follows, therefore, from (3.2.1) that the risk neutral drift of the process V is given

by r
i

� �
i

, i 2 E. As a consequence, it will be assumed that all expectations in sequel

are taken under the risk neutral pricing measure.

3.2.2 Roll-over debt structure. The firm is partly financed by debt which is

being constantly issued and redeemed in such a way that the face value of debt remains

constant - the so called roll-over debt structure. Originally introduced in Leland

[1994b], the description which follows draws heavily on the exposition in Hilberink

and Rogers [2002]. In the time interval (t, t+ dt), the firm issues debt with face

value pdt and maturity profile  > 0 where
´1
0  (s)ds = 1. Therefore, debt with

face value p (s) dtds will be issued in the time interval (t, t+ dt) which matures in

(t+ s, t+ s+ ds). At time 0, the face value of all debt maturing in (s, s+ ds) will be

given by

p

ˆ 0

�1
 (s� v) dvds := p (s) ds (3.2.3)
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where  (u) :=
´1
u

 (t) dt. Taking s = 0 in (3.2.3), the face value of debt maturing

in (0, du) is pdu, which is the same as the face value of newly issued debt, implying

the face value of all debt remains constant and given by

P = p

ˆ 1

0

 (s) ds.

All debt is of equal seniority and pays a fixed coupon rate of c. The importance of

the roll-over debt structure is that it provides a flexible and time-independent debt

profile which permits the analysis of debt maturity.

3.2.3 Default Default occurs the first time, ⌧ (b), that the value of the firm falls

to a level which is dependent upon the regime,

⌧ (b) = inf {t � 0 | V
t

 b (Z
t

)} , (3.2.4)

where the boundaries are defined as b = (b1, b2). On default, a regime dependent

fraction ⇠
i

2 [0, 1] , i 2 E, of the firm’s assets are lost in the resulting reorganisation.

Following the established literature, it is assumed that assets in place cannot be

liquidated in order to raise funds to pay debt holders.

In Section 3.3 below, the default levels in (3.2.4) are assumed to be known and given

exogenously. Later in Section 3.4, the latter assumption will be relaxed to identify

default levels determined endogenously by the firm in order to maximise the value of

equity.

3.2.4 Bond Prices and Total Debt The price of a bond issued by the firm

at time 0 paying 1 at maturity time t and a fixed coupon rate of c is equal to

the discounted value of coupon income and principal payments, which occur prior

to maturity, together with the discounted value of the residual value of the assets,
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should default occur before maturity of the bond, and is given by

d (v, i, b, t) =

ˆ
t

0

E
v,i

h

ce�
´ s
0 r(zu)du

{s<⌧(b)}

i

ds

+ E
v,i

h

e�
´ t
0 r(zu)du

{t<⌧(b)}

i

+

1

P
E

v,i

h

e�
´ ⌧(b)
0 r(zu)du

�

1� ⇠
�

Z
⌧(b)

��

V
⌧(b) {t�⌧(b)}

i

, (3.2.5)

where E
v,i

[.] = E[. | V0 = v, Z0 = i]. The term 1
P

in the latter display reflects the

proportion of assets to which a bond of face value 1, in proportion to a total principal

debt outstanding of P , will be entitled on default.

The total value of all outstanding debt at time 0 is then obtained by integrating over

all maturity dates using the roll-over maturity profile,  , to obtain

D(v, i, b) =

ˆ 1

0

p (t) d (x, b, t, j) dt

=pcE
v,i

"ˆ
⌧(b)

0

ce�
´ t
0 r(Zu)du

b

 (t) dt

#

+ pE
v,i

"ˆ
⌧(b)

0

e�
´ t
0 r(Zu)du

 (t) dt

#

+

p

P
E

v,j

h

e�
´ ⌧(b)
0 r(Zu)du

�

1� ⇠
�

Z
⌧(b)

��

V
⌧(b)

b

 (⌧ (b))
i

, (3.2.6)

where b

 (t) :=
´1
t

 (s) ds.

Following Leland and Toft [1996], Hilberink and Rogers [2002], Dao and Jeanblanc

[2012] it is assumed that the form of the roll-over debt maturity profile from Subsection

(3.2.2) is given by

 (t) = m exp (�mt) (3.2.7)

from which it follows that  (t) = mb

 (t) = exp(�mt) and that, after some simple
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manipulations, the total value of debt at time 0 in (3.2.6) simplifies to

D (v, i, b) = P (m+ c)E
v,i

"ˆ
⌧(b)

0
e

�
´ t
0 (r(Zu)+m)du

dt

#

+E
v,i

h

e

�
´ ⌧(b)
0 (r(Zu)+m)du

�

1� ⇠

�

Z

⌧(b)

��

V

⌧(b)

i

= P (m+ c) 1
i

0 (⇤
r+m

�G)�1 1

�E
v,i

h

e

�
´ ⌧(b)
0 (r(Zu)+m)du

�

⌫̃(Z
⌧(b))�

�

1� ⇠

�

Z

⌧(b)

��

V

⌧(b)

�

i

(3.2.8)

for i 2 E, where

⌫̃(k) = P (m+ c) 1
k

0
(⇤

r+m

�G)

�1
1, k 2 E, (3.2.9)

⇤

a

is a 2⇥ 2 diagonal matrix with elements equal to a(i) for i 2 E, 1 is a 2 element

vector of ones and 1

k

is a 2 element vector with 1 in row k and zero in the alternate

row. The expectations in the first equality in the above display were calculated using

Lemma’s 3.6.1 and 3.6.2 which are included in Section 3.6.

3.2.5 Value of the Firm The firm receives tax relief on the value of coupon

payments made equal to ⇡ (i) 2 [0, 1] in regime i. It follows that the value of the firm

is comprised of the value of assets at time 0 together with the present value of future

tax relief minus the proportion of assets lost in reorganisation of the firm on default

given by

F (v, i, b) = v + cP⇡E
v,i

"ˆ
⌧(b)

0

e�
´ t
0 r(Zu)dudt

#

� E
v,i

h

e�
´ ⌧(b)
0 r(Zu)du⇠

�

Z
⌧(b)

�

V
⌧(b)

i

= v + cP1

i

(⇤

r

�G)

�1 ⇡

�E
v,i

h

e�
´ ⌧(b)
0 r(Zu)du

�

�̃
�

Z
⌧(b)

�

+ ⇠
�

Z
⌧(b)

�

V
⌧(b)

�

i

(3.2.10)

for i 2 E with

�̃(k) = 1

k

0cP (⇤

r

�G)

�1 ⇡, k 2 E, (3.2.11)

and ⇡ = (⇡ (1) , ⇡ (2))0 where once again Lemma’s 3.6.1 and 3.6.2 were used to calcu-
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late the expectations in the first equality.

3.2.6 Equity Value The equity value of the firm is simply taken to be the value
of the firm in (3.2.10) minus the value of debt in (3.2.8),

Q (v, i, b) = v + 1
i

⇣

cP (⇤
r

�G)�1
⇡ � P (m+ c) (⇤

r+m

�G)�1 1
⌘

�E
v,i

h

e

�
´ ⌧(b)
0 r(Zu)du

�

�̃

�

Z

⌧(b)

�

+ ⇠

�

Z

⌧(b)

�

V

⌧(b)

�

i

+E
v,i

h

e

�
´ ⌧(b)
0 (r(Zu)+m)du

�

⌫̃(Z
⌧(b))�

�
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�

Z

⌧(b)

��
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⌧(b)

�

i

(3.2.12)

for i 2 E where �̃ (·) and ⌫̃ (·) are given in (3.2.11) and (3.2.9) respectively. It is worth

noting that on default the value of equity is identically zero which is in accordance

with the strict priority rule.

3.3 Capital Structure with Exogenous Boundaries

3.3.1 Exogenous Boundaries With the boundaries in (3.2.4) given exogen-

ously, in order to determine the value of equity, the firm and debt, the key obser-

vation is that at the default boundaries, the value of equity is identically zero, which,

together with an application of Dynkin’s Formula, implies a constraint on the charac-

teristic operator of the process (V, Z) when applied to Q (v, i, b) in (3.2.12). The latter

observations together with Proposition 3.3.2 allows the value of equity, the firm and

total debt identified explicitly in the following Theorem when the default boundaries

in (3.2.4) are known to satisfy b1 > b2. An entirely analogous result for the case when

b2 > b1 can be derived by symmetry in exactly the same manner as Theorem 3.3.1

and is therefore omitted. The case when the default boundaries are the same will not

be addressed in this chapter.

40



Roll-over Debt under Regime-Switching

Theorem 3.3.1. Let b1 > b2 in (3.2.4) then the value of equity in (3.2.12), the firm

in (3.2.10) and total debt in (3.2.8) are given by

Q (v, i, b) = v + 1

i

�

cP (⇤

r

�G)

�1 ⇡ � P (m+ c) (⇤
r+m

�G)

�1
1

�

�w0 (v, i, b, ⇠, �̃) + w
m

(v, i, b, ⇠ � 1, ⌫̃) (3.3.1)

F (v, i, b) = v + cP1

i

(⇤

r

�G)

�1 ⇡ � w0 (v, i, b, ⇠, �̃) (3.3.2)

D (v, i, b) = P (m+ c) 1
i

0
(⇤

r+m

�G)

�1
1� w

m

(v, i, b, ⇠ � 1, ⌫̃) (3.3.3)

where w
�

is specified in (3.3.4), ⇤
a

is a 2⇥ 2 diagonal matrix with elements equal to

a(i) for i 2 E, 1 is a 2 element vector of ones and 1

k

is an 2 element vector with 1

in row k and zero in the alternate row and �̃ and ⌫̃ are vectors given in (3.2.11) and

(3.2.9) respectively.

Proof. The proof follows directly from an application of Proposition 3.3.2 to (3.2.8),

(3.2.10) and (3.2.12) upon insisting that Q (b, i, b) = 0, i 2 E in (3.2.12).

Proposition 3.3.2. Let ˜h, ã : E ! R, � > 0 and b1 > b2 in (3.2.4) then

w
�

⇣

v, i, b, ã, ˜h
⌘

= E
v,i

h

e�
´ ⌧(b)
0 (r(Zu)+�)du

⇣

˜h(Z
⌧(b))� ã(Z

⌧(b))V⌧(b)

⌘i

, i 2 E,

(3.3.4)

where w
�

⇣

b
i

, i, b, ã, ˜h
⌘

=

˜h (i)� ã (i) b
i

, i 2 E, is given by

w
�

⇣

x, 1, b, ã, ˜h
⌘

=

8

<

:

C1x
⇢�1

+ C2x
⇢�2 , x > b1,

�1 (b1) , b1 � x,
(3.3.5)

w
�

⇣

x, 2, b, ã, ˜h
⌘

=

8

>

>

>

>

<

>

>

>

>

:

G�,1(⇢�1)
�1

C1x
⇢�1

+

G�,1(⇢�2)
�1

C2x
⇢�2 , x > b1,

A1x
⇣

2
�1
+ A2x

⇣

2
�2
+ '2 (x) , b1 > x > b2,

�2 (b2) , b2 � x,

(3.3.6)

where �
j

(x) = ˜h (j)� ã (j) x, the constants C1, C2, A1 and A2 satisfy the linear system
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given by
2

6

6

6

6

6

4

b

⇣

2
�1

2 b

⇣

2
�2

2 0 0

0 0 G�,1(⇢�1)
�1

b

⇢�1
1

G�,1(⇢�2)
�1

b
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1

b

⇣

2
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1 b

⇣

2
�2

1 �b

⇢�1
1 �b

⇢�2
1

⇣

2
�1b

⇣

2
�1�1

1 ⇣

2
�2b

⇣

2
�2�1

1 �⇢

�1b
⇢�1�1
1 �⇢

�2b
⇢�2�1
1

3

7

7

7

7

7

5

2

6

6

6

6

6

4

A1

A2

C1

C2

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

�2 (b2) + '

�,2 (b2)

�1 (b1)

'

�,2 (b1)

'

0
�,2 (b1)

3

7

7

7

7

7

5

(3.3.7)

with

'
�,j

(x) = �
j

 

˜h (3� j)

r (j) + �
j

+

ã (3� j) x

� (j) + �
j

+ �

!

, j 2 E,

G
�,j

(z) =

1

2

z2� (j)2 + z

✓

r (j)� � (j)� 1

2

� (j)2
◆

� (�
j

+ r (j) + �) , j 2 E,

⇣j
�1 and ⇣j

�2 are positive and negative roots of the equation G
�,j

(⇣) = 0 for j 2 E

respectively, ⇢
�1 and ⇢

�2 are the negative roots of the equation G
�,1 (⇢)G�,2 (⇢)��1�2 =

0 and f 0denotes the derivative of the function f.

Proof. The infinitesimal generator of the process (V, Z) for f (·) 2 C2 is given by

L
V,Z

f(x, i) =
1

2

�2
i

x2@
2f(x, i)

@x2
+(r

i

� �
i

) x
@f(x, i)

@x
+�

i

(f (x, 1� i)� f (x, i)) (3.3.8)

for i 2 E. When x > b1, if w
�

solves L
V,Z

w
�

(x, i) = 0, i 2 E, for the stated boundary

conditions, w
�

⇣

b
i

, i, b, ã, ˜h
⌘

=

˜h (i) � ã (i) b
i

, i 2 E, then Dynkin’s formula implies

that (3.3.4) holds. To solve for w
�

, note that (3.3.8) forms two coupled ODE’s with

characteristic equation given by

G
�,1 (⇢)G�,2 (⇢) = �1�2, (3.3.9)

where

G
�,i

(⇢) =
1

2

�2
i

⇢2 + (r
i

� �
i

� 1

2

�2
i

)⇢� (r
i

+ �
i

+ �) , i 2 E, (3.3.10)

which has 4 distinct real roots, ⇢
�1 < ⇢

�2 < 0 < ⇢
�3 < ⇢

�4 with the general form of
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the solution when x > b1 given by

w
�

⇣

x, 1, b, ã, ˜h
⌘

=

4
X

k=1

C
k

x⇢�k , x > b1, (3.3.11)

w
�

⇣

x, 2, b, ã, ˜h
⌘

=

4
X

k=1

G
�,1 (⇢�k)

�1
C

k

x⇢�k , x > b1. (3.3.12)

However, since w
�

⇣

x, i, b, ã, ˜h
⌘

is bounded by max

i2E

�

�

�

˜h (i)� ã (i) b
i

�

�

�

, it follows that

the terms in (3.3.11) and (3.3.12) with positive exponents must be zero.

When b1 � x > b2, w�

⇣

x, 1, b, ã, ˜h
⌘

=

˜h (1)�ã (1) x which implies that w
�

(x, 2, b, ã, ˜h)

solves an inhomogeneous ODE with complementary solution reading as

wc

�

⇣

x, 2, b, ã, ˜h
⌘

= A1x
⇣

2
�1
+ A2x

⇣

2
�2 , (3.3.13)

where ⇣2
�1 and ⇣2

�2 are the positive and negative roots of G
�,2 (⇣) = 0 given in (3.3.10).

The Wronskian for the fundamental set of solutions of (3.3.13) is then given by

W =

�

�

�

�

�

x⇣

2
�1 x⇣

2
�2

⇣2
�1x

⇣

2
�1�1 ⇣2

�2x
⇣

2
�2�1

�

�

�

�

�

= x⇣

2
�1⇣2

�2x
⇣

2
�2�1 � x⇣

2
�2⇣2

�1x
⇣

2
�1�1 (3.3.14)

(which is non-zero since ⇣2
�1 6= ⇣2

�2 ) generating a particular solution

wp

�

⇣

x, 2, b, ã, ˜h
⌘

= x⇣

2
�2

ˆ �2

⇣

˜h (1)� ã (1) x
⌘

1
2�

2
2x

2x⇣

2
�2�1

(⇣2
�1 � ⇣2

�1)
dx

�x⇣

2
�1

ˆ �2

⇣

˜h (1)� ã (1) x
⌘

1
2�

2
2x

2x⇣

2
�1�1

(⇣2
�1 � ⇣2

�2)
dx (3.3.15)

=

2�2

⇣

˜h (1) (⇣2
�1 � 1) (⇣2

�2 � 1)� ⇣2
�1⇣

2
�2ã (1) x

⌘

�2
2 (⇣

2
�1 � 1) ⇣2

�1 (⇣
2
�2 � 1) ⇣2

�2

= �2

 

˜h (1)

�2 + r2
� ã (1) x

�2 + �2 + �

!

:= '2,� (x) . (3.3.16)

Collecting results it follows that the general solution to (3.3.4) when b1 > b2 may be
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written

w
�

⇣

x, 1, b, ã, ˜h
⌘

= C1x
⇢�1

+ C2x
⇢�2 , x > b1 > b2, (3.3.17)

w
�

⇣

x, 2, b, ã, ˜h
⌘

=

G1,� (⇢�1)

�1
C1x

⇢�1
+

G1,� (⇢�2)

�1
C2x

⇢�2 , x > b1 > b2, (3.3.18)

w
�

⇣

x, 2, b, ã, ˜h
⌘

= A1x
⇣

2
�1
+ A2x

⇣

2
�2
+ '2,� (x) . b1 � x > b2. (3.3.19)

At the boundaries, w
�

⇣

x, i, b, ã, ˜h
⌘

=

˜h (i) � ã (i) b
i

:= �
i

(b
i

) for i 2 E, which,

together with the requirement that (3.3.18) and (3.3.19) are C0 and C1 respectively

at x = b1, generates the system given in (3.3.7).

3.4 Optimised Capital Structure

3.4.1 Optimised Boundaries Following the established literature 1, equity value

in (3.3.1) can be maximised (relative to constant boundaries) by enforcing the heur-

istic of the smooth-pasting condition at the optimised boundaries, b⇤ = (b⇤1, b
⇤
2),

@

@v
Q (v, i, b⇤)

�

�

�

�

v=b

⇤
i

= 0, i 2 E, (3.4.1)

which in view of (3.3.1), in the context of the model being presented, translates into

the requirement that

@

@v
(w

m

(v, i, b⇤, ⇠ + 1, ⌫̃)� w0 (v, i, b
⇤, ⇠, �̃))

�

�

�

�

v=b

⇤
i

= �1, i 2 E, (3.4.2)

where �̃ (·) and ⌫̃ (·) are given in (3.2.11) and (3.2.9) respectively and w
�

is specified

in (3.3.4). It follows, therefore, that a b⇤ = (b⇤1, b
⇤
2) with b⇤1 > b⇤2 which satisfies the

two non-linear equations given by (3.4.2), in conjunction with system (3.3.5)-(3.3.7),

will satisfy (3.4.1).

1See for example, Leland [1994b], Hilberink and Rogers [2002], Dao and Jeanblanc [2012].
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It is not known a priori which boundary will be the larger of the two, and therefore,

both possibilities can be numerically checked to see which prior assumption is verified.

Furthermore, in view of the complexity of the system of non-linear equations resulting

from (3.4.2) and (3.3.5)-(3.3.7), it has not been possible to establish existence and

uniqueness properties of the optimised boundaries. To be clear, the term optimised is

being used here in the sense that the boundaries satisfy the smooth fit requirement.

No claim is being made that the latter boundaries are globally optimal. Once the

optimised boundaries, b⇤ = (b⇤1, b
⇤
2), have been established, it is then possible to invoke

Theorem 3.3.1, or the analogous result for the case when b⇤2 > b⇤1, to calculate the

optimised capital structure in terms of the value of the equity, firm value and debt. In

addition, optimised credit spreads can be computed as outlined in the next section.

3.4.2 Credit Spreads Once again following the established literature, credit

spread is defined as the coupon in excess of the risk-free rate which would encourage

an investor to buy debt at face value. Using (3.2.2), the risk free rate in regime i

until a finite time t may be defined as

r̃ (i, t) = �
log 1

i

0E
⇣h

exp

�
´ t
0 r(Zs)ds

i⌘

1

t
, i 2 E, (3.4.3)

which allows the risk free rate associated with a given maturity profile to be defined

as

r̃ (i,m) =

8

>

<

>

:

�m log

⇣

1

i

0
exp

(G�⇤r)
m

1

⌘

m > 0, i 2 E,
�

1

i

0
(⇤

r

�G)

�1
1

��1
m = 0, i 2 E,

(3.4.4)

after noting that under an exponential maturity profile, t = 1
m

.

In the context of the roll-over debt framework, credit spreads can be viewed in two

distinct ways 2. First, the firm credit spread is the spread required by the market

to buy total debt at face value for a given selection of the firm’s setup parameters,

including the maturity profile m, and an initial value of assets, v. Second, once the firm

2See for example Hilberink and Rogers [2002].
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has been established, and in particular having selected a maturity profile parameter,

then the term credit spread is the spread required by the market to buy a bond of a

given maturity at par. Both types of spreads may be computed as outlined below. The

analysis of credit spreads will be restricted to cases where the firm remains solvent,

(v, i) 2 {v > b⇤
i

, i 2 E} . (3.4.5)

3.4.3 Firm Credit Spreads When the firm is set up and debt is first issued,

the parameters of the firm are typically constrained such that at the coupon rate, c,

the market value of debt, D (v, i, b⇤) is equal to the face value of debt, P . If the asset

value of the firm at startup is V0 = v, the latter constraint requires that the coupon

rate, c, be the smallest solution to the equation

D (v, i, b⇤) = P, i 2 E, (3.4.6)

where D (v, i, b⇤) is defined in (3.3.3).

The regime dependent coupon rate which solves (3.4.6) will be denoted ĉ⇤
m

(v, i, b⇤).

Unlike Leland [1994b], Hilberink and Rogers [2002], Dao and Jeanblanc [2012], the

framework of this chapter does not provide a closed form solution for the barrier b⇤.

Nevertheless, by numerically calculating b⇤ for a given set of startup parameters for

the firm, including the coupon rate, and then evaluating (3.4.6) it is possible to search

for ĉ⇤
m

(v, i, b⇤) numerically. Computations based on the latter approach are presented

in Section 3.5 below. The firm’s credit spread is then given by

ŝ⇤
m

(v, i, b⇤) = ĉ⇤
m

(v, i, b⇤)� r̃ (i,m) , (v, i) 2 {v > b⇤
i

, i 2 E} , (3.4.7)

where r̃ (i, ·) is defined in (3.4.4).

3.4.4 Term Structure Credit Spreads As noted above, term structure credit

spreads are defined as the excess over the coupon rate which would, once the setup

parameters of the firm have been selected and the boundaries fixed, allow a newly
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issued bond of a specific maturity, t, to price at par for a given value of initial assets,

v, in regime i.

Using (3.2.5), the latter calculation amounts to finding the coupon rate which solves

c̃

⇤
t

(v, i, b⇤) =

1� E
v,i

h

e

�
´ t
0 r(Zu)du1{t<⌧(b⇤)}

i

� v

P

E
v,i



(1� ⇠

�

Z

⌧(b⇤)

�

)eX⌧(b⇤)�
´ ⌧(b⇤)
0 r(Zu)du1{t�⌧(b⇤)}

�

´
t

0 E
v,i

h

e

�
´ s
0 r(Zu)du1{s<⌧(b⇤)}ds

i

for (v, i) 2 {v > b⇤
i

, i 2 E}. Explicit expressions for the expectations in the latter

equality are not available, however, the spread may be computed using inverse Laplace

transforms of expressions established in Proposition 3.3.2 as outlined in Proposition

3.4.1 below for the case when b⇤1 > b⇤2. An entirely analogous result applies for the

case when b⇤2 > b⇤1. Numerical calculations based on the above approach are also

presented in Section 3.5.

Term structure credit spreads are then defined as

s̃⇤
t

(v, i, b⇤) = c̃⇤
t

(v, i, b⇤)� r̃

✓

i,
1

t

◆

, (v, i) 2 {v > b⇤
i

, i 2 E} , (3.4.8)

where r̃ (i, ·) is defined in (3.4.4) and c̃⇤
t

(v, i, b⇤) is defined in (3.4.9).

Proposition 3.4.1. Given b1 > b2 in (3.2.4), the coupon rate of a corporate bond in

(3.2.5) issued at par with maturity t is given by

c̃⇤
t

(v, i, b) =
1� L�1

(Am

1 (v, i, b) ,m)� v

P

L�1
(Am

2 (v, i, b) ,m)

L�1
(Am

3 (v, i, b) ,m)

(3.4.9)

for (v, i) 2 {v > b
i

, i 2 E} where L�1
(., s) is the inverse Laplace transform with

Laplace exponent s,

Am

1 (v, i, b) = 1

0
i

(⇤

r

�G)

�1
1� w

m

⇣

v, i, b, 0, ˜#
⌘

,

Am

2 (v, i, b) =

1

m
w

m

(v, i, b, (1� ⇠) , 1) ,

Am

3 (v, i, b) =

1

m
Am

1 (v, i, b) ,
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w
�

is specified in (3.3.4) and

˜#(k) = 1

k

0
(⇤

r+m

�G)

�1
1, k 2 E.

Proof. Solving d (v, i, b, t) = 1 in (3.2.5) yields

c̃⇤
t

(v, i, b) =
1� a1 (v, i, b)� v

P

a2 (x, i, b)

a3 (v, i, b)
(3.4.10)

where

a1 (v, i, b) = E
v,i

h

e�
´ t
0 r(Zu)du

{t<⌧(b)}

i

(3.4.11)

a2 (v, i, b) = E
v,i

h

�

1� ⇠
�

Z
⌧(b)

��

e�
´ ⌧(b)
0 r(Zu)du+X⌧(b) {t>⌧(b)}

i

(3.4.12)

a3 (v, i, b) =

ˆ
t

0

E
v,i

h

e�
´ s
0 r(zu)du

{s<⌧(b)}

i

ds. (3.4.13)

Using Lemmas 3.6.1 and 3.3.2 the Laplace transform of (3.4.11) computes directly as

Am

1 (v, i, b) =

ˆ 1

0

e�mta1 (x, i, b) dt

=

ˆ 1

0

e�mtE
v,i

h

e�
´ t
0 r(Zu)

{t<⌧(b)}

i

dt

=

ˆ 1

0

e�mtE
v,i

h

e�
´ t
0 r(Zu)

i

dt�
ˆ 1
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e�mtE
v,i

h

e�
´ t
0 r(Zu)

{⌧(b)t}

i

dt

= 1

i

0
(⇤
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�G)
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1� E

v,i

h

e�
´ ⌧(b)
0 (r(Zu)+m)du
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⌧(b))
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= 1

i
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where
˜#(k) = 1

k

0
(⇤

r+m

�G)

�1
1, k 2 E,
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and w
�

is specified in (3.3.4). The Laplace transform of (3.4.12) reads

Am

2 (v, i, b) =

ˆ 1

0

e�mta2 (x, i, b) dt

=

ˆ 1

0

e�mtE
v,i

h

�

1� ⇠
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E
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1� ⇠
�

Z
⌧(b)

��

e�
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i

dt

=

1

m
w

m

(v, i, b, (1� ⇠) , 1)

where 1 is a column vector of ones with the latter equality following directly from

Proposition 3.3.2. Finally, the Laplace transform of (3.4.13) is given by

Am

3 (v, i, b) =

ˆ 1

0

a3 (x, i, b) dt

=

ˆ 1

0

ˆ
t

0

e�mtE
v,i

h

e�
´ s
0 r(Zu)du
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i

dsdt
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1

m

ˆ 1

0

e�mtE
v,i

h

e�
´ t
0 r(Zu)

{t<⌧(b)}

i

dt

=

1

m
Am

1 (v, i, b)

which completes the proof.

3.5 Numerical Analysis

3.5.1 Calculation Methodology All calculations were conducted using Mat-

lab. In order to establish the optimised default boundaries, the non-linear system

given (3.4.2) and (3.3.5)-(3.3.7) was first solved using Matlab’s lsqnonlin routine un-

der the assumption that one of the boundaries was greater than the other. Both

the assumption that the regime 1 boundary was greater than the regime 2 boundary

and vice versa were calculated. The resulting calculated boundaries were then com-

pared with the initial assumption, and the calculated boundaries which agreed with

the initial assumption regarding the relative levels of the boundaries, selected as the
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optimised boundary pair. Only one set of calculated boundaries ever agreed with the

prior assumption. Once calculated, the latter optimised boundaries were then used

to calculate the value of equity, the firm and debt using (3.3.1), (3.3.2) and (3.3.3)

respectively. Finally, in order to calculate firm credit spreads, a simple numerical

search procedure was used, repeating the calculations above in order to calculate the

smallest of coupon which satisfied (3.4.6). The Laplace inversions required to calcu-

late term structure credit spreads associated with (3.4.9) were carried out using the

Euler method proposed by Abate and Whitt [1995].

The default parameters used for all calculations are illustrated in Table 3.5.1. The

parameters which were invariant between regimes and the regime 1 parameter values

were taken from Leland [1994b], with the exception of the regime intensities which

were set to 0.3 and 1 for regimes 1 and 2 respectively. The regime 2 parameters

were selected to reflect a recessionary scenario in which interest rates and dividend

payments were assumed to fall but asset volatility and bankruptcy costs assumed to

rise. In addition, in regime 2, the tax rate was assumed to be lower, reflecting a desire

by the fiscal authorities to stimulate growth.

3.5.2 Optimised Capital Structure Table 3.5.2 lists the values of optimised

regime dependent default boundaries, for different maturity profiles, but otherwise

using the default parameters in Table 3.5.1. For comparison purposes, boundaries

from Leland [1994b] are also included, calculated using the regime 1 parameters only.

It is notable that regime 1 boundaries are higher than regime 2 boundaries for all ma-

turities. Regime 1 boundaries are also higher than the corresponding Leland [1994b]

for the same maturity profile. However, whereas regime 2 boundaries are higher than

the corresponding Leland [1994b] for the same maturity profile for maturities less

than 5 years, for 5 year maturities and greater, they are lower.

Optimised firm value as a function of leverage for different maturity profiles in each re-

gime is illustrated in Figure 3.5.1. Leverage here, and in sequel, is defined as in Leland

[1994b] as total debt value (3.3.3) divided by firm value (3.3.2), D (v, i, b) /F (v, i, b).

Higher leverage was generated in the calculations by increasing the nominal value of
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debt while holding all other parameters constant. The results reflect the findings ob-

served in the literature which indicate that firm value initially increases with leverage

only to reach what appears to be a maximal level and then declines. The levels of

leverage and credit spreads which are associated with the maximum values achieved

in Figure 3.5.1 are calculated in Subsection 3.5.4 below.

Figure 3.5.1 suggests that maximal firm value is achieved at lower levels of leverage

for shorter maturity profiles which is also in line with the findings reported in the

literature (Leland [1994b], Leland and Toft [1996], Hilberink and Rogers [2002], Dao

and Jeanblanc [2012]). Figure 3.5.1 indicates that in regime 1, firm value is maximised

at a leverage equal to approximately 25%, whereas for a 30 year maturity profile, firm

value is maximised at approximately 55%. As regards the effect of regimes, firm value

is lower in regime 2 than regime 1 for all maturity profiles and declines more quickly

as a function of leverage than in regime 1 after having reached its maximal value.

Figure 3.5.2 plots optimised total debt value as a function of leverage in each regime

with higher leverage again, simulated by increasing nominal debt value holding other

parameters constant. As in the case of firm value above, and also reflective of results

reported in the literature, debt value initially increases as a function of leverage only

to decline after reaching an apparent maximal value.

Again, mirroring firm value, maximal debt value is reached at lower levels of leverage

for shorter maturity profiles. Optimised debt values are lower in regime 2 for all

maturity profiles with the value of debt appearing to decline more sharply in regime

2 than regime 1 as leverage increases beyond the level which maximises debt value.

In each maturity profile presented in Figure 3.5.2, maximal debt value appears to be

achieved at lower levels of leverage in regime 2 than in regime 1.

3.5.3 Firm Spreads Firm credit spreads, as described in Subsection 3.4.3, are

presented in Figure 3.5.3 as a function of leverage and by maturity profile and regime.

The results are similar to those reported for the geometric Brownian motion case

Leland [1994b] but lower than those reported for an asset process driven by a double-
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exponential jump diffusion in Dao and Jeanblanc [2012]. Firm spreads tend to increase

with leverage for all maturity profiles as would be expected intuitively. Short maturity

profile firm spreads are more sensitive to higher leverage and increase faster as leverage

rises.

Spreads in regime 2 are higher than in regime 1 and increase more rapidly as a

function of leverage. The latter observation is consistent with the familiar hump-

backed term structure of credit spreads which are often observed in the market for

highly leveraged firms, where short dated credit spreads may be observed to be much

higher than longer dated spreads. The latter effect is also visible in calculations of

the term structure of credit spreads presented in Subsection 3.5.5 below.

Figure 3.5.4 illustrates firm credit spreads as a function of coupon for different ma-

turity profiles in each regime. Firm credit spreads rise as a function of coupon but

the latter effect is more pronounced for longer maturity profiles than it is for shorter

maturity profiles. Indeed, firm spreads for a 2-year maturity profile exhibit a very low

sensitivity to higher coupons. The latter observation is in accordance with intuition

since for shorter dated bonds, coupon repayments are a smaller proportion of total

repayments than is the case for longer maturity bonds.

Unlike the results reported in Dao and Jeanblanc [2012], positive credit spreads are

observed for zero coupons. In the context of the roll-over debt structure, a zero coupon

amounts to the case where the firm is constantly refinancing itself with discount bonds

of maturity 1/m. Credit spreads in the latter case are higher for shorter maturity

profiles simply because redemptions occur at a higher frequency than is the case for

longer maturity profiles.

An interesting feature of Figure 3.5.4 is that the effect of regime change differs by

maturity profile. Firm credit spreads increase with coupon in both regimes and

increase more steeply with coupon in regime 2. However, the effect of a regime

change is not the same for all maturities. For the 2-year and 5-year maturity profiles,

firm credit spreads are higher in regime 2 than regime 1. However, for a 30-year

maturity profile, firm credit spreads are lower in regime 2 for low coupons but rise
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more steeply than firm credit spreads in regime 1 as coupons increase to the point

where credit spreads are higher in regime 2 than in regime 1 for higher coupons.

3.5.4 Optimised Leverage Table 3.5.3 illustrates the leverage ratio which max-

imises firm value for a selection of maturity profiles within a defined range of nominal

debt values. The optimised leverage ratios were calculated by a simple search pro-

cedure over the range of nominal debt values in the interval (0, 100], which in view of

Figure 3.5.1, was regarded as a reasonable search domain. For each level of nominal

debt, optimised boundaries and the associated value of the firm were calculated. The

maximum firm value was calculated using Matlab’s fminbnd routine using a function

change tolerance of 1e� 15.

The results illustrated in Table 3.5.3 are consistent with those reported in the liter-

ature. For example, the leverage and credit spreads in regime 1 are close to those

reported in Leland [1994b]. Optimised leverage increases in both regimes with the

maturity profile parameter as does firm value and firm credit spreads. In regime 1,

firm value is maximised with a 5 year maturity profile at leverage of 0.356 with a

corresponding firm spread of 43bps. In contrast, leverage of 0.545 maximises firm

value for a 30 year maturity profile with a firm credit spread of 129bps.

Optimised leverage and firm value is lower in regime 2 than in regime 1 for all ma-

turities. Firm credit spreads are higher in regime 2 for 0.25-year and 1-year maturity,

for 5-year maturity and over, firm credit spreads are lower in regime 2 than in regime

1. That optimised firm credit spreads appear to be lower for longer maturities may

at first appear surprising in view of the higher asset volatility in regime 2. How-

ever, separate calculations, which increased only volatility in regime 2, indicated a

lower optimised leverage in regime 2 which was, nevertheless, associated with higher

firm credit spreads. The observation that credit spreads are lower in regime 2 for

higher maturities under the default parameters is reflective of parameters other than

volatility having a damping impact on spreads for longer maturities.
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3.5.5 Term Structure of Credit Spreads Figure 3.5.5 illustrates term struc-

ture credit spreads, which were described in Subsection 3.4.4, for selected maturities

between 0.5 and 30 years for different values of nominal debt (and therefore leverage)

but otherwise using the default parameters in Table 3.5.1. Spreads are illustrated

for both regimes. Nominal debt values of 55, 60 and 65 corresponded to leverage of

0.515, 0.562 and 0.61 respectively.

For lower levels of leverage, the credit curves illustrated in Figure 3.5.5 have the

familiar upward sloping shape as a function of maturity. Credit spreads increase

across all maturities in both regimes as leverage increases. Shorter maturity spreads

increase more than longer maturity spreads as leverage increases.

As leverage increases, the shape of the spread curve changes. In regime 1 with a

nominal value of debt equal to 65, credit spreads increase with maturity up to 10

years but are fairly flat as a function of maturity in excess of 10 years. In regime 2,

however, with nominal debt of 65, the term structure of credit spreads rises steeply up

to 4 year maturity and then becomes inverted with the credit curve sloping down as

a function of maturity in excess of 4 years. The latter hump-shaped term structure of

credit spreads is a frequently observed market phenomena and is typically associated

with firms in financial distress.

Figure 3.5.6 displays for shorter maturities the term structure of credit spreads using

the same parameters as above. For shorter maturities the term structure of spreads

remains upward sloping in both regimes and as leverage increases. Spreads are higher

in regime 2 than in regime 1 and the term structure steepens sharply in regime 2 for

higher levels of leverage. For low levels of leverage, calculated credit spreads were

close to zero for very short maturities.
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Fixed Parameters

Name Symbol Default Value

Asset Value v 100

Coupon Rate c 0.08

Principal P 50

Average Maturity 1/m 5

(a) Fixed Parameters

Regime Dependent Parameters

Name Symbol Default Value

Regime 1 Regime 2

Asset Volatility � 0.2 0.35

Tax Rate ⇡ 0.35 0.15

Bankruptcy Costs ⇠ 0.5 0.75

Interest Rate r 0.075 0.03

Dividend Yield � 0.07 0.02

Regime Intensity � 0.3 1

(b) Regime Dependent Parameters

Table 3.5.1: Default ParameterValues
The table lists default parameter values for all calculations unless otherwise stated. To

facilitate comparison, fixed and regime 1 parameter values are taken from Leland [1994b].

Regime intensities were set at 0.3 and 1 for regimes 1 and 2 respectively.
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Maturity Leland 94 Regime 1 Regime 2

0.25 Year 77.63 82.63 81.04

1 Year 62.80 67.03 67.25

5 Year 43.29 44.36 42.86

10 Year 36.46 36.90 28.94

20 Year 31.45 32.65 29.71

30 Year 29.38 30.67 28.89

Table 3.5.2: Default Boundaries by Maturity Profile
The table shows optimised boundaries in each regime for selected maturity profiles. For

comparison, boundaries using Leland [1994b] are included which are calculated using re-

gime 1 parameters only. Regime 1 boundaries are higher than regime 2 boundaries for all

maturity profiles. For lower maturities, both regime boundaries are higher than the corres-

ponding Leland [1994b] boundary but for larger maturities, regime 2 boundaries fall below

the corresponding Leland [1994b] boundary.
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Figure 3.5.1: Firm Value by Leverage
The figure shows optimised firm value by leverage in each regime for different maturity

profiles but otherwise using the default parameters in Table 3.5.1. Firm value appears to

achieve a maximum value at lower levels of leverage for shorter maturity debt profiles. Firm

value is lower in regime 2 than in regime 1 for equivalent levels of leverage.
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Figure 3.5.2: Debt Value by Leverage
The figure shows optimised total debt value by leverage in each regime for different maturity

profiles but otherwise using the default parameters in Table 3.5.1. Debt value appears to

achieve a maximum value at lower levels of leverage for shorter maturity debt profiles.

Optimised debt value is lower in regime 2 than in regime 1 for the same level of leverage and

declines more sharply as a function of leverage in regime 2 than in regime 1 after achieving

its maximum value.
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Figure 3.5.3: Firm Spreads by Leverage
The figure shows optimised firm spreads as a function of leverage in each regime for different

maturity profiles but otherwise using the default parameters in Table 3.5.1. Firm spreads

are higher for a shorter dated maturity profile and higher in regime 2 than in regime 1.

Firm spreads increase rapidly in regime 2 as a function of leverage indicating that firms

with shorter maturity profiles are subject to increased default risk during periods of high

volatility.
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Figure 3.5.4: Firm Spreads by Coupon
The figure shows optimised firm spreads as a function of coupon in each regime for different

maturity profiles but otherwise using the default parameters in Table 3.5.1. Firm spreads

are higher for a shorter dated maturity profile and higher in regime 2 than in regime 1.

For longer maturity profiles, spreads increase as the coupon rate increases while for shorter

maturity profiles, spreads are relatively insensitive to the level of the coupon rate. Spreads

are positive for discount bonds (zero coupon).
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Maturity Regime 1 Regime 2

Leverage Firm Value Spread Leverage Firm Value Spread

0.25 Year 0.142 103.54 0 0.133 103.35 33

1 Year 0.189 104.70 1 0.179 104.45 40

5 Year 0.356 109.03 43 0.341 108.55 41

10 Year 0.470 112.30 89 0.452 111.65 75

20 Year 0.518 113.85 117 0.500 113.10 95

30 Year 0.545 114.75 129 0.526 113.96 105

Table 3.5.3: Numerically Optimised Firm Value by Maturity
The table shows optimised leverage, firm value and associated firm credit spread for different

maturity profiles. Optimised leverage increases with maturity as does firm value and spread.

Optimised leverage is lower in regime 2 than regime 1. Firm credit spreads are higher for

shorter maturities but are lower as the maturity profile increases beyond 5 years. Optimised

leverage was calculated for nominal debt in the range (0, 100].
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Figure 3.5.5: Term Structure Credit Spreads by Leverage
The figure shows optimised term structure credit spreads in each regime for different levels

of nominal debt but otherwise using the default parameters in Table 3.5.1. Higher levels of

nominal debt reflect higher levels of leverage. Spreads increase across all maturities with

higher leverage, increasing more for shorter maturity debt. Spreads are higher in regime

2 compared to regime 1. For nominal debt equal to 65, the curve inverts and becomes

downward sloping starting from 4-years to maturity which is a familiar market phenomena

for firms in financial distress.
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Figure 3.5.6: Short Maturity Term Credit Spreads by Leverage
The figure shows optimised short dated term structure credit spreads in each regime for

different levels of nominal debt but otherwise using the default parameters in Table 3.5.1.

Higher levels of nominal debt reflect higher levels of leverage. Spreads increase across all

maturities with higher leverage and are higher in regime 2 than regime 1. The term structure

of spreads retains a positive slope as a function maturity even at higher levels of leverage.
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3.6 Auxiliary Results and Proofs

Lemma 3.6.1 below is used in the calculation of total debt and firm value in equations

(3.2.8) and (3.2.10) respectively. Supporting Lemma’s 3.6.2 and 3.6.3 were taken from

Mijatovic and Pistorius [2009].

Lemma 3.6.1. Let Z = {Z
t

}
t�0 be a Markov chain on a finite state space E =

{1, 2, . . . , N}, ⌧ a stopping time measurable with respect to the filtration generated by

Z, h : E ! R and a : E ! R+. If G denotes the generator of Z and ⇤
a

is a diagonal

matrix of size N with diagonal elements a(i), i = 1, 2, . . . , N, then

ˆ 1

0

E
j

h

e�
´ t
0 a(Zu)duh (Z

t

) {⌧t}

i

dt = E
j

h

e�
´ ⌧
0 a(Zu)du

eh(Z
⌧

)

i

(3.6.1)

where

eh(k) =

ˆ 1

0

E
k

h

e�
´ u
0 a(Zs)ds

i

du = 1

k

0
(⇤

a

�G)

�1 h, k 2 E,

where h = (h (1) , h (2) , . . . , h (N)), 1 is an N element vector of ones and 1

k

is a

column vector of size N with one in the kth row equal to one and zero otherwise.

Proof. First note that by the tower property of conditional expectation and the strong

Markov property

E
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t

)

ii

64



Roll-over Debt under Regime-Switching

so that by Lemma 3.6.2 and Lemma 3.6.3

ˆh (k) =

ˆ 1

⌧

E
h

e�
´ t�⌧
0 a(Zu)duh (Z

t

) | Z
⌧

= k
i

dt
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0e(G�⇤a)thdt

= 1

k

0
(⇤

a

�G)

�1 h

where h0
= (h (1) , h (2) , . . . , h (N)) with the application of Lemma 3.6.3 in the latter

equality justified by Theorem 2 in Mijatovic and Pistorius [2009] which implies that

all the eigenvalues (⇤
a

�G)

�1 have non-positive real part, completing the proof.

Lemma 3.6.2. Let Z be a Markov chain on a finite state space E = {1, 2, . . . , N}
and let a, h : E ! R. If G denotes the generator of Z and ⇤

a

is a diagonal matrix of

size N with diagonal elements a(i), i = 1, 2, . . . , N, then

E
j

h

e�
´ t
0 a(Zs)dsh(Z

t

)

i

=1

j

0e(G�⇤a)th (3.6.2)

where 1

j

is a column vector of size N with one in the jth row and zero otherwise and

h
0
= (h (1) , . . . , h (N)).

Proof. See Mijatovic and Pistorius [2009]

Lemma 3.6.3. Let a 2 C and M a matrix whose eigenvalues all have non-positive

real part. Then the matrix ⇤
a

�M is invertible and the following formula holds

ˆ 1

0

e�at

exp (tM) dt = (⇤

a

�M)

�1 .

Proof. See Mijatovic and Pistorius [2009]
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CHAPTER 4 OPTIMAL CAPITAL

STRUCTURE UNDER

REGIME-SWITCHING WITH JUMPS

4.1 Introduction

In this chapter, the model of Chapter 3 is extended to allow the asset price process

of the firm to jump in the negative direction. Moreover, the jump process is also

allowed to be regime-dependent motivated by the conjecture that during times of

economic stress, negative jumps of a firm’s asset process might be expected to be

larger in magnitude. In this chapter, however, the firm is assumed to be financed

by a single infinite maturity, or consol, bond. The latter assumption unfortunately

loses the richness of term structure analysis inherent in the roll-over model, but it

nevertheless implies that the debt profile is fully stationary, which permits an optimal

capital structure to be identified.

The model of this chapter also allows firm asset volatility, risk free interest and

dividend rates as well as tax rates and bankruptcy costs to be regime-dependent. As

in Chapter 3, two regimes are considered. Maximisation of equity on the part of the

firm manifests itself an optimal stopping problem which takes the form of a perpetual

American put option. An interesting feature of the model is, however, that the payout

of the option depends upon the regime. Indeed, the strikes of the put option become

regime-dependent which has the implication that, under certain conditions, it may

never be optimal for a firm to endogenously declare default in certain regimes. The

intuition behind the latter finding is that if the strike in one regime is very far below
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the strike in the other regime, then it may be optimal not to declare bankruptcy in

the former regime, but simply wait for the regimes to switch to collect an expected

larger payout. When an optimal default boundary is known to exist, optimal capital

structure and credit spreads are identified.

The problem of a firm financed by a single infinite maturity bond was first considered

by Black and Cox [1976]. Later, Leland [1994a] examined optimal capital structure

for a firm, financed by an infinite maturity bond, which received tax benefits on

interest payments and where the asset process followed a geometric Brownian motion.

More recently, dynamic capital structure was considered by Elliott and Shen [2015]

incorporating tax benefits and bankruptcy costs with regime-switching dynamics in

the case where the firms asset process was assumed to be a geometric regime-switching

Brownian motion. The model presented in this paper builds on the literature by

adding negative jumps to a regime-switching asset process of a firm financed by a

single infinite maturity bond where both bankruptcy costs and tax relief on interest

payments are also assumed to be regime-dependent.

The outline of this chapter is as follows. The formulation of the model is outlined

in Section 4.2. In Section 4.3, some Wiener-Hopf factorisation results which are

required in sequel to calculate first-passage probabilities are collected. Endogenously

determined optimal default boundaries which maximise equity value are determined

in Section 4.4 and an optimal capital structure identified. Finally, in Section 4.5

some numerical calculations based on the results are presented. Auxiliary results are

collected in Section 4.6.

4.2 Model Formulation

4.2.1 Market Structure The market is assumed to be composed of a savings

account and a single-asset firm whose price processes, {B
t

}
t�0 and {V

t

}
t�0, are given
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by

B
t

= exp

✓

�
ˆ

t

0

r (Z
s

) ds

◆

, (4.2.1)

V
t

= exp (X
t

) , (4.2.2)

where E[V1] < 1, r (i) : E0 7! R+\ {0} is the instantaneous risk free interest rate,

{Z
t

}
t�0 is an irreducible Markov process with finite state space E0

= {1, 2} and

intensity matrix G given by

G =

 

��1 �1

�2 ��2

!

with �
i

> 0, i 2 E and {X
t

}
t�0 is a regime-switching Lévy process given by

X
t

= x+

ˆ
t

0

µ (Z
s

) ds+

ˆ
t

0

� (Z
s

) dW
s

+

X

i2E0

ˆ
t

0

1{Zs=i}dJi (s) , x 2 R, (4.2.3)

where {W
t

}
t�0 is a Wiener process independent of Z, {J

i

(t), t � 0} are independent

compound Poisson processes with negative jumps arriving at rate �
i

, µ (i) , � (i) :

E0 7! R with � (·) > 0 and 1{A} is the indicator of the set A. Where there is no

scope for ambiguity, the notation a
i

will be used to denote the value of parameter a

in regime i. The infinitesimal generator of the process (X,Z) is given by

L
X,Z

w(x, i) =

1

2

�2
i

@2w(x, i)

@x2
+ µ

i

@w(x, i)

@x
+�

i

(w (x, 3� i)� w (x, i, ))

+�
i

ˆ 1

�1
(w (x+ y)� w (x)) f

Yi (y) dy, i 2 E0, (4.2.4)

for C2 functions w where f
Yi is the probability density function of the jump process

in regime i.

Jump sizes are assumed to be phase-type distributed (see Asmussen [2000]). A phase-

type distribution F on (0,1) is the distribution of the absorption time of a finite state
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Markov chain with one state absorbing and the remaining states transient. Restricted

to the transient states with generator matrix T and initial distribution given by the

column vector ↵, it follows from Markov chain theory that the density of F is given

by

f(x) =↵0eTxt (4.2.5)

for x > 0, where t = (�T ) 1, 0 denotes transpose and 1 is a column vector of ones.

It is assumed that the stochastic processes V and Z are defined on some filtered

probability space (⌦,F ,P,F) where F = {F
t

}
t�0 denotes the completed filtration

jointly generated by V and Z. Conditional expectations will be denoted by writing

E
x,i

[·] = E [·|X0 = x, Z0 = i]. Furthermore, since it is known (see Jiang and Pistorius

[2008]) that there exists an equivalent martingale measure which is structure pre-

serving, in sequel all expectations can be understood to be taken in the risk neutral

measure.

Theorem 1 in Mijatovic and Pistorius [Preprint] implies that the discounted moment

generating function of the process (X,Z) is given by

E0,i



euXt

B
t

{Zj=j}

�

= 1

i

0et(K(u)�⇤r)
1

j

, u 2 R,

where k (u) := G + ⇤ (u), ⇤
r

is a 2 ⇥ 2 diagonal matrix with diagonal elements r(i)

for i 2 E0 and ⇤ (u) is a 2⇥ 2 diagonal matrix where the ith element is equal to the

characteristic exponent of the process X in regime i 2 E0 given by

�
i

(u) = uµ
i

+

1

2

�2
i

u2
+ �

i

�

↵0
i

(⇤

u

� T
i

)

�1 t
i

� 1

�

.

It follows, therefore, that if the drift vector µ is chosen such that ⇤ (1) +⇤

�

�⇤
r

= 0

then

µ
i

= r
i

� �
i

� 1

2

�2
i

� �
i

�

↵0
i

(I � T
i

)

�1 t
i

� 1

�

, i 2 E0, (4.2.6)

which implies that the discounted risk neutral drift will be ��
i

, i 2 E0. In sequel,
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therefore, it will be assumed that condition (4.2.6) holds.

4.3 Matrix Wiener-Hopf Factorisation

In this section some Wiener-Hopf factorisation results related to finite state Markov

chains are briefly collected, which are required in sequel to calculate first-passage

probabilities. This section draws heavily on the presentation in Jiang and Pistorius

[2008] which related to the more general case of both positive and negative jumps.

The results have therefore been tailored to the case of negative jumps only since this

will be the focus of this chapter.

4.3.1 Fluid Embedding In sequel applications it will be of great interest to

characterise the boundary crossing times of X given by

⌧ (b) = inf {t � 0|X
t

 b (Z
t

)} .

The first step in the latter regard is to reformulate the setting into one of the first

hitting time for a related continuous Markov process. The latter is achieved by

a process of fluid embedding, outlined below, which transforms the path of X by

replacing jumps with linear stretches. As a result, the transformed process always

touches any boundary at first passage. An additional advantage of the latter approach

is that a mechanism is afforded by which to calculate any shortfall or overshoot should

X jump across a boundary.

Define {Y
t

}
t�0 to be an irreducible continuous Markov chain with finite state space

E [ @, where @ is an absorbing cemetery state, and denote by {A
t

}
t�0 the Markov

modulated Brownian motion given by

A
t

=A0 +

ˆ
t

0

m (Y
s

) ds+

ˆ
t

0

s (Y
s

) dW
s

(4.3.1)

where s,m : E [ @ 7! R with s (@) = m (@) = 0.
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The process A is the fluid-embedding of X if the generator of Y restricted to E is

equal to Q0 where, in block notation,

Q
a

=

 

G�D
a

B

t T

!

, (4.3.2)

with D
a

an N ⇥N diagonal matrix where (D
a

)

ii

= �
i

+ a
i

and,

B =

 

�1↵
0
1

�2↵
0
2

!

, T =

 

T1

T2

!

, t =

 

t1

t2

!

.

The functions m(·) and s(·) are specified as:

m (j) =

(

µ
j

if j 2 E0

�1 if j 2 E�
, s (j) =

(

�
j

if j 2 E0

0 otherwise
. (4.3.3)

It is clear from (4.3.2) that Q
a

admits the partition E = E0 [ E� where E0 is the

state space inherited from Z and E� are the states in which the path of A is linear

and with slope �1. In sequel, the subset of E which corresponds to the ith regime of

X will be denoted as E
i

= {i} [E�
i

. The elements of the matrix Q
a

will be denoted

q
ij

for i, j 2 E0.

4.3.2 Path Transformation While the chain Y is in i 2 E0, A evolves according

to a Brownian motion with drift m (i) and volatility � (i). However, when Y takes

values in E�, the path of A is linear with slope �1, with the length of the linear

stretches corresponding to the size of the jumps in X. Informally, therefore, a path

of X can be thought of as being obtained from a path of A by simply replacing the

latter linear stretches with negative jumps in X of the same size as the length of the

linear stretch in E�.

More formally, a stochastic process which has the same law as (X,Z) can be obtained

by first time-changing the process (A, Y ) so that A is observed only when Y takes
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values in E0. To proceed, first define

T0 (t) =

ˆ
t

0

1{Ys2E0}ds and T�1
0 (u) = inf {t � 0 | T0(t) > u} ,

which correspond to the time spent by chain Y in E0 before time t and its right

continuous inverse.

From the definition of the generator in (4.3.2) it is clear that when Y jumps from

any state in E� to state i 2 E0, it must have been in state i 2 E0 immediately prior

to jumping from E0. It is obvious, therefore, from the generator of Y in (4.3.2) that

the process Y � T�1
0 is a Markov chain with generator Z because it simply ignores

all excursions from E0. Furthermore, the process A � T�1
0 is a regime-switching jump

diffusion and the process
�

A � T�1
0 , Y � T�1

0

�

is equal in law to (X,Z) under P
x,i

for

all x 2 R and i 2 E0. Furthermore, it holds that for

⌧̂ (b) = inf

n

t � 0 | Y
t

2 E0, A
t

 ˆb (Y
t

)

o

(4.3.4)

that
�

T (⌧̂ (b)) , A
⌧̂(b), Y⌧̂(b)

�

d

=

�

⌧ (b) , X
⌧(b), Z⌧(b)

�

and ˆb : E 7! R given by ˆb (j) = b (i)

for j 2 E
i

.

State dependent discounting can be incorporated by replacing the generator Q0 with

Q
r

from which it follows that

E
x,i

h

e�
´ ⌧(b)
0 r(Zu)du+X⌧(b)h

�

Z
⌧(b)

�

i

=E
x,i

⇥

eA⌧̂(b)h
�

Y
⌧̂(b)

�

1{⌧̂(b)<⇣}
⇤

, (4.3.5)

where

⇣ = inf{t � 0 | Y
t

/2 E] (4.3.6)

with inf {?} = 1 and Y evolves according to the generator Q
r

.

4.3.3 Matrix Factorisation The solution of the first-passage problem of the

Markov process (A, Y ) across a constant level is closely related to the up and down-

crossing ladder processes, ˆY + and ˆY � respectively, of (A, Y ). The up and down-
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crossing ladder processes are time changes of Y constructed such that Y is observed

only when A is at its maximum and minimum respectively. The up and down-crossing

ladder processes ˆY + and ˆY � of (A, Y ) are defined by

ˆY ±
a

=

(

Y (⌧±
a

) , if ⌧±
a

< 1,

@, otherwise,
(4.3.7)

where @ is a graveyard state and ⌧±
a

= inf {s � 0 | A
s

? a} with inf {;} = 1.

The ladder processes ˆY + and ˆY � are again Markov processes with state spaces E0 and

E0 [ E� respectively. Matrix Wiener-Hopf factorisation, in the presence of negative

jumps only, characterises the generator matrices of ˆY + and ˆY � denoted Q+
a

and Q�
a

along with the initial distribution defined by

⌘+ (i, j) = P0,i[
ˆY +
0 = j, ⌧+0 < ⇣] for i 2 E�, j 2 E0. (4.3.8)

In the definition of a matrix Wiener-Hopf factorisation given below Q (n) denotes the

set of irreducible n⇥ n generator matrices, P (n,m) the set of n⇥m matrices whose

rows are sub-probability vectors and ⌃ and V denote the 2⇥2 diagonal matrices with

⌃

ii

= s (i) and V
ii

= m (i) for i 2 E0 respectively. Since the rows of the matrix Q
a

do not sum to zero, the matrix is referred to as transient. Let N� be the number of

elements in E� and set N�
0 = 2 +N�.

Definition 4.3.1. Let G+, C+ and G� be elements of of the sets Q(2), P(N�, 2),

and Q(N�
0 ) respectively. A triple (C+, G+,G�

) is called a matrix Wiener-Hopf fac-

torisation of (A, Y ) if

⌅

�

�G+,W+
�

= O and ⌅

�

G�,W��
= O, (4.3.9)

where

⌅ (S,W ) =

1

2

⌃

2WS2
+ VWS +Q

a

W (4.3.10)
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and W+and W� are given in block notation by

W+
=

 

I0

C+

!

, W�
=

 

I0 O

O I�

!

, (4.3.11)

where I0 and I� are identity matrices of sizes 2 ⇥ 2 and N� ⇥ N� respectively and

O denotes a zero matrix of appropriate size.

The following Theorem from Jiang and Pistorius [2008] links the previous definition

to a characterisation of the Wiener-Hopf factorisation of (A, Y ).

Theorem 4.3.2. If Q is transient then the quadruple (⌘+, Q+, Q�
) is a unique

Wiener-Hopf factorisation of (A, Y ).

4.3.4 First Exit from an Interval The two-sided exit problem of A from an

interval [k, l] with �1 < k < l < +1 is to find the distribution of the process

(A
⌧

, Y
⌧

) at the first exit time given by

⌧ = inf {t � 0 | A
t

/2 [k, l]} .

The two-sided exit problem can be solved in terms of (⌘+, Q+, Q�
), and the matrices,

Z+
=

 

I0

⌘+

!

eQ
+
r (l�k), Z�

= (1, O+
) eQ

�
r (l�k), (4.3.12)

and

 

+
(x) =

⇣

W+eQ
+
r (l�x) � eQ

�(x�k)Z+
⌘

�

I � Z�Z+
�

, (4.3.13)

 

�
(x) =

⇣

eQ
�(x�k) �W+eQ

+(l�x)Z�
⌘

�

I � Z+Z�� , (4.3.14)

 

0
(a, x) =

�

eaxI � eal +
(x) J+ � eak �

(x)
� �

�K (a)�1� , (4.3.15)
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where I is an identity matrix, W+ is given in (4.3.11) with C+
= ⌘+, J+ is the

transpose of W+ with C+ replaced by zeros and

K (a) =

1

2

⌃

2a2 + V a+Q
r

. (4.3.16)

The following Proposition from Jiang and Pistorius [2008] outlines the solution to the

two-sided exit problem.

Proposition 4.3.3. Let h+, h� and h0 be functions that map E0, E0 [E� and E to

R. If
1

2

� (i)2 + µ (i) < �q
ii

, i 2 E,

then it holds for x 2 [k, l] and i 2 E that

E
x,i

⇥

h+
(Y

⌧

) 1{A⌧=l,⌧<⇣}
⇤

= 1

i

 

+
(x)h+, (4.3.17)

E
x,i

⇥

h�
(Y

⌧

) 1{A⌧=k,⌧<⇣}
⇤

= 1

i

 

�
(x)h�, (4.3.18)

E
x,i

⇥

eaA⇣�h0
(Y

⇣�) 1{⇣<⌧}
⇤

= 1

i

 

0
(a, x)⇤

h

0q
r

, (4.3.19)

where q
r

= (�Q
r

) 1, ⇣ is defined in (4.3.6) and ⇤
h

0 is a diagonal matrix with elements

h0.

4.4 Optimal Capital Structure

4.4.1 Debt Structure The firm is partly financed by a single consol bond with

face value P upon which the firm may default. The time of default, ⌧ , is assumed to

be endogenously chosen by the firm and will be described further below. On default

a proportion ⇠
i

2 [0, 1] of the asset value is lost in regime i during the resulting

reorganisation of the firm and the residual value of the firm’s assets become the

property of the debt holders. The firm’s debt attracts a continuous coupon rate of c

and therefore has total value given by
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D (x, i) =cPE
x,i

ˆ
⌧

0

e�
´ t
0 r(Zu)dudt

�

+ E
x,i

h

e�
´ ⌧
0 r(Zu)du

(1� ⇠ (Z
⌧

))V
⌧

i

=1

i

0cP (⇤

r

�G)

�1
1� E

x,i

h

e�
´ ⌧
0 r(Zu)du

(⌫̂(Z
⌧

)� (1� ⇠ (Z
⌧

))V
⌧

)

i

, (4.4.1)

where

⌫̂(k) = 1

k

0cP (⇤

r

�G)

�1
1, k 2 E0, (4.4.2)

⇤

a

is a 2 ⇥ 2 diagonal matrix with elements equal to a(i), i 2 E0, 1 is a 2 element

vector of ones and 1

k

is a 2 element vector with 1 in row k and zero in the alternate

row. The expectations in (4.4.1) were calculated using Lemma’s 3.6.1 and 3.6.2.

4.4.2 Value of the Firm The economy’s tax policy is assumed to be regime
dependent and therefore, the firm receives tax relief on the value of coupon payments
made equal to ⇡ (i) 2 [0, 1] , for each regime i 2 E0. It follows that the value of the
firm is comprised of the value of assets at time 0 together with the present value of
future tax relief minus the proportion of assets lost in reorganisation of the firm on
default given by

F (x, i) = e

x + cPE
x,i

ˆ
⌧

0
e

�
´ t
0 r(Zu)du

⇡ (Z
t

) dt

�

� E
x,i

h

e

�
´ ⌧
0 r(Zu)du

⇠ (Z
⌧

)V
⌧

i

= e

x + 10
i

cP (⇤
r

�G)�1
⇡ � E

x,i

h

e

�
´ ⌧
0 r(Zu)du (�̂(Z

⌧

) + ⇠ (Z
⌧

)V
⌧

)
i

, (4.4.3)

where

�̂(k) = 1

k

0cP (⇤

r

�G)

�1 ⇡, k 2 E0, (4.4.4)

⇡0
= {⇡ (1) , ⇡ (2)} and where again, Lemma’s 3.6.1 and 3.6.2 were used in the calcu-

lations.

4.4.3 Equity Value The equity value of the firm is taken to be the value of the

firm in (4.4.3) minus the value of debt in (4.4.1),

Q (x, i) = ex � 1

i

0cP (⇤

r

�G)

�1 ⇡̂ + E
x,i

h

e�
´ ⌧
0 r(Zu)du

(̂(Z
⌧

)� V
⌧

)

i

, (4.4.5)
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where

̂(k) = 1

k

cP (⇤

r

�G)

�1 ⇡̂, k 2 E0, (4.4.6)

and ⇡̂ = 1� ⇡. Note that the recovery rates, ⇠ = (⇠ (1) , ⇠ (2))0 do not feature in the

value of equity which is in contrast to the roll-over debt structure. Any residual value

left on default becomes the property of the bond holders and affords no benefit to

the equity holders. The value of equity on default is also identically zero which is in

accordance with the strict priority rule.

4.4.4 Default Decision The time of default, ⌧ , is assumed to be endogenously

chosen by the firm so as to maximise the value of equity in (4.4.5). Since the decision

to default is entirely at the discretion of the firm, there is always the option to

wait (and receive zero). It therefore follows that maximising equity value in (4.4.5)

amounts to solving an optimal stopping problem of the form

w⇤
(x, i) = sup

⌧2T0,1
E

x,i

h

e�
´ ⌧
0 r(Zu)du

�

̂(Z
⌧

)� eX⌧
�

{⌧<1}

i

= sup

⌧2T0,1
E

x,i

h

e�
´ ⌧
0 r(Zu)du

�

̂ (Z
⌧

)� eX⌧
�+
i

= sup

⌧2T0,1
E

x,i

h

e�
´ ⌧
0 r(Zu)dug (X

⌧

, Z
⌧

)

i

, (4.4.7)

where z+ = max (0, z) , ̂ is given in (4.4.6), V0 = v = ex, T0,1 represents the

set of F-measurable finite stopping times and g (i, x) = (̂ (i)� ex)+. Following the

established literature, it is assumed that assets in place cannot be liquidated in order

to raise funds to pay debt holders.

Note that since x 7! w⇤
(x, i) , i 2 E0 is convex, implying that w⇤

(x, ·) is C0 in R,

and (X,Z) is a Markov process, the general theory of optimal stopping in Peskir and

Shiryaev [2006] implies a continuation region associated with the optimal stopping

problem in (4.4.7) reads as

C =

�

(x, i) 2 R⇥ E0 | w⇤
(x, i) > g (x, i)

 

(4.4.8)
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with the stopping region defined as

S =

�

(x, i) 2 R⇥ E0 | w⇤
(x, i) = g (x, i)

 

(4.4.9)

and the stopping time ⌧
B

defined by

⌧
B

= inf {t � 0|X
t

2 S} (4.4.10)

being optimal in (4.4.7) providing ⌧
B

is finite. The following Theorem characterises

a candidate value function for (4.4.7) and stopping time for (4.4.10).

Theorem 4.4.1. Let (b⇤
i

, i 2 E0
) 2 R and w : R ⇥ E0 ! R be bounded such that

w(·, i), i 2 E0 is C1 on R and C2 on R\{b⇤
i

} and the following system is satisfied:

L
X,Z

w � rw  0 x  b⇤
i

, i 2 E0, (4.4.11)

w(x, i) � g(x, i) x > b⇤
i

, i 2 E0, (4.4.12)

L
X,Z

w � qw = 0 x > b⇤
i

, i 2 E0, (4.4.13)

w(x, i) = g(x, i) x  b⇤
i

, i 2 E0, (4.4.14)

then w = w⇤ and a stopping time that achieves the supremum in (4.4.7) is given by

⌧ (b⇤) = inf {t � 0|X
t

 b⇤ (Z
t

)} . (4.4.15)

Proof. The optimality of w and b⇤ can be proved by standard means as follows1. An

application of a generalised version of Itô’s formula to e�
´ t
0 r(Zu)duw (x, i) obtains

e�
´ t
0 r(Zu)duw (X

t

, Z
t

) = w (x, i) +

ˆ
t

0

e�
´ s
0 r(Zu)du

⇧

X,Z

w (X
s

, Z
s

) {Xs 6=b(Zs)}ds+M
t

(4.4.16)

where ⇧
X,Z

f := L
X,Z

f�rf and M
t

can be shown to be a martingale. Using (4.4.13),

1See for example Peskir [2005], Theorem 25.1.
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(4.4.11), (4.4.12) and (4.4.14) it follows that

e�
´ t
0 r(Zu)dug (X

t

, Z
t

)  e�
´ t
0 r(Zu)duw (X

t

, Z
t

)  w (x, i) +M
t

.

Defining {⌧
n

}
n�1 as a localisation sequence of bounded stopping times for M, then

for every stopping time ⌧ of (X,Z) it follows that

e�
´ ⌧^⌧n
0 r(Zu)dug (X

⌧^⌧n , Z⌧^⌧n)  w (x, i) +M
⌧^⌧n , n � 1,

taking P
x,i

expectations, noting that E
x,i

[M
⌧^⌧n ] = 0 for all n (as a consequence of

the optional sampling theorem) and letting n ! 1 yields by Fatou’s lemma that

E
x,i

h

e�
´ ⌧
0 r(Zu)dug (X

⌧

, Z
⌧

)

i

 w (x, i) .

Finally, taking the supremum over all stopping times obtains that w⇤
(x, i)  w (x, i).

Next, using (4.4.16) and again using (4.4.13) along with the optional sampling the-

orem it follows that

E
x,i

h

e�
´ ⌧(b⇤)^⌧n
0 r(Zu)duw

�

X
⌧(b⇤)^⌧n , Z⌧(b⇤)^⌧n

�

i

= w (x, i) , n � 1.

Letting n ! 1 and noting that

e�
´ ⌧(b⇤)
0 r(Zu)duw

�

X
⌧(b⇤), Z⌧(b⇤)

�

= e�
´ ⌧(b⇤)
0 r(Zu)dug

�

X
⌧(b⇤), Z⌧(b⇤)

�

it follows by dominated convergence that

E
x,i

h

e�
´ ⌧(b⇤)
0 r(Zu)dug

�

X
⌧(b⇤), Z⌧(b⇤)

�

i

= w (x, i)

which shows that ⌧ (b⇤) in (4.4.15) is optimal in (4.4.7) and that w (x, i) = w⇤
(x, i)

for all (x, i) 2 R⇥ E0 completing the proof.

Remark 4.4.2. It is intuitive that if the regime dependent strikes of the put option

payoff in (4.4.7) are far away from each other, that in the regime with the lower strike,
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for low asset values, it may be optimal to defer declaring default until the regime with

the higher strike to achieve a much higher payoff. The parameters effecting the regime

strike values are the risk free interest rate and the tax rate. The latter would suggest

that monetary and fiscal policies targeted at reducing interest and tax rates may

well be effective in deferring default decisions. It is worth noting that if the risk free

interest rate and tax rate are the same in both regimes, the strike is constant across

regimes and (4.4.7) reduces to the case of a standard perpetual put with a regime-

switching asset process. In sequel, the focus is to the case that the lowest boundary

is finite.

4.4.5 First Passage Below Regime Dependent Levels In view of Theorem

4.4.1, solving for the optimal value of equity in (4.4.5) amounts to identifying the first

passage time of X below a regime dependent level and finding a function of the form

⇥

a,b

(x, i, h) = E
x,i

h

e�
´ ⌧(b)
0 r(Zu)du+aX⌧(b)h

�

Z
⌧(b)

�

i

(4.4.17)

with h : E0 7! R where

⌧ (b) = inf {t � 0|X
t

 b (Z
t

)} . (4.4.18)

The solution (4.4.17) is identified in the following Lemma by considering the fluid

embedding of the process X and the associated matrix Wiener-Hopf factorisation

results outlined in Section 4.3. Note that since the regime dependent levels in (4.4.18)

are given, without loss of generality, it will be assumed that b1 > b2.

Lemma 4.4.3. Let X = {X
t

}
t�0 be defined in (4.2.3) and ⌧ (b) be defined in (4.4.18)

with b1 > b2 and assume that 1
2� (i)

2
+ µ (i) < �q

ii

for i 2 E0 then

E
x,i

h

e�
´ ⌧(b)
0 r(Zu)du+aX⌧(b)h

�

Z
⌧(b)

�

i

:= ⇥

a,b

(x, i, h) (4.4.19)
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with

⇥

a,b

(x, i, h) =

8

<

:

1

0
i

eQ
�
r (x�b1)ˆh, x > b1,

1

0
i

 

+
2 (x)C + 

�
2 (x) ˜h+ 

0
2 (a, x)⇤

h̃

q(2) b1 � x > b2

(4.4.20)

where Q
r

is defined in (4.3.2), q(i) =
⇣

�Q
(i)
r

1

⌘

with Q
(i)
r

the restriction of Q
r

to state

i, Q�
r

satisfies ⌅ (Q�
r

) = O with ⌅ given in (4.3.10),  �
2 , +

2 and  0
2 are defined in

(4.4.27)-(4.4.29), the vectors ˜h and ˆh are given in block notation by

˜h =

�

h2e
b2
�

1, (I � T2)
�1 t2

��0
, (4.4.21)

ˆh =

n

�

h1e
b1 , C, h1e

b1
(I � T1)

�1 t1, D
� 0, (4.4.22)

C is a constant and D a vector of constants of appropriate size jointly determined by

⇥

0
a,b

(b1+, 2, h) = ⇥0
a,b

(b1�, 2, h) , (4.4.23)

⇥

a,b

(b1+, k, h) = ⇥
a,b

(b1�, k, h) , k 2 E�
2 (4.4.24)

where f (x+) and f (x�) represent the right- and left- limits of the function f at x

and f 0 denotes differentiation of f with respect to x.

Proof. By embedding state-dependent discounting at rate r(i) when Y
t

= i 2 E0 into

the generator of A. it follows from (4.3.5) that

⇥

a,b

(x, i) := E
x,i

h

e�
´ ⌧(b)
0 r(Zu)du+aX⌧(b)h

�

Z
⌧(b)

�

i

= E
x,i

⇥

eaA⌧̂bh (Y
⌧̂b
) {⌧̂b<⇣}

⇤

(4.4.25)

where

⌧̂
b

= ⌧̂ (b) = inf

n

t � 0 | Y
t

2 E0, A
t

 ˆb (Y
t

)

o

,

Y = {Y
t

}
t�0 is a Markov process which evolves according to the generator Q

r

=
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Q� ⇤
r

, ˆb : E 7! R given by ˆb (j) = b (i) for j 2 E
i

and

⇣ = inf{t � 0 | Y
t

/2 E]

with inf {?} = 1. Note that the expectations in (4.4.25) are of the form E
x,i

[·] =
E [·|A0 = x, Y0 = i].

Using the down-crossing ladder process ˜Y � of (A, Y ) defined in (4.3.7), it follows

from Theorem 4.3.2 that, since Q
r

is evidently transient, the generator of ˜Y � is given

by the unique matrix, Q�
r

, which solves ⌅ (Q�
r

) = O defined in (4.3.10). The strong

Markov property then implies that when x > b1, the payoff of hitting the level b1,

having started in state i, will be given by

⇥

a,b

(x, i, h) = E
x,i

⇥

⇥

a,b

�

b1, Y⌧̂(b1), h
�

{⌧̂(b1)<⇣}
⇤

= E
x,i

⇥

h� �Y
⌧̂(b1)

�

{⌧̂(b1)<⇣}
⇤

= 1

0
i

eQ
�
r (x�b1)h� (4.4.26)

which yields the first part of (4.4.19) for some vector h�
j

.

For the second part of (4.4.19), note that the first passage over b can only happen

when Y 2 E0 and it therefore follows that when b1 > x > b2, Y can only exit the

interval [b2, b1] in one of two ways: Either A hits the level b2 while in state 2, or, Y

jumps back into state 1. Thus when b1 > x > b2, one is led to consider the generator

of the process Y (2) being Y restricted to state 2. Clearly, Y (2) is also a Markov process

with an associated generator Q(2)
r

being Q
r

restricted to state 2. The associated two-

sided exit probabilities of x from the interval [b2, b1] are identified in Lemma 4.4.4

below. Then once again applying the strong Markov property yields for b1 > x > b2

⇥

a,b

(x, i, h) = E
x,i

⇥

⇥

a,b

(b2, Y⌧̂

, h) {⌧̂<⇣,A⌧̂=b2}
⇤

+E
x,i

⇥

⇥

a,b

(b1, Y⌧̂

, h) {⌧̂<⇣,A⌧̂=b1}
⇤

+E
x,i

⇥

⇥

a,b

(A
⇣�, Y⇣�, h) {⇣<⌧̂}

⇤
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with ⌧̂ = inf {t � 0 | Y
t

2 E0, A
t

/2 [b2, b1]} from which invoking Proposition 4.3.3

yields for b1 > x > b2

⇥

a,b

(x, i, h) = 1

0
i

⇣

 

+
2 (x)h+

2 + 

�
2 (x)h�

2 + 

0
2 (a, x)⇤h

0
2
q(2)

⌘

where  �
2 , +

2 and  0
2 are defined in (4.4.27)-(4.4.29) and for some vectors h�

2 , h
+
2 and

h0
2.

To verify that the vectors in (4.4.21) and (4.4.22) are in the correct form, first note that

in regime k, if A
t

exits the interval at b
k

in E0
k

, the payoff will be h (k) ebk . If, however,

A
t

exits the interval at b
k

in l 2 E�
k

, the payoff will be 1

l

0h (k) ebk (I � T
k

)

�1 t
k

which

accounts for ˜h (l) and ˆh (l) for l 2 E
k

= E0
k

[ E�
k

. The remaining constants are

determined by insisting on appropriate smoothness across the boundaries in (4.4.23)

and (4.4.24). The fact that ⇥
a,b

(·, i, h) , i 2 E is C1 on R at b was proved in Jiang

and Pistorius [2008] and is therefore omitted.

Lemma 4.4.4. Let X = {X
t

}
t�0 be defined in (4.2.3), ⌧ (b) be defined in (4.4.18)

with b1 > b2 then, assuming that 1
2� (2)

2
+µ (2) < �q22, restricted to state 2, it follows

that the two-sided exit probabilities of X from the interval [b2, b1] satisfy

 

+
2 (x) =

⇣

W+eQ
(2)+
r (b1�x) � eQ

(2)�(x�b2)Z+
⌘

�

I � Z�Z+
�

, (4.4.27)

 

�
2 (x) =

⇣

eQ
(2)�(x�b2) �W+eQ

(2)+(b1�x)Z�
⌘

�

I � Z+Z�� , (4.4.28)

 

0
2 (a, x) =

�

eaxI � eab1 +
(x) J+ � eab2 �

(x)
� �

�K (a)�1� , (4.4.29)

where Q
(2)�
r

satisfies ⌅
⇣

Q
(2)�
r

⌘

= O with ⌅ given in (4.3.10), Q(2)+
r

= �y where y is

the scaler given by the positive root of

1

2

�2
2y

2
+ µ2x� q(2) � B2 (T2 � xI)�1 t2 = 0 (4.4.30)

with ⌘+ = �
⇣

T2 +Q
(2)+
r

I
⌘�1

t2.
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Proof. Restricted to state 2, the generator of the process Y (2) is given by

Q
a

=

 

�2 � r2 � �2 B2

t2 T2

!

from which, using Definition 4.3.1, it is clear that Q
(2)+
r

= �y where y is a scaler

given by the positive root of

1

2

�2
2y

2
+ µ2y � q(2) � B2⌘

+
= 0,

where ⌘+ satisfies

�⌘+
�

�Q(2)+
r

�

= t2 + T2⌘
+

which yields (4.4.30). The fact that Q
(2)�
r

satisfies ⌅
⇣

Q
(2)�
r

⌘

= O with ⌅ given in

(4.3.10) follows directly from Theorem 4.3.2. Equations (4.4.27)-(4.4.29) follow from

(4.3.12) and (4.3.13)-(4.3.15) with Q+
= Q

(2)+
r

and Q�
= Q

(2)�
r

.

4.4.6 Optimal Capital Structure Drawing on the results above, conditions

under which the optimal default boundaries in (4.4.15) exist are identified below in

Theorem 4.4.5 and the optimal value of equity value in (4.4.5) identified in Theorem

4.4.6 when optimal boundaries b⇤ = (b⇤1, b
⇤
2) exist and b⇤1 > b⇤2. The results where

b⇤2 > b⇤1, which follow by symmetry, are entirely analogous and are therefore omitted.

Theorem 4.4.5. Let w
b

⇤
: R⇥ E0 ! R be given in

w
b

⇤
(x, k, ̂) = E

x,i



e�
´ ⌧(b⇤)
0 r(Zu)du

�

̂(Z
⌧(b⇤))� V

⌧(b⇤)

�

�

, k 2 E0, (4.4.31)

and assume that there exists a solution b⇤ = (b⇤1, b
⇤
2) to the system

w
b

⇤
(x, k, ̂)� g(x, k) � 0, x > b⇤

k

, k 2 E0, (4.4.32)

w
0

b

⇤ (b⇤
k

, k, ̂) = �eb
⇤
k , k 2 E0, (4.4.33)
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which satisfies

�
k

eb
⇤
k � r

k

̂
k

+ �
k

�

̂3�k

� eb
⇤
3�k � ̂

k

+ eb
⇤
k
�

< 0, k 2 E0, (4.4.34)

where ̂ is defined in (4.4.6), then if w
b

⇤
(·, k, ̂), k 2 E0 is bounded, C1 on R and C2

on R\{b⇤
i

} then w
b

⇤
(x, k, ̂) = w⇤

(x, k) for x 2 R and k 2 E0.

Proof. First note from the form of the function in (4.4.31) and by a standard Dynkin’s

formula type argument, (4.4.13) and (4.4.14) are satisfied. Next fix k 2 E0 and assume

that b⇤
k

> b⇤3�k

from which using (4.2.4) and (4.2.6), it follows that for b⇤3�k

< x  b⇤
k

,

⇧

X,Z

g (x, k) = �
k

ex � r
k

̂
k

+ �
k

(w
b

⇤
(x, 3� k, ̂)� ̂

k

+ ex) ,

where g (k, x) = (̂ (k)� ex) k 2 E0 and ⇧
X,Z

g := L
X,Z

g � rg, which implies,

⇧

X,Z

g (b⇤
k

, k) = �
k

eb
⇤
k � r

k

̂
k

+ �
k

�

w
b

⇤
(b⇤

k

, 3� k, ̂)� ̂
k

+ eb
⇤
k
�

 �
k

eb
⇤
k � r

k

̂
k

+ �
k

�

w
b

⇤
�

b⇤3�k

, 3� k, ̂
�

� ̂
k

+ eb
⇤
k
�

= �
i

eb
⇤
k � r

k

̂
k

+ �
k

�

̂3�k

� eb
⇤
3�k � ̂

k

+ eb
⇤
k
�

since w
b

⇤
(b⇤

k

, 3� k, ̂) < w
b

⇤
�

b⇤3�k

, 3� k, ̂
�

. Therefore, if

�
k

eb
⇤
k � r

k

̂
k

+ �
k

�

̂3�k

� eb
⇤
3�k � ̂

k

+ eb
⇤
k
�

 0

then, since x 7! �
k

ex + �
k

(w
b

⇤
(x, 3� k, ̂)� ̂

k

+ ex) is increasing in x, it follows

that ⇧
X,Z

w⇤
b

(x, k, ̂)  0 for all x  b⇤
k

, k 2 E0, which verifies that (4.4.34) holds

true when b⇤3�k

< x  b⇤
k

. When x  b⇤3�k

, by an entirely analogous argument to the

above,

⇧

X,Z

g
�

b⇤3�k

, 3� k
�

 �
k

eb
⇤
3�k � r3�k

̂3�k

+ �3�k

�

̂
k

� eb
⇤
k � ̂3�k

+ eb
⇤
3�k

�

,

which implies that (4.4.34) also holds when x  b⇤3�k

. It follows that L
X,Z

w
b

⇤�rw
b

⇤ 
0 for x  b⇤

k

, k 2 E0 which proves (4.4.11). Finally, (4.4.12) holds true by assumption
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which completes the proof.

Theorem 4.4.6. Assuming that 1
2� (j)

2
+ µ (j) < �q

jj

, j 2 E0 and that there exists

a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 > b⇤2 to the system (4.4.32)-(4.4.33) which satisfies

(4.4.34), the value of equity in (4.4.5) under the default time ⌧ (b⇤) in (4.4.15) is

given by

Q
b

⇤
(x, i) = ex � 1

i

0cP (⇤

r

�G)

�1 ⇡̂ + w
b

⇤
(x, i, ̂) , i 2 E0, (4.4.35)

where ⇡̂ = 1� ⇡,

w
b

(x, 1, ̂) =

8

<

:

1

0
1e

Q

�
r (x�b1)ˆh, x > b1,

11
0cP (⇤

r

�G)

�1 ⇡̂ � ex, x  b1,

w
b

(x, 2, ̂) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1

0
2e

Q

�
r (x�b1)ˆh, x > b1,

12
0
⇣

 

+
2 (x)C + 

�
2 (x) ˜h

+( 

0
2 (0, x)⇤̂2 � 0

2 (1, x)) q
(2)
⌘

, b1 � x > b2,

12
0cP (⇤

r

�G)

�1 ⇡̂ � ex, x  b2,

Q
r

is defined in (4.3.2), q(i) =

⇣

�Q
(i)
r

1

⌘

with Q
(i)
r

the restriction of Q
r

to state i,

Q�
r

satisfies ⌅ (Q�
r

) = O with ⌅ defined in (4.3.10),  �
2 , +

2 and  0
2 are defined in

(4.4.27)-(4.4.29), the vectors ˜h and ˆh are given in block notation as

˜h =

�

̂2 � eb2
�

1, (I � T2)
�1 t2

��0
,

ˆh =

n

�

̂1 � eb1 , C, ̂1 � eb1 (I � T1)
�1 t1, D

� 0,

̂ is defined in (4.4.6), C is a constant and D a vector of constants of appropriate

size jointly satisfying (4.4.23) and (4.4.24) with with w
b

(x, ·, ̂) := ⇥0,b (x, ·, ̂) �
⇥1,b (x, ·, 1) .

Proof. Upon assuming that a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 > b⇤2 to Theorem 4.4.5

exists, the result then follows from an application of Lemma 4.4.3 to (4.4.31) with
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⌧ (b⇤) given in (4.4.15) together with (4.4.5) .

Providing the optimal default boundaries (b⇤1, b⇤2) with b⇤1 > b⇤2 exist, an application of

Lemma 4.4.3 to (4.4.1) yields the optimal value of debt as outlined in the following

Corollary. The optimal firm value in (4.4.3) when b⇤1 > b⇤2 is outlined in Corollary

4.4.8 below.

Corollary 4.4.7. Assuming that 1
2� (j)

2
+ µ (j) < �q

jj

, j 2 E0 and that there exists

a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 > b⇤2 to the system (4.4.32)-(4.4.33) which satisfies

(4.4.34), the optimal value of debt in (4.4.1) under the default time ⌧ (b⇤) in (4.4.15)

is given by

D
b

⇤
(x, i) = 1

i

0cP (⇤

r

�G)

�1
1� d

b

⇤
(x, i, ⌫̂) , i 2 E0, (4.4.36)

where

d

b

(x, 1, ⌫̂) =

8

>

<

>

:

101e
Q

�
r (x�b1)

ĥ, x > b1,

11
0
cP (⇤

r

�G)�1 1� (1� ⇠1) ex, x  b1,

d

b

(x, 2, ⌫̂) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

102e
Q

�
r (x�b1)

ĥ1, x > b1,

12
0
⇣

 +
2 (x)C + �

2 (x) h̃

+
�

 0
2 (0, x)⇤⌫̂2 � 0

2 (1, x)⇤1
�

q

(2)
⌘

, b1 � x > b2,

12
0
cP (⇤

r

�G)�1 1� (1� ⇠2) ex, x  b2,

where Q
r

is defined in (4.3.2), q(i) =
⇣

�Q
(i)
r

1

⌘

with Q
(i)
r

the restriction of Q
r

to state

i, Q�
r

satisfies ⌅ (Q�
r

) = O with ⌅ defined in (4.3.10),  �
2 , +

2 and  0
2 are defined in

(4.4.27)-(4.4.29), the vectors ˜h and ˆh are given in block notation as

˜h =

�

⌫̂2 � (1� ⇠2) e
b2
�

1, (I � T2)
�1 t2

��0
,

ˆh =

n

�

⌫̂1 � (1� ⇠1) e
b1 , C, ⌫̂1 � (1� ⇠1) e

b1
(I � T1)

�1 t1, D
� 0,

⌫̂ is defined in (4.4.2), C is a constant and D a vector of constants of appropriate size

jointly satisfying (4.4.23) and (4.4.24) with d
b

(x, ·, ⌫̂) := ⇥0,b (x, ·, ⌫̂)�⇥1,b (x, ·, 1).
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Proof. Upon assuming that a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 > b⇤2 to Theorem 4.4.5

exists, the result follows from an application of Lemma 4.4.3 to (4.4.1) with ⌧ = ⌧ (b⇤)

in (4.4.15).

Corollary 4.4.8. Assuming that 1
2� (j)

2
+ µ (j) < �q

jj

, j 2 E0 and that there exists

a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 > b⇤2 to the system (4.4.32)-(4.4.33) which satisfies

(4.4.34), the optimal value of the firm in (4.4.3) under the default time ⌧ (b⇤) in

(4.4.15) is given by

F
b

⇤
(x, i) = ex + 1

0
i

cP (⇤

r

�G)

�1 ⇡ � f
b

⇤
(x, i, �̂) , i 2 E0, (4.4.37)

where

f

b

(x, 1, �̂) =

8

>

<

>

:

101e
Q

�
r (x�b1)

ĥ, x > b1,

11
0
cP (⇤

r

�G)�1
⇡ + ⇠1e

x

, x  b1,

f

b

(x, 2, �̂) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

102e
Q

�
r (x�b1)
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where Q
r

is defined in (4.3.2), q(i) =
⇣

�Q
(i)
r

1

⌘

with Q
(i)
r

the restriction of Q
r

to state

i, Q�
r

satisfies ⌅ (Q�
r

) = O with ⌅ defined in (4.3.10),  �
2 , +

2 and  0
2 are defined in

(4.4.27)-(4.4.29), the vectors ˜h and ˆh are given in block notation as

˜h =

�

�̂2 + ⇠2e
b2
�

1, (I � T2)
�1 t2

��0
,

ˆh =

n

�

�̂1 + ⇠1e
b1 , C, �̂1 + ⇠1e

b1
(I � T1)

�1 t1, D
� 0,

�̂ is defined in (4.4.4), C is a constant and D a vector of constants of appropriate size

jointly satisfying (4.4.23) and (4.4.24) with f
b

(x, ·, �̂) := ⇥0,b (x, ·, �̂) +⇥1,b (x, ·, 1).

Proof. Upon assuming that a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 > b⇤2 to Theorem 4.4.5

exists, the result follows from an application of Lemma 4.4.3 to (4.4.3) with ⌧ = ⌧ (b⇤)
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in (4.4.15).

The optimal values of equity, debt and firm value are given in Propositions 4.6.1, 4.6.2

and 4.6.3 of Section 4.6 respectively when the optimal default boundaries identified

in Theorem 4.4.6 are identical.

4.4.7 Firm Credit Spreads Unlike the firm endowed with the roll-over debt

structure in Chapter 3, a firm financed by consol debt provides no information in

regards to the term structure of debt. However, in an analogous manner to Subsection

3.4.2, it is possible to calculate the coupon rate, c, which would encourage investors

to purchase the firm’s debt at face value, P , when the firm is initially created. The

credit spread of the firm’s debt can be regarded as the excess of the latter coupon

over the risk free rate.

When the firm is set up and debt is first issued, it is assumed that the parameters of

the firm are constrained such that at the coupon rate, c, the market value of debt,

D
b

⇤
(v, i) given in (4.4.36) is equal to the face value of debt, P . If the asset value

when the firm is V0 = ex, the latter constraint requires that the coupon rate, c, be

the smallest solution to the equation

D
b

⇤
(x, i) = P, i 2 E0, (4.4.38)

where D
b

⇤ is defined in Corollary 4.4.8

The regime dependent coupon which solves (4.4.38) will be denoted c̃⇤ (x, i, b⇤) , i 2
E0. Similarly to Chapter 3, the framework of this chapter does not provide a closed

form solution for the optimal barrier b⇤. However b⇤ may be calculated numerically

for a given set of startup parameters for the firm, including the coupon rate, and

then used to evaluate (4.4.38) from which it is possible to search for c̃⇤ numerically.

Calculations based on the latter procedure are presented in the next section. The
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firm’s credit spread when the firm is solvent is then given by

s̃⇤ (v, i, b⇤) = c̃⇤ (v, i, b⇤)� r̂ (i) , (x, i) 2
�

x > b⇤
i

, i 2 E0
 

, (4.4.39)

where r̂ (i) is defined as

r̂ (i) =
�

1

i

0
(⇤

r

� E)

�1
1

��1
, i 2 E0. (4.4.40)

4.5 Numerical Analysis

4.5.1 Calculation Methodology The default parameters used in the calcula-

tions in this section are described in Table 4.5.1. As in Chapter 3, the parameter

values invariant between regimes and the non-jump related parameter values in re-

gime 1 were taken from Leland [1994b]. The regime intensities, set to 0.3 and 1 for

regimes 1 and 2 respectively, were also taken from Chapter 3. The only exception

was the principal value, P , which was set to a value of 100. The jump intensities and

the jump distribution in regime 1 were taken from Kou and Wang [2003].

Regime 2 parameters were selected to reflect a recessionary scenario with interest

rates, tax rates and dividend rates assumed to fall and bankruptcy costs assumed to

rise. Asset volatility and the size of jumps was also assumed to rise in regime 2. The

average jump sizes in regime 2 were assumed to be -5% and -10% with probability

0.75 and 0.25 respectively, compared with a single jump of average size equal to -3%

in regime 1. Default parameter values were used in all calculations unless otherwise

stated.

To identify the optimal boundaries, the system of equations given by (4.4.23), (4.4.24)

and the smooth fit equation, (4.4.32), was solved using Matlab’s lsqnonlin routine.

Each of the three assumptions, b⇤1 < b⇤2, b
⇤
1 > b⇤2 and b⇤1 = b⇤2 were tested and the

resulting calculated boundaries which agreed with the prior assumption selected as

the optimal pair. In no cases, did more than one pair of calculated optimal boundaries
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agree with the prior assumption. It was found that the speed of convergence in

the latter calculation was helped by first excluding jumps and calculating optimal

boundaries for the geometric Brownian motion case, and then using the calculations

as an initial guess for the calculation including jumps. The drift of the asset process

for all calculations was calibrated to the martingale condition required in (4.2.6).

Calculated optimal boundaries were tested against conditions (4.4.32) and (4.4.34)

and to verify optimality. Figure 4.5.1 plots numerical verifications of condition

(4.4.32) for selected combinations of parameter values. In each subplot of Figure

4.5.1 calculations were based on the default parameter values in Table 4.5.1 unless

specified in the sub-title of each respective plot. All of the cases presented in Figure

4.5.1 indicate that condition (4.4.32) was verified. The parameter values chosen for

display in Figure 4.5.1 represent the extreme of the parameter values used for the

rest of the calculations in this section. Condition (4.4.34) was also tested for every

calculation reported in this section and found to hold. However, the existence of op-

timal boundaries was found to be sensitive to asset volatility. For example, condition

(4.4.34) failed with an asset volatility of 0.35 in regime 2 where other parameters were

set to their default values. The latter indicates that the mixture of parameters, some

which may encourage a firm to default sooner and some later, may be important in

terms of the existence of optimal boundaries.

Once established, the optimal boundaries were then used to calculate optimal equity,

firm and debt values using (4.4.5), (4.4.3) and (4.4.1) using Theorem 4.4.6, Corol-

lary 4.4.8 and Corollary 4.4.7 respectively. The smallest of coupons which satisfied

(4.4.38) were calculated by a simple numerical search procedure which repeated the

calculations above from which firm credit spreads were calculated using (4.4.39).

The generator matrices of the up-crossing and down-crossing ladder processes re-

quired in Lemmas 4.4.3 and 4.4.4 for the above calculations were obtained as follows.

Noting that if h is an eigenvector of the down-crossing generator matrix, Q�
r

, which

91



Optimal Capital Structure under Regime-Switching with Jumps

is associated with an eigenroot ✓, then since Q�
r

satisfies (4.3.10),

1

2

⌃

2
�

Q�
r

�2
+ V Q�

r

+Q
r

= 0, (4.5.1)

it follows that post-multiplying (4.5.1) by h implies

✓

1

2

⌃

2✓2 + V ✓ +Q
r

◆

h = 0. (4.5.2)

The eigenroots and eigenvectors of the polynomial eigenvalue problem (4.5.2) were

then calculated using Matlab’s polyeig function. The positive root of (4.4.30) was

identified using Matlab’s fsolve routine.

4.5.2 Optimal Capital Structure The optimal boundaries for the default para-

meters in Table 4.5.1 were calculated to be 48.13 and 42.29 in regime 1 and regime 2

respectively. Note that unlike Chapter 3 for a finite maturity debt profile, for consol

debt, the level of bankruptcy cost has no effect on the optimal boundary, since bank-

ruptcy costs do not enter into the optimal value of equity in (4.4.35). The optimal

value of debt and of the firm are, however, impacted by changes in bankruptcy costs.

Figure 4.5.3 illustrates firm value as a function of leverage and 3 different assumed

levels of bankruptcy costs, 0.25, 0.5 and 0.75, in regime 2. Following the literature,

leverage was defined as total debt value (4.4.36) divided by firm value in (4.4.37).

Leverage was generated by modulating the principal value over the range [30, 180].

The results illustrated in Figure 4.5.3 follow a similar pattern to those reported in

Chapter 3 for finite maturity debt and to those reported in the literature. Firm value

initially increases with leverage only to reach what appears to be a maximal value

in a leverage range of approximately 0.6 to 0.8 before declining sharply as leverage

approaches 1. The results appear broadly consistent with those reported by Leland

[1994a] which indicated firm value being maximised at a leverage of approximately

0.7 for default costs equal to 0.5, albeit with slightly differing parameters. As regards

regimes, in Figure 4.5.3, firm value reaches a higher maximum value in regime 1

as compared to regime 2. After reaching it’s maximum value in Figure 4.5.3, firm
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value declines more quickly in regime 1 as compared to regime 2 as leverage increases

further for a given level of bankruptcy costs. Higher bankruptcy costs in regime 2

lower firm value relative to regime 1 for the same level of leverage.

Figure 4.5.3 illustrates firm value for different levels of coupon and bankruptcy costs.

Coupons were modulated in a range of [0.02, 0.14]. Firm value initially increases with

coupon and then declines as coupons increase. As reported in Leland [1994a], there

appears to be a coupon level which maximises firm value. In Subsection 4.5.4 below,

the coupon rate which maximises firm value over a range of coupons is calculated.

Higher bankruptcy costs in regime 2 reduce firm value for a given level of coupon.

Firm value reaches a maximum value in Figure 4.5.3 at lower levels of coupon in

regime 2 than in regime 1. However, when bankruptcy costs are 0.25, after reaching

its maximum value, firm value declines more slowly in regime 2 than in regime 1. The

latter does not appear to be the case for a bankruptcy level of 0.75.

Debt value as a function of coupon for different levels of bankruptcy costs is illustrated

in Figure 4.5.5. Once again, the relationship between coupon and debt value is similar

to that which has been reported in the literature. In Figure 4.5.5, debt value initially

increases in value as coupons rise only to reach a maximum value and then decline.

Debt value is lower for higher bankruptcy costs in regime 2 for equivalent levels of

coupon. Mirroring the results for firm value, after achieving its maximum in Figure

4.5.5 in regime 2, for lower bankruptcy costs, debt value diminishes more slowly in

regime 2 than is the case in regime 1. Similar results are reported for debt value

as a function of leverage and bankruptcy costs in Figure 4.5.5. Debt value achieves

a higher maximum level in regime 1 and is lower in regime 2 for the same level of

bankruptcy costs. In addition, Figure 4.5.5 suggests that for bankruptcy costs of

0.25, debt value achieves its maximum at higher levels of leverage in regime 2 than

in regime 1. For bankruptcy costs of 0.75, however, debt value achieves its maximum

in Figure 4.5.5 at lower levels that is the case in regime 1.

4.5.3 Firm Credit Spreads Figure 4.5.7 illustrates firm credit spreads as a

function of leverage for different levels of bankruptcy costs. Leverage was again
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generated by modulating the principal value over the range [30, 180]. As might be

expected, firm credit spreads exhibit an increasing relationship with leverage in both

regimes. Firm credit spreads were higher in regime 2 than regime 1 for equivalent

levels of leverage.

Firm credit spreads by coupon rates between 0.05 and 0.14 for different levels of

bankruptcy costs are displayed in Figure 4.5.6. For bankruptcy costs of either 0.5

or 0.75 in regime 2, firm credit spreads are higher in regime 2 than in regime 1 and

increase with coupon rate. However, interestingly, with bankruptcy costs of 0.25 in

regime 2, while firm credit spreads are higher in regime 1 than regime 2 for low coupon

rates, for a coupon rate of 0.14, firm credit spreads are higher in regime 1 than in

regime 2. This is consistent with Figures 4.5.4 and 4.5.3 which indicate that, with

bankruptcy costs of 0.25, at a coupon rate of 0.14, both debt value and firm value

is higher in regime 2 than regime 1. The latter observation may also be consistent

with findings reported in the literature2 that suggest for highly leveraged firms, or

so called junk or high-yield firms, bond holders may start to behave more like equity

investors as the recovery rate on default becomes an important determinant of the

value of debt.

Figure 4.5.7 illustrates firm credit spreads as a function of leverage for different levels

of bankruptcy costs. Firm credit spreads demonstrate an increasing relationship with

leverage as might be expected. Firm credit spreads are higher in regime 2 than in

regime 1 and increase more quickly in regime 2 as a function of leverage than in

regime 1.

4.5.4 Optimised Leverage As mentioned above, Figure 4.5.3 suggests that

there may be a coupon rate which maximises firm value. In order to examine this, a

simple search procedure was conducted over the range the of coupon rates in Figure

4.5.3, and the coupon which maximised firm value identified. The results are reported

2Black and Cox [1976] identified that the level of bankruptcy costs could have an important
impact on the value of bonds and the behaviour of a firm’s securities. Leland [1994a] reported that
the behaviour of junk bonds can differ significantly from the behaviour of investment grade bonds.
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in Table 4.5.2 for 2 different levels of bankruptcy costs. The results indicate that in

general, optimised firm and debt value is higher and leverage lower in regime 1 than in

regime 2. With bankruptcy costs of 0.25, optimised leverage falls from 0.699 in regime

1 to 0.679 in regime 2 and the coupon rate falls from 0.072 to 0.067. Credit spreads

are also lower, falling from 218bps in regime 1 to 215bps in regime 2. As indicated

in Table 4.5.2, conducting the optimisation while in regime 1 versus conducting the

optimisation in regime 2 generates different optimal boundaries, which are associated

with the optimised coupon rates for each regime. The optimised boundaries for both

regimes are lower in regime 2 than in regime 1.

When bankruptcy costs are 0.75 in regime 2, the results are similar but more exagger-

ated. Debt and firm value fall further between regime 1 and regime 2 than is the case

with lower bankruptcy costs. Leverage also falls more, 0.646 to 0.621, between regime

1 and regime 2 respectively. With lower leverage, firm credit spreads are lower in re-

gime 2 than in regime 1, falling from 203bps to 194 bps. Optimised coupon rates fall

from 0.064 to 0.059. The findings are consistent with what might be expected with

firms tending to reduce balance sheet exposure in difficult economic circumstances.

95



Optimal Capital Structure under Regime-Switching with Jumps

Name Symbol Default Value

Asset Value v 100

Coupon Rate c 0.08

Principal P 100

(a) Fixed Parameters

Name Symbol Default Value

Regime 1 Regime 2

Asset Volatility � 0.15 0.30

Tax Rate ⇡ 0.35 0.25

Bankruptcy Costs ⇠ 0.5 0.75

Interest Rate r 0.075 0.03

Dividend Yield � 0.07 0.02

Regime Intensity � 0.3 1

Jump Intensity � 3 3

Phase Jump Generator T �1/.03
 

�1
/.05 0

0 �1
/.1

!

Initial Distribution ↵ 1 (.75, .25)0

(b) Regime Dependent Parameters

Table 4.5.1: Default Parameter Values
Default parameter values for all calculations unless otherwise stated. All fixed and non-jump

related regime 1 parameter values are taken from Leland [1994b]. The jump intensities and

jump distribution in regime 1 is taken from Kou and Wang [2003]. Regime 2 parameter

values were selected to reflect a recessionary regime.
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Figure 4.5.1: Numerical Optimality Verification
The above figures plot selected numerical verifications of condition (4.4.32) in the calculation

of optimal boundaries. Each plot evaluates the left-hand side of condition (4.4.32) for

default parameters with the exception the parameter value indicated in the subtitle of each

respective figure. The display was chosen to reflect the range of parameter values utilised

for numerical calculations in this chapter. The charts indicate that optimality (4.4.32) was

satisfied in the above cases.
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Figure 4.5.2: Firm Value by Leverage and Bankruptcy Costs
The figure shows optimal firm value for different levels of bankruptcy costs and leverage, sim-

ulated by modulating P, but otherwise using the default parameters in Table 4.5.1. Higher

bankruptcy costs tend to reduce the leverage at which firm value achieves its maximum as a

function of leverage. Firm value reaches a higher maximum value in regime 1 as compared

to regime 2 for the same level of leverage and bankruptcy costs.
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Figure 4.5.3: Firm Value by Coupon and Bankruptcy Costs
The figure shows optimal firm value for different levels of coupon and bankruptcy costs but

otherwise using the default parameters in Table 4.5.1. Higher bankruptcy costs tend to

reduce the leverage at which firm value achieves its maximum as a function of coupon. Firm

value reaches a higher maximum value in regime 1 as compared to regime 2 for the same

level of coupon and bankruptcy costs.
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Figure 4.5.4: Debt Value by Coupon and Bankruptcy Costs
The figure shows the optimal value of debt for different levels of coupon under different

regimes for three different regime 2 bankruptcy cost values. Other parameters are set at

their default values in Table 4.5.1. Debt value reaches a higher maximum value in regime 1

as compared to regime 2 for the same level of coupon and bankruptcy costs. As in Leland

[1994a], there appears to be a coupon level which maximises debt value.
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Figure 4.5.5: Debt Value by Leverage and Bankruptcy Costs
The figure shows optimal debt value for different levels of bankruptcy costs and leverage,

simulated by modulating P, but otherwise using the default parameters in Table 4.5.1.Higher

bankruptcy costs tend to reduce the leverage at which debt value achieves its maximum

value. Debt value reaches a higher maximum value in regime 1 as compared to regime 2 for

the same level of leverage and bankruptcy costs.
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Figure 4.5.6: Firm Credit Spreads by Coupon and Bankruptcy Costs
The figure shows optimal credit spreads for different levels of coupon and bankruptcy costs

but otherwise using the default parameters in Table 4.5.1. Higher coupons and leverage lead

to increased credit spreads in both regimes. Spreads are typically larger in regime 2 than in

regime 1.
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Figure 4.5.7: Firm Credit Spreads by Leverage and Bankruptcy Costs
The figure shows optimal firm credit spreads for different levels of bankruptcy costs and

leverage, simulated by modulating P, but otherwise using the default parameters in Table

4.5.1. Higher bankruptcy costs and leverage naturally tend to increase credit spreads in

both regimes. Spreads in regime 2 are typically higher than in regime 1 for higher levels of

leverage.
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Regime 2 ⇠ = 0.25 Regime 2 ⇠ = 0.75

Regime 1 Regime 2 Regime 1 Regime 2

Firm Value 120.33 119.06 118.02 116.81

Debt Value 84.13 80.88 76.21 72.53

Leverage 0.699 0.679 0.646 0.621

Credit Spread (bps) 218 215 203 194

Coupon 0.072 0.067 0.064 0.059

Regime 1 Boundary 43.20 40.21 38.55 35.36

Regime 2 Boundary 40.21 35.33 33.87 31.08

Table 4.5.2: Optimised Leverage
The table shows the coupon rates which maximise firm value in each respective regime along

with associated debt value, leverage, credit spreads and default boundaries for different levels

of bankruptcy costs but otherwise using the default parameter values. The maximal firm

value was calculated for coupon rates in the range [.03;.14].
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4.6 Auxiliary Results and Proofs

The following results relate to the special case where the default boundaries are the

same.

Proposition 4.6.1. Assuming that there exists a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 = b⇤2 to

the system (4.4.32)-(4.4.33) and which satisfies (4.4.34), the optimal value of equity

in (4.4.5) under the default time ⌧ (b⇤) in (4.4.15) is given by
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is defined in (4.3.2) and satisfies ⌅ (Q�
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) = O with ⌅ given in (4.3.10), the vector
ˆh is given in block notation by ˆh =

⇣

ˆh1, ˆh2

⌘0
where

ˆh
k

=

�

̂
k

� ebk
�

1, (I � T
k

)

�1 t
k

��0
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̂ is defined in (4.4.6).

Proof. Upon assuming that a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 = b⇤2 to Theorem 4.4.5

exists, the result then follows from an application of Lemma 4.4.3 to (4.4.5) with

⌧ = ⌧ (b⇤) in (4.4.15).

Proposition 4.6.2. Assuming that there exists a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 = b⇤2

to the system (4.4.32)-(4.4.33) and which satisfies (4.4.34), the optimal value of debt

in (4.4.1) is given by

˜D
b

⇤
(x, i) = 1

i

0cP (⇤

r

�G)

�1
1� ˜d

b

⇤
(x, i, ⌫̂) , i 2 E0,

105



Optimal Capital Structure under Regime-Switching with Jumps

where

˜d
b

(x, i, ⌫̂) =

8

<

:

1

0
i

eQ
�
r (x�bi)ˆh, x > b

i

,

1

i

0cP (⇤

r

�G)

�1
1� (1� ⇠

i

) ex, x  b
i

,

where Q
r

is defined in (4.3.2) and satisfies ⌅ (Q�
r

) = O with ⌅ defined in (4.3.10),

the vector ˆh is given in block notation by ˆh =

⇣

ˆh1, ˆh2

⌘0
where

ˆh
k

=

�

⌫̂
k

� (1� ⇠
k

) ebk
�

1, (I � T
k

)

�1 t
k

��0
, k = 1, 2,

and ⌫̂ is defined in (4.4.2).

Proof. After assuming that there exists a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 = b⇤2 to The-

orem 4.4.5 the result follows from an application of Lemma 4.4.3 to (4.4.1) with

⌧ = ⌧ (b⇤) in (4.4.15).

Proposition 4.6.3. Assuming that there exists a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 = b⇤2

to the system (4.4.32)-(4.4.33) and which satisfies (4.4.34), the optimal value of the

firm in (4.4.3) is given by

˜F
b

⇤
(x, i) = ex + 1

0
i

cP (⇤

r

�G)

�1 ⇡ � ˜f
b

⇤
(x, i, �̂) , i 2 E0,

where

˜f
b

(x, i, �̂) =

8

<

:

1

0
i

eQ
�
r (x�bi)ˆh, x > b

i

,

1

i

0cP (⇤

r

�G)

�1 ⇡ + ⇠
i

ex, x  b
i

,

Q
r

is defined in (4.3.2) and satisfies ⌅ (Q�
r

) = O with ⌅ defined in (4.3.10), the vector
ˆh is given in block notation by ˆh =

⇣

ˆh1, ˆh2

⌘0
where

ˆh
k

=

�

�̂
k

+ ⇠
k

ebk
�

1, (I � T
k

)

�1 t
k

��0
, k = 1, 2,

and �̂ is defined in (4.4.4).
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Proof. After assuming that there exists a solution b⇤ = (b⇤1, b
⇤
2) with b⇤1 = b⇤2 to The-

orem 4.4.5 the result follows from an application of Lemma 4.4.3 to (4.4.3) with

⌧ = ⌧ (b⇤) in (4.4.15).
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CHAPTER 5 OPTIMAL DEFAULT FOR

FINITE MATURITY DEBT

5.1 Introduction

In Chapters 3 and 4 the assumption of a time-homogeneous debt structure was used

to analyse aspects of corporate capital structure that persist through time. Such

approaches have the objective of gaining insights into what determines an optimal

long-term stationary capital structure for a firm financed by debt. However, while

models which assume a stationary debt structure afford analytical tractability, the fact

of the matter is, that the vast majority of lending agreements observed in the financial

market mature at a fixed date. Virtually all debt issued by corporate entities mature

at a fixed finite maturity date. Indeed, finite maturity debt contracts are prevalent

in many other areas of financial interest such as private equity, infrastructure finance

and the insurance industry. The implication is that there may also be significant

time dependencies to consider in relation to the determination of capital structure.

Motivated by the latter observation, the focus of this chapter turns to the default

decision of a firm, or possibly other financial entities, financed by finite maturity

debt.

As has been the case in the earlier chapters, the firm is assumed to be endowed with a

single asset value process, which is, however, unlike the earlier chapters, modelled by

a geometric Brownian motion. The firm pays a positive dividend, receives tax relief

on interest payments made during the lifetime of its debt and is assumed to choose

a default policy which maximises the equity value up until maturity of the debt. On

default, the firm incurs bankruptcy costs. The main implication of time dependence
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in the structure of debt is that the endogenously determined level of asset at which

to declare default is also time dependent. The primary focus of the analysis in this

chapter, is therefore, to identify the time dependent default boundary.

The setting of a firm financed by a finite maturity bond paying a fixed coupon was

first studied by Black and Cox [1976] and later considered by Leland and Toft [1996]

as a building block for the roll-over debt structure. Chen et al. [2009] extended the

model of Black and Cox [1976] to include jumps in the asset process of a firm to

derive an integral equation satisfied by a finite maturity bond. More recently, Elliott

and Shen [2015] studied the price of a finite maturity bond for a firm not facing tax

benefits and bankruptcy costs in a regime-switching setting. The optimal default

boundary of a firm financed by finite maturity debt was considered Surya [2012] by

in the general setting with the firm’s asset price process driven by a Lévy process.

The case of a firm financed by a roll-over debt structure was treated as a numerical

example.

The contribution of this chapter is that the case where a firm is financed by finite

maturity debt, is analysed and conditions identified under which the existence of an

optimal boundary can be verified. In addition, it is assumed that the firm can default

and incur bankruptcy costs at maturity. The motivation for the latter assumption is

that the model might later be extended to one where debt is refinanced at maturity.

The outline of this chapter is as follows. The model structure is outlined in Section

5.2. In Section 5.3, the setting articulated by Leland [1994a] of firm financed by a

consol bond where the firm’s asset process is modelled as a geometric Brownian is

presented as a precursor to the analysis of finite maturity debt. In Section 5.4, the

case of finite maturity debt is analysed. Finally, Section 5.5 presents some numerical

calculations.
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5.2 Model Structure

Throughout this Chapter it will be assumed that there exists a firm endowed with a

single asset having a value process, V = {V
t

}
t�0, which evolves under the risk neutral

measure according to a geometric Brownian motion

V
t+s

= ve(r��� 1
2�

2
)

s+�Ws (5.2.1)

where r > 0 is the compound risk free interest rate, � > 0 is the dividend rate,

W = {W
t

}
t�0 is a standard Brownian motion, V

t

= v and � > 0 is the volatility

coefficient.

The process V is well known to be a strong Markov diffusion with infinitesimal gen-

erator given by

LVf (x) = (r � �) x
@f (x)

@x
+

1

2

�2x2@
2f (x)

@x2
. (5.2.2)

The firm is partly financed by debt, with notional value, P , which attracts a continu-

ous coupon rate of c and the firm receives tax relief the value of coupon payments

equal to ⇡ 2 [0, 1]. The firm may choose to default on its debt by ceasing to make

scheduled repayments, in which case, a proportion ⇠ 2 [0, 1] of the asset value is lost

in the resulting reorganisation and the residual value of the firms assets become the

property of the debt holders. The firm is assumed to choose a default strategy, in

the form of a default time ⌧ , with the objective of maximising the value of equity

which is defined as equal to the value of the firm’s assets less the value of the firm’s

debts. Following the established literature, it is assumed that assets in place cannot

be liquidated in order to raise funds to pay debt holders.

It is assumed that the stochastic process V is defined on some filtered probability

space (⌦,F ,P,F) where F = {F
t

}
t�0 denotes the completed filtration generated by

V .
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5.3 Consol Debt

The results in this section, in the case of consol debt, have already been derived by

Black and Cox [1976] and Leland [1994a]. A brief review of these results is presented

in the context of an optimal stopping problem as a precursor to the the main focus

of this chapter which is to study the case of a firm financed by finite maturity debt.

The value of the firm is given by the value of the assets together with the discounted

value of tax rebates earned on coupon payments, prior to default minus the expected

loss in the value of assets on default and is given by

F (v) = v + E
v

ˆ 1

0

cP⇡e�ru

{u<⌧}du

�

� ⇠E
v

⇥

e�r⌧V
⌧

⇤

(5.3.1)

where E
v

[·] = E [· | V0 = v] and {A} is the indicator function of the event A.

In the case of consol or perpetual debt, the firm is partly financed by debt paying a

continuous fixed coupon which never matures (and therefore pays no principal). In

these circumstances the value of the firm’s debt is equal to the discounted value of

coupon income paid before default plus the residual value of the firm’s assets, should

default occur

D (v) = E
v

ˆ 1

0

cPe�ru

{u<⌧}du

�

+ (1� ⇠)E
v

⇥

e�r⌧V
⌧

⇤

. (5.3.2)

The firm is assumed to choose the default strategy which maximises equity value

given by

Q (v) = F (v)�D (v)

= v � ĉ+ E
v

⇥

e�r⌧

(ĉ� V
⌧

)

⇤

, (5.3.3)

where ĉ := cP (1�⇡)
r

.

Note from (5.3.3) that, on default, the value of equity is zero, in accordance with the

strict priority rule. Since the firm always has the option not to declare default and
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wait for a payoff of zero, it follows that the consol debt case therefore amounts to

solving an infinite horizon optimal stopping problem of the form

w⇤
(v) = sup

⌧2T0,1
E

v

⇥

e�r⌧

(ĉ� V
⌧

) {⌧<1}
⇤

= sup

⌧2T0,1
E

v

⇥

e�r⌧g (V
⌧

)

⇤

(5.3.4)

where the gain function g (v) = (ĉ� v) + and T0,1 denotes the set of F measurable

finite stopping times with the usual assumption that inf {;} = 1.

The optimal stopping problem in (5.3.4) can be solved by first making a guess at a

solution which will then be verified. A solution will be sought under the assumption

that there is a level b such that the stopping time

⌧
b

= inf {t � 0 | V
t

 b} (5.3.5)

is optimal in (5.3.4). Note that by well known first passage probabilities for Brownian

motion to a fixed boundary1, E
v

[e��⌧b
] > 0 for � > 0, and hence ⌧

b

is finite P-a.s. for

v > b.

Standard arguments based on the strong Markov property, lead to the formulation

of the following free-boundary problem for the unknown value function w := w⇤ in

(5.3.4) and the unknown level b in (5.3.5),

L
V

w = rw for v > b (5.3.6)

w (v) = ĉ� v for v = b (5.3.7)

w0
(v) = �1 for x = b (smooth fit) (5.3.8)

w (v) > ĉ� v for v > b (5.3.9)

w (v) = ĉ� v for 0 < v < b (5.3.10)

where w0 and w00 denote the first and second derivative respectively.

1See for example Borodin and Salminen [2002]
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Using (5.2.2) and (5.3.6) it can be seen that the value function solves the Cauchy-

Euler equation given by

1

2

�2v2w00
(v) + (r � �) vw0

(v)� rw =0 (5.3.11)

and seeking a solution of the form w (v) = vp obtains a quadratic equation

p2 �
✓

1� 2 (r � �)

�2

◆

p� 2r

�2
=0 (5.3.12)

which has two roots

p± =

⇣

1� 2(r��)
�

2

⌘

±
r

⇣

1� 2(r��)
�

2

⌘2

+

8r
�

2

2

. (5.3.13)

It follows that the general solution to (5.3.11) may be written

w (v) =A1v
p

+
+ A2v

p

� (5.3.14)

where A1 and A2 are undetermined constants.

The fact that w (v)  ĉ for all x > 0 combined with the observation that p+ > 0

implies that A1 = 0. Equations (5.3.7) and (5.3.8) then form a system of two algebraic

equations in two unknowns, the boundary level b and the unknown constant A2, which

have the solutions

b =
ĉ

1� 1
p

(5.3.15)

A2 =� 1

p

 

k

1� 1
p

!

(5.3.16)

where p := p� has been used for notational convenience. Note that b < ĉ.
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Inserting (5.3.16) into (5.3.14) and using that A1 = 0 obtains the solution to (5.3.4),

w⇤
(v) =

8

>

<

>

:

v

p

p

✓

ĉ

1
p�1

◆

if v 2 (b,1)

ĉ� v if v 2 (0, b] .

(5.3.17)

It is easily verified by a simple calculation that (5.3.15) is the same boundary derived

by Black and Cox [1976], Leland [1994a]. The optimality of (5.3.17) and (5.3.5) may

be verified by standard means2.

Plugging (5.3.17) into (5.3.3) obtains an explicit expression for the value of equity

Q (v) =

8

>

<

>

:

v � ĉ+ v

p

p

✓

ĉ

1
p�1

◆

if v 2 (b,1)

0 if v 2 (0, b] .

(5.3.18)

It is again easily verified that (5.3.18) accords with Black and Cox [1976], Leland

[1994a]. Explicit expressions for the value of the firm, (5.3.1), and the value of

the firm’s debt, (5.3.2), can also easily be obtained using well known first passage

probabilities for Brownian motion.

5.4 Finite Maturity Debt

The firm is partly financed by debt with face value fixed at P which pays a continuous

fixed coupon rate, c, until maturity, is not callable and matures at time T > 0

whereupon the firm is obligated to repay the face value. The value of the firm at

time t is given by the value of the assets together with tax rebates earned on coupon

payments, at rate ⇡ 2 [0, 1], prior to default minus the expected loss in the value of

the assets on default

F (t, v) = v + cP⇡E
t,v

ˆ
T

t

e�r(u�t)
{u<⌧}du

�

� ⇠E
t,v

⇥

e�r(⌧�t)V
⌧ {⌧T}

⇤

. (5.4.1)

2See for example Theorem 25.1 in Peskir [2005]
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The value of the firm’s debt at time t is equal to the discounted value of the face

value of the debt and coupon payments made before default, plus the residual value

of the firm’s assets should default occur before time T

D (t, v) = Pe�r(T�t)E
t,v

⇥

{T<⌧}
⇤

+ cPE
t,v

ˆ
T

t

e�r(u�t)
{u<⌧}du

�

+(1� ⇠)E
t,v

⇥

e�r(⌧�t)V
⌧ {⌧T}

⇤

. (5.4.2)

The firm chooses the default strategy (the default time ⌧) which maximises equity

value, Q (t, x) = F (t, x)�D (t, x), which after some simple calculations reduces to

Q (t, v) = v � ĉ
�

1� e�r(T�t)
�

� Pe�r(T�t)

+E
t,v

⇥

e�r(⌧�t)
�

ĉ
�

1� e�r(T�⌧)
�

+ Pe�r(T�⌧) � V
⌧

�

{⌧T}
⇤

(5.4.3)

where ĉ =

cP (1�⇡)
r

. Note that on default the value of equity is always zero which is

consistent with the strict priority rule. If the firm does not choose to default, the

value of the firm at time T would be Q (T, V
T

) = V
T

� P .

It follows from (5.4.3) that in order to maximise equity value, the firm’s default

strategy should be chosen to solve the optimal stopping problem given by

w⇤
(t, v) = sup

⌧2T0,1
E

t,v

⇥

e�r(⌧�t)
�

ĉ
�

1� e�r(T�⌧)
�

+ Pe�r(T�⌧) � V
⌧

�

{⌧T}
⇤

= sup

⌧2Tt,T
E

t,v

⇥

e�r(⌧�t)g (⌧, V
⌧

)

⇤

(5.4.4)

where g (t, v) =
�

ĉ
�

1� e�r(T�t)
�

+ Pe�r(T�t) � v
�+, a+ = max (a, 0) and T

B

the set

of F measurable stopping times in the set B. The latter equality follows from the

fact that the firm can always choose not to default in the interval [0, T ] and receive

a payoff of at least zero.

The optimal stopping problem in (5.4.4) is similar to that of an American put option

with the exception that the strike price of the option is time dependent. In order

to analyse and solve the problem, it will be convenient to convert the payoff into

a standard American call option on a stochastic process with a time inhomogeneity
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embedded into its drift, as outlined in the following proposition.

Proposition 5.4.1. The stockholders endogenous bankruptcy problem in the case of

finite maturity debt is is given by w⇤
(t, v) = vv⇤(t, x) with x = p̂(t)/v where v⇤(t, x)

is given by

v⇤ (t, x) = sup

⌧2T[0,T�t]

˜E
t,x

⇥

e��⌧g (X
t+⌧

)

⇤

(t, x) 2 E (5.4.5)

with

g(x) = (x� 1)

+ (5.4.6)

where E = {(t, x) 2 [0, T ]⇥ (0,1)}, ⌧ is a stopping time of the process X = {X
t

}
t�0

which has dynamics under ˜P for t < s and 0  s  T � t given by

X
t+s

= x
p̂ (t+ s)

p̂ (t)
e(��r)s� 1

2�
2
s+�W̃s (5.4.7)

with ˜W = { ˜W
t

}
t�0 a standard Brownian motion under ˜P, �, r, � > 0, X

t

= x and

extended infinitesimal generator given by

L
X

f(x) =

✓

� �
✓

r � p̂0(t)

p̂(t)

◆◆

x
@f (t, x)

@x
+

1

2

�2x2@
2f (t, x)

@x2
(5.4.8)

for C1,2 functions f where p̂ (s) = ĉ
�

1� e�r(T�s)
�

+ Pe�r(T�s) and p̂0 = @p̂/@t.

Proof. Defining the probability measure ˜P by d˜P = exp(�W
T

� 1
2�

2T )dP so that

by Girsanov’s theorem ˜W
t

= �t � W
t

is a standard Brownian motion under ˜P for

0  t  T it follows from (5.4.4) that

w⇤
(t, v) = sup

⌧2Tt,T
E

t,v

⇥

e�r(⌧�t)
(p̂ (⌧)� V

⌧

)

+⇤

= sup

⌧2Tt,T
E

t,v

"

V
⌧

e�r(⌧�t)

✓

p̂ (⌧)

V
⌧

� 1

◆+
#

= sup

⌧2Tt,T
v˜E

t,x

⇥

e��(⌧�t)
(X

⌧

� 1)

+⇤ (5.4.9)

= sup

⌧2T0,T�t

v˜E
t,x

⇥

e��⌧

(X
t+⌧

� 1)

+⇤ (5.4.10)
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where X = {X
t

}
t�0 is defined by X

t

= p̂(t)/V
t

for 0  t  T . An application of Itô’s

quotient rule yields the stochastic dynamics of X to be

dX
t

X
t

=

✓

� �
✓

r � p̂0 (t)

p̂ (t)

◆◆

dt+ �d ˜W
t

(5.4.11)

from which Itô’s formula implies that

X
t+s

= x
p̂ (t+ s)

p̂ (t)
e(��r)s� 1

2�
2
s+�W̃s ,

with X
t

= x, which completes the proof.

Remark 5.4.2. Note that since ĉ � 0 it follows that,

r � p̂0 (s)

p̂ (s)
= r

✓

1� e�r(T�s)
(P � ĉ)

e�r(T�s)
(P � ĉ) + ĉ

◆

> 0,

implying that the quantity r� p̂

0(t)
p̂(t) in (5.4.11), which may be given the interpretation

of an instantaneous rate of dividend yield, cannot be negative. That means to say,

that the drift of X under ˜P when discounted by � is never positive.

Remark 5.4.3. The dynamics of X in (5.4.11) may be rewritten as

dX
t

X
t

=

�p̂(t)� c(1� ⇡)/r

p̂(t)
dt+ � ˜W

t

(5.4.12)

from which it follows that if c = 0, the stock holders’ problem reduces to the form of a

standard American call option on a non-dividend paying asset. Since it is well known

that an American call option on a zero dividend asset under positive discounting is

never optimally exercised early, if c = 0, the option to declare bankruptcy prior to

maturity will never be taken.

In the following propositions, some properties of the value function, v⇤, are estab-

lished.
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Proposition 5.4.4. The map x 7! v⇤ (t, x) is (a) increasing and (b) convex.

Proof. For part (a), let ⌧ ⇤0 to be optimal for (t, x0) in (5.4.5) and define

X
s

(t, x) := x
p̂ (t+ s)

p̂ (t)
e(��r)s� 1

2�
2
s+�W̃s

noting that x 7! X
s

(t, x) is obviously increasing and convex. Then, for x0 < x1, it

follows that

v⇤ (t, x0) =

˜E
t,x0

h

e��

(

⌧

⇤
0�t

)g
�

X
⌧

⇤
0
(x0, t)

�

i

< ˜E
t,x1

h

e��

(

⌧

⇤
0�t

)g
�

X
⌧

⇤
0
(x1, t)

�

i

 v⇤ (t, x1) ,

where the first inequality follows from the observation that X
⌧

⇤
(t, x0) < X

⌧

⇤
(t, x1),

and the second, from the fact that ⌧ ⇤0 is may be sub-optimal starting from x1 implying

that x 7! v⇤ (t, x) is increasing.

For (b), define x
✓

= ✓x0 + (1� ✓) x1 for ✓ 2 [0, 1] and let ⌧ ⇤
✓

be optimal for (t, x
✓

)

in (5.4.5). Noting that convexity of the map x 7! X
s

(t, x) implies that x 7!
g (X

⌧

⇤
(t, x0)) is also convex yields,

g
�

X
⌧

⇤
✓
(t, x

✓

)

�

 ✓g
�

X
⌧

⇤
✓
(t, x0)

�

+ (1� ✓) g
�

X
⌧

⇤
✓
(t, x0)

�

,

from which, multiplying by e��(⌧⇤�t) and taking expectations, obtains

v⇤ (t, x
✓

)  ✓v⇤ (t, x0) + (1� ✓) v⇤ (t, x1) ,

where the latter inequality results from the observation that, starting from either

(t, x0) or (t, x1), ⌧ ⇤
✓

is possibly sub-optimal. The latter inequality shows that the map

x 7! v⇤ (t, x) is convex, which completes the proof.

Proposition 5.4.5. The value function in (5.4.5) (a) dominates the gain function:

v⇤ (t, x) � g (x), and (b), continuous on E.
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Proof. Part (a) follows from the fact that one can always take ⌧ = t. For part (b),

continuity follows directly from Proposition 2.2 in Jaillet et al. [1990] since the process

X is continuous and therefore bounded over a finite interval. Note also that continuity

of the map x 7! v⇤ (t, x) is also implied by convexity in Proposition 5.4.4.

Proposition 5.4.6. (Smooth Fit) The function x 7! v⇤ (t, x) is C1 at b (t) and v⇤
x

=

g
x

.

Proof. The proof follows from well known arguments. First fix (t, x⇤
) on the boundary

so that X⇤
t

= b (t) > 1 then (5.4.13) and (5.4.14) imply that for all " > 0

@+v⇤ (t, x⇤
)

@x
= lim

"#0

v⇤(t, x⇤
+ ")� v⇤(t, x)

"

= lim

"#0

g(x⇤
+ ")� g(x⇤

)

"
= 1

and

@�v⇤ (t, x⇤
)

@x
= lim

"#0

v⇤(x⇤ � ")� v⇤(x⇤
)

�"

� lim

"#0

g(x⇤ � ")� g(x⇤
)

�"
= 1,

where the derivatives, @

±
v

⇤(t,x)
@x

, exist by virtue of the convexity of the mapping

x 7! v⇤(t, x) established in Proposition 5.4.4. Since v⇤ is convex, it is left and right

differentiable and therefore @�
x

v⇤  @+
x

v⇤. Since @+
x

v⇤ = 1 and @�
x

v⇤ � 1 , it follows

that, @�
x

v⇤ = @+
x

v⇤ = 1.

Proposition 5.4.7. The value function satisfies @+
x

v⇤, @�
x

v⇤ 2 [0, 1]

Proof. The derivative in x of v⇤ is increasing, since v⇤ is convex, and non-negative,

since v⇤ is increasing. Moreover for (t, x) 2 E such that x > b(t), v⇤
x

= 1.
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Since v⇤ and g are continuous Corollary 2.9 Peskir and Shiryaev [2006] implies a

stopping region, defined as the set of pairs (t, x) at which immediate declaration of

bankruptcy is an optimal policy, is given by

¯S = {(t, x) 2 [0, T ]⇥ (0,1) | v⇤ (t, x) = g (x)} (5.4.13)

with the continuation region defined as

C = {(t, x) 2 [0, T )⇥ (0,1) | v⇤ (t, x) > g (x)} . (5.4.14)

Furthermore, the stopping time ⌧
B

defined by

⌧
B

= inf

�

u 2 [t, T ] |X
t

2 ¯S
 

(5.4.15)

is optimal in (5.4.5). The following proposition establishes the existence of a boundary

which separates the stopping and continuation regions.

Proposition 5.4.8. There exists a boundary t 7! b(t) such that the continuation

region equals

C = {(t, x) 2 [0, T )⇥ (0,1) | x < b (t)} (5.4.16)

and the stopping region ¯S is the closure of the set

S = {(t, x) 2 [0, T )⇥ (0,1) | x > b (t)} (5.4.17)

together with the remaining points (T, x) for x � b (T ).

Proof. Fix t 2 [0, T ) and suppose 0 < x < 1, then since P
t,x

(X
t+s

> 1) > 0 for some

s 2 [0, T � t), immediate exercise is suboptimal implying (t, x) 2 [0, T )⇥ (0, 1) are in

the continuation region. The solution to the finite horizon problem (5.3.4) implies that

there exists a boundary b > 1 such that the stopping time ⌧ = inf {s > 0 | X
s

� b}
is optimal in (5.3.4), which implies that all points (t, x) with x � b for t 2 [0, T ]
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belong to the stopping region. Furthermore, the considerations above, and the fact

that x 7! v⇤ (t, x) is convex on (0,1), implies that there exists a function t 7! b (t)

satisfying 1  b (t)  b for all t 2 [0, T ) which separates the continuation and stopping

regions. Since v⇤ is continuous, C is open.

Proposition 5.4.9. At time T , the exercise boundary in Proposition 5.4.8 equals 1.

Proof. Assume that b (T ) > 1 and consider (T, x⇤
) such that x⇤ 2 (1, b (T )). Since

x⇤ 2 C, it follows from (5.4.14) that v⇤ (T, x⇤
) > g (T, x⇤

). However, the latter is

contradicted by fact that v⇤ (T, x⇤
) = g(x⇤

) because x⇤ > 1 by assumption. The

observation that, by the form of the gain function, B (T ) is clearly not less than 1,

completes the proof.

Remark 5.4.10. Note that since the instantaneous benefit of stopping is given by

(r � p̂0 (t) /p̂ (t)) x� �, it might be conjectured that for,

X (T�) < lim

t"T

�
⇣

r � p̂

0(t)
p̂(t)

⌘

=

�

c (1� ⇡)

stopping may be suboptimal, since the instantaneous gain would be negative. The

latter suggest that there might be a discontinuity in the boundary at maturity. Nu-

merical calculations presented in Section 5.5 are suggestive of such a discontinuity.

Collecting the results above, together with the fact that the value function in (5.4.5)

is the solution to a PDE with constant coefficients3 in C, and is therefore C1,2 2 C, the

following verification theorem presents a free boundary formulation satisfied by the

value function. Proposition 5.4.12 below then presents an integral equation which the

boundary satisfies. Finally, Theorem 5.4.13 verifies that the boundary is the unique

solution to the latter identified integral equation under certain assumptions.

3See for example Friedman [1964].
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Theorem 5.4.11. Let w be continuous on E, C1,2 on E\� (b (t)), for every t 2 [0, T ]

w(t, ·) be C1 on R+, w
x

2 [0, 1] and solve the following system of partial differential

equations,

w
t

+ L
X

w � �w  0 (t, x) 2 S (5.4.18)

w(t, x) � g(x) (t, x) 2 C (5.4.19)

w
t

+ L
X

w � �w = 0 (t, x) 2 C (5.4.20)

w(t, x) = g(x) (t, x) 2 ¯S (5.4.21)

where � (b (t)) = {(t, x) 2 E | x = b (t)} and

b (t) = inf

�

x 2 R+ | w (t, x) < g (x)
 

then w = v⇤ in (5.4.5) and the stopping time given by

⌧
b

= inf {s 2 [0, T � t] | X
t+s

> b (t+ s)} (5.4.22)

is optimal in (5.4.5).

Proof. It follows from an application of a generalised version of Itô’s formula that,

for � 2 T0,T�t

,

e���g (X
t+�

)  e���w (t+ �, X
t+�

)

= w (t, x) +

ˆ
�

0

e��s

⇧

w

(X
t+s

) ds+M
�

where ⇧
f

= f
t

+ L
X

f � qf and M
�

is a P
t,x

martingale by Proposition 5.4.6 with

the first inequality following from (5.4.19) and (5.4.21). Taking P
t,x

expectations and

using (5.4.18) and (5.4.20) obtains

E
t,x

⇥

e���g (X
t+�

)

⇤

= w (t, x) +

ˆ
�

0

E
t,x

⇥

e��s

⇧

w

(X
t+s

) ds
⇤

 w (t, x) .
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As a consequence, since � was chosen arbitrarily, taking the supremum over all stop-

ping times in T0,T�t

yields

sup

�2T0,T�t

E
t,x

⇥

e���g (X
t+�

)

⇤

= v⇤ (t, x)  w (t, x)

implying v⇤ (t, x)  w (t, x).

For the alternate inequality, first note that by applying a version of Itô’s formula to

the function e��sw (t+ s,X
t+s

), setting s = u ^ ⌧
b

, where u 2 [0, T � t] and ⌧
b

is

defined in (5.4.22) yields

w (t, x) = e��(u^⌧b)w (t+ u ^ ⌧
b

, X
t+u^⌧b)�

ˆ
u^⌧b

0

e��s

⇧

w

(X
t+s

) ds�M
u^⌧b .

Taking P
t,x

expectations obtains

w (t, x) = E
t,x

⇥

e��(u^⌧b)w (t+ u ^ ⌧
b

, X
t+u^⌧b)

⇤

= E
t,x

⇥

E
⇥

e��⌧bg (X
t+⌧b

) | F
u

⇤⇤

= E
t,x

⇥

e��⌧bg (X
t+⌧b

)

⇤

 sup

⌧2T0,T�t

E
t,x

⇥

e��⌧g (X
t+⌧

)

⇤

= v⇤(t, x)

where the first equality follows from (5.4.20) and the fact that M
u^⌧b is again a

P
t,x

martingale, the second equality from an application of the Markov property and

(5.4.21) implying w = g at ⌧
b

, and the final equality from the tower property. Taking

supremum over all stopping times in T0,T�t

therefore obtains that v⇤ (t, x) � w (t, x)

completing the proof.
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Proposition 5.4.12. The boundary in Theorem 5.4.11 admits a representation as a
solution to the free boundary equation given by

b (t)� 1 = ⇢ (t, T � t) e�r(T�t)� (⇠1 (⇢ (t, T � t) , 1, T � t))

� e

��(T�t)� (⇠2 (⇢ (t, T � t) , 1, T � t))

+

ˆ
T�t

0
e

�rs

⇢ (t, s) � (t+ s)� (⇠1 (⇢ (t, s) , b (t+ s) , s)) ds

� �

ˆ
T�t

0
e

��s� (⇠2 (⇢ (t, s) , b (t+ s) , s)) ds (5.4.23)

with b (T ) = 1 where

⇢ (u, s) = x
p̂ (u+ s)

p̂ (u)
,

� (u) = r � p̂0 (u)

p̂ (u)
,

⇠1 (x, y, u) =

log (x/y) +
�

� � r + 1
2�

2
�

u

�
p
u

,

⇠2 (x, y, u) = ⇠1 (x, y, u)� �
p
u

and � (·) is the standard normal distribution.

Proof. The optimal default boundary in (5.4.5) may be characterised by applying a

version of Itô’s formula to the function e��uw (t+ u,X
t+u

) where w solves (5.4.18)-

(5.4.21) whereupon taking ˜P
t,x

expectations obtains that

w (t, x) = e��uw (t+ u,X
t+u

)�
ˆ

u

0

e��s

˜E
t,x

[⇧

w

(X
t+s

)] ds

+

˜E
t,x

ˆ
u

0

e��s�X
t+s

w
x

d ˜W
t+s

�

(5.4.24)

where the operator ⇧ is defined as ⇧
f

= f
t

+ L
X

f � �f .

Noting that (5.4.20) implies ⇧
w

= 0 in C and (5.4.21) implies w(t, x) = g(x) in ¯S,

obtains from (5.4.8) that ⇧
g

(x) = � � (r � p̂0/p̂)x for X
t

� b(t). It follows that by
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setting u = T � t and � (u) := r � p̂

0(u)
p̂(u) , and noting that, since (5.4.21) implies that

w(t, x) = g(x) = x � 1 for x 2 ¯S, results in the so called early exercise premium

representation of the value function given by

x� 1 = e��(T�t)
˜E
t,x

⇥

(X
T

� 1)

+
⇤

+

ˆ
T�t

0

e��s� (t+ s) ˜E
t,x

⇥

X
t+s {Xt+s�b(t+s)}

⇤

ds

� �

ˆ
T�t

0

e��s

˜E
t,x

⇥

{Xt+s�b(t+s)}
⇤

ds (5.4.25)

holds for x 2 (0, b (t)] and t 2 [0, T ].

Equation (5.4.25) represents a family of boundaries t 7! b(t), one for each value of

x. A natural candidate free boundary equation can be obtained by inserting x = b (t)

into (5.4.25) whereupon using (5.4.7) obtains (5.4.23). The fact that b (T ) = 1 is

contained in Proposition 5.4.9 which completes the proof.

Theorem 5.4.13. Assuming that the boundary (5.4.22) is continuous and

⇧

g

(x) = (g
t

+ L
X

g � �g) (x) < 0 2 ¯S, (5.4.26)

the boundary in Theorem 5.4.12 is the unique solution to the free boundary equation

(5.4.23).

Proof. The following argument is an adaption of one found in Peskir [2005]. Suppose

that (vc, c) is another solution pair to the free boundary problem (5.4.18)-(5.4.21) and

⌧
c

= inf {s 2 [0, T � t] | X
t+s

� c (t+ s)}

then an application of a generalised version of Itô’s formula to e��uvc (t+ u,X
t+u

)

implies that

e��uvc (t+ u,X
t+u

) = vc (t, x) +

ˆ
u

0

e��s

⇧

g

(X
t+s

) {Xt+s�c(t+s)}ds

+

ˆ
u

0

e��s�X
t+s

vc
x

dW
t+s

, (5.4.27)
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where ⇧
g

= g
t

+ L
X

g � �g in ¯S. After taking P
t,x

expectations, the final martingale

term in the latter equality vanishes, whereupon inserting u = ⌧
c

obtains

vc (t, x) = E
t,x

⇥

e��⌧cvc (t+ ⌧
c

, X
t+⌧c)

⇤

�E
t,x

ˆ
⌧c

0

e��s

⇧

g

(X
t+s

) {Xt+s�c(t+s)}ds

�

= E
t,x

⇥

e��⌧cvc (t+ ⌧
c

, X
t+⌧c)

⇤

= E
t,x

⇥

e��⌧cg (X
t+⌧c)

⇤

for all (t, x) 2 E, where the latter equality follows from the fact that, by (5.4.21),

vc (t, x) = g(x) for X
t

� c (t). Note that it follows immediately from (5.4.5) that

vc (t, x)  v⇤ (t, x) (5.4.28)

for (t, x) 2 E.

By an analogous argument to that above, applying a generalised version of Itô’s

formula to e��uv (t+ u,X
t+u

) obtains

e��uv⇤ (t+ u,X
t+u

) = v⇤ (t, x) +

ˆ
u

0

e��s

⇧

g

(X
t+s

) {Xt+s�b(t+s)}ds

+

ˆ
u

0

e��s�X
t+s

v⇤
x

dW
t+s

. (5.4.29)

Letting (t, x) 2 E such that x > max (b (t) , c (t)) and inserting the stopping time

defined by

�
b

= inf {s 2 [0, T � t] | X
t+s

 b (t+ s)}

into (5.4.27) and (5.4.29) and after taking P
t,x

expectations obtains

E
t,x

⇥

e

���b
v

c (t+ �

b

, X

t+�b)
⇤

= g (t, x)

+E
t,x

ˆ
�b

0
e

��s⇧
g

(X
t+s

) {Xt+s�c(t+s)}ds

�

(5.4.30)

E
t,x

⇥

e

���b
v

⇤ (t+ �

b

, X

t+�b)
⇤

= g (t, x) + E
t,x

ˆ
�b

0
e

��s⇧
g

(X
t+s

) ds

�

. (5.4.31)
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Combining (5.4.30) and (5.4.31) with (5.4.28) yields

E
t,x

ˆ
�b

0

e��s

⇧

g

(X
t+s

) ds

�

� E
t,x

ˆ
�b

0

e��s

⇧

g

(X
t+s

) {Xt+s�c(t+s)}ds

�

,

which, since c and b are continuous and ⇧
g

< 0, by assumption, implies that c (t) 
b (t).

To show that c (t) = b (t), first assume that there exists t 2 (0, T ) such that c (t) < b (t)

and let x 2 (c (t) , b (t)). Insert ⌧
b

from (5.4.22) into (5.4.27) and (5.4.29) and take

P
t,x

expectations to obtain

vc (t, x) = E
t,x

⇥

e��⌧bg (X
t+⌧b

)

⇤

�E
t,x

ˆ
�b

0

e��s

⇧

g

(X
t+s

) {Xt+s�c(t+s)}ds

�

v⇤ (t, x) = E
t,x

⇥

e��⌧bg (X
t+⌧b

)

⇤

from which, using again (5.4.28), implies that

E
t,x

ˆ
�b

0

e��s

⇧

g

(X
t+s

) {Xt+s�c(t+s)}ds

�

� 0,

which cannot be true since, c and b are continuous and ⇧
g

< 0 by assumption,

implying that (t, x) cannot exist, which, by the contradiction together with the facts

above, implies c (t) = b (t), completing the proof.

5.5 Numerical Analysis

5.5.1 Method of calculation In this section, numerical calculations of default

boundaries are presented for varying parameter values. The calculations are included

for illustrative purposes, recognising that the uniqueness of the boundary character-

ised in (5.4.23) has not been verified. The equation in (5.4.23), which the boundary

associated with (5.4.5) satisfies, is a non-linear Volterra integral equation of the second
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kind. Numerical calculations for the boundaries presented in this section are derived

using a simple bootstrap method where the starting point for calculation at time T

is taken from Proposition 5.4.9 to be b(T ) = 1

4. Starting from the latter known

point, one can work backwards in time by successive approximations. The boundary

derived from (5.4.23) is in terms of the process X. The firm’s underlying default

boundary associated with (5.4.4) in terms of the process V is then calculated from

the call boundary simply using the definition of X
t

= p̂(t)/V
t

in Proposition 5.4.1.

The default parameter values used for the calculations were P=100, r=7.5%, �=20%,

⇡=20% and �=7% and c = 10%. These values are in accordance with Leland [1994a]

with the exception of the tax rate.

5.5.2 Effect of coupons Figure 5.5.1 illustrates the effect of higher coupons on

the calculated underlying call option boundary. As can be observed in Figure 5.5.1,

the call boundary tends to be higher, and decrease even more rapidly, as a function

of time as the coupon rate increases.

Figure 5.5.2 displays the calculated default boundary associated with the same para-

meter values as Figure 5.5.1. As might be expected, the default boundary shifts

upwards with higher coupons, which would naturally tend to increase the probability

that a firm would declare bankruptcy prior to maturity and would therefore be ex-

pected to be associated with higher credit spreads. For the default parameter values,

the net coupon rate exceeds the dividend rate and therefore the calculated bound-

ary at maturity is equal to the principal. However, for coupon rates less than 14%,

the default boundary appears to be upward sloping as a function of time, naturally

implying an increasing likelihood of default as time passes towards maturity.

However, as Figure 5.5.3 indicates, that for high coupon rates relative to other para-

meters, the calculated default boundary initially declines as a function of time before

increasing as a function of time prior to maturity. The latter observation has the

obvious consequence that firms financed by high coupon bonds may be encouraged

4See Linz [1985].
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to declare default well before maturity of their debt.

5.5.3 Effect of dividends and interest rates Numerical calculations suggest

that lower dividends raise the default boundary as illustrated in Figure 5.5.4. Nat-

urally, higher cash flows to equity holders are likely to encourage equity holders to

wait longer before declaring bankruptcy. As noted in Remark 5.4.10, numerical cal-

culations also suggest that, if the dividend rate exceeds the net of tax coupon rate,

there may be a discontinuity in the default boundary at maturity, with the default

boundary being below the principal value of the debt immediately prior to maturity.

Figure 5.5.5 displays the impact of different levels of risk free interest rate on the cal-

culated default boundary. Higher interest rates tend to lower the default boundary,

although the sensitivity of the boundary to interest rate changes appears to be rel-

atively small. The latter observation is consistent with credit spreads being inversely

related to risk free interest rates which is often observed in market data.5

Finally, Figure 5.5.6 displays a calculated boundary with a net coupon rate which

is less than the risk free interest rate. It is interesting to observe that numerical

calculations suggest that if the net coupon rate is lower than the risk free interest

rate in this model, the default boundary is very low when there is a long time left to

maturity, and then steepens dramatically prior to maturity. The obvious implication

of the latter is, that default would be far more likely as maturity approaches, which

is consistent with the finding in Remark 5.4.3, in which it was noted that, it would

never be optimal to declare bankruptcy prior to maturity for a zero coupon finite

maturity bond.

5 The structural model of Merton [1974] indicates such a negative relationship between interest
rates and credit spreads.
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Figure 5.5.1: Call Boundary Calculations for Different Levels of Coupon
The figure shows shows calculated call boundaries for P=100, r=7.5%, �=20%, ⇡=2% and
�=7% for different levels of coupon, c. The boundary appears to flatten as a function of
time as the coupon rate increases.
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Figure 5.5.2: Default Boundary Calculations for Different Levels of Coupon
The figure shows calculated default boundaries for P=100, r=7.5%, �=20%, ⇡=2% and
�=7% for different levels of coupon rate, c.
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Figure 5.5.3: Default Boundary Calculations for Different Levels of Coupon
The figure shows calculated default boundaries for P=100, r=7.5%, �=20%, ⇡=20% and
�=7% for different levels of coupon, c. When the coupon is relatively very high, the boundary
as a function of time can initially slope downwards, only to slope upwards immediately prior
to maturity.
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Figure 5.5.4: Default Boundary Calculations for Different Levels of Dividend Yield
The figure shows calculated default boundaries for P=100, r=7.5%, �=20%, ⇡=20% and
c=10% for different levels of dividend yield, �. An increasing level of dividend yield on the
underlying asset may make it less likely for the stockholders to declare default. When the
dividend yield on the asset is greater than the net coupon rate, calculations suggest that
there is a discontinuity at maturity with b (T ) = P .
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Figure 5.5.5: Default Boundary Calculations for Different Levels of Interest Rate
The figure shows calculated default boundaries for P=100, �=7%, �=20%, ⇡=20% and
c=10% for different levels of interest rate, r. A falling interest rate tends to increase the
level of the boundary with the effect greatest the longer the time left until maturity. The
latter would be consistent with lower interest rates increasing credit spreads.
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Figure 5.5.6: Default Boundary Calculations for Different Levels of Tax Rate
The figure shows the numerical boundary calculations for P=100, r=7.5%, �=20%, c=10%
and �=7% for different levels of tax rate, ⇡. An increasing tax rate lowers the boundary
since the net coupon rate is lower. If the net coupon rate is less than the interest rate,
numerical calculations suggest the boundary may steepen dramatically prior to maturity if
the net coupon rate falls below the interest rate, the boundary.
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CHAPTER 6 CONCLUDING REMARKS

AND FUTURE RESEARCH

The models presented in Chapters 3 and Chapter 4 have demonstrated that regime

shifts can have significant effects on firm capital structure decisions and associated

financing costs. Numerical calculations suggest that in a recessionary economic envir-

onment, where interest, dividend, and tax rates are assumed to fall, and bankruptcy

costs and asset volatility assumed to rise, corporate entities would generally choose

to adopt lower level of leverage, and, equity, firm and debt value would tend to be

lower.

For firms starting up in a recessionary environment, at a lower level of leverage, debt

financing costs are also likely to be lower. However, for existing firms, with a set

capital structure, debt financing costs in a recessionary environment might well be

higher as a result of increased asset volatility. The latter effects would naturally be

exacerbated in the presence of negative asset value jumps. Certainly the results of

Chapter 3, in relation to the roll-over debt structure, suggest that shifting regimes

may have a substantial impact on the term structure of credit spreads for existing

firms.

However, it is clear from the results of Chapter 4, that further work is required,

to fully understand the optimal behaviour of firms in a regime-switching setting.

While conditions were identified under which optimal boundaries exist in the case of

infinite maturity debt, questions still remain in generality. Since the strikes from the

American put-style payout of the optimal stopping problem, associated with equity

maximisation under regime-switching are regime dependent, it is not guaranteed that

an optimal stopping time will exist in all regimes.
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In the case of two regimes, where the strike in one regime is far below the strike

in the other regime, it is intuitively plausible that it might be optimal to wait for

a regime-change before exercising the option to default. Understanding the latter

behaviour might be important for policy makers who may be motivated in guiding

macroeconomic policies in such a way, as to create a regime in which to avoid de-

faults occurring. However, once the regime switches again, there could potentially be

unintended consequences.

Regime-switching models arguably, therefore, provide a rich framework for model-

ling complex financial behaviour in a straightforward manner. It is also clear that,

the general mixing of parameters in a regime-switching setting, can potentially ac-

commodate a wide variety of scenarios. Ultimately, however, it will be required to

calibrate the models to market data to determine the capital structure decisions that

would be made under empirically identifying regimes. Future research activity should

include calibrating the models to market data.

In the above regard, while the focus of this thesis has been to try and identify default

boundaries, which, in some sense maximise equity value, in many practical applica-

tions, exogenously determined boundaries are used by practitioners to calibrate credit

models to financial market data. Well known examples include the KMV model. Typ-

ically, such models are based on the assumption that a firm’s asset price follows a

geometric Brownian motion. However, clearly the results in relation to exogenously

determined boundaries contained in this thesis may well find applications in the latter

regard.

All the models presented in this thesis could also be enhanced further by incorpor-

ating tax thresholds for asset value, below which firms do not benefit from tax relief

on interest payments, which has been typical in the literature. While in a regime-

switching setting, a lower tax rate in a regime, will, to a certain extent, discourage

firms from undertaking leverage, modelling the availability of tax relief on interest

payments directly is an important feature of structural models of credit risk. There-

fore, enhancing the models presented in this thesis to incorporate a tax threshold is
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also an intended future area of research.

Adding positive jumps to the models presented is also an objective for future research.

While, for default purposes, negative jumps are arguably more important than pos-

itive jumps, there may be circumstances in which positive jumps have a meaningful

role to play. For investment grade bonds, the primary risk is to the downside in

terms of the value of debt should the credit quality of a firm deteriorate. In the latter

circumstance, negative jumps clearly play a positive role. However, for more highly

leveraged firms, the positive surprise of a credit quality improvement may also have

an important implications for capital structure valuation.

There is further work to be done in Chapter 5 to verify analytically the properties

of the default boundary and the framework could also be extended by incorporating

jumps into the asset value process. In addition, the effects of the introduction of

regime switching into the asset value process could be examined. Furthermore, the

question at to whether the firm would refinance at maturity and how this would be

achieved needs to be explored. Efficient methods for the valuing the capital structure

associated with the finite maturity debt boundary, along with the associated credit

spreads, is an additional area of potential future research.
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