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Abstract 

Laminated glass is a special composite material, which is characterised by an alternating 

stiff/soft lay-up owing to the significant stiffness mismatch between glass and PVB. This 

work is motivated by the need for an efficient and accurate nonlinear model for the analysis 

of laminated glass structures, which describes well the through-thickness variation of 

displacement fields and the transverse shear strains and enables large displacement analysis.  

An efficient lamination model is proposed for the analysis of laminated composites with an 

alternating stiff/soft lay-up, where the zigzag variation of planar displacements is taken into 

account by adding to the Reissner-Mindlin formulation a specific set of zigzag functions. 

Furthermore, a piecewise linear through-thickness distribution of the material transverse 

shear strain is assumed, which agrees well with the real distribution, yet it avoids layer 

coupling by not imposing continuity constraints on transverse shear stresses. 

Local formulations of curved multi-layer shell elements are established employing the 

proposed lamination model, which are framed within local co-rotational systems to allow 

large displacement analysis for small-strain problems. In order to eliminate the locking 

phenomenon for the shell elements, an assumed strain method is employed and improved, 

which readily addresses shear locking, membrane locking, and distortion locking for each 

constitutive layer. Furthermore, a local shell system is proposed for the direct definition of 

the additional zigzag displacement fields and associated parameters, which allows the 

additional displacement variables to be coupled directly between adjacent elements without 

being subject to the large displacement co-rotational transformations. 

The developed multi-layer shell elements are employed in this work for typical laminated 

glass problems, including double glazing systems for which a novel volume-pressure control 

algorithm is proposed. Several case studies are finally presented to illustrate the effectiveness 

and efficiency of the proposed modelling approach for the nonlinear analysis of glass 

structures. 
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Notation 

All symbols used in this thesis are defined where they first appear. For the reader‘s convenience, 

the principal meanings of the commonly used notations are contained in the list below. The 

reader is cautioned that some symbols denote more than one quantity; in such cases the meaning 

should be clear when read in context. 

 

Abbreviations 

1D,2D,3D One-dimensional, two-dimensional, and three dimensional, respectively 

AG Annealed glass 

CLT Classical lamination theory 

CNF6 6-noded conforming shell element 

CNF9 9-noded conforming shell element 

DOF Degree of freedom 

EDN Equivalent single layer model with the application of the principle of 

virtual displacements 

EDZN EDN models enriched with Murakami’s zigzag function 

EDZN* EDZN models with further simplifications 

EMCN Equivalent single layer models with the application of Reissner’s mixed 

variational theorem 

EMZCN Equivalent single layer models, enriched with Murakami’s zigzag 
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function, with the application of Reissner’s mixed variational theorem 

ESL Equivalent single layer 

FCSR Face-to-core stiffness ratio 

FSDT First-order shear deformation theory 

HnCm m-noded corrective strain element with nth order hierarchic modes 

HnOm m-noded objective strain element with nth order hierarchic modes 

HSDT Higher-order shear deformation theory 

LDN Layer-wise model with the application of the principle of virtual 

displacements 

LG Laminated glass 

Ln-H3O6 n-layer 6-noded laminated shell element with the application of the H3O6 

optimisation to each layer 

Ln-H3O9 Proposed n-layer 9-noded laminated shell element with the application of 

the H3O9 optimisation to each layer 

LW Layer-wise 

LWT Layer-wise theory 

MITC Mixed Interpolation of Tensorial Component 

MITC6 6-noded degenerated shell element using MITC method 

MITC6* 6-noded co-rotational shell element using the MITC6 strain mapping 

between covariant strains fixed at element centre and local generalised 

strains 

MITC9 9-noded degenerated shell element using MITC method 
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MITC9* 9-noded co-rotational shell element using the MITC9 strain mapping 

between covariant strains and local generalised strains 

MITC9is* 9-noded co-rotational shell element using the MITC9 strain mapping 

between covariant strains fixed at element centre and local generalised 

strains 

MZZF Murakami’s zigzag function 

MZZFi A beam model where the MZZF is added to the 1D HSDT model with an 

ith-order z expansion for the whole beam thickness. 

PVB Polyvinyl butyral 

PVD The principle of virtual displacements 

RMVT Reissner’s mixed variational theorem 

TSDT Third-order shear deformation theory 

VRT Vlasov-Reddy theory 

WLF Williams-Landell-Ferry equation 

ZZT Zigzag theory 

  

Roman Symbols 

(k)
mB , (k)

bB , (k)
sB  First derivatives of the generalised strains at layer (k) with respect to 

pseudo parameters (k)U  (conforming formulation) 

(k)
mB̂ , (k)

bB̂ , (k)
sB̂  First derivatives of the generalised strains at layer (k) with respect to 

pseudo parameters (k)U  (hierarchic optimisation approach with objective 

assumed strains) 
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(k)
mB , (k)

bB , (k)
sB  First derivatives of the generalised strains at layer (k) with respect to 

pseudo parameters (k)U  (hierarchic optimisation approach with corrective 

assumed strains) 

o o
r s,c c  Unit vectors for local shell coordinate system at initial configuration 

r s,c c  Unit vectors for local shell coordinate system at current configuration 

x y z, ,c c c  Unit vectors for local element coordinate system at current configuration 

C1,C2 WLF parameters 

(k)
pC  Material constitutive matrix of layer (k) for planar stresses/strains 

(k)
sC  Material constitutive matrix of layer (k) for transverse shear 

stresses/strains 

n 1
v,p
C  Viscoelastic constitutive matrices for planar stresses/strains at time n 1t   

n 1
v,s
C  Viscoelastic constitutive matrices for transverse shear stresses/strains at 

time n 1t   

(k)
bD  Constitutive matrix for generalised bending stresses/strains at layer (k) 

(k)
mD  Constitutive matrix for generalised membrane stresses/strains at layer (k) 

(k)
sD  Constitutive matrix for generalised transverse shear stresses/strains at layer 

(k) 

id  Global translational displacements of node i 

Af  Resistance forces with respect to additional zigzag parameters AU  

Cf  Resistance forces with respect to basic local parameters CU  

Gf  Resistance forces with respect to basic global parameters GU  
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(k)f  Vector of pseudo nodal forces at layer (k) 

(k)F  Generalised membrane stress at layer (k) 

G0 Instantaneous shear modulus 

Gj Shear modulus of jth Maxwell element 

G  Long-time plateau shear modulus. 

h Thickness of plate/shell 

he Nominal element length 

h , h  Values of z at the bottom and top of the cross-section, respectively 

kh  Thickness of layer (k) 

kh  , kh   Values of z at the bottom and top of layer (k), respectively 

J Jacobian matrix 

JC Jacobian matrix evaluated at element centre 

(k) Layer (k) 

K Bulk modulus 

(k)k  Local stiffness matrix of layer (k) 

Ck , Ak , CAk ,

ACk  

Local stiffness matrices of multi-layer shell elements 

Gk , GAk , AGk  Global stiffness matrices of multi-layer shell elements 

1 2 3L ,L ,L  Area coordinates 

CM  Local consistent mass matrix 
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GM  Global consistent mass matrix 

(k)M  Generalised bending stresses at layer (k) 

in  Normal vector at node i 

cN  Number of soft layers in the lamination 

eN  Number of element nodes  

iN  Shape function of node i 

lN  Number of constitutive layers in the lamination 

NM Number of Maxwell elements 

0
Ep  Gas pressure in the enclosure at the initial undeformed configuration 

n 1
Ep   Gas pressure in the enclosure at the current deformed configuration 

(k)
ASQ  Generalised transverse shear stresses at layer (k) 

r,s 2D curvilinear shell coordinates 

ir  Components of the normal vector along the local x- and y-axes at node i 

ir  Local rotational accelerations of node i 

oR , R  Orientation matrices of the local co-rotational framework at the initial and 

current configurations, respectively 

(k)
AT  Transformation matrix from additional zigzag displacement parameters of 

element to pseudo displacement parameters of layer (k) 

(k)
CT  Transformation matrix from local displacement parameters of element to 

pseudo displacement parameters of layer (k) 

it  Local translational displacements of node i 
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it  Local translational accelerations of node i 

x0 y0 z0u , u , u  x, y, and z planar displacement fields evaluated on the middle surface, 

respectively 

AiU  Vector of additional nodal parameters at node i 

CiU  Vector of local translational and rotational nodal parameters at node i 

GiU  Vector of global translational and rotational nodal parameters at node i 

(k)
iU  Vector of pseudo nodal parameters of layer (k) at node i 

o
ijv , ijv  Vectors connecting node i to node j in the initial and current element 

configuration, respectively 

0
EV  Enclosed gas volume at the initial undeformed configuration (t = 0s) 

n
EV  Enclosed gas volume at the previous deformed configuration (t = nt ) 

n 1
EV   Enclosed gas volume at the current deformed configuration (t = n 1t  ) 

n 1
EV   Approximate enclosed gas volume at the current deformed configuration (t 

= n 1t  ) 

x,y,z Local element coordinates 

X,Y,Z Global coordinates 

o
ix  Local coordinates of node i 

0z  Offset of the shell mid-surface along the z-axis 

(k)z  z value extracted on the middle surface of layer (k) 
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Greek Symbols 

(k)  Angle from the shell directional vector o
rc  to the material fibre direction at 

layer (k) 

β Rotation from rc  in shell system to xc  in local element coordinate system 

ε  Conforming strains  

ε  Enhanced strains adopting the corrective fields 

ε̂  Enhanced strains adopting the objective fields 

bε , mε , sε  Bending generalised strains, membrane strains, and transverse shear 

strains 

(k)
bε , (k)

mε , (k)
sε  Bending generalised strains, membrane strains, and transverse shear 

strains at layer (k) for laminations 

hε  Hierarchic corrective strains 

oε  Objective strains 

(k )
pε  Planar material strains of layer (k) 

sε  Transverse shear strains 

(k)
s,ASε  Assumed transverse shear strains of layer (k) 

(k)  Angle from the local element x-axis to the material fibre direction at layer 

(k) 

, ,    Natural coordinates 

  Poisson’s ratio 

x y,   Components of the normal vector along the x- or y-axis  
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j j
x y,   Additional fields associated with the jth proposed zigzag function along 

the x and y axes of the local element system, respectively 

j
r , j

s  Additional fields associated with the jth proposed zigzag function along 

the r and s axes of the local shell system, respectively 

  Density 

(k)
pσ  Planar material stresses of layer (k) 

(k)
s,ASσ  Assumed transverse shear stresses of layer (k) 

j  A relaxation time parameter of the jth Maxwell element 

n 1
EV   Volume change of the enclosure during the current time step n 1t   

n 1
EV   Approximate volume change of the enclosure during the current time step 

n 1t   

n 1
E,iV   Contribution from element i to the enclosure volume change during the 

current time step n 1t   

T  Transformation matrix from conforming strains to corrective strains 

T̂  Transformation matrix from conforming strains to objective strains 

e  Element domain 

n
E  Enclosed surface at time nt  

hΨ  Hierarchic strain-inducing modes 

oΨ  Objective strain-inducing modes 

h
Ψ  Hierarchic strain-inducing modes for three edge strains of  triangular shell 

element 

o
Ψ  Objective strain-inducing modes for three edge strains of  triangular shell 
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element 

h
bΨ , h

mΨ , h
sΨ  Hierarchic corrective modes for bending generalised strains, membrane 

strains, and transverse shear strains, respectively 

h
bΨ , h

mΨ , h
sΨ  Modified hierarchic bending, membrane and transverse shear strain 

modes, respectively 

o
bΨ , o

mΨ , o
sΨ  Objective modes for bending generalised strains, membrane strains, and 

transverse shear strains, respectively 
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Chapter 1 

1 Introduction 

 

 

Laminated glass (LG) has been widely used in many applications of engineering, including 

for example in architectural glazed façades (Figure 1.1) owing to its transparency, aesthetic 

appearance and safety characteristics. It is composed of one or more polymer layers 

sandwiched between layers of glass plies (Figure 1.2). Polyvinyl butyral (PVB) is the most 

commonly used interlayer, which can go through large deformation prior to rupture, hence 

providing good energy-absorbing capability. In the event of fracture of the glass, PVB retains 

glass debris in place, withstands further loadings, and absorbs more energy. Therefore, LG 

mitigates injury to occupants in buildings subject to extreme loading conditions, and is thus 

increasingly being utilised for structures that are vulnerable to blast and earthquakes.  

 

 
Figure 1.1: The Shard, London. (www.shardldn.com) 
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Figure 1.2: Composition of LG (xinology.com). 

Even though the safety advantage of LG over annealed glass is apparent, there is a lack of 

design codes to guide the design of LG structures. Current design codes related to LG only 

provide a coarse estimation of the resistance for secondary structural components. For 

instance, the ASTM (2012) E1300-12a states that it only applies to vertical and sloped 

glazing in buildings for which the specified design loads consist of wind load, snow load and 

self-weight with a total combined magnitude less than or equal to 15kPa. Accordingly, this 

code is not applicable to the design of structural glass members. The reason behind the lack 

of design guidance is that the mechanical behaviour of LG is quite complicated even prior to 

fracture, which involves significant zigzag displacements and complex stress fields, 

sensitivity to loading rates and temperature, as well as significant geometric nonlinearity 

under moderate loading. These factors make it difficult to describe the behaviour of LG units 

with one set of codified formulae. 

Therefore, reliable numerical modelling tools are required to facilitate the design and 

assessment of LG structures. An advanced approach in modelling the LG should balance the 

need for accuracy and the computational demand. To achieve this goal it is essential to have a 

full understanding of the characteristics of LG structures. 

 Features of laminated glass structures 

The behaviour of LG is characterised by several distinctive features as follows: 

 (1) Material mismatch. There is a significant stiffness variation through the glass laminate 

thickness, where the glass-to-PVB stiffness ratio falls into the range from 103 to 106, 

4-ply LG 
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which is much larger than the stiffness variation in laminations where the change of 

material properties is achieved by changing the orientation of constitutive layers. This 

material mismatch leads to a significant zigzag effect in displacements and complex 

stress fields in the thickness direction. 

(2) Stacking sequence. The LG composition follows an alternating stiff/soft lay-up 

scheme due to the inclusion of soft PVB layers between relatively stiff glass plies. 

This stacking sequence is different from usually encountered sandwich structures 

where all soft cores are layered together and sandwiched by stiff sheets.  

(3) Large slenderness. Most LG components can be regarded as two-dimensional 

structures due to the relatively small thickness compared to length and width, which 

induces large deflections under transverse loading. For an accurate modelling of such 

structures, a suitable geometric nonlinear analysis capability is required to solve large 

displacement problems.  

(4) Sensitivity to loading duration and temperature. PVB is a viscoelastic material, the 

mechanical properties of which vary with different loading rates and temperature, 

hence leading to varying effective sectional modulus of the glass laminate.  

 (5) Fracture of glass. The strength of glass has a wide statistical variation due to random 

Griffith flaws as a result of both the manufacturing process and service conditions. 

The development of cracks is also complicated since the crack pattern is influenced by 

the glass fracture strength, the size of the pre-existing flaws, and the interaction 

between PVB and glass.  

 (6) Nonlinear material properties of PVB. After fragmentation of glass plies, PVB layer 

undergoes large deformation. Experiments have shown that in the large strain range 

this material exhibits a highly nonlinear viscoelastic response.  

 Aims and scope 

It is apparent from the previous discussion that the full nonlinear analysis of LG is quite an 

involved task, requiring complete understanding of all the aforementioned characteristics. 
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However, it is important to note that features (1)-(4) exist throughout the loading history in 

all LG problems, whereas features (5)-(6) are manifested in the post-cracking phases, where 

large strains are induced in PVB.  

This research focuses on features (1)-(4), and gives new insights into the behaviour of LG 

structures prior to the initiation of glass cracking. The primary aim is to raise an efficient 

lamination model which captures the characteristics of LG and provides reliable estimations 

on its structural response. The outcome of this research may facilitate LG design and 

assessment by providing a reliable and efficient numerical modelling tool, and it may also 

serve as a basis upon which the features (5)-(6) can be investigated and considered in future. 

Given the topic under consideration, the forthcoming chapters of this thesis mainly address 

the following objectives: 

(1) Formulation of lock-free monolithic shell finite elements. Low-order Reissner-

Mindlin shell elements are associated with the issue of locking, where the element 

exhibits over-stiff response due to the existence of polluting higher-order strain terms. 

Part of this research aims at eliminating the locking phenomenon in quadrilateral and 

triangular elements with the use and enhancement of an assumed strain method. 

 (2) Adoption of a co-rotational framework for a simple incorporation of lamination 

models in geometric nonlinear analysis. As discussed previously, most LG problems 

are associated with large displacements and finite rotations due to the slenderness of 

the structures. Part of this research aims at incorporating local shell element 

formulations into available co-rotational frameworks, which filter out rigid body 

modes, thereby allowing the upgrading of linear local element formulations of 

different sophistication to geometric nonlinear analysis with relative ease. 

 (3) Establishment of efficient and accurate lamination model. An extensive amount of 

research effort has been devoted to lamination theories, most of which are 

nevertheless aimed at general applications. With regard to the distinct characteristics 

of the glass laminate, a narrowing-down of the scope to laminations with an 
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alternating stiff/soft lay-up may yield simpler lamination models associated with a 

reduced computational demand. 

 (4) Incorporation of lamination models in finite element formulations. The employment 

of a co-rotational framework allows simple incorporation of lamination models within 

local shell element formulations. One aim of this research is to seek ways for 

minimising the required co-rotational transformations in multi-layer shell element 

formulations.  

 (5) Selection of appropriate material models. Considering that the scope of the present 

work is focused on the pre-cracking stage of LG, a linear elastic material model will 

be used for glass. However, in view of the temperature and time dependency of PVB 

material, this research aims at selecting and developing an appropriate material model 

to capture the viscoelastic characteristics of PVB.  

(6) Illustrative numerical problems for demonstration of possible applications. Finally, 

this research aims at applying the proposed numerical modelling capabilities to 

several case studies on LG structures, which may be used to illustrate the wide 

applications of the proposed multi-layer shell elements in solving LG problems. 

 Outline of thesis 

This thesis is composed of nine chapters. This chapter introduces the research topic and its 

aims and objectives. Chapter 2 provides a systematic literature review relevant to the research 

topic. An overview of experimental investigations and numerical modelling tools in LG 

problems is first given, followed by the introduction of available lamination theories. 

Numerical issues relevant to nonlinear shell element formulations are also reviewed in this 

chapter. 

In Chapter 3, the formulations of monolithic quadrilateral and triangular shell elements are 

presented. An effective locking-elimination approach, which is employed and improved in 

this research, is first reviewed and then followed by the description of two efficient co-

rotational coordinate systems. Subsequently, formulations of curved quadrilateral and 

triangular elements are presented, both of which employ the co-rotational systems and 
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address locking via the adoption of the improved assumed strain method. In order to allow 

dynamic analysis, a consistent mass matrix is also derived for both elements. Numerical 

verifications of both elements are provided in Chapter 4.  

In Chapter 5, a three-layer sandwich model is first developed, where a novel zigzag function 

is proposed, which is equivalent to an existing zigzag function for symmetrically laminated 

sandwich structures but yields much better accuracy when asymmetric cross-sections are 

considered. Besides, a piecewise linear transverse shear strain distribution is assumed, which 

reproduces the real distribution without imposing stress constraints at laminar interfaces. 

Based on this sandwich model, a generalised model with an alternating stiff/soft lay-up is 

further developed, where a set of zigzag modes specific to the considered lamination is 

proposed, and an assumed piecewise linear variation of transverse shear strains is employed. 

The accuracy and efficiency of the lamination model is illustrated with a 1D beam problem.  

Chapter 6 presents the incorporation of the proposed lamination model into co-rotational shell 

elements. For further computational efficiency, a 2D ‘shell’ coordinate system is proposed in 

this research for the direct definition of the additional zigzag variables, which effectively 

minimises the required co-rotational transformations. The generalisation of the consistent 

mass matrices of monolithic elements to allow for multi-layer cases is also presented, thus 

enabling the analysis of laminated shell structures under dynamic loading. At the end of this 

chapter, linear and nonlinear numerical examples are presented to verify the laminated shell 

elements. 

In Chapter 7, consideration is given to the application of the proposed laminated shell 

elements to LG. A viscoelastic material model for PVB is first presented, followed by 

verifying examples of LG panels subject to transverse loadings of different loading rates. In 

order to allow the analysis of insulated glazing, a volume-pressure control algorithm is 

presented to consider the effect of insulated air on the structural behaviour of double glazing 

units, which is verified with two numerical examples and is subsequently employed in 

Chapter 8 for the modelling of an insulated glazing system.  

Several case studies are utilised in Chapter 8 to investigate the accuracy and efficiency of the 

developed capability for nonlinear analysis of LG. Buckling analysis, creep analysis and blast 



Introduction 

 

40 
 

analysis of LG structures with different levels of sophistication are presented, where the 

efficiency and accuracy of the multi-layer shell modelling approach are discussed.  

Finally, in Chapter 9, conclusions and achievements of this research are summarised, and 

recommendations for future work towards advanced LG modelling are provided. 

Throughout this research, all finite element implementations and most of the numerical 

modelling are undertaken with the use of ADAPTIC (Izzuddin, 1991), a general finite 

element package for structural analysis. Part of the numerical modelling is also performed 

with the use of Maple v16.00 (Maple, 2012), a mathematical and analytical software, and 

ANSYS v14.5 (ANSYS, 2012), a commercial finite element software. 
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CHAPTER 2 

2 Literature Review 

 

 

 Introduction 

In this chapter, a literature review of the LG behaviour up to first cracking is provided. The 

experimental research on the pre-cracking behaviour of LG plates and beams as well as the 

characteristics of PVB is first reviewed, which provides valuable information for the 

validation of numerical modelling of glass structures. Subsequently, the relevant theoretical 

attempts in the modelling of LG are overviewed, which incorporate early mechanical models 

and numerical models. In finite element methods, models with three-dimensional (3D) solid 

elements, coincident elements, non-coincident elements connected by tie elements, and 

laminated shell elements are all briefly presented. With regard to available two-dimensional 

(2D) lamination theories, a review on the main categories is given, where the features and 

accuracy of each theory is briefly introduced. This chapter then proceeds with overviewing 

the material models for LG. The viscoelastic characteristic of PVB is explained, and the 

commonly used Maxwell mechanical models in describing viscoelastic materials are 

presented. The final part focuses on two aspects relating to the formulation of nonlinear shell 

finite elements, namely techniques dealing with element locking and available co-rotational 

approaches allowing large displacement analysis of shell structures. 
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 Experimental investigations on laminated glass 

 Experiments on structural behaviour 

A great many structural experiments were carried out in the last half of the 20th century to 

investigate the flexural behaviour of LG up to first cracking. Hooper (1973) performed four-

point bending tests on LG beams and examined the strain distribution through the beam 

thickness. Under sustained loading, the LG deformed as if the two glass plies were separated 

at a distance by a material of zero shear modulus, whereas under short-duration loading, the 

LG responded as a composite member having an interlayer shear modulus appropriate to its 

temperature. Hooper concluded accordingly that the degree of coupling between the two 

glass plies relies on the shear modulus of the interlayer, which in turn depends on the ambient 

temperature and the duration of loading. 

Linden et al. (1984) and Vallabhan et al. (1987) conducted uniform pressure bending tests on 

LG, monolithic glass and layered glass units to establish the lower and upper bounds of the 

behaviour of LG under uniform pressure. By comparing experimental results of LG panels 

under uniform pressure with those of monolithic glass panels of the same rectangular 

dimensions and nominal thicknesses, Minor and Reznik (1990) concluded that the strength of 

LG is equal to the monolithic glass strength at room temperature, and Behr et al. (1993) 

established the analogy between the influence of increasing loading rate and the influence of 

decreasing the temperature on the behaviour of LG.  

Bennison et al. (1999) carried out a series of biaxial flexural experiments on LG panels with 

various loading rates and temperatures and recorded the stress development and the sequence 

of glass-ply fracture. From the results they concluded that complex stress fields were 

developed in the LG due to the large modulus mismatch between glass and PVB. The 

location of the maximum biaxial stress was shifted from one glass ply to the other with 

various loading rates and/or temperatures, which resulted in different fracture sequences of 

the glass plies: high temperature and/or slow loading rates bias first cracking to the upper 

(loaded) ply, while low temperature and/or high loading rates promote lower (support) ply 

first cracking.  
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In the aforementioned experiments, transverse loadings were applied to the LG specimens, 

and the flexural strengths under various laboratory conditions were examined. There were 

also some experiments on LG specimens where in-plane flexural loading was applied. Biolzi 

et al. (2010) conducted three-point bending tests on the LG beams, where the point load was 

exerted parallel to the lamination beams to investigate the influence of interlayer stiffness on 

the structural performance and failure modes. They found that the interlayer plays a 

significant role in defining the planar response and the failure type.  

There were also many experiments designated to investigate the post-cracking response of 

LG subjected to blast and impact loading (Timmel et al., 2007; Hooper et al., 2012; Nawar et 

al., 2014). However, since the scope of interest in this research is limited to the pre-cracking 

phase only, the details of these experiments are not presented. 

 Experiments on material behaviour 

A large amount of experimental effort has been devoted to the material behaviour of PVB. 

Vallabhan et al. (1992) performed direct-shear tests on LG specimens at room temperature, 

where the lower glass ply was horizontally loaded at a low strain rate, while the upper glass 

ply was restrained by an electronic load cell recording the horizontal force transmitted 

through the PVB interlayer. The relative displacement of the two halves was also recorded. 

They plotted the average shear stress against the average shear strain, and concluded that 

under low strain rate and room temperature conditions, the initial stiffness of PVB was quite 

low, and it gradually increased with larger shear strains. 

Biolzi et al. (2010) conducted uniaxial tensile tests on PVB coupons with a low displacement 

rate at room temperature, and plotted the material stress-strain curve, which showed that the 

material possesses a low modulus in the range of small strains and starts to exhibit material 

nonlinearity at finite-to-large strains.  

Xu et al. (2011) carried out tension and uniaxial compression tests on PVB under respectively 

quasi-static and dynamic loading conditions. The corresponding material stress-strain curves 

all showed nonlinear behaviour in the large strain range. On the other hand, the discrepancy 

between the curves with different loading rates confirmed the viscoelastic characteristic of 
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the material. Based on the stress-strain curve pattern, Xu et al. also classified the constitutive 

behaviour of PVB into three stages: the linear-elastic stage (small strain), the bi-exponent 

stage (moderate-to-large strain), and the failure stage (large strain). 

The aforementioned tests on PVB all went through the large strain range of the material, 

which yielded a nonlinear stress-strain relationship. Bennison et al. (1999) , on the other hand, 

focused on the small-strain range where the stress-strain relationship can be regarded as 

linear. They conducted hydrostatic volumetric tests on PVB in a mercury-containing pressure 

cell at different temperatures, and found that the value of the bulk modulus K(t) was 

relatively unchanged with temperature and was fixed around 2.0GPa. They also performed a 

series of cyclic loading tests on PVB under different frequency and temperature conditions 

via the use of a dynamic mechanical analyser. The storage modulus E and loss modulus E

were determined by dynamic experiments, which were used for the determination of the shear 

relaxation modulus G(t).  

 Modelling of laminated glass 

 Mechanical models 

Early theoretical research was mainly concentrated on the relationship between the behaviour 

of the LG and the behaviour of the monolithic glass having the same nominal geometry. 

Based on the experimental investigations by Linden et al. (1984), Vallabhan et al. (1987), 

Minor and Reznik (1990), and others, two experimentally defined bounds were proposed to 

describe the LG behaviour. The upper-bound model was a monolithic glass model having a 

thickness equal to the combined thicknesses of the glass plies in the LG. The lower-bound 

model corresponded to a layered glass model where two glass plies are layered up with no 

shear transfer.  

Norville et al. (1998) pointed out the inaccuracy of the upper bound by emphasizing the 

contribution of the PVB thickness to the cross-sectional modulus, and then proposed an 

analytical model of the LG beam under uniform transverse loading. In the model, an 

equivalent section modulus was calculated, where the varying capability of PVB in 

transferring shear forces was taken into account with a factor q, the value of which was 
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estimated based on the loading rate and temperature. Different distributions of the flexural 

stress were derived by assuming different values of the shear transfer factor q, as shown in 

Figure 2.1.  

 

Figure 2.1: Distribution of flexural stress in single ply of LG beam (Norville et al., 1998). 

 Finite difference model 

Vallabhan et al. (1993) used a mathematical model combined with a finite difference method 

to analyse LG units under uniformly distributed transverse loading. In order to predict the 

nonlinear behaviour of LG, von Karman’s plate theory was used for two elastic plates, which 

were then connected by an infinitesimally thin elastic shear layer. This model took into 

account the cross-sectional distortion and geometric nonlinearity, and the effective shear 

modulus was calibrated against experimental results. A convergent solution of the derived 

nonlinear differential equations was obtained by using the finite difference method with an 

iterative technique. However, the application of this model to real problems incorporating 

complex geometric and loading conditions is likely to encounter massive storage 

requirements and computation time.  

 Finite element models 

2.3.3.1 Three-dimensional solid element models 

3D solid finite element models have been used by many researchers in simulating LG panels, 

including Bennison et al. (1999), Duser et al. (1999), and Wei et al. (2006), where several 

brick elements are usually employed through the out-of-plane direction for each ply to 

capture the structural response well. In order to take into account the time- and temperature-

dependent effects of PVB, Bennison et al. (1999) and Wei et al. (2006) employed a linear 
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viscoelastic material model for PVB. Although these solid models can provide accurate 

predictions for both displacements and stresses, the associated computational demands are 

often prohibitive, largely due to the numerous elements employed in both the planar and the 

out-of-plane directions.  

2.3.3.2 Models with coincident elements 

Sun et al. (2005) established a coincident shell/volume/shell model to predict the failure 

behaviour of windscreens, in which the PVB was modelled with solid elements while each 

glass ply was modelled with shell elements. Although this model may be appropriate for 

analysing sandwich structures where the core is much thicker than the face sheets, it seems 

unnecessary to use solid elements in modelling the PVB interlayer, which is so thin that the 

transverse normal strain is insignificant. Therefore, the use of solid elements for the PVB 

interlayer would result in higher computational demands with little improvement in accuracy. 

In the simulation of impact problems, Du Bois et al. (2003) used two coincident elements 

through the thickness to model LG: one shell element for the two glass plies, and one 

membrane element for PVB. The use of one shell for the two glass plies was, however, based 

on the assumption that the through-thickness displacement variation is linear and that the 

PVB layer has negligible influence on the sectional modulus. It was also associated with the 

assumption that both glass plies fail at the same time, which led to the stiffness loss of both 

glass plies upon first cracking in either of them.  

Timmel et al. (2007) improved the coincident shell-element model by letting one element 

represent one glass ply and the other represent the other glass ply plus the interlayer. For the 

latter element, material properties of the glass ply and the PVB interlayer were smeared 

throughout the element. With regard to the pre-cracking phase, the latter element with 

smeared material model still does not capture the local response of LG. 

The employment of coincident element models greatly reduces the storage demand and 

computation time, compared with the 3D solid models. Nevertheless, the shell stiffness and 

density require adjustment prior to the analysis to maintain identical bending stiffness and 

total mass to the glass-PVB laminate.  
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2.3.3.3 Models with tie elements 

Pyttel et al. (2011) proposed a model for simulating LG panels subjected to impact loading, 

where the two glass plies are modelled with two shells and the PVB layer is modelled with 

one membrane. Tie elements were employed for connection between nodes. 

Peng et al. (2013) proposed a LG model in which the through-thickness direction was 

discretised using two shell elements with non-coincident nodes: one shell element 

represented the two glass sheets, which would be deleted when the failure criterion is reached, 

while the other shell element stood for the PVB interlayer. Tie elements were used to connect 

the non-coincident nodes. Similar to the model by Du Bois et al. (2003), the model 

automatically assumed the simultaneous failure of two glass plies. 

The use of non-coincident elements linked with tie elements in the model is also more 

efficient than the 3D solid models. However, the continuity of displacements at layer 

interfaces is not preserved. The penalty based stiffness of the tie element should also be 

selected to balance solution accuracy with the violation of constraint conditions. 

2.3.3.4 Multi-layered shell element models 

There are also a few models with multi-layered shell elements, which further reduce the 

computational demand and alleviate the complexity in modelling laminated structures. 

Larcher et al. (2012) used layered shell elements to approximate the pre-cracking response of 

LG under blast loading. An elastic-plastic material model was used for PVB, and a failure 

criterion for the glass was set such that after numerical failure at an integration point of the 

glass ply stresses would be set to zero under tension while the material would still react to 

compression. However, the shell element is formulated based on the classical lamination 

theory assuming zero transverse shear strains and a linear variation of displacements through 

the plate thickness, which may result in accuracy for long-duration loadings, where the 

material properties change significantly in the thickness direction.  

Seica et al. (2011) used a laminated shell model in the analysis of LG curtain wall systems 

under blast loading. The used layered shell element was based on the first-order shear 

deformation theory, which assumes a constant and a linear distribution of respectively the 
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shear strain and the displacement through the plate thickness. The accuracy of this laminated 

shell element still yields inaccuracy if there is a noticeable stiffness mismatch through the 

thickness. In order to investigate the blast resistance of safety glass, Hooper et al. (2012) used 

two models to take account for the pre-cracking and post-cracking phases. A shell model 

exploiting multi-layered shell elements was adopted to predict the pre-cracking response with 

a maximum principle stress criterion. When the maximum principal stress in glass exceeded a 

limit value, the analysis would proceed with a post-cracking model, where an identical shell 

model was used for the post-cracking phase except that the Young’s modulus of glass was set 

to zero. The layered shell element used in Hooper’s model is still based on the first-order 

shear deformation theory. 

In the study of the performance of double glazing systems under blast loading, Nawar et al. 

(2013) established a finite element model with layered shell elements employed for LG panes. 

Different material properties and layer thicknesses were given to the shell elements, and 

zigzag displacements and stresses through the shell thickness were considered by using many 

integration points in the thickness direction. 

The layered shell models maintain the geometric continuity at layer interfaces and describe 

the lamination behaviour with fewer degrees of freedom (DOFs) than solid elements, which 

is very computationally efficient and does not require adjustment of the section modulus prior 

to the analysis. Nevertheless, in order to accurately capture the structural response, a proper 

lamination theory which accounts for cross-sectional warping ought to be embedded in the 

layered element formulation. In the next section, a systematic review of lamination theories is 

presented. 

 Lamination theories 

Numerous research works can be found in the literature on 2D lamination theories. In terms 

of the employed variational principles, lamination models can be grouped into two main 

categories: displacement-based approaches, and mixed approaches with independently 

assumed displacement and stress fields. Although there are also a few stress-based 

approaches (Lekhnitskii, 1935), these tend to have significant shortcomings in relation to the 

treatment of geometric and material nonlinearity, and as such they are not discussed here.  
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 Displacement approaches 

The displacement approaches make assumptions on displacement fields only, based on which 

strains and stresses can be derived via the compatibility and constitutive relationships. The 

principle of virtual displacements (PVD) is employed to establish the governing equations. In 

terms of displacement descriptions, there are mainly two categories of displacement 

approaches (Carrera, 2003; Carrera & Demasi, 2002). Equivalent Single Layer (ESL) 

descriptions postulate base functions at the multi-layer level, and the associated displacement 

variables are defined for the whole lamination. Layer-wise (LW) descriptions, on the other 

hand, make assumptions for displacements at the layer level, so that each layer is regarded as 

an independent plate with ESL descriptions.  

The accuracy of a lamination model is usually dependent on the suitability of the assumptions 

made for the displacement and stress distributions in the thickness direction. Therefore in the 

following, lamination models with the ESL and LW descriptions are briefly reviewed. 

2.4.1.1 Equivalent Single Layer (ESL) description 

The ESL models usually assume through-thickness displacement modes at the multi-layer 

level, which leads to the independence of the number of displacement variables from the 

number of constitutive layers.  

The classical lamination theory (CLT) is an extension of the Kirchhoff plate theory to 

laminated composites, which assumes that the transverse normal of the plate before 

deformation remains straight and perpendicular to the mid-surface after deformation (Figure 

2.2). The displacement fields are thus given as: 

z0
0

u (x, y)
u (x, y, z) u (x, y) z ( x, y) 


   


 (2.1) 

z z0u (x, y, z) u (x, y)  (2.2) 

where x0 y0 z0u , u ,and u  denote the displacements evaluated at the middle surface. It is 

evident the assumed displacements result in zero transverse shear deformation, which is 

incorrect for moderately thick to thick applications.  
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Figure 2.2: Classical lamination theory. 

First-order shear deformation theory (FSDT), as depicted in Figure 2.3, extends the Reissner-

Mindlin plate theory to a multi-layer case and assumes the following displacement fields: 

0u (x, y, z) u (x, y) z (x, y) ( x, y)        (2.3) 

z z0u (x, y, z) u (x, y)  (2.4) 

where   denotes the rotation of the cross-section. As a result, constant shear strains are 

derived at each layer, which is different from the real shear strain distribution and hence leads 

to inaccuracy in the solution.  

 

Figure 2.3: First-order shear deformation theory. 

 

Figure 2.4: Distribution of transverse shear stress and strain in Vlasov-Reddy theory (Carrera, 2002). 
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The Vlasov-Reddy theory (VRT) (Reddy, 2004) modifies the Reissner-Mindlin type theories 

by enriching planar displacement fields with third-order terms with respect to z without 

introducing more variables, which results in a parabolic distribution of the transverse shear 

strain and achieves stress-free boundary conditions (Figure 2.4). The displacement fields are 

given as: 

3 3 z
0 2 2

u4 4
u (x, y, z) u (z z ) z ( x, y)

3h 3h
  


      


 (2.5) 

z z0u (x, y, z) u  (2.6) 

The VRT is an improved shear deformation theory over the FSDT, which preserves the 

number of variables of FSDT and provides a more accurate prediction of displacements and 

stresses. However, the VRT is associated with a continuous distribution of the transverse 

shear strain through the plate thickness, while in fact it is the transverse shear stress that 

should be continuous through the lamination thickness 

Higher-order shear deformation theories (HSDTs) introduce to displacement fields additional 

variables associated with higher-order z expansions to enrich the distribution of the transverse 

shear strains (Reddy, 2004). A generalised expression of HSDTs is given by: 

i

i

N2
i i0 i1 i2 iNu (x, y, z) u z u z u z u (i x, y, z)       (2.7) 

where iN  is the highest order of expansion used for the displacement iu . Note that although 

HSDTs improve the accuracy of the global response with higher-order out-of-plane z 

expansions of the displacement fields, these z expansions, which are defined at the multi-

layer level, cannot describe the zigzag-type discontinuity associated with the variation of 

mechanical properties through the thickness. 

In order to allow a zigzag description of displacements, Murakami (1986) improved FSDT 

and HSDTs by introducing a piecewise linear zigzag function (Figure 2.5), which is defined 

as: 
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 
(k)

k
k k

k

2(z z )
f (z) ( 1) , z h , h

h  


    (2.8) 

where kh  is the thickness of layer (k); kh   and kh   refer to the values of z at the bottom and 

top of layer (k), respectively; and (k)z  is the extracted value of z on the middle surface of 

layer (k). 

 

Figure 2.5: Murakami’s zigzag function. 

A generalised expression of the inclusion of Murakami’s zigzag function (MZZF) within 

HSDTs is hence given as (Figure 2.6): 

i

i

N2
i i0 i1 i2 iN iZu (x, y, z) u z u z u z u f (z) u (i x, y, z)        (2.9) 

where iZu  represents the displacements associated with the Murakami type zigzag mode. 

These models are denoted by acronyms EDZN, where N denotes the highest order of z 

expansions employed (Carrera, 2003). 

In the aforementioned ESL models, the number of displacement variables is independent of 

the number of layers because the base functions are defined at the multi-layer level and used 

by all constitutive layers. However, the displacement variables defined at the multi-layer 

level in turn lead to their insensitivity to constitutive layers. The inclusion of MZZF within 

HSDTs greatly improves the predictions, but a LW description is still necessary if accurate 

estimation of local effects is required. It is noted that MZZF may not the best zigzag function 

in some lamination lay-ups, unless it is coupled with the use of mixed assumption (Carrera, 

2001). 
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Figure 2.6: Schematic representation of the EDZN model (Carrera, 2003). 

2.4.1.2 Layer-wise (LW) description 

In the LW description, base functions are assumed at the layer level, and compatibility 

conditions at layer interfaces are imposed to fulfil the continuity requirements on inter-

laminar displacements (Figure 2.7). Each layer of the laminate is regarded as an independent 

plate or shell and is solved with any of the ESL theories, such that the zigzag effect of the 

lamination can be well reflected. (Reddy, 2004)  

At each layer, the displacements are generally expressed as: 

i

i

N(k) (k) (k) 2 (k) (k)
i i0 i1 i2 iNu (x, y, z) u z u z u z u (i x, y, z)       (2.10) 

where 
i

(k) (k)
i0 iNu u are displacement variables defined at layer (k). 

 

Figure 2.7: Layer-wise description of displacement (a linear field). 

These displacement-based LW models are denoted by the acronyms LDN (Carrera, 2003). 

Owing to the definition of displacement variables at the layer level, the LW models capture 
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both global and local response of laminations. Nevertheless, this leads to the dependence of 

DOFs on the number of constitutive layers, where some layer displacement variables are 

owned by one layer and some other displacement variables are shared by adjacent layers. 

Another shortcoming of LW models is the violation of continuity of shear stress at interfaces.  

There are also a few displacement-based LW models which impose inter-laminar continuity 

constraints on both displacement fields and transverse stress fields (Pandit et al., 2008; Pandit 

et al., 2009; Kapuria & Achary, 2004). By fulfilling continuity requirements on both 

transverse stresses, the number of displacement parameters can be reduced, which in turn 

results in highly coupled constitutive layers.  

 Mixed approaches 

In the mixed approaches, not only displacement variables but also stress and/or strain 

variables are used in the formulation, and mixed variational principles are employed to relate 

the displacement variables with stress and/or strain variables. 

In the modelling of a multi-layer plate, Murakami (1986) introduced the MZZF within FSDT 

and assumed a piecewise quadratic continuous distribution of transverse shear stresses. Then, 

by employing Reissner’s mixed variational theorem (RMVT), stress unknowns were 

expressed in terms of displacement unknowns, and governing equations were derived. Later, 

the mixed formulation was extended to higher-order planar displacement fields by Toledano 

and Murakami (1987).  

A generalization of RMVT to develop ESL and LW plate/shell theories, as well as finite 

element applications, has been provided by Carrera (1997). Both sets of the RMVT models 

are reviewed in the following. 

2.4.2.1 ESL description with RMVT applications 

In the RMVT-based formulations with the ESL description, the displacement variables are 

defined at the multi-layer level, which is the same as PVD-based formulations employing the 

ESL description. On the other hand, the continuity requirement of transverse stresses at 
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laminar interfaces calls for a LW description for transverse stresses. Subsequently, the 

displacement and transverse stress fields for these models can be expressed as (Carrera, 1997): 

0 0 1 1 r rF F F (r 2 N)    u u u u  (2.11) 

(k) (k) (k) (k)
n t nt b r nrnbF F F (r 2 N)    σ σ σ σ  (2.12) 

where 
T

x y zu , u ,uu  and 
T(k) (k) (k) (k)

n xz yz zσ ,σ ,σσ are the assumed displacement fields and 

transverse stress fields, respectively; the through-thickness functions rF are higher-order z 

polynomials, which are defined at the multi-layer level for displacements and at the layer 

level for stresses; tF  is a linear function of z defined at the layer level, which has a value of 1 

at the top of layer (k) and reduces linearly to 0 at the bottom of layer (k); and bF  is similarly 

defined except that it equates to 1 at the bottom and 0 at the top of layer (k). To fulfil the 

continuity requirement of transverse stresses, the following constraints are imposed at each 

laminar interface: 

(k) (k 1)
nt lnb (k 1 N 1)   σ σ  (2.13) 

where lN  is the number of layers. 

The boundary conditions are also satisfied via the following equations: 

l(N )(1)
nb nt ntnb , σ σ σ σ  (2.14) 

These ESL models with the application of RMVT are denoted by the acronyms EMCN.  

Better accuracy can be achieved via the inclusion of MZZF in such models (Figure 2.8), 

which leads to the following sets of assumed displacements (Carrera, 1997): 

0 0 1 1 Z r rF F f (z) F (r 2 N)     u u u u u  (2.15) 

The expressions of transverse stresses are the same as (2.12). These EMCN models enriched 

with the MZZF are denoted as EMZCN, the performance of which is improved by capturing 

the zigzag effect. The EMZCN models provide a convenient tool to consider the lamination 

effects in terms of accuracy versus the required computational efforts, and they have also 
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been employed in finite element formulations to analyse sandwich and lamination problems 

involving geometric nonlinearity (Carrera, 1998; Carrera & Krause, 1998; Carrera & Parisch, 

1997; Carrera, 1997). 

 

Figure 2.8: Schematic representation of the EMZCN model (Carrera, 2003). 

2.4.2.2 LW description with RMVT applications 

The LW models with the employment of RMVT assume displacements and transverse 

stresses both at the layer level, with the expressions for layer displacements given as: 

(k) (k) (k) (k)
t t b r rbF F F (r 2 N)    u u u u  (2.16) 

The expressions of transverse stresses are the same as (2.12).  

Inter-laminar constraints are imposed on both displacements and transverse stresses, so these 

models can capture well the zigzag effect of displacements and transverse stresses (Figure 

2.9).  

 

Figure 2.9: Schematic representation of displacements and transverse stresses in RMVT (Carrera, 

2003). 
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 Material modelling 

 General 

Structural glass is a brittle material, the strength of which has a wide statistical variation due 

to the embedded Griffith flaws (Bennison et al., 1999). However, in the pre-cracking phase, it 

can be regarded as an isotropic material with well-defined Young’s modulus and Poisson’s 

ratio. Therefore, in this research, an isotropic material model is employed for glass. 

On the other hand, the stress-strain curve of PVB is nonlinear in the finite-to-large strain 

range. Based on experimental data, Xu et al. (2011) proposed nonlinear tension and 

compression constitutive models for both quasi-static and dynamic loading conditions, with 

the parameters in the model determined through curve fitting. These material models can be 

used for impact analysis where the localised strains in PVB are too large to ignore the 

material nonlinearity.  

By restricting the concentration on the pre-cracking phase where the deformation of the PVB 

is within small-strain range, a linear stress-strain relationship can be regarded for this material. 

There are several works in the literature that employ linear viscoelastic material models in the 

analysis of LG under both pseudo-static and dynamic loadings (Wei et al., 2006; Bennison et 

al., 1999; Duser et al., 1999). Therefore, in the following, the features of viscoelastic 

materials are provided, and linear viscoelastic material models are reviewed.  

 Viscoelastic materials 

Polymers are composed of large molecules, which are formed via polymerisation of many 

small monomers. They are viscoelastic materials, with the material properties dependent on 

both temperature and time (Shaw & MacKnight, 2005). Figure 2.10 depicts the schematic 

modulus-temperature curve for typical viscoelastic materials, where the stress relaxation 

modulus E is obtained at a given time (say 10 sec). 



Literature Review 

 

58 
 

 

Figure 2.10: Schematic modulus-temperature curve for viscoelastic materials (Shaw & MacKnight, 

2005). 

The effect of the temperature on viscoelastic material properties can be explained at the 

molecular level. Evident from the curve, the glassy region corresponds to the low temperature 

range, where the polymer shows high stiffness owing to insufficient thermal energy for 

allowing segment motions of polymer molecules. In the transition region, elevated 

temperature results in increased thermal energy that initiates the movement of molecular 

segments, which induces an abrupt decrease in the material modulus. As the temperature 

increases, the modulus reaches another plateau region, called the rubbery plateau region. For 

further increase in temperature, the modulus undergoes a second abrupt decrease due to the 

increased thermal energy allowing translation of whole polymer molecules (Shaw & 

MacKnight, 2005). 

 

Figure 2.11: Schematic master curve of stress relaxation modulus (Shaw & MacKnight, 2005). 
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Figure 2.11 depicts the modulus-time curve for viscoelastic materials at a reference 

temperature. Here again, the time-dependent effect is explained at the molecular level. A high 

modulus is observed upon load application, owing to the insufficient time for the polymer 

molecules to reorient and relieve local strains. As time passes the glass transition process is 

observed, where the modulus decreases significantly due to segmental reorientation. After 

extensive chain reorientation has taken place, the distortion in chains has been alleviated, and 

the polymer behaves like a rubber. As time increases much further, the chains can move past 

one another, resulting in complete relaxation, which accounts for the second rapid decrease in 

the modulus (Shaw & MacKnight, 2005). 

 Mechanical models for viscoelastic materials 

The time-temperature correspondence principle states that the effect of changing temperature 

is the same as applying a multiplicative factor to the time scale, which can be expressed as 

follows (Shaw & MacKnight, 2005): 

0 TE(T, t) E(T , t a )  (2.17) 

where 0T  is the reference temperature, and T  is an arbitrary temperature. Equation (2.17) 

states that if the material modulus-time curve at a reference temperature 0T  is known, the 

modulus-time curve at an arbitrary temperature T can be obtained from the known curve by 

multiplying the time scale with a factor T1 a . 

The Williams-Landell-Ferry (WLF) equation gives the relationship between Ta  and the 

change in temperature 0(T T )  (Ferry, 1980): 

1 0
10 T

2 0

C (T T )
log a

C T T


 

 
 (2.18) 

in which 1C  and 2C  are constants that vary from polymer to polymer. 

With the employment of (2.17)-(2.18), the master curve (i.e. the modulus-time curve) of a 

polymer at an arbitrary temperature can be obtained from the master curve constructed at a 

reference temperature. 
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Figure 2.12: Mechanical viscoelastic material models (Shaw & MacKnight, 2005). 

Many mechanical models have been proposed to reproduce the linear viscoelastic response of 

real systems. The Maxwell model is a series combination of a spring element and a dashpot 

element, as shown in Figure 2.12.a, where the Hooke spring represents the pure elastic 

response, and the dashpot element represents the pure viscous response (Shaw & MacKnight, 

2005). The Maxwell-Wiechert model is a generalised model consisting of an arbitrary 

number of Maxwell elements connected in parallel, as shown in Figure 2.12.b (Shaw & 

MacKnight, 2005). This model is usually used to obtain the stress relaxation modulus. The 

stress relaxation modulus resulting from this model is given as (Shaw & MacKnight, 2005): 

M
j

N
t

j
j 1

E(t) E e 



  (2.19) 

where MN  is the number of Maxwell elements employed in the Maxwell-Wiechert model; 

j  is a relaxation time parameter of the jth Maxwell element. 

It is possible to replace one of the Maxwell elements in the Maxwell-Wiechert model with a 

spring, as shown in Figure 2.12.c. In this manner, the stress would decay to a finite value 

rather than zero, thus (2.19) is modified to the following form (Bennison et al., 1999):  

M
j

N
t

j
j 1

E(t) E E e 




   (2.20) 

where E  is the long-time plateau modulus. 

The relationship between the stress and the strain can be expressed as: 
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t

0

(s)
(t) E(t s) ds

s


  





 (2.21) 

The use of this generalised Maxwell series for representing the shear modulus of viscoelastic 

materials automatically accounts for time-dependent effects. On the other hand, the 

temperature-dependent effects on the variation in shear modulus can be considered by using 

the WLF equation to shift the time dependent shear modulus curve to a different temperature. 

The incorporation of both time- and temperature-dependent effects in the viscoelastic 

material model makes it possible for analysing problems with a wide range of temperature 

and loading rates. 

 Locking elimination techniques 

Ever since the emergence of the displacement-based finite element method, a most serious 

problem that has influenced its application in linear and nonlinear structural analysis has been 

related to the locking phenomenon, in which the element exhibits an over-stiff response 

resulting from its inability to correctly model lower-order modes. The significance of this 

phenomenon is determined by several factors, including the type of structural analysis 

problem, the theory underlying the associated mathematical model, as well as the element 

shape and order. Early forms of locking were observed in the modelling of plate bending 

problems using the Reissner-Mindlin hypothesis (Zienkiewicz & Taylor, 2000), where the 

inability of a mesh of conforming elements to bend without inducing transverse shear strains 

leads to deteriorating performance as the plate thickness is reduced, a phenomenon referred to 

as shear locking. Other forms of locking can also arise with conforming elements, such as 

membrane locking when using curved shell elements, and distortion locking when employing 

isoparametric mapping with irregular element shapes.  

 Whilst locking phenomena may be viewed from several different perspectives depending on 

the context of element application, a common feature is the degradation in the approximation 

of various strains over the element domain, principally due to polluting higher-order strains. 

Numerous research efforts have been devoted to addressing this issue over the past few 

decades, which can be grouped under distinct strands, as briefly reviewed in the following. 
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Uniform reduced integration (Zienkiewicz et al., 1971; Pugh et al., 1978; Stolarski & 

Belytschko, 1982) addresses element locking by filtering out higher-order stiffness terms via 

the employment of a reduced number of integration points, which in turn suffers from rank 

deficiency leading to spurious mechanisms. Selective reduced integration (Hughes et al., 

1977; Doherty et al., 1969; Malkus & Hughes, 1978) improves the shear locking performance 

of Reissner-Mindlin plate bending elements by employing reduced integration for only the 

transverse shear strain terms while utilising full integration on the remaining terms, which 

effectively addresses the rank deficiency issue. However, such a technique is restricted to 

plates with uncoupled flexural and transvers shear actions, and accordingly it cannot be 

employed for modelling the nonlinear elasto-plastic material response.  

There are a few enhanced displacement methods in the literature (Tessler & Hughes, 1985; 

Tessler & Hughes, 1983; Izzuddin & Lloyd Smith, 2003), which generally eliminate shear 

locking by introducing extra displacement parameters, which, however, leads to an enlarged 

stiffness matrix with more DOFs. 

The enhanced assumed strain methods (Simo et al., 1993; Simo & Rifai, 1990) address 

locking by enriching the element with enhanced strain fields, where the enhanced strain 

parameters are condensed out using the Hu-Washizu variational principle. Later, Korelc and 

Wriggers (1997) used a Taylor series expansion of strains with respect to natural coordinates 

in improving the behaviour of distorted elements and relieving the coupling of enhanced 

modes.  

Another group of assumed strain methods eliminates polluting higher-order strains by 

sampling and interpolating strain components at selected locations (Jang & Pinsky, 1987; 

Huang & Hinton, 1984; Macneal, 1982; Panasz & Wisniewski, 2008; Bathe & Dvorkin, 

1986). The components to be sampled, the locations of the sampling points, and the 

interpolation functions vary in the literature. The family of elements using the Mixed 

Interpolation of Tensorial Components (MITC) method (Lee & Bathe, 2010; Bathe et al., 

2003; Bucalem & Bathe, 1993; Bathe & Dvorkin, 1986), as a specific group of two-level 

approximation methods, performs sampling and mapping in a covariant coordinate system 

before transformation to a Cartesian coordinate system. Nevertheless, the performance of 

these strain mapping elements relies strongly on the locations of sampled strains for the 
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assumed interpolation, which can lead to degradation of accuracy for irregular element 

shapes. To extend the ability of elements based on strain mapping method to highly irregular 

element shapes, Wisniewski and Panasz (2013) used corrected shape functions in the element 

formulation, which addresses the sensitivity to mesh distortions, though nonlinear equations 

must be solved for determining the additional parameters describing the element distortion. 

The hierarchic optimisation approach (Izzuddin, 2007), also as an assumed strain method, 

eliminates the polluting strain terms by performing mathematical optimisation on a 

combination of the conforming strains with assumed hierarchic higher-order strain terms 

towards an objective strain distribution. In this respect, the objective strains follow the 

distribution afforded by the original element DOFs in terms of real (physical) coordinates, 

while the hierarchic modes are used solely for the purpose of optimisation of the strain fields 

and are eliminated via the optimisation procedure. This method not only alleviates shear and 

membrane locking, but also addresses locking arising from element distortion.  

 Co-rotational approach 

In formulating large displacement finite elements for small strain problems, the relationship 

between the strain and displacement fields is highly nonlinear and complex if the 

displacement fields are referred to a fixed coordinate system, where the nonlinear strain terms 

arise mainly from the element rigid body rotations. The co-rotational approach, which 

decomposes the element motion into rigid body and strain-inducing parts via the use of a 

local co-rotational system, offers exceptional benefits for large displacement structural 

analysis problems with deformations of the bending type, particularly when accounting for 

arbitrarily large rigid body rotations. By choosing an element-specific co-rotational reference 

system which follows the element current deformed configuration, rigid body rotations of the 

element are removed, and low-order, even linear, relationships between the strain and local 

displacement fields may be employed. Therefore, the co-rotational approach shifts the focus 

of large displacement modelling from relating the strain and displacement fields to 

establishing transformations between local co-rotational and global nodal entities, hence 

effectively decoupling the large displacement issues from the local element discretization of 

the continuum response. In this respect, the co-rotational approach has the potential to be 
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applied as an element independent procedure (Crisfield & Moita, 1996; Rankin & Brogan, 

1986), upgrading linear local element formulations of different sophistication to geometric 

nonlinear analysis with relative ease.  

A principal issue in any co-rotational approach is associated with the specific choice of the 

local reference system in relation to the current deformed element configuration. Depending 

on the specific definition of the local co-rotational system, the resulting co-rotational 

approach may be element independent but restricted to elements of a specific shape and order, 

or it may be more generally applied to elements of a particular shape regardless of order. 

Rankin and Brogan (1986) defined two co-rotational systems for 3-noded triangular and 4-

noded quadrilateral elements, respectively, where in both cases one of the local system axes 

was effectively aligned to one of the element edges. These definitions of the co-rotational 

system were used by Li et al. (Li & Vu-Quoc, 2007; Li et al., 2015) in 6-noded triangular 

elements for problems involving geometric and material nonlinearity, and by Jiang and 

Chernuka (1994) in a 4-noded quadrilateral element for large displacement analysis. 

Norachan et al. (2012) employed a co-rotational system for an 8-noded degenerated shell 

element, utilising the enhanced assumed strain and advanced natural strain concepts for the 

treatment of locking (Kim et al., 2005; Eberlein & Wriggers, 1999), where one of the local 

system axes was aligned with one of the planar covariant base vectors. Alves de Sousa et al. 

(2006) also considered a co-rotational approach for a degenerated shell element, though the 

co-rotational transformations were applied at the constitutive integration point level, thus 

losing the desirable characteristics of element independence and decoupling between the co-

rotational transformations and the local element formulation. 

Whilst an arbitrary definition that simply requires the local co-rotational system to closely 

follow the current element configuration, as in the above definitions, may not significantly 

affect the large displacement response predictions for small strain problems, this often leads 

to local system definitions which are not invariant to the specified order of the element nodes. 

Besides the errors that could arise with such definitions when elements in the same mesh are 

defined using different nodal ordering, it has also been argued that the invariance 

characteristic would be desirable for extending the co-rotational approach to large strain 
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problems (Crisfield & Moita, 1996) and for identifying the bifurcation points of perfectly 

symmetric structures (Battini & Pacoste, 2004).  

Towards this end, several approaches were previously proposed to achieve the invariance of 

the local system to nodal ordering. Kebari and Cassell (1992) defined the co-rotational 

system for a 9-noded quadrilateral shell element by locating the two planar axes 

symmetrically with respect to the two planar curvilinear coordinates at each integration point. 

Kim and co-workers (Kim & Lomboy, 2006; Kim et al., 2003; Kim et al., 2007) employed 

this definition of the co-rotational system in the formulation of 4-noded and 8-noded 

monolithic and laminated shell elements for analysis of both elastic and elasto-plastic 

problems, but the alignment of the planar axes was performed at the element centroid only 

rather than at all integration points. Crisfield and Moita (1996) proposed a co-rotational 

system that enforced zero local spin at the element centroid using polar decomposition, which 

they employed for 2D/3D continuum elements as well as shell elements. A common feature 

of these definitions is their reliance on the local element displacement fields, which restricts 

their application in each instance to elements of the same shape and order; in this respect, 

these definitions are only partially element independent. It is also worth noting that Crisfield 

and Moita (1996) indicated that their approach leads to an asymmetric geometric stiffness 

matrix, which is obviously undesirable from a computational perspective. In reality, the 

geometric stiffness matrix, which is directly related to the second derivatives of local with 

respect to global nodal displacements, cannot be asymmetric when the local co-rotational 

system is uniquely defined in terms of global nodal displacements.  

There are a few other definitions of the local co-rotational system which not only possess the 

invariance characteristic to nodal ordering but are also defined in terms of only nodal position 

variables, thus making them potentially independent of the local element formulation and its 

order. Rankin (1998) defined a co-rotational system by minimising the square of Euclidean 

norm of nodal local displacements, where the local system orientation was determined 

through an iterative procedure. This definition was adopted by Eriksson and Pacoste (2002) 

and later refined by Battini and Pacoste (Battini & Pacoste, 2004) for a 3-noded triangular 

shell element where the need for iteration was overcome with explicit expressions for the 

orientation of the local system. Importantly, Battini and Pacoste (2004) developed similar 
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expressions for the 3-noded triangular element considering also the zero spin definition 

(Crisfield & Moita, 1996), and they noted that both alternative definitions may be directly 

used for elements of higher order. Whilst achieving considerable simplification over the 

previous approaches (Crisfield & Moita, 1996; Rankin & Brogan,  1986), the approach 

developed by Battini and Pacoste (2004) employs two stages, where in the first stage local 

entities are determined for a local system that follows one of the element edges, and this is 

then subjected to a spin rotation in a second stage to determine its final orientation. A simpler 

bisector definition was proposed by Izzuddin (2005) for quadrilateral elements, where the 

local planar axes are defined as the bisectors of interior angles formed by the intersection of 

the two element diagonals. This co-rotational system was subsequently employed by Li et al. 

(Li et al., 2013; Li et al., 2011; Li et al., 2008) in the formulation of a 9-noded shell element 

applied to multi-layered shell problems and elasto-plastic analysis. Later, Izzuddin (2006) 

extended the bisector definition to triangular elements by aligning the bisectors of the angle 

that has changed most from the undeformed configuration, which still possesses all the 

desirable characteristics. Meanwhile, he also proposed an alternative and equally simple 

definition, the zero-macrospin definition (Izzuddin, 2006), which is based on zero-spin at the 

macro element level, thus reducing the material spin in an aggregate sense over the element 

domain. Not only do both definitions of the local co-rotational system achieve nodal 

invariance as well as independence of the local element formulation and order, but they are 

also easily and directly determined from global nodal position variables. 

 Concluding remarks 

This chapter presents experiments on LG beams and panels, where the features of LG have 

been pointed out, including the zigzag displacement variation through the LG thickness and 

the dependence of results on loading rates and temperatures. Subsequently, various numerical 

modelling approaches, along with their advantages and disadvantages, have been presented. 

The benefits of laminated shell models over other alternatives have been discussed with 

respect to the computational demand and the accuracy, though an adequate through-thickness 

description of the lamination is required. 
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An extensive review of existing 2D lamination theories is subsequently presented, where the 

benefits and disadvantages of displacement-based models and mixed models with either ESL 

descriptions or LW descriptions have been discussed. Although a great many lamination 

theories have been developed, there is a lack of lamination models that consider laminated 

composites with significant stiffness mismatch and an alternating stiff/soft lay-up, such as the 

considered LG profiles, which are associatred with huge glass-to-PVB modulus ratios. The 

special stiffness mismatch and stacking sequence ought to induce different through-thickness 

characteristics, which may be utilised to obtain simpler and accurate lamination models. 

Furthermore, the interpretation of the viscoelastic characteristic of PVB is presented, and 

several mechanical models for representing linear viscoelastic materials are overviewed. The 

generalised Maxwell model captures well the characteristic of PVB, which enables the 

dependence of PVB material properties to the loading rate and temperature. 

In the perspective of shell element formulations, available lock-elimination approaches are 

overviewed, and their advantages and shortcomings are discussed. Although a lot of effort 

has been devoted to overcoming the locking phenomenon, it remains difficult for shell 

elements with either regular or distorted shape to possess an optimal convergence rate, which 

implies room for enhancement of current methods. Finally, the benefits and desirable 

characteristics of the co-rotational approach, as well as the existing alternative definitions of 

the co-rotational system, are presented. It is worth noting that a more targeted review of the 

literature is also undertaken in subsequent chapters, at the point of presenting new 

developments. 
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CHAPTER 3 

3 Monolithic Quadrilateral and Triangular Shell 

    Elements 

 

 

 Introduction 

In accordance with the research aims described in Chapter 1, the objective of this chapter is 

to provide efficient monolithic shell element formulations allowing large displacement 

analysis. These will later be employed as the basis for developing geometrically nonlinear 

formulations of laminated shells, with the inclusion of an appropriate through-thickness 

description of the displacements and stresses. 

As reviewed in Chapter 2, the locking phenomenon exists in lower-order plate and shell 

elements based on the Reissner-Mindlin hypothesis, which is associated with an over-stiff 

element response resulting from its inability to correctly model lower-order strain modes. The 

hierarchic optimisation approach proposed by Izzuddin (2007), as an assumed strain method, 

not only alleviates shear and membrane locking, but also addresses locking arising from 

element distortion. In this chapter, this method is reviewed and elaborated, and it is 

subsequently employed throughout this research. 

As mentioned before, the employment of the co-rotational approach for large-displacement 

small-strain problems can upgrade linear local element formulations of different 

sophistication to geometric nonlinear analysis with relative ease. The exclusion of rotational 

rigid-body modes from the local element formulation also enables the optimal mapping 
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between assumed and conforming strains to be established only once for an element at the 

start of incremental nonlinear analysis. Furthermore, in the consideration of laminations, the 

co-rotational approach allows the inclusion of a constant through-thickness description of 

local displacements and stresses into the local element formulation, which will be elaborated 

in Chapter 6. Therefore, the two simple and efficient definitions of the co-rotational approach, 

the bisector and the zero-macrospin definitions proposed by Izzuddin (2006), are also 

reviewed and elaborated in this chapter, and these are subsequently utilised in this research 

work.  

Following the review of the hierarchic optimisation approach and the two co-rotational 

systems, co-rotational formulations of monolithic 9-noded and 6-noded shell elements are 

presented, where the 9-noded element was previously developed by Izzuddin and co-workers 

(Izzuddin & Li, 2004; Li et al., 2008) and modified for the strain mappings in this work, 

while the 6-noded element is fully developed in the present research work. Consistent mass 

matrices for both elements are also derived, which allows the dynamic analysis of the 

considered shell elements. 

 Hierarchic optimisation approach 

The hierarchic optimisation approach was originally proposed by Izzuddin (2007) for 

nonlinear shell finite elements, and it not only alleviates shear and membrane locking, but 

also addresses locking arising from element distortion. This approach can be regarded as an 

assumed strain method, but it has three distinct features.  

Firstly, it introduces the notion of objective strain modes, defined in the physical coordinate 

system, which act as the target strain modes for the conforming strain modes enhanced with 

corrective strain modes. The objective and corrective strain parameters are obtained from 

mathematical optimisation, and this leads to two alternative families of element, denoted by 

acronym keys O and C, in which assumed strains based respectively on the objective or 

corrective strain fields are directly mapped at the element level to the conforming strains. 

Secondly, the corrective strain modes are established from hierarchic displacement modes 

defined in the natural coordinate system, where modes up to any hierarchic order m can be 

considered in the element optimisation process for both the O and C element families. 
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Importantly, these hierarchic modes are used solely for the purpose of optimisation of the 

objective and corrective strain fields, and as such do not influence the number of element 

DOFs. Thirdly, geometric nonlinearity is considered within a co-rotational framework (Li et 

al., 2008; Izzuddin, 2007), which provides accurate nonlinear predictions with the Reissner-

Mindlin hypothesis for the local shell element response, and which enables the optimal 

mapping between assumed and conforming strains to be established for an element from the 

solution of a linear system of equations. In this respect, the optimal mapping for individual 

elements need only be established once, at the start of incremental nonlinear analysis, and 

further computational benefits arise from uncoupled mappings of the planar, bending and 

transverse shear strains, which can be applied even to elements with local geometric 

nonlinearity. 

The concept of the hierarchic optimisation approach is to employ hierarchic strain parameters, 

associated with higher-order shape functions beyond those used in the conforming element 

formulation, such that the combination of the conforming strains ε  and the hierarchic 

corrective strains hε  offers a close approximation of the highest-order strain distribution oε  

afforded by the original element DOFs in terms of real (physical) coordinates. In this respect, 

the objective strain vector oε  combines contributions from various strain-inducing modes oΨ  

associated with the strain field under consideration, where the number of such modes depends 

on the associated DOFs of the conforming element. Accordingly, ε  is enhanced with hε  

towards oε (Izzuddin, 2007): 

h o h h h o o o, ,   ε ε ε ε Ψ α ε Ψ α  (3.1) 

where hΨ  and oΨ  represent the hierarchic corrective and objective strain-inducing modes, 

respectively, while hα  and oα  are the respective associated strain parameters. 

The employment of mathematical optimisation leads to a minimisation of the error between 

the corrective strain field hε ε  and objective strain field oε . Considering the target of 

optimisation to be a functional integrating the square of this error over the element domain, 

the strain parameters hα  and oα  are easily obtained for a given set of conforming strains ε  

from the solution of the following linear system of equations (Izzuddin, 2007): 
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in which e  is the element domain. 

Accordingly, the elimination of the strain parameters at the element level preserves the 

computational efficiency, and the conforming strains are enhanced with hierarchic higher-

order corrective strains towards the objective strains. The enhanced strains can be expressed 

in either the corrective or the objective form, where the difference between the two 

alternative approaches reduces with mesh refinement (Izzuddin, 2007): 

h h (Corrective) ε ε Ψ α  (3.3) 

o oˆ (Objective)ε Ψ α  (3.4) 

Unlike previous enhanced assumed strain approaches (Korelc & Wriggers, 1997; Simo et al., 

1993; Simo & Rifai, 1990), the hierarchic optimisation approach leads to two variant element 

families, depending on whether the corrective (C) or objective (O) fields is adopted for the 

assumed strains. Furthermore, while the corrective strain field hε  resembles the enhanced 

assumed strain in previous approaches, its approximation order is not capped to a prescribed 

distribution but can attain any hierarchic order m. On the other hand, the additionally 

introduced objective strain field oε  for a specific n-noded element is comprised of all low-

order modes afforded by the original element DOFs in terms of real (physical) coordinates, 

which provides a natural remedy for distortion locking.  

Noting the above distinct features, the resulting families of hierarchically optimised elements 

are denoted by acronyms HmOn and HmCn, corresponding respectively to the objective (O) 

and corrective (C) assumed strain families, where m is the order of hierarchic displacement 

fields used for the corrective strain modes, and n refers to the number of element nodes. Thus 

for example, H3O9 refers to a quadrilateral 9-noded Reissner-Mindlin shell element, with 

quadratic Lagrangian shape functions and cubic hierarchic displacement modes (m=3) for the 

corrective strains, and with the assumed strains based on the objective (O) strain modes. 
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For isoparametric elements, the integration is most effectively carried out with Gaussian 

quadrature, and hence the solution for hα  and oα  can be related to the strains (i)ε  at Gauss 

points as: 

(1) (1)

h h o o

(i) (i)
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in which the subscript (i) represents the Gauss point number. 

Therefore, the enhanced strains at the Gauss points can be determined as follows depending 

on the alternative approach (Izzuddin, 2007): 
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 (3.6) 
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    
          

     
          

ε ε Ψ

T T Γ
ε ε Ψ

  

  

 (3.7) 

in which T  and T̂  are transformation matrices that transform conforming strains to 

respectively  corrective strains and objective strains at the Gauss points. 

For geometrically linear elements, the assumed strains ε  or ε̂  can be directly related to the 

original displacement parameters via a respective strain operator B  or B̂ , since ε  is readily 

related to such parameters through the conventional conforming B  matrix. For geometrically 

nonlinear elements, however, it is more effective to determine the conforming strains and 

then transform these to assumed strains according to (3.6) or (3.7).  
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 Co-rotational coordinate systems 

In the following, the bisector and the zero-macrospin definitions of the co-rotational approach 

proposed by Izzuddin (2006) are reviewed, both of which are applicable to quadrilateral and 

triangular elements of different orders.  

 Bisector definitions 

3.3.1.1 Quadrilateral element  

The bisector co-rotational system for a 4-noded shell element is depicted in Figure 3.1, where 

the local x and y axes are chosen as the bisectors of the two diagonals of the undeformed 

element, and rigid body rotations are extracted by orienting these local planar axes so as to 

also bisect the element diagonals in the current deformed configuration. Clearly, this simple 

definition automatically satisfies the orthogonality requirement for the two planar axes, and 

leads to a relative local orientation of the deformed to the undeformed configuration which is 

invariant to nodal ordering. On the latter point, it is true that starting from a different node 

leads to different local axes; however, the eight possible sets of axes represent permutations 

over three specific orthogonal directions relative to the global system, which always leads to 

the same global element forces and tangent stiffness matrix regardless of the element nodal 

ordering. This bisector definition implies that the local rotations of the element diagonals, 

from the undeformed to the deformed configuration, are minimised, as can be observed from 

the right inset of Figure 3.1. 
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Figure 3.1: Bisector local co-rotational system and global nodal parameters for a 4-noded 

quadrilateral element (Izzuddin, 2006). 

With reference to Figure 3.1, the triad ( x y z, ,c c c ) defining the current orientation of the local 

co-rotational system relative to the global system is simply obtained as (Izzuddin, 2006): 

13 24 13 24
x y z x y

13 24 13 24

, ,
 

   
 

c c c c
c c c c c

c c c c
 (3.8) 

with: 

ij o
ij ij ij j i

ij

,   
v

c v v d d
v

 (3.9) 

where o
ijv  is the vector connecting node i to node j in the initial element configuration, and 

T
i X,i Y,i Z,iU , U , Ud  represents the global translational displacements of node i. 

3.3.1.2 Triangular element 

A bisector definition of the local co-rotational system for the triangular element becomes 

slightly more involved than for the quadrilateral element, particularly when the property of 
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invariance to nodal ordering is to be achieved. In this respect, Izzuddin (2006) proposed that 

the invariance characteristic can be attained by considering the three internal angles (), 

subtended by the three lines connecting the triangle vertices to its centroid O, and aligning the 

bisectors of the angle that has changed most from the undeformed configuration (say angle 

 , as illustrated in the right inset of Figure 3.2 for alignment of the bisectors of . Clearly, 

such a definition leads again to a relative local orientation of the deformed to the undeformed 

configuration which is invariant to nodal ordering, ensuring further that the local rotations of 

the three centroidal lines, from the undeformed to the deformed configuration, are minimised. 

The determination of the co-rotational triad is provided elsewhere (Izzuddin, 2006; Izzuddin 

& Liang, 2015). 

 

 

Figure 3.2: Bisector local co-rotational system and global nodal parameters for a 3-noded 

triangular element (Izzuddin, 2006). 

It is important to note the alteration of the selected angle during iteration can lead in rare 

cases to oscillations between two angles, thus causing convergence difficulties, particularly 
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when any two values of  , ,    are very close. In this respect, the selection of the 

specific angle to be bisected is fixed during an incremental step according to relative values 

of  , ,    at the last known equilibrium configuration. 

 Zero-macrospin definitions 

The optimal orientation of the local reference system provides a rotated undeformed 

configuration such that the relative spin of the material in the current deformed configuration 

is zero. An equivalent condition is that the material strains are obtained from the rotated 

undeformed configuration using ‘stretch’ operations only, which cannot be fulfilled at all 

material points within an element that is subject to general strain variations when a single 

local reference system is used. The zero-macrospin definitions proposed by Izzuddin (2006) 

are based on zero-spin at the macro element level, which reduce the material spin in an 

aggregate sense over the element domain.  

To introduce the zero-macrospin definitions of the local co-rotational system, consider a unit 

square area, defined by orthogonal unit vectors 
T

x 1 0c  and 
T

y 0 1c , which is 

subjected to a uniform planar ‘stretch’ operation in any two orthogonal directions leading to 

transformed vectors xc and yc , as shown in Figure 3.3. It can be shown that xc  is always 

obtained as the normalised sum of xc  and n
yc , where n

yc  is a planar rotation of yc  by 

/ 2 . yc  is similarly obtained as the normalised sum of yc  and n
xc , where n

xc  is a planar 

rotation of xc  by / 2 . Accordingly, if zc  is known, the remaining vectors of the triad are 

easily obtained from the stretched vectors as (Izzuddin, 2006): 

n
x y n

x y y z y z xn
x y

, ,
 

     
 

c c
c c c c c c c

c c
 (3.10) 

The use of this inverse transformation at the finite element level rather than at a specific 

material point can ensure zero-macrospin at the overall element level without the need for 

iteration. 
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Figure 3.3: Influence of a uniform ‘stretch’ operation on a unit square area (Izzuddin, 2006). 

3.3.2.1 Triangular element 

With reference to Figure 3.4, in the initial undeformed configuration, the orthogonal unit 

vectors o
xc  and o

yc  are defined such that o
xc  is aligned with edge 1-2, and these are expressed 

in terms of the initial element vectors o
12v  and o

23v  as (Izzuddin, 2006): 

o o o o o o
x x1 12 x 2 23 y y1 12 y2 23a a , a a   c v v c v v  (3.11) 

with the constants  x1 x2 y1 y2a , a , a , and a  determined as: 

   

o T o
12 23

x1 x2 y1 y2o 2 2o o T o o o T o12
12 12 23 23 12 23

1 1
a , a 0, a , a

1 1

    
 

c c

v v c c v c c

 
(3.12) 

o
ijo

ij o
ij


v

c
v

 (3.13) 

In the current deformed configuration, the stretched vectors xc  and yc  are linked to 12v  and 

23v by the same geometric relationship (Izzuddin, 2006): 

x x1 12 x2 23 y y1 12 y2 23a a , a a    c v v c v v  (3.14) 

where the constants x1 x2 y1 y2a , a , a , and a  are as given by (3.12). 
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Figure 3.4: Zero-macrospin local co-rotational system for a 3-noded triangular element (Izzuddin, 

2006). 

With the stretched vectors xc  and yc  obtained according to (3.14), the rotated unit vectors 

xc  and yc , defining the current orientation of the local co-rotational system, are established 

from the inverse ‘stretch’ operation given by (3.10), taking zc  as the unit normal vector in 

the current deformed configuration, which is expressed as: 

12 23
z

12 23





v v

c
v v

 (3.15) 

It is noted that the orientation of an undeformed triangle can always be uniquely determined 

so that a corresponding triangle of any deformed shape may be obtained using a uniform 

‘stretch’ operation. Therefore, the zero-macrospin definition for triangular elements is 

invariant to nodal numbering, since the relative orientation between the rotated undeformed 

and the current deformed configuration is uniquely defined. 



Monolithic Quadrilateral and Triangular Shell Elements 

 

79 
 

3.3.2.2 Quadrilateral element 

Unlike the triangular shape, it is not possible to obtain an arbitrarily deformed quadrilateral 

shape using a single uniform ‘stretch’ operation, regardless of the orientation of the 

undeformed quadrilateral. This can be easily appreciated from the fact that each of the 

component triangles in the quadrilateral shape may require a different orientation of the 

undeformed configuration to obtain the corresponding deformed shape from a ‘stretch’ 

operation. Therefore, the application of the zero-macrospin condition to the quadrilateral 

element could lead to different relative orientations of the current undeformed and deformed 

configurations, depending on which three nodes are attached to the stretched planar vectors, 

thus violating invariance to nodal ordering. Izzuddin (2006) addressed this potential 

shortcoming by linking the stretched planar vectors to all four nodes via the two diagonals, 

which is elaborated elsewhere (Izzuddin, 2006; Izzuddin & Liang, 2015). Via the use of 

diagonals in the establishment of the co-rotational coordinates, this zero-macrospin definition 

of the local co-rotational system for quadrilateral elements also provides invariance to nodal 

ordering.  

 9-noded quadrilateral shell element 

A 9-noded monolithic shell element is elaborated in this research, which was originally 

developed by Izzuddin and Li (2004) as a conforming co-rotational element employing the 

bisector definition and later improved by Izzuddin (2007) using the hierarchic optimisation 

approach for overcoming locking. In this research, further modifications of the hierarchic 

optimisation approach are proposed to enable the element to pass the patch tests. In the 

following, the local element formulation of the 9-noded shell element is presented, and its 

incorporation within a co-rotational framework for large displacement analysis is briefly 

described.  

 Local element kinematics 

Figure 3.5 presents three different coordinate systems for the element which undergoes large 

displacements. The local co-rotational coordinate system is denoted by (x,y,z). The 9-noded 

Reissner-Mindlin shell element utilises five local displacement parameters (three translations 
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and two rotations) at each node. The local element geometry and displacement fields for the 

quadrilateral element are interpolated as follows: 

eN
o o

i i
i 1

0

x

y N ( , )

z 

 
     
 
 

x x  (3.16) 

e e
x0 N N

x
y0 i i i i

yi 1 i 1
z0

u

u N ( , ) , N ( , )

u
 

 
                 

 

 t t r r  (3.17) 

where 0z  represents the offset of the shell mid-surface along the z-axis, thus generalising the 

kinematics of flat plates to shallow shells; 
To

i i i 0ix , y , zx denotes local coordinates of node 

i; 
T

i x0,i y0,i z0,iu ,u ,ut  represents the local translational displacements of node i; 
T

i x,i y,i,  r  represents the components of the normal vector along the x- and y-axes at 

node i; and eN  is the number of element nodes, in this case 9. 

 

 

Figure 3.5: Global, local and natural coordinates for 9-noded shell element (Izzuddin, 2007). 
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The shape functions for the 9-noded element are expressed in terms of 2D natural coordinates 

( , )  : 

i i i i
i

i i i i i i i i

( )( ) ( )( )
N ( , ) (i 1 9)

( )( ) ( )( )

          
     

            
 (3.18) 

with i i( , )  representing the natural coordinates of node i, i i i( ) 1,0,1        and 

i i i( ) 1,0,1        . 

The element strain state is fully determined by membrane strains mε , bending generalised 

strains bε , and transverse shear strains sε . Local geometric nonlinearity is addressed through 

quadratic approximation of the membrane strains, while the influence of large displacements 

is accounted for through transformations between the local co-rotational system and the 

global system, as presented later in Section 3.4.3. Accordingly, the various conforming 

generalised strains are obtained as follows: 
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 (3.19) 
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 Hierarchic optimisation of 9-noded shell element 

The hierarchic optimisation approach aims at restoring the lower-order strain fields by 

enhancing the conforming strains towards a set of prescribed objective strain modes which 

are of lower-order in terms of real coordinates and as afforded by the element DOFs. It is 

important to note that the objective strain modes are selected in terms of real coordinates 

rather than natural coordinates, so that the element is less sensitive to distortion. In the 

following, a complete set of lower-order strain modes specific to the 9-noded shell element is 

presented (Izzuddin, 2007), based on which the hierarchic optimisation approach is 

performed separately for the generalised membrane, bending and transverse shear strains to 

eliminate locking. 

3.4.2.1 Objective strain modes 

The planar displacement fields x0 y0(u ,u )  for a 9-noded shell element can generate three 

rigid body modes and fifteen membrane strain-inducing modes. Therefore, fifteen low-order 

objective planar modes can be afforded by this element, for which the corresponding 

membrane strains are expressed as: 

o o
m m

0
x

0
y

y x

 
 
 
 

   
  
   

Ψ Φ  (3.22) 

where o
mΦ are objective planar strain-inducing modes given by: 

2 o
o
m 2 o

x y 0

0 x y

 
  
  

Φ 0
Φ

0 Φ
 (3.23) 

with 2 oΦ  representing six bi-quadratic modes for each of the two planar displacement fields: 

2 o 2 2 2 2 2 2x xy y x y xy x yΦ  (3.24) 
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The transverse displacement field z0u  for a 9-noded shell element can generate one rigid 

body mode and eight transverse shear strain modes. Therefore, eight low-order objective 

transverse modes can be afforded by this element, for which the corresponding transverse 

shear strains are expressed as: 

o o
s,z s,z

x

y

 
     
  

Ψ Φ  (3.25) 

where o
s,zΦ  are objective transverse strain-inducing modes given by: 

o 2 2 2 2 2 2
s,z x y x xy y x y xy x yΦ  (3.26) 

The rotational fields x y( , )   of a 9-noded element can generate fifteen curvature-inducing 

modes, with the objective curvature modes being the same as the above membrane strain 

modes: 

o o
b mΨ Ψ  (3.27) 

With four rigid body modes already accounted for in relation to the planar and transverse 

displacement field, the remaining two rigid body modes are generated by combining the two 

constant rotation modes with a linear distribution of the transverse displacement. This leaves 

one rotational mode that generates no curvatures but a linear transverse shear strain mode 
To

s, y, x  Ψ  which is not included in (3.25); furthermore, this represents an elaboration of 

the original approach of Izzuddin (2007), which did not include this specific mode. Therefore, 

a complete objective set of transverse shear strain modes is given by: 

o o o
s s,z s,   Ψ Ψ Ψ  (3.28) 

Accordingly, there are in total 39 objective strain modes for the 9-noded shell element 

(15 membrane o
mΨ , 15 curvature o

bΨ , 9 transverse shear o
sΨ ), which ensure the correct rank 

of the element stiffness matrix. In the following sub-sections, the hierarchic optimisation 
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approach is employed to address shear, membrane and distortion locking in the local element 

formulation with the employment of the above objective strain modes o
mΨ , o

bΨ , and o
sΨ .  

3.4.2.2 Shear locking 

With reference to (3.21), the conforming element cannot bend in any arbitrary mode x y( , )  , 

as allowed by its rotational DOFs, without polluting xz yz( , )   with second-order terms. 

Although the transverse displacement field ( z0u ) via the associated translational DOFs, 

offers an effective first-order approximation of xz yz( , )  , the polluting terms from x y( , )   

can lead to a significant overestimation of the transverse shear strain energy, hence causing 

shear locking. These polluting terms can be filtered out by introducing hierarchic transverse 

displacement fields, with the aim of achieving the first-order approximation of xz yz( , )   

afforded by the element, as given by the objective strain modes o
sΨ . 

The hierarchic transverse displacement modes, which are used to establish corrective strains, 

are defined in terms of natural coordinates. The hierarchic optimisation approach can utilise 

hierarchic modes up to any order, where complete cubic and quartic displacement modes are 

considered below: 

h h h h 3 h 4 h
z0 s s su ( , ) ,   Φ α Φ Φ Φ   (3.29) 

3 h 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                  Φ  (3.30) 

4 h 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                        Φ  (3.31) 

with: 

2 2 2( ) ( 1), ( ) ( 1)             (3.32) 

The corresponding hierarchic shear strains are therefore obtained from: 

h
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h h h h h h
s z0 s s s s

h
yz

x x
u ,

y y
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ε Ψ α Ψ Φ  (3.33) 
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where h
sΨ  represents the corrective hierarchic shear strain modes, and h

sα  are associated 

hierarchic strain parameters. 

The objective shear strain field is, on the other hand, defined as: 

o
xzo o o

s s so
yz

    
  

ε Ψ α  (3.34) 

where o
sΨ  is given in (3.28), and o

sα  are the associated objective strain parameters.  

With o
sΨ  and h

sΨ  selected, the assumed transverse shear strains can be obtained from the 

corresponding conforming shear strains in accordance with the hierarchic optimisation 

approach via (3.2)-(3.7). In addition to the corrective (C) and objective (O) alternative 

approaches, the optimisation procedure can be applied with hierarchic modes up to any 

complete polynomial order ( n 3, 4,  ), where the minimum number of sampling Gauss 

points is 2(n 1) . Depending on the alternative approach, this leads to variant 9-noded 

elements characterised by acronym keys, such as H3O9 and H4C9 for an objective strain 

element with 3rd order hierarchic modes and a corrective strain element with 4th order 

hierarchic modes, respectively. It is even possible for the optimisation to be undertaken 

without hierarchic correction modes, in which case the assumed strains are the objective 

strains which are a best fit of the conforming strains, leading to an element denoted by H2O9. 

3.4.2.3 Membrane locking 

From (3.19) it is apparent that a curved shell element cannot deform in any arbitrary 

transverse mode ( z0u ), as allowed by its translational DOFs, without polluting x y xy( , , )    

with higher-order terms. Although the planar displacement fields x0 y0(u , u ) , via the 

associated translational DOFs, offer an effective first-order approximation of x y xy( , , )   , 

the polluting terms from ( z0u ) can lead to a significant overestimation of the membrane 

strain energy. In addressing membrane locking, hierarchic planar translational parameters can 

be introduced to filter out the higher-order terms and achieve the first-order approximation of 

x y xy( , , )    afforded by the element, as given by the objective strain modes o
mΨ .  
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The hierarchic planar displacements, which are used to establish the corrective membrane 

strains, are defined in terms of natural coordinates. Again, the hierarchic optimisation 

approach can utilise hierarchic modes up to any order, where complete cubic and quartic 

modes are provided below: 

h 3 h 4 h
x0 h h h

m m mh 3 h 4 h
y0

u (x, y)
,

u (x, y)

         
     

Φ 0 Φ 0
Φ α Φ

0 Φ 0 Φ




 (3.35) 

where 3 hΦ  and 4 hΦ  are defined in (3.30) and (3.31), respectively. 

The corresponding hierarchic membrane strains are then obtained from: 

h
x

h
x0hh h h h h

ym m m m mh
y0

h
xy

0 0
x x

u
0 , 0

y yu

y x y x

      
                                    

        
              

ε Ψ α Ψ Φ  (3.36) 

where h
mΨ  represents the hierarchic membrane strain modes, and h

mα  are corresponding 

strain parameters. 

The objective membrane strain fields are given as: 

o
x

o o o o
m y m m

o
xy

 
     
 
  

ε Ψ α  (3.37) 

where o
mΨ  is given by (3.22)-(3.23), and o

mα  are associated strain parameters.  

Similar to optimisation for shear locking, the assumed strains can now be obtained in 

accordance with Section 2, where similar alternative approaches and levels of hierarchic 

optimisation may be employed. 
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3.4.2.4 Distortion locking 

The use of objective shear and membrane strain modes consisting of complete polynomials in 

terms of real instead of natural coordinates readily addresses locking due to polluting higher-

order terms as a result of distortion in the isoparametric element shape. For a complete 

treatment of distortion locking, however, it may also be necessary to filter out the polluting 

bending strains. In this respect, the transformation of the conforming to assumed bending 

strains can be shown to be identical to that relating the conforming and assumed membrane 

strains, as detailed previously in Section 3.4.2.3. 

3.4.2.5 Modification of hierarchic strains 

The aforementioned optimised formulations of the 9-noded shell element work well in the 

elimination of membrane and shear locking. Nevertheless, the element variants do not pass 

the constant strain patch tests if the edge nodes are not located at the middle of each element 

edge, which is a desirable characteristic for all finite element formulations so as to ensure 

convergence with mesh refinement regardless of element geometric irregularity. In order to 

ensure the optimised elements pass the constant mode patch tests, all hierarchic strain modes 

require zero mean values throughout the element domain (Simo et al., 1993). Therefore, in 

this research, a modification of the original hierarchic strain modes (Izzuddin, 2007) is 

proposed to enforce zero mean constraints on each strain mode, which is achieved as follows 

via integration over the real element domain e : 

   
 

   e

h e
mh h h h h

m m b m me

i, j d
i, j i, j , i, j i, j (i 1 3, j 1 N )


      


 Ψ

Ψ Ψ Ψ Ψ  (3.38) 

   
 e

h e
sh h h

s s se

i, j d
i, j i, j (i 1 2, j 1 N )


     


 Ψ

Ψ Ψ  (3.39) 

where h
mN  and h

sN  represent the number of hierarchic membrane/curvature and transverse 

shear modes, respectively. 
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Accordingly, in this work, the modified hierarchic strain modes h
mΨ , h

bΨ , and h
sΨ  replace 

the original modes h
mΨ , h

bΨ , and h
sΨ  in performing the hierarchic optimisation, thus 

replacing (3.2) with: 

e e

h T h h T o h h T
e e

oT h oT o o oT
d d

 

                          

 
 
 
 

Ψ Ψ Ψ Ψ α Ψ
ε

Ψ Ψ Ψ Ψ α Ψ
 (3.40) 

 Co-rotational system 

The bisector co-rotational system definition is employed for the 9-noded shell element, where 

the x- and y-axes always coincide with the bisectors of the diagonal vectors generated from 

the four corner nodes while the z-axis is orthogonal to the xy-plane, as expressed by (3.8). 

The local nodal translations it are established by rotating the initial undeformed configuration 

about the origin of ( o o o
x y z, ,c c c ) to the current local system orientation, as defined by 

( x y z, ,c c c ), and then measuring the translations from the rotated undeformed configuration. 

On the other hand, the local nodal rotations are determined as the projection of the nodal 

normals on the rotated local reference system ( x y z, ,c c c ). Accordingly, in the co-rotational 

system, the five local nodal parameters are expressed as: 

TT T
Ci i iU t r  (3.41) 

where it  and  ir  are respectively the three translations and two rotations at node i as defined 

in Section 3.4.1. 

For smooth surfaces where normals are uniquely defined over the domain, only two global 

rotational DOFs are required for each node. Therefore, the two smallest components of each 

nodal normal are directly used as global rotational DOFs when dealing with finite rotations of 

the normal (Izzuddin, 2005), resulting in five global parameters per node: 

TT T
Gi i iU d n  (3.42) 
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where: id  represents the global translational displacements of node i, as defined in 

Section 3.3.1; in is the normal vector at node i, and 
i i

T

i i, i, n n n represents the two 

components of in which are smallest in absolute terms, the third component 
ii,n being 

determined by the constraint of a unit in . The indices i , i  and i  are established from the 

following condition: 

i i i

o o o
i, i, i,   n n n  (3.43) 

where o
in is the normal vector of the last known equilibrium configuration. Therefore, the 

indices i i i, , and   are revised at the beginning of each step. 

Accordingly, the three components of the normal can be obtained from the two DOFs 

(
i ii, i,, n n ) as: 

i i i i

o T
i, i,1 i, i,2 i, i, i i, , sign( ) 1      n n n n n n n n  (3.44) 

The transformation between global and local translational displacements is given as: 

 o o o o o
i i i i i 9,    t Rd R R v v X X  (3.45) 

where 
To

i i i iX ,Y , ZX denotes global coordinates of node i, while oR and R  are the 

orientation matrices of the local co-rotational framework at the initial and current 

configurations, respectively, defined as: 

T To o o o
x y z x y z,       R c c c R c c c  (3.46) 

The transformation between global and local rotations is given as: 

T

i i x y,     r R n R c c  (3.47) 

The remaining transformations between the local co-rotational and global reference systems 

relate to the determination of the global nodal forces and tangent stiffness matrix from the 

corresponding local entities, requiring the first and second partial derivatives of local 
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parameters with respect global parameters. These derivatives depend in turn on the first and 

second partial derivatives of ( x y z, ,c c c ) with respect to global translational DOFs, where the 

first derivatives are provided elsewhere (Izzuddin & Liang, 2015), and the second derivatives 

can be similarly derived.  

 6-noded triangular shell element 

In some practical problems involving complex geometry, the combination of both 

quadrilateral and triangular elements in a mesh is often required. Therefore, in this research 

work, a lock-free 6-noded triangular element is fully developed, which employs the 

hierarchic optimisation approach for the local response to overcome locking and embeds the 

local formulation within the zero-macrospin co-rotational system to allow large displacement 

analysis. The element kinematics, the application of the hierarchic optimisation approach, and 

the incorporation with the co-rotational system are presented in the following sections.  

 

Figure 3.6: Global, local and area coordinates for 6-noded shell element. 

 Local element kinematics 

Three different coordinate systems for the 6-noded element undergoing large displacements 

are depicted in Figure 3.6, where the local co-rotational coordinate system is denoted by 
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(x,y,z). Similar to the previous 9-noded element, the local formulation of the 6-noded 

Reissner-Mindlin element utilises five local parameters (three translations and two rotations) 

at each node. The shape functions for the 6-noded element are expressed in terms of area 

coordinates ( 1 2 3L ,L ,L ) as follows: 

i i i i 3 i iN L (2L 1), N 4L L (i 1 3)       (3.48) 

in which the area coordinate iL  equals 1 at node i, and linearly reduces to 0 at edge i – i ; 

mod( ,3) 1i i   ; and mod( ,3) 1i i   . The shape functions can then be expressed in terms 

of Cartesian natural coordinates ( ,  ) by setting 1L 1    , 2L   , and 3L   , which 

are then employed in the interpolations of local element geometry and displacement fields for 

the triangular element, as given previously for the 9-noded element by (3.16)-(3.17) but with 

eN 6 . The conforming strain-displacement relationships in the local system given by 

(3.19)-(3.21) for membrane strains mε , bending generalised strains bε , and transverse shear 

strains sε  are also applicable to this 6-noded shell element.  

 Hierarchic optimisation of 6-noded shell element 

The application of the hierarchic optimisation approach to the 6-noded shell element is 

developed here. In the following, a complete set of lower-order strain modes specific to the 6-

noded shell element is presented, based on which the hierarchic optimisation approach is 

performed separately for the generalised membrane, bending, and transverse shear strains to 

eliminate locking. It is important to note that some further modifications of the hierarchic 

optimisation approach are made to allow its application to triangular elements, pass the 

constant strain patch tests, and satisfy the so-called ‘spatial isotropy’ requirements. 

3.5.2.1 Objective strain modes 

Similar to the 9-noded shell element, a preliminary selection of a complete set of low-order 

strain modes specific to the 6-noded shell element is provided, which are in terms of real 

coordinates to reduce sensitivity to element shape distortion.  

The quadratic planar displacement fields x0 y0(u ,u )  for a 6-noded shell element can generate 

three rigid body modes and nine membrane strain-inducing modes. Therefore, nine low-order 
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objective membrane strain modes are expressed as in (3.22)-(3.23), but with the quadratic 

objective displacement modes 2 oΦ  now given by: 

2 o 2 2x xy yΦ  (3.49) 

The transverse displacement field z0(u )  for the 6-noded shell element can generate one rigid 

body mode and five transverse shear strain modes. Therefore, five low-order objective 

transverse shear strain modes are expressed as in (3.25), but with the quadratic objective 

transverse strain-inducing modes o
s,zΦ  given by: 

o 2 2
s,z x y x xy yΦ  (3.50) 

The rotational displacement fields x y( , )   of a 6-noded element can generate nine 

curvature-inducing modes, where the objective displacement modes and associated curvature 

modes are identical to those of the membrane strain-inducing modes, as expressed by (3.27).  

Similar to the 9-noded element, the two rotational fields x y( , )   for the 6-noded element 

also generate a linear transverse shear strain mode 
To

s, y, x  Ψ , which is not included in 
o
s,zΨ . Therefore, a complete objective set of transverse shear strain modes includes both o

s,zΨ  

and o
s,Ψ , as expressed by (3.28). 

There are in total 24 selected objective strain modes for the 6-noded shell element 

(9 membrane o
mΨ , 9 curvature o

bΨ , 6 transverse shear o
sΨ ), which ensure the correct rank of 

the element stiffness matrix. In the following sub-sections, the objective strain modes o
mΨ ,

o
bΨ , and o

sΨ are respectively used in the optimisation of the generalised membrane, bending, 

and transverse shear strains. Shear and membrane locking are relieved through separate 

optimisation procedures of mε  and sε , respectively, while distortion locking is relieved by 

expressing the three sets of objective strains in terms of real coordinates. 

3.5.2.2 Shear locking 

In addressing shear locking, the objective shear strain fields are obtained from (3.34) with the 

employment of the objective set of transverse shear strain modes o
sΨ defined in (3.28) and 

(3.50). The hierarchic optimisation approach can utilise hierarchic modes up to any order, 
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with the hierarchic shear strain fields obtained from (3.33), but with cubic and quartic 

hierarchic displacement modes for the 6-noded shell element given by: 

3 h 3 h 3 h 3 h 3 h
1 2 3 4, , ,    Φ  (3.51) 

4 h 3 h 3 h 3 h 3 h 3 h 3 h
1 2 3 2 3 4, , , ,            Φ  (3.52) 

in which: 

3 h 3 2 3 h 2
1 2

3 1 1
,

2 2 2
             (3.53) 

3 h 2 3 h 3 2
3 4

1 3 1
,

2 2 2
             (3.54) 

Similar to Section 3.4.2.5, in order for the element to pass the constant strain patch tests, the 

enforcement of zero mean values on all hierarchic modes h
sΨ  is undertaken in accordance to 

(3.39). With o
sΨ  and h

sΨ  obtained, the improved transverse shear strains, in either the 

objective (O) or corrective (C) form, can be obtained from the corresponding conforming 

strains via (3.40) and (3.3)-(3.7), which could alleviate, or even eliminate locking phenomena. 

Depending on the alternative approach, this leads to variant 6-noded elements characterised 

by acronym keys, such as H3C6 and H4O6 for a corrective strain element with 3rd order 

hierarchic modes and an objective strain element with 4th order hierarchic modes, 

respectively.  It is also possible for the optimisation to be undertaken without hierarchic 

correction modes, in which case the assumed strains are the objective strains which are a best 

fit of the conforming strains, leading to an element denoted by H2O6. 

3.5.2.3 Membrane locking 

In addressing membrane locking, the objective strains o
mε  are defined by (3.37) and (3.22)-

(3.23) with 2 oΦ given by (3.49). The hierarchic correction strains h
mε  are defined by (3.35)-

(3.36) with 3 hΦ  and 4 hΦ expressed in (3.51)-(3.54), which are subsequently modified via 

(3.38) to allow the element pass constant strain patch tests. With o
mΨ  and h

mΨ  obtained, the 

improved membrane strains, in either the objective or the corrective form, can be obtained 

from the corresponding conforming strains via (3.40) and (3.3)-(3.7). 
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3.5.2.4 Distortion locking 

Distortion locking is addressed by using objective shear and membrane strain modes 

consisting of polynomials in terms of real instead of natural coordinates. For a complete 

treatment of distortion locking, however, it may also be necessary to filter out the polluting 

bending strains. In this respect, the transformation of the conforming to assumed bending 

strains is identical to that relating the conforming and assumed membrane strains. 

3.5.2.5 Spatial isotropy 

The optimisation approach improves the strain distribution via minimising the Euclidean 

norm of the strain residual, which is not spatially isotropic, as can be inferred from examining 

the strain tensor. The optimisation of transverse shear strains turns out to be isotropic, owing 

to the fact that these strain components transform spatially according to a first-order tensor 

transformation. However, the optimisation of either the membrane strains or curvature strains 

is not spatially isotropic, because these transform spatially according to a second-order tensor 

transformation. Since the associated objective function, which is the square of the error 

between objective and corrected strains, is not spatially invariant, in the sense that it varies 

when the same component strains are transformed to a different system, the outcome of the 

optimisation is not spatially isotropic. This means that the 6-noded element is no longer 

invariant to nodal ordering following optimisation, which is undesirable in practical 

applications (Lee & Bathe, 2004; Battini & Pacoste, 2004; Izzuddin & Liang, 2015). 

In the application of the hierarchic optimisation approach to 9-noded quadrilateral elements, a 

bisector local system is used, which leads to identical directions of the local axes directions 

regardless of nodal ordering. In this respect, the outcome of the strain optimisation process 

remains invariant to nodal ordering. However, the local system triad used for the 6-noded 

triangular element varies with nodal ordering; hence the outcome of the strain optimisation 

process becomes dependent on nodal ordering, since the adopted objective function for the 

membrane and curvature strains is not spatially invariant.  

In order to achieve nodal invariance for the optimised 6-noded triangular element, the 

optimisation of membrane and curvature strains is modified. For example, rather than 
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enhancing the membrane strain components x y xy( , , )   , the three membrane strains along 

the element edges 12 23 31( , , )    are optimised, as illustrated in Figure 3.7. Accordingly,  the 

objective function expressed in terms of these strains becomes invariant to nodal ordering, 

hence the outcome of the optimisation process achieves the same nodal invariance 

characteristic.  

 

Figure 3.7: Three edge strains of the 6-noded triangular shell element. 

Therefore, the following steps are employed to modify the hierarchic optimisation of 

membrane strains for the 6-noded shell element: 

(i) Transform membrane strains mε  to edge strains 12 23 31( , , )   : 

2 2
1 1 1 112
2 2

23 m 2 2 2 2

2 2
31 3 3 3 3

ˆ ˆ ˆ ˆc s c s

ˆ ˆ ˆ ˆ, c s c s

ˆ ˆ ˆ ˆc s c s

  

           
      

ε T ε T  (3.55) 

 where i i
 (i=1,2,3) is the edge strain along edge i-i+ ; iĉ and iŝ  are respectively the 

cosine and sine values of the angle from the x-axis to the edge i-i+ . 

(ii) The hierarchic and objective strain modes for edge strains, h
Ψ  and o

Ψ , are 

obtained from the following transformation: 

h h o o
m m,    Ψ T Ψ Ψ T Ψ  (3.56) 

(iii) Hierarchic optimisation is undertaken on the three edge strains: 
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e e

h T h h T o h h T
e e

mo T h o T o o o T
d d

      

       

                          

 
 
 
 

Ψ Ψ Ψ Ψ α Ψ T
ε

Ψ Ψ Ψ Ψ α Ψ T
 (3.57) 

 where h
α  and o

α  are associated strain parameters. 

(iv) Parameters h
α  and o

α  are numerically solved using Gaussian quadrature in terms of 

the conforming strains component in the local x-y system: 

m(1) m(1)

h h o o

m(i) m(i)

,   

   
   
   

    
   
   
   

ε ε

α Γ α Γ
ε ε

 

 

 (3.58) 

(v) The enhanced membrane strains at Gauss points are derived in either the corrective 

or the objective strain form: 

h
m(1) m(1) m(1)

h
m m h

m(i) m(i) m(i)

, (Corrective)

     
     
     

       
     
     
     

ε ε Ψ

T T I Γ
ε ε Ψ



   


  

 (3.59) 

o
m(1) m(1) m(1)

o
m m o

m(i) m(i) m(i)

ˆ

ˆ ˆ, (Objective)
ˆ



     
     
     

      
     
     
     

ε ε Ψ

T T Γ
ε ε Ψ

  

  

 (3.60) 

The hierarchic optimisation of curvature strains follows the same steps. By modifying the 

optimisation procedure for membrane and curvature strains, whilst retaining the previous 

procedure for optimising transverse shear strains, the local formulation of an isotropic lock-

free triangular element is obtained. 
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 Co-rotational system 

The local formulation of the 6-noded element is incorporated into a co-rotational framework 

based on the zero-macrospin definition, where the three corner nodes are utilised to obtain the 

local triad ( x y z, ,c c c ) with reference to (3.10)-(3.15).  

The transformation between global and local translational displacements is given as: 

 o o o o o
i i i i i 1,    t Rd R R v v X X  (3.61) 

The transformation between global and local rotations is the same as given by (3.47). The 

remaining transformations between the local co-rotational and global reference systems relate 

to the determination of the global nodal forces and tangent stiffness matrix from the 

corresponding local entities, requiring the first and second partial derivatives of local DOFs 

with respect global DOFs. The first derivatives can be obtained through chain differentiation, 

and are presented in Appendix A, while the second derivatives can be similarly derived. 

 Consistent mass 

The consistent mass matrices of monolithic quadratic shell elements are presented here, 

allowing the vibration and transient nonlinear dynamic analysis of plates and shells using the 

developed elements. 

 Local consistent mass 

The same interpolation functions are employed for the local acceleration fields as those used 

for the local displacement fields: 

e e
x0 N N

x
y0 i i i i

yi 1 i 1
z0

u

u N ( , ) , N ( , )

u
 

 
                  

 

 t t r r

 
   


 (3.62) 

where t and r  are respectively the translational and rotational accelerations. 
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Defining 
h

z
2

    and the density of the plate as ρ, the employment of the principle of virtual 

work leads to the following evaluation of local inertia forces: 

e

1
2 2

T I 2 2 e
C x0 x0 y0 y0 z0 z0 x x y yC

1

h h h
(u u u u u u )d d

2 4 4




 
                    

 


  



U f      (3.63) 

where the superscript ‘I’ indicates inertia force.  

Further elaboration of (3.63) yields the following local mass matrix CM : 

e

e

e e e e

t
11 12 1N

t
21 22 2N M

C ij ijt

r
N 1 N 2 N N

r

m

m

, m

m

m

                      

M M M

M M M
M M Γ

M M M





   


 (3.64) 

where: 

1 1 3
M
ij i j t r

1 1

h
N N det(J)d d , m h, m

12 


      Γ  (3.65) 

with  J denoting the Jacobian matrix: 

0 0 0

x x x

y y y

z z z

   
    
   

     
   
    

J  (3.66) 

 Global consistent mass 

Although a co-rotational framework is conveniently adopted to determine the geometrically 

nonlinear element response, the consideration of such a system for determining consistent 
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inertia forces is associated with significant complications (Le et al., 2014). Instead, the inertia 

forces are evaluated within an updated Lagrangian framework, which has been shown to be 

both practical and effective for co-rotational beam-column elements (Izzuddin, 1991). 

In this context, denoting oT  as the matrix that transforms incremental global to local nodal 

parameters based on the last known equilibrium configuration, as expressed by: 

o
o C

o
G




U

T
U

 (3.67) 

the global consistent mass matrix is readily obtained as: 

o T o
G CM T M T  (3.68) 

 Summary 

In this chapter, formulations of lock-free monolithic quadrilateral and triangular shell 

elements are presented, which effectively overcome membrane, shear and distortion locking. 

With the further utilisation of a co-rotational approach, these formulations can be applied in 

geometrically nonlinear analysis while utilising only a second-order strain-displacement 

relationship in the local system; indeed, even a first-order strain-displacement relationship 

could be used, though at the expense of requiring a finer mesh for comparable accuracy in 

geometric nonlinear analysis. 

The hierarchic optimisation approach is employed for eliminating locking, where the 

conforming strains are enhanced with hierarchic corrective strains, and mathematical 

optimisation is performed towards objective low-order strain fields, as afforded by the 

element DOFs. The utilisation of this optimisation approach within the local co-rotational 

system leads to a linear optimal mapping between assumed and conforming strains, which 

need only be established once at the start of incremental nonlinear analysis.  

In applying the co-rotational approach for large displacement analysis, the bisector definition 

and the zero-macrospin definition of the local system are employed, both definitions 

satisfying the requirements of i) being simple to establish, ii) achieving nodal invariance, iii) 
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reducing the spin of the element, and iv) providing a symmetric element tangent stiffness 

matrix (Izzuddin & Liang, 2015). The utilisation of the co-rotational systems also facilitates 

the application of the hierarchic optimisation approach and the later inclusion of through-

thickness descriptions of displacements and stresses for laminated shells, as elaborated in 

Chapter 6. 

The optimisation procedure for the 9-noded shell element, previously developed by Izzuddin 

(2007), is firstly modified through the introduction of an additional objective transverse shear 

strain mode, which is required to achieve the correct rank of the local stiffness. Secondly, a 

modification of the hierarchic strain modes is proposed to enable the 9-noded element to pass 

constant strain patch tests. In addition, the hierarchic optimisation approach is extended to a 

6-noded triangular shell element, with the further consideration of the requirements of spatial 

isotropy. The local formulation of the 6-noded triangular shell element is framed within the 

zero-macrospin co-rotational system, which upgrades it to geometric nonlinear analysis with 

relative ease. 

Finally, in order to enable vibration and transient nonlinear dynamic analysis of plates and 

shells, the consistent mass matrices are developed for both shell elements, utilising a practical 

updated Lagrangian approach. 

The efficiency and effectiveness of the optimised variants of the 9-noded and 6-noded shell 

elements will be assessed next in Chapter 4 using zero energy mode tests, patch tests, 

isotropic element tests, convergence rate tests, as well as other linear and geometrically 

nonlinear numerical examples. 
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CHAPTER 4 

4 Verification of Monolithic Shell Elements 

 

 

 Introduction 

The modified 9-noded shell element and the newly developed 6-noded shell element, 

presented in previous chapter, have been implemented in ADAPTIC (Izzuddin, 1991) v2.14.2, 

which is used hereafter in several numerical examples to demonstrate the accuracy of both 

elements. For comparison purposes, also implemented in ADAPTIC are the 9-noded and 

6-noded Reissner-Mindlin shell elements based on the MITC method (Bathe et al., 2003), for 

which the local formulations are provided in Appendix B. These MITC formulations are also 

incorporated within the same co-rotational approach as the developed formulations to enable 

large displacement analysis. 

In presenting the results, variants of the 9-noded and 6-noded elements are denoted by 

element codes, as listed in Table 4.1. 
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Table 4.1: Variants of 9-noded and 6-noded shell elements considered. 

Element code Strain field Hierarchic order Sampling Gauss points 

CNF9 Conforming - 33 

H2O9 Assumed, objective - 33 

H3O9 Assumed, objective 3 44 

H4O9 Assumed, objective 4 55 

H3C9 Assumed, corrective 3 44 

H4C9 Assumed, corrective 4 55 

MITC9* Assumed, MITC9* - 33 

MITC9is* Assumed, MITC9is* - 33 

CNF6 Conforming - 13 

H2O6 Assumed, objective - 13 

H3O6 Assumed, objective 3 13 

H4O6 Assumed, objective 4 16 

H3C6 Assumed, corrective 3 13 

H4C6 Assumed, corrective 4 16 

MITC6* Assumed, MITC6* - 13 

 Quadrilateral shell element 

 Zero energy mode test 

In this test, the eigenvalues of the stiffness matrix of an unsupported shell element are 

calculated for each of the 9-noded element types, and the number of zero eigenvalues is 

counted. For an unsupported element with no spurious mechanisms, the number of zero 

eigenvalues should be exactly six. Both regular and irregular element shapes are considered 

in this test (Figure 4.1) to allow for more possibilities. All the considered element types 

(H2O9, H3O9, H4O9, H3C9, H4C9, MITC9* and MITC9is*) pass the zero energy mode test, 

i.e., all of them have exactly six zero eigenvalues of their element stiffness matrix. 
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Figure 4.1: Various element shapes for the zero energy mode test of 9-noded shell element. 

 Patch tests 

The five-element patch suggested by MacNeal and Harder (1985), as shown in Figure 4.2, is 

employed to illustrate the membrane and out-of-plane bending behaviour of the considered 9-

noded shell elements. In the patch, edge nodes and internal nodes are placed at the middle 

positions. The geometric properties of the rectangular plate are: L 0.24 , W 0.12 , and 

h 0.001 . It has a Young’s modulus of 6E 10  and a Poisson’s ratio of 0.25  . In the 

membrane patch test, the boundary conditions at the external nodes are: 

 3 3
x0 y0 z0 x y

1 1
u 10 x y , u 10 y x , u 0

2 2
               
   

  

which correspond to a constant membrane strain state where x y xy 0.001      .  

 

Figure 4.2: Five-element patch test. 
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In the out-of-plane bending patch test, the boundary conditions at the external nodes are: 

 
 2 2

3 3 3
x0 y0 z0 x y

x xy y 1 1
u u 0, u 10 , 10 x y , 10 y x

2 2 2
  

                
   

  

which correspond to a constant bending strain state where x y xy 0.001      .  

The patch tests are conducted on various quadrilateral element types, with the nodal 

displacements inside the patch and the strains evaluated at each element centre compared 

against reference values. The maximum relative errors in the nodal displacements and strain 

components are listed in Tables 4.2-4.3 for respectively the membrane and bending patch 

tests. Clearly, all the optimised 9-noded elements and the MITC9is* pass the patch tests. The 

results with MITC9*, however, yield small errors, as stated by Wisniewski and Panasz (2013).   

 

Table 4.2: Relative error of displacements and strains in membrane patch test. 

Element code Maximum error 
in ux0 

Maximum error 
in uy0 

Maximum error 
in x  

Maximum error 
in y  

Maximum error 
in xy  

H2O9 0.000 0.000 0.000 0.000 0.000 

H3O9 0.000 0.000 0.000 0.000 0.000 

H4O9 0.000 0.000 0.000 0.000 0.000 

H3C9 0.000 0.000 0.000 0.000 0.000 

H4C9 0.000 0.000 0.000 0.000 0.000 

MITC9* 0.054 0.031 0.010 0.015 0.022 

MITC9is* 0.000 0.000 0.000 0.000 0.001 

Table 4.3: Relative error of displacements and strains in bending patch test. 

Element code Maximum 
error in uz0 

Maximum 
error in x  

Maximum 
error in y  

Maximum 
error in x  

Maximum 
error in y  

Maximum 
error in xy  

H2O9 0.000 0.000 0.000 0.000 0.000 0.000 

H3O9 0.000 0.000 0.000 0.000 0.000 0.000 

H4O9 0.000 0.000 0.000 0.000 0.000 0.000 

H3C9 0.000 0.000 0.000 0.000 0.000 0.000 

H4C9 0.000 0.000 0.000 0.000 0.000 0.000 

MITC9* 0.018 0.028 0.049 0.004 0.012 0.009 

MITC9is* 0.000 0.000 0.000 0.000 0.000 0.000 
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A further step is taken to investigate the behaviour of the considered 9-noded elements in a 

more irregular mesh, where the original patch is distorted by shifting four edge nodes 13, 14, 

15 and 16, either parallel or perpendicular to the edges, and moving the internal node 25 

along the x-direction, as illustrated in Figure 4.3. All the shifts of nodal positions are of a 

magnitude d = 0.01. Results of the membrane patch test with this distorted mesh are given in 

Table 4.4. As expected, all the optimised 9-noded elements pass the test owing to the 

enforcement of zero mean on each hierarchic strain mode. The results with MITC9is* are 

also good, though small errors are generated in this case. However, MITC9* fails in the 

constant strain patch test, evident from the large relative errors in predicting displacements 

and strains. 

 

Figure 4.3: Five-element patch test (distorted mesh). 

Table 4.4: Relative error of displacements and strains in membrane patch test (distorted mesh). 

Element code Maximum error 
in ux0 

Maximum error 
in uy0 

Maximum error 
in x  

Maximum error 
in y  

Maximum error 
in xy  

H2O9 0.000 0.000 0.000 0.000 0.000 

H3O9 0.000 0.000 0.000 0.000 0.000 

H4O9 0.000 0.000 0.000 0.000 0.000 

H3C9 0.000 0.000 0.000 0.000 0.000 

H4C9 0.000 0.000 0.000 0.000 0.000 

MITC9* 0.212 0.112 0.040 0.435 0.210 

MITC9is* 0.005 0.005 0.007 0.005 0.007 
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 Convergence rate tests 

4.2.3.1 Clamped square plate under uniform loading 

The convergence rates of the optimised elements are investigated in this linear problem, 

where a 2L 2L  square plate is clamped at all four edges and subjected to a uniformly 

distributed pressure, as shown in Figure 4.4. Soft boundary conditions are used along the four 

edges, and three thickness-to-length ratios (h/L) are considered to investigate the performance 

of various element formulations in addressing locking. The geometric and material 

parameters are given as: L 1.0 , 7E 1.7472 10  , and 0.3  . Due to symmetry, a quarter 

of the plate is modelled with 22, 44, 88, and 1616 meshes of various 9-noded element 

types. The Jacobian matrix is constant in this example, which leads to identical results 

between the MITC9* and MITC9is* models. The convergence curves of the considered 9-

noded elements are presented in Figure 4.5, with the relative error in the strain energy as a 

measure of accuracy: 

ref

ref

U U
RE

U


  (4.1) 

where U  represents the total strain energy of a coarse mesh, and refU  represents the 

reference value, which is taken as the strain energy obtained from a fine mesh (128128) of 

the H3O9 element. The results of the original MITC9 shell elements (Lee & Bathe, 2010) are 

also plotted in Figure 4.5 for comparison purposes, though employing a different accuracy 

measure: 

2

ref s
2

ref s

RE

 






u u

u
 (4.2) 

where ref
u  is the vector of reference nodal displacement values; u  is the finite element 

solution of nodal displacements;  
s

  is the s-norm (Bathe et al., 2003). In linear elastic 

analysis with conforming element formulation, (4.1) and (4.2) are equivalent. Even though 

this equivalence does not strictly hold for hierarchic optimised formulations or mixed 

formulations, it can still be used for a general comparative assessment of the convergence 
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rate. For both measures of accuracy, the optimal convergence rate is of a 4th order, with the 

discretisation error being O( 4
eh ) ( eh  is the nominal element length), which is depicted in the 

figure with a solid straight line.  

 

 

Figure 4.4: A quarter-model of a clamped square plate subjected to uniform pressure (9-noded shell 

element). 

All the considered 9-noded elements show roughly optimal convergence rates with no 

significant upward shifting as the thickness is reduced (except for H3C9 and H4C9). In this 

problem, the MITC9* and the H2O9 elements seem to have marginally better accuracy, 

followed by the H3O9 and H4O9 elements. It is also observed that the results of the 

optimised elements with the objective alternative (H2O9, H3O9, and H4O9) are comparable 

to the MITC9 results (Lee & Bathe, 2010) in terms of both the convergence rate and accuracy, 

while the accuracy of the MITC9* element is even higher than the original MITC9 element, 

which may result from rounding errors, different accuracy measurement and the formulation 

differences, as can be found in Appendix B.   
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a. h/L = 0.0001 b. h/L = 0.001 c. h/L = 0.01 

Figure 4.5: Convergence curves of various 9-noded elements for the clamped square plate problem. 

4.2.3.2 Cylindrical shell under sinusoidal loading 

A cylindrical shell, which has a length of 2L, a radius of R, and a constant thickness h, is 

subject to a periodic pressure 0p( ) p cos(2 )   . The geometric, material, and loading 

properties are given as: L = R = 1.0, E = 2.0105, ν = 1/3, and 0p 1.0 . Two boundary 

conditions at both curved ends are considered: a free boundary condition corresponding to a 

bending-dominant problem, and a fully clamped boundary condition corresponding to a 

membrane-dominant problem. Due to symmetry, a sixteenth of the model is analysed with a 

uniform mesh pattern, as shown in Figure 4.6.  
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Figure 4.6: Cylindrical shell under periodical loading. 

Figures 4.7-4.8 present the behaviour of various 9-noded optimised elements with 

respectively free and clamped boundary conditions. The relative error measure (4.1) is 

employed, and the optimal convergence rate is also depicted in the figures. In the bending-

dominant problem, all the considered elements show comparable accuracy and good 

convergence rates, though not optimal. Furthermore, the convergence curves have no 

evidence of shifting upwards with thickness changes. These elements also perform generally 

well in the membrane-dominant problem. Figures 4.9-4.10 also provide the comparison of the 

H3O9 and MITC9* results against the MITC9 results (Bathe et al., 2000) with the same 

accuracy measure. The results show that the H3O9 and MITC9* have comparable 

convergence rates and accuracy. The MITC9 results have better accuracy in particular for a 

relatively large thickness-to-length ratio (h/L = 0.01), except for the free end case with a 

small thickness-to-length ratio (h/L = 0.0001) where the MITC9 element shows a significant 

degradation of the convergence rate. 
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a. h/L = 0.0001 

 

b. h/L = 0.001 

 

c. h/L = 0.01 

Figure 4.7: Convergence curves of various optimised 9-noded elements for the cylindrical shell 

problem (free boundary). 

 

a. h/L = 0.0001 

 

b. h/L = 0.001 

 

c. h/L = 0.01 

Figure 4.8: Convergence curves of various optimised 9-noded elements for the cylindrical shell 

problem (clamped boundary). 
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a. h/L = 0.0001 

 

b. h/L = 0.001 

 

c. h/L = 0.01 

Figure 4.9: Convergence curves of H3O9, MITC9* and MITC9 elements for the cylindrical shell 

problem (free boundary). 

 

a. h/L = 0.0001 

 

b. h/L = 0.001 

 

c. h/L = 0.01 

Figure 4.10: Convergence curves of H3O9, MITC9* and MITC9 elements for the cylindrical shell 

problem (clamped boundary). 
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 Linear problems 

4.2.4.1 Plane-stress cantilever 

The problem is depicted in Figure 4.11, where a cantilever is fully clamped at one end and 

loaded at the other end. This is a plane-stress problem and was presented by Cook et al. (1989) 

to establish the influence of distortion locking on the conforming 9-noded planar element, 

where meshes (A)–(C) were considered. A further mesh (D) is also considered here, in which 

the interior element nodes are kept in their original location, leading to increased sensitivity 

to distortion locking. Geometric and material parameters are given as: L = 100, h = 1, E = 107, 

and ν = 0.3. An end load P = 2500 is uniformly applied on the free edge. The predicted 

displacements with various meshes and 9-noded element types, normalised by the theoretical 

value of the transverse tip displacement, are provided in Table 4.5. 

 

Figure 4.11: Cantilever modelled with different meshes using two 9-noded elements. 

It is clear that among the optimised element variants the ones using third or fourth order 

hierarchic modes provide an effective relief from the distortion locking observed with the 

conforming element, where the objective alternative approach offers marginally better 

predictions than the corrective approach. The H3O9 element provides virtually identical 

accuracy to the H4O9 element with fewer Gauss points required. On the other hand, the 

MITC9* element in mesh (B)-(D) exhibits significant distortion locking owing to highly 

irregular element shapes. The accuracy of the MITC9is* element is less sensitive to distorted 
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meshes (B) and (D), but is significantly degraded in mesh (D) where the internal node is 

highly eccentric from the element centre, in which case the Jacobian extracted at the element 

centre no more represents an average over the element. 

Table 4.5: Normalised cantilever displacement predictions using various 9-noded elements. 

Element code Mesh (A) Mesh (B) Mesh (C) Mesh (D) 

CNF9 0.954 0.791 0.737 0.476 

H2O9 0.954 0.812 0.904 0.464 

H3O9 0.954 0.830 0.971 0.972 

H4O9 0.954 0.827 0.972 0.972 

H3C9 0.954 0.824 0.913 0.954 

H4C9 0.954 0.827 0.972 0.972 

MITC9* 0.990 0.255 0.712 0.535 

MITC9is* 0.990 0.805 0.958 0.604 

4.2.4.2 Square plate under transverse point load 

The linear bending response of a clamped square plate subject to a central transverse point 

load (P) is investigated, where a quarter-model is considered using regular and distorted 

meshes, as shown in Figure 4.12. The geometric and material parameters are given as: L = 20, 

h = 0.2, 6E 2.1 10  , and 0.3  .The non-dimensional central deflection ( zu ) is given as: 

 
3

z0
z 2 2

u Eh
u

12PL (1 )



  

The predictions of zu  with various 9-noded quadrilateral elements, normalised by the 

reference value of 0.00560 (Timoshenko, 1940), are presented in Table 4.6. Clearly, the 

conforming element CNF9 exhibits shear locking, which is compounded in the distorted 

meshes. Again, the proposed optimisation approach shows good accuracy even with the 

coarse meshes, whether regular or distorted. In this respect, the objective alternative approach, 

using third or fourth order hierarchic optimisation, is typically better than the corrective 

alternative, particularly for the coarser meshes. In this example, the coarse meshes of the 

MITC9* element provide sufficient accuracy despite distorted element shapes. On the other 

hand, the results of the MITC9is* element are less accurate than the MITC9* elements for 

mesh (B) and (D), still resulting from the inability of the constant Jacobian CJ  to represent an 

element average. 
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Figure 4.12: A quarter-model of a square plate using different mesh patterns of 9-noded elements. 

Table 4.6: Normalised plate central deflections using various 9-noded elements. 

Element code Mesh (A) Mesh (B) Mesh (C) Mesh (D) 

CNF9 0.718 0.269 0.925 0.638 

H2O9 1.006 0.955 1.006 0.959 

H3O9 0.974 0.965 1.001 0.996 

H4O9 0.973 0.958 1.001 0.996 

H3C9 0.916 0.856 0.997 0.981 

H4C9 0.917 0.899 0.997 0.990 

MITC9* 1.005 1.000 1.005 1.003 

MITC9is* 1.005 0.882 1.005 0.960 

4.2.4.3 Pinched cylinder with rigid diaphragms 

A cylindrical shell, supported by two rigid diaphragms at both ends, is loaded with two unit 

forces P, as shown in Figure 4.13. Due to symmetry, an octant of the shell is modelled with 

uniform meshes. Geometric and material parameters are given as: R = 300, L/R = 2 , R/h = 

100 , E = 3106, and ν = 0.3. The predicted deflection at the point of loading is normalised by 

the analytical solution 0.1824810-4 (Heppler & Hansen, 1986). This problem was also 
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analysed by Kulikov and Plotnikova (2006) with four-noded degenerated solid-shell elements 

and by Kim et al. (2005) with 8-noded solid-shell elements. In Table 4.7, results of the 9-

noded shell elements H3O9, MITC9* and MITC9is* are compared against the results by 

others with the same number of DOFs, which indicates good performance of the H3O9 

element. 

 

Figure 4.13: Pinched cylindrical shell supported by rigid diaphragms (quadrilateral elements). 

Table 4.7: Normalised deflections at the point of loading for the pinched cylinder problem 

(quadrilateral elements). 

Element code 
22 

(441) 
44 

(881) 
88 

(16161) 
H3O9 0.816 0.938 0.988 

MITC9* 0.711 0.962 1.000 

MITC9is* 0.711 0.962 1.000 

TMS4SA (Kulikov & Plotnikova) 0.890 0.941 0.986 

XSOLID85 (Kim et al.) 0.382 0.751 0.932 
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 Large displacement problems 

4.2.5.1 Annular plate subject to end loading 

An annular plate is fully clamped at one end and subjected to a uniform transverse loading P 

at the other end, as is shown in Figures 4.14-4.15. The geometric and material properties are 

specified as: 1R 6 , 2R 10 , h 0.03 , 7E 2.1 10   and 0.0  . The plate is modelled with 

a 153 mesh of various optimised 9-noded elements, and the load-displacement curves at 

points A and B are plotted in Figure 4.16. The results with a fine mesh (609) of H3O9 is 

used as a reference solution. It is observed that the H3O9 and H4O9 results are more accurate 

than other optimized elements. The H3O9 results are also compared with the MITC9* and 

MITC9is* results in Figure 4.17. Also presented are results with a 153 mesh of 9-noded 

hybrid stress elements by Sansour and Kollmann (2000) and a 3061 mesh of 8-noded 

solid-shell elements by Norachan et al. (2012), where all models have comparable number of 

DOFs. Clearly, the meshes of the H3O9 and the MITC9* elements yield more accurate 

results than others.  

 

 

Figure 4.14: Annular plate subject to end loading. 
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Figure 4.15: Deformed configuration of the annular plate problem. 

 

 

Figure 4.16: Load-displacement curves for a 153 mesh of various optimised 9-noded elements. 
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Figure 4.17: Load-displacement curves for meshes of various quadrilateral elements having the same 

number of DOFs. 

 

4.2.5.2 Pinched hemispherical shell with 18 cut-off 

Consideration is given here to a large displacement problem where a hemispherical shell with 

an 18°circular cut-off at its top is subjected to symmetric concentrated forces at its base, as 

shown in Figures 4.18-4.19. The geometric and material parameters are: R = 10, h = 0.04, 
7E 6.825 10   and 0.3  . Due to symmetry, a quarter of the shell is modelled with three 

uniform meshes (44, 88 and 1616) of various 9-noded element types, with the load-

displacement curves of the radial displacement at Point A and B compared in Figures 4.20-

4.21. The predictions of Celigoj using a 1616 mesh (Celigoj, 1996) are also presented for 

comparison purposes. 
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Figure 4.18: Pinched hemispherical shell with a 18 cut-off. 

 

 

 

Figure 4.19: Deformed configuration of pinched hemispherical shell with a 18 cut-off. 
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a. 44 mesh 

 

b. 88 mesh 

Figure 4.20: Load-displacement curves of the radial displacement at Point A with different meshes of 

9-noded elements (Cont’d…). 
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c. 1616 mesh 

Figure 4.20: Load-displacement curves of the radial displacement at Point A with different meshes of 

9-noded elements. 

 

a. 44 mesh 

Figure 4.21: Load-displacement curves of the radial displacement at Point B with different meshes of 

9-noded elements (Cont’d…). 
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b. 88 mesh 

 

c. 1616 mesh 

Figure 4.21: Load-displacement curves of the radial displacement at Point B with different meshes of 

9-noded elements. 

Clearly, noticeable locking phenomenon is exhibited in the conforming element model, 

which persists even in the refined 1616 mesh mainly attributed to membrane locking. The 

optimised elements H3O9 and H4O9 provide better approximations of the shell response for 
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a coarse mesh (44), followed by the mixed elements MITC9* and MITC9is*. Variants 

based on the corrective alternative approach, on the other hand, are less accurate than those 

based on the objective alternative approach particularly for coarse meshes, though this 

difference diminishes with mesh refinement. It is also observed that the equilibrium paths of 

the coarse mesh with H2O9 deviate from the other curves in terms of the curve shapes, which 

indicates the importance of the inclusion of correction hierarchic strain modes in the 

optimisation. All the elements converge with mesh refinement to Celigoj’s solution. 

The sensitivity of the element performance to distortion is also investigated with 44 and 88 

irregular meshes, which are obtained by moving the three nodes (C, D, E) in a regular mesh 

to positions (C’, D’, E’), as shown in Figure 4.22. By changing the positions of the inward 

and outward forces, two sets of results are readily obtained with the distorted meshes. Figures 

4.23-4.24 depict the two sets of load-displacement curves with the H3O9, MITC9* and 

MITC9is* elements. It appears that in the coarser mesh the H3O9 element provides better 

predictions than the mixed elements for both distortion cases. On the other hand, the 

MITC9is* element performs better than MITC9* element in one distortion case but is not as 

accurate in the other one. Nevertheless, all the solutions converge in the finer mesh. 

 

          

 

 

 

 

Figure 4.22: Irregular meshes of a quarter model. (The larger points in the figure represent the nodes 

in a 44 mesh. Distorted mesh 1 corresponds to the inward and outward forces denoted in black, 

while Distorted mesh 2 corresponds to the forces denoted in grey.) 
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a. 44 mesh 

 

b. 88 mesh 

Figure 4.23: Load-displacement curves for meshes of different 9-noded elements (Distorted mesh 1).  
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a. 44 mesh 

  

b. 88 mesh 

Figure 4.24: Load-displacement curves for meshes of different 9-noded elements (Distorted mesh 2). 
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 Triangular shell element 

 Zero energy mode test 

In this test, the number of zero eigenvalues of the stiffness matrix for an unsupported shell 

element is counted for each of the 6-noded element types. Both regular and irregular element 

shapes are considered in this test (Figure 4.25) to allow for more possibilities. All the 

considered elements have exactly six zero eigenvalues of their element stiffness matrix, 

hence indicating absence of spurious mechanism.  

 

 

Figure 4.25: Various element shapes for the zero energy mode test of 6-noded shell element. 

 Isotropic element test 

Herein, an arbitrarily shaped triangular element (see Figure 4.26) is employed for the 

isotropic element test. Geometric and material parameters are given as: thickness t = 0.001, 

Young’s modulus E = 106 and Poisson’s ratio ν = 0.2. In this test, 24 sets of strain-inducing 

displacement modes are respectively imposed to the considered 6-noded elements. For each 

prescribed displacement set, three nodal numbering sequences are used, and the maximum 

relative error in the predicted total strain energy by using three nodal orderings is presented in 

Table 4.8. Results show that all the considered elements pass the isotropic element tests.  
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Figure 4.26: Geometry of an arbitrary 6-noded triangular element for isotropic element tests. 

 

Table 4.8:  Results of isotropic element tests for various 6-noded elements. 

Mode 
Displacement 

fields 

Relative error in the predicted total strain energy by using three nodal orderings (%) 

H2O6 H3O6 H4O6 H3C6 H4C6 MITC6* 

1 u=ax 0.000 0.000 0.000 0.000 0.000 0.000 

2 v=ay 0.000 0.000 0.000 0.000 0.000 0.000 

3 u=ay or v=ax 0.000 0.000 0.000 0.000 0.000 0.000 

4 u=ax2 0.000 0.000 0.000 0.000 0.000 0.000 

5 v=ay2 0.000 0.000 0.000 0.000 0.000 0.000 

6 u=axy 0.000 0.000 0.000 0.000 0.000 0.000 

7 v=axy 0.000 0.000 0.000 0.000 0.000 0.000 

8 u=ay2 0.000 0.000 0.000 0.000 0.000 0.000 

9 v=ax2 0.000 0.000 0.000 0.000 0.000 0.000 

10 θx=ax 0.000 0.000 0.000 0.000 0.000 0.000 

11 θy=ay 0.000 0.000 0.000 0.000 0.000 0.000 

12 θx=ay 0.000 0.000 0.000 0.000 0.000 0.000 

13 θy=ax 0.000 0.000 0.000 0.000 0.000 0.000 

14 θx=ax2 0.000 0.000 0.000 0.000 0.000 0.000 

15 θy=ay2 0.000 0.000 0.000 0.000 0.000 0.000 

16 θx=axy 0.000 0.000 0.000 0.000 0.000 0.000 

17 θy=axy 0.000 0.000 0.000 0.000 0.000 0.000 

18 θx=ay2 0.000 0.000 0.000 0.000 0.000 0.000 

19 θy=ax2 0.000 0.000 0.000 0.000 0.000 0.000 

20 w=ax 0.000 0.000 0.000 0.000 0.000 0.000 

21 w=ay 0.000 0.000 0.000 0.000 0.000 0.000 

22 w=ax2 0.000 0.000 0.000 0.000 0.000 0.000 

23 w=ay2 0.000 0.000 0.000 0.000 0.000 0.000 

24 w=axy 0.000 0.000 0.000 0.000 0.000 0.000 
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 Patch tests 

The five-element patch by MacNeal and Harder (1985), described in Section 4.1.2, is adapted 

to test the 6-noded triangular element, as shown in Figure 4.27. The boundary conditions 

used for the constant membrane strain and constant bending strain mode tests are the same as 

those defined in Section 4.1.2. 

 

 

Figure 4.27: Patch test for 6-noded shell elements. 

The patch test results of various 6-noded element types corresponding to a constant 

membrane strain state ( x y xy 0.001      )  are listed in Table 4.9, where the planar 

displacements at all internal nodes, along with planar strains of the two internal elements 

evaluated at node 25, are compared against the theoretical values. The patch test results of the 

considered 6-noded elements associated with a constant bending strain state 

( x y xy 0.001      ) are given in Table 4.10, where the transverse displacement and 

rotations at all internal nodes and curvatures of two internal elements evaluated at node 25 

are compared against corresponding theoretical values. It is observed from both tables that 

the considered 6-noded elements all pass the patch tests. 
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Table 4.9: Relative error in planar displacements and strain components in membrane patch test. 

Approach 
Maximum error 

in ux0 

Maximum error 
in uy0 

Maximum error 
in x  

Maximum error 
in y  

Maximum error 
in xy  

H2O6 0.000 0.000 0.000 0.000 0.000 

H3O6 0.000 0.000 0.000 0.000 0.000 

H4O6 0.000 0.000 0.000 0.000 0.000 

H3C6 0.000 0.000 0.000 0.000 0.000 

H4C6 0.000 0.000 0.000 0.000 0.000 

MITC6* 0.000 0.000 0.000 0.000 0.000 

 

Table 4.10: Relative error in transverse and rotational displacements and curvatures in out-of-plane 

bending patch test. 

Approach 
Maximum 
error in uz0 

Maximum 
error in x  

Maximum 
error in y  

Maximum 
error in x  

Maximum 
error in y  

Maximum 
error in xy  

H2O6 0.000 0.000 0.000 0.000 0.000 0.000 

H3O6 0.000 0.000 0.000 0.000 0.000 0.000 

H4O6 0.000 0.000 0.000 0.000 0.000 0.000 

H3C6 0.000 0.000 0.000 0.000 0.000 0.000 

H4C6 0.000 0.000 0.000 0.000 0.000 0.000 

MITC6* 0.000 0.000 0.000 0.000 0.000 0.000 

 

The behaviour of the considered 6-noded elements for an irregular mesh, where the original 

patch is distorted by shifting four edge nodes 13, 14, 15 and 16, either parallel or 

perpendicular to the edges, and moving the internal node 25 along the x-direction, as 

illustrated in Figure 4.28. All the shifts of nodal positions are of a magnitude d = 0.01. 

Results of the membrane patch test with this distorted mesh are given in Table 4.11, which 

indicate that all the optimised 6-noded elements pass the test owing to the enforcement of 

zero mean on each hierarchic strain mode. The MITC6*, however fails in the constant strain 

patch test for the distorted mesh. 

 



Verification of Monolithic Shell Elements 

 

130 
 

 

Figure 4.28: Patch test for 6-noded shell elements (distorted mesh). 

Table 4.11: Relative error in transverse and rotational displacements and curvatures in membrane 

patch test (distorted mesh). 

Approach 
Maximum error 

in ux0 

Maximum error 
in uy0 

Maximum error 
in x  

Maximum error 
in y  

Maximum error 
in xy  

H2O6 0.000 0.000 0.000 0.000 0.000 

H3O6 0.000 0.000 0.000 0.000 0.000 

H4O6 0.000 0.000 0.000 0.000 0.000 

H3C6 0.000 0.000 0.000 0.000 0.000 

H4C6 0.000 0.000 0.000 0.000 0.000 

MITC6* 0.089 0.056 0.185 0.113 0.561 

 

 Convergence rate tests 

4.3.4.1 Clamped square plate problem 

The same numerical example as given in Section 4.1.3.1 is employed herein to assess the 

convergence rates of various 6-noded elements. Due to symmetry, a quarter of the plate is 

modelled with uniform meshes of the triangular element, as is shown in Figure 4.29. In this 

example, the solution with a fine mesh (128128) of H3O6 elements is regarded as a 

reference solution. For all the optimised 6-noded elements and the MITC6* element, the 

accuracy measure (4.1) is employed. Figure 4.30 shows the convergence results of various 

optimised triangular elements, which show an effective relief from shear locking and have 
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nearly optimal convergence rate in this example. In terms of accuracy, the H2O6 solution, 

which uses optimisation without hierarchic terms, is not as accurate as those with hierarchic 

correction. On the other hand, the objective alternative approach, using third or fourth order 

hierarchic optimisation, is more accurate than the corrective alternative. Note that in the case 

where h/L = 0.01, the H4O6 and the H4C6 solutions show a lifted tail after reaching a 

relatively high accuracy level, which may be due to rounding errors and the relative error 

measure employed. 

The H3O6 element is also compared to the MITC6* and the MITC6 (Kim & Bathe, 2009) 

elements. Note that the MITC6 results employs the s-norm as a measure of accuracy, as given 

by (4.2). Although (4.1) and (4.2) do not yield equivalence for non-conforming formulations, 

it is still reasonable to compare the results of the MITC6 element using the measure of (4.2) 

against the results of the other elements using the measure of (4.1). Figure 4.31 shows that 

the H3O6 results have better accuracy and the convergence rate than the MITC6 results, 

although there is a noticeable shift of curves upward as h/L decreases. It is also shown that 

the convergence rate of the MITC6* solution is much slower for this problem. 

 

 

Figure 4.29: A quarter-model of a clamped square plate subjected to uniform pressure (6-noded shell 

element). 
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a. h/L= 0.0001 

 

b. h/L = 0.001 

 

c. h/L = 0.01 

Figure 4.30: Convergence curves of variants of optimised 6-noded elements for the clamped square 

plate problem. 

 

a. h/L= 0.0001 

 

b. h/L = 0.001 

 

c. h/L = 0.01 

Figure 4.31:  Convergence curves of H3O6 and MITC6* in comparison with MITC6 for the clamped 

square plate problem. 
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4.3.4.2 Cylindrical shell problem 

The same cylindrical shell problem, as described in Section 4.1.3.2, is employed to assess the 

convergence rates of various triangular shell elements. Similarly, two boundary conditions at 

both curved ends are considered: a free boundary condition and a fully clamped boundary 

condition. Due to symmetry, an octant of the model is analysed with a uniform mesh pattern, 

as shown in Figure 4.32. Figures 4.33-4.34 present the behaviour of various optimised 

elements with respectively free edge boundary and clamped edge boundary. The relative 

error measure (4.1) is employed. Significant locking is observed in the H2O6 solution, in 

particular for the free edge boundary condition, while the other optimised elements exhibit 

good accuracy and convergence rate, with the H3O6 solution providing slightly better 

accuracy. In Figures 4.35-4.36, the H3O6 results are compared against the MITC6* results, 

and the MITC6 solution (Kim & Bathe, 2009) in accordance with the relative error measure 

(4.2) is also presented for comparison. It is observed that the H3O6 and MITC6* elements 

have maginally comparable accuracy and convergence rates for the considered boundary 

conditions and (h/L) ratios. The figures also show that the MITC6 element has slower 

convergence rates and less accuracy for thin shells (h/L =0.0001).  

 

 

Figure 4.32: An octant model of the cylindrical shell problem with 6-noded shell elements. 
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a. h/L= 0.0001 

 

b. h/L= 0.001 

 

c. h/L= 0.01 

Figure 4.33: Convergence curves of variants of optimised 6-noded elements for the cylindrical shell 

problem where both ends are free. 

 

a. h/L= 0.0001 

 

b. h/L= 0.001 

 

c. h/L= 0.01 

Figure 4.34: Convergence curves of variants of optimised 6-noded elements for the cylindrical shell 

problem where both ends are clamped. 
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a. h/L= 0.0001 

 

b. h/L= 0.001 

 

c. h/L= 0.01 

Figure 4.35: Convergence curves of H3O6 and MITC6* in comparison with MITC6 for the 

cylindrical shell problem where both ends are free. 

 

a. h/L= 0.0001 

 

b. h/L= 0.001 

 

c. h/L= 0.01 

Figure 4.36: Convergence curves of H3O6 and MITC6* in comparison with MITC6 for the 

cylindrical shell problem where both ends are clamped. 
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 Linear problems 

4.3.5.1 Pinched cylinder problem 

This is a linear problem, where a cylindrical shell, supported with rigid diaphragms at both 

end, is loaded with a pair of pinching loads, as shown in Figure 4.37. The geometric and 

material properties are given as: L/R = 2 , R/h = 100  and ν = 0.3. Due to symmetry, an octant 

of the cylindrical shell is modelled with three uniform meshes (44, 88, and 1212) of 

various 6-noded elements, with an 88 mesh depicted in Figure 4.37. The non-dimensional 

deflection the point of loading, C Cw w Et P , is used for comparison purposes, and the 

reference result is given by a series solution by Lindberg et al. (1969) ( Cw 164.24  ). All 

the predicted normalised results are listed in Table 4.12. Also provided are the results by 

Bucalem et al. (2000), where M6-3 and M7-3 correspond to respectively a 6-noded and a 

7-noded triangular element employing an assumed strain method. The poor predictions given 

by the conforming meshes indicate significant locking. The accuracy of the H3O6 and H4O6 

is manifested in a very coarse mesh, followed by the H3C6, H4C6, and M6-3 elements. 

Although M7-3 provides a prediction more close to 1.0 in the coarse 44 mesh, its prediction 

improves slower than the others, evident from persistence of the over-estimation even in a 

fine mesh of 1212 elements.  

 

Figure 4.37: Pinched cylindrical shell supported by rigid diaphragms (triangular elements). 
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Table 4.12: Normalised deflections at the point of loading for the pinched cylinder problem 

(triangular elements). 

Element 44 88 1212 

CNF6 0.143 0.486 0.743 

H2O6 0.389 0.713 0.878 

H3O6 0.726 0.922 0.975 

H4O6 0.755 0.924 0.976 

H3C6 0.599 0.890 0.964 

H4C6 0.652 0.907 0.970 

MITC6* 0.436 0.834 0.958 

M6-3 (Bucalem et al.) 0.640 0.900 0.980 

M7-3 (Bucalem et al.) 1.190 1.130 1.100 

 

 

4.3.5.2 Hemispherical shell with an 18 cut-out 

Another benchmark linear problem is used to assess the performance of the proposed 

quadratic triangular elements. A hemispherical shell with a 18 cut-out on its top, is loaded 

with an orthogonal set of two inward and two outward forces, 2P, as depicted in Figure 4.38. 

The loading, geometric and material parameters are: P = 1.0, R = 1.0, h = 0.004, 

E = 6.825108 and ν = 0.3.  

 

 

Figure 4.38: Pinched hemispherical shell with a 18 cut-off (triangular element mesh). 
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Due to symmetry, a quarter of the hemispherical shell is modelled with three uniform meshes 

(44, 88, and 1212), and the predictions by various elements on the radial deflection at the 

point of loading are compared. A converged solution using MITC6, 0.09355, is used as a 

reference value. The displacement predictions by different elements, normalised by the 

reference value, are listed in Table 4.13. The results with M6-3 and M7-3 by Bucalem et al. 

(2000) are also presented for comparison. Again, the H4O6 and H3O6 elements provide 

better accuracy with coarser meshes, followed by their corrective counterparts. More 

distorted meshes (Figure 4.39) are also used to investigate the performance of various 

elements. The accuracy of all element types degrade significantly for a 44 mesh owing to 

the highly distorted element shapes. It is also noticed that an 88 mesh of the optimised 

elements, in particular H3O6 and H4O6, becomes capable of providing good accuracy.  

            

Figure 4.39: Pinched hemispherical shell with a 18 cut-off (distorted 6-noded element mesh). 

Table 4.13: Normalised deflections at point A for the pinched hemispherical shell problem (triangular 

element meshes). 

Element 
Regular mesh Distorted mesh 

44 88 1616 44 88 1616 

CNF6 0.011 0.131 0.419 0.006 0.070 0.256 

H2O6 0.049 0.343 0.701 0.051 0.190 0.489 

H3O6 0.878 0.986 0.994 0.452 0.952 0.990 

H4O6 0.905 0.987 0.995 0.585 0.967 0.991 

H3C6 0.692 0.977 0.993 0.209 0.912 0.985 

H4C6 0.782 0.982 0.993 0.372 0.944 0.988 

MITC6* 0.634 0.949 0.986 0.232 0.835 0.958 

M6-3 (Bucalem et al.) 0.160 0.660 0.870 - - - 

M7-3 (Bucalem et al.) 0.650 0.910 0.960 - - - 

A A 
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 Large displacement problems 

4.3.6.1 Annular plate problem 

The same annular plate problem as presented in Section 4.1.5.1 is used here to investigate the 

performance of various 6-noded shell elements. The plate is modelled with two meshes of the 

triangular elements (161 and 322), with the 322 mesh depicted in Figure 4.40. Load-

vertical displacement curves at Point A, B, and C with different meshes and different element 

types are investigated.  

 

Figure 4.40: Annular plate subject to end loading (triangular element mesh). 

 

Figure 4.41: Equilibrium paths of vertical displacement at Point A for the annular plate problem (6-

noded elements). 
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Figure 4.42: Equilibrium paths of vertical displacement at Point B for the annular plate problem (6-

noded elements). 

 

Figure 4.43: Equilibrium paths of vertical displacement at Point C for the annular plate problem (6-

noded elements). 
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Figure 4.44: Equilibrium paths of vertical displacement at Point A with various optimised 6-noded 

elements for a 161 mesh. 

Figures 4.41-4.43 depict the load-displacement curves at point A, B, and C with the H3O6 

and the MITC6* elements, and a convergent solution of the H3O6 using a 648 mesh is 

taken as a reference solution. Also plotted are the results by Campello et al. (2003), who 

employed the same meshes with 6-noded triangular elements that are based on the enhanced 

displacement method. The results with the H3O6 element are much closer to the reference 

solution in particular in the coarser mesh. As the mesh is refined, the performance of the 

MITC6* element becomes almost comparable with the H3O6 element due to the decreased 

degree of element irregularity. Figure 4.44 also compares the load-deflection curves at point 

A with various optimised 6-noded elements for a 161 mesh. Again, the optimisation 

approach with an objective alternative is more accurate than the corrective alternative, while 

the H4O6 element yields slightly better results than the H3O6 element. Still, H3O6 is 

preferred due to the fewer integration points required than H4O6. 

4.3.6.2 Pinched hemispherical shell problem 

Figure 4.45 depicts a hemispherical shell subjected to two inward and two outward forces 90 

apart at its base. The shell is made of an isotropic material with material properties of 

E = 6.825107 and ν = 0.3. The geometric parameters of the hemispherical shell are radius 

R = 10.0 and thickness h = 0.04. Radial displacements at Point A and B against the 
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concentrated force P are investigated, and the solution by Arciniega and Reddy (2007) is used 

as a reference solution. A quarter-model is employed due to symmetry, and two alternative 

meshes of 6-noded elements are employed in the model (each of the three subdomains in the 

quarter model are discretised into respectively a 33 and a 66 mesh pattern). The deflected 

configuration of the pinched hemisphere is depicted in Figure 4.46.  

 

 

Figure 4.45: Hemispherical shell subject to symmetric concentrated forces at its base and a 66 mesh 

pattern. 

 

Figure 4.46: Deformed configuration of the hemispherical shell. 

Results using optimised 6-noded elements are shown in Figure 4.47 for two meshes. The 

conforming element CNF6 exhibits considerable inaccuracy, persisting even in the finer mesh, 

which is mainly attributed to membrane locking. As stated before, the H3O6 and H4O6 

elements exhibit superior performance to their corrective counterparts in the coarser mesh, 

A 

B 
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and the discrepancy reduces with mesh refinement. In Figure 4.48, the H3O6 results are 

compared against the MITC6* solution, which again indicates the effectiveness of the H3O6 

element in addressing locking in particular for a coarse mesh. 

 

a. 33 mesh 

 

b. 66 mesh 

Figure 4.47: Load-displacement curves of the radial displacements with different meshes of various 

optimised 6-noded elements. 
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a. 33 mesh 

 

b. 66 mesh 

Figure 4.48: Load-displacement curves of the radial displacements with different meshes of H3O6 

and MITC6* elements. 
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 Summary 

In this chapter, the co-rotational formulations of curved quadrilateral and triangular shell 

elements presented in Chapter 3 have been applied using ADAPTIC. For comparison 

purposes, shell elements based on the MITC formulation are also considered, where the strain 

sampling and mapping are undertaken following respectively the original MITC elements but 

with distinct strain-displacement relationship and other assumptions, as detailed in 

Appendix B.  

A series of fundamental element tests, including zero strain energy tests, constant strain patch 

tests and isotropic element tests, are conducted to examine the performance of the newly 

developed formulation based on hierarchic optimisation. Tests are performed to investigate 

the convergence rates of the proposed quadrilateral and triangular elements. Several linear 

and geometrically nonlinear benchmark problems are also presented to assess the accuracy 

and efficiency of the elements.  

Results show that the optimised elements all pass the fundamental element tests, whereas the 

MITC elements may not pass constant strain tests, in particular for irregular element meshes. 

Nevertheless, both the optimised elements and the MITC* elements exhibit a significant 

relief of shear locking and membrane locking. Among the optimised elements, the H2O9 and 

H2O6 elements, which do not employ corrective hierarchic strain modes in the optimisation, 

result in degraded performance for curved shell problems compared to elements with 

hierarchic corrections, which highlights the importance of the inclusion of higher-order strain 

modes in the optimisation. Furthermore, for the same hierarchic correction order, the 

objective alternative yields superior results than the corrective alternative in terms of both 

accuracy and convergence rate, with the objective alternative based on third order hierarchic 

optimisation (H3O9 and H3O6 elements) exhibiting both accuracy and efficiency. The H3O9 

and H3O6 elements also have comparable or even better accuracy than the mixed elements 

based on the MITC formulations, mainly due to effective relief of distortion locking. 
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CHAPTER 5 

5 Proposed Laminated Shell Model 

 

 

 Introduction 

This chapter starts with a presentation of a kinematic model for sandwich shells, with specific 

reference to the through-thickness variation of displacement fields and the transverse shear 

strains. The efficiency and accuracy of the sandwich model is verified using a one-

dimensional (1D) beam problem by comparing the results with other sandwich models. It is 

important to note that although the proposed kinematic description for sandwich shells is 

utilised in this research for analysing LG structures, it can also be applied to many other 

sandwich structures with symmetric and asymmetric lay-ups. Upon verification of the 

sandwich shell model, a generalisation to multi-layer shells with an alternating stiff/soft lay-

up is presented, and this is again verified using 1D beam problems associated with laminated 

structures. Similar to the special case of sandwich shells, the proposed general kinematic 

model is applicable to not only multi-layer LG structures but also other laminations with an 

alternating stiff/soft lay-up.  

It is worth noting that although the kinematic descriptions of sandwich and laminated shells 

in this chapter are initially presented for plate problems, they are equally applicable to local 

formulations of shallow shells, as will be elaborated in Chapter 6 for application to shallow 

shell elements. Furthermore, through incorporation within a co-rotational framework, they 

are also applicable to the nonlinear analysis of general curved shells, which will also be 

elaborated in Chapter 6. 
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 Kinematic description for sandwich shells 

Figure 5.1 depicts the sandwich model for a plate along with the local coordinates, where the 

x- and y-axes are located at the middle surface while the z-axis is normal to the plate, and 

where each layer is identified by a unique index.  

 

 

Figure 5.1: Three-layered sandwich plate and local coordinate system. 

 Zigzag displacement fields 

In this sandwich plate model, a piecewise linear variation of planar displacements in the z 

direction is assumed, thus readily satisfying C0-continuity at laminar interfaces. Accordingly, 

the through-thickness distribution of the planar displacements can be decomposed into four 

independent displacement modes i (z) (i 1 4)    (Figure 5.2), including a constant and a 

linear mode, 1  and 2 , in accordance with the Reissner-Mindlin kinematic hypothesis, as 

well as two zigzag modes, 3  and 4 , accounting for the zigzag effect. 3  and 4  are both 

orthogonal to the constant and linear modes while associated with respectively different and 

identical rotations of the normal in the two face sheets; these are expressed as: 

 
 
 

(1) (1)
1 13 3

(2) (2)
3 2 23 3

(3) (3)
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 (5.1) 

 
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 (5.2) 
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in which h  and h  denote the values of z at the bottom and top of the cross-section, 

respectively; kh   and kh   refer to the values of z at the bottom and top of layer (k), 

respectively; and expressions of (k)
iâ  and (k)

ib̂  (i =3,4) are provided in Appendix C.  

   

Figure 5.2: Four through-thickness displacement modes for sandwich plate. 

The variation of planar displacements under bending is investigated by performing a 2D 

plane-stress analysis of a sandwich beam with a soft core, which indicates that the two stiff 

layers have almost identical rotations of their respective normals, whereas the core can have a 

different rotation. Therefore, following on from the observed cross-sectional behaviour, the 

contribution from 3  is neglected, and 4 (z)  is proposed as a zigzag function specific to 

sandwich structures, applicable regardless of cross-sectional symmetry, which is re-denoted 

as 4(z) (z)   . 

It is important to note that for symmetrically laminated sandwich structures, the zigzag 

function (z)  is equivalent to Murakami’s zigzag function (MZZF) (Murakami, 1986), 

which is defined as: 

 
(k)

k (k) (k)
k k

k

2(z z )
f (z) ( 1) , , z h , h

h  


       (5.3) 

where kh  is the thickness of layer (k), and (k)z  is the extracted value of z on the middle 

surface of layer (k). 

 However, if the sandwich plate is asymmetrically laminated, (z)  is more effective than the 

MZZF, as will be illustrated in Section 5.3.2.  
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The addition of the zigzag function to the Reissner-Mindlin planar displacements yields the 

following planar displacements: 

0u (x, y, z) u (x, y) z (x, y) (z) (x, y) ( x, y)            (5.4) 

where 0u  are the planar displacement fields along the x- or y-axis evaluated on the middle 

surface;   are the components of the normal vector along the x- or y-axis in the absence of 

zigzag displacements;   are the additional fields associated with the proposed zigzag 

function along the x- or y-axis. The transverse displacement is assumed to be constant 

through the plate thickness, and is thus denoted by z0u (x, y) .  

 Kinematics of individual layers  

Each constitutive layer of the sandwich model is regarded as a pseudo plate. At layer (k) 

( k 1 3  ), the translational displacements on its middle surface are obtained as: 

(k ) (k ) (k )
0u u z ( x, y)            (5.5) 

(k )
z z0u u  (5.6) 

where (k) (k )(z )    represents the extracted value of the zigzag function (z)  on the 

middle surface of layer (k); (k)z  is the extracted value of z on the middle surface of layer (k). 

The rotational displacements of layer (k) are derived by taking the first derivatives of the 

planar displacements with respect to z: 

( k )( k )

(k ) (k) (k)

zz

u
, ( x, y)

z z


  
 

          
 

 (5.7) 

Accordingly, the following relationship holds at each layer: 

(k ) (k ) (k )
c c a a u T u T u  (5.8) 
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where 
T

c x0 y0 z0 x yu ,u ,u , ,  u are the basic local displacement fields consistent with the 

Reissner-Mindlin formulation; 
T

a x y,  u are the additional displacement fields 

associated with the zigzag function (z) ; and 
T(k) (k) (k) (k) (k) (k)

x y z x yu , u , u , ,  u  are the 

displacement fields for layer (k) treated as a pseudo plate. 

The strain state within each layer (k) is fully determined by the membrane strains (k)
mε , 

bending generalised strains (k)
bε , and transverse shear strains (k)

sε , which are expressed at the 

layer level as follows: 
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              
          

ε  (5.13) 

in which 0z  represents the offset of the shell mid-surface along the z-axis, thus generalising 

the kinematics of flat plates to shallow shells; in this respect, the kinematic expressions 

presented previously remain unaffected for a shallow shell with z taken as zero along the 

shell mid-surface. It is worth noting that quadratic terms of the membrane strains in (5.11) 

take into account the effect of shell curvature, which are not necessary within a co-rotational 

approach but enable better accuracy with coarser meshes. 

 Through-thickness distribution of transverse shear strains 

The face-to-core stiffness ratio (FCSR) plays an important role in the through-thickness 

distribution of the transverse shear stresses and strains. To illustrate this point, sandwich 

beams with various FCSRs have been modelled under bending with 2D plane-stress analysis, 

where schematic distributions of the transverse shear stress and strain with different FCSRs 

are depicted in Figure 5.3. Clearly, the distribution of the transverse shear stress changes 

significantly with different FCSR values. However, the transverse shear strain distribution 

shows that for the considered FCSR range, the core sustains much larger strains than the face 

sheets and exhibits a near constant distribution through the constitutive layer. In addition, for 

a relatively small FCSR where the face sheets and the core have comparable material 

properties, the associated transverse shear strains then have comparable magnitude with the 

distribution in the face sheets exhibiting a quasi-linear pattern. Based on the observed pattern 

of transverse shear strains, it is assumed that in the face sheets the shear strain varies linearly 
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from zero at the outer surface, whereas for the core the shear strain remains constant, as 

shown in Figure 5.4. The through-thickness distribution of the assumed transverse shear 

strain can thus be expressed as follows: 

 (k) (k) (k)
k s k k+s,AS F (z) , z h ,h  ε ε  (5.14) 

where (k)  is the shear correction factor of layer (k), and kF (z)  is the assumed distribution 

of transverse shear strains at layer (k): 

   (1) (3)

1 2 3
1 3

2 z z 2 z z
F (z) 1 , F (z) 1, F (z) 1

h h

 
      (5.15) 

The shear correction factors (k)  (k=13) can be determined from energy equivalence at 

the generalised stress/strain and material stress/strain levels, considering the equivalence of 

the generalised shear stresses and the resultant shear forces from equilibrium considerations. 

The employment of equivalence in transverse shear strain energy at each layer gives: 

k

k

h
(k)T (k) (k)T (k)
s AS s,AS s,AS

h

dz




 ε Q ε σ  (5.16) 

where (k)
s,ASσ  are material transverse shear stresses associated with (k)

s,ASε , and (k)
ASQ are the 

corresponding resultant transverse shear forces, expressed as: 

k

k

h
(k) (k)
AS s,AS

h

dz




 Q σ  (5.17) 

Substituting (5.14)-(5.15) into (5.16) and employing a linear constitutive relationship yield 
(1) (3) 3

4
     and (2) 1  . 



Proposed Laminated Shell Model 

 

153 
 

 

 a. transverse shear stress 

 

b. transverse shear strain 

Figure 5.3: Through thickness distribution of transverse shear stress/strain with various FCSRs (3 

layers). 

 

Figure 5.4: Assumed through-thickness distribution of transverse shear strain for sandwich model. 
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It is important to note that the proposed approach is based on an assumed through-thickness 

distribution for the transverse shear strains rather than transverse shear stresses, thus no 

interlayer continuity constraints are imposed on the shear stress. In addition to offering a 

realistic representation of the exact solution, albeit with discontinuous transvers shear stresses, 

this assumed strain distribution is much more practical than an assumed stress distribution 

when considering material nonlinearity, where the continuity requirement on transverse shear 

stresses necessitates an iterative solution procedure which imposes additional computational 

demands. Combined with the use of only two additional displacement fields associated with 

the proposed zigzag function, an effective sandwich shell model is obtained, which is 

applicable to both symmetric and asymmetric cross-sections, and which achieves good levels 

of accuracy with high computational efficiency, as demonstrated in the following section. 

 Verification of through-thickness kinematics 

A three-point bending problem of a sandwich beam is used here to illustrate the effectiveness 

and efficiency of the proposed sandwich model. As depicted in Figure 5.5, a simply-

supported sandwich beam, with length L= 0.5 and depth h = 0.01, is loaded with a 

concentrated transverse force P=–100 at midspan. The isotropic material properties of the 

face sheets are identical, with Young’s modulus (1) (3) 10E E 7 10    and Poisson’s ratio 
(1) (3) 0.3    . The Young’s modulus and shear modulus for the core are obtained by 

dividing those of face sheets by the FCSR which is assumed to be respectively 1, 10, 102, 103, 

and 104. This problem is modelled with 1D 3-noded sandwich beam elements employing the 

proposed zigzag displacement field and transverse shear strain distribution, where shear 

locking is eliminated by using two-point strain mapping of the transverse shear strain. The 

central deflection and stress components at ¼ span are investigated: 

      z z0 x x xz xzu u L 2,0 , L 4, h 2 , L 4,0         

where the convergent solution obtained from 2D plane-stress analysis is used as a reference. 

Note that this is a linear elastic problem of a straight sandwich beam, thus a linear strain-

displacement relationship is considered without the inclusion of the second-order terms given 

in (5.11). 
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Figure 5.5: A simply-supported sandwich beam loaded with a transverse force at the midspan. 

 Sandwich beam with symmetric lay-up 

Here the performance of the proposed sandwich model is investigated for a symmetric lay-up, 

where the thicknesses of the three layers are assumed to be identical: 1 2 3h h h h 3   . A 

uniform mesh of 32 sandwich beam elements which employ the proposed zigzag 

displacements and transverse shear strain distribution provides a convergent solution, denoted 

as ‘Present’. By restraining all additional displacement variables in the sandwich beam model, 

a FSDT solution is also obtained, although the assumed through-thickness distribution of the 

transverse shear strain proposed in this work is employed. This problem has been analysed by 

Hu et al. (2008) in the evaluation of various lamination theories, where the results of Model-2, 

Model-5 and Model-6 are provided in Table 5.1 for comparison. It is worth noting that the 

‘HSDT’ model, which corresponds to Model-2, is based on Reddy’s kinematic assumptions. 

The ‘IC-ZZT’ and the ‘ID-ZZT’ model, corresponding to Model-5 and Model-6, are 

respectively a zigzag formulation with  an assumed continuous transverse shear stress based 

on Touratier kinematic assumptions, and a LW theory without imposing the continuity 

constraints on transverse shear stress, where the face sheets employ the Kirchhoff assumption 

and the core employs the Reissner-Mindlin hypothesis. 

 

   

x 

z 
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Table 5.1: Evaluation of different models for a symmetrically laminated sandwich beam with various 

FCSRs.  

Results Reference value FSDT 
HSDT 

(Hu et al.) 
IC-ZZT 

(Hu et al.) 
ID-ZZT 

(Hu et al.) 
Present 

FCSR=104 

zu  -2.24E-04 -4.71E-05 -4.72E-05 -2.23E-04 -2.23E-04 -2.23E-04 

xσ  -6.90E+05 -3.89E+05 -3.89E+05 -6.90E+05 -6.90E+05 -6.90E+05 

xz  -4.64E+03 -7.50E-01 -1.77E+00 -4.63E+03 -4.63E+03 -4.63E+03 

        

FCSR=103 

zu  -7.32E-05 -4.71E-05 -4.72E-05 -7.31E-05 -7.31E-05 -7.32E-05 

xσ  -3.98E+05 -3.89E+05 -3.89E+05 -3.98E+05 -3.98E+05 -3.98E+05 

xz  -6.79E+03 -7.50E+00 -1.77E+01 -6.76E+03 -6.76E+03 -6.76E+03 

        

FCSR=102 

zu  -4.99E-05 -4.71E-05 -4.71E-05 -4.99E-05 -4.99E-05 -4.99E-05 

xσ  -3.89E+05 -3.89E+05 -3.89E+05 -3.89E+05 -3.89E+05 -3.89E+05 

xz  -6.93E+03 -7.46E+01 -1.75E+02 -6.93E+03 -6.93E+03 -6.93E+03 

        

FCSR=101 

zu  -4.72E-05 -4.69E-05 -4.70E-05 -4.72E-05 -4.72E-05 -4.72E-05 

xσ  -3.88E+05 -3.88E+05 -3.88E+05 -3.88E+05 -3.88E+05 -3.88E+05 

xz  -7.00E+03 -7.14E+02 -1.56E+03 -7.01E+03 -6.95E+03 -6.95E+03 

        

FCSR=100 

zu  -4.53E-05 -4.53E-05 -4.53E-05 -4.53E-05 -4.53E-05 -4.53E-05 

xσ  -3.75E+05 -3.75E+05 -3.75E+05 -3.75E+05 -3.75E+05 -3.75E+05 

xz  -7.64E+03 -5.00E+03 -7.50E+03 -7.73E+03 -7.22E+03 -7.22E+03 

 

It is clear from Table 5.1 that the FSDT results show significant inaccuracy except for a unit 

FCSR value. The HSDT results also lack accuracy in the cases of very soft cores with 

relatively large FCSR. The proposed model, along with the IC-ZZT and ID-ZZT models are 

equally accurate for all the considered scenarios, which verifies the ability of the proposed 

zigzag function in capturing the cross-sectional warping of sandwich structures and confirms 

the feasibility of neglecting the continuity of transverse shear stresses in such problems.  

Figure 5.6 compares the through-thickness distributions of the transverse shear stress at L/4 

for the three models with different FCSR values. Clearly, all models provide almost the same 

predictions on the shear stress distribution in the core. However, the distributions in the face 

sheets show significant discrepancy. The IC-ZZT model provides a continuous curvilinear 

distribution, whereas the ID-ZZT gives zero shear stress in the face sheets due to the 

employment of Kirchhoff assumption in the face sheets. The proposed model yields a 

piecewise linear distribution of the transverse shear stress, which provides an adequate fit of 
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the real distribution for an FCSR of 10 but indicates a big discrepancy for an FCSR of 104. 

Nevertheless, as noted in the previous section, for sandwich structures that consist of a soft 

core, the core offers the dominant contribution to the transverse shear strain energy whereas 

the contribution from the face sheets is not of significance. On the other hand, for sandwich 

structures where the core is of a comparable stiffness with the face sheets, the contribution 

from the faces to the overall transverse shear stress becomes important. In this case,  the 

proposed piecewise linear distribution of the transverse shear strain still provides a good 

approximation of the real shear stress distribution, as is illustrated in Figure 5.6.a. Therefore, 

the proposed transverse shear strain distribution is applicable to sandwich structures with a 

wide range of FCSRs. Furthermore, the omission of constraints on inter-laminar continuity of 

the transverse shear stresses leads to a less coupled multi-layer system, which enhances 

computational efficiency. 

 

 

a. FCSR=10 

Figure 5.6: Through-thickness distribution of transverse shear stress xzσ  (Cont’d…). 

-1E+4

-8E+3

-6E+3

-4E+3

-2E+3

0E+0
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

σ x
z 
(L

/4
)

z/h

present

ID-ZZT (Hu et al.)

IC-ZZT (Hu et al.)



Proposed Laminated Shell Model 

 

158 
 

 

b. FCSR=104 

Figure 5.6: Through-thickness distribution of transverse shear stress xzσ . 

 

 Sandwich beam with asymmetric lay-up 

In order to demonstrate the effectiveness of the proposed zigzag function (t)  in the analysis 

of asymmetric cross-sections, the proposed formulation is compared against two formulations, 

denoted as ‘MZZF1’ and ‘MZZF2’, which add the MZZF to planar displacements which are 

respectively first- and second-order polynomials in z. The through-thickness variation of the 

transverse displacement is neglected in both models. The proposed discrete transverse shear 

strain distribution is employed for all formulations. Two asymmetric lay-ups are considered: 

(1) 3 1h h 2  and 2 1h h 7 , and (2) 3 1h h 2  and 2 1h h 2 . 

The relative errors of the displacement and stress predictions with the considered models are 

shown in Table 5.2, from which it is clear that the proposed zigzag function provides high 

accuracy with various lay-ups and FCSR values. In contrast, the MZZF1 formulation, which 

has the same number of displacement variables as the proposed formulation, is accurate for 

relatively small FCSR values only. By adding a quadratic polynomial to the through-

thickness distribution, the MZZF2 formulation improves on the MZZF1 results for larger 

FCSR values, but still lacks accuracy for a larger FCSR, which implies the need for even 
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higher-order z expansions and hence more zigzag displacement variables. Taking into 

account the number of additional zigzag displacement variables for each of the formulations 

(one for ‘present’ and ‘MZZF1’, and two for ‘MZZF2’), it is evident that the proposed zigzag 

function (t)  exhibits better efficiency than the MZZF for asymmetrically laminated 

sandwich structures. 

Table 5.2: Evaluation of different models for an asymmetrically laminated sandwich beam with 

various FCSRs.  

Results 

Case 1 ( 3 1h h 2 , 2 1h h 7 )  Case 2 ( 3 1h h 2  , 2 1h h 2 ) 

Reference 
value 

Relative Error  Reference 
value 

Relative Error 

Present MZZF1 MZZF 2  Present MZZF 1 MZZF 2 

FCSR=104 

zu  -4.43E-04 0.00% 82.23% 1.13%  -2.39E-04 0.00% 77.54% 1.57% 

xσ  -6.38E+05 0.00% 23.26% 0.04%  -7.92E+05 0.00% 52.08% 3.98% 

xz  -5.47E+03 0.00% 99.61% 4.95%  -4.31E+03 0.00% 99.66% 3.09% 
           

FCSR=103 
zu  -1.19E-04 0.00% 33.85% 0.53%  -8.08E-05 0.00% 33.62% 0.05% 

xσ  -4.90E+05 0.00% 0.02% 0.00%  -3.92E+05 0.01% 3.05% 0.24% 

xz  -5.79E+03 0.01% 96.47% 5.07%  -6.37E+03 0.00% 97.76% 3.06% 
           

FCSR=102 

zu  -8.08E-05 0.00% 3.90% 0.09%  -5.59E-05 0.00% 4.47% 0.01% 

xσ  -4.90E+05 0.00% 0.00% 0.00%  -3.80E+05 0.00% 0.00% 0.00% 

xz  -5.80E+03 0.07% 73.13% 5.08%  -6.55E+03 0.02% 81.54% 3.02% 
           

FCSR=101 

zu  -7.12E-05 0.00% 0.12% 0.01%  -5.21E-05 0.00% 0.16% 0.00% 

xσ  -4.86E+05 0.00% 0.00% 0.00%  -3.80E+05 0.00% 0.00% 0.00% 

xz  -5.89E+03 0.75% 20.40% 4.87%  -6.58E+03 0.28% 27.69% 2.64% 
           

FCSR=100 

zu  -4.53E-05 0.00% 0.00% 0.00%  -4.53E-05 0.00% 0.00% 0.00% 

xσ  -3.75E+05 0.00% 0.00% 0.00%  -3.75E+05 0.00% 0.00% 0.00% 

xz  -6.65E+03 6.83% 0.88% 0.83%  -7.04E+03 3.34% 0.75% 0.56% 

 

 Kinematic description for laminated shells 

Upon verification of the effectiveness and efficiency of the sandwich shell model, a 

generalised multi-layer shell model specific to an alternating stiff/soft lay-up is proposed. 
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 Characteristics of alternating stiff/soft laminations 

Laminations with an alternating stiff/soft lay-up have two main characteristics which 

distinguish them from other laminations. Firstly, the large stiffness ratio between the stiff 

layer and the soft layer (still denoted as ‘FCSR’ hereafter) plays an important role in the 

through-thickness distribution of the transverse shear stresses and strains. To illustrate this 

point, multi-layer beams with an alternating stiff/soft lay-up have been modelled under 

bending with 2D plane-stress analysis, where Figures 5.7-5.8 respectively depict the 

schematic distributions of the transverse shear stress and strain with 5 and 7 constitutive 

layers and various FCSRs. From Figures 5.3, 5.7-5.8, it is observed that the distribution of the 

transverse shear stress changes significantly with different FCSR values. However, the 

transverse shear strain distribution for this type of laminations shows that for the considered 

FCSR range the softer layers sustain much larger strains than the stiffer layers and exhibit a 

near constant distribution through the constitutive layer.  

Secondly, a large FCSR induces significant zigzag effect in such laminations. The variation 

of planar displacements under bending is investigated by performing a 2D plane-stress 

analysis of a multi-layer beam with an alternating stiff/soft lay-up, which indicates that all 

stiff layers have almost identical rotations of their respective normals, whereas the soft layers 

can have different rotations. 

 

 

a. transverse shear stress 

Figure 5.7: Through thickness distribution of transverse shear stress/strain with various FCSRs (5 

layers) (Cont’d…) 
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b transverse shear strain 

Figure 5.7: Through thickness distribution of transverse shear stress/strain with various FCSRs (5 

layers). 

 

 
a. transverse shear stress 

 
b. transverse shear strain 

Figure 5.8: Through thickness distribution of transverse shear stress/strain with various FCSRs (7 

layers). 

 Following on from the above noted characteristics, a laminated shell model with an 

alternating stiff/soft lay-up is proposed. Figure 5.9 depicts the lamination model for a plate 

along with the local coordinates, where the x- and y-axes are located at the middle surface, 
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while the z-axis is normal to the plate, and where each layer is identified by a unique index. It 

is important to note that while the kinematic descriptions is presented for a plate problem, it 

is equally applicable to local formulations of shallow shells and, through incorporation within 

a co-rotational framework, to the nonlinear analysis of general curved shells. 

 

 

Figure 5.9: Laminated plate and local coordinate system. 

 Zigzag displacement fields 

Similar to the sandwich model, this lamination model assumes a piecewise linear variation of 

planar displacements in the z direction. Based on the summarised pattern of the zigzag 

displacements, it is assumed that all stiff sheets have identical rotations of the normal, 

whereas the soft sheets allow different rotations. Accordingly, for a lamination consisting of 

c(N 1)  stiff layers bonded by cN  soft cores ( cN  denotes the number of soft core layers), 

the through-thickness distribution of the planar displacements can be decomposed into a 

constant and a linear mode, in accordance with the Reissner-Mindlin kinematic hypothesis,  

as well as cN  zigzag modes, denoted by o
j (z) c( =1 N )j  , accounting for the zigzag 

effect. Each zigzag mode can be initially expressed as (Figure 5.10.b): 

 
2j

o
j 2j 2j 2j c

2j

2j

0, z h ,h

1
(z) z h , z h ,h ( j 1 N )

h

1, z h ,h



  







   
         

    

 (5.18) 



Proposed Laminated Shell Model 

 

163 
 

By orthogonalising each zigzag mode o
j (z)  with respect to the constant and linear modes, 

with the addition of constant and linear terms, the zigzag mode becomes (Figure 5.10.c): 

o
j j 0,j 1,j(z) (z) z    

 (5.19) 

2 2 2
2 j 2 j 2 j 2 j 2 j 2 j

0,j 1,j 3

h h 4h 4h h 4h 3h1
,

2h 2 2h
     
   

    
 

(5.20) 

The resulting planar displacement fields are expressed as: 

cN
j

α α0 α j α
j 1

u (x, y, z) u (x, y) z (x, y) (z) (x, y) ( x, y)


       
 

(5.21) 

where j
  are the additional fields associated with the proposed zigzag functions along the x- 

or y-axis. The transverse displacement is assumed to be constant through the plate thickness, 

and is thus denoted by z0u (x, y) .  

 

Figure 5.10: Zigzag modes for a 5-layer lamination with alternating stiff/soft lay-up. 

 Kinematics of individual layer 

Each constitutive layer of the lamination model is regarded as a pseudo plate. At layer (k) 

( lk 1 N  , where lN  denotes the number of constitutive layers), the planar displacements 

on the layer mid-surface are obtained as: 

cN
(k) (k) (k) j
α α0 α j

j 1

u u z ( x, y)


         (5.22) 
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where (k) (k)
jj (z )    represents the extracted value of the zigzag function j(z)  on the 

middle surface of layer (k). The transverse displacement on the layer mid-surface is obtained 

from (5.6). 

The rotational displacements of layer (k) are derived by taking the first derivatives of the 

planar displacements with respect to z: 

c

(k)(k)

N(k)
j(k) (k) j (k)

j j
j 1 zz

u
, ( x, y)

z z


  



          

   (5.23) 

Denote 
T

c x0 y0 z0 x yu , u , u , ,  u  as the basic local displacement fields consistent with the 

Reissner-Mindlin formulation, c c
TN N1 1

a x y x y, ,    u  as the additional displacement 

fields associated with o
j (z)

c( j 1 N )  , and  
T(k) (k) (k) (k) (k) (k)

x y z x yu , u , u , ,  u  as the 

displacement fields at layer (k) treated as a pseudo plate. The relationship between the layer 

displacements, (k)u , and multi-layer displacements, cu and au , is then identical to (5.8) with 

(k)
cT  and (k)

aT  obtained from respectively (5.9) and the following equation: 

c

c

c

c
c

(k) (k) (k)
1 j N
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1 j N
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   
 
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 

 

 

 

 

 (5.24) 

The membrane strains (k)
mε , bending generalised strains (k)

bε , and transverse shear strains (k)
sε  

within each layer (k) are obtained from (5.11)-(5.13) with 0z  representing the offset of the 

shell mid-surface along the z-axis, thus generalising the kinematics of flat plates to shallow 

shells. 

 Through-thickness distribution of transverse shear strains 

Based on the aforementioned pattern of transverse shear strains, as depicted in Figures 5.3 

and 5.7-5.8, it is assumed that in the external stiff sheets the shear strain varies linearly from 

zero at the outer surface, whereas for each internal layer the shear strain remains constant. 
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The through-thickness distribution of the assumed transverse shear strain at each layer (k) is 

expressed the same as (5.14) with kF (z)  given as follows: 

   l

l

l

(N )(1)

1 N k l
1 N

2 z z2 z z
F (z) 1 , F (z) 1 , F (z) 1 (k 2 N 1)

h h


         (5.25) 

The shear correction factor (k)  can be derived from energy equivalence at the generalised 

stress/strain and material stress/strain levels via (5.16), which results in l(N )(1) 3

4
     and 

(k)
l1 (k 2 N 1)     . 

In the range of FCSRs, this assumed distribution for the transverse shear strain offers a 

realistic representation of the exact solution without imposing continuity constraints on 

transverse shear stresses, which is also more practical than an assumed stress distribution 

when considering material nonlinearity. The exclusion of stress coupling between layers 

leads to a lamination formulation that achieves good levels of accuracy with high 

computational efficiency, which becomes even more pronounced for laminated shell 

structures with more layers.  

 Verification of through-thickness kinematics of lamination 
model 

A 1D cantilever beam example is used here to illustrate the effectiveness and efficiency of 

the lamination model. As depicted in Figure 5.11, the laminated cantilever, which has a 

length of L = 1.0 and a depth of h = 0.1, is clamped at one end and loaded with a transverse 

force P = –100 at the free end. The lay-up scheme consists of an alternating stiff/soft/… 

configuration. Material properties for the stiff face sheets are: Young’s modulus 
10

(F)E 7 10  , and Poisson’s ratio (F) 0.3  . The Young’s modulus and shear modulus for 

the soft core layers are obtained by dividing those of face sheets by a FCSR which is assumed 

to be respectively 10, 100, 1000, and 10000. The lamination model is assessed for different 

numbers of layers and layer thicknesses, with the considered lay-ups listed in Table 5.3 Note 

that in all considered cases the core layers are of equal thicknesses (C)h , and the total 

thickness of the beam is fixed to h = 0.1.  
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Figure 5.11: A multi-layered cantilever beam loaded with a transverse force at the free end. 

Table 5.3: Lay-ups of laminated cantilever beam.  

Lay-up Symmetry Layer thicknesses 

(1) Symmetric All stiff layers: (F) (C)h 5h  

(2) Symmetric All stiff layers: (F) (C)h (1 5)h  

(3) Asymmetric Top stiff layer:  l(N )
(C)(F)h 10h ; other stiff layers: (F) (C)h 5h  

(4) Asymmetric Top stiff layer:  l(N )
(C)(F)h (2 5)h ; other stiff layers: (F) (C)h (1 5)h  

The problem is modelled with 1D 3-noded laminated beam elements employing the proposed 

zigzag displacement fields and transverse shear strain distributions, and shear locking is 

eliminated by using two-point strain mapping of the transverse shear strain. The free end 

deflection and the normal stress component at the clamped end are investigated: 

    z z0 x xu u L,0 , 0,h 2      

where the convergent solution obtained from 2D plane-stress analysis is used as a reference. 

Note that this is a linear elastic problem of a straight laminated beam, so a linear strain-

displacement relationship is considered without the inclusion of the second-order terms.  

The performance of the lamination model for different lay-ups and number of layers is 

assessed here. For each considered lay-up and number of layers, a uniform mesh of 32 

laminated beam elements employing the proposed zigzag displacements and transverse shear 

strain distribution provides a convergent solution, denoted as ‘Present’. In addition, the so-

called ‘MZZFi’ formulations, which include MZZF into the displacements that are of ith-

order in z, are also established, with a 32 element mesh providing a convergent solution. For 

comparison purposes, the z expansion order of the 'MZZFi' formulation is selected such that 

the same number of nodal displacement parameters are used for both formulation types. 

Table 5.4 lists the z expansion order of ‘MZZFi’ used for the five-, seven-, nine-, and eleven-

x 

z 
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layered cases. The proposed discrete transverse shear strain distribution is employed for all 

formulations.  

Table 5.4: Order of z expansion used for ‘MZZFi’ formulation.  

Number of layers Order of z expansion 

5 2 

7 3 

9 4 

11 5 

The convergent solutions of ‘Present’ and ‘MZZFi’ models for the two symmetric lay-ups (1) 

and (2) are provided in Tables 5.5-5.6, whereas the results for the two asymmetric lay-ups (3) 

and (4) are given in Tables 5.7-5.8. It is clear that for lay-ups (1) and (2) both models provide 

accurate results with the proposed model yielding slightly better accuracy. For lay-ups (3) 

and (4), the ‘MZZFi’ models become less accurate, with the relative error increasing with the 

FCSR. On the contrary, the proposed lamination model still provides a close estimation to the 

reference solution. 

Table 5.5: Evaluation of different laminated beams models with various FCSRs and number of layers 

for symmetric lay-up (1).  

Number of layers FCSR 
zu  x  

Reference Present MZZFi Reference Present MZZFi 

5 

101 -6.06E-06 -6.06E-06 -6.06E-06 6.53E+04 6.51E+04 6.51E+04 

103 -1.20E-05 -1.20E-05 -1.20E-05 9.46E+04 9.46E+04 9.46E+04 

105 -6.80E-05 -6.80E-05 -6.80E-05 2.17E+05 2.17E+05 2.17E+05 

7 

101 -6.22E-06 -6.21E-06 -6.21E-06 6.73E+04 6.68E+04 6.65E+04 

103 -1.25E-05 -1.25E-05 -1.24E-05 9.97E+04 9.97E+04 9.69E+04 

105 -1.15E-04 -1.15E-04 -1.15E-04 2.80E+05 2.80E+05 2.77E+05 

9 

101 -6.32E-06 -6.32E-06 -6.32E-06 6.86E+04 6.79E+04 6.81E+04 

103 -1.28E-05 -1.28E-05 -1.26E-05 1.04E+05 1.04E+05 9.98E+04 

105 -1.65E-04 -1.65E-04 -1.65E-04 3.31E+05 3.31E+05 3.27E+05 

11 

101 -6.39E-06 -6.39E-06 -6.39E-06 6.96E+04 6.88E+04 6.80E+04 

103 -1.30E-05 -1.30E-05 -1.27E-05 1.07E+05 1.07E+05 9.94E+04 

105 -2.13E-04 -2.13E-04 -2.13E-04 3.70E+05 3.71E+05 3.60E+05 
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Table 5.6: Evaluation of different laminated beams models with various FCSRs and number of layers 

for symmetric lay-up (2).  

Number of layers FCSR 
zu  x  

Reference Present MZZFi Reference Present MZZFi 

5 

101 -1.29E-05 -1.29E-05 -1.29E-05 1.39E+05 1.40E+05 1.40E+05 

103 -4.61E-05 -4.60E-05 -4.61E-05 3.13E+05 3.14E+05 3.14E+05 

105 -1.70E-03 -1.68E-03 -1.70E-03 1.75E+06 1.73E+06 1.75E+06 

7 

101 -1.52E-05 -1.52E-05 -1.52E-05 1.64E+05 1.64E+05 1.64E+05 

103 -5.00E-05 -5.00E-05 -4.96E-05 3.60E+05 3.61E+05 3.54E+05 

105 -2.20E-03 -2.20E-03 -2.19E-03 1.94E+06 1.93E+06 1.92E+06 

9 

101 -1.67E-05 -1.67E-05 -1.67E-05 1.80E+05 1.79E+05 1.79E+05 

103 -5.29E-05 -5.29E-05 -5.20E-05 3.95E+05 3.95E+05 3.80E+05 

105 -2.45E-03 -2.45E-03 -2.45E-03 2.03E+06 2.04E+06 2.00E+06 

11 

101 -1.77E-05 -1.77E-05 -1.77E-05 1.91E+05 1.90E+05 1.89E+05 

103 -5.51E-05 -5.51E-05 -5.38E-05 4.20E+05 4.20E+05 3.97E+05 

105 -2.60E-03 -2.60E-03 -2.60E-03 2.12E+06 2.12E+06 2.05E+06 

 

Table 5.7: Evaluation of different laminated beams models with various FCSRs and number of layers 

for asymmetric lay-up (3).  

Number of layers FCSR 
zu  x  

Reference Present MZZFi Reference Present MZZFi 

5 

101 -6.00E-06 -6.00E-06 -6.00E-06 6.33E+04 6.37E+04 6.22E+04 

103 -1.06E-05 -1.06E-05 -6.95E-06 9.64E+04 9.74E+04 7.64E+04 

105 -4.53E-05 -4.53E-05 -7.19E-06 2.20E+05 2.21E+05 7.87E+04 

7 

101 -6.09E-06 -6.09E-06 -6.08E-06 6.48E+04 6.52E+04 6.29E+04 

103 -1.15E-05 -1.15E-05 -7.57E-06 1.05E+05 1.07E+05 8.40E+04 

105 -7.94E-05 -7.94E-05 -8.13E-06 3.08E+05 3.10E+05 8.90E+04 

9 

101 -6.17E-06 -6.16E-06 -6.16E-06 6.60E+04 6.63E+04 6.34E+04 

103 -1.20E-05 -1.20E-05 -8.09E-06 1.12E+05 1.13E+05 8.90E+04 

105 -1.20E-04 -1.20E-04 -9.01E-06 3.95E+05 3.94E+05 9.66E+04 

11 

101 -6.23E-06 -6.23E-06 -6.23E-06 6.69E+04 6.72E+04 6.28E+04 

103 -1.24E-05 -1.24E-05 -8.76E-06 1.17E+05 1.19E+05 9.11E+04 

105 -1.63E-04 -1.63E-04 -1.05E-05 4.65E+05 4.68E+05 1.03E+05 
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Table 5.8: Evaluation of different laminated beams models with various FCSRs and number of layers 

for asymmetric lay-up (4).  

Number of layers FCSR 
zu  x  

Reference Present MZZFi Reference Present MZZFi 

5 

101 -1.10E-05 -1.10E-05 -1.10E-05 1.08E+05 1.09E+05 1.06E+05 

103 -4.20E-05 -4.20E-05 -1.83E-05 2.86E+05 2.87E+05 1.74E+05 

105 -1.01E-03 -1.00E-03 -1.99E-05 1.67E+06 1.67E+06 1.83E+05 

7 

101 -1.29E-05 -1.29E-05 -1.29E-05 1.28E+05 1.28E+05 -1.29E-05 

103 -4.57E-05 -4.57E-05 -3.17E-05 3.37E+05 3.40E+05 2.73E+05 

105 -1.66E-03 -1.66E-03 -5.37E-05 2.20E+06 2.20E+06 3.52E+05 

9 

101 -1.42E-05 -1.42E-05 -1.42E-05 1.43E+05 1.43E+05 1.43E+05 

103 -4.84E-05 -4.83E-05 -4.06E-05 3.75E+05 3.79E+05 3.56E+05 

105 -2.07E-03 -2.08E-03 -1.19E-04 2.34E+06 2.50E+06 5.97E+05 

11 

101 -1.53E-05 -1.53E-05 -1.53E-05 1.54E+05 1.55E+05 1.54E+05 

103 -5.04E-05 -5.04E-05 -4.43E-05 4.06E+05 4.10E+05 4.06E+05 

105 -2.34E-03 -2.34E-03 -1.69E-04 2.71E+06 2.70E+06 7.80E+05 

 Summary 

In this chapter, a three-layered sandwich shell model is firstly proposed. A zigzag function 

that assumes identical rotations in face sheets is added to the Reissner-Mindlin plate theory to 

consider the zigzag effect in displacements. Besides, a piecewise linear-constant-linear 

through-thickness distribution of the transverse shear strain is assumed, which is specifically 

suitable for sandwich lay-ups. Each layer of the sandwich shell is regarded as a pseudo 

monolithic shell and employs the corresponding kinematics and constitutive relationships. 

The governing equations of the laminated shell are derived with the employment of the 

virtual work principle. Laminations with isotropic and orthotropic materials are readily 

applicable so far, and other material models may also be used for the individual layers. 

A 1D cantilever example has been used to demonstrate the effectiveness and efficiency of the 

proposed zigzag function for sandwich shells. The adequacy of the assumed discrete 

transverse shear strain distribution has also been demonstrated in comparison with the results 

of models with continuous transverse shear stress distributions. In addition, the proposed 

zigzag function outperforms the MZZF in asymmetrically laminated cases, which provided 
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the inspiration for employing similar assumptions on layer rotations in the development of 

generalised multi-layered shell model. 

The three-layered shell model is then extended to a generalised multi-layered shell model 

with an alternate (stiff/soft/…) layer-up scheme. A set of zigzag displacement modes are 

employed in the planar displacements, the number of which is dependent on the number of 

soft layers. These zigzag displacement modes are defined such that all stiffer layers are 

assumed to rotate at the same angle while the soft layers may have different rotations. The 

through-thickness transverse shear strain is assumed such that all internal layers have 

constant values through the layer thickness while the external ones utilise a linear distribution 

with zero values at the top and bottom of the plate. 

Similar to the three-layered sandwich case, a 1D cantilever example has been used to stress 

the accuracy of the zigzag displacement set and the assumed transverse shear strain 

distribution. Furthermore, the accuracy of the proposed zigzag functions in modelling beams 

composed of identical and different stiff sheets are investigated, and the results are compared 

against the MZZFi predictions to emphasise the effectiveness of the proposed zigzag 

functions. It is concluded that the proposed multi-layered shell model is both accurate and 

efficient. In the next chapter, the incorporation of this model within finite element shell 

formulations is presented. 
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CHAPTER 6 

6 Laminated Quadrilateral and Triangular Shell 

    Elements 

 

 

 Introduction 

In this chapter, the application of the proposed lamination model is illustrated for 6-noded 

and 9-noded co-rotational shell elements, as described in Chapter 3, noting that it can also be 

similarly applied to other shell elements of various shapes and orders. Owing to the 

employment of the co-rotational approach, geometric nonlinearity is considered separately 

from the local element formulations, thus allowing the adoption of a fixed kinematic 

relationship between the element and layer local displacement fields as well as the 

employment of low-order, even linear, relationships between the strain and local 

displacement fields throughout the large displacement analysis. Furthermore, the additional 

zigzag displacement variables are associated with local cross-sectional warping only; hence, a 

2D ‘shell’ coordinate system is employed in this research for direct definition of these 

additional variables, which effectively minimises the required co-rotational transformations 

and enhances computational efficiency, and which also facilitates defining the fibre 

orientation for composite materials. 

In the following sections, the merits of the co-rotational approach in the context of laminated 

shell modelling are first discussed, which is followed by proposing a 2D curvilinear system, 

so-called ‘shell’ coordinate system, which enables the effective and efficient consideration of 
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the additional zigzag displacement fields, and which, in the consideration of composite 

materials, facilitates the establishment of the material fibre orientation in relation to the 

element local system. Nonlinear transformations between the global coordinate system and 

the local co-rotational system, as well as the required linear transformations between the shell 

coordinate system and the local co-rotational system, are subsequently given. With the 

employment of the co-rotational system and the shell system, the formulations of triangular 

and quadrilateral laminated shell elements are presented.  

In order to perform dynamic analysis, effective consistent mass matrices for the considered 

elements are also provided, which provide good accuracy for thin-to-moderately thick plate 

and shell applications. 

Verification examples are finally presented to demonstrate the accuracy of the developed 

formulations for nonlinear analysis of laminated plates and shells with an alternating stiff/soft 

lay-up.  

 Co-rotational approach 

In formulating large displacement finite elements for small-strain problems, the relationship 

between the strain and displacement fields is highly nonlinear and complex if the 

displacement fields are referred to a fixed coordinate system, where the nonlinear strain terms 

arise mainly from the element rigid body rotations. As demonstrated in Section 3.3, the co-

rotational approach enables the use of a low-order strain displacement relationship at the 

local level and addresses geometric nonlinearity through transformations between the local 

and global systems that are applied at the level of discrete element parameters. 

The embedment of a monolithic Reissner-Mindlin formulation into the co-rotational 

framework is usually achieved by relating 5 local nodal displacement parameters, 3 

translations and 2 rotations, to their counterparts in the global system; the exception would be 

where adjacent shell elements meet at an angle, in which case 3 rotational parameters would 

be used (Izzuddin & Liang, 2015). Since the co-rotational system follows the element 

configuration throughout the large displacement analysis, the transformations between the 

global and local element systems are nonlinear and vary from step to step. 
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 Shell coordinate system 

For the laminated shell element formulation, if the continuity of the zigzag displacement 

fields is enforced via additional parameters defined in the global coordinate system, similar to 

the basic nodal displacement parameters, then these would be subject to co-rotational 

transformations to the local system, thus imposing further computational demands. Noting 

that the zigzag fields describe the local effect of cross-sectional warping, it is proposed that 

they are defined in a 2D orthogonal curvilinear coordinate system over the shell structure, 

denoted as the ‘shell’ coordinate system, which thus follows the local co-rotational system at 

the element level. With the associated additional zigzag parameters defined in this shell 

coordinate system, continuity of the zigzag fields is ensured. Importantly, the element 

response associated with the zigzag parameters can thus be evaluated via a fixed linear 

kinematic transformation between the shell and local element systems, as elaborated in 

Section 6.4, rather than a varying nonlinear co-rotational transformation, which enhances the 

computational efficiency of the geometric nonlinear analysis of laminated shells. Another 

main benefit of using a shell coordinate system relates to defining fibre orientation for 

composite materials, which will be discussed in Section 6.3.2. 

 

Figure 6.1: 2D curvilinear shell coordinate system. 

In order to ensure continuity of the zigzag fields, a key requirement is that the 2D shell 

coordinate system must be associated with a unique orientation of its orthogonal directional 

vectors at an arbitrary point on the shell mid-surface. Besides this fundamental requirement 

of uniqueness, it is desirable for the 2D curvilinear shell system to be defined in a continuous 

manner, as illustrated by the dotted contour lines in Figure 6.1. For a smooth shell structure, a 

continuous definition of the shell system can be obtained in different ways, provided the shell 
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surface is open. On the other hand, for a closed shell surface (e.g. a sphere), a discontinuous 

definition of the 2D shell coordinate system would be necessary, where the discontinuity may 

be localised to a single point or line. For shell structures with a folded edge, the shell system 

would not be uniquely defined along the fold line, though there is no requirement for 

continuity of the zigzag fields in such locations; a typical realistic treatment would be to 

restrain the additional zigzag parameters at fold lines, though a more relaxed treatment based 

on a free natural boundary condition for the associated zigzag forces can also be considered 

with the use of element-specific zigzag parameters along the folds. 

With reference to the 2D curvilinear shell system (r,s) shown in Figure 6.1, the additional 

displacement zigzag parameters of an arbitrary element can be defined along the two 

curvilinear directions at the node level (refer to Element I). Although the relative orientation 

of the shell coordinate system and local element system can vary over one element, a constant 

relative orientation may also be considered at the element level (refer to Element II), where 

all additional zigzag parameters would be assumed to accord with the surface vectors at the 

element centre, provided the 2D shell system is continuous. While this assumption is 

associated with some inaccuracy, especially for a coarse mesh, it simplifies the determination 

of the additional displacement fields over the element, and importantly it retains the 

convergence property with mesh refinement. For small-strain problems, the relative 

orientation of the shell coordinate system and the element local system can be assumed to 

remain constant throughout the analysis; hence this orientation can be established at the start 

of nonlinear analysis in terms of a fixed angle β for each element denoting the rotation from 

rc  to xc (Figure 6.2). 

 

Figure 6.2: Relative orientation between the local element and shell systems. 
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 Alternative definitions of shell system 

There are potentially many different methods for defining a unique and continuous 2D 

curvilinear shell system over a smooth shell structure with a continuous surface. One such 

definition is proposed here utilising the uniqueness and continuity property of the normal to 

the surface o
zc  of such a shell structure. In this definition, the 2D orthogonal shell system is 

obtained as a rotation of a user-defined reference triad X Y Z( , , )c c c , where the rotation that 

transforms Zc  to o
zc  is first obtained, and this then transforms X Y( , )c c  to o o

r s( , )c c , 

respectively, as illustrated in Figure 6.3. The derivation of o
rc  is given as: 

o T
r n n n Xc T R T c  (6.1) 

with: 

T
1 o
T o zZ
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T c c c c c c c
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c

 (6.2) 

and: 

o o
n z zZ Z

cos( ) sin( ) 0

sin( ) cos( ) 0 , cos( ) , sin( )

0 0 1

   
          
  

R c c c c  (6.3) 

where   represents the rotation from Zc  to o
zc . 

For a closed shell surface, such as a spherical shell, this definition cannot be applied at the 

point with the normal o
zc  pointing just opposite to Zc  (i.e. the two vectors are at an angle of 

180).  

A second alternative definition is also proposed, as illustrated in Figure 6.4, where o
sc  in the 

initial undeformed configuration is considered to be a projection of a user-defined vector n on 

the shell surface, and o
rc  is obtained from: 
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o
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r o
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




n c
c

n c
 (6.4) 

This definition can be used to generate a continuous 2D shell system provided a vector n can 

be specified which is not orthogonal to the shell surface at any point. For some curved shells 

with open surfaces, such as a hemi-spherical shell, this is not possible, hence a discontinuous 

definition of the 2D shell system will be required at the point(s) where the shell surface is 

normal to n.  

 

 
a. Rotation of reference triad 

 
b. Resulting curvilinear axes of shell system 

Figure 6.3: An alternative definition of shell coordinate system using a reference triad. 
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Figure 6.4: An alternative definition of shell coordinate system using a reference vector. 

 

 

Figure 6.5: An alternative definition of shell coordinate system using a reference point. 

 

Figure 6.5 illustrates a third alternative definition, which is similar to the previous one except 

that the projection vector n points from the shell surface to a reference point O, with similar 

restrictions to the second alternative in relation to the case where n may be orthogonal to the 

shell surface. 

It is worth noting that in cases where a discontinuous definition of the 2D shell coordinate 

system is inevitable, a unique orientation of o o
r s( , )c c  can still be prescribed at the point(s) of 

singularity, and the additional displacement zigzag parameters of the surrounding elements 

can then be defined at the node level (refer to Element I in Figure 6.1). 
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 Composite materials 

Besides the enhancement of the computational efficiency in large displacement analysis, the 

utilisation of the 2D curvilinear shell system provides the additional benefit of providing the 

orientation of material fibres in relation to the local element coordinate system when 

composite materials are considered. In a general arbitrary mesh, the direction of the element 

local system can vary throughout the mesh, depending on the employed definition of the co-

rotational approach, the element configuration and nodal ordering. However, with the use of a 

continuous 2D shell system, the material fibre orientation can be defined with respect to the 

shell r-axis, as described by the continuous vector o
rc  in the initial undeformed configuration. 

By denoting (k) to be the angle from the shell directional vector o
rc  to the material fibre 

direction at layer (k), o*(k)
rc , the angle from the local element x-axis to the material fibre 

direction is simply obtained as (Figure 6.6): 

(k) (k)     (6.5) 

This then allows the constitutive material response to be established in the local element 

system through appropriate strain/stress transformations. 

 

Figure 6.6: Relative orientation between the local element, material, and shell systems. 

 Kinematic transformations between global, local and shell 
systems 

As already noted, a co-rotational framework is employed in this research for upgrading the 

low-order laminated plate/shallow shell model to geometrically nonlinear analysis, where the 

nonlinear kinematic transformations between the global and local element systems are 

conveniently restricted to the basic nodal displacement and rotational parameters. On the 
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other hand, the additional zigzag displacement parameters, which describe the local cross-

sectional warping behaviour only, are defined in a specific shell system which follows the 

local element system at a constant orientation, and are therefore excluded from the co-

rotational transformations.  

The kinematic relationship between local displacement variables and their global counterparts 

depends on the employed definition of the co-rotational approach and the sequence of nodal 

numbering. This is illustrated for a 9-noded shell element using a bisector co-rotational 

system definition  in Section 3.4 (Izzuddin, 2005; Izzuddin & Liang, 2015) and for a 6-noded 

shell element using a zero-macrospin system definition in Section 3.5 (Izzuddin & Liang, 

2015). On the other hand, the relationship between the zigzag displacements defined in the 

shell and local systems is linear for small-strain problems, where the following is employed 

to transform the additional fields from the shell system to the local element system: 

j j
x r

cj j
y s

ˆ ˆc s
ˆ ˆ, c cos( ), s sin( ) (j 1 N )

ˆ ˆs c

                          
 (6.6) 

where j j
x y,    c( j 1 N )   are additional zigzag displacement fields in the element local 

system; j j
r s,   c( j 1 N )   are the associated fields defined in the curvilinear shell system; 

and angle   is the relative orientation of the two systems obtained at the start of analysis.  

Note that (6.6) is most effectively accounted for in the kinematic description of (5.8)-(5.9) by 

re-defining the additional zigzag fields au in the shell coordinate system, i.e. 

c c
TN N1 1

a r s r s, ,    u  , and adjusting the transformation matrix (k)
aT  to: 

c c

c c

c c

c

(k) (k) (k) (k) (k) (k)
1 1 j j N N

(k) (k) (k) (k) (k) (k)
1 1 j j N N

(k)
a

(k) (k) (k) (k) (k) (k)
1 1 j j N N

(k) (k) (k) (k) (k)
1 1 j j N N

ˆ ˆ ˆ ˆ ˆ ˆc s c s c s

ˆ ˆ ˆ ˆ ˆ ˆs c s c s c

0 0 0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆc s c s c s

ˆ ˆ ˆ ˆ ˆ ˆs c s c s c

     

        



     

        

T

 

 

 

 

 
c

c

(k)

(5 2N )

 
 
 
 
 
 
 
 
  

 (6.7) 
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This works well provided the shell system is continuous over the element, in which case the 

response is convergent with mesh refinement even where any variation in the relative 

orientation of the shell and local element system is ignored for curved shells, with ˆ ˆ(c, s)  

assumed constant over the element. On the other hand, when the local shell system is 

discontinuous, as would be the case at specific locations for a closed shell structure, the most 

effective approach would be to transform the nodal zigzag displacement parameters from the 

node-specific shell system to the local element system, with the local parameters then used to 

define the local zigzag fields j j
x y,   directly. The latter approach is utilised for generality 

in the following application to laminated shell elements. 

 Application to 6-noded and 9-noded shell elements 

The application of the proposed lamination model to the 6-noded and 9-noded co-rotational 

shell elements is presented hereafter. 

 Local element kinematics 

Local and additional parameters are respectively defined as 
e

TT T T
C C1 Ci CN, , , ,U U U U   

and 
e

TT T T
A A1 Ai AN, , , ,U U U U  , where CiU  and AiU  contain respectively five local 

nodal parameters and c2N additional parameters, which are expressed as 
T

Ci x0,i y0,i z0,i x,i y,iu , u ,u , ,  U  and c c
TN N1 1

Ai r,i s,i r,i s,i, , , ,    U  . The pseudo nodal 

parameters at layer (k), which are defined as 
e

T(k) (k)T (k)T (k)T
1 i N, , , ,U U U U   with 

T(k) (k) (k) (k) (k) (k)
i x,i y,i z,i x,i y,iu , u ,u , ,  U , can be obtained from the following relationship: 

(k) (k) (k)
C AC A U T U T U  (6.8) 

e e e c e

(k) (k)
c a

(k) (k)
C A

(k) (k)
c a(5N 5N ) (5N 2N N )

,

 

   
   

    
   
   

T 0 T 0

T T

0 T 0 T

   (6.9) 

where (k)
cT  and (k)

aT  are given in (5.9) and (6.7), respectively. Note that (k)
AT  applies to a 

continuous shell system definition, ignoring the change of ˆ ˆ(c, s)  over the element, but it can 

be easily modified to account for different shell orientation vectors at individual nodes by 

adjusting the component diagonal (k)
aT  sub-matrices accordingly. 
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With the mapped pseudo displacement fields, the generalised strains of each layer (k) are 

calculated via (5.11)-(5.13) presented in the previous chapter.  

 Material constitutive response 

For linear isotropic and orthotropic materials, the material stresses are obtained from the 

following equations: 

(k) (k) (k) (k) (k) (k)
p p p ss,AS s,AS, σ C ε σ C ε  (6.10) 

where (k )
pε  are planar material strains of layer (k), given as: 

 
(k)

(k) (k) (k) (k) (k)k
p m k kb

k

h 2(z z )
, , z h , h

2 h  


     ε ε ε  (6.11) 

(k)
s,ASε  represents the assumed transverse shear strains as presented in Chapter 5; (k )

pC  and 

(k)
sC  are material constitutive matrices for planar and transverse shear stresses/strains of layer 

(k). 

For a linear isotropic material, (k )
pC  and (k)

sC  are given as: 

(k)

(k) (k)
(k) (k) (k)
p s(k)2 (k)

(k)

1 0
1 0E E

1 0 ,
0 11 2(1 )

1
0 0

2

 
 
   

           
  

  

C C  (6.12) 

with (k)E  and (k)  representing the Young’s modulus and Poisson’s ratio of layer (k).  

For a linear orthotropic material, (k )
pC  and (k)

sC  are obtained from: 

(k) *(k)T *(k) *(k) (k) *(k) T *(k) *(k)
p p p p s s s s, C T C T C T C T  (6.13) 
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(k) (k) (k)
1 12 2
(k) (k) (k) (k)
12 21 12 21

(k)(k) (k) (k)
13*(k) *(k)12 2 2

p s(k) (k) (k) (k) (k)
12 21 12 21 23

(k)
12

E E
0

1 1

G 0E E
0 ,

1 1 0 G

0 0 G

 
 
    

       
         
 
 
 

C C  (6.14) 

2 (k) 2 (k) (k)

(k) (k)
*(k) 2 (k) 2 (k) (k) *(k)
p s (k) (k)

(k) (k) (k)

1
cos ( ) sin ( ) sin(2 )

2
cos( ) sin( )1

sin ( ) cos ( ) sin(2 ) ,
2 sin( ) cos( )

sin(2 ) sin(2 ) cos(2 )

    
                   
    
  

T T  (6.15) 

where *(k)
pC  and *(k)

sC  are the material constitutive matrices in the material coordinate 

system; *(k)
pT  and *(k)

sT  are constitutive transformation matrices from the material coordinate 

system to the local element system; (k)  is the angle from the element coordinate system to 

the material coordinate system at layer (k), as given in (6.5). 

Although only linear isotropic and orthotropic material models are considered in this chapter, 

other linear and nonlinear material models may also be used. 

 Local resistance forces and stiffness 

Local resistance forces of the laminated shell element are obtained from the internal virtual 

work over the element, which is expressed as: 

   
kl

k
e

hN
T T (k)T (k) (k)T (k) e
C C A A p p C As,AS s,AS

k 1 h

dz d , ,







 
         
 
 






 U f U f ε σ ε σ U U  (6.16) 

where integration is performed over the local element domain e ; Cf  and Af  are resistance 

forces with respect to basic parameters CU  and additional parameters AU , respectively. 

By defining the generalised membrane, bending, and transverse shear stresses as follows: 
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k

k

h
(k) (k) (k) (k)

p k p m
h

dz h




 F σ C ε  (6.17) 

 
k

k

h
(k) (k) (k) 3 (k) (k)

p k p b
h

1
z z dz h

12





  M σ C ε  (6.18) 

k

k

h
(k) (k) (k) (k) (k)

k s sAS s,AS
h

dz h




  Q σ C ε  (6.19) 

Equation (6.16) is expressed in the following form: 

   
l

e

N
T T (k)T (k) (k)T (k) (k)T (k) e
C C A A m s C AASb

k 1

d , ,
 

             U f U f ε F ε M ε Q U U  (6.20) 

Equation (6.20) can be further manipulated to: 

   
 

l

e

T T
C C A A

N
T (k)T T (k)T (k)T (k) (k) (k)T (k) (k) (k)T (k) (k) e
C A m m m s s sC A b b b

k 1

C A

d ,

,
 

  

    

  

 

U f U f

U T U T B D ε B D ε B D ε

U U

 (6.21) 

where (k)
mB , (k)

bB  and (k)
sB are the first derivatives of the generalised strains at layer (k) with 

respect to pseudo parameters (k)U ; (k)
mD , (k)

bD , and (k)
sD  are generalised constitutive 

matrices at layer (k), which are expressed as: 

(k) (k) (k) 3 (k) (k) (k) (k)
m k p k p s k sb

1
h , h , h

12
   D C D C D C  (6.22) 

In order to address the locking effects, the hierarchic optimisation approach, which is 

presented in Section 3.2 and instantiated for 9-noded and 6-noded monolithic shell elements 

in Section 3.4-3.5, is employed in the local formulation of each constitutive layer. It is worth 

noting that the optimal transformation between conforming and assumed strains depends only 

on the element geometry. Therefore, the transformation established for monolithic shell 

elements is also applicable for a specific set of generalised strains to all layers as well. After 

the application of the optimisation scheme at each constitutive layer, the conforming strains 
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(k)
mε , (k)

bε  and (k)
sε , and the matrices (k)

mB , (k)
bB  and (k)

sB  in (6.21) are replaced by (k)
mε̂ , (k)

bε̂ , 
(k)
sε̂ , (k)

mB̂ , (k)
bB̂  and (k)

sB̂  with ‘ ̂ ’ denoting the adoption of the objective assumed strains, or 

by (k)
mε , (k)

bε , (k)
sε , (k)

mB , (k)
bB  and (k)

sB  with ‘  ’ denoting the adoption of the corrective 

assumed strains.  

Considering (6.21), the total resistance forces of the shell element associated with the local 

nodal parameters CU  and the additional parameters AU  are thus obtained as: 

   
l lN N

(k)T (k)T(k) (k)
C AC A

k 1 k 1

,
 

  f T f f T f  (6.23) 

where (k)f  is the vector of pseudo nodal forces at layer (k), with the objective strain form 

expressed as: 

 
e

(k) (k)T (k) (k) (k)T (k) (k) (k)T (k) (k) e
m m m s s sb b b

ˆ ˆ ˆˆ ˆ ˆ d


   f B D ε B D ε B D ε  (6.24) 

Furthermore, the local tangent stiffness matrices of the element are obtained as: 

   
l lN N

(k)T (k)T(k) (k) (k) (k)C A
C AC C A AT T

k 1 k 1C A

,
 

 
   
 

 f f
k T k T k T k T

U U
 (6.25) 

 
lN

(k)TT (k) (k)C
CA AC C AT

k 1A 


  


f

k k T k T
U

 (6.26) 

where  (k)k  is the local stiffness of layer (k), with the objective strain form expressed as: 

e

2 (k)T
(k) (k)T (k) (k) (k)T (k) (k) (k)T (k) (k) (k) (k) em

m m m s s s m mb b b (k) (k)T

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ d



 
        





ε
k B D B B D B B D B D ε

U U
 (6.27) 

It is worth noting that for the considered isotropic and orthotropic material models (k)k  is a 

symmetric matrix, which leads to ACk  being the transpose of CAk . For certain types of 

nonlinear materials, however, (k)k  may not be symmetric, which requires to determine ACk  

as follows: 
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 
lN

(k)T (k) (k)A
AC A CT

k 1C 


 


f
k T k T

U
 (6.28) 

 Co-rotational transformation of resistance forces and stiffness 

In accordance with the co-rotational approach, the local resistance forces and stiffness 

matrices of the sandwich shell element are transformed to the corresponding global system 

entities before assembly at the overall structural level. It is important to note that the 

relationship between additional parameters defined in the shell system and their counterparts 

in the element local system is directly considered by incorporating ˆ ˆ(c, s)  into (k)
aT , as given 

in (6.7). Furthermore, the resistance forces vector Af  and the stiffness matrix Ak  are 

excluded from the co-rotational transformations, since the associated zigzag parameters are 

defined at the overall structural level in the shell system, which maintains the same relative 

orientation to the local co-rotational system in the deformed configuration. 

The transformation of the resistant forces and stiffness matrices to the global coordinate 

system are given as: 

T
G Cf T f  (6.29) 

2 T
TG C

G C CT T
G G G

 
  
  

f U
k T k T f

U U U
 (6.30) 

T TG
GA AG CAT

A


  


f

k k T k
U

 (6.31) 

in which T  is the nodal displacement transformation matrix from global parameters GU  to 

co-rotational parameters CU  ( Izzuddin, 2005; Izzuddin & Liang, 2015), defined as: 

C
T
G




U

T
U

 (6.32) 

Still, for the considered materials, the stiffness matrix AGk  is the transpose of the stiffness 

matrix GAk , owing to a symmetric local stiffness of each layer (k), (k)k . Otherwise, AGk  

can be derived from: 



Laminated Quadrilateral and Triangular Shell Elements 

 

186 
 

A
AG ACT

G


 


f
k k T

U
 (6.33) 

 Consistent mass matrices 

The local mass matrix for each layer (k) can be obtained as in Section 3.6.1 except that the 

layer density k and layer thickness kh  are used, which results in the layer mass matrix 

expressed as follows: 

e

e

e e e e

(k)
(k) (k) (k) t
11 12 1N (k)

t(k) (k) (k)
21 22(k) (k) M2N (k)

ijij t

(k)
r(k) (k) (k)

N 1 N 2 N N (k)
r

m

m

, m

m

m

                          

M M M

M M M
M M Γ

M M M





   



 (6.34) 

where M
ijΓ  can be obtained from (3.65) and (k)

tm  and (k)
rm  are given as follows: 

3
(k) (k) k k
t k k r

h
m h , m

12


    (6.35) 

Since the same through-thickness description is employed for the acceleration fields as those 

used in displacement fields, the local mass matrices are given as: 

   
l lN N

(k)T (k)T(k) (k) (k) (k)
C AC C A A

k 1 k 1

,
 

  M T M T M T M T  (6.36) 

 
lN

(k)TT (k) (k)
CA AC C A

k 1
 M M T M T  (6.37) 

It is worth noting that the layer mass matrix (k)M  is symmetric, evident from (6.34) and 

(3.65). Therefore, ACM  is always the transpose of CAM . 

Furthermore, the transformation of CM , CAM , and ACM  to global system gives: 

oT o
G CM T M T  (6.38) 
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T oT
GA AG CA M M T M  (6.39) 

where oT  represents the element transformation matrix from global to local DOFs of the 

previous time step, as given in (3.67) following the same updated Lagrangian approach 

discussed in Section 3.6.2. Still, the symmetric layer mass matrix (k)M  leads to AGM  being 

always the transpose of GAM . 

The above formula leads to a mass matrix for laminated shell elements, where the 

accelerations are assumed to have the same through-thickness distribution as the 

displacements. Even so, for the considered dynamic analyses in the rest of this thesis, a 

consistent mass matrix that ignores the mass associated with additional parameters is used for 

the laminated shell elements, which is owing to the negligible contribution of the mass 

associated with additional parameters on the overall mass matrix for slender LG applications. 

Therefore, instead of the above formulation for the mass matrix, the consistent mass matrix 

for monolithic shell elements provided in Section 3.6 is used for the laminated shell elements 

in this work. Accordingly, the mass matrix for the laminated shell elements can be obtained 

by employing (3.64)-(3.68) except that the density  in (3.65) requires to be replaced with the 

average density of the whole LG cross-section. 

 Verification of laminated shell elements 

The proposed 6-noded and 9-noded multi-layered shell elements have been implemented in 

ADAPTIC v2.14.2 (Izzuddin, 1991), which is used hereafter in several verification examples 

to demonstrate their accuracy and effectiveness in modelling linear and nonlinear problems. 

In the following examples, the locking phenomena is addressed by employing the objective 

alternative based on third order hierarchic optimisation for each layer. The proposed 

quadrilateral and triangular laminated shell elements are denoted by acronyms Ln-H3O9 and 

Ln-H3O6, respectively, with ‘L’ representing ‘layer’ and n the number of layers. 
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 Linear problems 

6.7.1.1 Sandwich plate under bidirectional sinusoidal loading 

A square sandwich plate, simply-supported along all four edges, is subjected to a 

bidirectional sinusoidal transverse loading 0p p sin( x a)sin( y a)   , as depicted in Figure 

6.7, where consideration is given here to the linear elastic response. The edge length of the 

square plate is a, and the thickness is h (with 1 3h h 0.1h   and 2h 0.8h ). The material 

parameters of the layers are given as: 

Core: (2) (2) 5 (2) 5 (2) (2) 5 (2)
1 2 12 13 23 12E E 0.4 10 ,G 0.16 10 ,G G 0.6 10 , 0.25;           

Face: (1,3) 7 (1,3) 6 (1,3) (1,3) 6 (1,3) 6 (1,3)
1 2 12 13 23 12E 2.5 10 , E 1.0 10 ,G G 0.5 10 ,G 0.2 10 , 0.25;            

where the 1- and 2- material directions for the layers are aligned respectively with the x- and 

y-axes.  

 

Figure 6.7: Simply-supported sandwich plate under bidirectional sinusoidal loading. 

Different length-to-thickness ratios are considered, where due to symmetry only a quarter of 

the plate is analysed with a uniform 88 mesh of the L3-H3O9 element, which provides a 

convergent solution. The shell system is obtained according to the approach illustrated in 

Figure 6.3 with the reference triad X Y Z( , , )c c c  aligned with the global system triad, in which 

case the curvilinear shell triad maintains the same (x,y) directions for all elements. The 

elasticity solution by Pagano (1970) is used as a reference solution. Results from other 

researchers are also considered, including the FSDT solution by Pandya and Kant (1988)  

using a 22 mesh of 9-noded elements, the solution by Balah and Al-Ghamedy (2002) using 

a 1616 mesh of 4-noded elements based on a third-order shear deformation theory (TSDT), 
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the layer-wise theory (LWT) solution by Thai et al. (2013) employing an isogeometric 

approach with quartic B-spline basis, and a higher-order zigzag theory (ZZT) solution by 

Pandit et al. (2008) with a 1212 mesh of 9-noded elements for the whole plate. The full 

results are provided in Table 6.1. Key displacement and stress values are assessed with the 

corresponding dimensionless results defined as follows: 

(1,3) 3
z2

z 4
0

a a
100E h u , ,0

2 2
u

p a

 
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It is concluded from Table 6.1 that all the theories agree well for the thin sandwich plate 

(a/h=100), in particular the deflection and planar stresses. As (a/h) decreases, the zigzag 

effect on the plate behaviour becomes significant, which leads to a noticeable deviation of the 

FSDT solution from the reference solution for moderately thick sandwich plates (a/h=10). 

Although the TSDT solution provides improved accuracy over the FSDT results, its 

predictions are still not as accurate as those of the other three models owing to the 

employment of assumed displacement modes at the multi-layer level rather than at the layer 

level. The L3-H3O9 model, which describes the zigzag effect with only two additional 

displacement fields, exhibits comparable capability with the LWT, and ZZT models, both of 

which assume four additional displacement fields, in the approximation of both the deflection 

and stress components of moderately thick plates, which indicates the validity of the assumed 

additional displacement modes and distribution of transverse shear strains. Figure 6.8 depicts 

the through-thickness distributions of the considered stress components for the cases a/h=10 

and 20, where the results of the L3-H3O9 model agree well with the LWT results by Thai et 

al. (2013), with more realistic distributions of transverse shear strains. 
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Table 6.1: Dimensionless deflection and stresses of a sandwich plate with various (a/h) ratios. 

a/h Model zu  x  y  xz  yz  xy  

100 

FSDT (Pandya & Kant) 0.883 1.104 0.0546 0.2875 0.0270 -0.0435 

TSDT (Balah & Al-Ghamedy) 0.8903 1.0958 0.0548 0.3741 0.0342 -0.0436 

LWT (Thai et al.) 0.8924 1.0975 0.0549 0.3234 0.0291 -0.0437 

ZZT (Pandit et al.) 0.8917 1.1093 0.0547 0.3412 0.0324 -0.0434 

L3-H3O9 0.8923 1.1010 0.0551 0.3250 0.0288 -0.0438 

Elasticity (Pagano) 0.8923 1.0980 0.0550 0.3240 0.0297 -0.0437 

50 

LWT (Thai et al.) 0.9348 1.0989 0.0569 0.3225 0.0299 -0.0446 

ZZT (Pandit et al.) 0.9341 1.0948 0.0566 0.3403 0.0333 -0.0445 

 L3-H3O9 0.9348 1.1023 0.0570 0.3242 0.0294 -0.0448 

Elasticity (Pagano) 0.9348 1.0990 0.0569 0.3230 0.0306 -0.0446 

20 

LWT (Thai et al.) 1.2262 1.1090 0.0697 0.3168 0.0352 -0.0511 

ZZT (Pandit et al.) 1.2254 1.1055 0.0694 0.3342 0.0392 -0.0509 

 L3-H3O9 1.2264 1.1116 0.0699 0.3185 0.0347 -0.0513 

Elasticity (Pagano) 1.2264 1.1100 0.0700 0.3170 0.0361 -0.0511 

10 

FSDT (Pandya & Kant) 1.557 1.062 0.0806 0.2779 0.0364 -0.0553 

TSDT (Balah & Al-Ghamedy) 2.0830 1.1470 0.1040 0.3489 0.0578 -0.0687 

LWT (Thai et al.) 2.2011 1.1497 0.1090 0.2993 0.0513 -0.0712 

ZZT (Pandit et al.) 2.2002 1.1483 0.1086 0.3158 0.0570 -0.0709 

L3-H3O9 2.2049 1.1495 0.1093 0.3009 0.0509 -0.0714 

Elasticity (Pagano) 2.2004 1.1530 0.1104 0.3000 0.0527 -0.0707 

 

  

a. Through-thickness distribution of x  

Figure 6.8: Through-thickness distribution of non-dimensional stresses for sandwich plate (Cont’d…). 
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b. Through-thickness distribution of y  

  

c. Through-thickness distribution of xy  

Figure 6.8: Through-thickness distribution of non-dimensional stresses for sandwich plate (Cont’d…). 
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d. Through-thickness distribution of xz  

  

e. Through-thickness distribution of yz  

Figure 6.8: Through-thickness distribution of non-dimensional stresses for sandwich plate. 
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6.7.1.2 Sandwich plate under uniformly distributed transverse loading 

A simply-supported square sandwich plate is subjected to a uniformly distributed transverse 

loading 0p , as shown in Figure 6.9, where consideration is again given to the linear elastic 

response. The length-to-thickness ratio (a/h) of the plate is fixed to 10, and the thickness of 

each face sheet is 0.1h. The elastic constitutive matrix of the core is: 

(2)
p(2)

(2)
s

0.999781 0.231192 0 0 0

0.231192 0.524866 0 0 0

0 0 0.262931 0 0

0 0 0 0.266810 0

0 0 0 0 0.159914

 
 
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0 C
 

The constitutive matrix of the faces is given by (1) (3) (2)FCSR  C C C , where the value of 

FCSR is alternatively taken as 5, 10, and 15. A quarter of the plate is modelled due to 

symmetry, and an 88 mesh of the L3-H3O9 elements provides a convergent solution. In this 

model, the shell system is aligned with the (x,y) planar coordinate system. The dimensionless 

transverse displacement and stresses at some key positions are assessed, which are defined as 

follows: 
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Figure 6.9: Simply-supported sandwich plate under uniformly distributed loading. 

The results of the L3-H3O9 model are shown in Table 6.2, which are compared against the 

exact solution by Srinivas and Rao (1970). The FSDT and HSDT solution by Pandya and 

Kant (1988) and the LWT solution by Ferreira et al. (2008) are also given for comparison 

purposes. The results of a L3-H3O6 model with a mesh pattern as depicted in Figure 4.29 are 

also presented in the table.  

It is clear that as the FCSR increases, the difference in the material properties between the 

faces and the core induces a significant zigzag effect of the sandwich plate, which leads to a 

deteriorating performance of the FSDT solution. The HSDT solution, despite showing an 

improvement in accuracy over the FSDT solution, still does not capture well the response of 

the sandwich shell, particularly when the stiffness ratio FCSR is relatively large. The 88 

mesh of the L3-H3O9 elements provides better accuracy than the LWT solution in the 

approximation of both displacement and stresses owing to the employment of the assumed 

transverse shear strain distribution. It is also observed that the L3-H3O6 element has 

comparable accuracy with the L3-H3O9 element. 
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Table 6.2: Dimensionless deflection and stresses of a sandwich plate with various FCSRs. 

FCSR Model  zu   1
x   2

x  3
x   1

y    2
y   3

y  xz  

5 

FSDT (Pandya & Kant) 236.10 61.87 49.50 9.899 36.65 29.32 5.864 3.313 

HSDT (Pandya & Kant) 256.13 62.38 46.91 9.382 38.93 30.33 6.065 3.089 

LWT (Ferreira et al.) 258.180 60.063 46.393 9.279 38.364 30.029 6.006 4.095 

L3-H3O9 258.957 60.302 46.604 9.321 38.523 30.155 6.031 4.135 

L3-H3O6 258.957 60.347 46.634 9.327 38.519 30.150 6.030 4.125 

Elasticity (Srinivas & Rao) 258.970 60.353 46.623 9.340 38.491 30.097 6.161 4.364 

10 

FSDT (Pandya & Kant) 131.095 67.80 54.24 4.424 40.10 32.08 3.208 3.152 

HSDT(Pandya & Kant) 152.330 64.65 51.31 5.131 42.83 33.97 3.397 3.147 

LWT (Ferreira et al.) 158.912 64.993 48.601 4.860 43.491 33.409 3.341 3.980 

L3-H3O9 159.479 65.280 48.836 4.884 43.682 33.554 3.355 4.032 

L3-H3O6 159.479 65.332 48.866 4.887 43.678 33.547 3.355 4.017 

Elasticity (Srinivas & Rao) 159.380 65.332 48.857 4.903 43.566 33.413 3.500 4.096 

15 

FSDT (Pandya & Kant) 90.85 70.04 56.03 3.753 41.39 33.11 2.208 3.091 

HSDT(Pandya & Kant) 110.43 66.62 51.97 3.465 44.92 35.41 2.361 3.035 

LWT (Ferreira et al.) 121.347 66.436 48.010 3.201 46.385 34.965 2.331 3.902 

L3-H3O9 121.828 66.727 48.272 3.218 46.581 35.138 2.343 3.960 

L3-H3O6 121.828 66.783 48.300 3.220 46.576 35.128 2.342 3.942 

Elasticity (Srinivas & Rao)  121.720 66.787 48.299 3.238 46.424 34.955 2.494 3.964 

6.7.1.3 Laminated plate under bidirectional sinusoidal loading 

A laminated plate, which has a length-to-width ratio b a 3  and a plate thickness h, is 

simply supported on all four edges and transversely loaded with a bidirectional sinusoidal 

pressure 0p p sin( x / a ) sin( y / b)   on its top surface, as shown in Figure 6.10. Four 

scenarios are considered in this linear elastic problem to assess the accuracy of the proposed 

multi-layer shell element: 

Scenario 1: a 3-layer, asymmetrically laminated plate;  

Scenario 2: a 5-layer, asymmetrically laminated plate; 

Scenario 3: a 7-layer, symmetrically laminated plate with different thicknesses of stiff 

sheets; 

Scenario 4: 3-, 5-, 7-, 9- and 11-layer, symmetrically laminated plate with the same 

thicknesses for all stiff sheets. 
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Figure 6.10: Rectangular laminated plate under bidirectional sinusoidal loading. 

The elasticity solution for a general laminated plate loaded with a transverse bi-directional 

sinusoidal loading has been given by Demasi (2008). Brischetto et al. (2009) have presented 

closed form solutions with EDZ models for Scenario 1, where the zigzag effect of 

displacements is considered by adding MZZF to Taylor expansions. The results of EDZ 

models are compared with the results using the Ln-H3O9 elements. On the other hand, 

‘EDZ*’ formulations, which are based on EDZ models but with further simplifications, are 

also implemented with the 9-noded co-rotational element for comparison against the Ln-

H3O9 elements in Scenarios 2 to 4. It is important to note that three assumptions have been 

made which distinguish the implemented EDZ* formulations from the original EDZ models 

(Brischetto et al., 2009). Firstly the zigzag effect is considered in planar displacements only. 

Secondly, to facilitate the implementation of the EDZ*-H3O9 element, Taylor expansions are 

approximated with a piecewise linear curve based on values at the laminar interfaces, as 

illustrated in Figure 6.11. Thirdly, the proposed transverse shear strain distribution is used for 

EDZ*. Nevertheless, the aim of providing EDZ* results is to demonstrate the efficiency of 

the zigzag modes proposed in the present work for laminates with alternating stiff/soft lay-up. 

In this respect, the only difference between the EDZ*-H3O9 models and the Ln-H3O9 

models is the employed zigzag functions, which facilitates the comparison between both sets 

of additional displacement variables in modelling the considered laminations. Table 6.3 lists 

the number of displacement fields for the considered lamination models. 
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Figure 6.11: Piecewise approximation of Taylor expansion. 

Table 6.3: Number of displacement fields for the considered models. 

Model Number of displacement fields 

FSDT-H3O9 5 

L3-H3O9 7 

L5-H3O9 9 

L7-H3O9 11 

L9-H3O9 13 

L11-H3O9 15 

EDZ2*-H3O9 9 

EDZ3*-H3O9 11 

EDZ4*-H3O9 13 

EDZ5*-H3O9 15 

EDZ1 (Brischetto et al.) 9 

EDZ4 (Brischetto et al.) 18 

EDZ7 (Brischetto et al.) 27 

Due to symmetry, a quarter of the plate is modelled with an 88 mesh of the Ln-H3O9 

elements, which provides a convergent solution for all four scenarios. In this model, the shell 

system is aligned with the (x,y) planar coordinate system The results of the Ln-H3O9 model 

are compared against those of the EDZ or EDZ* models as well as the elasticity solution 

(Demasi, 2008) in terms of non-dimensional displacement, stress and strain values defined as 

follows: 

z (C) (C)x xz xz
z x xz xz4 2

0 (C) 00 0

100u E E
u , , ,

p (a h) 2(1 ) p (a h)p h(a h) p (a h)

  
      

 
 

where (C)E  and (C)  are the Young’s modulus and Poisson’s ratio of soft core layers. 
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Scenario 1:  Three-layer, asymmetrically laminated plate 

The thicknesses of three layers are given as: 1h h 10 , 2h 7h 10 , and 3h 2h 10 . All 

layers are made of isotropic material. The stiffness ratios between the constitutive layers are 

given as (1) (3)E E 5 4 , and (1) (2) 5FCSR E E 10,10  . Poisson’s ratios for all layers are 

0.34. Two length-to-thickness ratios have been considered by Brischetto et al. with EDZ 

models (Brischetto et al., 2009): a/h=4, 100. Hereafter, the results of the L3-H3O9 models are 

compared with the FSDT and EDZ models. 

Table 6.4 gives the predictions on central deflection zu (a 2,b 2) at the bottom of the upper 

sheet with the considered models. Clearly, the L3-H3O9 model provides a much closer 

estimation of deflection than the EDZ1 model and even better results than the EDZ4 

predictions, which utilise more displacement fields as indicated in Table 6.3, except where 

a/h = 4 and 5FCSR 10 , in which case the transverse elastic deformation for such a thick 

plate with very soft core is too significant to be neglected. Since the proposed model is 

intended for analysis of thin-to-moderately thick plates and shells, the neglect of the through-

thickness variation in the transverse displacement still yields good results within the scope of 

interest. 

Table 6.4: Relative accuracy of various models in the evaluation of central deflection. 

a/h Model 

FCSR 

10 105 

zu  Relative error zu  Relative error 

4 

Elasticity (Demasi) 3.01123 - 0.013159 - 

L3-H3O9 2.98319 0.93% 0.011907 9.51% 

FSDT-H3O9 1.58218 47.46% 0.000180 98.63% 

EDZ1 (Brischetto et al.) 2.34412 22.15% 0.000837 93.64% 

EDZ4 (Brischetto et al.) 2.97886 1.07% 0.012629 4.03% 

EDZ7 (Brischetto et al.) 2.99670 0.48% 0.013136 0.17% 

100 

Elasticity (Demasi) 1.51021 - 0.002089 - 

L3-H3O9 1.51026 0.00% 0.002089 0.01% 

FSDT-H3O9 1.10845 26.60% 0.000120 94.26% 

EDZ1 (Brischetto et al.) 1.15866 23.28% 0.000163 92.18% 

EDZ4 (Brischetto et al.) 1.51017 0.00% 0.001163 44.34% 

EDZ7 (Brischetto et al.) 1.51019 0.00% 0.002021 3.30% 
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The through-thickness variations of the planar stress x  (a/2, b/2) for the cases where 

a/h = 100 (thin plate) and FCSR=10, 105 are depicted in Figure 6.12, which highlight the 

accuracy of the L3-H3O9 model for a wide range of FCSR values. The noticeable deviation 

of the EDZ1 curve in Figure 6.12.b implies the inaccuracy of Murakami’s function in 

capturing the zigzag effect. This deviation is alleviated with the use of higher-order EDZ 

models. 

Figure 6.13 shows the through-thickness variations of the transverse shear stress xzσ (0, b/2) 

for the cases where a/h = 4 (thick plate) and FCSR=10,105. Clearly, the continuous transverse 

shear stress predicted by the EDZ4 model posts a close approximation of the elasticity 

solution. On the other hand, the L3-H3O9 model, which assumes a piecewise linear-constant-

linear transverse shear strain pattern, provides an accurate prediction of transverse shear 

stresses in the core, though discrepancies arise in the face sheets. With further manipulation, 

the through-thickness variation of the transverse shear strain xz (0, b/2) for the case a/h = 4 

and FCSR = 10 can be obtained for each model, as depicted in Figure 6.14. Clearly, the 

transverse shear strains in the face sheets are much smaller than the strain in the soft layer, 

which indicates negligible influence of the stiff layers on the overall transverse shear strain 

energy. 
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a. FCSR=10, and a/h=100 

 
b. FCSR=105, and a/h=100 

Figure 6.12: Through-thickness distribution of non-dimensional in-plane stress xσ  for three-layer 

plate. 
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a. FCSR=10, and a/h=4 

 
b. FCSR=105, and a/h=4 

Figure 6.13: Through-thickness distribution of non-dimensional transverse shear stress xzσ  for three-

layer plate. 
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Figure 6.14: Through-thickness distribution of non-dimensional transverse shear strain xz  for three-

layer plate (FCSR=10, and a/h=4). 

Scenario 2:  Five-layer, asymmetrically laminated plate 

The layer thicknesses and materials of the five-layer laminated panel are given in Table 6.5, 

with (B) (A)E E 4 5 , and (A) (B) (C) 0.34      . Different span-to-thickness ratios 

(a/h=10,100) and stiffness ratios ( (A) (C)FCSR E E 3 510,10 , 10 ) are considered to 

investigate the performance of the shell element. Estimations of the non-dimensional central 

deflection zu (a 2, b 2)  at the bottom of the top layer with the L5-H3O9 and EDZ2*-H3O9 

models, which have the same number of additional displacement variables, are listed in Table 

6.6, compared against the elasticity solution. A FSDT solution is also available by restraining 

all the additional DOFs of the L5-H3O9 model in the analysis, although the assumed 

distribution of transverse shear strains is employed.  Clearly, both models provide 

comparable accuracy for a relatively small FCSR = 10. However, the zigzag effect becomes 

significant as the FCSR increases, evident from the resulting large relative error of FSDT-

H3O9 results. Although the EDZ2*-H3O9 model improves the FSDT-H3O9 results 

somewhat, still significant inaccuracy remains, hence requiring higher-order Taylor 

expansions for better accuracy. On the other hand, the L5-H3O9 model maintains high 

accuracy with a wide range of FCSRs owing to the efficiency of the selected zigzag 

displacement modes for the analysis of such laminations. 
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Table 6.5:  Layer thicknesses and materials for 5-layer plate. 

Layer index Layer thickness Layer material 

1 (2/14)h (B) 

2 (5/14)h (C) 

3 (1/14)h (A) 

4 (5/14)h (C) 

5 (1/14)h (A) 

 

Table 6.6:  Non-dimensional deflection of 5-layer plate with varying FCSR and (a/h). 

a/h Model 

FCSR 

10 103 105 

zu  Relative error zu  Relative error zu  Relative error 

10 

Elasticity (Demasi) 2.02302 - 0.22248 - 0.02572 - 

L5-H3O9 2.03898 0.79% 0.22096 0.68% 0.02548 0.94% 

EDZ2*-H3O9 2.02446 0.07% 0.06702 69.88% 0.00080 96.88% 

FSDT-H3O9 1.90176 5.99% 0.02153 90.32% 0.00022 99.16% 

100 

Elasticity (Demasi) 1.81666 - 0.02252 - 0.00220 - 

L5-H3O9 1.81738 0.04% 0.02253 0.05% 0.00221 0.38% 

EDZ2*-H3O9 1.81724 0.03% 0.02086 7.39% 0.00021 90.45% 

FSDT-H3O9 1.81601 0.04% 0.02039 9.48% 0.00020 90.73% 

 

The through-thickness distribution of the non-dimensional planar stress x (a 2, b 2)  for the 

cases where a/h = 100 (thin plate) and FCSR=10,103 with the L5-H3O9 model is depicted in 

Figure 6.15, and the elasticity result using Demasi’s solution (Demasi, 2008) is also depicted 

for comparison. The figure highlights the accuracy of the L5-H3O9 model for a wide range of 

the FCSR values. Figure 6.16 depicts the non-dimensional transverse shear strain xz  of the 

L5-H3O9 model at location (0, b/2), compared against the elasticity results. The results also 

indicate the adequacy of the proposed transverse shear strain distribution for the problem 

considered. 
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a. FCSR=10, and a/h=100 

 
b. FCSR=103, and a/h=100 

Figure 6.15: Through-thickness distribution of non-dimensional planar stress xσ  for five-layered 

plate. 
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a. FCSR=10, and a/h=10 

 
b. FCSR=103, and a/h=10 

Figure 6.16: Through-thickness distribution of non-dimensional transverse shear strain xz  for five-

layered plate. 
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Scenario 3: Seven-layer, symmetrically laminated plate with thicker external layers 

In this scenario, the effect of different thicknesses on the accuracy of the zigzag functions is 

investigated. The layer thicknesses and materials of the seven-layer laminated plate are given 

in Table 6.7, with (F) (C)FCSR E E , and (F) (C) 0.34    . Different span-to-thickness 

ratios (a/h = 10, 100) and stiffness ratios ( 3 5FCSR 10,10 ,10 ) are considered to investigate 

the performance of the shell element.  

Table 6.7: Layer thicknesses and materials for 7-layer plate. 

Layer index Layer thickness Layer material 

1 (2/21)h (F) 

2 (5/21)h (C) 

3 (1/21)h (F) 

4 (5/21)h (C) 

5 (1/21)h (F) 

6 (5/21)h (C) 

7 (2/21)h (F) 

Table 6.8: Non-dimensional deflection of 7-layer plate with varying FCSR and (a/h). 

a/h Model 

FCSR 

10 103 105 

zu  Relative error zu  Relative error zu  Relative error 

10 

Elasticity (Demasi) 1.8341 - 0.22225 - 0.03861 - 

L7-H3O9 1.8448 0.59% 0.22083 0.64% 0.03744 3.02% 

EDZ3*-H3O9 1.8452 0.61% 0.21799 1.91% 0.02760 28.51% 

FSDT-H3O9 1.7020 7.20% 0.01903 91.44% 0.00019 99.51% 

100 

Elasticity (Demasi) 1.6245 - 0.02001 - 0.00220 - 

L7-H3O9 1.6253 0.05% 0.02002 0.06% 0.00221 0.58% 

EDZ3*-H3O9 1.6253 0.05% 0.02002 0.05% 0.00218 0.72% 

FSDT-H3O9 1.6238 0.04% 0.01789 10.57% 0.00018 91.84% 

Estimations of the non-dimensional central deflection zu (a 2,b 2)  at the bottom of the top 

layer with various models are listed in Table 6.8, compared against the elasticity solution. 

Similar to Scenario 2, the L7-H3O9 and EDZ3*-H3O9 models provide comparable accuracy 

for a relatively small FCSR = 10. As the stiffness mismatch becomes very significant, the 

L7-H3O9 model shows better accuracy than the EDZ3*-H3O9 model, which have the same 

number of zigzag displacement fields.  
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The through-thickness distribution of the non-dimensional x (a/2, b/2) and xz (0, b/2) for 

the L7-H3O9 model are depicted in Figures 6.17-6.18, compared against the elasticity results 

using Demasi’s solution (Demasi, 2008), where the comparison confirms the accuracy of the 

L7-H3O9 model for a wide range of FCSR values. 

 
a. FCSR=10, and a/h=100 

 
b. FCSR=103, and a/h=100 

Figure 6.17: Through-thickness distribution of non-dimensional planar stress xσ  for seven-layered 

plate. 
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a. FCSR=10, and a/h=10  

 
b. FCSR=103, and a/h=10 

Figure 6.18: Through-thickness distribution of non-dimensional transverse shear strain xz  for seven-

layered plate. 

Scenario 4:  Symmetrically laminated plate with same face sheets and core sheets 
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as (F) (C)E E 1000 , and (F) (C) 0.34    , while the span-to-thickness ratio is (a/h = 10). 

This problem is analysed for the cases of 5, 7, 9 and 11 layers, in all of which the plate 

thickness remains h. Two stiff-to-soft layer thickness ratios (F) (C)(h h 1 5, 5)  are 

considered to investigate the performance of the shell models. The estimated non-

dimensional central deflection zu (a 2,b 2)  at the bottom of the top layer with Ln-H3O9 and 

EDZ*-H3O9 models for different lay-ups are given in Table 6.9, compared with the elasticity 

solution. It is clear that as the number of layers increases, the Ln-H3O9 model provides better 

accuracy than the EDZ*-H3O9 model, which verifies the efficiency of the proposed zigzag 

modes in the analysis of laminations with an alternating stiff/soft lay-up. Note that the L3-

H3O9 and the EDZ1* models for a 3-layer case are identical, and therefore not presented, 

due to the fact that the proposed zigzag function for a 3-layer model becomes identical to 

MZZF when the two external layers are of identical thickness.  

Table 6.9: Non-dimensional deflection of multi-layer plate with varying number of layers. 

Number of 
layers 

Model 
h(F)/h(C) = 1/5 h(F)/h(C) = 5 

zu  Relative error zu  Relative error 

5 

Elasticity (Demasi) 0.23578 - 0.04313 - 

L5-H3O9 0.23428 0.64% 0.04298 0.35% 

EDZ2*-H3O9 0.23428 0.64% 0.04298 0.35% 

7 

Elasticity (Demasi) 0.24237 - 0.04884 - 

L7- H3O9 0.24090 0.61% 0.04867 0.35% 

EDZ3*-H3O9 0.23915 1.33% 0.04835 1.00% 

9 

Elasticity (Demasi) 0.24746 - 0.05177 - 

L9-H3O9 0.24594 0.62% 0.05153 0.46% 

EDZ4*-H3O9 0.24191 2.24% 0.05075 1.98% 

11 

Elasticity (Demasi) 0.25166 - 0.05341 - 

L11-H3O9 0.25014 0.61% 0.05315 0.48% 

EDZ5*-H3O9 0.24389 3.09% 0.05189 2.85% 

 Geometrically nonlinear examples 

6.7.2.1 Sandwich annular plate under end shear 

A sandwich annular plate, fully clamped at one end, is subjected to a uniformly distributed 

transverse shear force at the other end, as is shown in Figure 6.19. The fibre direction of each 

layer is at a planar angle (k) from the circumferential direction of the annular plate. The 
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plate dimensions are given as: 1R 6 , 2R 10 , h 0.045 , and 1 2 3h h h 0.015   . The 

mechanical properties of the core are: (2) 6
1E 2.0 10  , (2) 5

2E 6.0 10  , 

(2) (2) 5
12 13G G 3.0 10   , (2) 5

23G 2.4 10  , and (2)
12 0.3  . The Young’s modulus and shear 

modulus of the face sheets are obtained by multiplying those of the core with a FCSR = 1000. 

 

Figure 6.19: Sandwich annular plate subject to end transverse shear. 

The shell system is obtained according to the approach illustrated in Figure 6.5 with the 

reference point O located at the origin of the global system such that the r- and s-axes orient 

along the circumferential and the radial directions, respectively. Figure 6.20 depicts the load-

displacement curves in the z direction at points A and B for two uniform meshes of the whole 

plate (32×4 and 64×4) using the L3-H3O9 element for a symmetric lay-up 

( 1 2 3h h h 0.015   ) with a (0/0/0) stacking scheme. Also presented are results from a 

96×10×6 mesh of the degenerated shell element SOLSH190 in the finite element software 

package, ANSYS v14.5 (2012), where each individual sheet is modelled with 2 layers of 

elements through the thickness to represent the local zigzag effect.  Clearly, results from both 

meshes of the L3-H3O9 element agree well with the SOLSH190 solution, indicating 

negligible inaccuracy resulting from the element-specific definition of the shell system with 

the coarser 32×4 mesh. Figures 6.21-6.22 depict the results from a 32×4 mesh of the 

L3-H3O9, EDZ1*-H3O9, and FSDT-H3O9 element for respectively a symmetric lay-up 

( 1 2 3h h h 0.015   ) and an asymmetric lay-up ( 1h 0.02 , 2h 0.015 , and 3h 0.01 ), 

both of which employ a (0/0/0) stacking scheme. Still, the results of the L3-H3O9 element 

are identical to the EDZ1*-H3O9 solution for the symmetric lay-up, while it surpasses the 

O 
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accuracy of the EDZ1*-H3O9 element for the asymmetric lay-up. In addition, the results with 

the L3-H3O6 element are almost identical to the L3-H3O9 solution. Figure 6.23 compares 

the results of a 32×4 mesh of the quadrilateral element L3-H3O9 and a 32×4 mesh of the 

triangular element L3-H3O6, which show comparable accuracy. 

 

 

Figure 6.20: Convergence study along the circumferential direction for L3-H3O9 models 

 

Figure 6.21: Load-displacement curves for a symmetric lay-up with a (0/0/0) stacking scheme.  
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Figure 6.22: Load-displacement curves for an asymmetric lay-up with a (0/0/0) stacking scheme. 

 

Figure 6.23: Comparison of quadrilateral and triangular elements for symmetric/asymmetric lay-ups. 

Figure 6.24 depicts the results from a 32×4 mesh of the L3-H3O9 and L3-H3O6 element for 

symmetric lay-ups ( 1 2 3h h h 0.015   ) with various fibre orientations, where the 

coincident plots of the sandwich shell models and the SOLSH190 models confirm the 

accuracy and effectiveness of the proposed laminated elements in solving large displacement 

problems with arbitrary fibre orientations. 

0

5

10

15

20

25

30

0.0 2.0 4.0 6.0 8.0 10.0

T
ra

n
sv

er
se

 s
h

ea
r 

lo
ad

in
g 

q

Displacement

L3-H3O9

EDZ1*-H3O9

FSDT-H3O9

SOLSH190

0

5

10

15

20

25

30

0.0 2.0 4.0 6.0 8.0 10.0

T
ra

n
sv

er
se

 s
h

ea
r 

lo
ad

in
g 

q

Displacement

L3-H3O9: symmetric

L3-H3O6: symmetric

L3-H3O9: asymmetric

L3-H3O6: asymmetric

Point A      Point B 

Point A           Point B 



Laminated Quadrilateral and Triangular Shell Elements 

 

213 
 

 

a. Point A 

 
b. Point B 

Figure 6.24: Load-displacement curves for a symmetric lay-up with various stacking schemes. 

6.7.2.2 Circular plate under uniform pressure 

The geometrically nonlinear response of a circular laminated plate is considered here, where 

the plate is fully clamped along its edge and is subjected to a uniformly distributed transverse 

loading p, as shown in Figure 6.25. The geometric and material parameters are given by 
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R 20 , (1) (3) 7E E 1.0 10   , (2)E 3750 , and (1) (2) (3) 0.25      . Due to symmetry, 

a quarter of the circular plate is modelled with a mesh of 9-noded sandwich shell elements, 

which provides a convergent solution. The mesh is depicted in Figure 6.26, where the quarter 

model is divided into three sections, with each section discretised into a 66 mesh of the 9-

noded laminated shell elements. The shell system is aligned with the (x,y) planar coordinate 

system. By restraining all the additional DOFs, a FSDT solution is also available. On the 

other hand, an ‘EDZ*’ formulation is also implemented with the 9-noded co-rotational 

element for comparison. It is worth noting that the only difference between the EDZ*-H3O9 

model and the Ln-H3O9 model is the employed zigzag function, which facilities the 

comparison between both additional displacement variables in modelling the considered 

laminations. In addition, an 88 shell model with a mixture of Ln-H3O9 and Ln-H3O6 

elements is also employed (Figure 6.27), where a ring of 6-noded elements is employed 

surrounding the plate centre and seven rings of 9-noded shell elements are employed for the 

remaining part of the model. 

 

 

Figure 6.25: Clamped circular laminated panel under uniform loading. 
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Figure 6.26: Mesh pattern for a 663 mesh of 9-noded laminated shell elements. 

 

Figure 6.27: Mesh pattern for a 88 mixed mesh of 6-noded and 9-noded laminated shell elements. 

A symmetric sandwich lay-up is first considered, where the layer thicknesses are given as 

1 3h h 0.025   and 2h 0.45 . The load-deflection curves at the plate centre O with the 

considered models are depicted in Figure 6.28, along with the series solution by Smith (1968) 

and the solution with axisymmetric sandwich shell elements by Sharifi and Popov (1973). As 

is expected, the L3-H3O9 and the EDZ1*-H3O9 results are identical for the symmetric lay-

up, both of which agree with the series solution. An asymmetric sandwich lay-up is also 

considered, where the thicknesses of the layers are given as 1h 0.05 , 2h 0.35 , and 

3h 0.1 . The reference solution is taken from the results with a fine 3D model using a 

standard 20-noded quadratic brick element (Zienkiewicz & Taylor, 2000), denoted as ‘BK20’, 

where in the planar surface each of the three sections are meshed with 2424 of the BK20 

elements, and in the through-thickness direction an element size of 0.025 is employed leading 

to a total of 20 element divisions. The L3-H3O9, EDZ1*-H3O9 and FSDT-H3O9 results with 

the same mesh as Figure 6.26 are given in Figure 6.29, compared with the solution from the 
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3D elasticity model of the BK20 element. The L3-H3O9 element still shows high accuracy in 

predicting the large displacement response of the asymmetrically laminated sandwich plate, 

but the EDZ1*-H3O9 results are as inaccurate as the FSDT-H3O9 solution owing to the 

inadequacy of MZZF in capturing the real zigzag mode, hence requiring higher-order Taylor 

expansions with more additional displacement variables for improved estimation. In addition, 

from Figures 6.28-6.29 it is observed that the mixed model of L3-H3O9 and L3-H3O6 

elements yields identical results with the pure L3-H3O9 model, which indicates the potential 

benefit of using a mixture of the 6-noded and the 9-noded laminated shell elements for 

problems involving complex geometry. 

 

 

Figure 6.28: Load-deflection curves at point O of various models for a symmetric lay-up. 
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Figure 6.29: Load-deflection curves at point O of various models for an asymmetric lay-up. 

Hereafter, the same circular plate problem is analysed for an 11-layer lamination, which is 

composed of the same stiff sheets, denoted by ‘F’, and the same soft sheets, denoted by ‘C’, 

with an alternating stiff/soft lay-up. Two stiff-to-soft layer thickness ratios 

(F) (C)(h h 1 5,5) , denoted as schemes (1) and (2) respectively, are considered to 

investigate the performance of the shell models. The material parameters are given as 
7

(F)E 1.0 10  , (C)E 3750 , and (F) (C) 0.25    . The same mesh as shown in Figure 

6.26 is used for the L11-H3O9 element. The reference solution is obtained from a 3D 

continuum model using a fine mesh of BK20, where on the planar surface each of the three 

sections is meshed with 2424 BK20 elements, and two elements are employed for each 

constitutive layer.  The load-deflection curves at the plate centre, point O, obtained with 

various models are depicted in Figure 6.30. Clearly, the disparity of the FSDT-H3O9 results 

from the others indicates the significance of the zigzag effect. The L11-H3O9 model matches 

well with the solid model, confirming its high accuracy for both lay-up schemes. Again, the 

results of a mixed model with a mesh pattern depicted in Figure 6.27 are also presented in 

Figure 6.30, which show the same accuracy with the results of the L11-H3O9 model. 
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Figure 6.30: Load-deflection curves at point O of 11-layer laminated plate. 

6.7.2.3 Multi-layer hemispherical shell with 18 cut-off 

Another large displacement problem is considered here, where a five-layer hemispherical 

shell with a circular cut-off at its top is subjected to symmetric concentrated forces at its base, 

as shown in Figure 6.31. The hole aperture is 18°, the sphere radius is 10, and the shell 

thickness is h = 0.075. Three alternative lay-ups are considered to investigate the 

performance of the multi-layer shell element in problems involving both symmetric and 

asymmetric cross-sections. The layer material type and thickness for each scenario are listed 

in Table 6.10, where layer (1) corresponds to the interior layer of the hemispherical shell. The 

material parameters for the stiff layers (F) and soft layers (C) are given as: 7
(F)E 1.0 10  , 

3
(C)E 5.0 10  , and (F) (C) 0.2    .  
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Figure 6.31: Pinched laminated hemispherical shell with a 18 hole. 

Table 6.10:  Lay-ups for 5-layer hemispherical shell. 

Layer index Layer material 
Layer thickness 

Scheme (1) Scheme (2) Scheme (3) 

1 (F) (1/5)h (1/15)h (3/25)h 

2 (C) (1/5)h (2/15)h (5/25)h 

3 (F) (1/5)h (3/15)h (9/25)h 

4 (C) (1/5)h (4/15)h (5/25)h 

5 (F) (1/5)h (5/15)h (3/25)h 

Note that in this model, the shell system is defined to follow the longitudinal and latitudinal 

lines of the sphere, which can be easily realised with the use of the approach illustrated in 

Figure 6.4 by aligning the reference vector n with the axis of symmetry. Due to the curved 

geometry, the curvilinear shell triads vary in orientation between adjacent elements, though 

any inaccuracy diminishes with mesh refinement, as confirmed in the presented results. Due 

to symmetry, only a quarter of the hemispherical shell is modelled with a 1616 mesh of the 

L5-H3O9 and EDZ2*-H3O9 elements, both of which provide convergent solutions. By 

restraining all additional zigzag parameters, the corresponding FSDT-H3O9 results are also 

available. A 1616 mesh of the triangular L5-H3O6 element is also employed. The results of 

a 646410 solid model using the BK20 element are utilised for a reference solution. Figures 

6.32-6.34 depict the equilibrium paths of the radial displacements at points A and B for the 

respective lay-up schemes. The deviation of the FSDT-H3O9 results from the reference 

solution indicates the significance of the zigzag effect for this problem. It is interesting to 

note that the EDZ2*-H3O9 results agree with the reference solution for lay-up (1) but is as 
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inaccurate as the FSDT-H3O9 solution for the other two lay-up scenarios. This is attributed 

to the inadequacy of MZZF in capturing the real zigzag mode for the last two lay-ups, hence 

requiring higher-order Taylor expansions with more additional displacement variables for 

improved estimation. On the other hand, the results of the L5-H3O9 and the L5-H3O6 

models present an excellent match against the results obtained from the 3D continuum solid 

model for all of the considered lay-up schemes.  

 

Figure 6.32: Load-deflection curves at point A and B of various models with lay-up scheme (1). 

 

Figure 6.33: Load-deflection curves at point A and B of various models with lay-up scheme (2). 
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Figure 6.34: Load-deflection curves at point A and B of various models with lay-up scheme (3). 

 Summary 

In this chapter, the proposed multi-layer shell modelling approach has been implemented for 

9-noded and 6-noded co-rotational shell elements, which can be applied in large displacement 

analysis. Importantly, to eliminate the need for co-rotational transformations for the 

additional zigzag displacement parameters, a 2D curvilinear shell system is proposed in this 

research for the direct definition of these parameters, such that a simple and fixed 

transformation of these additional parameters to their counterparts in the local element system 

holds throughout the analysis. Moreover, consistent mass matrices for the laminated shell 

elements are also derived in this chapter, which enables the analysis of dynamic problems. 

Linear and geometrically nonlinear numerical examples are finally solved with the proposed 

multi-layer shell elements, where excellent accuracy is generally achieved in comparison 

with elasticity solutions, and superior performance is typically demonstrated compared to 

existing models for laminated shells with alternating stiff/soft lay-ups. 
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CHAPTER 7 

7 Application to Laminated Glass 

 
 

 Introduction 

The effectiveness of the proposed multi-layered shell elements has been verified in Chapter 6. 

In this chapter, their application to LG is presented. Although structural glass is a brittle 

material and will fracture when tensile stress is exceeded, in this research the scope of interest 

is the structural behaviour prior to the initiation of cracking. Therefore, a linear elastic 

isotropic material model is employed for glass, while the PVB interlayer is considered as a 

linear viscoelastic material, which is appropriate for small-strain problems. With the 

appropriate material models used in the laminated shell elements, geometrically nonlinear 

analysis of LG structures under static and dynamic loadings can be performed. 

Insulated glazing, or double glazing, has been increasingly used owing to its good heat and 

noise insulating performance. It is composed of two glazing panes separated by an insulating 

air gap, which helps reduce the thermal and sound transfer. Moreover, the sealed air gap has 

influence on the structural performance of the insulated glazing system via the generation of 

air pressure onto both panes once the pane deflection causes a volume change for the sealed 

air. Ding et al. (2014) investigated the performance of a double-skin steel façade subjected to 

blast loading and found that during the blast loading there was a significant increase in the 

cavity pressure due to the changed cavity volume through the panel deflection. Deng and Jin 

(2010) simulated the response of insulated glass subject to blast loading, where both the air 
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area between explosive and structure and the sealed air were modelled with equations of state 

employed to describe the pressure-volume-energy relationship. They found that under blast 

loading the interior glass pane suffered fewer cracks, which indicates that the air space 

alleviates the blast and helps to protect the interior pane. Wagner and Müller (2010) 

considered the effect of the enclosed air on the behaviour of insulated glass under blast 

loading by employing a static relationship between the change in the gas volume and the 

hydrostatic pressure, which can be included into an existing structural model with ease. 

Therefore, in order to allow the analysis of insulated glazing systems, a volume-pressure 

control procedure based on a simple static relationship is established and implemented in 

ADAPTIC v2.14.2 for recording the volume change of enclosed gas and hence calculation of 

the generated pressure, which will allow the analysis of double glazing units.  

In the following sections of this chapter, a linear viscoelastic material model for the PVB 

material is reviewed, which is employed in this work with 3D solid elements as well as 2D 

shell elements. The verification of the linear viscoelastic material model is then provided with 

two illustrative LG examples. Subsequently, a volume-pressure control algorithm is presented, 

which allows the consideration of the effect of enclosed air in insulated glazing on the 

structural behaviour under external loading, followed by two double glazing examples to 

verify accuracy and efficiency of the proposed approach. 

 Linear viscoelastic material model 

A linear viscoelastic material model is implemented in this research to simulate PVB, which 

employs the assumption of a constant bulk modulus as made by Bennison et al. (1999) and is 

formulated based on the recursive formula presented by Sedef et al. (2006) in the calculation 

of current stresses of viscoelastic materials. 

 Recursive formula 

In a generalised Maxwell model, the viscoelastic material property is represented by a 

combination of springs and dashpots, which results in a Prony series expression for the stress 

relaxation function, as is given in (2.20). The Boltzmann superposition principle yields a 
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stress-strain relationship given in (2.21). The substitution of (2.20) into (2.21) derives the 

following expression for the stress relaxation: 

M M
j

t st tN N

j j
j 1 j 10 0

(s) (s)
(t) E ds E e ds E (t) h (t)

s s





 
 

 
     

     (7.1) 

where MN  is the number of Maxwell elements. 

Temporal discretisation leads to the following expression for stress at the previous time nt  

and the current time n 1t  : 

MN
n n n

j
j 1

E h

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Defining the current time step size as n 1
n 1 nt t t
   , and assuming a linear strain variation 

in the current time step (i.e. 
n 1 n

n 1

(s)

s t




   


 

), each function n 1
jh   is related to n

jh  with the 

following relationship (Sedef et al., 2006): 
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where n 1 n 1 n      .  

Further integration of (7.4) yields: 
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with: 
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Substitution of (7.5) into (7.3) results in the recursive formula for stress relaxation. 

 Application to PVB 

Bennison et al. (1999) stated that the bulk modulus of PVB  is almost constant, the value of 

which is around 2.0 GPa. Therefore, a linear viscoelastic material model based on the 

recursive formula presented by Sedef et al. (2006) is implemented, where a constant bulk 

modulus K is assumed and a Maxwell series of the shear relaxation function G is employed. 

In the linear viscoelastic material model, the stress relaxations can be obtained from the 

following equations: 

t

i i i iii
ii ii i i i i

0

4 2 2
(t) G(t s)( )ds K (t) (t) (t)

3 s 3 s 3 s
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

 (7.8) 

with 1 3i   , mod( ,3) 1i i   , and mod( 1,3) 1i i    . 

Application of the recursive formula to (7.7)-(7.8) yields the stresses at time n 1t   as follows: 

MN
n 1 n 1 n 1 n 1 n 1
ii ii i i i i j,ii
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where the functions n 1
j,h ( , 1 3)
      are expressed in an recursive manner as: 
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7.2.2.1 Application to shell elements 

The triaxial viscoelastic material model described above can be directly applied to 3D solid 

elements. In order to apply it to 2D shell elements which ignore transverse normal stresses, a 

further modification is required. By imposing a zero value constraint on the transverse normal 

stress 33 , the constitutive equations between the stresses and strains are expressed as 

follows: 

n 1 n 1 n 1 n 1 n 1 n 1
p v,p p hist,p s v,s s hist,s,        σ C ε σ σ C ε σ  (7.13) 

where 
Tn 1 n 1 n 1 n 1

p 11 22 12, ,      σ and 
Tn 1 n 1 n 1

s 13 23,    σ  denote respectively the planar and 

transverse shear stresses at time n 1t  ; 
Tn 1 n 1 n 1 n 1

p 11 22 12, ,      ε  and 
Tn 1 n 1 n 1

s 13 23,    ε  

denote respectively the planar and transverse shear strains at time n 1t  ; n 1
v,p
C  and n 1

v,s
C  are 

viscoelastic constitutive matrices for respectively the planar and transverse shear 

stresses/strains at time n 1t  ; and hist,pσ  and hist,sσ  are stresses related to the loading history. 

The derivations of n 1
v,p
C  , n 1

v,s
C , hist,pσ  and hist,sσ are provided in Appendix D. 

 Verification of viscoelastic material model 

Hereafter, two LG problems presented in the literature are reproduced to verify the linear 

viscoelastic material model implemented for PVB. In both problems, the laminated shell 

elements proposed in Chapter 6 are used, and the linear viscoelastic material models are 

employed for the PVB interlayer.  
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 Laminated glass under biaxial bending 

7.3.1.1 Description of problem 

The presented example consists of a series of biaxial flexural tests conducted by Bennison et 

al. (1999), which are used to investigate the response of circular LG panels at a wide range of 

loading rates. The LG is composed of two circular glass plies with a diameter of 100 mm and 

bonded with a PVB interlayer. The circular panel is supported at three points located on a 

radius r2 = 44.7 mm and is loaded with a circular punch which effectively produces a ring 

loading with a radius of r1 = 4.498 mm, as depicted in Figure 7.1. The ring load is applied 

monotonically at various displacement rates in the range of 10−3 to 102 mm/s. From the 

conducted material tests on the PVB interlayer, Bennison et al. also proposed a generalized 

Maxwell material model for the description of the shear relaxation modulus, with the material 

parameters corresponding to a reference temperature of 20°C listed for the 11 Maxwell 

components in Table 7.1. The parameter values for a different temperature can be obtained by 

employing the WLF equation, as given in (2.18), with C1 = 20.7 and C2 = 91.1 (Bennison et 

al., 1999). 

 

Figure 7.1: Schematic drawing of the biaxial bending tests on LG panels. 

Position i 

Position o 
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Table 7.1: Terms of the generalised Maxwell series description (Bennison et al., 1999). 

j Gj/G0 τj(s) 

1 0.1606000 3.2557E-11 

2 0.0787770 4.9491E-09 

3 0.2912000 7.2427E-08 

4 0.0711550 9.8635E-06 

5 0.2688000 2.8059E-03 

6 0.0895860 1.6441E-01 

7 0.0301830 2.2648E+00 

8 0.0076056 3.5364E+01 

9 0.0009634 9.3675E+03 

10 0.0004059 6.4141E+05 

11 0.0006143 4.1347E+07 

Instantaneous shear modulus G0 = 0.471GPa; WLF parameters C1 = 20.7 and C2 = 91.1, at a reference 

temperature of 20C. 

7.3.1.2 Laminated shell model 

Due to symmetry, a 60° segment of the circular plate is modelled with meshes of the 

proposed sandwich shell elements. With respect to the fan-shaped geometry, an efficient 

mesh type is used, where a ring of 6-noded triangular elements is employed surrounding the 

panel center and rings of 9-noded quadrilateral elements are employed for the remaining part. 

A 1010 mesh, as shown in Figure 7.2 provides a convergent solution. This mesh is thus used 

to reproduce some of the tests and compare with both the experimental data and the 

numerical results given by Bennison et al. (1999) who used 8-noded 3D solid models with ten 

elements employed through the plate thickness (four for each glass ply and two for the 

interlayer). 

7.3.1.3 Results 

Stress-force relationship 

In one of the tests, the uniform ring load was applied at a displacement rate of 10-3mm/s, and 

the temperature was maintained 22.8°C during the test. In this case, the thickness of each 

glass ply is hg=2.195mm and the PVB layer is hp=0.799mm. Bennison et al. (1999) used 

uniaxial electrical-resistance strain gauges to record the strain of the lower ply on the 

supported (lower) glass surface along with the applied force. Figure 7.3 shows the stress-
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force curve of the 1010 shell model, which is in agreement with the experimental data and 

the numerical results of Bennison et al.  

 
 

Figure 7.2: A sixth model of the LG problem (bold line denotes ring loading; point denotes support). 

 

Figure 7.3: The stress-force curves of experimental data and numerical models. 

Through-thickness stress distribution 

The through-thickness principal stress distribution at the LG centre is obtained with the 

1010 shell model of L3-H3O9 and L3-H3O6 elements, as depicted in Figure 7.4 in 
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comparison with the results of the 3D solid model by Bennison et al. It is noted that for the 

considered case the glass plies and the PVB have thicknesses of hg = 2.246mm and hp = 

0.76mm, and the loading history is conducted at a fixed temperature of 22°C. Two 

normalised loading rates are considered: *v  =0.675 and 6.75108, where 
*

* Tva τ
v 


, with *τ

=1127s denoting the characteristic time for G(t) to relax to a value of around 1MPa, and 

=0.6mm representing the maximum plate deflection. aT is a coefficient associated with 

temperature, as given in Section 2.5.3. From Figure 7.4 it is observed that the predicted stress 

distribution of the L3-H3O9 shell model matches well with the 3D solid model by Bennison 

et al. (1999) at both loading rates. 

 

Figure 7.4: Distribution of normal stress for different loading rates. 

Influence of loading rate on stress distribution 

The influence of the loading rate on the stress distribution is investigated with the glass and 

PVB thicknesses of hg = 2.246mm and hp = 0.7mm. The central principal stresses at the 

bottom of both glass plies, denoted as position ‘i’ and ‘o’, respectively (Figure 7.1), 
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o i
o i11 11σ σ

,
F F

     

where o
11σ  and i

11σ  are principal stresses at the bottom of respectively the lower and the upper 

glass ply; F is the recorded punch force associated with a maximum deflection of 0.6mm. The 

coefficients oζ  and iζ  are normalised by the corresponding coefficient mζ  for a monolithic 

glass pane of thickness 2hg.  

Figure 7.5 depicts the variation of the normalised stress-to-force ratios with loading rates via 

the use of the 1010 shell model. At a relatively slow loading rate, the PVB interlayer has a 

limited shear stiffness to transfer shear forces. Accordingly, the LG can be regarded as 

layered glass panels, which results in rapid development of stresses in each glass ply. For a 

rapid loading rate, the PVB interlayer exhibits stiff material properties, which leads to the 

three layers working as a whole and hence reducing the normalised ratio at position ‘o’ to 

around 1.0 and i mζ ζ at position ‘1’ to an even smaller value. The results of the sandwich 

shell model are in good agreement with the curves obtained by Bennison et al., which verifies 

the accuracy of the proposed sandwich shell model and the viscoelastic material model in the 

simulation of LG. Also shown in Figure 7.5 are the FSDT results with the same 10×10 shell 

model, which are obtained by restraining all additional DOFs in the sandwich shell elements. 

The deviation of the FSDT results from the others indicates the significant zigzag effects of 

the LG panels throughout the considered range of loading rates due to the modulus mismatch 

between glass and PVB. On the other hand, as indicated in the figure, this deviation of results 

reduces with much higher loading rates. 
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Figure 7.5: Stress-to-force ratios with various loading rates. 

 Laminated glass panel under blast loading 

7.3.2.1 Description of problem 

Consideration is given here to the dynamic problem of LG glazing subjected to low-level 

blast loading, which has been numerically analysed by Wei et al. (2006). The considered LG 

panel, which has the dimensions of 2.65m × 2.65m, is subjected to a uniform blast loading, as 

depicted in Figure 7.6. Simply-supported boundary conditions are applied to the LG plate. 

Each glass ply is of thickness glassh 11.04mm  and the PVB layer is of thickness 

PVBh =1.52mm . The glass plies are modelled as a linear elastic material with glassE 72GPa  

and glass 0.25 . The PVB is modelled as a linear viscoelastic material with the shear 

relaxation modulus of the form -βt
0G(t)=G +(G -G )e  , where 0G =0.33GPa , G =0.69MPa , 

and 1β =12.6s , while the bulk modulus is taken as K= 20GPa . The densities of glass and 

PVB are 2500kg/m3 and 1100kg/m3, respectively. As shown in Figure 7.7, the blast loading 

curve employs the following expression: 

dt t0
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where p(t) is the instantaneous overpressure at time t, 0p 6894.8Pa  is the peak overpressure 

observed at t = 0, α = 0.55 is the decay factor, and td = 7.7ms is the positive overpressure 

duration.  

 

Figure 7.6: A rectangular LG plate under uniform blast load. 

 

Figure 7.7: A schematic representation of the blast loading curve (Wei et al, 2006). 

7.3.2.2 Laminated shell model 

Due to symmetry, a quarter of the panel is modelled with an 8×8 mesh of the proposed 

L3-H3O9 element, which provides a convergent solution. The central deflection time history 

and mid-span maximum principal stress time histories are respectively plotted in Figures 7.8-

7.9, which show good agreements with the results by Wei et al. (2006), who used a 

60×60×10 solid model of 8-noded solid elements, hence demonstrating the accuracy and 

efficiency of the proposed laminated shell element in dynamic problems. Also depicted in 

Figure 7.8 is the deflection time history for a linear elastic PVB model which employs the 

instantaneous shear modulus G0. The result almost coincides with that of the viscoelastic 
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material model. It is concluded that for LG problems associated with short-duration loadings, 

the interlayer can be simply simulated with an elastic material model without degradation of 

accuracy.  

 

Figure 7.8: Time history of deflection at the LG centre. 

 

Figure 7.9: Time history of maximum principal stress at the LG centre. 

Influence of G0 on the response 

The influence of changing the short-term shear modulus G0 on the LG response is 

investigated. Figures 7.10-7.12 show the displacement and stress time histories of LG panels 
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with different G0 values. In Figure 7.12, results of a FSDT-H3O9 shell model are also 

presented, where the corresponding stress time history remains unchanged with the G0 value, 

due to ignoring the zigzag effect and the relatively low contribution of normal stresses by the 

interlayer.  

 

Figure 7.10: Influence of short-term PVB shear modulus on the deflection time history. 

 

Figure 7.11: Influence of short-term PVB shear modulus on the stress time history (bottom). 
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Figure 7.12: Influence of short-term PVB shear modulus on the stress time history (top). 

It is observed that for a relatively large G0 value (330MPa and 3.3GPa), the resulting time-

histories have little difference, which indicates that, for both scenarios, the glass-to-PVB 

stiffness ratio is not large enough to induce significant zigzag effect. For a relatively small G0 

value, however, the glass-to-interlayer stiffness mismatch generates noticeable cross-

sectional warping, which affects the shape and magnitude of the time history curve as well as 

the natural period of the structure. Within this range of G0, the FSDT model is not suitable to 

accurately capture the structural behaviour owing to the assumed linear through-thickness 

variation of displacements.  

 Volume-pressure control algorithm 

In the analysis of double glazing systems, the influence of the volume change in the enclosed 

air on the structural behaviour needs to be taken into consideration. In this section, a simple 

volume-pressure control algorithm is presented with the employment of Boyle’s law.  

It is assumed that the gas enclosed by a surface can be regarded as an ideal gas and has no 

viscosity or inertia effects, and that the analysis is at an isothermal state. Therefore, the 
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relationship between the gas volume and the generated pressure follows Boyle’s law, which 

is expressed as: 

where 1p  and 2p are gas pressures at states 1 and 2, respectively, and 1V  and 2V are gas 

volume at the respective states. 

Denote the enclosed gas volume and pressure at the initial undeformed configuration as 

respectively 0
EV  and 0

Ep  (where ‘E’ represents the enclosure), the pressure generated by the 

gas at the current deformed configuration, n 1
Ep  , is expressed as 

0 0
n 1 E E
E n 1

E

p V
p

V


  (7.16) 

where n 1
EV   is the enclosed gas volume at the current configuration.  

There is an interaction between n 1
Ep   and n 1

EV  , evident from the fact that the current gas 

pressure is dependent on how the volume of the enclosure changes, while the deformation of 

the enclosure is in turn affected by the applied gas pressure. An intuitive way of solving Ep  

is to treat it as a pressure DOF. This method derives correct gas pressure for each time step, 

but the pressure DOF leads to a coupled relationship between the deformation of the 

enclosing surface and the gas pressure. Owing to the coupling of all structural elements 

forming the enclosing surface to the pressure DOF, the computational efficiency may be 

significantly reduced. 

An alternative approach is to apply the gas pressure based on the deformed enclosure 

configuration of the previous time step, which maintains fast convergence rate of the model 

owing to the employment of a decoupled relationship between the displacement parameters 

and the pressure parameter, though smaller time steps are required to ensure the accuracy of 

the generated gas pressure. In the following, a more effective volume-pressure control 

algorithm is presented, which maintains a decoupled relationship between the gas pressure 

and structural deformation, and which can also be employed for large displacement analysis. 

1 1 2 2p V p V  (7.15) 
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 Volume-pressure control procedure 

Figure 7.13 depicts the configurations of the enclosed surface at time nt  and n 1t  , where nt  

corresponds to the last known configuration, while n 1t   corresponds to the current unknown 

configuration. The current enclosure volume n 1
EV  can be calculated by adding an incremental 

volume change of the enclosure to that of the last known configuration: 

n 1 n n 1
E E EV V V     (7.17) 

where the subscript ‘E’ stands for the considered enclosure; n 1
EV   is the volume change of 

the enclosure during the current time step n 1
n 1 nt t t
   . 

 

 

Figure 7.13: The volume change of enclosure from time nt  to time n 1t  .  

As has been stated, there is a coupled relationship between the enclosure volume and the 

generated gas pressure. In the proposed volume-pressure control procedure, the incremental 

volume change n 1
EV   is approximated based on the known parameters of the previous time 

step. It is assumed that the enclosure in the current time step has the same rate of volume 
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change as that in the previous time step, which leads to an adequate prediction of n 1
EV   as 

follows: 

n
n 1 n 1E
E n

V
V t

t
 

  


 (7.18) 

where the bar on the variable n 1
EV   indicates an approximating value. 

At the beginning of each time step, the value n 1
EV   is estimated using (7.18), which is then 

used to obtain an approximated value of the current enclosure volume: 

n 1 n n 1
E E EV V V     (7.19) 

where n 1
EV   is an estimation of the current enclosure volume. 

Rather than defining a pressure DOF and coupling it with the enclosure displacements, the 

proposed algorithm calculate the current gas pressure, n 1
Ep  , only once at the beginning of the 

time step with the use of the estimated volume n 1
EV  : 

0 0
n 1 E E
E n 1

E

p V
p

V


  (7.20) 

where 0
Ep  and 0

EV  represent the gas pressure and the volume of the enclosure in the initial 

undeformed state.  

Subsequently, the analysis for the current time step is performed with the use of n 1
Ep  in 

combination with other external loads. Once the displacement parameters of the current time 

step have been solved for, the real volume change n 1
EV   can be calculated by integrating the 

normal component of incremental displacements n 1d  throughout the enclosed surface n
E  

(Figure 7.13): 

N
n 1 n 1
E E,i

i 1

V V 


    (7.21) 

e n
E

e nn 1 n 1 n
E,i EV ( )d 




    d c  (7.22) 



Application to Laminated Glass 

 

240 
 

where N stands for the number of shell elements that compose the enclosure; e n
E denotes the 

domain of the shell element composing the enclosure, with the superscript ‘n’ denoting the 

previous configuration at time nt ; n 1d  represents the incremental translational 

displacements at time n 1t   in terms of the global system, which is interpolated as: 

eN
n 1 n 1

i i
i 1

N 


d d  (7.23) 

n
c  is the unit outward normal vector of the element in the previous configuration, which 

varies over the curved shell configuration: 

n n n n
n n n

n n
, , 

  
 

  
  

 

v v X X
c v v

v v
 (7.24) 

with 
Tn n n nX ,Y , ZX  representing the global nodal coordinates of the element at the 

previous time step nt , interpolated as: 

eN
n n

i i
i 1

N


X X  (7.25) 

 

It is important to note that although (7.18)-(7.20) give an approximation of the current gas 

pressure, the accuracy improves with finer temporal discretisation. In addition, the 

employment of (7.18)-(7.20) leads to a decoupled system of equations for the displacement 

parameters and the gas pressure, which provides good accuracy without a significant increase 

computation time.  

 Verification of volume-pressure control algorithm 

The volume-pressure control algorithm is verified with two simple dynamic examples, where 

the convergence studies on the mesh size and the time step are included in the first example, 

and the comparison against the results of others is given in the second example. 
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 Clamped double glazing 

7.5.1.1 Description of problem 

As depicted in Figure 7.14, a double glazing, which is composed of two 1.2m  1.2m  5mm 

AG panes with a 10mm insulated air gap in between, is subjected to a uniform transverse 

pressure loaded on one glazing pane, with the loading history presented in Figure 7.15. The 

material properties of the glass are 10E 7.2 10  , 0.25  , and 32500kg m  . The 

translational DOFs are all restrained at the glazing edges. The central deflections 

zu (L/ 2, L/ 2)  and stress components x (L/ 2, L/ 2)  for each pane are used to assess accuracy, 

with the evaluation positions in the thickness direction shown in Figure 7.14. 

 

 

Figure 7.14: Clamped double glazing with insulated air gap subject to uniform pressure. 

 

Figure 7.15: Loading history of uniform pressure p. 

7.5.1.2 Results of proposed volume-pressure control algorithm 

Due to symmetry, a quarter of the glazing is modelled with the monolithic H3O9 elements 

using ADAPTIC (Izzuddin, 1991). The volume-pressure control algorithm is employed for 

all the shell elements forming the enclosure, where the element normals of the elements are 

all oriented outward, which is a requirement for the direct application of (7.21)-(7.22) without 
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sign adjustment. In order to ensure the accuracy of the results, a time step of 

4t 2.5 10 sec    is employed. The time histories of the central displacements and stresses 

are depicted in Figures 7.16-7.17 for three successive meshes (44, 66 and 88 for each of 

the quarter-pane), which shows that the 66 mesh provides a convergent solution, although 

the results with a 44 mesh are already reasonably accurate. From Figure 7.17 it is also 

observed that that the problem is associated with large displacement, evident from the much 

larger magnitudes of stress x  at positions (2) and (4) , owing to the stretching of the glass 

panes under loading.  

 

 

Figure 7.16: Displacement time histories of ADAPTIC models with three successive meshes 

( 4t 2.5 10 sec   ). 
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Figure 7.17: Stress time histories of ADAPTIC models with three successive meshes 

( 4t 2.5 10 sec   ). 

7.5.1.3 Comparison with ANSYS model 

The same problem is analysed in ANSYS, where 4-noded shell elements, SHELL181, are 

employed for the modelling of the two glass panes, and the volume-pressure relationship is 

computed with the use of the hydrostatic fluid element, HSFLD242 element, as shown in 

Figure 7.18. The HSFLD242 element is a 3D pyramid-shaped element, where the base (I-J-

K-L) is overlayed on the faces of shell elements enclosing the volume so as to share the 

translational displacement DOFs with the overlayed shell elements for the calculation of the 

gas volume. On the other hand, a pressure node Q is defined for the whole enclosure, as 

described in Section 7.4, which is shared by all HSFLD242 elements composing the same gas 

enclosure. Therefore, the HSFLD242 element correctly derives the current gas pressure and 

deformed configuration, but the pressure node in turn couples the displacement parameters 

and the pressure parameter.  

A quarter of the double glazing is modelled with three successive meshes (88, 1212, and 

1616) of the SHELL181 element for each pane, and a time step of 4t 2.5 10 sec    is 

used. Figures 7.19-7.20 depict the displacement and stress results with the three meshes, 

which shows that the 1212 mesh provides a convergent solution, which employs the same 

number of displacement variables as the 66 mesh of the ADAPTIC model. Figures 7.21-
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7.22 compare the results of the 66 ADAPTIC model with the 1212 ANSYS model, which 

show a good agreement of both models, hence indicating the accuracy of the proposed 

volume-pressure control algorithm for a time step of 4t 2.5 10    sec. 

 

 

Figure 7.18: Geometry of HSFLD242 element (ANSYS, 2012). 

 

 

Figure 7.19:  Displacement time histories of ANSYS models with three successive meshes 

( 4t 2.5 10 sec   ). 
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Figure 7.20: Stress time histories of ANSYS models with three successive meshes 

( 4t 2.5 10 sec   ). 

 

Figure 7.21: Comparison of displacement time histories between the ADAPTIC and the ANSYS 

models ( 4t 2.5 10 sec   ). 
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Figure 7.22: Comparison of stress time histories between the ADAPTIC and the ANSYS models 

( 4t 2.5 10 sec   ). 

As noted before, the proposed volume-pressure control algorithm excludes the use of a 

pressure node and avoids the coupling between the nodal displacements and the pressure 
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Figure 7.23: Stress time histories of ADAPTIC models with two time increments. 

 

 

Figure 7.24: Stress time histories of ANSYS models with two time increments. 
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 Pinned double glazing 

7.5.2.1 Description of problem 

Similar to the previous example, the response of a 1m  1m square insulated glazing with all 

edges pinned under a triangular impulse load is investigated, as depicted in Figure 7.25. The 

insulated glazing is composed of two 10mm thick structural glass panes insulated by an air 

gap of 12mm. The material properties of glass are given as: E 72GPa , 0.22  , and 

32500kg / m  . The triangular impulse is shown in Figure 7.26, which has a magnitude of 

22.3kPa ms  with a peak pressure of 6.9kPa at time t = 0s. The deflection and principal 

stresses at the pane centre are evaluated, with the evaluation positions in the thickness 

direction shown in Figure 7.25.  

Here, each glazing panel is modelled with a 1616 mesh of the monolithic H3O9 element, 

and a time step of 1.510-4 sec is selected, which provides a convergent solution to the 

problem. The time histories of the pane central deflections and maximum principal stresses 

for both panes are depicted in Figures 7.27-7.28. Also presented are the results by Seica et al. 

(2010), where a 1616 mesh of 9-noded elements were used for each panel. Clearly, the 

results of both models match well, which verifies that the proposed volume-pressure control 

algorithm works well, hence enabling the effective nonlinear analysis of insulated glazing. 

 

 

Figure 7.25: Pinned double glazing with insulated air gap subject to triangular impulse. 
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Figure 7.26: Schematic representation of the triangular impulse. 

 

 

Figure 7.27: Displacement time histories of different double glazing models. 
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Figure 7.28: Principal stress time histories of different double glazing models. 
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viscoelastic material model is employed to capture the characteristics of PVB, which is 
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loading rates is investigated. The implemented viscoelastic material model is verified with a 

good match between the results of the laminated shell model and the experimental and 

numerical data. It is also concluded from the results that: (1) under short-duration loading, the 
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-10.0

-5.0

0.0

5.0

10.0

15.0

0 2 4 6 8 10 12 14 16

S
tr

es
s 

(M
p

a)

Time (msec)

ADAPTIC: stress (1)

ADAPTIC: stress (2)

Seica et al.: stress (1)

Seica et al.: stress (2)



Application to Laminated Glass 

 

251 
 

the response of the LG becoming similar to the response of two glass plies layered with no 

connection. Then a LG problem associated with short-duration loading is simulated, where 

both a linear viscoelastic material model and a linear elastic material model are used for PVB, 

which shows that it is feasible to use a linear elastic material model for PVB in blast analysis 

without loss of accuracy. 

In order to allow the simulation of double glazing, a volume-pressure control algorithm is 

proposed, which considers the effect of insulated air by assuming a hydrostatic pressure state 

in the insulated air gap and relating the generated pressure to the relative volume change in 

the air gap. The algorithm computes the air pressure with the use of the structural 

configuration and rate of volume change from the previous step, which eliminates the need to 

introduce a pressure parameter, and hence avoids coupling between the displacement 

parameters with the pressure loading. The accuracy of this volume-pressure control algorithm 

has been verified with two numerical examples of double glazing. It is shown that for an 

adequate time step, the model with the proposed volume-pressure control algorithm agrees 

well with the solutions by others utilising coupled pressure-displacement models.  
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CHAPTER 8 

8 Case Studies 

 

 

 Introduction 

This chapter presents several applications of the proposed laminated shell elements in the 

modelling of LG structures, which are illustrated through a number of numerical examples. 

Two practical problems related to the design and assessment of LG structures are first given, 

with one problem associated with the buckling analysis of a partial LG structure and the other 

the creep analysis of a LG stair. Subsequently, a comprehensive double glazing system under 

blast loading is analysed, and the results are compared with existing experimental and 

numerical data. All numerical examples are geometrically nonlinear and modelled with the 

laminated shell elements proposed in the previous chapters. The first two examples are 

related to static analysis, and the last example examines the performance of the element in 

dynamic applications. 

 Buckling analysis of laminated glass fin 

In recent years, not only has LG been widely used for secondary structural components (such 

as curtain wall glazing), but it has also become increasingly adopted for structural 

applications owing to its aesthetic appearance (Figure 8.1.a). LG members that are used in 

real structures are typically associated with large slenderness, which post an equal importance 

of stability analysis to cross-sectional strength analysis. This section focuses on the stability 

analysis of a partial LG structure under transverse loading (say wind load), which is extracted 
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from a pure LG structure (Figure 8.1.a), where a laminated shell model using the proposed 

elements is built, with its efficiency and accuracy compared with other models. 

  
 

a. Apple Store Fifth Avenue New York. 

(www.idesignarch.com). 

b. A partial model extracted from structure. 

Figure 8.1: A LG structure. 

 Description of the problem 

The partial LG structure shown in Figure 8.1.b is composed of two halves of curtain wall 

glazing panels supported by a LG fin. The glass fin is 10m in height and 400mm in depth, 

and consists of three 12mm glass plies bonded by two 1.52mm PVB interlayer (Figure 8.2). 

Each curtain wall glazing is 10m high and 2m wide, and is composed of two 10mm glass 

plies sandwiched by a 1.52mm PVB interlayer. Adhesive silicone bond is used between the 

glass fin and the glazing panes, which provides a continuous elastic support along the vertical 

glazing edge. 

 

h=10 m 
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Figure 8.2: Plan view of the partial LG structure. 

 The material parameters of glass are glassE 70GPa  and glass 0.2  . For design purpose, 

the ASTM (2012) E1300-12 standard suggests using a linear elastic material model for the 

PVB with the shear relaxation modulus for a 3s load duration at a 50C operation temperature 

for the analysis of wind load. Therefore, a linear elastic material model is used, where the 

bulk modulus is 2.0GPa and the shear modulus is 0.44MPa, which is extracted from the shear 

relaxation model proposed by Bennison et al. (1999) (Table 7.1) for a load duration of 3s at a 

50C operation temperature. The corresponding Young’s modulus and Poisson’s ratio are 

PVBE 1.32MPa  and PVB 0.4999  . 

A uniform transverse pressure is applied to the two halves of glazing to represent the wind 

load. In this case study, a static analysis is performed to determine the critical wind load for 

structural buckling. 

  Consideration of silicone joint 

The continuous elastic support provided by the silicone joint is modelled with matrix 

elements along the edge. In order to obtain the effective stiffness of the matrix element, the 

silicone is assumed to be virtually under plane strain conditions with negligible strains in the 

vertical direction. Figure 8.3 provides a schematic representation of the silicone joint cross-

section, where tg = 36mm is the overall thickness of glass plies of the LG fin and ts = 20mm 

is the thickness of the silicone joint. There are three displacement fields of significance 

( x zu ,u , ), each of which is assumed to vary linearly along the x-axis: 
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yx0 z0
x z

s s s

ru u
u x, u x, x

t t t
        (8.1) 

 

Figure 8.3: Schematic representation of the silicone joint cross-section. 

The strains are given as: 

yx0x
x

s s

r zu(u z)

x t t

  
   


, y z0x z

xz
s s

r x u(u z) u

z x t t

   
    

 
 (8.2) 

which results in the following stresses: 

x x xz xz
E(1 ) E

,
(1 )(1 2 ) 2(1 )


     

     
 (8.3) 

The internal equivalent forces can be obtained from the virtual work statement: 

 
e

e
x0 x0 z0 z0 y ry x x xz xzu f u f r m d



             (8.4) 

which yields: 
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 (8.5) 

By ignoring the coupling terms between z0u  and yr , and taking the material parameters of 

the structural silicone to be E 1.4MPa  and 0.499  , the equivalent uncoupled stiffness 

terms are obtained as: 

g 8 2
x x0 x0

s

g 5 2
z z0 z0

s

3
g 4

ry ry y s g
s

tE(1 )
k f u 4.211 10 N m

(1 )(1 2 ) t

tE
k f u 8.406 10 N m

2(1 ) t

tE(1 ) E
k m r t t 4.582 10 (N m) m

(1 )(1 2 ) 12t 2(1 )

 
   

   
      
       
      

 (8.6) 

Since silicone is associated with a large Poisson’s ratio, the silicone joint undergoes large 

bulk deformation under loading. Therefore, a solid model with a fine mesh is also used to 

model the silicone joint, which has a width tg, a depth ts, and a height H = 50mm. As shown 

in Figure 8.4, the top and bottom surfaces are restrained in the y direction, whereas the left 

surface is fully restrained. Three displacement modes are applied on the right surface, 

respectively:  

(1) Elongation in the x direction, at sx t : 6
xu 10 , y zu u 0  ; 

(2) Shearing in the z direction, at sx t : 6
zu 10 , x yu u 0  ; 

(3) Rotation about the y axis, at sx t : 6
x gu 10 (z t 2)  , yu 0 . 

The three models then correspond to respectively a tensile force Fx, a shear force Fz, and a 

bending moment Mry, respectively, which result in the effective stiffness terms as follows: 
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 (8.7) 

 

 

Figure 8.4: Boundary conditions for the silicone joint model. 

Clearly, the bulk deformation of silicone (Figure 8.5) has a significant influence on the 

stiffness terms, in particular kx and kry. In the following analyses, the effective stiffness terms 

of (8.7) are used for the spring matrix elements. Denoting eh  as the element size of the fin 

along the y axis, then equivalent stiffness parameters at each discrete node along the edge for 

quadratic shell elements are: 

Edge node: x x e z z e ry ry e
2 2 2

K k h , K k h , K k h
3 3 3

   ; 

Corner node: x x e z z e ry ry e
1 1 1

K k h , K k h , K k h
3 3 3

   . 
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a. Deformation mode for a uniform elongation.  b. Deformation mode for a uniform rotation. 

Figure 8.5: Representative cross-sectional deformation modes due to bulk deformation. 

 Finite element modelling with different methods 

8.2.3.1 Laminated shell element model 

The partial fin-glazing structure is simulated with a laminated shell element model, where the 

glass fin is modelled with a 164 mesh of the L5-H3O9 element, and each half glazing is 

modelled with a 168 mesh of the L3-H3O9 element. The boundary conditions of the partial 

model are depicted in Figure 8.6.a. The structure is more vulnerable to the suction load, 

hence uniform loads in the negative x direction are considered in this buckling analysis. 

Besides the fin-glazing model, a more simplified fin model is also used which consists of the 

glass fin only with the same element size. Figure 8.6.b shows the boundary conditions of the 

simplified model, and the suction load is assumed to be a uniform line load applied to the 

silicone joint. Both considered models provide convergent solutions. Figure 8.7 depicts the 

load-displacement curves of Point A in the z direction with both the fin-glazing model and 

the fin model. Note that for the fin-glazing model the effective suction load is obtained by 

dividing the sum of the uniform loading on the glazing panels, minus the reaction forces 

associated with the restraints in x at the top and bottom glazing edges (illustrated in Figure 

8.6.a), by the glazing width. It is evident that the predicted buckling curve of the fin model 

matches well that of the fin-glazing model. The fin model with a 164 mesh of the proposed 
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L5-H3O9 is denoted as Model 1, which will be compared with other models. On the other 

hand, by restraining all the additional DOFs, a FSDT-based laminated shell model is also 

obtained for comparison, which is denoted as Model 2. 

  

a. fin-glazing model b. fin model 

Figure 8.6: Boundary conditions for the fin-glazing model and the fin model. 
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Figure 8.7: Load-displacement curves of the fin-glazing model and the fin model. 

8.2.3.2 Monolithic shell element model 

In the ASTM (2012) E1300-12 standard, an engineering formula is provided in Appendix X9 

for calculating the effective thickness of two-ply LG, which allows the use of a monolithic 

shell model to predict the displacements or stresses of glass laminates. A shear transfer 

coefficient is defined to measure the shear stress transfer across the interlayer, which is used 

in two separate effective thickness equations for the estimation of the maximum deflection 

and glass bending stress, respectively (Appendix E). The effective thickness expression for 

two plies is then extended to three-ply LG by substituting the effective thickness of two-ply 

LG back into the equation, as described by Zenkert and Industrifond (1997). For the 

prediction of deflection for the three-ply LG fin, Zenkert and Industrifond’s model yields an 

effective thickness of 20.79 mm, which is then used in a 164 monolithic shell model 

employing the H3O9 element, denoted as Model 3. 

8.2.3.3 Solid element model 

Apart from the laminated and monolithic shell element models, buckling analysis is also 

performed with a 3D solid model using the 20-noded solid element BK20, where the fin is 

discretised into 4 elements along the x-axis and 50 elements along the y-axis, and each layer 

is discretised into 2 elements through the thickness. The solid model, denoted as Model 4, 

provides a reference solution for comparison. 
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8.2.3.4 Results and discussions 

Figure 8.8 depicts the load-displacement curves of Point A in the z direction using different 

models, where the predicted buckling load and the number of DOFs used for each of the 

models are listed in Table 8.1. Clearly, Model 2 employing FSDT corresponds to a much 

stiffer response than the others owing to the assumption of a linear displacement variation 

through the thickness, which, in comparison with Model 1, indicates a significant zigzag 

effect that cannot be ignored. Although Model 3 takes into consideration the layer thicknesses 

and the material mismatch by employing a reduced effective thickness for the glass laminate, 

the results are not accurate and overestimate the buckling load significantly, which may lead 

to an unsafe design. It is also observed that Model 1, which employs slightly more DOFs than 

Models 2 and 3 but shows comparable accuracy with Model 4, achieves good accuracy with 

much better efficiency compared to the 3D Model 4, where Model 1 is found to be 71.4 times 

faster than Model 4. Figure 8.9 also depicts the through-thickness distribution of the stress 

component at point A for Model 1 and 4, which shows a good agreement between the two 

models. 

 

 

Figure 8.8: Load-displacement curves at point A for different models. 
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Figure 8.9: Through-thickness distribution of stress σy at point A for different models for a suction 

load of 3 kN/m. 

Table 8.1: Accuracy and Efficiency comparisons of results using different models. 

Model Critical suction load (kN/m) Number of DOFs 

1 4.47  2660 
2 - 1510 
3 5.54 1510 

4  4.48 30747 

 

The influence of the PVB material stiffness on the predictions of the effective thickness 

method is investigated, where four different shear modulus values for PVB are considered 

(0.44 MPa, 4.4 MPa, 44 MPa, and 440MPa) while the bulk modulus remains constant at 

2.0 GPa. Figure 8.10 depicts the buckling curves of Model 1 and 3 with various PVB shear 

modulus values. It is concluded that the effective thickness proposed by Zenkert and 

Industrifond (1997) overestimates the buckling load for a relatively small PVB shear modulus 

whereas it underestimates the buckling load for a moderate PVB shear modulus. 
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Figure 8.10: Load-displacement curves at point A with different PVB shear modulus (three-ply LG). 

The accuracy of the effective thickness method for a LG fin with only two plies of the same 

planar dimensions is also investigated, which comprises two 3.6mm glass plies and one 

1.52mm PVB interlayer. Still, Model 1 represents a 164 sandwich shell model using the 

proposed L3-H3O9 elements, and Model 3 represents a 164 monolithic shell model with the 

effective thickness calculated with reference to the ASTM (2012) E1300-12 X9 

recommendation. The resulting equilibrium paths with various interlayer shear stiffness 

values and models are depicted in Figure 8.11. It is concluded that the effective thickness 

method in ASTM E1300-12 X9 results in a conservative prediction except for a large PVB 

shear modulus, owing to the inadequate analogy between the LG and a conventional 

monolithic plate. The use of two sets of equations for the prediction of displacements and 

stresses accounts for the inadequacy of using a monolithic plate model for the replacement of 

a lamination model. Nevertheless, for the considered PVB shear modulus values, the 

predictions of the buckling loads ensures a safe design of LG panels.  
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Figure 8.11: Load-displacement curves at point A with different PVB shear modulus (two-ply LG). 

 Creep of laminated glass stair 

Owing to the fact that the interlayers used in LG typically consist of viscoelastic material, the 

LG is associated with noticeable creep under long-duration loadings. The linear viscoelastic 

material model implemented in Chapter 7 considers the influence of loading duration and 

temperature on the material mechanical properties, thus enabling the investigation of creep 

development in LG panes with time. As depicted in Figure 8.12, the creep of glass stairs is a 

typically encountered problem, which is considered in this case study. 

 Description of the problem 

Figure 8.13 shows a 1.8m wide, 0.3m deep LG stair, which is installed horizontally with both 

edges simply supported and loaded with a self-weight of w = 1219.7 N/m2. The glass stair is 

composed of four 12mm glass plies and three 1.52mm PVB interlayers. The material 

parameters of glass are glassE 70GPa  and glass 0.2  . The linear viscoelastic model 

proposed by Bennison et al. (1999) is used for the PVB, so that the creep behaviour of the 

glass stair at different operation temperatures can be investigated.  

Considering the constant loads and the long time span of the analysis, this problem can be 

regarded as a pseudo static problem. A static analysis is performed on a quarter model of the 

stair, which uses an 82 mesh of the L7-H3O9 elements to provide a convergent solution. In 
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the following, the influence of loading duration and operation temperature is investigated and 

the results are discussed. 

 

Figure 8.12:  Glass staircase in Soho Apple Store, New York. 

 

 

 

a. through-thickness representation. b. shell model of the glass stair. 

Figure 8.13: Schematic representation of the LG stair.  

 Influence of temperature on creep behaviour 

Figure 8.14 depicts the time-history curves of the central deflection with various operation 

temperatures for 10 years. The same results in the logarithmic time scale is presented in 

Figure 8.15, which shows that for an operation temperature of 30C the stair deflection 

approaches to the asymptotic value (3.05mm) at around 98 days after installation, whereas for 
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an operation temperature of 10C the deflection at 10 years is around 1.90mm, which is much 

lower than the other three curves.  

 

Figure 8.14: Deflection time history of the LG stair with different operation temperatures. 

 

Figure 8.15: Deflection time history of the LG stair with different operation temperatures. 

 Influence of loading history on creep behaviour 

Assume that during operation a uniform load p=1000N/m2 is exerted at some point in time on 

the glass stair, which stays permanent afterwards, as shown in Figure 8.16. Three loading 

histories are considered, as shown in Figure 8.17. The deflection time histories at a 20C 
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operation temperature with various load histories are depicted in Figure 8.18, where it is 

evident that the deflections converge after a sufficiently long duration. Results with various 

operation temperatures for load history 1 are also shown in Figure 8.19. Clearly, temperature 

has a major influence on the time required for the deflections to reach the maximum steady 

state value.  

 

  

Figure 8.16: Schematic representation of applied external loading. 

 

 

Figure 8.17: Three load histories with different times of load application. 
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Figure 8.18: Deflection time history of the LG stair with different time of loading. 

 

Figure 8.19: Deflection time history of the LG stair with different operation temperatures. 

 Insulated glazing curtain wall system subject to blast loading 

Insulated laminated architectural glazing systems, which consist of two glass panels separated 

by a sealed air gap, have been widely used in building construction for thermal and sound 

insulations. Currently, there are a variety of sources for such systems to experience blast 

loading, whether due to petro-chemical explosions or terrorism. Since these curtain wall 
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glazing system typically represent the first line of defence for building occupants, their 

response under blast loading has drawn special attention from structural engineers. The 

potential benefit of insulated glazing under blast events was pointed out by Nawar et al. 

(2013), noting that an annealed glass (AG) layer can provide added blast resistance by 

serving as a sacrificial layer. They have conducted an impressive experimental programme on 

a double glazing curtain wall system under shock pressure, which is simulated here using the 

models developed in this work. 

 Description of problem 

The tested curtain wall system consisted of two identical insulated glazing units supported by 

two aluminium frames and a vertical mullion at the centre line, as depicted in Figure 8.20. 

Both insulated glazing units were 1.524m wide and 3.05m high, resulting in a curtain wall 

system that is 3.05m×3.05m. Each insulated glazing unit was composed of a 6.35 mm AG 

panel and a LG panel (two 4.76mm heat strengthened glass plies bonded with a 1.52mm 

UVEKOL-S interlayer), separated by a 12.7 mm air gap in between. The cross-sections of the 

aluminium frame and mullion are shown in Figure 8.21, and the material properties of the 

glazing system were provided by Nawar et al. (2013), as listed in Table 8.2. A shock pressure 

was exerted on the AG side of the curtain wall system, with the blast wave history depicted in 

Figure 8.22. The curtain wall was supported vertically along the mullion only, which was 

attached to the head and sill using aluminium angles. Besides, the flanges of frames were also 

attached to the head and sill on the side where the shock pressure was imposed. Figure 8.23 

provides a schematic representation of the boundary conditions.  
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a. front view 

Figure 8.20: Schematic representation of the double glazing system (Cont’d…). 
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b. back view 

Figure 8.20: Schematic representation of the double glazing system. 
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Figure 8.21: Details of the curtain wall and mullion (Nawar et al., 2013). 

Table 8.2: Material parameters of the curtain wall system (Nawar et al., 2013). 

Material Material parameters 

Glass E = 69GPa,  = 0.22,  = 2500 kg/m3 

Uvekol-S E = 0.207 GPa,  = 0.495,  = 1100 kg/m3 , Elastic limit = 17.6 MPa, 
Failure strain = 1.94, Failure stress = 21.4 MPa 

Aluminium E = 69 GPa,  = 0.33,  = 2700 kg/m3 , Elastic limit = 214MPa, 
Failure strain = 0.12, Failure stress = 241 MPa 

 

 

Figure 8.22: Blast wave history (Nawar et al, 2013). 
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Figure 8.23: Boundary conditions of curtain wall system (Nawar et al, 2013). 

This problem is analysed in this section to investigate the effect of enclosed air pressure on 

the structural behaviour of the double glazing, where a shell element model, along with the 

volume-pressure control algorithm developed in the previous chapter, is employed. 

 Low-level blast analysis 

Before the simulation of the actual blast test, a low-level blast analysis of the curtain wall 

system is first considered so as to exclude the contact between the double glazing and reduce 

modelling complexity. By scaling down the blast pressure in Figure 8.22 to one tenth of the 

measured blast loading, a low-level blast input is obtained and used in the analysis. 

The monolithic shell element H3O9 is used for the modelling of the AG panels, aluminium 

frames, and mullion, while the sandwich shell element L3-H3O9 is used for the modelling of 

LG panels. In order to ensure accuracy of the finite element simulations, convergence studies 
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were conducted. Two models are considered: i) a full model of the whole curtain wall system, 

and ii) a half model comprising one double glazing unit, one frame and half of the mullion. In 

addition, two mesh sizes are considered: i) a coarse mesh, where each glazing panel is 

discretised with 6432 of the shell elements, and ii) a finer mesh, where each glazing panel is 

discretised with 6432 of the shell elements. For all of the models considered, the glazing 

and the aluminium frame are assumed to be pin-connected. In all of the three models, the 

effect of air gap is considered with the employment of the volume-pressure control algorithm. 

The time increment of Δt = 210-4 sec is selected throughout this case study, which ensures 

the stability of the analysis. 

For the purpose of computational enhancement, a parallel computing procedure utilising dual 

partition super-elements (Jokhio & Izzuddin, 2015; Jokhio & Izzuddin, 2013) is employed to 

each of the considered models. As illustrated in Figure 8.24 for a full model with the finer 

mesh, the whole curtain wall system is decomposed into 10 partitions (four glass pane 

partitions, four half frame partitions, and two half mullion partitions). The collection of the 

boundary nodes between the different partitions is the parent structure (Jokhio & Izzuddin, 

2015). Communication between the partitions is achieved through the parent structure (shown 

in red in Figure 8.24) which collects all the nodes at the partition boundary. In this way, the 

parent structure is represented by a dual super-element, with one super-element used in the 

parent process and another used as a wrapper around the partitioned boundary in the child 

process (Jokhio & Izzuddin, 2015).  This partitioned modelling approach allows a significant 

increase of computational speed by increasing the number of partitions and processing the 

partitions on parallel processors. In order to consider the effect of volume change in the 

enclosed air on the results, the volume-pressure control algorithm has also been incorporated 

in the partitioned model for each of the double glazing units. 

 

 

 

 

 



Case Studies 

 

275 
 

 

 

 

Figure 8.24: Schematic representation of the partitioned modelling approach. 

The time histories of the panel central deflections and stresses for both full models and half 

models using either the coarse mesh or the finer mesh show that the half model with a coarse 

mesh provides a convergent solution for the low-level blast analysis at a much reduced 

computational demand. This model is therefore used in the following to investigate the 

influence of several key parameters on the behaviour of double glazing. 

8.4.2.1 Glazing-to-frame connection 

In several previous works, the silicone seal was modelled with matrix spring elements, with 

the normal, shear and rotational stiffness terms obtained from experimental tests. Weggel et 

al. (2007) performed experiments on the silicone connection and provided a range of typical 

①  ⑩ ⑥  ⑧  ③ 

②  ⑤  ⑨  ④  ⑦ 
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spring constants, which was summarised by Seica et al. (2010) as listed in Table 8.3. 

Although there is no clue for applying the structural silicone in the considered curtain wall 

system (see Figure 8.21), discussions are made on the influence of different glazing-to-frame 

connections. Here, three glazing-to-frame boundaries are considered:  

 Pinned connection, where there is no relative translational displacements at the 

glazing-to-frame connections; 

 Elastic connection with maximum spring stiffness, where the effect of silicone is 

considered by using the matrix spring elements with the maximum stiffness values; 

 Elastic connection with minimum spring stiffness, where the effect of silicone is 

considered by using the matrix spring elements with the minimum stiffness values. 

The central deflection time histories of both glass panels with the three models are depicted 

in Figure 8.25. The maximum absolute values of deflection in the considered time span are 

also listed in Table 8.4. The displacement curves show that the spring supports provide a 

larger response period than a pinned connection for both glass panels. It is also shown that 

the deflection amplitudes of silicone-supported models are slightly larger than the pin-

supported model, where the maximum deflection for the AG panel using a minimum spring 

stiffness shows an increase of 14.9%.  

Table 8.3: Typical spring constants for silicone support (Seica et al., 2010). 

Direction Min  Max  

                Normal (N/m2) 1.03E+06 5.17E+06 
                Shearing (N/m2) 3.10E+06 1.55E+07 

                Rotational (N/rad/m) 1.38E+05 6.90E+05 
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a. deflection (AG) 

 
b. deflection (LG) 

Figure 8.25:  Displacement time histories at the AG and LG centres with different supports. 

Table 8.4: Maximum deflection predictions by using different glazing-to-frame supports. 

Glass panel 
Maximum deflection (mm) Minimum deflection (mm) 

Pinned Spring_max Spring_min Pinned Spring_max Spring_min 

AG 16.63 17.43 (+4.8%) 19.11 (+14.9%) -19.18 -17.85 (-6.9%) -18.60 (-3.0%) 

LG 17.89 17.91 (+0.1%) 18.75 (+4.8%) -18.99 -18.08 (-4.8%) -18.80 (-1.0%) 
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The time histories of the stress component x  at the external and internal extreme fibres for 

the AG panel are depicted in Figure 8.26, with the maximum tensile and compressive stress 

components listed in Table 8.5. It is observed that the time history curves of silicone-

supported models correspond to larger response periods and that the magnitude of the peaks 

is much reduced.  

 
a. external fibre. 

 
b. internal fibre. 

Figure 8.26: Time histories of the stress component σx at the AG centre with different supports. 

   

-30

-20

-10

0

10

20

30

40

0.00 0.05 0.10 0.15

S
tr

es
s 

(M
p

a)

Time (s)

Spring supports: max

Spring supports: min

Pinned supports

-30

-20

-10

0

10

20

30

40

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

S
tr

es
s 

(M
p

a)

Time (s)

Spring supports: max

Spring supports: min

Pinned supports



Case Studies 

 

279 
 

Table 8.5: Maximum tensile and compressive stresses using different glazing-to-frame supports. 

Position 
Maximum tensile stress  (MPa) Maximum compressive stress (MPa) 

Pinned Spring_max Spring_min Pinned Spring_max Spring_min 

External 30.52 28.89 (-5.3%) 25.70 (-15.8%) 23.80 22.32 (-6.2%) 22.30 (-6.3%) 

Internal 27.51 25.77 (-6.3%) 24.47 (-11.1%) 23.41 24.16 (+3.2%) 21.78 (-7.0%) 

 

8.4.2.2 Air gap 

The effect of the air gap to the response of double glazing is studied. Four different gap 

widths are considered in this case study (3 mm, 6 mm, 12.7 mm, and 20 mm) with pinned 

connections used for all scenarios.  

Time histories of central deflections for the AG and LG panels are depicted in Figure 8.27. 

From the displacement curves it is observed that the displacement curves of the AG and LG 

panels for a 3mm air gap are much closer than those for a larger air gap of 20mm, and the air 

gap time histories in Figure 8.27 also show a higher level of fluctuation for large air gaps, 

which indicates that a small air gap is more sensitive to the pane deflection such that a very 

small displacement of one pane will have immediate influence on the other one. In addition, 

the deflections of the model increase with the gap width. 

a. 3mm b. 6mm 

Figure 8.27: Displacement time histories at the AG and LG centres with different gap widths 

(Cont’d …). 
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c. 12.7mm d. 20mm 

Figure 8.27: Displacement time histories at the AG and LG centres with different gap widths. 

The stress time histories of models with different air gap widths are depicted in Figure 8.28. 

Clearly, the stresses for the 3mm gap have a higher level of fluctuation owing to the 

sensitivity of the enclosed air to the panel deflection. By contrast, the models with larger air 

gaps result in a reduced frequency of vibration in the stress components but higher stress 

magnitudes, as shown in Figure 8.28 and Table 8.6. The stress results indicate that the 

insulated air provides a protection of the glazing by generating an air pressure on both of the 

glazing panels.  

a. 3mm b. 6mm 

Figure 8.28: Time histories of the stress component σx at the AG centre with different gap widths 

(Cont’d …). 
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c. 12.7mm d. 20mm 

Figure 8.28: Time histories of the stress component σx at the AG centre with different gap widths. 

Table 8.6: Maximum tensile stress values for different air gap widths. 

Position 
Maximum tensile stress σx (Mpa) 

3 mm gap 6 mm gap 12.7 mm gap 20 mm gap 

External 27.10 27.38 30.52 29.99 

Internal 24.82 26.06 27.51 28.52 

 Real-level blast loading 

The analysis of the curtain wall system under the real blast loading is performed here, where 

a full model with a fine mesh (6432 mesh for glazing) is employed. The blast loading is 

large enough to cause the contact between the AG and LG panels. In the consideration of 

possible contact between the panels under the blast load, a node-to-surface contact element is 

employed (Zolghadr Jahromi, 2014).  The element is a 10-noded contact element, where 

9 master nodes are attached to the surface of the LG pane, and a slave node is attached to the 

surface of the annealed glass pane. A velocity constraint is activated when the distance 

between the master node and the slave surface is equal to or less than the sum of half 

thicknesses of both panes. In order to compare the results of the present model to those in the 

literature, the time history curves of the present study are translated along the time axis for 

0.03 sec, owing to the fact that the insulated glazing unit is loaded around 30 ms after the 

explosion. The deflected shape of the curtain wall system is depicted in Figure 8.29. The time 
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histories of the central deflections of the AG and LG panels as well as the gap variation with 

time are shown in Figure 8.30. 

Nawar et al. (2013) also performed a numerical simulation on the double glazing, where the 

LG pane and aluminium frames and mullion were modelled with shell elements, whereas the 

annealed glass pane and aluminium angles were modelled with solid elements. The effect of 

sealed air was ignored in the model, and surface-to-surface contact elements were employed 

to consider the contact between the two glass panels during the blast loading input. 

In Figure 8.31, the transverse displacements of the LG and the mullion centre, as shown in 

Figure 8.23, are compared against the test data and the numerical prediction by Nawar et al. 

(2013) without considering the influence of enclosed air. Compared with the numerical 

model by Nawar et al., the resulting displacement curves of the present model provide a 

better prediction, evident from the good agreement between the results of the present model 

and those of the test data. The maximum deflections for both the present model and that used 

by Nawar et al. (2013) are all presented in Table 8.7. Comparing Figure 8.31 with Figure 

8.27.c also shows an elongated response period for a high-level blast loading, which is 

attributed to the plastic deformation of the aluminium frame and mullion, and the coupling 

between the two glass panels in the insulated glazing.   

 

Figure 8.29:  Deflected shape of curtain wall under blast loading. 
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Figure 8.30: Displacement time histories at the AG and LG panel centres using the present shell 

model. 

 

Figure 8.31:  Comparison of displacement time histories with results by others. 

Table 8.7: Comparisons of maximum deflection predictions. 

Results 
Maximum dynamic deflection (mm) 

LG Mullion 

Value Relative error Value Relative error 

Test (Nawar et al.) 132 - 77 - 
Present 133 0.8% 73 5.2% 

Numerical (Nawar et al.) 134 1.5% 58 24% 
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The time histories of stress components x and y  at the external and internal extreme fibres 

of the AG are plotted in Figure 8.32. It is observed that the stress variations show a similar 

fluctuation frequency to Figure 8.28.c until about 0.05 sec, when the stress curves exhibit 

high frequency oscillations owing to the contact between two glass panels, as observed in 

Figure 8.30 for the gap width. According to Nawar et al. (2013), the failure tensile stress of 

the AG is 84.8 MPa, and in their FE model the tensile stress of the AG exceeded its tensile 

strength. Figure 8.32 also indicates the exceeding of the maximum tensile strength for the AG 

at several time points, with the maximum tensile stresses at the external and internal glazing 

fibres listed in Table 8.8. However, Nawar et al. (2013) observed that the AG panel remained 

undamaged after the application of shock loading in the experiment. This phenomenon may 

be explained by the scattered strength of brittle glass due to randomly introduced Griffith 

flaws of differing severity. It is also important to note that neither the deflection nor the 

stresses in the real-level blast problem are about 10 times those in the low-level blast analysis, 

owing to the significant membrane action in constraining the deflection and the high ductility 

of the aluminium frame and mullion in absorbing blast energy upon yielding. 

  
a. stress component σx. 

Figure 8.32: Stress time histories at the external and internal extreme fibres of the AG panel centre 

(Cont’d…). 
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b. stress component σy. 

Figure 8.32: Stress time histories at the external and internal extreme fibres of the AG panel centre. 

Table 8.8: Maximum stress values at the AG panel centre. 

Stress component 
Maximum stress value (MPa) 

External  Internal 

σx 91.6 93.0 

σy 103.0 91.2 

 

 Summary 

This chapter provides several applications of the proposed modelling approach in this thesis for 

both static and dynamic analysis of LG structures. The wide range of application examples 

studied here is aimed at demonstrating the significant potential of this work in providing simple 

laminated shell elements which are computationally efficient and accurate, and which allow 

nonlinear analysis involving geometric and material nonlinearities. In the last case study, the 

proposed volume-pressure control algorithm is also employed in the simulation of the enclosed 

gas pressure in double glazing. 
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CHAPTER 9 

9 Conclusions 

 

 

 Summary 

The work presented in this thesis is motivated by the need for an efficient numerical 

modelling approach for the analysis of laminated glass structures. Even though the LG has 

been widely used in building construction owing to its aesthetic appearance and safety 

benefits, its behaviour under loading is complicated, which is characterised by: (1) a 

significant material mismatch between the glass and the PVB, (2) an alternating stiff/soft 

stacking sequence, (3) geometric nonlinearity owing to the large slenderness, (4) the 

sensitivity to load duration and temperature, (5) the complicated fracture mechanism of glass, 

and (6) the nonlinear material properties of PVB at large strains.  

Focusing on the pre-cracking stage of LG, this research has proposed multi-layer shell 

elements specific to laminations with an alternating stiff/soft lay-up, which are applied to the 

simulation of LG structures. In the following sections, some of the major achievements in this 

research work are highlighted. 

 Lock-free monolithic shell elements 

Reissner-Mindlin shell finite elements usually suffer from locking, where the element is 

unable to generate lower-order strain fields owing to the existence of some higher-order 

polluting strain terms. The hierarchic optimisation approach proposed by Izzuddin (2007), as 

an assumed strain method, overcomes locking by enhancing conforming strains with 
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hierarchic corrective strains, and mathematical optimisation is performed towards objective 

low-order strain fields, as afforded by the element DOFs. This approach not only alleviates 

shear and membrane locking, but also addresses locking arising from element distortion. The 

order of the corrective strain field is not capped to a prescribed distribution but can attain any 

hierarchic order, which results in families of hierarchically optimised elements.  

In this research, some modifications have been made to the hierarchic optimisation procedure 

for the 9-noded shell element (Izzuddin, 2007). Firstly, an additional objective transverse 

shear strain mode is introduced to the assumed strain modes, which is required to achieve the 

correct rank of the local stiffness. Secondly, a modification of the hierarchic strain modes is 

proposed to enable the 9-noded element to pass constant strain patch tests. In addition, the 

hierarchic optimisation approach is extended to a 6-noded triangular shell element, with the 

further consideration of the requirements of spatial isotropy. The local formulation of the 6-

noded triangular shell element is framed within the zero-macrospin co-rotational system, 

which upgrades it to geometric nonlinear analysis with relative ease. 

The performance of the quadrilateral and the triangular monolithic shell elements has been 

investigated with extensive numerical tests, with the outcomes summarised as follows: 

 All the optimised quadrilateral and triangular elements with different hierarchic orders 

pass all fundamental element tests, including the zero energy mode tests, the constant 

strain patch tests and the isotropic element tests. 

 The optimised elements exhibit a significant relief of shear locking and membrane 

locking with good convergence rates. Nevertheless, the optimised elements that do 

not employ corrective hierarchic strain modes in the optimisation (H2O9 and H2O6) 

result in degraded performance for curved shell problems compared to elements with 

hierarchic correction, which highlights the importance of the inclusion of higher-order 

strain modes in the optimisation. 

 For the same hierarchic correction order, the objective alternative yields superior 

results than the corrective alternative in terms of both accuracy and convergence rate, 
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with the objective alternative based on third order hierarchic optimisation (H3O9 and 

H3O6 elements) exhibiting both accuracy and efficiency. 

 The H3O9 and H3O6 elements also have comparable or even better accuracy than the 

mixed elements based on the MITC formulations, mainly due to effective relief of 

distortion locking. 

 Lamination model with an alternating stiff/soft lay-up 

A three-layered sandwich shell model is first proposed in this research work, which is 

characterised by the following features: 

 A zigzag function that assumes identical rotations in face sheets is added to the 

Reissner-Mindlin plate theory to consider the zigzag effect in displacements, which 

effectively captures the sectional warping for both symmetric and asymmetric lay-ups 

with only one zigzag mode.  

 A piecewise linear-constant-linear through-thickness distribution of the transverse 

shear strain is assumed, which is specifically suitable for sandwich layer-ups.  

 Each layer of the sandwich shell is regarded as a pseudo monolithic shell and employs 

available kinematics and constitutive relationships. The governing equations of the 

laminated shell are derived with the employment of the virtual work principle.  

The effectiveness and efficiency of the proposed zigzag function for the sandwich shell is 

illustrated with a 1D cantilever example. The adequacy of the assumed discrete transverse 

shear strain distribution has also been demonstrated in comparison with the results of models 

with continuous transverse shear stress distributions. In addition, the proposed zigzag 

function outweighs the MZZF in asymmetrically laminated cases, which inspired the use of 

similar assumptions on layer rotations in the development of generalised multi-layered shell 

model. 

The three-layered shell model is then extended to a generalised multi-layered shell model 

with an alternate (stiff/soft/…) layer-up scheme, which has the following features: 
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 A set of zigzag displacement modes are employed in the planar displacements, the 

number of which is dependent on the number of soft layers. These zigzag 

displacement modes are defined such that all stiff layers are assumed to rotate at the 

same angle while the soft layers may have different rotations.  

 The through-thickness transverse shear strain is assumed such that all internal layers 

have constant values through the layer thickness while the external ones utilise a 

linear distribution with zero values at the top and bottom of the plate. 

Similar to the three-layered case, a 1D cantilever example has been used to stress the 

accuracy of the zigzag displacement set and the assumed transverse shear strain distribution. 

The results show that the proposed multi-layered shell model is both accurate and efficient. 

 Laminated shell elements 

The proposed lamination model can be readily incorporated into the co-rotational monolithic 

shell elements. In order to eliminate the need for co-rotational transformations for the 

additional zigzag displacement parameters, a 2D curvilinear shell system is proposed for the 

direct definition of these parameters, such that a simple and fixed transformation of these 

additional parameters to their counterparts in the local element system holds throughout the 

analysis.  

The benefits of the 2D curvilinear shell system can be summarised as follows: 

 With the associated additional zigzag parameters defined in this shell coordinate 

system, continuity of the zigzag fields is ensured.  

 The element response associated with the zigzag parameters can be evaluated via a 

fixed linear kinematic transformation between the shell and local element systems 

rather than a varying nonlinear co-rotational transformation, which enhances the 

computational efficiency of the geometric nonlinear analysis of sandwich shells.  

 The shell coordinate system is also useful to provide the orientation of material fibres 

in relation to the local element coordinate system when composite materials are 

considered. 
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The proposed multi-layer shell modelling approach has been incorporated into the 9-noded 

and 6-noded co-rotational shell elements, and the element performance in the simulation of 

sandwich and laminated plates and shells with an alternating stiff/soft lay-up has been 

verified with both linear and geometrically nonlinear numerical problems.  

 Application to laminated glass 

The proposed laminated shell elements have been utilised in the simulation of laminated glass. 

A viscoelastic material model has been implemented to consider the influence of loading rate 

and temperature on the material properties of PVB. Two LG problems are analysed with the 

use of the linear viscoelastic material model, the results of which show that: 

 Under short-duration loading, the response of the LG can be regarded the same as the 

response of a monolithic glass pane with the same nominal glass thickness owing to 

the large shear stiffness generated by PVB. 

 Under long-duration loadings, the shear stiffness of PVB becomes quite small, which 

leads to the response of LG becoming similar to the response of two glass plies 

layered with no connection.  

In order to allow the analysis of insulated glazing, a volume-pressure control algorithm is 

proposed, which considers the effect of insulated air by assuming a hydrostatic pressure state 

in the insulated air gap and relating the generated pressure to the relative volume change in 

the air gap. The algorithm computes the air pressure with the use of the volume and its rate 

evaluated at the end of the previous step, which eliminates the need to introduce a pressure 

parameter and hence excludes the coupling between the displacement parameters with the 

pressure parameter. The accuracy of this volume-pressure control algorithm has been verified 

with two numerical examples of double glazing. It is shown that for a reasonably small time 

step, models utilising the proposed volume-pressure control algorithm agree well with 

solutions by others.  
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 Case studies 

Several applications of the proposed laminated shell elements in the modelling of laminated 

glass structures are demonstrated through example case studies, which consist of a buckling 

problem, a creep problem, and a blast problem of an insulated curtain wall glazing system. 

The wide range of numerical examples is used to show the great potential of the proposed 

shell elements in the estimation of LG behaviour accurately and efficiently. 

 Recommendations for future work 

In this PhD thesis, novel laminated shell elements have been proposed and applied to the 

analysis of geometrically nonlinear LG problems. As illustrated in Chapters 7 and 8, the 

proposed modelling approach for LG provides the capability for many applications which are 

of importance in LG design and assessment: 

 Owing to the good approximation of both displacements and stresses, the laminated 

shell elements can be used in the practical design of load-resistant LG members, such 

as columns, beams, roofs and staircases, with almost the same level of simplicity as a 

monolithic shell model. The proposed volume-pressure algorithm may also be used in 

the analysis of insulated glazing units.  

 Apart from LG structures, the proposed laminated shell elements are also applicable 

to other structures with an alternating stiff/soft lay-up, such as interior insulation walls 

and polymer-metal composites. 

Notwithstanding, there is room for further improvements towards the modelling of fracture of 

LG structures under extreme loading conditions such as blast and earthquakes. Potential 

future research topics in this respect include: 

 The modelling of fracture of glass plies. Glass is a brittle material with a limited 

tensile strength due to random Griffith flaws. The incorporation of an adequate 

fracture mechanism will allow the initiation and propagation of cracks in glass plies 

when its tensile strength is exceeded. 
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 The nonlinear viscoelastic characteristic of PVB. Under extreme loading conditions, 

the PVB interlayer may be associated with large strains upon the fracture of glass 

plies, which holds the glass debris in place and withstands further loads. 

 The post-cracking cross-sectional behaviour of laminated glass. After the cracking of 

glass, the glass debris cannot withstand tension but contributes to compression. 

Therefore, the effective through-thickness displacement modes change during the 

analysis. 

On the algorithmic front, there are also several potential future extensions and improvements 

of the laminated shell elements developed in this thesis, as follows: 

 For the current hierarchic optimisation approach, the objective function is not 

invariant to the orientation of the element local system. The presented optimised 9-

noded and 6-noded elements acquire the characteristic of invariance to nodal ordering 

either by using a co-rotational system independent of nodal ordering (quadrilateral 

elements) or by prescribing directions for optimisation (triangular elements). 

Therefore, an alternative invariant objective function may be developed to enable the 

optimisation approach with the characteristic of ‘spatial isotropy’. 

 For the current laminated shell elements, the transverse deformation is not considered, 

which limits their use within thin-to-moderately thick applications. Further 

incorporation of zigzag displacements to the transverse displacement may also be 

considered in the future to extend the applicability to thick plates and shells. 
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Appendix A: Global-to-Local Displacement Transformations for 

6-Noded Shell Element 

 

The required first derivatives for the 6-noded triangular element are obtained from (3.61) and 

(3.47): 
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The associated first derivatives of ( x y z, ,c c c ) with respect to global translational DOFs are 

given as follows: 
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Second partial derivatives of ( x y z, ,c c c ) with respect to global translational DOFs can be 

similarly derived. It is emphasised that the resulting local tangent stiffness matrix is 

symmetric, since the triad ( x y z, ,c c c ) is explicitly related to the global translational DOFs, 

leading to explicit relationships between the local and global DOFs. 
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Appendix B: Mixed Formulations of Reissner-Mindlin Shell 

 Elements Based on MITC9 and MITC6 Elements 

 

Herein, the local kinematics of curved Reissner-Mindlin shell elements based on the MITC 

formulations for 9-noded quadrilateral and 6-noded triangular elements, MITC9 (Bathe et al., 

2003) and MITC6 (Lee & Bathe, 2004), are briefly introduced. 

The general MITC formulation procedure can be summarised as follows: 

(i) Evaluate Green strains directly from displacement fields at a set of prescribed tying 

points (see Figures B.1-B.2 for the typing point positions of a 9-noded shell element, 

MITC9, and a 6-noded shell element, MITC6, respectively). 

 

Figure B.1: Positions of tying points for MITC9 element ( a 1/ 3 , b 3 5 , and c 1 ) (Bathe et al., 

2003). 

 

Figure B.2: Positions of tying points for MITC6 element (
1 1

a
2 2 3

  ,
1 1

b
2 2 3

  ,
1

c
3

 ) (Kim 

& Bathe, 2009). 
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(ii) Transform the extracted Green strains into corresponding covariant strain 

components using (B1): 

T
2 2ε J E J  (B1) 

 where 2E  is the Green strain tensor in terms of Cartesian coordinates; 2ε  is the 

covariant strain tensor; and J  is the Jacobian matrix, which is given by (3.66). 

(iii) Interpolate covariant strain fields with the use of the extracted covariant strains: 

AS DI
rs rs rs,Tε ( , , )    H ε  (B2) 

 where r, s ( , , )    ; the superscripts ‘AS’ and ‘DI’ refer respectively to the 

assumed strain distribution and the distribution obtained directly from displacement 

fields; rsH  is a row vector of interpolation functions associated with the tying points; 

DI
rs,Tε  consists of the covariant strain values extracted at the tying points. 

(iv) Transform the assumed covariant strain fields to the corresponding Green strain 

fields in terms of real coordinates, obtained from: 

AS T AS 1
2 2

 E J ε J  (B3) 

 (v) Replace displacement-based strains with the assumed strain distributions obtained 

from (iv) in the element formulation. 

The MITC9 (Bathe et al., 2003) quadrilateral shell element performs well, but it does not pass 

the patch test for irregular element shapes due to the varying basis used for sampling and 

mapping covariant strains, which  can be resolved by using a constant Jacobian matrix 

evaluated at the element centre (Wisniewski & Panasz, 2013). This is equivalent to replacing 

(B1) and (B3) with: 

T
2 C 2 Cε J E J  (B4) 

AS T AS 1
2 C 2 C

 E J ε J  (B5) 
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where CJ  is the Jacobian matrix evaluated at the element centre ( 0, 0    ). Similarly, the 

MITC6 (Lee & Bathe, 2004) triangular shell element is enhanced with the same method (Kim 

& Bathe, 2009), where CJ  is evaluated at ( 1 3  , 1 3  ). 

In this work, 9-noded Reissner-Mindlin shell elements are established based on the original 

MITC9 (Bathe et al. , 2003) and the improved MITC9is (Wisniewski & Panasz, 2013) local 

formulations. Although Wisniewski and Panasz also proposed another modified element 

‘MITC9i’ (Wisniewski & Panasz, 2013), where further amendments on the element shape 

functions are made to allow for element distortion, nonlinear equations require to be solved to 

determine the additional parameters describing the element distortion. Therefore, MITC9i is 

not considered in this work due to increased computational demands. Similarly, a local 

formulation of the 6-noded Reissner-Mindlin shell element is established based on the 

MITC6 (Kim & Bathe, 2009) element. 

Before employing the tying schemes for the element formulation, further assumptions are 

made that the element is shallow and thin, so that the natural coordinate axis   is taken to 

have an identical orientation to the local z-axis, and the transverse normal strain z  is ignored.  

Accordingly, the Jacobian matrix is simplified to: 

x x
0

y y
0

h
0 0

2

  
   
      
 
  

J  (B6) 

where h is the shell thickness. This simplification enables decoupled relationships between 

real strains and covariant strains, with each set of the generalised real strains related to their 

covariant counterparts only, which are expressed thus as: 

x xy
T
p p

xy y

1

2
1

2

 

 

     
           

J J  (B7) 
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x xy
T
p p

xy y

1

2
1

2

 

 

     
           

J J  (B8) 

xz
T
p

yz

1
t 2

12

2





           
  

J  (B9) 

where pJ  is a sub-matrix of J : 

p

x x

y y

  
   
  
   

J  (B10) 

By using (B7)-(B9) and evaluating pJ  at the element centroid, the strains at each tying point 

are transformed to the covariant strains, which are then used in mapping the assumed 

covariant strain fields. The positions of the tying points for the MITC9 and MITC6 elements 

are shown in respectively Figures B.1 - B.2, where the associated interpolation functions for 

the covariant strains can be found elsewhere (Lee & Bathe, 2004; Bathe et al., 2003). Once 

the distribution of the covariant strain fields is obtained, these are transformed back to real 

assumed strains in the local co-rotational system, and these are then used in the formulation 

of the local response of the 6-noded and 9-noded curved shell elements.  

In this thesis, the acronyms ‘MITC9*’ and ‘MITC9is*’ are used for the amended 9-noded 

Reissner-Mindlin elements based on respectively the MITC9 (Bathe et al., 2003) and the 

MITC9is (Wisniewski & Panasz, 2013) formulations, and the acronym ‘MITC6*’ is used for 

the amended 6-noded element based on the MITC6 (Kim & Bathe, 2009) formulation. 
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Appendix C: Parameters of Zigzag Functions of Sandwich Model 

 

Explicit expressions of (k)
iâ  and (k)

ib̂  (i =3,4) in (5.1)-(5.2) are given by: 

  
 

1 3 1 2 3(1)
3 3

1 1 2 3

h h h 3h h1
â

h h h h

  
 

 
 (C1) 

  
 

1 3 1 2 3(2)
3 3

1 2 3

h h h 3h h
â

h h h

  
 

 
 (C2) 

  
 

1 3 1 2 3(3)
3 3

3 1 2 3

h h h 3h h1
â

h h h h

  
  

 
 (C3) 

 
 

2
1 3 2 3(1) (3)

3 3
1 1 2 3

h h h hˆ ˆb b
2h h h h

 
 

 
 (C4) 

 
(2) 1 3
3

1 2 3

h h
b̂

2 h h h




 
 (C5) 

 

2
(1) (3) 2 1 2 1 3 2 3
4 4 3

1 2 3

h 3h h 6h h 3h h
ˆ ˆa a

h h h

  
  

 
 (C6) 

 

2
(2) 2 1 2 1 3 2 3
4 3

2 1 2 3

h 3h h 6h h 3h h1
â

h h h h

  
 

 
 (C7) 

 
(1) 2 3
4

1 2 3

h 2h
b̂

2 h h h


 

 
 (C8) 

 
2 2

(2) 1 3
4

2 1 2 3

h 2h
b̂

2h h h h


 

 
 (C9) 

 
(3) 1 2
4

1 2 3

2h h
b̂

2 h h h


 

 
 (C10) 

For symmetric cross-sections, the above equations are simplified to: 
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(1) (3) (2)
3 3 3

1

1
ˆ ˆ ˆa a , a 0

h
     (C11) 

 
2 2

(1) (3) (2)1 2 1 2 1
3 3 3

1 1 2 1 2

2h h 2h h hˆ ˆ ˆb b , b
2h 2h h 2h h

 
  

 
 (C12) 

   

2 2 2 2
(1) (3) (2)1 2 1 2 1 2 1 2
4 4 43 3

21 2 1 2

6h h 6h h 6h h 6h h1
ˆ ˆ ˆa a , a

h2h h 2h h

   
    

 
 (C13) 

(1) (3) (2)
4 4 4

1ˆ ˆ ˆb b , b 0
2

      (C14) 
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Appendix D: Linear Viscoelastic Model for 2D Shell Elements  

  

In order to apply the viscoelastic material model described in Section 7.2 to 2D elements, the 

zero value constraint on the transverse normal stress 33  needs to be imposed, which yields a 

transverse normal strain n 1
33
  expressed as: 

 n 1 n 1 n 1
33 11 22

ˆ ˆb c
ˆ ˆa a

         (D1) 

in which: 

 
M MN N

j j j j
j 1 j 1

4 4 2 2ˆâ G K G A , b G K G A
3 3 3 3 

 

        (D2) 

 
M M

j

t
N N

n n n n
j j 11 22 33 j,33

j 1 j 1

2 4
ĉ G A e h

3 3





 

         
   (D3) 

By substituting (D1) into (7.9)-(7.10), (7.13) is obtained with the matrices n 1
v,p
C  and n 1

v,s
C  

expressed as: 

n 1 n 1
v,p v,s

ˆ ˆ ˆ ˆˆ ˆ ˆ(a b)(a b) b(a b)
0

ˆ ˆa a
ˆˆ ˆ ˆ ˆ d 0ˆ ˆ ˆb(a b) (a b)(a b)

0 ,
ˆˆ ˆa a 0 d

ˆ0 0 d

 

   
 

 
    

     
    

 
 
  

C C  (D4) 

with:  

MN

j j
j 1

d̂ G G A


   (D5) 

where jA  is given in (7.6). 
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The stress vectors hist,pσ  and hist,sσ are then derived as: 

M M
j

n
n114 2 2 j,11tn3 3 3N N

22 n2 4 2
hist,p j j j,223 3 3 n

j 1 j 133 n
j,12n

12

h1 0
ˆ ˆb c

1 G A 0 e h
â

0 0 0 0 1 h





 

                        
               

 σ  (D6) 

M M
j

t nnN N
j,1313

hist,s j j n n
j 1 j 123 j,23

h
G A e

h





 

          
      

 σ  (D7) 
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Appendix E: Effective Thickness of Laminated Glass for Analysis  

 of Deflection and Stresses (ASCE E1300-12a X9) 

 

Appendix X9 of ASCE E1300-12a provides engineering formulae for calculating the 

effective thickness of LG. Two different effective laminate thickness values are determined 

for a specific case: (1) an effective thickness, ef ;wh , for use in calculations of laminate 

deflection, and (2) an effective laminate thickness, 1,e,h  , for use in calculations of LG stress. 

These effective thickness values can be used with standard engineering formulae or finite 

element methods for calculating both deflection and glass stress of laminates subjected to 

load. The method applies to 2-ply laminates fabricated from both equal and unequal thickness 

glass plies. 

The shear transfer coefficient,  , is a measure of the transfer of shear stresses across the 

interlayer, which is defined as: 

s v
2 2
s

1
EI h

1 9.6
Gh a

 


 
(E1) 

with: 

2 2
s 1 s;2 2 s;1I h h h h   (E2) 

s 1 s 2
s;1 s;2

1 2 1 2

h h h h
h , h

h h h h
 

 
 (E3) 

s 1 2 vh 0.5(h h ) h    (E4) 

where vh  is the interlayer thickness; 1h  and 2h  are the minimum thicknesses of the two glass 

plies; E is glass Young’s modulus; a is the smallest in-plane dimension of bending of the 

laminate plate; and G is the interlayer complex shear modulus. 

For calculations of laminate deflection, the laminate effective thickness is given by: 
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3 33
ef ;w 1 2 sh h h 12 I     (E5) 

For calculations of maximum glass bending stress, the laminate effective thicknesses are 

given by: 

3 3
ef ;w ef ;w

1;ef ; 2;ef ;
1 s;2 2 s;1

h h
h , h

h 2 h h 2 h  
   

 (E6) 

 


