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Abstract

Laminated glass is a special composite material, which is characterised by an alternating
stiff/soft lay-up owing to the significant stiffness mismatch between glass and PVB. This
work is motivated by the need for an efficient and accurate nonlinear model for the analysis
of laminated glass structures, which describes well the through-thickness variation of

displacement fields and the transverse shear strains and enables large displacement analysis.

An efficient lamination model is proposed for the analysis of laminated composites with an
alternating stiff/soft lay-up, where the zigzag variation of planar displacements is taken into
account by adding to the Reissner-Mindlin formulation a specific set of zigzag functions.
Furthermore, a piecewise linear through-thickness distribution of the material transverse
shear strain is assumed, which agrees well with the real distribution, yet it avoids layer

coupling by not imposing continuity constraints on transverse shear stresses.

Local formulations of curved multi-layer shell elements are established employing the
proposed lamination model, which are framed within local co-rotational systems to allow
large displacement analysis for small-strain problems. In order to eliminate the locking
phenomenon for the shell elements, an assumed strain method is employed and improved,
which readily addresses shear locking, membrane locking, and distortion locking for each
constitutive layer. Furthermore, a local shell system is proposed for the direct definition of
the additional zigzag displacement fields and associated parameters, which allows the
additional displacement variables to be coupled directly between adjacent elements without

being subject to the large displacement co-rotational transformations.

The developed multi-layer shell elements are employed in this work for typical laminated
glass problems, including double glazing systems for which a novel volume-pressure control
algorithm is proposed. Several case studies are finally presented to illustrate the effectiveness
and efficiency of the proposed modelling approach for the nonlinear analysis of glass

structures.
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Notation

All symbols used in this thesis are defined where they first appear. For the reader‘s convenience,
the principal meanings of the commonly used notations are contained in the list below. The
reader is cautioned that some symbols denote more than one quantity; in such cases the meaning

should be clear when read in context.

Abbreviations

1D,2D,3D One-dimensional, two-dimensional, and three dimensional, respectively
AG Annealed glass

CLT Classical lamination theory

CNF6 6-noded conforming shell element

CNF9 9-noded conforming shell element

DOF Degree of freedom

EDN Equivalent single layer model with the application of the principle of

virtual displacements

EDZN EDN models enriched with Murakami’s zigzag function
EDZN* EDZN models with further simplifications
EMCN Equivalent single layer models with the application of Reissner’s mixed

variational theorem

EMZCN Equivalent single layer models, enriched with Murakami’s zigzag

24



ESL

FCSR

FSDT

HnCm

HnOm

HSDT

LDN

LG

Ln-H306

Ln-H309

LW

LWT

MITC

MITC6

MITC6*

MITC9

function, with the application of Reissner’s mixed variational theorem
Equivalent single layer

Face-to-core stiffness ratio

First-order shear deformation theory

m-noded corrective strain element with n order hierarchic modes
m-noded objective strain element with n" order hierarchic modes
Higher-order shear deformation theory

Layer-wise model with the application of the principle of virtual

displacements
Laminated glass

n-layer 6-noded laminated shell element with the application of the H306

optimisation to each layer

Proposed n-layer 9-noded laminated shell element with the application of

the H309 optimisation to each layer

Layer-wise

Layer-wise theory

Mixed Interpolation of Tensorial Component

6-noded degenerated shell element using MITC method

6-noded co-rotational shell element using the MITC6 strain mapping
between covariant strains fixed at element centre and local generalised

strains

9-noded degenerated shell element using MITC method
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MITCO*

MITC9is*

MZZF

MZZFi

PVB

PVD

RMVT

TSDT

VRT

WLF

77T

9-noded co-rotational shell element using the MITC9 strain mapping

between covariant strains and local generalised strains

9-noded co-rotational shell element using the MITC9 strain mapping
between covariant strains fixed at element centre and local generalised

strains
Murakami’s zigzag function

A beam model where the MZZF is added to the 1D HSDT model with an

i"-order z expansion for the whole beam thickness.
Polyvinyl butyral

The principle of virtual displacements

Reissner’s mixed variational theorem

Third-order shear deformation theory
Vlasov-Reddy theory

Williams-Landell-Ferry equation

Zigzag theory

Roman Symbols

B® gl gk First derivatives of the generalised strains at layer (k) with respect to
m >=b >s

BY B B

pseudo parameters u® (conforming formulation)

First derivatives of the generalised strains at layer (k) with respect to
pseudo parameters u® (hierarchic optimisation approach with objective

assumed strains)
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ﬁﬁj),ﬁgk),ﬁgk) First derivatives of the generalised strains at layer (k) with respect to

o O
r>ws

r»>™s

X2vyovz

C1,C2

Cl’l+1

v.,p

C1’1+1

v,8

pseudo parameters u® (hierarchic optimisation approach with corrective

assumed strains)
Unit vectors for local shell coordinate system at initial configuration
Unit vectors for local shell coordinate system at current configuration

Unit vectors for local element coordinate system at current configuration
WLF parameters

Material constitutive matrix of layer (k) for planar stresses/strains

Material constitutive matrix of layer (k) for transverse shear

stresses/strains
Viscoelastic constitutive matrices for planar stresses/strains at time t,__;

Viscoelastic constitutive matrices for transverse shear stresses/strains at

time t,
Constitutive matrix for generalised bending stresses/strains at layer (k)
Constitutive matrix for generalised membrane stresses/strains at layer (k)

Constitutive matrix for generalised transverse shear stresses/strains at layer

(k)

Global translational displacements of node i

Resistance forces with respect to additional zigzag parameters U ,
Resistance forces with respect to basic local parameters U

Resistance forces with respect to basic global parameters Ug
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£ Vector of pseudo nodal forces at layer (k)

F Generalised membrane stress at layer (k)

Go Instantaneous shear modulus

Gj Shear modulus of j" Maxwell element

G, Long-time plateau shear modulus.

h Thickness of plate/shell

he Nominal element length

h_,h, Values of z at the bottom and top of the cross-section, respectively
hy Thickness of layer (k)

h,_,h, Values of z at the bottom and top of layer (k), respectively
J Jacobian matrix

Jc Jacobian matrix evaluated at element centre

(k) Layer (k)

K Bulk modulus

k® Local stiffness matrix of layer (k)

ke, k,, Koy, Local stiffness matrices of multi-layer shell elements

K;.Kkga.Kyg ~ Global stiffness matrices of multi-layer shell elements
L,,L,,L, Area coordinates

M Local consistent mass matrix
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n+l

Pe
QY

r,s

el

N-1H

R°,R

Global consistent mass matrix

Generalised bending stresses at layer (k)

Normal vector at node i

Number of soft layers in the lamination

Number of element nodes

Shape function of node i

Number of constitutive layers in the lamination

Number of Maxwell elements

Gas pressure in the enclosure at the initial undeformed configuration
Gas pressure in the enclosure at the current deformed configuration
Generalised transverse shear stresses at layer (k)

2D curvilinear shell coordinates

Components of the normal vector along the local x- and y-axes at node i
Local rotational accelerations of node i

Orientation matrices of the local co-rotational framework at the initial and

current configurations, respectively

Transformation matrix from additional zigzag displacement parameters of

element to pseudo displacement parameters of layer (k)

Transformation matrix from local displacement parameters of element to

pseudo displacement parameters of layer (k)

Local translational displacements of node i
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uxO’uyO’uZO

n+l
VE

n+l
VE

X’y’Z

X.Y,Z

Local translational accelerations of node i

X, y, and z planar displacement fields evaluated on the middle surface,

respectively

Vector of additional nodal parameters at node i

Vector of local translational and rotational nodal parameters at node i
Vector of global translational and rotational nodal parameters at node i
Vector of pseudo nodal parameters of layer (k) at node i

Vectors connecting node i to node j in the initial and current element

configuration, respectively

Enclosed gas volume at the initial undeformed configuration (t = 0s)
Enclosed gas volume at the previous deformed configuration (t = t, )
Enclosed gas volume at the current deformed configuration (t=t, ;)

Approximate enclosed gas volume at the current deformed configuration (t

= tn+1 )

Local element coordinates

Global coordinates

Local coordinates of node i

Offset of the shell mid-surface along the z-axis

z value extracted on the middle surface of layer (k)
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Greek Symbols

o

o

€ps&m- &

29,209 200

(k)
8s,AS

(k)

&m,C

Angle from the shell directional vector ¢; to the material fibre direction at
layer (k)

Rotation from ¢, in shell system to ¢, in local element coordinate system
Conforming strains

Enhanced strains adopting the corrective fields

Enhanced strains adopting the objective fields

Bending generalised strains, membrane strains, and transverse shear

strains

Bending generalised strains, membrane strains, and transverse shear

strains at layer (k) for laminations
Hierarchic corrective strains

Objective strains

Planar material strains of layer (k)
Transverse shear strains

Assumed transverse shear strains of layer (k)

Angle from the local element x-axis to the material fibre direction at layer

(k)
Natural coordinates
Poisson’s ratio

Components of the normal vector along the x- or y-axis
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95,9

91,9!

(k)
GD

(k)
GS,AS

AVE:I-'—I

AVEH

n+l
AVE’i

] 2

Additional fields associated with the jth proposed zigzag function along

the x and y axes of the local element system, respectively

Additional fields associated with the jth proposed zigzag function along

the r and s axes of the local shell system, respectively

Density

Planar material stresses of layer (k)

Assumed transverse shear stresses of layer (k)

A relaxation time parameter of the j Maxwell element

n+l

Volume change of the enclosure during the current time step At

Approximate volume change of the enclosure during the current time step

Atll+1

Contribution from element i to the enclosure volume change during the

current time step At"™"!

Transformation matrix from conforming strains to corrective strains
Transformation matrix from conforming strains to objective strains
Element domain

Enclosed surface at time t,

Hierarchic strain-inducing modes

Objective strain-inducing modes

Hierarchic strain-inducing modes for three edge strains of triangular shell

element
Objective strain-inducing modes for three edge strains of triangular shell
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element

L SO0 S e Hierarchic corrective modes for bending generalised strains, membrane

strains, and transverse shear strains, respectively

‘I’h,‘I’}r; ,‘I’? Modified hierarchic bending, membrane and transverse shear strain

modes, respectively

R SR Oy Objective modes for bending generalised strains, membrane strains, and

transverse shear strains, respectively
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Chapter 1

Introduction

Laminated glass (LG) has been widely used in many applications of engineering, including
for example in architectural glazed fagades (Figure 1.1) owing to its transparency, aesthetic
appearance and safety characteristics. It is composed of one or more polymer layers
sandwiched between layers of glass plies (Figure 1.2). Polyvinyl butyral (PVB) is the most
commonly used interlayer, which can go through large deformation prior to rupture, hence
providing good energy-absorbing capability. In the event of fracture of the glass, PVB retains
glass debris in place, withstands further loadings, and absorbs more energy. Therefore, LG
mitigates injury to occupants in buildings subject to extreme loading conditions, and is thus

increasingly being utilised for structures that are vulnerable to blast and earthquakes.

Figure 1.1: The Shard, London. (www.shardldn.com)
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PVB Films

Figure 1.2: Composition of LG (xinology.com).

Even though the safety advantage of LG over annealed glass is apparent, there is a lack of
design codes to guide the design of LG structures. Current design codes related to LG only
provide a coarse estimation of the resistance for secondary structural components. For
instance, the ASTM (2012) E1300-12a states that it only applies to vertical and sloped
glazing in buildings for which the specified design loads consist of wind load, snow load and
self-weight with a total combined magnitude less than or equal to 15kPa. Accordingly, this
code is not applicable to the design of structural glass members. The reason behind the lack
of design guidance is that the mechanical behaviour of LG is quite complicated even prior to
fracture, which involves significant zigzag displacements and complex stress fields,
sensitivity to loading rates and temperature, as well as significant geometric nonlinearity
under moderate loading. These factors make it difficult to describe the behaviour of LG units

with one set of codified formulae.

Therefore, reliable numerical modelling tools are required to facilitate the design and
assessment of LG structures. An advanced approach in modelling the LG should balance the
need for accuracy and the computational demand. To achieve this goal it is essential to have a

full understanding of the characteristics of LG structures.

1.1 Features of laminated glass structures

The behaviour of LG is characterised by several distinctive features as follows:

(1) Material mismatch. There is a significant stiffness variation through the glass laminate

thickness, where the glass-to-PVB stiffness ratio falls into the range from 10° to 10°,
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which is much larger than the stiffness variation in laminations where the change of
material properties is achieved by changing the orientation of constitutive layers. This
material mismatch leads to a significant zigzag effect in displacements and complex

stress fields in the thickness direction.

(2) Stacking sequence. The LG composition follows an alternating stiff/soft lay-up
scheme due to the inclusion of soft PVB layers between relatively stift glass plies.
This stacking sequence is different from usually encountered sandwich structures

where all soft cores are layered together and sandwiched by stiff sheets.

(3) Large slenderness. Most LG components can be regarded as two-dimensional
structures due to the relatively small thickness compared to length and width, which
induces large deflections under transverse loading. For an accurate modelling of such
structures, a suitable geometric nonlinear analysis capability is required to solve large

displacement problems.

(4) Sensitivity to loading duration and temperature. PVB is a viscoelastic material, the
mechanical properties of which vary with different loading rates and temperature,

hence leading to varying effective sectional modulus of the glass laminate.

(5) Fracture of glass. The strength of glass has a wide statistical variation due to random
Griffith flaws as a result of both the manufacturing process and service conditions.
The development of cracks is also complicated since the crack pattern is influenced by
the glass fracture strength, the size of the pre-existing flaws, and the interaction

between PVB and glass.

(6) Nonlinear material properties of PVB. After fragmentation of glass plies, PVB layer
undergoes large deformation. Experiments have shown that in the large strain range

this material exhibits a highly nonlinear viscoelastic response.

1.2 Aims and scope

It is apparent from the previous discussion that the full nonlinear analysis of LG is quite an

involved task, requiring complete understanding of all the aforementioned characteristics.
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However, it is important to note that features (1)-(4) exist throughout the loading history in
all LG problems, whereas features (5)-(6) are manifested in the post-cracking phases, where

large strains are induced in PVB.

This research focuses on features (1)-(4), and gives new insights into the behaviour of LG
structures prior to the initiation of glass cracking. The primary aim is to raise an efficient
lamination model which captures the characteristics of LG and provides reliable estimations
on its structural response. The outcome of this research may facilitate LG design and
assessment by providing a reliable and efficient numerical modelling tool, and it may also

serve as a basis upon which the features (5)-(6) can be investigated and considered in future.

Given the topic under consideration, the forthcoming chapters of this thesis mainly address

the following objectives:

(1) Formulation of lock-free monolithic shell finite elements. Low-order Reissner-
Mindlin shell elements are associated with the issue of locking, where the element
exhibits over-stiff response due to the existence of polluting higher-order strain terms.
Part of this research aims at eliminating the locking phenomenon in quadrilateral and

triangular elements with the use and enhancement of an assumed strain method.

(2) Adoption of a co-rotational framework for a simple incorporation of lamination
models in geometric nonlinear analysis. As discussed previously, most LG problems
are associated with large displacements and finite rotations due to the slenderness of
the structures. Part of this research aims at incorporating local shell element
formulations into available co-rotational frameworks, which filter out rigid body
modes, thereby allowing the upgrading of linear local element formulations of

different sophistication to geometric nonlinear analysis with relative ease.

(3) Establishment of efficient and accurate lamination model. An extensive amount of
research effort has been devoted to lamination theories, most of which are
nevertheless aimed at general applications. With regard to the distinct characteristics

of the glass laminate, a narrowing-down of the scope to laminations with an
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alternating stiff/soft lay-up may yield simpler lamination models associated with a

reduced computational demand.

(4) Incorporation of lamination models in finite element formulations. The employment
of a co-rotational framework allows simple incorporation of lamination models within
local shell element formulations. One aim of this research is to seek ways for
minimising the required co-rotational transformations in multi-layer shell element

formulations.

(5) Selection of appropriate material models. Considering that the scope of the present
work is focused on the pre-cracking stage of LG, a linear elastic material model will
be used for glass. However, in view of the temperature and time dependency of PVB
material, this research aims at selecting and developing an appropriate material model

to capture the viscoelastic characteristics of PVB.

(6) Illustrative numerical problems for demonstration of possible applications. Finally,
this research aims at applying the proposed numerical modelling capabilities to
several case studies on LG structures, which may be used to illustrate the wide

applications of the proposed multi-layer shell elements in solving LG problems.

1.3 Outline of thesis

This thesis is composed of nine chapters. This chapter introduces the research topic and its
aims and objectives. Chapter 2 provides a systematic literature review relevant to the research
topic. An overview of experimental investigations and numerical modelling tools in LG
problems is first given, followed by the introduction of available lamination theories.
Numerical issues relevant to nonlinear shell element formulations are also reviewed in this

chapter.

In Chapter 3, the formulations of monolithic quadrilateral and triangular shell elements are
presented. An effective locking-elimination approach, which is employed and improved in
this research, is first reviewed and then followed by the description of two efficient co-
rotational coordinate systems. Subsequently, formulations of curved quadrilateral and

triangular elements are presented, both of which employ the co-rotational systems and
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address locking via the adoption of the improved assumed strain method. In order to allow
dynamic analysis, a consistent mass matrix is also derived for both elements. Numerical

verifications of both elements are provided in Chapter 4.

In Chapter 5, a three-layer sandwich model is first developed, where a novel zigzag function
is proposed, which is equivalent to an existing zigzag function for symmetrically laminated
sandwich structures but yields much better accuracy when asymmetric cross-sections are
considered. Besides, a piecewise linear transverse shear strain distribution is assumed, which
reproduces the real distribution without imposing stress constraints at laminar interfaces.
Based on this sandwich model, a generalised model with an alternating stiff/soft lay-up is
further developed, where a set of zigzag modes specific to the considered lamination is
proposed, and an assumed piecewise linear variation of transverse shear strains is employed.

The accuracy and efficiency of the lamination model is illustrated with a 1D beam problem.

Chapter 6 presents the incorporation of the proposed lamination model into co-rotational shell
elements. For further computational efficiency, a 2D ‘shell’ coordinate system is proposed in
this research for the direct definition of the additional zigzag variables, which effectively
minimises the required co-rotational transformations. The generalisation of the consistent
mass matrices of monolithic elements to allow for multi-layer cases is also presented, thus
enabling the analysis of laminated shell structures under dynamic loading. At the end of this
chapter, linear and nonlinear numerical examples are presented to verify the laminated shell

elements.

In Chapter 7, consideration is given to the application of the proposed laminated shell
elements to LG. A viscoelastic material model for PVB is first presented, followed by
verifying examples of LG panels subject to transverse loadings of different loading rates. In
order to allow the analysis of insulated glazing, a volume-pressure control algorithm is
presented to consider the effect of insulated air on the structural behaviour of double glazing
units, which is verified with two numerical examples and is subsequently employed in

Chapter 8 for the modelling of an insulated glazing system.

Several case studies are utilised in Chapter 8 to investigate the accuracy and efficiency of the

developed capability for nonlinear analysis of LG. Buckling analysis, creep analysis and blast
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analysis of LG structures with different levels of sophistication are presented, where the

efficiency and accuracy of the multi-layer shell modelling approach are discussed.

Finally, in Chapter 9, conclusions and achievements of this research are summarised, and

recommendations for future work towards advanced LG modelling are provided.

Throughout this research, all finite element implementations and most of the numerical
modelling are undertaken with the use of ADAPTIC (Izzuddin, 1991), a general finite
element package for structural analysis. Part of the numerical modelling is also performed
with the use of Maple v16.00 (Maple, 2012), a mathematical and analytical software, and
ANSYS v14.5 (ANSYS, 2012), a commercial finite element software.
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CHAPTER 2

Literature Review

2.1 Introduction

In this chapter, a literature review of the LG behaviour up to first cracking is provided. The
experimental research on the pre-cracking behaviour of LG plates and beams as well as the
characteristics of PVB is first reviewed, which provides valuable information for the
validation of numerical modelling of glass structures. Subsequently, the relevant theoretical
attempts in the modelling of LG are overviewed, which incorporate early mechanical models
and numerical models. In finite element methods, models with three-dimensional (3D) solid
elements, coincident elements, non-coincident elements connected by tie elements, and
laminated shell elements are all briefly presented. With regard to available two-dimensional
(2D) lamination theories, a review on the main categories is given, where the features and
accuracy of each theory is briefly introduced. This chapter then proceeds with overviewing
the material models for LG. The viscoelastic characteristic of PVB is explained, and the
commonly used Maxwell mechanical models in describing viscoelastic materials are
presented. The final part focuses on two aspects relating to the formulation of nonlinear shell
finite elements, namely techniques dealing with element locking and available co-rotational

approaches allowing large displacement analysis of shell structures.
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2.2 Experimental investigations on laminated glass

2.2.1 Experiments on structural behaviour

A great many structural experiments were carried out in the last half of the 20" century to
investigate the flexural behaviour of LG up to first cracking. Hooper (1973) performed four-
point bending tests on LG beams and examined the strain distribution through the beam
thickness. Under sustained loading, the LG deformed as if the two glass plies were separated
at a distance by a material of zero shear modulus, whereas under short-duration loading, the
LG responded as a composite member having an interlayer shear modulus appropriate to its
temperature. Hooper concluded accordingly that the degree of coupling between the two
glass plies relies on the shear modulus of the interlayer, which in turn depends on the ambient

temperature and the duration of loading.

Linden et al. (1984) and Vallabhan et al. (1987) conducted uniform pressure bending tests on
LG, monolithic glass and layered glass units to establish the lower and upper bounds of the
behaviour of LG under uniform pressure. By comparing experimental results of LG panels
under uniform pressure with those of monolithic glass panels of the same rectangular
dimensions and nominal thicknesses, Minor and Reznik (1990) concluded that the strength of
LG is equal to the monolithic glass strength at room temperature, and Behr et al. (1993)
established the analogy between the influence of increasing loading rate and the influence of

decreasing the temperature on the behaviour of LG.

Bennison et al. (1999) carried out a series of biaxial flexural experiments on LG panels with
various loading rates and temperatures and recorded the stress development and the sequence
of glass-ply fracture. From the results they concluded that complex stress fields were
developed in the LG due to the large modulus mismatch between glass and PVB. The
location of the maximum biaxial stress was shifted from one glass ply to the other with
various loading rates and/or temperatures, which resulted in different fracture sequences of
the glass plies: high temperature and/or slow loading rates bias first cracking to the upper
(loaded) ply, while low temperature and/or high loading rates promote lower (support) ply

first cracking.
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In the aforementioned experiments, transverse loadings were applied to the LG specimens,
and the flexural strengths under various laboratory conditions were examined. There were
also some experiments on LG specimens where in-plane flexural loading was applied. Biolzi
et al. (2010) conducted three-point bending tests on the LG beams, where the point load was
exerted parallel to the lamination beams to investigate the influence of interlayer stiffness on
the structural performance and failure modes. They found that the interlayer plays a

significant role in defining the planar response and the failure type.

There were also many experiments designated to investigate the post-cracking response of
LG subjected to blast and impact loading (Timmel et al., 2007; Hooper et al., 2012; Nawar et
al., 2014). However, since the scope of interest in this research is limited to the pre-cracking

phase only, the details of these experiments are not presented.

2.2.2 Experiments on material behaviour

A large amount of experimental effort has been devoted to the material behaviour of PVB.
Vallabhan et al. (1992) performed direct-shear tests on LG specimens at room temperature,
where the lower glass ply was horizontally loaded at a low strain rate, while the upper glass
ply was restrained by an electronic load cell recording the horizontal force transmitted
through the PVB interlayer. The relative displacement of the two halves was also recorded.
They plotted the average shear stress against the average shear strain, and concluded that
under low strain rate and room temperature conditions, the initial stiffness of PVB was quite

low, and it gradually increased with larger shear strains.

Biolzi et al. (2010) conducted uniaxial tensile tests on PVB coupons with a low displacement
rate at room temperature, and plotted the material stress-strain curve, which showed that the
material possesses a low modulus in the range of small strains and starts to exhibit material

nonlinearity at finite-to-large strains.

Xu et al. (2011) carried out tension and uniaxial compression tests on PVB under respectively
quasi-static and dynamic loading conditions. The corresponding material stress-strain curves
all showed nonlinear behaviour in the large strain range. On the other hand, the discrepancy

between the curves with different loading rates confirmed the viscoelastic characteristic of
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the material. Based on the stress-strain curve pattern, Xu et al. also classified the constitutive
behaviour of PVB into three stages: the linear-elastic stage (small strain), the bi-exponent

stage (moderate-to-large strain), and the failure stage (large strain).

The aforementioned tests on PVB all went through the large strain range of the material,
which yielded a nonlinear stress-strain relationship. Bennison et al. (1999) , on the other hand,
focused on the small-strain range where the stress-strain relationship can be regarded as
linear. They conducted hydrostatic volumetric tests on PVB in a mercury-containing pressure
cell at different temperatures, and found that the value of the bulk modulus K(t) was
relatively unchanged with temperature and was fixed around 2.0GPa. They also performed a
series of cyclic loading tests on PVB under different frequency and temperature conditions
via the use of a dynamic mechanical analyser. The storage modulus E’and loss modulus E”

were determined by dynamic experiments, which were used for the determination of the shear

relaxation modulus G(t).
2.3 Modelling of laminated glass

2.3.1 Mechanical models

Early theoretical research was mainly concentrated on the relationship between the behaviour
of the LG and the behaviour of the monolithic glass having the same nominal geometry.
Based on the experimental investigations by Linden et al. (1984), Vallabhan et al. (1987),
Minor and Reznik (1990), and others, two experimentally defined bounds were proposed to
describe the LG behaviour. The upper-bound model was a monolithic glass model having a
thickness equal to the combined thicknesses of the glass plies in the LG. The lower-bound
model corresponded to a layered glass model where two glass plies are layered up with no

shear transfer.

Norville et al. (1998) pointed out the inaccuracy of the upper bound by emphasizing the
contribution of the PVB thickness to the cross-sectional modulus, and then proposed an
analytical model of the LG beam under uniform transverse loading. In the model, an
equivalent section modulus was calculated, where the varying capability of PVB in

transferring shear forces was taken into account with a factor q, the value of which was
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estimated based on the loading rate and temperature. Different distributions of the flexural
stress were derived by assuming different values of the shear transfer factor g, as shown in
Figure 2.1.

(e}
outer cyouter cyouter
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Figure 2.1: Distribution of flexural stress in single ply of LG beam (Norville et al., 1998).

2.3.2 Finite difference model

Vallabhan et al. (1993) used a mathematical model combined with a finite difference method
to analyse LG units under uniformly distributed transverse loading. In order to predict the
nonlinear behaviour of LG, von Karman’s plate theory was used for two elastic plates, which
were then connected by an infinitesimally thin elastic shear layer. This model took into
account the cross-sectional distortion and geometric nonlinearity, and the effective shear
modulus was calibrated against experimental results. A convergent solution of the derived
nonlinear differential equations was obtained by using the finite difference method with an
iterative technique. However, the application of this model to real problems incorporating
complex geometric and loading conditions is likely to encounter massive storage

requirements and computation time.

2.3.3 Finite element models

2.3.3.1 Three-dimensional solid element models

3D solid finite element models have been used by many researchers in simulating LG panels,
including Bennison et al. (1999), Duser et al. (1999), and Wei et al. (2006), where several
brick elements are usually employed through the out-of-plane direction for each ply to
capture the structural response well. In order to take into account the time- and temperature-

dependent effects of PVB, Bennison et al. (1999) and Wei et al. (2006) employed a linear
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viscoelastic material model for PVB. Although these solid models can provide accurate
predictions for both displacements and stresses, the associated computational demands are
often prohibitive, largely due to the numerous elements employed in both the planar and the

out-of-plane directions.

2.3.3.2 Models with coincident elements

Sun et al. (2005) established a coincident shell/volume/shell model to predict the failure
behaviour of windscreens, in which the PVB was modelled with solid elements while each
glass ply was modelled with shell elements. Although this model may be appropriate for
analysing sandwich structures where the core is much thicker than the face sheets, it seems
unnecessary to use solid elements in modelling the PVB interlayer, which is so thin that the
transverse normal strain is insignificant. Therefore, the use of solid elements for the PVB

interlayer would result in higher computational demands with little improvement in accuracy.

In the simulation of impact problems, Du Bois et al. (2003) used two coincident elements
through the thickness to model LG: one shell element for the two glass plies, and one
membrane element for PVB. The use of one shell for the two glass plies was, however, based
on the assumption that the through-thickness displacement variation is linear and that the
PVB layer has negligible influence on the sectional modulus. It was also associated with the
assumption that both glass plies fail at the same time, which led to the stiffness loss of both

glass plies upon first cracking in either of them.

Timmel et al. (2007) improved the coincident shell-element model by letting one element
represent one glass ply and the other represent the other glass ply plus the interlayer. For the
latter element, material properties of the glass ply and the PVB interlayer were smeared
throughout the element. With regard to the pre-cracking phase, the latter element with

smeared material model still does not capture the local response of LG.

The employment of coincident element models greatly reduces the storage demand and
computation time, compared with the 3D solid models. Nevertheless, the shell stiffness and
density require adjustment prior to the analysis to maintain identical bending stiffness and

total mass to the glass-PVB laminate.
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2.3.3.3 Models with tie elements

Pyttel et al. (2011) proposed a model for simulating LG panels subjected to impact loading,
where the two glass plies are modelled with two shells and the PVB layer is modelled with

one membrane. Tie elements were employed for connection between nodes.

Peng et al. (2013) proposed a LG model in which the through-thickness direction was
discretised using two shell elements with non-coincident nodes: one shell element
represented the two glass sheets, which would be deleted when the failure criterion is reached,
while the other shell element stood for the PVB interlayer. Tie elements were used to connect
the non-coincident nodes. Similar to the model by Du Bois et al. (2003), the model

automatically assumed the simultaneous failure of two glass plies.

The use of non-coincident elements linked with tie elements in the model is also more
efficient than the 3D solid models. However, the continuity of displacements at layer
interfaces is not preserved. The penalty based stiffness of the tie element should also be

selected to balance solution accuracy with the violation of constraint conditions.

2.3.3.4 Multi-layered shell element models

There are also a few models with multi-layered shell elements, which further reduce the
computational demand and alleviate the complexity in modelling laminated structures.
Larcher et al. (2012) used layered shell elements to approximate the pre-cracking response of
LG under blast loading. An elastic-plastic material model was used for PVB, and a failure
criterion for the glass was set such that after numerical failure at an integration point of the
glass ply stresses would be set to zero under tension while the material would still react to
compression. However, the shell element is formulated based on the classical lamination
theory assuming zero transverse shear strains and a linear variation of displacements through
the plate thickness, which may result in accuracy for long-duration loadings, where the

material properties change significantly in the thickness direction.

Seica et al. (2011) used a laminated shell model in the analysis of LG curtain wall systems
under blast loading. The used layered shell element was based on the first-order shear

deformation theory, which assumes a constant and a linear distribution of respectively the
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shear strain and the displacement through the plate thickness. The accuracy of this laminated
shell element still yields inaccuracy if there is a noticeable stiffness mismatch through the
thickness. In order to investigate the blast resistance of safety glass, Hooper et al. (2012) used
two models to take account for the pre-cracking and post-cracking phases. A shell model
exploiting multi-layered shell elements was adopted to predict the pre-cracking response with
a maximum principle stress criterion. When the maximum principal stress in glass exceeded a
limit value, the analysis would proceed with a post-cracking model, where an identical shell
model was used for the post-cracking phase except that the Young’s modulus of glass was set
to zero. The layered shell element used in Hooper’s model is still based on the first-order

shear deformation theory.

In the study of the performance of double glazing systems under blast loading, Nawar et al.
(2013) established a finite element model with layered shell elements employed for LG panes.
Different material properties and layer thicknesses were given to the shell elements, and
zigzag displacements and stresses through the shell thickness were considered by using many

integration points in the thickness direction.

The layered shell models maintain the geometric continuity at layer interfaces and describe
the lamination behaviour with fewer degrees of freedom (DOFs) than solid elements, which
is very computationally efficient and does not require adjustment of the section modulus prior
to the analysis. Nevertheless, in order to accurately capture the structural response, a proper
lamination theory which accounts for cross-sectional warping ought to be embedded in the
layered element formulation. In the next section, a systematic review of lamination theories is

presented.

2.4 Lamination theories

Numerous research works can be found in the literature on 2D lamination theories. In terms
of the employed variational principles, lamination models can be grouped into two main
categories: displacement-based approaches, and mixed approaches with independently
assumed displacement and stress fields. Although there are also a few stress-based
approaches (Lekhnitskii, 1935), these tend to have significant shortcomings in relation to the

treatment of geometric and material nonlinearity, and as such they are not discussed here.
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2.4.1 Displacement approaches

The displacement approaches make assumptions on displacement fields only, based on which
strains and stresses can be derived via the compatibility and constitutive relationships. The
principle of virtual displacements (PVD) is employed to establish the governing equations. In
terms of displacement descriptions, there are mainly two categories of displacement
approaches (Carrera, 2003; Carrera & Demasi, 2002). Equivalent Single Layer (ESL)
descriptions postulate base functions at the multi-layer level, and the associated displacement
variables are defined for the whole lamination. Layer-wise (LW) descriptions, on the other
hand, make assumptions for displacements at the layer level, so that each layer is regarded as

an independent plate with ESL descriptions.

The accuracy of a lamination model is usually dependent on the suitability of the assumptions
made for the displacement and stress distributions in the thickness direction. Therefore in the

following, lamination models with the ESL and LW descriptions are briefly reviewed.
2.4.1.1 Equivalent Single Layer (ESL) description

The ESL models usually assume through-thickness displacement modes at the multi-layer
level, which leads to the independence of the number of displacement variables from the

number of constitutive layers.

The classical lamination theory (CLT) is an extension of the Kirchhoff plate theory to
laminated composites, which assumes that the transverse normal of the plate before
deformation remains straight and perpendicular to the mid-surface after deformation (Figure

2.2). The displacement fields are thus given as:

ua(x,y,z):uao(x,y)—zw (a=Xx,y) (2.1)
oL
uz(Xa ya Z) = uzO(Xa y) (22)

where u,j,uy9,and u,, denote the displacements evaluated at the middle surface. It is
evident the assumed displacements result in zero transverse shear deformation, which is

incorrect for moderately thick to thick applications.
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Figure 2.2: Classical lamination theory.

First-order shear deformation theory (FSDT), as depicted in Figure 2.3, extends the Reissner-

Mindlin plate theory to a multi-layer case and assumes the following displacement fields:
u(x (Xa Y, Z) :uaO(Xa Y)+Zea(xa Y) ((X =X, Y) (23)
uz(Xa Y, Z) = uZO(X5 Y) (24)
where 0, denotes the rotation of the cross-section. As a result, constant shear strains are

derived at each layer, which is different from the real shear strain distribution and hence leads

to inaccuracy in the solution.

A

Figure 2.3: First-order shear deformation theory.

Shear strain Shear stress

Figure 2.4: Distribution of transverse shear stress and strain in Vlasov-Reddy theory (Carrera, 2002).
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The Vlasov-Reddy theory (VRT) (Reddy, 2004) modifies the Reissner-Mindlin type theories
by enriching planar displacement fields with third-order terms with respect to z without
introducing more variables, which results in a parabolic distribution of the transverse shear

strain and achieves stress-free boundary conditions (Figure 2.4). The displacement fields are

given as:
4 5 4 50u
u, (X,y,2)=u,y+(z-—2")0, ——2z"—% (a=x, 2.5
(X,¥,2) =ugyo+( 32 ) 2% 2o ( y) (2.5)
uz(Xa Ya Z) = uZO (26)

The VRT is an improved shear deformation theory over the FSDT, which preserves the
number of variables of FSDT and provides a more accurate prediction of displacements and
stresses. However, the VRT is associated with a continuous distribution of the transverse
shear strain through the plate thickness, while in fact it is the transverse shear stress that

should be continuous through the lamination thickness

Higher-order shear deformation theories (HSDTs) introduce to displacement fields additional
variables associated with higher-order z expansions to enrich the distribution of the transverse

shear strains (Reddy, 2004). A generalised expression of HSDTs is given by:

2 N .
Ui (X,¥,2) =Ujp+Zzu+2 U+ 42wy (1=X,Y,2) (2.7)

where N; is the highest order of expansion used for the displacement u;. Note that although
HSDTs improve the accuracy of the global response with higher-order out-of-plane z
expansions of the displacement fields, these z expansions, which are defined at the multi-
layer level, cannot describe the zigzag-type discontinuity associated with the variation of

mechanical properties through the thickness.

In order to allow a zigzag description of displacements, Murakami (1986) improved FSDT
and HSDTs by introducing a piecewise linear zigzag function (Figure 2.5), which is defined

as:
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w 2(z—2%)

f()= ()" =
k

VAS [hkf,hlﬁ] (2.8)

where h,is the thickness of layer (k); h,_ and h,, refer to the values of z at the bottom and

top of layer (k), respectively; and z*) is the extracted value of z on the middle surface of

layer (k).

zA

~

Figure 2.5: Murakami’s zigzag function.

A generalised expression of the inclusion of Murakami’s zigzag function (MZZF) within

HSDTs is hence given as (Figure 2.6):

2 N, .
Ui (X,Y,2) = o+ zu+ 2  up+- 4z uy +f(2)u;, (1=xy,2) (2.9)

where u;, represents the displacements associated with the Murakami type zigzag mode.
These models are denoted by acronyms EDZN, where N denotes the highest order of z

expansions employed (Carrera, 2003).

In the aforementioned ESL models, the number of displacement variables is independent of
the number of layers because the base functions are defined at the multi-layer level and used
by all constitutive layers. However, the displacement variables defined at the multi-layer
level in turn lead to their insensitivity to constitutive layers. The inclusion of MZZF within
HSDTs greatly improves the predictions, but a LW description is still necessary if accurate
estimation of local effects is required. It is noted that MZZF may not the best zigzag function
in some lamination lay-ups, unless it is coupled with the use of mixed assumption (Carrera,

2001).
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Figure 2.6: Schematic representation of the EDZN model (Carrera, 2003).

2.4.1.2 Layer-wise (LW) description

In the LW description, base functions are assumed at the layer level, and compatibility
conditions at layer interfaces are imposed to fulfil the continuity requirements on inter-
laminar displacements (Figure 2.7). Each layer of the laminate is regarded as an independent
plate or shell and is solved with any of the ESL theories, such that the zigzag effect of the
lamination can be well reflected. (Reddy, 2004)

At each layer, the displacements are generally expressed as:

ufk)(x,y,z) = ui(g)+zui(1k)+ 7’ ui(lz()+---+zN' ugfl) (1=x,y,2) (2.10)

(k

where ui(lg) - uiN_) are displacement variables defined at layer (k).

A,

Figure 2.7: Layer-wise description of displacement (a linear field).

These displacement-based LW models are denoted by the acronyms LDN (Carrera, 2003).

Owing to the definition of displacement variables at the layer level, the LW models capture
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both global and local response of laminations. Nevertheless, this leads to the dependence of
DOFs on the number of constitutive layers, where some layer displacement variables are
owned by one layer and some other displacement variables are shared by adjacent layers.

Another shortcoming of LW models is the violation of continuity of shear stress at interfaces.

There are also a few displacement-based LW models which impose inter-laminar continuity
constraints on both displacement fields and transverse stress fields (Pandit et al., 2008; Pandit
et al., 2009; Kapuria & Achary, 2004). By fulfilling continuity requirements on both
transverse stresses, the number of displacement parameters can be reduced, which in turn

results in highly coupled constitutive layers.

2.4.2 Mixed approaches

In the mixed approaches, not only displacement variables but also stress and/or strain
variables are used in the formulation, and mixed variational principles are employed to relate

the displacement variables with stress and/or strain variables.

In the modelling of a multi-layer plate, Murakami (1986) introduced the MZZF within FSDT
and assumed a piecewise quadratic continuous distribution of transverse shear stresses. Then,
by employing Reissner’s mixed variational theorem (RMVT), stress unknowns were
expressed in terms of displacement unknowns, and governing equations were derived. Later,

the mixed formulation was extended to higher-order planar displacement fields by Toledano

and Murakami (1987).

A generalization of RMVT to develop ESL and LW plate/shell theories, as well as finite
element applications, has been provided by Carrera (1997). Both sets of the RMVT models

are reviewed in the following.
2.4.2.1 ESL description with RMVT applications

In the RMVT-based formulations with the ESL description, the displacement variables are
defined at the multi-layer level, which is the same as PVD-based formulations employing the

ESL description. On the other hand, the continuity requirement of transverse stresses at
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laminar interfaces calls for a LW description for transverse stresses. Subsequently, the

displacement and transverse stress fields for these models can be expressed as (Carrera, 1997):
u=Fu,+Ku, +Fu, (r=2->N) (2.11)

6 =6l 4 Fo® 1 Fe®  (r=2->N) (2.12)

rnr

where u =<ux,uy,uZ >T and o' =<c§kz),cs§,kz),cs§k)>T are the assumed displacement fields and
transverse stress fields, respectively; the through-thickness functions F, are higher-order z
polynomials, which are defined at the multi-layer level for displacements and at the layer
level for stresses; F, is a linear function of z defined at the layer level, which has a value of 1
at the top of layer (k) and reduces linearly to 0 at the bottom of layer (k); and F, is similarly
defined except that it equates to 1 at the bottom and 0 at the top of layer (k). To fulfil the

continuity requirement of transverse stresses, the following constraints are imposed at each

laminar interface:

6 =6k (k=1-N,-1) (2.13)

nt

where N, is the number of layers.

The boundary conditions are also satisfied via the following equations:

) _ = N) _ =
oy =6, oy’ =0, (2.14)

These ESL models with the application of RMVT are denoted by the acronyms EMCN.

Better accuracy can be achieved via the inclusion of MZZF in such models (Figure 2.8),

which leads to the following sets of assumed displacements (Carrera, 1997):

u=Fu,+Fu, +f(z)u, +Fu, (r=2->N) (2.15)

The expressions of transverse stresses are the same as (2.12). These EMCN models enriched
with the MZZF are denoted as EMZCN, the performance of which is improved by capturing
the zigzag effect. The EMZCN models provide a convenient tool to consider the lamination

effects in terms of accuracy versus the required computational efforts, and they have also
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been employed in finite element formulations to analyse sandwich and lamination problems
involving geometric nonlinearity (Carrera, 1998; Carrera & Krause, 1998; Carrera & Parisch,

1997; Carrera, 1997).

Displacement Transverse stress

/

/

/

¥ —
4

Figure 2.8: Schematic representation of the EMZCN model (Carrera, 2003).

2.4.2.2 LW description with RMVT applications

The LW models with the employment of RMVT assume displacements and transverse

stresses both at the layer level, with the expressions for layer displacements given as:

u® =Fu® +Fu® +Eu®  (r=2->N) (2.16)

The expressions of transverse stresses are the same as (2.12).

Inter-laminar constraints are imposed on both displacements and transverse stresses, so these
models can capture well the zigzag effect of displacements and transverse stresses (Figure

2.9).

Displacement Transverse stress

Figure 2.9: Schematic representation of displacements and transverse stresses in RMVT (Carrera,

2003).
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2.5 Material modelling

2.5.1 General

Structural glass is a brittle material, the strength of which has a wide statistical variation due
to the embedded Griffith flaws (Bennison et al., 1999). However, in the pre-cracking phase, it
can be regarded as an isotropic material with well-defined Young’s modulus and Poisson’s

ratio. Therefore, in this research, an isotropic material model is employed for glass.

On the other hand, the stress-strain curve of PVB is nonlinear in the finite-to-large strain
range. Based on experimental data, Xu et al. (2011) proposed nonlinear tension and
compression constitutive models for both quasi-static and dynamic loading conditions, with
the parameters in the model determined through curve fitting. These material models can be
used for impact analysis where the localised strains in PVB are too large to ignore the

material nonlinearity.

By restricting the concentration on the pre-cracking phase where the deformation of the PVB
is within small-strain range, a linear stress-strain relationship can be regarded for this material.
There are several works in the literature that employ linear viscoelastic material models in the
analysis of LG under both pseudo-static and dynamic loadings (Wei et al., 2006; Bennison et
al., 1999; Duser et al.,, 1999). Therefore, in the following, the features of viscoelastic

materials are provided, and linear viscoelastic material models are reviewed.

2.5.2 Viscoelastic materials

Polymers are composed of large molecules, which are formed via polymerisation of many
small monomers. They are viscoelastic materials, with the material properties dependent on
both temperature and time (Shaw & MacKnight, 2005). Figure 2.10 depicts the schematic
modulus-temperature curve for typical viscoelastic materials, where the stress relaxation

modulus E is obtained at a given time (say 10 sec).
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log E( 10sec, T) , Pa

Temperature , °C

Figure 2.10: Schematic modulus-temperature curve for viscoelastic materials (Shaw & MacKnight,

2005).

The effect of the temperature on viscoelastic material properties can be explained at the
molecular level. Evident from the curve, the glassy region corresponds to the low temperature
range, where the polymer shows high stiffness owing to insufficient thermal energy for
allowing segment motions of polymer molecules. In the transition region, elevated
temperature results in increased thermal energy that initiates the movement of molecular
segments, which induces an abrupt decrease in the material modulus. As the temperature
increases, the modulus reaches another plateau region, called the rubbery plateau region. For
further increase in temperature, the modulus undergoes a second abrupt decrease due to the

increased thermal energy allowing translation of whole polymer molecules (Shaw &

MacKnight, 2005).

-1 | 3 5 7 log(t), sec

Figure 2.11: Schematic master curve of stress relaxation modulus (Shaw & MacKnight, 2005).
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Figure 2.11 depicts the modulus-time curve for viscoelastic materials at a reference
temperature. Here again, the time-dependent effect is explained at the molecular level. A high
modulus is observed upon load application, owing to the insufficient time for the polymer
molecules to reorient and relieve local strains. As time passes the glass transition process is
observed, where the modulus decreases significantly due to segmental reorientation. After
extensive chain reorientation has taken place, the distortion in chains has been alleviated, and
the polymer behaves like a rubber. As time increases much further, the chains can move past
one another, resulting in complete relaxation, which accounts for the second rapid decrease in

the modulus (Shaw & MacKnight, 2005).

2.5.3 Mechanical models for viscoelastic materials

The time-temperature correspondence principle states that the effect of changing temperature
is the same as applying a multiplicative factor to the time scale, which can be expressed as

follows (Shaw & MacKnight, 2005):

E(T,t) = E(T,,t/a;) (2.17)

where T, is the reference temperature, and T is an arbitrary temperature. Equation (2.17)
states that if the material modulus-time curve at a reference temperature T, is known, the
modulus-time curve at an arbitrary temperature T can be obtained from the known curve by

multiplying the time scale with a factor 1/ay .

The Williams-Landell-Ferry (WLF) equation gives the relationship between a; and the
change in temperature (T—T,,) (Ferry, 1980):

C(T-Ty)

g0 dT =" oy
2 0

(2.18)

in which C,; and C, are constants that vary from polymer to polymer.

With the employment of (2.17)-(2.18), the master curve (i.e. the modulus-time curve) of a
polymer at an arbitrary temperature can be obtained from the master curve constructed at a

reference temperature.
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Figure 2.12: Mechanical viscoelastic material models (Shaw & MacKnight, 2005).

Many mechanical models have been proposed to reproduce the linear viscoelastic response of
real systems. The Maxwell model is a series combination of a spring element and a dashpot
element, as shown in Figure 2.12.a, where the Hooke spring represents the pure elastic
response, and the dashpot element represents the pure viscous response (Shaw & MacKnight,
2005). The Maxwell-Wiechert model is a generalised model consisting of an arbitrary
number of Maxwell elements connected in parallel, as shown in Figure 2.12.b (Shaw &
MacKnight, 2005). This model is usually used to obtain the stress relaxation modulus. The

stress relaxation modulus resulting from this model is given as (Shaw & MacKnight, 2005):

NM
E(t)=Y Ee " (2.19)
=

where N, is the number of Maxwell elements employed in the Maxwell-Wiechert model;

T; s a relaxation time parameter of the j" Maxwell element.

It is possible to replace one of the Maxwell elements in the Maxwell-Wiechert model with a
spring, as shown in Figure 2.12.c. In this manner, the stress would decay to a finite value

rather than zero, thus (2.19) is modified to the following form (Bennison et al., 1999):

NM
E(t)=E,+Y Ee /" (2.20)
=1

where E  is the long-time plateau modulus.

The relationship between the stress and the strain can be expressed as:
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o(t) =JE(t—s)%ds (2.21)
0

The use of this generalised Maxwell series for representing the shear modulus of viscoelastic
materials automatically accounts for time-dependent effects. On the other hand, the
temperature-dependent effects on the variation in shear modulus can be considered by using
the WLF equation to shift the time dependent shear modulus curve to a different temperature.
The incorporation of both time- and temperature-dependent effects in the viscoelastic
material model makes it possible for analysing problems with a wide range of temperature

and loading rates.

2.6 Locking elimination techniques

Ever since the emergence of the displacement-based finite element method, a most serious
problem that has influenced its application in linear and nonlinear structural analysis has been
related to the locking phenomenon, in which the element exhibits an over-stiff response
resulting from its inability to correctly model lower-order modes. The significance of this
phenomenon is determined by several factors, including the type of structural analysis
problem, the theory underlying the associated mathematical model, as well as the element
shape and order. Early forms of locking were observed in the modelling of plate bending
problems using the Reissner-Mindlin hypothesis (Zienkiewicz & Taylor, 2000), where the
inability of a mesh of conforming elements to bend without inducing transverse shear strains
leads to deteriorating performance as the plate thickness is reduced, a phenomenon referred to
as shear locking. Other forms of locking can also arise with conforming elements, such as
membrane locking when using curved shell elements, and distortion locking when employing

isoparametric mapping with irregular element shapes.

Whilst locking phenomena may be viewed from several different perspectives depending on
the context of element application, a common feature is the degradation in the approximation
of various strains over the element domain, principally due to polluting higher-order strains.
Numerous research efforts have been devoted to addressing this issue over the past few

decades, which can be grouped under distinct strands, as briefly reviewed in the following.
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Uniform reduced integration (Zienkiewicz et al., 1971; Pugh et al., 1978; Stolarski &
Belytschko, 1982) addresses element locking by filtering out higher-order stiffness terms via
the employment of a reduced number of integration points, which in turn suffers from rank
deficiency leading to spurious mechanisms. Selective reduced integration (Hughes et al.,
1977; Doherty et al., 1969; Malkus & Hughes, 1978) improves the shear locking performance
of Reissner-Mindlin plate bending elements by employing reduced integration for only the
transverse shear strain terms while utilising full integration on the remaining terms, which
effectively addresses the rank deficiency issue. However, such a technique is restricted to
plates with uncoupled flexural and transvers shear actions, and accordingly it cannot be

employed for modelling the nonlinear elasto-plastic material response.

There are a few enhanced displacement methods in the literature (Tessler & Hughes, 1985;
Tessler & Hughes, 1983; Izzuddin & Lloyd Smith, 2003), which generally eliminate shear
locking by introducing extra displacement parameters, which, however, leads to an enlarged

stiffness matrix with more DOFs.

The enhanced assumed strain methods (Simo et al., 1993; Simo & Rifai, 1990) address
locking by enriching the element with enhanced strain fields, where the enhanced strain
parameters are condensed out using the Hu-Washizu variational principle. Later, Korelc and
Wriggers (1997) used a Taylor series expansion of strains with respect to natural coordinates
in improving the behaviour of distorted elements and relieving the coupling of enhanced

modes.

Another group of assumed strain methods eliminates polluting higher-order strains by
sampling and interpolating strain components at selected locations (Jang & Pinsky, 1987,
Huang & Hinton, 1984; Macneal, 1982; Panasz & Wisniewski, 2008; Bathe & Dvorkin,
1986). The components to be sampled, the locations of the sampling points, and the
interpolation functions vary in the literature. The family of elements using the Mixed
Interpolation of Tensorial Components (MITC) method (Lee & Bathe, 2010; Bathe et al.,
2003; Bucalem & Bathe, 1993; Bathe & Dvorkin, 1986), as a specific group of two-level
approximation methods, performs sampling and mapping in a covariant coordinate system
before transformation to a Cartesian coordinate system. Nevertheless, the performance of

these strain mapping elements relies strongly on the locations of sampled strains for the
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assumed interpolation, which can lead to degradation of accuracy for irregular element
shapes. To extend the ability of elements based on strain mapping method to highly irregular
element shapes, Wisniewski and Panasz (2013) used corrected shape functions in the element
formulation, which addresses the sensitivity to mesh distortions, though nonlinear equations

must be solved for determining the additional parameters describing the element distortion.

The hierarchic optimisation approach (Izzuddin, 2007), also as an assumed strain method,
eliminates the polluting strain terms by performing mathematical optimisation on a
combination of the conforming strains with assumed hierarchic higher-order strain terms
towards an objective strain distribution. In this respect, the objective strains follow the
distribution afforded by the original element DOFs in terms of real (physical) coordinates,
while the hierarchic modes are used solely for the purpose of optimisation of the strain fields
and are eliminated via the optimisation procedure. This method not only alleviates shear and

membrane locking, but also addresses locking arising from element distortion.

2.7 Co-rotational approach

In formulating large displacement finite elements for small strain problems, the relationship
between the strain and displacement fields is highly nonlinear and complex if the
displacement fields are referred to a fixed coordinate system, where the nonlinear strain terms
arise mainly from the element rigid body rotations. The co-rotational approach, which
decomposes the element motion into rigid body and strain-inducing parts via the use of a
local co-rotational system, offers exceptional benefits for large displacement structural
analysis problems with deformations of the bending type, particularly when accounting for
arbitrarily large rigid body rotations. By choosing an element-specific co-rotational reference
system which follows the element current deformed configuration, rigid body rotations of the
element are removed, and low-order, even linear, relationships between the strain and local
displacement fields may be employed. Therefore, the co-rotational approach shifts the focus
of large displacement modelling from relating the strain and displacement fields to
establishing transformations between local co-rotational and global nodal entities, hence
effectively decoupling the large displacement issues from the local element discretization of

the continuum response. In this respect, the co-rotational approach has the potential to be
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applied as an element independent procedure (Crisfield & Moita, 1996; Rankin & Brogan,
1986), upgrading linear local element formulations of different sophistication to geometric

nonlinear analysis with relative ease.

A principal issue in any co-rotational approach is associated with the specific choice of the
local reference system in relation to the current deformed element configuration. Depending
on the specific definition of the local co-rotational system, the resulting co-rotational
approach may be element independent but restricted to elements of a specific shape and order,

or it may be more generally applied to elements of a particular shape regardless of order.

Rankin and Brogan (1986) defined two co-rotational systems for 3-noded triangular and 4-
noded quadrilateral elements, respectively, where in both cases one of the local system axes
was effectively aligned to one of the element edges. These definitions of the co-rotational
system were used by Li et al. (Li & Vu-Quoc, 2007; Li et al., 2015) in 6-noded triangular
elements for problems involving geometric and material nonlinearity, and by Jiang and
Chernuka (1994) in a 4-noded quadrilateral element for large displacement analysis.
Norachan et al. (2012) employed a co-rotational system for an 8-noded degenerated shell
element, utilising the enhanced assumed strain and advanced natural strain concepts for the
treatment of locking (Kim et al., 2005; Eberlein & Wriggers, 1999), where one of the local
system axes was aligned with one of the planar covariant base vectors. Alves de Sousa et al.
(2006) also considered a co-rotational approach for a degenerated shell element, though the
co-rotational transformations were applied at the constitutive integration point level, thus
losing the desirable characteristics of element independence and decoupling between the co-

rotational transformations and the local element formulation.

Whilst an arbitrary definition that simply requires the local co-rotational system to closely
follow the current element configuration, as in the above definitions, may not significantly
affect the large displacement response predictions for small strain problems, this often leads
to local system definitions which are not invariant to the specified order of the element nodes.
Besides the errors that could arise with such definitions when elements in the same mesh are
defined using different nodal ordering, it has also been argued that the invariance

characteristic would be desirable for extending the co-rotational approach to large strain
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problems (Crisfield & Moita, 1996) and for identifying the bifurcation points of perfectly

symmetric structures (Battini & Pacoste, 2004).

Towards this end, several approaches were previously proposed to achieve the invariance of
the local system to nodal ordering. Kebari and Cassell (1992) defined the co-rotational
system for a 9-noded quadrilateral shell element by locating the two planar axes
symmetrically with respect to the two planar curvilinear coordinates at each integration point.
Kim and co-workers (Kim & Lomboy, 2006; Kim et al., 2003; Kim et al., 2007) employed
this definition of the co-rotational system in the formulation of 4-noded and 8-noded
monolithic and laminated shell elements for analysis of both elastic and elasto-plastic
problems, but the alignment of the planar axes was performed at the element centroid only
rather than at all integration points. Crisfield and Moita (1996) proposed a co-rotational
system that enforced zero local spin at the element centroid using polar decomposition, which
they employed for 2D/3D continuum elements as well as shell elements. A common feature
of these definitions is their reliance on the local element displacement fields, which restricts
their application in each instance to elements of the same shape and order; in this respect,
these definitions are only partially element independent. It is also worth noting that Crisfield
and Moita (1996) indicated that their approach leads to an asymmetric geometric stiffness
matrix, which is obviously undesirable from a computational perspective. In reality, the
geometric stiffness matrix, which is directly related to the second derivatives of local with
respect to global nodal displacements, cannot be asymmetric when the local co-rotational

system is uniquely defined in terms of global nodal displacements.

There are a few other definitions of the local co-rotational system which not only possess the
invariance characteristic to nodal ordering but are also defined in terms of only nodal position
variables, thus making them potentially independent of the local element formulation and its
order. Rankin (1998) defined a co-rotational system by minimising the square of Euclidean
norm of nodal local displacements, where the local system orientation was determined
through an iterative procedure. This definition was adopted by Eriksson and Pacoste (2002)
and later refined by Battini and Pacoste (Battini & Pacoste, 2004) for a 3-noded triangular
shell element where the need for iteration was overcome with explicit expressions for the

orientation of the local system. Importantly, Battini and Pacoste (2004) developed similar
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expressions for the 3-noded triangular element considering also the zero spin definition
(Crisfield & Moita, 1996), and they noted that both alternative definitions may be directly
used for elements of higher order. Whilst achieving considerable simplification over the
previous approaches (Crisfield & Moita, 1996; Rankin & Brogan, 1986), the approach
developed by Battini and Pacoste (2004) employs two stages, where in the first stage local
entities are determined for a local system that follows one of the element edges, and this is
then subjected to a spin rotation in a second stage to determine its final orientation. A simpler
bisector definition was proposed by Izzuddin (2005) for quadrilateral elements, where the
local planar axes are defined as the bisectors of interior angles formed by the intersection of
the two element diagonals. This co-rotational system was subsequently employed by Li et al.
(Li et al., 2013; Li et al., 2011; Li et al., 2008) in the formulation of a 9-noded shell element
applied to multi-layered shell problems and elasto-plastic analysis. Later, [zzuddin (2006)
extended the bisector definition to triangular elements by aligning the bisectors of the angle
that has changed most from the undeformed configuration, which still possesses all the
desirable characteristics. Meanwhile, he also proposed an alternative and equally simple
definition, the zero-macrospin definition (Izzuddin, 2006), which is based on zero-spin at the
macro element level, thus reducing the material spin in an aggregate sense over the element
domain. Not only do both definitions of the local co-rotational system achieve nodal
invariance as well as independence of the local element formulation and order, but they are

also easily and directly determined from global nodal position variables.

2.8 Concluding remarks

This chapter presents experiments on LG beams and panels, where the features of LG have
been pointed out, including the zigzag displacement variation through the LG thickness and
the dependence of results on loading rates and temperatures. Subsequently, various numerical
modelling approaches, along with their advantages and disadvantages, have been presented.
The benefits of laminated shell models over other alternatives have been discussed with
respect to the computational demand and the accuracy, though an adequate through-thickness

description of the lamination is required.
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An extensive review of existing 2D lamination theories is subsequently presented, where the
benefits and disadvantages of displacement-based models and mixed models with either ESL
descriptions or LW descriptions have been discussed. Although a great many lamination
theories have been developed, there is a lack of lamination models that consider laminated
composites with significant stiffness mismatch and an alternating stiff/soft lay-up, such as the
considered LG profiles, which are associatred with huge glass-to-PVB modulus ratios. The
special stiffness mismatch and stacking sequence ought to induce different through-thickness

characteristics, which may be utilised to obtain simpler and accurate lamination models.

Furthermore, the interpretation of the viscoelastic characteristic of PVB is presented, and
several mechanical models for representing linear viscoelastic materials are overviewed. The
generalised Maxwell model captures well the characteristic of PVB, which enables the

dependence of PVB material properties to the loading rate and temperature.

In the perspective of shell element formulations, available lock-elimination approaches are
overviewed, and their advantages and shortcomings are discussed. Although a lot of effort
has been devoted to overcoming the locking phenomenon, it remains difficult for shell
elements with either regular or distorted shape to possess an optimal convergence rate, which
implies room for enhancement of current methods. Finally, the benefits and desirable
characteristics of the co-rotational approach, as well as the existing alternative definitions of
the co-rotational system, are presented. It is worth noting that a more targeted review of the
literature is also undertaken in subsequent chapters, at the point of presenting new

developments.
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CHAPTER 3
Monolithic Quadrilateral and Triangular Shell

Elements

3.1 Introduction

In accordance with the research aims described in Chapter 1, the objective of this chapter is
to provide efficient monolithic shell element formulations allowing large displacement
analysis. These will later be employed as the basis for developing geometrically nonlinear
formulations of laminated shells, with the inclusion of an appropriate through-thickness

description of the displacements and stresses.

As reviewed in Chapter 2, the locking phenomenon exists in lower-order plate and shell
elements based on the Reissner-Mindlin hypothesis, which is associated with an over-stiff
element response resulting from its inability to correctly model lower-order strain modes. The
hierarchic optimisation approach proposed by Izzuddin (2007), as an assumed strain method,
not only alleviates shear and membrane locking, but also addresses locking arising from
element distortion. In this chapter, this method is reviewed and elaborated, and it is

subsequently employed throughout this research.

As mentioned before, the employment of the co-rotational approach for large-displacement
small-strain problems can wupgrade linear local element formulations of different
sophistication to geometric nonlinear analysis with relative ease. The exclusion of rotational

rigid-body modes from the local element formulation also enables the optimal mapping
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between assumed and conforming strains to be established only once for an element at the
start of incremental nonlinear analysis. Furthermore, in the consideration of laminations, the
co-rotational approach allows the inclusion of a constant through-thickness description of
local displacements and stresses into the local element formulation, which will be elaborated
in Chapter 6. Therefore, the two simple and efficient definitions of the co-rotational approach,
the bisector and the zero-macrospin definitions proposed by Izzuddin (2006), are also
reviewed and elaborated in this chapter, and these are subsequently utilised in this research

work.

Following the review of the hierarchic optimisation approach and the two co-rotational
systems, co-rotational formulations of monolithic 9-noded and 6-noded shell elements are
presented, where the 9-noded element was previously developed by Izzuddin and co-workers
(Izzuddin & Li, 2004; Li et al., 2008) and modified for the strain mappings in this work,
while the 6-noded element is fully developed in the present research work. Consistent mass
matrices for both elements are also derived, which allows the dynamic analysis of the

considered shell elements.

3.2 Hierarchic optimisation approach

The hierarchic optimisation approach was originally proposed by Izzuddin (2007) for
nonlinear shell finite elements, and it not only alleviates shear and membrane locking, but
also addresses locking arising from element distortion. This approach can be regarded as an

assumed strain method, but it has three distinct features.

Firstly, it introduces the notion of objective strain modes, defined in the physical coordinate
system, which act as the target strain modes for the conforming strain modes enhanced with
corrective strain modes. The objective and corrective strain parameters are obtained from
mathematical optimisation, and this leads to two alternative families of element, denoted by
acronym keys O and C, in which assumed strains based respectively on the objective or
corrective strain fields are directly mapped at the element level to the conforming strains.
Secondly, the corrective strain modes are established from hierarchic displacement modes
defined in the natural coordinate system, where modes up to any hierarchic order m can be

considered in the element optimisation process for both the O and C element families.
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Importantly, these hierarchic modes are used solely for the purpose of optimisation of the
objective and corrective strain fields, and as such do not influence the number of element
DOFs. Thirdly, geometric nonlinearity is considered within a co-rotational framework (Li et
al., 2008; Izzuddin, 2007), which provides accurate nonlinear predictions with the Reissner-
Mindlin hypothesis for the local shell element response, and which enables the optimal
mapping between assumed and conforming strains to be established for an element from the
solution of a linear system of equations. In this respect, the optimal mapping for individual
elements need only be established once, at the start of incremental nonlinear analysis, and
further computational benefits arise from uncoupled mappings of the planar, bending and
transverse shear strains, which can be applied even to elements with local geometric

nonlinearity.

The concept of the hierarchic optimisation approach is to employ hierarchic strain parameters,
associated with higher-order shape functions beyond those used in the conforming element
formulation, such that the combination of the conforming strains € and the hierarchic
corrective strains € offers a close approximation of the highest-order strain distribution &°
afforded by the original element DOFs in terms of real (physical) coordinates. In this respect,
the objective strain vector €° combines contributions from various strain-inducing modes ¥°
associated with the strain field under consideration, where the number of such modes depends
on the associated DOFs of the conforming element. Accordingly, € is enhanced with g

towards €° (Izzuddin, 2007):
e+e' ~g%, " =vlg", £ =w%° (3.1)

where W and W° represent the hierarchic corrective and objective strain-inducing modes,

respectively, while a" and a° are the respective associated strain parameters.

The employment of mathematical optimisation leads to a minimisation of the error between
the corrective strain field e+&" and objective strain field €°. Considering the target of
optimisation to be a functional integrating the square of this error over the element domain,
the strain parameters a" and a° are easily obtained for a given set of conforming strains €

from the solution of the following linear system of equations (Izzuddin, 2007):

70



Monolithic Quadrilateral and Triangular Shell Elements

:‘_II_()_T_‘E’B:_‘I_IST_:P_O_ dQ (_10_ = _II;O_T_ £dQ (3.2)
Q¢ | Q°

in which Q° is the element domain.

Accordingly, the elimination of the strain parameters at the element level preserves the
computational efficiency, and the conforming strains are enhanced with hierarchic higher-
order corrective strains towards the objective strains. The enhanced strains can be expressed
in either the corrective or the objective form, where the difference between the two

alternative approaches reduces with mesh refinement (Izzuddin, 2007):

§=g+¥Y"a" (Corrective) (3.3)

£§=Y°a° (Objective) (3.4)

Unlike previous enhanced assumed strain approaches (Korele & Wriggers, 1997; Simo et al.,
1993; Simo & Rifai, 1990), the hierarchic optimisation approach leads to two variant element
families, depending on whether the corrective (C) or objective (O) fields is adopted for the
assumed strains. Furthermore, while the corrective strain field ¢" resembles the enhanced
assumed strain in previous approaches, its approximation order is not capped to a prescribed
distribution but can attain any hierarchic order m. On the other hand, the additionally
introduced objective strain field €° for a specific n-noded element is comprised of all low-
order modes afforded by the original element DOFs in terms of real (physical) coordinates,

which provides a natural remedy for distortion locking.

Noting the above distinct features, the resulting families of hierarchically optimised elements
are denoted by acronyms HmOn and HmCn, corresponding respectively to the objective (O)
and corrective (C) assumed strain families, where m is the order of hierarchic displacement
fields used for the corrective strain modes, and # refers to the number of element nodes. Thus
for example, H309 refers to a quadrilateral 9-noded Reissner-Mindlin shell element, with
quadratic Lagrangian shape functions and cubic hierarchic displacement modes (m=3) for the

corrective strains, and with the assumed strains based on the objective (O) strain modes.
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For isoparametric elements, the integration is most effectively carried out with Gaussian
quadrature, and hence the solution for o and a° can be related to the strains &) at Gauss

points as:

€y €

ah :rh ° , aO :r() ° (3.5)
) &)
in which the subscript (i) represents the Gauss point number.

Therefore, the enhanced strains at the Gauss points can be determined as follows depending

on the alternative approach (Izzuddin, 2007):

~ Mayh
&) £(1) L20)
=T T Te1| " (Corrective) (3.6)
3 0! lP(i)
&) £ )
=T{ "}, T=| = |I° (Objective) (3.7)

£() 0! &

in which T and T are transformation matrices that transform conforming strains to

respectively corrective strains and objective strains at the Gauss points.

For geometrically linear elements, the assumed strains € or € can be directly related to the
original displacement parameters via a respective strain operator B or B, since ¢ is readily
related to such parameters through the conventional conforming B matrix. For geometrically
nonlinear elements, however, it is more effective to determine the conforming strains and

then transform these to assumed strains according to (3.6) or (3.7).
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3.3 Co-rotational coordinate systems

In the following, the bisector and the zero-macrospin definitions of the co-rotational approach
proposed by Izzuddin (2006) are reviewed, both of which are applicable to quadrilateral and

triangular elements of different orders.

3.3.1 Bisector definitions

3.3.1.1 Quadrilateral element

The bisector co-rotational system for a 4-noded shell element is depicted in Figure 3.1, where
the local x and y axes are chosen as the bisectors of the two diagonals of the undeformed
element, and rigid body rotations are extracted by orienting these local planar axes so as to
also bisect the element diagonals in the current deformed configuration. Clearly, this simple
definition automatically satisfies the orthogonality requirement for the two planar axes, and
leads to a relative local orientation of the deformed to the undeformed configuration which is
invariant to nodal ordering. On the latter point, it is true that starting from a different node
leads to different local axes; however, the eight possible sets of axes represent permutations
over three specific orthogonal directions relative to the global system, which always leads to
the same global element forces and tangent stiffness matrix regardless of the element nodal
ordering. This bisector definition implies that the local rotations of the element diagonals,
from the undeformed to the deformed configuration, are minimised, as can be observed from

the right inset of Figure 3.1.
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Figure 3.1: Bisector local co-rotational system and global nodal parameters for a 4-noded

quadrilateral element (Izzuddin, 2006).

With reference to Figure 3.1, the triad (¢, ,Cy ,¢, ) defining the current orientation of the local

co-rotational system relative to the global system is simply obtained as (Izzuddin, 2006):

Ci3 —Cy4 _ 3t €y

c = =
X 2 y
|°13 —c24| |°13 +Cyy

with:

c. = , Vi =vi+d;—d, (3.9)

where VS is the vector connecting node i to node j in the initial element configuration, and

T
d = <UX,i>UY,i»Uz,i> represents the global translational displacements of node i.
3.3.1.2 Triangular element

A bisector definition of the local co-rotational system for the triangular element becomes

slightly more involved than for the quadrilateral element, particularly when the property of
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invariance to nodal ordering is to be achieved. In this respect, [zzuddin (2006) proposed that

the invariance characteristic can be attained by considering the three internal angles (a., f3, ),

subtended by the three lines connecting the triangle vertices to its centroid O, and aligning the

bisectors of the angle that has changed most from the undeformed configuration (say angle

da.), as illustrated in the right inset of Figure 3.2 for alignment of the bisectors of a.. Clearly,

such a definition leads again to a relative local orientation of the deformed to the undeformed

configuration which is invariant to nodal ordering, ensuring further that the local rotations of

the three centroidal lines, from the undeformed to the deformed configuration, are minimised.

The determination of the co-rotational triad is provided elsewhere (Izzuddin, 2006; 1zzuddin

& Liang, 2015).

configuration

configuration

X,U

Current deformed

2 Initial undeformed

y
Current
Rotated deformed
undeformed configuratior
configuration

Local reference system

Figure 3.2: Bisector local co-rotational system and global nodal parameters for a 3-noded

triangular element (Izzuddin, 2006).

It is important to note the alteration of the selected angle during iteration can lead in rare

cases to oscillations between two angles, thus causing convergence difficulties, particularly
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when any two values of (Sa,SB,Sy) are very close. In this respect, the selection of the
specific angle to be bisected is fixed during an incremental step according to relative values

of (8a.,8pB,8y) at the last known equilibrium configuration.

3.3.2 Zero-macrospin definitions

The optimal orientation of the local reference system provides a rotated undeformed
configuration such that the relative spin of the material in the current deformed configuration
is zero. An equivalent condition is that the material strains are obtained from the rotated
undeformed configuration using ‘stretch’ operations only, which cannot be fulfilled at all
material points within an element that is subject to general strain variations when a single
local reference system is used. The zero-macrospin definitions proposed by Izzuddin (2006)
are based on zero-spin at the macro element level, which reduce the material spin in an

aggregate sense over the element domain.

To introduce the zero-macrospin definitions of the local co-rotational system, consider a unit
square area, defined by orthogonal unit vectors ¢, :<1 0>T and ¢, :<O 1>T, which is
subjected to a uniform planar ‘stretch’ operation in any two orthogonal directions leading to
transformed vectors ¢ and ¢y, as shown in Figure 3.3. It can be shown that ¢, is always

obtained as the normalised sum of ¢, and ¢!

y » where c’yn is a planar rotation of ¢{ by

—n/2. ¢, is similarly obtained as the normalised sum of ¢ and ¢, where ¢;’ is a planar
rotation of ¢, by +m/2. Accordingly, if ¢, is known, the remaining vectors of the triad are
easily obtained from the stretched vectors as (Izzuddin, 2006):

¢, +ey

_ m__ ! _
Cx = , ml’ cy —CyXCZ, cy =€, xXCy (310)
c, +¢
X y

The use of this inverse transformation at the finite element level rather than at a specific
material point can ensure zero-macrospin at the overall element level without the need for

iteration.
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Figure 3.3: Influence of a uniform ‘stretch’ operation on a unit square area (Izzuddin, 2006).

3.3.2.1 Triangular element

With reference to Figure 3.4, in the initial undeformed configuration, the orthogonal unit
vectors ¢, and ¢y are defined such that ¢, is aligned with edge 1-2, and these are expressed

in terms of the initial element vectors v}, and v3; as (Izzuddin, 2006):

o _ o 0 o _ o o
Cx =ax1Vi2 Tax2Vo3, €y =2y V) +ay,Vo3 (3.11)

with the constants a,;, a,,,a,;, and a,, determined as:

oT o
a =L a,=0, a,,=— G2 €23 a., = !
x1 o |? x2 ’ yl 5’ y2 2 (3_12)
Vi 0 1— oT_o 0 1— oT_ o
Vio Cp €3 Va3 12 €3
(o)
o _ Vi
S =1, (3.13)

In the current deformed configuration, the stretched vectors ¢; and ¢} are linked to v, and

V,3 by the same geometric relationship (Izzuddin, 2006):

r r
Cx =351 V2 a5 Vo3, €y =ayVpp T2y5Vn3 (3.14)

where the constants a,,,a,,,a,;,and a,, are as given by (3.12).
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Figure 3.4: Zero-macrospin local co-rotational system for a 3-noded triangular element (Izzuddin,

2006).

With the stretched vectors ¢, and c; obtained according to (3.14), the rotated unit vectors
¢, and ¢, , defining the current orientation of the local co-rotational system, are established
from the inverse ‘stretch’ operation given by (3.10), taking ¢, as the unit normal vector in
the current deformed configuration, which is expressed as:
Vig XVa3

c,=
|V12 ><V23|

(3.15)
It is noted that the orientation of an undeformed triangle can always be uniquely determined
so that a corresponding triangle of any deformed shape may be obtained using a uniform
‘stretch’ operation. Therefore, the zero-macrospin definition for triangular elements is
invariant to nodal numbering, since the relative orientation between the rotated undeformed

and the current deformed configuration is uniquely defined.
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3.3.2.2 Quadrilateral element

Unlike the triangular shape, it is not possible to obtain an arbitrarily deformed quadrilateral
shape using a single uniform ‘stretch’ operation, regardless of the orientation of the
undeformed quadrilateral. This can be easily appreciated from the fact that each of the
component triangles in the quadrilateral shape may require a different orientation of the
undeformed configuration to obtain the corresponding deformed shape from a ‘stretch’
operation. Therefore, the application of the zero-macrospin condition to the quadrilateral
element could lead to different relative orientations of the current undeformed and deformed
configurations, depending on which three nodes are attached to the stretched planar vectors,
thus violating invariance to nodal ordering. Izzuddin (2006) addressed this potential
shortcoming by linking the stretched planar vectors to all four nodes via the two diagonals,
which is elaborated elsewhere (Izzuddin, 2006; Izzuddin & Liang, 2015). Via the use of
diagonals in the establishment of the co-rotational coordinates, this zero-macrospin definition
of the local co-rotational system for quadrilateral elements also provides invariance to nodal

ordering.

3.4 9-noded quadrilateral shell element

A 9-noded monolithic shell element is elaborated in this research, which was originally
developed by Izzuddin and Li (2004) as a conforming co-rotational element employing the
bisector definition and later improved by Izzuddin (2007) using the hierarchic optimisation
approach for overcoming locking. In this research, further modifications of the hierarchic
optimisation approach are proposed to enable the element to pass the patch tests. In the
following, the local element formulation of the 9-noded shell element is presented, and its

incorporation within a co-rotational framework for large displacement analysis is briefly

described.

3.4.1 Local element Kinematics

Figure 3.5 presents three different coordinate systems for the element which undergoes large
displacements. The local co-rotational coordinate system is denoted by (X,y,z). The 9-noded

Reissner-Mindlin shell element utilises five local displacement parameters (three translations
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and two rotations) at each node. The local element geometry and displacement fields for the

quadrilateral element are interpolated as follows:

X

Ne
X’ =<y =D Ni(&mx} (3.16)
ZO i=1
uxo Ne e Ne
t=1uy =2 N;(Ent;, F={e }=ZNi(é,n)ﬁ (3.17)
i=1 y i=1
uZO

where z, represents the offset of the shell mid-surface along the z-axis, thus generalising the
kinematics of flat plates to shallow shells; x;’ = <xi, YisZo; >T denotes local coordinates of node
i t :<uxo,i,uy0’i,uzo,i>T represents the local translational displacements of node i
I, = <6X’i,6y’i>T represents the components of the normal vector along the x- and y-axes at

node i; and N, is the number of element nodes, in this case 9.
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Figure 3.5: Global, local and natural coordinates for 9-noded shell element (Izzuddin, 2007).
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The shape functions for the 9-noded element are expressed in terms of 2D natural coordinates

(&m):

(E-&)E-¢8) ~(n- n)m-n")
& - E.>i’ )E; — E.vi”) (i — ni' ), — 1”Ii”)

N;(En) = i=1-9) (3.18)

with (§;,m,) representing the natural coordinates of node i, (§ #& #¢&")=-1,0,1 and

(m; # ni' # ﬂi") =-10,1.

The element strain state is fully determined by membrane strains €, bending generalised
strains g, , and transverse shear strains g . Local geometric nonlinearity is addressed through
quadratic approximation of the membrane strains, while the influence of large displacements
is accounted for through transformations between the local co-rotational system and the
global system, as presented later in Section 3.4.3. Accordingly, the various conforming

generalised strains are obtained as follows:

. 1(820 auzoj2 1(az0J2
g x0 —| = -
X ox 20 0x  Ox 2\ ox
ou 2 2
g =& b= y0 + l(aﬂ+6uzoj —l(%j (3.19)
oy 2\ 0y oy 2\ oy
Tay %4_% (6Z0+au20j 8z0+8u20 _(azo) 9z,
oy ox ox  OX oy 0Oy ox J\ Oy
Ky 89x
ox
a0,
N (3.20)
30, 00,
ny — X4
oy 0x
o [ L
Ox
g = = o, (3.21)
sz ey+
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3.4.2 Hierarchic optimisation of 9-noded shell element

The hierarchic optimisation approach aims at restoring the lower-order strain fields by
enhancing the conforming strains towards a set of prescribed objective strain modes which
are of lower-order in terms of real coordinates and as afforded by the element DOFs. It is
important to note that the objective strain modes are selected in terms of real coordinates
rather than natural coordinates, so that the element is less sensitive to distortion. In the
following, a complete set of lower-order strain modes specific to the 9-noded shell element is
presented (Izzuddin, 2007), based on which the hierarchic optimisation approach is
performed separately for the generalised membrane, bending and transverse shear strains to

eliminate locking.
3.4.2.1 Objective strain modes

The planar displacement fields (uy,,uy,) for a 9-noded shell element can generate three
rigid body modes and fifteen membrane strain-inducing modes. Therefore, fifteen low-order
objective planar modes can be afforded by this element, for which the corresponding

membrane strains are expressed as:

2 9
Ox
0 0 0
Tmz 0 — (I)m (322)
oy
9 0
[ Oy Ox |

where @ are objective planar strain-inducing modes given by:

xy 0.0 0
L R (3:23)
0Oxy; 0 ;°®°

with 2®° representing six bi-quadratic modes for each of the two planar displacement fields:

2° =<x2 Xy yz xzy xy2 X2y2> (3.24)
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The transverse displacement field u,, for a 9-noded shell element can generate one rigid
body mode and eight transverse shear strain modes. Therefore, eight low-order objective
transverse modes can be afforded by this element, for which the corresponding transverse

shear strains are expressed as:

@, (3.25)

s,z

2o R|o

where (I);”Z are objective transverse strain-inducing modes given by:
>, =<X y x> xy y* X’y xy’ x2y2> (3.26)

The rotational fields (6,,0,) of a 9-noded element can generate fifteen curvature-inducing
modes, with the objective curvature modes being the same as the above membrane strain

modes:

) 1 o) (3.27)

With four rigid body modes already accounted for in relation to the planar and transverse
displacement field, the remaining two rigid body modes are generated by combining the two
constant rotation modes with a linear distribution of the transverse displacement. This leaves
one rotational mode that generates no curvatures but a linear transverse shear strain mode
‘Pg,e = <—y,x>T which is not included in (3.25); furthermore, this represents an elaboration of
the original approach of Izzuddin (2007), which did not include this specific mode. Therefore,

a complete objective set of transverse shear strain modes is given by:
v =W, e | (3.28)

Accordingly, there are in total 39 objective strain modes for the 9-noded shell element
(15 membrane ¥ , 15 curvature ¥}, 9 transverse shear ¥_ ), which ensure the correct rank

of the element stiffness matrix. In the following sub-sections, the hierarchic optimisation
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approach is employed to address shear, membrane and distortion locking in the local element

formulation with the employment of the above objective strain modes ¥;, ,'¥;, and Y.
3.4.2.2 Shear locking

With reference to (3.21), the conforming element cannot bend in any arbitrary mode (0,,0,),
as allowed by its rotational DOFs, without polluting (y,,,v,,) with second-order terms.
Although the transverse displacement field (u,,) via the associated translational DOFs,
offers an effective first-order approximation of (y,,, v,), the polluting terms from (6,, 0,)

can lead to a significant overestimation of the transverse shear strain energy, hence causing
shear locking. These polluting terms can be filtered out by introducing hierarchic transverse
displacement fields, with the aim of achieving the first-order approximation of (yy,,v,,)

afforded by the element, as given by the objective strain modes ¢ .

The hierarchic transverse displacement modes, which are used to establish corrective strains,
are defined in terms of natural coordinates. The hierarchic optimisation approach can utilise
hierarchic modes up to any order, where complete cubic and quartic displacement modes are

considered below:
WG m=olal, o =(*0" ‘o (3.29)
" = (3(&) x() M@ &) W) En) xEM) (3.30)

0" = (@) o) ne(@) g neE) Lo N'eE) Eom o@em)  (3.31)

with:

1(8)=8(8%-1), o(8)=35%(8*-1) (3.32)

The corresponding hierarchic shear strains are therefore obtained from:

alole 2
Xz aX 6X
=1 (= (Wo=Plal, ¥i=1 @ (3:33)
h JRN— RN
Tyz oy oy
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where ¥" represents the corrective hierarchic shear strain modes, and o are associated

hierarchic strain parameters.

The objective shear strain field is, on the other hand, defined as:

Yo
g =1 =Y 0 (3.34)
Vyz

where W is given in (3.28), and @ are the associated objective strain parameters.

With W and ¥" selected, the assumed transverse shear strains can be obtained from the
corresponding conforming shear strains in accordance with the hierarchic optimisation
approach via (3.2)-(3.7). In addition to the corrective (C) and objective (O) alternative
approaches, the optimisation procedure can be applied with hierarchic modes up to any
complete polynomial order (n=3,4,---), where the minimum number of sampling Gauss
points is (n+1)* . Depending on the alternative approach, this leads to variant 9-noded
elements characterised by acronym keys, such as H309 and H4C9 for an objective strain
element with 3™ order hierarchic modes and a corrective strain element with 4% order
hierarchic modes, respectively. It is even possible for the optimisation to be undertaken
without hierarchic correction modes, in which case the assumed strains are the objective

strains which are a best fit of the conforming strains, leading to an element denoted by H2009.
3.4.2.3 Membrane locking

From (3.19) it is apparent that a curved shell element cannot deform in any arbitrary
transverse mode (u,, ), as allowed by its translational DOFs, without polluting (g, &, Yy,)
with higher-order terms. Although the planar displacement fields (uy,,u,y) , via the
associated translational DOFs, offer an effective first-order approximation of (g, €y, yxy),
the polluting terms from (u,,) can lead to a significant overestimation of the membrane
strain energy. In addressing membrane locking, hierarchic planar translational parameters can
be introduced to filter out the higher-order terms and achieve the first-order approximation of

(&x» €y, Yxy) afforded by the element, as given by the objective strain modes S
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The hierarchic planar displacements, which are used to establish the corrective membrane
strains, are defined in terms of natural coordinates. Again, the hierarchic optimisation
approach can utilise hierarchic modes up to any order, where complete cubic and quartic

modes are provided below:

h 3aph | 4 gyh I
Uy (X, y) e 0, 0 -
hO q)}lll 1:11’ (I)}I;: 3 hi 4 hi (3.35)
Uyo(X,y) 0 @' 0 "
where *®" and *®" are defined in (3.30) and (3.31), respectively.
The corresponding hierarchic membrane strains are then obtained from:
) - - -
€x i 0 i 0
0x . 0x
uX
h=ieh b= 0 TP _what W= o el (3.36)
8}/ Uyo ay
0 0 0 0
h —_— —_—
Yxy] | 0y oOx | Oy OX |

where ‘I’?n represents the hierarchic membrane strain modes, and uﬁl are corresponding
strain parameters.

The objective membrane strain fields are given as:

e, =18 (=¥Yhon (3.37)

where W9, is given by (3.22)-(3.23), and @, are associated strain parameters.

Similar to optimisation for shear locking, the assumed strains can now be obtained in
accordance with Section 2, where similar alternative approaches and levels of hierarchic

optimisation may be employed.
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3.4.2.4 Distortion locking

The use of objective shear and membrane strain modes consisting of complete polynomials in
terms of real instead of natural coordinates readily addresses locking due to polluting higher-
order terms as a result of distortion in the isoparametric element shape. For a complete
treatment of distortion locking, however, it may also be necessary to filter out the polluting
bending strains. In this respect, the transformation of the conforming to assumed bending
strains can be shown to be identical to that relating the conforming and assumed membrane

strains, as detailed previously in Section 3.4.2.3.
3.4.2.5 Modification of hierarchic strains

The aforementioned optimised formulations of the 9-noded shell element work well in the
elimination of membrane and shear locking. Nevertheless, the element variants do not pass
the constant strain patch tests if the edge nodes are not located at the middle of each element
edge, which is a desirable characteristic for all finite element formulations so as to ensure
convergence with mesh refinement regardless of element geometric irregularity. In order to
ensure the optimised elements pass the constant mode patch tests, all hierarchic strain modes
require zero mean values throughout the element domain (Simo et al., 1993). Therefore, in
this research, a modification of the original hierarchic strain modes (Izzuddin, 2007) is
proposed to enforce zero mean constraints on each strain mode, which is achieved as follows

via integration over the real element domain Q°:

[ wn[ij]aoe
Qe

¥ [i.i]="Yn[ii]- . Polii]=Yh[ii] G(=1-3j=1>Np) (.39

[ wifi.j]doe
Qe

¥![ij]="P![ii]- (i=1->2,j=1>N! (3.39)

where N and N! represent the number of hierarchic membrane/curvature and transverse

shear modes, respectively.
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Accordingly, in this work, the modified hierarchic strain modes ‘f'ﬁl , ¥, and ‘T’? replace
the original modes ‘I’?n , W! and ‘I’ls’ in performing the hierarchic optimisation, thus
replacing (3.2) with:
PhT gph E_\i,hT po ol _gphT
: dQ° [{-=b=| [ |edQ (3.40)

N _ypoT ph poT o o° poT

3.4.3 Co-rotational system

The bisector co-rotational system definition is employed for the 9-noded shell element, where
the x- and y-axes always coincide with the bisectors of the diagonal vectors generated from
the four corner nodes while the z-axis is orthogonal to the xy-plane, as expressed by (3.8).
The local nodal translations t; are established by rotating the initial undeformed configuration

) to the current local system orientation, as defined by

1yt [0} 0 o
about the origin of (c¢,ej,c)

(cy ,Cy,C, ), and then measuring the translations from the rotated undeformed configuration.
On the other hand, the local nodal rotations are determined as the projection of the nodal

normals on the rotated local reference system (¢ ¢, ). Accordingly, in the co-rotational

x’cy’

system, the five local nodal parameters are expressed as:
T —T\T
Ug =<t. T > (3.41)

where t; and T; are respectively the three translations and two rotations at node i as defined

in Section 3.4.1.

For smooth surfaces where normals are uniquely defined over the domain, only two global
rotational DOFs are required for each node. Therefore, the two smallest components of each
nodal normal are directly used as global rotational DOFs when dealing with finite rotations of

the normal (Izzuddin, 2005), resulting in five global parameters per node:

Ug =(d] af >T (3.42)

88



Monolithic Quadrilateral and Triangular Shell Elements

where: d; represents the global translational displacements of node i, as defined in
Section 3.3.1; n; is the normal vector at node i, and n; =<ni,0(i ng >T represents the two
components of m; which are smallest in absolute terms, the third component n;, being
determined by the constraint of a unit n; . The indices a;, B; and y; are established from the

following condition:

[}

ni,(x, <

o [
ni,Bi ‘ < ni,‘/i

(3.43)

where nj is the normal vector of the last known equilibrium configuration. Therefore, the

indices a,[3;,and y; are revised at the beginning of each step.

Accordingly, the three components of the normal can be obtained from the two DOFs

(mj, .M ) as:

i2s My, =sign(nf, N (3.44)

i

>
I
=]

The transformation between global and local translational displacements is given as:

ti:Rdi+(R—R°)vf, VO =X - X$ (3.45)

T ) ) )
where X7 :<Xi,Yi,Zi> denotes global coordinates of node i, while R° and R are the
orientation matrices of the local co-rotational framework at the initial and current

configurations, respectively, defined as:

RO =[e ¢ c‘;]T, R=[c, ¢, ¢, ] (3.46)

The transformation between global and local rotations is given as:
_ = — T 4
r,=Rn, R:[c cy] (3.47)

The remaining transformations between the local co-rotational and global reference systems
relate to the determination of the global nodal forces and tangent stiffness matrix from the

corresponding local entities, requiring the first and second partial derivatives of local
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parameters with respect global parameters. These derivatives depend in turn on the first and
second partial derivatives of (¢, ,c¢,,c,) with respect to global translational DOFs, where the
first derivatives are provided elsewhere (Izzuddin & Liang, 2015), and the second derivatives

can be similarly derived.

3.5 6-noded triangular shell element

In some practical problems involving complex geometry, the combination of both
quadrilateral and triangular elements in a mesh is often required. Therefore, in this research
work, a lock-free 6-noded triangular element is fully developed, which employs the
hierarchic optimisation approach for the local response to overcome locking and embeds the
local formulation within the zero-macrospin co-rotational system to allow large displacement
analysis. The element kinematics, the application of the hierarchic optimisation approach, and

the incorporation with the co-rotational system are presented in the following sections.

Az,

Figure 3.6: Global, local and area coordinates for 6-noded shell element.

3.5.1 Local element Kinematics

Three different coordinate systems for the 6-noded element undergoing large displacements

are depicted in Figure 3.6, where the local co-rotational coordinate system is denoted by
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(X,y,z). Similar to the previous 9-noded element, the local formulation of the 6-noded
Reissner-Mindlin element utilises five local parameters (three translations and two rotations)
at each node. The shape functions for the 6-noded element are expressed in terms of area

coordinates (L;,L,,L;) as follows:

in which the area coordinate L; equals 1 at node i, and linearly reduces to 0 at edge i_—1i, ;
i, =mod(i,3)+1; and i_ =mod(i,,3)+1. The shape functions can then be expressed in terms
of Cartesian natural coordinates (&,n) by setting L, =1-§-n, L, =&, and L; =n, which
are then employed in the interpolations of local element geometry and displacement fields for
the triangular element, as given previously for the 9-noded element by (3.16)-(3.17) but with
N, =6. The conforming strain-displacement relationships in the local system given by
(3.19)-(3.21) for membrane strains ¢, , bending generalised strains g, , and transverse shear

strains g, are also applicable to this 6-noded shell element.

3.5.2 Hierarchic optimisation of 6-noded shell element

The application of the hierarchic optimisation approach to the 6-noded shell element is
developed here. In the following, a complete set of lower-order strain modes specific to the 6-
noded shell element is presented, based on which the hierarchic optimisation approach is
performed separately for the generalised membrane, bending, and transverse shear strains to
eliminate locking. It is important to note that some further modifications of the hierarchic
optimisation approach are made to allow its application to triangular elements, pass the

constant strain patch tests, and satisfy the so-called ‘spatial isotropy’ requirements.
3.5.2.1 Objective strain modes

Similar to the 9-noded shell element, a preliminary selection of a complete set of low-order
strain modes specific to the 6-noded shell element is provided, which are in terms of real

coordinates to reduce sensitivity to element shape distortion.

The quadratic planar displacement fields (uy,,u,,) for a 6-noded shell element can generate

three rigid body modes and nine membrane strain-inducing modes. Therefore, nine low-order

91



Monolithic Quadrilateral and Triangular Shell Elements

objective membrane strain modes are expressed as in (3.22)-(3.23), but with the quadratic

objective displacement modes ®° now given by:
2@° =<x2 Xy y2> (3.49)

The transverse displacement field (u,,) for the 6-noded shell element can generate one rigid
body mode and five transverse shear strain modes. Therefore, five low-order objective
transverse shear strain modes are expressed as in (3.25), but with the quadratic objective

transverse strain-inducing modes <I>§,Z given by:
®, =(x y x> xy ¥?) (3.50)

The rotational displacement fields (0,,0,) of a 6-noded eclement can generate nine
curvature-inducing modes, where the objective displacement modes and associated curvature

modes are identical to those of the membrane strain-inducing modes, as expressed by (3.27).

Similar to the 9-noded element, the two rotational fields (6,, ey) for the 6-noded element
. . T o . .

also generate a linear transverse shear strain mode W¢, = <—y,x> , which is not included in

V¢, . Therefore, a complete objective set of transverse shear strain modes includes both ¥¢,

and Wg g, as expressed by (3.28).

There are in total 24 selected objective strain modes for the 6-noded shell element
(9 membrane ¥, , 9 curvature ¥, , 6 transverse shear W_ ), which ensure the correct rank of
the element stiffness matrix. In the following sub-sections, the objective strain modes ¥ ,

v, and W{ are respectively used in the optimisation of the generalised membrane, bending,
and transverse shear strains. Shear and membrane locking are relieved through separate
optimisation procedures of ¢, and g, respectively, while distortion locking is relieved by

expressing the three sets of objective strains in terms of real coordinates.
3.5.2.2 Shear locking

In addressing shear locking, the objective shear strain fields are obtained from (3.34) with the
employment of the objective set of transverse shear strain modes W defined in (3.28) and

(3.50). The hierarchic optimisation approach can utilise hierarchic modes up to any order,
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with the hierarchic shear strain fields obtained from (3.33), but with cubic and quartic

hierarchic displacement modes for the 6-noded shell element given by:

‘ot = (Cop, Yof, Jof, *ol) (3.51)
foh =(g70f, &), &0l +n 0}, n o}, n o)) (3.52)
in which:
3.h_ ¢3 3.2 1 3.h g2 1
D=8 =&+ "O,=EM-—8&n (3.53)
2° 2 2
3 h 2 1 3.h_ 3 3 2 1
O3 =&n —E&m Dy =1 oMM (3.54)

Similar to Section 3.4.2.5, in order for the element to pass the constant strain patch tests, the
enforcement of zero mean values on all hierarchic modes ‘1’1; is undertaken in accordance to
(3.39). With W and ¥ obtained, the improved transverse shear strains, in either the
objective (O) or corrective (C) form, can be obtained from the corresponding conforming
strains via (3.40) and (3.3)-(3.7), which could alleviate, or even eliminate locking phenomena.
Depending on the alternative approach, this leads to variant 6-noded elements characterised
by acronym keys, such as H3C6 and H406 for a corrective strain element with 3" order
hierarchic modes and an objective strain element with 4" order hierarchic modes,
respectively. It is also possible for the optimisation to be undertaken without hierarchic
correction modes, in which case the assumed strains are the objective strains which are a best

fit of the conforming strains, leading to an element denoted by H206.
3.5.2.3 Membrane locking

In addressing membrane locking, the objective strains &, are defined by (3.37) and (3.22)-
(3.23) with *®° given by (3.49). The hierarchic correction strains s?n are defined by (3.35)-
(3.36) with 3@" and ‘@" expressed in (3.51)-(3.54), which are subsequently modified via
(3.38) to allow the element pass constant strain patch tests. With ¥, and ‘T’El obtained, the
improved membrane strains, in either the objective or the corrective form, can be obtained

from the corresponding conforming strains via (3.40) and (3.3)-(3.7).
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3.5.2.4 Distortion locking

Distortion locking is addressed by using objective shear and membrane strain modes
consisting of polynomials in terms of real instead of natural coordinates. For a complete
treatment of distortion locking, however, it may also be necessary to filter out the polluting
bending strains. In this respect, the transformation of the conforming to assumed bending

strains is identical to that relating the conforming and assumed membrane strains.

3.5.2.5 Spatial isotropy

The optimisation approach improves the strain distribution via minimising the Euclidean
norm of the strain residual, which is not spatially isotropic, as can be inferred from examining
the strain tensor. The optimisation of transverse shear strains turns out to be isotropic, owing
to the fact that these strain components transform spatially according to a first-order tensor
transformation. However, the optimisation of either the membrane strains or curvature strains
is not spatially isotropic, because these transform spatially according to a second-order tensor
transformation. Since the associated objective function, which is the square of the error
between objective and corrected strains, is not spatially invariant, in the sense that it varies
when the same component strains are transformed to a different system, the outcome of the
optimisation is not spatially isotropic. This means that the 6-noded element is no longer
invariant to nodal ordering following optimisation, which is undesirable in practical

applications (Lee & Bathe, 2004; Battini & Pacoste, 2004; Izzuddin & Liang, 2015).

In the application of the hierarchic optimisation approach to 9-noded quadrilateral elements, a
bisector local system is used, which leads to identical directions of the local axes directions
regardless of nodal ordering. In this respect, the outcome of the strain optimisation process
remains invariant to nodal ordering. However, the local system triad used for the 6-noded
triangular element varies with nodal ordering; hence the outcome of the strain optimisation
process becomes dependent on nodal ordering, since the adopted objective function for the

membrane and curvature strains is not spatially invariant.

In order to achieve nodal invariance for the optimised 6-noded triangular element, the

optimisation of membrane and curvature strains is modified. For example, rather than
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enhancing the membrane strain components (&g, €, Yy ) , the three membrane strains along
the element edges (g,,, €53, €5;) are optimised, as illustrated in Figure 3.7. Accordingly, the
objective function expressed in terms of these strains becomes invariant to nodal ordering,
hence the outcome of the optimisation process achieves the same nodal invariance

characteristic.

Figure 3.7: Three edge strains of the 6-noded triangular shell element.

Therefore, the following steps are employed to modify the hierarchic optimisation of

membrane strains for the 6-noded shell element:

(i) Transform membrane strains € to edge strains (g5, €53, €3;):

A2 A2 A A

o ¢ 51 G§

_ _ | a2 A A A
gy=18np=Ta&,, Ty=| ¢ 87 €8, (3.55)

A2 A2 A A

€31 C; 83 C38;

where ¢;; (i=1,2,3) is the edge strain along edge i-i+; ¢, and §; are respectively the

cosine and sine values of the angle from the x-axis to the edge i-i+.

(i1)) The hierarchic and objective strain modes for edge strains, ‘I‘g and W3 , are

obtained from the following transformation:

Yh=T, ¥, W =T,¥° (3.56)

(ii1)) Hierarchic optimisation is undertaken on the three edge strains:
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P e ] fel] [ [-w,

-— = I ﬁm dQe 357
~w Tl wo T a G-37)

where @ and a$ are associated strain parameters.

. h . . . .
(iv) Parameters a, and aj are numerically solved using Gaussian quadrature in terms of

the conforming strains component in the local x-y system:

Em) Em()

ar=Thy b oeq=TR{ (3.58)
Em(i) €m(i)

(v) The enhanced membrane strains at Gauss points are derived in either the corrective

or the objective strain form:

€1 Em) Yoo
~ = ~m toL, Tm =1+ _. r‘; (Corrective) (3.59)
€m(i) €m(i) b
~ B O ]
Em() €m() m(1)
R =T,y ¢ T,= . 'Y (Objective) (3.60)
Em(i) Em(i) m(i)

The hierarchic optimisation of curvature strains follows the same steps. By modifying the
optimisation procedure for membrane and curvature strains, whilst retaining the previous
procedure for optimising transverse shear strains, the local formulation of an isotropic lock-

free triangular element is obtained.
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3.5.3 Co-rotational system

The local formulation of the 6-noded element is incorporated into a co-rotational framework
based on the zero-macrospin definition, where the three corner nodes are utilised to obtain the

local triad (¢ ¢, ) with reference to (3.10)-(3.15).

X:cya

The transformation between global and local translational displacements is given as:

t =Rd; +(R-R°)v{, v} =X} -X] (3.61)

The transformation between global and local rotations is the same as given by (3.47). The
remaining transformations between the local co-rotational and global reference systems relate
to the determination of the global nodal forces and tangent stiffness matrix from the
corresponding local entities, requiring the first and second partial derivatives of local DOFs
with respect global DOFs. The first derivatives can be obtained through chain differentiation,

and are presented in Appendix A, while the second derivatives can be similarly derived.

3.6 Consistent mass

The consistent mass matrices of monolithic quadratic shell elements are presented here,
allowing the vibration and transient nonlinear dynamic analysis of plates and shells using the

developed elements.

3.6.1 Local consistent mass

The same interpolation functions are employed for the local acceleration fields as those used

for the local displacement fields:

Oy

U, N .. N

. : .. |6, : .

t=1i,0 =2 N;(E 0, r={- }= N; (&, r; (3.62)
. i=1 i=1

uzO

where t and T are respectively the translational and rotational accelerations.
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h
Defining z = EC and the density of the plate as p, the employment of the principle of virtual

work leads to the following evaluation of local inertia forces:

1
Te _Ph . . . h? o h2 93 .
-1
Q°

where the superscript ‘I’ indicates inertia force.

Further elaboration of (3.63) yields the following local mass matrix M. :

M M, - My | M ]
m
M M .. M t
M = .21 .22 . ?Ne , M= m, FS/I (3.64)
: : .o m,
My My - My, m, |
where:
11 oh?
ry = J‘ .[ N;N;det(J)dGdn, m, =ph, m, =17 (3.65)

-1-1

with J denoting the Jacobian matrix:

ox Ox OX
0E on o
_| 9 9y 9y
J= % o (3.66)
0z 0zy 0zy
| € on ¢ |

3.6.2 Global consistent mass

Although a co-rotational framework is conveniently adopted to determine the geometrically

nonlinear element response, the consideration of such a system for determining consistent

98



Monolithic Quadrilateral and Triangular Shell Elements

inertia forces is associated with significant complications (Le et al., 2014). Instead, the inertia
forces are evaluated within an updated Lagrangian framework, which has been shown to be

both practical and effective for co-rotational beam-column elements (Izzuddin, 1991).

In this context, denoting T as the matrix that transforms incremental global to local nodal

parameters based on the last known equilibrium configuration, as expressed by:

U
T =—= (3.67)
oUg
the global consistent mass matrix is readily obtained as:
Mg =T M.T° (3.68)

3.7 Summary

In this chapter, formulations of lock-free monolithic quadrilateral and triangular shell
elements are presented, which effectively overcome membrane, shear and distortion locking.
With the further utilisation of a co-rotational approach, these formulations can be applied in
geometrically nonlinear analysis while utilising only a second-order strain-displacement
relationship in the local system; indeed, even a first-order strain-displacement relationship
could be used, though at the expense of requiring a finer mesh for comparable accuracy in

geometric nonlinear analysis.

The hierarchic optimisation approach is employed for eliminating locking, where the
conforming strains are enhanced with hierarchic corrective strains, and mathematical
optimisation is performed towards objective low-order strain fields, as afforded by the
element DOFs. The utilisation of this optimisation approach within the local co-rotational
system leads to a linear optimal mapping between assumed and conforming strains, which

need only be established once at the start of incremental nonlinear analysis.

In applying the co-rotational approach for large displacement analysis, the bisector definition
and the zero-macrospin definition of the local system are employed, both definitions

satisfying the requirements of 1) being simple to establish, ii) achieving nodal invariance, iii)
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reducing the spin of the element, and iv) providing a symmetric element tangent stiffness
matrix (Izzuddin & Liang, 2015). The utilisation of the co-rotational systems also facilitates
the application of the hierarchic optimisation approach and the later inclusion of through-
thickness descriptions of displacements and stresses for laminated shells, as elaborated in

Chapter 6.

The optimisation procedure for the 9-noded shell element, previously developed by 1zzuddin
(2007), is firstly modified through the introduction of an additional objective transverse shear
strain mode, which is required to achieve the correct rank of the local stiffness. Secondly, a
modification of the hierarchic strain modes is proposed to enable the 9-noded element to pass
constant strain patch tests. In addition, the hierarchic optimisation approach is extended to a
6-noded triangular shell element, with the further consideration of the requirements of spatial
isotropy. The local formulation of the 6-noded triangular shell element is framed within the
zero-macrospin co-rotational system, which upgrades it to geometric nonlinear analysis with

relative ease.

Finally, in order to enable vibration and transient nonlinear dynamic analysis of plates and
shells, the consistent mass matrices are developed for both shell elements, utilising a practical

updated Lagrangian approach.

The efficiency and effectiveness of the optimised variants of the 9-noded and 6-noded shell
elements will be assessed next in Chapter 4 using zero energy mode tests, patch tests,
isotropic element tests, convergence rate tests, as well as other linear and geometrically

nonlinear numerical examples.
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CHAPTER 4
Verification of Monolithic Shell Elements

4.1 Introduction

The modified 9-noded shell element and the newly developed 6-noded shell element,
presented in previous chapter, have been implemented in ADAPTIC (Izzuddin, 1991) v2.14.2,
which is used hereafter in several numerical examples to demonstrate the accuracy of both
elements. For comparison purposes, also implemented in ADAPTIC are the 9-noded and
6-noded Reissner-Mindlin shell elements based on the MITC method (Bathe et al., 2003), for
which the local formulations are provided in Appendix B. These MITC formulations are also
incorporated within the same co-rotational approach as the developed formulations to enable

large displacement analysis.

In presenting the results, variants of the 9-noded and 6-noded elements are denoted by

element codes, as listed in Table 4.1.
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Table 4.1: Variants of 9-noded and 6-noded shell elements considered.

Element code Strain field Hierarchic order Sampling Gauss points
CNF9 Conforming - 3x3
H209 Assumed, objective - 3x3
H309 Assumed, objective 3 4x4
H409 Assumed, objective 4 5%5
H3C9 Assumed, corrective 3 4x4
H4C9 Assumed, corrective 4 5x5

MITC9* Assumed, MITC9* - 3x3
MITCOis* Assumed, MITCOis* - 3x3
CNF6 Conforming - 13
H206 Assumed, objective - 13
H306 Assumed, objective 3 13
H406 Assumed, objective 4 16
H3C6 Assumed, corrective 3 13
H4C6 Assumed, corrective 4 16
MITC6* Assumed, MITC6* - 13

4.2 Quadrilateral shell element

4.2.1 Zero energy mode test

In this test, the eigenvalues of the stiffness matrix of an unsupported shell element are
calculated for each of the 9-noded element types, and the number of zero eigenvalues is
counted. For an unsupported element with no spurious mechanisms, the number of zero
eigenvalues should be exactly six. Both regular and irregular element shapes are considered
in this test (Figure 4.1) to allow for more possibilities. All the considered element types
(H209, H309, H409, H3C9, H4C9, MITC9* and MITCYis*) pass the zero energy mode test,

i.e., all of them have exactly six zero eigenvalues of their element stiffness matrix.
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Figure 4.1: Various element shapes for the zero energy mode test of 9-noded shell element.

4.2.2 Patch tests

The five-element patch suggested by MacNeal and Harder (1985), as shown in Figure 4.2, is
employed to illustrate the membrane and out-of-plane bending behaviour of the considered 9-
noded shell elements. In the patch, edge nodes and internal nodes are placed at the middle
positions. The geometric properties of the rectangular plate are: L=0.24, W =0.12, and
h=0.001. It has a Young’s modulus of E=10° and a Poisson’s ratio of v=0.25. In the

membrane patch test, the boundary conditions at the external nodes are:
1073 x4 2102 y+ ] =0,=0,=0
uxo— X+Ey Py uy()— y+5X ) uzo— X = y—

which correspond to a constant membrane strain state where ¢, =&, =y,, =0.001.
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Figure 4.2: Five-element patch test.
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In the out-of-plane bending patch test, the boundary conditions at the external nodes are:

o —1073
Uy =uy =0, u,,=10

which correspond to a constant bending strain state where «k, =«

(x2 +Xy+y2)

y

= K,, =0.001.

1 1
, 0.=10" x+—y|, 0,=10"| y+—x
x ( 2yj y (y > j

The patch tests are conducted on various quadrilateral element types, with the nodal

displacements inside the patch and the strains evaluated at each element centre compared

against reference values. The maximum relative errors in the nodal displacements and strain

components are listed in Tables 4.2-4.3 for respectively the membrane and bending patch

tests. Clearly, all the optimised 9-noded elements and the MITC9is* pass the patch tests. The

results with MITC9*, however, yield small errors, as stated by Wisniewski and Panasz (2013).

Table 4.2: Relative error of displacements and strains in membrane patch test.

Element code

Maximum error

Maximum error

Maximum error

Maximum error

Maximum error

in uxo in uyo in g, in g, n vy,
H209 0.000 0.000 0.000 0.000 0.000
H309 0.000 0.000 0.000 0.000 0.000
H409 0.000 0.000 0.000 0.000 0.000
H3C9 0.000 0.000 0.000 0.000 0.000
H4C9 0.000 0.000 0.000 0.000 0.000
MITC9* 0.054 0.031 0.010 0.015 0.022
MITC9is* 0.000 0.000 0.000 0.000 0.001
Table 4.3: Relative error of displacements and strains in bending patch test.
Element code Maximum Maximum Maximum Maximum Maximum Maximum
error in uy error in 0, error in 6y error in ¥, error in K, error in Ky
H209 0.000 0.000 0.000 0.000 0.000 0.000
H309 0.000 0.000 0.000 0.000 0.000 0.000
H409 0.000 0.000 0.000 0.000 0.000 0.000
H3C9 0.000 0.000 0.000 0.000 0.000 0.000
H4C9 0.000 0.000 0.000 0.000 0.000 0.000
MITC9* 0.018 0.028 0.049 0.004 0.012 0.009
MITCYis* 0.000 0.000 0.000 0.000 0.000 0.000
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A further step is taken to investigate the behaviour of the considered 9-noded elements in a
more irregular mesh, where the original patch is distorted by shifting four edge nodes 13, 14,
15 and 16, either parallel or perpendicular to the edges, and moving the internal node 25
along the x-direction, as illustrated in Figure 4.3. All the shifts of nodal positions are of a
magnitude d = 0.01. Results of the membrane patch test with this distorted mesh are given in
Table 4.4. As expected, all the optimised 9-noded elements pass the test owing to the
enforcement of zero mean on each hierarchic strain mode. The results with MITC9is* are
also good, though small errors are generated in this case. However, MITC9* fails in the
constant strain patch test, evident from the large relative errors in predicting displacements

and strains.

y A
4 7 3
20 023 19
s 154 . 9 (0.04,0.02)
\ 10(0.18,0.03)
(o]
= 87 24 d Fg o4y o5 14 *2n  T6 11(0.16,008)
\ 12(0.08,0.08)
B CE R
17 .21 8
1 *s 2 -

>

}< 0.24 »{

Figure 4.3: Five-element patch test (distorted mesh).

Table 4.4: Relative error of displacements and strains in membrane patch test (distorted mesh).

Element code Maximum error Maximum error Maximum error Maximum error Maximum error
1N Uy in uyo in g in €, in Vsy

H209 0.000 0.000 0.000 0.000 0.000
H309 0.000 0.000 0.000 0.000 0.000
H409 0.000 0.000 0.000 0.000 0.000
H3C9 0.000 0.000 0.000 0.000 0.000
H4C9 0.000 0.000 0.000 0.000 0.000
MITC9* 0.212 0.112 0.040 0.435 0.210
MITCYis* 0.005 0.005 0.007 0.005 0.007
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4.2.3 Convergence rate tests

4.2.3.1 Clamped square plate under uniform loading

The convergence rates of the optimised elements are investigated in this linear problem,
where a 2L x2L square plate is clamped at all four edges and subjected to a uniformly
distributed pressure, as shown in Figure 4.4. Soft boundary conditions are used along the four
edges, and three thickness-to-length ratios (h/L) are considered to investigate the performance
of various element formulations in addressing locking. The geometric and material
parameters are given as: L=1.0, E= 1.7472x107 , and v=0.3. Due to symmetry, a quarter
of the plate is modelled with 2x2, 4x4, 8x8, and 16x16 meshes of various 9-noded element
types. The Jacobian matrix is constant in this example, which leads to identical results
between the MITC9* and MITC9is* models. The convergence curves of the considered 9-
noded elements are presented in Figure 4.5, with the relative error in the strain energy as a

measure of accuracy:

Ut ~U|

ref

0]

RE = (4.1)

ref

where U represents the total strain energy of a coarse mesh, and U, represents the
reference value, which is taken as the strain energy obtained from a fine mesh (128x128) of
the H309 element. The results of the original MITC9 shell elements (Lee & Bathe, 2010) are
also plotted in Figure 4.5 for comparison purposes, though employing a different accuracy

measure:

RE="— (4.2)

where u, is the vector of reference nodal displacement values; u® is the finite element
solution of nodal displacements; || . ||S is the s-norm (Bathe et al., 2003). In linear elastic
analysis with conforming element formulation, (4.1) and (4.2) are equivalent. Even though
this equivalence does not strictly hold for hierarchic optimised formulations or mixed

formulations, it can still be used for a general comparative assessment of the convergence
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rate. For both measures of accuracy, the optimal convergence rate is of a 4" order, with the
discretisation error being O(h?) (h, is the nominal element length), which is depicted in the

figure with a solid straight line.
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Figure 4.4: A quarter-model of a clamped square plate subjected to uniform pressure (9-noded shell

element).

All the considered 9-noded elements show roughly optimal convergence rates with no
significant upward shifting as the thickness is reduced (except for H3C9 and H4C9). In this
problem, the MITC9* and the H209 elements seem to have marginally better accuracy,
followed by the H309 and H409 elements. It is also observed that the results of the
optimised elements with the objective alternative (H209, H309, and H409) are comparable
to the MITCO results (Lee & Bathe, 2010) in terms of both the convergence rate and accuracy,
while the accuracy of the MITC9* element is even higher than the original MITC9 element,
which may result from rounding errors, different accuracy measurement and the formulation

differences, as can be found in Appendix B.
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Figure 4.5: Convergence curves of various 9-noded elements for the clamped square plate problem.

4.2.3.2 Cylindrical shell under sinusoidal loading

A cylindrical shell, which has a length of 2L, a radius of R, and a constant thickness h, is
subject to a periodic pressure p(0)=p,cos(20) . The geometric, material, and loading
properties are given as: L = R = 1.0, E = 2.0x10°, v = 1/3, and p, =1.0. Two boundary
conditions at both curved ends are considered: a free boundary condition corresponding to a
bending-dominant problem, and a fully clamped boundary condition corresponding to a

membrane-dominant problem. Due to symmetry, a sixteenth of the model is analysed with a

uniform mesh pattern, as shown in Figure 4.6.
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Figure 4.6: Cylindrical shell under periodical loading.

Figures 4.7-4.8 present the behaviour of various 9-noded optimised elements with
respectively free and clamped boundary conditions. The relative error measure (4.1) is
employed, and the optimal convergence rate is also depicted in the figures. In the bending-
dominant problem, all the considered elements show comparable accuracy and good
convergence rates, though not optimal. Furthermore, the convergence curves have no
evidence of shifting upwards with thickness changes. These elements also perform generally
well in the membrane-dominant problem. Figures 4.9-4.10 also provide the comparison of the
H309 and MITC9* results against the MITC9 results (Bathe et al., 2000) with the same
accuracy measure. The results show that the H309 and MITC9* have comparable
convergence rates and accuracy. The MITC9 results have better accuracy in particular for a
relatively large thickness-to-length ratio (h/L = 0.01), except for the free end case with a
small thickness-to-length ratio (h/L = 0.0001) where the MITC9 element shows a significant

degradation of the convergence rate.
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Figure 4.7: Convergence curves of various optimised 9-noded elements for the cylindrical shell

problem (free boundary).
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Figure 4.8: Convergence curves of various optimised 9-noded elements for the cylindrical shell

problem (clamped boundary).
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Figure 4.9: Convergence curves of H309, MITC9* and MITC9 elements for the cylindrical shell

problem (free boundary).
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Figure 4.10: Convergence curves of H309, MITC9* and MITC9 elements for the cylindrical shell

problem (clamped boundary).
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4.2.4 Linear problems

4.2.4.1 Plane-stress cantilever

The problem is depicted in Figure 4.11, where a cantilever is fully clamped at one end and
loaded at the other end. This is a plane-stress problem and was presented by Cook et al. (1989)
to establish the influence of distortion locking on the conforming 9-noded planar element,
where meshes (A)—(C) were considered. A further mesh (D) is also considered here, in which
the interior element nodes are kept in their original location, leading to increased sensitivity
to distortion locking. Geometric and material parameters are given as: L =100, h=1, E = 107,
and v = 0.3. An end load P = 2500 is uniformly applied on the free edge. The predicted
displacements with various meshes and 9-noded element types, normalised by the theoretical

value of the transverse tip displacement, are provided in Table 4.5.
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Figure 4.11: Cantilever modelled with different meshes using two 9-noded elements.
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It is clear that among the optimised element variants the ones using third or fourth order
hierarchic modes provide an effective relief from the distortion locking observed with the
conforming element, where the objective alternative approach offers marginally better
predictions than the corrective approach. The H309 element provides virtually identical
accuracy to the H409 element with fewer Gauss points required. On the other hand, the
MITC9* element in mesh (B)-(D) exhibits significant distortion locking owing to highly

irregular element shapes. The accuracy of the MITCOis* element is less sensitive to distorted
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meshes (B) and (D), but is significantly degraded in mesh (D) where the internal node is
highly eccentric from the element centre, in which case the Jacobian extracted at the element
centre no more represents an average over the element.

Table 4.5: Normalised cantilever displacement predictions using various 9-noded elements.

Element code Mesh (A) Mesh (B) Mesh (C) Mesh (D)
CNF9 0.954 0.791 0.737 0.476
H209 0.954 0.812 0.904 0.464
H309 0.954 0.830 0.971 0.972
H409 0.954 0.827 0.972 0.972
H3C9 0.954 0.824 0913 0.954
H4C9 0.954 0.827 0.972 0.972

MITC9* 0.990 0.255 0.712 0.535
MITCYis* 0.990 0.805 0.958 0.604

4.2.4.2 Square plate under transverse point load

The linear bending response of a clamped square plate subject to a central transverse point
load (P) is investigated, where a quarter-model is considered using regular and distorted
meshes, as shown in Figure 4.12. The geometric and material parameters are given as: L = 20,
h=0.2, E=2.1x10°, and v = 0.3 .The non-dimensional central deflection (u,) is given as:

B uZth3
12PL*(1-v?%)

u;

The predictions of u, with various 9-noded quadrilateral elements, normalised by the
reference value of 0.00560 (Timoshenko, 1940), are presented in Table 4.6. Clearly, the
conforming element CNF9 exhibits shear locking, which is compounded in the distorted
meshes. Again, the proposed optimisation approach shows good accuracy even with the
coarse meshes, whether regular or distorted. In this respect, the objective alternative approach,
using third or fourth order hierarchic optimisation, is typically better than the corrective
alternative, particularly for the coarser meshes. In this example, the coarse meshes of the
MITC9* element provide sufficient accuracy despite distorted element shapes. On the other
hand, the results of the MITC9is* element are less accurate than the MITC9* elements for
mesh (B) and (D), still resulting from the inability of the constant Jacobian J to represent an

element average.
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Figure 4.12: A quarter-model of a square plate using different mesh patterns of 9-noded elements.

Table 4.6: Normalised plate central deflections using various 9-noded elements.

Element code Mesh (A) Mesh (B) Mesh (C) Mesh (D)
CNF9 0.718 0.269 0.925 0.638
H209 1.006 0.955 1.006 0.959
H309 0.974 0.965 1.001 0.996
H409 0.973 0.958 1.001 0.996
H3C9 0.916 0.856 0.997 0.981
H4C9 0.917 0.899 0.997 0.990

MITC9* 1.005 1.000 1.005 1.003
MITC9is* 1.005 0.882 1.005 0.960

4.2.4.3 Pinched cylinder with rigid diaphragms

A cylindrical shell, supported by two rigid diaphragms at both ends, is loaded with two unit
forces P, as shown in Figure 4.13. Due to symmetry, an octant of the shell is modelled with
uniform meshes. Geometric and material parameters are given as: R = 300, L/R =2, R/h =
100 , E =3x10° and v = 0.3. The predicted deflection at the point of loading is normalised by
the analytical solution 0.18248x10* (Heppler & Hansen, 1986). This problem was also
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analysed by Kulikov and Plotnikova (2006) with four-noded degenerated solid-shell elements
and by Kim et al. (2005) with 8-noded solid-shell elements. In Table 4.7, results of the 9-
noded shell elements H309, MITC9* and MITC9is* are compared against the results by
others with the same number of DOFs, which indicates good performance of the H309

element.

R Rigid
Rigid diaphragm

diaphra M

P

Figure 4.13: Pinched cylindrical shell supported by rigid diaphragms (quadrilateral elements).

Table 4.7: Normalised deflections at the point of loading for the pinched cylinder problem

(quadrilateral elements).

Element code 22 “xd 88
(4x4x1) (8x8x1) (16x16x1)
H309 0.816 0.938 0.988
MITC9* 0.711 0.962 1.000
MITC9is* 0.711 0.962 1.000
TMS4SA (Kulikov & Plotnikova) 0.890 0.941 0.986
XSOLIDS85 (Kim et al.) 0.382 0.751 0.932
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4.2.5 Large displacement problems

4.2.5.1 Annular plate subject to end loading

An annular plate is fully clamped at one end and subjected to a uniform transverse loading P
at the other end, as is shown in Figures 4.14-4.15. The geometric and material properties are
specified as: R; =6,R, =10,h=0.03, E = 2.1x107 and v=0.0. The plate is modelled with
a 15x3 mesh of various optimised 9-noded elements, and the load-displacement curves at
points A and B are plotted in Figure 4.16. The results with a fine mesh (60x9) of H309 is
used as a reference solution. It is observed that the H309 and H409 results are more accurate
than other optimized elements. The H309 results are also compared with the MITC9* and
MITCOis* results in Figure 4.17. Also presented are results with a 15x3 mesh of 9-noded
hybrid stress elements by Sansour and Kollmann (2000) and a 30x6x1 mesh of 8-noded
solid-shell elements by Norachan et al. (2012), where all models have comparable number of

DOFs. Clearly, the meshes of the H309 and the MITC9* elements yield more accurate

results than others.

<V

Figure 4.14: Annular plate subject to end loading.
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Figure 4.15: Deformed configuration of the annular plate problem.
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Figure 4.16: Load-displacement curves for a 15x3 mesh of various optimised 9-noded elements.
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Figure 4.17: Load-displacement curves for meshes of various quadrilateral elements having the same

number of DOFs.

4.2.5.2 Pinched hemispherical shell with 18° cut-off

Consideration is given here to a large displacement problem where a hemispherical shell with
an 18°circular cut-off at its top is subjected to symmetric concentrated forces at its base, as
shown in Figures 4.18-4.19. The geometric and material parameters are: R = 10, h = 0.04,
E=6.825x10" and v=0.3. Due to symmetry, a quarter of the shell is modelled with three
uniform meshes (4x4, 8x8 and 16x16) of various 9-noded element types, with the load-
displacement curves of the radial displacement at Point A and B compared in Figures 4.20-
4.21. The predictions of Celigoj using a 16x16 mesh (Celigoj, 1996) are also presented for

comparison purposes.
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Figure 4.18: Pinched hemispherical shell with a 18° cut-off.

Figure 4.19: Deformed configuration of pinched hemispherical shell with a 18° cut-off.

119



Verification of Monolithic Shell Elements

350
. —-m—- CNF9
. --a-- H209
. [
300 - g H309
250 A s -+ H3C9
4 o H4C9
200 i i e Y MITCO*
2150 - " + Celigoj
S n
~ '
100 A i
" .
- ’ - &° _22%0
0 R}
E A
0 i 1 1 1 1 1 T 1
0 0.5 1 1.5 2 2.5 3 3.5 4
Displacement
a. 4x4 mesh
350
—-#—- CNF9 e
[
--a-- H2 ; by
300 { 07T H2O9 . £®
@ H4O9 /. l%
250 1 4= H3C9 o Aﬁ)
&~ H4C9 " 7
200 A e MITCO* o /A:Q
A o MITCOis* ‘ ,A:@
= i + Celigoj ™ ,".ﬁ
S 150 - P 7
| ... ,ﬁ ',Q
100 ~ - LA &
L A
o AW
50 /./ ) :—=—=:wa'
AT
O "’_‘- T T T T T T T
0 0.5 1 1.5 2 2.5 3 3.5 4
Displacement
b. 8x8 mesh

Figure 4.20: Load-displacement curves of the radial displacement at Point A with different meshes of

9-noded elements (Cont’d...).
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Figure 4.20: Load-displacement curves of the radial displacement at Point A with different meshes of

9-noded elements.
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Figure 4.21: Load-displacement curves of the radial displacement at Point B with different meshes of

9-noded elements (Cont’d...).
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Figure 4.21: Load-displacement curves of the radial displacement at Point B with different meshes of

9-noded elements.

Clearly, noticeable locking phenomenon is exhibited in the conforming element model,
which persists even in the refined 16x16 mesh mainly attributed to membrane locking. The

optimised elements H309 and H409 provide better approximations of the shell response for
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a coarse mesh (4x4), followed by the mixed elements MITC9* and MITC9is*. Variants
based on the corrective alternative approach, on the other hand, are less accurate than those
based on the objective alternative approach particularly for coarse meshes, though this
difference diminishes with mesh refinement. It is also observed that the equilibrium paths of
the coarse mesh with H209 deviate from the other curves in terms of the curve shapes, which
indicates the importance of the inclusion of correction hierarchic strain modes in the

optimisation. All the elements converge with mesh refinement to Celigoj’s solution.

The sensitivity of the element performance to distortion is also investigated with 4x4 and 8x8
irregular meshes, which are obtained by moving the three nodes (C, D, E) in a regular mesh
to positions (C’, D’, E’), as shown in Figure 4.22. By changing the positions of the inward
and outward forces, two sets of results are readily obtained with the distorted meshes. Figures
4.23-4.24 depict the two sets of load-displacement curves with the H309, MITC9* and
MITC9is* elements. It appears that in the coarser mesh the H309 element provides better
predictions than the mixed elements for both distortion cases. On the other hand, the
MITCYis* element performs better than MITC9* element in one distortion case but is not as

accurate in the other one. Nevertheless, all the solutions converge in the finer mesh.

Figure 4.22: Irregular meshes of a quarter model. (The larger points in the figure represent the nodes
in a 4x4 mesh. Distorted mesh 1 corresponds to the inward and outward forces denoted in black,

while Distorted mesh 2 corresponds to the forces denoted in grey.)
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Figure 4.23: Load-displacement curves for meshes of different 9-noded elements (Distorted mesh 1).
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Figure 4.24: Load-displacement curves for meshes of different 9-noded elements (Distorted mesh 2).
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4.3 Triangular shell element

4.3.1 Zero energy mode test

In this test, the number of zero eigenvalues of the stiffness matrix for an unsupported shell
element is counted for each of the 6-noded element types. Both regular and irregular element
shapes are considered in this test (Figure 4.25) to allow for more possibilities. All the
considered elements have exactly six zero eigenvalues of their element stiffness matrix,

hence indicating absence of spurious mechanism.

RN

Figure 4.25: Various element shapes for the zero energy mode test of 6-noded shell element.

1.0

-'——{.—u

4.3.2 Isotropic element test

Herein, an arbitrarily shaped triangular element (see Figure 4.26) is employed for the
isotropic element test. Geometric and material parameters are given as: thickness t = 0.001,
Young’s modulus E = 10° and Poisson’s ratio v = 0.2. In this test, 24 sets of strain-inducing
displacement modes are respectively imposed to the considered 6-noded elements. For each
prescribed displacement set, three nodal numbering sequences are used, and the maximum
relative error in the predicted total strain energy by using three nodal orderings is presented in

Table 4.8. Results show that all the considered elements pass the isotropic element tests.
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1(0.0,0.0,0.0)
2(1.0,0.0,0.0)
3(2.3,0.9,0.0)
4(0.4,0.05,0.05)
5(1.4,0.45,0.02)
6(1.0,0.5,0.03)

Figure 4.26: Geometry of an arbitrary 6-noded triangular element for isotropic element tests.

Table 4.8: Results of isotropic element tests for various 6-noded elements.

Displacement _ Relative error in the predicted total strain energy by using three nodal orderings (%)

Mode

fields H206 H306 H406 H3C6 H4C6 MITC6*
1 u=ax 0.000 0.000 0.000 0.000 0.000 0.000
2 v=ay 0.000 0.000 0.000 0.000 0.000 0.000
3 u=ay or v=ax 0.000 0.000 0.000 0.000 0.000 0.000
4 u=ax? 0.000 0.000 0.000 0.000 0.000 0.000
5 v=ay> 0.000 0.000 0.000 0.000 0.000 0.000
6 u=axy 0.000 0.000 0.000 0.000 0.000 0.000
7 v=axy 0.000 0.000 0.000 0.000 0.000 0.000
8 u=ay> 0.000 0.000 0.000 0.000 0.000 0.000
9 v=ax’ 0.000 0.000 0.000 0.000 0.000 0.000
10 0=ax 0.000 0.000 0.000 0.000 0.000 0.000
11 0=ay 0.000 0.000 0.000 0.000 0.000 0.000
12 O=ay 0.000 0.000 0.000 0.000 0.000 0.000
13 0y=ax 0.000 0.000 0.000 0.000 0.000 0.000
14 0=ax’ 0.000 0.000 0.000 0.000 0.000 0.000
15 0,=ay> 0.000 0.000 0.000 0.000 0.000 0.000
16 Ox=axy 0.000 0.000 0.000 0.000 0.000 0.000
17 0,=axy 0.000 0.000 0.000 0.000 0.000 0.000
18 0,=ay? 0.000 0.000 0.000 0.000 0.000 0.000
19 0y=ax> 0.000 0.000 0.000 0.000 0.000 0.000
20 w=ax 0.000 0.000 0.000 0.000 0.000 0.000
21 w=ay 0.000 0.000 0.000 0.000 0.000 0.000
22 w=ax’ 0.000 0.000 0.000 0.000 0.000 0.000
23 w=ay> 0.000 0.000 0.000 0.000 0.000 0.000
24 w=axy 0.000 0.000 0.000 0.000 0.000 0.000
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4.3.3 Patch tests

The five-element patch by MacNeal and Harder (1985), described in Section 4.1.2, is adapted
to test the 6-noded triangular element, as shown in Figure 4.27. The boundary conditions
used for the constant membrane strain and constant bending strain mode tests are the same as

those defined in Section 4.1.2.

v A
4 7 3
20 23 19
9(0.04, 0.02)
o 12 15 11 22 10 (0.18,0.03)
s ot 14 T6  11(0.16,0.08)
S 16 S
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\ 13 10
17 21 18
1 5 2 >

kS

0.24

Figure 4.27: Patch test for 6-noded shell elements.

The patch test results of various 6-noded element types corresponding to a constant
membrane strain state (&, =&, =Yy, =0.001) are listed in Table 4.9, where the planar
displacements at all internal nodes, along with planar strains of the two internal elements
evaluated at node 25, are compared against the theoretical values. The patch test results of the
considered 6-noded elements associated with a constant bending strain state
(kg =K, =K,, =0.001) are given in Table 4.10, where the transverse displacement and
rotations at all internal nodes and curvatures of two internal elements evaluated at node 25
are compared against corresponding theoretical values. It is observed from both tables that

the considered 6-noded elements all pass the patch tests.
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Table 4.9: Relative error in planar displacements and strain components in membrane patch test.

Maximum error Maximum error Maximum error ~ Maximum error ~ Maximum error

Approach in uxo in uyo in g, in g, n vy,
H206 0.000 0.000 0.000 0.000 0.000
H306 0.000 0.000 0.000 0.000 0.000
H406 0.000 0.000 0.000 0.000 0.000
H3C6 0.000 0.000 0.000 0.000 0.000
H4Co6 0.000 0.000 0.000 0.000 0.000

MITC6* 0.000 0.000 0.000 0.000 0.000

Table 4.10: Relative error in transverse and rotational displacements and curvatures in out-of-plane

bending patch test.

Maximum Maximum Maximum Maximum Maximum Maximum

Approach ErTor in Uy error in 0, error in 0, error in error in K, error in K,
H206 0.000 0.000 0.000 0.000 0.000 0.000
H306 0.000 0.000 0.000 0.000 0.000 0.000
H406 0.000 0.000 0.000 0.000 0.000 0.000
H3Ce6 0.000 0.000 0.000 0.000 0.000 0.000
H4Co6 0.000 0.000 0.000 0.000 0.000 0.000
MITC6* 0.000 0.000 0.000 0.000 0.000 0.000

The behaviour of the considered 6-noded elements for an irregular mesh, where the original
patch is distorted by shifting four edge nodes 13, 14, 15 and 16, either parallel or
perpendicular to the edges, and moving the internal node 25 along the x-direction, as
illustrated in Figure 4.28. All the shifts of nodal positions are of a magnitude d = 0.01.
Results of the membrane patch test with this distorted mesh are given in Table 4.11, which
indicate that all the optimised 6-noded elements pass the test owing to the enforcement of
zero mean on each hierarchic strain mode. The MITC6*, however fails in the constant strain

patch test for the distorted mesh.
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Figure 4.28: Patch test for 6-noded shell elements (distorted mesh).

Table 4.11: Relative error in transverse and rotational displacements and curvatures in membrane

patch test (distorted mesh).

Maximum error Maximum error Maximum error ~ Maximum error ~ Maximum error

Approach in s in uyo in g in g, in vy,
H206 0.000 0.000 0.000 0.000 0.000
H306 0.000 0.000 0.000 0.000 0.000
H406 0.000 0.000 0.000 0.000 0.000
H3C6 0.000 0.000 0.000 0.000 0.000
H4Co6 0.000 0.000 0.000 0.000 0.000

MITC6* 0.089 0.056 0.185 0.113 0.561

4.3.4 Convergence rate tests

4.3.4.1 Clamped square plate problem

The same numerical example as given in Section 4.1.3.1 is employed herein to assess the
convergence rates of various 6-noded elements. Due to symmetry, a quarter of the plate is
modelled with uniform meshes of the triangular element, as is shown in Figure 4.29. In this
example, the solution with a fine mesh (128x128) of H306 elements is regarded as a
reference solution. For all the optimised 6-noded elements and the MITC6* element, the
accuracy measure (4.1) is employed. Figure 4.30 shows the convergence results of various

optimised triangular elements, which show an effective relief from shear locking and have
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nearly optimal convergence rate in this example. In terms of accuracy, the H206 solution,
which uses optimisation without hierarchic terms, is not as accurate as those with hierarchic
correction. On the other hand, the objective alternative approach, using third or fourth order
hierarchic optimisation, is more accurate than the corrective alternative. Note that in the case
where h/L = 0.01, the H406 and the H4C6 solutions show a lifted tail after reaching a
relatively high accuracy level, which may be due to rounding errors and the relative error

measure employed.

The H306 element is also compared to the MITC6* and the MITC6 (Kim & Bathe, 2009)
elements. Note that the MITC6 results employs the s-norm as a measure of accuracy, as given
by (4.2). Although (4.1) and (4.2) do not yield equivalence for non-conforming formulations,
it is still reasonable to compare the results of the MITC6 element using the measure of (4.2)
against the results of the other elements using the measure of (4.1). Figure 4.31 shows that
the H306 results have better accuracy and the convergence rate than the MITC6 results,
although there is a noticeable shift of curves upward as h/L decreases. It is also shown that

the convergence rate of the MITC6* solution is much slower for this problem.

|
Figure 4.29: A quarter-model of a clamped square plate subjected to uniform pressure (6-noded shell

element).
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Figure 4.30: Convergence curves of variants of optimised 6-noded elements for the clamped square

plate problem.
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Figure 4.31: Convergence curves of H306 and MITC6* in comparison with MITC6 for the clamped

square plate problem.

132



Verification of Monolithic Shell Elements

4.3.4.2 Cylindrical shell problem

The same cylindrical shell problem, as described in Section 4.1.3.2, is employed to assess the
convergence rates of various triangular shell elements. Similarly, two boundary conditions at
both curved ends are considered: a free boundary condition and a fully clamped boundary
condition. Due to symmetry, an octant of the model is analysed with a uniform mesh pattern,
as shown in Figure 4.32. Figures 4.33-4.34 present the behaviour of various optimised
elements with respectively free edge boundary and clamped edge boundary. The relative
error measure (4.1) is employed. Significant locking is observed in the H206 solution, in
particular for the free edge boundary condition, while the other optimised elements exhibit
good accuracy and convergence rate, with the H306 solution providing slightly better
accuracy. In Figures 4.35-4.36, the H306 results are compared against the MITC6* results,
and the MITC6 solution (Kim & Bathe, 2009) in accordance with the relative error measure
(4.2) is also presented for comparison. It is observed that the H306 and MITC6* elements
have maginally comparable accuracy and convergence rates for the considered boundary
conditions and (h/L) ratios. The figures also show that the MITC6 element has slower

convergence rates and less accuracy for thin shells (h/L =0.0001).

e

Figure 4.32: An octant model of the cylindrical shell problem with 6-noded shell elements.
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Figure 4.33: Convergence curves of variants of optimised 6-noded elements for the cylindrical shell

problem where both ends are free.
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Figure 4.34: Convergence curves of variants of optimised 6-noded elements for the cylindrical shell

problem where both ends are clamped.
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Figure 4.35: Convergence curves of H306 and MITC6* in comparison with MITC6 for the

cylindrical shell problem where both ends are free.
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Figure 4.36: Convergence curves of H306 and MITC6* in comparison with MITC6 for the

cylindrical shell problem where both ends are clamped.
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4.3.5 Linear problems

4.3.5.1 Pinched cylinder problem

This is a linear problem, where a cylindrical shell, supported with rigid diaphragms at both
end, is loaded with a pair of pinching loads, as shown in Figure 4.37. The geometric and
material properties are given as: L/R =2, R/h =100 and v = 0.3. Due to symmetry, an octant
of the cylindrical shell is modelled with three uniform meshes (4x4, 8x8, and 12x12) of
various 6-noded elements, with an 8x8 mesh depicted in Figure 4.37. The non-dimensional
deflection the point of loading, W =wEt/P, is used for comparison purposes, and the
reference result is given by a series solution by Lindberg et al. (1969) (w. =-164.24). All
the predicted normalised results are listed in Table 4.12. Also provided are the results by
Bucalem et al. (2000), where M6-3 and M7-3 correspond to respectively a 6-noded and a
7-noded triangular element employing an assumed strain method. The poor predictions given
by the conforming meshes indicate significant locking. The accuracy of the H306 and H406
is manifested in a very coarse mesh, followed by the H3C6, H4C6, and M6-3 elements.
Although M7-3 provides a prediction more close to 1.0 in the coarse 4x4 mesh, its prediction
improves slower than the others, evident from persistence of the over-estimation even in a

fine mesh of 12x12 elements.

R Rigid
Rigid diaphragm
diaphragm

Figure 4.37: Pinched cylindrical shell supported by rigid diaphragms (triangular elements).
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Table 4.12: Normalised deflections at the point of loading for the pinched cylinder problem

(triangular elements).

Element 4x4 8x8 12x12

CNF6 0.143 0.486 0.743

H206 0.389 0.713 0.878

H306 0.726 0.922 0.975

H406 0.755 0.924 0.976

H3C6 0.599 0.890 0.964

H4C6 0.652 0.907 0.970
MITC6* 0.436 0.834 0.958

M6-3 (Bucalem et al.) 0.640 0.900 0.980
M?7-3 (Bucalem et al.) 1.190 1.130 1.100

4.3.5.2 Hemispherical shell with an 18° cut-out

Another benchmark linear problem is used to assess the performance of the proposed
quadratic triangular elements. A hemispherical shell with a 18° cut-out on its top, is loaded
with an orthogonal set of two inward and two outward forces, 2P, as depicted in Figure 4.38.
The loading, geometric and material parameters are: P = 1.0, R = 1.0, h = 0.004,
E =6.825x10% and v =0.3.

2p

2P

2p/ A

Figure 4.38: Pinched hemispherical shell with a 18° cut-off (triangular element mesh).
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Due to symmetry, a quarter of the hemispherical shell is modelled with three uniform meshes

(4x4, 8x8, and 12x12), and the predictions by various elements on the radial deflection at the

point of loading are compared. A converged solution using MITC6, 0.09355, is used as a

reference value. The displacement predictions by different elements, normalised by the

reference value, are listed in Table 4.13. The results with M6-3 and M7-3 by Bucalem et al.

(2000) are also presented for comparison. Again, the H406 and H306 elements provide

better accuracy with coarser meshes, followed by their corrective counterparts. More

distorted meshes (Figure 4.39) are also used to investigate the performance of various

elements. The accuracy of all element types degrade significantly for a 4x4 mesh owing to

the highly distorted element shapes. It is also noticed that an 8x8 mesh of the optimised

elements, in particular H306 and H406, becomes capable of providing good accuracy.

Figure 4.39: Pinched hemispherical shell with a 18° cut-off (distorted 6-noded element mesh).

Table 4.13: Normalised deflections at point A for the pinched hemispherical shell problem (triangular

element meshes).

Regular mesh Distorted mesh
Element

4x4 8x8 16x16 4x4 8x8 16x16
CNF6 0.011 0.131 0.419 0.006 0.070 0.256
H206 0.049 0.343 0.701 0.051 0.190 0.489
H306 0.878 0.986 0.994 0.452 0.952 0.990
H406 0.905 0.987 0.995 0.585 0.967 0.991
H3C6 0.692 0.977 0.993 0.209 0.912 0.985
H4C6 0.782 0.982 0.993 0.372 0.944 0.988
MITC6* 0.634 0.949 0.986 0.232 0.835 0.958

M6-3 (Bucalem et al.) 0.160 0.660 0.870 - - -

M?7-3 (Bucalem et al.) 0.650 0.910 0.960 - - -
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4.3.6 Large displacement problems

4.3.6.1 Annular plate problem

The same annular plate problem as presented in Section 4.1.5.1 is used here to investigate the
performance of various 6-noded shell elements. The plate is modelled with two meshes of the
triangular elements (16x1 and 32x2), with the 32x2 mesh depicted in Figure 4.40. Load-
vertical displacement curves at Point A, B, and C with different meshes and different element

types are investigated.

Figure 4.40: Annular plate subject to end loading (triangular element mesh).

70
@ H306: 16x1
@ H306: 32x2 Point A
60 A g MITCOH*: 16x1 +0 X OGD
G MITCO*: 32x2 # F
50 - =+ Campello et al.: 16x1 F e/
% Campello et al.: 32x2 ‘3’ £ <
A H306: 64x8 o
e0 40 -
£
-
S 30 -
]
20 A
04
O T T T T T T

0 2 4 6 8 10 12 14 16 18
Displacement

Figure 4.41: Equilibrium paths of vertical displacement at Point A for the annular plate problem (6-

noded elements).
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Figure 4.42: Equilibrium paths of vertical displacement at Point B for the annular plate problem (6-

noded elements).
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Figure 4.43: Equilibrium paths of vertical displacement at Point C for the annular plate problem (6-

noded elements).
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Figure 4.44: Equilibrium paths of vertical displacement at Point A with various optimised 6-noded

elements for a 16x1 mesh.

Figures 4.41-4.43 depict the load-displacement curves at point A, B, and C with the H306
and the MITC6* elements, and a convergent solution of the H306 using a 64x8 mesh is
taken as a reference solution. Also plotted are the results by Campello et al. (2003), who
employed the same meshes with 6-noded triangular elements that are based on the enhanced
displacement method. The results with the H306 element are much closer to the reference
solution in particular in the coarser mesh. As the mesh is refined, the performance of the
MITC6* element becomes almost comparable with the H306 element due to the decreased
degree of element irregularity. Figure 4.44 also compares the load-deflection curves at point
A with various optimised 6-noded elements for a 16x1 mesh. Again, the optimisation
approach with an objective alternative is more accurate than the corrective alternative, while
the H406 element yields slightly better results than the H306 element. Still, H306 is

preferred due to the fewer integration points required than H406.
4.3.6.2 Pinched hemispherical shell problem

Figure 4.45 depicts a hemispherical shell subjected to two inward and two outward forces 90°
apart at its base. The shell is made of an isotropic material with material properties of
E =6.825x107 and v = 0.3. The geometric parameters of the hemispherical shell are radius

R = 10.0 and thickness h = 0.04. Radial displacements at Point A and B against the
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concentrated force P are investigated, and the solution by Arciniega and Reddy (2007) is used
as a reference solution. A quarter-model is employed due to symmetry, and two alternative
meshes of 6-noded elements are employed in the model (each of the three subdomains in the
quarter model are discretised into respectively a 3x3 and a 6x6 mesh pattern). The deflected

configuration of the pinched hemisphere is depicted in Figure 4.46.

P B.\
P

Figure 4.45: Hemispherical shell subject to symmetric concentrated forces at its base and a 6x6 mesh

pattern.
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Figure 4.46: Deformed configuration of the hemispherical shell.

Results using optimised 6-noded elements are shown in Figure 4.47 for two meshes. The
conforming element CNF6 exhibits considerable inaccuracy, persisting even in the finer mesh,
which is mainly attributed to membrane locking. As stated before, the H306 and H406

elements exhibit superior performance to their corrective counterparts in the coarser mesh,
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and the discrepancy reduces with mesh refinement. In Figure 4.48, the H306 results are
compared against the MITC6* solution, which again indicates the effectiveness of the H306

element in addressing locking in particular for a coarse mesh.
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Figure 4.47: Load-displacement curves of the radial displacements with different meshes of various

optimised 6-noded elements.
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Figure 4.48: Load-displacement curves of the radial displacements with different meshes of H306

and MITC6* elements.
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4.4 Summary

In this chapter, the co-rotational formulations of curved quadrilateral and triangular shell
elements presented in Chapter 3 have been applied using ADAPTIC. For comparison
purposes, shell elements based on the MITC formulation are also considered, where the strain
sampling and mapping are undertaken following respectively the original MITC elements but
with distinct strain-displacement relationship and other assumptions, as detailed in

Appendix B.

A series of fundamental element tests, including zero strain energy tests, constant strain patch
tests and isotropic element tests, are conducted to examine the performance of the newly
developed formulation based on hierarchic optimisation. Tests are performed to investigate
the convergence rates of the proposed quadrilateral and triangular elements. Several linear
and geometrically nonlinear benchmark problems are also presented to assess the accuracy

and efficiency of the elements.

Results show that the optimised elements all pass the fundamental element tests, whereas the
MITC elements may not pass constant strain tests, in particular for irregular element meshes.
Nevertheless, both the optimised elements and the MITC* elements exhibit a significant
relief of shear locking and membrane locking. Among the optimised elements, the H209 and
H206 elements, which do not employ corrective hierarchic strain modes in the optimisation,
result in degraded performance for curved shell problems compared to elements with
hierarchic corrections, which highlights the importance of the inclusion of higher-order strain
modes in the optimisation. Furthermore, for the same hierarchic correction order, the
objective alternative yields superior results than the corrective alternative in terms of both
accuracy and convergence rate, with the objective alternative based on third order hierarchic
optimisation (H309 and H306 elements) exhibiting both accuracy and efficiency. The H309
and H306 elements also have comparable or even better accuracy than the mixed elements

based on the MITC formulations, mainly due to effective relief of distortion locking.
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CHAPTER 5
Proposed Laminated Shell Model

5.1 Introduction

This chapter starts with a presentation of a kinematic model for sandwich shells, with specific
reference to the through-thickness variation of displacement fields and the transverse shear
strains. The efficiency and accuracy of the sandwich model is verified using a one-
dimensional (1D) beam problem by comparing the results with other sandwich models. It is
important to note that although the proposed kinematic description for sandwich shells is
utilised in this research for analysing LG structures, it can also be applied to many other
sandwich structures with symmetric and asymmetric lay-ups. Upon verification of the
sandwich shell model, a generalisation to multi-layer shells with an alternating stiff/soft lay-
up is presented, and this is again verified using 1D beam problems associated with laminated
structures. Similar to the special case of sandwich shells, the proposed general kinematic
model is applicable to not only multi-layer LG structures but also other laminations with an

alternating stiff/soft lay-up.

It is worth noting that although the kinematic descriptions of sandwich and laminated shells
in this chapter are initially presented for plate problems, they are equally applicable to local
formulations of shallow shells, as will be elaborated in Chapter 6 for application to shallow
shell elements. Furthermore, through incorporation within a co-rotational framework, they
are also applicable to the nonlinear analysis of general curved shells, which will also be

elaborated in Chapter 6.
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5.2 Kinematic description for sandwich shells

Figure 5.1 depicts the sandwich model for a plate along with the local coordinates, where the
x- and y-axes are located at the middle surface while the z-axis is normal to the plate, and

where each layer is identified by a unique index.

Figure 5.1: Three-layered sandwich plate and local coordinate system.

5.2.1 Zigzag displacement fields

In this sandwich plate model, a piecewise linear variation of planar displacements in the z
direction is assumed, thus readily satisfying C’-continuity at laminar interfaces. Accordingly,
the through-thickness distribution of the planar displacements can be decomposed into four
independent displacement modes A;(z)(i=1-—4) (Figure 5.2), including a constant and a
linear mode, A; and A,, in accordance with the Reissner-Mindlin kinematic hypothesis, as
well as two zigzag modes, A, and A,, accounting for the zigzag effect. Ay and A, are both
orthogonal to the constant and linear modes while associated with respectively different and

identical rotations of the normal in the two face sheets; these are expressed as:

égl)z+l;gl), ze[hl_,hH]
As(2)=18Pz+b,  ze[h, ,h,,] (5.1)

5153)z+13g3), Ze[h3_,h3+]

éf‘l)z+f)gl), ze [hlf,hH]
Ay (2) = 5122)24—1;22), ze[hz_,h2+] (5.2)

éf)ZHSf), ze[hy_,h;, |
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in which h_ and h, denote the values of z at the bottom and top of the cross-section,
respectively; h,  and h,, refer to the values of z at the bottom and top of layer (k),

respectively; and expressions of 4% and b (i =3,4) are provided in Appendix C.

z A
h o .
*] Face 7 - =
0 Core % E éé
h Face :// :7 77777:
A1 A2 A3 A4

Figure 5.2: Four through-thickness displacement modes for sandwich plate.

The variation of planar displacements under bending is investigated by performing a 2D
plane-stress analysis of a sandwich beam with a soft core, which indicates that the two stiff
layers have almost identical rotations of their respective normals, whereas the core can have a
different rotation. Therefore, following on from the observed cross-sectional behaviour, the
contribution from A, is neglected, and A,(z) is proposed as a zigzag function specific to
sandwich structures, applicable regardless of cross-sectional symmetry, which is re-denoted

as A(z)=A4(2).

It is important to note that for symmetrically laminated sandwich structures, the zigzag
function A(z) is equivalent to Murakami’s zigzag function (MZZF) (Murakami, 1986),

which is defined as:

2(z— 710 )

@) =D¢Y, %=
hk

, ze[h,hy,] (5.3)

where h, is the thickness of layer (k), and z" is the extracted value of z on the middle

surface of layer (k).

However, if the sandwich plate is asymmetrically laminated, A(z) is more effective than the

MZZF, as will be illustrated in Section 5.3.2.
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The addition of the zigzag function to the Reissner-Mindlin planar displacements yields the

following planar displacements:
Uo (X,¥,2) =g (X, ¥) +20, (X, y) + A(2) 8, (X,y)  (a=X,y) (5.4)

where u,, are the planar displacement fields along the x- or y-axis evaluated on the middle
surface; 0, are the components of the normal vector along the x- or y-axis in the absence of
zigzag displacements; 3, are the additional fields associated with the proposed zigzag
function along the x- or y-axis. The transverse displacement is assumed to be constant

through the plate thickness, and is thus denoted by u,,(x,y).

5.2.2 Kinematics of individual layers

Each constitutive layer of the sandwich model is regarded as a pseudo plate. At layer (k)

(k =1— 3), the translational displacements on its middle surface are obtained as:

u®) = uy,+ Z(k)ea +A(k)8a (o =X,y) (5.5)

03

u(zk) =u,, (5.6)

where A® = A(z™)) represents the extracted value of the zigzag function A(z) on the

middle surface of layer (k); z'*) is the extracted value of z on the middle surface of layer (k).

The rotational displacements of layer (k) are derived by taking the first derivatives of the

planar displacements with respect to z:

ou oA
o) =—al =g +1Mg, A ="0 o =X,
R a P ( y) (5.7)
Accordingly, the following relationship holds at each layer:
u® =1y + 1O, (5.8)
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where u, = <u
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(5.10)

0.,0 > are the basic local displacement fields consistent with the

XO’uyO’ z0> Vx> Vy

T
Reissner-Mindlin  formulation; wu, :<9X,9y> are the additional displacement fields

. . . . T
associated with the zigzag function A(z); and u® =<u(,]f),u(]y‘),u(§),9(,](‘),6(;‘)> are the

displacement fields for layer (k) treated as a pseudo plate.

The strain state within each layer (k) is fully determined by the membrane strains &,

bending generalised strains &, and transverse shear strains £/, which are expressed at the

layer level as follows:
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(k)
e L
ox
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k k
gl =kl L= a; (5.12)
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i) IR
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k) _ _ aX
g = = @ (5.13)
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Yo e®—2

ay

in which z, represents the offset of the shell mid-surface along the z-axis, thus generalising
the kinematics of flat plates to shallow shells; in this respect, the kinematic expressions
presented previously remain unaffected for a shallow shell with z taken as zero along the
shell mid-surface. It is worth noting that quadratic terms of the membrane strains in (5.11)
take into account the effect of shell curvature, which are not necessary within a co-rotational

approach but enable better accuracy with coarser meshes.

5.2.3 Through-thickness distribution of transverse shear strains

The face-to-core stiffness ratio (FCSR) plays an important role in the through-thickness
distribution of the transverse shear stresses and strains. To illustrate this point, sandwich
beams with various FCSRs have been modelled under bending with 2D plane-stress analysis,
where schematic distributions of the transverse shear stress and strain with different FCSRs
are depicted in Figure 5.3. Clearly, the distribution of the transverse shear stress changes
significantly with different FCSR values. However, the transverse shear strain distribution
shows that for the considered FCSR range, the core sustains much larger strains than the face
sheets and exhibits a near constant distribution through the constitutive layer. In addition, for
a relatively small FCSR where the face sheets and the core have comparable material
properties, the associated transverse shear strains then have comparable magnitude with the
distribution in the face sheets exhibiting a quasi-linear pattern. Based on the observed pattern

of transverse shear strains, it is assumed that in the face sheets the shear strain varies linearly
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from zero at the outer surface, whereas for the core the shear strain remains constant, as
shown in Figure 5.4. The through-thickness distribution of the assumed transverse shear

strain can thus be expressed as follows:

k K K

el =0VE (2)e, ze[h_h] (5.14)
where ©*) is the shear correction factor of layer (k), and F, (z) is the assumed distribution
of transverse shear strains at layer (k):

z—2z% )

()
2(Zhlz ), F(z)=1, F3(z):1—2(h—3

F(z)=1+ (5.15)

The shear correction factors ®®) (k=1—3) can be determined from energy equivalence at
the generalised stress/strain and material stress/strain levels, considering the equivalence of
the generalised shear stresses and the resultant shear forces from equilibrium considerations.

The employment of equivalence in transverse shear strain energy at each layer gives:

hy,
k)T k KT _(k
eTQN = [ &3 0lsdz (5.16)
hk

. . . k
where cgkgs are material transverse shear stresses associated with 8& lzs, and Q' are the

corresponding resultant transverse shear forces, expressed as:

hk+
QW = [ o)z (5.17)
hk

Substituting (5.14)-(5.15) into (5.16) and employing a linear constitutive relationship yield

3
o = = and 0@ =1.
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a. transverse shear stress
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Figure 5.3: Through thickness distribution of transverse shear stress/strain with various FCSRs (3

layers).
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Figure 5.4: Assumed through-thickness distribution of transverse shear strain for sandwich model.
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It is important to note that the proposed approach is based on an assumed through-thickness
distribution for the transverse shear strains rather than transverse shear stresses, thus no
interlayer continuity constraints are imposed on the shear stress. In addition to offering a
realistic representation of the exact solution, albeit with discontinuous transvers shear stresses,
this assumed strain distribution is much more practical than an assumed stress distribution
when considering material nonlinearity, where the continuity requirement on transverse shear
stresses necessitates an iterative solution procedure which imposes additional computational
demands. Combined with the use of only two additional displacement fields associated with
the proposed zigzag function, an effective sandwich shell model is obtained, which is
applicable to both symmetric and asymmetric cross-sections, and which achieves good levels

of accuracy with high computational efficiency, as demonstrated in the following section.

5.3 Verification of through-thickness kinematics

A three-point bending problem of a sandwich beam is used here to illustrate the effectiveness
and efficiency of the proposed sandwich model. As depicted in Figure 5.5, a simply-
supported sandwich beam, with length L= 0.5 and depth h = 0.01, is loaded with a
concentrated transverse force P=—100 at midspan. The isotropic material properties of the

3)

face sheets are identical, with Young’s modulus ED =E® =7x10" and Poisson’s ratio

v =v® =03, The Young’s modulus and shear modulus for the core are obtained by
dividing those of face sheets by the FCSR which is assumed to be respectively 1, 10, 102, 10°,
and 10*. This problem is modelled with 1D 3-noded sandwich beam elements employing the
proposed zigzag displacement field and transverse shear strain distribution, where shear

locking is eliminated by using two-point strain mapping of the transverse shear strain. The

central deflection and stress components at 4 span are investigated:

u, =u,(L/2,0), 5,=0,(L/4,h/2), G, =0,,(L/4,0)

X

where the convergent solution obtained from 2D plane-stress analysis is used as a reference.
Note that this is a linear elastic problem of a straight sandwich beam, thus a linear strain-
displacement relationship is considered without the inclusion of the second-order terms given

in (5.11).

154



Proposed Laminated Shell Model

Y
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L

Figure 5.5: A simply-supported sandwich beam loaded with a transverse force at the midspan.

5.3.1 Sandwich beam with symmetric lay-up

Here the performance of the proposed sandwich model is investigated for a symmetric lay-up,
where the thicknesses of the three layers are assumed to be identical: h; =h, =h; =h/3. A
uniform mesh of 32 sandwich beam elements which employ the proposed zigzag
displacements and transverse shear strain distribution provides a convergent solution, denoted
as ‘Present’. By restraining all additional displacement variables in the sandwich beam model,
a FSDT solution is also obtained, although the assumed through-thickness distribution of the
transverse shear strain proposed in this work is employed. This problem has been analysed by
Hu et al. (2008) in the evaluation of various lamination theories, where the results of Model-2,
Model-5 and Model-6 are provided in Table 5.1 for comparison. It is worth noting that the
‘HSDT’ model, which corresponds to Model-2, is based on Reddy’s kinematic assumptions.
The ‘IC-ZZT’ and the ‘ID-ZZT’ model, corresponding to Model-5 and Model-6, are
respectively a zigzag formulation with an assumed continuous transverse shear stress based
on Touratier kinematic assumptions, and a LW theory without imposing the continuity
constraints on transverse shear stress, where the face sheets employ the Kirchhoff assumption

and the core employs the Reissner-Mindlin hypothesis.
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Table 5.1: Evaluation of different models for a symmetrically laminated sandwich beam with various

FCSRs.
HSDT IC-ZZT ID-ZZT
Results Reference value FSDT (Hu et al.) (Hu et al.) (Hu et al) Present
u, -2.24E-04 -4.71E-05 -4.72E-05 -2.23E-04 -2.23E-04 -2.23E-04
FCSR=10* o, -6.90E+05 -3.89E+05 -3.89E+05 -6.90E+05 -6.90E+05 -6.90E+05
C,, -4.64E+03 -7.50E-01 -1.77E+00 -4.63E+03 -4.63E+03 -4.63E+03
u, -7.32E-05 -4.71E-05 -4.72E-05 -7.31E-05 -7.31E-05 -7.32E-05
FCSR=10? C, -3.98E+05 -3.89E+05 -3.89E+05 -3.98E+05 -3.98E+05 -3.98E+05
c,, -6.79E+03 -7.50E+00 -1.77E+01 -6.76E+03 -6.76E+03 -6.76E+03
u, -4.99E-05 -4.71E-05 -4.71E-05 -4.99E-05 -4.99E-05 -4.99E-05
FCSR=10? o, -3.89E+05 -3.89E+05 -3.89E+05 -3.89E+05 -3.89E+05 -3.89E+05
G, -6.93E+03 -7.46E+01 -1.75E+02 -6.93E+03 -6.93E+03 -6.93E+03
u, -4.72E-05 -4.69E-05 -4.70E-05 -4.72E-05 -4.72E-05 -4.72E-05
FCSR=10! G, -3.88E+05 -3.88E+05 -3.88E+05 -3.88E+05 -3.88E+05 -3.88E+05
[ -7.00E+03 -7.14E+02 -1.56E+03 -7.01E+03 -6.95E+03 -6.95E+03
u, -4.53E-05 -4.53E-05 -4.53E-05 -4.53E-05 -4.53E-05 -4.53E-05
FCSR=10° o, -3.75E+05 -3.75E+05 -3.75E+05 -3.75E+05 -3.75E+05 -3.75E+05
[$; -7.64E+03 -5.00E+03 -7.50E+03 -7.73E+03 -7.22E+03 -7.22E+03

kd
N

It is clear from Table 5.1 that the FSDT results show significant inaccuracy except for a unit
FCSR value. The HSDT results also lack accuracy in the cases of very soft cores with
relatively large FCSR. The proposed model, along with the IC-ZZT and ID-ZZT models are
equally accurate for all the considered scenarios, which verifies the ability of the proposed
zigzag function in capturing the cross-sectional warping of sandwich structures and confirms

the feasibility of neglecting the continuity of transverse shear stresses in such problems.

Figure 5.6 compares the through-thickness distributions of the transverse shear stress at L/4
for the three models with different FCSR values. Clearly, all models provide almost the same
predictions on the shear stress distribution in the core. However, the distributions in the face
sheets show significant discrepancy. The IC-ZZT model provides a continuous curvilinear
distribution, whereas the ID-ZZT gives zero shear stress in the face sheets due to the
employment of Kirchhoff assumption in the face sheets. The proposed model yields a

piecewise linear distribution of the transverse shear stress, which provides an adequate fit of
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the real distribution for an FCSR of 10 but indicates a big discrepancy for an FCSR of 10*.
Nevertheless, as noted in the previous section, for sandwich structures that consist of a soft
core, the core offers the dominant contribution to the transverse shear strain energy whereas
the contribution from the face sheets is not of significance. On the other hand, for sandwich
structures where the core is of a comparable stiffness with the face sheets, the contribution
from the faces to the overall transverse shear stress becomes important. In this case, the
proposed piecewise linear distribution of the transverse shear strain still provides a good
approximation of the real shear stress distribution, as is illustrated in Figure 5.6.a. Therefore,
the proposed transverse shear strain distribution is applicable to sandwich structures with a
wide range of FCSRs. Furthermore, the omission of constraints on inter-laminar continuity of
the transverse shear stresses leads to a less coupled multi-layer system, which enhances

computational efficiency.
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Figure 5.6: Through-thickness distribution of transverse shear stress 6, (Cont’d...).
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Figure 5.6: Through-thickness distribution of transverse shear stress G, .

5.3.2 Sandwich beam with asymmetric lay-up

In order to demonstrate the effectiveness of the proposed zigzag function A(t) in the analysis
of asymmetric cross-sections, the proposed formulation is compared against two formulations,
denoted as ‘MZZF1’ and ‘MZZF2’, which add the MZZF to planar displacements which are
respectively first- and second-order polynomials in z. The through-thickness variation of the
transverse displacement is neglected in both models. The proposed discrete transverse shear
strain distribution is employed for all formulations. Two asymmetric lay-ups are considered:

The relative errors of the displacement and stress predictions with the considered models are
shown in Table 5.2, from which it is clear that the proposed zigzag function provides high
accuracy with various lay-ups and FCSR values. In contrast, the MZZF1 formulation, which
has the same number of displacement variables as the proposed formulation, is accurate for
relatively small FCSR values only. By adding a quadratic polynomial to the through-
thickness distribution, the MZZF2 formulation improves on the MZZF1 results for larger

FCSR values, but still lacks accuracy for a larger FCSR, which implies the need for even
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higher-order z expansions and hence more zigzag displacement variables. Taking into
account the number of additional zigzag displacement variables for each of the formulations
(one for ‘present’ and ‘MZZF1’, and two for ‘MZZF2’), it is evident that the proposed zigzag
function A(t) exhibits better efficiency than the MZZF for asymmetrically laminated

sandwich structures.

Table 5.2: Evaluation of different models for an asymmetrically laminated sandwich beam with

various FCSRs.
Case 1 ( h;/h, =2, h,/h, =7) Case2 (h,/h; =2, h,/h, =2)
Results Reference Relative Error Reference Relative Error

value Present MZZF1 MZZF 2 value Present MZZF1 MZZF 2

U,  _443E-04 0.00% 8223% 1.13% 239E-04  0.00% 77.54%  1.57%

FCSR=10* G, _638E+05 0.00% 23.26%  0.04% 7.92E+05 0.00% 52.08%  3.98%
G, -547E+03 0.00% 99.61%  4.95% -431E+03  0.00%  99.66%  3.09%

U, _1.19E-04 0.00% 33.85%  0.53% -8.08E-05 0.00% 33.62%  0.05%

FCSR=10 G, _490E+05 0.00% 0.02%  0.00% 3.92E+05  0.01%  3.05%  0.24%
G, -579E+03 0.01% 9647%  5.07% -6.37E+03  0.00% 97.76%  3.06%

u, _808E-05 0.00% 3.90%  0.09% -5.59E-05 0.00% 4.47%  0.01%

FCSR=10> G, _490E+05 0.00% 0.00%  0.00% -3.80E+05  0.00%  0.00%  0.00%
G, -580E+03 0.07% 73.13%  5.08% -6.55E+03  0.02% 81.54%  3.02%

U,  _7.12E-05 0.00% 0.12%  0.01% -521E-05  0.00%  0.16%  0.00%

FCSR=10' O, _486E+05 0.00% 0.00%  0.00% -3.80E+05  0.00%  0.00%  0.00%
G,, -580E+03 0.75% 20.40%  4.87% -6.58E+03  0.28% 27.69%  2.64%

U,  _453E-05 0.00% 0.00%  0.00% -453E-05 0.00%  0.00%  0.00%

FCSR=10° ©, _375E+05 0.00% 0.00%  0.00% -3.75E+05  0.00%  0.00%  0.00%
G, -6.65E+03 6.83% 0.88%  0.83% -7.04E+03  3.34%  0.75%  0.56%

5.4 Kinematic description for laminated shells

Upon verification of the effectiveness and efficiency of the sandwich shell model, a

generalised multi-layer shell model specific to an alternating stiff/soft lay-up is proposed.
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5.4.1 Characteristics of alternating stiff/soft laminations

Laminations with an alternating stiff/soft lay-up have two main characteristics which
distinguish them from other laminations. Firstly, the large stiffness ratio between the stiff
layer and the soft layer (still denoted as ‘FCSR’ hereafter) plays an important role in the
through-thickness distribution of the transverse shear stresses and strains. To illustrate this
point, multi-layer beams with an alternating stiff/soft lay-up have been modelled under
bending with 2D plane-stress analysis, where Figures 5.7-5.8 respectively depict the
schematic distributions of the transverse shear stress and strain with 5 and 7 constitutive
layers and various FCSRs. From Figures 5.3, 5.7-5.8, it is observed that the distribution of the
transverse shear stress changes significantly with different FCSR values. However, the
transverse shear strain distribution for this type of laminations shows that for the considered
FCSR range the softer layers sustain much larger strains than the stiffer layers and exhibit a

near constant distribution through the constitutive layer.

Secondly, a large FCSR induces significant zigzag effect in such laminations. The variation
of planar displacements under bending is investigated by performing a 2D plane-stress
analysis of a multi-layer beam with an alternating stiff/soft lay-up, which indicates that all
stiff layers have almost identical rotations of their respective normals, whereas the soft layers

can have different rotations.

FCSR=10° FCSR =10* FCSR=10
suff — /————s e ]

Soft

Stiff — F—— e —— R

Soft

Siiff . L—— T —— ]

a. transverse shear stress

Figure 5.7: Through thickness distribution of transverse shear stress/strain with various FCSRs (5

layers) (Cont’d...)
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Figure 5.7: Through thickness distribution of transverse shear stress/strain with various FCSRs (5

layers).
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b. transverse shear strain

Figure 5.8: Through thickness distribution of transverse shear stress/strain with various FCSRs (7

layers).

Following on from the above noted characteristics, a laminated shell model with an
alternating stiff/soft lay-up is proposed. Figure 5.9 depicts the lamination model for a plate

along with the local coordinates, where the x- and y-axes are located at the middle surface,
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while the z-axis is normal to the plate, and where each layer is identified by a unique index. It
is important to note that while the kinematic descriptions is presented for a plate problem, it
is equally applicable to local formulations of shallow shells and, through incorporation within

a co-rotational framework, to the nonlinear analysis of general curved shells.

Layer (N;)

Layer (N}-1) \ V4

y
Layer (2)

Layer (1)

Figure 5.9: Laminated plate and local coordinate system.

5.4.2 Zigzag displacement fields

Similar to the sandwich model, this lamination model assumes a piecewise linear variation of
planar displacements in the z direction. Based on the summarised pattern of the zigzag
displacements, it is assumed that all stiff sheets have identical rotations of the normal,
whereas the soft sheets allow different rotations. Accordingly, for a lamination consisting of
(N, +1) stiff layers bonded by N soft cores (N_ denotes the number of soft core layers),
the through-thickness distribution of the planar displacements can be decomposed into a
constant and a linear mode, in accordance with the Reissner-Mindlin kinematic hypothesis,
as well as N, zigzag modes, denoted by Aj(z) (j=1—N,), accounting for the zigzag

effect. Each zigzag mode can be initially expressed as (Figure 5.10.b):

0, ze[h hy |
o 1 - .
A (z) = _(Z_hzj;)a Ze_hzj;thJ (J=1->N,) (5.18)
2j
1 ze _h2j+ ,hJ
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By orthogonalising each zigzag mode Af(z) with respect to the constant and linear modes,

with the addition of constant and linear terms, the zigzag mode becomes (Figure 5.10.c):

A(2)=Aj (@) +ag;+oy;z (5.19)
h,; +h,. 4h2. +4h,. h,. +4h3. —3h?
e 2. " 25 _l’ o = 2j 2j 2J+3 2j, (5.20)
: 2h 2 : 2h
The resulting planar displacement fields are expressed as:
N, .
Uy (X,Y,2) = Uy (X, y)+ 20, (5, Y) + D A (23 (x,y)  (a=x,y) (5.21)

J=1

where 821 are the additional fields associated with the proposed zigzag functions along the x-
or y-axis. The transverse displacement is assumed to be constant through the plate thickness,

and is thus denoted by u_,(X,y).

a. Lay-up b. A? before orthogonalisation c. A i after orthogonalisation

Figure 5.10: Zigzag modes for a 5-layer lamination with alternating stift/soft lay-up.

5.4.3 Kinematics of individual layer

Each constitutive layer of the lamination model is regarded as a pseudo plate. At layer (k)
(k=1—N,, where N, denotes the number of constitutive layers), the planar displacements

on the layer mid-surface are obtained as:

NC .
0 mu+209, + S APS (a=xy) (5.22)
j=1
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where Agk) E/\j(Z(k)) represents the extracted value of the zigzag function A;(z) on the
middle surface of layer (k). The transverse displacement on the layer mid-surface is obtained

from (5.6).

The rotational displacements of layer (k) are derived by taking the first derivatives of the
planar displacements with respect to z:

N , OA ;
- (k) (k) _ 7
=0, + Y A{09), A ==

20 j=1

)
G(k) _ ou o
o

o (a=x,y)

(5.23)

40

T
Denote u, = <ux0,u u,,0,, 9y> as the basic local displacement fields consistent with the

y0>
Reissner-Mindlin formulation, u, = <8;,8; _,_959’91;10 >T as the additional displacement
fields associated with A;’(Z) (j=1->N,), and u® = <u(f),u(ly‘),u(§),9(,1(‘),6(;‘) >T as the
displacement fields at layer (k) treated as a pseudo plate. The relationship between the layer
displacements, u'®), and multi-layer displacements, u_ and u,, is then identical to (5.8) with

Ték) and Tsz) obtained from respectively (5.9) and the following equation:

k k = K
AR 0 b Ag) 0 A%\I) 0
K K i K
0 Af it 00 AP0 AR
V=0 090 0 L0 0 (5.24)
k : k (k
AR 0 MO0 A0
0 AW 0 AW 0 AW
L Loy o Ne Jesxan,)

(k)

S

(k)

> bending generalised strains s{)k) , and transverse shear strains €

The membrane strains g
within each layer (k) are obtained from (5.11)-(5.13) with z, representing the offset of the
shell mid-surface along the z-axis, thus generalising the kinematics of flat plates to shallow

shells.

5.4.4 Through-thickness distribution of transverse shear strains

Based on the aforementioned pattern of transverse shear strains, as depicted in Figures 5.3
and 5.7-5.8, it is assumed that in the external stiff sheets the shear strain varies linearly from

zero at the outer surface, whereas for each internal layer the shear strain remains constant.
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The through-thickness distribution of the assumed transverse shear strain at each layer (k) is

expressed the same as (5.14) with F (z) given as follows:

2€z—7D 2z — 70D
() e 2

1

F(z)=1+ , FE(@=1 (k=2->N,-1) (5.25)

()

The shear correction factor @’ can be derived from energy equivalence at the generalised

) . . . . . 3
stress/strain and material stress/strain levels via (5.16), which results in ©"” = @™ = 2 and

o™ =1 (k=2->N-1).

In the range of FCSRs, this assumed distribution for the transverse shear strain offers a
realistic representation of the exact solution without imposing continuity constraints on
transverse shear stresses, which is also more practical than an assumed stress distribution
when considering material nonlinearity. The exclusion of stress coupling between layers
leads to a lamination formulation that achieves good levels of accuracy with high
computational efficiency, which becomes even more pronounced for laminated shell

structures with more layers.

5.5 Verification of through-thickness kinematics of lamination
model

A 1D cantilever beam example is used here to illustrate the effectiveness and efficiency of
the lamination model. As depicted in Figure 5.11, the laminated cantilever, which has a
length of L = 1.0 and a depth of h = 0.1, is clamped at one end and loaded with a transverse
force P = —100 at the free end. The lay-up scheme consists of an alternating stiff/soft/...
configuration. Material properties for the stiff face sheets are: Young’s modulus
Ep = 7x10", and Poisson’s ratio V(r) =0.3. The Young’s modulus and shear modulus for
the soft core layers are obtained by dividing those of face sheets by a FCSR which is assumed
to be respectively 10, 100, 1000, and 10000. The lamination model is assessed for different
numbers of layers and layer thicknesses, with the considered lay-ups listed in Table 5.3 Note
that in all considered cases the core layers are of equal thicknesses h,, and the total

thickness of the beam is fixed to h=10.1.
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Figure 5.11: A multi-layered cantilever beam loaded with a transverse force at the free end.

Table 5.3: Lay-ups of laminated cantilever beam.

Lay-up Symmetry Layer thicknesses
(1) Symmetric All stiff layers: h ) =5h
3) Asymmetric Top stiff layer: hg)l) =10h (, ; other stiff layers: h ) =5hc,
(4) Asymmetric Top stiff layer: h{f,’ = (2/5)h () ; other stiff layers: h ) = (1/5)h,

The problem is modelled with 1D 3-noded laminated beam elements employing the proposed
zigzag displacement fields and transverse shear strain distributions, and shear locking is
eliminated by using two-point strain mapping of the transverse shear strain. The free end

deflection and the normal stress component at the clamped end are investigated:

U, =u,(L,0), &,=0,(0,h/2)

where the convergent solution obtained from 2D plane-stress analysis is used as a reference.
Note that this is a linear elastic problem of a straight laminated beam, so a linear strain-

displacement relationship is considered without the inclusion of the second-order terms.

The performance of the lamination model for different lay-ups and number of layers is
assessed here. For each considered lay-up and number of layers, a uniform mesh of 32
laminated beam elements employing the proposed zigzag displacements and transverse shear
strain distribution provides a convergent solution, denoted as ‘Present’. In addition, the so-
called ‘MZZFi’ formulations, which include MZZF into the displacements that are of i"-
order in z, are also established, with a 32 element mesh providing a convergent solution. For
comparison purposes, the z expansion order of the 'MZZFi' formulation is selected such that
the same number of nodal displacement parameters are used for both formulation types.

Table 5.4 lists the z expansion order of ‘MZZFi’ used for the five-, seven-, nine-, and eleven-
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layered cases. The proposed discrete transverse shear strain distribution is employed for all

formulations.

Table 5.4: Order of z expansion used for ‘MZZFi’ formulation.

Number of layers Order of z expansion
5 2
7 3
9 4
11 5

The convergent solutions of ‘Present’ and “MZZFi’ models for the two symmetric lay-ups (1)
and (2) are provided in Tables 5.5-5.6, whereas the results for the two asymmetric lay-ups (3)
and (4) are given in Tables 5.7-5.8. It is clear that for lay-ups (1) and (2) both models provide
accurate results with the proposed model yielding slightly better accuracy. For lay-ups (3)
and (4), the ‘MZZFi’ models become less accurate, with the relative error increasing with the
FCSR. On the contrary, the proposed lamination model still provides a close estimation to the

reference solution.

Table 5.5: Evaluation of different laminated beams models with various FCSRs and number of layers

for symmetric lay-up (1).

U, Ox

Number of layers FCSR

Reference Present MZZFi Reference Present MZZFi

10! -6.06E-06  -6.06E-06 -6.06E-06  6.53E+04  6.51E+04 6.51E+04
5 103 -1.20E-05  -1.20E-05 -1.20E-05 9.46E+04 9.46E+04 9.46E+04
10° -6.80E-05 -6.80E-05 -6.80E-05 2.17E+05 2.17E+05 2.17E+05
10! -6.22E-06  -6.21E-06 -6.21E-06 6.73E+04  6.68E+04  6.65E+04
7 103 -1.25E-05  -1.25E-05 -1.24E-05 9.97E+04 9.97E+04 9.69E+04
10° -1.15E-04  -1.15E-04 -1.15E-04  2.80E+05 2.80E+05 2.77E+05
10! -6.32E-06  -6.32E-06 -6.32E-06  6.86E+04  6.79E+04 6.81E+04
9 10° -1.28E-05 -1.28E-05 -1.26E-05  1.04E+05 1.04E+05 9.98E+04
10° -1.65E-04  -1.65E-04 -1.65E-04 3.31E+05 3.31E+05 3.27E+05
10! -6.39E-06 -6.39E-06 -6.39E-06 6.96E+04  6.88E+04  6.80E+04
11 10° -1.30E-05 -1.30E-05 -1.27E-05 1.07E+05 1.07E+05 9.94E+04
10° -2.13E-04  -2.13E-04 -2.13E-04 3.70E+05 3.71E+05 3.60E+05
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Table 5.6: Evaluation of different laminated beams models with various FCSRs and number of layers

for symmetric lay-up (2).

u c

Number of layers FCSR z X
Reference Present MZZFi Reference Present MZZFi
10! -1.29E-05 -1.29E-05 -1.29E-05 1.39E+05 1.40E+05 1.40E+05
5 10° -4.61E-05 -4.60E-05 -4.61E-05 3.13E+05 3.14E+05 3.14E+05
10° -1.70E-03  -1.68E-03  -1.70E-03  1.75E+06  1.73E+06  1.75E+06
10! -1.52E-05  -1.52E-05 -1.52E-05 1.64E+05 1.64E+05 1.64E+05
7 10° -5.00E-05  -5.00E-05 -4.96E-05 3.60E+05 3.61E+05 3.54E+05
103 -2.20E-03  -2.20E-03  -2.19E-03  1.94E+06 1.93E+06 1.92E+06
10! -1.67E-05  -1.67E-05 -1.67E-05 1.80E+05 1.79E+05  1.79E+05
9 10° -5.29E-05 -529E-05 -5.20E-05 3.95E+05 3.95E+05 3.80E+05
10° -2.45E-03  -2.45E-03 -2.45E-03 2.03E+06  2.04E+06 2.00E+06
10! -1.77E-05  -1.77E-05 -1.77E-05 1.91E+05 1.90E+05 1.89E+05
11 10° -5.51E-05 -5.51E-05 -5.38E-05 4.20E+05  4.20E+05 3.97E+05
10° -2.60E-03  -2.60E-03  -2.60E-03  2.12E+06  2.12E+06  2.05E+06

Table 5.7: Evaluation of different laminated beams models with various FCSRs and number of layers

for asymmetric lay-up (3).

U, Ox

Number of layers FCSR
Reference Present MZZFi Reference Present MZZFi

10! -6.00E-06  -6.00E-06  -6.00E-06  6.33E+04  6.37E+04 6.22E+04
5 10° -1.06E-05  -1.06E-05 -6.95E-06  9.64E+04  9.74E+04  7.64E+04
10° -4.53E-05 -4.53E-05 -7.19E-06 2.20E+05 2.21E+05 7.87E+04
10! -6.09E-06  -6.09E-06 -6.08E-06 6.48E+04  6.52E+04 6.29E+04
7 10° -1.15E-05  -1.15E-05 -7.57E-06  1.05E+05 1.07E+05 8.40E+04
10° -7.94E-05 -7.94E-05 -8.13E-06  3.08E+05 3.10E+05 8.90E+04
10! -6.17E-06  -6.16E-06  -6.16E-06  6.60E+04  6.63E+04  6.34E+04
9 10° -1.20E-05  -1.20E-05 -8.09E-06  1.12E+05 1.13E+05 8.90E+04
10° -1.20E-04  -1.20E-04 -9.01E-06 3.95E+05 3.94E+05 9.66E+04
10! -6.23E-06 -6.23E-06 -6.23E-06 6.69E+04  6.72E+04  6.28E+04
11 10° -1.24E-05  -1.24E-05 -8.76E-06  1.17E+05 1.19E+05 9.11E+04
10° -1.63E-04 -1.63E-04 -1.05E-05 4.65E+05 4.68E+05 1.03E+05

168



Proposed Laminated Shell Model

Table 5.8: Evaluation of different laminated beams models with various FCSRs and number of layers

for asymmetric lay-up (4).

U, Ox

Number of layers FCSR

Reference Present MZZFi Reference Present MZZFi

10! -1.10E-05  -1.10E-05 -1.10E-05  1.08E+05  1.09E+05 1.06E+05
5 10° -420E-05 -4.20E-05 -1.83E-05 2.86E+05 2.87E+05 1.74E+05
10° -1.01E-03  -1.00E-03  -1.99E-05 1.67E+06  1.67E+06 1.83E+05
10! -1.29E-05  -1.29E-05 -1.29E-05 1.28E+05  1.28E+05 -1.29E-05
7 10° -4.57E-05  -4.57E-05 -3.17E-05 3.37E+05 3.40E+05 2.73E+05
10° -1.66E-03  -1.66E-03  -5.37E-05 2.20E+06  2.20E+06  3.52E+05
10! -1.42E-05 -142E-05 -1.42E-05 143E+05 1.43E+05 1.43E+05
9 10° -4.84E-05 -4.83E-05 -4.06E-05 3.75E+05  3.79E+05  3.56E+05
10° -2.07E-03  -2.08E-03  -1.19E-04 2.34E+06  2.50E+06  5.97E+05
10! -1.53E-05 -1.53E-05 -1.53E-05 1.54E+05 1.55E+05 1.54E+05
11 10° -5.04E-05 -5.04E-05 -4.43E-05 4.06E+05 4.10E+05 4.06E+05
10° -2.34E-03  -2.34E-03 -1.69E-04 2.71E+06  2.70E+06  7.80E+05

5.6 Summary

In this chapter, a three-layered sandwich shell model is firstly proposed. A zigzag function
that assumes identical rotations in face sheets is added to the Reissner-Mindlin plate theory to
consider the zigzag effect in displacements. Besides, a piecewise linear-constant-linear
through-thickness distribution of the transverse shear strain is assumed, which is specifically
suitable for sandwich lay-ups. Each layer of the sandwich shell is regarded as a pseudo
monolithic shell and employs the corresponding kinematics and constitutive relationships.
The governing equations of the laminated shell are derived with the employment of the
virtual work principle. Laminations with isotropic and orthotropic materials are readily

applicable so far, and other material models may also be used for the individual layers.

A 1D cantilever example has been used to demonstrate the effectiveness and efficiency of the
proposed zigzag function for sandwich shells. The adequacy of the assumed discrete
transverse shear strain distribution has also been demonstrated in comparison with the results
of models with continuous transverse shear stress distributions. In addition, the proposed

zigzag function outperforms the MZZF in asymmetrically laminated cases, which provided
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the inspiration for employing similar assumptions on layer rotations in the development of

generalised multi-layered shell model.

The three-layered shell model is then extended to a generalised multi-layered shell model
with an alternate (stiff/soft/...) layer-up scheme. A set of zigzag displacement modes are
employed in the planar displacements, the number of which is dependent on the number of
soft layers. These zigzag displacement modes are defined such that all stiffer layers are
assumed to rotate at the same angle while the soft layers may have different rotations. The
through-thickness transverse shear strain is assumed such that all internal layers have
constant values through the layer thickness while the external ones utilise a linear distribution

with zero values at the top and bottom of the plate.

Similar to the three-layered sandwich case, a 1D cantilever example has been used to stress
the accuracy of the zigzag displacement set and the assumed transverse shear strain
distribution. Furthermore, the accuracy of the proposed zigzag functions in modelling beams
composed of identical and different stiff sheets are investigated, and the results are compared
against the MZZFi predictions to emphasise the effectiveness of the proposed zigzag
functions. It is concluded that the proposed multi-layered shell model is both accurate and
efficient. In the next chapter, the incorporation of this model within finite element shell

formulations is presented.
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CHAPTER 6

Laminated Quadrilateral and Triangular Shell

Elements

6.1 Introduction

In this chapter, the application of the proposed lamination model is illustrated for 6-noded
and 9-noded co-rotational shell elements, as described in Chapter 3, noting that it can also be
similarly applied to other shell elements of various shapes and orders. Owing to the
employment of the co-rotational approach, geometric nonlinearity is considered separately
from the local element formulations, thus allowing the adoption of a fixed kinematic
relationship between the element and layer local displacement fields as well as the
employment of low-order, even linear, relationships between the strain and local
displacement fields throughout the large displacement analysis. Furthermore, the additional
zigzag displacement variables are associated with local cross-sectional warping only; hence, a
2D ‘shell’ coordinate system is employed in this research for direct definition of these
additional variables, which effectively minimises the required co-rotational transformations
and enhances computational efficiency, and which also facilitates defining the fibre

orientation for composite materials.

In the following sections, the merits of the co-rotational approach in the context of laminated
shell modelling are first discussed, which is followed by proposing a 2D curvilinear system,

so-called ‘shell’ coordinate system, which enables the effective and efficient consideration of
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the additional zigzag displacement fields, and which, in the consideration of composite
materials, facilitates the establishment of the material fibre orientation in relation to the
element local system. Nonlinear transformations between the global coordinate system and
the local co-rotational system, as well as the required linear transformations between the shell
coordinate system and the local co-rotational system, are subsequently given. With the
employment of the co-rotational system and the shell system, the formulations of triangular

and quadrilateral laminated shell elements are presented.

In order to perform dynamic analysis, effective consistent mass matrices for the considered
elements are also provided, which provide good accuracy for thin-to-moderately thick plate

and shell applications.

Verification examples are finally presented to demonstrate the accuracy of the developed

formulations for nonlinear analysis of laminated plates and shells with an alternating stiff/soft

lay-up.
6.2 Co-rotational approach

In formulating large displacement finite elements for small-strain problems, the relationship
between the strain and displacement fields is highly nonlinear and complex if the
displacement fields are referred to a fixed coordinate system, where the nonlinear strain terms
arise mainly from the element rigid body rotations. As demonstrated in Section 3.3, the co-
rotational approach enables the use of a low-order strain displacement relationship at the
local level and addresses geometric nonlinearity through transformations between the local

and global systems that are applied at the level of discrete element parameters.

The embedment of a monolithic Reissner-Mindlin formulation into the co-rotational
framework is usually achieved by relating 5 local nodal displacement parameters, 3
translations and 2 rotations, to their counterparts in the global system; the exception would be
where adjacent shell elements meet at an angle, in which case 3 rotational parameters would
be used (Izzuddin & Liang, 2015). Since the co-rotational system follows the element
configuration throughout the large displacement analysis, the transformations between the

global and local element systems are nonlinear and vary from step to step.
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6.3 Shell coordinate system

For the laminated shell element formulation, if the continuity of the zigzag displacement
fields is enforced via additional parameters defined in the global coordinate system, similar to
the basic nodal displacement parameters, then these would be subject to co-rotational
transformations to the local system, thus imposing further computational demands. Noting
that the zigzag fields describe the local effect of cross-sectional warping, it is proposed that
they are defined in a 2D orthogonal curvilinear coordinate system over the shell structure,
denoted as the ‘shell’ coordinate system, which thus follows the local co-rotational system at
the element level. With the associated additional zigzag parameters defined in this shell
coordinate system, continuity of the zigzag fields is ensured. Importantly, the element
response associated with the zigzag parameters can thus be evaluated via a fixed linear
kinematic transformation between the shell and local element systems, as elaborated in
Section 6.4, rather than a varying nonlinear co-rotational transformation, which enhances the
computational efficiency of the geometric nonlinear analysis of laminated shells. Another
main benefit of using a shell coordinate system relates to defining fibre orientation for

composite materials, which will be discussed in Section 6.3.2.

Figure 6.1: 2D curvilinear shell coordinate system.

In order to ensure continuity of the zigzag fields, a key requirement is that the 2D shell
coordinate system must be associated with a unique orientation of its orthogonal directional
vectors at an arbitrary point on the shell mid-surface. Besides this fundamental requirement
of uniqueness, it is desirable for the 2D curvilinear shell system to be defined in a continuous
manner, as illustrated by the dotted contour lines in Figure 6.1. For a smooth shell structure, a

continuous definition of the shell system can be obtained in different ways, provided the shell
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surface is open. On the other hand, for a closed shell surface (e.g. a sphere), a discontinuous
definition of the 2D shell coordinate system would be necessary, where the discontinuity may
be localised to a single point or line. For shell structures with a folded edge, the shell system
would not be uniquely defined along the fold line, though there is no requirement for
continuity of the zigzag fields in such locations; a typical realistic treatment would be to
restrain the additional zigzag parameters at fold lines, though a more relaxed treatment based
on a free natural boundary condition for the associated zigzag forces can also be considered

with the use of element-specific zigzag parameters along the folds.

With reference to the 2D curvilinear shell system (r,s) shown in Figure 6.1, the additional
displacement zigzag parameters of an arbitrary element can be defined along the two
curvilinear directions at the node level (refer to Element I). Although the relative orientation
of the shell coordinate system and local element system can vary over one element, a constant
relative orientation may also be considered at the element level (refer to Element II), where
all additional zigzag parameters would be assumed to accord with the surface vectors at the
element centre, provided the 2D shell system is continuous. While this assumption is
associated with some inaccuracy, especially for a coarse mesh, it simplifies the determination
of the additional displacement fields over the element, and importantly it retains the
convergence property with mesh refinement. For small-strain problems, the relative
orientation of the shell coordinate system and the element local system can be assumed to
remain constant throughout the analysis; hence this orientation can be established at the start
of nonlinear analysis in terms of a fixed angle B for each element denoting the rotation from

¢, to ¢, (Figure 6.2).

Figure 6.2: Relative orientation between the local element and shell systems.
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6.3.1 Alternative definitions of shell system

There are potentially many different methods for defining a unique and continuous 2D
curvilinear shell system over a smooth shell structure with a continuous surface. One such
definition is proposed here utilising the uniqueness and continuity property of the normal to
the surface ¢, of such a shell structure. In this definition, the 2D orthogonal shell system is

obtained as a rotation of a user-defined reference triad (cy,¢y,¢5), where the rotation that

o)

transforms ¢; to ¢,

is first obtained, and this then transforms (cg,cy) to (e7,cg),

respectively, as illustrated in Figure 6.3. The derivation of ¢; is given as:

o_ T
¢, =T, R T cy (6.1)
with:
¢/
" ¢ ¢
T,=|¢c; |, ¢ =¢, &= o7 €276%¢ (6.2)
T cz ><cz
C3
and:

cos(0) —sin(d) 0
R, =|sin(8) cos(d) 0|, cos(d)=cy-c,

n z° (63)
0 0 1

sin(8) = ch x ¢

where & represents the rotation from ¢ to ¢ .

For a closed shell surface, such as a spherical shell, this definition cannot be applied at the
point with the normal ¢) pointing just opposite to ¢ (i.e. the two vectors are at an angle of

180°).

A second alternative definition is also proposed, as illustrated in Figure 6.4, where ¢; in the
initial undeformed configuration is considered to be a projection of a user-defined vector n on

the shell surface, and ¢; is obtained from:
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-

¢, = : (6.4)

This definition can be used to generate a continuous 2D shell system provided a vector n can
be specified which is not orthogonal to the shell surface at any point. For some curved shells
with open surfaces, such as a hemi-spherical shell, this is not possible, hence a discontinuous
definition of the 2D shell system will be required at the point(s) where the shell surface is

normal to n.

c, Reference triad

Axis of rotation

a. Rotation of reference triad

b. Resulting curvilinear axes of shell system

Figure 6.3: An alternative definition of shell coordinate system using a reference triad.
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n
T Reference vector

Figure 6.4: An alternative definition of shell coordinate system using a reference vector.

Figure 6.5: An alternative definition of shell coordinate system using a reference point.

Figure 6.5 illustrates a third alternative definition, which is similar to the previous one except
that the projection vector n points from the shell surface to a reference point O, with similar
restrictions to the second alternative in relation to the case where n may be orthogonal to the

shell surface.

It is worth noting that in cases where a discontinuous definition of the 2D shell coordinate

system is inevitable, a unique orientation of (¢,c¢.) can still be prescribed at the point(s) of

r>™s

singularity, and the additional displacement zigzag parameters of the surrounding elements

can then be defined at the node level (refer to Element I in Figure 6.1).
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6.3.2 Composite materials

Besides the enhancement of the computational efficiency in large displacement analysis, the
utilisation of the 2D curvilinear shell system provides the additional benefit of providing the
orientation of material fibres in relation to the local element coordinate system when
composite materials are considered. In a general arbitrary mesh, the direction of the element
local system can vary throughout the mesh, depending on the employed definition of the co-
rotational approach, the element configuration and nodal ordering. However, with the use of a
continuous 2D shell system, the material fibre orientation can be defined with respect to the
shell r-axis, as described by the continuous vector ¢, in the initial undeformed configuration.

By denoting a™ to be the angle from the shell directional vector ¢ to the material fibre

0*(k)
r

direction at layer (k), ¢, the angle from the local element x-axis to the material fibre

direction is simply obtained as (Figure 6.6):

o = ® _p (6.5)

This then allows the constitutive material response to be established in the local element

system through appropriate strain/stress transformations.

Fibre direction

Figure 6.6: Relative orientation between the local element, material, and shell systems.

6.4 Kinematic transformations between global, local and shell
systems

As already noted, a co-rotational framework is employed in this research for upgrading the
low-order laminated plate/shallow shell model to geometrically nonlinear analysis, where the
nonlinear kinematic transformations between the global and local element systems are

conveniently restricted to the basic nodal displacement and rotational parameters. On the
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other hand, the additional zigzag displacement parameters, which describe the local cross-
sectional warping behaviour only, are defined in a specific shell system which follows the
local element system at a constant orientation, and are therefore excluded from the co-

rotational transformations.

The kinematic relationship between local displacement variables and their global counterparts
depends on the employed definition of the co-rotational approach and the sequence of nodal
numbering. This is illustrated for a 9-noded shell element using a bisector co-rotational
system definition in Section 3.4 (Izzuddin, 2005; Izzuddin & Liang, 2015) and for a 6-noded
shell element using a zero-macrospin system definition in Section 3.5 (Izzuddin & Liang,
2015). On the other hand, the relationship between the zigzag displacements defined in the
shell and local systems is linear for small-strain problems, where the following is employed

to transform the additional fields from the shell system to the local element system:
9J
} "+, ¢=cos(B), $=sin(B) (=1-N,) (6.6)

where <8i,8§> (j=1—>N,) are additional zigzag displacement fields in the element local
system; <9j 8j> (J=1—>N,) are the associated fields defined in the curvilinear shell system;

r>™s

and angle B is the relative orientation of the two systems obtained at the start of analysis.

Note that (6.6) is most effectively accounted for in the kinematic description of (5.8)-(5.9) by
re-defining the additional zigzag fields w, in the shell coordinate system, i.e.

1 ql N, oN. \T " . (k)
u, = <9r, g9, ¢, 9 > , and adjusting the transformation matrix T,"’ to:

|
[
[
;
0 0 T 0 0
[
[
[
[
[
I

TO=|""0 0 1
““““““ I IR
An (k) an(k A A ~ A
CM SA ) ii ckj SXJ i C?\.NC SKNC
o) Ag () A (k) AR A (k) A (k)
I SA; CA ol SA;7 CA; ! SAN, CAN Jsan
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This works well provided the shell system is continuous over the element, in which case the
response is convergent with mesh refinement even where any variation in the relative
orientation of the shell and local element system is ignored for curved shells, with (¢,$)
assumed constant over the element. On the other hand, when the local shell system is
discontinuous, as would be the case at specific locations for a closed shell structure, the most
effective approach would be to transform the nodal zigzag displacement parameters from the
node-specific shell system to the local element system, with the local parameters then used to
define the local zigzag fields <8i, SJy> directly. The latter approach is utilised for generality

in the following application to laminated shell elements.

6.5 Application to 6-noded and 9-noded shell elements

The application of the proposed lamination model to the 6-noded and 9-noded co-rotational

shell elements is presented hereafter.

6.5.1 Local element Kinematics

T

Local and additional parameters are respectively defined as U :<U£1,-~-,U£i,~-,U£Ne>
T

and U, :<U£1,---,Uli,---,U£Ne> , where Ug; and U,; contain respectively five local

nodal parameters and 2N_ additional parameters, which are expressed as

T T

r,i> Vs, r,i®Vs,i
T
parameters at layer (k), which are defined as U(k)=<Ufk)T,---,Ui(k)T,-~-,U§\II‘)T> with
u® :<u(k? a® Ly ® g

T
xio>UyioUgi 0y ,G(Yki)> , can be obtained from the following relationship:

U =10 +THU, (6.8)
k k
T 0 T 0
k . k .
T = g . T = g (6.9)
(k) (k)
O T Jsnosny O T Jsnoanay

where Tc(k) and Ta(k) are given in (5.9) and (6.7), respectively. Note that Tlgk) applies to a
continuous shell system definition, ignoring the change of (¢,s) over the element, but it can
be easily modified to account for different shell orientation vectors at individual nodes by

adjusting the component diagonal Tefk) sub-matrices accordingly.

180



Laminated Quadrilateral and Triangular Shell Elements

With the mapped pseudo displacement fields, the generalised strains of each layer (k) are

calculated via (5.11)-(5.13) presented in the previous chapter.

6.5.2 Material constitutive response

For linear isotropic and orthotropic materials, the material stresses are obtained from the

following equations:

k k). (k k K).(k
o) = CI0), 608, = O (6.10)
where S;k) are planar material strains of layer (k), given as:

h 2(z -2z
L e T U 6.11)
k

agk/ls represents the assumed transverse shear strains as presented in Chapter 5; C(Ilj) and

C(Sk) are material constitutive matrices for planar and transverse shear stresses/strains of layer

(k).

For a linear isotropic material, C(Ilj) and C'" are given as:

E® E® 10
c = v 1 0 , ck = (6.12)

with B and v\ representing the Young’s modulus and Poisson’s ratio of layer (k).

For a linear orthotropic material, C(I];) and C(sk) are obtained from:

k *K)T ~*(k) p*(k k *K)T ~*(k) p*(k
(olele WL oGl WU el WULY el W (6.13)
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k k k
BV WOES
k k k k
1_ng)"(zl) 1_ng)"(zl)
) (k (k (x)
o _ viy'ESY ESY 0 o _ ST 6.14
b (0 O » G F @ (6.14)
1=viy'va) T=viy'vy 0 G
k
0 0 G

cosz((p(k)) sinz((p(k)) %sin(Z(p(k))

cos((p(k)) sin((p(k))

Ty =] sin®(@®) cos(0™) = sin(20™)) |, TJ“{ (k>)] (6.15)

—sin((p(k)) cos(p
—sin(2¢™) sin(2¢™)  cos(2p™))

where C*ng) and C'® are the material constitutive matrices in the material coordinate
system; T;(k) and T, are constitutive transformation matrices from the material coordinate
system to the local element system; ¢ is the angle from the element coordinate system to

the material coordinate system at layer (k), as given in (6.5).

Although only linear isotropic and orthotropic material models are considered in this chapter,

other linear and nonlinear material models may also be used.

6.5.3 Local resistance forces and stiffness

Local resistance forces of the laminated shell element are obtained from the internal virtual

work over the element, which is expressed as:

Nl hk+
k k k k
SUL T +8UL T, = || [ (8500l +3el00ls ) dz |4, W(8UC,dUL)  (6.16)
k=1 h

Qe

where integration is performed over the local element domain Q°; f- and f, are resistance

forces with respect to basic parameters U and additional parameters U , , respectively.

By defining the generalised membrane, bending, and transverse shear stresses as follows:
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hk+
Fo = j 6\Vdz =h, CVe!y (6.17)
h,
hk+ 1
M® = [ g (Z ) )dz - Ehicg‘)gg‘) (6.18)
h,_
hk+
QW = [ olsdz = 0", C Ve (6.19)
h,

Equation (6.16) is expressed in the following form:

Nl
UL +3UL £, = [ (8el F® + 860 TM® + 86 TQUY ) 4O, V(5U.,8U,)  (6.20)
k=1 ¢

Equation (6.20) can be further manipulated to:

SULf. +8U ) f, =
Nl
Z(SUE TOT 48U} Tf\k)T) j (B&‘”Dﬁ?aﬁ? +BIOTDMe() 1 B TPg®) )dQe, (6.21)
k=1 Q¢
V(8U,8U,)

where Bgl() , Bék) and ng) are the first derivatives of the generalised strains at layer (k) with
respect to pseudo parameters U(k); Dgl() , Df)k) , and ng) are generalised constitutive

matrices at layer (k), which are expressed as:

K 1 K
DY =h,C, D = Ehicg‘h D = 0“h, (6.22)

In order to address the locking effects, the hierarchic optimisation approach, which is
presented in Section 3.2 and instantiated for 9-noded and 6-noded monolithic shell elements
in Section 3.4-3.5, is employed in the local formulation of each constitutive layer. It is worth
noting that the optimal transformation between conforming and assumed strains depends only
on the element geometry. Therefore, the transformation established for monolithic shell
elements is also applicable for a specific set of generalised strains to all layers as well. After

the application of the optimisation scheme at each constitutive layer, the conforming strains
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(k

g0 g (k)

) and €, and the matrices B, B(bk) and B in (6.21) are replaced by &%, @:g(),
ﬁgk), ﬁfﬂj) , ﬁgk) and ﬁgk) with =’ denoting the adoption of the objective assumed strains, or
by égl(), ?—:l()k), égk), ﬁgl(), ng) and ﬁgk) with ©~’ denoting the adoption of the corrective

assumed strains.

Considering (6.21), the total resistance forces of the shell element associated with the local

nodal parameters U and the additional parameters U, are thus obtained as:

Nl Nl
fo=Y(TEM®), £, =2 (Td"W) (6.23)
k=1 k=1

where f*) is the vector of pseudo nodal forces at layer (k), with the objective strain form

expressed as:

£ = [ (BOTDIR + BITDEED + BOTDOEN |dos 624
Q¢

Furthermore, the local tangent stiffness matrices of the element are obtained as:

o of,
k.=—C6 — T Ty ) plk) .k, = A _ T T (O 6.25
C 6UE é( C C ) A G‘UX ;( A A ) ( )
1 _ e RN p0Ty (om0
Kea =kpc=—7% :Z(Tc k™Ty ) (6.26)
U,y o

where k™ is the local stiffness of layer (k), with the objective strain form expressed as:

BT a0 |1

(k) _ p (K THkpk) | pkTHkpk) | pk)THk Rk)
k —J(Bm DLBLY -+ BLYTDEBLY + BUTDIBLY +— R DVE

Qe

It is worth noting that for the considered isotropic and orthotropic material models k™ is a
symmetric matrix, which leads to k.- being the transpose of k., . For certain types of
nonlinear materials, however, k*) may not be symmetric, which requires to determine k AC

as follows:
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of,
kAC::_;%ﬁzzg(TgﬂTk“*n9>) (6.28)
aUC k=1

6.5.4 Co-rotational transformation of resistance forces and stiffness

In accordance with the co-rotational approach, the local resistance forces and stiffness
matrices of the sandwich shell element are transformed to the corresponding global system
entities before assembly at the overall structural level. It is important to note that the
relationship between additional parameters defined in the shell system and their counterparts
in the element local system is directly considered by incorporating (¢,$) into Tgk) , as given
in (6.7). Furthermore, the resistance forces vector f, and the stiffness matrix k, are
excluded from the co-rotational transformations, since the associated zigzag parameters are
defined at the overall structural level in the shell system, which maintains the same relative

orientation to the local co-rotational system in the deformed configuration.

The transformation of the resistant forces and stiffness matrices to the global coordinate

system are given as:

f,=T'f. (6.29)
2¢1T
kg =26~ T T+ UC g, (6.30)
ouL. oUoUL
of .
kGA:k};G: =T Kca 6.31
U, (6.31)

in which T is the nodal displacement transformation matrix from global parameters U to

co-rotational parameters U ( Izzuddin, 2005; Izzuddin & Liang, 2015), defined as:

ou
T=—%
T (6.32)
oUg
Still, for the considered materials, the stiffness matrix k ,; is the transpose of the stiffness
matrix kg, , owing to a symmetric local stiffness of each layer (k), k™. Otherwise, k AG

can be derived from:
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KA Za—TzkAcT (6.33)

6.6 Consistent mass matrices

The local mass matrix for each layer (k) can be obtained as in Section 3.6.1 except that the
layer density p, and layer thickness h, are used, which results in the layer mass matrix

expressed as follows:

_ _ M (k
M M it
IN, mgk)
M® M® om0
k) _ 21 22 2N, (k) _ k M
M= el M= m® r; (6.34)
: : : )
m
(k) (k) (k) !
_MNel MNez MNeNe_ m®
L r |

where FS’I can be obtained from (3.65) and mik) and mﬁk) are given as follows:

3
m =phy. i = Pil 639)

Since the same through-thickness description is employed for the acceleration fields as those

used in displacement fields, the local mass matrices are given as:

N, N,
M=) (TO™™MOTE), M, =Y (TP ™MOTY) (6.36)
k=1 k=1
Nl
My =M =D (T ™MOTY) (6.37)
k=1

It is worth noting that the layer mass matrix M® s symmetric, evident from (6.34) and

(3.65). Therefore, M 4. is always the transpose of M, .

Furthermore, the transformation of M, M, , and M, to global system gives:

Mg =T "M T° (6.38)

186



Laminated Quadrilateral and Triangular Shell Elements

Mg, =M, =T "M, (6.39)

where T° represents the element transformation matrix from global to local DOFs of the
previous time step, as given in (3.67) following the same updated Lagrangian approach
discussed in Section 3.6.2. Still, the symmetric layer mass matrix M) leads to M ,; being

always the transpose of M, .

The above formula leads to a mass matrix for laminated shell elements, where the
accelerations are assumed to have the same through-thickness distribution as the
displacements. Even so, for the considered dynamic analyses in the rest of this thesis, a
consistent mass matrix that ignores the mass associated with additional parameters is used for
the laminated shell elements, which is owing to the negligible contribution of the mass
associated with additional parameters on the overall mass matrix for slender LG applications.
Therefore, instead of the above formulation for the mass matrix, the consistent mass matrix
for monolithic shell elements provided in Section 3.6 is used for the laminated shell elements
in this work. Accordingly, the mass matrix for the laminated shell elements can be obtained
by employing (3.64)-(3.68) except that the density p in (3.65) requires to be replaced with the

average density of the whole LG cross-section.

6.7 Verification of laminated shell elements

The proposed 6-noded and 9-noded multi-layered shell elements have been implemented in
ADAPTIC v2.14.2 (Izzuddin, 1991), which is used hereafter in several verification examples
to demonstrate their accuracy and effectiveness in modelling linear and nonlinear problems.
In the following examples, the locking phenomena is addressed by employing the objective
alternative based on third order hierarchic optimisation for each layer. The proposed
quadrilateral and triangular laminated shell elements are denoted by acronyms Ln-H309 and

Ln-H306, respectively, with ‘L’ representing ‘layer’ and n the number of layers.
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6.7.1 Linear problems

6.7.1.1 Sandwich plate under bidirectional sinusoidal loading

A square sandwich plate, simply-supported along all four edges, is subjected to a
bidirectional sinusoidal transverse loading p = p, sin(nx/a)sin(ny/a), as depicted in Figure
6.7, where consideration is given here to the linear elastic response. The edge length of the

square plate is a, and the thickness is h (with h; =h; =0.1h and h, =0.8h). The material

parameters of the layers are given as:
Core:E® =E» =0.4x10°,G{2 =0.16x10°,G? = G¥ = 0.6x10°,v{2) =0.25;
Face:E{"” =2.5x10",E{"” =1.0x10°,G;” = G} =0.5%10°,GY;” =0.2x10°,v{5> = 0.25;

where the 1- and 2- material directions for the layers are aligned respectively with the x- and

y-axes.

Figure 6.7: Simply-supported sandwich plate under bidirectional sinusoidal loading.

Different length-to-thickness ratios are considered, where due to symmetry only a quarter of
the plate is analysed with a uniform 8x8 mesh of the L3-H309 element, which provides a
convergent solution. The shell system is obtained according to the approach illustrated in
Figure 6.3 with the reference triad (c,cy,¢5) aligned with the global system triad, in which
case the curvilinear shell triad maintains the same (x,y) directions for all elements. The
elasticity solution by Pagano (1970) is used as a reference solution. Results from other
researchers are also considered, including the FSDT solution by Pandya and Kant (1988)
using a 2x2 mesh of 9-noded elements, the solution by Balah and Al-Ghamedy (2002) using
a 16x16 mesh of 4-noded elements based on a third-order shear deformation theory (TSDT),
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the layer-wise theory (LWT) solution by Thai et al. (2013) employing an isogeometric
approach with quartic B-spline basis, and a higher-order zigzag theory (ZZT) solution by
Pandit et al. (2008) with a 12x12 mesh of 9-noded elements for the whole plate. The full
results are provided in Table 6.1. Key displacement and stress values are assessed with the

corresponding dimensionless results defined as follows:

100E¢-n3u, | 2,20 n2g [22h n2e (22 h
_ 2 \2727) " \272’2) __ \27272
z poa4 > X poa2 >y pOaZ
ho (o,a,oJ ho (a,o,o) h’, [o,o,h]
. XZ 2 . yz . y
Oy, = >0y, =" 50—
Pod g Po2 g Po'612

It is concluded from Table 6.1 that all the theories agree well for the thin sandwich plate
(a/h=100), in particular the deflection and planar stresses. As (a’h) decreases, the zigzag
effect on the plate behaviour becomes significant, which leads to a noticeable deviation of the
FSDT solution from the reference solution for moderately thick sandwich plates (a/h=10).
Although the TSDT solution provides improved accuracy over the FSDT results, its
predictions are still not as accurate as those of the other three models owing to the
employment of assumed displacement modes at the multi-layer level rather than at the layer
level. The L3-H309 model, which describes the zigzag effect with only two additional
displacement fields, exhibits comparable capability with the LWT, and ZZT models, both of
which assume four additional displacement fields, in the approximation of both the deflection
and stress components of moderately thick plates, which indicates the validity of the assumed
additional displacement modes and distribution of transverse shear strains. Figure 6.8 depicts
the through-thickness distributions of the considered stress components for the cases a/h=10
and 20, where the results of the L3-H309 model agree well with the LWT results by Thai et

al. (2013), with more realistic distributions of transverse shear strains.
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Table 6.1: Dimensionless deflection and stresses of a sandwich plate with various (a/h) ratios.

a/h Model u, G, c, G, c,, G,
FSDT (Pandya & Kant) 0.883 1.104  0.0546 02875  0.0270  -0.0435
TSDT (Balah & Al-Ghamedy) ~ 0.8903  1.0958  0.0548 03741  0.0342  -0.0436
100 LWT (Thai et al.) 0.8924  1.0975  0.0549 03234  0.0291  -0.0437
ZZT (Pandit et al.) 0.8917  1.1093  0.0547 03412  0.0324  -0.0434
L3-H309 0.8923  1.1010  0.0551  0.3250  0.0288  -0.0438
Elasticity (Pagano) 0.8923  1.0980  0.0550 03240  0.0297  -0.0437
LWT (Thai et al.) 0.9348  1.0989  0.0569  0.3225  0.0299  -0.0446
s ZZT (Pandit et al.) 0.9341  1.0948  0.0566 03403  0.0333  -0.0445
L3-H309 0.9348  1.1023  0.0570  0.3242  0.0294  -0.0448
Elasticity (Pagano) 0.9348  1.0990  0.0569  0.3230  0.0306  -0.0446
LWT (Thai et al.) 12262 1.1090  0.0697 03168  0.0352  -0.0511
0 ZZT (Pandit et al.) 12254 1.1055  0.0694 03342  0.0392  -0.0509
L3-H309 12264  1.1116 00699 03185  0.0347  -0.0513
Elasticity (Pagano) 12264  1.1100  0.0700 03170  0.0361  -0.0511
FSDT (Pandya & Kant) 1.557 1.062  0.0806 02779  0.0364  -0.0553
TSDT (Balah & Al-Ghamedy) ~ 2.0830  1.1470  0.1040 03489  0.0578  -0.0687
0 LWT (Thai et al.) 22011  1.1497  0.1090 02993  0.0513  -0.0712
ZZT (Pandit et al.) 22002 11483 0.1086 03158  0.0570  -0.0709
L3-H309 22049  1.1495  0.1093 03009  0.0509  -0.0714
Elasticity (Pagano) 22004 11530 0.1104 03000  0.0527  -0.0707
1.5 /i
1.0 -
?/f?
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& 0.0  — - — é
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a. Through-thickness distribution of G,

Figure 6.8: Through-thickness distribution of non-dimensional stresses for sandwich plate (Cont’d...).
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Figure 6.8: Through-thickness distribution of non-dimensional stresses for sandwich plate (Cont’d...).
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6.7.1.2 Sandwich plate under uniformly distributed transverse loading

A simply-supported square sandwich plate is subjected to a uniformly distributed transverse
loading p,, as shown in Figure 6.9, where consideration is again given to the linear elastic
response. The length-to-thickness ratio (a/h) of the plate is fixed to 10, and the thickness of

each face sheet is 0.1h. The elastic constitutive matrix of the core is:

[0.999781 0231192 0 | 0 0
c! o 0.231192 0.524866 0 i 0 0
CH=|todorpl=| 00 026931 0 0
016 0 0 0 50.266810 0
0 0 0 | 0  0.159914]

The constitutive matrix of the faces is given by CY =C® =FCSR-C?, where the value of
FCSR is alternatively taken as 5, 10, and 15. A quarter of the plate is modelled due to
symmetry, and an 8x8 mesh of the L3-H309 elements provides a convergent solution. In this
model, the shell system is aligned with the (x,y) planar coordinate system. The dimensionless

transverse displacement and stresses at some key positions are assessed, which are defined as

follows:
0.999781u,| 2,20 so[2ah cﬁf)[a,a,“h
_ 272 o \272°2) o 272710
‘ poh o Po o Po
e (a a 411) e (a a h] ¥ (a a 411]
3 \27°2°10) o Y \27272) , Y 272710
Gy = , O'y——, 0'y =
Po Po Po
ct? E,E,ﬂ Oy, O,E,O
Yy 2’2°10) _ 2
y: K ze =

Po Po

193



Laminated Quadrilateral and Triangular Shell Elements

payd
("
RNy EREN

-~ a =

Figure 6.9: Simply-supported sandwich plate under uniformly distributed loading.

The results of the L3-H309 model are shown in Table 6.2, which are compared against the
exact solution by Srinivas and Rao (1970). The FSDT and HSDT solution by Pandya and
Kant (1988) and the LWT solution by Ferreira et al. (2008) are also given for comparison
purposes. The results of a L3-H306 model with a mesh pattern as depicted in Figure 4.29 are

also presented in the table.

It is clear that as the FCSR increases, the difference in the material properties between the
faces and the core induces a significant zigzag effect of the sandwich plate, which leads to a
deteriorating performance of the FSDT solution. The HSDT solution, despite showing an
improvement in accuracy over the FSDT solution, still does not capture well the response of
the sandwich shell, particularly when the stiffness ratio FCSR is relatively large. The 8x8
mesh of the L3-H309 elements provides better accuracy than the LWT solution in the
approximation of both displacement and stresses owing to the employment of the assumed
transverse shear strain distribution. It is also observed that the L3-H306 element has

comparable accuracy with the L3-H309 element.
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Table 6.2: Dimensionless deflection and stresses of a sandwich plate with various FCSRs.

FCSR Model u, GL Gl G, G, G, G, G,
FSDT (Pandya & Kant) 236.10  61.87 4950 9.899 36.65 2932 5864 3313
HSDT (Pandya & Kant) 256.13 62.38 4691 9382 3893 3033 6.065 3.089
LWT (Ferreira et al.) 258.180  60.063 46393 9279 38364 30.029 6.006  4.095
L3-H309 258.957 60302 46.604 9321 38523 30.155 6.031 4.135
L3-H306 258.957  60.347 46.634 9327 38519 30.150 6.030 4.125
Elasticity (Srinivas & Rao)  258.970  60.353  46.623 9340 38491 30.097 6.161 4.364
FSDT (Pandya & Kant) 131.095 67.80 5424 4424 40.10  32.08 3208 3.152
HSDT(Pandya & Kant) 152330  64.65 5131 5131 4283 3397 3397 3.147
10 LWT (Ferreira et al.) 158912  64.993  48.601 4.860 43.491 33409 3341  3.980
L3-H309 159479 65280 48.836 4.884 43.682 33.554 3.355  4.032
L3-H306 159479 65332 48866 4.887 43.678 33.547 3.355 4.017
Elasticity (Srinivas & Rao)  159.380  65.332  48.857 4.903 43.566 33.413 3.500 4.096
FSDT (Pandya & Kant) 90.85 70.04  56.03 3753 4139  33.11 2208  3.091
HSDT(Pandya & Kant) 110.43 66.62 5197 3465 4492 3541 2361 3.035
s LWT (Ferreira et al.) 121.347 66436  48.010 3201 46.385 34965 2331  3.902
L3-H309 121.828  66.727 48272 3218 46.581 35.138 2343 3.960
L3-H306 121.828  66.783 48300 3220 46.576 35128 2342  3.942
Elasticity (Srinivas & Rao)  121.720  66.787 48299 3238 46.424 34955 2494 3.964

6.7.1.3 Laminated plate under bidirectional sinusoidal loading

A laminated plate, which has a length-to-width ratio b/a =3 and a plate thickness h, is

simply supported on all four edges and transversely loaded with a bidirectional sinusoidal

pressure p = p,sin(nx/a)sin(ny/b) on its top surface, as shown in Figure 6.10. Four

scenarios are considered in this linear elastic problem to assess the accuracy of the proposed

multi-layer shell element:

Scenario 1:

Scenario 2:

Scenario 3:

Scenario 4:

a 3-layer, asymmetrically laminated plate;

a 5-layer, asymmetrically laminated plate;

a 7-layer, symmetrically laminated plate with different thicknesses of stiff

sheets;

3-, 5-, 7-, 9- and 1l1-layer, symmetrically laminated plate with the same

thicknesses for all stiff sheets.
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Figure 6.10: Rectangular laminated plate under bidirectional sinusoidal loading.

The elasticity solution for a general laminated plate loaded with a transverse bi-directional
sinusoidal loading has been given by Demasi (2008). Brischetto et al. (2009) have presented
closed form solutions with EDZ models for Scenario 1, where the zigzag effect of
displacements is considered by adding MZZF to Taylor expansions. The results of EDZ
models are compared with the results using the Ln-H309 elements. On the other hand,
‘EDZ*’ formulations, which are based on EDZ models but with further simplifications, are
also implemented with the 9-noded co-rotational element for comparison against the Ln-
H309 elements in Scenarios 2 to 4. It is important to note that three assumptions have been
made which distinguish the implemented EDZ* formulations from the original EDZ models
(Brischetto et al., 2009). Firstly the zigzag effect is considered in planar displacements only.
Secondly, to facilitate the implementation of the EDZ*-H309 element, Taylor expansions are
approximated with a piecewise linear curve based on values at the laminar interfaces, as
illustrated in Figure 6.11. Thirdly, the proposed transverse shear strain distribution is used for
EDZ*. Nevertheless, the aim of providing EDZ* results is to demonstrate the efficiency of
the zigzag modes proposed in the present work for laminates with alternating stiff/soft lay-up.
In this respect, the only difference between the EDZ*-H309 models and the Lxn-H309
models is the employed zigzag functions, which facilitates the comparison between both sets
of additional displacement variables in modelling the considered laminations. Table 6.3 lists

the number of displacement fields for the considered lamination models.
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Figure 6.11: Piecewise approximation of Taylor expansion.

Table 6.3: Number of displacement fields for the considered models.

Model Number of displacement fields
FSDT-H309 5
L3-H309 7
L5-H309 9
L7-H309 11
L9-H309 13
L11-H309 15
EDZ2*-H309 9
EDZ3*-H309 11
EDZ4*-H309 13
EDZ5*-H309 15
EDZ1 (Brischetto et al.) 9
EDZ4 (Brischetto et al.) 18
EDZ7 (Brischetto et al.) 27

Due to symmetry, a quarter of the plate is modelled with an 8x8 mesh of the Ln-H309
elements, which provides a convergent solution for all four scenarios. In this model, the shell
system is aligned with the (x,y) planar coordinate system The results of the Ln-H309 model
are compared against those of the EDZ or EDZ* models as well as the elasticity solution
(Demasi, 2008) in terms of non-dimensional displacement, stress and strain values defined as

follows:

o.=——2* o L v E(C) Yxz
Poh(a/h)4 i po(a/h)2

7 o)’ T 21+ v) pola/h)

where E ) and v, are the Young’s modulus and Poisson’s ratio of soft core layers.
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Scenario 1: Three-layer, asymmetrically laminated plate

The thicknesses of three layers are given as: h; =h/10, h, =7h/10, and h; =2h/10. All
layers are made of isotropic material. The stiffness ratios between the constitutive layers are
given as E(l)/E(3) =5/4, and FCSR = E(l)/E(z) =10,10°. Poisson’s ratios for all layers are
0.34. Two length-to-thickness ratios have been considered by Brischetto et al. with EDZ
models (Brischetto et al., 2009): a/h=4, 100. Hereafter, the results of the L3-H309 models are
compared with the FSDT and EDZ models.

Table 6.4 gives the predictions on central deflection u,(a/2,b/2)at the bottom of the upper
sheet with the considered models. Clearly, the L3-H309 model provides a much closer
estimation of deflection than the EDZ1 model and even better results than the EDZ4
predictions, which utilise more displacement fields as indicated in Table 6.3, except where
a’/h = 4 and FCSR =10°, in which case the transverse elastic deformation for such a thick
plate with very soft core is too significant to be neglected. Since the proposed model is
intended for analysis of thin-to-moderately thick plates and shells, the neglect of the through-
thickness variation in the transverse displacement still yields good results within the scope of

interest.

Table 6.4: Relative accuracy of various models in the evaluation of central deflection.

FCSR
a/h Model 10 10°
u, Relative error u, Relative error

Elasticity (Demasi) 3.01123 - 0.013159 -
L3-H309 2.98319 0.93% 0.011907 9.51%
4 FSDT-H309 1.58218 47.46% 0.000180 98.63%
EDZ1 (Brischetto et al.) 2.34412 22.15% 0.000837 93.64%
EDZ4 (Brischetto et al.) 2.97886 1.07% 0.012629 4.03%
EDZ7 (Brischetto et al.) 2.99670 0.48% 0.013136 0.17%

Elasticity (Demasi) 1.51021 - 0.002089 -
L3-H309 1.51026 0.00% 0.002089 0.01%
100 FSDT-H309 1.10845 26.60% 0.000120 94.26%
EDZ]1 (Brischetto et al.) 1.15866 23.28% 0.000163 92.18%
EDZ4 (Brischetto et al.) 1.51017 0.00% 0.001163 44.34%
EDZ7 (Brischetto et al.) 1.51019 0.00% 0.002021 3.30%
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The through-thickness variations of the planar stress G, (a/2, b/2) for the cases where
a/h =100 (thin plate) and FCSR=10, 10° are depicted in Figure 6.12, which highlight the
accuracy of the L3-H309 model for a wide range of FCSR values. The noticeable deviation
of the EDZ1 curve in Figure 6.12.b implies the inaccuracy of Murakami’s function in
capturing the zigzag effect. This deviation is alleviated with the use of higher-order EDZ

models.

Figure 6.13 shows the through-thickness variations of the transverse shear stress G, (0, b/2)
for the cases where a/h = 4 (thick plate) and FCSR=10,10°. Clearly, the continuous transverse
shear stress predicted by the EDZ4 model posts a close approximation of the elasticity
solution. On the other hand, the L3-H309 model, which assumes a piecewise linear-constant-
linear transverse shear strain pattern, provides an accurate prediction of transverse shear
stresses in the core, though discrepancies arise in the face sheets. With further manipulation,
the through-thickness variation of the transverse shear strain 7y, (0, b/2) for the case a/h = 4
and FCSR = 10 can be obtained for each model, as depicted in Figure 6.14. Clearly, the
transverse shear strains in the face sheets are much smaller than the strain in the soft layer,
which indicates negligible influence of the stiff layers on the overall transverse shear strain

energy.
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Figure 6.12: Through-thickness distribution of non-dimensional in-plane stress G, for three-layer

plate.
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Figure 6.14: Through-thickness distribution of non-dimensional transverse shear strain 7v,, for three-

layer plate (FCSR=10, and a/h=4).

Scenario 2: Five-laver, asymmetrically laminated plate

The layer thicknesses and materials of the five-layer laminated panel are given in Table 6.5,
with E g, / E) =4/5 , and Via) =V(m) = V() =0.34 . Different span-to-thickness ratios
(a/h=10,100) and stiffness ratios ( FCSR =E,,/E, =10, 10°,10° ) are considered to
investigate the performance of the shell element. Estimations of the non-dimensional central
deflection u,(a/2,b/2) at the bottom of the top layer with the L5-H309 and EDZ2*-H309
models, which have the same number of additional displacement variables, are listed in Table
6.6, compared against the elasticity solution. A FSDT solution is also available by restraining
all the additional DOFs of the L5-H309 model in the analysis, although the assumed
distribution of transverse shear strains is employed. Clearly, both models provide
comparable accuracy for a relatively small FCSR = 10. However, the zigzag effect becomes
significant as the FCSR increases, evident from the resulting large relative error of FSDT-
H309 results. Although the EDZ2*-H309 model improves the FSDT-H309 results
somewhat, still significant inaccuracy remains, hence requiring higher-order Taylor
expansions for better accuracy. On the other hand, the L5-H309 model maintains high
accuracy with a wide range of FCSRs owing to the efficiency of the selected zigzag

displacement modes for the analysis of such laminations.
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Table 6.5: Layer thicknesses and materials for 5-layer plate.

Layer index Layer thickness Layer material
1 (2/14)h (B)
2 (5/14)h ©
3 (1/14)h (A)
4 (5/14)h ©)
5 (1/14)h (A)

Table 6.6: Non-dimensional deflection of 5-layer plate with varying FCSR and (a/h).

FCSR
a/h Model 10 10° 103
u, Relative error u, Relative error u, Relative error

Elasticity (Demasi) 2.02302 - 0.22248 - 0.02572 -
10 L5-H309 2.03898 0.79% 0.22096 0.68% 0.02548 0.94%
EDZ2*-H309 2.02446 0.07% 0.06702 69.88% 0.00080 96.88%
FSDT-H309 1.90176 5.99% 0.02153 90.32% 0.00022 99.16%

Elasticity (Demasi) 1.81666 - 0.02252 - 0.00220 -
L5-H309 1.81738 0.04% 0.02253 0.05% 0.00221 0.38%
100 EDZ2*-H309 1.81724 0.03% 0.02086 7.39% 0.00021 90.45%
FSDT-H309 1.81601 0.04% 0.02039 9.48% 0.00020 90.73%

The through-thickness distribution of the non-dimensional planar stress &, (a/2,b/2) for the

cases where a/h = 100 (thin plate) and FCSR=10,10° with the L5-H309 model is depicted in

Figure 6.15, and the elasticity result using Demasi’s solution (Demasi, 2008) is also depicted

for comparison. The figure highlights the accuracy of the L5-H309 model for a wide range of

the FCSR values. Figure 6.16 depicts the non-dimensional transverse shear strain 7y,, of the

L5-H309 model at location (0, b/2), compared against the elasticity results. The results also

indicate the adequacy of the proposed transverse shear strain distribution for the problem

considered.
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Scenario 3: Seven-layer, symmetrically laminated plate with thicker external layers

In this scenario, the effect of different thicknesses on the accuracy of the zigzag functions is

investigated. The layer thicknesses and materials of the seven-layer laminated plate are given

in Table 6.7, with FCSR=E /E(C) , and V() =V(c) =0.34. Different span-to-thickness

ratios (a/h = 10, 100) and stiffness ratios (FCSR =10, 10°, 105) are considered to investigate

the performance of the shell element.

Table 6.7: Layer thicknesses and materials for 7-layer plate.

Layer index Layer thickness Layer material
1 (221)h F)
2 (5/21)h ©
3 (121)h (F)
4 (5/21)h ©
5 (121)h (F)
6 (5/21)h ©)
7 (2/21)h (F)

Table 6.8: Non-dimensional deflection of 7-layer plate with varying FCSR and (a/h).

FCSR
a/h Model 10 10° 10°
u, Relative error u, Relative error u, Relative error

Elasticity (Demasi) 1.8341 - 0.22225 - 0.03861 -
10 L7-H309 1.8448 0.59% 0.22083 0.64% 0.03744 3.02%
EDZ3*-H309 1.8452 0.61% 0.21799 1.91% 0.02760 28.51%
FSDT-H309 1.7020 7.20% 0.01903 91.44% 0.00019 99.51%

Elasticity (Demasi) 1.6245 - 0.02001 - 0.00220 -
L7-H309 1.6253 0.05% 0.02002 0.06% 0.00221 0.58%
100 EDZ3*-H309 1.6253 0.05% 0.02002 0.05% 0.00218 0.72%
FSDT-H309 1.6238 0.04% 0.01789 10.57% 0.00018 91.84%

Estimations of the non-dimensional central deflection u,(a/2,b/2) at the bottom of the top

layer with various models are listed in Table 6.8, compared against the elasticity solution.

Similar to Scenario 2, the L7-H309 and EDZ3*-H309 models provide comparable accuracy

for a relatively small FCSR = 10. As the stiffness mismatch becomes very significant, the

L7-H309 model shows better accuracy than the EDZ3*-H309 model, which have the same

number of zigzag displacement fields.
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The through-thickness distribution of the non-dimensional G, (a/2, b/2) and 7,, (0, b/2) for
the L7-H309 model are depicted in Figures 6.17-6.18, compared against the elasticity results
using Demasi’s solution (Demasi, 2008), where the comparison confirms the accuracy of the

L7-H309 model for a wide range of FCSR values.
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Figure 6.17: Through-thickness distribution of non-dimensional planar stress 6, for seven-layered
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Figure 6.18: Through-thickness distribution of non-dimensional transverse shear strain 7v,, for seven-

layered plate.

Scenario 4: Symmetrically laminated plate with same face sheets and core sheets

In this scenario, the laminated plate is composed of the same face sheets and the same cores

in an (F/C/F/.../F/C/F) lay-up. The material properties of the face sheet and the core are given
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as E, / E)=1000, and v =V, =0.34, while the span-to-thickness ratio is (a/h = 10).
This problem is analysed for the cases of 5, 7, 9 and 11 layers, in all of which the plate
thickness remains h. Two stiff-to-soft layer thickness ratios (h, / he) = 1/5,5) are
considered to investigate the performance of the shell models. The estimated non-
dimensional central deflection U,(a/2,b/2) at the bottom of the top layer with Ln-H309 and
EDZ*-H309 models for different lay-ups are given in Table 6.9, compared with the elasticity
solution. It is clear that as the number of layers increases, the Ln-H309 model provides better
accuracy than the EDZ*-H309 model, which verifies the efficiency of the proposed zigzag
modes in the analysis of laminations with an alternating stiff/soft lay-up. Note that the L3-
H309 and the EDZ1* models for a 3-layer case are identical, and therefore not presented,
due to the fact that the proposed zigzag function for a 3-layer model becomes identical to

MZZF when the two external layers are of identical thickness.

Table 6.9: Non-dimensional deflection of multi-layer plate with varying number of layers.

Number of Model _ he/he) =1/5 _ he/he) =5
layers u, Relative error u, Relative error

Elasticity (Demasi) 0.23578 - 0.04313 -
5 L5-H309 0.23428 0.64% 0.04298 0.35%
EDZ2*-H309 0.23428 0.64% 0.04298 0.35%

Elasticity (Demasi) 0.24237 - 0.04884 -
7 L7- H309 0.24090 0.61% 0.04867 0.35%
EDZ3*-H309 0.23915 1.33% 0.04835 1.00%

Elasticity (Demasi) 0.24746 - 0.05177 -
9 L9-H309 0.24594 0.62% 0.05153 0.46%
EDZ4*-H309 0.24191 2.24% 0.05075 1.98%

Elasticity (Demasi) 0.25166 - 0.05341 -
11 L11-H309 0.25014 0.61% 0.05315 0.48%
EDZ5*-H309 0.24389 3.09% 0.05189 2.85%

6.7.2 Geometrically nonlinear examples

6.7.2.1 Sandwich annular plate under end shear

A sandwich annular plate, fully clamped at one end, is subjected to a uniformly distributed
transverse shear force at the other end, as is shown in Figure 6.19. The fibre direction of each

layer is at a planar angle o™ from the circumferential direction of the annular plate. The

209



Laminated Quadrilateral and Triangular Shell Elements

plate dimensions are given as: R, =6, R, =10, h=0.045, and h; =h, =h; =0.015. The
mechanical properties of the core are: Efz) =2.0x10° | E(zz) =6.0x10°
G\? =G =3.0x10°, G{Y =2.4x10°, and v{3) =0.3. The Young’s modulus and shear

modulus of the face sheets are obtained by multiplying those of the core with a FCSR = 1000.

<V

Figure 6.19: Sandwich annular plate subject to end transverse shear.

The shell system is obtained according to the approach illustrated in Figure 6.5 with the
reference point O located at the origin of the global system such that the r- and s-axes orient
along the circumferential and the radial directions, respectively. Figure 6.20 depicts the load-
displacement curves in the z direction at points A and B for two uniform meshes of the whole
plate (32x4 and 64x4) using the L3-H309 element for a symmetric lay-up
(h; =h, =h; =0.015) with a (0°/0°/0°) stacking scheme. Also presented are results from a
96x10%6 mesh of the degenerated shell element SOLSH190 in the finite element software
package, ANSYS v14.5 (2012), where each individual sheet is modelled with 2 layers of
elements through the thickness to represent the local zigzag effect. Clearly, results from both
meshes of the L3-H309 element agree well with the SOLSH190 solution, indicating
negligible inaccuracy resulting from the element-specific definition of the shell system with
the coarser 32x4 mesh. Figures 6.21-6.22 depict the results from a 32x4 mesh of the
L3-H309, EDZ1*-H309, and FSDT-H309 element for respectively a symmetric lay-up
(h; =h, =h;=0.015) and an asymmetric lay-up (h; =0.02, h, =0.015, and h; =0.01),
both of which employ a (0°/0°/0°) stacking scheme. Still, the results of the L3-H309 element

are identical to the EDZ1*-H309 solution for the symmetric lay-up, while it surpasses the
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accuracy of the EDZ1*-H309 element for the asymmetric lay-up. In addition, the results with
the L3-H306 element are almost identical to the L3-H309 solution. Figure 6.23 compares
the results of a 32x4 mesh of the quadrilateral element L3-H309 and a 32x4 mesh of the

triangular element L3-H306, which show comparable accuracy.

30
........... o L3-H309: 32x4 Point A Point B
25 4 —O0— L3-H309: 64x4
+ SOLSHI90
[=p
820

—
()]

9]

TransversHe shear loadi
(e}

0.0 2.0 4.0 6.0 8.0 10.0
Displacement

Figure 6.20: Convergence study along the circumferential direction for L3-H309 models
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Figure 6.21: Load-displacement curves for a symmetric lay-up with a (0°/0°/0°) stacking scheme.
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Figure 6.22: Load-displacement curves for an asymmetric lay-up with a (0°/0°/0°) stacking scheme.
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Figure 6.23: Comparison of quadrilateral and triangular elements for symmetric/asymmetric lay-ups.

Figure 6.24 depicts the results from a 32x4 mesh of the L3-H309 and L3-H306 element for
symmetric lay-ups ( h; =h, =h;=0.015 ) with various fibre orientations, where the
coincident plots of the sandwich shell models and the SOLSH190 models confirm the
accuracy and effectiveness of the proposed laminated elements in solving large displacement

problems with arbitrary fibre orientations.
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Figure 6.24: Load-displacement curves for a symmetric lay-up with various stacking schemes.

6.7.2.2 Circular plate under uniform pressure

The geometrically nonlinear response of a circular laminated plate is considered here, where

the plate is fully clamped along its edge and is subjected to a uniformly distributed transverse

loading p, as shown in Figure 6.25. The geometric and material parameters are given by
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R =20, ED =g® =1.0><107, E® = 3750, and vD =v@ =3 =025 Due to symmetry,
a quarter of the circular plate is modelled with a mesh of 9-noded sandwich shell elements,
which provides a convergent solution. The mesh is depicted in Figure 6.26, where the quarter
model is divided into three sections, with each section discretised into a 6x6 mesh of the 9-
noded laminated shell elements. The shell system is aligned with the (x,y) planar coordinate
system. By restraining all the additional DOFs, a FSDT solution is also available. On the
other hand, an ‘EDZ*’ formulation is also implemented with the 9-noded co-rotational
element for comparison. It is worth noting that the only difference between the EDZ*-H309
model and the Ln-H309 model is the employed zigzag function, which facilities the
comparison between both additional displacement variables in modelling the considered
laminations. In addition, an 8x8 shell model with a mixture of Ln-H309 and Lrn-H306
elements is also employed (Figure 6.27), where a ring of 6-noded elements is employed
surrounding the plate centre and seven rings of 9-noded shell elements are employed for the

remaining part of the model.

zA p

AERRRRRRERRER

Figure 6.25: Clamped circular laminated panel under uniform loading.
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Figure 6.27: Mesh pattern for a 8x8 mixed mesh of 6-noded and 9-noded laminated shell elements.

A symmetric sandwich lay-up is first considered, where the layer thicknesses are given as
h; =h; =0.025 and h, =0.45. The load-deflection curves at the plate centre O with the
considered models are depicted in Figure 6.28, along with the series solution by Smith (1968)
and the solution with axisymmetric sandwich shell elements by Sharifi and Popov (1973). As
is expected, the L3-H309 and the EDZ1*-H309 results are identical for the symmetric lay-
up, both of which agree with the series solution. An asymmetric sandwich lay-up is also
considered, where the thicknesses of the layers are given as h; =0.05, h, =035, and
h; =0.1. The reference solution is taken from the results with a fine 3D model using a
standard 20-noded quadratic brick element (Zienkiewicz & Taylor, 2000), denoted as ‘BK20’,
where in the planar surface each of the three sections are meshed with 24x24 of the BK20
elements, and in the through-thickness direction an element size of 0.025 is employed leading
to a total of 20 element divisions. The L3-H309, EDZ1*-H309 and FSDT-H309 results with

the same mesh as Figure 6.26 are given in Figure 6.29, compared with the solution from the
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3D elasticity model of the BK20 element. The L3-H309 element still shows high accuracy in
predicting the large displacement response of the asymmetrically laminated sandwich plate,
but the EDZ1*-H309 results are as inaccurate as the FSDT-H309 solution owing to the
inadequacy of MZZF in capturing the real zigzag mode, hence requiring higher-order Taylor
expansions with more additional displacement variables for improved estimation. In addition,
from Figures 6.28-6.29 it is observed that the mixed model of L3-H309 and L3-H306
elements yields identical results with the pure L3-H309 model, which indicates the potential
benefit of using a mixture of the 6-noded and the 9-noded laminated shell elements for

problems involving complex geometry.

! —e— [.3-H309
6 | ~©O EDZI*-H309 l:
-8~ FSDT-H309 !
5 | =% L3-H306 & L3-H309 d
o Smith (1968) o
@4 { + Sharifi&Popov (1973)
s
)

w./h

Figure 6.28: Load-deflection curves at point O of various models for a symmetric lay-up.
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Figure 6.29: Load-deflection curves at point O of various models for an asymmetric lay-up.

Hereafter, the same circular plate problem is analysed for an 11-layer lamination, which is
composed of the same stiff sheets, denoted by ‘F’, and the same soft sheets, denoted by ‘C’,
with an alternating stiff/soft lay-up. Two stiff-to-soft layer thickness ratios
(hp / he) = 1/5,5) , denoted as schemes (1) and (2) respectively, are considered to
investigate the performance of the shell models. The material parameters are given as
Er =1.0x107, E)=3750, and v =V, =0.25. The same mesh as shown in Figure
6.26 is used for the L11-H309 element. The reference solution is obtained from a 3D
continuum model using a fine mesh of BK20, where on the planar surface each of the three
sections is meshed with 24x24 BK20 elements, and two elements are employed for each
constitutive layer. The load-deflection curves at the plate centre, point O, obtained with
various models are depicted in Figure 6.30. Clearly, the disparity of the FSDT-H309 results
from the others indicates the significance of the zigzag effect. The L11-H309 model matches
well with the solid model, confirming its high accuracy for both lay-up schemes. Again, the
results of a mixed model with a mesh pattern depicted in Figure 6.27 are also presented in

Figure 6.30, which show the same accuracy with the results of the L11-H309 model.
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Figure 6.30: Load-deflection curves at point O of 11-layer laminated plate.

6.7.2.3 Multi-layer hemispherical shell with 18° cut-off

Another large displacement problem is considered here, where a five-layer hemispherical
shell with a circular cut-off at its top is subjected to symmetric concentrated forces at its base,
as shown in Figure 6.31. The hole aperture is 18°, the sphere radius is 10, and the shell
thickness is h = 0.075. Three alternative lay-ups are considered to investigate the
performance of the multi-layer shell element in problems involving both symmetric and
asymmetric cross-sections. The layer material type and thickness for each scenario are listed
in Table 6.10, where layer (1) corresponds to the interior layer of the hemispherical shell. The
material parameters for the stiff layers (F) and soft layers (C) are given as: Ep) = 1.0x107,
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2F

Figure 6.31: Pinched laminated hemispherical shell with a 18° hole.

Table 6.10: Lay-ups for 5-layer hemispherical shell.

Layer thickness
Layer index Layer material
Scheme (1) Scheme (2) Scheme (3)
1 (F) (1/5h (1/15)h (3/25)h
2 ©) (1/5)h (2/15)h (5/25)h
3 (F) (1/5)h (3/15)h (9/25)h
4 ©) (1/5)h (4/15)h (5/25)h
5 (F) (1/5)h (5/15)h (3/25)h

Note that in this model, the shell system is defined to follow the longitudinal and latitudinal
lines of the sphere, which can be easily realised with the use of the approach illustrated in
Figure 6.4 by aligning the reference vector n with the axis of symmetry. Due to the curved
geometry, the curvilinear shell triads vary in orientation between adjacent elements, though
any inaccuracy diminishes with mesh refinement, as confirmed in the presented results. Due
to symmetry, only a quarter of the hemispherical shell is modelled with a 16x16 mesh of the
L5-H309 and EDZ2*-H309 elements, both of which provide convergent solutions. By
restraining all additional zigzag parameters, the corresponding FSDT-H309 results are also
available. A 16x16 mesh of the triangular L5-H306 element is also employed. The results of
a 64x64x10 solid model using the BK20 element are utilised for a reference solution. Figures
6.32-6.34 depict the equilibrium paths of the radial displacements at points A and B for the
respective lay-up schemes. The deviation of the FSDT-H309 results from the reference
solution indicates the significance of the zigzag effect for this problem. It is interesting to

note that the EDZ2*-H309 results agree with the reference solution for lay-up (1) but is as
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inaccurate as the FSDT-H309 solution for the other two lay-up scenarios. This is attributed
to the inadequacy of MZZF in capturing the real zigzag mode for the last two lay-ups, hence
requiring higher-order Taylor expansions with more additional displacement variables for
improved estimation. On the other hand, the results of the L5-H309 and the L5-H306
models present an excellent match against the results obtained from the 3D continuum solid

model for all of the considered lay-up schemes.
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Figure 6.32: Load-deflection curves at point A and B of various models with lay-up scheme (1).
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Figure 6.33: Load-deflection curves at point A and B of various models with lay-up scheme (2).
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Figure 6.34: Load-deflection curves at point A and B of various models with lay-up scheme (3).

6.8 Summary

In this chapter, the proposed multi-layer shell modelling approach has been implemented for
9-noded and 6-noded co-rotational shell elements, which can be applied in large displacement
analysis. Importantly, to eliminate the need for co-rotational transformations for the
additional zigzag displacement parameters, a 2D curvilinear shell system is proposed in this
research for the direct definition of these parameters, such that a simple and fixed
transformation of these additional parameters to their counterparts in the local element system
holds throughout the analysis. Moreover, consistent mass matrices for the laminated shell

elements are also derived in this chapter, which enables the analysis of dynamic problems.

Linear and geometrically nonlinear numerical examples are finally solved with the proposed
multi-layer shell elements, where excellent accuracy is generally achieved in comparison
with elasticity solutions, and superior performance is typically demonstrated compared to

existing models for laminated shells with alternating stiff/soft lay-ups.
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CHAPTER 7
Application to Laminated Glass

7.1 Introduction

The effectiveness of the proposed multi-layered shell elements has been verified in Chapter 6.
In this chapter, their application to LG is presented. Although structural glass is a brittle
material and will fracture when tensile stress is exceeded, in this research the scope of interest
is the structural behaviour prior to the initiation of cracking. Therefore, a linear elastic
isotropic material model is employed for glass, while the PVB interlayer is considered as a
linear viscoelastic material, which is appropriate for small-strain problems. With the
appropriate material models used in the laminated shell elements, geometrically nonlinear

analysis of LG structures under static and dynamic loadings can be performed.

Insulated glazing, or double glazing, has been increasingly used owing to its good heat and
noise insulating performance. It is composed of two glazing panes separated by an insulating
air gap, which helps reduce the thermal and sound transfer. Moreover, the sealed air gap has
influence on the structural performance of the insulated glazing system via the generation of
air pressure onto both panes once the pane deflection causes a volume change for the sealed
air. Ding et al. (2014) investigated the performance of a double-skin steel facade subjected to
blast loading and found that during the blast loading there was a significant increase in the
cavity pressure due to the changed cavity volume through the panel deflection. Deng and Jin

(2010) simulated the response of insulated glass subject to blast loading, where both the air
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area between explosive and structure and the sealed air were modelled with equations of state
employed to describe the pressure-volume-energy relationship. They found that under blast
loading the interior glass pane suffered fewer cracks, which indicates that the air space
alleviates the blast and helps to protect the interior pane. Wagner and Miiller (2010)
considered the effect of the enclosed air on the behaviour of insulated glass under blast
loading by employing a static relationship between the change in the gas volume and the
hydrostatic pressure, which can be included into an existing structural model with ease.
Therefore, in order to allow the analysis of insulated glazing systems, a volume-pressure
control procedure based on a simple static relationship is established and implemented in
ADAPTIC v2.14.2 for recording the volume change of enclosed gas and hence calculation of

the generated pressure, which will allow the analysis of double glazing units.

In the following sections of this chapter, a linear viscoelastic material model for the PVB
material is reviewed, which is employed in this work with 3D solid elements as well as 2D
shell elements. The verification of the linear viscoelastic material model is then provided with
two illustrative LG examples. Subsequently, a volume-pressure control algorithm is presented,
which allows the consideration of the effect of enclosed air in insulated glazing on the
structural behaviour under external loading, followed by two double glazing examples to

verify accuracy and efficiency of the proposed approach.

7.2 Linear viscoelastic material model

A linear viscoelastic material model is implemented in this research to simulate PVB, which
employs the assumption of a constant bulk modulus as made by Bennison et al. (1999) and is
formulated based on the recursive formula presented by Sedef et al. (2006) in the calculation

of current stresses of viscoelastic materials.

7.2.1 Recursive formula

In a generalised Maxwell model, the viscoelastic material property is represented by a
combination of springs and dashpots, which results in a Prony series expression for the stress

relaxation function, as is given in (2.20). The Boltzmann superposition principle yields a
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stress-strain relationship given in (2.21). The substitution of (2.20) into (2.21) derives the

following expression for the stress relaxation:

t N, t s Ny
o(t) = J-Eoo az(s) ds+ZIEJ~ e 686(8) ds=E_ 8(t)+2hj(t) (7.1)
0 =

S % S

where N, is the number of Maxwell elements.

Temporal discretisation leads to the following expression for stress at the previous time t,

and the current time ¢, :

N.VI

o"=E,&"+> h} (7.2)
j=1
NM

Gn+1 — EO0 8n+1 +Zh?+1 (73)
j=1

Defining the current time step size as At™*' =t

Oe(s) &"—g"

Atn+1
following relationship (Sedef et al., 2006):

241 —t, » and assuming a linear strain variation

), each function h?” is related to hj with the

in the current time step (i.e.

Atn+l

tn+l —LS n+l
h}”lze “ W' +E. Ie i ds (Ag ] (7.4)

J J

n+l _ n+l n

where Ag g —g .

Further integration of (7.4) yields:

Atn+l

(7.5)

with:
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Aj=——— (7.6)

Substitution of (7.5) into (7.3) results in the recursive formula for stress relaxation.

7.2.2 Application to PVB

Bennison et al. (1999) stated that the bulk modulus of PVB is almost constant, the value of
which is around 2.0 GPa. Therefore, a linear viscoelastic material model based on the
recursive formula presented by Sedef et al. (2006) is implemented, where a constant bulk

modulus K is assumed and a Maxwell series of the shear relaxation function G is employed.

In the linear viscoelastic material model, the stress relaxations can be obtained from the

following equations:

o, o
o4 (1) = j G(e-s)G - 25 2 P45 Ky (045, 045, O] ()
o (t):JG(t—s)%ds (7.8)
+ 0s

with i=1->3, i, =mod(i,3)+1, and i_ = mod(i +1,3)+1.

Application of the recursive formula to (7.7)-(7.8) yields the stresses at time t ., as follows:
ol = K%Gw + K)gﬁ“ +( §G + Kj o+l (—%G ) ““} Zhj“ﬁl (7.9)
oi =G i + Z hi (7.10)

. 1 . .
where the functions hj‘:;B (o, =1—3) are expressed in an recursive manner as:
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Atn+l
1T 4 1 2 1 2 1
hn+ =e ’ hn + G]A] (g A83+ —EASinJ; —EAS?:: (71 1)

Jiii ji

Atn+l

n+l _ T n n+l
h'i' =e U bl +GAAY

Xl Jo1, n,

(7.12)

7.2.2.1 Application to shell elements

The triaxial viscoelastic material model described above can be directly applied to 3D solid
elements. In order to apply it to 2D shell elements which ignore transverse normal stresses, a
further modification is required. By imposing a zero value constraint on the transverse normal

stress ©33, the constitutive equations between the stresses and strains are expressed as

follows:
n+l _Cn+1 n+1+ n+l _Cn+1 n+1+ 713
6p - v,psp Ghist,p’ o, = v,S &g 6hist,s ( . )
n+l n+l _n+l _n+l T n+l n+l _n+l T .
where 6,7 =(c},,05 ,0); ) and 6, =(0}3 ,0,3 ) denote respectively the planar and
transverse shear stresses at time t . ; &' = (gn gt ym) and gnt = (yn ynr\
ntl > € T\€11 »€22 5712 s —A\Y13 »V23
denote respectively the planar and transverse shear strains at time t,__;; C€+p1 and ngl are

viscoelastic constitutive matrices for respectively the planar and transverse shear
stresses/strains at time t,,;; and 6y, , and 6, ; are stresses related to the loading history.

. . n-+1 n+l . . :
The derivations of C,, ,Cy ', 6y, and oy, (are provided in Appendix D.

7.3 Verification of viscoelastic material model

Hereafter, two LG problems presented in the literature are reproduced to verify the linear
viscoelastic material model implemented for PVB. In both problems, the laminated shell
elements proposed in Chapter 6 are used, and the linear viscoelastic material models are

employed for the PVB interlayer.

226



Application to Laminated Glass

7.3.1 Laminated glass under biaxial bending

7.3.1.1 Description of problem

The presented example consists of a series of biaxial flexural tests conducted by Bennison et
al. (1999), which are used to investigate the response of circular LG panels at a wide range of
loading rates. The LG is composed of two circular glass plies with a diameter of 100 mm and
bonded with a PVB interlayer. The circular panel is supported at three points located on a
radius r2 = 44.7 mm and is loaded with a circular punch which effectively produces a ring
loading with a radius of r1 = 4.498 mm, as depicted in Figure 7.1. The ring load is applied
monotonically at various displacement rates in the range of 107 to 10> mm/s. From the
conducted material tests on the PVB interlayer, Bennison et al. also proposed a generalized
Maxwell material model for the description of the shear relaxation modulus, with the material
parameters corresponding to a reference temperature of 20°C listed for the 11 Maxwell
components in Table 7.1. The parameter values for a different temperature can be obtained by
employing the WLF equation, as given in (2.18), with Ci; = 20.7 and C2 = 91.1 (Bennison et
al., 1999).

F
H."/J/ Position 1

® [ ) SO )
d Position o
T

Figure 7.1: Schematic drawing of the biaxial bending tests on LG panels.
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Table 7.1: Terms of the generalised Maxwell series description (Bennison et al., 1999).

J Gi/Go Ti(s)

1 0.1606000 3.2557E-11
2 0.0787770 4.9491E-09
3 0.2912000 7.2427E-08
4 0.0711550 9.8635E-06
5 0.2688000 2.8059E-03
6 0.0895860 1.6441E-01
7 0.0301830 2.2648E+00
8 0.0076056 3.5364E+01
9 0.0009634 9.3675E+03
10 0.0004059 6.4141E+05
11 0.0006143 4.1347E+07

Instantaneous shear modulus GO = 0.471GPa; WLF parameters C, = 20.7 and C, =91.1, at a reference

temperature of 20°C.

7.3.1.2 Laminated shell model

Due to symmetry, a 60° segment of the circular plate is modelled with meshes of the
proposed sandwich shell elements. With respect to the fan-shaped geometry, an efficient
mesh type is used, where a ring of 6-noded triangular elements is employed surrounding the
panel center and rings of 9-noded quadrilateral elements are employed for the remaining part.
A 10x10 mesh, as shown in Figure 7.2 provides a convergent solution. This mesh is thus used
to reproduce some of the tests and compare with both the experimental data and the
numerical results given by Bennison et al. (1999) who used 8-noded 3D solid models with ten
elements employed through the plate thickness (four for each glass ply and two for the

interlayer).
7.3.1.3 Results

Stress-force relationship

In one of the tests, the uniform ring load was applied at a displacement rate of 10 mm/s, and
the temperature was maintained 22.8°C during the test. In this case, the thickness of each
glass ply is hg=2.195mm and the PVB layer is hy=0.799mm. Bennison et al. (1999) used
uniaxial electrical-resistance strain gauges to record the strain of the lower ply on the

supported (lower) glass surface along with the applied force. Figure 7.3 shows the stress-
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force curve of the 10x10 shell model, which is in agreement with the experimental data and

the numerical results of Bennison et al.

Figure 7.2: A sixth model of the LG problem (bold line denotes ring loading; point denotes support).
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90 g.?(
| ~+@-- Test data (Bennison et al. #
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o
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=
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Figure 7.3: The stress-force curves of experimental data and numerical models.

Through-thickness stress distribution

The through-thickness principal stress distribution at the LG centre is obtained with the
10x10 shell model of L3-H309 and L3-H306 elements, as depicted in Figure 7.4 in
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comparison with the results of the 3D solid model by Bennison et al. It is noted that for the
considered case the glass plies and the PVB have thicknesses of hg = 2.246mm and hy =

0.76mm, and the loading history is conducted at a fixed temperature of 22°C. Two

normalised loading rates are considered: v =0.675 and 6.75x10%, where v’ = Vart , with "

=1127s denoting the characteristic time for G(t) to relax to a value of around 1MPa, and o
=0.6mm representing the maximum plate deflection. ar is a coefficient associated with
temperature, as given in Section 2.5.3. From Figure 7.4 it is observed that the predicted stress

distribution of the L3-H309 shell model matches well with the 3D solid model by Bennison
et al. (1999) at both loading rates.

0.5
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Figure 7.4: Distribution of normal stress for different loading rates.

Influence of loading rate on stress distribution

The influence of the loading rate on the stress distribution is investigated with the glass and
PVB thicknesses of hg = 2.246mm and hp, = 0.7mm. The central principal stresses at the
bottom of both glass plies, denoted as position ‘i’ and ‘o’, respectively (Figure 7.1),

corresponding to a 0.6mm maximum deflection are obtained. Define the stress-to-force

coefficients {° (outer) and {' (inner) as:
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. _on
F F

where 6!, and o}, are principal stresses at the bottom of respectively the lower and the upper
glass ply; F is the recorded punch force associated with a maximum deflection of 0.6mm. The
coefficients {° and (' are normalised by the corresponding coefficient {™ for a monolithic

glass pane of thickness 2hg.

Figure 7.5 depicts the variation of the normalised stress-to-force ratios with loading rates via
the use of the 10x10 shell model. At a relatively slow loading rate, the PVB interlayer has a
limited shear stiffness to transfer shear forces. Accordingly, the LG can be regarded as
layered glass panels, which results in rapid development of stresses in each glass ply. For a
rapid loading rate, the PVB interlayer exhibits stiff material properties, which leads to the
three layers working as a whole and hence reducing the normalised ratio at position ‘0’ to
around 1.0 and ¢’ / (™ at position ‘1’ to an even smaller value. The results of the sandwich
shell model are in good agreement with the curves obtained by Bennison et al., which verifies
the accuracy of the proposed sandwich shell model and the viscoelastic material model in the
simulation of LG. Also shown in Figure 7.5 are the FSDT results with the same 10x10 shell
model, which are obtained by restraining all additional DOFs in the sandwich shell elements.
The deviation of the FSDT results from the others indicates the significant zigzag effects of
the LG panels throughout the considered range of loading rates due to the modulus mismatch
between glass and PVB. On the other hand, as indicated in the figure, this deviation of results

reduces with much higher loading rates.
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Figure 7.5: Stress-to-force ratios with various loading rates.

7.3.2 Laminated glass panel under blast loading

7.3.2.1 Description of problem

Consideration is given here to the dynamic problem of LG glazing subjected to low-level
blast loading, which has been numerically analysed by Wei et al. (2006). The considered LG
panel, which has the dimensions of 2.65m % 2.65m, is subjected to a uniform blast loading, as
depicted in Figure 7.6. Simply-supported boundary conditions are applied to the LG plate.
=11.04mm and the PVB layer is of thickness
=72GPa

Each glass ply is of thickness h

glass

h,z=1.52mm. The glass plies are modelled as a linear elastic material with E

glass

and v, =0.25. The PVB is modelled as a linear viscoelastic material with the shear

glass

relaxation modulus of the form G(t)ZGer(GO-Gw)e‘Bt, where G,=0.33GPa, G_=0.69MPa,
and p=12.6s", while the bulk modulus is taken as K=20GPa. The densities of glass and
PVB are 2500kg/m® and 1100kg/m?, respectively. As shown in Figure 7.7, the blast loading

curve employs the following expression:

p(t) = p°(1—t/t,)e (7.14)
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where p(t) is the instantaneous overpressure at time t, p’ = 6894.8Pa is the peak overpressure

observed at t = 0, a = 0.55 is the decay factor, and ta= 7.7ms is the positive overpressure

duration.

\GIass ply

Figure 7.6: A rectangular LG plate under uniform blast load.

Pressure p(t)

A

Negative phase

= Overpressure, P! 2

P—
Time

Figure 7.7: A schematic representation of the blast loading curve (Wei et al, 2006).

7.3.2.2 Laminated shell model

Due to symmetry, a quarter of the panel is modelled with an 8x8 mesh of the proposed
L3-H309 element, which provides a convergent solution. The central deflection time history
and mid-span maximum principal stress time histories are respectively plotted in Figures 7.8-
7.9, which show good agreements with the results by Wei et al. (2006), who used a
60x60x10 solid model of 8-noded solid elements, hence demonstrating the accuracy and
efficiency of the proposed laminated shell element in dynamic problems. Also depicted in
Figure 7.8 is the deflection time history for a linear elastic PVB model which employs the

instantaneous shear modulus Go. The result almost coincides with that of the viscoelastic
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material model. It is concluded that for LG problems associated with short-duration loadings,
the interlayer can be simply simulated with an elastic material model without degradation of

accuracy.

10

(mm)

—— L3-H309 (viscoelastic)

Central Deflection
h

210 4- 0 L3-H309 (elastic) ____ . ®Q_____ 1 _____ __
o  Solid model (Wei et al.) | :
-15 : : : : :
0 0.005 0.01 0.015 0.02 0.025 0.03
Time (s)
Figure 7.8: Time history of deflection at the LG centre.
) L3-H309, top

------- L3-H309, bottom
® Solid model (Wei et al.), top

Maximum Principal Stress (MPa)

0.03

Figure 7.9: Time history of maximum principal stress at the LG centre.

Influence of Gy on the response

The influence of changing the short-term shear modulus Go on the LG response is

investigated. Figures 7.10-7.12 show the displacement and stress time histories of LG panels
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with different Go values. In Figure 7.12, results of a FSDT-H309 shell model are also

presented, where the corresponding stress time history remains unchanged with the Go value,

due to ignoring the zigzag effect and the relatively low contribution of normal stresses by the

interlayer.

Figure 7.
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10: Influence of short-term PVB shear modulus on the deflection time history.
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Figure 7.11: Influence of short-term PVB shear modulus on the stress time history (bottom).
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Figure 7.12: Influence of short-term PVB shear modulus on the stress time history (top).

It is observed that for a relatively large Go value (330MPa and 3.3GPa), the resulting time-
histories have little difference, which indicates that, for both scenarios, the glass-to-PVB
stiffness ratio is not large enough to induce significant zigzag effect. For a relatively small Go
value, however, the glass-to-interlayer stiffness mismatch generates noticeable cross-
sectional warping, which affects the shape and magnitude of the time history curve as well as
the natural period of the structure. Within this range of Go, the FSDT model is not suitable to
accurately capture the structural behaviour owing to the assumed linear through-thickness

variation of displacements.

7.4 Volume-pressure control algorithm

In the analysis of double glazing systems, the influence of the volume change in the enclosed
air on the structural behaviour needs to be taken into consideration. In this section, a simple

volume-pressure control algorithm is presented with the employment of Boyle’s law.

It is assumed that the gas enclosed by a surface can be regarded as an ideal gas and has no

viscosity or inertia effects, and that the analysis is at an isothermal state. Therefore, the
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relationship between the gas volume and the generated pressure follows Boyle’s law, which

is expressed as:
PiVi=p,V, (7.15)

where p, and p, are gas pressures at states 1 and 2, respectively, and V, and V, are gas

volume at the respective states.

Denote the enclosed gas volume and pressure at the initial undeformed configuration as

respectively Vg and p% (where ‘E’ represents the enclosure), the pressure generated by the

gas at the current deformed configuration, p%“ , 1s expressed as

070
n+l _ pg Vg
P = VEn_+1 (7.16)

where VZ*! is the enclosed gas volume at the current configuration.

There is an interaction between pi'' and VE*', evident from the fact that the current gas

pressure is dependent on how the volume of the enclosure changes, while the deformation of
the enclosure is in turn affected by the applied gas pressure. An intuitive way of solving pg
is to treat it as a pressure DOF. This method derives correct gas pressure for each time step,
but the pressure DOF leads to a coupled relationship between the deformation of the
enclosing surface and the gas pressure. Owing to the coupling of all structural elements
forming the enclosing surface to the pressure DOF, the computational efficiency may be

significantly reduced.

An alternative approach is to apply the gas pressure based on the deformed enclosure
configuration of the previous time step, which maintains fast convergence rate of the model
owing to the employment of a decoupled relationship between the displacement parameters
and the pressure parameter, though smaller time steps are required to ensure the accuracy of
the generated gas pressure. In the following, a more effective volume-pressure control
algorithm is presented, which maintains a decoupled relationship between the gas pressure

and structural deformation, and which can also be employed for large displacement analysis.
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7.4.1 Volume-pressure control procedure

Figure 7.13 depicts the configurations of the enclosed surface at time t, and t where t_

n+l»
corresponds to the last known configuration, while t ., corresponds to the current unknown
configuration. The current enclosure volume V]f:‘” can be calculated by adding an incremental

volume change of the enclosure to that of the last known configuration:

Vi = Ve AVET (7.17)

where the subscript ‘E’ stands for the considered enclosure; AVE* is the volume change of

the enclosure during the current time step At™"' =t_, —t, .

Element i at t_,
—

AVEA
Element 1 at t,

Enclosed gas

Enclosed surface at t;

/_—Enclosed surface at t

Figure 7.13: The volume change of enclosure from time t to time t, ;.

As has been stated, there is a coupled relationship between the enclosure volume and the
generated gas pressure. In the proposed volume-pressure control procedure, the incremental
volume change AV;EHl 1s approximated based on the known parameters of the previous time

step. It is assumed that the enclosure in the current time step has the same rate of volume
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change as that in the previous time step, which leads to an adequate prediction of AVE“ as

follows:
AV,

AVEH = ?fm““ (7.18)

where the bar on the variable A\_/é”l indicates an approximating value.

At the beginning of each time step, the value A_]f:”l 1s estimated using (7.18), which is then

used to obtain an approximated value of the current enclosure volume:
Vi = Vi 4+ AVET! (7.19)

where VE*! is an estimation of the current enclosure volume.

Rather than defining a pressure DOF and coupling it with the enclosure displacements, the

proposed algorithm calculate the current gas pressure, p%“ , only once at the beginning of the

time step with the use of the estimated volume Vi

070
) v
pyt =PETE (7.20)
E

where p% and V]g represent the gas pressure and the volume of the enclosure in the initial

undeformed state.

Subsequently, the analysis for the current time step is performed with the use of pg” in

combination with other external loads. Once the displacement parameters of the current time
step have been solved for, the real volume change AV]‘;“1 can be calculated by integrating the
normal component of incremental displacements ant! throughout the enclosed surface QF

(Figure 7.13):
I~ 1
AVE™ =D AVE] (7.21)
i=1

AVE! = [ (@ -cf)doy”

i (7.22)
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where N stands for the number of shell elements that compose the enclosure; Q" denotes the
domain of the shell element composing the enclosure, with the superscript ‘n’ denoting the
previous configuration at time ¢t ; an! represents the incremental translational

displacements at time t,, in terms of the global system, which is interpolated as:

NC
"' => N (7.23)
i=1

cg is the unit outward normal vector of the element in the previous configuration, which
varies over the curved shell configuration:
n VEXVp X", X"

C :—’ Vn :_, V., = 7.24

T
with X" =<Xn,Yn,Z“> representing the global nodal coordinates of the element at the

previous time step t, , interpolated as:

NC
X" =Y NX{ (7.25)
i=1

It 1s important to note that although (7.18)-(7.20) give an approximation of the current gas
pressure, the accuracy improves with finer temporal discretisation. In addition, the
employment of (7.18)-(7.20) leads to a decoupled system of equations for the displacement
parameters and the gas pressure, which provides good accuracy without a significant increase

computation time.

7.5 Verification of volume-pressure control algorithm

The volume-pressure control algorithm is verified with two simple dynamic examples, where
the convergence studies on the mesh size and the time step are included in the first example,

and the comparison against the results of others is given in the second example.

240



Application to Laminated Glass

7.5.1 Clamped double glazing

7.5.1.1 Description of problem

As depicted in Figure 7.14, a double glazing, which is composed of two 1.2m x 1.2m x Smm
AG panes with a 10mm insulated air gap in between, is subjected to a uniform transverse
pressure loaded on one glazing pane, with the loading history presented in Figure 7.15. The
material properties of the glass are E=72x10", v=025, and p=2500kg/ m’® . The
translational DOFs are all restrained at the glazing edges. The central deflections
u,(L/2,L/2) and stress components o, (L/2,L/2) for each pane are used to assess accuracy,

with the evaluation positions in the thickness direction shown in Figure 7.14.

k P
z E-----—l--—--—y-—--—i—ﬂg;v\j—-----;-----i--——-——l---—-—
zzzzgz;zz;35;555;35;5;’3).%%55;555; STTIIIoiIiIiiiiie
4)” il “External glass pane

Insulated air gap

Camped o X Internal glass pane

Figure 7.14: Clamped double glazing with insulated air gap subject to uniform pressure.

p (kPa)

10

0 0.05 Time (s)

Figure 7.15: Loading history of uniform pressure p.

7.5.1.2 Results of proposed volume-pressure control algorithm

Due to symmetry, a quarter of the glazing is modelled with the monolithic H309 elements
using ADAPTIC (Izzuddin, 1991). The volume-pressure control algorithm is employed for
all the shell elements forming the enclosure, where the element normals of the elements are

all oriented outward, which is a requirement for the direct application of (7.21)-(7.22) without
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sign adjustment. In order to ensure the accuracy of the results, a time step of
At=2.5x10"*sec is employed. The time histories of the central displacements and stresses
are depicted in Figures 7.16-7.17 for three successive meshes (4x4, 6x6 and 8x8 for each of
the quarter-pane), which shows that the 6x6 mesh provides a convergent solution, although
the results with a 4x4 mesh are already reasonably accurate. From Figure 7.17 it is also
observed that that the problem is associated with large displacement, evident from the much
larger magnitudes of stress o, at positions (2) and (4) , owing to the stretching of the glass

panes under loading.

=—=4x4: external
==—=4x4: internal
——————— 6x6: external
------- 6x6: internal
eeeee Bx8: external

eeeee 8x8: internal

Displacement (mm)
n

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Time (s)

Figure 7.16: Displacement time histories of ADAPTIC models with three successive meshes

(At=2.5x10"*sec).
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Figure 7.17: Stress time histories of ADAPTIC models with three successive meshes

(At=2.5x10"sec).
7.5.1.3 Comparison with ANSYS model

The same problem is analysed in ANSYS, where 4-noded shell elements, SHELL181, are
employed for the modelling of the two glass panes, and the volume-pressure relationship is
computed with the use of the hydrostatic fluid element, HSFLD242 element, as shown in
Figure 7.18. The HSFLD242 element is a 3D pyramid-shaped element, where the base (I-J-
K-L) is overlayed on the faces of shell elements enclosing the volume so as to share the
translational displacement DOFs with the overlayed shell elements for the calculation of the
gas volume. On the other hand, a pressure node Q is defined for the whole enclosure, as
described in Section 7.4, which is shared by all HSFLD242 elements composing the same gas
enclosure. Therefore, the HSFLLD242 element correctly derives the current gas pressure and
deformed configuration, but the pressure node in turn couples the displacement parameters

and the pressure parameter.

A quarter of the double glazing is modelled with three successive meshes (8x8, 12x12, and
16x16) of the SHELL181 element for each pane, and a time step of At= 2.5x107*sec is
used. Figures 7.19-7.20 depict the displacement and stress results with the three meshes,
which shows that the 12x12 mesh provides a convergent solution, which employs the same

number of displacement variables as the 6x6 mesh of the ADAPTIC model. Figures 7.21-
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7.22 compare the results of the 6x6 ADAPTIC model with the 12x12 ANSYS model, which
show a good agreement of both models, hence indicating the accuracy of the proposed

volume-pressure control algorithm for a time step of At =2.5x 107 sec.

Q (Pressure node)

J
Figure 7.18: Geometry of HSFLD242 element (ANSYS, 2012).
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Figure 7.19: Displacement time histories of ANSYS models with three successive meshes

(At=2.5x10"*sec).
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Figure 7.20: Stress time histories of ANSY'S models with three successive meshes

(At=2.5x10"*sec).
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Figure 7.21: Comparison of displacement time histories between the ADAPTIC and the ANSYS

models (At =2.5x10"*sec).
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Figure 7.22: Comparison of stress time histories between the ADAPTIC and the ANSY'S models

(At=2.5x10"*sec).

As noted before, the proposed volume-pressure control algorithm excludes the use of a
pressure node and avoids the coupling between the nodal displacements and the pressure
DOF, though this in turn can require a relatively smaller time step than the algorithm
involving a pressure parameter, as illustrated in Figures 7.23-7.24. In the figures, the stress
results of each model with two incremental time steps (At =2.5x 10*sec and 5.0x107* sec)
are depicted. The results of the ADAPTIC model employing the proposed volume-pressure
control algorithm for a larger time step (At = 5.0x107* sec) are not as accurate as those of
the ANSYS model utilising a pressure node. Nevertheless, the proposed algorithm enables

the analysis of double glazing with a relatively simple modification to conventional analysis.
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Figure 7.23: Stress time histories of ADAPTIC models with two time increments.
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Figure 7.24: Stress time histories of ANSY'S models with two time increments.
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7.5.2 Pinned double glazing

7.5.2.1 Description of problem

Similar to the previous example, the response of a Im x 1m square insulated glazing with all
edges pinned under a triangular impulse load is investigated, as depicted in Figure 7.25. The
insulated glazing is composed of two 10mm thick structural glass panes insulated by an air
gap of 12mm. The material properties of glass are given as: E=72GPa, v=0.22, and
p =2500kg/ m’. The triangular impulse is shown in Figure 7.26, which has a magnitude of
22.3kPa-ms with a peak pressure of 6.9kPa at time t = 0s. The deflection and principal
stresses at the pane centre are evaluated, with the evaluation positions in the thickness

direction shown in Figure 7.25.

Here, each glazing panel is modelled with a 16x16 mesh of the monolithic H309 element,
and a time step of 1.5x10™ sec is selected, which provides a convergent solution to the
problem. The time histories of the pane central deflections and maximum principal stresses
for both panes are depicted in Figures 7.27-7.28. Also presented are the results by Seica et al.
(2010), where a 16x16 mesh of 9-noded elements were used for each panel. Clearly, the
results of both models match well, which verifies that the proposed volume-pressure control

algorithm works well, hence enabling the effective nonlinear analysis of insulated glazing.

J—

Yy NN

>
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1

EEEE
2)” External glass pane
Internal glass pane

Figure 7.25: Pinned double glazing with insulated air gap subject to triangular impulse.
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Figure 7.26: Schematic representation of the triangular impulse.
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Figure 7.27: Displacement time histories of different double glazing models.
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Figure 7.28: Principal stress time histories of different double glazing models.

7.6 Summary

In this chapter, the proposed laminated shell elements are used to model LG problems. Since
the scope of interest is the response before the generation of cracks in glass, an elastic
material model is used for glass. For the PVB interlayer, the generalised Maxwell series is
adopted to describe the viscoelastic material characteristics. A recursive formula for the
viscoelastic material model is employed to capture the characteristics of PVB, which is

applicable to both 3D solid elements and plate and shell elements.

Subsequently, a LG problem in literature is simulated, where circular LG panels are subject
to monotonously applied loading, and the structural response under different displacement
loading rates is investigated. The implemented viscoelastic material model is verified with a
good match between the results of the laminated shell model and the experimental and
numerical data. It is also concluded from the results that: (1) under short-duration loading, the
response of the LG can be regarded the same as the response of a monolithic glass pane with
the same nominal glass thickness owing to the large shear stiffness generated by PVB; (2)

under long-duration loadings, the shear stiffness of PVB becomes quite small, which leads to
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the response of the LG becoming similar to the response of two glass plies layered with no
connection. Then a LG problem associated with short-duration loading is simulated, where
both a linear viscoelastic material model and a linear elastic material model are used for PVB,
which shows that it is feasible to use a linear elastic material model for PVB in blast analysis

without loss of accuracy.

In order to allow the simulation of double glazing, a volume-pressure control algorithm is
proposed, which considers the effect of insulated air by assuming a hydrostatic pressure state
in the insulated air gap and relating the generated pressure to the relative volume change in
the air gap. The algorithm computes the air pressure with the use of the structural
configuration and rate of volume change from the previous step, which eliminates the need to
introduce a pressure parameter, and hence avoids coupling between the displacement
parameters with the pressure loading. The accuracy of this volume-pressure control algorithm
has been verified with two numerical examples of double glazing. It is shown that for an
adequate time step, the model with the proposed volume-pressure control algorithm agrees

well with the solutions by others utilising coupled pressure-displacement models.
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CHAPTER 8§
Case Studies

8.1 Introduction

This chapter presents several applications of the proposed laminated shell elements in the
modelling of LG structures, which are illustrated through a number of numerical examples.
Two practical problems related to the design and assessment of LG structures are first given,
with one problem associated with the buckling analysis of a partial LG structure and the other
the creep analysis of a LG stair. Subsequently, a comprehensive double glazing system under
blast loading is analysed, and the results are compared with existing experimental and
numerical data. All numerical examples are geometrically nonlinear and modelled with the
laminated shell elements proposed in the previous chapters. The first two examples are
related to static analysis, and the last example examines the performance of the element in

dynamic applications.

8.2 Buckling analysis of laminated glass fin

In recent years, not only has LG been widely used for secondary structural components (such
as curtain wall glazing), but it has also become increasingly adopted for structural
applications owing to its aesthetic appearance (Figure 8.1.a). LG members that are used in
real structures are typically associated with large slenderness, which post an equal importance
of stability analysis to cross-sectional strength analysis. This section focuses on the stability

analysis of a partial LG structure under transverse loading (say wind load), which is extracted
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from a pure LG structure (Figure 8.1.a), where a laminated shell model using the proposed

elements is built, with its efficiency and accuracy compared with other models.

h=10m

a. Apple Store Fifth Avenue New York. b. A partial model extracted from structure.

(www.ldesignarch.com).

Figure 8.1: A LG structure.

8.2.1 Description of the problem

The partial LG structure shown in Figure 8.1.b is composed of two halves of curtain wall
glazing panels supported by a LG fin. The glass fin is 10m in height and 400mm in depth,
and consists of three 12mm glass plies bonded by two 1.52mm PVB interlayer (Figure 8.2).
Each curtain wall glazing is 10m high and 2m wide, and is composed of two 10mm glass
plies sandwiched by a 1.52mm PVB interlayer. Adhesive silicone bond is used between the
glass fin and the glazing panes, which provides a continuous elastic support along the vertical

glazing edge.
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Figure 8.2: Plan view of the partial LG structure.

The material parameters of glass are E =70GPa and v, . =0.2. For design purpose,

glass glass

the ASTM (2012) E1300-12 standard suggests using a linear elastic material model for the
PVB with the shear relaxation modulus for a 3s load duration at a 50°C operation temperature
for the analysis of wind load. Therefore, a linear elastic material model is used, where the
bulk modulus is 2.0GPa and the shear modulus is 0.44MPa, which is extracted from the shear
relaxation model proposed by Bennison et al. (1999) (Table 7.1) for a load duration of 3s at a
50°C operation temperature. The corresponding Young’s modulus and Poisson’s ratio are

Epypg =1.32MPa and vpyp =0.4999 .

A uniform transverse pressure is applied to the two halves of glazing to represent the wind
load. In this case study, a static analysis is performed to determine the critical wind load for

structural buckling.

8.2.2 Consideration of silicone joint

The continuous elastic support provided by the silicone joint is modelled with matrix
elements along the edge. In order to obtain the effective stiffness of the matrix element, the
silicone is assumed to be virtually under plane strain conditions with negligible strains in the
vertical direction. Figure 8.3 provides a schematic representation of the silicone joint cross-
section, where tg = 36mm 1is the overall thickness of glass plies of the LG fin and ts = 20mm
is the thickness of the silicone joint. There are three displacement fields of significance

(uy,u,,0), each of which is assumed to vary linearly along the x-axis:
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u u I
u, = 0. %, u, = 20.x, 9=-2.x (8.1)
tS tS tS
Z'“'
Fy
L
Uxo X
X

|ts|

Figure 8.3: Schematic representation of the silicone joint cross-section.

The strains are given as:

8X:<3(ux+92):uxo Ty_Z’ YXZ:8(ux+92)+6‘uz :rY_X+uL0 82)
Ox t, oz ox oty
which results in the following stresses:
E(1-v) E
Ox = €xr Txz = Txz (83)
1+v)(1-2v) 2(1+v)

The internal equivalent forces can be obtained from the virtual work statement:

8uofo +8u,0f,0 +Or,m,, = [ (8e,0, +8y,,7,,)dQ° 8.4)

Q¢

which yields:

255



Case Studies

__Ed-v) 4
O deva-2vyt, X0
E E

f,,= Lu+——t,r 8.5
T 20+v)t, 0 2014v) &Y (8.5)

El-v) G ,_E E

= tt, |r,+—t_u
v (1+v)(1—2v)12tS 2(1+v) Sy 2(1+v) g7z0

By ignoring the coupling terms between u,, and 1, , and taking the material parameters of
the structural silicone to be E =1.4MPa and v=0.499, the equivalent uncoupled stiffness

terms are obtained as:

— t
K, =fo/ugy =0V e 411x108N/m?
1+v)d-2v) t
k, =1f,0/u,= £ -8.406x10° N/m? (8.6)
2(1+V) t,

~ E(l-v) ,_E

ky=m, /[t = A+v)(1-2v) 12t,  2(1+V)

t.t, =4.582x10* (N-m)/m

g

Since silicone is associated with a large Poisson’s ratio, the silicone joint undergoes large
bulk deformation under loading. Therefore, a solid model with a fine mesh is also used to
model the silicone joint, which has a width tg, a depth ts, and a height H = 50mm. As shown
in Figure 8.4, the top and bottom surfaces are restrained in the y direction, whereas the left
surface is fully restrained. Three displacement modes are applied on the right surface,

respectively:
(1) Elongation in the x direction, at x =t : u, = 107 , Uy =u, = 0;
(2) Shearing in the z direction, at x =t_: u, =10°,u, =u, =0;

(3) Rotation about the y axis, at x =t : u, = 1078 (z— tg/Z) ,u, =0.

The three models then correspond to respectively a tensile force Fx, a shear force Fz, and a

bending moment My, respectively, which result in the effective stiffness terms as follows:
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k, = B 632x10°N/m?
u, H
F, 5 )
k,= =6.28x10°N/m (8.7)
u, H
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K,y =—>=405.6(N-m)/m
ryH
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N
y .
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Xty+z . 1 - -
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A~
~
-
y restrained

Figure 8.4: Boundary conditions for the silicone joint model.

Clearly, the bulk deformation of silicone (Figure 8.5) has a significant influence on the
stiffness terms, in particular kx and kry. In the following analyses, the effective stiffness terms
of (8.7) are used for the spring matrix elements. Denoting h, as the element size of the fin
along the y axis, then equivalent stiffness parameters at each discrete node along the edge for

quadratic shell elements are:

2 2
Edge node: K, ZEthe, K, =§kzhe, K,y :gkryhe;

h,K:lkh Kzlkh

1
Corner node: KX=§kX . =3 ke Ky =Zkyh,.
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a. Deformation mode for a uniform elongation.

b. Deformation mode for a uniform rotation.

Figure 8.5: Representative cross-sectional deformation modes due to bulk deformation.

8.2.3 Finite element modelling with different methods

8.2.3.1 Laminated shell element model

The partial fin-glazing structure is simulated with a laminated shell element model, where the

glass fin is modelled with a 16x4 mesh of the L5-H309 element, and each half glazing is

modelled with a 16x8 mesh of the L3-H309 element. The boundary conditions of the partial

model are depicted in Figure 8.6.a. The structure is more vulnerable to the suction load,

hence uniform loads in the negative x direction are considered in this buckling analysis.

Besides the fin-glazing model, a more simplified fin model is also used which consists of the

glass fin only with the same element size. Figure 8.6.b shows the boundary conditions of the

simplified model, and the suction load is assumed to be a uniform line load applied to the

silicone joint. Both considered models provide convergent solutions. Figure 8.7 depicts the

load-displacement curves of Point A in the z direction with both the fin-glazing model and

the fin model. Note that for the fin-glazing model the effective suction load is obtained by

dividing the sum of the uniform loading on the glazing panels, minus the reaction forces

associated with the restraints in x at the top and bottom glazing edges (illustrated in Figure

8.6.a), by the glazing width. It is evident that the predicted buckling curve of the fin model

matches well that of the fin-glazing model. The fin model with a 16x4 mesh of the proposed
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L5-H309 is denoted as Model 1, which will be compared with other models. On the other
hand, by restraining all the additional DOFs, a FSDT-based laminated shell model is also

obtained for comparison, which is denoted as Model 2.
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Figure 8.6: Boundary conditions for the fin-glazing model and the fin model.
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Figure 8.7: Load-displacement curves of the fin-glazing model and the fin model.

8.2.3.2 Monolithic shell element model

In the ASTM (2012) E1300-12 standard, an engineering formula is provided in Appendix X9
for calculating the effective thickness of two-ply LG, which allows the use of a monolithic
shell model to predict the displacements or stresses of glass laminates. A shear transfer
coefficient is defined to measure the shear stress transfer across the interlayer, which is used
in two separate effective thickness equations for the estimation of the maximum deflection
and glass bending stress, respectively (Appendix E). The effective thickness expression for
two plies is then extended to three-ply LG by substituting the effective thickness of two-ply
LG back into the equation, as described by Zenkert and Industrifond (1997). For the
prediction of deflection for the three-ply LG fin, Zenkert and Industrifond’s model yields an
effective thickness of 20.79 mm, which is then used in a 16x4 monolithic shell model

employing the H309 element, denoted as Model 3.
8.2.3.3 Solid element model

Apart from the laminated and monolithic shell element models, buckling analysis is also
performed with a 3D solid model using the 20-noded solid element BK20, where the fin is
discretised into 4 elements along the x-axis and 50 elements along the y-axis, and each layer
is discretised into 2 elements through the thickness. The solid model, denoted as Model 4,

provides a reference solution for comparison.
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8.2.3.4 Results and discussions

Figure 8.8 depicts the load-displacement curves of Point A in the z direction using different
models, where the predicted buckling load and the number of DOFs used for each of the
models are listed in Table 8.1. Clearly, Model 2 employing FSDT corresponds to a much
stiffer response than the others owing to the assumption of a linear displacement variation
through the thickness, which, in comparison with Model 1, indicates a significant zigzag
effect that cannot be ignored. Although Model 3 takes into consideration the layer thicknesses
and the material mismatch by employing a reduced effective thickness for the glass laminate,
the results are not accurate and overestimate the buckling load significantly, which may lead
to an unsafe design. It is also observed that Model 1, which employs slightly more DOFs than
Models 2 and 3 but shows comparable accuracy with Model 4, achieves good accuracy with
much better efficiency compared to the 3D Model 4, where Model 1 is found to be 71.4 times
faster than Model 4. Figure 8.9 also depicts the through-thickness distribution of the stress
component at point A for Model 1 and 4, which shows a good agreement between the two

models.

6
5
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Z
&
=3
.g ) = == Model 2
g = == Model 3
)
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0 e

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Displacement (m)

Figure 8.8: Load-displacement curves at point A for different models.
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Figure 8.9: Through-thickness distribution of stress Oy at point A for different models for a suction
load of 3 kN/m.

Table 8.1: Accuracy and Efficiency comparisons of results using different models.

Model Critical suction load (kN/m) Number of DOFs
1 4.47 2660
2 - 1510
3 5.54 1510
4 4.48 30747

The influence of the PVB material stiffness on the predictions of the effective thickness
method is investigated, where four different shear modulus values for PVB are considered
(0.44 MPa, 4.4 MPa, 44 MPa, and 440MPa) while the bulk modulus remains constant at
2.0 GPa. Figure 8.10 depicts the buckling curves of Model 1 and 3 with various PVB shear
modulus values. It is concluded that the effective thickness proposed by Zenkert and
Industrifond (1997) overestimates the buckling load for a relatively small PVB shear modulus

whereas it underestimates the buckling load for a moderate PVB shear modulus.
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Figure 8.10: Load-displacement curves at point A with different PVB shear modulus (three-ply LG).

The accuracy of the effective thickness method for a LG fin with only two plies of the same
planar dimensions is also investigated, which comprises two 3.6mm glass plies and one
1.52mm PVB interlayer. Still, Model 1 represents a 16x4 sandwich shell model using the
proposed L3-H309 elements, and Model 3 represents a 16x4 monolithic shell model with the
effective thickness calculated with reference to the ASTM (2012) E1300-12 X9
recommendation. The resulting equilibrium paths with various interlayer shear stiffness
values and models are depicted in Figure 8.11. It is concluded that the effective thickness
method in ASTM E1300-12 X9 results in a conservative prediction except for a large PVB
shear modulus, owing to the inadequate analogy between the LG and a conventional
monolithic plate. The use of two sets of equations for the prediction of displacements and
stresses accounts for the inadequacy of using a monolithic plate model for the replacement of
a lamination model. Nevertheless, for the considered PVB shear modulus values, the

predictions of the buckling loads ensures a safe design of LG panels.
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Figure 8.11: Load-displacement curves at point A with different PVB shear modulus (two-ply LG).

8.3 Creep of laminated glass stair

Owing to the fact that the interlayers used in LG typically consist of viscoelastic material, the
LG is associated with noticeable creep under long-duration loadings. The linear viscoelastic
material model implemented in Chapter 7 considers the influence of loading duration and
temperature on the material mechanical properties, thus enabling the investigation of creep
development in LG panes with time. As depicted in Figure 8.12, the creep of glass stairs is a

typically encountered problem, which is considered in this case study.

8.3.1 Description of the problem

Figure 8.13 shows a 1.8m wide, 0.3m deep LG stair, which is installed horizontally with both
edges simply supported and loaded with a self-weight of w = 1219.7 N/m?. The glass stair is
composed of four 12mm glass plies and three 1.52mm PVB interlayers. The material
=0.2 . The linear viscoelastic model

parameters of glass are E .. =70GPa and v

glass glass

proposed by Bennison et al. (1999) is used for the PVB, so that the creep behaviour of the

glass stair at different operation temperatures can be investigated.

Considering the constant loads and the long time span of the analysis, this problem can be
regarded as a pseudo static problem. A static analysis is performed on a quarter model of the

stair, which uses an 8x2 mesh of the L7-H309 elements to provide a convergent solution. In
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the following, the influence of loading duration and operation temperature is investigated and

the results are discussed.

Figure 8.12: Glass staircase in Soho Apple Store, New York.
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a. through-thickness representation. b. shell model of the glass stair.

Figure 8.13: Schematic representation of the LG stair.

8.3.2 Influence of temperature on creep behaviour

Figure 8.14 depicts the time-history curves of the central deflection with various operation
temperatures for 10 years. The same results in the logarithmic time scale is presented in
Figure 8.15, which shows that for an operation temperature of 30°C the stair deflection

approaches to the asymptotic value (3.05mm) at around 98 days after installation, whereas for
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an operation temperature of 10°C the deflection at 10 years is around 1.90mm, which is much

lower than the other three curves.

3.5
3.0 A
€2.5 .
g
= 2.0 T
S
P ' o
% 1.5 - —10°C
[= —20°C
1.0 -
e 24°C
05 7 30°C
00 n T T T T T T
0 50 100 150 200 250 300 350

Time (x10°%)

Figure 8.14: Deflection time history of the LG stair with different operation temperatures.
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Figure 8.15: Deflection time history of the LG stair with different operation temperatures.

8.3.3 Influence of loading history on creep behaviour

Assume that during operation a uniform load p=1000N/m? is exerted at some point in time on
the glass stair, which stays permanent afterwards, as shown in Figure 8.16. Three loading

histories are considered, as shown in Figure 8.17. The deflection time histories at a 20°C
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operation temperature with various load histories are depicted in Figure 8.18, where it is
evident that the deflections converge after a sufficiently long duration. Results with various
operation temperatures for load history 1 are also shown in Figure 8.19. Clearly, temperature
has a major influence on the time required for the deflections to reach the maximum steady

state value.
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Figure 8.16: Schematic representation of applied external loading.
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Figure 8.17: Three load histories with different times of load application.
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Figure 8.18: Deflection time history of the LG stair with different time of loading.
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Figure 8.19: Deflection time history of the LG stair with different operation temperatures.

8.4 Insulated glazing curtain wall system subject to blast loading

Insulated laminated architectural glazing systems, which consist of two glass panels separated

by a sealed air gap, have been widely used in building construction for thermal and sound

insulations. Currently, there are a variety of sources for such systems to experience blast

loading, whether due to petro-chemical explosions or terrorism. Since these curtain wall
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glazing system typically represent the first line of defence for building occupants, their
response under blast loading has drawn special attention from structural engineers. The
potential benefit of insulated glazing under blast events was pointed out by Nawar et al.
(2013), noting that an annealed glass (AG) layer can provide added blast resistance by
serving as a sacrificial layer. They have conducted an impressive experimental programme on
a double glazing curtain wall system under shock pressure, which is simulated here using the

models developed in this work.

8.4.1 Description of problem

The tested curtain wall system consisted of two identical insulated glazing units supported by
two aluminium frames and a vertical mullion at the centre line, as depicted in Figure 8.20.
Both insulated glazing units were 1.524m wide and 3.05m high, resulting in a curtain wall
system that is 3.05mx3.05m. Each insulated glazing unit was composed of a 6.35 mm AG
panel and a LG panel (two 4.76mm heat strengthened glass plies bonded with a 1.52mm
UVEKOLS-S interlayer), separated by a 12.7 mm air gap in between. The cross-sections of the
aluminium frame and mullion are shown in Figure 8.21, and the material properties of the
glazing system were provided by Nawar et al. (2013), as listed in Table 8.2. A shock pressure
was exerted on the AG side of the curtain wall system, with the blast wave history depicted in
Figure 8.22. The curtain wall was supported vertically along the mullion only, which was
attached to the head and sill using aluminium angles. Besides, the flanges of frames were also
attached to the head and sill on the side where the shock pressure was imposed. Figure 8.23

provides a schematic representation of the boundary conditions.
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Figure 8.20: Schematic representation of the double glazing system (Cont’d...).
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Figure 8.20: Schematic representation of the double glazing system.
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Figure 8.21: Details of the curtain wall and mullion (Nawar et al., 2013).
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Table 8.2: Material parameters of the curtain wall system (Nawar et al., 2013).

Material Material parameters
Glass E = 69GPa, v =0.22, p = 2500 kg/m’
Uvekol-S E =0.207 GPa, v =0.495, p = 1100 kg/m?* , Elastic limit = 17.6 MPa,
Failure strain = 1.94, Failure stress = 21.4 MPa
.. E =69 GPa, v=0.33, p = 2700 kg/m? , Elastic limit = 214MPa,
Aluminium

Failure strain = 0.12, Failure stress =241 MPa
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Figure 8.22: Blast wave history (Nawar et al, 2013).
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Figure 8.23: Boundary conditions of curtain wall system (Nawar et al, 2013).

This problem is analysed in this section to investigate the effect of enclosed air pressure on
the structural behaviour of the double glazing, where a shell element model, along with the

volume-pressure control algorithm developed in the previous chapter, is employed.

8.4.2 Low-level blast analysis

Before the simulation of the actual blast test, a low-level blast analysis of the curtain wall
system is first considered so as to exclude the contact between the double glazing and reduce
modelling complexity. By scaling down the blast pressure in Figure 8.22 to one tenth of the

measured blast loading, a low-level blast input is obtained and used in the analysis.

The monolithic shell element H309 is used for the modelling of the AG panels, aluminium
frames, and mullion, while the sandwich shell element L3-H309 is used for the modelling of

LG panels. In order to ensure accuracy of the finite element simulations, convergence studies
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were conducted. Two models are considered: i) a full model of the whole curtain wall system,
and ii) a half model comprising one double glazing unit, one frame and half of the mullion. In
addition, two mesh sizes are considered: 1) a coarse mesh, where each glazing panel is
discretised with 64x32 of the shell elements, and ii) a finer mesh, where each glazing panel is
discretised with 64x32 of the shell elements. For all of the models considered, the glazing
and the aluminium frame are assumed to be pin-connected. In all of the three models, the
effect of air gap is considered with the employment of the volume-pressure control algorithm.
The time increment of At = 2x10™* sec is selected throughout this case study, which ensures

the stability of the analysis.

For the purpose of computational enhancement, a parallel computing procedure utilising dual
partition super-elements (Jokhio & Izzuddin, 2015; Jokhio & Izzuddin, 2013) is employed to
each of the considered models. As illustrated in Figure 8.24 for a full model with the finer
mesh, the whole curtain wall system is decomposed into 10 partitions (four glass pane
partitions, four half frame partitions, and two half mullion partitions). The collection of the
boundary nodes between the different partitions is the parent structure (Jokhio & Izzuddin,
2015). Communication between the partitions is achieved through the parent structure (shown
in red in Figure 8.24) which collects all the nodes at the partition boundary. In this way, the
parent structure is represented by a dual super-element, with one super-element used in the
parent process and another used as a wrapper around the partitioned boundary in the child
process (Jokhio & Izzuddin, 2015). This partitioned modelling approach allows a significant
increase of computational speed by increasing the number of partitions and processing the
partitions on parallel processors. In order to consider the effect of volume change in the
enclosed air on the results, the volume-pressure control algorithm has also been incorporated

in the partitioned model for each of the double glazing units.
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Figure 8.24: Schematic representation of the partitioned modelling approach.

The time histories of the panel central deflections and stresses for both full models and half
models using either the coarse mesh or the finer mesh show that the half model with a coarse
mesh provides a convergent solution for the low-level blast analysis at a much reduced
computational demand. This model is therefore used in the following to investigate the

influence of several key parameters on the behaviour of double glazing.
8.4.2.1 Glazing-to-frame connection

In several previous works, the silicone seal was modelled with matrix spring elements, with
the normal, shear and rotational stiffness terms obtained from experimental tests. Weggel et

al. (2007) performed experiments on the silicone connection and provided a range of typical
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spring constants, which was summarised by Seica et al. (2010) as listed in Table 8.3.
Although there is no clue for applying the structural silicone in the considered curtain wall
system (see Figure 8.21), discussions are made on the influence of different glazing-to-frame

connections. Here, three glazing-to-frame boundaries are considered:

e Pinned connection, where there is no relative translational displacements at the

glazing-to-frame connections;

e FElastic connection with maximum spring stiffness, where the effect of silicone is

considered by using the matrix spring elements with the maximum stiffness values;

e FElastic connection with minimum spring stiffness, where the effect of silicone is

considered by using the matrix spring elements with the minimum stiffness values.

The central deflection time histories of both glass panels with the three models are depicted
in Figure 8.25. The maximum absolute values of deflection in the considered time span are
also listed in Table 8.4. The displacement curves show that the spring supports provide a
larger response period than a pinned connection for both glass panels. It is also shown that
the deflection amplitudes of silicone-supported models are slightly larger than the pin-
supported model, where the maximum deflection for the AG panel using a minimum spring

stiffness shows an increase of 14.9%.

Table 8.3: Typical spring constants for silicone support (Seica et al., 2010).

Direction Min Max
Normal (N/m?) 1.03E+06 5.17E+06
Shearing (N/m?) 3.10E+06 1.55E+07
Rotational (N/rad/m) 1.38E+05 6.90E+05
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Figure 8.25: Displacement time histories at the AG and LG centres with different supports.

Table 8.4: Maximum deflection predictions by using different glazing-to-frame supports.

Glass panel

Maximum deflection (mm)

Minimum deflection (mm)

Pinned Spring_max Spring_min Pinned Spring_max Spring_min
AG 16.63 17.43  (+48%) 19.11 (+149%) -19.18  -17.85 (-6.9%) -18.60  (-3.0%)
LG 17.89 1791  (+01%) 1875  (+48%)  -1899  -18.08 (48%) -18.80 (-1.0%)
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The time histories of the stress component o, at the external and internal extreme fibres for
the AG panel are depicted in Figure 8.26, with the maximum tensile and compressive stress
components listed in Table 8.5. It is observed that the time history curves of silicone-

supported models correspond to larger response periods and that the magnitude of the peaks

1s much reduced.
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Figure 8.26: Time histories of the stress component Ox at the AG centre with different supports.
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Table 8.5: Maximum tensile and compressive stresses using different glazing-to-frame supports.

Maximum tensile stress (MPa) Maximum compressive stress (MPa)

Position - - - - - - - -
Pinned Spring max Spring min Pinned Spring max Spring_min

External 30.52 28.89  (-53%) 25.70  (-15.8%) 23.80 2232 (-62%) 2230  (-6.3%)
Internal 27.51 25.77  (-63%) 2447  (-11.1%) 23.41 2416  (+32%) 21.78 (-7.0%)

8.4.2.2 Air gap

The effect of the air gap to the response of double glazing is studied. Four different gap
widths are considered in this case study (3 mm, 6 mm, 12.7 mm, and 20 mm) with pinned

connections used for all scenarios.

Time histories of central deflections for the AG and LG panels are depicted in Figure 8.27.
From the displacement curves it is observed that the displacement curves of the AG and LG
panels for a 3mm air gap are much closer than those for a larger air gap of 20mm, and the air
gap time histories in Figure 8.27 also show a higher level of fluctuation for large air gaps,
which indicates that a small air gap is more sensitive to the pane deflection such that a very
small displacement of one pane will have immediate influence on the other one. In addition,

the deflections of the model increase with the gap width.
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Figure 8.27: Displacement time histories at the AG and LG centres with different gap widths
(Cont’d ...).
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Figure 8.27: Displacement time histories at the AG and LG centres with different gap widths.

The stress time histories of models with different air gap widths are depicted in Figure 8.28.
Clearly, the stresses for the 3mm gap have a higher level of fluctuation owing to the
sensitivity of the enclosed air to the panel deflection. By contrast, the models with larger air
gaps result in a reduced frequency of vibration in the stress components but higher stress
magnitudes, as shown in Figure 8.28 and Table 8.6. The stress results indicate that the
insulated air provides a protection of the glazing by generating an air pressure on both of the

glazing panels.
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Figure 8.28: Time histories of the stress component Oy at the AG centre with different gap widths
(Cont’d ...).

280



Case Studies

(O8]
(e

[\
(=]

N W
oS O

i~ =
& 10 E 10
2 S
x 0 x
° © 10
3 10 it 3
=10 +--H44-x-ft -- 1 =
7 : | ?,")-20

20 oo AR ‘g\ﬁﬁo::ar‘oﬁ glas:'s:‘o‘ufe‘r‘ -30
30 | MY .+ Annealed glas's: inner -40
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.000 0.025 0.050 0.075 0.100 0.125 0.150
Time (s) Time (s)
c. 12.7mm d. 20mm

Figure 8.28: Time histories of the stress component Oy at the AG centre with different gap widths.

Table 8.6: Maximum tensile stress values for different air gap widths.

Maximum tensile stress Ox (Mpa)

Position

3 mm gap 6 mm gap 12.7 mm gap 20 mm gap
External 27.10 27.38 30.52 29.99
Internal 24.82 26.06 27.51 28.52

8.4.3 Real-level blast loading

The analysis of the curtain wall system under the real blast loading is performed here, where
a full model with a fine mesh (64x32 mesh for glazing) is employed. The blast loading is
large enough to cause the contact between the AG and LG panels. In the consideration of
possible contact between the panels under the blast load, a node-to-surface contact element is
employed (Zolghadr Jahromi, 2014). The element is a 10-noded contact element, where
9 master nodes are attached to the surface of the LG pane, and a slave node is attached to the
surface of the annealed glass pane. A velocity constraint is activated when the distance
between the master node and the slave surface is equal to or less than the sum of half
thicknesses of both panes. In order to compare the results of the present model to those in the
literature, the time history curves of the present study are translated along the time axis for
0.03 sec, owing to the fact that the insulated glazing unit is loaded around 30 ms after the

explosion. The deflected shape of the curtain wall system is depicted in Figure 8.29. The time
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histories of the central deflections of the AG and LG panels as well as the gap variation with

time are shown in Figure 8.30.

Nawar et al. (2013) also performed a numerical simulation on the double glazing, where the
LG pane and aluminium frames and mullion were modelled with shell elements, whereas the
annealed glass pane and aluminium angles were modelled with solid elements. The effect of
sealed air was ignored in the model, and surface-to-surface contact elements were employed

to consider the contact between the two glass panels during the blast loading input.

In Figure 8.31, the transverse displacements of the LG and the mullion centre, as shown in
Figure 8.23, are compared against the test data and the numerical prediction by Nawar et al.
(2013) without considering the influence of enclosed air. Compared with the numerical
model by Nawar et al., the resulting displacement curves of the present model provide a
better prediction, evident from the good agreement between the results of the present model
and those of the test data. The maximum deflections for both the present model and that used
by Nawar et al. (2013) are all presented in Table 8.7. Comparing Figure 8.31 with Figure
8.27.c also shows an elongated response period for a high-level blast loading, which is
attributed to the plastic deformation of the aluminium frame and mullion, and the coupling

between the two glass panels in the insulated glazing.

Figure 8.29: Deflected shape of curtain wall under blast loading.
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Table 8.7: Comparisons of maximum deflection predictions.
Maximum dynamic deflection (mm)
Results LG Mullion
Value Relative error Value Relative error
Test (Nawar et al.) 132 - 77 -
Present 133 0.8% 73 5.2%
Numerical (Nawar et al.) 134 1.5% 58 24%
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The time histories of stress components 6, and o, at the external and internal extreme fibres
of the AG are plotted in Figure 8.32. It is observed that the stress variations show a similar
fluctuation frequency to Figure 8.28.c until about 0.05 sec, when the stress curves exhibit
high frequency oscillations owing to the contact between two glass panels, as observed in
Figure 8.30 for the gap width. According to Nawar et al. (2013), the failure tensile stress of
the AG is 84.8 MPa, and in their FE model the tensile stress of the AG exceeded its tensile
strength. Figure 8.32 also indicates the exceeding of the maximum tensile strength for the AG
at several time points, with the maximum tensile stresses at the external and internal glazing
fibres listed in Table 8.8. However, Nawar et al. (2013) observed that the AG panel remained
undamaged after the application of shock loading in the experiment. This phenomenon may
be explained by the scattered strength of brittle glass due to randomly introduced Griffith
flaws of differing severity. It is also important to note that neither the deflection nor the
stresses in the real-level blast problem are about 10 times those in the low-level blast analysis,
owing to the significant membrane action in constraining the deflection and the high ductility

of the aluminium frame and mullion in absorbing blast energy upon yielding.
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Figure 8.32: Stress time histories at the external and internal extreme fibres of the AG panel centre

(Cont’d...).
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Figure 8.32: Stress time histories at the external and internal extreme fibres of the AG panel centre.

Table 8.8: Maximum stress values at the AG panel centre.

Maximum stress value (MPa)

Stress component

External Internal
Ox 91.6 93.0
Oy 103.0 91.2

8.5 Summary

This chapter provides several applications of the proposed modelling approach in this thesis for
both static and dynamic analysis of LG structures. The wide range of application examples
studied here is aimed at demonstrating the significant potential of this work in providing simple
laminated shell elements which are computationally efficient and accurate, and which allow
nonlinear analysis involving geometric and material nonlinearities. In the last case study, the

proposed volume-pressure control algorithm is also employed in the simulation of the enclosed

gas pressure in double glazing.
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CHAPTER 9

Conclusions

9.1 Summary

The work presented in this thesis is motivated by the need for an efficient numerical
modelling approach for the analysis of laminated glass structures. Even though the LG has
been widely used in building construction owing to its aesthetic appearance and safety
benefits, its behaviour under loading is complicated, which is characterised by: (1) a
significant material mismatch between the glass and the PVB, (2) an alternating stiff/soft
stacking sequence, (3) geometric nonlinearity owing to the large slenderness, (4) the
sensitivity to load duration and temperature, (5) the complicated fracture mechanism of glass,

and (6) the nonlinear material properties of PVB at large strains.

Focusing on the pre-cracking stage of LG, this research has proposed multi-layer shell
elements specific to laminations with an alternating stiff/soft lay-up, which are applied to the
simulation of LG structures. In the following sections, some of the major achievements in this

research work are highlighted.

9.1.1 Lock-free monolithic shell elements

Reissner-Mindlin shell finite elements usually suffer from locking, where the element is
unable to generate lower-order strain fields owing to the existence of some higher-order
polluting strain terms. The hierarchic optimisation approach proposed by 1zzuddin (2007), as

an assumed strain method, overcomes locking by enhancing conforming strains with
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hierarchic corrective strains, and mathematical optimisation is performed towards objective
low-order strain fields, as afforded by the element DOFs. This approach not only alleviates
shear and membrane locking, but also addresses locking arising from element distortion. The
order of the corrective strain field is not capped to a prescribed distribution but can attain any

hierarchic order, which results in families of hierarchically optimised elements.

In this research, some modifications have been made to the hierarchic optimisation procedure
for the 9-noded shell element (Izzuddin, 2007). Firstly, an additional objective transverse
shear strain mode is introduced to the assumed strain modes, which is required to achieve the
correct rank of the local stiffness. Secondly, a modification of the hierarchic strain modes is
proposed to enable the 9-noded element to pass constant strain patch tests. In addition, the
hierarchic optimisation approach is extended to a 6-noded triangular shell element, with the
further consideration of the requirements of spatial isotropy. The local formulation of the 6-
noded triangular shell element is framed within the zero-macrospin co-rotational system,

which upgrades it to geometric nonlinear analysis with relative ease.

The performance of the quadrilateral and the triangular monolithic shell elements has been

investigated with extensive numerical tests, with the outcomes summarised as follows:

e All the optimised quadrilateral and triangular elements with different hierarchic orders
pass all fundamental element tests, including the zero energy mode tests, the constant

strain patch tests and the isotropic element tests.

e The optimised elements exhibit a significant relief of shear locking and membrane
locking with good convergence rates. Nevertheless, the optimised elements that do
not employ corrective hierarchic strain modes in the optimisation (H209 and H206)
result in degraded performance for curved shell problems compared to elements with
hierarchic correction, which highlights the importance of the inclusion of higher-order

strain modes in the optimisation.

e For the same hierarchic correction order, the objective alternative yields superior

results than the corrective alternative in terms of both accuracy and convergence rate,

287



Conclusions

with the objective alternative based on third order hierarchic optimisation (H309 and

H306 elements) exhibiting both accuracy and efficiency.

The H309 and H306 elements also have comparable or even better accuracy than the
mixed elements based on the MITC formulations, mainly due to effective relief of

distortion locking.

9.1.2 Lamination model with an alternating stiff/soft lay-up

A three-layered sandwich shell model is first proposed in this research work, which is

characterised by the following features:

A zigzag function that assumes identical rotations in face sheets is added to the
Reissner-Mindlin plate theory to consider the zigzag effect in displacements, which
effectively captures the sectional warping for both symmetric and asymmetric lay-ups

with only one zigzag mode.

A piecewise linear-constant-linear through-thickness distribution of the transverse

shear strain is assumed, which is specifically suitable for sandwich layer-ups.

Each layer of the sandwich shell is regarded as a pseudo monolithic shell and employs
available kinematics and constitutive relationships. The governing equations of the

laminated shell are derived with the employment of the virtual work principle.

The effectiveness and efficiency of the proposed zigzag function for the sandwich shell is

illustrated with a 1D cantilever example. The adequacy of the assumed discrete transverse

shear strain distribution has also been demonstrated in comparison with the results of models

with continuous transverse shear stress distributions. In addition, the proposed zigzag

function outweighs the MZZF in asymmetrically laminated cases, which inspired the use of

similar assumptions on layer rotations in the development of generalised multi-layered shell

model.

The three-layered shell model is then extended to a generalised multi-layered shell model

with an alternate (stiff/soft/...) layer-up scheme, which has the following features:
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e A set of zigzag displacement modes are employed in the planar displacements, the
number of which is dependent on the number of soft layers. These zigzag
displacement modes are defined such that all stiff layers are assumed to rotate at the

same angle while the soft layers may have different rotations.

e The through-thickness transverse shear strain is assumed such that all internal layers
have constant values through the layer thickness while the external ones utilise a

linear distribution with zero values at the top and bottom of the plate.

Similar to the three-layered case, a 1D cantilever example has been used to stress the
accuracy of the zigzag displacement set and the assumed transverse shear strain distribution.

The results show that the proposed multi-layered shell model is both accurate and efficient.

9.1.3 Laminated shell elements

The proposed lamination model can be readily incorporated into the co-rotational monolithic
shell elements. In order to eliminate the need for co-rotational transformations for the
additional zigzag displacement parameters, a 2D curvilinear shell system is proposed for the
direct definition of these parameters, such that a simple and fixed transformation of these
additional parameters to their counterparts in the local element system holds throughout the

analysis.

The benefits of the 2D curvilinear shell system can be summarised as follows:

e With the associated additional zigzag parameters defined in this shell coordinate

system, continuity of the zigzag fields is ensured.

e The element response associated with the zigzag parameters can be evaluated via a
fixed linear kinematic transformation between the shell and local element systems
rather than a varying nonlinear co-rotational transformation, which enhances the

computational efficiency of the geometric nonlinear analysis of sandwich shells.

e The shell coordinate system is also useful to provide the orientation of material fibres
in relation to the local element coordinate system when composite materials are

considered.
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The proposed multi-layer shell modelling approach has been incorporated into the 9-noded
and 6-noded co-rotational shell elements, and the element performance in the simulation of
sandwich and laminated plates and shells with an alternating stiff/soft lay-up has been

verified with both linear and geometrically nonlinear numerical problems.

9.1.4 Application to laminated glass

The proposed laminated shell elements have been utilised in the simulation of laminated glass.
A viscoelastic material model has been implemented to consider the influence of loading rate
and temperature on the material properties of PVB. Two LG problems are analysed with the

use of the linear viscoelastic material model, the results of which show that:

e Under short-duration loading, the response of the LG can be regarded the same as the
response of a monolithic glass pane with the same nominal glass thickness owing to

the large shear stiffness generated by PVB.

e Under long-duration loadings, the shear stiffness of PVB becomes quite small, which
leads to the response of LG becoming similar to the response of two glass plies

layered with no connection.

In order to allow the analysis of insulated glazing, a volume-pressure control algorithm is
proposed, which considers the effect of insulated air by assuming a hydrostatic pressure state
in the insulated air gap and relating the generated pressure to the relative volume change in
the air gap. The algorithm computes the air pressure with the use of the volume and its rate
evaluated at the end of the previous step, which eliminates the need to introduce a pressure
parameter and hence excludes the coupling between the displacement parameters with the
pressure parameter. The accuracy of this volume-pressure control algorithm has been verified
with two numerical examples of double glazing. It is shown that for a reasonably small time
step, models utilising the proposed volume-pressure control algorithm agree well with

solutions by others.
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9.1.5 Case studies

Several applications of the proposed laminated shell elements in the modelling of laminated
glass structures are demonstrated through example case studies, which consist of a buckling
problem, a creep problem, and a blast problem of an insulated curtain wall glazing system.
The wide range of numerical examples is used to show the great potential of the proposed

shell elements in the estimation of LG behaviour accurately and efficiently.

9.2 Recommendations for future work

In this PhD thesis, novel laminated shell elements have been proposed and applied to the
analysis of geometrically nonlinear LG problems. As illustrated in Chapters 7 and 8, the
proposed modelling approach for LG provides the capability for many applications which are

of importance in LG design and assessment:

e Owing to the good approximation of both displacements and stresses, the laminated
shell elements can be used in the practical design of load-resistant LG members, such
as columns, beams, roofs and staircases, with almost the same level of simplicity as a
monolithic shell model. The proposed volume-pressure algorithm may also be used in

the analysis of insulated glazing units.

e Apart from LG structures, the proposed laminated shell elements are also applicable
to other structures with an alternating stiff/soft lay-up, such as interior insulation walls

and polymer-metal composites.

Notwithstanding, there is room for further improvements towards the modelling of fracture of
LG structures under extreme loading conditions such as blast and earthquakes. Potential

future research topics in this respect include:

e The modelling of fracture of glass plies. Glass is a brittle material with a limited
tensile strength due to random Griffith flaws. The incorporation of an adequate
fracture mechanism will allow the initiation and propagation of cracks in glass plies

when its tensile strength is exceeded.
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e The nonlinear viscoelastic characteristic of PVB. Under extreme loading conditions,
the PVB interlayer may be associated with large strains upon the fracture of glass

plies, which holds the glass debris in place and withstands further loads.

e The post-cracking cross-sectional behaviour of laminated glass. After the cracking of
glass, the glass debris cannot withstand tension but contributes to compression.
Therefore, the effective through-thickness displacement modes change during the

analysis.

On the algorithmic front, there are also several potential future extensions and improvements

of the laminated shell elements developed in this thesis, as follows:

e For the current hierarchic optimisation approach, the objective function is not
invariant to the orientation of the element local system. The presented optimised 9-
noded and 6-noded elements acquire the characteristic of invariance to nodal ordering
either by using a co-rotational system independent of nodal ordering (quadrilateral
elements) or by prescribing directions for optimisation (triangular elements).
Therefore, an alternative invariant objective function may be developed to enable the

optimisation approach with the characteristic of ‘spatial isotropy’.

e For the current laminated shell elements, the transverse deformation is not considered,
which limits their use within thin-to-moderately thick applications. Further
incorporation of zigzag displacements to the transverse displacement may also be

considered in the future to extend the applicability to thick plates and shells.
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Appendix A

Appendix A: Global-to-Local Displacement Transformations for

6-Noded Shell Element

The required first derivatives for the 6-noded triangular element are obtained from (3.61) and

(3.47):

atim R .
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The associated first derivatives of (¢, ,¢ ) with respect to global translational DOFs are

Y’cZ

given as follows:
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T 8ln 8ln
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Second partial derivatives of (¢,,c¢,,c,) with respect to global translational DOFs can be
similarly derived. It is emphasised that the resulting local tangent stiffness matrix is
symmetric, since the triad (¢, ,¢,,¢,) is explicitly related to the global translational DOFs,

leading to explicit relationships between the local and global DOFs.
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Appendix B: Mixed Formulations of Reissner-Mindlin Shell
Elements Based on MITC9 and MITC6 Elements

Herein, the local kinematics of curved Reissner-Mindlin shell elements based on the MITC
formulations for 9-noded quadrilateral and 6-noded triangular elements, MITC9 (Bathe et al.,

2003) and MITC6 (Lee & Bathe, 2004), are briefly introduced.
The general MITC formulation procedure can be summarised as follows:

(1)  Evaluate Green strains directly from displacement fields at a set of prescribed tying
points (see Figures B.1-B.2 for the typing point positions of a 9-noded shell element,

MITC9, and a 6-noded shell element, MITC6, respectively).

ny ny ny 1y
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Figure B.1: Positions of tying points for MITC9 element (a=1/+/3 ,b=./3/5, and ¢ =1) (Bathe et al.,

2003).
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Figure B.2: Positions of tying points for MITC6 element (a =————=,b=—+——,c=—) (Kim
g ying p ( 2 2% 220 3)(

& Bathe, 2009).
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(ii)

(iii)

(iv)

Transform the extracted Green strains into corresponding covariant strain

components using (B1):

&, =J" E,J (B1)

where E, is the Green strain tensor in terms of Cartesian coordinates; €, is the

covariant strain tensor; and J is the Jacobian matrix, which is given by (3.66).

Interpolate covariant strain fields with the use of the extracted covariant strains:
AS DI
8rs (En n, C) = Hrsars,T (Bz)

where r,s=(&,n,{) ; the superscripts ‘AS’ and ‘DI’ refer respectively to the
assumed strain distribution and the distribution obtained directly from displacement
fields; H,, is a row vector of interpolation functions associated with the tying points;

gDl consists of the covariant strain values extracted at the tying points.

Transform the assumed covariant strain fields to the corresponding Green strain

fields in terms of real coordinates, obtained from:

ESS =J TehSy! (B3)

(v) Replace displacement-based strains with the assumed strain distributions obtained

from (iv) in the element formulation.

The MITC9 (Bathe et al., 2003) quadrilateral shell element performs well, but it does not pass
the patch test for irregular element shapes due to the varying basis used for sampling and
mapping covariant strains, which can be resolved by using a constant Jacobian matrix
evaluated at the element centre (Wisniewski & Panasz, 2013). This is equivalent to replacing

(B1) and (B3) with:

& = JE: E,)Jc (B4)

E;° =Jc'er d (B3)
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where J is the Jacobian matrix evaluated at the element centre (& =0,1=0). Similarly, the
MITC6 (Lee & Bathe, 2004) triangular shell element is enhanced with the same method (Kim
& Bathe, 2009), where J. is evaluated at (& =1/3,1=1/3).

In this work, 9-noded Reissner-Mindlin shell elements are established based on the original
MITC9 (Bathe et al. , 2003) and the improved MITC9is (Wisniewski & Panasz, 2013) local
formulations. Although Wisniewski and Panasz also proposed another modified element
‘MITC9i” (Wisniewski & Panasz, 2013), where further amendments on the element shape
functions are made to allow for element distortion, nonlinear equations require to be solved to
determine the additional parameters describing the element distortion. Therefore, MITC91 is
not considered in this work due to increased computational demands. Similarly, a local
formulation of the 6-noded Reissner-Mindlin shell element is established based on the

MITC6 (Kim & Bathe, 2009) element.

Before employing the tying schemes for the element formulation, further assumptions are
made that the element is shallow and thin, so that the natural coordinate axis C is taken to
have an identical orientation to the local z-axis, and the transverse normal strain ¢, is ignored.

Accordingly, the Jacobian matrix is simplified to:

8_X Ox
0 on

J=| =2 20 (B6)

where h is the shell thickness. This simplification enables decoupled relationships between
real strains and covariant strains, with each set of the generalised real strains related to their

covariant counterparts only, which are expressed thus as:

=

& v
el el X Xy

& e 2
{ } =J J, (B7)
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1
K., —K
K K X Xy
& e |_yT 2 J (BS)
Ken K "l b
EKXY Ky
lY
8 t 2 XZ
& T
{gnq}:?‘p 1 (B9)
it
where J . is a sub-matrix of J :
ox ox
o0& on
Jp — oy o (B10)
o on

By using (B7)-(B9) and evaluating J, at the element centroid, the strains at each tying point
are transformed to the covariant strains, which are then used in mapping the assumed
covariant strain fields. The positions of the tying points for the MITC9 and MITC6 elements
are shown in respectively Figures B.1 - B.2, where the associated interpolation functions for
the covariant strains can be found elsewhere (Lee & Bathe, 2004; Bathe et al., 2003). Once
the distribution of the covariant strain fields is obtained, these are transformed back to real
assumed strains in the local co-rotational system, and these are then used in the formulation

of the local response of the 6-noded and 9-noded curved shell elements.

In this thesis, the acronyms ‘MITC9*’ and ‘MITC9is*’ are used for the amended 9-noded
Reissner-Mindlin elements based on respectively the MITC9 (Bathe et al., 2003) and the
MITC9is (Wisniewski & Panasz, 2013) formulations, and the acronym ‘MITC6*’ is used for
the amended 6-noded element based on the MITC6 (Kim & Bathe, 2009) formulation.
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Appendix C: Parameters of Zigzag Functions of Sandwich Model

Explicit expressions of éi(k) and Bi(k) (i=3,4) in (5.1)-(5.2) are given by:

30 = 1 (h;—hy)(h;+3h, +h;)

P Cl1
hy (hy +h, +h;)’ (CD)
A® - i )( : -
(hy +h, +h;)
A0 _ 1 (h1 —h3)(h1 +3h, +h3) -
3 =
h; (h,+h, +hy)’
2
2h, (h; +h, +hy)
A h,+h
b? = 1 3
> " 2(h;+h,+hy) (C5)
2
(h, +h, +h3)
NOR _ h3+3h;h, +6h/h; +3hyhy
47 3 (C7)
2 (hy+h, +h;)
~ h, +2h
g ___ hy+2hy
* 2(h,+h,+hy) (C8)
. h? +2h?
b = - L (C9)
2h, (h; +h, +h;)
A 2h, +h
by = -t (C10)

2(h; +h, +hy)

For symmetric cross-sections, the above equations are simplified to:
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A A 1 .
agl) _ _ags) - agz) ~0

h,

B(l) _ 6(3) _ 2h12 +h§ +2h1h2 ’ 1 (2) _ hl
> 2h(2h, +h,) > " 2h,+h,

a@ __6hi+hi+6hhy .oy 1 6h +hi+6hh,

A — ’
4 (2b,+h,)’ o (2h, +h,)’

N N 1 R
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Appendix D: Linear Viscoelastic Model for 2D Shell Elements

In order to apply the viscoelastic material model described in Section 7.2 to 2D elements, the
zero value constraint on the transverse normal stress 655 needs to be imposed, which yields a

transverse normal strain €3 expressed as:

A

n b n n 6
83;1=T(811+1+82;1)_7 (D1)

a a

in which:
. 4 4 R -2 2 Ju
a=—G,+K+=) GjA;, b==G,-K+=> GA, (D2)
C=ZGJA{§(8{‘1+8§2)—§£’3‘3}+Ze "his (D3)
j=1 j=1

By substituting (D1) into (7.9)-(7.10), (7.13) is obtained with the matrices C?,I,l and Crvlfsl

expressed as:

(@+b)@a-b)  b@+b) 0_
3 a
bash) (+bya-b 3o
N R R CELCR ngl{ } (D4)
a a
0 0 d
with:
A NM
d=G,+Y GA, (D5)

J=1

where A; is given in (7.6).
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The stress vectors 6, , and 6y are then derived as:

1 4 _2 _2lI

be Ny, 3 3 3

o _ —2 4 _2

Ohist,p = a 1 ZGJAJ _3_3__3]
o] 0 0 O

Ny yo ——
13 T;
Ghist,s = _z GjAj n + z ©
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Appendix E: Effective Thickness of Laminated Glass for Analysis
of Deflection and Stresses (ASCE E1300-12a X9)

Appendix X9 of ASCE E1300-12a provides engineering formulae for calculating the
effective thickness of LG. Two different effective laminate thickness values are determined

for a specific case: (1) an effective thickness, h for use in calculations of laminate

ef,w »

deflection, and (2) an effective laminate thickness, h for use in calculations of LG stress.

l,e,c°
These effective thickness values can be used with standard engineering formulae or finite
element methods for calculating both deflection and glass stress of laminates subjected to
load. The method applies to 2-ply laminates fabricated from both equal and unequal thickness

glass plies.

The shear transfer coefficient, I', is a measure of the transfer of shear stresses across the

interlayer, which is defined as:

1
r=—— -~
149,60l (ED)
Gh;a
with:
= hlhs;z +hzh§;1 (E2)
_ hshl _ hsh2 E3
' hy+h,” % hy+h, (E3)
hy =0.5(h; +h,)+h, (E4)

where h, is the interlayer thickness; h; and h, are the minimum thicknesses of the two glass
plies; E is glass Young’s modulus; a is the smallest in-plane dimension of bending of the

laminate plate; and G is the interlayer complex shear modulus.

For calculations of laminate deflection, the laminate effective thickness is given by:
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Bypy = 313 +h3 +12T°, (E5)

For calculations of maximum glass bending stress, the laminate effective thicknesses are

h3, h3,
hyoo = |—SBW o ehw E6
BRe Ay +20h, T F5 \(h, +2Thy, (E6)

given by:
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