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ABSTRACT 

Disinfection of drinking water is vital to protect the public against disease. However disinfectants 

such as chlorine react with organic matter in drinking water to produce a wide range of chemical 

disinfection by-products (DBPs) of potential health concern including haloacetic acids (HAAs).  

This thesis is an epidemiologic analysis investigating the relationship between prenatal exposure to 

HAAs in drinking water and adverse birth outcomes in “Born in Bradford”, a large multi-ethnic 

prospective birth cohort study based in Bradford, England. It focuses on the understudied and as yet 

unregulated HAAs which are the second most prevalent class of chlorination DBPs in UK drinking 

waters. 

To assess exposure, area-level concentrations to three select HAAs (measured in drinking water 

samples newly collected for this study, modelled in time and space, and weighted to each cohort 

woman’s specific trimester of pregnancy by postcode of residence) were combined with individual 

water consumption information collected via questionnaire at recruitment to the cohort.  

Despite the benefits of state-of-the-art exposure metrics and a large sample size, this study does not 

find any significant patterns of association between prenatal exposure to HAAs and either birth 

weight, being born term low birth weight or small-for-gestational age. 

Water consumption over the course of late pregnancy was further studied in a subset of cohort 

women. A small but significant increase in water consumption was reported, bearing in mind that both 

behaviour change over the third trimester of pregnancy and measurement error likely contributed to 

this effect. 

This research addresses some of the limitations of previous DBP studies in terms of exposure 

assessment and birth outcome definitions, and uniquely evaluates the variability of individual water 

consumption over time. It also identifies areas for future research and examines the importance of 

HAAs and birth weight-based outcomes in the larger research context. 

2 



DECLARATION OF ORIGINALITY 

I hereby declare that the contents of this PhD thesis are all my own work and that where any material 

could be construed as the work of others it has been fully cited and referenced, and/or the appropriate 

acknowledgement given. 

Between May 2010 and November 2010, I collected the HiWATE water samples in Bradford. This 

involved coordinating sampling dates with Yorkshire Water, sending instructions and clean labelled 

vials containing preservatives by courier, and picking up the samples after collection. I was then 

charged with driving those samples from Bradford to Cranfield University for laboratory analyses. 

This work was made possible by the collaboration and expertise of various individuals. Dr Kees de 

Hoogh completed the automated geocoding of Born in Bradford participants’ residence and work 

postcodes and addresses; I did the manual geocoding. Dr Hannah Slater advised me on linking 

women’s addresses to water supply zones via ArcGIS (Chapter 4). Professor Nicky Best and Dr Juan 

Gonzalez Maffe helped me develop the WinBUGS models both for the HAA modelling (Chapter 4) 

and the repeat questionnaire study (Chapter 8), and advised me on the statistics relating to the main 

epidemiologic analysis (Chapter 7). Drs James Bennett and Léa Fortunato helped me in the initial 

stages of HAA modelling as well. The idea for the repeat questionnaire study came from Professor 

Mark Nieuwenhuijsen and Dr Mireille Toledano. I got ethics approval for the study in September 

2010 and conducted the study between September and December 2010. No personal data were to 

leave the BiB office for confidentiality reasons. I therefore travelled to Bradford to access women’s 

information, in order to prepare the mailings. I then collected the returned questionnaires, entered all 

data manually, and developed the statistical analysis plan. I kept in close contact with Dr Emily 

Petherick from the Born in Bradford team regarding the data extracts, and data cleaning issues. 

On 7th June 2010, I collected 2 x 20L samples for a toxicology study ran jointly by Dr Susan 

Richardson (National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, 

GA, USA) and Professor Michael Plewa (University of Illinois at Urbana-Champaign, IL, USA). I 

reviewed the study which came out of this effort and which was published (Appendix B). 

I presented some of this work at the BiB Annual Open Day 2012 in Bradford, at the Gordon 

Conference (2012) on Drinking Water Disinfection By-Products at Mount Holyoke College, South 

Hadley, MA, USA, and at the International Society for Environmental Epidemiology (ISEE) 

conference in Barcelona, Spain (2011) and Basel, Switzerland (2013). 

3 



COPYRIGHT DECLARATION 

The copyright of this thesis rests with the author and is made available under a Creative Commons 

Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or 

transmit the thesis on the condition that they attribute it, that they do not use it for commercial 

purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, 

researchers must make clear to others the licence terms of this work. 

4 



ACKNOWLEDGEMENTS 

I am grateful to my supervisors Dr Mireille B Toledano, Professor Nicky Best and Professor Mark J 

Nieuwenhuijsen for their guidance and support during these four years. 

I would also like to collectively thank all my colleagues and friends at Imperial, including my fellow 

PhD colleagues in room 171. I am particularly grateful to Dr Rachel Smith for generously sharing her 

knowledge of disinfection by-products with me since my first day as a PhD student. I also thank Drs 

Léa Fortunato, James Bennett, Hannah Slater and Kees de Hoogh for their help with statistical and 

geocoding aspects of the thesis. Most of all, I am indebted to Dr Juan Gonzalez Maffe, who 

challenged me and taught me ever so much. This experience would not have been as valuable without 

him. 

I am grateful to all those who work on the Born in Bradford study, in particular Dr Emily Petherick 

for the data provided, Shaheen Akhtar, Dr Pauline Raynor, and Dawn Wray for their assistance during 

recruitment to the repeat questionnaire study, and Professor John Wright for leading the project. Many 

thanks to all the Born in Bradford participants without whom this study would not have been possible. 

I also thank Yorkshire Water for providing us with data and for their assistance with water sampling 

in Bradford, Dr Emma Goslan from Cranfield University for the HAA analyses, and Carol Edwards 

for access to Imperial’s Environmental & Water Resource Engineering laboratory. 

My PhD was funded for three years by a Medical Research Council (MRC) Capacity Building 

Studentship. Field work was funded through my MRC Studentship’s Research Training support grant 

2010-11, as well as grant P10462 (“Health Risks”, P.I.: Mireille Toledano).  

My heartfelt thanks to Léa, Rachel, Tessa, Juan, Federico, Poppy and Peter for kindly proof-reading 

thesis chapters and giving me valuable feedback, and to Doris for priceless round-the-clock technical 

assistance during the writing-up phase. 

I would like to thank my close friends for their indefatigable love and encouragement while I have 

been working on this thesis.  

Finally, thank you to my parents, Doris and Peter, for their constant love and support. I would like to 

dedicate this thesis to them. 

5 



TABLE OF CONTENTS 

Chapter 1 INTRODUCTION ................................................................................................................ 17 
1.1 Background ........................................................................................................................... 17 

1.1.1 Disinfection By-Products (DBPs) and Haloacetic Acids (HAAs) ................................ 17 
1.1.2 Birth outcomes .............................................................................................................. 20 
1.1.3 Relevant HAA literature ............................................................................................... 25 

1.2 Gaps in knowledge ................................................................................................................ 29 
1.3 Tables .................................................................................................................................... 32 

Chapter 2 BORN IN BRADFORD (BIB) & AIMS ............................................................................. 35 
2.1 Born in Bradford cohort ........................................................................................................ 35 

2.1.1 Why was the BiB cohort set up? ................................................................................... 35 
2.1.2 Recruitment to BiB ....................................................................................................... 36 
2.1.3 Follow-up of BiB participants ....................................................................................... 39 

2.2 Thesis Aims .......................................................................................................................... 41 
2.3 Tables .................................................................................................................................... 42 
2.4 Figures................................................................................................................................... 44 

Chapter 3 INDIVIDUAL WATER CONSUMPTION ......................................................................... 45 
3.1 Background ........................................................................................................................... 45 

3.1.1 Water consumption during pregnancy .......................................................................... 45 
3.2 Methods................................................................................................................................. 46 

3.2.1 Collection of demographic, lifestyle data, and water use data ...................................... 46 
3.2.2 Deriving water consumption variables.......................................................................... 46 
3.2.3 Exclusion criteria .......................................................................................................... 49 

3.3 Results ................................................................................................................................... 49 
3.4 Discussion ............................................................................................................................. 50 
3.5 Tables .................................................................................................................................... 52 
3.6 Figures................................................................................................................................... 57 

Chapter 4 AREA-LEVEL HAA CONCENTRATIONS ...................................................................... 61 
4.1 Background ........................................................................................................................... 61 

4.1.1 Determinants of the composition and concentration of HAAs in drinking water ......... 61 
4.1.2 HiWATE data ............................................................................................................... 63 
4.1.3 Predictive models for HAAs ......................................................................................... 64 

4.2 Methods................................................................................................................................. 64 
4.2.1 HiWATE data collection ............................................................................................... 64 
4.2.2 HAA Data & Modelling ................................................................................................ 67 
4.2.3 Time-weighted area-level concentrations ..................................................................... 70 
4.2.4 Exclusion criteria .......................................................................................................... 72 

4.3 Results ................................................................................................................................... 72 
4.3.1 HiWATE data ............................................................................................................... 72 
4.3.2 HAA Modelling ............................................................................................................ 74 
4.3.3 Time-weighted area-level concentrations ..................................................................... 77 

4.4 Discussion ............................................................................................................................. 77 
4.4.1 HiWATE data ............................................................................................................... 77 
4.4.2 HAA Modelling ............................................................................................................ 80 

4.5 Tables .................................................................................................................................... 81 
4.6 Figures................................................................................................................................... 84 

Chapter 5 COMBINED METRIC......................................................................................................... 99 
5.1 Background & Methods ........................................................................................................ 99 

5.1.1 Boiling and filtering ...................................................................................................... 99 
5.1.2 Calculations ................................................................................................................. 101 

5.2 Results ................................................................................................................................. 102 
5.3 Discussion ........................................................................................................................... 103 
5.4 Tables .................................................................................................................................. 105 

6 



5.5 Figures................................................................................................................................. 110 
Chapter 6 BIRTH OUTCOMES IN BORN IN BRADFORD ............................................................ 111 

6.1 Background ......................................................................................................................... 111 
6.1.1 Ethnic differences in birth weight ............................................................................... 111 

6.2 Methods............................................................................................................................... 114 
6.2.1 Data ............................................................................................................................. 114 
6.2.2 Gestational age dating ................................................................................................. 115 
6.2.3 SGA methods and derivation in BiB ........................................................................... 115 
6.2.4 Statistical analysis ....................................................................................................... 117 

6.3 Results ................................................................................................................................. 117 
6.3.1 Frequency distribution of birth weight ........................................................................ 117 
6.3.2 Preterm delivery (PTD), low birth weight (LBW), term LBW, and Small-for-
Gestational Age (SGA) .............................................................................................................. 117 
6.3.3 Obstetric outcomes ...................................................................................................... 118 
6.3.4 Relationship between birth outcomes and demographic variables ............................. 118 
6.3.5 Other demographics by ethnicity ................................................................................ 120 

6.4 Discussion ........................................................................................................................... 120 
6.4.1 Preterm delivery (PTD), term LBW and SGA rates in BiB: comparisons with BDIMC

120 
6.4.2 Relationship between birth outcomes and demographic variables ............................. 122 
6.4.3 Pros and Cons of term LBW and SGA ....................................................................... 124 
6.4.4 Cohort representativeness ........................................................................................... 128 

6.5 Tables .................................................................................................................................. 130 
6.6 Figures................................................................................................................................. 140 

Chapter 7 EPIDEMIOLOGIC ANALYSIS ........................................................................................ 149 
7.1 Background ......................................................................................................................... 149 

7.1.1 Possible confounders................................................................................................... 149 
7.2 Methods............................................................................................................................... 155 

7.2.1 Model selection process .............................................................................................. 155 
7.2.2 Data and covariate derivation ..................................................................................... 156 
7.2.3 Statistical analyses ...................................................................................................... 156 

7.3 Results ................................................................................................................................. 157 
7.3.1 Relationship between combined metrics and birth weight or standardised birth weight

157 
7.3.2 Continuous birth weight models ................................................................................. 158 
7.3.3 Term LBW .................................................................................................................. 162 
7.3.4 SGA ............................................................................................................................. 163 
7.3.5 Effect sizes of covariates in combined models ........................................................... 164 
7.3.6 Multiple imputation..................................................................................................... 165 

7.4 Discussion ........................................................................................................................... 166 
7.4.1 Water consumption ..................................................................................................... 167 
7.4.2 Area-level concentrations ........................................................................................... 169 
7.4.3 Combined exposure..................................................................................................... 171 
7.4.4 Effect of HAAs when comparing the results of the cold tap water and combined metric 
models on continuous birth weight ............................................................................................ 173 
7.4.5 Stratification by ethnicity: White British compared to Pakistani women ................... 174 
7.4.6 Stratification to unemployed women only .................................................................. 175 
7.4.7 Gestational age ............................................................................................................ 176 
7.4.8 Model selection process .............................................................................................. 176 
7.4.9 Conclusion .................................................................................................................. 179 

7.5 Tables .................................................................................................................................. 181 
7.6 Figures................................................................................................................................. 194 

Chapter 8 REPEAT QUESTIONNAIRE STUDY ............................................................................. 201 
8.1 Background ......................................................................................................................... 201 

8.1.1 Aim of study ............................................................................................................... 202 
7 



8.1.2 Water consumption during pregnancy using repeat questionnaire ............................. 202 
8.1.3 Assessment of water consumption at baseline in BiB................................................. 203 

8.2 Methods............................................................................................................................... 203 
8.2.1 RQS recruitment ......................................................................................................... 203 
8.2.2 Data preparation .......................................................................................................... 204 
8.2.3 Statistics ...................................................................................................................... 204 
8.2.4 Treatment of missing data ........................................................................................... 205 
8.2.5 Sensitivity analysis ...................................................................................................... 206 

8.3 Results ................................................................................................................................. 206 
8.3.1 Descriptive results ....................................................................................................... 206 
8.3.2 Variable selection for water consumption................................................................... 207 
8.3.3 Adjusting for covariates – Model 2 ............................................................................. 208 
8.3.4 Effect modification with time ..................................................................................... 209 
8.3.5 Self-perception of change in behaviour ...................................................................... 210 
8.3.6 Variance Partition Coefficient (VPC) ......................................................................... 211 
8.3.7 Sensitivity analysis: Models 1b and 1c ....................................................................... 211 

8.4 Discussion ........................................................................................................................... 211 
8.5 Tables .................................................................................................................................. 217 
8.6 Figures................................................................................................................................. 226 

Chapter 9 DISCUSSION .................................................................................................................... 230 
9.1 Aim 1 .................................................................................................................................. 230 

9.1.1 Summary ..................................................................................................................... 230 
9.1.2 Discussion and recommendations ............................................................................... 231 

9.2 Aim 2 .................................................................................................................................. 232 
9.2.1 Summary ..................................................................................................................... 232 
9.2.2 Discussion and recommendations ............................................................................... 233 

9.3 Aim 3 .................................................................................................................................. 236 
9.3.1 Summary ..................................................................................................................... 236 
9.3.2 Discussion and recommendations ............................................................................... 237 

9.4 Final thoughts ...................................................................................................................... 238 
REFERENCES ................................................................................................................................... 240 
APPENDICES TO CHAPTERS 2, 3, 4, 5, 7 AND 8 ......................................................................... 260 

Chapter 2 ........................................................................................................................................ 260 
Chapter 3 ........................................................................................................................................ 262 
Chapter 4 ........................................................................................................................................ 266 
Chapter 5 ........................................................................................................................................ 284 
Chapter 7 ........................................................................................................................................ 285 
Chapter 8 ........................................................................................................................................ 314 

APPENDICES A, B, and C 321 

8 



LIST OF TABLES 

Table 1.1: Chemical and physical properties of nine HAAs (modified from a table in Bougeard 
(2009)) .................................................................................................................................................. 32 
Table 1.2: Regulatory thresholds for THMs and HAAs in the European Union (incl. the UK), US, and 
Australia and New Zealand, as well as WHO guidelines ..................................................................... 32 
Table 1.3: Definitions of common birth outcome measures described in Introduction (Chapter 1) ..... 33 
Table 1.4: Sixteen exposure measures presented in this thesis’ analyses ............................................. 34 
Table 2.1: Ethnicity classification ......................................................................................................... 42 
Table 2.2: Maternal education classification (equivalency carried out by Rachel Smith) .................... 42 
Table 2.3: Caffeine contents in beverages (COT: Committee on Toxicity) (conversions carried out by 
Emily Petherick and Rachel Smith) ...................................................................................................... 43 
Table 3.1: Studies of water consumption during pregnancy, grouped by total water (all sources) and 
tap water only if specified (chronological order of publication) ........................................................... 52 
Table 3.2: Total tap water at all locations (the same applies to cold tap water, hot tap water, bottled 
water and total water consumption at all locations) .............................................................................. 53 
Table 3.3: Breakdown of filtering habits by location for (a) women in work and (b) women out of 
work ...................................................................................................................................................... 54 
Table 3.4: Water consumption (L/day) among women who reported consumption in any given water 
category (Nmax=11,928) ......................................................................................................................... 55 
Table 3.5: Proportion who reported consumption at all locations with letter references to Table 3.3 
(see Table A3 - 1/Table A3 - 2 for details on the proportion who report consumption at Home and 
Outside the home) ................................................................................................................................. 56 
Table 4.1: Water supply zones (WSZ) and BiB population (N=11,928, including 24 missing addresses 
and 22 out of area) ................................................................................................................................ 81 
Table 4.2: HiWATE sampling by laboratory ........................................................................................ 81 
Table 4.3: Number of missing data for each of the nine HAAs (Nmax=184) MRL: minimum reporting 
limit; LOD: limit of detection (see section 4.2.1.3 for details) ............................................................. 81 
Table 4.4: Transformations, distributions and best model covariates for the three modelled HAAs: 
DCAA, TCAA and BDCAA ................................................................................................................. 82 
Table 4.5: Summary of HiWATE HAAs in ug/L: 2007q2 through 2010q4, excluding 2009q2 .......... 82 
Table 4.6: Reported levels of HAAs in studies worldwide (adapted from a table in Bougeard’s PhD 
thesis) (chronological order) ................................................................................................................. 82 
Table 4.7: Parameters for DCAA, TCAA, and BDCAA models .......................................................... 83 
Table 4.8: Summary statistics of 3 trimester-weighted HAA concentrations for each woman (in ug/L) 
(includes only women whose given trimester completely overlaps with the modelled period) ........... 83 
Table 5.1: Boiling and filtering factors used in the combined metric ................................................. 105 
Table 5.2: Filtering and boiling integrated into the water consumption variables .............................. 105 
Table 5.3: Combined metric calculation for DCAA exposure (ug/day) using the residence water 
supply zone (WSZ) (Method 1) .......................................................................................................... 106 
Table 5.4: Example of a combined metric calculation for DCAA exposure (ug/day) using a 
combination of work and residence water supply zone (WSZ) area-level concentrations (Method 2)
 ............................................................................................................................................................ 107 
Table 5.5: Summary of combined metric (total) based on residence concentrations only in ug/day . 107 
Table 5.6: Summary of combined metric for filterers and non-filterers based on residence 
concentrations only in ug/day ............................................................................................................. 107 
Table 5.7: Pairwise Spearman correlation between all 13 exposure measures (rho, p-value and sample 
size), categorised by tertile ................................................................................................................. 108 

9 



Table 6.1: Comparison of rates with other studies a) overall and b) by ethnicity (the statistical 
construct SGA is not included as the prevalence is typically determined by definition) PTD=preterm 
delivery, LBW=low birth weight, vLBW=very low birth weight ...................................................... 130 
Table 6.2: Gestational age at birth (and rate of preterm delivery) by ethnicity (11,928 eligible women 
with singletons, but only 11,875 had live births with recorded gestational age) (PTD=preterm 
delivery) .............................................................................................................................................. 131 
Table 6.3: Birth weight (and LBW rate) by ethnicity (11,928 eligible women with singletons, but only 
11,874 had live births with recorded birth weight, see Figure 6.3) (LBW=low birth weight) ........... 132 
Table 6.4: Birth weight at term (and term LBW rate) by ethnicity (11,928 eligible women with 
singletons, but only 11,211 had live births at term with recorded birth weight and gestational age, see 
Figure 6.4) (term LBW=low birth weight at term) ............................................................................. 133 
Table 6.5: Standard deviation scores (SDS) (and rate of SGA) by ethnicity (11,928 eligible women 
with singletons, but only11,863 had live births with recorded birth weight, sex of child, and 
gestational age, and born within 23-42 window of gestational weeks, see Figure 6.5) (SGA=small-for-
gestational age) ................................................................................................................................... 134 
Table 6.6: Demographic, behavioural and obstetric variables by ethnicity: frequency (above) and 
percentage (below) within that ethnic group (11,928 eligible women with singletons, but only 11,875 
had live births) .................................................................................................................................... 135 
Table 6.7: Rates of LBW, term LBW and SGA by IMD 2010 quintiles of deprivation (11,928 eligible 
mothers with singletons, but only 11,874 had live births with recorded birth weight, see Figure 6.3)
 ............................................................................................................................................................ 138 
Table 6.8: Pros and cons of major birth outcomes .............................................................................. 139 
Table 6.9: Representativeness: difference in my sample size compared to sample size published in 
cohort profile paper (Wright et al. 2012) ............................................................................................ 139 
Table 7.1: Descriptive data of birth weight (in grams), and prevalence of LBW, term LBW, and SGA 
(UK 1990), by tertiles of exposure for each of 16 exposure measures of interest (6 water consumption 
variables, 9 trimester-specific area-level concentration variables, and 3 combined metrics) (live births 
only) CI: confidence interval .............................................................................................................. 181 
Table 7.2: Complete case analysis (CC) and Results after Multiple Imputation (MI): Crude and 
adjusted association between combined metric for DCAA, TCAA and BDCAA (in ug/day) and 
continuous birth weight (in grams) by linear regression (Complete case analysis, N=5,040; After 
Multiple Imputation using Chained Equations, N=11,874) ................................................................ 184 
Table 7.3: Complete case analysis: Crude and adjusted association between water consumption (four 
different water types, in L/day) and continuous birth weight (in grams) by linear regression ........... 185 
Table 7.4: Complete case analysis: Crude and adjusted association by linear regression between 
average modelled area-level concentrations of DCAA, TCAA and BDCAA (based on residence water 
supply zone) (in ug/L) and continuous birth weight (in grams), by trimester of pregnancy............... 186 
Table 7.5: Complete case analysis (CC) and Results after Multiple Imputation (MI): Crude and 
adjusted association between combined metric for DCAA, TCAA and BDCAA (in ug/day) and risk of 
term LBW by logistic regression (Complete case analysis, Ncases=195, Nnon-cases=4,587, N=4,782, 
4.1% prevalence of term LBW; Multiple Imputation using Chained Equations (with LBW in 
imputation algorithm), Ncases=450, Nnon-cases=10761, Ntotal=11,211, 4.0% prevalence of term 
LBW) .................................................................................................................................................. 187 
Table 7.6: Complete case analysis: Crude and adjusted association between water consumption (in 
L/day) and risk of term LBW by logistic regression (all live singletons to eligible mother) (OR: Odds 
Ratio) .................................................................................................................................................. 188 
Table 7.7: Complete case analysis: Crude and adjusted association between average modelled area-
level concentrations for DCAA, TCAA and BDCAA by trimester of pregnancy (in ug/L) (based on 
residence water supply zone) and risk of term LBW by logistic regression ....................................... 189 
Table 7.8: Complete case analysis (CC) and Results after Multiple Imputation (MI): Crude and 
adjusted association between combined metric for DCAA, TCAA and BDCAA (in ug/day) and risk of 



being SGA by logistic regression (Complete case analysis: Ncases=649, Nnon-cases=4,388, N=5,037, 
12.9% prevalence of SGA; Multiple Imputation using Chained Equations (with SGA in imputation 
algorithm), Ncases=1,440, Nnon-cases=10,423, Ntotal=11,863, 12.1% prevalence of SGA) ........... 190 
Table 7.9: Complete case analysis: Crude and adjusted association between water consumption (in 
L/day) and risk of being Small-for-Gestational Age by logistic regression (all live singletons to 
eligible mother) (OR: Odds Ratio)...................................................................................................... 191 
Table 7.10: Complete case analysis: Crude and adjusted association between average modelled area-
level concentrations for DCAA, TCAA and BDCAA by trimester of pregnancy (in ug/L) (based on 
residence water supply zone) and risk of being SGA by logistic regression ...................................... 192 
Table 7.11: Proportions missing in continuous birth weight models .................................................. 193 
Table 7.12: Proportions missing in term LBW models....................................................................... 193 
Table 7.13: Proportions missing in SGA models ................................................................................ 193 
Table 8.1: Demographic and behavioural characteristics of the RQS subset and the rest of the cohort, 
as reported at enrolment to BiB .......................................................................................................... 217 
Table 8.2: Univariate linear mixed models of RQS women’s a) total tap water (“TAP”) and b) total 
water (“Total”) consumption (in L/day) over the 3 time points of interest: baseline, Q1 (30-33 weeks 
of pregnancy) and Q2 (36-39 weeks of pregnancy) (Model 1) (number of observations over 3 time 
points=762, number of missing observations=127) ............................................................................ 220 
Table 8.3: Adjusted linear mixed models of RQS women’s a) total tap water (“TAP”) and b) total 
water (“Total”) consumption trend (in L/day) over the 3 time points of interest: baseline, Q1 and Q2 
(Model 2) (number of observations over 3 time points=762, number of missing observations=127) 221 
Table 8.4: Linear mixed models of RQS women’s a) total tap water (“TAP”) and b) total water 
(“Total”) consumption trend (in L/day) over the 3 time points of interest: baseline, Q1 and Q2 
allowing for random slopes (intercepts) by ethnic group (Model 3) (number of observations over 3 
time points=762, number of missing observations=127) .................................................................... 222 
Table 8.5: Linear mixed models of RQS women’s total tap water (“TAP”) (a) and total water 
(“Total”) (b) consumption trend (in L/day) over the 3 time points of interest: baseline, Q1 and Q2 
with interaction between employment and time (Model 4) (number of observations over 3 time 
points=762, number of missing observations=127) ............................................................................ 223 
Table 8.6: Linear mixed models of RQS women’s total tap water (“TAP”) (a) and total water 
(“Total”) (b) consumption trend (in L/day) over the 3 time points of interest: baseline, Q1 and Q2 
with interaction between smoking status and time (Model 5) (number of observations over 3 time 
points=762, number of missing observations=127) ............................................................................ 224 
Table 8.7: Differences in total water consumption between each (interaction) category and the 
reference category, at baseline, at Q1 and at Q2. ................................................................................ 225 
Table 8.8: Comparison between women’s self-perception of change in total tap water drinking habits, 
vs. quantitative water consumption actually reported ......................................................................... 225 

11 



LIST OF FIGURES 

Figure 2.1: Map of Bradford Metropolitan district and Bradford Royal Infirmary catchment area 
(within thick black border), water supply zones (8 blue areas), rest of Yorkshire (grey), BiB women’s 
residences (black dots) .......................................................................................................................... 44 
Figure 3.1: Flowchart of inclusion: definition of “eligibility” to epidemiology study ......................... 57 
Figure 3.2: Histograms of water consumption with tertile cut points marked ...................................... 58 
Figure 3.3: Cold tap water all locations organised by filtering ............................................................. 60 
Figure 4.1: Map of Bradford’s 8 water supply zones............................................................................ 84 
Figure 4.2: Box plots of the nine HAA concentrations (ug/L) ............................................................. 84 
Figure 4.3: Distributions before and after transformation .................................................................... 85 
Figure 4.4: Directed acyclic graph for the DCAA model; Zij = (wij, qij,) (square shape because it is 
fully observed as opposed to the circle random variables). For a description of the variables, see 
section 4.2.2.2 (p. 68) ............................................................................................................................ 86 
Figure 4.5: HAA concentration by water supply zone (WSZ) – HiWATE data: 2007q2 through 
2010q4, excluding 2009q2 (*indicates high bromide WSZ) for a) DCAA, b) TCAA, and c) BDCAA
 .............................................................................................................................................................. 87 
Figure 4.6: HAA concentration by year and quarter – HiWATE data: 2007q2 through 2010q4 
(including 2009q2 which was deemed unreliable) for a) DCAA, b) TCAA, and c) BDCAA.............. 88 
Figure 4.7: Mean DCAA, TCAA and BDCAA over time (ug/L): 2007q2 through 2010q4, including 
2009q2 (for continuity of x-axis) .......................................................................................................... 89 
Figure 4.8: Model fit for best model for DCAA selected in R (dotted line: 95% CI) .......................... 90 
Figure 4.9: Model fit for best model for TCAA selected in R (dotted line: 95% CI) ........................... 90 
Figure 4.10: Model fit for best model for BDCAA selected in R (dotted line: 95% CI) ...................... 90 
Figure 4.11: Modelled DCAA concentration (ug/L) over time for WSZ 1 (Airedale or ADL) (95% 
credible intervals), and a plot of posterior mean modelled DCAA concentration in all 8 WSZs. Same 
pair of plots for TCAA, and BDCAA ................................................................................................... 91 
Figure 4.12: Modelled DCAA concentrations over time and space (by quartiles) for 8 water supply 
zones in Bradford .................................................................................................................................. 92 
Figure 4.13: Modelled TCAA concentrations over time and space (by quartiles) for 8 water supply 
zones in Bradford .................................................................................................................................. 93 
Figure 4.14: Modelled BDCAA concentrations over time and space (by quartiles) for 8 water supply 
zones in Bradford .................................................................................................................................. 94 
Figure 4.15: Frequency distributions of modelled trimester-specific HAA concentration by trimester
 .............................................................................................................................................................. 95 
Figure 4.16: Numbers of women (out of 11,928) with a DCAA/TCAA/BDCAA concentration metric 
in each of their respective trimesters of pregnancy. Black line delineates trimester 1 (N=10,521), 
shaded area is trimester 2 (N=11,312), and dashed black line delineates trimester 3 (N=11,585) ....... 98 
Figure 5.1: Histograms with marked tertile cut points (N=6,223 for each of DCAA, TCAA, BDCAA)
 ............................................................................................................................................................ 110 
Figure 5.2: Filterers vs. non-filterers, and location of filtering if applicable (based on data presented in 
Table 3.5) ............................................................................................................................................ 110 
Figure 6.1: Birth weight distribution (live singleton births to eligible BiB women); solid line marks 
the 2500g cut point (any birth to the left of the solid line are considered LBW); dashed line marks the 
mean birth weight of 3229.7g (N=11,874) ......................................................................................... 140 
Figure 6.2: Birth weight distribution stratified by term (top plot, N=11,211) vs. preterm births (lower 
plot, N=663), live singleton births to eligible BiB mothers; solid line marks the 2500g cut point. ... 140 
Figure 6.3: Flowchart of sample size loss for low birth weight (LBW) ............................................. 141 

12 



Figure 6.4: Flowchart of sample size loss for term low birth weight (term LBW) ............................. 142 
Figure 6.5: Flowchart of sample size loss for small-for-gestational age (SGA) (and shaded grey, for 
SGA and preterm) ............................................................................................................................... 143 
Figure 6.6: SDS (or z score) distribution; N=11,863 (11,928 eligible women with singletons, but 
only11,863 had live births with recorded birth weight, sex of child, and gestational age, and born 
within 23-42 window of gestational weeks, see Figure 6.5). Any births to the left of -1.282 are 
considered small-for-gestational age (SGA) ....................................................................................... 144 
Figure 6.7: Birth weight distributions for selected ethnic groups: live singletons (P=Pakistani, 
WB=White British) ............................................................................................................................. 145 
Figure 6.8: Mean birth weight (and 95% CI) of babies born at 40 weeks gestational age by ethnic 
group (sample sizes are in brackets) ................................................................................................... 145 
Figure 6.9: Low birth weight (LBW), term LBW and small-for-gestational age (SGA) rates by a) 
Index of Multiple Deprivation (IMD) quintiles of multiple deprivation 2010 and b) ethnicity. ........ 146 
Figure 6.10: Categorical birth weight distributions for 11,874 live BiB babies, compared to birth 
weights in Yorkshire and The Humber, and England & Wales * (ONS 2011 figures) (11,928 eligible 
women with singletons, but only 11,874 had live births with recorded birth weight, see Figure 6.3) 147 
Figure 6.11: Rate of small-for-gestational age (SGA) by gestational age and sex of child (top: %, 
bottom: frequency); N=11,863 (11,928 eligible women with singletons, but only11,863 had live births 
with recorded birth weight, sex of child, and gestational age, and born within 23-42 window of 
gestational weeks, see Figure 6.5) ...................................................................................................... 147 
Figure 6.12: Birth weight (g) by gestational age (weeks) among 11,875 women (11,928 eligible 
women with singletons, but only 11,875 had live births with recorded gestational age) ................... 148 
Figure 7.1: Scatter plots (and LOWESS smoother) of the DCAA, TCAA and BDCAA combined 
metrics of exposure (ug/day) by birth weight (live births, Nmax=11,928) ........................................ 194 
Figure 7.2: Scatter plots (and LOWESS smoother) of DCAA, TCAA and BDCAA combined metrics 
of exposure (ug/day) by standardised (or relative) birth weight (live births, Nmax=11,928) ............ 194 
Figure 7.3: Complete Case Analysis (left) and results after Multiple Imputation (right): Adjusted 
coefficients (and 95% CI) for combined metric exposure on continuous birth weight (in grams) ..... 195 
Figure 7.4: Complete Case Analysis: Adjusted coefficients (and 95% CI) for water consumption on 
continuous birth weight (in grams); Ctw: cold tap water; Ttw: total tap water; Bw: bottled water; Tw: 
total water............................................................................................................................................ 196 
Figure 7.5: Complete Case Analysis: Adjusted coefficients (and 95% CI) for exposure to area-level 
concentration to DCAA, TCAA and BDCAA on continuous birth weight (in grams) ...................... 196 
Figure 7.6: Complete Case Analysis (left) and results after Multiple Imputation (right): Adjusted Odds 
Ratios (and 95% CI) for combined metric exposure on term LBW.................................................... 197 
Figure 7.7: Complete Case Analysis: Adjusted Odds Ratios (and 95% CI) for water consumption on 
term LBW. Ctw: cold tap water; Ctw: cold tap water; Ttw: total tap water; Bw: bottled water; Tw: 
total water............................................................................................................................................ 198 
Figure 7.8: Complete Case Analysis: Adjusted Odds Ratios (and 95% CI) for exposure to area-level 
concentration to DCAA, TCAA and BDCAA on term LBW ............................................................. 198 
Figure 7.9: Complete Case Analysis (left) and results after Multiple Imputation (right): Adjusted Odds 
Ratios (and 95% CI) for combined metric exposure on SGA ............................................................. 199 
Figure 7.10: Complete Case Analysis: Adjusted Odds Ratios (and 95% CI) for water consumption 
exposures on SGA (excluding births born before 23 weeks of gestation or after 42 weeks of 
gestation); Ctw: cold tap water; Ttw: total tap water; Bw: bottled water; Tw: total water ................. 200 
Figure 7.11: Complete Case Analysis: Adjusted Odds Ratios (and 95% CI) for exposure to area-level 
concentration to DCAA, TCAA and BDCAA on SGA ...................................................................... 200 
Figure 8.1 a and b: Line plots summarising and comparing water consumption medians (by water 
type) at baseline (26-28 weeks of pregnancy), Q1 (30-33 weeks of pregnancy) and Q2 (36-39 weeks 
of pregnancy) of the women enrolled in the Repeat Questionnaire Study (RQS) (N=254) ............... 226 

13 



Figure 8.2 a and b: Line plots summarising and comparing water consumption medians (by location) 
at baseline (26-28 weeks of pregnancy), Q1 (30-33 weeks of pregnancy) and Q2 (36-39 weeks of 
pregnancy) of the women enrolled in the Repeat Questionnaire Study (RQS) (N=254) .................... 227 
Figure 8.3: Interaction plots by category for total water consumption ............................................... 228 

14 



LIST OF ABBREVIATIONS 

AIC Akaike Information Criterion 
ALSPAC Avon longitudinal study of parents and children 
ANOVA Analysis of Variance 
BCAA bromochloroacetic acid 
BDCAA bromodichloroacetic acid 
BDIMC Bradford District Infant Mortality Commission 
BiB Born in Bradford 
BMI Body Mass Index 
BRI Bradford Royal Infirmary 
CHO Chinese hamster ovary 
CI Confidence Interval 
DBAA dibromoacetic acid 
DBCAA dibromochloroacetic acid 
DBCM dibromochloromethane 
DBP Disinfection By-Product 
DCAA dichloroacetic acid 
DCBM bromodichloromethane 
DCBM dichlorobromomethane 
DIC Deviance Information Criterion 
DNA Deoxyribonucleic Acid 
DOC Dissolved Organic Carbon 
DWI UK Drinking Water Inspectorate 
EDD Estimated Date of Delivery 
FAQ Frequently Asked Questions 
FTU Formazin Turbidity Unit 
GC-ECD Gas Chromatography-Electron Capture Detector 
GC-HRMS Gas Chromatography/High Resolution Mass Spectrometry 
GIS Geographical Information System 
GTT Glucose Tolerance Test 
HAA Haloacetic Acid 
HiWATE Health Impacts for Long-Term Exposure to Disinfection By-Products in Drinking 

Water 
HPLC High Performance Liquid Chromatography 
ICC Intra-Class Correlation 
ICL Imperial College London 
IMD Index of Multiple Deprivation 
IQR Inter-Quartile Range 
IUGR Intrauterine Growth Restriction 
LBW Low Birth Weight 
LC-MS-MS  Liquid Chromatography – Tandem Mass Spectrometry 
LLE  Liquid-Liquid Extraction 
LMP Last Menstrual Period 
LMS Method summarising the changing birth weight distribution by three curves 

representing the skewness (L), median (M) and coefficient of variation (S) 
LOAEL Lowest Observed Adverse Effect Level 
LOD Limit Of Detection 
LOWESS Locally Weighted Scatterplot Smoothing 
LSOA Lower Super Output Level 
MBAA bromoacetic acid 
MCAA chloroacetic acid 
MCL Maximum Contaminant Level 

15 



MCS Millenium Cohort Study 
MRC Medical Research Council 
MRL Minimum Reporting Limit 
mRNA Messenger Ribonucleic Acid 
MX 3-chloro-4-(dichloromethyl)-5-hydroxy-5H-furan-2-one (aka Mutagen X) 
NHS National Health Service 
NIHR National Institutes for Health Research 
NOAEL No Observed Adverse Effect Level 
NOM Natural Organic Matter 
OR Odds Ratio 
P Pakistani (Pakistani origin) 
PCT Primary Care Trust 
PET Polyethylene Terephthalate 
POU Point-Of-Use  
PTD Preterm Delivery 
q1 quarter 1 (January through March) 
q2 quarter 2 (April through June) 
q3 quarter 3 (July through September) 
q4 quarter 4 (October through December) 
QC/QA Quality Control/Quality Assurance 
RQS Repeat Questionnaire Study 
RR Relative Risk 
SD standard deviation 
SDS Standard deviation score 
SES Socio-Economic Status 
SGA Small-for-Gestational Age 
TBAA tribromoacetic acid 
TBROM Total Brominated Trihalomethanes 
TCAA trichloroacetic acid 
THM Trihalomethanes 
tLBW term Low Birth Weight  
TOC Total Organic Carbon 
TOX Total Organic Halogen 
TTHM Total Trihalomethanes 
UK90 British 1990 reference birth centiles 
UN United Nations 
US EPA United States Environmental Protection Agency 
UV254 Ultraviolet-Absorbance at 254nm  
vLBW Very Low Birth Weight 
VPC Variance Partition Coefficient 
WB White British 
WHO World Health Organization 
WSZ Water Supply Zone 
WTW Water Treatment Works 
YW Yorkshire Water  

16 



CHAPTER 1 INTRODUCTION 

This chapter introduces the basic definitions and concepts on the subject of disinfection by-products 

and birth outcomes, as well as the experimental and human evidence to date on their association and 

possible mechanism of action. Justification for this thesis based on gaps in knowledge is established, 

and the structure of the thesis is outlined. 

1.1 Background 

1.1.1 Disinfection By-Products (DBPs) and Haloacetic Acids (HAAs) 

1.1.1.1 Definitions 

Water disinfectants such as chlorine—the most common disinfectant used in the United Kingdom—

react with natural organic matter and bromide ions present in the water during the disinfection process 

to create disinfection by-products (DBPs). 

Haloacetic acids (HAAs) are the second most prevalent chlorinated DBPs in drinking water after 

trihalomethanes (THMs), together comprising more than 50% on a weight basis (Singer et al. 2002), 

and 90% of the total volume of DBPs (Weinberg et al. 2002). There are nine chloro- and bromo-

haloacetic acids, commonly referred to as “HAA9”. They are MCAA, MBAA, DCAA, BCAA, 

TCAA, DBAA, BDCAA, DBCAA, and TBAA (Table 1.1). The five HAAs currently under 

regulations in the United States are referred to as “HAA5” are MCAA, MBAA, DCAA, TCAA, and 

DBAA. 

1.1.1.2 Main route of exposure to HAAs: ingestion 

Contrary to THMs, ingestion is thought to be the main exposure route to tap water HAAs 

(Nieuwenhuijsen et al. 2000b). Because HAAs are non-volatile at typical shower water temperatures, 

inhalation exposure to HAAs during showering is minimal (Kim and Weisel 1998; Xu and Weisel 

2003). Reports on the estimated dermal dose from daily bathing activities conclude that it represents 

an insignificant proportion of daily HAA uptake (Kim and Weisel 1998; Xu et al. 2002), as polar 

molecules of HAAs do not readily penetrate the skin (Xu et al. 2002). 

That being said, HAAs especially DCAA persist in boiled water and foods (Raymer et al. 2000; Wu et 

al. 2001). Thus, individual exposures to these compounds are determined by total ingestion of tap 

water (non-boiled and boiled), hot drinks, and tap water-containing foods (Egorov et al. 2003). 
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1.1.1.3 Regulations of HAAs and THMs  

Current drinking water regulatory standards for DBPs were established based on evidence of their 

adverse human health effects, risk of cancer in particular (EPA 2006; WHO 2008).  

Both THMs and HAAs are regulated in the US (maximum allowable contaminant level (MCL) for 

locational running annual averages of 80ug/l for TTHM (EPA 1979, 1998) and 60ug/l for HAA5 

(EPA 2006; EPA 1998)). According to Krasner (2009), these regulations were based on the broad use 

of THMs and HAAs as ‘surrogates’ for the toxicity associated with chlorinated water. The control of 

THMs and HAAs results in an overall reduction in the concentration of many other DBPs (Reckhow 

and Singer 1984) which may themselves be associated with the adverse health effects. 

Only THMs are currently regulated in the UK, with the MCL for total THM (TTHM, i.e. the sum of 

chloroform, bromodichloromethane, chlorodibromomethane and bromoform) at 100ug/l in any 

sample (DWI 2010). However, a standard of 80ug/L for HAA9 has been proposed for the future 

revision of the European Union’s Drinking Water Directive (DHI 2008), renewing interest in levels of 

HAAs in UK drinking waters and control methods. 

In Australia and New Zealand, the regulated limits of MCAA, DCAA and TCAA in drinking water 

are 150, 100 and 100ug/L, respectively (Golfinopoulos and Nikolaou 2005) (Table 1.2). Also listed in 

Table 1.2 are the World Health Organization (WHO) guidelines for DBPs (WHO 2008). 

1.1.1.4 Methods used for exposure assessment to DBPs to date  

Exposure assessment has been and remains the limiting factor in epidemiologic studies of drinking 

water DBPs and reproductive health (Arbuckle et al. 2002; Savitz 2012). 

The following study design types reflect the trend in increasing precision of exposure assessment in 

this field over time (S. Cordier, Gordon Conference, 2012): 

1. ecological studies

2. studies based on individual exposure

3. studies with area-level concentration data at water treatment level and some individual

consumption data

4. studies with area-level concentration data at participants’ homes and some individual

consumption data

5. studies with biomarkers

Ecological studies (study design 1) typically require identification of a study population served by a 

wide range of water providers with varying concentrations of DBPs, and exposure assignment based 
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on residential location. Such studies tend to have the advantage of large contrasts in concentration that 

are certain to result in differences in exposure. However, they are susceptible to ecologic confounding 

in which other characteristics of the regions under study may well influence pregnancy outcomes 

(Savitz 2012). 

Collecting individual level data (study design 2) necessitates querying people about their individual 

water use to distinguish exposure levels within one or a few water-services areas. Studies examining 

variation in water use within a single area tend to yield limited variation in tap water concentrations 

and therefore require accurate information on individual determinants of exposure to be informative. 

The study of volatile DBPs such as THMs through this approach is challenging, because a major 

component of the exposure comes from inhalation (Weisel and Chen 1994; Xu and Weisel 2005) and 

dermal absorption (Xu et al. 2002). Individual exposure assessment is more feasible for non-volatile 

DBPs such as HAAs, for which exposure occurs solely through ingestion (Nieuwenhuijsen et al. 

2000b), but it still requires valid estimates of consumption at home and in other locations, information 

on whether the water is filtered at the tap or with a pitcher, and whether the water has been heated, as 

for coffee or tea (Savitz 2012). 

A few studies have combined these approaches (study designs 3 and 4) in the past (Hoffman et al. 

2008b; Infante-Rivard 2004; Savitz et al. 2006), which is the option chosen in this thesis. 

As knowledge of exposure determinants expands (Arbuckle et al. 2002; Nieuwenhuijsen et al. 2000b), 

it is increasingly clear that the complexity of individual-level exposure determinants may go beyond 

what self-reports can address effectively—which is where biomarkers (study design 5) come into the 

picture (Savitz 2012). 

1.1.1.5 Consequences of poor exposure assessment 

The exposure assessment in Smith’s thesis on THMs in Bradford concludes that failure to incorporate 

individual water use into exposure assessment and reliance simply on area-level THM concentrations 

results in exposure misclassification, particularly when spatial variability in DBPs is limited across 

the study area. This finding also suggests that exposure assessment resources would be best focussed 

on improving individual water use assessment, if spatial variability is likely to be limited in a study 

area (Smith 2011). This is consistent with previous studies which found that about half of subjects are 

classified differently by metrics representing THM concentrations at the tap (area-level or household 

level) and metrics incorporating THM concentrations and individual water use (King et al. 2004; 

Whitaker et al. 2003b; Wright et al. 2006).  

Similarly, in epidemiologic studies where one or the other route of exposure has not been included in 

exposure assessment (e.g. a study by Savitz et al. (1995) in which exposure assessment reflects only 
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the ingestion route), exposure metrics may be a poor surrogate for total exposure, again resulting in 

exposure misclassification (Smith 2011). 

1.1.1.5.1 Types of error 

There are two types of measurement error to be expected under the ecological or individual study 

design types (Smith 2011). 

Smith (2011) studied eleven studies which used area-level THM or HAA concentrations to estimate 

exposure for each mother (Bove et al. 1995; Dodds et al. 1999; Gallagher et al. 1998; Hinckley et al. 

2005; Kramer et al. 1992; Lewis et al. 2006; Porter et al. 2005; Toledano et al. 2005; Wright et al. 

2003, 2004). In these studies exposure measurement error would follow the Berkson error model. This 

type of error arises when the same approximate measure (a proxy) is used for many subjects, whilst 

the true exposures vary randomly about this proxy with their mean equal to it (Armstrong 1998). 

Berkson error causes loss of study power and loss of precision in effect estimates, but rarely causes 

bias (Armstrong 1998). 

When exposure assessment was carried out at the individual level for each mother, as in a study by 

Aggazzotti et al (2004), exposure measurement error would follow the classical error model. This 

type of error occurs when the average of many replicate measurements of the same true exposure 

would equal the true exposure (Armstrong 1998). Classical error biases estimates towards the null 

(Armstrong 1998). 

Finally, Smith (2011) reported that for three studies that have generated personalised exposure metrics 

by combining area-level THM or HAA concentration estimates with individual information on water 

use (Hoffman et al. 2008b; Infante-Rivard 2004; Savitz et al. 1995), exposure measurement error may 

combine elements of both Berkson and classical error models. Without a clear understanding as to the 

contribution of the various exposure errors, the health risk estimates may be more difficult to interpret 

(Nieuwenhuijsen et al. 2000b). 

1.1.2 Birth outcomes 

1.1.2.1 Common indicators of birth outcomes 

The most common indicators of suboptimal growth during the fetal period include low birth weight 

(LBW), very LBW, term LBW, and small-size-for gestational age (SGA). More subtle definitions 

such as customised SGA, and fetal growth restriction (FGwR) have been developed in the last couple 

of decades (Table 1.3). 
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Birth weight is recognised globally as an indicator of perinatal and infant health. Low birth weight 

(LBW) is generally defined using WHO criteria as a live1 baby born weighing less than 2500g, and 

very LBW as a live baby born weighing less than 1500g. A term LBW baby is one whose birth weight 

is under 2500g at 37 or more completed weeks of gestation. Preterm delivery (PTD) is formally 

defined solely by the gestational age at which delivery of a live birth occurs (less than 37 completed 

weeks) (Savitz et al 2002). Live births in the lowest decile (≤10th percentile) (Alexander et al. 1996) 

of weight for gestational age (occasionally in the lowest fifth or even third percentile (Lee et al. 

2003)), or two standard deviations (Clausson et al. 2001) below the mean birth weight for gestational 

age are defined as small-for-gestational age (SGA). The standards used are either derived from the 

dataset being analysed or based on a published referent (standardised for ethnicity, sex, and/or parity 

if such referents are available) (Alexander et al. 1996; Wilcox 2010). 

SGA is sometimes used interchangeably with intrauterine growth restriction (formerly “retardation”) 

(IUGR). IUGR was first defined as LBW babies born at term, then took on the same definition as 

SGA in order to extend the IUGR definition to preterm births. More recently still, IUGR diagnosis 

considered clinical and ultrasonography-based presentation of suboptimal growth, in addition to a 

fetal growth ratio2 or fetal length below the tenth percentile for gestational age (Choi et al. 2008; 

Smith et al. 1997). Other risk factors such as height and weight, ethnicity and even smoking can be 

included in its definition as well, muddying the picture further. 

1.1.2.2 Growth restriction 

This thesis aims to identify “pathologically” small (i.e. growth restricted) babies as opposed to 

identifying all small or light babies, some of which may be “constitutively” small (i.e. “naturally” so) 

(Nieuwenhuijsen et al. 2009c). 

Birth weight without consideration for gestational age at birth is a limited marker of fetal growth 

(Wilcox 2001). Prematurity is correlated with lower birth weight regardless of pathology (the earlier a 

baby is born, the less time it has had to grow in the womb, and thus the smaller it is likely to be at 

birth), but growth restricted babies may technically be born at any gestational age. This means that 

babies categorised as LBW will represent a mix of those whose growth is suboptimal, those whose 

growth trajectory was normal but who were delivered early, and those who are small for genetic 

1 As opposed to a stillbirth, which refers to a fetus that is born at 24 or more completed weeks of gestation 
which does not show any signs of life such as a beating heart, breathing or voluntary movement (per ONS 
definition: http://www.ons.gov.uk) 
2 Birth weight divided by the mean birth weight for a given ethnic group, gestational age and sex Choi H, Perera 
F, Pac A, Wang L, Flak E, Mroz E, et al. 2008. Estimating individual-level exposure to airborne polycyclic 
aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring. 
Environ Health Perspect 116:1509-1518. 
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reasons unrelated to viability, i.e. constitutively so. The challenge is to identify which infants fall into 

each of the three groups (Savitz et al. 2002) (see Chapter 6 for more details on the pros and cons of 

each measure, section 6.4.3). 

One way to identify growth restricted babies is to focus on birth weight as a continuous measure, 

avoiding an arbitrary dichotomy and potentially enhancing statistical power, and adjust for gestational 

age within statistical models. Another way is simply to exclude all premature babies, as with the term 

LBW measure, such that any babies born weighing less than 2500g despite adequate gestational age 

are likely growth restricted. Finally, thresholds of “statistically usual” weights for gestational age can 

be established in order to generate measures of deviation from the subgroup norms such as SGA 

(Wigle et al. 2008; Wilcox 2010). The presumption here is that those who are at the extreme low end 

of that distribution of birth weight are likely to have had their growth restricted in some manner 

(Savitz et al. 2002). But even a baby classified as SGA (i.e. unusually small in a statistical sense 

(below the tenth percentile) relative to other infants of the same duration of gestation, gender, parity, 

and race) may not be growth restricted. Indeed SGA being a statistical construct, some babies who are 

small at birth but grew normally in the womb will fall below the cut-off point, and some growth 

restricted babies will reach a weight above the cut-off point because SGA fails to distinguish between 

“constitutively” and “pathologically” smallness (Nieuwenhuijsen et al. 2009c). Succeeding in making 

this distinction will often depend on the growth charts of the referent population used. The reference 

used to derive the SGA measure studied in this thesis is described in Chapter 6 (see section 6.2.3). 

1.1.2.2.1 Customised measures 

One of the limitations of using population growth standards is that they include babies who seem to be 

of normal size but have in fact failed to reach their own growth potential. Indeed, there is evidence to 

show that the use of individually-adjusted fetal growth charts instead of standard population growth 

charts significantly reduces the proportion of false-positive and false-negative diagnoses of fetal 

growth restriction (Gardosi 2006; Gelbaya and Nardo 2005). The customised SGA developed by 

Gardosi et al (2006) uses an optimal growth curve for an individual fetus as the referent based on 

sonographic measurements (Gardosi 1998). Using a similar approach, Mamelle et al (2001) suggested 

a variable called fetal growth restriction (FGwR), which is based on the estimation of an infant’s 

individualised birth weight limit, taking into account his/her genetic growth potential which depends 

on maternal characteristics (height, pre-pregnancy weight, smoking) and parental characteristics (age, 

weight, height).  

Customised birth weight centiles assess birth weight against an individually calculated standard, 

which is based on the growth potential of each fetus (Gardosi et al. 1995). The customised standard 

adjusts for characteristics such as ethnic origin, parity, and maternal height and weight, excludes 
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pathological factors known to affect fetal growth, such as smoking, and uses a fetal weight-derived 

‘proportionality curve’ to define normal weight at various gestational age points (Gardosi et al. 2007). 

This avoids limits based on preterm birth weights, which are heavily skewed because of the 

association between preterm birth and fetal growth restriction.  

However, critics of this method have argued that the benefits of the “customised” method are 

marginal (Hutcheon et al. 2011), that it is unable to distinguish between the pathological and 

physiological influences of maternal characteristics on birth weight, and that it main value proposition 

is its recognition of the inappropriateness of using a birth weight-based standard at preterm ages 

(Hutcheon and Platt 2008) rather than because of its “customisation” for maternal characteristics 

(Hutcheon et al. 2008). Since data on maternal characteristics are often missing, a non-customised but 

intrauterine-based standard may indeed be the most parsimonious and practical standard for the 

prediction of perinatal mortality in clinical practice (Hutcheon et al. 2008; Zhang and Sun 2013). 

In addition to the fact that no pre-pregnancy maternal weight—needed for the derivation of 

customised SGA—was available for the pregnant women from the Born in Bradford (BiB) cohort 

under study here, it was also not clear how comparable to the previously published literature 

customised SGA results would be. For these reasons, this method was not explored further in this 

thesis.  

1.1.2.3 Consequences of poor birth outcomes on health 

Growth restriction (not due to prematurity) is frequently linked to perinatal morbidity and mortality 

(MaCH 2001) as well as adverse effects in childhood and later life (Barker 1997; Wilcox 2010). 

1.1.2.3.1 Consequences on early mortality and child health 

Babies born LBW or SGA have been shown to have higher perinatal mortality and morbidity 

(Ashworth 1998; Branum and Schoendorf 2002; Gulmezoglu et al. 1997; IHDP 1990; Lee et al. 2003; 

Lira et al. 1996; McCormick 1985; Thomas et al. 2000; Wen et al. 2005; Yasmin et al. 2001) and 

more likely to experience developmental problems in childhood (Hediger et al. 2002; Rice and Barone 

2000; Richards et al. 2002; Sizonenko et al. 2006; van Wassenaer 2005) than their counterparts born 

weighing 2500g or more, or who are not SGA. Indeed low birth weight has been associated with both 

cognitive and neurologic impairment (Paz et al. 1995; Taylor and Howie 1989).  

However the causal role of birth weight in infant mortality is controversial; if the relationship is non-

causal, it may be an unimportant endpoint in itself, and inconsequential in the analysis of infant 

mortality or other outcomes (Wilcox 2001). This would also imply that interventions to increase birth 

weight may be wasted. 
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1.1.2.3.2 Consequences on later mortality and morbidity 

As per West (2011), a large number of studies have demonstrated inverse (sometimes 'J' shaped) 

associations of birth size (most commonly birth weight) with cardiovascular disease endpoints 

(Barker 2002; Huxley et al. 2007) and risk factors including type 2 diabetes (Whincup et al. 2008), 

fasting glucose (Al Salmi et al. 2008), insulin (Lawlor et al. 2003), total cholesterol (Lawlor et al. 

2006), and triglycerides (Gluckman and Hanson 2004; Owen et al. 2003) as well as positive 

associations with high density lipoprotein cholesterol (Gluckman and Hanson 2004). 

Few investigators suggest that size at birth per se matters, but rather that size is a proxy marker for 

other causal risk factor(s). For example and as eloquently summarised in West (2011), several 

hypotheses have been proposed to explain the association between birth weight and later 

cardiovascular disease outcomes:  

a) Factors affecting intrauterine nutrition and growth provide signals to the developing fetus

about the environment in which they will grow-up and develop, and as a result 'programme' the 

developing fetus for an environment of thrift or plenty (Bateson et al. 2004; Leon 2004). Under this 

hypothesis, poor intrauterine nutrition results in poor intrauterine growth and low birth weight, and 

programmes the offspring for a life of thrift. If the offspring subsequently experience a life of 

nutritional plenty, typified by high fat, energy dense diets, they are at a particularly increased risk of 

future cardiovascular disease. Epigenetic mechanisms are increasingly thought to mediate these 

processes (Waterland and Michels 2007). For example, significant changes to epigenetic states across 

the genome during intrauterine development present the opportunity for environmental stresses, such 

maternal malnutrition, to influence gene expression and thus phenotype (Li et al. 2010). 

b) The fetal insulin hypothesis suggests that associations are largely due to the effects of

genetic variants that have pleiotropic3 effects influencing both fetal growth and later insulin resistance 

and hence cardiovascular risk (Hattersley and Tooke 1999). 

c) Confounding (for example, by socio-economic position or shared familial behaviours such

as smoking, physical activity and diet that could affect both perinatal outcomes and later disease risk 

in offspring), statistical artefact, and/or publication bias could also explain associations of birth weight 

with cardiovascular disease (Huxley et al. 2002; Tu et al. 2005). However, recent systematic reviews 

(Huxley et al. 2007; Whincup et al. 2008) together with intergenerational and sibling studies (Lawlor 

et al. 2009) have suggested that such bias and confounding is unlikely to fully explain these 

associations.  

3 when one gene influences multiple, seemingly unrelated, phenotypic traits 
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1.1.3 Relevant HAA literature 

1.1.3.1 Experimental studies 

Disinfection by-products were first discovered in drinking water in 1974 in the form of 

trihalomethanes (THMs) (Rook 1974). Toxicological evaluations were soon undertaken and first 

concern for public health arose. In 1976, a National Cancer Institute study was released in which 

chloroform was classified as a suspected human carcinogen (NCI 1976). 

Kargalioglu et al. (2002) reported certain HAAs species (namely MCAA, DCAA, TCAA, BCAA, 

DBAA and TBAA) to be cytotoxic4 and mutagenic5 in Salmonella typhimurium strains, and that the 

brominated acetic acids (MBAA and DBAA) were more cytotoxic and mutagenic than their 

chlorinated analogues (MCAA and DCAA). They concluded that HAAs’ mutagenic potency was 

inversely related to the number of halogen atoms of the molecule.  

Itoh & Echigo (2008) performed chromosomal aberration tests using Chinese hamster lung cells and 

transformation tests using mouse fibroblast cells as indices to estimate the initiation and promotion, 

respectively, in the carcinogenesis process. They found that dichloroacetic acid (DCAA) and 

trichloroacetic acid (TCAA) contributed 2.9% of the chromosomal aberration-inducing activity and 

1.4% to the transformation efficiency, while the contributions of MX (3-chloro- 4-(dichloromethyl)-5-

hydroxy-2(5H)-furanone) and bromate ion for instance were almost negligible (less than 0.1%). 

HAAs have also been shown to be cytotoxic and mutagenic in Chinese hamster ovary (CHO) K1 cells 

(SH Zhang et al. 2010), cytotoxic and genotoxic6 in CHO AS52 cells (Plewa et al. 2002; Plewa et al. 

2004; Plewa et al. 2010) and nontransformed human fetal hepatocyte (FH) cells (Attene-Ramos et al. 

2010), and cytotoxic in human TK6 cells (Liviac et al. 2010). 

In animal models, HAAs were teratogenic7 in mice embryos (Hunter et al. 1996), and mixtures of 

THMs and HAAs were teratogenic in rats (Narotsky et al. 2011). High-dose prenatal exposure to 

HAAs has been found to cause fetal toxicity, including fetal resorptions and reduced fetal weight and 

survival (Graves et al. 2001; Nieuwenhuijsen et al. 2000a). Prenatal exposure to DCAA (Smith et al. 

1992) and TCAA (Smith et al. 1989) in particular may have an adverse effect on fetal growth and 

development, as measured by fetal weight and length in Long-Evans rats exposed by oral intubation. 

However, these dose-dependent developmental effects occurred when the compound was 

administered at high doses, which can lead to treatment-related maternal effects such as substantial 

4 producing a toxic effect on cells 
5 inducing genetic mutation 
6 damaging to DNA and thereby capable of causing mutations or cancer 
7 causing malformations of an embryo or a fetus 
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inhibition to metabolically clear the compound (IARC 2004). This has important implications when 

considering the low doses present in drinking water.  

Komulainen et al (2004) found that DCAA and TCAA are hepatocarcinogenic8 in mice and that 

DCAA is hepatocarcinogenic in male rats. Their genotoxicity in this study was equivocal though, 

nongenotoxic mechanisms such as peroxisome proliferation and hypomethylation of DNA in the liver 

likely contribute to tumor development. DCAA has been classified as a probable human carcinogen 

(United States Environmental Protection Agency (US EPA) rating: B2) because of its cancer, 

reproductive and developmental effects, and TCAA as a possible human carcinogen (US EPA rating: 

C) because of effects on the liver, kidney, and spleen, and its developmental effects (Sadiq and

Rodriguez 2004). 

1.1.3.2 Human studies 

Various thorough reviews have been conducted and have concluded that the relationship between 

HAA exposure and reproductive health outcomes remains unclear and inconsistent, mainly owing to 

limitations in exposure assessment (Nieuwenhuijsen et al. 2009a; Tardiff et al. 2006). 

Klotz and Pyrch (1999) studied total HAA levels in water and neural tube defects and did not find any 

statistically significant association. Evidence for risk of hypospadias was inconclusive both in Kallen 

and Robert (2000) and in Luben et al. (2007), and a case-control study in Canada looking at the 

association between HAAs and stillbirth risk did not find any significant results after controlling for 

THM exposures (King et al. 2005). 

Luben et al. (2007) studied the relation between exposure to classes of DBPs and sperm concentration 

and morphology, as well as DNA integrity and chromatin maturity, but found no association—or 

consistent pattern—of increased abnormal semen quality with elevated exposure to HAAs. Neither 

did Wright et al. (2004) find any statistically significant association between HAAs and a measure of 

mutagenicity (Nieuwenhuijsen et al. 2009a). Finally, on the basis of 258 pregnancy losses, Savitz et 

al. (2006) did not find an increased risk of pregnancy loss (spontaneous abortion) in relation to HAA 

concentrations—ingested amounts, or total exposure. 

Studies on preterm delivery (PTD) have generally shown no statistically significant associations with 

HAAs (Hinckley et al. 2005; Hoffman et al. 2008a). However, elevated total HAAs and TCAA 

exposures were both associated with an increased risk of very preterm delivery (under 34 gestational 

weeks at birth) (Wright et al. 2004). 

8 linked to cancer of the liver 
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Study results on term low birth weight (LBW) have been mixed. A retrospective cohort study 

conducted in Arizona, USA, showed associations between term LBW and third trimester municipal 

drinking-water HAAs (third vs. first tertile total HAAs, adjusted OR=1.25 (95% CI: 0.96, 1.64)), 

especially dibromoacetic acid (DBAA) (adjusted OR=1.49 (1.09–2.04)) (Hinckley et al. 2005). Savitz 

et al. (2005) suggested that term birth weight was associated with HAA9, i.e. the sum of all nine 

HAAs (significance not stated). In contrast, not only did Wright et al. (2004) detect no associations 

for high third trimester HAA exposures and LBW in a retrospective cohort study in Massachusetts, 

USA, but also reported that birth weight increases were observed for intermediate total HAA and 

TCAA. 

As for studies on small-for-gestational age (SGA) and/or intrauterine growth restriction (IUGR), 

Porter et al (2005) reported an increased risk of IUGR in the highest category of HAA exposure 

during the third trimester when comparing quintiles of exposure (fifth vs. first quintile HAA5, 

adjusted OR= 1.34 (1.04, 1.71)), but was unable to demonstrate any consistent statistically significant 

effect of HAAs on IUGR, nor find any indication of a dose-response relation. Levallois et al (2012) 

conducted a case-control study of 571 SGA births and 1925 controls and found that HAA levels 

above water standards (80ug/L in the US) were associated with an increased risk of term SGA. Wright 

et al (2004) found, if anything, a decreased risk of SGA with intermediate TCAA exposures (>18-

27ug/l (second of 3 categories) vs. 0-18ug/l (reference), adjusted OR= 0.87 (0.76, 0.99)). Hoffman et 

al (2008b) did not report consistent evidence that exposure to HAA5 at residential concentrations 

below the current regulatory standards during the third trimester of pregnancy was associated with an 

increased risk of SGA. Finally, Horton et al (2011) found no association between HAA5 and term 

SGA, preterm birth, or very preterm birth (defined as less than 32 weeks of gestation at birth). 

More recently, the first epidemiologic study relying on a biomarker of exposure to evaluate the impact 

of prenatal exposure to HAAs on pregnancy outcomes found that women with detectable TCAA in 

their urine (6.7% of the 611 maternal urines collected) had a higher risk of fetal growth restriction 

than those with TCAA levels below the detection limit (OR= 1.8 (0.9, 3.7)) and had an odds ratio for 

preterm birth below 1 (OR= 0.8 (0.3, 2.6)) (Costet et al. 2012). A cross-sectional study based in 

Wuhan, China, reported that subjects with creatinine-adjusted urinary TCAA concentrations in the top 

third and fourth quartiles had lower mean birth weights compared to those in other quartiles (only 

significant difference reported: -159.6 grams (-315.3, -4.0), when comparing the fourth to the first 

quartile on a subset of N=180) (Zhou et al. 2012). 

In 2001, Graves et al (2001) reviewed all toxicological and epidemiologic to date and concluded that 

the weight of evidence suggested a positive association with DBP exposure for some measures of 
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growth restriction (such as IUGR or SGA) and for urinary tract defects, but none for low and very low 

birth weight, preterm delivery, congenital anomalies, or neonatal death.  

1.1.3.3 Biological mechanisms 

The biological molecule(s) with which the HAAs react and the mechanism(s) by which they induce 

toxicity, particularly at low concentrations, and ultimately poor birth outcomes remain unclear 

(Komulainen 2004; Pals et al. 2011). 

One suggested mechanism is that HAAs interfere with folate metabolism. Dow & Green (2000) 

showed that TCAA interacts with vitamin B12, probably by a free radical mechanism, inhibiting both 

the methylmalonyl CoA9 and methionine salvage10 pathways in rats. As a result of the latter, a 

secondary folate deficiency develops, leading to a major impairment in formate metabolism (Alston 

1991; Nieuwenhuijsen et al. 2009a). TCAA’s role in inhibiting the vitamin B12-dependent 

methionine biosynthesis pathway could lead to vitamin B12 deficiency and consequently folate 

deficiency (Dow and Green 2000). Folate deficiency is known to be associated with increased risk of 

LBW and fetal growth restriction (Scholl and Johnson 2000) and is a probable risk factor for 

placental-mediated diseases such as pre-eclampsia, spontaneous abortion and placental abruption (Ray 

and Laskin 1999). Vitamin B12 deficiency has been shown to be associated with IUGR in humans 

(Muthayya et al. 2006). 

Oxidative stress is another mechanism by which HAAs could have an effect on fetal growth. Maternal 

oxidative stress during pregnancy may be an important factor in adverse fetal growth (Karowicz-

Bilinska et al. 2002; Kim et al. 2005; Matsubasa et al. 2002; Myatt and Cui 2004; Scholl and Stein 

2001). DCAA and TCAA have been found to induce cellular death and oxidative stress in 

macrophage cells in vitro (Hassoun and Ray 2003), and to induce lipid peroxidation—a biomarker of 

oxidative stress—in mouse and rat livers in vivo (Larson and Bull 1992). 

As for the cancer effects associated with HAAs, Pals et al (2011) highlights that HAAs have been 

considered direct-acting genotoxins because they are mutagenic in S. typhimurium without hepatic 

microsomal activation (Kargalioglu et al. 2002; Richardson et al. 2007). They induce genomic DNA 

damage and mutagenicity in CHO cells without exogenous cytochrome P450 activation (Plewa et al. 

2004; Plewa et al. 2010; SH Zhang et al. 2010). However, new evidence is emerging that HAAs may 

not directly interact with genomic DNA. Elevated levels of 8-hydroxydeoxyguanosine (8-oxo-dG)11 

9 methylmalonyl CoA (CoA=coenzyme A) is an important intermediate in the biosynthesis of many organic 
compounds  
10 when homocysteine is recycled into methionine 
11 one of the major products of DNA oxidation (de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, 
Seeberg E, et al. 2001. Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine 
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in mice treated with chlorinated or brominated HAAs (Austin et al. 1995; Larson and Bull 1992; 

Parrish et al. 1996) suggest that HAA-mediated generation of reactive oxygen species is involved in 

the induction of toxicity and DNA damage. This means that a radical species may be involved in 

HAA-induced DNA damage (Cemeli et al. 2006; Pals et al. 2011). 

1.1.3.4 Relevant windows of susceptibility 

It is unclear when HAA exposure may have the most profound effect on a fetus’ growth and 

development in the womb, whether it is during the first, second, or third trimester of pregnancy 

(Forssen et al. 2009). There is some evidence to suggest that adverse fetal growth outcomes may have 

their origins early in pregnancy (Smith 2004). Others believe that all three trimesters are critical (S. 

Cordier, personal communication, Gordon Conference 2012). As such I have considered the period 

when the data that make up this thesis’ main exposure metric, the “combined metric” (see Chapter 5), 

is most robust because it corresponds to the trimester when the questionnaire was administered, i.e. 

the second trimester.  

However, Hinckley et al (2005) suggests a critical window of exposure with respect to fetal 

development during weeks 33–40 for the effects of DBAA acid and during weeks 37–40 for the 

effects of DCAA. The rate of fetal growth and weight gain increases dramatically and reaches its peak 

at about week 33, i.e. during the third trimester of pregnancy (Owen et al. 1996; Williams et al. 1982). 

Average weight gain may reach almost 250g per week during this period (Williams et al. 1982). On 

this basis, as maternal exposure to high HAA levels during the third trimester may have an adverse 

effect on fetal growth, I have also tried to investigate water consumption variation over the course of 

the third trimester of pregnancy (see Chapter 8). 

1.2 Gaps in knowledge 

It is undeniable that disinfection of tap water is vital to ensure that water-borne diseases are 

eliminated from public drinking water supply. However, chlorine—the most common disinfectant 

used in the UK—is known to be toxic at high doses. Because vast segments of the population are 

directly exposed to these chemicals, it behoves environmental epidemiologists to address the health 

risks resulting from exposures to them and to provide guidance regarding appropriate regulations and 

societal investment in technology to reduce population exposure. 

A lot of work has been done to date on exposure to trihalomethanes (THMs) because of their relative 

ease of analysis and the readily available data from routinely collected sampling for regulatory 

dna glycosylase (ogg1) gene and 8-oxoguanine accumulates in the mitochondrial dna of ogg1-defective mice. 
Cancer research 61:5378-5381.) 
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purposes. But recent publications question the use of THMs as a proxy measure for DBP load, and 

highlight the lack of research on non-THM chlorination DBPs (Nieuwenhuijsen et al. 2009a). THMs 

are an insufficient proxy for DBPs as a whole because a) the metabolism of different DBP species 

varies (IPCS 2000), b) the toxicity of different DBP classes varies (Jeong et al. 2012), c) specific 

DBPs within a particular class have substantially different toxicities (Hunter et al. 2006), and d) the 

relationship of THM concentrations to other DBP concentrations varies and is more often than not 

unknown, as more than 50% of all organo-halogenated DBPs in water formed by chlorination remain 

chemically unidentified (Nieuwenhuijsen et al. 2009a; Richardson et al. 2007).  

As a result, despite being the second most abundant DBP in drinking water (Singer et al. 2002), little 

is known about HAA occurrence in UK treated drinking waters (Bougeard 2009; Malliarou et al. 

2005; Y Zhang et al. 2010), and even less about their possible health effects. More epidemiologic data 

on this subject are needed for policy purposes.  

Exposure assessment is the Achilles’ heel of environmental research. Exposure assessment in many of 

the epidemiologic studies published to date has been inadequate to definitively demonstrate an 

association of small magnitude. Exposure to DBPs has been primarily based on routine (i.e., 

quarterly) monitoring of public water supplies for trihalomethanes (THMs) matched to maternal 

residence. In order to determine whether an association exists between exposure to DBP and adverse 

birth outcomes, studies must consider both DBP concentration and the volume of water that each 

individual pregnant woman is individually exposed to (Graves et al 2001). 

This thesis uniquely achieves these goals, combining information on individual water use (described 

in Chapter 3) with modelled area-level HAA concentration estimates based on HAA concentration 

data collected and analysed deliberately for this work (Chapter 4), and accounting for filtering and 

boiling to generate the most precise exposure assessment measure currently possible (Chapter 5) 

(Table 1.4). Because within-subject variability in questionnaire data may be substantial and may 

attenuate risk estimates, I further evaluated individual information for measurement error in a separate 

repeat questionnaire study (RQS) (Chapter 8). All with the goal of understanding exposure in ever 

finer detail in order to produce the best possible models to investigate the reproductive health effects 

of HAAs (Chapter 7). 

Bradford was chosen as study site for the Born in Bradford (BiB) cohort because of its classification 

as the eighth most deprived health community in the UK, with high levels of morbidity and a 

standardised mortality rate above the UK average (see Chapter 2 for more details of the cohort). In 

addition, approximately half of the cohort is of South Asian origin, making this a unique study 

population. Investigating the role that environmental factors play is an important component of 
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addressing these poor health outcomes, and my expectation is that the findings of this thesis, in 

conjunction with others, could be of real benefit to this community. Chapter 6 is a descriptive chapter 

on BiB and birth outcomes.  

In sum, this work is important because of its potential policy ramifications and for the benefit of the 

population of Bradford; it is novel because of its focus on understudied HAAs, presenting new 

concentration data from the recently completed HiWATE project; and it is methodologically 

innovative in its eagerness to go beyond what previous studies have achieved to date and improve 

exposure assessment by deriving a metric of exposure combining individual and areal-level 

information, and assessing possible individual-level measurement error in a repeat questionnaire 

study.  

*********** 

All tables are listed first in order of citation, followed by the figures listed in order of citation. Tables 

and figures are numbered including chapter number. Thus Table 2.8 is the eighth table to appear in 

Chapter 2. Any table or figure relating to a given chapter but deemed of secondary importance was 

relegated to the appendix, and numbered by chapter number preceded by an “A” for appendix, e.g. 

Appendix Figure 5 from Chapter 3 will be numbered Figure A3 – 5 and located in the Appendix 

section dedicated to Chapter 3. Once more, each chapter’s tables precede its figures, and is listed in 

order of citation. 
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1.3 Tables 

Table 1.1: Chemical and physical properties of nine HAAs (modified from a table in Bougeard 
(2009)) 

Abbreviation Name Molecular 
Formula 

Boiling 
point (˚C) 

Boiling point 
of ester (˚C) 

MCAA * Chloroacetic acid C2H3ClO2 189 130 
MBAA * Bromoacetic acid C2H3BrO2 206-208 132 
DCAA * Dichloroacetic acid C2H2Cl2O2 194 143 
BCAA Bromochloroacetic acid  C2H2BrClO2 215 174 
TCAA * Trichloroacetic acid C2HCl3O2 196 168 
DBAA * Dibromoacetic acid C2H2Br2O2 128-130 NR 
BDCAA Bromodichloroacetic acid  C2HBrCl2O2 NR 
DBCAA Dibromochloroacetic acid  C2HBr2ClO2 NR NR 
TBAA Tribromoacetic acid C2HBr3O2 245 225 
* regulated as a sum in the US
NR: not reported 

Table 1.2: Regulatory thresholds for THMs and HAAs in the European Union (incl. the UK), US, and 
Australia and New Zealand, as well as WHO guidelines 
MCL: maximum allowable contaminant level 
TTHM: total trihalomethanes, i.e. the sum of the four known individual THMs 

THM HAA 
European union 
standards (UK) 

MCL for TTHM at 100ug/L in 
any sample 

Not regulated  
(DCAA MCL: 50ug/L and TCAA 
MCL: 200ug/L under 
consideration) 

US EPA regulations MCL for locational running 
annual averages of 80ug/L for 
TTHM 

MCL for locational running 
annual averages of 60ug/L for 
HAA5* 

Australia and New 
Zealand 

TTHM of 250ug/L (guideline 
value) 

MCAA, DCAA and TCAA in 
drinking water are 150, 100 and 
100ug/L, respectively 

WHO guidelines 300ug/L for chloroform, 60ug/L 
for BDCM, 100ug/L for DBCM 
and 100ug/L for bromoform 

50ug/L for DCAA (provisional) 
and 200ug/L for TCAA 

* Sum of MCAA, MBAA, DCAA, TCAA, DBAA
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Table 1.3: Definitions of common birth outcome measures described in Introduction (Chapter 1) 

Birth outcome measure Abbr. Definition 
Birth weight BW continuous measure of weight at birth (g) 
Low birth weight LBW birth weight <2500g (irrespective of GA) 
Very low birth weight VLBW birth weight <1500g (irrespective of GA) 
Term low birth weight LBW birth weight < 2500g after at least 37 completed 

weeks of gestation 
Gestational age GA Number of completed weeks at birth 
Preterm delivery PTD gestational age at birth <37 completed gestational 

weeks 
Very preterm delivery VPTD gestational age at birth <32 (or sometimes <34) 

completed gestational weeks 
Small-for-gestational age SGA live infant born below the tenth percentile (or fifth or 

third) or at least two SD lower than the mean BW of 
BW for GA by sex (and/or other characteristics) in a 
referent population (Alexander et al. 1999; Choi et 
al. 2008; RCOG 2002) 

Intrauterine growth 
restriction  

IUGR fetal growth ratio below the tenth percentile of a 
referent population (Smith et al. 1997) 

Customised small-for-
gestational age 

cSGA live infant born below the tenth percentile based on 
optimal growth curve for an individual fetus (Gardosi 
2006) 

Fetal growth restriction FGwR live infant born below the tenth percentile of the 
predicted BW (Mamelle et al. 2001) 
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Table 1.4: Sixteen exposure measures presented in this thesis’ analyses 

^In addition to multiplying total tap water consumption by trimester-weighted area-level HAA 
concentrations, this measure incorporates factors for filtering and boiling, either at the home, the work 
place or both; as water consumption is enquired about at recruitment to BiB during women’s second 
trimester of pregnancy, the combined metric uses second trimester area-level concentrations. 

exposure type:

(units)
trimester of pregnancy:

first DCAA 
TCAA 
BDCAA 

second cold tap water 
total tap water  DCAA  total tap water x   DCAA 
bottled water  TCAA  total tap water x   TCAA 
total water  BDCAA  total tap water x   BDCAA 

third DCAA 
TCAA 
BDCAA 

(ug/day)

combined exposure metric^individual water 
consumption

modelled area-
level 

concentrations
(L/day) (ug/L)
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CHAPTER 2 BORN IN BRADFORD (BIB) & AIMS 

This chapter describes the Born in Bradford (BiB) cohort which is at the heart of this thesis, the data 

available, as well as this thesis’ main aims and objectives. 

2.1 Born in Bradford cohort 
The Born in Bradford (BiB) study was established in 2007 in Bradford, an industrial city in the North 

of England, which is the sixth largest city in the UK with a population of about half a million. Its aims 

are to examine how genetic, nutritional, environmental, behavioural and social factors impact on 

health and development during childhood and subsequently adult life in a deprived multi-ethnic 

population.  

BiB is a longitudinal birth cohort study that involves research collaboration between Bradford 

Teaching Hospitals, Bradford & Airedale PCT, University of Leeds and the University of Bradford. 

Additional research partner include the University of Bristol, University of Loughborough, University 

of Edinburgh, London School of Hygiene and Tropical Medicine and Imperial College London. The 

project has received support from a number of funders including MRC, NIHR, Diabetes UK and the 

Department of Health. 

The full study methodology is available at http://www.borninbradford.nhs.uk/12. The BiB study 

protocol and a detailed cohort profile have been published (Raynor 2008; Wright et al. 2012). 

Additional details on the study population and recruitment process are described in West (2011). 

2.1.1 Why was the BiB cohort set up? 

In response to rising concerns about the high rates of childhood morbidity and mortality in the city of 

Bradford, an independent Commission of bereaved mothers, politicians, members of voluntary 

organisations, health and other public service professionals was established in 2004. It commissioned 

an extensive analysis of local data, which was published as the Bradford District Infant Mortality 

Commission (BDIMC) report in 2006. Updates to this report have been published in 2008 and 2011. 

Bradford was chosen as study site for the BiB cohort because of its classification as eighth most 

deprived health communities in the UK (APHO 2008; BDIMC 2006). Infant mortality in Bradford is 

12 last accessed 18/01/2014 
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consistently above the national average; it peaked at 9.4 deaths per 1000 live births in 2003, when the 

national average was 5.5 deaths per 1000 live births (Wright et al. 2012). A greater proportion of 

babies born in Bradford are of low birth weight (9.7%), an outcome typically associated with 

increased infant mortality and morbidity and an increased risk of developing various diseases in later 

life (see section 1.1.2.3)—compared with England and Wales as a whole (7.5%) (BDIMC 2006). 

Levels of congenital anomalies and childhood disability in Bradford are also among the highest in the 

UK (Wright et al. 2012). 

2.1.1.1 Bradford’s unique demographics 

Around 20% of the population of Bradford is of South Asian origin (90% of whom are from 

Pakistan), a three-generation community that maintains close links with Pakistan (Small 2012). The 

relatively young age of the population of Pakistani origin and their higher fertility rates compared 

with the White British majority population explain why almost half of babies born in the city of 

Bradford have parents of Pakistani origin (BDIMC 2006). 

Infant mortality rates among South Asians living in the UK are considerably higher than those of the 

UK White population. Between 1996 and 2003, infant mortality in Bradford for babies of Pakistani 

origin (12.9 per 1000) was substantially higher than for those of European origin (7.1 per 1000) (RR 

for Pakistani vs. White 1.83, 95% CI: 1.52, 2.20) (Raynor 2008). 

Sixty percent of the babies born in the city are born into the poorest 20% of the population of England 

and Wales based on the British government’s residential area Index of Multiple Deprivation (IMD) 

(see description of this indicator below in section 2.1.2.3.2). 

2.1.2 Recruitment to BiB 

Bradford has one maternity unit based at Bradford Royal Infirmary (BRI), which is located in the 

Girlington area. The unit is one of the busiest in the UK with over 6000 new births each year. Figure 

2.1 shows a map of the catchment area of the BRI antenatal clinic, and the larger Bradford District 

which includes the city of Bradford and the smaller towns of Keighley, Ilkley, Bingley and Shipley. 

Because incidence of gestational diabetes in Bradford is high, women in Bradford are offered an oral 

Glucose Tolerance Test (GTT) at 26-28 weeks gestation. All women who visited the hospital on this 

occasion were invited to join the BiB study (unless they were planning to move away from Bradford 

before the birth). Babies whose delivery was booked outside of the District or who were born before 

26 weeks gestation were not captured in BiB. Additional criteria for exclusion from analyses are 

described in the relevant chapters, notably Chapters 4, 6 and 7. 
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Study information was handed out and full written consent was obtained for recruitment to BiB and 

for use of their data, including data specifically collected for the BiB study and other data obtained 

through linkage with medical records. The recruitment process was carried out by the BiB study team 

(PI: Dr John Wright). 

More than 80% of the women who attended their GTT between March 2007 and December 2010 took 

up the invitation to participate and were recruited to the BiB cohort, for a total of 12,453 women with 

13,776 pregnancies. (All babies born to women who agreed to participate in the cohort study were 

eligible for recruitment.) (Wright et al. 2012). 

2.1.2.1 Interview questionnaire data 

After consenting to participate, women were invited to complete a comprehensive face-to-face 

questionnaire administered by a trained interviewer (bilingual in Urdu, Punjabi or Mirpuri as 

necessary). This baseline questionnaire included a section on demographic information (residential 

and work addresses, age, ethnicity), as well as sections on employment, education, 

smoking/alcohol/drug consumption, physical exercise, family ancestry, diet, and tap water 

consumption (for the water consumption section of the baseline questionnaire, see Appendix A). 

11,396 women (92% of total recruits) completed a baseline questionnaire (Wright et al. 2012). 

Detailed information regarding smoking, alcohol and drug use during pregnancy was obtained via the 

questionnaire which included details of exposure to other people’s cigarette smoke at home work or at 

work, and about other tobacco products such as Paan. Alcohol information included intake prior to 

pregnancy and during early and later stages of pregnancy. 

During the questionnaire interview, trained project workers recorded the mother's height using the 

Leicester Height Measure (SECA Ltd., Birmingham, UK) and weight using SECA digital scales 

(SECA Ltd., Birmingham, UK) with outdoor clothing and shoes removed. The BMI calculation, 

defined as maternal weight in kilograms divided by maternal height in metres squared, is based on this 

measurement of maternal weight at the time of questionnaire completion, as pre-pregnancy weight 

was not available.  

Here are a few more details on the derivation of select variables from the baseline questionnaire used 

in future chapters. 
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2.1.2.2 Ethnicity 

Ethnic categorisation was based on self-defined ethnicity in the questionnaire. Throughout this thesis 

the term 'White British' includes those who originate either from the UK or Ireland. The term 'South 

Asian' refers to people originating from the Indian subcontinent i.e. India, Pakistan, Bangladesh and 

Sri Lanka, keeping in mind that the great majority of BiB participants of South Asian origin are from 

Pakistan. I chose to focus on the three most prevalent ethnic groups: White British women, women of 

Pakistani origin and women of any other ethnicity ( “Other”). There were insufficient numbers of 

women in the Black, Indian or Bangladeshi subgroups to justify studying them individually. For 

details on how the ethnicity information collected in the baseline questionnaire was classified into 

these three most prevalent groups, see Table 2.1. 

2.1.2.3 Measures of socio-economic status (SES) 

2.1.2.3.1 Maternal education 

Women were asked for details of their and their partner's education including the age at which they 

left full time education, their highest educational qualification and which country they received most 

of their education. Table 2.2 clarifies the qualifications required by each category of the derived 

variable used in analyses. 

2.1.2.3.2 Index of Multiple Deprivation (IMD) 

The English Indices of Deprivation 2010 are measures of deprivation calculated by the government at 

the Lower Super Output Area (LSOA) level. Seven distinct domains of deprivation (income 

deprivation, employment deprivation, health deprivation and disability, education skills and training 

deprivation, barriers to housing and services, living environment deprivation, and crime) can be 

measured separately or combined using appropriate weights into a single overall Index of Multiple 

Deprivation (IMD). The IMD 2010 can be used to rank each of the 32,844 LSOAs in England 

according to the deprivation experienced by the people living there, quintiles of which (from most 

deprived to least deprived) simplify its use in epidemiologic studies (Lad 2011).  

While the IMD 2010 is a valuable area-level measure of deprivation frequently used in ONS statistics 

as the Carstairs Index (Carstairs and Morris 1991) was before it, maternal education is often used as 

an individual-level proxy measure for maternal socio-economic status.  

2.1.2.3.3 Income data 

The BiB team attempted to collect income data, but quickly discovered that these data were simply 

too unreliable to use. For one, 36% of Pakistani women simply did not know their household income, 

compared to 6% of White British mothers (West 2011). Secondly, given the complicated and 

changing nature of tax and benefits in England, different questions (pre-tax income, then post-tax 
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income) were asked in different phases of the questionnaire, making the responses difficult to 

compare. 

2.1.2.4 Caffeine intake during pregnancy 

In the food section of the questionnaire, women reported: daily cups of instant coffee (caffeinated and 

decaffeinated), filter/cafetiere coffee (caffeinated and decaffeinated), tea per day (caffeinated and 

decaffeinated), Kashmiri tea (caffeinated and decaffeinated), herbal tea (caffeinated), cola and diet 

cola (caffeinated and decaffeinated). The caffeine variable was calculated by linking women’s 

responses to questions about caffeine ingestion in the baseline questionnaire to typical caffeine 

contents in beverages published by the Committee on Toxicity (COT) and summarised in Table 2.3. 

COT values of 4mg per cup were used for decaffeinated beverages. Total caffeine was then used as a 

binary variable using the cut-off of 200mg proposed by the CARE study group (Konje et al. 2008). 

Derivation of this variable was done by Emily Petherick (Born in Bradford, Bradford Institute for 

Health Research) and Rachel Smith (Imperial College London). 

2.1.3 Follow-up of BiB participants 

2.1.3.1 Birth weight  

Following delivery and prior to hospital discharge, neonatal anthropometric measurements were 

obtained, including birth weight. Birth weight is routinely recorded by the midwife at delivery using 

SECA digital scales as is standard clinical practice in Bradford, and entered by the midwife into a 

routine data maternity system called eClipse. 

The total number of BiB pregnancies with eClipse data is 13,525 (98% of total pregnancies). 

Babies in the BiB project are followed by a health worker throughout their childhood (starting at ~2 

weeks, 7 weeks, and 8 months after birth). 

2.1.3.2 Routinely collected maternity information 

The Bradford NHS works with an electronic maternity care records system (eClipse) which was 

accessed by the BiB research team to obtain routine clinical data for participating mothers and babies 

and to validate information collected by the questionnaire. This included medical and obstetric 

information (maternal age, parity, maternal diabetes, and hypertensive disorders of pregnancy) and 

perinatal data (gestation at delivery, baby's gender and birth weight). 
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Maternal diabetes was categorised as existing diabetes or gestational diabetes based on clinical 

diagnosis. Gestational diabetes, formally defined as any degree of glucose intolerance with onset or 

first recognition during pregnancy and which continues beyond 24-28 weeks of gestation (Metzger 

and Coustan 1998), was determined based on the GTT conducted at ~26 weeks of pregnancy at BRI 

(see section 2.1.2). Where the test was not done, gestational diabetes status was assigned using the 

backfill data (<5% of cases). The ‘backfilling’ process was conducted by a physician who extracted 

these data from the written hospital notes. Within the Bradford Teaching Hospital NHS Trust to 

which the Bradford Royal Infirmary belongs, gestational diabetes was diagnosed using standard WHO 

thresholds for impaired glucose tolerance or impaired fasting glucose (fasting plasma glucose 

≥6.0mmol/l and/or post challenge glucose ≥7.8mmol/l).  

Hypertension (high blood pressure) and pre-eclampsia (high blood pressure with protein in the urine) 

data were also not routinely collected and therefore backfilled. Hypertension in pregnancy was 

classified as mild to moderate (≥140 systolic and 90 diastolic on 2 or more occasions) or severe (≥150 

systolic and 105 diastolic on 2 or more occasions).  

Gestational age at delivery was calculated by the attending midwife and entered into the eClipse data 

system. At BRI, the expected date of delivery (EDD) was based on the date of the mother's last 

menstrual period (LMP). This was then confirmed by a dating ultrasound scan at time of booking, 

around 12 weeks of gestation. If the ultrasound dates are within 7 days of the menstrual dates, date of 

LMP was used. If the difference is greater than 7 days, the ultrasound date is used (Bradford Teaching 

Hospitals NHS Foundation Trust 2005). If scan data were not available—most commonly when a 

woman booked her pregnancy late—gestational age was based on the date of LMP. Attempts to 

acquire ultrasound data themselves were made but were unsuccessful due to lack of resources to hire 

the medical professional needed to read in and digitize individual scans. 

As part of a quality control exercise, out-of-range values were checked against the hospital notes by 

the BiB team. Previous work on child growth in this cohort showed that health workers are reliable in 

their routine antenatal (Johnson 2009; West et al. 2011) and postnatal anthropometric measurements 

(Johnson et al. 2009).  

The codebook for variables considered in the model selection process and in the final models as well 

as their categorisation is available in the appendix (Table A2 - 1).  

2.1.3.2.1 Data extracts 

The BiB team sent us several versions of eClipse data extracts over time: I received the first eClipse 

dataset at Imperial College London (ICL) on February 1st, 2012; it was then updated on December 7th, 
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2012. This is the data extract used in the work presented in Chapters, 3, 4, 5 and in Chapter 8. A final 

data extract including updated maternal weight, height, and gestational diabetes status was sent to me 

on February 1st, 2013. This is the data extract used in Chapters 6 and 7. 

2.2 Thesis Aims  
This PhD thesis has three main aims: 

1. To generate exposure estimates to ingested dichloroacetic acid (DCAA), trichloroacetic acid

(TCAA) and bromodichloroacetic acid (BDCAA) for each trimester of pregnancy of each

BiB participant for use in epidemiologic analyses of birth outcomes.

This is done by combining information on:

a. each individual woman’s total tap water consumption during pregnancy collected via

baseline questionnaire (at approx. 26-28 weeks of pregnancy), with

b. area-level DCAA, TCAA and BDCAA concentration data (respectively) collected

quarterly under the HiWATE project (June 2007-November 2010), modelled for the

period February 2007 through February 2011 for Bradford’s eight water supply zones

using DBP determinants data provided by Yorkshire Water and ALcontrol, and

weighted to each woman’s specific trimester of pregnancy by postcode of residence

(via GIS linkage)

2. To examine the epidemiologic association between prenatal exposure to each of DCAA,

TCAA and BDCAA—as estimated by the combined metric generated in Aim 1—and birth

weight, term low birth weight, and small-for-gestational age as measures of adverse fetal

growth, adjusting the analyses for potential confounders

3. To investigate water use patterns in the third trimester of pregnancy by evaluating the

agreement of individual water use values reported in BiB questionnaires at baseline (at

approx. 26-28 weeks of pregnancy) and at two later time points in pregnancy in a subset of

BiB women
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2.3 Tables 

Table 2.1: Ethnicity classification 

Original classification Classification used in models (3 most prevalent 
groups) 

White British White British 
White Other Other 
Mixed White and Black Other 
Mixed White and South Asian Other 
Black Other 
Indian Other 
Pakistani Pakistani 
Bangladeshi Other 
Other Other 

Table 2.2: Maternal education classification (equivalency carried out by Rachel Smith) 

Category Grades included 
No education 4 or fewer O-levels/Certificate of Secondary Education (CSEs)/ 

General Certificate of Education (GCEs) (any grades)  
National Vocational Qualification (NVQ) level 1 
Foundation General National Vocational Qualification (GNVQ) 

School 5 or more O-levels 
5 or more CSEs (grade 1) 
5 or more General Certificate of Secondary Education (GCSEs) 
(grades A-C)  
School certificate 
NVQ level 2 
Intermediate GNVQ 

Further education 1 or more A-levels/AS-levels 
2 or more A-levels 
4 or more AS-levels 
Higher School Certificate and NVQ Level 3 
Advanced GNVQ 

Higher education NVQ Levels 4-5 
Higher National Certificate (HNC) 
Higher National Diploma (HND) 
First degree (e.g. Bachelor of Arts, Bachelor of Science) 
Higher degree (e.g. Master of Arts/Science, PhD, Post-graduate 
certificate in Education (PGCE), Post-graduate certificates/ 
diplomas) 

Other, don't know, and 
Unknown foreign 

Overseas qualifications (whose equivalence could not be 
established)  
Any other unclassifiable entry 
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Table 2.3: Caffeine contents in beverages (COT: Committee on Toxicity) (conversions carried out by 
Emily Petherick and Rachel Smith) 

Source Approximate typical caffeine 
content (mg) per serving 

mg per COT unit  
(median if range given) 

Instant coffee 75 mg per 190 ml cup* 75 
Brewed coffee (filter or 
percolated) 100-115 mg per 190 ml cup* 107.5 

Decaffeinated coffee 
(brewed or instant) 4 mg per 190 ml cup* 4 

Tea 50 mg per 190 ml cup* 50 

Cola (regular and diet) 11 - 70 mg per 330 ml (one can) 
serving, i.e. 24.5 mg per 200 ml 40.5 

* treated as equivalent to the 200ml cup volume referred to in the BiB questionnaire
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2.4 Figures 

Figure 2.1: Map of Bradford Metropolitan district and Bradford Royal Infirmary catchment area 
(within thick black border), water supply zones (8 blue areas), rest of Yorkshire (grey), BiB women’s 
residences (black dots) 
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CHAPTER 3 INDIVIDUAL WATER CONSUMPTION 

This chapter assesses the contribution of water consumption to total HAA exposure. As per previous 

studies pregnant women reported consuming cold tap water more than any other water type, with the 

greatest proportion of water consumption occurring in the home as opposed to other locations. By and 

large there is quite a bit of variability in individual water consumption. 

3.1 Background 

3.1.1 Water consumption during pregnancy 

Consuming tap water (as well as beverages and foods prepared using tap water) allows for potential 

ingestion of HAAs contained in disinfected tap water. Estimates of average tap water consumption 

amongst pregnant women range from 0.6L/day (Egorov et al. 2003) to 1.8L/day (Zender et al. 2001) 

(Table 3.1). 

Kaur et al. (2004) reported estimates of total tap water consumption for pregnant women in the UK at 

1.3L/day (converted from reported weekly consumption by Smith in her PhD thesis (2011)). In the 

US, average tap water consumption was 0.9L/day among women of childbearing age (15-44 years) in 

the 1994–1996 Continuing Survey of Food Intakes by Individuals (EPA 2000) and 1.2L/day among 

pregnant women in the 1977–1978 National Food Consumption Survey (Ershow et al. 1991).  

The proportion of tap water relative to total water consumed varies by country however, based on 

perception of water quality and cultural habit. For example, Barbone et al. (2002) examined water use 

during late pregnancy in relation to water use after delivery among pregnant women in Italy. They 

reported an average total ingested water estimate (tap and bottled) of 2.7 L/day, and an average tap 

water of only 0.6L/day (Table 3.1). 

Drinking bottled water may act as a substitute for some or all tap water consumption. However, it is 

generally assumed that bottled water does not contain any HAAs (Savitz et al. 2005). Estimates of 

bottled water consumption amongst pregnant women vary from 0.6L/day to 0.9L/day (Forssen et al. 

2007; Kaur et al. 2004), with Kaur et al. (2004) finding ~80% of pregnant women in a UK sample 

reported drinking some bottled water. The 2008 Drinking Water Inspectorate (DWI) survey on tap 

water consumption however found a fairly even spread of people who drink bottled water across 

England and Wales, with the exception of Yorkshire (where the BiB cohort is based) where only 26% 

consumed bottled water, compared to the average of 46% (DWI 2008). 
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Previous studies have also shown that tap water consumption in pregnant women tend to differ by 

ethnicity (Forssen et al. 2007), income (Forssen et al. 2009), and age (DWI 2008).  

The aim of this chapter is to describe the individual water consumption component to the overall 

exposure metric I am building towards in Chapter 5. 

3.2 Methods 

3.2.1 Collection of demographic, lifestyle data, and water use data 

At recruitment a detailed baseline questionnaire was administered by researchers to collect a wide 

range of data on the women’s lifestyle, environment, ethnicity, and health (Raynor 2008). 

Three versions of the baseline questionnaire have been used as updates were implemented over time: 

a pilot version administered between March 2007 and October 2007, a second version used from 

September 2007 to July 2009, and a final version used from May 2009 to December 2010. The data 

used in this study include versions 1, 2 and 3 of the questionnaire. 

The baseline questionnaire includes a set of questions meant to ascertain typical daily consumption of 

tap water, bottled water, tea, coffee, and squash (which includes any other drinks made with tap 

water) at home, work/study, or elsewhere; and water filtering habits at home and work. The water use 

section of the questionnaire is available in Appendix A. 

All relevant variables from the mother’s baseline questionnaire, including from the water section of 

the questionnaire, were received from the BiB team in February 2012.  

3.2.2 Deriving water consumption variables 

Cups and glasses were converted to litres by multiplying by 0.2 (the relation 1 cup or glass = 200ml 

was printed in the water questionnaire). 

3.2.2.1 Summary measures 

To reduce the number of variables to more meaningful groupings, I applied the following to each of 

the three locations of interest: 

Cold tap water (L/day) = tap water (L/day) + squash (L/day)  

Hot tap water (L/day) = tea (L/day) + coffee (L/day)  

Total tap water (L/day) = Cold tap water (L/day) + Hot tap water (L/day) 
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Total water (L/day) = Total tap water (L/day) + Bottled water (L/day) 

(If two values were missing, their sum was marked as missing, not as zero.) 

The locations of interest are the home, any other place besides the home (i.e. work/study + elsewhere 

locations), and all three locations combined (“all locations”). 

For comparative purposes, I was also interested in looking at HAA-free bottled water consumption. 

The “All locations” water consumption measures for women who reported being employed at 

recruitment (whether already on maternity leave or not) (N=4,331) are sums of the volumes these 

women reported drinking at three locations: home, work and elsewhere. However for women who do 

not work, for full-time students, and for women for whom employment information was missing 

(N=7,597), they are only sums of the water reported to be consumed at two locations: home and 

elsewhere (Table 3.2). 

Because the questionnaire enquires after water consumption habits during the full pregnancy to date, I 

decided to group the responses of employed women on maternity leave with those of the employed 

women who currently worked, in order to reflect a woman’s status during the majority of her 

pregnancy, i.e. the period preceding leave. In other words, maternity leave (N=383) was assumed to 

be very recent by the time of recruitment to BiB (late second trimester). 

While the water questionnaire did enquire after tap water consumption at work or study, it was 

deemed too uncertain where a student would be spending most of her work/study time as this may 

include a variety of locations, including the home. Students (N=339) were therefore grouped with the 

women out of work—who presumably do not spend all of their time in the home either. The impact of 

this decision is assumed to be minimal as only 20% of students reported drinking any tap water at 

work/study (and only 15% reported drinking any cold tap water specifically), and only 18% of these 

students (60 students, <0.1% of the total sample size of 11,928) reported any filtering habits at 

work/study.  

3.2.2.2 Tap water filtering  

Filtering of tap water is known to modify HAA concentrations affecting the ingested dose of HAAs 

and must therefore be taken into consideration. 

Two questions in the baseline questionnaire specifically address the issue of filtering: 

1. “Do you filter the water you drink at home?” (yes, no, don’t know)

2. “Do you filter the water you drink at work?” (yes, no, don’t know, NA (not available))
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(The NA answer option to the filtering at work question was intended for the unemployed women, but 

some unemployed women nevertheless filled out the work filtering question leading to some 

inconsistent answers which were excluded.) 

Both cold tap water types—tap water and squash—were considered to be filtered if a woman 

answered yes to either of the above questions. 

Because cold tap water consumed outside the home or at all locations are aggregate measures—i.e. 

grouped answers to questions on different water types consumed at different locations— and given 

that filtering must be taken into account for two possible locations (home and workplace), the cohort 

was divided into six mutually exclusive subgroups: four groups for the employed, and two for the 

unemployed at recruitment as follows:  

Employed women (on maternity leave or not, N=4,331) who filtered tap water: 

1. at home and at work

2. at home only

3. at work only

4. Neither filtered at home nor at work

Women out of work, students, or women for whom employment information is missing (N=7,597) 

who: 

5. Filtered tap water at home

6. Did not filter tap water at home

The various combinations of answers to the two filtering questions were then recognised for the 

employed women (Table 3.3, a) and for the unemployed women (Table 3.3, b). 

Those who answered yes to filtering either at home, at work, or both places (dashed cells in Table 3.3) 

were defined as the filterers for the purposes of the summary table (Table 3.4), while those who 

answered no to either or both questions (grey cells) were non-filterers. 

Summary Table 3.4 includes only women who actually reported consuming the given water type (i.e. 

zero values were excluded from each mean) because I was interested in average water consumption 

among those who consumed or reported consuming water. I did not want to include all those who 

women who do not drink, for instance, bottled water in the average bottled water consumption value 

as this would not be representative of average bottled water consumption among bottled water 

drinkers. 
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A number of women had inconsistent answers and were grouped in an “inconsistent” category. This 

category includes women (whether or not in employment) who reported filtering at home (and/or 

work) but didn't report drinking cold tap water at home (and/or at work) (consumption=0 or missing) 

(Table 3.5).  

3.2.3 Exclusion criteria 

In the following summaries and analyses, multiple births were systematically excluded. Of 13,199 

singleton babies, only one of each multiple pregnancy registered in BiB (19% of BiB participants 

registered multiple births in BiB) was randomly selected so as to avoid having non-independent 

observations from the same mother: 1,199 mothers registered two separate singleton pregnancies and 

36 women registered three separate pregnancies between 2007-2010. The total sample size left is 

N=11,928 (Figure 3.1). 

There were 412 women for whom health data were not available. These were cases of women who 

did not give birth in Bradford. Though all women intend to give birth in Bradford at the time of 

recruitment, not all of them do.  

3.3 Results 

The majority (82%) of BiB women report consuming some tap water (Table 3.5). BiB cohort women 

drink on average 1.7 ± 0.9 L/day tap water and 1.9 ± 1.0L/day total water (Table 3.4). Approximately 

60% of total water by mean volume is cold tap water and 30% hot beverages made from tap water. 

Variability in these means is non-negligible. The distribution of water consumption in all locations are 

right skewed as the histograms in Figure 3.2 (with tertile cut points which are used in the later 

analyses marked) show. 

The majority of tap water consumption occurs in the home; 9,679 women reported consuming tap 

water at home vs. only 2,715 at any location outside the home (out of a total N=12,394).  

The proportions of women who reported water consumption at Home vs. Outside the home are broken 

down in the appendix (Table A3 - 1, Table A3 - 2). 

83% (N=5,510) of the 72% (6,639 of 9,193) of women who answered at least one of the filtering 

questions reported not filtering their tap water (Table 3.5, Figure 3.3). Table 3.5 is broken down by 

location in Table A3 - 1 and Table A3 - 2. In the US, 53% of the pregnant women attending North 
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Carolina obstetric clinics from 1994–1995 also reported drinking mostly unfiltered tap water 

(Shimokura et al. 1998), and 11% of the pregnant women from the Colorado study reported primarily 

using filtered water (Shimokura et al. 1998; Zender et al. 2001). Overall, BiB women who drink 

filtered tap water drink slightly more of it than those who drink unfiltered tap water (+0.24 L/day on 

average, equivalent to approximately 1 glass/day) (Table 3.4).  

The proportion (28%) of women drinking bottled water was very low in the BiB cohort compared to 

consumption of bottled water by 80% of pregnant women as reported by Kaur et al. (2004). This 

being said, in the US, 24% of the pregnant women from the North Carolina study and 14% of the 

pregnant women in the Colorado study reported bottled water as their main source (Shimokura et al. 

1998; Zender et al. 2001). This confirms that there are important geographic differences in self-

reported water consumption habits. 

3.4 Discussion 
While in total BiB women drink on average less tap water than the women in the Kaur et al. (2004) 

central London study, the ratio of tap water to total water drunk is much greater in BiB than in the 

Kaur study. This may be due to the fact that these means only include the responses of women who 

actually reported consuming the given water type (i.e. zero values were excluded from each mean) 

such that mean water consumption of each water type is overestimated. Or perhaps this difference is 

due to the fact that Kaur et al. (2004) recruited women in their first trimester of pregnancy such that a 

greater proportion of women might still have been working and/or mobile and spending more time 

outside of the home where less tap water consumption occurs compared to BiB women. Life in a large 

city might be also more conducive to consuming water from sources other than the tap, but ultimately 

I conclude as did Kaur et al. that individual variability in water consumption is considerable (whether 

due to the measurement tool and recall bias, or to true differences in habits between women) and a 

critical factor to consider when assessing exposure to chlorinated water. 

Of note, I refer to the sum of all water consumption categories from the water questionnaire as “total 

water”, understanding that this does not include water included in other beverages which make up a 

woman’s typical diet such as soda or juices. Also, no extreme values were excluded from the means 

(e.g. maximum cold tap water at all locations is 20L/day). It is unlikely that the select few women 

who reported such unrealistic consumption values will affect the conclusions of the epidemiologic 

analysis, but sensitivity analyses were conducted with and without potential outliers (>10L/day) in 

Chapter 7 to explore this further. 
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These data may not be indicative of an average (non-pregnant) person’s water consumption. Based on 

studies to date, pregnancy itself is associated with significant increases in water consumption (Ershow 

et al. 1991; Forssen et al. 2009; Zender et al. 2001). Women’s water consumption in late pregnancy is 

further investigated in Chapter 8 in a subset of women.  

Differences in total water consumption were expected according to demographic characteristics and 

lifestyle factors, and both ethnicity and employment status have been shown to be related to varying 

water consumption (Forssen et al. 2007; Kaur et al. 2004). A detailed account of BiB women’s 

patterns of tap water consumption and water use during pregnancy, including variability in water 

consumption according to various demographic and lifestyle factors, is in preparation for publication 

(Smith et al. in preparation). Among other findings, employed women are found to drink more on a 

daily basis than unemployed women and White women drink more than Asian women (Smith et al. 

2009; Smith 2011). Another study showed that the most highly educated subjects were less exposed to 

volatile chlorination by-products such as THMs through ingestion but more exposed through dermal 

contact and inhalation in pools and showers/baths in a population in Spain (Castano-Vinyals et al. 

2011). The authors concluded that health risk perception and economic capacity may affect patterns of 

water consumption and ultimately result in differences in exposure to water contaminants.  

According to a small validation study within BiB of paired water questionnaires and TCAA 

biomarkers, employed women may be reporting their water consumption less accurately than the 

unemployed (Smith et al. 2012). It is therefore important to note when comparing consumption by 

strata that different groups either drink differential volumes of tap water per day, or report their water 

usage with different accuracy levels.  
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3.5 Tables 

Table 3.1: Studies of water consumption during pregnancy, grouped by total water (all sources) and 
tap water only if specified (chronological order of publication) 

reference site years variable time point ingestion 
in L/day 

TOTAL WATER 
Shimokura et 
al. (1998) 

US 1994-
1995 

average total water 
consumed at home 

pregnancy 1.9 

Zender et al. 
(2001) 

US 1996–
1997 

total water 
 [75% reported tap water as 
their primary water source] 

pregnancy 3.4 

Barbone et al. 
(2002) 

Italy June-
December 
1999 

average total water (tap and 
bottled)  

late pregnancy 2.7 

Forssen et al. 
(2007), 
Forssen et al. 
(2009) 

3 US 
cities 

2000-
2004 

-total water early pregnancy 2.43 

-total water mid pregnancy 2.60 

TAP WATER 
Ershow et al. 
(1991) 

US 1977–
1978 

average tap water pregnancy 1.2 

Shimokura et 
al. (1998) 

US 1994-
1995 

average tap water consumed 
at home 
[53% of the respondents 
reporting unfiltered tap water] 

pregnancy 0.78 

EPA (2000) US 1994–
1996 

average tap water women of 
childbearing age 
(15–44 years) 

0.9 

Zender et al. 
(2001) 

US 1996–
1997 

cold tap water pregnancy 1.8 

Barbone et al. 
(2002) 

Italy June-
December 
1999 

average tap water late pregnancy 0.6 

Egorov et al. 
(2003) 

Russia 1999-
2001 

-average boiled tap water pregnancy 0.81 

-average non-boiled tap 
water  

0.01 

Kaur et al. 
(2004) 

UK May-July 
2002 

total tap water pregnancy 1.31 
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Table 3.2: Total tap water at all locations (the same applies to cold tap water, hot tap water, bottled 
water and total water consumption at all locations) 

Definition Notation Calculation 
For employed women:  
Total tap water consumed at Home TTh 𝑐𝑜𝑙𝑑ℎ + ℎ𝑜𝑡ℎ 
Total tap water consumed at Work TTw 𝑐𝑜𝑙𝑑𝑤 + ℎ𝑜𝑡𝑤 
Total tap water consumed elsewhere TTe 𝑐𝑜𝑙𝑑𝑒 + ℎ𝑜𝑡𝑒 
Total tap water consumed Outside the Home TTwe 𝑇𝑇𝑤 + 𝑇𝑇𝑒 
Total tap water consumed All locations TTa 𝑇𝑇ℎ + 𝑇𝑇𝑤𝑒 

For women not in employment: 
Total tap water consumed at Home TTh 𝑐𝑜𝑙𝑑ℎ + ℎ𝑜𝑡ℎ 
Total tap water consumed elsewhere TTe 𝑐𝑜𝑙𝑑𝑒 + ℎ𝑜𝑡𝑒 
Total tap water consumed Outside the Home TTwe 𝑇𝑇𝑒 
Total tap water consumed All locations TTa 𝑇𝑇ℎ + 𝑇𝑇𝑒 
Legend:  
w tap water 
s squash 
t tea 
c coffee 
cold tap water + squash  
hot tea + coffee 
subscripts: h: home; w: work; e: elsewhere 
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Table 3.3: Breakdown of filtering habits by location for (a) women in work and (b) women out of 
work  

a) Employed women

Filtering at Work 

Yes No Don’t 
know 

NA missing 

Fi
lte

rin
g 

at
 H

om
e Yes A B B B B 

No C D D D D 

Don’t know C D E E E 

missing C D E F F 

b) Women not in employment

Fi
lte

rin
g 

at
 H

om
e Yes B 

No D 

Don’t know E 

missing F 

Legend: 
A: Filtered both at Home and at Work 
B: Filtered at Home only 
C: Filtered at Work only 
D: Filtered neither at Home nor at Work (whether certainly or probably never did) 
E: Doesn’t know her filtering at Home and/or Work 
F: Information on filtering at Home and/or Work is not available or missing  
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Table 3.4: Water consumption (L/day) among women who reported consumption in any given water category (Nmax=11,928) 

Percentile Distribution 
n total = 11,928 mean SD min 25th %ile Median 75th %ile max N^ 
Cold tap water at Home 1.08 0.67 0.2 0.6 1.0 1.4 10.4 9112 

Cold FILTERED tap water at Home 1.03 0.68 0.2 0.6 1.0 1.4 9.0 909 
Cold UNFILTERED tap water at Home 1.09 0.67 0.2 0.6 1.0 1.4 10.4 8162 

Hot tap water at Home 0.53 0.50 0.2 0.2 0.4 0.6 12.0 7576 
Total tap water at Home 1.44 0.81 0.2 0.8 1.4 1.8 12.2 9679 
Bottled water at Home 0.72 0.55 0.2 0.4 0.6 1.0 4.4 1425 
Total water at Home 1.52 0.84 0.2 1.0 1.4 1.8 12.2 9788 
Cold tap water at Outside the Home 0.74 0.59 0.2 0.4 0.6 1.0 10.0 1749 

Cold FILTERED tap water Outside the Home for Employed women 0.82 0.7 0.2 0.4 0.6 1.0 10.0 633 
Cold UNFILTERED tap water Outside the Home for Employed women 0.76 0.5 0.2 0.4 0.6 1.0 4.0 833 

Hot tap water at Outside the Home 0.50 0.39 0.2 0.2 0.4 0.6 4.0 1661 
Total tap water at Outside the Home 0.78 0.63 0.2 0.4 0.6 1.0 10.0 2715 
Bottled water at Outside the Home 0.79 0.54 0.2 0.4 0.6 1.0 6.0 2093 
Total water at Outside the Home 0.99 0.69 0.2 0.4 0.8 1.2 10.0 3946 
Cold tap water at All Locations 1.22 0.8 0.2 0.8 1.0 1.6 20.0 9193 

* Cold FILTERED tap water at All Locations 1.51 1.0 0.2 1.0 1.2 2.0 20.0 1129 
* Cold UNFILTERED tap water at All Locations 1.27 0.7 0.2 0.8 1.2 1.6 10.4 5510 

Hot tap water at All Locations 0.61 0.6 0.2 0.2 0.4 0.8 12.8 7920 
* Total tap water at All Locations 1.65 0.9 0.2 1.0 1.4 2.0 21.0 9735 
* Bottled water at All Locations 0.83 0.6 0.2 0.4 0.6 1.2 5.6 3373 
* Total water at All Locations 1.91 1.0 0.2 1.2 1.8 2.4 21.0 9830 
*signals variables which will be used in the epidemiologic analysis
^N=sample size of women who provided non-zero, valid responses to each component of the given summary measure (see Table A3 - 1, Table A3 - 2, Table 
3.5 for details) 
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Table 3.5: Proportion who reported consumption at all locations with letter references to Table 3.3 
(see Table A3 - 1/Table A3 - 2 for details on the proportion who report consumption at Home and 
Outside the home) 

n total = 11,928 valid n % 
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Cold tap water at All Locations (L/day) 
Non zero, valid values 9,193 77.1 11,928 

zero values 43 0.4 
missing 2,692 22.6 

Filtered her water both at Home and at Work (A)1 90 1.0 
1,129 12.3 

6,639 72.2 
Filtered her water at Home only (B)2 531 5.8 
Filtered her water at Work only (C)3 508 5.5 

Filtered her water neither at Home nor at Work (D)4 5,510 59.9 5,510 59.9 
Doesn't know her filtering at Home and/or Work (E)5 26 0.3 

Information on Filtering at Home and/or Work missing (F)6 7 0.1 
Inconsistent7 2,521 27.4 

Hot tap water at All Locations (L/day) 
Non zero, valid values 7,920 66.4 11,928 

zero values 102 0.9 
missing 3,906 32.7 

Total tap water at All Locations (L/day) 
Non zero, valid values 9,735 81.6 11,928 

zero values 6 0.1 
missing 2,187 18.3 

Bottled water at All Locations (L/day) 
Non zero, valid values 3,373 28.3 11,928 

zero values 356 3.0 
missing 8,199 68.7 

Total water at All Locations (L/day) 
Non zero, valid values 9,830 82.4 11,928 

zero values 0 0.0 
missing 2,098 17.6 

Legend: 
1 Employed, and Filtered cold tap water at Home and Work (Home is Yes; Work is Yes) 
2 Employed, and Filtered cold tap water at Home only (Home is Yes; Work is No, Don't know, NA or 
missing); Out of employment, and Filtered cold tap water at Home (Home=1) 
3 Employed, and Filtered cold tap water at Work only (Home is No, Don't know or missing; Work is Yes) 
4 Employed, and Did not filter cold tap water at all (Home is No; Work is No); Employed, and Did not 
filter cold tap water at Home (Home is No; Work is Don't know, NA or missing); Employed, and Did not 
filter cold tap water at Work (Home is Don't know or missing; Work is No); Out of employment, and Did 
not filter cold tap water at Home (Home=2)  
5 Employed, and Doesn't know her filtering either at Home or Work (Home is Don't know, Work is Don't 
know); Employed, and Doesn't know her filtering at Home (Home is Don't know; Work is NA or missing); 
Employed, and Doesn't know her filtering at Work (Home is missing; Work is Don't know); Out of 
employment, and Doesn't know her filtering at Home (Home=3) 
6 Employed, and Information on filtering at Home missing (Home is missing; Work is NA or missing); Out 
of employment, and information on filtering at Home missing 
7 Employed, but didn't report drinking cold tap water at Home (=0); Employed, but didn't report drinking 
cold tap water at Home (=missing); Employed, but didn't report drinking cold tap water at Work (=0); 
Employed, but didn't report drinking cold tap water at Work (=missing); Out of employment, and didn't 
report drinking cold water at home (=0); Out of employment, and didn't report drinking cold water at home 
(=missing) 
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Figure 3.2: Histograms of water consumption with tertile cut points marked 

a) Cold tap water consumption
(Sample sizes: Tertile 1: 3,526; tertile 2: 2,838; tertile 3: 2,872) 
(cut-off tertile 1: 0.8 L/day, cut-off tertile 2: 1.4 L/day)  

b) Cold filtered and unfiltered tap water consumption
(Sample sizes: Filtered: Tertile 1: 406; tertile 2: 378; tertile 3: 345; Unfiltered: Tertile 1: 2,596; tertile 
2: 1,244; tertile 3: 1,670) 
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c) Total tap water consumption
(Sample size: Tertile 1: 3,834; tertile 2: 2,915; tertile 3: 2,992) 
(cut-off tertile 1: 1.2 L/day, cut-off tertile 2: 1.8 L/day)  

d) Bottled water consumption with tertile cut points marked
(Sample size: Tertile 1: 1,620; tertile 2: 1,000; tertile 3: 1,109) 
(cut-off tertile 1: 0.4 L/day, cut-off tertile 2: 0.8 L/day)  
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CHAPTER 4 AREA-LEVEL HAA CONCENTRATIONS 

This chapter describes the raw HAA data from water samples collected in Bradford homes, their 

modelling over time and space, and their derivation into area-level quarterly HAA concentrations 

weighted for each woman’s trimester of pregnancy. 

4.1 Background 
The Health Impacts of long-term exposure to disinfection by-products in drinking water (HiWATE) 

project funded the analysis of HAAs, as well as a number of HAA determinants in 5 cohorts 

in Europe. 

The determinants available to me and described in this section were: ultraviolet absorbance at 254 

nanometres (UV254), bromide, total organic carbon (TOC) (which is the primary ingredient of 

organic matter), water temperature at the tap, as well as free and total chlorine concentrations, water 

colour, water conductivity (which measures CO2 by attributing the difference in sample conductivity 

before and after oxidization to the TOC of the sample), pH, and turbidity (a measure of water 

cloudiness), the last six of which were from Yorkshire Water’s (YW) routine sampling efforts (see 

later Methods section). 

4.1.1 Determinants of the composition and concentration of HAAs in drinking water 

HAA formation in water is influenced by the quality of the raw water and conditions during water 

treatment and distribution (Chowdhury et al. 2010; Dion-Fortier et al. 2009; Sadiq and Rodriguez 

2004; Singer et al. 2002). Water source, whether from ground water, upland (as in Bradford) or 

lowland reservoirs, largely determines raw water quality. 

4.1.1.1 Organic precursors in water 

Natural organic matter (NOM) consists of humic and non-humic substances, generally of terrestrial 

and biological origin respectively (Hwang et al. 2001). It provides the precursor material from which 

DBPs are formed. Total organic carbon and ultraviolet absorbance at 254 nanometres (UV254) have 

been widely used as surrogate parameters for monitoring HAA formation as they correlate well with 

HAA production (Singer et al. 2002). Water colour is also a proxy for NOM content. 

4.1.1.2 Inorganic precursors in water 

When chlorine is added to naturally-brominated water, the bromide ions are oxidised to hypobromous 

acid which reacts with NOM (faster than aqueous chlorine) to form brominated DBPs (Diehl et al. 
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2000; Westerhoff et al. 2004). Therefore, low bromide-containing waters disinfected with chlorine 

preferentially form DCAA and TCAA, whereas chlorinated waters containing levels of bromide > 

100ug/L are dominated by brominated species (Ates et al. 2007; Bougeard 2009; Cowman and Singer 

1996; Golfinopoulos and Nikolaou 2005; Heller-Grossman et al. 1993) 

4.1.1.3 Water pH 

While it is well established that the formation of THMs increases with increasing pH (Kim et al. 

2002; Singer 1999; Xie 2003), effect of pH on the formation of HAAs is equivocal. 

Overall, HAA formation increases with decreasing pH (Krasner 1999). Liang and Singer (2003) 

report that increasing pH from 6 to 8 had little effect on the formation of mono-halogenated HAAs 

(MBAA and MCAA), but significantly decreased the formation of tri-halogenated HAAs, in 

particular TCAA. DCAA, the other species the most affected by pH, was reported to be the highest at 

pH 7 on a pH ranges from 5.0 to 9.4 (Krasner 1999).  

The speciation of HAAs and THMs at different pH values is determined by the formation mechanisms 

of the different species. Based on Reckhow and Singer’s mechanism (1985), THMs and tri-

halogenated HAAs have a common precursor structure (R-CO-CX3), and the relative formation of 

these species is determined by the nature of the R group and pH. Under alkaline conditions, base-

catalysed hydrolysis prevails, yielding more THMs. While in acidic environments, if the R group is a 

readily oxidisable functional group, tri-halogenated HAAs are formed. If it is not a readily oxidisable 

functional group, hydrolysis might still prevail, resulting in THMs (Singer et al. 2002). Reckhow and 

Singer’s model also showed that there might be more precursor structures and formation pathways for 

di-halogenated HAAs than for tri-halogenated HAAs, which may make the formation of di-

halogenated HAAs exhibit more complex behaviour with respect to pH (Singer et al. 2002)(Bougeard 

2009). 

4.1.1.4 Water temperature 

Dojlido et al. (1999) has reported that the level of HAAs was 0.63ug/mg C during the winter season 

(1°C), whereas concentration reached 7.4ug/mg C during summer (23°C). In Malliarou et al. (2005), 

water temperature is significantly correlated with the ratio of total THM and total HAA. The nature of 

NOM may also differ from summer to winter and could be responsible for the difference in measured 

HAA concentrations (Bougeard 2009). 

4.1.1.5 Disinfectant dose 

Increasing the chlorine dose results in increased DBP formation up to a point where the 

concentrations reach an equilibrium (Carlson and Hardy 1998; Fleischacker and Randtke 1983).  
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Free chlorine refers to the residual chlorine left over in the water system after chlorination, and which 

has not reacted either with NOM to produce DBPs or with ammonia or organic nitrogen to produce 

chloramines. Total chlorine refers to the sum of free chlorine and chloramines. Target chlorine dose 

refers to the initial chlorine dose injected into the system prior to reaction with raw water. 

4.1.1.6 Reaction time and kinetics 

HAAs and THMs form rapidly in the first few hours of the reaction and then the formation slows as 

the concentrations of the reactants (either NOM or residual chlorine) decreases with time (Gallard and 

von 2002; Liang and Singer 2003; Nikolaou et al. 2004; Reckhow et al. 1990; Singer 1999; Singer et 

al. 2002).  

4.1.1.7 Residence time 

Longer residence times in the distribution network result in greater formation of THM—which is why 

higher THM concentrations are observed at the extremities of water distribution systems (Rodriguez 

et al. 2004). However, concentrations of HAAs have been shown to decrease with increasing 

residence time (Chen and Weisel 1998), because HAAs degrade as they approach the system 

extremities (Rodriguez et al. 2004). Some hypothesize that this has to do with microbial activity 

(Hashimoto et al. 1998; McRae et al. 2004; Xie 2003). 

The relationships between HAA levels and HAA determinants have been summarised in Table A4 - 1. 

4.1.2 HiWATE data 

4.1.2.1 Water source and water treatment 

Yorkshire Water (YW) is the water company that supplies approximately 4.2 million Yorkshire 

residents. Each water supply zone (WSZ) covers a population of less than 50,000 people. The study 

area chosen for sampling covered 8 WSZs in and around Bradford (Figure 4.1). Water is largely 

supplied to these WSZs from two water treatment works (WTWs), Graincliffe and Chellow Heights, 

as summarised in Table 4.1 but the specific contribution from each WTW is unknown. The raw water 

feeding the WTW is drawn from a mixture of upland surface water sources.  

Disinfection is via dosing of either chlorine or sodium hypochlorite. 

Only about half of the areas of Graincliffe, Airedale and Bradford South East overlap with the study 

catchment area (see Figure 2.1 in Chapter 2). The areas most populated by BiB cohort mothers are 

Shipley/Bingley followed by Bradford Central, which together make up 64% of the cohort women’s 

residences.  
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4.1.3 Predictive models for HAAs 

Generating predictive models requires a large database of existing results. Sadiq and Rodriguez 

(2004) reviewed the existing models for the prediction of DBPs in raw, drinking and treated water, 

most of which concern THMs. Table A4 - 2 which is based on Bougeard’s PhD thesis, summarises 

selective predictive HAA models for application in raw and treated waters. The HAA models 

identified in this summary are of three forms:  

• DOC/UV based models (Amy et al. 1998; Sohn et al. 2004; Watson 1993)

• chlorine demand models (Gang et al. 2003; Gang et al. 2002)

• linear regression models (Serodes et al. 2003; Villanueva et al. 2003)

4.2 Methods 

4.2.1 HiWATE data collection 

4.2.1.1 Sampling strategy 

All UK water companies are required to monitor levels of THMs in each WSZ at least 4 times a year 

(but not HAAs, as they are unregulated in the UK). 

HAA sampling was undertaken as part of the HiWATE sampling campaign of a suite of DBPs in 

Bradford and 7 other European partner cohorts (Nieuwenhuijsen et al. 2009c). Three people, Rachel 

Smith (June 2007 until March 2009), Nina Iszatt (May 2009 through March 2010), and myself (May 

2010 until November 2010) were charged with sampling for HAA analysis, as well as sampling for 

UV254 (abs/m), bromide (mg/l) and TOC (mg/l) analyses. 

Taking advantage of YW’s routine THM sampling efforts, 15 HiWATE water sampling rounds in at 

least one of the 8 WSZs in Bradford were carried out on a quarterly basis (Table 4.2). For each round 

of sampling, the exact sampling site within each WSZ was determined by random sampling of their 

customer address database. If the sampling officer could not collect a sample from the specified 

address for any reason, then a sample was collected from a neighbouring property. THM data and data 

on levels of free and total chlorine (mg/L), colour (mg/l), turbidity (FTU), pH, and conductivity 

(uS/cm) which are routinely sampled by YW anyway were also released to me for the period January 

3rd 2006 and March 31st 2011. 

4.2.1.2 Water sampling preparation and collection 

Sample vials for HAAs were cleaned and prepared in accordance with a specified HiWATE protocol. 
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Briefly, 40ml amber glass vials with polypropylene screw caps and polytetrafluoroethylene-faced 

silica septa were used. They were washed 3 times each with detergent, followed by tap water, then 

reverse osmosis water and then acetone. The vials were placed in a drying oven at 150°C for 2 hours. 

Caps and septa were allowed to air dry overnight. Once the vials were cool and dry, preservatives 

were added 1 or 2 days before the vials were sent by courier to the YW sampling officers. These steps 

were carried out at Imperial College London’s Environmental & Water Resource Engineering 

laboratory (Civil and Environmental Engineering department). 

Approximately 4mg ammonium chloride was added to each vial to act as a preservative for HAAs. 

Samples collected after 31st March 2008 followed an updated protocol to reflect the use of new 

quenching agents and pH buffering: a phosphate buffer was added the 4 mg of ammonium chloride to 

achieve a pH in the range 4.8 to 5.5. The buffer was prepared as a dry homogeneous mixture of 1% 

sodium phosphate dibasic (NaH2PO4)/99% potassium phosphate monobasic (K2HPO4) by weight. 

Two vials were prepared to allow duplicate samples to be collected at each sampling site.  

Samples for bromide, TOC, and UV254 did not need to be collected headspace-free, and no 

preservatives were required. ALcontrol Laboratories supplied the bottles for their sampling (clear 

glass bottles for TOC, PET bottles for bromide and UV254).  

Water temperature is not a routine monitoring requirement for YW, but the sampling officer was 

requested to measure and record temperature when collecting HiWATE samples (in degrees Celsius, 

°C). 

Both pH and temperature were recorded with a Hanna HI-98128 waterproof pHep pH/c meter. Other 

parameters such as conductivity, turbidity, and colour were measured by YW as part of their routine 

sampling at the same sampling site and date as the HiWATE samples. 

Free and total residual chlorine (mg/L) was measured with a portable colorimeter (Lovibond 

Comparator 2000+ Test Kit AF 112 A). This kit has a range of 0.1-1.0mg/l measured in 0.1mg 

increments. Liquid reagents DPD No. 1 (Lovibond) were added to a vial of water, and the colour of 

the solution inspected visually using the comparator. If a sample fell between divisions in the range it 

was assigned an intermediate value (e.g. 0.15mg/l if between 0.1 and 0.2mg/l).  

At ALcontrol Laboratories, TOC was determined by chemical oxidation and infrared spectrometry. 

Bromide was determined by ion chromatography. UV-absorbance was determined by UV-visible 

spectroscopy at 254nm. 
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Immediately after collection all tap water samples were stored in a refrigerator (4ºC) in the sampling 

officer’s van, until they were returned to the sampling depot. The day after sampling, the vials were 

sent by courier to the University of the Aegean for laboratory analysis. Courier shipment to University 

of the Aegean laboratory (located in Mytilene on the island of Lesbos) took 3.5 days on average. As 

of May 2009, HAA samples were driven up to Cranfield University instead (Table 4.2). TOC, UV254 

and bromide samples were submitted to ALcontrol Laboratories in Rotherham, UK (Wakefield, UK 

as of 2010). 

4.2.1.3 HAA laboratory analyses 

Both the University of the Aegean and Cranfield University analysed HAAs using a modified form of 

US EPA Method 552.3 (EPA 2003; Tung et al. 2006). At Cranfield University, all samples were 

dechlorinated and analysed in duplicate. The derivatized HAAs (methyl esters) were measured using 

gas chromatography (GC) with micro electron capture detection (µECD) (Agilent 6890, Santa Clara, 

CA, USA).  

The limit of detection (LOD) is defined as the statistically calculated minimum amount that can be 

measured with 99% confidence that the reported value is greater than zero (Glaser et al. 1981). LOD 

is 2ug/l for MCAA and 1ug/l for all other HAAs. This is based on the lowest standard used for those 

analyses, as in Jeong et al (2012). Samples below the LOD were set to 2/3 of LOD, as was done in 

Whitaker et al (2003a). Samples below the minimum reporting limit (MRL), which is the threshold 

expected for accurate quantification in an unknown sample and has to be at least three times the limit 

of detection (Bougeard 2009; EPA 2003), were set to 1/3 of MRL (MRL = 3xLOD, so 1/3 of MRL= 

LOD) (Table 4.3). 

Between 10 and 100% of the data were missing or undetectable for different HAAs (Table 4.3) such 

that modelling the nine HAAs as a sum total (e.g. HAA9, HAA5) was not feasible.  

Consequently, I focused my investigation on three HAAs: dichloroacetic acid (DCAA), 

trichloroacetic acid (TCAA) and bromodichloroacetic acid (BDCAA). DCAA and TCAA together 

represent the largest proportion of all HAAs by mass (Figure 4.2) and had a good detection rate 

(90%)—when DCAA was detectable typically so was TCAA (Table 4.3). BDCAA was the 

brominated species in this sample with the highest number of valid samples and was therefore chosen 

to represent brominated species. 
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4.2.2 HAA Data & Modelling 

158 DCAA, 158 TCAA and 143 BDCAA observed data points, sampled between June 2007 (second 

quarter of 2007) and November 2010 (fourth quarter of 2010), were used. Eight data points from the 

second quarter of 2009 were excluded from each analysis and interpolated from the model, over 

concerns that the data (which represent the first batch of data generated after transition to a new 

laboratory at Cranfield University) were unreliable. The models also extrapolates to one quarter on 

either end of the observed data period, in order to cover as many women’s pregnancies as possible but 

to avoid overstretching the model. 

My modelling approach was in two stages: model selection was first performed in a frequentist 

framework (section 4.2.2.1), and the best model was then run in a Bayesian framework in order to 

take every parameter’s uncertainty into account and easily impute missing covariate data (section 

4.2.2.2). 

Bayesian hierarchical models were fit in WinBUGS (Lunn et al. 2000) to predict mean DCAA, 

TCAA, and BDCAA concentration levels (and 95% credible intervals13) by WSZ and time (on a year-

quarterly basis between the first quarter of 2007 and the first quarter of 2011 inclusive).  

Modelling on a year-quarterly basis was necessary because there appear to be differences in HAA 

levels between time points which cannot be explained by the other measured explanatory variables.  

Linear regression model were used because the transformed data are approximately normal and data 

are sparse. This is similar to the approaches used by Villanueva et al. (2003), Serodes et al. (2003) and 

Smith and Bennett for the THM modelling conducted on routinely monitored YW data (Smith 2011).  

4.2.2.1 Model building in frequentist framework (using R) 

DCAA and TCAA were square root transformed, and BDCAA was natural log-transformed to better 

approximate the normal distribution (Figure 4.3).  

The final models to be implemented in the Bayesian framework were first selected in R using a 

Generalised Additive Model (GAM) model (mgcv package). Each model included a factor for WSZ 

and a spline on time in order to enable WSZ- and time-specific predictions. Following the principle 

that the more information is added to the model, the more likely the assumption of missing at random 

holds true (Gelman et al. 2004), each HAA model included any predictor which meaningfully reduced 

13 The Bayesian 95% credible interval can be interpreted as an interval that has a high probability (95%) of 
containing the unknown quantity of interest (Gelman A, Carlin JB, Stern HS, al e. 2004. Texts in statistical 
science In: Bayesian data analysis 2nd ed Boca Raton, FL:  2004.:CRC Press, LLC.) 
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the AIC (i.e. a minimum reduction of 5, assuming that smaller errors might be due to sampling error). 

Only one proxy variable for natural organic matter (either TOC, UV254, or colour), and one variable 

for residual chlorine in the water distribution system (free or total chlorine) were used, because of 

these variables’ high correlations (see Table A4 - 3, Table A4 - 4, and Table A4 - 5).  

Water temperature and conductivity remained in the DCAA model; temperature, conductivity and 

TOC remained in the TCAA model; and conductivity and total chlorine in the BDCAA model. 

4.2.2.2 Bayesian model 

For each observation i (i=1, …, N), time j (j=1, …, T), and water supply zone z (z=1, 2, …, 8) 

Yij ~ N( μij , σ2 ) 

𝜇𝑖 =  𝛼 +  𝜃𝑗(𝑖) +  𝛾𝑤𝑧(𝑖) +  �𝛽𝑘

𝑘

𝑘=1

𝑋𝑖  

θ ~ RW1( σ02 ) 

Yij HAA concentration (ug/L) 
σ2 measurement error variance (1/ σ2 = τ is the precision) 
μij mean HAA concentration (ug/L) 
α overall mean of the HAA concentrations 
θj non-linear time function (random walk of order 1, RW1) 
σ02 random walk variance 
wij Water supply zone (WSZ)  
γ the coefficient for WSZ factor 
Xij covariates 
βk regression coefficient for covariate k 
T total number of equally-spaced time points (T=17) 
N total number of observations (see section 4.2.2.2.3) 

I assumed a normal distribution for natural log-transformed BDCAA. DCAA and TCAA however 

were specified using a normal distribution truncated at 0 to avoid negative predictions (NT). All 

covariates were standardised to have a mean of 0 and a standard deviation of 1 to facilitate model 

convergence (see Figure 4.4, left, for a graphical representation). The mean HAA concentrations 

depend on an overall mean, α, non-linear time effects θ, the WZS, and covariates X. 

In WinBUGS, the spline on time was replaced by a random walk on time, order 1 (using a car.normal 

distribution with temporal neighbours (t-1) and (t+1) for θ[2], ...., θ [T-1], and temporal neighbours 

(t+1) for θ [1] and (t-1) for θ [T]). 

DCAA, TCAA and BDCAA models differ from the each other as specified in Table 4.4. 
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4.2.2.2.1 Covariate imputation model 

As missing data are treated as an additional parameter within the Bayesian formulation (Gelman et al. 

2004), covariates were imputed within the model assuming a missing at random mechanism. To take 

into account the correlation between the covariates, a multivariate normal model for the full set of 

covariates to be imputed was specified. Within it, temperature, TOC and total chlorine (all of which 

are predicted by season) were modelled with a factor for WSZ and a factor for quarter (and an 

intercept); conductivity was imputed only with a factor for WSZ (and an intercept) (see graphical 

representation in Figure 4.4, right). 

The imputation model for the missing covariates for the DCAA model is as follows. 

For each observation i (i=1, …, N) and time j (j=1, …, T), 

𝑋𝑖𝑗 = �
𝑥1𝑖𝑗
𝑥2𝑖𝑗� ~ MVN ( �

𝜇1𝑖𝑗
𝜇2𝑖𝑗� , Σ) 

𝜇1𝑖𝑗 =  𝛼1 +  𝜑𝑞𝑖𝑗 + 𝛾1𝑤𝑖𝑗 

𝜇2𝑖𝑗 =  𝛼2 +  𝛾2𝑤𝑖𝑗 

Where x1 and x2 are the temperature and conductivity, respectively, and are modelled using a 

multivariate normal distribution (MVN) with mean µ and covariance matrix ∑. αk (k=1,2) represents 

the overall mean for each variable xk; φ denotes the coefficient for quarter factor (qij) and γk (k=1,2) is 

the coefficient for WSZ factor for each variable xk. 

4.2.2.2.2 Priors 

Non-informative priors were specified for both fixed parameters and variances (Gelman 2006; 

Gelman and Hill 2007). The coefficients for the covariates’ effects and intercepts, for WSZ and for 

quarter factors were given normal priors (with a mean of 0 and precision of 0.01). For DCAA and 

TCAA, the coefficient for WSZ was truncated at 0 to avoid unrealistic negative values (specifying a 

mean of 0 and a precision of 0.01 for DCAA and a mean of 0 and a more informative precision of 0.1 

for TCAA, in accordance with the truncated model). 

The priors on measurement error (σ) and random walk standard deviations (σ0) were given uniform 

distributions (between 0 and 100). The prior on the multivariate model precision was specified by a 

Wishart distribution. A prior guess at the covariance matrix of the covariates Σ was made by 

calculating the empirical variance of each covariate and the empirical covariance between each pair of 

covariates. 
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The software WinBUGS, based on Markov Chain Monte Carlo (MCMC) algorithms, was used to 

implement all models. After a burn-in period of 10,000, 10,000 more iterations per chain were 

performed. To reduce autocorrelation, every tenth iteration was monitored. The results are based on a 

sample of 2,000 iterations. Diagnostic tests were performed to check convergence of the parameters to 

the posterior distribution. Convergence was checked using the Gelman and Rubin statistic (Gelman 

and Rubin 1992) and by visual examination of plots (trace, quantiles). 

Eight entries per WSZ and year-quarter for DCAA and TCAA (for a total of 1088 (=8x17x8) each), 

and 6 entries (for a total of 816 (=6x17x8)) for BDCAA were loaded into the model. This was done to 

ensure that final means per WSZ and time were taken on the same number of observations, and that 

observed data usage was maximised. 

Predicted outcomes (also truncated for DCAA and TCAA) were back-transformed within the 

WinBUGS model. The MCMC output was analysed using STATA 12.1.  

After calculating the means of the 8 (or 6) predictions per WSZ and year-quarter (2000 iterations of 

136 means remain), I took the overall mean for DCAA and TCAA and the median for BDCAA (due 

to skew in the data) over the 2000 iterations. Daily predictions were generated by dividing the 

difference between two consecutive quarterly values by the number of days between them (starting 

mid-quarter). The modelled period therefore covers 14/02/2007 through 14/02/2011, inclusive. 

4.2.3 Time-weighted area-level concentrations 

4.2.3.1 Calculations  

The duration of the first trimester was defined as 93 days from the date of conception, which itself 

was calculated with available BiB data as follows:  

Date of Conception = Date of delivery - Estimated no. days of gestation (excluding the date of conception) 

The second trimester was defined as the 93 days following the first trimester, and the third trimester 

as the remaining number of days from the end of the second trimester until the day preceding 

delivery. Date of conception was considered the first complete day of exposure (day 1). 

Time-weighted area-level HAA concentrations were calculated for each woman by averaging the 

daily HAA predictions corresponding to each woman’s first, second or third trimester of pregnancy 

(to the day). Because HAAs were modelled both in time and space, these averages were either based 

on the predictions in: 
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– the WSZ corresponding to the woman’s home (Method 1)

– a time-weighted combination of the WSZ corresponding to the woman’s workplace if

available (for the days estimated to be spent at work) and home (for the other days) (Method

2)

This methodology has previously been used for THMs by Toledano et al. (2005), Nieuwenhuijsen et 

al. (2008) and Smith (2011) and similar time-weighted averages have also been used in other studies 

(Hwang et al. 2008; Patelarou et al. 2011; Smith 2011). Only concentrations for trimesters entirely 

contained within the modelled period were derived.  

4.2.3.2 Time-weighted area-level concentrations based on residence WSZ: Method 1 

The main epidemiologic analysis focuses on area-level concentrations based on the WSZ of the 

women’s residence at recruitment to BiB. In sensitivity analyses, results were compared using time-

weighted area-level concentrations derived from the combination work and residence WSZ if 

available  

4.2.3.3 Time-weighted area-level concentrations based on a combination of work and residence 

WSZ if available: Method 2 

In sensitivity analyses in Chapter 7, I compare the effects on birth outcomes of the area-level 

exposures of women based on their residence postcodes only (Method 1), to those of the area-level 

exposures of those same women using weighted residence and work place postcodes. Figure A4 - 1 

shows the BiB women’s work places which were geocoded with this goal. 

Only 22% the cohort women under consideration a) reported working at BiB recruitment, b) provided 

both valid work and home addresses which were within Bradford and c) stated working for a given 

number of days a week (Figure A4 - 2, Table A4 - 6). Not included in this flowchart, sample sizes are 

further restricted by the requirement for pregnancies to overlap in full with the HAA modelled time 

period. The other 78% of the women kept their area-level exposures calculated by Method 1. 

1257 workplace addresses could not be geocoded (only 1160 after accounting for women who stated 

working mostly from home, such that work place was now known) because of missing address or 

postcode information, or address information which were too imprecise to use (“Street level 

accuracy” or above was required (=6), www.spatialepidemiology.net). For addresses obviously 

outside of Bradford 14 , Town (city, village) level accuracy (or above) on 

www.spatialepidemiology.net ’s accuracy scales was considered sufficient. 

14 i.e. stated city: Batley, Brighouse, Bury, Dewsbury, Guiseley, Halifax, Harrogate, Heckmondwike, 
Hipperholme, Huddersfield, Ilkley, Leeds, Manchester, Morley, Normanton, Ossett, Otley, Pool in Wharfedale, 
Pontefract, Rawdon, Sheffield, Wakefield, Yeadon 
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For Method 2, several assumptions had to be made. 

A) The time spent at work was based on answers to a question in the baseline questionnaire on

number of days per week spent at work. Work days were arbitrarily assigned to weekdays first, 

starting with Monday. If a woman spends 1 day at work per week, she was therefore assumed to work 

every Monday. If she spent 2 days/week, she was assumed to work every Monday and Tuesday, 3 

days/week every Monday through Wednesday etc. (Table A4 - 7). 

B) If a woman was categorised as working on a given day, her entire water consumption for that day

was based on the modelled HAA concentration in that (work) WSZ. 

C) The number of work days reported at BiB recruitment applies throughout pregnancy including the

full third trimester. 

D) If the main place of work is reported to be the home (one of the questions in the baseline

questionnaire), then any work place information on record was overruled and the WSZ corresponding 

to the woman’s home only was used. 

All residence and available workplace addresses were geocoded and mapped in ArcGIS to their 

corresponding WSZs. Dr Kees de Hoogh and I were in charge of the geocoding for BiB women’s 

home addresses, while I geocoded workplace addresses manually using www.spatialepidemiology.net 

because those data’s quality was poorer.  

4.2.4 Exclusion criteria  

In the following summaries and analyses, the same exclusion criteria were applied as described in 

Chapter 3 (section 3.2.3). 

I did not consider exposure over the full pregnancy time period, because of my interest in critical 

windows of exposure during pregnancy (first, second, and third trimesters) (see Introduction (Chapter 

1)). There is also the concern over adding too many comparisons to this analysis. 

4.3 Results 

4.3.1 HiWATE data 

Table 4.5 describes the nine (non-normally distributed) HAAs from the HiWATE sampling effort, 

excluding the second quarter of 2009. See Figure 4.2 for a boxplot representation of this table. The 

concentrations of HAAs in Bradford ranged from 1.80ug/l to 47.70ug/l with a median of 25.65ug/l. 

As expected from other upland surface water studies with low-bromide source waters (Bougeard 

2009; 2000), DCAA and TCAA were the species preferentially formed by mass, their medians 
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representing together more than 74% of the sum of the medians of the nine HAAs (27.68ug/l). But 

their ranges are quite large: 0.30-21.70ug/l for DCAA, and 1.00-25.40ug/l for TCAA (Table 4.5, 

Figure 4.2). 

The range of HAA concentrations reported in drinking water worldwide have been summarised in 

Table 4.6. 

4.3.1.1 Spatial variation of DCAA, TCAA, BDCAA, and determinants 

There is little spatial variation between the 8 WSZs based on 11 to 26 data points per WSZ (Figure 

4.5). This is perhaps not surprising since the treatment processes were broadly the same and the raw 

water used was from similar surface water sources in a relatively compact geographical area.  

As expected from the literature, mean HAA concentrations are lower in the three high bromide water 

supply zones (Airedale, Graincliffe, and Keighley, marked as * in Figure 4.5) compared to the other 

WSZs.  

Free and total chlorine levels also varied spatially, being slightly higher in Bradford Central (BDC), 

Idle/Pudsey (IPY) and Shipley/Bingley (SPY). Conductivity was higher in Airedale and Graincliffe. 

No distinctive spatial patterns were noted for colour, turbidity, temperature, UV254, and TOC (data 

not shown). Differences in HAA or HAA determinant levels (particularly free chlorine) in two WSZs 

which were supplied by the same treatment plant may have been due to differences in the positions of 

the WSZs in the distribution network but there was insufficient data to test this influence directly. 

4.3.1.2 Temporal variation of DCAA, TCAA and BDCAA 

DCAA concentrations are on average lowest in the hot months and highest in the cold months of the 

year, but there are no strong, consistent seasonal trends in HAAs over the HiWATE collection period 

(Figure 4.6). 

The only noticeable temporal trend is temperature (highest in the third quarter), as well as colour, 

UV254 and TOC, which are higher on average in the third and fourth quarters as compared to the first 

and second.  

HAA determinants’ descriptive statistics and data availability are summarised in Table A4 - 8. 

4.3.1.3 Relationship between HAAs 

TCAA and DCAA, the two dominant HAAs in this sample, are significantly correlated (r=0.34, 

p<0.001, N=158) (see Table A4 - 9b and Figure A4 - 3). Their relationship appears to be roughly 
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inverse over time in the first two years of sampling (DCAA high when TCAA is lower, and vice 

versa), but to track each other in 2009 and 2010 (Figure 4.7).  

4.3.1.4 Using THM determinants to predict HAAs 

Correlations between HAAs and determinants confirmed expectations that low bromide, high 

temperature and high NOM waters lead to greater HAA concentrations on average (Diehl et al. 2000; 

Krasner et al. 1989; Krasner 1999). 

Bromide is inversely correlated with temperature, and positively correlated with pH, UV254, and 

TOC. Surrogate measures of NOM (colour, UV254, and TOC) are significantly correlated with 

temperature; along with temperature, their levels tend to be higher in the summer-autumn seasons. 

Conductivity is inversely associated with pH and with colour, UV254 and TOC, likely denoting its 

association with less cloudy NOM-free waters. Free and total chlorine are significantly inversely 

correlated with pH, bromide, and all surrogate variables for NOM.  

4.3.2 HAA Modelling 

4.2.2.1 Frequentist model outputs 

Here are the detailed outputs on best DCAA, TCAA, and BDCAA models selected in R. 

4.3.2.1.1 Model selected for DCAA 

The best model for DCAA, in addition to a smoothing spline on time and a factor for water supply 

zone, includes temperature and conductivity (N=115, k=13, df=7.1, AIC=229.5, R2=0.57, and 

explains 63% of deviance) (Figure 4.8). Temperature is highly inversely significant and conductivity 

is highly significant as well (with a very low coefficient) (data not shown). 

𝑌𝑖𝑗  ~ 𝑁(𝜇𝑖𝑗 ,𝜎2) 

𝜇𝑖𝑗 =  𝛽0 +  𝛽1𝑇𝑖𝑗 + 𝛽2𝐶𝑖𝑗 + �𝛽3[𝑝] 𝑧𝑜𝑛𝑒𝑖 + 𝑓(𝑡)
8

𝑝=1

+ 𝜀𝑖𝑗 

f (t) is represented using rank 13 thin plate regression spline bases (Wood 2003). 
Yij = sqrt(DCAA) (ug/l) 
Tij = temperature (degC) 
Cij = conductivity (uS/cm) 
zonei = zone indicator (1 or 0) 

Temperature and conductivity are not significantly correlated: r=0.11 (p=0.224, N=135). 
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Temperature follows a predictably marked seasonal trend: high in the summer, low in the winter. In 

fact, I tried replacing temperature by season—for which there were no missing data—in the models 

but this covariate did not come out significant in any model tried (data not shown). The information 

contained by the variable season was probably redundant with year-quarter. The observed seasonal 

trend is consistent across water supply zones. The relationship between sqrt(DCAA) and temperature 

is negative (r=-0.35, p<0.001, N=134), as comes out in the models (Table A4 - 3). 

The conductivity data do not suggest a seasonal pattern. No consistent time pattern were found by 

water supply zone either. There is one observation where both conductivity and DCAA value are 

available for which conductivity is very high (conductivity at year-quarter = 2009q2 and wsz=4 = 

615.0 uS/cm). But this does not seem to be an outlier, as values for conductivity in the full dataset 

(N=7,727) span from 8 to 630 uS/cm, and the coefficients for a linear regression on sqrt(DCAA) with 

and without this outlier are the same. The relationship between sqrt(DCAA) and conductivity is 

negative (r=-0.22, p=0.010, N=139) (Table A4 - 3). 

After stratifying by WSZ and year-quarter in the complete dataset spanning 2007q1 to 2011q1, a 

difference in pattern by zone emerges: two of the three high bromide zones ADL (=1) and GCF (=5) 

have the highest average conductivity levels, while the third of the three high bromide zones KLY 

(=7) has the lowest. Water supply zone is therefore an important predictor of conductivity level. 

4.3.2.1.2 Model selected for TCAA 

The best model for TCAA includes temperature, conductivity and TOC (N=115, k=13, df=9.6, 

AIC=588.5, R2= 0.71 (new 0.65 by cross-validation), 76% of deviance explained) (Figure 4.9). 

𝑌𝑖𝑗  ~ 𝑁(𝜇𝑖𝑗 ,𝜎2) 

𝜇𝑖𝑗 =  𝛽0 +  𝛽1𝑇𝑖𝑗 + 𝛽2𝐶𝑖𝑗 + 𝛽3𝑊𝑖𝑗 +  �𝛽3[𝑝] 𝑧𝑜𝑛𝑒𝑖 + 𝑓(𝑡)
8

𝑝=1

+  𝜀𝑖𝑗 

f (t) is represented using rank 13 thin plate regression spline bases (Wood 2003). 
Yij = sqrt(TCAA) (ug/l) 
Tij = temperature (degC) 
Cij = conductivity (uS/cm) 
Wij = total organic carbon (mg/L C) 
zonei = zone indicator (1 or 0) 
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Temperature and TOC are significantly positively correlated (r=0.30, p<0.001, N=156), TOC and 

conductivity are significantly negatively correlated (r= -0.33, p<0.001, N=162), and temperature and 

conductivity are not correlated (r=0.11, p=0.224, N=135). 

Because TCAA and DCAA are available on the same subset of 158 HiWATE data, the same 

associated dataset on temperature and conductivity is available for them both as well. As with the 

DCAA models, temperature is therefore found to follow a seasonal trend, while conductivity does not. 

While it was negatively correlated with sqrt(DCAA) (r=-0.35, p<0.001, N=134), temperature is 

positively correlated with sqrt(TCAA) (r=0.31, p<0.001, N=134); conductivity remains inversely 

related to sqrt(TCAA) (r=-0.25, p=0.003, N=139) (Table A4 - 4). 

TOC levels are also somewhat seasonal: higher concentrations are observed in the summer (and to a 

lesser extent in autumn) seasons compared to winter and spring. The observed seasonal trend is 

consistent across water supply zones, GCF (=5) and BSW (=4) behaving a bit differently at 2007q4 

and 2009q3, respectively. TOC is positively and significantly correlated with sqrt(TCAA) (r=0.33, 

p<0.001, N=158). 

4.3.2.1.3 Model selected for BDCAA 

Best model include conductivity and total free chlorine: N=132, k=15, df=14, AIC=159.8, R2=0.802, 

and explains 84% of deviance (Figure 4.10). 

𝑌𝑖𝑗  ~ 𝑁(𝜇𝑖𝑗 ,𝜎2) 

𝜇𝑖𝑗 =  𝛽0 +  𝛽1𝐶𝑖𝑗 + 𝛽2𝐿𝑖𝑗 + �𝛽3[𝑝] 𝑧𝑜𝑛𝑒𝑖 + 𝑓(𝑡)
8

𝑝=1

+ 𝜀𝑖𝑗 

f (t) is represented using rank 15 thin plate regression spline bases (Wood 2003). 
Yij = ln(BDCAA) (ug/l) 
Cij = conductivity (uS/cm) 
Lij=total chlorine (mg/L) 
zonei = zone indicator (1 or 0) 

Again, I do not exclude the possible conductivity outlier, as the effects do not change with and 

without it. 

4.3.2.2 Bayesian model outputs 

The output of my Bayesian modelling exercise is summarised in Figure 4.11, and in Table 4.7, as well 

as in map form in Figure 4.12, Figure 4.13, and Figure 4.14. For details on the imputation models (for 

missing temperature, conductivity, TOC or total chlorine) of the analysis, see Table A4 - 10. 
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4.3.3 Time-weighted area-level concentrations 

Women’s mean time-weighted area-level concentrations (based on residence postcode, i.e. Method 1) 

ranged from 8.64-8.86ug/L, 11.98-12.41ug/L, and 1.32-1.33ug/L across trimesters for DCAA, TCAA 

and BDCAA, respectively. Figure 2.1 (in Chapter 2) presents the residence locations of the BiB 

women and their distribution within Bradford’s eight WSZs. Figure 4.15 describe women’s time-

weighted area-level concentrations based on residence postcode (Method 1), which were categorised 

by tertiles for the purposes of the epidemiologic analysis. The sample size for all three HAA 

concentrations linked to women’s first, second, and third trimester was 10,521, 11,312, and 11,585, 

respectively (Table 4.8, Figure 4.16). 

Women’s mean time-weighted area-level concentrations (based on residence and work postcode, i.e. 

Method 2) ranged from 8.72-8.92ug/L, 11.85-12.34ug/L, and 1.33ug/L across trimesters for DCAA, 

TCAA and BDCAA respectively (Table A4 - 11).  

4.3.3.1 Comparison of HAA concentrations by Methods 1 and 2 

Summary statistics by the two methods different for TCAA and BDCAA (p<0.001), justifying the 

sensitivity analyses carried out. Method 2 lead to smaller sample sizes than Method 1, but higher 

average concentrations for DCAA, lower average concentrations for TCAA and the same for BDCAA 

(Table A4 - 12, Figure A4 - 4). Requiring a woman’s trimester of interest to overlap completely with 

the modelled period (Feb 14th 2007 through Feb 14th 2011) in order to use her area-level HAA 

concentration measure meant that quite a few women were lost.  

4.4 Discussion 

4.4.1 HiWATE data 

The concentrations of HAAs in Bradford were within a similar range to those reported previously, 

particularly from other studies on upland surface water. For example, Zhang et al (2010) reported an 

average total HAA concentration of 21.3ug/L and maximum of 41ug/l. 

Several national HAA occurrence studies have been undertaken in the US (Krasner et al. 1989; 

Krasner et al. 2006; McGuire et al. 2002; Weinberg et al. 2002). Krasner et al. (1989), in a survey of 

35 water treatment utilities, found median total HAA5 concentrations ranging from 13 to 21ug/L, with 

MCAA, MBAA, DCAA, TCAA and DBAA at <1-1.2, <0.5, 5.0-7.3, 4.0-6.0 and 0.9-1.5ug/L 

respectively. These values are lower than Bradford’s.  
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Malliarou et al. (2005) reported HAA9 means of 35, 52 and 95ug/L in finished waters from three 

regions in England and Wales, and a maximum concentration of 244ug/L. Still in the UK, Zhang et al 

(2010) reported low HAA levels (<2ug/L total HAA) in a groundwater-based system, and higher 

HAA formation in a system alimented by upland surface water (~40ug/L total HAA). In her PhD 

thesis, Bougeard observed considerable variation between 11 chlorine-treated waters with HAA9 

levels ranging from 5.0 to 69ug/L, and an average value of 37ug/L (Bougeard 2009).  

Of note when considering these levels, there are differences in chlorination practices and residuals in 

the UK compared to the US: for example, the maximum contaminant level (MCL) for residual 

chlorine in the US was set at 4.0mg/l, while the drinking water inspectorate (DWI) in the UK states 

that typical disinfectant levels were maintained at 0.5mg/l or less (www.dwi.gov.uk) (Goslan et al. in 

prep). Indeed, according to YW, the normal target range for free chlorine (pre manganese contactors) 

in the Chellow Heights WTW was 0.85-2.0 mg/l, a dose which was normally set automatically and 

was flow paced. The normal target for free chlorine in the clean water tanks was 0.35 mg/l. In the 

Graincliffe WTW, the normal target range for free chlorine in treated water was 0.6-1.1 mg/l. 

Jeong et al (2012) found that HAA9 concentrations over a 24 hours monitoring period ranged from 

11.6 to 51.5ug/L in 7 European cities (Appendix C). Each site in Jeong et al (2012)’s study 

corresponded to a HiWATE study site, including two sites in Bradford: HAA9 concentrations 

averaged 13.3ug/L in Shipley (a low bromide district of Bradford) and 11.6ug/L in Airedale (high 

bromide). This agrees with the expectation that higher bromide areas will have lower HAA levels 

(Table A4 - 1), but these levels are lower than those recorded in our tap water samples. This 

difference may be due to differences in analysis methods, or else it is possible that the water samples 

may have degraded in the process of being shipped to the US EPA laboratories where the samples 

were analysed, based in Georgia, USA. 

Most of the surveys cited in Table 4.6 found TCAA and DCAA to be the major species formed in 

treated waters exposed to formation potential (FP) tests using chlorine. In particular, the major species 

formed in Bougeard’s work (2009) were TCAA (ranging from 1.0 to 40ug/L) and DCAA (ranging 

from 2.5 to 22ug/L) followed by BDCAA, BCAA, MCAA and DBCAA. For all waters, MBAA, 

DBAA and TBAA were the least concentrated, with TBAA not always detected. This is the same as 

what I found in Bradford.  

4.4.1.1 Spatial variation of DCAA, TCAA and BDCAA, and determinants 

Typical concentrations of bromide in natural waters range from 30 to 200ug/L, with an average of 

100ug/L (Amy et al. 1994). Most of the waters disinfected with chlorine will therefore have the 

potential to form brominated DBPs. The Bradford water only had a median of 10ug/L, but spatial 
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variation in HAAs was still noticeable. Consistent with literature predictions, the three high bromide 

areas also had the highest pH levels, and lowest free (and total) chlorine levels. Previous studies 

would also have predicted lower temperatures in these three areas compared to the others, but these 

data are not consistent with this prediction (data not shown).  

Goslan et al. (in prep) warns that bromide levels may be falsely low in this study because no 

quenching agent was added to the bromide bottle. This could mean that any chlorine residual present 

could have continued to react with the bromide during shipping and storage. However, I suspect that 

this may have affected WSZs equally (causing lower levels in absolute terms but not in relative 

terms). 

4.4.1.2 Temporal variation of DCAA, TCAA and BDCAA, and determinants 

Krasner et al (1989) and Williams et al. (1997) reported highest HAA concentrations in summer likely 

due to the nature of natural organic matter (NOM) at that time of year (Dojlido et al. 1999). Zhang et 

al. (2010) reported an approximate twofold difference between the highest and the lowest 

concentrations over the four seasons in the WSZs (based on the highest measured level occurring in 

autumn, 42.2ug/L, and the lowest value obtained in spring, 19.2ug/L). Nissinen et al. (2002) found 

low concentrations in May and October but no marked seasonal trend, while Serodes et al. (2003) 

surprisingly found that the average concentrations of HAAs were not highest at the highest incubation 

temperature. 

Relatively few data points (between 7 and 29 per time point) were collected to assess temporal 

variation. A seasonal trend could have emerged with larger samples, as temperature, colour, UV254 

and TOC which all predict higher HAA levels all seemed to have higher levels in the last two quarters 

of each year. Increased biological activity in summer and leaf fall in autumn will contribute to higher 

NOM in raw water in summer and autumn, which is thought to increase HAA formation. This is what 

has been found for THMs (Chen and Weisel 1998; Garcia-Villanova et al. 1997; Golfinopoulos 2000; 

Krasner et al. 1989; Rodriguez et al. 2004; Whitaker et al. 2003a).  

4.4.1.3 Using THMs (or other determinants) to predict HAAs 

Determining whether THM levels can be used as a surrogate indicator for HAA levels has been the 

goal of many studies to date (see Table A4 - 13). This would be a useful method for quality control 

and monitoring in water utilities given that laboratory analyses for HAAs are more resource- and 

time-consuming than for THMs. However not only can the correlation rates be poor, varying widely 

by location even within the same study, but by chance only a few sampling time points that the 

HiWATE study used for its analyses coincided with routine THM sampling time points. This means 

that the correlations of observed THM and HAA data in Bradford cannot be assessed here.  
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4.4.2 HAA Modelling 

Variables included in these models (temperature, conductivity, TOC and total chlorine) should not 

necessarily be viewed as predictors outside of the context of this dataset (Bennett, personal 

communication). 

Because the factors that affect levels of HAAs in drinking water (such as amount of disinfectant, 

nature and concentration of NOM, pH of water, bromide ion, water temperature, contact time between 

the disinfectant and the water, seasonal and regional variability and stagnation of water in the 

plumbing pipes and hot water tanks) vary temporally and spatially, the characterisation of HAAs and 

their exposure analysis are complex (Chowdhury et al. 2010) . 

I had relatively few HAA data points per WSZ and per time point to work with in this dataset, some 

of which had low detection rates, which is why I chose to focus on modelling DCAA, TCAA and 

BDCAA.  

There were no duplicate samples that were both analysed by Cranfield University and by the 

University of the Aegean, for inter-laboratory comparison purposes. And because of scarcity of data, 

2007-2008 and 2009-2010 data based on University of the Aegean and Cranfield University-

generated data, respectively were not modelled separately. As such, the default assumption made is 

that laboratory and methodological differences are negligible, which may not hold true.  
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4.5 Tables 

Table 4.1: Water supply zones (WSZ) and BiB population (N=11,928, including 24 missing addresses 
and 22 out of area)  

WSZ name 
(2004 nomenclature) WSZ abbr. Supplying WTW BiB population (%) 

1 Airedale ADL Graincliffe 607 (5.1) 
2 Bradford Central * BDC Chellow Heights / Graincliffe 3172 (26.6) 
3 Bradford SE BSE Chellow Heights 1187 (10.0) 
4 Bradford SW BWS Chellow Heights 1474 (12.4) 
5 Graincliffe GCF Graincliffe 15 (0.1) 
6 Idle/Pudsey IPY Chellow Heights 961 (8.1) 

7 Keighley KLY 
Graincliffe /Embsay /Oldfield 
/Sladen Valley† 9 (0.1) 

8 Shipley/Bingley SPY Chellow Heights 4457 (37.4) 
* 2008 (in 2008, the Bradford City WSZ merged with Peel Park/Laisterdyke to form Bradford
Central); †Keighley is mainly supplied by the Graincliffe WTW, with small contributions from three 
other WTWs (Embsay WTW, Oldfield WTW and Sladen Valley WTW) 

Table 4.2: HiWATE sampling by laboratory 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 
2007 Aeg Aeg Aeg 
2008 Aeg Aeg Aeg Aeg 
2009 Aeg Cran Cran Cran 
2010   Cran  Cran Cran Cran 
Aeg: samples analysed at the University of the Aegean 
Cran: samples analysed at Cranfield University 

Table 4.3: Number of missing data for each of the nine HAAs (Nmax=184) MRL: minimum reporting 
limit; LOD: limit of detection (see section 4.2.1.3 for details) 

MCAA MBAA DCAA BCAA TCAA DBAA BDCAA DBCAA TBAA 
N (% of total) 42 (43) 15 (27) 157 (95) 121 (86) 165 (99) 52 (58) 113 (75) 44 (46) 0 (0) 
<MRL 24 16 9 8 1 7 14 24 24 
<LOD 32 25 0 11 0 30 24 27 32 
total (% of 
184) 

98 (53) 56 (30) 166 (90) 140 (76) 166 (90) 89 (48) 151 (82) 95 (52) 56 (30) 
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Table 4.4: Transformations, distributions and best model covariates for the three modelled HAAs: 
DCAA, TCAA and BDCAA 

transformation distribution covariates remaining in best frequentist 
model and included in Bayesian model* 

DCAA square root truncated Normal temperature, conductivity 
TCAA square root truncated Normal temperature, conductivity, TOC 
BDCAA ln Normal conductivity, total chlorine 
*in addition to a factor for WSZ and a spline/RW(1) on time

Table 4.5: Summary of HiWATE HAAs in ug/L: 2007q2 through 2010q4, excluding 2009q2 

MCAA MBAA DCAA BCAA TCAA DBAA BDCAA DBCAA TBAA 
median 2.00 0.67 9.90 1.10 10.70 0.40 1.20 1.04 0.67 
IQR 1.67 0.33 9.05 0.85 7.05 0.27 1.43 0.83 0.33 
min 0.80 0.28 0.30 0.10 1.00 0.11 0.10 0.67 0.67 
max 5.30 2.62 21.70 3.62 25.40 1.38 4.60 1.90 1.11 
N 90 48 158 132 158 81 143 87 48 

Table 4.6: Reported levels of HAAs in studies worldwide (adapted from a table in Bougeard’s PhD 
thesis) (chronological order)  

Reference Location Water source HAA 
measured 

Range 
(ug/l) 

Krasner et al. (1989) US † Drinking water HAA5 13.0-21.0 
Peters et al. (1991) Netherlands Drinking water HAA9 0.0-14.7 
Williams et al. (1997) Canada Drinking water MCAA 0.3-10.0 

MBAA 0.01-9.0 
DCAA 0.2-163 
TCAA 0.04-473 
DBAA 0.01-2.0 

Cancho et al. (1999) Spain Drinking water HAA9 11.0-32.0 
Dojlido et al. (1999) Poland After chlorination HAA6 10.0-120 
Nissinen et al. (2002) Finland Drinking water HAA6 6.00-261 
Serodes et al. (2003) Canada After experimental 

chlorination 
Malliarou et al. (2005) UK Drinking water HAA9 NR-244 
Krasner et al. (2006) US † Drinking water HAA9 5.0-130 
Ates et al. (2007) Turkey Filtered surface water HAA9 6.0-177 
Wang et al. (2007) China Drinking water HAA6 0.4-14.0 
Bougeard (2009) UK After chlorination HAA9 5.0-69 
Jeong et al. (2012) UK Drinking water HAA9 11.6-13.3 
† Goslan et al. (in prep): there are difference in chlorination practices and residuals in the UK vs. US 
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Table 4.7: Parameters for DCAA, TCAA, and BDCAA models 

  DCAA model TCAA model BDCAA model 
parameters categories Mean (95% Cred. Int.) Mean (95% Cred. Int.) Mean (95% Cred. Int.) 
WSZ factor γ zone 1 REF REF REF 

zone 2 0.94 (0.50, 1.38) 0.75 (0.42, 1.09) 0.21 (-0.02, 0.43) 
zone 3 0.99 (0.49, 1.45) 1.08 (0.71, 1.44) 0.31 (0.08, 0.55) 
zone 4 0.54 (0.09, 1.01) 1.09 (0.75, 1.46) 0.27 (0.05, 0.49) 
zone 5 0.20 (-0.27, 0.69) 0.05 (-0.33, 0.42) 0.05 (-0.18, 0.29) 
zone 6 1.03 (0.61, 1.47) 0.91 (0.58, 1.26) 0.24 (0.02, 0.47) 
zone 7 0.58 (0.04, 1.06) 0.28 (-0.12, 0.67) 0.20 (-0.07, 0.48) 

 zone 8 1.05 (0.62, 1.48) 0.89 (0.56, 1.25) 0.26 (0.04, 0.49) 
Temperature effect β1 -0.37 (-0.54, -0.21) 0.12 (-0.03, 0.28) 
Conductivity effect β2 0.03 (-0.09, 0.15) -0.03 (-0.12, 0.06) 0.13 (0.07, 0.19) 
TOC effect β3 0.31 (0.17, 0.47) 
Total Chlorine effect β4 0.07 (0.00, 0.13) 
random walk variance σ0  0.24 (0.08, 0.67) 0.32 (0.11, 0.86) 2.21 (0.99, 5.32) 
measurement error variance σ2 0.37 (0.29, 0.48) 0.20 (0.16, 0.26) 0.10 (0.08, 0.13) 
zone 1=Airedale (ADL), zone 2=Bradford Central (BCE), zone 3=Bradford South East (BSE), zone 
4=Bradford South West (BSW), zone 5=Graincliffe (GCF), zone 6=Idle/Pudsey (IPY), zone 
7=Keighley (KLY), zone 8=Shipley/Bingley (SPY) 
The credible intervals for the BDCAA model extend at the extremities from 0.06-18.49ug/L at 
2007q1, and from 0.10-33.60ug/L at 2011q1. 
(Red means the 95% credible interval does not cross 0.) 

Table 4.8: Summary statistics of 3 trimester-weighted HAA concentrations for each woman (in ug/L) 
(includes only women whose given trimester completely overlaps with the modelled period) 

In ug/L Mean SD Min Max N % of N=11,928 
Average [DCAA] trimester 1 8.64 2.94 1.95 16.04 10,521 88.2 

trimester 2 8.68 2.88 1.95 16.04 11,312 94.8 
trimester 3 8.86 2.90 1.78 16.86 11,585 97.1 

Average [TCAA] trimester 1 11.98 3.45 3.10 20.67 10,521 88.2 
trimester 2 12.26 3.57 2.86 20.67 11,312 94.8 
trimester 3 12.41 3.44 3.32 21.08 11,585 97.1 

Average [BDCAA] trimester 1 1.32 0.68 0.35 3.34 10,521 88.2 
trimester 2 1.32 0.67 0.35 3.34 11,312 94.8 
trimester 3 1.33 0.68 0.26 3.58 11,585 97.1 

Average no of days in third trimester 91.53 12.64 1.00 128.00 11,585 97.1 
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4.6 Figures 

Figure 4.1: Map of Bradford’s 8 water supply zones 

Map generated using Arc Map 10. 
GCF: Graincliffe (green) 
ADL: Airedale (purple) 
KLY: Keighley (red) 
IPY: Idle/Pudsey (blue) 
SPY: Shipley and Bingley (dark green) 
BCE: Bradford Central (pink) 
BSW: Bradford South West (yellow) 
BSE: Bradford South East (burgundy) 

Figure 4.2: Box plots of the nine HAA concentrations (ug/L) 
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Figure 4.3: Distributions before and after transformation 
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Figure 4.5: HAA concentration by water supply zone (WSZ) – HiWATE data: 2007q2 through 
2010q4, excluding 2009q2 (*indicates high bromide WSZ) for a) DCAA, b) TCAA, and c) BDCAA 
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Figure 4.6: HAA concentration by year and quarter – HiWATE data: 2007q2 through 2010q4 
(including 2009q2 which was deemed unreliable) for a) DCAA, b) TCAA, and c) BDCAA  
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Figure 4.7: Mean DCAA, TCAA and BDCAA over time (ug/L): 2007q2 through 2010q4, including 2009q2 (for continuity of x-axis) 

ADL=Airedale, BDC=Bradford Central, BSE= Bradford South East, BSW=Bradford South West, GCF=Graincliffe, IPY=Idle/Pudsey, KLY=Keighley, 
SPY=Shipley/Bingley 
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Figure 4.8: Model fit for best model for DCAA selected in R (dotted line: 95% CI)

Figure 4.9:  Model fit for best model for TCAA selected in R (dotted line: 95% CI) 

Figure 4.10 : Model fit for best model for BDCAA selected in R (dotted line: 95% CI) 
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Figure 4.11: Modelled DCAA concentration (ug/L) over time for WSZ 1 (Airedale or ADL) (95% 
credible intervals), and a plot of posterior mean modelled DCAA concentration in all 8 WSZs. Same 
pair of plots for TCAA, and BDCAA 
solid line = posterior mean for DCAA and TCAA, and posterior median for BDCAA 
dashed line= 95% credible intervals 
BDC=Bradford Central, BSE= Bradford South East, BSW=Bradford South West, GCF=Graincliffe, 
IPY=Idle/Pudsey, KLY=Keighley, SPY=Shipley/Bingley 
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Figure 4.15: Frequency distributions of modelled trimester-specific HAA concentration by trimester 

a) DCAA concentration in trimester 1 (cut-off tertile 1: 7.12 ug/L, cut-off tertile 2: 9.36 ug/L)

b) DCAA concentration in trimester 2 (cut-off tertile 1: 7.20 ug/L, cut-off tertile 2: 9.43 ug/L)

c) DCAA concentration in trimester 3 (cut-off tertile 1: 7.43 ug/L, cut-off tertile 2: 9.54 ug/L)
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d) TCAA concentration in trimester 1 (cut-off tertile 1: 10.38 ug/L, cut-off tertile 2: 12.49 ug/L)

e) TCAA concentration in trimester 2 (cut-off tertile 1: 10.49 ug/L, cut-off tertile 2: 13.05 ug/L)

f) TCAA concentration in trimester 3 (cut-off tertile 1: 10.62 ug/L, cut-off tertile 2: 13.17 ug/L)
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g) BDCAA concentration in trimester 1 (cut-off tertile 1: 0.90 ug/L, cut-off tertile 2: 1.38 ug/L)

h) BDCAA concentration in trimester 2 (cut-off tertile 1: 0.91 ug/L, cut-off tertile 2: 1.38 ug/L)

i) BDCAA concentration in trimester 3 (cut-off tertile 1: 0.91 ug/L, cut-off tertile 2: 1.39 ug/L)
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CHAPTER 5 COMBINED METRIC 

This chapter describes the method for combining total tap water consumption (Chapter 3) and area-

level HAA concentrations for women’s second trimester (Chapter 4) into one combined estimate of 

exposure to HAAs, completing Aim 1of this thesis (see Thesis Aims, Chapter 2). It also summarises 

the combined exposure estimates for the BiB cohort. 

5.1 Background & Methods 
As discussed in Chapter 1 (see section 1.1.1.5), failure to account for water consumption (Smith 

2011) or for area-level concentrations (Savitz et al. 1995) can result in exposure misclassification. 

This is why individual total tap water consumption was combined with area-level DCAA, 

TCAA and BDCAA concentrations. 

5.1.1 Boiling and filtering 

Filtering and boiling of water may modify the concentrations of HAAs in the water, beverages or 

foods consumed, affecting the ingested dose of HAAs. These processes must therefore be taken into 

consideration. 

5.1.1.1 Boiling 

Though non-volatile, HAAs can be destroyed by chemical reactions at elevated temperatures. 

Boiling tap water has a counter effect on the two main species of HAAs: increasing DCAA levels and 

decreasing TCAA levels (Chowdhury et al. 2010; Levesque et al. 2006; Ma 2008; Wu et al. 2001), 

such that average total concentrations of HAAs were found by several studies not to change 

(Chowdhury et al. 2010; Levesque et al. 2006). 

These results might be explained by the two following phenomena occurring while boiling water: on 

one hand, the reaction of residual chlorine with DBP precursors favours the formation of DCAA 

(Krasner and Wright 2005); on the other hand, a reaction of decarboxylation of TCAA with 

chloroform15 can occur favouring a decrease in levels of these substances (Zhang and Minear 2000). 

Not all studies found this same result. Krasner and Wright (2005) observed an increase in DCAA 

levels after boiling water but did not observe a reduction of TCAA levels, and thus reported an overall 

15 CCl3COOH  CHCl3 + CO2 
99 



increase of total concentrations of HAAs. Kim (1997) observed no change in DCAA levels in distilled 

water following a 5-min boil but did observe some degradation of TCAA. Dojlido et al (1999) and 

Rahman et al (2011) both report decreases in all species of HAAs in tap water. 

In general, HAA destruction reactions dominate at higher temperatures and for more highly 

halogenated (and more thermally labile) species, while HAA formation is more important at lower 

temperatures and for less halogenated species (Wu et al. 2001). 

Averaging eight study results for DCAA and TCAA (Chowdhury et al. 2010; Dojlido et al. 1999; Kim 

1997; Krasner and Wright 2005; Levesque et al. 2006; Ma 2008; Rahman et al. 2011; Wu et al. 2001), 

and two study results pertaining specifically to BDCAA (Krasner and Wright 2005; Ma 2008), DCAA 

was increased by 43.5%, and TCAA and BDCAA reduced by 36.9% and 56.5%, respectively (Table 

5.1). 

Type of boiling (kettle, microwave), duration of boiling, and amount of residual chlorine in the 

system are not taken into account. 

Storage over time (whether in a refrigerator or not) has no effect on HAA concentrations (Chowdhury 

et al. 2010; Levesque et al. 2006; Rahman et al. 2011; Wu et al. 2001). 

5.1.1.2 Filtering 

Levels of HAAs treated with commercial point-of-use (POU) filtration devices such as activated 

carbon are significantly lower than in source tap water (Chowdhury et al. 2010; Levesque et al. 2006; 

Weinberg et al. 2006).  

Egorov et al (2003)’s pilot study found that use of home filters (BritaTM 16, AquaphorTM table-top 

pitcher filters (Russian-made), and a detachable faucet-tip Rodnik filter), all of which were mounted 

with cartridges which contained activated carbon, resulted in reduction of exposures to HAAs by a 

factor of 3.  

The POU devices used in Weinberg et al’s study (2006) were four American activated carbon filters 

(Brita Ultra model FF-100 (Oakland, CA, USA), PUR® Ultimate (Minneapolis, MN, USA), Teledyne 

Water Pik (Fort Collins, CO, USA), and Brita Pitcher (Oakland, CA, USA)). Among all HAAs, 

DCAA and TCAA had among the poorest average removal efficiencies. This is consistent with the 

higher solubility and polarity of these compounds compared to their bromine-containing counterparts. 

16 Brita filters also contain ion-exchange resins for remove of heavy metals, and thus a smaller amount of 
activated carbon (Egorov et al. 2003) 
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The latter had better removals presumably because their lower aqueous solubility made them more 

amenable to carbon adsorption (Weinberg et al. 2006). 

A small study conducted at Imperial College London on tap water from the laboratory of the South 

Kensington campus also found that Brita Fjord filters (new and old) as well as PUR filters (new and 

old) effectively removed HAAs in water (Ma 2008). Similarly, water filtered using a domestic jug 

filter (fitted with ion exchange and activated carbon filtration) on chloraminated tap water in Sydney, 

Australia, resulted in large decreases (77-94%) in all species of HAAs in tap water (Rahman et al. 

2011). Kim (1997) reported an average removal efficiency of 74% for DCAA and 71% TCAA for 

paired samples from six homes, but did not examine removal efficiency over the life of the filters (in 

Wright et al. (2006)). 

The efficiency of home filters may vary depending on filter brand, age and characteristics of tap water 

(such as pH) (Egorov et al. 2003; Levesque et al. 2006). For example reductions of HAAs of 71% and 

58% were observed using new vs. old Brita Classic Pitcher POU filters, respectively (Chowdhury et 

al. 2010). In Savitz’s study (2005), filtration devices removed greater than 60% of HAA9 initially, but 

removal varied and declined about 20% over the 40 gallon pitcher POU capacity. HAA removal 

efficiency increases as the degree of bromination and halogenation increases.  

Filter life, filtering frequency or specific filter types could not be taken into consideration here as no 

such detailed information was available. Instead, for DCAA and TCAA 17 results from seven filter 

studies were averaged (Chowdhury et al. 2010; Egorov et al. 2003; Kim 1997; Levesque et al. 2006; 

Ma 2008; Rahman et al. 2011; Savitz et al. 2005) using different types of both new and artificially 

aged filters, and for BDCAA, six results from two studies were used (Ma 2008; Savitz et al. 2005) to 

get reduction factors of 61.8% , 67.4% and 78.5% for DCAA, TCAA and BDCAA, respectively 

(Table 5.1). 

5.1.2 Calculations 

The following section explains how the combined metrics (in ug/day) for DCAA, TCAA, and 

BDCAA were calculated for each BiB woman. 

Filtering of the cold water component of total tap water (an aggregate measure of cold and hot tap 

water) consumed at all locations (a combination of home, work, and other (“elsewhere”) locations) 

was taken into account—mindful as previously that home and work are the only possible filtering 

locations for employed women, while home is the only possible filtering location for women out of 
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employment, for students, and for those missing employment information. Boiling of the hot 

component of total tap water was also uniformly taken into account.  

For each HAA, the total tap water consumption amount (in L/day) was calculated by location (home, 

work, elsewhere), integrating filtering reduction factors for cold tap water ingestion (Table 5.1) when 

necessary, and boiling factors for total hot tap water intake. This calculation is described in Table 5.2. 

To get the combined metric (ug/day), the consumption values adjusted for filtering and/or boiling 

factors were summed, and each one was then multiplied by the individual woman’s HAA area-level 

concentration (ug/L), time-weighted over her second trimester of pregnancy (N=2,477). This was 

done differently for employed women (who filtered at home and work, only at home, only at work, 

nowhere) and unemployed women (as well as students and women with missing information). Table 

5.3 is an example of the combined metric calculation for DCAA exposure (ug/day). Together, the two 

mutually exclusive groups (DCAA exposure among filterers (ExpDCAAf,) and DCAA exposure 

among non-filterers (ExpDCAAu)) make up total DCAA exposure (ExpDCAA). The same method 

applies to calculation of ExpTCAA and ExpBDCAA. These calculations exclude uncertain answers, 

as well as missing or inconsistent filtering information. 

For the employed women, total filtered tap water (TTwf) and total unfiltered tap water (TTwu) 

consumed at work were either multiplied:  

– by [HAA]res, the HAA concentrations from women’s residence WSZ concentrations only

(Nf=1012, Nu=5211) (Method 1), or

– when available, by [HAA]workres which is the HAA concentration based on both work and

residence WSZ concentrations (weighted by days reported spent at work) (Nf=395, Nu=441);

for those whose work addresses were not geocoded or not within area, total tap water at work

was multiplied by the HAA concentration from women’s residence water supply zones only

(Nf=617, Nu=4770) (Method 2) (see section 4.2.3.2).

No HAA concentrations ([HAA]workres) was taken into account for the women out of

employment, students or women missing information, as these data were either not relevant or

not available for them (see section 4.2.3.3).

5.2 Results 
Combined metric levels in ug/day for 6223 women are presented in Table 5.5. The combined 

metrics were categorised here again by tertiles for the purposes of the epidemiologic analysis (Figure 

5.1). 
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The combined metrics can be divided into 1012 filterers, and 5211 non-filterers. Compared to the 

sample size of filterers and nonfilterers reported in the water consumption chapter (Chapter 3), these 

figures represent a 10% and a 5% loss, respectively. Differences are due either to missing area-level 

concentration (due to lack of overlap with modelled exposure period) or missing water consumption 

information. If either the concentration or the water consumption value was missing, then the 

multiplication was not done (Figure 5.2). 

Because reduction factors for boiling apply to all women’s hot beverages, boiling is not as important a 

factor in modifying the combined metric levels as filtering is. Indeed filterers are exposed to 77% the 

DCAA exposures, 72% the TCAA exposures and 63% the BDCAA exposures on average compared 

to non-filterers (Table 5.6), decreases which are consistent with the magnitude of reduction factors: 

BDCAA>TCAA>DCAA reported in Table 5.1. 

25% (251, or 250 for BDCAA, of 1012) of ExpHAAf and 5% (273 of 5211) of ExpHAAnf values 

differed depending on whether the calculation was based on WSZ concentrations at the residence only 

or at the combination of work and residence. This has to do with a combination of factors: few 

workplace WSZs were geocoded within Bradford to begin with, but a large proportion of women also 

work and live in the same WSZ resulting in no change to their exposure levels by this method (see 

Table A5 - 1 and Table A5 - 2). 

Table 5.7 compares (using Spearman correlation coefficients) the number of people who fall into 

overlapping tertiles (low/medium or high) for exposure classification by ingestion, area-level 

concentrations and the combined metrics. 

5.3 Discussion 

In her PhD thesis, Smith (2011) developed the idea of the combined exposure metric which combines 

area-level exposure data and individual level water consumption data. When analysing the combined 

metric she created for THM exposures in the BiB cohort, she included interaction terms between 

Month, Year and WSZ in the ANOVA models, in order to separate all spatial and temporal 

components of variability from the residual. By isolating the variability in individual water use from 

other components of variability, she found that individual variability in water use is the most 

influential factor driving THM exposure, much more so than any temporal or spatial variation in 

THM concentrations at the tap (Smith 2011). This stark result was related to the fact that there is very 

little spatial variation in Bradford. The same is suspected for HAAs (see Chapter 4). Individual 

exposures to HAAs are therefore likely determined by total ingestion of tap water (non-boiled and 

boiled), hot drinks, and tap water-containing foods (Egorov et al. 2003), more so than by 
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concentration in the area of residence. Among volume of water intake, bottled and filtered water 

consumption, and effectiveness of point-of-use filtration in the home, Wright et al. (2006) also 

reported that volume of water intake was the most influential modifier of ingestion exposures. 

Information on tap-water containing foods was unfortunately not available from the BiB 

questionnaire.  

Because ingestion is the major route of exposure to HAAs, accounting for uptake factors to transform 

exposures to ingested dose (taken up by the body) was deemed not necessary. Unless there is a big 

known difference between the uptake of DCAA, TCAA and BDCAA which current literature neither 

addresses nor shows, the added constant will not make any difference to the exposure estimates. 

After comparing the number of people who fall into overlapping tertiles (low/medium or high) for 

exposure classification by ingestion, area-level concentrations and the combined metrics, total tap 

water and HAA concentrations do not have much agreement but total tap water and combined metrics 

are highly correlated (see the pink shade in Table 5.7). Area-level HAA concentrations for trimesters 

1 and 2, and for trimesters 2 and 3 are correlated but not so much for trimesters 1 and 3 (though all of 

these correlations reach p-values<0.005) (see the brown shade in Table 5.7). All three combined 

metrics are highly correlated (blue shade in Table 5.7) while also being significantly correlated with 

all other exposure measures (except for one exception: DCAA combined and [TCAA] trim 1). Area-

level HAA concentrations for trimester 2 and its respective combined HAA metric are highly 

correlated (as expected given that the combined metric was derived using trimester 2 area-level HAA 

concentration, see Table 1.4). The correlations are greater between the combined DCAA and TCAA 

metrics and total water than between the combined DCAA and TCAA metrics and area-level DCAA 

and TCAA concentrations, respectively; however the correlation coefficient is higher between the 

combined BDCAA and the area-level concentration for BDCAA, than between the combined DCAA 

and total tap water. 
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5.4 Tables 

Table 5.1: Boiling and filtering factors used in the combined metric 

factors % change 
BOILING FILTERING BOILING FILTERING 

DCAA 1.44 0.38 43.51 -61.84 
TCAA 0.63 0.33 -36.85 -67.43 
BDCAA 0.44 0.22 -56.50 -78.50 

Table 5.2: Filtering and boiling integrated into the water consumption variables 

Definition Notation Calculation 
Total filtered tap water consumed at home TThf 𝑓(𝑐𝑜𝑙𝑑ℎ) + 𝑏(ℎ𝑜𝑡ℎ) 
Total filtered tap water consumed at work TTwf 𝑓(𝑐𝑜𝑙𝑑𝑤) + 𝑏(ℎ𝑜𝑡𝑤) 

Total unfiltered tap water consumed at home TThu 𝑐𝑜𝑙𝑑ℎ + 𝑏(ℎ𝑜𝑡ℎ) 
Total unfiltered tap water consumed at work TTwu 𝑐𝑜𝑙𝑑𝑤 + 𝑏(ℎ𝑜𝑡𝑤) 
Total unfiltered tap water consumed elsewhere TTeu 𝑐𝑜𝑙𝑑𝑒 + 𝑏(ℎ𝑜𝑡𝑒) 
Legend: 
f filtering factor 
b boiling factor 
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Table 5.3: Combined metric calculation for DCAA exposure (ug/day) using the residence water 
supply zone (WSZ) (Method 1) 

Calculation Notation 

Filtering by 
location 

Total tap water 
ingestion, adjusted for 
filtering and/or boiling x 

Residence WSZ 
concentrations 

Working women HW (TThf + TTwf + TTeu) x [DCAA]res ExpDCAA1 hw 
HW (TThf + TTwu + TTeu) x [DCAA]res ExpDCAA1 h 
HW (TThu + TTwf + TTeu) x [DCAA]res ExpDCAA1 w 
HW (TThu + TTwu + TTeu) x [DCAA]res ExpDCAA1 nf 

Not working, and 
students 

H (TThf + TTeu) x [DCAA]res ExpDCAA2 f 
H (TThu + TTeu) x [DCAA]res ExpDCAA2 nf 

Notation Calculation 
ExpDCAAf ExpDCAA1 hw + ExpDCAA1 h + ExpDCAA1 w + ExpDCAA2 f 
ExpDCAAnf ExpDCAA1 nf + ExpDCAA2 nf 

H: means the woman answered Yes to the filtering at home question; H: means she answered no to 
the filtering at home question (and in some cases, don’t know, NA, or missing). Ditto for W, 
workplace. 
Shaded variables sum to DCAA exposure for filterers (ExpDCAAf); unshaded variables sum to 
DCAA exposure for nonfilterers (ExpDCAAnf) 
(See Table 5.2 for definitions of TThf, TThu, TTwf, TTwu, TTef and TTeu) 
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Table 5.4: Example of a combined metric calculation for DCAA exposure (ug/day) using a combination of work and residence water supply zone (WSZ) 
area-level concentrations (Method 2) 

Calculation 

Filtering 
by location 

Total tap water ingestion 
at home and elsewhere* x 

Residence WSZ 
concentrations + 

Total tap water 
ingestion at 
workplace* x 

Work place WSZ 
concentrations 

Working women HW (TThf + TTeu) x [DCAA]res + TTwf x [DCAA]workres 
HW (TThf + TTeu) x [DCAA]res + TTwu x [DCAA]workres 
HW (TThu + TTeu) x [DCAA]res + TTwf x [DCAA]workres 
HW (TThu + TTeu) x [DCAA]res + TTwu x [DCAA]workres 

Not working 
/students 

Same as previous table (Table 5.3) 

*adjusted for filtering and/or boiling
(See Table 5.2 for definitions of TThf, TThu, TTwf, TTwu, TTef and TTeu) 

Table 5.5: Summary of combined metric (total) based on residence concentrations only in ug/day 

   
Percentile Distribution 

 n total = 11,928 mean sd min 25th %ile Median 75th %ile max n 
Exposure to DCAA ExpDCAA 16.02 10.7 0.4 9.1 13.6 20.3 158.7 6223 
Exposure to TCAA  ExpTCAA 18.15 11.9 0.4 10.3 15.5 23.1 131.7 6223 
Exposure to BDCAA ExpBDCAA 1.80 1.4 0.0 0.9 1.4 2.3 17.5 6223 

Table 5.6: Summary of combined metric for filterers and non-filterers based on residence concentrations only in ug/day 
Percentile Distribution 

n total = 11,928 mean sd min 25th %ile Median 75th %ile max n 
Exposure to DCAA among filterers ExpDCAAf 12.85 10.4 0.4 6.4 10.1 16.3 158.7 1012 
Exposure to DCAA among non-filterers ExpDCAAu 16.64 10.6 0.8 9.7 14.2 20.9 121.0 5211 
Exposure to TCAA among filterers ExpTCAAf 13.70 11.5 0.4 6.5 10.8 17.1 131.7 1012 
Exposure to TCAA among non-filterers ExpTCAAu 19.01 11.8 0.8 11.2 16.4 23.9 129.7 5211 
Exposure to BDCAA among filterers ExpBDCAAf 1.20 1.2 0.0 0.4 0.9 1.5 17.5 1012 
Exposure to BDCAA among non-filterers ExpBDCAAu 1.91 1.4 0.1 1.0 1.5 2.4 14.5 5211 
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Table 5.7: Pairwise Spearman correlation between all 13 exposure measures (rho, p-value and sample size), categorised by tertile 
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[DCAA] in trimester 1 (ug/L) -0.01 1.00 
0.501 

 
8,487 10,521 

[DCAA] in trimester 2 (ug/L) -0.01 0.43 1.00 
0.277 <0.001 

 
9,185 10,515 11,312 

[DCAA] in trimester 3 (ug/L) -0.02 -0.02 0.44 1.00 
0.074 0.022 <0.001 
9,452 10,232 11,029 11,585 

[TCAA] in trimester 1 (ug/L) 0.00 0.29 0.06 -0.29 1.00 
0.789 <0.001 <0.001 <0.001 

 
8,487 10,521 10,515 10,232 10,521 

[TCAA] in trimester 2 (ug/L) 0.02 0.36 0.26 0.09 0.56* 1.00 
0.054 <0.001 <0.001 <0.001 <0.001 

 
9,185 10,515 11,312 11,029 10,515 11,312 

[TCAA] in trimester 3 (ug/L) 0.01 0.63* 0.32 0.25 0.14 0.54* 1.00 
0.201 <0.001 <0.001 <0.001 <0.001 <0.001 
9,452 10,232 11,029 11,585 10,232 11,029 11,585 

[BDCAA] in trim 1 (ug/L) -0.03 0.07 -0.25 -0.25 0.18 -0.20 -0.21 1.00 
0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 
8,487 10,521 10,515 10,232 10,521 10,515 10,232 10,521 

[BDCAA] in trim 2 (ug/L) 0.00 0.12 0.13 -0.22 0.50 0.21 -0.21 0.25 1.00 
0.935 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 
9,185 10,515 11,312 11,029 10,515 11,312 11,029 10,515 11,312 

[BDCAA] in trim 3 (ug/L) 0.02 0.34 0.11 0.20 0.22 0.54* 0.26 0.03 0.24 1.00 

108 



rho 
p-value 
N To

ta
l T

ap
 w

at
er

 
(L

/d
ay

) 

[D
C

A
A

] i
n 

tr
im

es
te

r 1
 (u

g/
L)

 

[D
C

A
A

] i
n 

tr
im

es
te

r 2
 (u

g/
L)

 

[D
C

A
A

] i
n 

tr
im

es
te

r 3
 (u

g/
L)

 

[T
C

A
A

] i
n 

tr
im

es
te

r 1
 (u

g/
L)

 

[T
C

A
A

] i
n 

tr
im

es
te

r 2
 (u

g/
L)

 

[T
C

A
A

] i
n 

tr
im

es
te

r 3
 (u

g/
L)

 

[B
D

C
A

A
] i

n 
tr

im
es

te
r 1

 (u
g/

L)
 

[B
D

C
A

A
] i

n 
tr

im
es

te
r 2

 (u
g/

L)
 

[B
D

C
A

A
] i

n 
tr

im
es

te
r 3

 (u
g/

L)
 

co
m

bi
ne

d 
D

C
A

A
 

(u
g/

da
y)

 

co
m

bi
ne

d 
TC

A
A

 
(u

g/
da

y)
 

co
m

bi
ne

d 
B

D
C

A
A

 
(u

g/
da

y)
 

0.023 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.010 <0.001 
9,452 10,232 11,029 11,585 10,232 11,029 11,585 10,232 11,029 11,585 

combined DCAA (ug/day) 0.66* 0.21 0.44 0.23 0.02 0.16 0.21 -0.14 0.05 0.11 1.00 
<0.001 <0.001 <0.001 <0.001 0.064 <0.001 <0.001 <0.001 <0.001 <0.001 

 
6,223 5,734 6,223 6,061 5,734 6,223 6,061 5,734 6,223 6,061 6,223 

combined TCAA (ug/day) 0.66* 0.17 0.17 0.12 0.26 0.43 0.31 -0.10 0.05 0.25 0.68* 1.00 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 
6,223 5,734 6,223 6,061 5,734 6,223 6,061 5,734 6,223 6,061 6,223 6,223 

combined BDCAA (ug/day) 0.50* 0.06 0.15 -0.09 0.33 0.17 -0.10 0.14 0.56* 0.18 0.53* 0.58* 1.00 
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 
6,223 5,734 6,223 6,061 5,734 6,223 6,061 5,734 6,223 6,061 6,223 6,223 6,223 

Bold with * means rho value>0.5; red indicates that a p-value < 0.005 

Legend: 
total tap water and the combined metrics are highly correlated  
[HAA] trimesters 1 and 2, and trimesters 2 and 3 are correlated; trimesters 1 and 3 less so  
the 3 combined metrics are highly correlated 
trimester 2 of each [HAA] and its respective combined [HAA] are highly correlated (as expected) 
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CHAPTER 6 BIRTH OUTCOMES IN BORN IN BRADFORD 

Setting the scene for Chapter 7, this chapter has multiple goals. It aims to a) describe the BiB birth 

outcomes, i.e. the distributions and rates of the three birth outcomes chosen for this thesis (birth 

weight, term low birth weight (term LBW), and small-for-gestational age (SGA)), as well as some 

obstetric outcomes, b) highlight differences in outcomes by ethnicity, and discuss whether this could 

be due to ethnicity itself or factors which correlate with ethnicity (e.g. environment), c) discuss the 

pros and cons of the three chosen outcomes in assessing fetal growth, and d) explore the 

representativeness of the BiB cohort with respect to Bradford, and England and Wales. 

6.1 Background 

This thesis examines the following common indicators of suboptimal growth during the fetal period: 

birth weight as a continuous measure, term low birth weight (term LBW), and small size for 

gestational age (SGA), all three of which are birth weight-based measures (see definitions in the 

Introduction (Chapter 1), section 1.1.2.1). Rates of preterm delivery (PTD), low birth weight (LBW) 

and very LBW (birth weight less than 1500g) are reported in this chapter for purposes of comparison 

with other studies. 

The proportion of births delivered preterm (including stillbirths) in most developed countries is 5-9% 

(Goldenberg et al. 2008): 5% in the Nordic countries (Morgen et al. 2008), 7% in Hong Kong Chinese 

(Leung et al. 1998), and 12% in the United States with higher rates among Blacks compared to Whites 

(Martin et al. 2012). Moser et al (2008) reported an average 6.2% rate of preterm delivery among 

621,793 live singletons in England and Wales in 2005. 

In 2011, 7% of all live births in England & Wales were LBW according to the ONS (2012). While in 

2005, Moser et al (2008) reported that 6.1% of 624,821 live singletons were < 2500g by weight at 

birth. According to the 2010 US National Vital Statistics, 8.1% of all US babies are LBW (Martin et 

al. 2012) (Table 6.1).  

6.1.1 Ethnic differences in birth weight 

6.1.1.1 Ethnic differences in fetal growth based on ultrasound studies 

Many studies conducted in the UK have demonstrated shorter gestational ages and lower birth 

weights among ethnic minority groups in the UK, and in particular among individuals of South Asian 
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origin (Alvear and Brooke 1978; Chetcuti et al. 1985; Harding et al. 2004; Margetts et al. 2002; 

McFadyen et al. 1984; Patel et al. 2004; Wilcox et al. 1993). Differences in fetal growth patterns 

between ethnic groups have long been recognised (Cole et al. 1998; Rona and Chinn 1986). 

Serial ultrasound measurements of biparietal diameter17, head circumference and abdominal 

circumference in utero show that Black fetuses have significantly longer femur lengths than White 

fetuses (Davis et al. 1993; Shipp et al. 2001), and that Asian fetuses tend to have shorter femur lengths 

than White fetuses (Shipp et al. 2001). A study which compared humerus18 lengths by ethnic group 

also found differences among African American and Asian (but not among Hispanic) fetuses, in 

comparison to White fetuses (Mastrobattista et al. 2004). These studies suggest that there may be 

differences in body length proportions that are important factors in understanding birth weight 

differences by ethnicity. 

An ultrasound study of fetal growth patterns in women of Indian origin showed that the mean 

abdominal circumference measurements of the fetus throughout pregnancy were significantly smaller 

than measurements obtained in White European fetuses. The mean birth weight of the Indian babies 

was 340g less than that of the controls and Indian patients also exhibited a significantly shorter 

duration of gestation (Meire and Farrant 1981). Another study compared fetal growth curves for 

Bangladeshi mothers from serial ultrasonic estimates of both abdominal circumference and estimated 

fetal weight to the growth curve derived from a cohort of White Anglo-Saxon women (Gallivan et al. 

1993). While average fetal weights at 28, 32, and 36 weeks as well as the birth weights were 

significantly different between the two groups, the study suggested that growth rates were similar 

such that even fetuses of uncomplicated Bangladeshi pregnancies were just “constitutively” smaller 

(Spencer et al. 1995). Either that and/or fetal maturity— i.e. the process of achieving full development 

or growth—occurs earlier in gestation in Black and South Asian compared to White European babies 

(Balchin and Steer 2007; Patel et al. 2004). 

6.1.1.2 Nature versus Nurture 

The debate over whether differences in birth weight—in particular between women of South Asian 

and White British origins—are due to particular environmental experiences such as diet and lifestyle, 

or whether they have a genetic underpinning is ongoing. The answer most likely involves a bit of 

both. 

The effect of nutritional deficiencies on fetal size is complex. Naeye and Tafari (1985) studied the 

effect of maternal malnutrition, as assessed by skinfold thickness, on birth weight in an Ethiopian 

17 transverse diameter of the head 
18 the long bone in the arm running from shoulder to elbow 
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population. Women of comparable height with lower skinfold thickness had significantly lighter 

babies. Similarly, a 2010 study on 2394 Jamaican women found that poor maternal nutrition as 

indicated by low weight, height, and BMI is associated with smaller, shorter babies with smaller 

heads (Thame et al. 1997). Yet another study however concluded that this is only true for extreme 

malnutrition (Poppitt et al. 1994). 

West (2011) reports that mean birth weights have increased and that the proportion of LBW babies in 

high income countries has fallen over the last century (Alberman 1991; Chike-Obi et al. 1996; 

Chowdhury et al. 2000). However, rates of LBW across low income countries remain high: around 20 

million infants worldwide are born LBW (United Nations Children's Fund 2004), 95% of whom are 

born within low income countries. But there is still variation between low income regions, for 

example sub-Saharan African nations have reported a lower percentage of LBW births than South 

Asian nations despite their United Nations (UN) classification among the “least developed” countries. 

In fact, half of all LBW babies born in the world were born in South Asia (United Nations Children's 

Fund 2004). This variability, even amongst regions likely to experience equivalent nutritional 

challenges, suggests that LBW is probably not just a consequence of maternal nutrition and 

environment, as is generally thought (although it is in the extreme (Poppitt et al. 1994)).  

This genetic underpinning for differences in birth weight is supported by the persistence of ethnic 

differences in migrant populations, as articulated by West (2011). For example, babies born to South 

Asian mothers in the US, Europe, New Zealand and UK weigh significantly less than the indigenous 

population. Within the US, a number of studies have also reported smaller mean birth weights and 

higher proportions of LBW among South Asians, particularly Asians of Indian origin (Fuentes-Afflick 

and Hessol 1997; Hayes et al. 2008; Madan et al. 2002). Interestingly, in the US, South Asian Indians 

are generally more affluent than other migrant groups but factors usually found to have a protective 

influence against LBW such as high levels of education and high social economic status, are 

reportedly not protective among US Asian Indians (Alexander et al. 2007; Gould et al. 2003). By 

contrast, other migrant groups in the US, for example Mexicans and Hispanics appear to have low 

rates of LBW despite seemingly unfavourable social and economic circumstances (Gould et al. 2003; 

Rosenberg et al. 2005). In these groups migrant status seems to confer some advantage in terms of 

birth weight whereas the continued lower birth weights of South Asians again suggests either an 

element of genetic predisposition or persistent environmental exposures after relocation to the host 

country. Similar trends have been observed in other high income countries including New Zealand 

(McCowan et al. 2004) and Singapore (Hughes et al. 1986). In Europe, a study of birth weight in 

Norway identified the rate of LBW to be higher among Pakistanis than any other ethnic group 

(Vangen et al. 2002).  
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In a large cohort in England and Wales, mean birth weights in 2005 were 3075g, 3082g and 3130g for 

Bangladeshis, Indians and Pakistanis, respectively. This compares to a mean birth weight of 3393g in 

the White British population (Moser et al. 2008). Furthermore, rates of LBW in Indians, Pakistanis 

and Bangladeshis in the UK (10.5%, 9.8% and 10.0% respectively) are almost double the rate for 

White British infants (5.6%). While these data do not exclude preterm births, ethnic differences 

persisted when analyses were restricted to births at 40 weeks gestation (Moser et al. 2008). Similar 

differences were reported for term babies in the UK Millenium Cohort Study (Kelly et al. 2009) 

which also identified significant differences in the prevalence of term LBW between South Asian and 

White British populations, particularly between Pakistanis compared to White British (Table 6.1 part 

b). 

In the BiB cohort, marked differences in birth weight between Pakistani origin and White British 

origin infants have been found to persist even after adjustment for a wide range of potential masking 

and mediating characteristics, and important differences remain whether both parents were UK born, 

one was South Asian born or both were South Asian born (West 2011). This suggests that at least over 

two generations, environmental or lifestyle changes amongst parents who migrated to the UK and 

spent all of their life in the UK have not had a major impact on these differences. 

Five other studies have compared differences in birth weight between first and second generation 

South Asian women in the UK compared to White babies. Four reported no increase in birth weights 

(Draper et al. 1995; Harding et al. 2004; Leon and Moser 2012; Margetts et al. 2002), and one study, 

the smallest with a sample of 331, found higher mean birth weights in second compared to first 

generation South Asian offspring (adjusted mean difference of 280g in birth weights) (Dhawan 1995). 

Despite this evidence in favour of a genetic underpinning to birth weight differences by ethnicity, 

West (2011) notes that these differences could also reflect persistent lifestyle and cultural behaviours 

that remain very similar in first and second generation mothers of close-knit South Asian 

communities. Differences in birth outcomes by ethnicity may also be affected by factors other than 

ethnicity and genes, including maternal exposures during pregnancy such as smoking and alcohol 

intake, maternal cardiovascular health and glycaemia, maternal size, and socio-economic factors 

(Kelly et al. 2009).  

6.2 Methods 

6.2.1 Data 

All variables described in this chapter are defined in Chapter 2, sections 2.1.2 and 2.1.3. 
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The data described in this chapter (as in Chapter 7) were received in February 2013 from the BiB 

team and contained both the routine eClipse and the additional backfilled data.  

Five babies whose gender could not be assigned at birth were excluded from the dataset over 

identifiability concerns. This procedure is in line with what was done in other cohort studies such as 

ALSPAC, the Avon Longitudinal Study of Parents and Children (Golding et al. 2001).  

13,525 pregnancies had eClipse information. As in previous chapters, multiple births and multiple 

entries to BiB were excluded such that each woman was only counted once (see 3.2.3) resulting in a 

baseline sample size of 11874 eligible women with birth weight data. 

6.2.2 Gestational age dating 

Precise dating of a baby’s age at birth is a prerequisite for any reliable measure of growth. 

The ideal measure of gestational age would cover the period between day of conception, which takes 

place less than a day after ovulation (Wilcox 2010) and day of birth. Date of last menstrual period 

(LMP) and ultrasound dating are the two methods largely employed in practice, sometimes in 

combination, to estimate gestational age. Ultrasound dating is considered more accurate than 

menstrual dating (Gardosi et al. 1997), but both methods have their strengths and limitations.  

Gestational age by LMP adds the number of days from the first day of the last normal menstrual 

period to delivery. By Naegele’s rule, expected delivery is 280 days (40 weeks) from the first day of 

LMP, which assumes a 28 day cycle and ovulation on day 14.  

Ultrasound dating measures the size of various parts of the embryo or fetus to estimate its weeks of 

gestational age (Gardosi et al. 1997). It is more accurate when done earlier in the pregnancy. The most 

accurate measurement for dating is the crown-rump length19 of the fetus (which can be done between 

7 and 13 weeks of gestation). After 13 weeks of gestation, fetal age may be estimated using the 

biparietal diameter, the head circumference, the length of the femur, the crown-heel length20, and 

other fetal parameters. 

6.2.3 SGA methods and derivation in BiB 

Reference centile curves show the distribution of a measurement as it changes according to age. 

19 length from the top of the head (or crown) to the bottom of the buttocks (or rump) 
20 length from head to heel 
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Since 1995 the charts used in the UK have been based on the British 1990 (UK90) reference (Cole et 

al. 2011; Freeman et al. 1995) which pools birth data from five original studies collected between 

1983 and 1993 and provides birth centiles for weight, length and head circumference from 23–44 

weeks gestation. 

When new UK–WHO charts replaced those based on the UK90 reference for children 0–4 years of 

age in May 2009 (CM Wright et al. 2010), the UK90 data had to be retained for preterm births as the 

WHO infants were all term births by design and the mean WHO birth weight was appreciably lower 

than in the UK (SACN/RCPCH Expert Group 2007), meaning that new birth centile charts for weight, 

length, and head circumference had to be constructed (Cole 2011). 

Contrary to the original UK90-based birth centiles where birth data was amalgamated with postnatal 

data so that the centiles were smooth and uninterrupted from 23 weeks gestation through to 23 years 

(Cole et al. 1998), the construction of the new UK-WHO chart also necessitated reanalysis of the 

UK90 birth data without the postnatal data, as it became clear that birth and postnatal data need to be 

kept separate (Wright and Parkinson 2004). To do so, Cole et al. (2011) analysed the UK90 reference 

(by sex) using the LMS method. Briefly, the LMS method summarises the changing birth weight 

distribution by three curves representing the median (M), coefficient of variation (S) and skewness 

(L), the latter expressed as a Box-Cox power. Using penalised likelihood the method fits the three 

curves as cubic splines by non-linear regression; the extent of smoothing required can be expressed in 

terms of smoothing parameters or equivalent degrees of freedom (Cole and Green 1992). Centiles 

were generated for babies born 23–42 weeks of gestation, as the data were too sparse to generate birth 

centiles after 42 weeks (Cole et al. 2011). 

The standard deviation scores (SDS) (or z-scores) of a child's birth weight measurement y can be 

calculated from the L, M and S curves, using values appropriate for the child's age and sex. I used the 

Microsoft Excel “LMSgrowth” add-in (“Measurement to/from SDS menu item”) (Pan and Cole 2010) 

to define reference centiles for birth weight from 23–42 weeks (Cole et al. 2011). Serial ultrasound 

measurements of biparietal diameter, head circumference and abdominal circumference in utero 

confirm a slower rate of growth in the female fetus compared to that in the male fetus (Davis et al. 

1993; Parker et al. 1984), which is why adjustment by sex was appropriate.  

To calculate SGA, babies at or below the SDS cut-off corresponding to the tenth centile of a standard 

normal cumulative distribution, i.e. ≤ -1.282, were identified. 
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6.2.4 Statistical analysis 

Pearson's chi-square tests, two-sample t-tests and one-way analysis of variance (ANOVA) tests were 

carried out in STATA 12.1. 

6.3 Results 

6.3.1 Frequency distribution of birth weight  

Birth weight was recorded for 11,874 live singletons and was normally distributed. Mean birth weight 

was 3229.7g (95% CI: 3219.8, 3239.6) (Figure 6.1). The mean birth weight for babies born weighing 

2500g or more, i.e. within a normal weight range, was 3322.3g (3313.9-3330.7); for LBW babies, it 

was 2092.8g (2065.7-2119.9). 

After dividing birth weights into term and preterm births, the mean birth weight for term LBW babies 

was 2293.4g (2276.1-2310.8) (Figure 6.2, top figure). As expected, 50% (N=444) of 894 LBW babies 

were also preterm, but 33% (N=219) of the 663 preterm births were not LBW—as evidenced by the 

preterm births distributed across heavier birth weights (≥2500g) in Figure 6.2 (lower figure). 

6.3.2 Preterm delivery (PTD), low birth weight (LBW), term LBW, and Small-for-Gestational 

Age (SGA) 

7.5% of live singleton births in the BiB cohort were LBW, 0.7% very LBW, 5.6% preterm, and 4% 

term LBW (Table 6.2, Table 6.3, Table 6.4). These rates are the same whether considering all live 

births (N=13,199) irrespective of multiple births and whether women registered several births into the 

cohort (Figure 6.3 part a, Figure 6.4 part a, Figure 6.5 part a), or the set of 11,928 women with 

singleton live births (Figure 6.3 part b, Figure 6.4 part b, Figure 6.5 part b). Hereafter my analyses 

focus on the latter set of women as they are the focus of Chapter 7’s epidemiologic analyses. 

Including both singletons and multiple live births, 8.5% were LBW and 0.9% was very LBW.  

12.1% of live singleton births (born between 23-42 gestational weeks, N=11,863) are below the tenth 

centile of standardised birth weights, i.e. considered small-for-gestational age (SGA) (Table 6.5, 

Figure 6.5). SGA babies weighed on average 2547.4g (95% CI: 2526.5, 2568.4) compared to 3323.8g 

(3314.2-3333.3) for babies considered not SGA. Figure 6.6 shows the distribution of standard 

deviation scores (SDS) which has a mean a bit below zero at -0.17 (95% CI: -0.19, -0.15). 
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6.3.3 Obstetric outcomes  

69% of births were spontaneous births, 10% had no labour, and 20% were induced (either medically, 

surgically, or both). Caesarean sections accounted for 23% of singleton births, a little under half of 

which are due to lack of spontaneous labour onset (Table 6.6). 

Rates of pre-existing hypertension and hypertension with onset during labour only were low in the 

eligible set of mothers (1.0% and 0.7%, respectively). But 5.7% of mothers developed hypertension 

during the pregnancy (4.3% mild to moderate, 1.2% severe, and 0.1% unclassified) (Table 6.6). A 

greater proportion of these pregnancy-induced hypertensive women underwent a caesarean birth 

(43%) compared to non-hypertensive women (22%) (p<0.001 by chi2 test). Rate of pre-eclampsia was 

2.7% in this subset (Table 6.6). 2% (N=243) of BiB women had both pre-eclampsia and pregnancy-

induced hypertension, and another 4% (N=448) had either one or the other.  

While <1.0% of women reported suffering from diabetes prior to pregnancy, 8.1% of eligible women 

carrying singletons developed gestational diabetes during pregnancy making them more likely to have 

large-for-gestational age babies (Table 6.6). 

6.3.4 Relationship between birth outcomes and demographic variables 6.3.4.1 Birth outcomes 

by ethnicity 

Eligible mothers are 37% Pakistani and 33% White British (Table 6.6).  

The gestational age distribution of live singleton births varies by ethnic group (Table 6.2). The women 

in the Black group, though not numerous (N=204), had the highest rates of preterm births (9.8%), 

followed by the women in the Indian (7.7%), the White British (5.6%) and then the Pakistani group 

(4.9%) with one of the lowest preterm delivery rates (p=0.035 by chi2 test). That Black babies are 

more likely born preterm is not a surprising finding, unlike the rate of preterm delivery among 

Pakistani babies (4.9%) which is below the BiB average (5.6%). Mean gestational age was highest in 

the White Other (39.5 weeks), Mixed (White and Black) (39.4 weeks) and White British groups (39.3 

weeks) (p<0.001 by one-way ANOVA).  

As expected, mean birth weights also varied significantly between the main ethnic groups (Figure 6.7, 

Table 6.3). The Bangladeshi, Indian and Pakistani distributions have the lowest birth weights, the 

White groups’ distributions (including White British and White Other) have the heaviest birth 

weights, and the African and Mixed group distributions occupy an intermediate position. Pakistani 

babies are 223.2g (95% CI: 199.9g, 246.4) lighter than the White British group on average (p<0.001 
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by t-test); and Indian and Bangladeshi babies are lighter than the Pakistani babies (p<0. 001 by t-test) 

(mean difference of 82.9g (95% CI: 39.3, 126.5)). 

As reported by Moser et al (2008), the rates of LBW babies among the Indian (11.3%), Pakistani 

(9.0%) and Black (7.8%) women are more than twice the rate among the White women (White 

British: 5.4%, White Other: 4.5%) (p<0.001 by chi2 test) (Table 6.3). The rates of term LBW are also 

very different between Pakistani and White British (5.8% and 2.0%, respectively) while being more 

similar between Indian and Pakistani babies (5.3% and 5.8%) and between White British and Black 

babies (2.0% and 1.6%) (p<0.001 by chi2 test) (Table 6.4).  

Differences in birth weight between ethnic groups are partly accounted for by differences in 

gestational age, particularly for the Indian and Black babies. However, as seen in Figure 6.8, 

differences in birth weight between ethnic groups remain even when considering only those live 

singleton births delivered at 40 weeks. For example, where at 40 weeks mean birth weight was 

3272.7g (95% CI: 3249.3, 3296.1) in the Pakistani group, it was 3484.2g (3458.8-3509.7) in the 

White British group (mean difference of 211.5g (95% CI: 177.0, 246.0) (p<0.001 by t-test)).  

The South Asian groups also experienced greater rates of SGA: 20.6%, 16.5%, and 15.7% 

Bangladeshi, Indian and Pakistani babies are SGA, respectively, compared to 7.6% White British, 

9.4% White other groups, and only 5.9% Black babies (p<0.001 by chi2 test) (Table 6.5). 

6.3.4.2 Birth outcomes by level of deprivation 

These data confirms the Bradford Infant Commission’s findings (BDIMC 2006) that the majority of 

the BiB cohort lives in the lowest quintiles of the Index of Multiple Deprivation 2010 (IMD 2010) 

(Table 6.7). With this uneven distribution in mind, term LBW rate among BiB babies born to the most 

deprived areas (quintile 1 of the IMD 2010) was 4.3% compared to 1.9% in the least deprived 

neighbourhoods (quintile 5) (p=0.145 by chi2 test) and 1.8% in the second least deprived 

neighbourhoods (quintile 4) (p=0.045 by chi2 test) (Table 6.7, Figure 6.9 part a). The same differences 

hold for LBW: 8.2% in quintile 1, compared to 4.3% in quintile 5 (p=0.071 by chi2 test) and 3.9% in 

quintile 4 (p=0.009 by chi2 test) (Table 6.7, Figure 6.9 part a). 

6.3.4.3 Missing ethnicity and IMD 2010 data 

The rates of LBW, term LBW, and SGA (8.7%, 4.5% and 13.3%, respectively) are highest among 

babies with missing deprivation information compared to all other deprivation groupings, and closest 

to quintile 1 (Figure 6.9 part a). Similarly, rates of LBW, term LBW, and SGA (8.7%, 4.6% and 

13.3%, respectively) are the second highest among babies with missing ethnicity information after the 
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Pakistani group which they also most closely resemble (at least LBW) (Figure 6.9, part b). 17% of the 

sample has birth weight data but misses both ethnicity and IMD information (2030 of 11874). 

6.3.5 Other demographics by ethnicity 

In addition to intrinsic differences in expected growths between ethnic groups, ethnicity is also 

correlated with specific demographic, behavioural, and obstetric outcomes (Table 6.6). Pakistani 

origin mothers were slightly older at delivery than White British mothers (mean age 28.0 years and 

27.0 years, respectively, mean difference 1.1 years, 95% CI 0.8, 1.3, p<0.001 by t-test) and were 

lighter at questionnaire completion (mean difference 6.5kg, 95% CI 5.8, 7.2, p<0.001 by t-test), 

shorter (mean difference 4.4cm, 95% CI 4.1, 4.6, p<0.001 by t-test) and had a lower BMI at 

questionnaire completion (mean difference 0.9, 95% CI 0.7, 1.2, p<0.001 by t-test). The proportion of 

Pakistani mother with gestational diabetes (10.9%) was double that of White British mothers (4.9%) 

(p<0.001 by chi2 test), and the proportion with pregnancy-induced hypertension was also higher in 

Pakistani (6.4%) than in the White British group (4.6%) (p<0.001 by chi2 test). Pre-eclampsia rate 

however was similar between ethnic groups (p=0.922 by chi2 test). Differences in parity were also 

found (19% of White British mothers reported a parity of 2 or more compared with 40% of Pakistani 

origin mothers (p<0.001 by chi2 test)), as well as marked differences in employment and marital status 

between the two ethnic groups: 32% of White British mothers were married and 63% currently 

employed and working which contrasts sharply with the Pakistani origin mothers who were almost all 

married (98%) but unlikely to be currently working (23%) (p’s<0.001 by chi2 test). Lastly, 29% of 

White British women were current smokers and 41% never smoked, while only 3% of Pakistani 

women were current smokers and 92% never smoked (p<0.001 by chi2 test both for the comparison of 

current smokers rates between ethnic groups, and never smokers rates between ethnic groups); 34.6% 

of White British women reported drinking alcohol during pregnancy or in the 3 months preceding 

pregnancy compared to 0.3% of the Pakistani women (i.e. 11 women) (p<0.001 by chi2 test) (Table 

6.6). 

6.4 Discussion 

6.4.1 Preterm delivery (PTD), term LBW and SGA rates in BiB: comparisons with BDIMC 

National birth weight data tend to be reported collectively for all gestations (premature and term). 

Variability in rates may also be due to regional differences in the criteria for registration of stillbirths 

and live births, differences in the extent of medical interventions (such as induction and caesarean 

section), and differences in the estimation of gestational age (Wilcox 2010) (see later section 

6.4.3.2.1). Multiple births (twins, triplets etc.) are sometimes presented in the same statistic as well, 

without clear mention. I suspect that this may be the case for the results of the Bradford Infant 
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Mortality Commission which partly prompted the BiB birth cohort study. Indeed, 7.1% of live births 

were preterm, 9.7% babies LBW and 1.5% very LBW on average in the Bradford District between 

1996 and 2003 (BDIMC 2006). These rates are quite a bit higher than those observes in BiB (Table 

6.1). BiB rates are more in line with national trends reported by the Office of National Statistics and 

by Moser et al’s large study (2008). However, within the average weight ranges (2500-4500g), BiB 

babies remain smaller on average than babies born in Yorkshire, or England and Wales as a whole 

(ONS 2012) (Figure 6.10). This is likely due to the high proportion of South Asian babies in this 

cohort, with lower average birth weights (Table 6.3, Table 6.4). 

If the inclusion of multiple births does not explain the differences in rates noted in the BiB cohort 

compared to those reported by the 2006 Bradford District Infant Mortality Commission report, either 

a) Bradford birth outcome indicators greatly improved between the time that the 2006 Bradford

District Infant Mortality Commission report came out and the time BiB recruitment began and was 

under way (2007-2010), or b) the BiB cohort is not fully representative of the Bradford community as 

a whole, or both (see later section 6.4.3.3). 

When applied to the reference population, standardised birth weights (SDS) will by definition be 

distributed according to a normal distribution, centred at 0 with standard deviation of 1. A negative 

mean for the population distribution suggests that this population is more prone to being small-for-

gestational age and sex than the reference population, with associated consequences. Figure 6.11 plots 

SGA rate by gestational age and sex. 51% of SGA babies are males. Likely in part due to relationship 

between prematurity and fetal growth restriction, a greater proportions of SGA babies are born at 

earlier gestational ages.  

Rates of pregnancy-induced hypertension vary substantially in high-income countries. This is likely 

due to underascertainment and/or misclassification. Accurate pre-eclampsia statistics are also difficult 

to obtain because the condition ranges from extremely mild to severe, and mild cases—which may not 

have any effect on pregnancy—are not always included in official figures. In addition, as the majority 

of cases of pregnancy-induced hypertension and pre-eclampsia occur at term, the recent trend in 

Europe towards increasing rates of early elective delivery may reduce their frequency (Koopmans et 

al. 2009; MacDorman et al. 2010; Roberts et al. 2011). Despite these caveats, pregnancy-induced 

hypertension and pre-eclampsia rates observed in BiB are within the ranges (4% to 10%, and 2% to 

5%, respectively) observed in other studies (Hernandez-Diaz et al. 2009; Klemmensen et al. 2007; 

Roberts et al. 2011; Ros et al. 1998). The same is true for the rate of gestational diabetes (8.1%) with 

2-12 % of women developing gestational diabetes in the UK, more commonly if they are from ethnic 

minority groups (Department of Health 2012). 
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6.4.2 Relationship between birth outcomes and demographic variables 

6.4.2.1 Birth outcomes by ethnicity 

As per Moser’s study (2008), I find many variations in rates of poor birth outcomes by ethnic groups. 

Moser et al (2008) reported that the Caribbean group had the highest percentage (9.7%) of live 

singletons born preterm followed by the African (7.0%), Indian (6.9%), Pakistani (6.8%) and then 

White British (6.1%) groups, and that mean gestational age was highest in the White groups (39.3 

weeks for White British and 39.0 weeks for Pakistani). Compared to this study, the low rate of 

preterm delivery among Pakistani mothers in BiB (4.9%) is unexpected. Kelly et al (2009), albeit on a 

much smaller sample of Pakistani births from the Millenium Cohort Study (N=687 out of a total 

sample of 16,157 babies broken into six ethnic groups), also reported their lowest rate of preterm 

delivery among the Pakistani group (5.7%) though this rate is still greater than ours. 

Moser et al (2008) reported the same relationship of birth weight by ethnicity as observed in this 

study: Bangladeshi, Indian and Pakistani babies are lightest, White groups (including White British 

and White Other) are heaviest, and the African and Mixed groups are in between. Pakistani babies 

were 223.2g lighter than the White British group on average. At 40 weeks gestation, the 212g 

difference observed between the White British and Pakistani groups remains significant and similar to 

the difference reported by Moser et al (2008) (approx. 210g per Figure 4 in that reference). 

It is noteworthy that ethnicity information in BiB is self-reported. This could add noise to the variable 

as women’s cultural vs. racial ethnic belongings may be different, and it is unclear which one is 

reported. Critically, ethnicity information is also collected for the mother, not for the baby. If a couple 

with different ethnic backgrounds parent a child, that baby’s ethnicity may not be accurately reflected 

in the maternal ethnicity used in these analyses. This is likely to introduce additional random error in 

the data and effect estimates, as controlling for ethnicity may not be enough to capture the complexity 

of BiB babies’ heritage. 

6.4.2.1.1 Demographic breakdown by ethnicity: smoking during pregnancy  

Ethnicity plays an important role either in itself as a genetic marker, or as a proxy marker for a host of 

singular maternal characteristics and behaviours (Table A7 - 2). If ethnicity itself as a genetic marker 

helps distinguish between pathologically and constitutively small babies at birth, differences may be 

underestimated if behaviours associated with ethnicity go unacknowledged.  

For example, smoking during pregnancy is known to predict lower birth weight (see Chapter 7). 

Consistent with previous reports (Hawkins et al. 2008; Health Survey for England 2004), smoking 

and alcohol consumption were uncommon among Pakistani mothers. Given that smoking habits vary 
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between the two predominant ethnic groups (29% current smokers and 41% never smokers among the 

White British women vs. 3% current and 92% never smokers among the Pakistani group), babies’ 

birth weights are naturally differentially affected in the two groups. As per above, babies born to 

Pakistani mothers weigh 223.2g (95% CI: 199.9, 246.4) less on average than the babies born to White 

British mothers. This difference increases to 284.2g (95% CI: 254.2, 314.2) for babies born to non-

smoking Pakistani and non-smoking White British women. This increase in birth weight is due to an 

increase in average birth weights among the non-smoking White British mothers (3425.1g, 95% CI 

3399.7, 3450.4, N=1,629) compared to the average for White British mothers (3359.9g, 95% CI 

3342.5, 3377.2, N=3,953), 29% of whom smoked during pregnancy (rather than to a decrease in birth 

weights among non-smoking Pakistani mothers (3140.9g, 95% CI 3124.7, 3157.0, N=3,972) 

compared to average Pakistani mothers (3136.7g, 95% CI 3121.2, 3152.2, N=4,341)). At 40 weeks 

gestation, the difference in birth weights between White British and Pakistani babies born to mothers 

who never smoked is 271.4g (226.7, 316.2) (p<0.001 by t-test) (down from 284.2g). (There were too 

few Pakistani women who smoked (N=138) to compare the birth weights of babies born to smoking 

mothers.) 

In sum, because White British mothers smoke substantially more than Pakistani mothers, their birth 

weights are more affected by smoking than Pakistani babies’. The same may be true for rates of 

alcohol and caffeine consumption and employment which are lower among the Pakistani women 

compared to the White British. Conversely, the rate of gestational diabetes, which is well established 

to increase birth weight (Dornhorst et al. 1992; Oldfield et al. 2007), is higher among the Pakistani 

women (Table 6.6). Further investigation of the effects of these factors on birth weight is outside the 

scope of this thesis. 

The observation that prevalence of smoking among Pakistani and White British mothers is different 

(and that this difference carried over to birth weight) is not new. A similar result was found in a study 

in Nottingham where smoking in pregnancy (as recorded at the first visit) was prevalent in 28% of 

European mothers compared to only 2% of Asian mother, and the inter-ethnic differences in birth 

weight were most apparent for non-smokers, amounting to over 250g at 40 weeks’ gestation (Wilcox 

et al. 1993). 

6.4.2.2 Birth outcomes by level of deprivation 

The LBW, term LBW and SGA rates by deprivation status reported for BiB (see Table 6.7) are 

consistent with (though again more moderate than) the Bradford District Infant Mortality 

Commission’s report that 12.5% of the babies born to mothers living in the most deprived 20% of 

areas (quintile 1 of the IMD 2010) were LBW compared to 6.2% in the least deprived neighbourhoods 

(quintile 5) (BDIMC 2006)  
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I suspect that deprivation status per se is likely not the proximal cause of LBW. As such, a or several 

risk factors for LBW on a population basis must therefore be more common among lower socio-

economic status women. A combination of lifestyle behaviours (including poor maternal nutrition 

during pregnancy), or maternal stress—whether chronic, psychological, social or physical—due to 

heightened disadvantage, perceived or real (Sapolsky 2005), could be the underlying explanation (see 

Chapter 7, section 7.4.8.3.2). 

6.4.3 Pros and Cons of term LBW and SGA 

6.3.3.1 Identifying pathologically small babies 

Identifying pathologically small babies is a challenging undertaking. Several birth weight-based 

measures attempt to do so. I decided to study three of them, each with different advantages and 

limitations, in order to get the most well-rounded picture possible and hopefully a glimpse at the truth. 

6.4.3.1.1 Term LBW 

LBW is a recognised measure that is often used in the clinical setting, it has been linked with effects 

in adult life such as asthma, reduction in cognitive function, metabolic syndrome and heart disease 

(see Introduction (Chapter 1)). However, as LBW does not take age at birth into consideration, I 

elected to study term LBW, which has been linked to a number of environmental risk factors. 

Excluding preterm births means that growth restricted babies who are also born preterm may now be 

overlooked. Without a better understanding of whether fetal growth restriction causes prematurity, or 

whether fetal growth restriction and prematurity share the same aetiology, it is difficult to definitively 

determine which compromise (not accounting for gestational age at birth, or losing all preterm births) 

is best. Term LBW was chosen as the more restrictive but safer approximation of growth restriction. 

6.4.3.1.2 SGA in a multi-ethnic cohort 

The SGA measure is the most respected categorical measure of fetal growth based on birth weight 

data, as it identifies the smallest babies within each gestational age group. However, as a statistical 

construct, it is not clear that the smallest babies by birth weight are the only growth restricted babies 

in a cohort. In addition, the choice of appropriate reference by which to define SGA is critical and can 

vary: reference curves can be internal or external and must reflect the population at hand. On occasion 

they adjust for a host of possible factors such as height and weight of the parents, ethnicity and even 

smoking. They can also vary in age, and/or not be regionally representative.  
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The centiles used in the UK90 referent to generate the SGA analysed in this thesis were created based 

on birth data from five studies conducted between 1983 and 1993 and mainly based in East Anglia, 

UK (Cole et al. 2011). Nothing was known on the ethnic background of the women and babies 

included in the birth weight surveys which make up the referent, as the relevant information was not 

available. As such, this growth reference sample can be said to be representative of British ethnically 

Caucasian children (Cole et al. 1998), but was not necessarily developed for use on an a multi-ethnic 

population such as the BiB cohort. In light of this it does not come as a surprise that the SDS 

distribution in this cohort is centred below zero (section 6.3.2)—just as it was reported that the growth 

of infants in Bradford differs from the WHO standards (Wright et al. 2012). 

Despite the above, producing ethnic group-specific references is not a satisfactory approach either, as 

the large and representative samples required are simply not available, the definition of ethnicity itself 

brings with it its own challenges and pitfalls, and ethnic group is only one of several non-pathological 

variables affecting weight—the others include parity, maternal height, weight at first visit, sex of the 

baby and social deprivation (Altman and Coles 1980; Gardosi et al. 1992). Adjustment of such ethnic 

factors may therefore not result in a true reflection of the growth potential of a fetus (Gardosi 2009). 

Cole et al (1998) suggest that a better answer would be to use a series of small-scale surveys to 

summarize the growth status of specific ethnic minority children in terms of their mean SDS on the 

British reference, which could be used to recalibrate the reference for use with such groups.  

In addition to the difficulty of finding an appropriate reference for the population at hand, references 

are populated by data on babies who were born. In other words, the distribution of births at a given 

gestational age is not a random sample of all pregnancies that have attained that gestational age but 

restricted to those that ended at that point. The optimal approach would be to have longitudinal 

information on a large population of unselected pregnancies measured in utero by ultrasound to 

estimate fetal weight, allowing fetuses or births at a given point in gestation to be compared with the 

appropriate referent group of all fetuses of comparable gestational age (Hutcheon and Platt 2008; 

Savitz et al. 2002). This is what Gardosi’s customised SGA measure does, which is arguably one of 

its greatest strengths (see Introduction (Chapter 1)). 

The SGA measure can be derived for a greater number of babies than the term LBW, as it does 

not exclude 663 preterm births. However, for women for whom both SGA and tLBW were derived 

(N= 11,200, see Figure 6.5b), term LBW and SGA have 91% agreement by Kappa statistic for 

agreement between categorical variables. 
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As well as term LBW and SGA, I have chosen to look at continuous birth weight, which makes no 

arbitrary judgement as to the appropriate cut-off. If in fact some condition or exposure shifts the entire 

birth weight distribution, the identification of that shift will be enhanced when examining mean birth 

weight as compared with the proportion below some cut point, such as 2500g. The rationale is that, 

although the growth restricted infants cannot be identified individually, shifting all birth weights 

downward will increase the number and proportion of births that are abnormal (Savitz et al. 2002).  

If these inter-ethnic differences reported above remain unadjusted for, using cut-off limits to define 

high-risk populations can lead to significant error. For example, according to Gardosi et al (1994), 

ignoring a 200g+ “normal” difference and using the same tenth centile cut-off for all groups would 

mean that 75% of Asian SGA babies would in fact not be below this limit if their own norm was used. 

For a summary of pros and cons of each measure investigated, see Table 6.8. All three of these birth 

outcome measures are birth weight-based. Birth weight alone cannot explain what contributes to 

differences in size. It reflects a number of components including bone, muscle, fat and fluids (Shields 

et al. 2006). Thus, a low birth weight does not indicate whether for example, an infant is universally 

small, has a large head and a small body, or is small but has a high percent body fat (West 2011).  

6.4.3.2 Limitations of dating methods 

Compounding the above mentioned issues, consideration must also be made for the challenges 

associated with accurate gestational age estimation. Both term LBW and SGA measurements rely on 

accurate estimation of the duration of gestation, errors in which will result in shifts in the percentile of 

weight for age (e.g. an infant of a given weight could represent a normal 36-week birth, a large 34-

week birth, or a small 38-week birth), while continuous birth weight models adjust for gestational age 

(Savitz et al. 2002). 

6.4.3.2.1 Dating based on last menstrual period (LMP) 

There are two main issues with using LMP to estimate gestational age. The first is recall error, as 

most women do not keep menstrual diaries, particularly if not planning the pregnancy, or if the 

pregnancy resulted from contraceptive failure. Most women can recall their LMP within 1-2 days 

(Wegienka and Baird 2005), but for a few, the error is much greater. Late entry into prenatal care or 

becoming pregnant soon after a previous birth (such that there may not be a LMP to recall) add to the 

problem. Undetected miscarriages or delayed ovulation before the current pregnancy may cause 

erroneously long gestation, while early pregnancy spotting may be mistaken for LMP and cause 

erroneously short gestation. In addition, pregnant women who cannot recall any date for their LMP 

are likely to have less education and in other ways not be representative of the general population 

adding non-systematic bias to the equation (Buekens et al. 1984). 
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The second is the assumption that conception takes place immediately after ovulation, which in turn 

occurs at a variable time after LMP. The LMP approach assumes that all women have regular and/or 

28-day cycles, while in fact, only 10% of women actually ovulate on day 14 (Baird et al. 1995; 

Lenton et al. 1984; Wilcox et al. 2000). A US study found that onset of LMP to ovulation was 17 days 

on average, but extended up to a maximum of 8 weeks (Baird et al. 1991).  

Because the distribution of menstrual dating error is positively skewed, any birth weight at term can 

appear at later gestations than it actually should be, leading to an artificial flattening of the growth 

curve and apparent increase in post-term births (Gardosi et al. 1997). Unadjusted, these data do show 

this flattening tendency (Figure 6.12), while in reality growth in utero in a normal pregnancy 

continues without diminished velocity until birth (Williams et al. 1982)  

6.4.3.2.2 Ultrasound dating 

Ultrasound-based adjustment of LMP improves estimates of gestational age, and substantially reduces 

the percentage of babies born post-term (presumably by replacing many of the LMPs that had 

included long follicular phases21) (Wilcox 2010). But measurement error remains inevitable. A 

difference of just 2mm in head diameter of femur length can affect the estimated fetal growth by half 

a week (Gjessing et al. 2007).  

Furthermore, and critically for this multi-ethnic population, ultrasound dating assumes that individual 

variation in growth is minimal, i.e. that the size of a fetus in the first half of pregnancy is a function of 

age alone, not of rate of growth, which is not strictly true. As such, any natural variations in the rate of 

fetal growth are automatically translated into variations in fetal age. For example, given two fetuses 

conceived on the same date, the one that grows more rapidly will be assigned an older age by 

ultrasound than the one growing more slowly. Natural variation in fetal growth in the first half of 

pregnancy adds error to the ultrasound estimate of fetal age (Henriksen et al. 1995). This may come to 

bear if an exposure damages the growth of fetuses but has no effect on length of pregnancy: such an 

exposure could, on the basis of ultrasound-assigned age, appear to increase the risk of preterm 

delivery (Wilcox 2010). 

Based on the above, BiB’s gestational age estimates—on whose origin I have little information other 

than that they summarised individual doctors’ best estimates based on available LMP and ultrasound 

information (see Chapter 2)—are likely to contain some errors which could affect a) classification of 

21 i.e. phase of the menstrual cycle during which follicles in the ovary mature (days 0 to 14 of a 28 day cycle) 
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cases as term LBW, b) SGA derivations which are gestational age-specific and c) models on birth 

weight and term LBW which adjust for gestational age at birth. 

6.4.3.3 Outcome misclassification 

As summarised in Smith (2011), outcome misclassification in general can cause bias in health-risk 

estimates (in addition to loss of study power) (Armstrong 1998). If misclassification of fetal growth 

restriction is non-differential with regard to exposure status/level, effect estimates are simply biased 

towards the null (Armstrong 1998). Where a continuous outcome measure has been used, e.g. birth 

weight, random measurement error would cause loss of study power, but would not bias risk estimates 

(Armstrong 1998). However, if attrition from the cohort occurs preferentially in one subgroup (e.g. 

Pakistani) over the others, then the impact on estimates may be differential. 

6.4.4 Cohort representativeness 

The cohort profile published in 2012 (Wright et al. 2012) reports that >64% of all pregnant women in 

Bradford who registered for prenatal care at Bradford Royal Infirmary between 2007-2010 were in 

fact enrolled in BiB, suggesting good representativeness. It concludes that if anything, BiB may have 

recruited a lower proportion of younger mothers (age: 20-24 years) compared with Bradford mothers 

not in the cohort, and a higher proportion of South Asian mothers and nulliparous mothers (Wright et 

al. 2012).  

In terms of internal validity, a particularly low rate of preterm delivery among BiB’s Pakistani women 

was observed compared to previous studies. In addition, Pakistani women were on average 

significantly shorter White British women in BiB (see section 6.3.5), but their mean BMI (27.9 (27.8- 

28.1) (N=4,158)) was also lower than the White British women’s (28.9 (28.7- 29.0) (N=3,832)) 

(p<0.001 by t-test). While the height pattern by ethnic group is similar to that reported in other studies 

(Kelly et al. 2009), Pakistani women enrolled in BiB have relatively low BMIs in comparison to 

national data (Health Survey for England). Weighing less for given heights, they may therefore 

represent a healthier subgroup of Pakistani women. People who agree to join research studies do tend 

to be healthier than the general population (also known as the “healthy volunteer effect” (Howe et al. 

1988)). 

Secondly, as recruitment to BiB occurred relatively late in pregnancy (26-28 weeks), women who 

give birth before 26-28 weeks’ gestation—which, granted, will be a small proportion as these 

represent very preterm births—could not be captured (Wright et al. 2012).  
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Thirdly, attrition of enrolled women with difficult pregnancies or with poor birth outcomes is 

suspected. For instance, five babies whose gender could not be assigned had to be excluded from the 

dataset for identifiability reasons. Similarly, between the February 2012 and February 2013 data 

extracts received (see Chapter 2), there were a number of withdrawals from the study which precludes 

use of any of these participants’ data (Table 6.9). When the number of term LBW babies is in the 

hundreds (450 to be specific, see Figure 6.4), losing 256 babies with possibly high term LBW 

prevalence could have an impact. It is not hard to imagine that the reason for many of these 

withdrawals could be related to a pregnancy complication or poor birth outcome which would 

differentially bias the sample. However the reason for withdrawal cannot be ascertained without the 

very supporting data which are not available to us.  

Due to the potential non-random missingness pattern of ethnicity and deprivation status among those 

with birth weight information in this cohort, the differences in rates presented in this chapter stratified 

by ethnicity and deprivation status may underestimate the true differences in LBW, term LBW, and 

SGA rates between ethnicities and quintiles of deprivation. However, attrition, if present, remains low 

(< 10%). 

Lastly, as described in section 6.3.4.3, a non-negligible portion of women who were recruited to BiB 

and eligible for this study did not report their ethnicity (17%), and could not be classified by level of 

deprivation as they lacked residence information (17%)—with substantial overlap between the two 

groups (97%). These women with missing information also had high rates of LBW, term LBW and 

SGA (see section 6.3.4.3). Their outcomes rates were most similar to those of the Pakistani and low 

IMD (quintile 1) women such that I suspect that demographic information on some of the most 

deprived women recruited to BiB may be missing.  

The BiB cohort is unique in that it is based in a city which is unusually poor and deprived compared 

to the rest of the UK, and is made up of two large ethnic contingencies of women—namely White 

British and Pakistani women—to study separately and to contrast to one another. BiB constitutes a 

huge opportunity to study a population at high risk of poor birth outcomes in the UK. 
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6.5 Tables 

Table 6.1: Comparison of rates with other studies a) overall and b) by ethnicity (the statistical 
construct SGA is not included as the prevalence is typically determined by definition) 
PTD=preterm delivery, LBW=low birth weight, vLBW=very low birth weight 

a) overall

% 

BiB Bradford District 
Infant Mortality 

Commission 
(1996-2003) 

England & Wales 
(2011) (ONS) 

Moser et al (2008) US National Vital 
Statistics for 2010 
(Martin et al. 2012) 

PTD 5.6 7.1 6.2 
LBW 7.5 9.7 7.0 6.1 8.1 
vLBW 0.7 1.5 

b) By ethnicity

% 

BiB Moser et al (2008) Kelly et al (2008) 

WB P WB P WB P 
LBW 5.4 9.0 5.6 9.8 5.2 13.0 
Term LBW 2.0 5.8 1.4* 6.0* 
*these values were derived from regression models adjusting for gender, gestational age, parity,
maternal age, maternal height, pre-pregnancy weight, any complications during pregnancy 
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Table 6.2: Gestational age at birth (and rate of preterm delivery) by ethnicity (11,928 eligible women with singletons, but only 11,875 had live births with 
recorded gestational age) (PTD=preterm delivery) 

Asian, Asian British White Black Mixed Other♯ Missing Total 

Bangladeshi Indian Pakistani White British White Other^ 

White 
and 

Black* 

White 
and 

South 
Asian** 

Gestational age, weeks (%) 
<28 NA NA 0.1 0.2 NA 0.5 NA NA 0.8 0.1 0.2 
28-31 NA 0.3 0.7 0.7 0.4 0.5 1.0 NA 0.4 0.9 0.7 
32-36 4.4 7.5 4.0 4.7 4.1 8.8 4.0 5.5 3.0 5.8 4.7 
37-39 29.7 25.3 24.2 17.9 17.9 17.7 18.0 18.2 20.6 21.9 21.4 
39-41 64.2 66.5 69.9 74.5 75.4 71.1 74.0 76.4 73.0 70.4 71.6 
≥42 1.8 0.5 1.1 2.0 2.2 1.5 3.0 NA 2.3 0.9 1.4 

Total 100 100 100 100 100 100 100 100 100 100 100 

< 32 weeks (very preterm) (%) 0.0 0.3 0.9 0.9 0.4 1.0 1.0 0.0 1.1 1.1 0.9 
< 37 weeks (preterm) (%) 4.4 7.7 4.9 5.6 4.5 9.8 5.0 5.5 4.1 6.8 5.6 

Mean gestational age, weeks 39.1 38.9 39.1 39.3 39.5 38.9 39.4 39.2 39.2 39.0 39.2 

Number of births (n) 229 388 4341 3954 268 204 100 55 267 2069 11875 
Row percentage 1.9 3.3 36.6 33.3 2.3 1.7 0.8 0.5 2.2 17.4 100.0 

^includes White Irish, and all other White self-reported groupings 
*Mixed White and Black includes White and a) Black Caribbean, or b) Black African
** Mixed White and South Asian includes White and a) Indian, b) Pakistani, c) Bangladeshi, d) Indian Caribbean, e) African Indian 
♯Other category includes Chinese, Japanese, Filipino and Vietnamese 
NA means there were no data to calculate that gestational age % 
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Table 6.3: Birth weight (and LBW rate) by ethnicity (11,928 eligible women with singletons, but only 11,874 had live births with recorded birth weight, see 
Figure 6.3) (LBW=low birth weight) 

Asian, Asian British White Black Mixed Other Missing Total 

Bangladeshi Indian Pakistani White British White Other 
White and 

Black 
White and 

South Asian 
Birth weight, grams 
(%) 
< 1,500 NA 1.0 0.7 0.7 NA 0.5 1.0 NA 1.5 0.8 0.7 
1,500- 0.9 2.3 1.7 1.2 1.5 2.9 2.0 NA 0.4 1.7 1.5 
2,000- 6.1 8.0 6.7 3.5 3.0 4.4 3.0 5.5 3.0 6.1 5.3 
2,500- 34.5 33.0 27.8 16.6 17.2 20.1 8.0 25.5 17.6 25.8 23.2 
3,000- 42.8 38.7 39.8 38.0 34.3 35.8 46.0 41.8 40.8 37.8 38.8 
3,500- 14.4 14.2 19.4 28.3 30.6 26.0 29.0 25.5 29.2 20.6 23.0 
4,000- 1.3 2.6 3.5 10.2 10.5 9.8 10.0 1.8 5.6 6.6 6.5 
4500- NA 0.3 0.6 1.3 2.6 0.5 1.0 NA 1.5 0.6 0.9 
≥ 5,000 NA NA 0.0 0.1 0.4 NA NA NA 0.4 0.1 0.1 

Total 100 100 100 100 100 100 100 100 100 100 100 

< 1,500g (%) 0.0 1.0 0.7 0.7 0.0 0.5 1.0 0.0 1.5 0.8 0.7 
< 2,500g (LBW) (%) 7.0 11.3 9.0 5.4 4.5 7.8 6.0 5.5 4.9 8.7 7.5 

Mean birth weight, g 3068.2 3045.4 3136.7 3359.9 3412.8 3260.2 3352.2 3201.6 3308.3 3186.6 3231.1 
(95% CI) (3012.9, 3123.4) (2994.2, 3096.6) (3121.2, 3152.2) (3342.5, 3377.2) (3346.3, 3479.2) (3181.4, 3339.0) (3240.5, 3463.9) (3074.0, 3329.3) (3239.3, 3377.3) (3162.7, 3210.4) (3219.8, 3239.6) 

Number of births (n) 229 388 4341 3953 268 204 100 55 267 2069 11874 
Row percentage 1.9 3.3 36.6 33.3 2.3 1.7 0.8 0.5 2.2 17.4 100.0 
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Table 6.4: Birth weight at term (and term LBW rate) by ethnicity (11,928 eligible women with singletons, but only 11,211 had live births at term with 
recorded birth weight and gestational age, see Figure 6.4) (term LBW=low birth weight at term) 

Asian, Asian British White Black Mixed Other Missing Total 

 

Banglades
hi Indian Pakistani White British 

White 
Other 

White and 
Black 

White and 
South Asian 

Birth weight at term, grams 
(%) 
< 1,500 (at term) NA NA NA NA NA NA NA NA NA NA NA 
1,500- (at term) 0.5 0.3 0.5 0.2 0.4 NA NA NA NA 0.4 0.3 
2,000- (at term) 4.1 5.0 5.3 1.8 2.0 1.6 3.2 3.9 2.0 4.2 3.7 
2,500- (at term) 35.6 34.4 28.1 16.1 16.0 20.1 7.4 25.0 17.2 25.7 23.2 
3,000- (at term) 43.8 41.9 41.6 39.7 35.9 38.6 47.4 42.3 42.6 40.0 40.6 
3,500- (at term) 14.6 15.4 20.3 30.0 31.6 28.3 30.5 26.9 30.5 22.0 24.3 
4,000- (at term) 1.4 2.8 3.7 10.8 10.9 10.9 10.5 1.9 5.9 7.0 6.9 
4500- (at term) NA 0.3 0.6 1.4 2.7 0.5 1.1 NA 1.6 0.7 0.9 
≥ 5,000 (at term) NA NA NA 0.1 0.4 NA NA NA 0.4 0.1 0.1 

Total 100 100 100 100 100 100 100 100 100 100 100 

< 2,500g at term (term LBW) 
(%) 4.6 5.3 5.8 2.0 2.3 1.6 3.2 3.9 2.0 4.6 4.0 

Mean birth weight at term, g 3092.0 3127.4 3188.4 3424.8 3455.9 3363.8 3420.2 3227.5 3369.3 3255.7 3290.1 

(95% CI) 
(3038.8, 
3145.2) 

(3083.0, 
3171.8) 

(3174.4, 
3202.4) 

(3409.4, 
3440.2) 

(3392.9, 
3518.9) 

(3298.6, 
3428.9) 

(3328.2, 
3512.2) 

(3098.7, 
3356.3) 

(3311.2, 
3427.3) 

(3234.4, 
3277.1) 

(3281.2, 
3299.0) 

Number of term births (n) 219 358 4130 3733 256 184 95 52 256 1928 11211 
Row percentage 2.0 3.2 36.8 33.3 2.3 1.6 0.8 0.5 2.3 17.2 100.0 
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Table 6.5: Standard deviation scores (SDS) (and rate of SGA) by ethnicity (11,928 eligible women with singletons, but only11,863 had live births with 
recorded birth weight, sex of child, and gestational age, and born within 23-42 window of gestational weeks, see Figure 6.5) (SGA=small-for-gestational age) 

Asian, Asian British White Black Mixed Other Missing Total 

Banglades
hi Indian Pakistani 

White 
British 

White 
Other 

White and 
Black 

White and 
South 
Asian 

Standard deviation score (%) 

 ≤ -1.282 (10th percentile) 20.6 16.5 15.7 7.6 9.4 5.9 6.0 12.7 8.3 13.3 12.1 
>-1.282 and ≤ -0.674 (10-25th p) 22.4 27.1 21.7 14.6 13.9 15.7 15.0 21.8 15.8 18.1 18.4 
>-0.674 and ≤ 0 (25-50th p) 26.8 28.9 28.5 26.5 24.3 30.9 32.0 23.6 29.0 29.2 27.9 
>0 and ≤ 0.674 (50-75th p) 18.4 16.0 20.6 26.1 25.8 26.5 26.0 29.1 27.4 20.8 22.7 
>0.674 and ≤ 1.282 (75-90th p) 9.7 8.0 8.7 15.5 14.6 11.3 13.0 5.5 12.0 11.4 11.7 
> 1.282 (90th percentile) 2.2 3.6 4.8 9.9 12.0 9.8 8.0 7.3 7.5 7.2 7.1 

Total 100 100 100 100 100 100 100 100 100 100 100 

SGA (i.e. SDS ≤ -1.282 (%)) 20.6 16.5 15.7 7.6 9.4 5.9 6.0 12.7 8.3 13.3 12.1 

Mean SDS -0.466 -0.464 -0.351 0.055 0.070 0.019 -0.013 -0.267 -0.036 -0.213 -0.172 

Number of births (n) 228 388 4339 3947 267 204 100 55 266 2069 11863 
Row percentage 1.9 3.3 36.6 33.3 2.3 1.7 0.8 0.5 2.2 17.4 100.0 
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Table 6.6: Demographic, behavioural and obstetric variables by ethnicity: frequency (above) and percentage (below) within that ethnic group (11,928 eligible 
women with singletons, but only 11,875 had live births) 

N total =11,875 
N (% of ethnic groups represented) 

White British 
3954 (33.3%) 

Pakistani 
4341 (36.6%) 

Other 
1511 (12.7%) 

Missing 
2069 (17.4%) 

Total 
11,875 

chi2 test p-value 
(*one-way anova for 

continuous variables) 
mother and baby demographic variables 
mother's age at time of birth 

<20 11.3 2.2 5.0 6.6 6.3 <0.001 
20-24 27.1 25.7 20.4 27.2 25.8 
25-29 28.3 35.4 35.1 33.0 32.6 
30-34 20.1 24.2 25.9 21.3 22.5 
35-40 11.1 10.3 11.5 9.8 10.6 
≥40 2.2 2.2 2.1 2.2 2.2 

registerable parity 
no previous birth registration 48.4 31.7 47.6 33.0 39.48 <0.001 
1 previous registerable birth 29.2 24.3 27.3 27.6 26.88 

2 or more previous registerable births 19.2 39.7 21.1 36.8 30 
missing 3.3 4.3 4.1 2.6 3.64 

marital status 
married or re-married 31.8 97.5 74.7 1.0 55.9 <0.001 

single (never married) 64.6 1.0 23.7 0.7 25.0 
divorced, separated, or widowed 3.5 1.4 1.5 0.1 1.9 

missing 0.1 0.1 0.1 98.3 17.2 
cohabitation status 

living with a partner (father of the baby or not) 71.3 93.3 84.9 1.3 68.9 <0.001 
not living with a partner 28.6 6.6 15.0 0.4 13.9 

missing 0.1 0.1 0.1 98.3 17.2 

maternal height (cm) (N) 164.1 (3891) 159.7 (4222) 160.8 (1481) 162.6 (38) 161.7 (9632) <0.001* 
maternal weight at questionnaire completion (kg) (N) 77.8 (3834) 71.3 (4161) 71.9 (1455) 74.0 (37) 74.0 (9487) <0.001* 
maternal weight at booking (kg) (N) 72.0 (3680) 65.2 (4043) 65.8 (1396) 65.8 (1860) 67.6 (10,979) <0.001* 
socio-economic variables 
maternal employment status 
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N total =11,875 
N (% of ethnic groups represented) 

White British 
3954 (33.3%) 

Pakistani 
4341 (36.6%) 

Other 
1511 (12.7%) 

Missing 
2069 (17.4%) 

Total 
11,875 

chi2 test p-value 
(*one-way anova for 

continuous variables) 
employed 63.3 23.0 53.0 0.6 36.3 <0.001 

not employed/student 36.7 76.9 47.0 1.1 46.5 
missing 0.0 0.1 0.0 98.4 17.2 

maternal education 
no formal education 19.9 25.8 12.9 0.5 17.8 <0.001 

school 34.1 31.0 20.9 0.4 25.4 
further education 17.2 12.6 13.4 0.1 12.1 
higher education 19.2 25.9 40.3 0.4 21.1 

other, don't know, unknown foreign 9.6 4.5 12.1 0.2 6.4 
missing 0.1 0.2 0.4 98.3 17.3 

Index of Multiple Deprivation 2010 by quintiles 
quintile 1 (most deprived) 50.9 79.4 67.3 1.6 54.8 <0.001 

quintile 2 21.5 14.0 20.0 0.2 14.9 
quintile 3 17.9 5.6 9.9 0.1 9.3 
quintile 4 6.0 0.5 1.5 0.0 2.4 

quintile 5 (least deprived) 3.5 0.2 1.1 0.0 1.4 
missing 0.2 0.2 0.3 98.1 17.3 

behavioural variables 
smoking during pregnancy 

Never a smoker 41.2 91.5 76.8 1.0 57.1 <0.001 
Ever a smoker 30.2 5.1 15.3 0.3 13.9 

Currently a smoker 28.6 3.2 7.8 0.4 11.7 
missing 0.1 0.3 0.1 98.3 17.3 

consuming alcohol during (or 3 months before) pregnancy 
no  58.7 99.4 86.2 1.3 67.1 <0.001 

yes  34.6 0.3 11.3 0.3 13.1 
missing 6.7 0.3 2.5 98.5 19.8 

caffeine intake during pregnancy 
no  61.2 84.4 77.6 1.1 61.3 <0.001 

yes (>200 mg/day)  31.3 5.5 11.5 0.2 13.9 
missing 7.5 10.0 10.9 98.7 24.8 
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N total =11,875 
N (% of ethnic groups represented) 

White British 
3954 (33.3%) 

Pakistani 
4341 (36.6%) 

Other 
1511 (12.7%) 

Missing 
2069 (17.4%) 

Total 
11,875 

chi2 test p-value 
(*one-way anova for 

continuous variables) 
obstetric outcomes 
gestational diabetes 

no 91.3 85.3 87.3 88.4 88.1 <0.001 
yes 4.7 10.9 8.9 6.2 7.8 

missing 4.0 3.9 3.8 5.4 4.2 
pregnancy-induced hypertension 

no 89.5 91.0 90.6 89.8 90.3 0.015 
yes (mild, moderate, and severe) 6.4 4.6 5.0 5.2 5.3 

missing 4.1 4.4 4.4 5.0 4.4 
pre-eclampsia 

no 93.2 93.0 93.1 91.9 92.9 0.713 
yes 2.5 2.5 2.3 3.0 2.6 

missing 4.4 4.5 4.6 5.1 4.6 
route at birth 

vaginal 77.4 79.1 75.1 74.5 77.2 <0.001 
caesarean 22.6 20.9 24.9 25.5 22.8 

spontaneous onset of labour 
spontaneous 68.3 71.0 69.4 67.1 69.3 <0.001 

no labour 10.5 8.9 9.8 13.2 10.3 
induction (medical and surgical) 21.1 20.0 20.7 19.5 20.4 

missing 0.1 0.1 0.1 0.1 0.1 
presentation at birth 

cephalic 95.9 96.8 96.8 95.5 96.3 0.121 
breech  3.9 3.0 3.0 4.2 3.5 

other and unknown 0.2 0.3 0.3 0.3 0.3 
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Table 6.7: Rates of LBW, term LBW and SGA by IMD 2010 quintiles of deprivation (11,928 eligible mothers with singletons, but only 11,874 had live births 
with recorded birth weight, see Figure 6.3) 

Quintile Population* LBW term LBW SGA 
Freq % Freq % Freq % Freq % 

Most deprived 

↕ 

Least deprived 

1 6506 54.8 531 8.2 266 4.3 851 13.1 
2 1766 14.9 105 6.0 62 3.7 196 11.1 
3 1103 9.3 62 5.6 28 2.7 90 8.2 
4 284 2.4 11 3.9 5 1.8 17 6.0 
5 164 1.4 7 4.3 3 1.9 14 8.5 

missing 2051 17.3 178 8.7 86 4.5 272 13.3 
total 11874 100 894 450 1440 

*among eligible set, with LBW values
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Table 6.8: Pros and cons of major birth outcomes 

+ - 
LBW • cheap, precisely recorded, available

in vast numbers
• a powerful predictor of an individual

baby’s survival
• on a population level, mean birth

weight is associated with infant
mortality

• associated with health outcomes later
in life (Wilcox 2001)

• mixes PT and term babies, such that
it is not specific to prematurity or
growth restriction aetiologies

• causal role of birth weight in infant
mortality controversial; if non-causal,
may be an unimportant endpoint in
itself, and inconsequential in the
analysis of infant mortality or other
outcomes (Wilcox 2001)
• interventions to increase birth

weight may therefore
sometimes be wasted

term LBW • better approximation of growth
restriction than LBW

• does not take growth restricted
babies among preterm births into
account (approx. 50% of LBW are
preterm (McKeown and Gibson
1951)) 

SGA • captures almost all term LBWs and a
few more

• mixes PT and term babies, like LBW
• approx. 10% in each gestational age

group by definition (even if based on
a referent), though there should be
more grow-restricted births among
the preterm; would need SGA criteria
based on all fetuses at a given
gestational age (such as intrauterine
fetal weight, currently mostly
unavailable and/or unreliable) in
order to do this (Wilcox 2010)

• defines all small babies as grow-
restricted, and no others

Table 6.9: Representativeness: difference in my sample size compared to sample size published in 
cohort profile paper (Wright et al. 2012) 

Cohort Profile  
(Wright et al. 2012) 

My dataset Difference 

13,818 babies 13,525 babies 293 
13,455 singletons 13,199 singletons 256 

177 twin sets 158 twin sets 19 
3 triplet sets 3 triplet sets 

13,740 live births 13,453 live births 287 
78 stillbirths 72 stillbirths 6 

11,396 baseline questionnaires 11,391 non-duplicate 
questionnaires (of which 11,129 
reported water consumption) 

5 
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6.6 Figures 

Figure 6.1: Birth weight distribution (live singleton births to eligible BiB women); solid line marks 
the 2500g cut point (any birth to the left of the solid line are considered LBW); dashed line marks the 
mean birth weight of 3229.7g (N=11,874) 

Figure 6.2: Birth weight distribution stratified by term (top plot, N=11,211) vs. preterm births (lower 
plot, N=663), live singleton births to eligible BiB mothers; solid line marks the 2500g cut point. 
Any births to the left of that line on the top plot are considered term LBW  
Any births to the left of that line on the lower plot are considered small and preterm (Wilcox 2010) 
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Figure 6.6: SDS (or z score) distribution; N=11,863 (11,928 eligible women with singletons, but 
only11,863 had live births with recorded birth weight, sex of child, and gestational age, and born 
within 23-42 window of gestational weeks, see Figure 6.5). Any births to the left of -1.282 are 
considered small-for-gestational age (SGA) 
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Figure 6.7: Birth weight distributions for selected ethnic groups: live singletons (P=Pakistani, 
WB=White British) 

Figure 6.8: Mean birth weight (and 95% CI) of babies born at 40 weeks gestational age by ethnic 
group (sample sizes are in brackets) 
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Figure 6.9: Low birth weight (LBW), term LBW and small-for-gestational age (SGA) rates by a) 
Index of Multiple Deprivation (IMD) quintiles of multiple deprivation 2010 and b) ethnicity.  
Sample size for birth weight≥2500g=10980, for LBW=894 (see Figure 6.3);  
Sample size for birth weight≥2500g at term=10761, for term LBW=450 (Figure 6.4);  
Sample size for not SGA=10423, for SGA=1440 (Figure 6.5). 

a) By IMD quintiles of multiple deprivation 2010

b) By ethnicity
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Figure 6.10: Categorical birth weight distributions for 11,874 live BiB babies, compared to birth 
weights in Yorkshire and The Humber, and England & Wales * (ONS 2011 figures) (11,928 eligible 
women with singletons, but only 11,874 had live births with recorded birth weight, see Figure 6.3)  

*includes births to women whose usual residence is outside England and Wales

Figure 6.11: Rate of small-for-gestational age (SGA) by gestational age and sex of child (top: %, 
bottom: frequency); N=11,863 (11,928 eligible women with singletons, but only11,863 had live births 
with recorded birth weight, sex of child, and gestational age, and born within 23-42 window of 
gestational weeks, see Figure 6.5)  
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Figure 6.12: Birth weight (g) by gestational age (weeks) among 11,875 women (11,928 eligible 
women with singletons, but only 11,875 had live births with recorded gestational age)  
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CHAPTER 7 EPIDEMIOLOGIC ANALYSIS 

This chapter presents the results of the epidemiologic analyses looking at the associations between 

exposure to haloacetic acids (HAAs) and risk of poor birth outcomes (Aim 2, Chapter 2). The three 

exposure measures of interest are mothers’ water consumption, exposure to area-level DCAA, TCAA 

and BDCAA concentrations based on maternal water zone of residence, and overall exposure to 

DCAA, TCAA and BDCAA—which combines the previous two metrics. The outcomes of interest are 

continuous birth weight, and the dichotomised birth weight measures term low birth weight (LBW) 

and small-for-gestational age (SGA).  

7.1 Background 
There are three classes of HAAs exposures of interest here: water consumption (described in Chapter 

3), trimester-specific area-level concentrations to DCAA, TCAA and BDCAA (Chapter 4), and their 

combined metrics (Chapter 5) (see Table 1.4). All are categorised by tertiles, which the variability in 

the exposure distributions can support. This also minimises any assumptions about the linearity of the 

relationship between exposure and outcome (see Figure 3.2 in Chapter 3 for distributions of water 

consumption with tertile cutpoints, see Figure 4.15 for distributions of area-level concentrations with 

tertile cutpoints, and see Figure 5.1 in Chapter 5 for histograms of combined metrics distributions with 

tertile cutpoints). 

7.1.1 Possible confounders 

In addition to ethnicity described in Chapter 6, the potential confounders discussed below are all 

known to be associated with birth weight (West 2011). Among them, smoking, caffeine intake, 

maternal education and BMI are also correlated with exposure (either with water consumption, or 

residence-based area-level DCAA, TCAA and/or BDCAA concentration, which make up the 

combined metric) and are therefore adjusted for accordingly (section 7.2.1). 

7.1.1.1 Maternal/family characteristics 

A number of non-behavioural maternal factors are relevant to birth weight and fetal growth. 

7.1.1.1.1 Body Mass Index (BMI) 

Short maternal stature has been associated with an increased risk of having a small-for-gestational age 

(SGA) baby and this association is reported to persist over at least two generations, i.e. birth weight is 

lower in infants whose grandmothers were of shorter stature (Klebanoff et al. 1997). A later study also 
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identified maternal height as a strong predictor of neonatal length and suggested that geographical 

differences in birth size can, in part, be explained by differences in maternal size (Leary et al. 2006).  

Higher BMI is typically associated with an increased birth weight (Frederick et al. 2008; HAPO Study 

Cooperative Research Group 2010), and the associated reduced risk of delivering an SGA baby 

(Cnattingius et al. 1998). In the UK, South Asian women are slightly shorter than White British 

women (Kelly et al. 2009) but tend to have a higher BMI (Health Survey for England 2005). In BiB 

however, Pakistani women with weight information have lower BMI than the White British women 

which compounds the expectation that their babies will have lower birth weight on average (see 

Chapter 6). 

7.1.1.1.2 Maternal age 

An analysis of 36,056 New York City singleton babies found a significant progression of birth weight 

with advancing maternal age, with some evidence that young maternal age (<18 years) increases the 

risk of low birth weight (LBW) (MacLeod and Kiely 1988). The prevalence of SGA was later also 

found to be lowest in mothers aged 26-30 years old with similar increasing prevalence at younger and 

older ages outside this range (Lawlor et al. 2011). Socio-economic position and other characteristics 

shared by sisters in a large within-sister analysis appear to explain most of the association of young 

maternal age with adverse perinatal outcomes, but the association of older maternal age with preterm 

birth and SGA is not explained by this confounding and may even be masked by it (Lawlor et al. 

2011). 

7.1.1.1.3 Parity 

Increasing parity has been associated with higher birth weights (Wilcox et al. 1996) although birth 

weight seemingly drops markedly with high parity (4 or more) (MacLeod and Kiely 1988). Joshi et 

al’s study of 770 mothers and their babies from rural India found increasing parity (when mothers had 

1 previous birth (i.e. primiparous), 2 previous births, or 3 or more previous births) was associated with 

increased birth weight and subscapular skinfold thickness (Joshi et al. 2005), but this study was not 

able to clarify whether weight and skinfold thickness reduced with 4 or more previous births as 

described by McCleod & Kielty (1988). 

As recorded by West (2011), early studies in the UK suggested that there were differences in average 

maternal age and parity between South Asian mothers and White mothers (Asian women tending to 

start their families at younger ages and to have more children than the White women) (Lindley et al. 

2004). While this may hold for first generation South Asian women, differences in parity have 

declined in second generation UK born South Asians (Dhawan 1995; Harding et al. 2004).  
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7.1.1.1.4 Socio-economic status (SES) 

In high income countries, major disparities in birth weight have been evident across different social 

groups (Bambang et al. 2000). Lower social groups have lower birth weights (Spencer et al. 1999) and 

although mean birth weight has increased over the last century the social economic gradient in birth 

weight has remained unchanged (Spencer and Logan 2002). Social deprivation is also a risk factor for 

intrauterine growth restriction (Gardosi 2009). 

On average, Pakistani and Bangladeshi communities in the UK are poor (Nazroo 2001; West 2011). 

As a consequence, social economic position may contribute to ethnic variations in birth size, and 

ethnicity may be a marker for social disadvantage in birth weight differences. Data from the 

Millenium Cohort Study (MCS) suggest that socio-economic factors accounted for 23% of the 305g 

difference in mean birth weight between Pakistani and White British babies (Kelly et al. 2009). Any 

effect of socio-economic position on birth weight is likely to be mediated by more proximal 

characteristics such as smoking. In fact, a systematic review concluded that maternal smoking was the 

strongest explanation for the association of socio-economic position with variation in birth weight 

(Kramer et al. 2000). 

7.1.1.2 Behaviours 

7.1.1.2.1 Smoking 

A number of maternal health-related behaviours and the ensuing exposures of the fetus to maternal 

toxins can contribute to the development of a growth restricted fetus. Key amongst these is maternal 

smoking during pregnancy which is strongly and consistently associated with lower birth weight 

(Cliver et al. 1995; Horta et al. 1997; Kramer 1987; Nieuwenhuijsen et al. 2013; Roquer et al. 1995; 

Vik et al. 1996; Zaren et al. 1996) and an increased risk of having an SGA infant (Cnattingius et al. 

1984; DiFranza and Lew 1995; Meis et al. 1997; O'Callaghan et al. 1997). Smoking has been shown to 

affect birth weight in a dose-response relationship causing a deficit of around 200g (Pringle et al. 

2005) and up to 250g at term (Gardosi et al. 1995). Conversely, randomised controlled trial studies on 

smoking cessation during pregnancy have been found to mitigate the smoking associated deficits in 

birth weight (Haddow et al. 1991; Li et al. 1993; Lindley et al. 2000). Lastly, meta-analyses find that 

exposure of non-smoking pregnant women to second-hand tobacco smoke also reduces mean birth 

weight (by 33g or more (Leonardi-Bee et al. 2008)) and increases the risk of LBW (Leonardi-Bee et 

al. 2008; Salmasi et al. 2010). 

In terms of mechanism, cigarette smoking is thought to reduce uterine blood flow, limiting fetal 

oxygenation and attenuating growth (Haworth et al. 1980). The quantity of cigarettes smoked per day 

positively correlated with the degree of intrauterine growth restriction (Andres and Day 2000; Cliver 

et al. 1995; Haworth et al. 1980; Meyer 1978).  
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As discussed in Chapter 6, historically, smoking is uncommon in South Asian women in the UK and 

therefore unlikely to be a major cause of lower birth weight in South Asian compared to other 

populations. 

7.1.1.2.2 Alcohol 

Alcohol is a teratogen that can cross the placenta during pregnancy to enter the baby's blood, 

potentially altering the development of the fetus. Frequent alcohol use early in pregnancy has been 

linked to congenital malformations of the heart, brain and kidney (RCOG 2006) and fetal death 

(Andersen et al. 2012). Heavy alcohol consumption throughout pregnancy causes fetal alcohol 

syndrome (Jones and Smith 1973) and has been associated with preterm birth and growth restriction 

(Patra et al. 2011). However, moderate consumption has not been shown to have any consistent effect 

(Oster 2013). A recent study in the BiB cohort found that binge drinking during the second trimester 

of pregnancy was associated with an increased risk of SGA birth, but found no association between 

any level of alcohol consumption and premature birth (Cooper et al. 2013). 

Prolonged maternal ingestion of alcohol or other drugs (e.g. steroids, warfarin/Coumadin, hydantoin, 

cocaine, and heroin) are also implicated in the development of intrauterine growth restriction (Brodsky 

and Christou 2004; Lee et al. 2003). 

7.1.1.2.3 Caffeine 

Peck et al’s review of the 16 human studies of caffeine and reproductive health published between 

2000 and 2009 conclude that the studies of caffeine and fetal growth restriction are equivocal, with 

approximately half of the studies reporting weak associations with intrauterine growth restriction or 

reduced birth weight, and half observing no effects (Peck et al. 2010). The authors argue that the 

strength of the evidence for a potential effect of caffeine on fetal growth restriction is diminished by 

the inability to rule out alternative, credible explanations for the observed associations, namely 

confounding by pregnancy symptoms and aversions. 

7.1.1.2.4 Maternal diet 

Periods of famine in the Netherlands, Germany and the former Soviet Union have shown that severe 

maternal malnutrition can impair fetal growth (Barker 1994; Roseboom et al. 2001). The severity of 

the lack of food supply (Prentice and Cole 1994) and the length of malnutrition (Roseboom et al. 

2001) correlated with the degree of growth delay. While the fetus is affected by chronic severe 

maternal malnutrition, it seems to be fairly resistant to acute malnutrition, particularly if it occurs late 

in gestation (Brodsky and Christou 2004; Schwartz 2000). 
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What’s more, supplementation during pregnancy (such as iron supplementation) can lead to a 

significantly higher mean birth weight, a significantly lower incidence of low birth weight infants, and 

a significantly lower incidence of preterm low birth weight infants (Cogswell et al. 2003). 

7.1.1.3 Pathophysiology 

7.1.1.3.1 Pregnancy complications 

Chronic maternal vascular disease due to hypertension, diabetes mellitus, renal disease, or collagen 

vascular disease is the most common cause of intrauterine growth restriction in developed countries 

(Lin and Santolaya-Forgas 1998). The most profound effects are observed if the hypertension is early 

onset, severe, or due to chronic hypertension with superimposed pre-eclampsia (Brodsky and Christou 

2004; Resnik 2002) (see section 2.1.3.2). 

7.1.1.3.2 Gestational diabetes  

Maternal glucose intolerance and diabetes have been associated with greater birth weight, fetal 

adiposity and risk of macrosomia (Catalano et al. 2003; Jovanovic and Pettitt 2001). This association 

is continuous across the whole distribution of maternal glycaemia in pregnancy (Metzger et al. 2008). 

As mentioned in Chapter 6, South Asian populations have a higher risk of gestational diabetes 

compared to other ethnic groups (Nanda et al. 2011). Thus, given the robust associations of greater 

maternal glycaemia in pregnancy with greater birth size and infant adiposity, were it for this variable 

alone, one would expect that South Asian babies to have higher average birth weights and greater 

adiposity than White babies (West 2011). 

In addition to these factors, physical constraints such as large placental abnormalities, uterine masses, 

or multiple gestation (multiple births were excluded from analysis, see section 3.2.3) can lead to 

growth restricted fetuses (Brodsky and Christou 2004). 

7.1.1.4 Fetal influences 

7.1.1.4.1 Sex of child 

Sex of child is known to be associated with birth weight. Boys have been reported to have a higher 

mean birth weight than girls and a lower rate of LBW (Halileh et al. 2008). This sex difference has 

been seen in most ethnic groups in the UK including South Asians (Margetts et al. 2002; West 2011). 

7.1.1.4.2 Gestational age in weeks 

Prematurity is known to be linked with growth restriction (Bukowski et al. 2001; Gardosi 2005; 

Jacobsson et al. 2008; Ott 1993; Tamura et al. 1984; Zeitlin et al. 2000) (Chapter 6). However, it is 

still unknown whether preterm and growth restricted babies share the same aetiology, or whether 

being growth restricted leads to preterm delivery (Savitz et al. 2002). Whether or not gestational age at 
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birth should be adjusted for in the models therefore remains debated. As it is strongly associated with 

birth weight, its effect is adjusted for and its possible mediation effect studied. 

There is some evidence that gestational length varies by ethnic group (Kelly et al. 2009; Patel et al. 

2004) although findings are inconsistent. Patel et al (2004) found a higher proportion of preterm 

deliveries in Asians compared to White Europeans (6.5% and 5.1 % respectively). However, data from 

the Millenium Cohort Study suggest that when South Asian populations are categorised according to 

country of origin, the proportion of preterm births varies between these different groups, with the 

proportion in Indian women (9.5%) being higher, and that in Pakistani women lower (5.7%) than the 

proportion in White women (6.7%) (Kelly et al. 2009). This was supported by findings in BiB (see 

section 6.3.4.1). Including preterm births in estimates of mean gestational length masks potential 

differences in term gestation and it has been suggested that what constitutes 'term' may vary by ethnic 

group with South Asian infants in particular reaching maturity at an earlier gestation than White 

populations (Balchin and Steer 2007; West 2011) (see section 6.1.1.1). 

7.1.1.5 Access to antenatal care 

Access to antenatal care has been shown to improve maternal, perinatal, and neonatal outcomes (Villar 

et al. 2001). However due to the nature of the free National Health Service (NHS) in the UK, and to 

the fact that this cohort was recruited exclusively from one hospital, the Bradford Royal Infirmary, 

access to healthcare is in theory the same for all BiB participants and is therefore not a primary cause 

for concern in this study and was therefore not included as a confounder in the model.  

Nevertheless, Firdous & Bhopal (1989) identified low levels of literacy among South Asians in the 

UK for whom English was commonly a second language; both of these factors can hinder uptake of 

health services in terms of direct communication with health workers, but also in terms of a poor 

understanding of health services and how they operate (Abba, 2001). 

7.1.1.6 Link with exposure 

As per Smith et al. (2009), women’s total tap water intake overall, at home and/or at work all differed 

by age, ethnicity, and income (i.e. a measure of socioeconomic status) categories in the BiB cohort. 

Caffeine intake (via coffee or tea consumption) is associated with tap water consumption by 

definition, and smoking was also found to be associated with increased tap water consumption—the 

two habits possibly occurring together. 

Figure A7 - 1 in the appendix summarises the interrelationship between all variables involved 

including with the exposure. 
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7.2 Methods 

7.2.1 Model selection process 

Based on the evidence presented above for their potential to confound the relationship between 

exposure and outcome by being related (causally or not) to the exposure as well as causally related to 

the outcome, I have included the following ten covariates a priori in all the birth weight and term 

LBW models: sex of child, parity, ethnicity, maternal education, gestational age in weeks, BMI, 

maternal age, smoking during pregnancy, caffeine intake during pregnancy, and gestational diabetes. 

In the SGA models, all the above except for gestational age and sex of the child—information which is 

incorporated into the outcome variable—were included. 

As described in section 6.3.3, less than 1% of births were to women with previous diabetes, pre-

existing hypertension issues or who became hypertensive during labour, whilst prevalence of 

gestational diabetes, pregnancy-induced hypertension and pre-eclampsia were greater (8.1%, 5.6% and 

2.7%, respectively). Pre-existing hypertension was associated with all other variables (all p-

values<0.05), and all three hypertension variables were associated with pre-eclampsia, as expected 

given that pre-eclampsia is a condition of high blood pressure (see Table A7 - 1). Gestational diabetes 

was adjusted for but not pregnancy-induced hypertension or pre-eclampsia as these did not 

significantly improve the model fit (data not shown).  

Initially, two other model selection methods were tested before settling on the a priori approach: a) 

forward stepwise regression (using STATA’s “xi: sw, pe(0.05)22 lockterm1 lr:” command), and b) 

inclusion of a set of seven a priori covariates23 followed by any covariates from a list24 that led to a 

significant change in the model deviance (p<0.05) or to a >5% change in the coefficient or log odds 

ratio (Greenland 1998; Toledano et al. 2005). These two alternative methods did not alter the results 

conclusion (and led to arguably over-parametrised models in the case of the latter method). As the 

effect of exposure in these models is small or inexistent, any covariate can easily lead to a 5% change 

in its coefficient/log OR such that all covariates are kept in the model by definition even when they do 

not have significant p-values. Using the uniform approach of including the same ten (or eight for 

SGA) covariates selected a priori in all models was deemed best to avoid confusion and added 

difficulties in interpretation due to too many slightly different models. 

22 pe= significance level required for addition to model 
Sequential covariates selection: start with an empty model, find the most significant additional covariate (with an 
F-test) beyond exposure (which is forced into the model by lockterm1); if its p-value is less than the cut-off (0.05 
in this case), add it to the model and re-fit the model with the new set of covariates; repeat two previous steps 
until no further covariates can be added. 
23 sex of child, ethnicity, gestational weeks, parity, maternal age, maternal BMI, and smoking during pregnancy 
24 Sequentially: maternal education, employment, IMD 2010 quintiles of deprivation, caffeine intake, alcohol 
consumption during pregnancy, exposure to second-hand smoke, gestational diabetes/pre-eclampsia/or 
pregnancy-induced hypertension, season of birth 
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7.2.2 Data and covariate derivation 

The data described in this chapter were received in February 2013 from the BiB team and contained 

both the routine eClipse and the additional backfilled data. The derivation of ethnicity, BMI, maternal 

education as a proxy for SES and caffeine intake is described in Chapter 2.  

7.2.2.1 Body Mass Index (BMI) 

Body Mass Index (BMI) is defined as maternal weight in kilograms at the time of questionnaire 

divided by the square of the maternal height in metres (see Chapter 2, section 2.1.2). Because women 

will typically gain between 5kg and 18kg over the course of pregnancy (depending on pre-pregnancy 

weight) according to the Institute of Medicine (2009), usual BMI cut-off points for non-pregnant 

persons (<18.5=underweight, 18.5- <25=normal, 25- <30=overweight, >30=obese) are meaningless 

for women in their second trimester. BMI was therefore categorised into quartiles instead for analysis. 

This assumes that lighter and heavier women pre-pregnancy put on the same number of kilograms 

over the course of their pregnancy such that their categorisation by quartile will correctly estimate 

their BMI pre-pregnancy relative to one another. 

7.2.3 Statistical analyses 

Univariate and multiple linear and logistic regressions as well as multiple imputations with chained 

equations (mi command) for combined metrics and their water consumption and area-level 

concentration components on all three outcomes were all run in STATA 12.1. The lowest tertile of 

exposure (tertile 1) was used as the reference in all models.  

The results of the interaction between combined metric and gestational age are presented for both birth 

weight and term LBW (not relevant to SGA, which already includes gestational age) to study the 

possible effect modification that gestational age may have on the results. 

7.2.3.1 Sensitivity analyses 

A number of sensitivity analyses for each of the three outcomes were performed to check the 

assumptions behind the derivation of the exposure measures.  

7.2.3.2 Multiple imputation (combined metrics models only) 

To avoid losing observations due to missing values, I ran multiple imputations by chained equations 

on my final models using combined metrics as the exposure. Multiple imputation enabled an increase 

in power, using all available information without restricting to values which have complete 

information for all covariates, and thus generating estimates with smaller confidence intervals and 

increasing the ability to reject the null hypotheses. In addition, if the reason a confounder variable was 
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missing was related to the outcome, a complete case analysis would have introduced bias in the 

model’s estimates (Rubin 1996). Joint imputation of all variables removes the potential bias that 

incorporating them consecutively, in a given order, might impose.  

Only one birth (out of all singleton live births eligible for the analysis, i.e. N=11,875) was missing a 

birth weight value, was excluded from the associated analysis and not imputed. The maximum 

imputed sample size was therefore 11,874 for the continuous birth weight models, and 11,211 for the 

term LBW models (excluding 663 preterm births). Because the SGA referent used is specified to be 

only valid for the 23-42 week range of gestational ages, a further 11 babies were excluded, resulting in 

a maximum imputed sample size of 11,863 babies for the SGA models (see flowcharts in Figure 6.3, 

Figure 6.4 and Figure 6.5 for details). 

There were no missing values for sex of child, gestational age (in completed weeks), and maternal age. 

All other variables (including the exposure) that had missing data were imputed. The binomial 

variables caffeine intake and gestational diabetes were imputed by logistic regression; missing values 

in the smoking, maternal education, and ethnicity variables were imputed by multinomial logistic 

regression; and the exposure (combined DCAA, TCAA, or BDCAA metric, categorised into tertiles), 

parity and BMI (quartiles) were imputed using ordinal logistic regression. 

The missingness pattern was assumed to be missing at random. That is, the probability of a particular 

value being missing depends only on the observed data, and the complete cases are not a random 

sample. If the missing data are missing at random as assumed, complete cases analysis gives biased 

results but a correctly specified multiple imputation does not. 

Ten different datasets were imputed to fit the epidemiologic regression models, in order to account for 

uncertainty about the imputed values (Rubin 1987). For the linear models on the continuous outcome 

birth weight, the imputation models were regressed on birth weight. For the logistic models on binary 

outcomes, the imputation models were regressed on the binary outcome (either term LBW or SGA); 

there was no material difference when imputing on birth weight or standardised birth weight (not 

presented). 

7.3 Results 

7.3.1 Relationship between combined metrics and birth weight or standardised birth weight  

There is no apparent descriptive relationship between exposure (combined metrics) and outcome 

(Figure 7.1, Figure 7.2). These scatter plots do not signal an increasing or decreasing trend between 
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exposure and outcome, and the distributions of birth weight or standardised birth weight by high 

(third) vs. low (first) tertiles of exposure appear to overlap.  

For example, mean birth weight of singletons exposed to high (> 17.29 ug/day) vs. low (0 - 10.41 

ug/day) DCAA tertiles, weigh 3223.9g (95% CI: 3200.0, 3247.8) vs. 3200.7g (3176.8, 3224.6), 

respectively, corresponding to a 23.2g mean difference, or <1% change in birth weight, in the contrary 

direction to the hypothesis. High (> 19.79 ug/day) vs. low (0 - 12.02 ug/day) TCAA tertiles, and high 

(> 1.93 ug/day) vs. low (0 - 1.04 ug/day) BDCAA tertiles of exposure are also associated with a <1% 

change in mean birth weight in the contrary direction to hypothesis.  

Differences for term LBW and SGA rates by exposure group are also in the opposite direction to the 

hypotheses that higher exposure leads to a decrease in birth weight and an increase in term LBW and 

SGA rates. Term LBW prevalences among the high DCAA, TCAA and BDCAA tertiles of exposure 

are 3.7%, 3.7% and 3.3% vs. 4.7%, 4.8% and 4.7% in the low exposure tertiles respectively; SGA 

prevalences among the high DCAA, TCAA and BDCAA tertiles are 12.0%, 12.7% and 12.2% vs. 

13.4%, 13.6%, and 12.7% in the low exposure tertiles, respectively (Figure A7 - 2, Figure A7 - 3, 

Figure A7 - 4 and Figure A7 - 5). For full descriptive details on birth weight, LBW, term LBW, and 

SGA prevalences by tertiles of exposure to each of the 16 exposure measures of interest in this 

analysis (4 water consumption only, 9 area-level concentrations, and 3 combined metrics), see Table 

7.1. 

These descriptive plots show that differences in mean birth weights by exposure groups and in rates of 

term LBW and SGA by exposure group appear to be small and in the contrary direction to hypothesis. 

It can therefore be anticipated that a strong association between combined metrics and outcome is 

unlikely to be detected. 

7.3.2 Continuous birth weight models 

7.2.2.1 Main results  

Table 7.2 presents the results of the crude and multiple linear regression models of combined DCAA, 

TCAA and BDCAA metrics on birth weight, with no evidence of an association. After multiple 

imputation, still no results are significant, and the trend becomes more systematically contrary to 

hypothesis, i.e. greater exposures predicting higher birth weight (Table 7.2). 

Breaking down the combined metric, Table 7.3 presents results for water consumption during 

pregnancy, with evidence of an association between cold tap water consumption and increasing birth 

weight in the adjusted models (mean birth weight change between tertile 3 and tertile 1 of exposure is 
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24.0g (95% CI: 1.4, 46.6)). No other adjusted models are significant. The trend appears generally 

contrary to the hypothesis that higher exposures predict lower birth weight. 

Table 7.4 on trimester-specific area-level concentrations presents only one significant effect for third 

tertile of exposure to TCAA in trimester 1 compared to reference after adjustment: -28.3 (95% CI: -

52.0, -4.6). This may be a chance finding given that no other exposures or exposure tertiles come out 

significant in the nine models (18 mean birth weight differences) presented. In these area-level 

concentration models, it is noteworthy that the trend is mostly in the hypothesized direction. None of 

the Wald F tests for joint significance of the exposure measures in any of these adjusted models are 

significant (data not shown), though they are borderline significant for TCAA trimester 1 (p=0.065) 

and BDCAA trimester 2 (p=0.074). 

Comparing crude to adjusted models, nearly no changes in effect direction were found. However, 

significance in p-values for the third tertiles of total tap water and bottled water, and for both second 

and third tertiles of total water and area-level exposure to DCAA for all three trimesters is lost. In 

addition, most effect estimates are closer to the null in the adjusted compared to crude models, 

suggesting that the association is indeed confounded by the covariates adjusted for. 

Figure 7.3, Figure 7.4 and Figure 7.5 depict the mean change in birth weight compared to reference for 

these adjusted models. 

Spearman correlations between the ten covariates included a priori in these models are presented in 

Table A7 - 2 and show that smoking, ethnicity, and caffeine co-vary (rho between ethnicity and 

smoking is -0.42 (p<0.001); rho between ethnicity and caffeine intake is -0.28 (p<0.001); rho between 

smoking and caffeine intake 0.35 (p<0.001)), and parity is significantly correlated to all three of these 

as well—though with smaller correlation coefficients (rho between parity and smoking is -0.11 

(p<0.001); rho between parity and ethnicity is 0.10 (p<0.001); rho between parity and caffeine intake 

is 0.02 (p=0.038)). 

The association between the combined exposures of interest and birth weight or growth restriction 

could be modified by gestational age at birth (which is highly significant in the models, and thought to 

either be a mediator of adverse birth outcomes or a cause in and of itself). However, no interaction 

terms were significant (Table A7 - 3). 

7.3.2.2 Additional analyses  

For the continuous birth weight models, the combined metrics models to the White British and 

Pakistani women were stratified to compare effects in the two predominant ethnic groups. In light of 
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previous literature regarding the difference in accuracy of reporting of water ingestion by employment 

status (reporting being more accurate in the women who stay at home (Smith et al. 2013)), analyses 

both of the combined metric and the water consumption variables were also restricted to the 

unemployed women to see if coefficients would change.  

7.3.2.2.1 Stratification by ethnicity  

The ethnicity covariate is strongly associated with birth weight in all models. Being of Pakistani origin 

predicts decrease in birth weight of approximately 250g compared to being White British, while being 

of an ethnicity other than White British or Pakistani predicts a decrease in birth weight of 

approximately 160g compared to being White British (Table A7 - 9). 

Because of an interest in the possibility that HAA exposure affects different ethnic groups in different 

ways, adjusted models were stratified to women of White British vs. Pakistani origin, excluding the 

Other grouping. Though no interaction terms were significant, there were some differences in the 

effect of exposure on birth weight by ethnic group, with more significant associations appearing 

amongst the Pakistani women (Table A7 - 10).  

In the stratified analyses, babies born to Pakistani women were significantly heavier at birth with 

increasing maternal water consumption (contrary to hypothesis), and lighter with greater area-level 

maternal HAA concentration exposure (in line with hypothesis). For the combined metric, though not 

significant, it seems that effects on White British and Pakistani babies are operating in opposite 

directions to one another. HAA exposures were similar among White British and Pakistani women.  

7.3.2.2.2 Restricting to unemployed women only  

Previous work on water consumption in this cohort concluded that unemployed women have less error 

in their exposure estimates. However no differences in exposure coefficients were found when 

restricting the analyses to unemployed women only (data not shown). 

7.3.2.3 Sensitivity analyses  

For each of the three outcomes alternative exposure measures than the ones originally modelled were 

considered. The results did not change. 

The results of the continuous birth weight models do not change when excluding outliers, i.e. any 

summary consumption measure greater than 10L/day which is an extreme water consumption average 

per day (data not shown). 
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I then aimed to isolate women who had potentially no HAA exposure during pregnancy (i.e. those who 

consumed only bottled water) and compare their outcomes to filterers (who have reduced HAA 

exposure for a given daily tap water consumption), and women who reported not filtering their tap 

water at all. Unfortunately, there were very few cases with zero exposure (N=21); however the (non-

significant) effect was in the hypothesized direction: mean birth weight change was -116.3g (95% CI: 

-294.2, 61.5) for filterers compared to exclusive bottled water drinkers and -119.4g (95%: -295.7, 

57.0) for non-filterers compared to exclusive bottled water drinkers. (It must be said that women were 

categorised as being only filterers or only non-filterers because of the way the questionnaire was 

formulated, realising that this is unlikely to accurately reflect the reality) Data quality did not allow us 

to look at this.  

To challenge the accuracy of the area-level exposure metric, for those women who reported being 

employed and who listed a place of work which was located within Bradford’s eight water supply 

zones (WSZ) (22% of the cohort, i.e. 2,628 women of 11,928 eligible women), the DCAA, TCAA and 

BDCAA concentrations of the work WSZ were identified and these concentrations’ contribution were 

weighted based on number of days of work the woman reported per week; women were considered to 

be exposure to their residence WSZ concentrations the rest of the time. For the remaining 78% of 

eligible women (i.e. the unemployed, or those with insufficient or inadequate work location 

information to enable linkage to the appropriate WSZ corresponding to their work place), the same 

residence only measure was used as in the original metric (see the methods section of Chapter 4 and 

the Appendix to Chapter 4 for further details). On average, mean exposure levels were similar between 

residence only, and measures combining residence and workplace concentration or residence only (see 

Appendix to Chapter 4, Table A4 - 12), with TCAA concentrations perhaps the only exception, being 

slightly higher in the latter metric. The results of the continuous birth weight models on this newly 

defined cohort were very similar to the original area-level concentrations assigned to residence WSZs 

only, with TCAA average concentration in trimester 1 significant both by individual tertiles as well as 

jointly by Wald F test (p=0.017). Additionally, BDCAA average concentration in trimester 2 becomes 

significant for tertile 2 of exposure (mean birth weight change=-35.8g (95% CI: -60.5, -11.1)) as well 

as overall (Wald F test p=0.017) (Table A7 - 4). These effects are significant in the hypothesized 

direction. 

The same concept is applied to the combined metric: instead of area-level concentrations based on the 

residence only, the combined metric now multiplies water consumption by area-level concentrations 

based on both work and residence water supply zones if available. On an aggregate level, there are 

nearly no differences between the exposure metrics for combined DCAA, TCAA, and BDCAA based 

on residence only vs. based on a combination of residence and work (if available) and residence only. 

There is no evidence of an association between combined metrics of exposure and birth weight (Table 
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A7 - 5). The coefficients for the combined metrics of exposure are slightly reduced, i.e. closer to the 

null, in the multiple imputation models compared to the complete case analyses. The confidence 

intervals cover approximately the same range. 

7.3.3 Term LBW 

Approx. 4% of births were categorised as term LBW. 

7.3.3.1 Main results 

The multiple linear regression models of combined DCAA, TCAA and BDCAA on term LBW 

predicted a significant decreased risk of term LBW when comparing those in the highest tertile of 

exposure (tertile 3) to those in the lowest (tertile 1): odds ratios (OR) for third tertile of exposure to 

DCAA (combined metric) vs. first tertile: 0.68 (95% CI: 0.46, 0.99); OR for third tertile of exposure to 

TCAA (combined metric) vs. first tertile: 0.67 (95% CI: 0.46, 0.97); and OR for third tertile of 

exposure to BDCAA (combined metric) vs. first tertile: 0.62 (95% CI: 0.42, 0.90) (Table 7.5). 

However the Wald chi2 test for joint significance is only significant for the BDCAA combined 

exposure metric in the adjusted models (p=0.044). These significant results are lost after imputing 

missing covariates, though the trends remain (Table 7.5). The ORs for the association between 

combined metrics of exposure and the imputed term LBW models are very similar to those in the 

complete case analyses (Figure 7.6). 

As per water consumption models for continuous birth weight, the trend in the term LBW models ORs 

is contrary to hypothesis, with increasing exposure to cold tap water, total tap water and total water all 

predicting a significant decrease in risk of term LBW in the adjusted models (see Table 7.6 and Figure 

7.7). The Wald chi2 tests for joint significance of the cold tap water and total tap water measures are 

significant (p=0.017, and p=0.046, respectively)) in the adjusted models (borderline significant for 

total water, p=0.081). Although not significant and involving small numbers, increasing tertiles of 

bottled water consumption appear to predict increasing risk of term LBW. No models of trimester-

specific area-level concentrations on term LBW are significant, either by individual tertiles (Table 7.7, 

Figure 7.8) or overall (data not shown), with ORs mostly equal to 1. 

There is an attenuation of odds ratios (ORs) towards 1 (i.e. no effect) in the adjusted models compared 

to crude models, though some significant associations in the crude models do remain after adjustment: 

e.g. cold tap water, total water, and combined BDCAA exposure (Table 7.6, Table 7.7). 
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7.3.3.2 Interaction between exposure and gestational age (combined metric models only) 

To identify a possible role for interaction among term babies only, an interaction term was included 

between the combined metric and continuous gestational age to the final fully adjusted logistic 

regression models of term LBW. Here again no interaction terms were significant, neither in the 

complete case analysis nor in the multiple imputation models (Table A7 - 6). 

7.3.3.3 Sensitivity analyses 

The results did not change after carrying out a number of sensitivity analyses to challenge the 

exposure assessment assumptions. The results of the term LBW models do not change when excluding 

any summary consumption measure greater than 10L/day (data not shown). The results of models on 

term LBW using HAA concentrations combining modelled averages from women’s residence water 

supply zone and workplace water supply zone if available are no different to the null results of the 

original concentration measure (Table A7 - 7). The third tertiles of combined DCAA, TCAA and 

BDCAA exposure remains significant compared to reference when including work location 

information into the combined metric of exposure, again only reaching overall significance in BDCAA 

(p=0.042) (Table A7 - 8). 

7.3.4 SGA 

Approx. 13% of births were categorised as SGA in the final complete case analyses of combined 

exposures. 

7.3.4.1 Main results  

11 births outside the 23-42 weeks of gestation range (range for which the SGA variable is valid) were 

excluded from these models. In addition, sex of the child and gestational age were not covariates in the 

SGA models because they are redundant with the outcome.  

Sex of child was incorporated to verify its effect and it was never significant in these models 

(complete case analysis) and so excluded (while it is invariably significantly associated with 

continuous birth weight and term LBW in those respective models (see detailed output in Table A7 - 9 

and Table A7 - 11)). 

Table 7.8 presents the results of the complete case and imputed analyses, respectively, of the crude and 

multiple linear regression models of combined DCAA, TCAA and BDCAA metrics on birth weight, 

with no evidence of an association (see also Figure 7.9). The Wald chi2 tests for joint significance of 

the combined exposure measures in any of these adjusted models are not significant either (data not 

shown). The confidence intervals for ORs of the SGA models for which covariates were imputed are 

narrower than for the complete case analysis. 
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The results of the models of water consumption exposure on SGA are contrary to the hypothesis, as 

observed for continuous birth weight and term LBW models, with no significant adjusted effects 

(Table 7.9 and Figure 7.10). The Wald tests for joint significance are not significant in the adjusted 

models either for cold tap water, total tap water or total water (p=0.060, p=0.208, p=0.167 

respectively). No models of trimester-specific area-level concentration on SGA are significant, either 

by individual tertiles (Table 7.10, Figure 7.11) or overall (data not shown), with ORs mostly equal to 

1. 

As with continuous birth weight models, the effect estimates in the adjusted models compared to crude 

models are mostly in the same direction. Significant p-values for the third tertiles of total tap water, 

bottled water, and area-level exposure to DCAA in the first trimester, and for both second and third 

tertiles of total water and area-level exposure to DCAA for second and third trimesters are lost.  

7.3.4.2 Sensitivity analyses 

The results did not change after carrying out the sensitivity analyses to challenge the exposure 

assessment assumptions. The results of the SGA models do not change when excluding any summary 

consumption measure greater than 10L/day (data not shown). The results of models on SGA using 

HAA concentrations combining modelled averages from women’s residence water supply zone and 

workplace water supply zone if available are no different to the null results of the original 

concentration measure, with just the third tertile of exposure to TCAA concentration in trimester 1 

becoming significant (OR: 1.26, 95% CI: 1.03, 1.53) (Table A7 - 12). Including work location 

information on a fraction of the cohort makes no difference either to the results of combined DCAA, 

TCAA or BDCAA on risk of SGA (Table A7 - 13). 

7.3.5 Effect sizes of covariates in combined models 

In the combined metrics models on all three outcomes, the continuous variable gestational age is 

significant, predicting an average birth weight increase of approximately 177g for every additional 

week of gestation completed at birth. As suggested by the literature, all covariates in the combined 

models were significant predictors of birth weight (all p< 0.05 by Wald test) (see Table A7 - 9, Table 

A7 - 11 and Table A7 - 14). 

The direction of effects is also as predicted in the literature: having a baby girl, being Pakistani or of 

Pakistani origin, smoking during pregnancy, or ingesting >200mg of caffeine per day each 

individually predict lower birth weight, when all other variables are held constant. Conversely, being a 

second- or third-time mother, having a relatively high BMI, being educated at university-level, or 
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developing gestational diabetes during the pregnancy each predict heavier birth weight. The only 

unusual direction is maternal age: the reference group (25 to 29 year olds) have the lightest babies, 

while younger (< 25 years) and older (>=35 years) mothers have on average heavier babies contrary to 

expectations. All of these findings hold for combined DCAA, TCAA, and BDCAA results (Table A7 - 

9, Table A7 - 11 and Table A7 - 14). 

7.3.6 Multiple imputation 

7.3.6.1 Model results after multiple imputation (only on combined metrics models) 

When restricting to complete case analysis, the prevalence of term LBW and SGA was 4.1% and 

12.9% respectively. After including all available data (nb. the outcome did not need to be imputed), 

the prevalences were 4.0% and 12.1% respectively. If anything, this difference means that conducting 

the complete case analysis excludes a small set of healthy babies, as the prevalence decreases when all 

observations are included. 

No significant differences are found after comparing crude and adjusted complete case models to 

crude and adjusted models after multiple imputation. 

7.3.6.2 Missing data 

Of the eligible set of BiB mothers who gave birth to live singleton babies whose birth weight was 

recorded (for the continuous birth weight models N=11,874, for the term LBW models N=11,211, for 

the SGA models N=11,863), the combined metric of exposure was the biggest limiting factor (48% 

missing). In addition to the exposure, the following covariates had missing values to be estimated by 

multiple imputation: caffeine intake, maternal BMI, smoking status, maternal education, ethnicity, 

gestational diabetes, and parity (ranging from 25% to 4% missing). Sex of child, maternal age at 

delivery and weeks of gestational age at birth were all complete variables. For details of the percentage 

of each covariate with missing values for each of the three outcomes, see Table 7.11, Table 7.12 and 

Table 7.13. 

7.3.6.3 Assessing imputations 

7.3.6.3.1 Comparing proportions in complete case, raw and imputed datasets 

Multiple imputation brings the sample sizes from 5,040 to 11,874 for continuous birth weight model, 

from 4,782 to 11,211 for term LBW models, and from 5,034 to 11,863 for SGA models. As the gaps 

filled are non-negligible, I compared the proportions in each categorical variable, pre- and post-

imputation, to assess the reliability of these imputations on an aggregate level. The proportions are all 

are similar (see Table A7 - 15 for a case study of the multiple imputations generated in the continuous 

birth weight model), but with proportions from the imputed dataset being closer to the proportions in 
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the raw data (i.e. without restrictions to exposure and all other covariates) than to the proportions in 

the complete case dataset.  

Compared to the proportions in the raw data, the complete case analysis tends to underestimate the 

proportion of White British women, women who drink coffee, who are ex-smokers, who have further 

or higher education, with no previous children, and whilst overestimating the proportion of Pakistani 

women, less than 25 years old, who have never smoked, with 2 or more previous babies, and little if 

any formal education. The proportions imputed for the term LBW and SGA models are very similar to 

those of the continuous birth weight model (data not shown). Interpreting the results of the complete 

case analysis alone would give a skewed view of the reality in the full dataset, therefore the results of 

the multiple imputation models were interpreted.  

7.3.6.3.2 Imputations among women with missing ethnicity information  

Among 2069 eligible women who did not have ethnicity information in the original dataset, 38% were 

imputed to be White British, 48% Pakistani and 14% Other, compared to 40%, 44%, and 15% in the 

original raw data respectively (Table A7 - 16). 

The output of the multiple imputation analysis confirms my findings in Chapter 6, that the women 

potentially at greatest risk of low birth weight are the same women who have missing (ethnicity and 

IMD) data (see Figure 6.9 b in Chapter 6). For example, 4.6% are term LBW among N=1,928 term 

births with missing ethnicity (compared to 4.1% in the complete case analysis), and 13.3% are SGA 

among N=2,069 with missing ethnicity data (compared to 12.9% in the complete case analysis). 

Because women with highest risk of poor birth outcomes are likely to be Pakistani in the original 

dataset (and to have gestational diabetes, lower formal education attainment, and 2 or more previous 

babies), when missing, Pakistani ethnicity is imputed at higher rates that the average in the original 

dataset. Mean birth weight among the 987 (of 2069) women imputed to be Pakistani is 3091g (vs. 

3317g for White British and 3157g for Other); term LBW rate among these Pakistani women is 6.7% 

(White British 1.9%, Other 4.8%), and their SGA rate is 17.3% (WB 8.3%, Other 13.7%). 

7.4 Discussion 
In this chapter, the association between three metrics of exposure to HAAs and three measures 

of growth restriction were investigated. Though results are non-significant for the most part, there 

are a few trends. Few metrics show significant effects in these models, however many confounders 

did. 

Increasing tertiles of tap water consumption predict a heavier weight at birth, and a higher probability 

of being >2500g at term after adjusting for potential confounders. Increasing tertiles of area-level 
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HAA concentrations (particularly TCAA during the first trimester exposure window) predict a lighter 

weight at birth, and possibly even a higher risk of being SGA. None of the adjusted models using 

combined metrics were significant, but the third tertile of exposure to the combined BDCAA metric 

predicts a higher probability of being of normal weight (>2500g) at term. Based on the output of the 

combined metric models with interaction terms for combined metrics and gestational age, the lowest 

tertile of exposure may be at slightly (non-significant) higher risk of lighter birth weight and of term 

LBW in the earliest respective gestational ages. The power in the term LBW models is very low, as 

the prevalence of low birth weight at term is only about 4%. 

A number of sensitivity analyses were conducted to question the assumptions of these models, none of 

which substantially altered the conclusions. In addition, with the possible exception of a few 

differences for the continuous BW models, the crude and adjusted results are very similar. 

7.4.1 Water consumption 

Smith et al (2013) showed that individual water intake is influential in determining TCAA exposure 

variability in this cohort, which is why we thought it interesting to investigate the sole effect of water 

consumption on birth outcomes. 

7.4.1.1 Mediation hypothesis 

The assumption I made is that water consumption reflects an individual mother’s (and by extension, 

baby’s) exposure to HAAs. However, not only can water consumption contain and thus reflect 

exposure to a number of other water contaminants (e.g. other DBPs such as THMs, HANs, 

nitrosamines, yet unknown DBPs, or nitrates, arsenic), but it also constitutes an exposure in itself, to 

water, consumption of which is vital for survival. The finding that increasing cold tap water 

consumption predicts a heavier weight at birth and a higher probability of being >2500g at term is in 

line with previous studies which show that increased water consumption is associated with better birth 

outcomes (Aggazzotti et al. 2004; Savitz et al. 1995; JM Wright et al. 2010). Greater water 

consumption itself appears to have a protective effect on birth outcomes. 

It is possible that the positive effects of tap water consumption on birth weight suggested by these 

results are compounded by other positive determinants of birth weight (e.g. maternal education which 

also predict increased water consumption) either directly (e.g. making water consumption a possible 

confounder of the relationship in this example between a maternal education and birth weight), 

indirectly via a mediation pathway (e.g. education is positively associated with tap water consumption 

which in turn leads to heavier weight at birth), or perhaps both.  
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Greater maternal education (as a proxy for higher socio-economic status), quintiles of IMD 2010 and 

maternal physical exercise (for which I selected to look at a categorical variable for number of hours 

spent doing physical exercise in the week preceding the baseline questionnaire25) all predict greater 

water consumption (JM Wright et al. 2010)26. All three of these are also strongly positively associated 

of birth weight in crude associations, exhibiting a dose-response association (see Table A7 - 17, step 

1). 

The mediation hypothesis was tested using Baron and Kenny’s four step approach (1986), choosing 

continuous birth weight as the outcome and cold tap water as the water consumption “mediator” 

variable (as it was borderline significant in final adjusted models on continuous birth weight). In step 

2, physical activity predicts a step change in cold tap water consumption, with women who reported 

exercising for ≥3 hours/week drinking on average 0.4L/day more than those who reported no exercise. 

Greater maternal education predicted a very slight increase in cold tap water consumption, while the 

pattern associated with IMD 2010 quintiles was unclear and non-significant, ruling the latter out as a 

possible mediator in this case (Table A7 - 17, step 2). In step 3, cold tap water consumption was 

significantly positively associated with birth weight, as per the main analyses (mean change in birth 

weight was 16.48g (95% CI: 2.14, 30.83)) (Table A7 - 17, step 3). Based on the output of step 4, I 

conclude that water consumption is a mediator of the association between maternal education and birth 

weight because all three first steps are significant and water consumption remains significant after 

controlling for maternal education (water consumption is in fact a partial mediator here because 

maternal education also remains significant after adjustment). The effect of physical activity on birth 

weight could not be established to be mediated by water consumption in this dataset (water 

consumption is not significant in step 4), however physical activity is consistently correlated with 

water consumption variables. Spearman’s correlations between water consumption variables (cold tap 

water, total tap water, bottled water and total fluid), and maternal education, IMD 2010 quintiles, and 

physical activity are presented in the appendix (Table A7 - 18). The example of water consumption 

mediating the relationship between maternal education and birth weight opens up the possibility that it 

and other predictors of both water consumption and birth weight could account for the water 

consumption results.  

25 74% of women did not do any physical activity in the week preceding enrolment to BiB, 14% did less than 1 
hour per week, 9% between 1-3 hours, and only 2.4% report exercising for 3 or more hours a week (3539 of 
11874 women do not have a reported physical activity information) 
26 Castano-Vinyals et al (2011) recently noted the opposite trend; however this study may not be comparable as 
it is based in Spain which has a very different climate and water source to the UK. (Castano-Vinyals G, Cantor 
KP, Villanueva CM, Tardon A, Garcia-Closas R, Serra C, et al. 2011. Socioeconomic status and exposure to 
disinfection by-products in drinking water in spain. Environ Health 10:18.) 
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I also find that the physical activity variable, which is strongly associated with birth weight on its own 

(see Table A7 - 17), is never a significant predictor of birth weight when added to the full final models 

(data not shown). No significant improvements to the final models are made by adding physical 

activity as an additional covariate to the models either. This suggests that water consumption may be a 

confounder of the association between physical activity and birth weight, though this hypothesis 

would need further investigation.  

7.4.1.2 Unmeasured confounding 

It cannot be excluded that levels of water consumption are associated with unmeasured confounding; 

for instance, per Wright (2010), a study found that participants reporting no water intake (nb. all those 

reporting zero total water intake were excluded from these analyses, but there remain individuals with 

as little as 0.20 L (i.e. 1 cup) reported total daily water intake) also reported increased soft drink 

consumption and less fruit, vegetable and low- and median-fat dairy product intake, all of which are 

indicative of generally unhealthier lifestyles (Popkin et al. 2005). This means that lower water 

consumption is associated with higher unhealthy lifestyle choices (in this case, poor diet), which could 

be the factors involved in lowering birth weight, not the water consumption itself. 

In favour of the argument that water consumption (e.g. hydration) itself predicts better birth outcomes, 

I find a graduated response to water consumption: the more you drink during pregnancy, the heavier 

your baby at birth on average. If there were a greater positive effect on birth weight from consumption 

of bottled water (which is thought not to contain any HAAs, i.e. represents zero exposure) compared 

to the tap water types, the positive effects of greater water consumption could be verified to mask the 

smaller but nonetheless real negative effect of the HAAs contained in tap water. Unfortunately, there 

were not enough women with zero exposure (based on bottled water) in order to assess this effect 

difference. In addition, selecting for bottled water consumption itself may isolate a particular (perhaps 

richer) group of women, biasing the results. 

Given these results, I conclude that it is possible that the effect of water consumption itself—or 

possibly of variables with strong positive effects on birth weight which also predict water 

consumption—drown out any hypothesized negative effects of the HAAs assumed to be contained in 

tap water. Other than HAA-containing tap water, no other sources of exposure from food have been 

taken into account. 

7.4.2 Area-level concentrations 

The area-level concentrations results indicate that increasing area-level HAA concentrations predict 

lighter weights at birth supporting the hypothesis.  
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In addition to being an area-level exposure metric which does not account for individual behaviour, 

the issue with area-level exposure metrics is that their derivation depends entirely on when and where 

a woman spends her time while pregnant. In reality, women clearly will not consume tap water only in 

the water supply zone of their residence. In addition, their place of residence may well change over the 

course of pregnancy. 

To address this, the sophistication of the spatial component of this metric was increased by including 

both the work and residence information for those women for whom it was available. It is not that 

surprising that there are few differences in the results after adding work location information to the 

exposure measures (see Table A7 - 4, Table A7 - 7, and Table A7 - 12), given that the concentrations 

in the sensitivity analysis and in the original models scarcely differed. In fact, approx. 78% of BiB 

women had the same area-level HAA concentrations values in these two different analyses, either 

because they didn’t report being employed outside of the home, they were employed but didn’t report 

a valid workplace address that could be geocoded, or they reported a work address which fell outside 

of the catchment area of Bradford’s eight water supply zones, meaning they could not be matched to 

modelled HAA concentrations. 

As it is important to characterize exposure variability to assess the potential for exposure 

misclassification (Nieuwenhuijsen et al. 2009b), the modelling effort described in Chapter 4 attempted 

to model area-level concentrations both spatially and temporally. However, there is very little spatial 

variability in HAA exposures in Bradford. In addition, and as reported in previous studies, seasonality 

of HAAs is not well defined (Parvez et al. 2011); this was particularly true because it was only 

possible to model HAAs on a quarterly basis given available data. This means that when considering 

area-level concentrations alone (without a component for individual behaviour), variability in 

exposure is quite limited, such that there is not a lot of contrast between high and low exposed 

individuals, and that risk estimation is more difficult because of a higher probability of exposure 

misclassification (Nieuwenhuijsen et al. 2009b) (see distributions in Chapter 4, Figure 4.15). Studies 

from Scandinavia (Cedergren et al. 2002; Hwang et al. 2002; Kallen and Robert 2000; Magnus et al. 

1999) and Taiwan (Hwang et al. 2008) have also shown low levels of DBPs with a similar small range 

(Nieuwenhuijsen et al. 2009b). 

My Bayesian model developed, I could be including the uncertainty calculated in the derivation of 

time-weighted area-level estimates in the epidemiologic study. However, for reasons of time 

constraints with respect to the probable minimum added value of such an effort, I do not carry that 

uncertainty forward. 
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7.4.3 Combined exposure 

In the models using the combined metric, either no effect was found, or the positive effect on birth 

weight suggested by individual tap water consumption and the negative trend of area-level 

concentrations on birth weight seem to cancel each other out. This is true for all models except 

perhaps for BDCAA on term LBW (brominated species have been reported to be more toxic than 

chlorinated ones (Plewa et al. 2010)), though the reported effect is in the opposite direction to the 

prediction. 

The combined metric presented in this work combines the best available data sources and knowledge 

available to date to produce the most accurate exposure assessment possible, short perhaps of using 

biomarker data. However this combined metric also has some limitations. It likely integrates different 

types of misclassification error. As in Iszatt et al (2011), the exposure estimates are subject to random 

error from both classical error (i.e. error in sampling measurements of HAAs and quantity of water 

consumed by individual participants) and Berkson error (i.e. assigning modelled area-level HAA 

concentration to individual participants). Therefore, exposure misclassification may not simply 

attenuate risk (Armstrong 1998) but also increase the uncertainty in the estimates, as reflected by wide 

confidence intervals (Iszatt et al. 2011). 

The reason only area-level concentrations for these three candidates (DCAA, TCAA and BDCAA) 

were modelled was the scarcity of HAA concentration data points collected. As a result, I was unable 

to assign individual women an exposure to the mixture of HAA5 (sum of MCAA, DCAA, TCAA, 

MBAA and DBAA) or HAA9 (sum of all 9 HAAs), or to the relative proportion of HAA5 to 

brominated HAAs (Parvez et al. 2011). However DCAA and TCAA are highly correlated with total 

HAAs (both DCAA and TCAA were correlated with r=0.8 (p<0.001) with HAA9, see Table A4 - 9), 

and when summed they are assumed to be good proxies for total HAAs in Bradford as they make up 

the great majority by concentration of the nine HAAs (see Chapter 4). I did run the combined models 

summing all three combined metrics derived in lieu of the exposure, but found no effect of this sum on 

birth outcomes (data not show). The assumption that all women are continuously exposed to the same 

level exposure throughout the time period at hand (whether considering a specific trimester of 

pregnancy in the case of area-level concentrations, or assuming that second trimester exposure is 

representative of the whole pregnancy in the case of the combined metric) may not be met. In addition, 

not all women were recruited at the exact same time in their pregnancy; rather women were recruited 

during a range of weeks of gestation (median difference between the date of questionnaire completion 

and the estimated date of conception is 184 days (26.3 weeks), with a 6 day interquartile range 

(N=9,775)), meaning that they reported behaviours in the baseline questionnaire at slightly different 

times of pregnancy. However controlling for days of gestation at the time of questionnaire completion 

did not alter the results (data not shown).  
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One of the biggest limitations of the combined metric exposure measures is the amount of filtering 

information which was not available. As described in Chapter 3 (Table A3 - 1), 9,071 women 

answered the question about whether or not they filtered their tap water at home (10% of which 

reported that they did), but only 1,466 employed women answered the question about whether or not 

they filtered their tap water at work (43% of which reported that they did). This corresponds to 76% of 

11,874 eligible women for the filtering at home question, and only 34% of the 4,315 who were 

working for the filtering at work question. In all, 56% (or N=6,609) of the 11,874 total number of 

women who gave birth to live singleton babies with a birth weight record answered the filtering 

question for either (or both) of the two locations of interest. Knowing whether or not a woman filtered 

her tap water was essential to assigning her a combined DCAA, TCAA or BDCAA metric of 

exposure. If that filtering question was not answered, derivation of the combined metric of exposure 

could not be performed. As a result, 5,265 women were dropped from the combined metric calculation 

due to missing filtering information.  

In addition, a greater proportion of Pakistani origin women over White British women answered the 

filtering questions, such that the complete cases analyses may be somewhat skewed by the higher 

proportion of their answers. A greater proportion of the women who answered the filtering question 

were of Pakistani origin (54%) proportionally to their share of the cohort (44%), and a smaller 

proportion of White British (32%) compared to their cohort share (40%) (The “Other” group was well 

represented in filtering question answer (14% and 15%, respectively)). That being said, amongst all 

women with ethnicity information who did respond to a filtering question (at either or both locations, 

N=6,619), the Pakistani women less frequently reported filtering their tap water (11% said yes) 

compared to the White British or Other groups (24% and 23%, respectively).  

Counterbalancing the exclusion of a higher proportion of White British women from the combined 

metric models based on missing filtering information, proportionally more Pakistani women will have 

been excluded from the adjusted analyses than White British women, because of missing covariate 

information. This is one of the points made in Chapter 6 regarding representativeness of BiB and 

missing data among the most vulnerable.  

Considering the results of the models after multiple imputation addressed successfully these 

imbalances. Indeed, as part of the imputation process, the partial information of those women 

excluded from the complete case analysis is used. Using multiple imputation to impute the missing 

confounders preserves the sample size. In this case though, the conclusions after imputation regarding 

the relationship between HAA exposure (in ug/day) and birth outcomes do not change. 
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The choice of filtering and boiling factors, based in this study solely on average factors sourced from 

the literature depended on literature bias, and water quality and type of filters used in those specific 

studies. In the future, further sensitivity analyses of the combined metric analysis with different (or 

without) filtering and boiling factors, and with imputation of missing filtering information may be 

warranted. 

7.4.4 Effect of HAAs when comparing the results of the cold tap water and combined 

metric models on continuous birth weight 

The effects of cold tap water consumption on continuous birth weight are significant in the adjusted 

linear regression models: women in tertile 3 of exposure (drinking >1.4 L/day) had significantly 

heavier babies (24.0grams (CI: 1.4, 46.6)) compared to women in the reference group. 

As above, this result suggests that increased maternal cold tap water consumption—or the variables 

positively associated with water consumption such as socio-economic status, education, level of 

physical exercise, ethnicity or smoking and caffeine habits—is associated with heavier babies at birth, 

and as such could constitute a healthy or even protective behaviour in terms of birth weight. 

However, after combining the volumes of cold and hot tap water reported to be consumed by each 

cohort woman (L/day) with the modelled HAA concentrations (ug/L) into a combined metric for 

exposure to DCAA, TCAA and BDCAA (ug/day) and taking boiling and filtering into account, the 

effect of HAAs on continuous birth weight in adjusted models disappeared for all three HAAs 

(seeTable 7.2). 

The difference between the two exposure measures (cold tap water consumption and the combined 

metrics) being the HAAs themselves, this result could mean that accounting for HAAs—the very 

chemicals of interest in this thesis—leads to a reduction to the null, or cancelling out, of any positive 

effect that water consumption has on birth weight, irrespective of quantity of water consumed.  

While there is no intake of HAAs without water consumption—the exposures, and thus their effects, 

are inextricably paired—, one could imagine that higher concentrations of HAAs may have a more 

drastic effect counter the positive effect of water consumption (especially after boiling is taken into 

consideration for DCAA, as boiling increases DCAA’s concentrations). 

However, contrary to the significant positive effect of cold tap water on birth weight, there are no 

significant effects of total tap water (or bottled water, or total water) consumption on continuous birth 

weight (see Table 7.3), which is the consumption measure included in the combined metric, with the 
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appropriate boiling and filtering reduction/increase factors applied to it. In addition one must question 

the clinical significance of a 24 gram increase in birth weight, when the mean birth weight in this 

population is 3,231.1grams (95% CI: 3219.8, 3239.6) (N=11,874), i.e. 0.7% change in average birth 

weight. 

In the term LBW models, the protective significant effects observed for cold tap water, total water and 

total water does carry over to the results of the combined DCAA, TCAA and BDCAA metrics or even 

grow stronger (see Table 7.5 and Table 7.6). This supports the theory that it is total tap water, not cold 

tap water, that is the primary consumption measure of interest. This result, though on an outcome 

which exclude all preterm births many of which also be growth restricted, highlights that the reversal 

of effects observed for the continuous birth weight models may be a chance finding or indeed due to 

other factors, perhaps related to preterm status.  

7.4.5 Stratification by ethnicity: White British compared to Pakistani women 

Though not significant, upon stratification of the models using the combined measure as exposure 

metrics, a trend towards a reduction in birth weight is observed in the White British women for DCAA 

and TCAA models, and a trend in the opposite direction for Pakistani women for DCAA, TCAA and 

BDCAA models (Table A7 - 10). If the direction of the effect of HAAs is different between the two 

major ethnic groups represented in BiB, then this may explain why non-stratified analyses will not 

reveal any effects of HAA on birth outcomes. 

These results are similar—though less accentuated—to similar models also set in BiB but looking at 

air pollutants (fine particulate matter of diameter 2.5um or less, i.e. PM2.5, in particular). This work 

was conducted by Anna Schembari and Mark Nieuwenhuijsen, at CREAL in Barcelona, Spain 

(unpublished to date, personal communication). They report a significant interaction between exposure 

and ethnicity such that increasing PM2.5 during the third trimester of pregnancy has a statistically 

significant negative effect on birth weight in White British origin babies, but not in the Pakistani 

origin babies. If these results were reproduced in another population, it may suggest that the two 

predominant ethnic groups react differently to the same environment. This may be explained by a) 

genetic factors, as highlighted in Chapter 6, such that babies of Pakistani and South Asian origin in 

general tend to have lower birth weights than White babies (in this sample, 6% of Pakistani are term 

LBW compared to 2% among White British and 3% among Other groups, and 16% of Pakistani are 

SGA compared to 8% and 12% among White British and Other, respectively), and/or b) behavioural 

factors such as the time spent at home, cooking habits and diet, in addition to the smoking, caffeine 

intake and deprivation factors adjusted for (see Chapter 6 for details, as well as Table A7 - 9, Table A7 

- 11 and Table A7 - 14). In fact, some of these characteristics (such as smoking or caffeine intake, 
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which predict lower birth weight but only apply to the White British women who already tend to have 

heavier babies on average) may mask even larger differences between ethnicities than the differences 

reported in this study. 

7.4.5.1 Using HAAs and birth weight as proxies for other variables 

As discussed above, the individual DCAA, TCAA (and BDCAA) exposures modelled, derived and 

studied in this thesis are good proxies for exposure to total HAAs in Bradford (Table A4 - 9). The lack 

of correlation between these HAAs and other DBP species in Bradford as highlighted in Chapter 4 

make it quite unlikely however that HAAs are a good proxy for other DBPs. Beyond this, it is 

reasonable to question how reliable birth weight alone is as a marker of ill health (see Introduction 

(Chapter 1)). Indeed a study in the BiB cohort aimed at describing the growth pattern from birth to age 

two years in a subset of 1,434 UK-born White British and Pakistani infants found that Pakistani 

infants were lighter and had shorter predicted mean length at birth than White British infants, but 

gained weight and length quicker in infancy. By age 2, both ethnic groups had similar weight, but 

Pakistani infants were on average taller than White British infants. In other words, weight at birth is 

just one endpoint; upon follow-up of a subset of this very same cohort, differences in growth 

trajectories appear by ethnicity (Fairley et al. 2013). 

West’s study finds that while markedly lighter overall, Pakistani infants in the BiB cohort had similar 

skinfold thicknesses and greater total fat mass (as indicated by cord leptin) for a given birth weight 

than White British infants, indicating that Pakistani babies were more adipose than White British 

babies. If the birth weight endpoint is considered alone and out of context, this study’s authors 

conclude that any efforts to reduce ethnic inequalities in birth weight need to consider differences in 

adiposity and the possibility that increasing birth weight in South Asian infants might inadvertently 

worsen health by increasing relative adiposity (West et al. 2013).  

7.4.6 Stratification to unemployed women only 

Restricting the analyses to unemployed women (N=5,519) could increase the precision of the risk 

estimates; however, there were no difference in the results or overall conclusion after stratification. 

Though the estimates may be more accurate, the confidence intervals are wider in the stratified group, 

as the sample size is split in half. 

There are two reasons why unemployed women may have less error in their exposure estimates than 

employed women: a) using the urinary TCAA biomarker as a gold standard of exposure, TCAA 

ingestion in the home as recorded by the BiB questionnaire was found to be a valid proxy for TCAA 

exposure for unemployed women, but less so for employed women in the BiB cohort (Smith et al. 

2013) and b) even though I tried to account for the work water supply zone location of the employed 
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women in sensitivity analyses presented earlier, the data to do this were scarce meaning that the area-

level HAA estimates among the unemployed women (for whom there is only one water supply zone to 

account for) are likely to contain less error. This is based on the underlying assumption that if a 

woman is employed she spends her work time at work only and her free time at home only, while if a 

woman is unemployed she spends all of her time at home. It is not straightforward to predict how 

these errors will affect risk estimates given the two types of error (classical and Berkson) at play, but I 

expect estimates among the unemployed to represent better estimates of risk as there is generally less 

exposure measurement error. This finding also highlights the existence of recall error associated with 

self-reported information via questionnaire, and future work would benefit from validating this. 

7.4.7 Gestational age 

Excluding gestational age form the final models does not alter the results, though it strongly affects the 

model fit. It is to be noted that fetal growth is not linear and further work exponentiating or 

categorising the continuous gestational age variable may improve the fit. It is unclear however that any 

less rigidly linear inclusion of gestational age in the models would have altered the conclusions of the 

association of interest. In addition, if an environmental exposure were to affect growth in early 

pregnancy, gestational age (as measured by ultrasound) would be underestimated. This means for 

example that a baby thought to be born at 38 weeks gestation at a healthy weight of 3100g may in fact 

be underweight if he was really born at 40 weeks of gestational age (mean birth weight at 40 weeks 

gestation is 3343g in the BiB cohort). Ultimately, along with possible non-linear growth during 

pregnancy, and the possible errors in measurement of gestational age itself (further discussed in 

Chapter 6), it is difficult to assess whether gestational age is a mediator of the association between 

exposure and outcome because that exposure on outcome relationship is overall non-significant.  

7.4.8 Model selection process 

After trying several different methods to select best fit models, an a priori selection of variables which 

are both important predictors of the exposure and/or birth outcomes and of relatively good quality, 

were used.  

7.4.8.1 Discussion of coefficients 

All covariates coefficients but maternal age were in the expected direction (Table A7 - 9, Table A7 - 

11 and Table A7 - 14): when holding all other variables constant in the models (whether the 

continuous birth weight, term LBW or SGA models), female babies were lighter than males at birth; 

parity and quartiles of BMI had graduated positive effects the higher their values; the higher the 

mother’s educational attainment the heavier her baby at birth; report of > 200mg/day caffeine intake 
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predicted lower birth weights while report of gestational diabetes predicted higher birth weight, as 

expected. Current smokers had lower weight babies.  

The lightest babies were to 25 to 29 year old mothers, with increases in birth weight (or decreases in 

risk of term LBW or SGA) for both the younger and older groups of mothers. This is slightly unusual, 

however maternal age was only significant in the continuous birth weight models not in the term LBW 

or SGA models; it was not included a priori for its contribution to the model, but because it is 

customary to do so. 

Models with most significant covariate effects were the continuous birth weight models, most likely 

because they are better powered models. Nevertheless, all covariates remain intercorrelated (Table A7 

- 2), making differentiation between the variables which drive the associations difficult. 

The robustness of the caffeine report as associated with lower birth or increased risk of term LBW or 

SGA was quite surprising. However, such an association may reflect known as the Stein-Susser 

epiphenomenon: if nausea is a marker of good implantation as has been suggested (perhaps reflecting 

a favourable balance of hormones produced by a healthy placenta) (Leviton and Cowan 2002) and 

women with prominent nausea tend to reduce caffeine consumption, then those who continue drinking 

coffee may be the subgroup of women at higher risk of pregnancy complication for reasons unrelated 

to coffee consumption. This may explain the strong association observed here, even if it is not a true 

effect of the caffeine itself. 

There is a limitation in the methods relating to the calculation of caffeine consumption. Indeed, this 

variable is derived from the food section of the baseline questionnaire. Subsequently in the water 

section, women are asked about their daily coffee consumption during pregnancy, the answer to which 

is added to the “hot tap water” consumption, then to “total tap water” consumption and in turn to “total 

water” consumption summary categories, thus potentially including caffeine consumption both in the 

exposure as well as adjusting for it in the models. I don’t suspect any great impact on the association 

between exposure to HAAs and birth weight, but this means that interpreting the caffeine intake 

covariate must be done with caution. Note that the effect of hot tap water on birth outcomes alone was 

not examined, in part for this reason. 

7.4.8.2 Adjusting for a large number of covariates 

Choosing which variables to include as confounders in a regression model is a delicate issue, and one 

for which there is no simple or universally established set of “rules”. The main statistical trade-off is 

that failing to include important confounders may lead to biased exposure estimates, whereas 
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including large numbers of covariates in a regression model can lead to loss of efficiency (inflated 

variances). However, including 8 to 10 variables is still only a modest number of covariates. 

7.4.8.3 Covariates not included 

Other than the variables which were considered for inclusion in the models, but then decided not to for 

reasons discussed previously27, the following are possible confounders reported in the literature to 

have links with birth outcomes and which could not be included in the models because they were 

unavailable: maternal diet and folate/iron supplementation prior to pregnancy; paan chewing; nicotine 

replacement; intake of illegal drugs; pregnancy weight gain; HIV/AIDS status and other infections 

acquired during pregnancy; heart, kidney or lung problems; certain medications taken during 

pregnancy (e.g. acne medications, or medications to delay onset of labour); birth spacing; paternal 

factors (such as height, weight, and ethnicity). Assisted reproductive technology data which has been 

shown to contribute to an increase in preterm deliveries was not available either (Wilcox 2010). 

In addition, the effects of other environmental exposures (such as trihalomethanes (THMs), or air 

pollutants) for which data are already available in this cohort were not included. I suggest that the joint 

effect of exposure to the HAAs presented in this thesis, the trihalomethanes (THMs) and the air 

pollutant data which are now available in BiB be examined at a later stage, as this would constitute a 

very interesting study.  

7.4.8.3.1 Alcohol 

I considered including alcohol in the models, however the results did not materially change after its 

inclusion. In addition, the quality of the questionnaire-derived variable was quite poor, heavily subject 

to recall bias, with approximately 20% missing data, and while I was in fact mostly interested in the 

period of pregnancy itself, it includes alcohol consumption during pregnancy as well as during the 

three months preceding pregnancy. In this cohort, the alcohol variable is also highly correlated with 

smoking (r=0.33, p<0.001, N=9,517), ethnicity (r=-0.37, p<0.001, N=9,489) and caffeine intake 

(r=0.21, p<0.001, N=8,682), reducing the added benefit of incorporating it and leading to potentially 

highly collinear models (Table A7 - 19). In addition, the evidence regarding alcohol consumption 

during pregnancy, particularly the effects of moderate quantities of alcohol consumption at various 

stages of pregnancy, is not well established (Oster 2013). In the BiB cohort itself only binge drinking 

was found to affect SGA with no association found between any level of alcohol consumption and 

premature birth (Cooper et al. 2013). 

27 Hypertension, pre-existing diabetes, employment status, physical activity of the mother, alcohol consumption, 
having multiple births, and level of deprivation/income  
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Stress is a very important factor which has not been considered in this analysis, and would likely play 

an important role given BiB’s study population. Maternal stress (of various forms and definitions) has 

been linked with preterm delivery. For instance, in a prospective cohort study of 1,962 pregnant 

women in central North Carolina between 1996 and 2000, in which 12% delivered preterm, Dole et al. 

(2003) reported an increased risk of preterm birth among women with high counts of pregnancy-

related anxiety, with life events to which the respondent assigned a negative impact weight and with a 

perception of racial discrimination. The mechanism of action of maternal and fetal stress could involve 

activation of cells in the placenta, decidua, and fetal membranes to produce corticotropin-releasing 

hormone, which in turn enhances prostaglandin production in these tissues to promote parturition 

(Lockwood 1999). 

Dejin-Karlsson et al (2000) find that a lack of psychosocial resources, such as social stability, social 

participation, emotional and instrumental support, all increased the likelihood of delivering an infant 

that was SGA. Simultaneous exposure to what was defined as a poor total network index, as well as a 

poor total support index showed a significantly increased odds ratio for having a small-for-gestational 

age baby. In addition, the authors reported an interaction between immigrant status and poor total 

network or poor total support, in a synergistic direction, in their sample (Dejin-Karlsson et al. 2000). 

Last but not least, work by Traviss et al (2012) in the BiB cohort reveals that maternal mental health in 

pregnancy has an independent influence on infant growth up to six months and is associated with 

ethnicity which is itself associated with deprivation. Taking example from Traviss et al (2012) recent 

study, further exploration of the complex relationship in the BiB population between symptoms of 

maternal distress, ethnicity, deprivation, health behaviours, environmental exposures and early infant 

growth, would make a very interesting area for future research and may answer some of the remaining 

questions pertaining to the ethnic disparities observed in BiB. Stressors are extremely hard to quantify. 

Their perception may vary highly between individuals, while biomarkers of stress (such as 

glucocorticoid hormones in saliva) have very short half-lives and are highly variable depending on the 

timing and circumstances of measurement. However sources of stress themselves can be quantified.  

7.4.9 Conclusion 

Mean birth weights in each tertile of exposure are very similar, as are the rates of tLBW or SGA by 

exposure tertile (for term LBW see Figure A7 - 2 and Figure A7 - 3; for SGA see Figure A7 - 4 and 

Figure A7 - 5) (Table 7.1). Also there is a high level of variability in birth weight (SD=545.0g). The 

study has low power to detect the differences observed in the birth weight (and probabilities of tLBW 

or SGA) between the tertile of exposure to combined DCAA, TCAA or BDCAA.  
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I find nearly no significant results in this chapter. If there are any, they are opposite effects to the 

hypothesis for water consumption models suggesting that either there really is no effect of the HAAs 

contained in tap water on birth outcomes, or that the benefits of tap water consumption itself and the 

healthy behaviours associated with water consumption (e.g. higher socio-economic status, greater 

physical health via physical exercise, healthier lifestyle choices in general) outweigh any possible 

negative effects of the HAAs it contains, rendering these undetectable. The trend for area-level 

concentration results fits with the hypothesis that greater exposure to HAAs predicts poorer birth 

outcomes, particularly for TCAA, though the results are mostly not significant, and the exposure range 

is quite limited. As for the models using the metric combining individual water consumption and area-

level concentrations which combines the best available data sources that can be derived to date (short 

perhaps of biomarker data, which come with their own unique set of challenges), the results are not 

significant. While the study power is quite low given the very small expected effects, these results may 

be not significant because of the opposite direction of the effect of its components (water 

consumption, and area-level HAA concentrations), or because HAAs do not affect the birth outcomes 

under consideration in this cohort.  
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7.5 Tables 

Table 7.1: Descriptive data of birth weight (in grams), and prevalence of LBW, term LBW, and SGA (UK 1990), by tertiles of exposure for each of 16 
exposure measures of interest (6 water consumption variables, 9 trimester-specific area-level concentration variables, and 3 combined metrics) (live births 
only) CI: confidence interval 

Exposure birth weight (g) LBW (rate) term LBW (rate) SGA (rate) 
mean 

(95% CI) N. 
mean 

(95% CI) 
prevalence (%) 

(95% CI) N. 
prevalence (%) 

(95% CI) N. 
prevalence (%) 

(95% CI) N. 
water consumption (L/day) 
cold tap water 
0 - 0.8 0.57 (0.56, 0.57) 3506 3227.8 (3209.6, 3246.0) 7.9 (7.1, 8.9) 3506 4.4 (3.7, 5.1) 3307 12.0 (10.9, 13.1) 3503 
> 0.8 - 1.4 1.14 (1.14, 1.15) 2826 3229.9 (3209.8, 3250.1) 6.9 (6.0, 7.9) 2826 3.7 (3.0, 4.5) 2682 13.1 (11.9, 14.4) 2823 
> 1.4 2.06 (2.03, 2.09) 2861 3251.7 (3231.4, 3271.9) 6.8 (5.9, 7.8) 2860 3.5 (2.8, 4.3) 2712 10.8 (9.7, 12.0) 2857 
total tap water 
0 - 1.2 0.88 (0.87, 0.89) 3811 3223.7 (3206.3, 3241.1) 8.0 (7.2, 8.9) 3811 4.5 (3.8, 5.2) 3593 12.4 (11.4, 13.5) 3806 
> 1.2 - 1.8 1.58 (1.57, 1.59) 2905 3232.5 (3212.8, 3252.2) 6.7 (5.8, 7.6) 2905 3.5 (2.9, 4.3) 2767 12.4 (11.2, 13.7) 2903 
> 1.8 2.69 (2.66, 2.73) 2981 3259.2 (3239.1, 3279.4) 7.1 (6.2, 8.1) 2980 3.6 (3.0, 4.4) 2816 10.9 (9.8, 12.1) 2977 
bottled water 
0 - 0.4 0.25 (0.24, 0.26) 1608 3252.5 (3225.3, 3279.7) 7.5 (6.2, 8.9) 1608 3.7 (2.8, 4.8) 1521 12.1 (10.6, 13.8) 1607 
> 0.4 - 0.8 0.70 (0.69, 0.71) 993 3288.1 (3254.2, 3322.1) 6.1 (4.7, 7.8) 992 3.6 (2.5, 5.0) 942 10.3 (8.5, 12.4) 990 
> 0.8 1.52 (1.48, 1.55) 1105 3316.9 (3283.5, 3350.3) 6.4 (5.1, 8.0) 1105 3.3 (2.3, 4.6) 1048 9.1 (7.5, 11.0) 1104 
total fluid 
0 - 1.4 1.07 (1.06, 1.08) 3743 3204.1 (3186.9, 3221.2) 8.1 (7.2, 9.0) 3743 4.7 (4.0, 5.4) 3547 13.4 (12.3, 14.5) 3737 
> 1.4 - 2.0 1.86 (1.86, 1.87) 3405 3245.3 (3226.9, 3263.7) 6.8 (6.0, 7.7) 3405 3.5 (2.9, 4.2) 3218 11.4 (10.4, 12.5) 3403 
> 2.0 3.19 (3.15, 3.23) 2638 3277.7 (3255.9, 3299.5) 6.9 (5.9, 7.9) 2637 3.4 (2.7, 4.2) 2497 10.4 (9.3, 11.6) 2634 
area-level concentrations (ug/L) 
Average [DCAA] 
trimester 1 
0-7.12 5.69 (5.65, 5.73) 3498 3241.2 (3222.9, 3259.4) 7.4 (6.6, 8.4) 3497 3.8 (3.2, 4.5) 3278 11.4 (10.4, 12.6) 3494 
>7.12 - 9.36 8.40 (8.38, 8.42) 3485 3223.0 (3204.8, 3241.2) 7.6 (6.7, 8.5) 3485 4.1 (3.5, 4.9) 3299 12.3 (11.2, 13.4) 3481 
>9.36 11.82 (11.74, 11.89) 3494 3221.3 (3203.1, 3239.5) 7.4 (6.6, 8.4) 3494 4.0 (3.4, 4.7) 3310 12.6 (11.5, 13.7) 3492 
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Exposure birth weight (g) LBW (rate) term LBW (rate) SGA (rate) 
mean 

(95% CI) N. 
mean 

(95% CI) 
prevalence (%) 

(95% CI) N. 
prevalence (%) 

(95% CI) N. 
prevalence (%) 

(95% CI) N. 
trimester 2 
0-7.20 5.76 (5.72, 5.79) 3758 3252.7 (3234.8, 3270.5) 7.5 (6.7, 8.4) 3758 3.9 (3.3, 4.6) 3538 11.4 (10.4, 12.4) 3757 
>7.20 - 9.43 8.53 (8.51, 8.55) 3749 3211.7 (3194.3, 3229.1) 7.6 (6.8, 8.5) 3748 4.2 (3.6, 5.0) 3541 12.8 (11.8, 14.0) 3744 
>9.43 11.76 (11.69, 11.83) 3755 3224.0 (3206.7, 3241.3) 7.4 (6.6, 8.3) 3755 4.0 (3.4, 4.7) 3557 12.5 (11.5, 13.6) 3750 
trimester 3 
0-7.43 5.87 (5.83, 5.91) 3843 3261.4 (3243.8, 3278.9) 7.1 (6.3, 8.0) 3843 3.4 (2.9, 4.1) 3618 10.6 (9.6, 11.6) 3841 
>7.43 - 9.54 8.70 (8.69, 8.72) 3847 3218.4 (3201.1, 3235.6) 7.7 (6.9, 8.6) 3847 4.4 (3.7, 5.1) 3650 12.9 (11.9, 14.0) 3843 
>9.54 12.01 (11.94, 12.08) 3844 3205.8 (3188.7, 3223.0) 7.9 (7.1, 8.8) 3843 4.4 (3.8, 5.1) 3617 12.9 (11.9, 14.1) 3838 
Average [TCAA] 
trimester 1 
0-10.38 8.59 (8.54, 8.65) 3503 3233.1 (3214.6, 3251.5) 7.6 (6.8, 8.6) 3503 4.1 (3.5, 4.9) 3303 12.0 (11.0, 13.2) 3500 
>10.38 - 12.49 11.38 (11.36, 11.40) 3485 3223.5 (3205.2, 3241.8) 7.7 (6.9, 8.7) 3485 4.1 (3.5, 4.9) 3282 11.7 (10.7, 12.8) 3481 
>12.49 15.97 (15.90, 16.04) 3489 3228.9 (3211.0, 3246.9) 7.1 (6.3, 8.0) 3488 3.7 (3.1, 4.4) 3302 12.6 (11.5, 13.7) 3486 
trimester 2 
0-10.49 8.73 (8.68, 8.79) 3758 3222.4 (3204.3, 3240.4) 8.4 (7.5, 9.3) 3758 4.4 (3.7, 5.1) 3531 12.7 (11.7, 13.8) 3752 
>10.49 - 13.05 11.58 (11.56, 11.60) 3748 3242.2 (3224.5, 3259.8) 7.3 (6.4, 8.1) 3748 4.0 (3.3, 4.7) 3540 11.8 (10.8, 12.9) 3747 
>13.05 16.48 (16.42, 16.54) 3756 3223.9 (3207.0, 3240.9) 6.8 (6.1, 7.7) 3755 3.8 (3.2, 4.5) 3565 12.2 (11.2, 13.3) 3752 
trimester 3 
0-10.62 9.04 (8.98, 9.09) 3841 3214.8 (3197.2, 3232.4) 8.6 (7.7, 9.5) 3841 4.6 (3.9, 5.3) 3618 12.6 (11.6, 13.7) 3836 
>10.62 - 13.17 11.72 (11.69, 11.74) 3847 3234.0 (3216.4, 3251.5) 7.3 (6.5, 8.1) 3847 3.7 (3.1, 4.4) 3611 12.4 (11.4, 13.5) 3844 
>13.17 16.48 (16.42, 16.54) 3846 3236.8 (3220.0, 3253.6) 6.9 (6.1, 7.7) 3845 3.9 (3.3, 4.6) 3656 11.4 (10.4, 12.4) 3842 
Average [BDCAA] 
trimester 1 
0-0.90 0.71 (0.70, 0.71) 3493 3236.4 (3218.3, 3254.5) 7.3 (6.5, 8.2) 3492 4.0 (3.3, 4.7) 3293 11.6 (10.6, 12.7) 3490 
>0.90 - 1.38 1.16 (1.15, 1.16) 3492 3229.4 (3211.2, 3247.5) 7.2 (6.4, 8.2) 3492 3.8 (3.2, 4.6) 3299 12.1 (11.0, 13.2) 3488 
>1.38 2.09 (2.07, 2.11) 3492 3219.7 (3201.2, 3238.2) 7.9 (7.0, 8.8) 3492 4.1 (3.5, 4.9) 3295 12.6 (11.5, 13.8) 3489 
trimester 2 
0-0.91 0.71 (0.70, 0.71) 3757 3244.0 (3226.2, 3261.7) 7.4 (6.6, 8.3) 3757 4.0 (3.4, 4.7) 3545 11.4 (10.4, 12.4) 3754 
>0.91 - 1.38 1.16 (1.15, 1.16) 3759 3217.0 (3199.6, 3234.4) 7.6 (6.7, 8.4) 3759 3.9 (3.3, 4.6) 3536 12.7 (11.7, 13.8) 3754 
>1.38 2.09 (2.07, 2.11) 3746 3227.4 (3210.0, 3244.8) 7.6 (6.7, 8.5) 3745 4.2 (3.6, 4.9) 3555 12.6 (11.6, 13.7) 3743 
trimester 3 
0-0.91 0.71 (0.70, 0.71) 3843 3224.6 (3207.0, 3242.2) 8.1 (7.2, 9.0) 3843 4.0 (3.4, 4.7) 3597 11.9 (10.9, 12.9) 3839 
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Exposure birth weight (g) LBW (rate) term LBW (rate) SGA (rate) 
mean 

(95% CI) N. 
mean 

(95% CI) 
prevalence (%) 

(95% CI) N. 
prevalence (%) 

(95% CI) N. 
prevalence (%) 

(95% CI) N. 
>0.91 - 1.39 1.16 (1.15, 1.16) 3849 3241.7 (3224.7, 3258.8) 7.0 (6.2, 7.8) 3849 3.9 (3.3, 4.6) 3659 12.0 (11.0, 13.1) 3845 
>1.39 2.13 (2.11, 2.15) 3842 3219.2 (3201.8, 3236.5) 7.7 (6.9, 8.6) 3841 4.3 (3.7, 5.0) 3629 12.5 (11.5, 13.6) 3838 
combined metric (ug/day) 
DCAA exposure 
0 - 10.41 7.07 (6.96, 7.17) 2067 3200.7 (3176.8, 3224.6) 8.6 (7.4, 9.9) 2067 4.7 (3.8, 5.8) 1948 13.4 (12.0, 15.0) 2065 
> 10.41 - 17.29 13.71 (13.63, 13.80) 2063 3223.9 (3201.2, 3246.6) 6.6 (5.6, 7.8) 2063 3.6 (2.8, 4.5) 1963 13.1 (11.7, 14.7) 2063 
> 17.29 27.32 (26.85, 27.79) 2065 3223.9 (3200.0, 3247.8) 7.1 (6.0, 8.3) 2065 3.7 (2.9, 4.6) 1958 12.0 (10.6, 13.5) 2061 
TCAA exposure 
0 - 12.02 8.01 (7.89, 8.13) 2066 3204.8 (3181.1, 3228.6) 8.6 (7.4, 9.9) 2066 4.8 (3.9, 5.9) 1950 13.6 (12.1, 15.1) 2064 
> 12.02 - 19.79 15.69 (15.59, 15.78) 2062 3219.7 (3196.5, 3242.8) 6.8 (5.7, 8.0) 2062 3.5 (2.8, 4.5) 1953 12.3 (10.9, 13.8) 2062 
> 19.79 30.77 (30.25, 31.29) 2067 3224.0 (3200.3, 3247.7) 7.0 (5.9, 8.2) 2067 3.7 (2.9, 4.6) 1966 12.7 (11.2, 14.2) 2063 
BDCAA exposure 
0 - 1.04 0.65 (0.63, 0.66) 2066 3203.0 (3179.5, 3226.4) 8.3 (7.1, 9.5) 2066 4.7 (3.8, 5.7) 1952 12.7 (11.3, 14.2) 2066 
> 1.04 - 1.93 1.45 (1.44, 1.46) 2066 3211.4 (3187.6, 3235.1) 7.7 (6.6, 8.9) 2066 4.1 (3.3, 5.1) 1952 13.6 (12.2, 15.2) 2063 
> 1.93 3.30 (3.23, 3.36) 2063 3234.2 (3210.8, 3257.5) 6.3 (5.3, 7.5) 2063 3.3 (2.5, 4.1) 1965 12.2 (10.8, 13.7) 2060 
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Table 7.2: Complete case analysis (CC) and Results after Multiple Imputation (MI): Crude and adjusted association between combined metric for DCAA, 
TCAA and BDCAA (in ug/day) and continuous birth weight (in grams) by linear regression (Complete case analysis, N=5,040; After Multiple Imputation 
using Chained Equations, N=11,874) 
Sample restricted to all live singleton births to eligible mothers. 

Combined exposure CC MI 
(ug/day) 

n 
Crude mean  

change in BW (g)♯ 
Adjusted* mean  

change in BW (g) n1 
Crude mean  

change in BW (g)♯ 
Adjusted* mean  

change in BW (g) 
DCAA exposure 

0 - 10.41 1563 0.0 0.0 3851 0.0 0.0 
> 10.41 - 17.29 1678 17.9 (-19.3, 55.2) -0.2 (-28.6, 28.2) 3905 24.9 (-9.0, 58.8) 5.1 (-19.1, 29.3) 

> 17.29 1799 20.0 (-16.6, 56.7) 7.7 (-21.2, 36.5) 4118 31.4 (-5.9, 68.6) 5.7 (-20.7, 32.1) 
TCAA exposure 

0 - 12.02 1590 0.0 0.0 3849 0.0 0.0 
> 12.02 - 19.79 1719 10.0 (-26.8, 46.9) 3.3 (-24.8, 31.5) 3925 21.8 (-12.4, 56.1) 4.3 (-20.5, 29.1) 

> 19.79 1731 12.9 (-23.9, 49.7) -0.7 (-29.1, 27.8) 4100 29.9 (-9.1, 68.8) -1.8 (-28.2, 24.6) 
BDCAA exposure 

0 - 1.04 1737 0.0 0.0 3914 0.0 0.0 
> 1.04 - 1.93 1652 4.0 (-32.4, 40.4) -4.8 (-32.5, 23.0) 3936 18.1 (-17.9, 54.0) 3.1 (-21.3, 27.5) 

> 1.93 1651 33.8 (-2.6, 70.2) 11.4 (-16.5, 39.2) 4024 37.9 (-0.5, 76.2) 8.8 (-17.7, 35.4) 

♯mean change in birth weight (95% confidence intervals) 

1 based on average proportion in each category over 10 imputations 
*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity, parity, maternal age at delivery, mother's BMI at
questionnaire completion (quartiles), smoking status during pregnancy, maternal education, caffeine intake, and gestational diabetes 
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Table 7.3: Complete case analysis: Crude and adjusted association between water consumption (four 
different water types, in L/day) and continuous birth weight (in grams) by linear regression  
Sample restricted to all live singleton births to eligible mothers 

Water consumption 
(L/day)  n 

Crude mean  
change in BW (g)♯ 

Adjusted* mean  
change in BW (g) 

cold tap water 
0 - 0.8 2858 0.0 0.0 

> 0.8 - 1.4 2260 2.2 (-27.8, 32.3) 19.9 (-3.0, 42.8) 
> 1.4 2308 23.9 (-6.0, 53.9) 24.0 (1.4, 46.6) 

total tap water 
0 - 1.2 2993 0.0 0.0 

> 1.2 - 1.8 2387 -0.4 (-29.8, 29.0) 1.0 (-21.2, 23.2) 
> 1.8 2491 34.3 (5.3, 63.4) 16.3 (-6.4, 39.1) 

bottled water 
0 - 0.4 1195 0.0 0.0 

> 0.4 - 0.8 798 7.7 (-41.8, 57.1) -2.3 (-40.0, 35.4) 
> 0.8 872 55.1 (6.9, 103.2) 16.9 (-20.7, 54.5) 

total water 
0 - 1.4 2947 0.0 0.0 

> 1.4 - 2.0 2819 31.1 (2.9, 59.3) 10.9 (-10.6, 32.4) 
> 2.0 2169 72.6 (42.3, 102.9) 15.8 (-8.4, 40.0) 

♯mean change in birth weight (95% confidence intervals) 

*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity,
parity, maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status 
during pregnancy, maternal education, caffeine intake, and gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table 7.4: Complete case analysis: Crude and adjusted association by linear regression between 
average modelled area-level concentrations of DCAA, TCAA and BDCAA (based on residence water 
supply zone) (in ug/L) and continuous birth weight (in grams), by trimester of pregnancy  
Sample restricted to all live singleton births to eligible mothers 

Area-level concentrations 
(in ug/L) n 

Crude mean  
change in BW (g)♯ 

Adjusted* mean  
change in BW (g) 

Average [DCAA] 
trimester 1 

0-7.12 2389 0.0 0.0 
>7.12 - 9.36 2427 -40.9 (-71.6, -10.1) 5.8 (-17.5, 29.2) 

>9.36 2338 -49.1 (-80.1, -18.1) -0.4 (-24.0, 23.2) 
trimester 2 

0-7.20 2426 0.0 0.0 
>7.20 - 9.43 2547 -48.6 (-78.9, -18.4) -22.0 (-45.0, 1.0) 

>9.43 2612 -46.0 (-76.1, -15.9) -14.4 (-37.3, 8.5) 
trimester 3 

0-7.43 2519 0.0 0.0 
>7.43 - 9.54 2579 -52.2 (-82.1, -22.2) -16.5 (-39.2, 6.1) 

>9.54 2613 -54.8 (-84.7, -25.0) -17.4 (-40.0, 5.2) 
Average [TCAA] 
trimester 1 

0-10.38 2281 0.0 0.0 
>10.38 - 12.49 2534 -15.6 (-46.4, 15.2) -15.3 (-38.6, 8.0) 

>12.49 2339 -21.1 (-52.5, 10.3) -28.3 (-52.0, -4.6) 
trimester 2 

0-10.49 2359 0.0 0.0 
>10.49 - 13.05 2686 16.5 (-13.6, 46.6) 2.6 (-20.1, 25.3) 

>13.05 2540 -6.0 (-36.5, 24.5) -6.7 (-29.7, 16.3) 
trimester 3 

0-10.62 2376 0.0 0.0 
>10.62 - 13.17 2678 13.6 (-16.6, 43.7) 10.1 (-12.6, 32.8) 

>13.17 2657 8.0 (-22.2, 38.2) 10.5 (-12.2, 33.2) 
Average [BDCAA] 
trimester 1 

0-0.90 2625 0.0 0.0 
>0.90 - 1.38 2404 1.1 (-29.0, 31.2) -0.5 (-23.3, 22.3) 

>1.38 2125 -18.2 (-49.3, 12.9) -10.5 (-34.1, 13.1) 
trimester 2 

0-0.91 2836 0.0 0.0 
>0.91 - 1.38 2364 -21.3 (-51.0, 8.4) -22.3 (-44.8, 0.2) 

>1.38 2385 -22.8 (-52.4, 6.9) -22.3 (-44.8, 0.1) 
trimester 3 

0-0.91 2775 0.0 0.0 
>0.91 - 1.39 2407 16.8 (-13.0, 46.6) -4.9 (-27.3, 17.5) 

>1.39 2529 -13.2 (-42.6, 16.2) -5.8 (-27.9, 16.3) 

♯mean change in birth weight (95% confidence intervals) 

*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity,
parity, maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status 
during pregnancy, maternal education, caffeine intake, and gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table 7.5: Complete case analysis (CC) and Results after Multiple Imputation (MI): Crude and adjusted association between combined metric for DCAA, 
TCAA and BDCAA (in ug/day) and risk of term LBW by logistic regression (Complete case analysis, Ncases=195, Nnon-cases=4,587, N=4,782, 4.1% 
prevalence of term LBW; Multiple Imputation using Chained Equations (with LBW in imputation algorithm), Ncases=450, Nnon-cases=10761, 
Ntotal=11,211, 4.0% prevalence of term LBW)  

Combined exposure CC MI 
(ug/day) cases 

(n) 
non-cases 

(n) 
Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

cases 
(n)1 

non-cases 
(n)1 

Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

DCAA exposure 
0 - 10.41 71 1,404 1.00 1.00 172 3,444 1.00 1.00 

> 10.41 - 17.29 61 1,539 0.78 (0.55, 1.11) 0.80 (0.55, 1.15) 139 3,551 0.79 (0.59, 1.04) 0.81 (0.59, 1.11) 
> 17.29 63 1,644 0.76 (0.54, 1.07) 0.68 (0.46, 0.99) 139 3,766 0.74 (0.55, 1.00) 0.72 (0.52, 1.00) 

TCAA exposure 
0 - 12.02 74 1,431 1.00 1.00 170 3,447 1.00 1.00 

> 12.02 - 19.79 60 1,570 0.74 (0.52, 1.05) 0.71 (0.49, 1.02) 140 3,545 0.80 (0.62, 1.04) 0.81 (0.62, 1.07) 
> 19.79 61 1,586 0.74 (0.53, 1.05) 0.67 (0.46, 0.97) 140 3,769 0.75 (0.54, 1.05) 0.73 (0.50, 1.05) 

BDCAA exposure 
0 - 1.04 81 1,562 1.00 1.00 173 3,507 1.00 1.00 

> 1.04 - 1.93 63 1,497 0.81 (0.58, 1.14) 0.82 (0.58, 1.17) 149 3,547 0.85 (0.67, 1.08) 0.89 (0.69, 1.14) 
> 1.93 51 1,528 0.64 (0.45, 0.92) 0.62 (0.42, 0.90) 128 3,707 0.70 (0.49, 0.99) 0.70 (0.48, 1.01) 

1 average sample size over 10 imputations 
*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity, parity, maternal age at delivery, mother's BMI at
questionnaire completion (quartiles), smoking status during pregnancy, maternal education, caffeine intake, and gestational diabetes 
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Table 7.6: Complete case analysis: Crude and adjusted association between water consumption (in 
L/day) and risk of term LBW by logistic regression (all live singletons to eligible mother) (OR: Odds 
Ratio) 

Water consumption (L/day) 
cases 

(n) 
non-cases 

(n) 
Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

cold tap water 
0 - 0.8 123 2574 1.00 1.00 

> 0.8 - 1.4 79 2069 0.80 (0.60, 1.07) 0.70 (0.52, 0.95) 
> 1.4 75 2122 0.74 (0.55, 0.99) 0.67 (0.49, 0.92) 

total tap water 
0 - 1.2 130 2700 1.00 1.00 

> 1.2 - 1.8 82 2188 0.78 (0.59, 1.03) 0.72 (0.54, 0.98) 
> 1.8 84 2278 0.77 (0.58, 1.01) 0.73 (0.53, 0.99) 

bottled water 
0 - 0.4 36 1099 1.00 1.00 

> 0.4 - 0.8 28 726 1.18 (0.71, 1.95) 1.19 (0.69, 2.04) 
> 0.8 27 804 1.03 (0.62, 1.70) 1.15 (0.66, 1.99) 

total water 
0 - 1.4 136 2663 1.00 1.00 

> 1.4 - 2.0 92 2572 0.70 (0.53, 0.92) 0.73 (0.55, 0.98) 
> 2.0 69 1993 0.68 (0.50, 0.91) 0.77 (0.55, 1.07) 

*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity,
parity, maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status 
during pregnancy, maternal education, caffeine intake, and gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table 7.7: Complete case analysis: Crude and adjusted association between average modelled area-
level concentrations for DCAA, TCAA and BDCAA by trimester of pregnancy (in ug/L) (based on 
residence water supply zone) and risk of term LBW by logistic regression  

Area-level concentrations 
(ug/L) 

cases 
(n) 

non-cases 
(n) 

Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

Average [DCAA] 
trimester 1 

0-7.12 84 2171 1.00 1.00 
>7.12 - 9.36 89 2220 1.04 (0.76, 1.40) 0.80 (0.58, 1.10) 

>9.36 95 2125 1.16 (0.86, 1.56) 0.93 (0.68, 1.28) 
trimester 2 

0-7.20 79 2215 1.00 1.00 
>7.20 - 9.43 106 2313 1.28 (0.95, 1.73) 1.17 (0.86, 1.61) 

>9.43 102 2379 1.20 (0.89, 1.62) 1.08 (0.79, 1.48) 
trimester 3 

0-7.43 79 2305 1.00 1.00 
>7.43 - 9.54 103 2355 1.28 (0.95, 1.72) 1.09 (0.80, 1.50) 

>9.54 111 2354 1.38 (1.03, 1.85) 1.26 (0.92, 1.72) 
Average [TCAA] 
trimester 1 

0-10.38 79 2080 1.00 1.00 
>10.38 - 12.49 104 2301 1.19 (0.88, 1.60) 1.16 (0.85, 1.59) 

>12.49 85 2135 1.05 (0.77, 1.43) 1.06 (0.76, 1.47) 
trimester 2 

0-10.49 92 2132 1.00 1.00 
>10.49 - 13.05 102 2446 0.97 (0.72, 1.29) 1.00 (0.74, 1.35) 

>13.05 93 2329 0.93 (0.69, 1.24) 0.87 (0.64, 1.19) 
trimester 3 

0-10.62 95 2157 1.00 1.00 
>10.62 - 13.17 95 2422 0.89 (0.67, 1.19) 0.92 (0.68, 1.25) 

>13.17 103 2435 0.96 (0.72, 1.28) 0.92 (0.68, 1.24) 
Average [BDCAA] 
trimester 1 

0-0.90 97 2388 1.00 1.00 
>0.90 - 1.38 85 2198 0.95 (0.71, 1.28) 1.00 (0.73, 1.37) 

>1.38 86 1930 1.10 (0.82, 1.48) 1.13 (0.83, 1.54) 
trimester 2 

0-0.91 109 2572 1.00 1.00 
>0.91 - 1.38 85 2150 0.93 (0.70, 1.25) 0.94 (0.69, 1.28) 

>1.38 93 2185 1.00 (0.76, 1.33) 0.98 (0.73, 1.33) 
trimester 3 

0-0.91 103 2512 1.00 1.00 
>0.91 - 1.39 83 2216 0.91 (0.68, 1.23) 0.99 (0.72, 1.34) 

>1.39 107 2286 1.14 (0.87, 1.51) 1.11 (0.83, 1.49) 

*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity,
parity, maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status 
during pregnancy, maternal education, caffeine intake, and gestational diabetes 
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Table 7.8: Complete case analysis (CC) and Results after Multiple Imputation (MI): Crude and adjusted association between combined metric for DCAA, 
TCAA and BDCAA (in ug/day) and risk of being SGA by logistic regression (Complete case analysis: Ncases=649, Nnon-cases=4,388, N=5,037, 12.9% 
prevalence of SGA; Multiple Imputation using Chained Equations (with SGA in imputation algorithm), Ncases=1,440, Nnon-cases=10,423, Ntotal=11,863, 
12.1% prevalence of SGA)  

Combined exposure CC MI 
(ug/day) cases 

(n) 
non-cases 

(n) 
Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

cases 
(n)1 

non-cases 
(n)1 

Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

DCAA exposure 
0 - 10.41 213 1,349 1.00 1.00 496 3,376 1.00 1.00 

> 10.41 - 17.29 224 1,454 0.98 (0.80, 1.19) 0.96 (0.78, 1.18) 475 3,395 0.95 (0.82, 1.11) 0.97 (0.82, 1.14) 
> 17.29 212 1,585 0.85 (0.69, 1.04) 0.87 (0.70, 1.07) 469 3,652 0.87 (0.74, 1.03) 0.91 (0.74, 1.12) 

TCAA exposure 
0 - 12.02 218 1,371 1.00 1.00 496 3,364 1.00 1.00 

> 12.02 - 19.79 213 1,506 0.89 (0.73, 1.09) 0.89 (0.73, 1.10) 465 3,439 0.92 (0.79, 1.06) 0.94 (0.80, 1.09) 
> 19.79 218 1,511 0.91 (0.74, 1.11) 0.95 (0.77, 1.17) 479 3,620 0.90 (0.75, 1.08) 0.95 (0.77, 1.18) 

BDCAA exposure 
0 - 1.04 226 1,511 1.00 1.00 485 3,440 1.00 1.00 

> 1.04 - 1.93 223 1,428 1.04 (0.86, 1.27) 1.07 (0.88, 1.31) 492 3,438 1.01 (0.88, 1.17) 1.04 (0.89, 1.22) 
> 1.93 200 1,449 0.92 (0.75, 1.13) 0.95 (0.77, 1.17) 464 3,546 0.93 (0.78, 1.11) 0.97 (0.79, 1.18) 

1 average sample size over 10 imputations 
*adjusted for 8 variables: ethnicity, parity, maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status during pregnancy,
maternal education, caffeine intake, and gestational diabetes 

190 



Table 7.9: Complete case analysis: Crude and adjusted association between water consumption (in 
L/day) and risk of being Small-for-Gestational Age by logistic regression (all live singletons to 
eligible mother) (OR: Odds Ratio) 

Water consumption L/day 
cases 

(n) 
non-cases 

(n) 
Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

cold tap water 
0 - 0.8 350 2,507 1.00 1.00 

> 0.8 - 1.4 304 1,955 1.11 (0.94, 1.31) 1.04 (0.88, 1.23) 
> 1.4 244 2,062 0.85 (0.71, 1.01) 0.84 (0.71, 1.01) 

total tap water 
0 - 1.2 384 2,607 1.00 1.00 

> 1.2 - 1.8 298 2,088 0.97 (0.82, 1.14) 0.96 (0.82, 1.14) 
> 1.8 268 2,221 0.82 (0.69, 0.97) 0.86 (0.72, 1.02) 

bottled water 
0 - 0.4 146 1,048 1.00 1.00 

> 0.4 - 0.8 86 710 0.87 (0.66, 1.15) 0.89 (0.66, 1.19) 
> 0.8 79 793 0.72 (0.54, 0.95) 0.79 (0.58, 1.07) 

total water 
0 - 1.4 402 2,541 1.00 1.00 

> 1.4 - 2.0 332 2,487 0.84 (0.72, 0.99) 0.92 (0.79, 1.08) 
> 2.0 221 1,946 0.72 (0.60, 0.85) 0.84 (0.69, 1.01) 

*adjusted for 8 variables: ethnicity, parity, maternal age at delivery, mother's BMI at questionnaire
completion (quartiles), smoking status during pregnancy, maternal education, caffeine intake, and 
gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table 7.10: Complete case analysis: Crude and adjusted association between average modelled area-
level concentrations for DCAA, TCAA and BDCAA by trimester of pregnancy (in ug/L) (based on 
residence water supply zone) and risk of being SGA by logistic regression  

Area-level concentrations (ug/L) cases (n) 
non-cases 

(n) 
Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

Average [DCAA] 
trimester 1 

0-7.12 264 2,124 1.00 1.00 
>7.12 - 9.36 289 2,136 1.09 (0.91, 1.30) 0.95 (0.79, 1.14) 

>9.36 303 2,033 1.20 (1.01, 1.43) 1.04 (0.87, 1.25) 
trimester 2 

0-7.20 260 2,165 1.00 1.00 
>7.20 - 9.43 328 2,218 1.23 (1.04, 1.46) 1.14 (0.95, 1.36) 

>9.43 332 2,276 1.21 (1.02, 1.44) 1.07 (0.90, 1.28) 
trimester 3 

0-7.43 264 2,255 1.00 1.00 
>7.43 - 9.54 332 2,245 1.26 (1.06, 1.50) 1.13 (0.95, 1.35) 

>9.54 332 2,277 1.25 (1.05, 1.48) 1.11 (0.93, 1.32) 
Average [TCAA] 
trimester 1 

0-10.38 258 2,021 1.00 1.00 
>10.38 - 12.49 302 2,229 1.06 (0.89, 1.27) 1.09 (0.91, 1.30) 

>12.49 296 2,043 1.13 (0.95, 1.36) 1.16 (0.96, 1.39) 
trimester 2 

0-10.49 295 2,059 1.00 1.00 
>10.49 - 13.05 314 2,372 0.92 (0.78, 1.09) 0.96 (0.81, 1.14) 

>13.05 311 2,228 0.97 (0.82, 1.16) 0.98 (0.82, 1.16) 
trimester 3 

0-10.62 295 2,079 1.00 1.00 
>10.62 - 13.17 328 2,349 0.98 (0.83, 1.16) 1.03 (0.86, 1.22) 

>13.17 305 2,349 0.92 (0.77, 1.09) 0.93 (0.78, 1.10) 
Average [BDCAA] 
trimester 1 

0-0.90 297 2,327 1.00 1.00 
>0.90 - 1.38 287 2,113 1.06 (0.90, 1.26) 1.02 (0.86, 1.22) 

>1.38 272 1,853 1.15 (0.97, 1.37) 1.10 (0.92, 1.32) 
trimester 2 

0-0.91 317 2,516 1.00 1.00 
>0.91 - 1.38 296 2,065 1.14 (0.96, 1.35) 1.17 (0.98, 1.39) 

>1.38 307 2,078 1.17 (0.99, 1.39) 1.13 (0.95, 1.34) 
trimester 3 

0-0.91 323 2,449 1.00 1.00 
>0.91 - 1.39 288 2,117 1.03 (0.87, 1.22) 1.01 (0.85, 1.20) 

>1.39 317 2,211 1.09 (0.92, 1.28) 1.05 (0.88, 1.24) 

*adjusted for 8 variables: ethnicity, parity, maternal age at delivery, mother's BMI at questionnaire
completion (quartiles), smoking status during pregnancy, maternal education, caffeine intake, and 
gestational diabetes 
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Table 7.11: Proportions missing in continuous birth weight models 

Variable Complete Incomplete Imputed Total % missing 
Combined metric (DCAA,  
TCAA or BDCAA) 

6195 5679 5679 11874 48% 

Caffeine intake 8935 2939 2939 11874 25% 
Maternal BMI (quartiles) 9478 2396 2396 11874 20% 
Smoking status 9825 2049 2049 11874 17% 
Maternal education 9821 2053 2053 11874 17% 
Ethnicity  9805 2069 2069 11874 17% 
Gestational diabetes 11381 493 493 11874 4% 
Parity 11442 432 432 11874 4% 
Maternal age 11874 0 0 11874 0% 
Gestational age (in weeks) 11874 0 0 11874 0% 
Sex of child 11874 0 0 11874 0% 

Table 7.12: Proportions missing in term LBW models 

Variable Complete Incomplete Imputed Total % missing 
Combined metric (DCAA,  
TCAA or BDCAA) 

5869 5342 5342 11211 48% 

Caffeine intake 8470 2741 2741 11211 24% 
Maternal BMI (quartiles) 8974 2237 2237 11211 20% 
Smoking status 9301 1910 1910 11211 17% 
Maternal education 9297 1914 1914 11211 17% 
Ethnicity  9283 1928 1928 11211 17% 
Gestational diabetes 10761 450 450 11211 4% 
Parity 10794 417 417 11211 4% 
Maternal age 11211 0 0 11211 0% 
Gestational age (in weeks) 11211 0 0 11211 0% 
Sex of child 11211 0 0 11211 0% 

Table 7.13: Proportions missing in SGA models 

Variable Complete Incomplete Imputed Total % missing 
Combined metric (DCAA, 
TCAA or BDCAA) 

6189 5674 5674 11863 48% 

Caffeine intake 8926 2937 2937 11863 25% 
Maternal BMI (quartiles) 9468 2395 2395 11863 20% 
Smoking status 9814 2049 2049 11863 17% 
Maternal education 9810 2053 2053 11863 17% 
Ethnicity  9794 2069 2069 11863 17% 
Gestational diabetes 11371 492 492 11863 4% 
Parity 11432 431 431 11863 4% 
Maternal age 11863 0 0 11863 0% 
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7.6 Figures 

Figure 7.1: Scatter plots (and LOWESS smoother) of the DCAA, TCAA and BDCAA combined 
metrics of exposure (ug/day) by birth weight (live births, Nmax=11,928) 

Figure 7.2: Scatter plots (and LOWESS smoother) of DCAA, TCAA and BDCAA combined metrics 
of exposure (ug/day) by standardised (or relative) birth weight (live births, Nmax=11,928) 
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Figure 7.3: Complete Case Analysis (left) and results after Multiple Imputation (right): Adjusted 
coefficients (and 95% CI) for combined metric exposure on continuous birth weight (in grams) 
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Figure 7.4: Complete Case Analysis: Adjusted coefficients (and 95% CI) for water consumption on 
continuous birth weight (in grams); Ctw: cold tap water; Ttw: total tap water; Bw: bottled water; Tw: 
total water 

Figure 7.5: Complete Case Analysis: Adjusted coefficients (and 95% CI) for exposure to area-level 
concentration to DCAA, TCAA and BDCAA on continuous birth weight (in grams) 
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Figure 7.6: Complete Case Analysis (left) and results after Multiple Imputation (right): Adjusted Odds 
Ratios (and 95% CI) for combined metric exposure on term LBW 
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Figure 7.7: Complete Case Analysis: Adjusted Odds Ratios (and 95% CI) for water consumption on 
term LBW. Ctw: cold tap water; Ctw: cold tap water; Ttw: total tap water; Bw: bottled water; Tw: 
total water 

Figure 7.8: Complete Case Analysis: Adjusted Odds Ratios (and 95% CI) for exposure to area-level 
concentration to DCAA, TCAA and BDCAA on term LBW 
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Figure 7.9: Complete Case Analysis (left) and results after Multiple Imputation (right): Adjusted Odds 
Ratios (and 95% CI) for combined metric exposure on SGA 
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Figure 7.10: Complete Case Analysis: Adjusted Odds Ratios (and 95% CI) for water consumption 
exposures on SGA (excluding births born before 23 weeks of gestation or after 42 weeks of 
gestation); Ctw: cold tap water; Ttw: total tap water; Bw: bottled water; Tw: total water 

Figure 7.11: Complete Case Analysis: Adjusted Odds Ratios (and 95% CI) for exposure to area-level 
concentration to DCAA, TCAA and BDCAA on SGA 
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CHAPTER 8 REPEAT QUESTIONNAIRE STUDY 

This chapter presents the results of a repeat questionnaire study conducted on a subset of BiB 

participants in late 2010 to assess their water consumption behaviours over the course of late 

pregnancy (Aim 3, Chapter 2). It is arguably an extension to Chapter 3 on women’s water 

consumption, but is placed here at the end of the thesis as it was not included in the final 

epidemiologic analyses that Chapters 3 through 6 lead up to and used some different methodology. 

8.1 Background 
Water consumption patterns can vary between individuals and groups and are influenced by 

source water quality perception and various socio-demographic factors (Wright et al. 2006). 

Forssen et al. (2009) and others suggest that the self-reported intake and use of tap water varies 

considerably during the course of pregnancy.  

Combining information on individual water use with area-level concentrations (as done in Chapter 5) 

improves on using either exposure assessment on its own. However, the individual water use 

information should be evaluated for measurement error because within-subject variability in 

questionnaire data may be substantial (Forssen et al. 2009) and attenuate risk estimates overall 

(Nieuwenhuijsen et al. 2009a). But irrespective of whether the reported increases and decreases in 

water use are intentional (perhaps even related to participation in the study) or reflective of random 

variability, studies that rely on only one reporting period to reflect water-related exposure throughout 

pregnancy could be subject to considerable exposure misclassification (Forssen et al. 2009). 

Smith’s work on exposure assessment and analysis of exposure metrics in this very cohort (Smith 

2011) confirms that, particularly when spatial variability in DBPs is limited across the study area, 

failure to incorporate individual water use and its variability into exposure assessment can result in 

exposure misclassification, which may lead to loss of study power and bias of risk estimates 

(Armstrong 1998; King et al. 2004). 

Several studies have actually tried to quantify the amount of misclassification that is likely to result 

from ignoring variation in individual behaviour (King et al. 2004; Waller et al. 2001; Whitaker et al. 

2003b; Wright and Bateson 2005; Wright et al. 2006; Zender et al. 2001). Reif et al. (2000) for 

instance estimated that 20% nondifferential misclassification of subjects with low to intermediate 

exposures into the high exposure groups could result in substantial attenuation of the observed effect 
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estimates for the high exposure group. This may be of particular concern for smaller studies, since 

even minor exposure misclassification can result in substantial bias and reduced statistical power to 

detect subtle increases in health risk (Wright et al. 2006). 

8.1.1 Aim of study 

The aim of this study is to investigate the variability in volumes of water consumed daily by BiB 

women in their (possibly critical) third trimester of pregnancy, in order to assess the consistency of 

the baseline measurements available on the full cohort. To do so repeat water questionnaire data were 

collected on a subset of women enrolled in the main BiB cohort to assess their water consumption 

trends over the course of late pregnancy. This should minimise exposure misclassification (Wright et 

al. 2006) by enabling us to estimate within- and between-subject variability, and correct for 

attenuation of effect estimates due to exposure measurement error in the final epidemiologic models 

(Bateson and Wright 2010). 

In addition, the third trimester of pregnancy is suspected to be a critical exposure period for fetal 

growth as the rate of fetal growth and weight gain increases dramatically and reaches its peak at about 

week 33 (Owen et al. 1996; Williams et al. 1982). If that is correct, relying on second trimester 

estimates in the full epidemiologic investigation of the effect of prenatal HAAs on fetal growth 

without considering the possibility of behaviour change during the third trimester period could lead to 

misclassification and biased inference. 

8.1.2 Water consumption during pregnancy using repeat questionnaire 

Previous studies all conclude that questionnaires are a valid measure of exposure during pregnancy, 

but tend to slightly overestimate tap water intakes (Barbone et al. 2002; Kaur et al. 2004; Maskiell et 

al. 2006; Shimokura et al. 1998; Smith et al. 2012). 

The few previous published studies to assess the variability of tap water consumption over the course 

of women’s pregnancies using repeat questionnaire or interviews found that the self-reported 

ingestion of tap water can vary during the course of pregnancy. Windham et al (1992) examined 

changes in tap water consumption between the time before pregnancy and the time of an interview 

performed after delivery (or pregnancy loss) in 1,926 US women. This study showed that women 

were more likely to report increased rather than decreased consumption of tap water during 

pregnancy. More recently, Forssen et al (2009) found considerable variation in behaviour between 

two questionnaires administered in early and mid-pregnancy to a population of 1,990 US women (for 

example, 33% of women changed their ingestion of cold tap water by ≥ 1 L/day). However, a 
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validation study comparing repeated 7-day diaries carried out in 2008 within the BiB cohort itself 

reported little change in overall tap water consumption over the third trimester of pregnancy (Smith et 

al. 2012). 

8.1.3 Assessment of water consumption at baseline in BiB 

In the water section of the BiB baseline questionnaire (administered between week 26-28 of 

pregnancy), women were asked about the number of glasses/cups they consumed per day of tap water, 

bottled water, tea, coffee and squash at home, work or place of study, and elsewhere; about their use 

and type of water filter; and about the frequency and duration of their showering, bathing and 

swimming habits (see Chapter 3). A detailed description of the water consumption and water use 

patterns at baseline of BiB women is in preparation (Smith et al. in preparation). This work shows that 

women consume on average 1.92 (95% CI: 1.90, 1.93) litres of total water per day (N=11,334), the 

greatest proportion of which is tap water (85% of total water consumed) consumed in the home (79% 

of total water consumed). Maternal age, ethnicity, employment status, smoking status, cohabitation 

status, and amount of weekly physical exercise reported are consistent predictors of total water 

consumption during the second trimester of pregnancy.  

8.2 Methods 

8.2.1 RQS recruitment 

During the last months of recruitment to BiB (between September and December 2010), I mailed out 

619 (mailing 1) and 616 (mailing 2) repeat water questionnaires in hard-copy to the homes of each 

eligible BiB participant. (Three women’s Q1 responses were invalid, which is why total number of 

questionnaires sent out for Q2 dropped to 616). Eligibility to the study included being proficient in 

English (as determined by the language of administration of the baseline questionnaire), having 

completed the water section of the baseline questionnaire upon recruitment and being within the 

appropriate period of pregnancy during the RQS period. The mailings were timed to correspond with 

two windows of pregnancy for each woman: 30 to 33 weeks of pregnancy (to capture an early third 

trimester window of pregnancy, hereafter called “Q1”), and 36 to 39 weeks of pregnancy (late third 

trimester window, hereafter “Q2”) (Figure A8 - 1). 

The packet received by each eligible woman included a personalised invitation letter and information 

sheet briefly describing the aims of the study, a recruitment form to confirm contact details and any 

changes in address or work status, the water use questionnaire, and a Freepost return envelope (see 

Appendix C). The recruitment form containing all identifiable confidential information was kept 
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separate from the questionnaire upon completion. Consent was assumed when women filled out and 

returned the questionnaires to us. 

In order to be credible repeats, the questions in the repeat questionnaire were identical to the water 

section of BiB’s baseline questionnaire, with two notable differences: a) questions about water 

consumption in the repeat questionnaires were asked about the week directly preceding the date of 

questionnaire completion (“on a typical day in the past week of your pregnancy, how much of the 

following did you drink?”) compared to a vaguer “on a typical day, how much of the following do 

you drink?” in the baseline questionnaire, and b) the repeat questionnaires asked about perception of 

tap water drinking and use habits: “do you think that [your tap water drinking habits] have changed 

since you completed the last questionnaire?” (yes/no).  

The repeat questionnaires also asked whether women were employed and/or on maternity leave or 

sick leave, or whether they were full-time students at questionnaire completion. The variable for 

employment status therefore changes over time, and contains some missing data. 

This RQS was approved by the Bradford Research Ethics Committee in September 2010. 

8.2.2 Data preparation 

As described in Chapter 3 (section 3.2.2.1), and consistent with previous work in this area (Iszatt et al. 

2011), from the five water types queried in the repeat questionnaires, the following four summary 

water consumption variables were derived per time point: cold tap water (tap water+squash), hot tap 

water (coffee+tea), total tap water (cold+hot tap water), and total water (total tap water+bottled 

water). Only the latter two are analysed in this chapter, as total tap water is pertinent to assessing 

HAA exposure, and total water is the most complete summary variable available on water 

consumption. These measures were also sorted by location: home, outside of the home (which 

combines the work/study, and elsewhere categories), and in total. All questionnaire entries were 

converted from glasses/cups per day to litres per day (the relation “1 cup or glass = 200ml” was 

explicitly stated in the questionnaires). Boiling and filtering reduce DBP concentrations in tap water, 

and bottled water is assumed to contain no HAAs (Kim 1997; Krasner and Wright 2005; Levesque et 

al. 2006; Savitz et al. 2005). 

8.2.3 Statistics  

Water consumption values at 2 or more of the 3 possible time points were necessary for inclusion into 

the analysis (N=254). 
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Linear mixed regression models (with random intercepts and random slopes) were run on total tap 

water and total water consumption (L/day) run in WinBUGS 1.4.1 (Lunn et al. 2009). A number of 

interactions were studied. All significant covariates at p≤0.05 in univariate analyses on total water 

consumption were included in the final model. I then used a Bayesian approach in order to be able to 

impute missing outcome data (total tap water, or total water values) and occasional missing covariate 

data (e.g. employment status) and to handle censored observations. In a Bayesian framework, missing 

data are included in the model as an extra parameter, and estimated at every iteration during the 

Markov Chain Monte Carlo (MCMC) sampling process. The parameters’ posterior distribution 

propagates the posterior uncertainty in the imputed missing data (Daniels and Hogan 2008; Gelman et 

al. 2004). All results presented are posterior means and 95% credible intervals. 

Table A8 - 1 lists the equations for the linear mixed models (all with random intercepts and random 

slopes) and interactions presented in this chapter. 

The variance partition coefficient (VPC) was also reported for each model, which is the proportion of 

total residual variability due to between-subject variability (Goldstein et al. 2002). This will help us 

interpret the possible source of this residual variability.  

All linear mixed models for total water and total tap water consumption were bounded at zero to only 

allow the imputation of positive values. Non informative priors were given to all parameters.  

Other statistics tests such as chi2 tests, t-tests, and ANOVAs were performed in STATA 11.1 

(StataCorp 2009). 

Of note, the sample sizes in this chapter were not restricted to women with birth outcomes, and did 

not exclude multiple births or even multiple entries (as was done in the rest of this thesis, as explained 

in section 3.2.3) because most of this information was not available to me at the time that this study 

was conducted and analysed. 

8.2.4 Treatment of missing data 

Of the 254 respondents, 127 completed all 3 questionnaires and 127 completed the baseline and only 

one of Q1 or Q2. In addition, employment status was missing for a total of 145 women (56 at Q1 and 

89 at Q2), of which a total of 18 women (11 at Q1 and 7 at Q2) women responded to the water 

consumption questions (therefore will contribute new information after their employment status is 

imputed). 
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I assumed that no answer in a given outcome category of the repeat water questionnaire (e.g. a box in 

the questionnaire was left blank) meant that the participant did not consume any water in that 

particular category. Such missing values were assigned a value of zero in the summary tables (Table 

A8 - 2). This assumption that no answer means no consumption was tested in a sensitivity analysis by 

treating zeros as censored observations in order to check influence on the effect estimates. 

8.2.5 Sensitivity analysis  

I ran sensitivity analyses comparing each model (on total tap water, and on total water consumption), 

with and without covariates, to  

a) models which excluded potential outliers (per standardized residuals criteria) (data not shown),

b) models making a different distributional assumption for the observed data likelihood (specifically,

assuming a Student’s t-distribution with 4 degrees of freedom which is more robust to outliers than 

the normal distribution), and  

c) models censoring i) any summary value containing missing entries in an otherwise completed

questionnaire. The sampling space is assigned the range: X-6 L/day, where X is the sum of the 

components of the summary measure which were actually specified. X was then assumed to represent 

the minimum volume ingested by that individual, but may be incomplete and underestimate true 

consumption and ii) total water consumption values above 6 L/day, which are considered excessive 

and questionable. The sampling space is then assigned the range: 0 - X L/day so as to incorporate the 

information provided but censor any total water consumption values greater than 6 L/day.  

A total of 248 outcomes were censored in Model 1c on total tap water, and 252 in Model 1c on total 

water. 

8.3 Results 

8.3.1 Descriptive results  

1008 women registered to BiB within the RQS recruitment period, of which 882 (88%) completed the 

water section of the baseline questionnaire. Of these, women who were not English speaker (140), and 

those not in the relevant window of pregnancy (123) were excluded, leaving us with 619 (61%) 

women eligible for a study invitation (Figure A8 - 2). 

A total of 381 (31% of 619+616 sent out) repeat questionnaires were returned to us: 209 women (34% 

of the 619 possible returns) responded to Q1, 172 (28%) responded to Q2, and 127 (21%) responded 
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to both Q1 and Q2. This means that 82 (13%) women responded only to Q1, and 45 (7%) women 

responded only to Q2. 

Table 8.1 presents the demographic and behavioural characteristics at baseline of the RQS subset 

compared to the rest of the cohort. Proportionally more women in the subset were White British and 

less women were Pakistani compared to the rest of the cohort. The RQS subset was a bit older, and 

more likely to have achieved a higher educational degree. Households are more frequently smaller (in 

the 0-2 member range rather than in the ≥5 member range) among the women in the subset. RQS 

women are more likely to be having their first baby, have less gestational diabetes on average and are 

more physically active in their leisure time, but they are also more likely to have smoked in the past 

(slightly less likely to currently smoke). They are also substantially less likely to drink any caffeinated 

drinks during pregnancy compared to the rest of the cohort (97% in RQS vs. 30% in the rest of the 

cohort). 

In Figure 8.1 and Figure 8.2, summaries of water consumption are presented by water type (e.g. cold 

tap water, hot tap water, etc.) and location (in the home, or out of the home), and graphically compare 

medians at baseline, Q1 and Q2 in the RQS subset of women. RQS women’s mean weeks of gestation 

was 26.5 ± 0.7 weeks (range: 24.4, 29.7) at baseline, 31.9 ± 1.7 weeks (range: 23.3, 40.9) at Q1, and 

37.2 ± 1.2 weeks (range: 33.1, 43.3) at Q2, which fall within the targets. As described in Chapter 3, 

and as similarly found for the whole BiB cohort (Smith et al. in preparation), the greatest proportion 

of total water drank is cold tap water (Figure 8.1), and the most important location of water 

consumption is the home (Figure 8.2). These findings also mirror those of another UK study (Kaur et 

al. 2004). Because of the small contributions of different tap water types at different locations and the 

many missing/zeros in some of the categories (Table A8 - 2), I focus on total tap water (the sum of 

cold and hot tap water) and total water (the sum of total tap water and bottled water) trends at all 

locations in this analysis. 

Table 8.2 (Model 1) presents the results of univariate analyses. There is a significant increase in total 

tap water consumption (time pattern: 0.13 L/day (0.04, 0.23)) and total water consumption (0.14 

L/day (0.03, 0.26)) per time point, corresponding to an increase of about ¾ of a 200ml glass or cup of 

water per time point, i.e. from baseline to Q1 and from Q1 to Q2. 

8.3.2 Variable selection for water consumption  

In univariate linear mixed models with random intercepts and slopes ran in STATA (frequentist 

models), the key predictors of total water consumption trend from baseline to Q2 are women’s 

ethnicity (p=0.012), smoking status at baseline (p=0.025), employment status (p=0.025), physical 
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activity level in the past week (p=0.002), physical activity in paid work (p=0.050) and total number of 

household members (p=0.033) (data not shown). The direction of these effects are: the White British 

drink significantly more than all the other ethnic groups, current smokers drink significantly more 

than ever smokers who drink more than never smokers (i.e. a gradient effect), unemployed women 

drink significantly less than women who were employed, working women who report exercising 

weekly drink significantly more than inactive women (both at home and work), and finally, having 5 

or more household members predicts significantly less total water consumption than having a 0-2 

member household. These observations again are consistent with previous descriptive work on water 

consumption in this cohort (Smith et al. in preparation). 

Maternal age, season of the baby’s birth, report of exposure to second-hand smoke or of consumption 

of alcoholic or caffeinated drinks during pregnancy, maternal/paternal highest education level 

achieved, or the Index of Multiple Deprivation (IMD) score for 2010 were not significant in these 

univariate analyses on total water consumption and thus excluded from the final model. 

8.3.3 Adjusting for covariates – Model 2 

Model 2 adjusts for a number of covariates identified above. There is a significant increase in total tap 

water consumption (time pattern: 0.19 L/day (0.08, 0.30)) and total water consumption (0.22 L/day 

(0.09, 0.35)) per time point, after adjusting for ethnicity, employment status, smoking status, hours 

spent exercising weekly (in leisure and in paid work), and total number of household members (Table 

8.3, Model 2). This corresponds to an increase of approximately 1 glass or cup of water per time 

point.  

The effects of ethnicity, employment status and physical exercise are significant in the final model 

with six covariates for total water; in addition to these, smoking status and maternal physical exercise 

exerted in paid employment were significant predictors of total tap water consumption.  

Physical activity (for leisure and in paid work) and number of members of household are correlated 

variables (Spearman rank correlation coefficients between 0.15 and 0.27, p<0.05). Removing the 

‘physical activity at work’ and ‘total number of household members’ variables from the model to 

avoid possible multicollinearity did not change the model fit, nor the direction of the estimates or their 

significance compared to the univariate analyses (data not shown). 
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8.3.4 Effect modification with time 

8.3.4.1 Ethnicity (allowing for separate random slopes by ethnic group) – Model 3 

I studied the interaction between maternal ethnicity and time in the adjusted models (Model 2) by 

allowing for separate random slopes and random intercepts for women in each of the three ethnic 

group (Table 8.4, Model 3). Pakistani women increased their total water (and total tap water) 

consumption at a steeper rate over time than any other ethnicity from baseline to Q2, suggesting that 

the relationship between water consumption and ethnicity changes significantly over time in this 

group of women.  

Whereas Pakistani women drink more over time (total water mean slope = 0.49 L/day (0.19, 0.80)), 

the variability around the random slopes for Pakistani women is also greater (total water random 

slopes SD=0.99 L/day (0.70, 1.30)) than for the other two groups, White British (0.21 L/day (0.02, 

0.43) and ‘Other ethnic’ 0.14 L/day (0.01, 0.35) groups, respectively. Though less marked, the same 

pattern is true for total tap water. This suggests that there is a lot of heterogeneity in trends over time 

for the Pakistani women. 

8.3.4.2 Employment (simple interaction) – Model 4 

Model 4 is the adjusted Model 2 but with a “simple” interaction between employment and time. 

Employment was also found to be a significant modifier of total water consumption over the 

pregnancy period (Table 8.5, Model 4). The same holds true for total tap water. Of note, women tend 

to remain more and more at home as pregnancy progresses: indeed the proportion of employed 

women who work at the time of questionnaire completion decreases from 56% at baseline, to 47% at 

Q1, to 13% at Q2. The lack of significant results in both the “employed and on maternity leave” and 

the “full-time students” categories is likely due to the insufficient number of subjects available in 

these two groups for interaction analysis. The employed and on maternity leave group is the only 

group which decreases its trend in water consumption over time (slope of -0.20 (-0.64, 0.23)), though 

this trend is not significant. This could be explained by the fact that employed women taking 

maternity leave join the unemployed group, who drink less on average than the employed and 

working, hence their decreasing water consumption trend over time. 

8.3.4.3 Smoking (simple interaction) – Model 5 

Model 5 is the adjusted Model 2 but with a “simple” interaction between smoking status and time. 

Never smokers (65% of RQS women) and ever smokers (25%) significantly increase their water 

consumption over time by approximately 1 glass or cup a day (slopes of 0.26 (0.11, 0.41) and 0.25 

(0.01, 0.49), respectively), while current smokers (10%) do not (-0.08 (-0.46, 0.30)) (Table 8.6, Model 

5). Smoking status was asked at baseline; there is no data on women’s putative change in smoking 

behaviour over late pregnancy. 
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Ethnicity remains a predictor of total water (and total tap water) consumption in all models, as does 

the first category of maternal physical exercise for leisure at baseline (<1 hour per day) relative to no 

physical exercise in both Models 4 and 5. For total tap water, RQS women who at baseline report 

mostly standing or walking at work (21%) are significant predictors of consumption in both Models 4 

and 5, drinking less than the reference unemployed group. Women who live in households with 4 

members of household at baseline (18%) (but not 5 or more) are also significant predictors of 

consumption in Model 5, as in Model 3. 

Figure 8.3 depicts the slopes of the different groups included in interaction models (Models 3, 4, and 

5). 

Table 8.7 summarises the differences in total water consumption in different strata of the effect 

modifiers compared to reference (White British, or employed & working, or never smokers), at 

baseline, at Q1 and at Q2, as predicted by Models 3, 4 and 5. It shows for instance that ignoring 

differences between women due to ethnicity would overestimate Pakistani women’s total water 

consumption by 0.34 L/day compared to the White British women’s consumption at Q2, and 

underestimating unemployed women’s consumption at Q1 by 0.45 L/day compared to the employed 

and working. 

The difference between Models 4 and 5 which include a simple interaction and Model 3 which allows 

for random slopes by ethnic group is that the random slopes for the former two are based on the 

overall mean time effect, while they are based on ethnicity-specific means for the latter. The reason 

for the two types of interaction rests on the observation that rate of change in water consumption over 

time was different by ethnic group. As such, I ran the interaction allowing for random slopes and 

intercepts by ethnic group (i.e. allowing for differences in variability), while for the employment and 

smoking interaction models, I just wanted to check for differences in slopes by group, hence the 

“simple” interaction. 

8.3.5 Self-perception of change in behaviour 

Lastly, women’s self-perception of change in total tap water drinking habits (yes/no) was compared to 

the water consumption they actually reported drinking in the questionnaires (Table 8.8). (This 

question was only asked with respect to total tap water, which is most relevant to HAA exposure.) I 

hoped to verify whether the change observed in the water volumes women reported consuming was 

also reflected in their perception of their tap water drinking habits, as a means to distinguish between 

measurement error (i.e. an imprecise questionnaire) and actual behaviour change over late pregnancy. 
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(The underlying assumption of this approach being that women’s own “perception” is the truth, i.e. 

gold standard.) There were no statistically significant differences between total tap water volumes 

consumed by the women who said they did change their tap water drinking habits, and those who said 

they did not. Table 8.8 presents t-test comparisons.  

8.3.6 Variance Partition Coefficient (VPC) 

On average, a greater proportion of within- as opposed to between-subject variability is explained by 

the models (VPCs<0.50). In the interaction model of ethnicity and time (Model 3), the VPCs for 

Pakistani and White British women were in the 0.42 - 0.52 range, but only 0.10 - 0.18 in the “Other” 

ethnic category, suggesting that the random effects (capturing between-women variation) explain very 

little of the variability in this group. 

8.3.7 Sensitivity analysis: Models 1b and 1c 

I ran sensitivity analyses to test the assumptions made, and found similar effect estimates to those 

reported (data not shown). As an example, the results of the unadjusted model with a t-distribution (4 

degrees of freedom) (Model 1b), and the results after censoring its extreme and unsure outcome 

values (Model 1c) are presented in Table A8 - 3. Both Models 1b and 1c’s VPCs increase for the total 

tap water models (and for total water models, though less markedly). 

Both for total tap water and total water consumption overall, censoring the dependent variables I was 

unsure of as well as extreme values (water consumption>6 L/day) increased the fixed time pattern 

estimate to 0.64 L/day (0.53, 0.75) from 0.13 L/day (0.04, 0.23) for total tap water, and 0.66 L/day 

(0.55, 0.77) from 0.14 L/day (0.03, 0.26) for total water (Table 8.2). These increases constitute a 

difference in consumption of approx. 2 glasses/cups per time point but may be overestimating the 

actual increase in water consumption over time because of the constrained sampling space in the 

likelihood of these censored models.  

8.4 Discussion 

This study focused on the trends in total tap water (sum of cold tap water, squash, hot tea and coffee) 

and total water (sum of total tap water and bottled water) consumption of a subset of 254 BiB women 

over their third trimester of pregnancy (between weeks 27 and 39 of pregnancy). It provides new 

information on a small but significant increase in water consumption over the third trimester of 

pregnancy. Overall, unemployed women reported drinking significantly less total water than working 

women (Model 2), while current smokers and the White British women drank on average the most. 

Over time, being Pakistani, being employed and working (as opposed to on maternity leave), being 
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unemployed, or never having a history of cigarette smoking all predict an increase both in total tap 

water and total water consumption (Models 3, 4, 5). These results should be considered in any future 

modelling of third trimester exposure estimates in order to help minimise exposure misclassification.  

Little is known about women’s water consumption behaviour in late pregnancy, a window thought to 

be critical to DBP exposure as the rate of fetal growth and weight gain dramatically accelerates. This 

increase in consumption over the course of pregnancy is consistent with Windham et al’s results 

(1992). The considerable variation in women’s responses whether over time, by strata, or over time by 

strata also agrees with Forssen et al’s study (2009). However these results are not consistent with 

Smith et al’s study (2012) which found no change in absolute volume of tap water intake between two 

diaries administered approximately 9 weeks apart (mean difference= -0.01 L/day (-0.30, 0.27)) within 

a very small sample of the BiB cohort (N=14). 

If the finding of an increase in water consumption over the second half of pregnancy is a true increase, 

this result suggests that exposure estimates based solely on volumes of tap water (the summary 

measure most relevant to HAA exposure) reported to be consumed at baseline (i.e. at the end of their 

second trimester of pregnancy) may underestimate exposure during the critical period by up to 2 

glasses/day at the end of the third trimester (Model 2). This underestimation may be even greater in 

different strata of women: based on these models, Pakistani women would drink 0.98 L/day more at 

Q2 on average than they do at baseline while their White British counterparts drink only 0.14 L/day 

more at Q2 than they do at baseline (Figure 8.3). Similarly, both the employed and working women, 

and the unemployed women will drink 0.52 L/day more at Q2 on average than they do at baseline, 

while the employed women who are on maternity leave may drink less at Q2 than they do at baseline. 

Never smokers drink 0.52 L/day more at Q2 than they do at baseline, while current smokers drink 

approximately 0.16 L/day less at Q2 than they do at baseline. Because these models suggest that 

current smokers drink on average 0.58 L/day more than never smokers at baseline (Table 8.7), 

differences in slope directions mean that this difference in consumption at baseline may in fact 

become milder over the course of the late third trimester.  

Previous studies have shown a difference in reliability of questionnaire responses by employment 

status. A validation study in BiB which compared questionnaire responses to simultaneous diary 

entries concluded that agreement between the two instruments was consistently much stronger for 

responses given by unemployed women compared to employed women (Smith et al. 2012). The 

authors’ explanation for this observation is that employed women lead busier lives and may find it 

more difficult to interpret what constitutes a “typical” day as patterns of behaviour are likely to be 

different across working and non-working days (Smith 2011). In contrast, the unemployed women are 

less pressed for time and therefore take more care in their responses (Smith et al. 2012). Shimokura et 
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al’s study (1998) which assessed variation in water use based on a 3-day diary among pregnant 

women in North Carolina, USA, also concluded that employed women had more heterogeneous 

consumption patterns over time compared to women working part-time or less, suggesting that their 

responses may be less reliable. Even though both of these studies were based on very small sample 

sizes, they reinforce the conclusion that employment status has a significant impact on lifestyle 

behaviours as well as the self-reporting of these behaviours. The third trimester is possibly not only 

more biologically relevant a period of exposure to DBPs, but also a more stable period in which to 

measure exposure as more pregnant women are home-based later on in pregnancy.  

In all, stratification by ethnicity, employment and smoking status is essential. Failing to take such 

factors into account in exposure assessments may result in differential misclassification error. 

Exposure based on imprecise individual water consumption estimates may be especially biased in the 

BiB cohort in which individual behaviour is likely to drive differences in exposure to HAAs as it does 

exposure to TCAA (Smith et al. 2012) and THMs (Smith 2011), because of the low variability in tap 

water DBP concentrations measured across the Bradford area.  

This study has a number of limitations. Whilst employment status was updated at each questionnaire 

in this study, factors such as smoking, alcohol consumption, and physical exercise were only 

measured at baseline. Any changes in those behaviours over the course of late pregnancy could 

therefore not be accounted for. Also, due to the timing of the release of the BiB data extracts 

containing complete data on certain variables, in 2012 when this work was done, maternal weight, 

height, BMI and in particular gestational diabetes could not be included in these analyses. 

Moreover, the subset of women who volunteered to participate in the RQS may not be fully 

representative of BiB as a whole. Firstly, there are some unavoidable differences between groups due 

to the design and eligibility criteria of the RQS: all women enrolled in the RQS were English-

speakers, responded to the third version (of three) of the baseline questionnaire and had pregnancies 

in a similar period (80% in winter) compared to the rest of BiB mothers whose babies were born 

randomly over the whole BiB recruitment period 2007 to 2010. This explains why season was not a 

strong predictor of water consumption in this study, as per Forssen et al’s findings (2007).  

Secondly, a higher proportion of the subset was White British and a smaller proportion Pakistani than 

in the rest of the cohort (Table 8.1). The underrepresented Pakistani group exhibits higher rates of 

gestational diabetes and lower probabilities of smoking and consuming alcohol, factors which are 

potential confounders in the full epidemiologic study on fetal growth. The Pakistani group are also 

less likely to be in employed work which is known to increase the reliability of reported consumption 

patterns. The “Other” ethnic category closely tracks the White British group in terms of 
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demographics. Water consumption at baseline also differs significantly between this subset and the 

rest of the cohort. Indeed, this subset of women drank systematically more at baseline (0.63 L/day 

more on average total water) than the rest of the BiB cohort (Table A8 - 4). However, water 

consumption trends by ethnicity, employment and smoking status in this subset were representative of 

the rest of the cohort (Table A8 - 5, Table A8 - 6, Table A8 - 7). In all, there appears to be a non-

random selection bias in the type of women who chose to volunteer to the RQS. This is manageable if 

information from the RQS is applied in a stratified way to the full cohort.  

The variance partition coefficient (VPC), which represents the proportion of total variability due to 

between-subject variability ( 𝜎𝐵
2

𝜎𝐵
2+𝜎𝑊

2 ), can be used as measure of reliability of a given repeated 

measurement. There was a greater proportion of within-subject vs. between-subject variability in the 

subset for total tap and total water consumption. In contrast, both Barbone et al (2002) who compared 

changes in water use in Italian women late in their pregnancy and after delivery, and Shimokura et al 

(1998) found that the between-subject variation was larger than within-subject variation for total 

water intake (ICC=0.81 (ICC=0.42 for full-time employed women), and ICCs≥0.77, respectively). 

Forssen et al (2009) found that almost 60% of the variation in total intake was due to between-subject 

variation. Smith et al (2011) also found low within-subject variability for tap water intakes across 

combined locations and at home, but high within-subject variability for tap water intake specifically 

outside the home.  

This being said, the average interval between questionnaires in this analysis was 37.6 (36.0, 39.2) 

days from baseline to Q1, and 39.6 (37.4, 41.7) days from Q1 to Q2. This means that at baseline 

women were asked to estimate their water drinking habits since pregnancy began, 185 days or so ago 

(26.5 ± 0.7 weeks), while at Q1 and Q2, recall was only expected over the past week of pregnancy, 

which may or may not have been representative of their current trimester of pregnancy. The recall 

time and the number of days between repeats in this study are different to previous studies (Kaur et al. 

2004; Shimokura et al. 1998). This could explain why such considerable within-subject variability in 

behaviours was observed. 

Taken together, these data suggest that women do increase their water consumption as pregnancy 

progresses. This could be explained by a number of reasons relating to perceived health benefits, or 

physiologic changes such as increased thirst (JM Wright et al. 2010), discomfort during late 

pregnancy, inactivity/boredom, increased food consumption, increased time spent at home—which is 

the location of most water consumption, even though the unemployed women typically drink less 

water than the employed. (On this point, I don’t know whether it is the characteristics of the women 

who tend to be unemployed that explains their lower drinking consumption, or whether it is the fact of 
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remaining at home itself which is less conducive to drinking). However ultimately, with these study 

data, true behaviour change cannot be differentiated from measurement error. Asking women about 

their perception of change in drinking habits did not help us answer this question: women who said 

they did change habits over time, do not report drinking more or less than the ones who did not. 

Moreover, actual water change over time does not predict whether women report changing behaviour 

(Table 8.8). 

The observed differences in water consumption over pregnancy, though varying by strata, represent 

consistent and marked trends, such that measurement error alone is unlikely to explain them. This 

observation ties in with the argument made in previous studies (Forssen et al. 2009; Kaur et al. 2004; 

Shimokura et al. 1998) that any large variation is more likely to reflect an actual change rather than 

inaccurate reporting. In addition, the unemployed women, who are thought to be more accurate in 

their reporting, were once more found to drink less water. Given that women stay at home more as 

pregnancy progresses, reporting should become increasingly accurate suggesting that any changes in 

water consumption reported are more likely to reflect real change.  

On the other hand, water intake over a set period of time is always difficult to measure and may be 

subject to non-differential error (JM Wright et al. 2010). Faulty memory (a question such as “how 

much water did you drink, on average, a month ago?” is hard to answer accurately), lack of 

knowledge (the type of tap water consumed at a friend’s house, or at a restaurant may not be known), 

and varying perceptions (e.g. what constitutes 200ml, i.e. a cup/glass’s worth) may explain the noise 

inherent in questionnaire responses (Savitz 2012). In addition, none of the water questionnaires asked 

about other possible uses of drinking water such as in the making of soups or meals, or via secondary 

pathways of exposure (pharmaceuticals, occupation, etc.) (Arbuckle et al. 2002), all of which might 

increase the potential for inaccuracies in women’s responses.  

In addition, the true comparability of the water consumption values derived from the baseline 

questionnaire, which was administered in an interview setting, compared to the repeat questionnaires, 

which were mailed out and completed in each participant’s home, is not guaranteed. Indeed, 

questionnaires already tend to slightly overestimate tap water intakes (Barbone et al. 2002; Kaur et al. 

2004; Maskiell et al. 2006; Shimokura et al. 1998; Smith et al. 2012) by up to 0.41 L/day (95% CI: 

0.13, 0.69) according to Smith et al (2012). As such, answering a repeat questionnaire focused 

exclusively on water consumption (in contrast to the baseline questionnaire which included many 

questions on other lifestyle habits etc.), could have led RQS volunteers to report their water 

consumption in the repeat questionnaires differently to the baseline but whether this would have led to 

more overestimation is impossible to know for certain. There is no reason to suspect a systematic 

trend of increasing overestimation with each additional questionnaire.  
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In conclusion, relying on second trimester estimates to calculate HAA exposure metrics will likely 

underestimate critical third trimester exposures leading to attenuation of risk estimates. In order to 

cover both the behaviour change and the measurement error explanations for this observed increase in 

water consumption over time, findings from the RQS should be incorporated into epidemiologic study 

to improve the accuracy of risk estimates. This can be achieved by stratified imputation of 

consumption in the third trimester and running an epidemiologic model including a measurement 

error component (Richardson and Gilks 1993). I also recommend prospective collection of 

information on maternal lifestyle factors during more than one trimester of pregnancy. This will better 

capture likely true changes in maternal behaviour and improve our ability to understand their impacts 

on the fetus at critical periods of development. 
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8.5 Tables 

Table 8.1: Demographic and behavioural characteristics of the RQS subset and the rest of the cohort, as reported at enrolment to BiB 

RQS Rest of the cohort Pearson 
chi2/Fisher 
exact test variables categories no. % n no. % n 

Demographic variables 
maternal age  <20 years 14 5.5 254 616 5.5 11,121 0.003 

20-24 years 57 22.4 2,791 25.1 
25-29 years 59 23.2 3,636 32.7 
30-34 years 82 32.3 2,595 23.3 
35-39 years 34 13.4 1,212 10.9 
≥40 years 8 3.1 271 2.4 
missing 2,398 

self-reported ethnicity White British 123 48.4 254 4,365 39.3 11,093 <0.001 
Pakistani 74 29.1 5,053 45.6 
Other 57 22.4 1,675 15.1 
missing 2,426 

current employment status employed 142 55.9 254 4,309 38.7 11,129 <0.001 
employed but on maternity/sick leave 13 5.1 432 3.9 
not working 90 35.4 6,012 54.0 
full-time student 9 3.5 376 3.4 
missing 2,390 

marital status married or re-married 165 65.0 254 7,598 68.3 11,132 0.536 
single 83 32.7 3,289 29.5 
separated, divorced or widowed 6 2.4 245 2.2 
missing 2,387 

cohabitation status living with baby's father or another partner 219 86.2 254 9,286 83.5 11,122 0.246 
not living with a partner 35 13.8 1,836 16.5 
missing 2,397 

parity no previous children 122 50.6 241 4,979 39.4 12,634 0.001 
1 previous child 66 27.4 3,662 29.0 
2 or more previous children 53 22.0 3,993 31.6 
missing 13 885 

217 



RQS Rest of the cohort Pearson 
chi2/Fisher 
exact test variables categories no. % n no. % n 

gestational diabetes (developed  No 109 88.6 123 3,758 79.9 4,706 0.016 
during this pregnancy) Yes 14 11.4 948 20.1 

missing 131 8,813 
maternal physical exercise #  None 132 52.0 254 6,990 74.8 9,348 <0.001 

< 1 hour 71 28.0 1,233 13.2 
≥ 1 hour but < 3 hours 42 16.5 901 9.6 
≥ 3 hours 9 3.5 224 2.4 
missing 4,171 

physical activity involved in mother's not in paid employment 103 40.6 254 5,285 56.5 9,348 <0.001 
paid work sitting most of the time 72 28.3 1,916 20.5 

standing or walking most of the time 53 20.9 1,599 17.1 
(vigorous) physical activity involved 26 10.2 548 5.9 
missing 4,171 

season at birth of child winter (jan-mar) 198 79.5 249 3,150 24.0 13,113 <0.001 
spring (apr-jun) 7 2.8 2,875 21.9 
summer (jul-sep) 0 0.0 3,616 27.6 
autumn (oct-dec) 44 17.7 3,472 26.5 
missing 5 406 

Behavioural variables 
maternal smoking status Currently a smoker 25 9.8 254 1,550 13.9 11,121 <0.001 

Ever a smoker 64 25.2 1,824 16.4 
Never a smoker 165 65.0 7,747 69.7 
missing 2,398 

maternal exposure to second hand  No 168 66.1 254 7,546 68.1 11,076 <0.001 
smoke during pregnancy Yes, >1 hour a day 18 7.1 1,518 13.7 

Yes, <1 hour a day 68 26.8 2,012 18.2 
missing 2,443 

maternal alcohol consumption during No 214 84.9 252 9,046 84.0 10,769 0.018* 
pregnancy Yes 38 15.1 1,723 16.0 

missing 2 6 
caffeinated drinks consumption by No (0 cups) 247 97.2 254 4,061 30.0 13,519 <0.001 
mother during pregnancy Yes (1 or more cups per day) 7 2.8 9,458 70.0 

missing 2,744 
maternal drug usage during No 253 99.6 254 9,368 98.7 9,494 0.285* 
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RQS Rest of the cohort Pearson 
chi2/Fisher 
exact test variables categories no. % n no. % n 

pregnancy Yes 1 0.4 125 1.3 
Don't remember 0 0.0 1 0.0 
missing 4,025 

Socio-economic variables 
total members of household 0, 1, 2 members 93 36.6 254 2,805 25.2 11,134 <0.001 

3 members 62 24.4 2,708 24.3 
4 members 46 18.1 1,957 17.6 
5 or more members 53 20.9 3,664 32.9 
missing 2,385 

maternal education level^ None  31 12.2 254 2,422 21.8 11,112 <0.001 
School  55 21.7 3,433 30.9 
Further  50 19.7 1,594 14.3 
Higher ) 97 38.2 2,815 25.3 
Other  21 8.3 848 7.6 
missing 2,407 

paternal education level^ None  36 14.2 254 1,704 15.3 11,104 0.493 
School  63 24.8 2,663 24.0 
Further  23 9.1 1,143 10.3 
Higher  75 29.5 2,786 25.1 
Other  57 22.4 2,808 25.3 
missing 2,415 

IMD 2010 score (not derived from 1st quintile (least deprived) 143 56.3 254 7,411 66.6 11,121 0.001* 
questionnaire) 2nd quintile 64 25.2 1,986 17.9 

3rd quintile 27 10.6 1,220 11.0 
4th quintile 15 5.9 319 2.9 
5th quintile (most deprived) 5 2.0 185 1.7 
missing 2,398 

*Fisher’s exact test
^ see Table 2.2  
# hours in the past week spent swimming, jogging, doing aerobics, playing tennis, exercising at the gym, etc. 
Red signal a p-value<0.05 
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Table 8.2: Univariate linear mixed models of RQS women’s a) total tap water (“TAP”) and b) total 
water (“Total”) consumption (in L/day) over the 3 time points of interest: baseline, Q1 (30-33 weeks 
of pregnancy) and Q2 (36-39 weeks of pregnancy) (Model 1) (number of observations over 3 time 
points=762, number of missing observations=127) 

a. TAP Model 1 
Fixed effect 
Main intercept 1.86 (1.71, 2.01) 
Time pattern 0.13 (0.04, 0.23) 
Random effect 
Random intercepts SD 0.76 (0.65, 0.89) 
Random slopes SD 0.09 (0.00, 0.25) 
Measurement error SD 1.01 (0.94, 1.09) 

Variance Partition Coefficient 0.37 (0.28, 0.46) 

b. Total Model 1 
Fixed effect 
Main intercept 2.22 (2.07, 2.37) 
Time pattern 0.14 (0.03, 0.26) 
Random effect 
Random intercepts SD 0.73 (0.58, 0.87) 
Random slopes SD 0.29 (0.07, 0.47) 
Measurement error SD 1.08 (1.00, 1.16) 

Variance Partition Coefficient 0.35 (0.26, 0.44) 
Red means significant (i.e. 95% credible interval does not cross zero). 
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Table 8.3: Adjusted linear mixed models of RQS women’s a) total tap water (“TAP”) and b) total 
water (“Total”) consumption trend (in L/day) over the 3 time points of interest: baseline, Q1 and Q2 
(Model 2) (number of observations over 3 time points=762, number of missing observations=127) 

Model 2 a. TAP b. Total
Fixed effect 
Main intercept 1.94 (1.50, 2.37) 2.40 (1.95, 2.85) 
Time pattern 0.19 (0.08, 0.30) 0.22 (0.09, 0.35) 
Ethnicity White British ref ref 

Pakistani -0.15 (-0.50, 0.20) -0.22 (-0.58, 0.14) 
Other -0.38 (-0.70, -0.06) -0.35 (-0.67, -0.02) 

Smoking status at 
baseline 

Never  ref ref 
Currently  0.47 (0.02, 0.92) 0.34 (-0.13, 0.80) 
Ever 0.21 (-0.12, 0.53) -0.01 (-0.34, 0.32) 

Employment status (over 
time)** 

Employed and currently working ref ref 
Employed and on maternity leave -0.09 (-0.46, 0.29) -0.08 (-0.49, 0.34) 
Not employed -0.26 (-0.56, 0.03) -0.42 (-0.75, -0.09) 
Full-time student -0.06 (-0.75, 0.63) -0.23 (-0.96, 0.49) 

Maternal physical 
exercise for leisure 

None ref ref 
Some but <1 hour 0.32 (0.03, 0.60) 0.43 (0.14, 0.72) 
≥1 hour but <3 hours 0.25 (-0.11, 0.62) 0.29 (-0.08, 0.67) 
≥3 hours 0.19 (-0.55, 0.93) 0.51 (-0.24, 1.28) 

Maternal physical 
exercise in paid work 

Not in paid work ref ref 
Mostly sitting at work -0.10 (-0.50, 0.29) 0.04 (-0.38, 0.46) 
Mostly standing/walking at work -0.41 (-0.82, -0.01) -0.30 (-0.73, 0.12) 
(Vigorous) physical activity -0.13 (-0.63, 0.38) -0.29 (-0.81, 0.23) 

Total household members  0, 1, 2 members in the household ref ref 
3 members -0.06 (-0.38, 0.25) -0.20 (-0.53, 0.13) 
4 members 0.34 (-0.02, 0.70) 0.26 (-0.11, 0.63) 
≥5 members -0.04 (-0.40, 0.33) -0.09 (-0.47, 0.29) 

Random effect 
Random intercepts SD 0.72 (0.59, 0.84) 0.67 (0.52, 0.82) 
Random slopes SD 0.10 (0.00, 0.26) 0.32 (0.03, 0.50) 
Measurement error SD 1.01 (0.94, 1.08) 1.06 (0.98, 1.15) 

Variance Partition 
Coefficient 

0.34 (0.25, 0.43) 0.33 (0.24, 0.43) 

**N=145 missing (18 of which have outcomes, 127 of which do not such that their imputation does 
not add anything to the results), missing data (assumed to be missing at random) were imputed based 
on a probability estimated from the observed data  
Red means significant (i.e. 95% credible interval does not cross zero). 
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Table 8.4: Linear mixed models of RQS women’s a) total tap water (“TAP”) and b) total water 
(“Total”) consumption trend (in L/day) over the 3 time points of interest: baseline, Q1 and Q2 
allowing for random slopes (intercepts) by ethnic group (Model 3) (number of observations over 3 
time points=762, number of missing observations=127) 

Model 3 a. TAP b. Total
Fixed effect 
Main intercept 1.95 (1.52, 2.38) 2.39 (1.95, 2.82) 
Time trend by ethnicity White British 0.08 (-0.07, 0.23) 0.07 (-0.09, 0.24) 

Pakistani 0.37 (0.14, 0.62) 0.49 (0.19, 0.80) 
Other 0.17 (-0.04, 0.40) 0.20 (-0.02, 0.43) 

Ethnicity White British ref  ref 
Pakistani -0.37 (-0.76, 0.02) -0.50 (-0.87, -0.12) 
Other -0.44 (-0.80, -0.08) -0.42 (-0.78, -0.07) 

Smoking status at baseline Never ref ref 
Currently 0.43 (-0.01, 0.86) 0.28 (-0.15, 0.72) 
Ever 0.21 (-0.11, 0.53) 0.08 (-0.25, 0.41) 

Employment status (over 
time)**  

Employed and currently 
working 

ref ref 

Employed and on maternity 
leave 

-0.02 (-0.39, 0.35) 0.03 (-0.36, 0.42) 

Not employed -0.21 (-0.51, 0.09) -0.36 (-0.68, -0.05) 
Full-time student 0.01 (-0.66, 0.67) -0.16 (-0.80, 0.49) 

Maternal physical exercise for 
leisure 

None ref ref 
Some but <1 hour 0.25 (-0.02, 0.53) 0.32 (0.05, 0.59) 
≥1 hour but <3 hours 0.24 (-0.12, 0.59) 0.24 (-0.10, 0.59) 
≥3 hours 0.02 (-0.65, 0.70) 0.24 (-0.42, 0.91) 

Maternal physical exercise in 
paid work 

Not in paid work ref ref 
Mostly sitting at work -0.01 (-0.39, 0.38) 0.16 (-0.23, 0.55) 
Mostly standing/walking at 
work 

-0.40 (-0.78, -0.02) -0.22 (-0.61, 0.16) 

(Vigorous) physical activity -0.01 (-0.50, 0.49) -0.14 (-0.63, 0.36) 
Total members in household 0, 1, 2 members in the 

household 
ref  ref 

3 members -0.03 (-0.34, 0.27) -0.18 (-0.48, 0.13) 
4 members 0.39 (0.05, 0.73) 0.34 (0.00, 0.68) 
≥5 members 0.01 (-0.34, 0.36) 0.01 (-0.33, 0.34) 

Random effect 
Random intercepts SD White British 0.82 (0.65, 1.00) 0.85 (0.67, 1.04) 

Pakistani 0.55 (0.11, 0.89) 0.28 (0.01, 0.65) 
Other 0.42 (0.07, 0.69) 0.27 (0.01, 0.57) 

Random slopes SD White British 0.11 (0.01, 0.29) 0.21 (0.02, 0.43) 
Pakistani 0.58 (0.07, 1.00) 0.99 (0.70, 1.30) 
Other 0.13 (0.00, 0.35) 0.14 (0.01, 0.35) 

Measurement error SD 0.98 (0.90, 1.06) 1.01 (0.93, 1.09) 

Variance Partition Coefficient  White British 0.42 (0.31, 0.53) 0.43 (0.32, 0.54) 
Pakistani 0.43 (0.27, 0.58) 0.52 (0.37, 0.65) 
Other  0.18 (0.03, 0.35) 0.10 (0.00, 0.27) 

Red means significant (i.e. 95% credible interval does not cross zero). 
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Table 8.5: Linear mixed models of RQS women’s total tap water (“TAP”) (a) and total water 
(“Total”) (b) consumption trend (in L/day) over the 3 time points of interest: baseline, Q1 and Q2 
with interaction between employment and time (Model 4) (number of observations over 3 time 
points=762, number of missing observations=127) 

Model 4 a. TAP b. Total
Fixed effect 
Main intercept 1.94 (1.48, 2.39) 2.39 (1.92, 2.87) 
Employment status x Time 
Interaction 

Employed and currently 
working 

0.21 (0.00, 0.41) 0.26 (0.03, 0.49) 

Employed and on maternity 
leave 

-0.06 (-0.46, 0.34) -0.20 (-0.64, 0.23) 

Not employed 0.22 (0.06, 0.38) 0.26 (0.08, 0.44) 
Full-time student 0.16 (-0.47, 0.82) 0.41 (-0.32, 1.14) 

Ethnicity White British ref ref 
Pakistani -0.16 (-0.50, 0.19) -0.23 (-0.59, 0.13) 
Other -0.39 (-0.71, -0.07) -0.37 (-0.70, -0.05) 

Smoking status at baseline Never  ref ref 
Currently  0.47 (0.02, 0.91) 0.34 (-0.12, 0.79) 
Ever 0.20 (-0.12, 0.52) -0.01 (-0.34, 0.32) 

Employment status (over 
time)* * 

Employed and currently 
working 

ref ref 

Employed and on maternity 
leave 

0.22 (-0.38, 0.82) 0.42 (-0.22, 1.06) 

Not employed -0.29 (-0.67, 0.09) -0.44 (-0.86, -0.03) 
Full-time student -0.03 (-0.84, 0.77) -0.30 (-1.13, 0.53) 

Maternal physical exercise for 
leisure 

None ref ref 
Some but <1 hour 0.32 (0.03, 0.60) 0.43 (0.14, 0.71) 
≥1 hour but <3 hours 0.24 (-0.12, 0.61) 0.28 (-0.09, 0.65) 
≥3 hours 0.18 (-0.55, 0.92) 0.51 (-0.24, 1.26) 

Maternal physical exercise in 
paid work 

Not in paid work ref ref 
Mostly sitting at work -0.11 (-0.51, 0.28) 0.03 (-0.40, 0.45) 
Mostly standing/walking at 
work 

-0.42 (-0.83, -0.01) -0.31 (-0.75, 0.12) 

(Vigorous) physical activity -0.15 (-0.65, 0.35) -0.32 (-0.85, 0.21) 
Total members in household 0, 1, 2 members in the 

household 
ref ref 

3 members -0.06 (-0.38, 0.26) -0.19 (-0.51, 0.13) 
4 members 0.34 (-0.01, 0.70) 0.26 (-0.10, 0.63) 
≥5 members -0.03 (-0.40, 0.34) -0.08 (-0.46, 0.30) 

Random effect 
Random intercepts SD 0.71 (0.59, 0.84) 0.66 (0.49, 0.81) 
Random slopes SD 0.10 (0.00, 0.26) 0.34 (0.11, 0.50) 
Measurement error SD 1.01 (0.94, 1.09) 1.06 (0.98, 1.15) 

Variance Partition Coefficient 0.34 (0.25, 0.43) 0.33 (0.24, 0.42) 
Red means significant (i.e. 95% credible interval does not cross zero). 
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Table 8.6: Linear mixed models of RQS women’s total tap water (“TAP”) (a) and total water 
(“Total”) (b) consumption trend (in L/day) over the 3 time points of interest: baseline, Q1 and Q2 
with interaction between smoking status and time (Model 5) (number of observations over 3 time 
points=762, number of missing observations=127) 

Model 5 a. TAP b. Total
Fixed effect 
Main intercept 1.92 (1.48, 2.36) 2.39 (1.93, 2.84) 
Smoking status x Time 
Interaction 

Never 0.22 (0.09, 0.36) 0.26 (0.11, 0.41) 

Currently 0.00 (-0.35, 0.34) -0.08 (-0.46, 0.30) 
Ever 0.17 (-0.04, 0.39) 0.25 (0.01, 0.49) 

Ethnicity White British ref ref 
Pakistani -0.14 (-0.50, 0.21) -0.22 (-0.58, 0.15) 
Other -0.37 (-0.70, -0.05) -0.35 (-0.68, -0.03) 

Smoking status at baseline Never  ref ref 
Currently  0.66 (0.13, 1.19) 0.58 (0.04, 1.11) 
Ever 0.25 (-0.13, 0.63) 0.00 (-0.38, 0.38) 

Employment status (over 
time)**  

Employed and currently 
working 

ref ref 

Employed and on maternity 
leave 

-0.10 (-0.49, 0.28) -0.09 (-0.51, 0.32) 

Not employed -0.27 (-0.58, 0.03) -0.45 (-0.77, -0.11) 
Full-time student -0.08 (-0.76, 0.61) -0.25 (-0.98, 0.47) 

Maternal physical exercise for 
leisure 

None ref ref 
Some but <1 hour 0.32 (0.04, 0.60) 0.43 (0.14, 0.72) 
≥1 hour but <3 hours 0.25 (-0.12, 0.61) 0.29 (-0.09, 0.67) 
≥3 hours 0.18 (-0.56, 0.91) 0.50 (-0.25, 1.25) 

Maternal physical exercise in 
paid work 

Not in paid work ref ref 
Mostly sitting at work -0.11 (-0.51, 0.28) 0.03 (-0.39, 0.44) 
Mostly standing/walking at 
work 

-0.41 (-0.82, -0.01) -0.31 (-0.73, 0.11) 

(Vigorous) physical activity -0.13 (-0.63, 0.37) -0.29 (-0.81, 0.22) 
Total members in household 0, 1, 2 members in the 

household 
ref ref 

3 members -0.06 (-0.39, 0.26) -0.20 (-0.52, 0.13) 
4 members 0.34 (-0.01, 0.70) 0.27 (-0.10, 0.63) 
≥5 members -0.04 (-0.41, 0.33) -0.08 (-0.46, 0.29) 

Random effect 
Random intercepts SD 0.72 (0.60, 0.84) 0.67 (0.51, 0.82) 
Random slopes SD 0.10 (0.00, 0.26) 0.33 (0.11, 0.50) 
Measurement error SD 1.01 (0.94, 1.08) 1.06 (0.98, 1.15) 

Variance Partition Coefficient 0.34 (0.25, 0.43) 0.34 (0.24, 0.43) 
Red means significant (i.e. 95% credible interval does not cross zero) 
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Table 8.7: Differences in total water consumption between each (interaction) category and the 
reference category, at baseline, at Q1 and at Q2. 
All models are adjusted for ethnicity, smoking status, employment status, maternal physical exercise 
(leisure and in paid work), total members of household. 
1 cup = 1 glass = 200ml 
A positive difference means the reference group consumes more. 

at baseline at Q1 at Q2 

Mean 95% CrI Mean 95% CrI Mean 95% CrI 
Model 3 White British ref ref ref 

Pakistani 0.50 (0.12, 0.87) 0.08 (-0.32, 0.48) -0.34 (-0.98, 0.30) 
Other 0.42 (0.07, 0.78) 0.30 (0.01, 0.59) 0.18 (-0.23, 0.59) 

Model 4 Employed and working ref ref ref 
Employed and on maternity 
leave -0.42 (-1.06, 0.22) 0.05 (-0.38, 0.48) 0.52 (-0.14, 1.19) 

Not employed 0.44 (0.03, 0.86) 0.45 (0.11, 0.78) 0.45 (-0.03, 0.92) 
Full-time student 0.30 (-0.53, 1.13) 0.16 (-0.66, 0.97) 0.02 (-1.34, 1.35) 

Model 5 Never smoker ref ref ref 
Current smoker -0.58 (-1.11, -0.04) -0.24 (-0.71, 0.25) 0.11 (-0.60, 0.81) 
Ever smoker 0.00 (-0.38, 0.38) 0.01 (-0.33, 0.35) 0.02 (-0.46, 0.49) 

Red means significant (i.e. 95% credible interval does not cross zero). 

Table 8.8: Comparison between women’s self-perception of change in total tap water drinking habits, 
vs. quantitative water consumption actually reported 

Thinks her tap water 
drinking habits have 
changed since 
previous questionnaire 

Difference between baseline and Q1 Difference between Q2 and Q1 

mean (95% CI) p-value* n mean (95% CI) p-value* n 
yes (changed) 0.24 (-0.22, 0.71) 0.293 28 -0.22 (-0.85, 0.41) 0.478 31 

no (did not change) 0.18 (-0.08, 0.45) 0.170 171 0.04 (-0.20, 0.28) 0.742 92 
missing 0.24 10 1.60 4 

total 0.19 (-0.03, 0.42) 0.090 209 0.03 (-0.22, 0.27) 0.839 127 
difference between 

yes and no 
categories** 

-0.06 (-0.74, 0.62) 0.865 0.26 (-0.28, 0.81) 0.342 

*t test: Is the difference in total tap water consumption different from 0? (stratified by yes/no self-
perceived a change in behaviour) 
**2 sample t-test 
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8.6 Figures 

Figure 8.1 a and b: Line plots summarising and comparing water consumption medians (by water 
type) at baseline (26-28 weeks of pregnancy), Q1 (30-33 weeks of pregnancy) and Q2 (36-39 weeks 
of pregnancy) of the women enrolled in the Repeat Questionnaire Study (RQS) (N=254) 
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Figure 8.2 a and b: Line plots summarising and comparing water consumption medians (by location) 
at baseline (26-28 weeks of pregnancy), Q1 (30-33 weeks of pregnancy) and Q2 (36-39 weeks of 
pregnancy) of the women enrolled in the Repeat Questionnaire Study (RQS) (N=254) 
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Figure 8.3: Interaction plots by category for total water consumption 

a. Model 3: Interaction between ethnicity and time, allowing for random slopes (and intercepts) by
ethnic group 

b. Model 4: Interaction between employment status over time and time
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c. Model 5: Interaction between smoking status at baseline and time
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CHAPTER 9 DISCUSSION 

This chapter concludes the thesis by summarising briefly the main results by aim (Thesis Aims, 

Chapter 2), discussing the interpretation of these results in a wider context, and offering some 

recommendations for future research. 

9.1 Aim 1 

9.1.1 Summary 

The first aim of this thesis was to generate exposure estimates to ingested dichloroacetic acid 

(DCAA), trichloroacetic acid (TCAA) and bromodichloroacetic acid (BDCAA) for the pregnancy 

period of each BiB participant. To do so, each individual woman’s total tap water consumption during 

pregnancy was combined in turn with modelled area-level DCAA, TCAA and BDCAA 

concentrations, and weighted to each woman’s specific trimester based on postcode of residence. 

Boiling and filtering factors were taken into account in this calculation (Table 5.1). 

Women’s average tap water consumption was 1.7 ± 0.9 L/day, the majority of which is cold tap water 

consumed in the home (Chapter 3). 158 DCAA and TCAA valid data points and 143 valid BDCAA 

data points were collected from eight water supply zones in Bradford; their medians were 9.90ug/L 

(IQR=9.05), 10.70ug/L (IQR=7.05) and 1.20ug/L (IQR=1.43) respectively, with DCAA and TCAA 

together representing the largest proportion of all HAAs by mass (Table 4.5). Though not total HAAs, 

the sum of these three HAAs is below the US’s maximum contaminant level of 60ug/L for HAA5 and 

below the 80ug/L standard for HAA9 proposed by the European Union’s Drinking Water Directive 

(DHI 2008). Bayesian hierarchical models were fit to predict mean DCAA, TCAA, and BDCAA 

concentration levels by water supply zone and time. Averaging and weighting daily HAA predictions 

to correspond to each woman’s first, second or third trimester of pregnancy resulted in plausible 

values which were similar for women’s three trimesters of pregnancy (Table 4.8). Water consumption 

and HAA occurrence reported in Bradford compared well to (albeit quite variable) data from previous 

studies (Table 3.1 and Table 4.6). 

Correcting total tap water consumption for reduction and/or boiling factors as appropriate, combined 

DCAA, TCAA and BDCAA metrics were 16.02 ± 10.7 ug/day, 18.15 ± 11.9 ug/day, and 1.80 ± 1.4 

ug/day, respectively (Table 5.5). The three combined metric calculations included the same total tap 

water consumption component for each woman. They were calculated using the average HAA 

concentrations corresponding to each woman’s second trimester of pregnancy, to be as faithful to the 
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time of baseline questionnaire administration as possible. As such, these levels are assumed to 

represent second trimester exposures. It is the differences in filtering and in particular boiling factors 

by HAA that lead to proportionally larger overall combined exposures to DCAA than to TCAA when 

compared to DCAA and TCAA mean observed and modelled concentrations.This is the first study of 

this magnitude to produce such a combined metric for HAAs. 

9.1.2 Discussion and recommendations 

With the focus of this thesis on DCAA, TCAA, and BDCAA, I ask whether DCAA, TCAA, and 

BDCAA are good proxies for total HAAs (HAA9 or HAA5) in a given sample. Given that DCAA and 

TCAA dominate by mass, and BDCAA was the most prevalent brominated species in this sample, I 

think they are. As mentioned in Chapter 7, the combined metrics for DCAA, TCAA and BDCAA 

were summed in a final attempt to detect an effect on birth outcomes, but this made no difference to 

the results, i.e. no association was found between the sum of DCAA, TCAA and BDCAA on either 

birth weight, term LBW or SGA.  

I then turn to the question of whether total HAAs are good surrogates for all the other DBPs present in 

the sample. This represents an increasing challenge of exposure assessment in epidemiologic studies 

of DBPs given that over 600 DBPs have been identified (Richardson et al. 2007). Given evolving 

water treatment strategies with alternative disinfectants to chlorine, there is also a growing interest in 

emerging (unregulated) DBPs (e.g. nitrosamines, the most toxic emerging DBP). Many of these DBPs 

are not examined for toxicity nor typically measured in drinking water supplies. At this stage, I don’t 

believe that HAAs have been established to be good proxies for other DBPs present in the sample. 

This is relevant to exposure assessment of epidemiologic studies because finding an association 

between brominated HAA species for example (thought to be the most toxic of all HAA species 

(Plewa et al. 2010)) and a particular adverse health effect may not mean that brominated HAAs are 

the cause. This effect may in fact be due to the presence of other brominated DBPs of high health 

concern (e.g. haloacetonitriles, halonitromethanes, haloacetaldehydes) which are often not measured 

but which correlate with brominated HAAs. Predicting which DBPs will be present in any given 

water sample is a tremendous challenge because there are so many determinants of DBPs (NOM 

content which is affected by water source, treatment methods, treatment distribution, and season all 

affect DBP formation), and their concentrations once determined may be unique to each location and 

its own unique set of conditions. The relationship between specific DBPs (as well as their interactions 

in a specific context) must be very well studied before being able to assess proxy status. In BiB, the 

relationship between the THMs modelled by Drs Rachel Smith and James Bennett, and the HAAs 
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described in this thesis could be further studied in the short term. But indeed the nature of that 

relationship would likely only apply specifically to Bradford. 

The few studies available to date suggest that mixture effects may be complex and unpredictable (e.g. 

inhibitory, additive, synergistic) (Komulainen 2004). Going forward, a detailed assessment of specific 

DBP mixtures will be required to provide a better understanding of any observed results 

(Nieuwenhuijsen et al. 2009b). If this is not done, one could erroneously be concluding that none of 

the DBPs that HAAs could be surrogates for in this study for example have any effect on birth 

outcomes either. 

Future work could also incorporate the uncertainty from area-level modelling into the combined 

metric and its subsequent epidemiologic modelling. 

9.2 Aim 2 

9.2.1 Summary 

This thesis’s second aim was to examine the epidemiologic association between prenatal exposure to 

DCAA, TCAA and BDCAA as estimated under Aim 1 and birth weight, term low birth weight 

(LBW), and small-for-gestational age (SGA) as measures of fetal growth, adjusting the analyses for 

potential confounders.  

Chapter 6 describes the outcome variables in the BiB cohort, and delves into some of the differences 

in birth weight to be expected by ethnicity: Pakistani babies were expected to be and are lighter at 

birth than White British babies. The chapter also justifies why continuous birth weight, term LBW 

and SGA based on Cole et al’s standardised birth weights method, each with its own limitations, are 

the best birth weight-based indicators available to try and isolate effects on fetal growth. Finally, with 

regard to BiB’s representativeness, Chapter 6 exposes that a) late second trimester recruitment to BiB 

meant that no combined metric exposure estimates for early pregnancy time periods could be 

measured, and no early deliveries could be recorded and included in BiB; and b) women with very 

poor birth outcomes may have been artificially excluded from the cohort (as they may not have 

wished to continue participating, or because disclosure of specific information may have 

compromised participants’ anonymity). However, these threats to validity were deemed minimal as 

the study sample is otherwise so large. 

Chapter 7 works through in detail the association between the combined DCAA, TCAA and BDCAA 

metrics of exposure (as well as its components: maternal water consumption, and area-level DCAA, 
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TCAA and BDCAA concentrations by place of residence) and risk of adverse birth outcomes in the 

BiB cohort. No clear association between the combined metric of exposure and either continuous birth 

weight, term LBW or SGA was found. The significant associations reported for the adjusted 

comparison of the highest versus lowest tertile of exposure to combined DCAA, TCAA and BDCAA 

and term LBW (complete case analyses) were contrary to hypothesis in terms of direction, and lost 

after multiple imputation. As a result, they were likely chance results given the large number of 

analyses conducted. Several stratifications and sensitivity analyses were carried out but the results of 

the combined metric remained non-significant.  

This study did confirm previous literature’s findings that higher levels of water consumption are 

protective against adverse birth outcomes. There appears to be a trade-off between drinking less tap 

water to avoid the possible risk of exposure to chemicals, or drinking more tap water to benefit from 

hydration. Based on these results, the benefits of hydration appear to outweigh the risks of chemical 

exposure with respect to in terms of birth outcomes. Of course, women could choose to consume 

other beverages to avoid the conundrum altogether, and every other option, at high enough dose, may 

also be associated with its own set of risks. As per the Paracelsus adage: it is the dose that makes the 

poison. 

Whether or not a woman answered the filtering question in the water questionnaire affected her 

inclusion in Chapter 7’s complete case analyses. A large proportion of women were therefore 

excluded (although they are included in the multiple imputations). In fact, the Pakistani women 

answered the filtering questions more frequently than the White British women, but answered not 

filtering their tap water more frequently when they did, such that proportionally more White British 

women may have been excluded due to this criterion. As an alternative the assumption could have 

been made that if a woman did not respond to either of the filtering questions, her answer was 

negative. Indeed, people tend not to fill out questions when their answer is ‘no’ (as per the 

assumptions made for zero water consumption in Chapter 8). The anticipated effect on results is 

minimised however because the combined metric analyses were replicated in the full cohort after 

carefully imputing any missing data. 

9.2.2 Discussion and recommendations 

The Bradford District Infant Mortality Commission reported that a third of the Bradford District 

babies that died in infancy were born at full term weighing 2500 grams or more (BDIMC 2006). 

Further still, babies born to Bradford District residents in all birth weight ranges had a significantly 

higher risk of post-neonatal (i.e. within the first seven days of life) and infant death than babies of a 

similar birth weight across the whole of England and Wales (BDIMC 2006). This means that the high 
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rate of post-neonatal mortality in the Bradford District was not explained solely by a greater 

proportion of babies born preterm or low birth weight.  

One of the premises behind studying birth outcomes is that they are surrogate markers for infant 

mortality and future adult health (see Introduction (Chapter 1)). But many other lifestyle factors can 

also influence post-neonatal mortality. Prior to using birth weight as a means of predicting adult 

health, I believe it prudent to think of birth weight above all as an indicator of the fetal experience. 

Based on the results of this study, prenatal exposure to HAAs does not appear to negatively impact 

the health of fetuses in utero. 

9.2.2.1 “Low birth weight paradox” 

It has been acknowledged for many years that small babies from high-risk populations can have lower 

mortality than small babies from a lower-risk population. This is known as the “low birth weight 

paradox”. Considering the example of altitude: the shift (towards the left, i.e. towards lower birth 

weights) of birth weight in populations living at high altitude might be expected to produce higher 

mortality because more babies are subjected to the higher risks at lower weights. In fact, total 

mortality is the same in the population living at higher vs. at lower altitudes because weight-specific 

mortality rates are not the same in the two populations. It is as if specific mortality rates at high 

altitude have shifted with the birth weight distribution, leading to no net change in mortality, such that 

at any given weight below 2,500, babies born at high altitude have slightly better survival than other 

babies. 

This is because altitude affects birth weight but not mortality and the association between birth weight 

and mortality is an indirect one. If another factor is present that affects both birth weight and 

mortality, birth weight becomes a collider and stratifying on birth weight biases the relationship 

between altitude and mortality within those birth weight strata. In MacMahon’s words, “the marked 

relationship between weight and mortality is the result of factors…that affect them both”, and it is a 

mistake to analyse birth weight-specific mortality at all (p.221 in Wilcox(2010)).  

9.2.2.2 Continuous birth weight 

Wilcox also discusses the concepts of dominant vs. residual birth weight distributions in his latest 

book (Wilcox 2010). The dominant birth weight distribution is the Gaussian part of the distribution, 

and typically contains 95-98% of births. The residual birth weight distribution is the excess portion in 

the lower tail, lying outside the main Gaussian distribution. Although residual birth weights are few, 

they contribute a major portion of infant deaths.  
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If an environmental insult shifts a population’s entire birth weight distribution, such a shift in mean 

birth weight will be driven by shifts within the dominant distribution and will not be sensitive to 

changes in the tail of the birth weight distribution. As changes in the overall mean of the dominant 

distribution, without changes in the residual, do not seem to be of importance for infant mortality or 

other forms of morbidity (Savitz et al. 2002), detecting such shifts in the overall mean birth weight 

may not be relevant to the study of the long-term effects of HAA exposures.  

9.2.2.3 Transient effects 

What’s more, the trajectories of fetal growth in utero are known to differ by race, gender, and 

plurality (Brenner et al. 1976; Williams et al. 1982) and may be affected by exogenous factors. But 

such effects cannot be detected from size or weight at birth. Only longitudinal information on fetal 

size through the course of pregnancy would enable the study of attained weight at specified points in 

pregnancy, as well as of growth during specified intervals (Savitz et al. 2002). If environmental 

insults have a transient effect on growth, for example slowing it for a time and allowing the fetus to 

catch up later, it will not be captured by birth weight-based measures of growth restriction. 

9.2.2.4 Outcomes going forward 

Given the above, it is necessary to continue validating that birth outcomes are predictive of survival 

and future health, by following-up the BiB cohort to test the delayed consequences of prenatal or early 

childhood exposure to DBPs (growth, delayed puberty, obesity, neurodevelopmental deficits). While I 

believe we focused on the best available outcomes available to us in this thesis, I would encourage 

future studies to continue developing better birth outcome measures in order to improve the 

classification of fetal growth restriction  

According to Brodsky and Christou (2004) , there are two main patterns of fetal growth restriction. If 

fetal growth is impaired during the first or second trimester, the infant will have symmetric growth 

restriction. This proportional lack of growth is caused by reduced fetal cellular proliferation of all 

organs and occurs in approximately 20% to 30% of growth restricted infants (Spencer et al. 1999). In 

contrast, asymmetric growth, in which an infant has a smaller abdominal size compared to head size 

and which is the most common form of growth restriction (~70-80%) (Lin et al. 1991), will occur if 

the decrease in growth velocity happens in the last trimester, and is attributed to the ability of the fetus 

to adapt, redistributing its cardiac output to the spleen, adrenal, coronary, and cerebral circulations. 

Although some overlap can occur, the timing of the growth delay is more important than the aetiology 

in determining the pattern of growth restriction. 

Requiring birth length to be recorded at birth would help go beyond outcome measures based on birth 

weight only, in order for instance to examine symmetric vs. asymmetric growth restriction, using such 
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measures as the ponderal index (=birth weight/(birth length)3 x100), an indicator for thinness of the 

newborn. I hope future studies will be able to pair this more nuanced approach to the definition of 

fetal growth restriction with improvements in fetal growth standards towards taking both intrauterine-

based and birth weight-based standards into account (Hutcheon and Platt 2008). 

9.2.2.5 Confounding 

Most of the known or suspected risk factors for birth weight adjusted for in this study are correlated 

which means it is difficult to disentangle their respective effects on birth weight (Table A7 - 2).  

This is relevant to the discussion over whether to use ethnic-specific references to generate measures 

of deviation from subgroup norms such as small-for-gestational age (SGA). Choice of reference curve 

for SGA derivation is indeed critical, and I decided not to adjust SGA thresholds for ethnicity using 

previous estimates a) because of non-availability of such ethnic-specific estimates and b) because of 

the risk involved in making the strong assumption that adjusting for ethnicity (but not deprivation 

status, nor parity, nor any other demographic or behavioural factor) is sufficient. In a population of 

women who not only had different ethnic origin but were also smaller maternal size (Spencer et al. 

1995), an ethnic standard derived from the smaller mothers will apply to ethnic mothers who are 

smaller than the general population. But it will not apply to mothers who are larger than average for 

their ethnic group, and whose babies should be expected to grow to a heavier weight. The fact that a 

baby is SGA may be overlooked in this case (Gardosi 1995). 

In terms of uncontrolled confounding, a major element of birth weight relevant to this cohort and 

which w taken into account is consanguinity. Consanguinity is a major risk factor for congenital 

anomaly (Sheridan et al. 2013). The majority of Pakistani-origin mothers in the BiB cohort were 

related to the father of their child, and this was a more common practices than for their parents (64% 

vs. 55%) (Wright et al. 2012). As questionnaire information is available on participants’ relatedness 

by blood, accounting for the effects of consanguinity would be an interesting avenue to explore 

further. 

9.3 Aim 3 

9.3.1 Summary 

The third and last aim of the thesis, described in full in Chapter 8, was to investigate water use 

patterns in the third trimester of pregnancy by evaluating the agreement of individual water use values 

reported in BiB questionnaires at baseline (at approx. 26-28 weeks of pregnancy) and at two later time 

points in pregnancy (30-33 weeks of pregnancy, and 36-39 weeks of pregnancy) in a subset of BiB 

women. 
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Overall, Chapter 8 reports that women tend to slightly increase their consumption over the third 

trimester of pregnancy by approx. one 200ml glass per time point, i.e. every 5 to 6 weeks, or approx. 2 

glasses from the end of the second trimester of pregnancy to the end of the third. Unemployed women 

reported drinking significantly less total water than working women (Model 2), while current smokers 

and the White British women drank on average the most. Over time, being Pakistani, being employed 

and working (as opposed to on maternity leave), being unemployed, or never having smoked 

cigarettes all predicted an increase both in total tap water and total water consumption (Models 3, 4, 

5). 

9.3.2 Discussion and recommendations 

Definitive differentiation between behaviour change (e.g. as in women drinking more tap water as the 

pregnancy progresses, perhaps because they are more uncomfortable or more idle/at home) and 

variability in questionnaire responses due to measurement error (i.e. questionnaire are imprecise) is 

not possible from the repeat questionnaire study. However I infer from these results that both 

behaviour change and measurement error likely contributed to this change over time such that 

assessing women’s late pregnancy water consumption and validating questionnaires by other methods 

(such as biomarker studies or further questionnaire assessment by daily water diary) remain critical to 

developing the most accurate late trimester exposure estimates. 

Because the contribution of individual water consumption is so important to women’s overall 

exposure to HAAs in a location like Bradford where area-level variation in HAA concentrations is 

relatively limited, these results should be considered in any future modelling of third trimester HAA 

exposure estimates in order to help minimise exposure misclassification.  

Future epidemiologic analyses could also consider the change in behaviour over the course of 

pregnancy/high within-subject variability found in Chapter 8, by including these repeat data in a 

Bayesian hierarchical model with a measurement error component to account for the imprecision of 

exposure estimates. Another interesting avenue would be to include Dr Rachel Smith’s work on 

THMs and/or the air pollutant information derived for the Bradford area by Dr Kees De Hoogh and 

CREAL (Barcelona, Spain) with the HAA exposures presented in this thesis, in order study multiple 

exposures (see Chapter 7). 
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9.4 Final thoughts 

This thesis studies the best possible exposure metric given current knowledge, improving the accuracy 

of exposure estimates from the methods used to date in the field of the environmental epidemiology of 

the understudied HAAs. In addition, it considers outcome measures carefully selected to identify 

pathologically small babies. And it does so at an unprecedented scale in a population of 10,000+ 

singleton babies which is relatively disadvantaged compared to the rest of the UK meaning that there 

is a real need to understand underlying causes of increased morbidity and ill health.  

Despite this, this study still does not find an epidemiologic association between prenatal exposure to 

HAAs and adverse birth outcomes. As such, it certainly contributes to the small existing body of 

evidence on the subject: of the seven epidemiologic studies published to date to my knowledge, four 

find that HAAs may be associated with adverse birth weight-based outcomes, and three others report 

only non-significant (and even inverse) effects. While there will always be a number of limitations 

associated with human studies—they are inherently “messy”—, these results must be accepted at face 

value. 

Studies in the field of DBP research are difficult to conduct in general because of the limited 

predictability and ever increasing breadth of the chemicals of interest. I believe that we (as a society) 

should address the risks associated with any technology (even incredibly beneficial ones to public 

health like water disinfection) if most of the population is exposed to it and there is reasonable doubt 

as to its potential to harm health. But given that research resources will always be limited, we should 

consider studying DBPs differently going forward. Perhaps with a more focused purpose (e.g. are we 

only interested in HAAs, or are we interested in HAAs as proxies for all other DBPs), in a more 

highly exposed population (we worked with a vulnerable population in Bradford, but one which was 

not particularly highly exposed to HAAs), and after putting a renewed emphasis on the need for a 

better understanding of the biological mechanisms of action of DBPs in general and HAAs in 

particular. Given that a 1% increased risk of SGA, as was reported in the meta-analysis by Grellier et 

al. (2010) for the association between THMs and SGA, is not detectable in an epidemiologic study, 

but only in a meta-analysis (S. Cordier, Gordon conference, 2012), perhaps the next step is first of all 

to conduct such a meta-analysis for HAAs. 

But whatever it is, as Savitz suggested in an editorial in the Epidemiology and Society section of the 

journal Epidemiology (Savitz 2010), the marginal costs vs. marginal benefits (as far as they can be 

determined) of any new study must be weighed. ‘Because we can’ (i.e. the funding is in place, the 

cohort recruited, data routinely collected, and the manpower ready and willing) cannot be the only 

reason to embark on a new study. Instead any new DBP study must have a chance of providing an 
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incremental benefit in light of what has already been done. In the meantime, this thesis has led to the 

rather reassuring conclusion that there is no discernable issue with the specific class of DBPs which 

are HAAs at the levels observed in Bradford. Perhaps this is an excellent result for the people of 

Bradford. 
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APPENDICES TO CHAPTERS 2, 3, 4, 5, 7 AND 8 

For each chapter, tables are presented first, then figures. 

Chapter 2 
Table A2 - 1: Codebook of variables under consideration in this thesis including source of data (data 
was either self-reported by participants in the baseline questionnaire administered at recruitment to 
BiB, or drawn from the NHS maternal records system eClipse) 

Name Source Description Coding 
ethgrp3 questionnaire Ethnic group 1= White British (reference) 

2= Pakistani origin 
3= Other 

eclmumageUP_cat2 eClipse Mother’s age at time of 
delivery 

1= 25-29 years (reference) 
2= <25 years 
3 = 30-34 years 
4= ≥ 35 years 

eclregpartUP_cat eClipse Parity 0= no previous registerable 
births (reference) 
1= one previous registerable 
birth 
2= two or more previous 
registerable births 

mumeducation_new2  questionnaire Maternal education 1= School (reference) 
2= No formal education 
3= Further education 
4= Higher education  
5= Other, Don't know, and 
Foreign education (of 
unknown equivalency) 

smokingX0_new questionnaire Maternal active smoking 
during pregnancy 

1= never a smoker 
(reference) 
2= ever a smoker 
3= current smoker 

caffdrink_cat2 questionnaire A binary variable derived 
from the conversion of L/day 
to mg/day of caffeine 
consumption. It is split at a 
cut-point of 200mg/day 
which is the current 
recommended maximum for 
caffeine intake during 
pregnancy 

0 = 0-200 mg/day 
(reference) 
1 = >200 mg/day 

drvgesdiabUP eClipse Gestational diabetes  
(derived from the GTT and 
backfill notes) 

0= no 
1= yes 

eclbabysexUP eClipse Sex of child 0= male 
1= female 

eclgestwksUP eClipse Number of completed weeks 
of gestation 

range: 25-44 weeks 

BMIquest_quart questionnaire Maternal BMI (in quartiles) 
based on maternal weight at 
questionnaire completion 
(see Chapter 7) 

1= quartile 1 (reference) 
2= quartile 2 
3= quartile 3 
4= quartile 4 
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Name Source Description Coding 
workstatX0_new questionnaire Employment status; derived 

from 4 other variables: a) 
whether the mother ever 
worked (job0evrwrk), b) is 
currently employed 
(job0curemp), c) is a full time 
student (job0studen) or d) is 
currently is on maternity/sick 
leave (job0matscl) 

1 = employed 
2 = not employed/student 

imd_2010_quintile_nat (*) IMD quintiles of deprivation 
2010 

1= quintile 1 (most deprived) 
(reference) 
2= quintile 2 
3= quintile 3 
4= quintile 4 
5= quintile 5 (least deprived) 

alcohol2bis questionnaire Alcohol pregnancy during 
pregnancy and/or 3 months 
before 

1= no 
2= yes 

bkfdiabeteUP_2 eClipse Pre-existing diabetes 0=no 
1= yes (includes Type 1, 
Type 2 and unknown type) 

bkfhyperpiUP_new 2 eClipse Pregnancy-induced 
hypertension  

0= no 
1= yes (includes mild to 
moderate, severe and not 
classified) 

bkfhyperexUP eClipse Pre-existing hypertension 0= no 
1= yes 

bkfhyperlbUP eClipse Hypertension during labour 
only  

0= no 
1= yes 

bkfpreeclmUP eClipse Pre-eclampsia 0=no 
1= yes 

(*) derived by the Department for Communities and Local Government (Lad 2011) 
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Chapter 3 

Table A3 - 1: Proportion who reported consumption at Home 

n total = 11,928 valid 
n % 
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Cold tap water at Home (L/day)    Non zero, valid values 9,112 76.4 11,928 
zero values 44 0.4 

missing 2,772 23.2 
Filtered cold tap water at Home 909 10.0 909 10.0 9,071 99.6 Did not filter cold tap water at Home 8,162 89.6 8,162 89.6 

Doesn't know her filtering at Home 31 0.3 
Information on filtering at Home missing 10 0.1 

Hot tap water at Home (L/day)    Non zero, valid values 7,576 63.5 11,928 
zero values 118 1.0 

missing 4,234 35.5 

Total tap water at Home (L/day)    Non zero, valid values 9,679 81.1 11,928 
zero values 9 0.1 

missing 2,240 18.8 

Bottled water at Home (L/day)    Non zero, valid values 1,425 11.9 11,928 
zero values 420 3.5 

missing 10,083 84.5 
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Total water at Home (L/day)    Non zero, valid values 9,788 82.1 11,928 
zero values 1 0.0 

missing 2,139 17.9 
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Table A3 - 2: Proportion who reported consumption Outside the Home 
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Cold tap water at Outside the Home (L/day)          Non zero, valid values 1,749 14.7 11,928       zero values 79 0.7        missing 10,100 84.7        
Filtered cold tap water at Work 8 633 36.2  633 36.2   1,466 83.8 Did not filter cold tap water at Work 9 833 47.6    833 47.6 

Doesn't know her filtering at Work 10 43 2.5        Information on Filtering at Work missing 11 0 0.0        Inconsistent 12 53 3.0        Not Applicable 13 187 10.7                  
Hot tap water at Outside the Home (L/day)          Non zero, valid values 1,661 13.9 11,928       zero values 74 0.6        missing 10,193 85.5                  
Total tap water at Outside the Home (L/day)          Non zero, valid values 2,715 22.8 11,928       zero values 51 0.4        missing 9,162 85.5                  
Bottled water at Outside the Home (L/day)          Non zero, valid values 2,093 17.5 11,928       zero values 346 2.9        missing 9,489 79.6                  
Total water at Outside the Home (L/day)          
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Non zero, valid values 3,946 33.1 11,928 
zero values 23 0.2 

missing 7,959 66.7 

Legend for both Table A3 - 1 and Table A3 - 2 
1 Employed, and Filtered cold tap water at Home and Work (Home is Yes; Work is Yes) 
2 Employed, and Filtered cold tap water at Home only (Home is Yes; Work is No, Don't know, NA or missing); Out of employment, and Filtered cold tap 
water at Home (Home=1) 
3 Employed, and Filtered cold tap water at Work only (Home is No, Don't know or missing; Work is Yes) 
4 Employed, and Did not filter cold tap water at all (Home is No; Work is No); Employed, and Did not filter cold tap water at Home (Home is No; Work is 
Don't know, NA or missing); Employed, and Did not filter cold tap water at Work (Home is Don't know or missing; Work is No); Out of employment, and 
Did not filter cold tap water at Home (Home=2)  
5 Employed, and Doesn't know her filtering either at Home or Work (Home is Don't know, Work is Don't know); Employed, and Doesn't know her filtering at 
Home (Home is Don't know; Work is NA or missing); Employed, and Doesn't know her filtering at Work (Home is missing; Work is Don't know); Out of 
employment, and Doesn't know her filtering at Home (Home=3) 
6 Employed, and Information on filtering at Home missing (Home is missing; Work is NA or missing); Out of employment, and information on filtering at 
Home missing 
7 Employed, but didn't report drinking cold tap water at Home (=0); Employed, but didn't report drinking cold tap water at Home (=missing); Employed, but 
didn't report drinking cold tap water at Work (=0); Employed, but didn't report drinking cold tap water at Work (=missing); Out of employment, and didn't 
report drinking cold water at home (=0); Out of employment, and didn't report drinking cold water at home (=missing) 
And  
8 Employed, and Filtered tap water at Work 
9 Employed, and Did not filter cold tap water at Work 
10 Employed, and Doesn't know her filtering at Work; Employed, and Information on filtering at Work N/A 
11 Employed, and Information on filtering at Work missing 
12 Employed, but didn't report drinking cold tap water at Work (=0); Employed, but didn't report drinking cold tap water at Work (=missing) 
13 Not employed, full-time students or missing employment status 
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Chapter 4 

Table A4 - 1: Relationships between HAA levels and HAA determinants 

Relationship references 
[HAA] increases as pH decreases Krasner 1999; Singer 1999 

temperature increases* Krasner et al. 1989; Williams et al. 1997 ; 
Mallariou et al. 2005  

bromide decreases Diehl et al. 2000  
chlorine dose increases Carlson and Hardy 1998  
residence time decreases Chen and Weisel 1998  

*typically, but other factors to take into consideration too, such as changes in the raw water quality
and the nature of natural organic matter (NOM) 
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Table A4 - 2: HAA predictive models (adapted from a table in Bougeard’s PhD thesis (2009)) 

Reference Species Predictive model for HAA R2 Water 
source 

Comment 

Watson (1993) MCAA 1.634 (TOC)0.753 (Br- + 0.01)-0.085 (pH)-1.124 (Cl2)0.509 (t)0.300 0.82 

not real 
water 

water quality and 
chlorination conditions do 
not represent situation 
encountered in real water 
utilities 

DCAA 0.605 (TOC)0.291 (UV)0.726 (Br- + 0.01)-0.568 (Cl2)0.48 (t)0.239 (T)0.665 0.97 
TCAA 87.182 (TOC)0.355 (UV)0.901 (Br- + 0.01)0.679 (pH)1.732 (Cl2)0.881 (t)0.264 0.98 
MBAA 0.176 (TOC)1.664 (UV)-0.624 (Br-)0.795 (pH)-0.927 (t)0.145 (T)0.45 0.8 
DBAA 84.945 (TOC)-0.62 (UV)0.651 (Br-)1.073 (Cl2)-0.2 (t)0.12 (T)0.657 0.95 

Amy et al. 
(1998) 

HAA6 DOC-based model 
HAA6 = 9.98 (DOC)0.935 (Cl2)0.443 (Br-)-0.031 (T)0.387 (pH)-0.655 (t)0.178 

0.87 raw water specific to water quality 
and operating conditions 

Amy et al. 
(1998) 

HAA6 DOC-based model 
HAA6 = 5.22 (DOC)0.585 (Cl2)0.565 (Br-)-0.031 (t)0.153 

0.92 coagulated 
water (alum 
or iron) 

does not take pH and 
temperature into account 

Sohn et al. 
(2004) 

HAA6 UV-based model 
HAA6 = 171.4 (UV)0.584 (Cl2)0.398 (Br-)-0.091 (T)0.396 (pH)-0.645 (t)0.178 

0.80 raw water 

Sohn et al. 
(2004) 

HAA6 DOC*UV-based model 
HAA6 = 101.2 (DOC*UV)0.452 (Cl2)0.194 (Br-)-0.0698 (T)0.346 (pH)-0.623 
(t)0.180 

0.85 raw water 

Sohn et al. 
(2004) 

HAA6 UV-based models (developed from EPA 1998 database) 
HAA6 = 63.7 (UV)0.419 (Cl2)0.640 (Br-)-0.066 (t)0.161 

0.92 coagulated 
water (alum 
or iron) 

does not take pH and 
temperature into account 
(use of below equation 
necessary for correction) 

Sohn et al. 
(2004) 

HAA6 DOC*UV-based models (developed from EPA 1998 database) 
HAA6 = 30.7 (DOC*UV)0.302 (Cl2)0.541 (Br-)-0.012 (t)0.161 

0.94 coagulated 
water (alum 
or iron) 

does not take pH and 
temperature into account 
(use of below equation 
necessary for correction) 

Sohn et al. 
(2004) 

HAA6 pH and temperature correction 
HAA6 = (HAA6@pH= 7.5, T= 20°C)*(0.932)(pH-7.5) (1.021)(T-20) 

0.85 coagulated 
water (alum 
or iron) 

this equation modifies the 
coagulated water HAA 
models, so that they are 
applicable under different 
pH and temperature 

Sung et al. 
(2000) 

HAA5 4.8 * 104 [OH-]0.35 (C0(1-exp(-kt))0.43)(UV254)0.34 0.74 raw water [OH-] calculated from the 
raw water pH and 
temperature 
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Reference Species Predictive model for HAA R2 Water 
source 

Comment 

Gang et al. 
(2002) 

HAA9 Model based on chlorine demand 
HAA9 = βC0 [ 1-fe-kR*t - (1-f)e-kS*t ] 

0.98 from raw to 
treated 
water 

model can be applied 
accurately from raw to 
alum treated water, but 
may not perform well 
outside the typical 
conditions (pH=8±0.2, 
temperature=25°C, and 
chlorine residual=1.0±0.5 
mg/l) 

Villanueva et 
al. (2003) 

HAAs Linear regression in function of various THM species 0.57-
0.97 

NR models do not consider 
chlorine dose, temperature 
etc. 

Serodes et al. 
(2003) 

HAAs Single linear and non-linear regression models for water of single-utility 0.56-
0.92 

NR variation according to the 
DBP and utility at stake 

T= temperature (in °C) 
t = time in hours 
Cl2= chlorine dose (mg/l) 
β = ratio of the concentration of HAA9 formed (ug/l) to the concentration of chlorine consumed (mg/l) 
C0= initial chlorine concentration (mg/l) 
f= fraction of the chlorine demand attributed to rapid reactions 
kR, kS = first order rate constants for rapid and slow reactions, respectively 
NR: not reported 
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Table A4 - 3: DCAA and possible predictors (r, p-value, N) (bold with * means rho>0.5; red means p-value <0.005) 

sqrt(DCAA) temperature UV254 TOC colour bromide 
free 
chlorine 

total 
chlorine conductivity pH turbidity 

sqrt(DCAA) 1 

158 
temperature -0.35 1 

<0.001 
134 148 

UV254 -0.32 0.33 1 
<0.001 <0.001 
158 148 176 

TOC -0.18 0.30 0.89* 1 
0.023 <0.001 <0.001 
158 148 176 176 

colour -0.29 0.37 0.76* 0.74* 1 
0.001 <0.001 <0.001 <0.001 
139 127 154 154 154 

bromide -0.15 0.09 0.18 0.21 0.20 1 
0.060 0.282 0.017 0.006 0.014 
156 146 174 174 152 174 

free chlorine 0.39 -0.21 -0.20 -0.10 -0.22 -0.08 1 
<0.001 0.019 0.012 0.228 0.007 0.353 
140 128 156 156 151 154 156 

total chlorine 0.38 -0.23 -0.22 -0.11 -0.24 -0.09 0.97* 1 
<0.001 0.010 0.005 0.158 0.003 0.268 <0.001 
140 128 156 156 151 154 156 156 

conductivity -0.22 0.10 -0.29 -0.33 -0.23 0.08 -0.09 -0.07 1 
0.010 0.254 <0.001 <0.001 0.004 0.357 0.294 0.374 
139 127 154 154 154 152 151 151 154 

pH -0.26 0.17 -0.05 -0.10 0.04 0.08 -0.24 -0.27 0.23 1 
0.002 0.064 0.545 0.223 0.603 0.316 0.003 0.001 0.004 
139 127 154 154 154 152 151 151 154 154 

turbidity -0.07 -0.25 0.10 0.03 0.20 0.12 -0.06 -0.05 0.08 0.06 1 
0.441 0.005 0.233 0.757 0.014 0.154 0.428 0.521 0.308 0.425 
139 128 155 155 154 153 152 152 154 154 155 
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Table A4 - 4: TCAA and possible predictors (r, p-value, N) (bold with * means rho>0.5; red means p-value <0.005) 

 
sqrt(TCAA) temperature UV254 TOC colour bromide 

free 
chlorine 

total 
chlorine conductivity pH turbidity 

sqrt(TCAA) 1 
          

            
 

158 
          temperature 0.31 1 

         
 

<0.001 
          

 
134 148 

         UV254 0.34 0.33 1 
        

 
<0.001 <0.001 

         
 

158 148 176 
        TOC 0.33 0.30 0.89* 1 

       
 

<0.001 <0.001 <0.001 
        

 
158 148 176 176 

       colour 0.11 0.37 0.76* 0.74* 1 
      

 
0.184 <0.001 <0.001 <0.001 

       
 

139 127 154 154 154 
      bromide -0.26 0.09 0.18 0.21 0.20 1 

     
 

0.001 0.282 0.017 0.006 0.014 
      

 
156 146 174 174 152 174 

     free chlorine 0.05 -0.21 -0.20 -0.10 -0.22 -0.08 1 
    

 
0.562 0.019 0.012 0.228 0.007 0.353 

     
 

140 128 156 156 151 154 156 
    total chlorine 0.01 -0.23 -0.22 -0.11 -0.24 -0.09 0.97* 1 

   
 

0.867 0.010 0.005 0.158 0.003 0.268 <0.001 
    

 
140 128 156 156 151 154 156 156 

   conductivity -0.25 0.10 -0.29 -0.33 -0.23 0.08 -0.09 -0.07 1 
  

 
0.003 0.254 <0.001 <0.001 0.004 0.357 0.294 0.374 

   
 

139 127 154 154 154 152 151 151 154 
  pH -0.33 0.17 -0.05 -0.10 0.04 0.08 -0.24 -0.27 0.23 1 

 
 

<0.001 0.064 0.545 0.223 0.603 0.316 0.003 0.001 0.004 
  

 
139 127 154 154 154 152 151 151 154 154 

 turbidity -0.30 -0.25 0.10 0.03 0.20 0.12 -0.06 -0.05 0.08 0.06 1 

 
<0.001 0.005 0.233 0.757 0.014 0.154 0.428 0.521 0.308 0.425 

 
 

139 128 155 155 154 153 152 152 154 154 155 
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Table A4 - 5: BDCAA and possible predictors (r, p-value, N) (bold with * means rho>0.5; red means p-value <0.005) 

 
ln(BDCAA) temperature UV254 TOC colour bromide 

free 
chlorine 

total 
chlorine conductivity pH turbidity 

ln(BDCAA) 1 
          

            
 

143 
          temperature -0.01 1 

         
 

0.934 
          

 
121 148 

         UV254 -0.17 0.33 1 
        

 
0.045 <0.001 

         
 

143 148 176 
        TOC -0.16 0.30 0.89* 1 

       
 

0.062 <0.001 <0.001 
        

 
143 148 176 176 

       colour -0.28 0.37 0.76* 0.74* 1 
      

 
0.002 <0.001 <0.001 <0.001 

       
 

126 127 154 154 154 
      bromide -0.09 0.09 0.18 0.21 0.20 1 

     
 

0.313 0.282 0.017 0.006 0.014 
      

 
141 146 174 174 152 174 

     free chlorine 0.02 -0.21 -0.20 -0.10 -0.22 -0.08 1 
    

 
0.849 0.019 0.012 0.228 0.007 0.353 

     
 

127 128 156 156 151 154 156 
    total chlorine 0.01 -0.23 -0.22 -0.11 -0.24 -0.09 0.97* 1 

   
 

0.891 0.010 0.005 0.158 0.003 0.268 <0.001 
    

 
127 128 156 156 151 154 156 156 

   conductivity 0.07 0.10 -0.29 -0.33 -0.23 0.08 -0.09 -0.07 1 
  

 
0.457 0.254 <0.001 <0.001 0.004 0.357 0.294 0.374 

   
 

126 127 154 154 154 152 151 151 154 
  pH -0.04 0.17 -0.05 -0.10 0.04 0.08 -0.24 -0.27 0.23 1 

 
 

0.685 0.064 0.545 0.223 0.603 0.316 0.003 0.001 0.004 
  

 
126 127 154 154 154 152 151 151 154 154 

 turbidity 0.09 -0.25 0.10 0.03 0.20 0.12 -0.06 -0.05 0.08 0.06 1 

 
0.342 0.005 0.233 0.757 0.014 0.154 0.428 0.521 0.308 0.425 

 
 

126 128 155 155 154 153 152 152 154 154 155 
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Table A4 - 6: Days of work reported 
 

 Employed women Women with geocoded Bradford work addresses  
No of days of work/week No (%) No (%) 
1 16 (0.5) 14 (0.5) 
2 113 (3.6) 95 (3.6) 
3 413 (13.0) 333 (12.7) 
4 368 (11.6) 306 (11.6) 
5 2,157 (68.0) 1,787 (68.0) 
6 76 (2.4) 67 (2.6) 
7 27 (0.9) 25 (1.0) 
missing 1 (0.0) 1 (0.0) 
total 3,171 2,628 
 

 

Table A4 - 7: Days assigned as work days 
 
No of work days /week Assigned work days 
1 Mondays only 
2 Mondays & Tuesdays 
3 Mondays through Wednesdays 
4 Mondays through Thursdays 
5 Mondays through Fridays 
6 Mondays through Saturdays 
7 Every day 
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Table A4 - 8: Summary HAA determinants (including 2009q2) 
 

 
temperature UV254 TOC colour bromide free chlorine total chlorine conductivity pH turbidity 

units deg C abs/m mg/L-C mg/L mg/L mg/L mg/L uS/cm 
 

FTU 
mean 12.2 

 
1.7 

     
7.8 

 sd 3.9 
 

0.4 
     

0.4 
 p50 11.0 2.7 1.6 1.0 0.010 0.15 0.20 183 7.7 0.1 

iqr 6.2 1.4 0.6 0.9 0.002 0.25 0.25 40 0.4 0.1 
min 4.7 0.1 0.6 0.3 0.006 0.03 0.05 119 7.3 0.1 
max 20.1 5.7 2.8 3.7 0.156 1.00 1.00 615 9.2 0.6 

No. <LOD^ 0 1 0 89* 168* 20 0 0 0 95* 
Ntotal 156 184 184 162 182 164 164 162 162 163 

missing 28 0 0 22 2 20 20 22 22 21 
 
^ and replaced by 2/3LOD  
* these variables had different LOD's over time: colour: <0.5 to <1.5; bromide: <0.009 to <0.027; turbidity: <0.01 to <0.16 
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Table A4 - 9: Pairwise Pearson correlations (r, p-value, N)  
 

a) between individual HAAs and HAA9 (sum of nine known HAAs) and HAA5 (sum of MCAA, 
DCAA, TCAA, MBAA and DBAA) 
Of note, there are many missing values, such that HAA9 is an actual sum of 9 HAAs in only 33% of 
cases (ditto for HAA5). In particular, TBAA had 24 values<MRL, 32 values<LOD and no detectable 
values; and MBAA had 16<MRL, 25<LOD and 15 detectable values (see Table 4.1). However, 
DCAA and TCAA dominate the sums, and they are both present in 97% of HAA9 and HAA5 sums. 
 

 
HAA9 HAA5 MCAA MBAA DCAA DBAA BCAA TCAA TBAA BDCAA DBCAA 

HAA5 0.98* 1 
         

 
<0.001 

          
 

172 172 
         MCAA 0.01 0.06 1 

        

 
0.885 0.561 

         
 

98 98 98 
        MBAA 0.01 0.04 -0.19 1 

       
 

0.952 0.762 0.154 
        

 
56 56 56 56 

       DCAA 0.79* 0.81* 0.04 -0.20 1 
      

 
<0.001 <0.001 0.675 0.147 

       
 

166 166 92 56 166 
      DBAA -0.09 -0.11 -0.33 0.21 -0.03 1 

     
 

0.415 0.293 0.002 0.116 0.765 
      

 
89 89 84 56 89 89 

     BCAA 0.44 0.32 -0.18 -0.24 0.37 0.23 1 
    

 
<0.001 <0.001 0.114 0.079 <0.001 0.047 

     
 

140 140 79 56 140 78 140 
    TCAA 0.81* 0.82* 0.01 0.11 0.39 -0.17 0.17 1 

   
 

<0.001 <0.001 0.953 0.437 <0.001 0.106 0.047 
    

 
166 166 92 56 166 89 140 166 

   TBAA -0.46 -0.44 1.00* -0.19 -0.52* -0.49 -0.48 -0.30 1 
  

 
<0.001 0.001 <0.001 0.154 <0.001 <0.001 <0.001 0.025 

   
 

56 56 56 56 56 56 56 56 56 
  BDCAA 0.44 0.31 0.49 -0.25 0.17 -0.08 0.31 0.39 -0.31 1 

 
 

<0.001 <0.001 <0.001 0.067 0.040 0.460 <0.001 <0.001 0.021 
  

 
151 151 86 56 151 89 129 151 56 151 

 DBCAA 0.32 0.26 0.59* 0.40 0.36 -0.40 -0.07 0.32 0.67* 0.68* 1 

 
0.002 0.012 <0.001 0.002 <0.001 0.001 0.534 0.002 <0.001 <0.001 

 
 

95 95 66 56 95 67 94 95 56 95 95 
Bold with * means rho>0.5; red means p-value <0.005 
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b) between three transformed HAAs of interest (excluding 2009 q2) 
 

 
sqrt(DCAA) sqrt(TCAA) ln(BDCAA) 

sqrt(DCAA) 1 
  

    
 

158 
  sqrt(TCAA) 0.34 1 

 
 

<0.001 
  

 
158 158 

 ln(BDCAA) 0.08 0.17 1 

 
0.318 0.045 

 
 

143 143 143 
Bold with * means rho>0.5; red means p-value <0.005 
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Table A4 - 10: Parameters for DCAA, TCAA, and BDCAA models – Imputation models 
 

  DCAA model TCAA model BDCAA model 
parameters categories Mean (95% Cred. Int.) Mean (95% Cred. Int.) Mean (95% Cred. Int.) 
TEMPERATURE     
Intercept α1  10.24 (9.17, 11.41) 10.40 (9.34, 11.50)  
WSZ factor γ1 zone 1 REF REF   

 zone 2 -0.63 (-1.97, 0.63) -0.86 (-2.14, 0.38)   

 zone 3 -1.39 (-2.83, 0.00) -1.56 (-3.01, -0.12)   

 zone 4 -1.49 (-2.95, -0.13) -1.65 (-2.98, -0.32)   

 zone 5 -1.26 (-2.68, 0.19) -1.42 (-2.83, -0.01)   

 zone 6 -0.90 (-2.31, 0.45) -1.13 (-2.50, 0.19)   

 zone 7 -1.60 (-3.13, -0.04) -1.75 (-3.27, -0.32)   

 zone 8 -0.99 (-2.31, 0.28) -1.24 (-2.60, -0.02)   
quarter φ1 quarter 1 (jan-mar) REF REF   

 quarter 2 (apr-jun) 4.40 (3.54, 5.23) 4.51 (3.61, 5.39)   

 quarter 3 (jul-sep) 8.52 (7.62, 9.44) 8.52 (7.55, 9.48)   

 quarter 4 (oct-dec) 0.45 (-0.52, 1.35) 0.46 (-0.45, 1.33)   
CONDUCTIVITY     
Intercept α2  189.80 (184.20, 195.20) 192.60 (187.30, 197.70) 185.90 (179.90, 191.50) 
WSZ factor γ2 zone 1 REF REF REF 

 zone 2 0.70 (-7.91, 9.74) -2.15 (-10.49, 6.19) -1.16 (-10.43, 8.30) 

 zone 3 -3.94 (-12.53, 5.18) -3.41 (-11.79, 4.89) 1.22 (-7.76, 11.43) 

 zone 4 0.22 (-8.31, 8.54) -2.05 (-9.89, 6.50) 2.31 (-7.14, 11.60) 

 zone 5 27.87 (18.90, 36.98) 26.01 (17.92, 33.87) 31.61 (22.28, 40.59) 

 zone 6 5.06 (-3.24, 13.96) -4.85 (-13.26, 3.23) 3.66 (-5.33, 12.84) 

 zone 7 -32.61 (-41.26, -23.84) -33.26 (-41.34, -24.96) -29.24 (-38.12, -19.73) 

 zone 8 -6.31 (-14.77, 2.48) -6.00 (-14.24, 2.60) -1.09 (-10.40, 8.44) 
TOC      
Intercept α3    1.41 (1.26, 1.55)   
WSZ factor γ3 zone 1   REF   

 zone 2   0.05 (-0.12, 0.22)   

 zone 3   0.06 (-0.12, 0.25)   

 zone 4   0.02 (-0.16, 0.20)   

 zone 5   -0.15 (-0.34, 0.05)   

 zone 6   0.04 (-0.12, 0.22)   

 zone 7   -0.11 (-0.30, 0.09)   

 zone 8   0.02 (-0.15, 0.20)   
quarter φ2 quarter 1   REF   

 quarter 2   0.15 (0.04, 0.25)   

 quarter 3   0.63 (0.51, 0.76)   

 quarter 4   0.55 (0.43, 0.68)   
TOTAL CHLORINE     
Intercept α4      0.27 (0.24, 0.31) 
WSZ factor γ4 zone 1     REF 

 zone 2     0.13 (0.08, 0.18) 

 zone 3     0.08 (0.04, 0.13) 

 zone 4     -0.01 (-0.05, 0.03) 

 zone 5     0.04 (-0.01, 0.08) 

 zone 6     0.10 (0.06, 0.15) 

 zone 7     0.01 (-0.03, 0.06) 

 zone 8     0.09 (0.05, 0.14) 
quarter φ3 quarter 1     REF 

 quarter 2     -0.08 (-0.11, -0.05) 

 quarter 3     -0.15 (-0.18, -0.12) 

 quarter 4     -0.06 (-0.09, -0.03) 
zone 1=Airedale (ADL), zone 2=Bradford Central (BCE), zone 3=Bradford South East (BSE), zone 
4=Bradford South West (BSW), zone 5=Graincliffe (GCF), zone 6=Idle/Pudsey (IPY), zone 
7=Keighley (KLY), zone 8=Shipley/Bingley (SPY) 
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Table A4 - 11: Summary statistics of trimester-weighted HAA concentrations (in ug/L) for each 
woman according to Method 2 (including only women whose given trimester completely overlaps 
with the modelled period) 
 

In ug/L  Mean SD Min Max N % of N= 11,928 
Average [DCAA] trimester 1 8.72 2.94 1.95 16.04 9,024 75.7 

 
trimester 2 8.75 2.85 1.95 16.04 9,702 81.3 

 
trimester 3 8.92 2.87 1.78 16.73 9,970 83.6 

        Average [TCAA] trimester 1 11.85 3.39 3.10 20.67 9,024 75.7 

 
trimester 2 12.14 3.49 2.86 20.67 9,702 81.3 

 
trimester 3 12.34 3.39 3.32 20.94 9,970 83.6 

        Average [BDCAA] trimester 1 1.33 0.68 0.35 3.34 9,024 75.7 

 
trimester 2 1.32 0.67 0.34 3.34 9,702 81.3 

 
trimester 3 1.33 0.68 0.26 3.55 9,970 83.6 
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Table A4 - 12: Comparison of weighted HAA concentrations (in ug/L) for each woman, by Method 1 and Method 2. Red means p-value <0.005 

 

in ug/L 
  

Method 2 Method 1 Difference t p-value* 
    N Mean SD Mean SD Mean SD 

  Average [DCAA] trimester 1 9024 8.72 2.94 8.71 2.96 0.01 0.61 1.1351 0.256 
  trimester 2 9702 8.75 2.85 8.74 2.88 0.01 0.62 1.7342 0.083 
  trimester 3 9970 8.92 2.87 8.91 2.90 0.01 0.63 2.0664 0.039 
Average [TCAA] trimester 1 9024 11.85 3.39 11.94 3.42 -0.09 0.70 -12.802 <0.001 
  trimester 2 9702 12.14 3.49 12.24 3.53 -0.09 0.72 -12.685 <0.001 
  trimester 3 9970 12.34 3.39 12.43 3.44 -0.09 0.75 -12.381 <0.001 
Average [BDCAA] trimester 1 9024 1.33 0.68 1.33 0.68 0.00 0.03 -5.1941 <0.001 
  trimester 2 9702 1.32 0.67 1.32 0.67 0.00 0.03 -5.4834 <0.001 
  trimester 3 9970 1.33 0.68 1.33 0.68 0.00 0.04 -6.4648 <0.001 
*by paired t-test 
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Table A4 - 13: THM-HAA correlations reported in the literature (in decreasing order of correlation) 
(chronological order) 
 
Reference Location Correlated 

species 
Correlation  Correlation coefficient 

Nissinen et al. (2002) Finland HAA6-TTHM Pearson r=0.90 (r2=0.81) 
Wright et al. (2002) US HAA5-TTHM  r=0.35 

r2=0.12 
Villanueva et al. (2003) Spain HAA9-TTHM Pearson r=0.815 (r2=0.66) 
Serodes et al. (2003) Canada HAA9-TTHM  combined:  

r2 = 0.63 
King et al. (2004) Canada HAA3 

(DCAA+TCAA 
+BCAA) -TTHM 

Pearson r=0.74 in Nova Scotia 
and r=0.52 in Ontario 
r2=0.55 

Malliarou et al. (2005) UK  HAA6-TTHM  r=0.2–0.3 (r2=0.04-0.09) 
(by region:  
r= 0.85, 0.87, 0.10) 
r2=0.72, 0.76, 0.01) 

Ates et al. (2007) Turkey  Linear 
regression  

r =0.92 (r2=0.85) 

Bougeard (2009) (PhD 
thesis) 

UK    r2 = 0.81 

Y Zhang et al. (2010) UK HAA9-TTHM  r2=0.88  
(by regions: r=poor †) 

† data not provided 
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Figure A4 - 1: Bradford (blue), rest of Yorkshire (grey), BiB women’s workplaces (black dots) 
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Figure A4 - 3: Correlation matrix between three HAAs of interest 
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Figure A4 - 4: Frequency distributions of modelled trimester-specific HAA exposure for women in 
the BiB cohort; DCAA (row 1), TCAA (row 2) and BDCAA (row 3) for trimesters 1 (column 1), 2 
(column 2) and 3 (column 3) as derived by Method 2 
Ntrim1=9024, Ntrim2=9702, Ntrim3=9970 for all three HAAs 
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Chapter 5 
 

Table A5 - 1: Summary of combined metric for filterers and non-filterers based on combination of residence/work concentrations if available, residence only 
if not (in ug/day) 
 

    Percentile Distribution 
 n total = 11,928 mean sd min 25th %ile Median 75th %ile max n 

ExpDCAAf filterers 12.87 10.4 0.4 6.4 10.1 16.3 158.7 1012 
ExpDCAAu non-filterers 16.64 10.6 0.8 9.7 14.2 20.9 117.8 5211 
ExpTCAAf filterers 13.64 11.4 0.4 6.6 10.8 17.0 131.7 1012 
ExpTCAAu non-filterers 18.98 11.8 0.8 11.2 16.4 23.9 129.7 5211 
ExpBDCAAf filterers 1.20 1.2 0.0 0.4 0.9 1.5 17.5 1012 
ExpBDCAAf non-filterers 1.91 1.4 0.1 1.0 1.5 2.4 14.5 5211 
 

 

Table A5 - 2: Summary of combined metric (total) based on residence/work concentrations if available, residence only if not (in ug/day) 
 

n total = 11,928  mean sd min 25th %ile Median 75th %ile max n 
Exposure to DCAA ExpDCAA 16.03 10.6 0.4 9.1 13.6 20.3 158.7 6223 
Exposure to TCAA ExpTCAA 18.11 11.9 0.4 10.3 15.5 23.0 131.7 6223 
Exposure to BDCAA ExpBDCAA 1.80 1.4 0.0 0.9 1.4 2.3 17.5 6223 
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Chapter 7  
 

Table A7 - 1: Correlation between pregnancy complication variables (eClipse data) (Spearman’s rho (same as Cramer’s V28), p-value, N)  
(Nmax=11,928, the red colour signals a p-value <0.05) 

rho 
p-value 
N 

gestational diabetes pre-existing 
hypertension 

pregnancy-induced 
hypertension 

hypertension during 
labour only 

pre-eclampsia 

previous diabetes 0.0156 
0.0976 
11,312 

0.0904 
<0.001 
11,347 

0.0080 
0.3927 
11,345 

-0.0055 
0.5644 
11,018 

0.0169 
0.0722 
11,326 

gestational diabetes NA 0.0448 
<0.001 
11,302 

0.0093 
0.3205 
11,300 

0.0035 
0.7140 
10,974 

0.0024 
0.7964 
11,281 

pre-existing hypertension  NA 0.2026 
<0.001 
11,343 

0.0289 
0.0024 
11,018 

0.0630 
<0.001 
11,320 

pregnancy-induced 
hypertension 

  NA 0.2328 
<0.001 
11,024 

0.5389 
<0.001 
11,318 

hypertension during labour 
only 

   NA 0.1214 
<0.001 
10,992 

 

 

28 a measure of association between two nominal variables. In 2x2 tables, the range is -1 to 1 
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Table A7 - 2: Spearman (pairwise) correlations between 10 covariates in the birth weight models: 
Spearman’s rho, p-value and sample size.  
 

Nmax= 11875 
sex of 
child ethnicity parity 

maternal 
age BMI smoking 

maternal 
education 

caffeine 
intake 

gestational 
diabetes 

gestational age 0.01 -0.07 -0.10 -0.03 0.02 0.04 0.03 0.01 -0.25 

 
0.198 <0.001 <0.001 <0.001 0.018 <0.001 0.011 0.484 <0.001 

  11875 9806 11443 11875 9479 9826 9822 8936 11382 
sex of child NA 0.00 0.00 0.00 -0.02 -0.01 -0.02 0.01 0.00 

  
0.774 0.631 0.636 0.040 0.176 0.025 0.620 0.808 

    9806 11443 11875 9479 9826 9822 8936 11382 

ethnicity  
 

NA 0.10 -0.02 -0.07 -0.42 0.08 -0.28 0.09 

   
<0.001 0.116 <0.001 <0.001 <0.001 <0.001 <0.001 

      9428 9806 9442 9790 9787 8910 9424 

parity  
  

NA 0.19 0.18 -0.11 -0.15 0.02 0.08 

    
<0.001 <0.001 <0.001 <0.001 0.038 <0.001 

        11443 9105 9443 9441 8614 11003 

maternal age  
   

NA 0.11 -0.04 0.03 0.01 0.11 

     
<0.001 <0.001 0.013 0.296 <0.001 

          9479 9826 9822 8936 11382 

BMI (quartiles) 
    

NA 0.01 0.00 -0.01 0.12 

      
0.483 0.980 0.613 <0.001 

            9467 9456 8612 9113 

smoking 
     

NA -0.13 0.35 -0.08 

       
<0.001 <0.001 <0.001 

              9806 8933 9443 

maternal education 
      

NA -0.08 -0.01 

        
<0.001 0.469 

                8919 9439 

caffeine intake 
       

NA -0.05 
         <0.001 

         
8579 

Red means p-value <0.005 
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Table A7 - 3: Interaction terms (combined metric x GA) from linear models on continuous birth 
weight 
 Complete case 

analysis 
Analysis with multiple 

imputation 
Combined metric for: F Prob>F F Prob>F 

DCAA 2.02 0.1324 0.60 0.5533 
TCAA 1.13 0.3243 0.28 0.7551 

BDCAA 0.11 0.8991 0.12 0.8867 
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Table A7 - 4: Sensitivity Analysis: Crude and adjusted association between average modelled area-
level concentrations of DCAA, TCAA and BDCAA by trimester of pregnancy (based on residence 
and work water supply zones if available, residence water supply zone only if not) (in ug/L) and 
continuous birth weight (in grams) by linear regression 
 

Area-level concentrations  
(ug/L) n 

Crude mean  
change in BW (g)♯ 

Adjusted* mean 
change in BW (g)♯ 

Average [DCAA]  
   trimester 1 
   0-7.12 1925 0.0 0.0 

>7.12 - 9.36 2033 -33.0 (-66.4, 0.4) -1.7 (-27.3, 23.9) 
>9.36 1940 -58.6 (-92.4, -24.9) -12.2 (-38.1, 13.7) 

trimester 2 
   0-7.20 1956 0.0 0.0 

>7.20 - 9.43 2167 -36.2 (-69.0, -3.4) -30.3 (-55.4, -5.2) 
>9.43 2135 -34.0 (-66.9, -1.1) -16.0 (-41.3, 9.3) 

trimester 3 
   0-7.43 2054 0.0 0.0 

>7.43 - 9.54 2192 -29.2 (-61.6, 3.2) -13.5 (-38.2, 11.1) 
>9.54 2144 -53.4 (-86.0, -20.9) -30.6 (-55.5, -5.8) 

Average [TCAA] 
   trimester 1 
   0-10.38 1893 0.0 0.0 

>10.38 - 12.49 2063 -40.8 (-74.2, -7.4) -17.8 (-43.3, 7.7) 
>12.49 1942 -41.1 (-75.0, -7.2) -37.6 (-63.5, -11.8) 

trimester 2 
   0-10.49 1956 0.0 0.0 

>10.49 - 13.05 2211 -16.7 (-49.3, 16.0) -12.9 (-37.8, 12.0) 
>13.05 2091 -35.8 (-68.9, -2.7) -20.5 (-45.7, 4.8) 

trimester 3 
   0-10.62 1975 0.0 0.0 

>10.62 - 13.17 2210 -20.0 (-52.6, 12.7) -17.4 (-42.2, 7.4) 
>13.17 2205 -15.4 (-48.1, 17.3) -4.6 (-29.4, 20.3) 

Average [BDCAA] 
   trimester 1 
   0-0.90 2174 0.0 0.0 

>0.90 - 1.38 1965 8.5 (-24.2, 41.2) 3.2 (-21.8, 28.2) 
>1.38 1759 -20.4 (-54.1, 13.3) -12.8 (-38.5, 13.0) 

trimester 2 
   0-0.91 2334 0.0 0.0 

>0.91 - 1.38 1936 -29.5 (-61.9, 2.8) -35.8 (-60.5, -11.1) 
>1.38 1988 -19.1 (-51.2, 13.1) -20.0 (-44.6, 4.5) 

trimester 3 
   0-0.91 2293 0.0 0.0 

>0.91 - 1.39 1980 24.4 (-8.0, 56.8) -0.7 (-25.3, 23.9) 
>1.39 2117 -14.6 (-46.5, 17.2) -11.7 (-35.8, 12.4) 

♯mean change in birth weight (95% confidence interval) 
*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity, parity, 
maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status during 
pregnancy, maternal education, caffeine intake, and gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table A7 - 5: Sensitivity Analysis: Complete case analysis: Crude and adjusted association between 
combined metric for DCAA, TCAA and BDCAA (derived from area-level concentrations based on 
residence and work water supply zones if available, residence water supply zone only if not) (in 
ug/day) and continuous birth weight (in grams) by linear regression (N=5,040) 
 
Combined exposure (ug/day) 
(N=5,040) n 

Crude mean 
change in BW (g)♯ 

Adjusted* mean 
change in BW (g)♯ 

DCAA exposure 
   0 - 10.41 1563 0.0 0.0 

> 10.41 - 17.29 1680 22.8 (-14.4, 60.1) 6.0 (-22.5, 34.4) 
> 17.29 1797 23.0 (-13.7, 59.6) 11.0 (-17.9, 39.8) 

TCAA exposure 
   0 - 12.02 1589 0.0 0.0 

> 12.02 - 19.79 1719 6.9 (-30.0, 43.8) 0.6 (-27.5, 28.8) 
> 19.79 1732 12.9 (-23.9, 49.7) 0.0 (-28.5, 28.4) 

BDCAA exposure 
   0 - 1.04 1734 0.0 0.0 

> 1.04 - 1.93 1656 2.0 (-34.4, 38.4) -6.4 (-34.2, 21.3) 
> 1.93 1650 31.8 (-4.6, 68.3) 9.9 (-18.0, 37.8) 

♯mean change in birth weight (95% confidence interval) 
*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity, parity, 
maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status during 
pregnancy, maternal education, caffeine intake, and gestational diabetes 
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Table A7 - 6: Interaction terms (combined metric x GA) from logistic models on term LBW (i.e. born 
≥ 37 weeks gestation) 
 
 Complete case 

analysis 
Analysis after multiple 

imputation 
Combined metric for: chi2 Prob>chi2 F Prob>F 

DCAA 1.55 0.4608 0.48 0.6224 
TCAA 1.35 0.5092 0.09 0.9164 

BDCAA 0.59 0.7460 0.08 0.9258 
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Table A7 - 7: Sensitivity Analysis: Crude and adjusted association between average modelled area-
level concentrations of DCAA, TCAA and BDCAA by trimester of pregnancy (based on residence 
and work water supply zones if available, residence water supply zone only if not) (in ug/L) and risk 
of term LBW by logistic regression 
(OR: Odds Ratio) 
 
Area-level concentrations  
(ug/L) 

cases 
(n) 

non-cases 
(n) 

Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

Average [DCAA]  
    trimester 1 
    0-7.12 65 1759 1.00 1.00 

>7.12 - 9.36 77 1857 1.12 (0.80, 1.57) 0.92 (0.64, 1.31) 
>9.36 91 1753 1.40 (1.01, 1.94) 1.15 (0.81, 1.61) 

trimester 2 
    0-7.20 66 1781 1.00 1.00 

>7.20 - 9.43 98 1963 1.35 (0.98, 1.85) 1.30 (0.93, 1.81) 
>9.43 88 1948 1.22 (0.88, 1.69) 1.15 (0.82, 1.63) 

trimester 3 
    0-7.43 69 1875 1.00 1.00 

>7.43 - 9.54 88 2003 1.19 (0.87, 1.65) 1.12 (0.80, 1.57) 
>9.54 100 1930 1.41 (1.03, 1.93) 1.37 (0.98, 1.90) 

Average [TCAA] 
    trimester 1 
    0-10.38 67 1724 1.00 1.00 

>10.38 - 12.49 89 1874 1.22 (0.88, 1.69) 1.07 (0.76, 1.51) 
>12.49 77 1771 1.12 (0.80, 1.56) 1.11 (0.78, 1.58) 

trimester 2 
    0-10.49 73 1777 1.00 1.00 

>10.49 - 13.05 99 2002 1.20 (0.88, 1.64) 1.17 (0.84, 1.61) 
>13.05 80 1913 1.02 (0.74, 1.41) 0.95 (0.68, 1.33) 

trimester 3 
    0-10.62 77 1796 1.00 1.00 

>10.62 - 13.17 85 2002 0.99 (0.72, 1.36) 1.00 (0.72, 1.39) 
>13.17 95 2010 1.10 (0.81, 1.50) 1.04 (0.76, 1.44) 

Average [BDCAA] 
    trimester 1 
    0-0.90 87 1980 1.00 1.00 

>0.90 - 1.38 73 1797 0.92 (0.67, 1.27) 1.01 (0.72, 1.41) 
>1.38 73 1592 1.04 (0.76, 1.43) 1.12 (0.80, 1.56) 

trimester 2 
    0-0.91 95 2114 1.00 1.00 

>0.91 - 1.38 79 1758 1.00 (0.74, 1.36) 1.06 (0.77, 1.47) 
>1.38 78 1820 0.95 (0.70, 1.30) 0.98 (0.71, 1.35) 

trimester 3 
    0-0.91 91 2075 1.00 1.00 

>0.91 - 1.39 70 1825 0.87 (0.64, 1.20) 0.97 (0.70, 1.36) 
>1.39 96 1908 1.15 (0.86, 1.54) 1.16 (0.85, 1.58) 

*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity, parity, 
maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status during 
pregnancy, maternal education, caffeine intake, and gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table A7 - 8: Sensitivity Analysis: Crude and adjusted association between combined metric for 
DCAA, TCAA and BDCAA (derived from area-level concentrations based on residence and work 
water supply zones if available, residence water supply zone only if not) (in ug/day) and risk of term 
LBW by logistic regression; 4.1% prevalence of term LBW (Ncases=195, Nnon-cases=4,587, 
N=4,782)  
(OR: Odds Ratio) 
 

Combined exposure  
(ug/day) (N=4,782) 

cases 
(n) 

non-cases 
(n) 

Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

DCAA exposure 
    0 - 10.41 71 1,404 1.00 1.00 

> 10.41 - 17.29 61 1,540 0.78 (0.55, 1.11) 0.80 (0.55, 1.15) 
> 17.29 63 1,643 0.76 (0.54, 1.07) 0.68 (0.46, 0.99) 

TCAA exposure 
    0 - 12.02 74 1,430 1.00 1.00 

> 12.02 - 19.79 61 1,567 0.75 (0.53, 1.06) 0.72 (0.50, 1.04) 
> 19.79 60 1,590 0.73 (0.51, 1.03) 0.65 (0.45, 0.94) 

BDCAA exposure 
    0 - 1.04 81 1,560 1.00 1.00 

> 1.04 - 1.93 63 1,500 0.81 (0.58, 1.13) 0.82 (0.57, 1.16) 
> 1.93 51 1,527 0.64 (0.45, 0.92) 0.62 (0.42, 0.90) 

*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity, parity, 
maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status during 
pregnancy, maternal education, caffeine intake, and gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table A7 - 9: Complete case analysis: Crude and adjusted association between combined metric for 
DCAA, TCAA and BDCAA (in ug/day) and continuous birth weight (in grams) by linear regression 
including all covariate coefficients (N=5,040)  
DF: degrees of freedom 
Combined exposure ug/day 
(N=5,040) n 

Crude mean  
change in BW (g)♯ 

Adjusted* mean  
change in BW (g) F(DF, 5017) Prob>F 

DCAA exposure      
0 - 10.41 1563 0.0 0.0 0.19 0.8257 

> 10.41 - 17.29 1678 17.9 (-19.3, 55.2) -0.2 (-28.6, 28.2)   
> 17.29 1799 20.0 (-16.6, 56.7) 7.7 (-21.2, 36.5)   

constant  3200.2  
(3173.4, 3227.0) 

-3706.5  
(-3973.8, -3439.2) 

  

Gestational Age (in weeks) 5040 NA 176.8 (170.1, 183.5)   
Sex of child      

male 2578 NA 0.0 112.14 <0.0001 
female 2462 NA -122.8 (-145.6, -100.1)   

Ethnicity      
White British 1651 NA 0.0 116.80 <0.0001 

Pakistani 2719 NA -252.3 (-284.7, -220.0)   
Other 670 NA -160.6 (-200.6, -120.6)   

Parity      
0 previous births 1923 NA 0.0 49.84 <0.0001 
1 previous birth 1353 NA 117.5 (87.7, 147.3)   

2 or more previous births 1764 NA 158.8 (125.4, 192.1)   
Maternal age      

< 25 years old 1724 NA 49.4 (18.2, 80.6) 3.44 0.0161 
25-29 years old 1604 NA 0.0   
30-34 years old 1120 NA 28.7 (-3.4, 60.8)   

≥ 35 years old 592 NA 14.9 (-25.6, 55.3)   
BMI       

quartile 1 1333 NA 0.0 67.68 <0.0001 
quartile 2 1245 NA 71.2 (39.0, 103.3)   
quartile 3 1265 NA 154.3 (121.9, 186.6)   
quartile 4 1197 NA 230.5 (196.8, 264.1)   

Smoking      
never a smoker 3696 NA 0.0 36.37 <0.0001 

ever a smoker 669 NA 22.4 (-15.5, 60.3)   
current smoker 675 NA -158.0 (-198.9, -117.0)   

Maternal education      
No education 1326 NA -17.3 (-47.4, 12.7) 3.55 0.0067 

School 1638 NA 0.0   
Further education 614 NA 18.4 (-20.0, 56.9)   
Higher education 1145 NA 47.6 (14.6, 80.7)   

Other, Don't know, Unknown foreign 317 NA -1.3 (-51.4, 48.7)   
Caffeinated drinks      

0 mg/day 4279 NA 0.0 9.15 0.0025 
0-200 mg/day 761 NA -55.5 (-91.4, -19.5)   

Gestational diabetes      
no 4554 NA 0.0 11.03 0.0009 

yes 486 NA 68.7 (28.1, 109.2)   
TCAA exposure      

0 - 12.02 1590 0.0 0.0 0.05 0.9556 
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Combined exposure ug/day 
(N=5,040) n 

Crude mean  
change in BW (g)♯ 

Adjusted* mean  
change in BW (g) F(DF, 5017) Prob>F 

> 12.02 - 19.79 1719 10.0 (-26.8, 46.9) 3.3 (-24.8, 31.5)   
> 19.79 1731 12.9 (-23.9, 49.7) -0.7 (-29.1, 27.8)   

constant  3205.5  
(3178.9, 3232.1) 

-3703.3  
(-3970.6, -3436.0) 

  

Gestational Age (in weeks) 5040 NA 176.7 (170.0, 183.4)   
Sex of child      

male 2578 NA 0.0 112.03 <0.0001 
female 2462 NA -122.8 (-145.5, -100.0)   

Ethnicity      
White British 1651 NA 0.0 117.52 <0.0001 

Pakistani 2719 NA -252.9 (-285.3, -220.6)   
Other 670 NA -160.9 (-200.9, -120.9)   

Parity      
0 previous births 1923 NA 0.0 49.62 <0.0001 
1 previous birth 1353 NA 117.2 (87.3, 147.0)   

2 or more previous births 1764 NA 158.6 (125.2, 192.0)   
Maternal age      

< 25 years old 1724 NA 49.1 (17.9, 80.3) 3.40 0.0170 
25-29 years old 1604 NA 0.0   
30-34 years old 1120 NA 28.6 (-3.5, 60.7)   

≥ 35 years old 592 NA 14.8 (-25.6, 55.2)   
BMI       

quartile 1 1333 NA 0.0 68.00 <0.0001 
quartile 2 1245 NA 71.5 (39.4, 103.6)   
quartile 3 1265 NA 154.6 (122.3, 187.0)   
quartile 4 1197 NA 231.1 (197.5, 264.8)   

Smoking      
never a smoker 3696 NA 0.0 36.25 <0.0001 

ever a smoker 669 NA 22.4 (-15.5, 60.4)   
current smoker 675 NA -157.7 (-198.7, -116.7)   

Maternal education      
No education 1326 NA -17.2 (-47.3, 12.8) 3.54 0.0068 

School 1638 NA 0.0   
Further education 614 NA 18.4 (-20.1, 56.8)   
Higher education 1145 NA 47.7 (14.6, 80.7)   

Other, Don't know, Unknown foreign 317 NA -1.6 (-51.7, 48.4)   
Caffeinated drinks      

0 mg/day 4279 NA 0.0 8.61 0.0034 
0-200 mg/day 761 NA -52.9 (-88.2, -17.6)   

Gestational diabetes      
no 4554 NA 0.0 11.07 0.0009 

yes 486 NA 68.8 (28.3, 109.4)   
BDCAA exposure      

0 - 1.04 1737 0.0 0.0 0.67 0.5122 
> 1.04 - 1.93 1652 4.0 (-32.4, 40.4) -4.8 (-32.5, 23.0)   

> 1.93 1651 33.8 (-2.6, 70.2) 11.4 (-16.5, 39.2)   
constant  3201.0  

(3175.6, 3226.4) 
-3703.1  

(-3970.2, -3435.9) 
  

Gestational Age (in weeks) 5040 NA 176.7 (170.0, 183.4)   
Sex of child      

male 2578 NA 0.0 112.39 <0.0001 
female 2462 NA -123.0 (-145.7, -100.2)   
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Combined exposure ug/day 
(N=5,040) n 

Crude mean  
change in BW (g)♯ 

Adjusted* mean  
change in BW (g) F(DF, 5017) Prob>F 

Ethnicity      
White British 1651 NA 0.0 117.10 <0.0001 

Pakistani 2719 NA -252.4 (-284.7, -220.0)   
Other 670 NA -160.4 (-200.4, -120.5)   

Parity      
0 previous births 1923 NA 0.0 49.80 <0.0001 
1 previous birth 1353 NA 117.4 (87.6, 147.2)   

2 or more previous births 1764 NA 158.7 (125.4, 192.0)   
Maternal age      

< 25 years old 1724 NA 49.4 (18.2, 80.6) 3.44 0.0161 
25-29 years old 1604 NA 0.0   
30-34 years old 1120 NA 28.9 (-3.2, 61.0)   

≥ 35 years old 592 NA 15.3 (-25.2, 55.7)   
BMI       

quartile 1 1333 NA 0.0 67.86 <0.0001 
quartile 2 1245 NA 71.0 (38.9, 103.1)   
quartile 3 1265 NA 154.2 (121.8, 186.6)   
quartile 4 1197 NA 230.7 (197.1, 264.3)   

Smoking      
never a smoker 3696 NA 0.0 36.16 <0.0001 

ever a smoker 669 NA 22.7 (-15.3, 60.6)   
current smoker 675 NA -157.3 (-198.3, -116.4)   

Maternal education      
No education 1326 NA -17.2 (-47.3, 12.8) 3.57 0.0065 

School 1638 NA 0.0   
Further education 614 NA 18.6 (-19.9, 57.0)   
Higher education 1145 NA 47.8 (14.7, 80.9)   

Other, Don't know, Unknown foreign 317 NA -1.8 (-51.8, 48.2)   
Caffeinated drinks      

0 mg/day 4279 NA 0.0 9.15 0.0025 
0-200 mg/day 761 NA -54.3 (-89.4, -19.1)   

Gestational diabetes      
no 4554 NA 0.0 11.18 0.0008 

yes 486 NA 69.2 (28.6, 109.7)   
♯mean change in birth weight (95% confidence intervals) 

*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity, parity, 
maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status during 
pregnancy, maternal education, caffeine intake, and gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table A7 - 10: Comparing the exposure coefficients in the original combined DCAA, TCAA and BDCAA (ug/day) models on continuous birth weight to the 
same coefficients stratified to White British women only, and to Pakistani women only (The red colour signals a comparison with the reference group that is 
below a critical p-value of 0.05.) 
 

 White British Pakistani Total (un-stratified, see Table 7.2) 

 (n=5040) 
(total n) 

n 
 Crude mean 

change in BW (g) 
Adjusted* mean 

change in BW (g) 
(total 
n) n 

 Crude mean 
change in BW (g) 

Adjusted* mean 
change in BW (g) 

(total 
n) n 

 Crude mean 
change in BW (g) 

Adjusted* mean 
change in BW (g) 

DCAA exposure (1651)   (2719)   (5040)   
0 - 10.41 461 0.0 0.0 884 0.0 0.0 1563 0.0 0.0 

> 10.41 - 17.29 456 -19.8 (-92.9, 53.2) -30.0 (-83.7, 23.6) 1001 41.3 (-5.8, 88.3) 17.8 (-19.6, 55.2) 1678 17.9 (-19.3, 55.2) -0.2 (-28.6, 28.2) 

> 17.29 734 -79.2 (-145.0, -13.5) -23.9 (-74.6, 26.8) 834 28.8 (-20.4, 78.0) 24.6 (-15.0, 64.2) 1799 20.0 (-16.6, 56.7) 7.7 (-21.2, 36.5) 

TCAA exposure (1651)   (2719)   (5040)   
0 - 12.02 463 0.0 0.0 900 0.0 0.0 1590 0.0 0.0 

> 12.02 - 19.79 511 -55.4 (-126.4, 15.6) -45.2 (-97.5, 7.1) 986 40.4 (-6.5, 87.4) 39.7 (2.2, 77.1) 1719 10.0 (-26.8, 46.9) 3.3 (-24.8, 31.5) 

> 19.79 677 -72.4 (-139.1, -5.7) -15.9 (-65.8, 34.0) 833 21.3 (-27.7, 70.2) 13.1 (-26.2, 52.4) 1731 12.9 (-23.9, 49.7) -0.7 (-29.1, 27.8) 

BDCAA exposure (1651)   (2719)   (5040)   
0 - 1.04 542 0.0 0.0 976 0.0 0.0 1737 0.0 0.0 

> 1.04 - 1.93 523 -18.8 (-86.7, 49.2) 0.7 (-49.1, 50.4) 894 -1.9 (-49.1, 45.2) -6.0 (-43.6, 31.5) 1652 4.0 (-32.4, 40.4) -4.8 (-32.5, 23.0) 

> 1.93 586 -6.0 (-72.0, 60.0) 9.8 (-38.7, 58.4) 849 39.3 (-8.5, 87.1) 23.2 (-15.0, 61.3) 1651 33.8 (-2.6, 70.2) 11.4 (-16.5, 39.2) 

 
*adjusted for 9 variables: gestational age at birth (in completed weeks), sex of child, parity, maternal age at delivery, mother's BMI at questionnaire 
completion (quartiles), smoking status during pregnancy, maternal education, caffeine intake, and gestational diabetes 
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Table A7 - 11: Complete case analysis: Crude and adjusted association between combined metric for 
DCAA, TCAA and BDCAA (in ug/day) and risk of term LBW by logistic regression including all 
covariate coefficients; 4.1% prevalence of term LBW (Ncases=195, Nnon-cases=4,587, N=4,782)  
OR: Odds Ratio; DF: degrees of freedom 
 
Combined exposure ug/day  
(N=4,782) 

cases 
(n) 

non-cases 
(n) 

Crude OR  
(95% CI) 

Adjusted* OR  
(95% CI) chi2 (DF) Prob > chi2 

DCAA exposure       
0 - 10.41 71 1,404 1.00 1.00 4.18 0.1235 

> 10.41 - 17.29 61 1,539 0.78 (0.55, 1.11) 0.80 (0.55, 1.15)   
> 17.29 63 1,644 0.76 (0.54, 1.07) 0.68 (0.46, 0.99)   

Gestational Age (in weeks)   NA 0.38 (0.32, 0.44)   
Sex of child       

male 87 2,345 NA 1.00 4.98 0.0257 
female 108 2,242 NA 1.41 (1.04, 1.92)   

Ethnicity       
White British 32 1,521 NA 1.00 39.77 <0.0001 

Pakistani 146 2,451 NA 4.84 (2.89, 8.10)   
Other 17 615 NA 1.86 (0.97, 3.58)   

Parity       
0 previous births 77 1,727 NA 1.00 10.01 0.0067 
1 previous birth 44 1,239 NA 0.60 (0.39, 0.90)   

2 or more previous births 74 1,621 NA 0.53 (0.34, 0.81)   
Maternal age       

< 25 years old 57 1,577 NA 0.65 (0.43, 0.97) 7.00 0.0720 
25-29 years old 71 1,449 NA 1.00   
30-34 years old 38 1,034 NA 0.84 (0.54, 1.29)   

≥ 35 years old 29 527 NA 1.28 (0.78, 2.11)   
BMI        

quartile 1 66 1,182 NA 1.00 8.04 0.0452 
quartile 2 48 1,138 NA 0.77 (0.51, 1.15)   
quartile 3 37 1,179 NA 0.53 (0.34, 0.83)   
quartile 4 44 1,088 NA 0.69 (0.45, 1.07)   

Smoking       
never a smoker 151 3,375 NA 1.00 5.00 0.0823 

ever a smoker 19 616 NA 1.60 (0.91, 2.82)   
current smoker 25 596 NA 1.72 (0.99, 2.98)   

Maternal education       
No education 55 1,199 NA 0.81 (0.56, 1.18) 4.76 0.3124 

School 77 1,491 NA 1.00   
Further education 19 561 NA 0.74 (0.43, 1.26)   
Higher education 37 1,051 NA 0.66 (0.43, 1.02)   

Other, Don't know, Unknown foreign 7 285 NA 0.58 (0.25, 1.32)   
Caffeinated drinks       

0 mg/day 161 3,915 NA 1.00 11.08 0.0009 
0-200 mg/day 34 672 NA 2.21 (1.39, 3.54)   

Gestational diabetes       
no 164 4,159 NA 1.00 1.61 0.2048 

yes 31 428 NA 0.75 (0.49, 1.17)   
TCAA exposure       

0 - 12.02 74 1,431 1.00 1.00 5.50 0.0638 
> 12.02 - 19.79 60 1,570 0.74 (0.52, 1.05) 0.71 (0.49, 1.02)   
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Combined exposure ug/day  
(N=4,782) 

cases 
(n) 

non-cases 
(n) 

Crude OR  
(95% CI) 

Adjusted* OR  
(95% CI) chi2 (DF) Prob > chi2 

> 19.79 61 1,586 0.74 (0.53, 1.05) 0.67 (0.46, 0.97)   
Gestational Age (in weeks)   NA 0.38 (0.32, 0.44)   
Sex of child       

male 87 2,345 NA 1.00 5.11 0.0239 
female 108 2,242 NA 1.42 (1.05, 1.93)   

Ethnicity       
White British 32 1,521 NA 1.00 40.77 <0.0001 

Pakistani 146 2,451 NA 4.90 (2.93, 8.19)   
Other 17 615 NA 1.85 (0.97, 3.56)   

Parity       
0 previous births 77 1,727 NA 1.00 9.91 0.0070 
1 previous birth 44 1,239 NA 0.60 (0.40, 0.91)   

2 or more previous births 74 1,621 NA 0.52 (0.34, 0.81)   
Maternal age       

< 25 years old 57 1,577 NA 0.65 (0.43, 0.98) 7.06 0.0700 
25-29 years old 71 1,449 NA 1.00   
30-34 years old 38 1,034 NA 0.85 (0.55, 1.30)   

≥ 35 years old 29 527 NA 1.30 (0.79, 2.15)   
BMI        

quartile 1 66 1,182 NA 1.00 8.04 0.0452 
quartile 2 48 1,138 NA 0.78 (0.52, 1.16)   
quartile 3 37 1,179 NA 0.53 (0.34, 0.83)   
quartile 4 44 1,088 NA 0.70 (0.45, 1.08)   

Smoking       
never a smoker 151 3,375 NA 1.00 5.23 0.0732 

ever a smoker 19 616 NA 1.61 (0.92, 2.83)   
current smoker 25 596 NA 1.75 (1.01, 3.02)   

Maternal education       
No education 55 1,199 NA 0.80 (0.55, 1.17) 4.66 0.3242 

School 77 1,491 NA 1.00   
Further education 19 561 NA 0.74 (0.44, 1.27)   
Higher education 37 1,051 NA 0.67 (0.43, 1.04)   

Other, Don't know, Unknown foreign 7 285 NA 0.57 (0.25, 1.31)   
Caffeinated drinks       

0 mg/day 161 3,915 NA 1.00 10.38 0.0013 
0-200 mg/day 34 672 NA 2.13 (1.34, 3.37)   

Gestational diabetes       
no 164 4,159 NA 1.00 1.47 0.2247 

yes 31 428 NA 0.76 (0.49, 1.18)   
BDCAA exposure       

0 - 1.04 81 1,562 1.00 1.00 6.24 0.0441 
> 1.04 - 1.93 63 1,497 0.81 (0.58, 1.14) 0.82 (0.58, 1.17)   

> 1.93 51 1,528 0.64 (0.45, 0.92) 0.62 (0.42, 0.90)   
Gestational Age (in weeks)   NA 0.38 (0.33, 0.44)   
Sex of child       

male 87 2,345 NA 1.00 4.98 0.0257 
female 108 2,242 NA 1.41 (1.04, 1.92)   

Ethnicity       
White British 32 1,521 NA 1.00 39.76 <0.0001 

Pakistani 146 2,451 NA 4.84 (2.89, 8.11)   
Other 17 615 NA 1.89 (0.98, 3.63)   

Parity       
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Combined exposure ug/day  
(N=4,782) 

cases 
(n) 

non-cases 
(n) 

Crude OR  
(95% CI) 

Adjusted* OR  
(95% CI) chi2 (DF) Prob > chi2 

0 previous births 77 1,727 NA 1.00 9.95 0.0069 
1 previous birth 44 1,239 NA 0.60 (0.40, 0.90)   

2 or more previous births 74 1,621 NA 0.53 (0.34, 0.81)   
Maternal age       

< 25 years old 57 1,577 NA 0.64 (0.43, 0.97) 6.84 0.0772 
25-29 years old 71 1,449 NA 1.00   
30-34 years old 38 1,034 NA 0.83 (0.54, 1.28)   

≥ 35 years old 29 527 NA 1.26 (0.77, 2.08)   
BMI        

quartile 1 66 1,182 NA 1.00 8.05 0.0450 
quartile 2 48 1,138 NA 0.77 (0.52, 1.16)   
quartile 3 37 1,179 NA 0.53 (0.34, 0.83)   
quartile 4 44 1,088 NA 0.69 (0.45, 1.08)   

Smoking       
never a smoker 151 3,375 NA 1.00 4.80 0.0909 

ever a smoker 19 616 NA 1.59 (0.90, 2.79)   
current smoker 25 596 NA 1.70 (0.98, 2.95)   

Maternal education       
No education 55 1,199 NA 0.82 (0.56, 1.19) 4.80 0.3081 

School 77 1,491 NA 1.00   
Further education 19 561 NA 0.73 (0.43, 1.25)   
Higher education 37 1,051 NA 0.66 (0.43, 1.03)   

Other, Don't know, Unknown foreign 7 285 NA 0.57 (0.25, 1.30)   
Caffeinated drinks       

0 mg/day 161 3,915 NA 1.00 10.09 0.0015 
0-200 mg/day 34 672 NA 2.10 (1.33, 3.33)   

Gestational diabetes       
no 164 4,159 NA 1.00 1.62 0.2030 

yes 31 428 NA 0.75 (0.48, 1.17)   
*adjusted for 10 variables: gestational age at birth (in completed weeks), sex of child, ethnicity, parity, 
maternal age at delivery, mother's BMI at questionnaire completion (quartiles), smoking status during 
pregnancy, maternal education, caffeine intake, and gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table A7 - 12: Sensitivity Analysis: Crude and adjusted association between average modelled area-
level concentrations of DCAA, TCAA and BDCAA by trimester of pregnancy (based on residence 
and work water supply zones if available, residence water supply zone only if not) (in ug/L) and risk 
of being SGA by logistic regression (OR: Odds Ratio) 
 

Area-level concentrations  
(ug/L) 

cases 
(n) 

non-cases 
(n) 

Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

Average [DCAA]  
    trimester 1 
    0-7.12 228 1,696 1.00 1.00 

>7.12 - 9.36 247 1,786 1.03 (0.85, 1.25) 0.94 (0.77, 1.14) 
>9.36 267 1,671 1.19 (0.98, 1.44) 1.05 (0.87, 1.28) 

trimester 2 
    0-7.20 221 1,734 1.00 1.00 

>7.20 - 9.43 292 1,874 1.22 (1.01, 1.47) 1.18 (0.98, 1.43) 
>9.43 284 1,849 1.21 (1.00, 1.45) 1.10 (0.90, 1.33) 

trimester 3 
    0-7.43 233 1,821 1 1.00 

>7.43 - 9.54 286 1,905 1.17 (0.98, 1.41) 1.10 (0.91, 1.33) 
>9.54 288 1,853 1.21 (1.01, 1.46) 1.11 (0.92, 1.34) 

Average [TCAA] 
    trimester 1 
    0-10.38 211 1,681 1 1.00 

>10.38 - 12.49 261 1,800 1.16 (0.95, 1.40) 1.10 (0.90, 1.34) 
>12.49 270 1,672 1.29 (1.06, 1.56) 1.26 (1.03, 1.53) 

trimester 2 
    0-10.49 233 1,721 1 1.00 

>10.49 - 13.05 288 1,922 1.11 (0.92, 1.33) 1.11 (0.92, 1.34) 
>13.05 276 1,814 1.12 (0.93, 1.35) 1.08 (0.90, 1.31) 

trimester 3 
    0-10.62 240 1,734 1 1.00 

>10.62 - 13.17 296 1,913 1.12 (0.93, 1.34) 1.11 (0.92, 1.33) 
>13.17 271 1,932 1.01 (0.84, 1.22) 1.00 (0.83, 1.21) 

Average [BDCAA] 
    trimester 1 
    0-0.90 257 1,916 1 1.00 

>0.90 - 1.38 246 1,717 1.07 (0.89, 1.29) 1.04 (0.86, 1.26) 
>1.38 239 1,520 1.17 (0.97, 1.42) 1.14 (0.94, 1.38) 

trimester 2 
    0-0.91 271 2,061 1 1.00 

>0.91 - 1.38 258 1,676 1.17 (0.98, 1.40) 1.22 (1.01, 1.47) 
>1.38 268 1,720 1.18 (0.99, 1.42) 1.15 (0.95, 1.38) 

trimester 3 
    0-0.91 281 2,010 1 1.00 

>0.91 - 1.39 242 1,737 1.00 (0.83, 1.20) 0.98 (0.81, 1.18) 
>1.39 284 1,832 1.11 (0.93, 1.32) 1.08 (0.90, 1.29) 

*adjusted for 8 variables: ethnicity, parity, maternal age at delivery, mother's BMI at questionnaire 
completion (quartiles), smoking status during pregnancy, maternal education, caffeine intake, and 
gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table A7 - 13: Sensitivity Analysis: Crude and adjusted association between combined metric for 
DCAA, TCAA and BDCAA (in ug/day) (derived from area-level concentrations based on residence 
and work water supply zones if available, residence water supply zone only if not) and risk of being 
SGA by logistic regression; 12.9% prevalence of term LBW (Ncases=649, Nnon-cases=4,388, 
N=5,037) (OR: Odds Ratio)  
 

Combined exposure  
(ug/day) (N=5,037) 

cases 
(n) 

non-cases 
(n) 

Crude OR 
(95% CI) 

Adjusted* OR 
(95% CI) 

DCAA exposure 
    0 - 10.41 213 1,349 1.00 1.00 

> 10.41 - 17.29 225 1,455 0.98 (0.80, 1.20) 0.97 (0.79, 1.19) 
> 17.29 211 1,584 0.84 (0.69, 1.03) 0.86 (0.70, 1.07) 

TCAA exposure 
    0 - 12.02 218 1,370 1.00 1.00 

> 12.02 - 19.79 215 1,504 0.90 (0.73, 1.10) 0.90 (0.73, 1.11) 
> 19.79 216 1,514 0.90 (0.73, 1.10) 0.94 (0.76, 1.15) 

BDCAA exposure 
    0 - 1.04 225 1,509 1.00 1.00 

> 1.04 - 1.93 224 1,431 1.05 (0.86, 1.28) 1.08 (0.88, 1.32) 
> 1.93 200 1,448 0.93 (0.76, 1.14) 0.96 (0.78, 1.18) 

*adjusted for 8 variables: ethnicity, parity, maternal age at delivery, mother's BMI at questionnaire 
completion (quartiles), smoking status during pregnancy, maternal education, caffeine intake, and 
gestational diabetes 
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Table A7 - 14: Complete case analysis: Crude and adjusted association between combined metric for 
DCAA, TCAA and BDCAA (in ug/day) and risk of being SGA by logistic regression including all 
covariate coefficients; 12.9% prevalence of term LBW (Ncases=649, Nnon-cases=4,388, N=5,037) 
OR: Odds Ratio; DF: degrees of freedom 
 
Combined exposure ug/day  
(N=5,037) 

cases 
(n) 

non-cases 
(n) 

Crude OR  
(95% CI) 

Adjusted* OR  
(95% CI) chi2 (DF) Prob > chi2 

DCAA exposure       
0 - 10.41 213 1,349 1.00 1.00 1.84 0.3988 

> 10.41 - 17.29 224 1,454 0.98 (0.80, 1.19) 0.96 (0.78, 1.18)   
> 17.29 212 1,585 0.85 (0.69, 1.04) 0.87 (0.70, 1.07)   

Ethnicity       
White British 130 1,519 NA 1.00 88.41 <0.0001 

Pakistani 438 2,281 NA 3.76 (2.85, 4.96)   
Other 81 588 NA 2.31 (1.67, 3.21)   

Parity       
0 previous births 305 1,616 NA 1.00 33.96 <0.0001 
1 previous birth 143 1,210 NA 0.57 (0.46, 0.72)   

2 or more previous births 201 1,562 NA 0.53 (0.41, 0.68)   
Maternal age       

< 25 years old 245 1,479 NA 0.82 (0.65, 1.03) 3.83 0.2799 
25-29 years old 220 1,383 NA 1.00   
30-34 years old 118 1,000 NA 0.90 (0.70, 1.15)   

≥ 35 years old 66 526 NA 1.05 (0.77, 1.44)   
BMI        

quartile 1 232 1,100 NA 1.00 25.70 <0.0001 
quartile 2 175 1,070 NA 0.83 (0.67, 1.04)   
quartile 3 131 1,132 NA 0.59 (0.47, 0.75)   
quartile 4 111 1,086 NA 0.60 (0.46, 0.77)   

Smoking       
never a smoker 492 3,203 NA 1.00 24.01 <0.0001 

ever a smoker 54 613 NA 0.99 (0.71, 1.37)   
current smoker 103 572 NA 2.03 (1.50, 2.75)   

Maternal education       
No education 189 1,136 NA 1.05 (0.85, 1.30) 6.05 0.1957 

School 224 1,414 NA 1.00   
Further education 65 549 NA 0.81 (0.60, 1.09)   
Higher education 142 1,001 NA 0.82 (0.64, 1.04)   

Other, Don't know, Unknown foreign 29 288 NA 0.80 (0.53, 1.22)   
Caffeinated drinks       

0 mg/day 549 3,727 NA 1.00 7.67 0.0056 
0-200 mg/day 100 661 NA 1.47 (1.12, 1.93)   

Gestational diabetes       
no 602 3,949 NA 1.00 4.75 0.0293 

yes 47 439 NA 0.70 (0.50, 0.96)   
TCAA exposure       

0 - 12.02 218 1,371 1.00 1.00 1.16 0.5602 
> 12.02 - 19.79 213 1,506 0.89 (0.73, 1.09) 0.89 (0.73, 1.10)   

> 19.79 218 1,511 0.91 (0.74, 1.11) 0.95 (0.77, 1.17)   
Ethnicity       

White British 130 1,519 NA 1.00 89.34 <0.0001 
Pakistani 438 2,281 NA 3.78 (2.86, 4.99)   

Other 81 588 NA 2.31 (1.67, 3.21)   
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Combined exposure ug/day  
(N=5,037) 

cases 
(n) 

non-cases 
(n) 

Crude OR  
(95% CI) 

Adjusted* OR  
(95% CI) chi2 (DF) Prob > chi2 

Parity       
0 previous births 305 1,616 NA 1.00 33.74 <0.0001 
1 previous birth 143 1,210 NA 0.58 (0.46, 0.72)   

2 or more previous births 201 1,562 NA 0.53 (0.41, 0.68)   
Maternal age       

< 25 years old 245 1,479 NA 0.82 (0.66, 1.03) 3.79 0.2853 
25-29 years old 220 1,383 NA 1.00   
30-34 years old 118 1,000 NA 0.90 (0.70, 1.15)   

≥ 35 years old 66 526 NA 1.06 (0.77, 1.44)   
BMI        

quartile 1 232 1,100 NA 1.00 26.10 <0.0001 
quartile 2 175 1,070 NA 0.83 (0.67, 1.03)   
quartile 3 131 1,132 NA 0.59 (0.46, 0.75)   
quartile 4 111 1,086 NA 0.59 (0.46, 0.77)   

Smoking       
never a smoker 492 3,203 NA 1.00 23.79 <0.0001 

ever a smoker 54 613 NA 0.99 (0.71, 1.37)   
current smoker 103 572 NA 2.03 (1.50, 2.74)   

Maternal education       
No education 189 1,136 NA 1.05 (0.84, 1.30) 5.94 0.2040 

School 224 1,414 NA 1.00   
Further education 65 549 NA 0.81 (0.60, 1.10)   
Higher education 142 1,001 NA 0.82 (0.64, 1.04)   

Other, Don't know, Unknown foreign 29 288 NA 0.80 (0.53, 1.22)   
Caffeinated drinks       

0 mg/day 549 3,727 NA 1.00 6.56 0.0104 
0-200 mg/day 100 661 NA 1.42 (1.09, 1.85)   

Gestational diabetes       
no 602 3,949 NA 1.00 4.71 0.0299 

yes 47 439 NA 0.70 (0.50, 0.97)   
BDCAA exposure       

0 - 1.04 226 1,511 1.00 1.00 1.27 0.5309 
> 1.04 - 1.93 223 1,428 1.04 (0.86, 1.27) 1.07 (0.88, 1.31)   

> 1.93 200 1,449 0.92 (0.75, 1.13) 0.95 (0.77, 1.17)   
Ethnicity       

White British 130 1,519 NA 1.00 88.89 <0.0001 
Pakistani 438 2,281 NA 3.78 (2.86, 4.98)   

Other 81 588 NA 2.32 (1.67, 3.22)   
Parity       

0 previous births 305 1,616 NA 1.00 33.79 <0.0001 
1 previous birth 143 1,210 NA 0.57 (0.46, 0.72)   

2 or more previous births 201 1,562 NA 0.53 (0.41, 0.68)   
Maternal age       

< 25 years old 245 1,479 NA 0.82 (0.66, 1.03) 3.72 0.2933 
25-29 years old 220 1,383 NA 1.00   
30-34 years old 118 1,000 NA 0.90 (0.70, 1.15)   

≥ 35 years old 66 526 NA 1.05 (0.77, 1.44)   
BMI        

quartile 1 232 1,100 NA 1.00   
quartile 2 175 1,070 NA 0.83 (0.67, 1.03) 26.30 <0.0001 
quartile 3 131 1,132 NA 0.59 (0.46, 0.75)   
quartile 4 111 1,086 NA 0.59 (0.46, 0.76)   
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Combined exposure ug/day  
(N=5,037) 

cases 
(n) 

non-cases 
(n) 

Crude OR  
(95% CI) 

Adjusted* OR  
(95% CI) chi2 (DF) Prob > chi2 

Smoking       
never a smoker 492 3,203 NA 1.00 23.80 <0.0001 

ever a smoker 54 613 NA 0.99 (0.72, 1.38)   
current smoker 103 572 NA 2.03 (1.50, 2.74)   

Maternal education       
No education 189 1,136 NA 1.05 (0.85, 1.30) 5.99 0.2002 

School 224 1,414 NA 1.00   
Further education 65 549 NA 0.81 (0.60, 1.09)   
Higher education 142 1,001 NA 0.82 (0.64, 1.04)   

Other, Don't know, Unknown foreign 29 288 NA 0.81 (0.53, 1.23)   
Caffeinated drinks       

0 mg/day 549 3,727 NA 1.00 6.55 0.0105 
0-200 mg/day 100 661 NA 1.42 (1.08, 1.85)   

Gestational diabetes       
no 602 3,949 NA 1.00 4.81 0.0283 

yes 47 439 NA 0.70 (0.50, 0.96)   
*adjusted for 8 variables: ethnicity, parity, maternal age at delivery, mother's BMI at questionnaire 
completion (quartiles), smoking status during pregnancy, maternal education, caffeine intake, and 
gestational diabetes 
(The red colour signals a comparison with the reference group that is below a critical p-value of 0.05.) 
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Table A7 - 15: For each of the three combined metrics (DCAA, TCAA and BDCAA in ug/day) in the 
continuous birth weight model, proportion of women by category, comparing  
-the complete case (CC) dataset of N=5,040 
-the raw analysis (“raw”) analysis, i.e. not accounting for availability of any other covariates or 
exposure (different N depending on availability of data, see (N) in Table) 
-the imputed (MI) dataset of N=11,874 

 
CC raw MI 

  5040 (N) 11874 
DCAA, TCAA or BDCAA exposure 

 
(6195) 

 tertile 1 0.31 0.33 0.32 
tertile 2 0.33 0.33 0.33 
tertile 3 0.36 0.33 0.35 

Caffeinated drinks 
 

(8935) 
 0 mg/day 0.85 0.81 0.82 

0-200 mg/day 0.15 0.19 0.18 
BMI  

 
(9478) 

 quartile 1 0.26 0.25 0.25 
quartile 2 0.25 0.25 0.25 
quartile 3 0.25 0.25 0.25 
quartile 4 0.24 0.25 0.25 

Smoking 
 

(9825) 
 never a smoker 0.73 0.69 0.69 

ever a smoker 0.13 0.17 0.17 
current smoker 0.13 0.14 0.14 

Maternal education 
 

(9821) 
 School 0.33 0.31 0.31 

No education 0.26 0.21 0.22 
Further education 0.12 0.15 0.14 
Higher education 0.23 0.25 0.25 

Other, Don't know, Unknown foreign 0.06 0.08 0.08 
Ethnicity 

 
(9805) 

 White British 0.33 0.40 0.40 
Pakistani 0.54 0.44 0.45 

Other 0.13 0.15 0.15 
Gestational diabetes 

 
(11381) 

 no 0.90 0.92 0.92 
yes 0.10 0.08 0.08 

Parity 
 

(11442) 
 0 previous births 0.38 0.41 0.41 

1 previous birth 0.27 0.28 0.28 
2 or more previous births 0.35 0.31 0.31 

Sex of child 
 

(11874) 
 male 0.51 0.52 0.52 

female 0.49 0.48 0.48 
Maternal age 

 
(11874) 

 <25 0.34 0.32 0.32 
25-29 0.32 0.33 0.33 
30-34 0.22 0.23 0.23 
>=35 0.12 0.13 0.13 

Gestational Age (weeks) 
 

(11874) 
 25 0.00 0.00 0.00 

26 0.00 0.00 0.00 
27 0.00 0.00 0.00 
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CC raw MI 

  5040 (N) 11874 
28 0.00 0.00 0.00 
29 0.00 0.00 0.00 
30 0.00 0.00 0.00 
31 0.00 0.00 0.00 
32 0.00 0.00 0.00 
33 0.00 0.00 0.00 
34 0.01 0.01 0.01 
35 0.01 0.01 0.01 
36 0.02 0.02 0.02 
37 0.05 0.05 0.05 
38 0.17 0.16 0.16 
39 0.24 0.25 0.25 
40 0.29 0.28 0.28 
41 0.18 0.18 0.18 
42 0.01 0.01 0.01 
43 0.00 0.00 0.00 
44 0.00 0.00 0.00 
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Table A7 - 16: Breakdown of missing values by categories compared to original raw data (example of 
DCAA combined metric model on continuous birth weight) 

 
Original data 

% of 11874 
total (including 

missing) 

% of total 
(excluding 
missing) 

average of 10 
imputed 
datasets, 

among women 
with missing 

ethnicity 
% among 
missing 

ethnicity 
     White British 3,953 33.3 40.3 788 38.1 

Pakistani 4,341 36.6 44.3 987 47.7 
Other 1,511 12.7 15.4 294 14.2 

missing 2,069 17.4 
   smoking 

     Never 6,782 57.1 69.0 1,424 69.5 
Ever 1,650 13.9 16.8 324 15.8 

Currently 1,393 11.7 14.2 301 14.7 
missing 2,049 17.3 

   caffeine consumption 
     No 7,280 61.3 81.5 2,446 83.2 

Yes  1,655 13.9 18.5 493 16.8 
missing 2,939 24.8 

   maternal education 
     School 3,015 25.4 30.7 647 31.5 

No education 2,109 17.8 21.5 491 23.9 
Further education 1,432 12.1 14.6 288 14.0 
Higher education 2,502 21.1 25.5 466 22.7 

Other, Don’t know, Unknown foreign 763 6.4 7.8 161 7.8 
missing 2,053 17.3 

   DCAA combined metric 
     tertile 1 2,067 17.4 33.4 1,784 31.4 

tertile 2 2,063 17.4 33.3 1,842 32.4 
tertile 3 2,065 17.4 33.3 2,054 36.2 

missing 5,679 47.8 
   parity 

     no previous registerable birth 4,687 39.5 41.0 148 34.2 
1 previous registerable birth 3,192 26.9 27.9 121 27.9 

more previous registerable births 3,563 30.0 31.1 164 37.9 
missing 432 3.6 

   Gestational Diabetes 
     No 10,459 88.1 91.9 449 91.0 

Yes 922 7.8 8.1 44 9.0 
missing 493 4.2 

   BMI (quartiles) 
     1 2,368 19.9 25.0 601 25.1 

2 2,370 20.0 25.0 605 25.2 
3 2,372 20.0 25.0 594 24.8 
4 2,368 19.9 25.0 597 24.9 

missing 2,396 20.2 
    

307 

 



 

Table A7 - 17: Water consumption as mediator of positive predictors of birth weight (X=exposure=either maternal education, quintiles of IMD 2010 or 
physical activity in the past week; M=mediator=cold tap water (L/day); O=outcome=birth weight (g)) 
DK: don’t know 

 

 Step 1  Step 2  Step 3 Step 4  
  X→O   X→O   M→O X+M→O   

maternal education 
 

10
.5

 (<
0.

00
1)

  

2.
8 

(0
.0

24
) 

  

8.
5 

(<
0.

00
1)

 

no education reference reference / reference 
school 46.88 (16.35, 77.42) 0.04 (-0.01, 0.08) / 48.26 (16.74, 79.77) 
further education 88.37 (51.54, 125.20) 0.06 (0.00, 0.11) / 92.07 (53.88, 130.27) 
higher education 87.38 (55.58, 119.18) 0.08 (0.03, 0.12) / 74.71 (41.94, 107.48) 
other, DK, unknown foreign 105.74 (60.30, 151.18) 0.02 (-0.05, 0.09) / 98.79 (51.37, 146.20) 
cold tap water (L/day) / 

 
/ 

 
16.48 (2.14, 30.83) 15.66 (1.33, 30.00) 

 constant 3180.84 (3157.42, 3204.27) 
 

1.17 (1.13, 1.20) 
 

3215.92 (3195.25, 3236.59) 3162.30 (3132.91, 3191.68) 
 IMD 2010 quintiles 

 

31
.4

 (<
0.

00
1)

  

2.
0 

(0
.0

95
) 

  

28
.8

 (<
0.

00
1)

 quintile 1 (most deprived) reference reference / reference 
quintile 2 62.60 (33.87, 91.33) 0.05 (0.01, 0.09) / 61.55 (31.76, 91.34) 
quintile 3 128.91 (94.05, 163.78) -0.02 (-0.07, 0.03) / 129.18 (93.02, 165.35) 
quintile 4 237.84 (172.93, 302.74) -0.03 (-0.13, 0.06) / 230.89 (164.09, 297.68) 
quintile 5 (least deprived) 238.36 (153.71, 323.02) 0.03 (-0.10, 0.15) / 235.43 (149.20, 321.67) 
cold tap water (L/day) / 

 
/ 

 
16.48 (2.14, 30.83) 16.70 (2.42, 30.98)  

constant 3202.07 (3188.80, 3215.35) 
 

1.20 (1.18, 1.22) 
 

3215.92 (3195.25, 3236.59) 3179.72 (3157.73, 3201.71)  
physical activity in past week 

 

18
.1

 (<
0.

00
1)

 

 

32
.0

 (<
0.

00
1)

 

  

16
.0

 (<
0.

00
1)

 

none reference reference / reference 
< 1 hour/week 44.01 (9.56, 78.45) 0.06 (0.01, 0.11) / 41.43 (5.77, 77.09) 
1-3 hours per week 130.07 (90.04, 170.10) 0.17 (0.11, 0.23) / 129.49 (87.72, 171.25) 
≥ 3 hours per week 148.05 (71.50, 224.60) 0.45 (0.34, 0.55) / 141.90 (61.97, 221.83) 
cold tap water (L/day) / 

 
/ 

 
16.48 (2.14, 30.83) 11.59 (-4.78, 27.96) 

 constant 3216.77 (3203.15, 3230.39) 
 

1.18 (1.16, 1.20) 
 

3215.92 (3195.25, 3236.59) 3200.75 (3176.87, 3224.63) 
 (The red colour signals a p-value < 0.05.) 
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Table A7 - 18: Spearman correlations (Spearman’s rho, p-value and sample size) 
 

 
physical activity maternal education 

quintiles of IMD 2010 (1-
>5 most to least deprived) 

water consumption: 
   cold tap water 0.0708 0.0217 -0.005 

 
<0.001 0.0373 0.6332 

  7756 9177 9175 
total tap water 0.0751 -0.0035 0.0424 

 
<0.001 0.7286 <0.001 

  8211 9679 9678 
bottled water 0.0859 0.1068 0.0896 

 
<0.001 <0.001 <0.001 

  2847 3695 3700 
total water 0.1629 0.0593 0.1229 

 
<0.001 <0.001 <0.001 

 
8290 9767 9766 

(The red colour signals a p-value < 0.05) 
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Table A7 - 19: Correlation between alcohol consumption during pregnancy and the three months 
preceding pregnancy and smoking, ethnicity, caffeine intake, parity and gestational diabetes 
(Spearman’s rho (same as Cramer’s V), p-value, N) (Nmax=11,928) 
 

 rho 
p-value 
N 

alcohol consumption 

smoking 0.33 

 
<0.001 

  9517 
ethnicity -0.37 

 
<0.001 

  9489 
caffeine intake 0.21 

 
<0.001 

  8682 
parity -0.13 

 
<0.001 

  9169 
gestational diabetes -0.06 

 <0.001 

 9147 
(The red colour signals a p-value <0.05). 

  

310 

 





 

Figure A7 - 3: Boxplots of DCAA, TCAA and BDCAA exposure (ug/day) by term LBW (N 
total=5,869) 

 

 

  

0
50

10
0

15
0

>=2500g at term term LBW >=2500g at term term LBW >=2500g at term term LBW

tertile 1 tertile 2 tertile 3

ex
po

su
re

 to
 D

C
A

A 
(u

g/
da

y)
0

50
10

0
15

0

>=2500g at term term LBW >=2500g at term term LBW >=2500g at term term LBW

tertile 1 tertile 2 tertile 3

ex
po

su
re

 to
 T

C
AA

 (u
g/

da
y)

0
5

10
15

20

>=2500g at term term LBW >=2500g at term term LBW >=2500g at term term LBW

tertile 1 tertile 2 tertile 3

ex
po

su
re

 to
 B

D
C

AA
 (u

g/
da

y)

312 

 



 

Figure A7 - 4: Prevalence of SGA (UK 1990) by DCAA, TCAA, BDCAA exposure tertile (ug/day) 
(N total=6,189) AGA=average for gestational age 

 
Figure A7 - 5: Boxplots of DCAA, TCAA and BDCAA exposure (ug/day) by SGA (UK 1990) (N 
total = 6,189) 
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Chapter 8 
 

Table A8 - 1: Equations for the linear mixed models (all with random intercepts and random slopes) presented in Chapter 8 
 

Model 1: 𝑦𝑖𝑗 = 𝑢0𝑖  +  𝑢1𝑖 𝑡𝑖𝑚𝑒𝑖𝑗  + 𝜀𝑖𝑗  
𝑢0𝑖 ~ N (𝛽0 , σ𝑢02 )  
𝑢1𝑖 ~ N (𝛽1 ,  σ𝑢12 )  
Model 2: 𝑦𝑖𝑗 = 𝑢0𝑖  +  𝑢1𝑖 𝑡𝑖𝑚𝑒𝑖𝑗  + 𝛽2𝐸𝑖𝑗  +  𝛽3𝑊𝑖𝑗  + 𝛽4𝑆𝑖𝑗  + ∑ 𝛼𝑥  𝐶𝑥𝑖𝑗

𝑝
𝑥=1 +  𝜀𝑖𝑗  

𝑢0𝑖 ~ N (𝛽0 , σ𝑢02 )  
𝑢1𝑖 ~ N (𝛽1 ,  σ𝑢12 )  
Model 3: 𝑦𝑖𝑗 = 𝑢0𝑖  +  𝑢1𝑖 𝑡𝑖𝑚𝑒𝑖𝑗  + ∑ 𝛽2𝑔 𝐸𝑔𝑖𝑗𝑔 +  𝛽3𝑊𝑖𝑗  +  𝛽4𝑆𝑖𝑗  +  ∑ 𝛼𝑥 𝐶𝑥𝑖𝑗

𝑝
𝑥=1 + 𝜀𝑖𝑗  

𝑢0𝑖 ~ N (𝛽0 , σ𝑢0𝑔2 )  
𝑢1𝑖 ~ N (𝛽1g , σ𝑢1𝑔2 )  
Model 4: 𝑦𝑖𝑗 = 𝑢0𝑖  +  𝑢1𝑖 𝑡𝑖𝑚𝑒𝑖𝑗  + 𝛽2𝐸𝑖𝑗  + ∑ 𝛾𝑔(𝑊𝑔𝑖𝑗) 𝑡𝑖𝑚𝑒𝑖𝑗𝑔 + ∑ 𝛽3h 𝑊𝑔𝑖𝑗𝑔 +  𝛽4𝑆𝑖𝑗  +  ∑ 𝛼𝑥  𝐶𝑥𝑖𝑗

𝑝
𝑥=1 +  𝜀𝑖𝑗  

𝑢0𝑖 ~ N (𝛽0 , σ𝑢02 )  
𝑢1𝑖 ~ N (𝛽1 ,  σ𝑢12 )  
Model 5: 𝑦𝑖𝑗 = 𝑢0𝑖  +  𝑢1𝑖 𝑡𝑖𝑚𝑒𝑖𝑗  + 𝛽2𝐸𝑖𝑗  +  𝛽3𝑊𝑖𝑗  + ∑ 𝛾𝑔(𝑆𝑔𝑖) 𝑡𝑖𝑚𝑒𝑖𝑗𝑔 +∑ 𝛽4k 𝑆𝑔𝑖𝑔 + ∑ 𝛼𝑥  𝐶𝑥𝑖𝑗

𝑝
𝑥=1 +  𝜀𝑖𝑗   

𝑢0𝑖 ~ N (𝛽0 , σ𝑢02 )  
𝑢1𝑖 ~ N (𝛽1 ,  σ𝑢12 )  
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Legend: where i is subject, j is time point, g is ethnicity category, h is employment category, k is smoking 

category, p is total number of covariates, and: 

 
𝑦𝑖𝑗 = outcome (either total tap water, or total water) in L/day 

𝑢1𝑖 = random slopes 

𝑢0𝑖 = random intercepts 

𝛾𝑔 = interaction term 

𝛽 2, 𝛽 3, 𝛽4 = main effect of ethnicity, employment, and smoking, respectively 

𝛽1𝑔 = main time effect for every ethnic group (Model 3) 

𝛽2𝑔 = main effect of ethnicity by ethnicity category (Model 3) 

𝛽3ℎ = main effect of work by work category (Model 4) 

𝛽4𝑘 = main effect of smoking by smoking category (Model 5) 

𝛼𝑥 = main effect of other covariates (C) 

𝜀𝑖𝑗 = residual error 

𝛽0 = main intercept 

𝛽1 = main time effect  

σ𝑢02  = random intercepts variance 

σ𝑢12  = random slopes variance 

σ𝑢0𝑔2  = random intercepts variance by ethnic group (Model 3) 

σ𝑢1𝑔2  = random slopes variance by ethnic group (Model 3) 

E=ethnicity (3 categories, where the reference category is White British) 

W=employment status (4 categories, where the reference category is Employed and currently working) 

S=smoking (3 categories, where the reference category is never smoker) 

C=other covariates (maternal physical exercise for leisure, maternal physical exercise at work, total 

number of household members) 
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Table A8 - 2: Number of entries (and percentage of total number of entries) in each water consumption category (by water type, and by location of 
consumption) that were left blank in the original repeat questionnaires, and in the summary variables derived for this analysis.  
These missing entries were subsequently replaced by 0’s in the main analysis. There were no such missing entries in the baseline data. 
 

original variables in the questionnaire    summary variables used in the manuscript    
    Q1 (N=209) % blank Q2 (N=172) % 

blank     Q1 (N=209) % blank Q2 (N=172) % 
blank 

tap water home 19 9% 16 9%        
 work/study 88 42% 97 56%        
 elsewhere 94 45% 83 48%        
squash home 33 16% 29 17%       
 work/study 95 45% 104 60%        
 elsewhere 99 47% 89 52%        
      cold tap water home 42 20% 35 20% 

       (tap water+squash) out of the home 124 59% 113 66% 
              total 124 59% 113 66% 
tea home 26 12% 18 10%        
 work/study 90 43% 99 58%        
 elsewhere 96 46% 83 48%        
coffee home 57 27% 56 33%       
 work/study 95 45% 104 60%       
 elsewhere 111 53% 92 53%       
      hot tap water home 64 31% 59 34% 

       (tea+coffee) out of the home 117 56% 112 65% 
              total 117 56% 112 65% 
bottled water home 65 31% 56 33% bottled water home 65 31% 56 33% 

 work/study 90 43% 94 55%        
 elsewhere 104 50% 84 49%        
       out of the home 116 56% 105 61% 
              total 117 56% 107 62% 

      total tap water home 71 34% 66 38% 

       (cold+hot) out of the home 128 61% 116 67% 
              total 128 61% 116 67% 

      total water home 82 39% 74 43% 

       (total tap+bottled water) out of the home 130 62% 116 67% 

        total 130 62% 116 67% 
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Table A8 - 3: Univariate linear mixed models of RQS women’s a) total tap water (“TAP”) and b) total 
water (“Total”) consumption (in L/day) over the 3 time points of interest: baseline, Q1 (30-33 weeks 
of pregnancy) and Q2 (36-39 weeks of pregnancy) (Model 1). 
Example of sensitivity analyses results for the unadjusted model with a t-distribution (4 degrees of 
freedom) (Model 1b), and after censoring extreme and unsure outcome values (Model 1c).  
 

a. TAP Model 1  Model 1b  Model 1c  
Fixed effect          
Main intercept 1.86 (1.71, 2.01) 1.73 (1.61, 1.85) 1.85 (1.72, 1.97) 
Time pattern 0.13 (0.04, 0.23) 0.13 (0.06, 0.20) 0.64 (0.53, 0.75) 
Random effect          
Random intercepts SD 0.76 (0.65, 0.89) 0.70 (0.61, 0.80) 0.70 (0.58, 0.82) 
Random slopes SD 0.09 (0.00, 0.25) 0.20 (0.06, 0.32) 0.31 (0.14, 0.45) 
Measurement error SD 1.01 (0.94, 1.09) 0.76 (0.68, 0.84) 0.78 (0.70, 0.87) 

       
Variance Partition Coefficient  0.37 (0.28, 0.46) 0.48 (0.39, 0.58) 0.49 (0.38, 0.60) 
 

b. Total  Model 1  Model 1b  Model 1c  
Fixed effect          
Main intercept 2.22 (2.07, 2.37) 2.08 (1.97, 2.20) 2.19 (2.07, 2.31) 
Time pattern 0.14 (0.03, 0.26) 0.12 (0.03, 0.20) 0.66 (0.55, 0.77) 
Random effect          
Random intercepts SD 0.73 (0.58, 0.87) 0.62 (0.52, 0.72) 0.60 (0.47, 0.72) 
Random slopes SD 0.29 (0.07, 0.47) 0.24 (0.07, 0.38) 0.34 (0.18, 0.47) 
Measurement error SD 1.08 (1.00, 1.16) 0.85 (0.76, 0.95) 0.81 (0.72, 0.90) 

       
Variance Partition Coefficient  0.35 (0.26, 0.44) 0.38 (0.28, 0.49) 0.43 (0.30, 0.54) 
Red means significant (i.e. 95% credible interval does not cross zero). 
 

 

Table A8 - 4: Water consumption values at baseline in the RQS and the rest of the cohort (means 
(95% confidence intervals)) 
 

 
RQS 

  
Rest 

  
Difference p* (2-way) 

 
mean (95% CI) n mean (95% CI) n mean (95% CI)   

Total tap water L/day 1.84 (1.70, 1.98) 254 1.33 (1.31, 1.35) 13519 -0.51 (-0.64, -0.38) <0.001 
Total water L/day 2.19 (2.06, 2.33) 254 1.56 (1.54, 1.58) 13519 -0.63 (-0.77, -0.48) <0.001 

*two-sample t-test, p-value red if significant at <0.05 
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Table A8 - 5: Water consumption values at baseline in the RQS and the rest of the cohort (means 
(95% confidence intervals)), stratified by ethnicity 

RQS Rest of cohort Difference p** 
mean (95% CI) n mean (95% CI) n mean (95% CI) 

Total tap water L/day 
White British 2.11 (1.88, 2.33) 123 1.81 (1.77, 1.84) 4365 -0.30 (-0.50, -0.10) 0.235 
Pakistani 1.61 (1.42, 1.80) 74 1.49 (1.47, 1.51) 5053 -0.11 (-0.28, 0.05) 
Other 1.56 (1.32, 1.81) 57 1.48 (1.44, 1.53) 1675 -0.08 (-0.33, 0.17) 
Total water L/day 
White British 2.47 (2.26, 2.69) 123 2.20 (2.17, 2.24) 4365 -0.27 (-0.49, -0.06) 0.738 
Pakistani 1.84 (1.65, 2.04) 74 1.65 (1.62, 1.67) 5053 -0.20 (-0.38, -0.02) 
Other 2.03 (1.80, 2.27) 57 1.88 (1.83, 1.93) 1675 -0.15 (-0.42, 0.11) 

** Two-factor ANOVA, p for interaction term between two factors, ethnicity and inclusion in RQS 

Table A8 - 6: Water consumption values at baseline in the RQS and the rest of the cohort (means 
(95% confidence intervals)), stratified by employment status 

RQS Rest Diff p** 
mean (95% CI) n mean (95% CI) n mean (95% CI) 

Total tap water L/day 
Employed  
& currently working 1.83 (1.65, 2.00) 142 1.67 (1.64, 1.70) 4309 -0.16 (-0.33, 0.02) 0.662 

Employed  
& currently on mat leave 2.15 (1.41, 2.90) 13 1.68 (1.59, 1.77) 432 -0.47 (-1.01, 0.07) 

Not working 1.82 (1.59, 2.06) 90 1.57 (1.55, 1.59) 6012 -0.25 (-0.43, -0.07) 
Full-time student 1.73 (0.58, 2.89) 9 1.58 (1.48, 1.68) 376 -0.15 (-0.80, 0.50) 
Total water L/day 
Employed  
& currently working 2.28 (2.11, 2.44) 142 2.17 (2.14, 2.21) 4309 -0.10 (-0.29, 0.08) 0.089 

Employed  
& currently on mat leave 2.82 (2.20, 3.43) 13 2.06 (1.96, 2.16) 432 -0.75 (-1.35, -0.16) 

Not working 1.99 (1.74, 2.24) 90 1.69 (1.67, 1.71) 6012 -0.30 (-0.49, -0.12) 
Full-time student 1.93 (0.90, 2.97) 9 1.94 (1.83, 2.04) 376 0.00 (-0.70, 0.70) 

** Two-factor ANOVA, p for interaction term between two factors, employment status and inclusion 
in RQS 

Table A8 - 7: Water consumption values at baseline in the RQS and the rest of the cohort (means 
(95% confidence intervals)), stratified by smoking status 

RQS Rest Diff p 
mean (95% CI) n mean (95% CI) n mean (95% CI) 

Total tap water L/day 
Currently 2.47 (1.86, 3.08) 25 1.92 (1.86, 1.98) 1550 -0.55 (-1.02, -0.08) 0.033 
Ever 2.08 (1.79, 2.36) 64 1.70 (1.65, 1.74) 1824 -0.38 (-0.63, -0.12) 
Never 1.65 (1.50, 1.80) 165 1.54 (1.52, 1.56) 7747 -0.12 (-0.25, 0.02) 
Total water L/day 
Currently 2.80 (2.15, 3.45) 25 2.21 (2.14, 2.27) 1550 -0.59 (-1.09, -0.10) 0.219 
Ever 2.34 (2.06, 2.62) 64 2.16 (2.11, 2.21) 1824 -0.18 (-0.46, 0.10) 
Never 2.04 (1.89, 2.19) 165 1.78 (1.76, 1.80) 7747 -0.26 (-0.40, -0.12) 

** Two-factor ANOVA, p for interaction term between two factors, smoking status and inclusion in 
RQS 
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Figure A8 - 1: Timeline of recruitment to BiB (26-28 weeks of pregnancy) in grey, and to RQS (Q1 at 
30-33 weeks, Q2 at 36-39 weeks of pregnancy) in pink 

 
 

  

319 

 



Figure A8 - 2: Diagram of eligibility 

882 women completed the 
water section of the 
questionnaire 

742 women spoke and read 
English 

619 women eligible for Q1 
(616 for Q2) 

1008 women registered to BiB 
within recruitment period 

BiB cohort 

209 women 
responded to Q1 

172 women 
responded to Q2 

127 women responded to 
both 

7% of full cohort 

88% of registered women 

74% of registered women 

61% of registered women 

28% of women eligible for Q2 34% of women eligible for Q1 

50% of women who responded to at least one RQ 
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APPENDIX A 

BiB baseline questionnaire – water section 



Mother's questionnaire Version 43 dt  10/07/09Page 36 of 43

5��
�����#�
����������
��

!I1.�A����
����	���������������&�
���&�		���������������8 

a) Tap water

b) Bottled
water (Includes
water cooler)

c) Tea (any sort)

d) Coffee

e) Squash

At home At work/study Elsewhere

Glasses per day: Glasses per day: Glasses per day:

Glasses per day: Glasses per day: Glasses per day:

Cups per day: Cups per day: Cups per day:

Cups per day: Cups per day: Cups per day:

Glasses per day: Glasses per day: Glasses per day:

I2.��������&	
���
�����
����������8��
����� � (Cross ONE box ONLY)

Yes No Don't Know

I3. �������&	
���
�����
����������8��
����8 ��(Cross ONE box ONLY)

Yes No Don't Know N/A

I4.������
����	����8���	�����������������������
������&
�������&������

��	����������������
�8��
���&�		���� 

(if you do not do any then fill in 0)

Shower ............

Times per week Minutes each time

Bath .................

Swim ................

(Including any other drinks
made with tap water)

1 2 3 4 5

Draft

Draft
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Previous epidemiological studies reported associations
between DBPs in chlorinated water and increased cancer
risk11−15 as well as DBPs and adverse pregnancy outcomes
including spontaneous abortion, low birth weight (LBW),
small-for-gestational-age (SGA), still birth, and preterm
delivery.16−19 HAAs were teratogenic in mice embryos;20

mixtures of trihalomethanes (THMs) and HAAs were
teratogenic in rats.21

In 2006, the European Union (EU) established the project
HIWATE (Health Impacts of long-term exposure to
disinfection byproducts in drinking WATEr) to investigate
potential human health risks associated with long-term
exposure to DBPs.22 Pregnancy cohorts (N ∼23 000) were
included from France, Lithuania, Spain, Italy, and the United
Kingdom (Table 1). These locations encompassed a variety of

disinfectants and treatments including chlorine, ozone, chlorine
dioxide, and desalination with reverse osmosis. Metrics for
adverse pregnancy outcomes were LBW, SGA, preterm
delivery, fetal growth restriction (FGR), and parameters
derived from ultrasound medical diagnosis.
This project represents the first systematic analysis

combining DBP analytical chemistry and in vitro mammalian
cell toxicology with adverse pregnancy outcomes. Our
objectives were to (i) obtain disinfected drinking water from
HIWATE cities, extract and concentrate the organic fraction
and chemically analyze for DBPs, (ii) determine the relative
chronic cytotoxicity and acute genotoxicity in mammalian cells
for each HIWATE sample, and (iii) analyze for correlations
between the toxicity data and the occurrence and concen-
trations of DBPs.

■ EXPERIMENTAL SECTION
Chemicals and Reagents. General reagents were

purchased from Sigma-Aldrich Co. (St. Louis, MO) and Fisher
Scientific Co. (Itasca, IL). Media and fetal bovine serum (FBS)
were purchased from Fisher Scientific Co. (Itasca, IL).
Chemical standards were purchased from Sigma-Aldrich,
ChemService (West Chester, PA), Orchid Cellmark (West-

minster, BC, Canada), and TCI America (Waltham, MA) at the
highest level of purity.

Sample Preparation. Drinking water samples (20 L) were
collected from 11 different distribution systems from 7 cities
within 5 European countries, where an epidemiologic study of
reproductive outcomes was being conducted. Samples were
collected from March-June 2010 using 2 L Teflon bottles
(headspace-free) and were commercially shipped in coolers
with icepacks to the U.S. Environmental Protection Agency
(U.S. EPA) laboratory in Athens, GA. Water samples were
analyzed immediately upon arrival using XAD resins.23 The
final extract (2 mL in ethyl acetate) was equally divided for
GC/MS analysis and genotoxicity/cytotoxicity analysis. For
toxicity analyses the solvent ethyl acetate was evaporated with a
stream of dry N2 and exchanged to dimethylsulfoxide (DMSO)
resulting in a 105 × concentration. These samples were stored
in glass Supelco 1-mL Micro Reaction Vessels (no. 27036) at
−20 °C.

Broad-Screen GC/MS Analyses. Half of the extract was
derivatized with diazomethane24 to identify halo-acids (through
their corresponding methyl esters) while the other half was
analyzed directly for other DBPs. Comprehensive gas
chromatography/mass spectrometry (GC/MS) analyses were
performed on a high-resolution magnetic sector mass
spectrometer (Autospec, Waters, Inc.) in electron ionization
mode, equipped with an Agilent model 6890 gas chromato-
graph and operated at an accelerating voltage of 8 kV and
source temperature of 200 °C, in both low-resolution (1000)
and high-resolution (10 000) modes. Injections of 1 μL of the
extracts were introduced via a split/splitless injector (in splitless
mode) onto a GC column (ZB-5, 30 m × 0.25 mm ID, 0.25 μm
film thickness, Phenomenex (Torrance, CA). The GC
temperature program consisted of an initial temperature of 35
°C (4 min) followed by an increase at 9 °C/min to 285 °C
(held for 30 min). Transfer lines were held at 280 °C and the
injection port at 250 °C. To prevent decomposition of
trihalonitromethanes, separate analyses were made with an
injection port temperature of 180 °C.25 For analysis of data by
the Massworks expert system,26 extracts were analyzed in the
continuum mode at 1000 resolution.
Mass spectra of unknown compounds in the drinking water

extracts were subjected to library database searching (National
Institute of Standards and Technology and Wiley databases).
For DBPs not present in either database, high-resolution-MS
and Massworks software (Cerno Bioscience, Norwalk, CT)
were used to provide empirical formulas for molecular ions and
fragments. Mass spectra were also interpreted extensively to
provide tentative structural identifications. When possible, pure
standards were obtained to confirm identifications through a
match of GC retention times and mass spectra.

GC × GCTOFMS Measurements. GC × GC-time-of-
flight-MS (GC × GC-TOF-MS) measurements were con-
ducted using a Leco Pegasus 4D GC × GC-TOF mass
spectrometer (Leco Corp., St. Joseph, Michigan). One μL of
the extracts was introduced via a split/splitless injector (in
splitless mode). A DB-VRX (45 m, 0.25 mm i.d., 1.4 um film
thickness, Agilent, Santa Clara CA) served as the primary
column and a Stabilwax (1.5 m, 0.25 mm i.d., 0.25 um film
thickness, Restek, Bellefonte, PA) as the secondary column.
The primary GC oven program consisted of an initial
temperature of 45 °C (3 min), an increase at 10 °C/min to
145 °C (3 min), an increase at 5 °C/min to 240 °C, and final
hold of 20 min. The secondary GC oven was 13 °C above the

Table 1. HIWATE Water Sampling Locations and Applied
Disinfection Methodsa

sample
number sampling location (site) disinfection method

HIWATE 1 Barcelona, Spain (Badalona) Cl2−Cl2
HIWATE 2 Barcelona, Spain (Hospitalet

del Llobregat)
Blend of Cl2−Cl2, Cl2−O3-Cl2,
Desal-RO-ClO2

HIWATE 3 Barcelona, Spain (Sabadell) Blend of (ClO2/Cl2)-Cl2, Cl2−
Cl2

HIWATE 4 Kaunas, Lithuania
(Petruniusai)

Cl2

HIWATE 5 Modena, Italy ClO2

HIWATE 6 Kaunas, Lithuania (Viciunai) Cl2
HIWATE 7 Valencia, Spain Cl2−Cl2
HIWATE 8 Rennes, France O3−Cl2
HIWATE 9 Asturias, Spain Cl2
HIWATE
10

Bradford, U.K. (Shipley) Cl2

HIWATE
11

Bradford, U.K. (Airedale) Cl2

aCl2 = chlorination, O3 = ozonation, ClO2 = chlorine dioxide, Desal-
RO = desalination with reverse osmosis.

Environmental Science & Technology Article

dx.doi.org/10.1021/es3024226 | Environ. Sci. Technol. 2012, 46, 12120−1212812121 325



primary GC oven. The modulator offset was 20 °C above to the
primary GC oven. The modulation period was 7 s with 1.5 s
hot pulse. The transfer line and source temperature were
maintained at 248 and 200 °C, respectively. The MS data were
acquired from m/z 35 to 500 at rate of 150 spectra/s in
electron ionization mode.
Quantitative Chemical Analyses. THMs (chloroform,

bromodichloromethane, dibromochloromethane, and bromo-
form), haloacetonitriles (dichloroacetonitrile, bromochloroace-
tonitrile, dibromoacetonitrile, and trichloroacetonitrile), hal-
oketones (1,1-dichloro- and 1,1,1-trichloropropanone), tri-
c h l o r o a c e t a l d e h y d e ( c h l o r a l h y d r a t e ) , a n d
trichloronitromethane (chloropicrin) were extracted using a
modified form of U.S. EPA Method 551.1.27 HAAs (chloro-,
bromo-, dichloro-, trichloro-, bromochloro-, dibromo-, bromo-
dichloro-, dibromochloro-, and tribromoacetic acid) were
analyzed using a modified form of U.S. EPA Method 552.3.28

The limit of detection for each DBP was 1 μg/L, with the
exception of chloroacetic acid (detection limit was 2 μg/L).
Chinese Hamster Ovary Cells. Chinese hamster ovary

(CHO) cell line AS52, clone 11−4−8 was used for the
biological assays.29−31 CHO cells were maintained on glass
culture plates in Ham’s F12 medium containing 5% fetal bovine
serum (FBS), 1% antibiotics (100 U/mL sodium penicillin G,
100 μg/mL streptomycin sulfate, 0.25 μg/mL amphotericin B
in 0.85% saline), and 1% glutamine at 37 °C in a humidified
atmosphere of 5% CO2.
CHO Cell Chronic Cytotoxicity Assay. This assay

measures the reduction in cell density on flat-bottom 96-well
microplates as a function of the concentration of the test
sample over a period of approximately 72 h (∼3 cell
cycles).32,33 Microliters of the sample in DMSO were diluted
with F12 +FBS medium to analyze a range of concentration
factors. This assay was calibrated; the detailed procedure was
published32,33 and is presented in the Supporting Information
(SI). For each HIWATE sample concentration factor, four
replicate wells were analyzed. The experiments were repeated
2−3 times. A concentration−response curve was generated for
each sample. A regression analysis was conducted with each

curve. The LC50 (%C1/2) values were calculated from the
regression analysis and represents the sample concentration
factor that induced a 50% reduction in cell density as compared
to the concurrent negative controls.

CHO Cell Single Cell Gel Electrophoresis (SCGE)
Assay. Single cell gel electrophoresis (SCGE, or Comet)
assay quantitatively measures genomic DNA damage in
individual nuclei induced by a test agent.34−36 We employed
microplate methodology;35 the detailed procedure is presented
in the SI. The SCGE metric for genomic DNA damage induced
by the HIWATE samples was the %Tail DNA value which is
the amount of DNA that migrated from the nucleus into the
microgel.37 Within each concentration factor range with >70%
cell viability, a concentration−response curve was generated
and regression analysis was used to fit the curve. The
concentration factor inducing a 50% Tail DNA value was
calculated from each concentration−response curve.

Statistical Analyses. For the cytotoxicity assay, a one-way
analysis of variance (ANOVA) test was conducted to determine
if the HIWATE sample induced a statistically significant level of
cell death at a specific concentration factor. If a significant F
value (P ≤ 0.05) was obtained, a Holm-Sidak multiple
comparison versus the control group analysis was performed
to identify the lowest cytotoxic concentration factor. The power
of the test statistic (1−β) was maintained as ≥0.8 at α = 0.05.
For the SCGE assay, the %Tail DNA values are not normally

distributed which limits the use of parametric statistics.38 The
mean %Tail DNA value for each microgel was calculated and
these values were averaged among all of the microgels for each
HIWATE sample concentration factor. Averaged mean values
express a normal distribution according to the central limit
theorem.38 A one-way ANOVA test was conducted on these
averaged %Tail DNA values.39 If a significant F value of P ≤
0.05 was obtained, a Holm-Sidak multiple comparison versus
the control group analysis was conducted (power ≥0.8; α =
0.05).
The mammalian cell cytotoxicity and genotoxicity analyses

were compared with the following analytical chemical metrics:
(i) the numbers of DBPs identified in each HIWATE sample,

Table 2. Levels of DBPs by Chemical Classes and Correlation with CHO Cell Cytotoxic Potency Index and Genotoxic Potency
Index

HIWATE sample
number

21 DBPsc

(μg/L)
4 THMs
(μg/L)

9 HAAs
(μg/L)

4 HANs
(μg/L)

2 HKs
(μg/L) CH (μg/L) CP (μg/L)

U.S.-regulated
DBPs (μg/L)

unregulated DBPs
(μg/L)

1 115 70.9 36.0 6.47 0.21 1.27 <LODd 94.7 20.1
2 91.1 66.8 19.5 4.70 <LOD <LOD <LOD 77.1 13.9
3 202 139 51.5 8.88 1.11 1.80 <LOD 168 33.8
4 3.24 3.24 <LOD <LOD <LOD <LOD <LOD 3.24 <LOD
5 <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD <LOD
6 1.11 1.11 <LOD <LOD <LOD <LOD <LOD 1.11 <LOD
7 118 83.9 26.7 4.80 <LOD 2.46 <LOD 103 14.6
8 27.8 14.7 13.3 <LOD <LOD <LOD <LOD 26.5 1.25
9 92.9 55.0 <LOD 4.02 6.86 23.2 3.78 55.0 37.9
10 40.6 22.6 13.3 <LOD 3.28 1.43 <LOD 29.0 11.6
11 45.2 29.3 11.6 <LOD 3.08 1.23 <LOD 36.8 8.37
cytotoxic potency
indexa

r = 0.77 r = 0.77 r = 0.75 r = 0.73 r = 0.04 r = 0.04 r = −0.02 r = 0.76 r = 0.60
P ≤ 0.006 P ≤ 0.006 P ≤ 0.009 P = 0.011 P = 0.913 P = 0.905 P = 0.947 P ≤ 0.006 P = 0.051

genotoxic potency
indexb

r = 0.36 r = 0.37 r = 0.40 r = 0.36 r = −0.08 r = −0.12 r = −0.18 r = 0.38 r = 0.22
P = 0.273 P = 0.260 P = 0.221 P = 0.281 P = 0.827 P = 0.720 P = 0.600 P = 0.248 P = 0.521

aThe CHO cell cytotoxic potency index value corresponds to (LC50
−1 × 103) for each HIWATE sample. bThe CHO cell genotoxic potency index

value is the reciprocal HIWATE sample concentration factor that was calculated to induce a 50% SCGE tail DNA value ×104. cThese 21
quantitatively measured DBPs are listed in the text. dLOD = limit of detection.
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(ii) the chromatographic peak areas for all DBPs in the entire
sample, (iii) peak areas for specific classes of DBPs, (iv) the
total concentration of 21 selected DBPs and, (v) concentrations
of specific DBP classes within the group of 21 DBPs. A
Pearson’s Product Moment correlation test was conducted.

■ RESULTS AND DISCUSSION

Chemical Analyses. Over 90 DBPs were identified in the
samples, including several haloacids (including 3- and 4-carbon
acids and diacids), halophenols, haloamides, halonitrome-
thanes, haloketones, haloaldehydes, and haloalkenes (Table
S1, SI). Approximately 300 chromatographic peaks were
observed in the original GC/MS chromatograms (Figure S1,
SI; including DBPs and other compounds present in the raw
waters prior to disinfection). With GC × GC-TOF-MS
analyses, these peaks were resolved into >1000 peaks (Figure
S2, SI). Several DBPs identified were not in mass spectral
library databases and these identifications were made through
the methods outlined previously and utilizing Massworks
software. Several new DBPs were identified, including cis- and
trans-2,3-dibromo-3-chloropropenoic acid, 3,3-dibromo-2-
chloropropenoic acid, and several halophenols and haloalkenes.
Twenty-one target DBPs, including four U.S-regulated THMs,
nine HAAs, four haloacetonitriles (HANs), two haloketones
(HKs), trichloroacetaldehyde (chloral hydrate), and trichlor-
onitromethane (chloropicrin) were quantified (Table 2).
Substantial differences were observed in the DBPs from the

different locations. As expected, drinking waters from coastal
Spain (Barcelona and Valencia) had relatively high DBP levels
with many brominated (and some iodinated) species due to
higher levels of total organic carbon (TOC), bromide and
iodide in their source waters (surface water), as well as the use
of chlorine as a disinfectant. Drinking waters from coastal Spain
averaged 90 and 33 μg/L for THM4 and HAA9, respectively
(Table 2). In contrast, drinking water from Modena, Italy had
fewer DBPs at much lower levels; these were primarily
chlorine-containing species. The source water for Modena is
a low-TOC groundwater that is treated with low chlorine
dioxide doses (0.1 mg/L), which forms fewer DBPs as
compared to other disinfectants.3,40−42 None of the 21 target
DBPs were detected in the drinking water from Modena, but a
few were detected in the broad screen analyses due to lower

detection limits. Drinking water from other locations (samples
4, 6, 8−11, Table 1) expressed intermediate DBP levels with a
mix of chloro-bromo species probably due to lower levels of
bromide and TOC in their source waters as compared to waters
from coastal Spain (Table S1, SI and Table 2).
Of the N-DBPs,43 haloacetonitriles, haloamides, and

halonitromethanes were prevalent in drinking waters from
coastal cities in Spain (samples 1−3, 7), which involved
treatment with chlorine, alone or in combination with ozone or
chlorine dioxide. Previous research demonstrated that ozona-
tion increased the formation of halonitromethanes when used
prior to chlorination or chloramination.44−46 While chlorami-
nation increases the formation of some N-DBPs,5 none of the
cities in this study employed chloramines.

CHO Cell Chronic Cytotoxicity. CHO cell chronic
cytotoxicity analyses of each HIWATE sample are summarized
in Table 3. The concentration factor is the fold concentration
of the isolated organic material as compared to the original
water. The lowest concentration factor of each sample which
induced a statistically significant reduction in cell density as
compared to its concurrent negative control was determined by
an ANOVA test statistic. The data from replicated experiments
were averaged and plotted (Figure 1A, Figures S3−S13, SI);
regression analyses were used to calculate the LC50 (%C1/2)
value for each sample. Based on the LC50 values, the
descending rank order of chronic cytotoxicity was, sample 3
> sample 1 > sample 2 ≈ sample 4 > sample 7 > sample 10 >
sample 9 > sample 8 ≈ sample 11 > sample 6 > sample 5.
Samples from Barcelona, Spain were ranked as the 3 most
cytotoxic. We calculated the cytotoxicity index value (LC50

−1 ×
1000) for each HIWATE sample (Figure 1B, Table S2, SI).

CHO Cell Acute Genotoxicity. CHO cell acute genotox-
icity analyses of each HIWATE sample are summarized in
Table 4. The lowest genotoxic concentration factor was that
which induced a statistically significant amount of genomic
DNA damage as compared to the concurrent negative control.
Figure 2A (Figures S14−S24, SI) illustrates the concentration−
response curves. Based on 50% Tail DNA values, the
descending rank order of genotoxicity was, sample 10 > sample
4 > sample 7 > sample 1 ≈ sample 2 > sample 3 > sample 9 >
sample 11 > sample 6 > sample 8 ≫ sample 5. We calculated

Table 3. CHO Cell Chronic Cytotoxicity Analyses of the HIWATE Samples

sample number concentration factor range lowest cytotoxic concentration factora LC50 value
b (conc. factor ± SE) r2c ANOVA test statisticd

HIWATE 1 0−150 60 102.7 ± 4.2 0.95 F10, 37 = 58.4; P ≤ 0.001
HIWATE 2 0−150 70 107.8 ± 3.8 0.97 F 10, 37 = 59.2; P ≤ 0.001
HIWATE 3 0−300 50 79.1 ± 4.1 0.96 F 19, 76 = 130; P ≤ 0.001
HIWATE 4 0−300 22.5 107.5 ± 3.7 0.97 F 19, 76 = 134; P ≤ 0.001
HIWATE 5 0−1000 300 605.8 ± 4.3 0.98 F 9, 33 = 69.2; P ≤ 0.001
HIWATE 6 0−800 300 366.9 ± 4.1 0.99 F 10, 37 = 113; P ≤ 0.001
HIWATE 7 0−350 50 122.1 ± 3.4 0.99 F 11, 44 = 212; P ≤ 0.001
HIWATE 8 0−300 70 162.5 ± 4.8 0.98 F 10, 37 = 71.7; P ≤ 0.001
HIWATE 9 0−300 80 140.0 ± 4.9 0.98 F 10, 37 = 90.8; P ≤ 0.001
HIWATE 10 0−300 80 128.9 ± 4.6 0.97 F 11, 40 = 77.9; P ≤ 0.001
HIWATE 11 0−600 100 164.4 ± 5.2 0.98 F 10, 37 = 78.0; P ≤ 0.001

aLowest cytotoxic concentration was the lowest concentration factor of the HIWATE sample in the concentration−response curve that induced a
statistically significant reduction in cell density as compared to the concurrent negative controls. bThe LC50 value is the fold concentration factor of
the HIWATE sample, determined from a regression analysis of the data, that induced a cell density of 50% as compared to the concurrent negative
controls. The LC50 error term was calculated as ΣX̅SE.

cr2 is the coefficient of determination for the regression analysis upon which the LC50 value
was calculated. dThe degrees of freedom for the between-groups and residual associated with the calculated F-test result and the resulting probability
value.
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Figure 1. (A) Log-linear plot of the concentration−response curves of
11 HIWATE samples illustrating CHO cell chronic (72 h)
cytotoxicity. (B) The distributions of the CHO cell cytotoxic index
values for each HIWATE sample.

Table 4. CHO Cell SCGE Genotoxicity Analyses of the HIWATE Samples

sample
number

concentration factor
range

lowest genotoxic concentration
factora

50% tail DNA Valueb (Conc. Factor ±
SE) r2c ANOVA test statisticd

HIWATE 1 0−1700 1000 1146 ± 9.1 0.99 F9, 33 = 10.5; P ≤ 0.001
HIWATE 2 0−2000 1000 1148 ± 3.8 0.99 F 10, 37 = 43.6; P ≤ 0.001
HIWATE 3 0−2000 900 1430 ± 2.0 0.99 F 8, 37 = 133; P ≤ 0.001
HIWATE 4 0−1600 1000 1079 ± 3.3 0.99 F 10, 37 = 78.0; P ≤ 0.001
HIWATE 5 0−3800 3600 5659 ± 1.4 0.74 F 10, 38 = 3.14; P ≤ 0.005
HIWATE 6 0−2200 1600 1925 ± 2.0 0.90 F 11, 39 = 20.0; P ≤ 0.001
HIWATE 7 0−2200 600 1119 ± 2.9 0.95 F 9, 26 = 76.3; P ≤ 0.001
HIWATE 8 0−3000 2000 2206 ± 5.6 0.98 F 13, 50 = 9.29; P ≤ 0.001
HIWATE 9 0−2400 1600 1847 ± 6.9 0.89 F 10, 42 = 6.87; P ≤ 0.001
HIWATE 10 0−1600 400 1052 ± 6.2 0.98 F 8, 50 = 7.18; P ≤ 0.001
HIWATE 11 0−2400 1600 1901 ± 3.7 0.99 F 10, 33 = 15.9; P ≤ 0.001

aThe lowest genotoxic concentration was the lowest concentration factor of the HIWATE sample in the concentration−response curve that induced
a statistically significant amount of genomic DNA damage as compared to the negative control. bThe SCGE 50% Tail DNA value is the HIWATE
sample concentration factor determined from a regression analysis of the data that was calculated to induce a 50% SCGE Tail DNA value. The 50%
SCGE Tail DNA value error term was calculated as ∑X̅SE.

cr2 is the coefficient of determination for the regression analysis upon which the SCGE %
Tail DNA value was calculated. dThe degrees of freedom for the between-groups and residual associated with the calculated F-test result and the
resulting probability value.

Figure 2. (A) Log−linear plot of the concentration−response curves
of 11 HIWATE samples illustrating CHO cell acute (4 h) genotoxicity.
(B) The distributions of the CHO cell genotoxic index values for each
HIWATE sample.

Environmental Science & Technology Article

dx.doi.org/10.1021/es3024226 | Environ. Sci. Technol. 2012, 46, 12120−1212812124 328



the genotoxic index value as 50% Tail DNA−1 × 104 for each
sample (Figure 2B; Table S2, SI).
Correlation of Toxicology, Chemistry, and Epidemi-

ology. To investigate correlations between DBP occurrence
and DBP classes with mammalian cell toxicity, we applied a
Pearson’s Product Moment statistical test.38 The cytotoxic
potency index values statistically significantly correlated with
the number of identified DBPs (r = 0.76; P ≤ 0.005, Table 5)

and the level of 21 target DBPs (r = 0.77; P ≤ 0.006, Table 2).
The genotoxic potency index values were not correlated with
either of these metrics or with any DBP chemical class (Table 2
and Table 5). Interestingly, the cytotoxicity and genotoxicity
indices indicated a good correlation (r = 0.74; P ≤ 0.009). The
cytotoxic potency index showed a good correlation with the
U.S-regulated DBPs (r = 0.78; P ≤ 0.006) and unregulated
DBPs (r = 0.60; P ≤ 0.05; Table 2).
Cytotoxicity was significantly correlated with the relative

concentrations of the following DBP classes: THMs (r = 0.74;
P ≤ 0.01), haloacids (r = 0.75; P ≤ 0.008), other monoacids (r
= 0.68; P ≤ 0.021), halodiacids (r = 0.80; P ≤ 0.003),
haloamides (r = 0.68; P ≤ 0.021), haloaromatics (r = 0.64; P ≤
0.035), brominated (r = 0.68; P ≤ 0.022), chlorinated (r = 0.78;
P ≤ 0.005), and iodinated (r = 0.82; P ≤ 0.002) DBPs (Table
6). There were no statistically significant correlations with
genotoxicity and the above DBP classes, although there were
associations or trends in relationships between genotoxicity and
the relative concentrations of haloacids (r = 0.54; P = 0.088),
haloaromatics (r = 0.52; P = 0.103), chlorinated (r = 0.56; P =
0.073) and iodinated (r = 0.53; P = 0.093) DBPs (Table 6). It
should be noted that some highly polar components might have
been missed by GC/MS and this may explain, in part, the
reduced correlation seen with the genotoxicity data and
analytical chemistry of the water samples. Recently several

papers have been published on novel methods to detect polar
iodinated/brominated DBPs.47−49

Epidemiology results on water DBPs and birth outcomes
from Lithuania, Spain and France were recently published50−52

and the present analysis included water samples from the cities
covered in those studies. An expanded discussion of the
associations among the epidemiology studies and this work is
presented in the Supporting Information (Table S3). It should
be noted, however, that the drinking water samples for the
epidemiologic analyses and the current analytical chemical and
toxicological evaluations were not collected at the same time.
Existing epidemiological studies on birth outcomes including
those in the HIWATE project, have evaluated a limited number
of DBPs (usually only THMs) through environmental analyses
of drinking water or, in the case of the French study,52 through
an evaluation of biomarkers of haloacetic acid metabolites in
urine. The analyses of water toxicity presented in this paper
were limited in number due to their complexity, but they
provide an overall evaluation of differences of toxicity in
different geographic areas. It is the first time that this evaluation
was done to specifically correspond with areas examined in
epidemiological studies. Expanding the chemical and toxico-
logical characterization of water samples may enhance the
resolving power of epidemiological investigations and the
evaluation of dose−response relationships. In addition, the
relationship between the analytical chemistry, quantitative in
vitro toxicology, and the epidemiology may provide additional
mechanistic evidence on potential health effects of water DBPs.
This paper focused on the relationship of the occurrence and

concentration of DBPs with mammalian cell toxicity. The range
of the number of DBPs identified and their levels reflect the
diverse collection sites, different disinfection processes, and the

Table 5. Description of Each HIWATE Sample, DBPs
Identified and Gross Correlation with the Rank Order of
CHO Cell Cytotoxicity and Genotoxicitya

sample
number

number
of

identified
DBPs

rank order of
number of
identified
DBPs

rank order of
cytotoxic
potency
indexb

rank order of
genotoxic
potency
indexc

HIWATE 1 86 1 2 4
HIWATE 2 76 5 3 5
HIWATE 3 85 2 1 6
HIWATE 4 41 7 3 2
HIWATE 5 13 11 11 11
HIWATE 6 18 10 10 9
HIWATE 7 83 3 5 3
HIWATE 8 77 4 8 10
HIWATE 9 45 6 7 7
HIWATE 10 41 7 6 1
HIWATE 11 40 9 8 8

aCorrelation with the rank order of CHO cell cytotoxicity: r = 0.78 (P
≤ 0.005). Correlation with the rank order of CHO cell genotoxicity: r
= 0.52 (P = 0.105). Rank order where 1 is the highest response and 11
is the lowest response. bThe CHO cell cytotoxic potency index value is
in arbitrary units and the value corresponds to (LC50

−1 × 103) for each
HIWATE sample. cThe CHO cell genotoxic potency index value is the
reciprocal HIWATE sample concentration factor that was calculated to
induce a 50% SCGE tail DNA value ×104 and is presented in arbitrary
units.

Table 6. Pearson Product Moment Correlation Analyses of
the Relative Concentrations of Each DBP Group Versus
CHO Cell Chronic Cytotoxicity or Acute Genotoxicity

relative
concentration of
DBP classa

cytotoxic potency index
valueb(LC50

−1 × 103)

genotoxic potency index
valuec (50% tail DNA−1 ×

104)

THMs r = 0.74 r = 0.45
P ≤ 0.010 P = 0.164

haloacids r = 0.75 r = 0.54
P ≤ 0.008 P = 0.088

other monoacids r = 0.68 r = 0.42
P ≤ 0.021 P = 0.201

halodiacids r = 0.80 r = 0.40
P ≤ 0.003 P = 0.221

haloamides r = 0.68 r = 0.45
P ≤ 0.021 P = 0.170

haloaromatics r = 0.64 r = 0.52
P ≤ 0.035 P = 0.103

brominated DBPs r = 0.68 r = 0.46
P ≤ 0.022 P = 0.154

chlorinated DBPs r = 0.78 r = 0.56
P ≤ 0.005 P = 0.073

iodinated DBPs r = 0.82 r = 0.53
P ≤ 0.002 P = 0.093

aRelative concentration is defined as the integrated area for each
chromatographic peak summed for each DBP chemical class. bThe
CHO cell cytotoxic potency index value corresponds to (LC50

−1 ×
103) for each HIWATE sample. cThe CHO cell genotoxic potency
index value is the reciprocal HIWATE sample concentration factor
that was calculated to induce a 50% SCGE tail DNA value ×104.
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different characteristics of the source waters. CHO cytotoxicity
was well correlated with the numbers of DBPs identified and
the levels of DBP chemical classes. Although there was a clear
difference in genotoxic responses, these data did not correlate
well with chemical analyses of the HIWATE samples. Thus, the
agents responsible for the genomic DNA damage observed in
the HIWATE samples may be due to unresolved associations of
combinations of identified DBPs, unknown emerging DBPs
that were not identified, or other toxic water contaminants.
We are continuing to compare the epidemiology with the in

vitro toxicity and analytical chemistry analyses. Future study
will investigate the possible association between chronic
cytotoxicity, acute genotoxicity, multivariate comparisons of
identified DBPs and epidemiology across the entire HIWATE
program. We plan to compare other in vitro and molecular
toxicity metrics and rates of adverse pregnancy measurements.
Finally, we propose to determine the contribution of source
water, and disinfection chemistry to the observed toxicity and
epidemiology results and develop solutions to protect the
public health and the environment.
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APPENDIX C 

Repeat questionnaire study invitation package (participant information sheet, invitation letter, 

recruitment form, water questionnaire) 



PLEASE TURN OVER  

Participants’ Information Sheet:  
A study about tap water and how babies grow 

and develop before birth 

This information sheet gives details of a study which has been set up within 
the Born in Bradford project and which you are invited to join.  Please take 
some time to read the following information carefully. 

 What is this study about?
This study is about the disinfection of our tap water with chlorine, and whether by-
products created by this disinfection process might affect babies’ growth and 
development before they are born.  Disinfection of our tap water is essential to kill 
germs and prevent us from getting sick from waterborne diseases, but our work 
hopes to learn more about possible health effects of disinfection by-products. 

In the BiB questionnaire you completed a few weeks ago, you may recall that you 
were asked questions about how much water you drink, and how often you shower 
and bathe.  Those questions were part of our research into this subject. 

This study looks at your water use over the third trimester of pregnancy (i.e. 28th 
week of pregnancy until delivery), in order to investigate the possible effects of 
disinfection by-products in tap water on babies’ growth during this important stage of 
your pregnancy.  

 Why is it important to do this research?
We are all are exposed to tap water, through drinking, eating and washing, therefore 
we may all be exposed to the disinfection by-products that exist in water.  With so 
many people potentially exposed to these by-products, it is very important that we 
investigate any possible health effects that they may have. 

It is also really important to investigate babies’ growth and development, because we 
know that low birth-weight is associated with poorer health later in life.  If we can 
learn what factors contribute to low birth-weight then we can improve a baby’s 
chance of a healthy start to life. 

 What advantages are there to taking part?
You get to be part of a very select group of mothers in the BiB study who will be 
studied in greater detail.  The main advantage of taking part is that you will be 
helping us to understand more about how the water we drink and use might affect 
babies during pregnancy.  You may also find that you enjoy taking part in research 
that could help mothers and babies in the future. 

 What will I have to do if I decide to take part?
It should take you about 10 minutes, in your own time, to fill out the questionnaire 
and recruitment form, seal them in the prepaid and pre-labelled return envelope we 
have sent you, and put it in the post to us at your nearest post box or post office.  We 
ask you to do this once between your 30th and 33rd week of pregnancy, and again 
once between your 36th and 39th week of pregnancy. 
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Frequently Asked Questions 

 Why do you need to know if I am currently working, and where I work? 
We need to account for which part of town the drinking water you use at work comes from.  If 
you are working in a different part of town during the day from where you live, we need to 
know in order to correctly estimate the tap water you are drinking.  

 Why do I need to fill out two questionnaires? 
We are looking at how your water use changes over your last trimester of pregnancy.  The 
BiB questionnaire you have completed collected information about your water use during the 
first 2 trimesters of pregnancy.  We would now like to repeat this questionnaire both earlier 
(between weeks 30-33 of pregnancy) and later on (between weeks 36-39) in your third 
trimester of pregnancy.  

 Should I stop drinking tap water – is it unsafe for my baby? 
You should carry on doing things as you usually do.  We do not yet know if the disinfection 
by-products in water affect babies’ growth in utero; we are investigating many potential 
factors that may contribute to low birth-weight, disinfection by-products in tap water are just 
one of those factors. 

 What if I change my mind and want to withdraw from the study? 
You are free to change your mind and withdraw from the study at any time.  If you decide to 
withdraw, you should let Susan Edwards know either by telephone or e-mail.  Whatever you 
decide your medical care will not be affected in any way. 

 What will happen to the information you collect? 
Information will be stored for use by researchers from the Born in Bradford project and from 
Imperial College London.  All the information which is collected about you during the course 
of the research will be kept strictly confidential.  Any information about you will have your 
name and address removed so that you cannot be recognised from it.  All the results of the 
study will be presented on a group basis, no individuals will be identified. 

 How do you ensure confidentiality? 
All the information we collect about you will be stored in strict confidence, as is required by 
law in the Data Protection and Human Tissue Acts.  A personal ID number will be the only 
way the information can be linked to you. 

 How can I get to know the findings of the project? 
The general findings of the project will be published in scientific journals.  

 Who is organising and funding the research? 
The research is organised by the Born in Bradford study and Imperial College London.  It is 
funded by the MRC (Medical Research Council) and the HiWATE project (Health Impacts of 
Long-Term Exposure to Disinfection By-Products in Drinking Water), which is funded by the 
6th Framework Programme of the European Union.   

 What if I have any questions or problems?  
You can contact the study researcher, Susan Edwards, if you want to ask any questions 
about the study.  If you have any questions about your general health or pregnancy, you 
should contact your doctor, midwife or health visitor. 

Susan Edwards 
Imperial College London, Department of Epidemiology and Biostatistics 
St Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK 
 Tel: 020 7594 3285     Mob: 0783 326 1680   E-mail: s.edwards10@imperial.ac.uk 
 

Thank you for reading this supplementary information! 
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  TURN OVER PLEASE 

 
 

 

 
Name 
Address 

 

Bradford, Date 

 

 

 

Dear, 

 

The Born in Bradford team, in collaboration with researchers at Imperial College in 

London, invite you to join a small study which has been set up within the Born in 

Bradford project.  

 

Participation should take less than 10 minutes of your time, and can be achieved within 

the comfort of your home.  Your participation is completely voluntary.   

 

We are studying whether the water we drink in Bradford affects the health of our babies 

at birth.  We are particularly interested in learning more about how much water women 

drink, how long they spend showering/bathing/swimming when they are pregnant, and if 

this changes over the course of pregnancy.  

 

Please help us in this important research by completing and returning to us the following 

two items within the next few days: 

1. the enclosed yellow questionnaire on your water consumption and usage 

between your 30
th
 and 33

rd
 week of pregnancy, and 

2. the enclosed green recruitment form. 
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Included in this invitation pack is a Freepost return envelope (already addressed with 

postage already paid for so you do NOT need a stamp).  After completing the yellow and 

green forms, please seal them in the envelope provided and put it in the post to us at 

your nearest post box or post office.  We guarantee that your information will be kept 

absolutely confidential. 

 

In a few weeks time, we will send you another identical questionnaire asking you to 

complete the exact same exercise. This will provide us with information on your water 

use later on in your pregnancy, between your 36
th
 and 39

th
 week of pregnancy.  Please 

contact us if you do not wish to receive this repeat questionnaire. 

 

We have enclosed a Participants’ Information Sheet, and list of Frequently Asked 

Questions, to explain the study in more detail and answer your questions.  Please do 

not hesitate to contact us with any further questions you may have. 

 

We hope that you find this information interesting, and that you will agree to help us 

conduct this important research about the environmental health of our families. 

 

We thank you tremendously for your time in helping us better understand water use 

patterns during pregnancy.  

 

 

Yours Sincerely, 

 

Susan Edwards & Research Team  

 
Imperial College London 
Department of Epidemiology and Biostatistics 
St Mary's Campus, Norfolk Place, Paddington, London, W2 1PG, UK 
 Tel:     020 7594 3285 
 Mob:   0783 326 1680  
E-mail: s.edwards10@imperial.ac.uk 

 
Born in Bradford 
Bradford Institute for Health Research 
Bradford Royal Infirmary 
Duckworth Lane, Bradford, BD9 6RJ, UK 
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FORM CONTINUES ON THE NEXT PAGE 
PLEASE TURN OVER  

Recruitment Form (weeks 30-33) 
 
Title of Project: BiB Water Use Study 

 

Name of Researcher: Susan Edwards 

BiB Study ID:    
 

Repeat Questionnaire Study ID:    
 

 
Participant’s information HALEY SMITH 

8 ASPREY DRIVE 
ALLERTON 
BRADFORD 
BD15 7TX 

 
Today’s Date 

 

      Day    Month       Year 
 

 
 Week of pregnancy you are in  

 

 
                                weeks 

 

 
Date of Birth 

 

      Day    Month       Year 
 

Have you moved address since 
you enrolled in BiB? 

 
Yes    /    No 
 

If yes, what is your new address? 
 

Flat/House No.: 
 

Street: 
 

City/County: 
 

Postcode: 
  

 
 
 
 

 
What was the date of your move? 

 

      Day    Month       Year 
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Are you currently a full-time student? 

   

 
Yes    /    No 
 

 
Are you currently working?   

 
Yes    /    No 

 
If yes, how many days in a typical recent 

week do you go to work?   
(enter 0 if you work mainly at or from home) 

  

 
 
No. of days:  
 

 

If you are working, what is the address 
of your main place of work? 

Building Name or No.: 
 

Street: 
 

City/County: 
 

Postcode: 
 

 
 
 
 
 

Are you currently on maternity leave?   
 
Yes    /    No 
 

 
If yes, since what date have you been on 

maternity leave? 
   

      Day    Month       Year 
 

Are you currently on sick leave? 
   

 
Yes    /    No 
 
 

 
If yes, when did you start sick leave? 

   

      Day    Month       Year 
 

 

After completion, please seal this form (along with the yellow questionnaire) in the envelope 
provided and put it in the post to us at your nearest post box or post office: Born in Bradford, 
Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, 
BD9 6RJ, UK. 
 

 

Thank you! 
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QUESTIONNAIRE CONTINUES ON THE NEXT PAGE 
PLEASE FLIP OVER  

Title of Project: BiB Water Use Study BiB Study ID:       

Name of Researcher: Susan Edwards Repeat Questionnaire Study ID:     (week 30-33) 

   
TODAY’s DATE: ________________ 

 
W1.  On a typical day in the past week of your pregnancy how much of the following did you drink?  

(fill in no. of glasses/cups per day;  1 glass is 200ml, 1 cup is 200ml, 1 mug = 2 cups) 

 at home  at work/study elsewhere 

1a. Tap water Glasses per day:  Glasses per day:  Glasses per day:  

1b. Bottled water 
(includes water cooler) 

Glasses per day:  Glasses per day:  Glasses per day:  

1c. Tea (any sort) Cups per day:  Cups per day:  Cups per day:  

1d. Coffee Cups per day:  Cups per day:  Cups per day:  

1e. Squash (including 
any other drinks made 
with tap water) 

 
Glasses per day: 

  
Glasses per day: 

  
Glasses per day: 

 

 
W2.  Did you filter the water you drink at home during the past week? (cross ONE box only) 

     Yes  No  I don’t know 
 
W3.  Did you filter the water you drink at work during the past week? (cross ONE box only) 

       Yes  No  I don’t know    I was not working  
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W4.  In the past week of your pregnancy, how often and for how long did you undertake the following? (if you do not do any, then fill in 0) 

Times per week Minutes each time 

4a.  Shower        

4b.  Bath        

4c.  Swim        

4d.  Do you have a shower installed at home? 
      Yes  No   

4e.  Do you have a bath installed at home? 
      Yes  No   

 
W5.  Do you think that your overall water use habits have changed since you completed the last questionnaire, upon 

enrolment to BiB?  (cross ONE box only) 
     Yes  No   

 
W6.  Do you think that the following specific water use habits have changed since you completed the last questionnaire? 

6a.  Your tap water drinking habits?  (cross ONE box only) 
      Yes  No   

 
6b.  Your showering habits?   
      Yes  No   

 
6c.  Your bathing habits?   
      Yes  No   

 
6d.  Your swimming habits?   
      Yes  No  

 
After completion, please seal this form (along with the green recruitment form) in the envelope provided and put it in the post to us at your nearest post 
box or post office: Born in Bradford, Bradford Institute for Health Research, Bradford Royal Infirmary, Duckworth Lane, Bradford, BD9 6RJ, UK. 
 

Thank you for your time! We couldn’t do this research without your help! 
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