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Design and evaluation of a case-based system
for modelling exploratory learning behaviour of

math generalisation
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Abstract—Exploratory learning environments (ELEs) promote a view of learning that encourages students to construct and/or explore
models and observe the effects of modifying their parameters. The freedom given to learners in this exploration context leads to a
variety of learner approaches for constructing models and makes modelling of learner behaviour a challenging task. To address this
issue, we propose a learner modelling mechanism for monitoring learners’ actions when constructing/exploring models by modelling
sequences of actions reflecting different strategies in solving a task. This is based on a modified version of case-based reasoning for
problems with multiple solutions. In our formulation, approaches to explore the task are represented as sequences of simple cases
linked by temporal and dependency relations, which are mapped to the learners’ behaviour in the system by means of appropriate
similarity metrics. This paper presents the development and validation of the modelling mechanism. The model was validated in the
context of an ELE for mathematical generalisation using data from classroom sessions and pedagogically-driven learning scenarios.

Index Terms— Intelligent/ Adaptive learning systems, learner modelling, case-based reasoning, mathematics, evaluation.
F

1 INTRODUCTION

THIS paper describes the development and validation of
a user model for an Exploratory Learning Environment

(ELE) allowing diagnosis during a task rather than at the end
of it; to this end, a case-based reasoning inspired approach is
used. The link between pedagogical rationale and modelling
process is highlighted, including how pedagogy informs the
choice of modelling technique and its validation.

ELEs promote constructivist learning [1], allowing learn-
ers to explore and learn from constructing and exploring
models. Deep conceptual and structural knowledge emerges
from this way of learning [2], being particularly suitable for
domains that allow multiple solutions or domains whose
understanding would be facilitated by having different per-
spectives on the same phenomena [3].

Simulations [4], [5] and cognitive tools [6] have been
used to support exploratory learning. In computer simu-
lations, models of a system or process are created and/or
explored [2]; learners typically change the values of the
input variables of the simulator and observe the results in
the output variables of the simulated models, thus discover-
ing the characteristics of the domain underlying the sim-
ulation. Several processes were identified for exploratory
learning [2], [7]: hypothesis generation, experiment design,
prediction and data analysis. Cognitive tools have been
proposed to support learners with some of these processes.

Despite having features that benefit learning, ELEs pose
challenges for learners and their effectiveness is affected by
learners’ activity level [8]. Research shows that learners have
difficulties with choosing the right variables [7], making
predictions and interpreting data [9], and generalising the
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results [10]. Exploratory learning without guidance and
support seems to be less effective than more constrictive en-
vironments, where step-by-step guidance is provided [11].

In this paper, we present an approach for identifying
when such difficulties occur through monitoring learners’
interactive behaviour. The aim is to model learners’ pro-
gression during task exploration, build a model of their
knowledge1 and store a history of their learning trajectory.
This has been developed in the context of eXpresser, an ELE
for the domain of mathematical generalisation. To meet this
aim the work in the paper is organised as follows:

1) investigate what aspects of a learner’s activity are to be
monitored to assess the learner’s progress within a task
in eXpresser (the analysis process);

2) find an appropriate way to represent this knowledge
and a mechanism for identifying these aspects when
the learner is using the system (the mapping process);

3) provide evidence of the identification mechanism’s va-
lidity by means of scenario-based validation and real
data from classroom sessions using eXpresser, and from
subject experts (validation).

This paper presents unpublished details of our approach
for designing and evaluating the learner model focusing on:
(a) a revised list of pedagogically-driven scenarios; (b) the
evaluation of the modelling mechanism with domain ex-
perts; (c) outlining the role of pedagogy and system design
in informing the choice and details of the modelling tech-
nique and its evaluation. The role of the learner modelling
mechanism in supporting feedback prioritisation has been
reported in [12], [13], [14], and a preliminary list of learning
scenarios was mentioned in [15]. Issues of maintenance and
enrichment of the knowledge representation in the system

1. This is different from the typical meaning of knowledge where
students learn domain-related concepts and their knowledge of these
concepts is assessed through tests. In our context, knowledge refers to
approaches to individual tasks rather than concepts of the domain.
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over time were discussed in [16], [17], [18], and details on the
overall methodology can be found in [19]. We argue that the
proposed approach is particularly suitable for exploratory
tasks and can offer a good balance between modelling under
uncertainty and dealing with a wide solution space.

Section 2 overviews learner modelling in ELEs and Sec-
tion 3 introduces mathematical generalisation with eXpresser.
Section 4 covers the analysis process (conceptual model and
learning scenarios), Section 5 presents the mapping process
(data representation and modelling mechanism), Section 6
covers the validation of the approach and the subsequent
sections discuss the results and conclude the paper.

2 LEARNER MODELLLING IN ELES

Exploratory/open/discovery/inquiry learning environ-
ments are characterised by freedom and encourage learners
to explore the learning domain rather than being guided in
the structured manner typically used by Intelligent Tutoring
Systems (ITS). In ITS, the learner is typically guided towards
the solution of a problem, with clear steps to be followed. In
ELEs, there is no linear structure and often there are several
solutions to a problem that can be reached through various
combinations of steps, which are not explicitly represented
in a domain or solution space model. This different way of
interaction requires a different approach for learner mod-
elling compared with the traditional ITS approaches.

In the past decade there has been a significant growth
in the development of exploratory environments used in
education, of which some recent ones are: the Crystal Is-
land educational game [20], BioLogica [21], [22], DC Circuit
Construction Kit [23] and Fraction Lab [24].

Despite the increased numbers of ELEs, there are very
few that employ user/learner modelling. A learner model
is a representation of a learner and consists of data about
the learner or about what the learner does using the system.
Typically, a learner model stores data about a learner’s
knowledge, preferences, goals, tasks and interests [25].
Learner modelling is the process of generating a learner
model and typically includes three tasks [26]: (a) learner
diagnosis: observing and interpreting user’s behaviour or
preferences and updating the model; (b) model maintenance:
encoding and integrating the information in the model; (c)
model employment: the usage of the model for various pur-
poses, such as adaptive and personalised feedback, support
for collaboration and support for the teacher.

In our work, learner diagnosis involves unobtrusive
observations of user behaviour and its interpretation; we
use information which is either collected directly by unob-
trusive observations of the user behaviour (e.g. landmarks
mentioned later belong to this category) or inferred through
analysis (e.g. similarity-based technique). Model employ-
ment is discussed only in terms of what information from
the learner models can be used for feedback purposes or
informing other pedagogical actions such as adapting the
interface and altering the tasks given.

Although there are a variety of intelligent learning en-
vironments that use learner modelling, there are only few
reports in the literature that describe research in the area of
learner modeling in ELEs: (a) clustering and association rule

mining were used to identify an optimal representation of
learner behaviour for circuit construction [23], (b) Bayesian
networks were used for a mathematical functions do-
main [27] and (c) a neuro-fuzzy system is used for student
diagnosis in a physics domain [28]. The first one used a
data-driven approach to investigate the trade-offs between
low and high levels of detail in the representation on users’
interactions. The second approach uses a “classic” overlay
model approach and discusses the difficulty of identifying
what to model and of diagnosing the (in)correctness of user
actions. The third approach employs expert knowledge from
physics teachers which were encoded as fuzzy sets and
rules; when the teachers’ knowledge was not well-defined,
practical examples were used to train a neural network to
represent the expertise reflected in those examples.

Unlike prior research, our approach operates during task
execution in the sense that it processes sequences of user
data, improving learner’s diagnosis on-the-fly as more evi-
dence is collected (see Section 6.1); this is different from the
way ITS provide feedback during problem-solving and it is
further discussed in Section 7. In addition, our approach and
its evaluation are informed by pedagogical considerations.

3 LEARNING WITH eXpresser
In this section, eXpresser is described, with details about
the target users and the types of tasks they are asked to
solve. We highlight how the system aims to address known
problems in learning mathematical generalisation.

The tasks in eXpresser are about identifying structural
relationships that underpin figural patterns [29], which are
standard in the English mathematics curriculum for Grades
7 to 9 (11 to 14 year olds). Two examples, including the task
instructions, typically given to students to do in class using
pen and paper are given in Fig. 1 [30]. The students tend
to think in terms of a specific pattern instead of thinking
generally, which is partly attributed to the static nature of
the figures [30] and partly to the use of the word any in the
examples given in Fig. 1, and the link between ‘any value’,
i.e. the general, and a particular value, i.e. the specific [30].
To overcome this, in eXpresser the task figural patterns are
animated when presented to students.

eXpresser (Fig. 2) was designed for classroom use, provid-
ing a library of tasks and tools for teachers that enable them
to see how students are progressing [30], [31]. Tasks can
be set up by the teacher: the students are asked to construct
models, i.e. structural descriptions of figural patterns [30] and
algebraic rules that correspond to those models.

Fig. 2 illustrates the system, the property list of a pattern
(i.e. a shape) linked to, and thus dependent on another

Fig. 1. Examples of typical curriculum tasks.
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Fig. 2. eXpresser screenshots: (1) left – the toolbar, the student’s world and the general world; (2) top right – the property list of a pattern; (3) bottom
right – the corresponding rule. The text and constructions within the dashed lines are added for clarity; they are not part of the interface.

pattern, and a rule. The left screenshot includes: (a) the stu-
dents’ world, where the students build their constructions;
(b) the general world displaying the same construction with
a different value for the variable(s) involved in the task
(placed in the area ‘I need to vary’ in both worlds), and
where students can check the generality of their construc-
tion by animating their pattern (using the Play button).
These spaces allow the learner to work on a specific case (in
the student’s world) ‘with an eye’ on the general (in the general
world). The property list of a pattern, i.e. a shape constructed
in eXpresser, includes the following properties: iterations,
move-right, move-down and colouring; to define a pattern,
values need to be given for each property. A pattern can
vary in complexity from one tile to the complete model.

We use the task in Fig. 1(a), called stepping-stones, to
illustrate one of many ways in which a student could solve
this task – see the student’s world in Fig. 2; the structure
inside the dashed line rectangle is not displayed by the
system in the normal course of the task but it is inserted
here to illustrate the components of the construction and
how this was created by the student. The student created
a red (lighter colour) tile, which is the building-block (i.e.
the basic unit of a pattern) for the stepping stones. The
property list of a single tile includes the following values:
1 for iterations, 0 for move-right, 0 for move-down and 1
for colouring. To create the pattern of red tiles the students
changed the values in the property list to: 3 for iterations,
2 for move-right (i.e. each tile is places 2 squares after the
position of the previous one, including the square where
the previous one is placed), 0 for move-down and 3 for
colouring. He created a variable for iterations named ‘red’
– for this a T-Box is used, i.e. a representation that allows a
variable to be displayed with its name only, its value only or
both (as in A© in Fig 3). He also created 5 blue (darker colour)
tiles which he grouped to construct a C-shaped building-
block and repeated it for the number of times specified by
variable ‘red’ (i.e. 3) by dragging the T-box from the iteration
property of the red pattern into the iteration property of the
C-shape pattern ( A©). He specified that each building-block
should be placed 2 squares to the right ( B©) and 0 squares
down ( C©), and that 5 times the value of ‘red’ is needed to

colour the pattern ( D©). He added 3 blue tiles in a vertical
line to complete the construction (a step-by-step illustration
of a similar construction is displayed in Table 1, Section 4).
He defined the rule 5 × red + 3, by adding the number of
tiles in the C-shaped pattern to the number of tiles of the
vertical line at the end of the C-pattern, thus simultaneously
constructing the model and analysing it.

The multiple representations allowed by T-boxes scaffold
the route from numbers to variables by emphasising that vari-
ables represent values, but also, that the values do not need
to be known. By using a T-box to define the values of several
properties, these properties are made dependent, i.e. when
the value in a T-box changes in one property, it also changes
in the other one(s). For example, if the student changes
the value of variable ‘red’ from 3 to 4, the C-shape pattern
will be changed to have value 4 for iterations and value 20
(5 × red) for colouring. Through these links/dependencies,
a model can be made general. The prominent “T” buttons
are due to their importance in creating general constructions
and are a result of design studies with pupils and teachers.

The student can animate the model with the Play button,
and reflect on his derived expressions to validate the generality
of both the model and the rule. If all the links are present, the
model should be displayed correctly for different numbers
of stepping stones, as in the top figure in the general world
in Fig. 2, where ‘red’ has the value of 8. If in the C-shape
pattern the value of 3 was used in place of the ‘red’ variable
(i.e. no linking to the red pattern), the model would look like
the bottom figure in the general world in Fig. 2, in which
only the stepping-stones pattern changes.

The example above is one of many possible solutions.
Although in its simplest form the rule is unique, there
are several ways to build the model (called strategies) and
infer a rule from its components – see Fig. 3. Another task
example is pond-tiling, requiring to find the number of tiles
to surround any rectangular pond – Fig. 4 shows the task
figure and several strategies for this task. This task is more
complex, involving two variables rather than one.

As illustrated, the space of solutions for these tasks is
large. Some strategies are used more frequently, and these
can be introduced in the system by teachers. To ensure other
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Fig. 3. Strategies for the stepping-stones task: (a) forward C; (b) HPar-
allel (horizontally parallel); (c) VParallel (vertically parallel); (d) Squares.

Fig. 4. (a) the pattern for the pond-tiling task ; Strategies: (b) ‘Area’; (c)
‘I’; (d) ‘+4’; (e) ‘-4’; (f) ‘Spiral’.

relevant strategies are added to the knowledge base of valid
solutions, we developed an approach which is described
in [16], [18] and extended in [17].

To distinguish between student solutions and the so-
lutions stored by the system, we refer to the former as
constructions and the latter as strategies.

4 ANALYSIS PROCESS: CONCEPTUAL MODEL
AND LEARNING SCENARIOS

This section describes the conceptual model developed
based on knowledge about the tasks and the way they
can be solved by interacting with the system, and outlines
pedagogical scenarios relevant for the learning process.

To illustrate the data generated as users work with
eXpresser, Table 1 presents a log file extract. This is crucial
in informing the choice of modelling technique, which must
diagnose what the learner is doing based on these data.

The table presents the actions of one student when solv-
ing the stepping-stones task using the ‘forward C’ strategy.
The corresponding constructions are also displayed, with
the pattern of the current step highlighted; for example,
Step 2 includes a construction with two tiles – the leftmost
one is highlighted and the corresponding part of the log
displays the information logged when that tile is created. To
avoid unnecessary repetition, some of the steps for building
one tile have only the first line from the log; the log details
are similar to the previous steps, with the only variation in
IDs of attributes/shapes and values of location coordinates.

Steps 1 to 6 and 10 to 12 illustrate simple patterns, i.e. one
tile. When a pattern is created, all its attributes are logged:
location coordinates (x and y), width, height, ‘move right’
(inc x), ‘move down’ (inc y), number of iterations, colour
and name (if one was given to it). Step 7 illustrates the
change of an attribute: the colour changed from green to
red. Step 8 illustrates a group; the attributes of the group
are displayed, as well as the list of shapes that are part of
the group. Step 9 illustrates the iteration of a pattern that is
a group – the new shape created by repeating the previously
created group is logged with all its attributes.

TABLE 1
Log extract

No Log entry Construction
15:05:21 - eXpresser log for ’BR199037’.

1

15:10:30-(Model1) Pattern Shape351 created.
15:10:30-’Att2562’ (’x’) has value ’13’.
15:10:30-’Att2563’ (’y’) has value ’3’.
15:10:30-’Att2564’ (’width’) has value ’1’.
15:10:30-’Att2565’ (’height’) has value ’1’.
15:10:30-’Att2581’ (’inc x’) has value ’0’.
15:10:30-’Att2582’ (’inc y’) has value ’0’.
15:10:30-’Att2568’ (’iterations’) has value ’1’.
15:10:30-’Att2566’ (’colour’) has value
’[r=0,g=255,b=0]’. (green)
15:10:30-’Att2561’ (’name’) has value ”.
15:10:30-’Att2567’ (’shape’)’ has ID ’Shape352’.

2 15:10:31-(Model1) Pattern Shape354 created.

3 15:10:31-(Model1) Pattern Shape357 created.

4 15:10:33-(Model1) Pattern Shape360 created.

5 15:10:34-(Model1) Pattern Shape363 created.

6 15:10:35-(Model1) Pattern Shape366 created.

7

15:10:35-(Model1) Object Shape366 selected.
15:10:38-(Model1) ’Att2676’ (’colour’)
has changed from ’[r=0,g=255,b=0]’ (green)
to ’[r=255,g=0,b=0]]’ (red).
15:10:38-Shape366 now has colour (red)

8

15:10:44-Pressable ’Group’ pressed.
15:10:44-(Model1) Group Shape369 created.
15:10:44-’Att2694’ (’x’) has value ’12’.
15:10:44-’Att2695’ (’y’) has value ’3’.
15:10:44-’Att2696’ (’width’) has value ’2’.
15:10:44-’Att2697’ (’height’) has value ’3’.
15:10:44-’Att2698’ (’colour’) has value ’null’.
15:10:44-’Att2693’ (’name’) has value ”.
15:10:44-Shape-1: Shape363.
15:10:44-Shape-2: Shape351.
15:10:44-Shape-3: Shape360.
15:10:44-Shape-4: Shape366.
15:10:44-Shape-5: Shape357.
15:10:44-Shape-6: Shape354.

9

15:10:49-Button ’Create horizontal’ used.
15:10:49-(Model1) Pattern Shape370 created.
15:10:49-’Att2700’ (’x’) has value ’12’.
15:10:49-’Att2701’ (’y’) has value ’3’.
15:10:49-’Att2702’ (’width’) has value ’24’.
15:10:49-’Att2703’ (’height’) has value ’3’.
15:10:49-’Att2845’ (’inc x’) has value ’2’.
15:10:49-’Att2846’ (’inc y’) has value ’0’.
15:10:49-’Att2706’ (’iterations’) has value ’12’.
15:10:49-’Att2704’ (’colour’) has value ’[null]’.
15:10:49-’Att2699’ (’name’) has value ”.
15:10:49-’Att2705’ (’shape’)’ has ID ’Shape369’.

10 15:10:51-(Model1) Pattern Shape599 created.

11 15:10:52-(Model1) Pattern Shape602 created.

12 15:10:53-(Model1) Pattern Shape605 created.

The log illustrates the data available to use for monitor-
ing students’ behaviour when solving a task. This was taken
into consideration for the design of the conceptual model,
which is presented in the next section.

4.1 Conceptual model
The interaction design of eXpresser offers a consistent and
coherent way of defining and solving tasks by its use of a
grid and constructions made from tiles. Essentially, every
task involves a model built from tiles to form various
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patterns. To find the rule corresponding to the model, links
between patterns need to be established. Consequently, the
construction part of tasks defined in eXpresser can be de-
scribed as a series of patterns with relations between them.

Based on this high-level description of tasks and the
logged data, a conceptual model was developed to describe
at conceptual level the constructions for eXpresser tasks
reflecting different strategies. It includes: (a) parts of the
constructions, i.e. patterns; (b) properties of each part; (c)
relations within and/or between parts (see details in [19]).

Based on the conceptual model, we investigated knowl-
edge representations and inference techniques suitable for
our aim, i.e. to allow diagnosis even with incomplete con-
structions. Case-based Reasoning (CBR) was identified as a
good technique, storing only relevant information (from the
conceptual model) and being able to diagnose learners even
if they have not completed a task (see Section 5).

4.2 Learning Scenarios

Different user behaviours in learning mathematical gener-
alisation were observed in trials with pupils. These were
analysed to identify aspects of pedagogical relevance in
the ways pupils solve tasks in eXpresser and helped form
categories of constructions that we call scenarios – see 1st
column of Table 2. Example constructions are shown in
column 2 and column 3 provides the corresponding ped-
agogical relevance, e.g. appropriate scaffolding. Stepping-
stone task examples were used; however, the scenarios were
developed based on different tasks.

Complete constructions can indicate if users demon-
strate learning behaviours leading to generalisation. In eX-
presser learners can build constructions in a specific or a
general way. A completely general construction has relations
between all its variable parts. For the construction in Fig. 2,
the variable parts are: the iterations and colouring of the
red pattern, and the iterations and colouring of the C-shape
pattern. The necessary relations for a general construction
are: (a) the iterations of the red pattern, the colouring of the
red pattern and the iterations of the C-shape pattern should
be defined by the same variable (called ‘red’ in our exam-
ple); (b) the colouring for the C-shape should be 5 times
the variable mentioned previously. If none of the variable
parts are linked, the construction is specific. If some parts

TABLE 2
Learning Scenarios.

Scenarios Examples Pedagogical Relevance
Complete Identify if the learner is working

with the specific or with the gen-
eral

Mixed Identify used strategies to guide
learners towards a particular one
should they have difficulties to
generalise

Non-
systematic

Guiding the user toward a sym-
metric strategy should they have
difficulties to generalise

Partial Guiding the learners by building
on the strategy they started with
should they be stuck or ask for help

Off-task Inform the teacher or take au-
tomatic actions that could pre-
vent/remedy this behaviour

are linked, while others are not, the construction is partly
general. Thus, the difference between specific, partly general
and completely general is in the presence of relations; no
difference can be observed by visually inspecting the construction,
but it can be observed by looking at the property lists of the
construction components.

We observed that learners first build specific construc-
tions and only when completing them they attempt to
make them general, especially at the very beginning of an
exploratory learning task, i.e. when they are in a “novice
state”. Moreover, in practice, after building a specific con-
struction pupils find it challenging to create the first link
between the components of that construction. Therefore,
detecting if the learners are working towards a specific
or a general construction is an important feature of the
modelling approach, particularly in two situations: (a) when
a learner makes the transition or ‘mental jump’ from a
specific to a (partly) general construction, so that help with
this transition can be provided if needed, and (b) when this
transition has been made with at least one element of the
construction (depending on the strategy, several parts of the
constructions need to be made general), but the learner is
unsure and reluctant to proceed without feedback.

When learners work with symmetric, ‘elegant’ construc-
tions generalisation is easier as the dependency and value
relations are the same for several components, facilitating
the transition to an algebraic-like rule. Learners, however,
use constructions reflecting mixed strategies, from now
on referred to as mixed constructions, and generalisation
becomes more difficult due to the added complexity of
having, for example, four different expressions in a rule
instead of two. Trials with pupils showed that although
some learners could generalise from such structures, most
learners faced additional difficulties. This relates to the so-
called “novice” approach, as pupils with some experience
take advantage of symmetry in their construction to gener-
alise. Thus, identifying mixed constructions has a threefold
pedagogical value: (a) support the learner in deriving a
general expression if their arithmetic abilities are good;
(b) guide the learners towards one of the strategies that
is reflected in their construction if the learners’ arithmetic
abilities are low and, therefore, the use of only one strategy
will facilitate deriving a general expression; (c) point out
that systematic and symmetric approaches are desirable.

Non-systematic constructions are partly made of ‘bits
and pieces’. Using these, without thinking if the solution
would work for any dimensions, is a learner behaviour
easily recognisable by tutors, which could also be auto-
matically detected. We call these behaviours landmarks, i.e.
particular difficulties in learning how to generalise. Another
landmark is making big groups of one-by-one tiles, which
also indicate learners’ lack of thinking about the struc-
ture. For some students, highlighting the structure could
be enough; others, however, may attempt to define rules
without changing the construction, which could potentially
confuse them. Both mixed and non-systematic constructions
can have components from two or more strategies. Non-
systematic constructions, however, can have components
from just one strategy, but always include ‘bits and pieces’.
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Identifying strategies in partial constructions is impor-
tant when learners are stuck or request help. Identifying
what strategy the learners are currently working with allows
feedback related to that particular strategy, as guiding them
towards other strategies has been shown to confuse learners.

The last scenario covers off-task behaviour, as an indi-
cator of other issues such as lack of challenging tasks, lack
of motivation or disliking of mathematics, the teacher or
the system. It is important to detect off-task behaviour as it
leads to poor learning [32], [33].

The scenarios could be considered equivalent to “correct
solutions”2 (i.e. complete general constructions) and several
“misconceptions” (i.e. all the other scenarios, except the off-
task one). The first three scenarios focus on generalisation
and how to address difficulties learners face with this do-
main. The fourth one is about helping learners reach one
of the first three scenarios, as some learners get stuck at
an early stage. The last scenario is about off-task behaviour,
which is a problem in many learning systems, but even more
so in ELEs due to the freedom of exploration [34].

5 THE MAPPING PROCESS: REPRESENTATION AND
DIAGNOSIS

This section presents our formalisation for knowledge rep-
resentation and the similarity metrics used for identifying
the strategies followed by learners in their constructions.

In CBR knowledge is stored as cases, typically including
a problem and a corresponding solution [35]. When a new
problem is encountered, the case base is searched for sim-
ilar cases and the solution is retrieved/adapted from one
or more similar cases. The CBR cycle includes four pro-
cesses [36]: (a) Retrieve similar cases to the current situation;
(b) Reuse the cases and adapt them to solve the current
situation; (c) Revise the proposed solution if necessary; (d)
Retain the new solution as part of a new case.

Although CBR has been used in a variety of contexts,
there is relatively little research using CBR for interactive
learning environments. For example, [37] used CBR for
legal reasoning, [38] used CBR and genetic algorithms
to construct an optimal learning path for each learner
and [39] used CBR within a case-based instruction sce-
nario. Moreover, there is very little research in the area
of CBR for user modelling, in areas such as blood sugar
level monitoring [40], management of experience [41] and
user context [42]. For learner modelling, CBR was used in
combination with a rule-based approach to model learners’
knowledge of programming; this is known as the ELM
(episodic learner modelling) approach [43]; also, [44] used
CBR in the learner modelling process and called this ap-
proach case-based student modelling. To the best of our
knowledge, there is no previous work in the area of user
modelling for ELEs inspired by Case-based Reasoning.

CBR is employed in our monitoring process as it offers
a flexible way to represent knowledge and can cope with
uncertainty, e.g. the case structure allows the flexible rep-
resentation of knowledge (including missing information)

2. This is the terminology used for a valid solution, although we
would describe these as “potential pathways towards a solution”.

and there is no need to obtain a perfect match to identify
what the learner is constructing in eXpresser. Unlike typical
CBR applications, we use a modified version of CBR to fit
our problem. In eXpresser the same problem has multiple
solutions and the aim is to identify which one is used by
the learner. To address this, each task has a case base of
potential pathways towards a solution (i.e. strategies or
composite cases). When a learner is building a construction,
a sequence of actions is transformed into a sequence of
simple cases, with each simple case corresponding to a
pattern that is a component of the construction; for example,
the construction illustrated in Fig 2 has 5 cases: the red tiles
pattern, the C-shape pattern and the 3 individual tiles. This
sequence of cases defines the learner’s construction (i.e. a
composite case) and is compared with all the strategies in
the case base for that task; the case base consists of complete
general strategies. To retrieve the strategy that is most similar
to the one used by the learner, appropriate similarity metrics
are employed, which are described further in this section.

The learner modelling mechanism uses just the retrieve
process of the CBR cycle and could be considered as a
form of similarity-based classification; however, other pro-
cesses of the CBR cycle are used to identify and store new
strategies [16] and to provide adaptive feedback [45]. Con-
sequently, for consistency with other work, the learner mod-
elling mechanism is reported as a CBR-inspired approach.

The following subsections present the knowledge rep-
resentation and the similarity metrics employed to identify
the most similar cases from the case base.

5.1 Knowledge Representation
A case is defined as Ci = {Fi, RAi, RCi}, where Fi is a
set of attributes, partly corresponding to the property list of a
pattern. RAi is a set of relations between attributes and RCi
is a set of relations between Ci and other cases respectively.
The set of attributes is defined as Fi = {αi1 , αi2 , . . . , αiN }.
The set Fi includes two types of attributes: numeric and
variables. The variables refer to different string values (i.e.
type) that an attribute can take. Some numeric attributes
are boolean, indicating whether a case is a group of pat-
terns, or can be considered in formulating a particular
strategy through a “part of strategy” function PartOfSu :
Ci → {0, 1}, PartOfSu = 1 if Ci ∈ Su and PartOfSu =
0 if Ci /∈ Su, where Su represents a strategy and is defined
further on. The complete list of attributes (i.e. 6) that have
a type (variable) and a value (numeric) is: width, height,
iterations, ‘move left’, ‘move right’ and colour. All except
the first two are from the property list of a pattern. The list
of attributes for 2 simple cases corresponding to step 1 (one
tile) and step 8 (the C-shape) in Table 1 are given in Table 3.
The first attribute is the colour, followed by 6 variables
storing the types and 6 variables storing the values; next, the
values indicate if the case is a group and the membership
to strategies. The set of relations between attributes of the
current case and attributes of other cases is represented as
RAi = {RAi1 , RAi2 , . . . , RAiM }, where at least one of the
attributes in each relation RAim ,∀m = 1,M , is from the set
of attributes of the current case Fi. Two types of relations
are used: dependency relations and value relations.
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TABLE 3
Knowledge representation for Steps 1, 8 and 12

Step 1
F1 {green, n, n, n, n, n, n, 1, 1, 1, 0, 0, 1; 13, 3; 0; 0, 0, 0, 0}
RA1 φ
RC1 φ

Step 8
F1 {green, red, n, n, n, n, n, n, 2, 3, 1, 0, 0, 5, 1; 12, 3; 1; 1, 0, 0, 0}
RA1 {no greens = 5 ∗ no reds}
RC1 φ

Step 12
N1(C) {C1, C2, C3, C4}
N1(RA) {iterations(C1) = no reds}
N1(RC)

{
Next(Ci) = Ci+1, Prev(Ci+ 1) = Ci, i = 1, 3

}
N1(LC) {x(Ci) = x(C1) + width(C1), i = 2, 4; y(C2) = y(C1) + 2,

y(C3) = y(C1) + 1, y(C4) = y(C1)}

A dependency relation (Dis ) is defined as (αik , αjl) ∈
Dis ⇔ αik = DEP (αjl), where DEP : αik → αjl for
αikand αjl which are attributes of cases i and j (where i = j
or i 6= j). This means that αik depends on αjl (if i = j,
k 6= l is a condition to avoid circular dependencies) (e.g.
the number of iterations of a case is linked to the colouring
of another case). The dependency relations are defined by
the learners through the use of T-boxes. A value relation
(Vis ) is defined as (αik , αjl) ∈ Vis ⇔ αik = f (αjl), where
αikand αjl are numeric attributes and f is a (linear) function
and could have different forms depending on context (e.g.
the iterations of a case are x times the iterations of another
case). For the examples in Table 3, the case corresponding to
Step 8 has a value relation refining the number of green tiles
(the C-shape) as 5 times the number of red tiles.

The set of relations between cases is represented as
RCi = {RCi1 , RCi2 , . . . , RCiP }, where one of the cases
in each relation RCij ,∀j = 1, P is the current case (Ci).
The relations between cases are defined based on time;
therefore, two time-relations are used: Prev and Next. A
Prev relation indicates the previous case with respect to the
current case, while a Next relation indicates the next case
with respect to the current case.

A strategy is defined as Su={ Nu(C),Nu(RA),Nu(RC),
Nu(LC) }, u=1, r , where Nu(Ci) is a set of cases, Nu(RAi)
is a set of relations between attributes of cases, Nu(RCi)
is a set of relations between cases, and Nu(LC) is a set
of location constraints. These location constraints have the
following form: xCi

=f(xCj
) and yCi

=f(xCj
), where x and

y are location coordinates, f and g are linear functions, and
Cj is a referential case (a reference for other cases).

The knowledge representation evolved from previous
work [13], [16], [46], [47]. Examples of translating learners’
actions into formal definitions are given in Table 3 for Steps
1, 8 and 12 of the log shown in Table 1: a simple case (not a
group), a simple case that is a group, and a composite case (a
user construction). The construction (Step 12) includes indi-
vidual simple cases, their relations and location constraints.

5.2 Similarity metrics

In CBR, retrieval is usually based on some metric that
assesses the closeness between cases [35]. Typically, the
attributes in the cases are numeric and therefore metrics for
numeric data are used. In our situation, the cases include
different types of data, each with different impact on the
similarity between cases. For case retrieval, four similarity
measures are defined:

(a) Numeric attributes - Euclidean distance: DIR =√∑w
j=v+1×(αIj − αRj

)2 (I and R stand for input and
retrieved cases, respectively);

(b) Variables: VIR =
∑v
j=1 g(αIj , αRj )/v, where g is defined

as: g(αIj , αRj ) = 1 if αIj = αRj and g(αIj , αRj ) = 0 if
αIj 6= αRj .

(c) Relations between attributes - Jaccard’s coefficient: AIR =
|RAI∩RAR|
|RAI∪RAR| . AIR is the number of relations between
attributes that the input and retrieved case have in com-
mon divided by the total number of relations between
attributes of the two cases;

(d) Relations between cases - Jaccard’s coefficient: BIR =
|RCI∩RCR|
|RCI∪RCR| , where BIR is the number of relations be-
tween cases that the input and retrieved case have in
common divided by the the total number of relations
between cases of I and R.
To identify the closest strategy to the one employed by a

learner, cumulative similarity measures are used:
(a) Numeric attributes - as this metric has a reversed mean-

ing compared to the other ones, i.e. a smaller number
means a greater similarity, the following function is
used to bring it to the same meaning as the other three
similarity measures, i.e. a greater number means greater
similarity: F1 = z/

∑z
i=1DIiRi if

∑z
i=1DIiRi 6= 0 and

F1 = z if
∑z
i=1DIiRi = 0;

(b) Variables: F2 = (
∑z
i=1 VIiRi)/z;

(c) Relations between attributes: F3 = (
∑z
i=1AIiRi)/y;

(d) Relations between cases. F4 = (
∑z
i=1BIiRi)/z.

where z is the minimum number of cases (from the user’s
construction and the stored strategy) and y is the number of
cases in R that have relations between attributes.

The use of heterogeneous metrics [48] is justified for
two reasons: (a) different types of data, i.e. numeric, string
and sets, call for different metrics and (b) the four cate-
gories (numeric, variables, relations between attributes and
relations between cases) are valuable for providing per-
sonalised feedback, e.g. if the learner needs to work on
the structure of the strategy or on the relations between
patterns. The overall similarity metric for strategies is:
Sim = w1 ∗ F1 + w2 ∗ F2 + w3 ∗ F3 + w4 ∗ F4, where F1 is
the normalised value of F1. To bring F1 in the same range
as the other metrics, i.e. [0, 1], we applied linear scaling to
unit range [49] using the function F1 = F1/z.

Weights are applied to the four similarity metrics to
express the central aspect of the construction, the structure.
This is mostly reflected by the F1 metric and to a lesser
degree by the F3 metric as the structure of a construc-
tion is also reflected in the relations between attributes
of component cases. The other two metrics (F2 and F4),
although important for the generality of construction and
the order of cases, respectively, have less impact on the
structure. Therefore, the values of weights were set as fol-
lows: w1 = 6, w2 = 1, w3 = 2, w4 = 1. This leads to the
range of [0, 10] for the values of Sim.

6 VALIDATION OF THE MODELLING MECHANISM

The validation of our modelling mechanism includes:
(a) low-level testing with a focus on the identification of
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various types of exploratory learning behaviour; (b) experts’
evaluation to compare the performance of the modelling
mechanism with the diagnosis from several domain experts.

The low-level validation focuses on the learner mod-
elling mechanism rather than the entire system, as our aim
is to evaluate the correctness of learner diagnosis, which is
not visible to the learners, rather than the feedback (based
on the diagnosis), which is visible to the learners. In an
evaluation of the whole system, if problems arise with
regard to feedback, it would not be possible to establish if
those problems arise from a faulty diagnosis or from other
issues such as feedback content, form or timing. Thus, the
two need to be evaluated separately. Consequently, here we
present the validation of the diagnosis mechanism.

Unknown test data were used from two classroom ses-
sions using eXpresser to solve the stepping-stones task, in
a secondary school in London. There were 18 Grade 7
students (11-12 years old) in each session (the same students
took part in both sessions) who were previously familiarised
with an earlier version of the software [50]. In addition, data
from several smaller studies with 2 to 5 pupils working on
the pond-tiling task were used. In total, 19 pupils partici-
pated in these studies; they were Grade 7 and 8, and 11 to
13 years old. In both the classroom sessions and the smaller
studies, the students spent 40 to 50 minutes on the given
task. The 36 logs from the 2 classroom sessions and the 19
logs from the smaller studies were used to test the strategy
diagnosis for the scenarios outlined in Section 4.2: gen-
eral/partly general/specific complete, mixed, non-systematic,
and partial constructions, and off-task behaviour.

As only one student had a partial construction by the
end of the session, to increase the data available for testing
partial constructions, the complete constructions logs were
used to extract “intermediate constructions”. We chose two
snapshots from 18 user complete construction employing
each of the stored strategies of the 2 tasks, i.e. 8 for stepping-
stones and 10 for pond-tiling (more details in the following
section). For all other scenarios, each log/construction was
assigned exclusively to one scenario.

The constructions from the logs were labelled with the
most similar strategy by one expert who watched the screen
capture for each of the constructions that were used for
testing. In the case of mixed strategies, the expert labelled
the construction with all the strategies that were relevant
for the particular construction and ranked them in order
of similarity. For example, a construction of the stepping-
stones task that had elements of the ‘HParallel’ and ‘VParal-
lel’ strategies had both labels and the expert specified which
of the two strategies was most similar; if the expert consid-
ered that the 2 strategies were equally represented in the
construction, ‘equally similar’ was used. The same process
was applied if elements from more than 2 strategies were
present in a construction. The labels (distribution in Fig. 5)
were compared with the output of the strategy identification
mechanism; the results are presented in Section 6.1.

In addition, we presented five experts with a selection
of constructions from the user studies reflecting situations
that are difficult to diagnose. For each user construction, the
experts were asked to rank three strategies in the order of

Fig. 5. Distribution of strategies according to the expert.

similarity to the user’s construction. These rankings were
then compared with the outputs of the modelling mecha-
nism; details and results are presented in Section 6.2.

6.1 Identification of strategies
This section presents the results on strategy diagnosis for the
scenarios described in Section 4.2. For each category, one or
more examples are presented and discussed, and statistics
for all tested constructions are given.
Complete constructions. These refer to complete construc-
tions built using one of several strategies. They could be
specific, general or partly general. The similarities between
specific and general user constructions for the stepping-
stones task and stored (general) strategies are shown in
Table 4 – the rows are the student solutions (as labelled by
the expert), the 1st column is the number of students per
solution and the rest of the columns are stored solutions.

The similarity values are between 1 and 10. A perfect
match is obtained for a complete general strategy: 10 when
the strategy has at least 2 cases; 9 when the strategy has just
one case, as in the ‘Squares’ strategy (due to no relations
between cases which has a maximum value of 1). Generally,
complete specific constructions have values greater than 8,
and complete partly general strategies have values between
8 and 10 (depending on the number of cases in the strategy
and the number of relations between them). The bold num-
bers in Table 4 indicate high similarities for specific complete
construction (values grater than 8) and perfect similarities
for complete and general constructions (values of 10 and 9).

All general (9), partly general (5) and specific construc-
tions (15) were identified successfully by the CBR approach.
Complete constructions (specific, partly general and gen-
eral) are easy to identify due to their structure; consequently,
the identification is successful in all cases.
Mixed constructions. For the stepping-stones task, only one
student built a mixed construction and did not generalise
it (no links between components) – see Fig. 6 and the

TABLE 4
Similarity metrics for complete constructions of stepping-stones task.
Constructions Freq. Forward C HParallel VParallel Squares
Forward C specific 3 9.33 2.18 2.33 1.66
Forward C general 1 10.00 2.51 2.83 2.66
HParallel specific 2 2.18 9.33 2.34 1.34
HParallel general 1 3.18 10.00 3.34 2.34
VParallel specific 2 2.33 2.34 9.33 1.48
VParallel general 1 3.33 2.84 10.00 2.48
Squares specific 1 1.66 1.34 1.48 8.33
Squares general 1 1.66 1.34 1.48 9.00
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Fig. 6. Combination of VParallel and HParallel strategies.

TABLE 5
Similarity of the construction in Fig. 6 to stored strategies

Forward C HParallel VParallel Squares
Fig. 6 construction 2.28 2.37 3.14 1.48

Fig. 7. Mixed constructions with: (a) three strategies (‘H’, ‘+4’ and
‘Spiral’; (b) 2 strategies (‘+4’ and ‘I’), of which one is dominant (‘+4’);
(c) 2 strategies equally similar (‘Spiral’ and ‘H’).

similarity metrics in Table 5. The construction is adequately
identified as most similar to the ‘VParallel’ and ‘HParallel’
strategies. On one hand, one could argue that this approach
is a solution in its own right. On the other hand, this solution
is not optimal, as some components of the construction can
be combined to achieve a more simple and elegant solution.
Simple, as well as elegant or systematic approaches, are
easier to generalise. This aspect is further discussed under
the following scenario, i.e. non-systematic strategies.

Nine mixed constructions from the pond-tiling task were
also tested and correctly identified. Six of the nine construc-
tions combined 2 strategies, while three had elements from
3 strategies. Three of the six constructions that mixed 2
strategies had a dominant strategy, while three were equally
similar to both strategies (see Fig. 7).
Non-systematic constructions. Learners sometimes use ‘bits
and pieces’ in their constructions, making generalisation
more difficult. They may start with such an approach and
gradually move towards a more systematic one; however,
they do not always replace all the ‘bits and pieces’ they
started with – see Fig. 8a; the overall approach corresponds
to the ‘HParallel’ strategy, but the top row of green tiles is
composed of ‘bits and pieces’: one row of six tiles plus one
tile; also, the row of six tiles is composed as a group of three
tiles repeated twice – see the property list in Fig. 8b.

For the student whose construction is presented in
Fig. 8a, the values of the similarity metric with respect to
stored strategies are shown in Table 6. The maximum value
reflects the similarity in structure to the ‘HParallel’ strategy;
however, the low value indicates the construction has parts
that do not entirely correspond to the ‘HParallel’ strategy.

All 10 tested non-systematic constructions had a ‘dom-
inant’ strategy with only one or occasionally two compo-
nents of the construction built in a non-systematic way and
all were identified as most similar to a stored strategy.
Partial constructions. For each strategy two partial con-
structions are illustrated in Fig. 9, corresponding to different
stages in the building process. They are essentially snap-
shots of learners’ constructions at different points in time,
where the first snapshot, corresponding to version 1 is taken
fairly early (and contains one component), while the second

Fig. 8. Construction with non-systematic parts: (a) the structure of the
construction; (b) the property list of the top component.

TABLE 6
Similarities of the construction in Fig. 8 to stored strategies

Forward C HParallel VParallel Squares
Fig. 8 construction 2.09 4.31 2.30 1.32

one, corresponding to version 2, is taken later, but before the
learners have completed the construction (and contains two
or three components). The purpose is to test the metrics in
relation to how early they can reliably detect similarity to a
particular strategy. The metrics are displayed in Table 7.

The construction in Fig. 9e has a low similarity to all
stored strategies, as it could be the starting point for three of
them: ‘forward C’, ‘HParallel’ and ‘VParallel’. Table 7 shows
that ‘forward C’ and ‘HParallel’ strategies have a higher
similarity than the ‘VParallel’ strategy. On the other hand,
the similarity metrics show very close values for all strate-
gies, which could be an indication that with the available
information no strategy can be considered most similar to
the learner’s construction. Consequently, an assessment of
learners’ constructions should not be made too early and if
help is requested at such an early stage, the students should
be encouraged to continue with building the construction.

To assess the likelihood of identifying the strategy the
learners are working with at different stages in their par-
tial constructions we used 24 partial strategies from the
stepping-stones task and 71 from the pond-tiling task. These
constructions were extracted from the logs and represent in-
stances of constructions at different time steps. We used con-

Fig. 9. Partial strategies: (a) partial forward C v1; (b) partial forward C
v2; (c) partial HParallel v1; (d) partial HParallel v2; (e) partial VParallel
v1; (f) partial VParallel v2.

TABLE 7
Similarities of the construction in Fig. 9 to stored strategies

Forward C HParallel VParallel
Partial forward C v1 (Fig. 9a) 7.00 2.41 2.90
Partial forward C v2 (Fig. 9b) 7.83 2.06 2.35
Partial HParallel v1 (Fig. 9c) 1.61 7.00 1.93
Partial HParallel v2 (Fig. 9d) 2.13 7.83 2.49
Partial VParallel v1 (Fig. 9e) 2.80 2.50 2.41
Partial VParallel v2 (Fig. 9f) 2.28 1.93 7.00
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Fig. 10. Average probability of identifying a dominant strategy from
partial constructions with 1, 2 and 3 components.

structions with one component3 (7 from the stepping-stones
task and 21 from pond-tiling), two components (10 from
stepping-stones, 30 from pond-tiling) and three components
(7 from stepping-stones and 20 from pond-tiling). Similarity
metrics were computed for all partial constructions and the
probability of identifying a unique ‘dominant’ strategy was
calculated as follows. If a construction is most similar to
a strategy, the probability is 100%; if the construction is
equally similar to two strategies, the probability is 50%, and
so on. A construction was considered similar to a strategy
if the similarity metric had a value higher than 3.50, which
was identified as a minimal value for indicating structural
similarity [17], [47]. The average probabilities per number of
components in the partial constructions (one, two or three)
for the two tasks, as well as overall, are displayed in Fig. 10.

Fig. 10 shows that the more components a construction
has, the easier it is to identify its most similar strategy. A
construction with one component can be identified in some
cases, with a higher probability for constructions with a
lower number of components per strategy (as for stepping-
stones) than for constructions with a higher number of com-
ponents per strategy (as for pond-tiling). Similarly, when a
construction has two components, the probability is higher,
with the same tendency as for one component. From three
components onwards the strategy is identifiable in all cases.
Consequently, 2 components can be used as the minimum
requirement for applying the identification mechanism.
Detecting off-task exploratory behaviour. The case base of
solutions and a rule-based approach are used to identify
off-task behaviour. Two sources of information are used:
(a) the characteristics of the task in terms of variations of
width and height, and the relation between them, if any, and
(b) the relative position of patterns. The information about
the task acts as a valuable filter when random tiles are left on
the pattern construction area along with a construction that
is related to the task. For example, in the stepping-stones
task these characteristics are: height is three, width can vary,
with a minimum of three, and there is no particular relation
between the height and the width. The relative positions are
mapped to the position constraints of the stored strategies
and if there is at least a partial correspondence, the similarity
metrics are calculated. If there is no correspondence, no met-
rics are computed. Algorithm 1 formalises this approach.

3. this excludes the pond component for the pond-tiling task, as
the pond is present in all strategies and all students started their
constructions with the pond

Algorithm 1 OffTask(StrategiesCaseBase, InputStrategy)

if Task.Width is fixed then
if InputStrategy.Width > Task.Width then

cap InputStrategy {cap left or right}
end if

end if
if Task.Height is fixed then

if InputStrategy.Height > Task.Height then
cap InputStrategy {cap top or bottom}

end if
end if
for all combinations of capped constructions do

verify position constraints
if at least one constraint is satisfied then

calculate similarity to all strategies in StrategiesCaseBase
else

return student is off-task
end if

end for

Fig. 11. (a) off-task; (b) on-task, inefficient strategy

We use an off-task example observed in the second
classroom session, and compare it with a behaviour which,
although on-task, is inefficient in terms of its generalisation
potential – see Fig. 11. The construction in Fig. 11b looks
very much like the ‘forward C’ strategy, but it is constructed
from a group of ten individual tiles that are repeated twice
which makes it difficult to generalise. Nevertheless, unlike
the construction in Fig. 11a, this construction is task-related.

From the construction in Fig. 11a two different construc-
tions can be obtained by filtering out the top or the bottom
row to satisfy the ‘height equals 3’ characteristic; these two
constructions do not map the position constraints of any
stored strategy. Therefore, using both sources of informa-
tion the algorithm outputs that the learner is off-task. The
height of the construction in Fig. 11b corresponds to the
task characteristics and the relative positions of the patterns
partly map the position constraints of two strategies. Thus,
the similarity metrics are computed and ‘forward C’ is
identified as the most similar strategy.

We also tested four off-task constructions from the pond-
tiling task. These occurred after the students finished their
task constructions and were ‘playing’ with the system. The
algorithm labelled all these constructions as off-task.

6.2 Experts’ evaluation

To further evaluate our strategy identification mechanism
we presented experts with several groups composed of a
user’s construction and three strategies, and asked them to
identify the most similar and the least similar strategy to the
user’s construction. An example of a group that the experts
were presented with is given in Fig. 12. The constructions
were decomposed into constituent parts to outline their
structure. The red circle indicates a group that is a building
block of one component that could otherwise be mistaken
for two separate components, e.g. strategy c) in Fig. 12. The
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Fig. 12. Example of a group of a user’s construction and three strategies
that was presented to the experts.

Fig. 13. Squares strategy with a typical mistake of 2 green tiles (instead
of one) between the red tiles.

experts, academics and teachers, had expertise in mathe-
matical generalisation and were familiar with eXpresser; the
authors were not among the experts in this study.

Five experts were involved, evaluating between them 25
groups: 12 from the stepping-stones task (five experts) and
13 from the pond-tiling task (four experts). One expert for
the stepping-stones task disagreed with the others in 5 out of
12 cases. This expert did not provide an answer for 3 of the
groups and was the least familiar with eXpresser. We would
argue that the answers of this expert should be considered
as outliers and eliminated from the analysis; however, we
report the results with and without this expert.

The experts’ answers were compared with the output
of the modelling mechanism. Indicators of agreement were
calculated for the following categories: mixed (7 groups),
non-systematic (5), partial (9) and wrong (4). The last one
includes constructions with typical mistakes for particular
strategies, e.g. the ‘Squares’ strategy of the stepping-stones
task with 2 green tiles (instead of one) between the red tiles
(see Fig. 13). These are special cases of non-systematic con-
structions as the mistakes introduce distortions to the struc-
ture – they are associated with particular misconceptions
and could be used for generating more specific feedback.
Consequently, they are reported as a different category.

We calculated two agreement indicators: percent agree-
ment and Fleiss’ kappa [51]. We used 0/1 coding: 0 indicates
the expert disagreed with the strategy identification output
and 1 indicates the expert agreed with it. This was applied
for all experts and all groups (25). The percent agreement
is an average of all pairwise percent agreements, i.e. it
is calculated for each pair of experts and then averaged
(e.g. for 4 experts there are 6 pairs which are averaged).
This indicator does not account for agreement by chance,
potentially leading to overestimations. For this reason we
also report Fleiss’ kappa, as this indicator accounts for it.
Values above 90% for percent agreement and above 0.8 for
Fleiss’ kappa indicate that the results are reliable.

TABLE 8
Agreement indicators per category

Mixed Non-systematic Partial Wrong Overall
All (5) experts % agreement 80% 67% 79% 84% 78%

Fleiss’ kappa 0.63 0.33 4 0.48 0.87 0.58
4 experts % agreement 100% 60% 94% 100% 90%

Fleiss’ kappa 1 0.52 0.84 1 0.83

Fig. 14. Non-systematic construction with ‘bits and pieces’ and structure
that could belong to several strategies.

The indicators in Table 8 for the 4 experts show that the
results are reliable for all categories, except non-systematic
constructions. This is not surprising, as non-systematic con-
structions have some structure, but also ‘bits and pieces’
distorting that structure and making it more difficult to
identify a dominant strategy. From the 5 groups, all experts
agreed with the strategy identification output only on one
group; for two groups, 2 experts agreed and 2 disagreed
and for the remaining two, 1 expert agreed and 3 disagreed.
The difficulty lies in identifying a strategy when parts of
the construction could belong to several strategies – see an
example in Fig 14. The construction has elements of ‘H’, ‘I’
and ‘+4’ strategies. The output of the strategy identification
is that the ‘H’ strategy is the most similar with a value below
3.5; however, the values for the other two strategies are very
close. This is a similar situation to the partial constructions
when it is too early to identify a ‘dominant’ strategy.

7 DISCUSSION

The validation results indicate the CBR-inspired model is
able to identify situations of pedagogical importance, such
as working in a specific or a general way, working with
several strategies at one time, working with non-systematic
approaches, having partial constructions and going off-task.
This shows that, despite the challenges raised by the nature
of interaction in ELEs [52], monitoring learners’ activity
and identifying particular situations that carry pedagogical
meaning is possible. Moreover, learner diagnosis is possible
during the process of solving a task rather than at the
end, opening possibilities for more effective personalised
intelligent support.

Our approach assesses a student’s construction in term
of the closeness to one of many solutions, rather than
identifying the step in the solution and its corresponding
feedback. The key difference is the lack of steps, i.e. there
is no explicit model of the solution space defining the steps
towards a solution.

Instead of relying on a detailed knowledge model of a
problem domain, or on static constraints [53], the case-based
system is able to utilise the knowledge of past problem
situations or cases, represent solutions quality implicitly in
cases, adapt cases to new experiences, or add new cases
to accommodate new problems. CBR can produce good

4. Although counter-intuitive, the non-systematic strategies with all
experts have a higher percentage agreement, but a lower Fleiss kappa.
In this category, the 5th expert had exactly the same responses as one
other expert, leading to a low variance in the results; however, Fleiss
kappa penalises low variance, thus leading to a lower value.
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quality solutions in areas where it is not possible to model
the knowledge domain or the constraints completely or
consistently, or when features affecting solutions quality
are difficult to formalise. Thus our approach instead of
modelling constraints, for example, identifies what rela-
tions or structural properties are missing from a student’s
construction by comparing it to several possible solutions.
This comparison identifies the aspects to give feedback
on, which, at the conceptual level, share analogy with the
constraint-based approach to feedback provision. However,
the proposed case-based system can interpret open-ended
and ill-defined student constructions.

Previous educational applications employing CBR used
it as a way of selecting relevant examples (e.g. [39], [54]) that
may help students solve the current problem. In contrast,
our CBR-inspired approach is used for learner diagnosis,
i.e. to identify what approach the learner is using from a
number of options. In this sense, our approach is driven
by domain-specific knowledge, unlike [23] and [55], who
focus on a data-driven approach to user modelling for
supporting exploration in Massive Open Online Courses
(MOOCs). While the data-driven approach may be suitable
for MOOCs, our approach was designed for 11 to 14 year old
students with the purpose of addressing particular known
issues in the domain of mathematical generalisation.

Our work also addresses other issues generally encoun-
tered in exploratory learning environments such as inactiv-
ity, working with the right variables, interpretation of data
and generalisations.

As learners’ actions are monitored continuously, inactiv-
ity can be easily detected. A further assessment of the stage
within a task when inactivity occurs could indicate its possi-
ble causes, e.g. if the learner built a specific construction and
then is inactive, two causes are likely: (a) the learner does
not know what to do next in terms of the requirements of
the task; (b) the learner understands that the next step is to
generalise his/her construction but does not know how to
do it. The former is a conceptual problem, while the latter is
pragmatic: knowing what one needs to do, but not knowing
how to do it using the tools of the system. If the learner is
inactive from the very beginning, it is very difficult to infer
any possible causes. Other reasons for inactivity may be
linked to motivation [56] and attitudes to subject matter [57].

Our strategies definition makes it possible to detect if the
students are choosing the right variables to works with. For
example, in the ‘forward C’ strategy of the stepping-stones
task, there are one or more “correct” – or rather useful –
variables: the number of iterations of the C-shape pattern
and the number of colour allocations for the red tiles.

Interpretation of data in exploratory learning is associ-
ated with experiments: by looking at the various results
of several experiments the students are to accept or re-
ject a hypothesis. For eXpresser, the high level hypothesis
corresponds to the algebraic-like rule the learners need to
find, which is built from the relations between patterns; the
interpretation of data corresponds to observing changes in
their construction when they vary the values of the patterns’
properties, and the effects of their changes on the algebraic-
rule, i.e. is the rule still valid or not? Moreover, lower

level hypotheses are tested before extracting the algebraic-
like rule, when the learners are ‘figuring out’ the relations
between patterns that lead to constructions that ‘looks right’,
in which case the hypotheses correspond to the relations
between patterns. For example, learners may test numerical
relations such as ‘for a stepping-stones of 3 red tiles I need 4
iterations of the vertical bar of 3 green tiles’ for the ‘VParallel
Strategy’ (Fig. 3c) or general relations such as ‘the iterations
of the vertical bar of 3 tiles need to be the number of red
tiles plus 1’ for the same strategy. This is tightly related to
generalisation. The monitoring mechanism can identify if the
learner’s construction is specific, general or partly general,
thus allowing personalised feedback related to interpreta-
tion of data and generalisation.

Although it has limitations, the monitoring mechanism
can detect off-task and inform the teacher who can take
finer-grained decisions depending on whether the learner is
really off-task or just off-track. This information can be given
to the teacher through a visualisation tool such as the one
in [58]. The off-task detection could be improved by incor-
porating in the algorithm other factors such as the colours
used in the construction, the number of cases in the learner’s
construction with respect to the minimum and maximum
number of cases of the stored strategies for that task, and
the speed at which the cases are constructed. For example, if
a learner is quickly building many ‘bits and pieces’ of many
different colours (as opposed to fewer colours in the task
specification), the learner may be constructing something
for their own amusement rather than for solving the task.

A limitation of our approach, which is common in
ELES, is its dependency on the activity of the learner. A
construction of at least 2 components, as suggested by
our experiments with partial constructions (Section 6.2), is
needed to infer what strategy the learner is using, if a learner
works with the specific or the general and if a learner is
off-task. Although inactivity can be detected, its causes are
difficult to find without a minimal construction.

Currently, the similarity metric for strategies has fixed
weights that maximise identification of structural similarity;
however, depending on the stage within a task, these could
vary to maximise identification of other aspects such as
the generality of construction. This is part of our future
work, along with Open Learner Models, as reflection is
an important part of discovery learning [7] and the open
learner models have been shown to encourage it [59].

This paper focused on the development and validation
of the user modelling component of a more complex sys-
tem. Trials with the latest version of the system evaluated
students’ learning and showed that students developed an
understanding of structural reasoning and learned how to
explicitly express relationships [30]. Also, after 3-4 lessons
using eXpresser, students were able to apply mathematical
generalisation knowledge to conventional tasks [30], [31].

Although our approach is tailored for eXpresser, the high
level approach could be generalised to other exploratory
learning environments where a learner is asked to build a
model (which in the case of eXpresser is a pattern construc-
tion) made of several parts and where these parts could
be joined in different ways. Our approach is particularly
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suitable for problems with multiple solutions, making it
appropriate for domains where multiple pathways to an
acceptable solution for the same problem are common. The
contents of a case and the similarity metrics in our approach
were defined for our particular types of problems, where the
focus was on the structure of a construction. The attributes
of cases and the similarity metrics would need to be rede-
fined for particular problems in order to use our approach.
The high level concept, however, can be developed for other
systems where monitoring during a task is important. Thus,
case-based reasoning is well-suited for exploratory tasks
given its capacity to deal with uncertainty and the fact that
the knowledge base can be expanded.

The evaluation involved testing our approach on real
data from 37 pupils. Although this may seem a small sam-
ple, access to participants needs to be considered. Schools
in the UK rarely allow researchers access to pupils, limit the
number of participants and put constraints on the setting
in which evaluation can take place, as already pointed out
in relevant literature [60]. Nevertheless, the evaluation was
done under realistic conditions and the limitation in sample
size was compensated by use of real-life test data.

8 CONCLUSIONS

In this paper we presented a mechanism for monitoring
learners’ behaviour in an exploratory learning environment
for mathematics. This work addresses some difficulties of
exploratory learning such as choosing the right variables, in-
terpretation of data and generalising. The monitoring mech-
anism was designed to unobtrusively monitor the learners’
interactive behaviour in eXpresser, an exploratory learning
environment for mathematical generalisation. The aim was
to assess a learner’s progress within a task by monitoring
key aspects of the interaction with the system.

Scenarios of pedagogical importance were identified:
complete, mixed, non-systematic and partial strategies, and
off-task behaviour. All except the last one rely exclusively
on the similarity metrics for identification. Using data from
two classroom sessions and several smaller studies, the
monitoring mechanism was validated for all scenarios.

Our mechanism has at its centre the idea of strategy –
a particular way of reaching a solution. In our approach,
a strategy is defined as a series of cases linked by certain
properties. While the learner is solving a task, his/her way
of creating the construction is compared with stored strate-
gies – for this purpose, similarity metrics have been defined
to compare cases and strategies. Using different weights for
the four similarities defined to compare cases, the emphasis
of the aggregated similarity metric for strategies was given
to structure, as the most important aspect of a construction.

Modelling strategies, rather than concepts, gives the
advantage of having a more holistic view of the learner’s
perspective on a particular task. In other words, a strategy
contains more information than a probability attached to a
concept. This fits domains with multiple pathways to an
acceptable solution for which exploratory learning is more
suitable than tutoring, as these domains are often charac-
terised by complex problems, in which a concept cannot be

explored in separation from other ones because the essence
lies in the relation between concepts.
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