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Abstract

Interaction with the world requires an organism to transform sensory signals into representations in
which behaviorally meaningful properties of the environment are made explicit. These representations
are derived through cascades of neuronal processing stages in which neurons at each stage recode
the output of preceding stages. Explanations of sensory coding may thus involve understanding how
low-level patterns are combined into more complex structures. Although models exist in the visual
domain to explain how mid-level features such as junctions and curves might be derived from oriented
filters in early visual cortex, little is known about analogous grouping principles for mid-level auditory
representations. We propose a hierarchical generative model of natural sounds that learns combina-
tions of spectrotemporal features from natural stimulus statistics. In the first layer the model forms a
sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal kernels. To
generalize from specific kernel activation patterns, the second layer encodes patterns of time-varying
magnitude of multiple first layer coefficients. Because second-layer features are sensitive to combi-
nations of spectrotemporal features, the representation they support encodes more complex acoustic
patterns than the first layer. When trained on corpora of speech and environmental sounds, some
second-layer units learned to group spectrotemporal features that occur together in natural sounds.
Others instantiate opponency between dissimilar sets of spectrotemporal features. Such groupings
might be instantiated by neurons in the auditory cortex, providing a hypothesis for mid-level neuronal
computation.
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Abstract

Interaction with the world requires an organism to transform sensory signals into repre-
sentations in which behaviorally meaningful properties of the environment are made explicit.
These representations are derived through cascades of neuronal processing stages in which
neurons at each stage recode the output of preceding stages. Explanations of sensory cod-
ing may thus involve understanding how low-level patterns are combined into more complex
structures. Although models exist in the visual domain to explain how mid-level features
such as junctions and curves might be derived from oriented filters in early visual cortex, lit-
tle is known about analogous grouping principles for mid-level auditory representations. We
propose a hierarchical generative model of natural sounds that learns combinations of spec-
trotemporal features from natural stimulus statistics. In the first layer the model forms a
sparse convolutional code of spectrograms using a dictionary of learned spectrotemporal ker-
nels. To generalize from specific kernel activation patterns, the second layer encodes patterns
of time-varying magnitude of multiple first layer coefficients. Because second-layer features
are sensitive to combinations of spectrotemporal features, the representation they support en-
codes more complex acoustic patterns than the first layer. When trained on corpora of speech
and environmental sounds, some second-layer units learned to group spectrotemporal features
that occur together in natural sounds. Others instantiate opponency between dissimilar sets
of spectrotemporal features. Such groupings might be instantiated by neurons in the auditory
cortex, providing a hypothesis for mid-level neuronal computation.

Introduction

Interaction with the environment requires an organism to infer characteristics of the world from
sensory signals. One challenge is that the environmental properties an organism must recognize
are usually not explicit in the sensory input. A primary function of sensory systems is to transform
raw sensory signals into representations in which behaviorally important features are more easily
recovered. To successfully infer the state of the world, the brain must generalize across irrelevant
stimulus variation, while maintaining selectivity to the variables that matter for behavior. The
nature of sensory codes and the mechanisms by which they achieve appropriate selectivity and
invariance are thus a primary target of sensory system research.

The auditory system is believed to instantiate such representations through a sequence of pro-
cessing stages extending from the cochlea into the auditory cortex. Existing functional evidence
suggests that neurons in progressively higher stages of the auditory pathway respond to increas-
ingly complex and abstract properties of sound [1-11]. Yet our understanding of the underlying
transformations remains limited, particularly when compared to the visual system.

Feature selectivity throughout the auditory system has traditionally been described using linear
receptive fields [12-14]. The most common instantiation is the spectrotemporal receptive field
(STRF), which typically characterizes neural activity with a one-dimensional linear projection of
the sound spectrogram transformed with a nonlinearity [15]. As a neural data analysis technique,
STRFs are widespread in auditory neuroscience and have generated considerable insight in domains
ranging from plasticity to speech coding (e.g. [16,17]).



Despite their utility, it is clear that STRFs are at best an incomplete description of auditory
codes, especially in the cortex [18-20]. Experimental evidence suggests that auditory neural re-
sponses are strongly nonlinear. As a consequence, auditory receptive fields estimated with natural
sounds differ substantially from estimates obtained with artificial stimuli [21]. STRF descriptions
also fail to capture the dimensionality expansion of higher representational stages. In contrast to
the brainstem, neurons in the auditory cortex seem to be sensitive to multiple stimulus features at
the same time [2,22,23]. The presence of strongly non-linear behavior and multiplexing necessitates
signal models more sophisticated than one-dimensional, linear features of the spectrogram such as
STRFs.

An additional challenge to characterizing mid-level features of sound is that humans lack strong
intuitions about abstract auditory structure. By contrast, the study of the visual system has often
been influenced by intuitions of how complex representations could emerge by combining lower-
level features. For instance, elongated edges and curves, which drive neural responses in V2, can
be thought of as conjunctions of the Gabor filters which match receptive fields of V1 neurons
(e.g. [24,25]). We know of few hypotheses for analogous auditory representations of intermediate
complexity. In specific signal domains such as speech, progress has been made by cataloging
phonemes and other frequently occurring structures, but it is not obvious how to generalize this
approach to broader corpora of natural sounds.

An alternative approach to understanding sensory representations that is less reliant on domain-
specific intuition is that of efficient coding [26,27]. The efficient coding hypothesis holds that neural
codes should exploit the statistical structure of natural signals, allowing such signals to be repre-
sented with a minimum of resources. Numerous studies have demonstrated that tuning properties
of neurons in early stages of the visual and auditory systems are predicted by statistical models
of natural images or sounds [28-39]. Although the early successes of this approach engendered
optimism, applications have largely been limited to learning a single stage of representation, and
extensions to multiple levels of sensory processing have proven difficult. The underlying challenge
is that there are many possible forms of high-order statistical dependencies in signals, and the
particular dependencies that occur in natural stimuli are typically not obvious. The formulation of
models capable of capturing these dependencies requires careful analysis and design [40-43], and
perhaps good fortune, and is additionally constrained by what is tractable to implement. In the
auditory system in particular, it remains to be seen whether modeling statistical signal regularities
can reveal the complex acoustic structures and invariances that are believed to be represented in
higher stages of the auditory system.

The primary goal of the present work was to discover such high-order structure in natural
sounds and generate hypotheses about not-yet-observed intermediate-level neural representations.
To this end we developed a probabilistic generative model of natural sounds designed to learn
a novel stimulus representation - a population code of naturally occurring combinations of basic
spectrotemporal patterns, analogous to spectrotemporal receptive fields (STRFS).

The resulting representations learned from corpora of natural sounds suggest grouping princi-
ples in the auditory system. In particular, a class of model units appears to encode opponency
between different sets of features. These units were activated and inhibited by different types of
natural stimulus features which do not typically occur together in natural audio. Although not
yet described in the auditory system, such tuning patterns appear to be analogous to phenomena
such as end-stopping or cross-orientation suppression in the visual system. The representations
learned by our model also resemble some recently reported properties of auditory cortical neurons,
providing further evidence that natural-scene statistics can predict neural representations in higher
sensory areas.

Methods and Models

Overview of the hierarchical model

To learn mid-level auditory representations, we constructed a hierarchical, statistical model of
natural sounds. The model structure is depicted in Fig 1. The model consisted of a stimulus layer
and two latent layers that were adapted to efficiently represent a corpus of audio signals. Because
our goal was to learn mid-level auditory codes, we did not model the raw sound waveform. Instead,
we assumed an initial stage of frequency analysis, modeled after that of the mammalian cochlea.
This frequency analysis results in a spectrogram-like input representation of sound, which we term



a ’cochleagram,” that provides a coarse model of the auditory nerve input to the brain (Fig 1 A,
bottom row). This input representation is an F' x T' matrix, where F' is the number of frequency
channels and T' the number of time-points. Our aim was to capture statistical dependencies in
natural sounds represented in this way.

B)

Second layer

Spectrotemporal
kernels (STKs)

Cochleagram

Figure 1: Overview of the hierarchical model. A) A spectrogram (bottom-row) is encoded
by a set of spectrotemporal kernels (middle row). The features learned by the second layer en-
code temporal patterns of multiple STK activations. B) A graphical model depicting statistical
dependencies among variables.

The first layer of the model (Fig 1, middle row) was intended to learn basic acoustic features,
analogous to STRFs of early auditory neurons. Through the remainder of the paper, we refer to
the features learned by the first layer as spectrotemporal kernels (STKs), in order to differentiate
them from neurally derived STRFs. The second layer, depicted in the top row of Fig 1 A, was
intended to learn patterns of STK co-activations that frequently occur in natural sounds.

The model specifies a probability distribution over the space of natural sounds, and its pa-
rameters can be understood as random variables whose dependency structure is depicted in Fig
1 B. The spectrogram =z is represented with a set of spectrotemporal features ¢ convolved with
the latent activation time-courses s. The second latent layer encodes the magnitudes of s with
the basis functions B convolved with their activation time-courses v. In the following sections, we
present the details of each layer.

First layer of model - convolutional, non-negative sparse coding of spec-
trograms

The first layer of the model was designed to learn basic spectrotemporal features. One previous
attempt to learn sparse spectrotemporal representations of natural sounds [35] produced structures
reminiscent of receptive fields of neurons in the auditory midbrain, thalamus, and cortex. Here, we
extended this approach by learning a spectrogram representation which is sparse and convolutional.
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Figure 2: Explanation of first layer of the model. A cochleagram x of arbitrary length is
represented as a sum of spectrotemporal kernels ¢ convolved with time-courses of corresponding
coefficients s. Coefficients s are non-negative and have sparse distributions (i.e. remain close to
zero most of the time).

A schematic of the first layer is depicted in Fig 2. We modeled the cochleagram (z; ) as a
linear combination of spectrotemporal kernels ¢ convolved with their activation time-courses s and

distorted by additive Gaussian noise &, ¢ with variance ol
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Kernel activations s; ; are assumed to be independent, i.e. their joint distribution is equal to
the product of marginals:
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We assumed that each spectrotemporal kernel remains inactive for most of the time, i.e. that
the distribution of its activations is sparse. Moreover, we imposed a non-negativity constraint
on the coefficients s. This facilitates interpretations in terms of neural activity and improves the
interpretability of the learned representation. These constraints were embodied in an exponential
prior on the coefficients s:

p(sitlNi) = /\%eXP [— 8)7\;} (4)
where ); is the scale parameter.

The first layer of the model specifies the following negative log-posterior probability of the data:
| ET NI
Byoc— > (g —xt,f)2+;x s (5)
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This negative log-probability can be viewed as a cost function to be minimized when inferring the
value of coefficients s: while maintaining low-reconstruction error (first term on the right-hand
side), the sparsity of representation should be maximized (the second term).

Dependencies between coefficients - a signature of mid-level structure

Although the sparse coding strategy outlined above learns features that are approximately inde-
pendent across the training set, residual dependencies nonetheless remain. In part this is because
not all dependencies can be modeled with a single layer of convolutional sparse coding. However,
dependencies also result from the non-stationary nature of natural audio. For particular sounds the
learned features exhibit dependencies [42], and thus deviate from their (approximately indepen-
dent) marginal distribution. For example, a spoken vowel with a fluctuating pitch contour would



require many harmonic STKs to become activated, and their activations would become strongly
correlated on a local time scale. Such local correlations reflect higher-order structure of particular
natural sounds. Statistically speaking, this is an example of marginally independent random vari-
ables exhibiting conditional dependence (in this case conditioned on a particular point in time or
a type of sound).
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Figure 3: Dependencies among spectrotemporal feature activations. A) When encoding
white noise (cochleagram depicted on top), sparse coefficients are uncorrelated on short time-scales.
This is visible in the shape of the coefficient cross-correlation functions (black lines) corresponding
to the four most strongly activated STKs (bottom, right column). Due to the lack of temporal
structure, the cross-correlation between STKs is flat, and the autocorrelation of individual STKs
is a Dirac delta function at 0. Here and in other panels, the mean was substracted from the
(non-negative) coefficient trajectories prior to computing the cross-correlation. B) When encoding
structured stimuli such as an owl vocalization, STK activations reveal strong local correlations -
the cross-correlations deviate from those for white noise (thick gray lines). C) Same as B, for a
hammer hit. D) Same as B, for a speech excerpt.

Fig 3 depicts such dependencies via cross-correlation functions of selected STK activations
for a white noise sample and for three different natural sounds. Coefficient correlations (black
curves in each subplot) vary from sound to sound, but in all cases deviate from those obtained
with noise (gray bars within subplots), revealing dependence. These dependencies are indicative
of "mid-level" auditory features, perhaps analogous to the correlations between oriented Gabor
filters induced by an elongated edge. In this work, we exploited the fact that intermediate level
representations can be learned by modeling dependencies among first-layer features [41-43].



Variability of STK activations

A second phenomenon evident in STK activations is that particular patterns of co-activation occur
with some variability. This is visible in Fig 4, which depicts activations of selected STKs when
encoding multiple exemplars of the same sound - the word "one" spoken twice by the same speaker
(Fig 4A) and two exemplars of water being poured into a cup (Fig 4B).
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Figure 4: Variability of spectrotemporal feature activations. A) Coefficient trajectories
of spectrotemporal features ¢ are depicted for two utterances of word "one" spoken by the same
speaker. Although both coefficient trajectories (gray and black lines) exhibit the same global
structure, they are not identical. B) Coefficient variability visualized in the same way for two
different examples of water pouring into a cup.

It is apparent that the STK coefficient trajectories for the two exemplars in each case (black
and gray lines) reflect the same global pattern even though they differ somewhat from exemplar
to exemplar. The similarity suggests that the trajectories could be modeled as different samples
from a single time-varying distribution parameterized by a non-stationary coefficient magnitude.
When the magnitude increases, the probability of a strong STK activation increases. Retaining
the (inferred) time-varying magnitude instead of precise values of STK coefficients would yield a
representation more invariant to low-level signal variation, potentially enabling the representation
of abstract regularities in the data. Such a representation bears an abstract similarity to the
magnitude operation used to compute a spectrogram, in which each frequency channel retains the
time-varying energy in different parts of the spectrum. Here we are instead estimating a scale
parameter of the underlying distribution, but the process similarly discards aspects of the fine
detail of the signal.

Second layer of model - encoding of STK combinations

The second layer of the model was intended to exploit the two statistical phenomena detailed in
the previous section: conditional dependencies between STKs and their variation across exemplars.
Similarly to the first layer, the second layer representation is formed by a population of sparsely
activated basis functions. These basis functions capture local dependencies among STK magnitudes
by encoding the joint distribution of STK activations rather than exact values of STK coefficients.
The resulting representation is thus more specific than the first-layer code - instead of encoding
single features independently, it signals the presence of particular STK combinations. It is also
more invariant, generalizing over specific coefficient values.

Because the proposed representation is a population code of a distribution parameter, it bears
conceptual similarity to previously proposed hierarchical models of natural stimuli that encoded
patterns of variance [41,44], covariance [42] or complex amplitude [40,43]. The novelty of our model
structure lies in being convolutional (i.e., it can encode stimuli of arbitrary length using the same
representation) and in parameterizing distributions of non-negative STK coefficients, increasing



the interpretability of the learned spectrogram features. The novelty of the model’s application is
to learn hierarchical representations of sound (previous such efforts have largely been restricted to
modeling images).
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Figure 5: Explanation of second layer of the model. A) An array of STK activations s (a
"STK-gram") serves as an input to the second layer. Rows correspond to first layer features ¢;
and columns to time points. B) The second layer uses a population of features B to encode the
logarithm of STK activation magnitudes. C) Coefficient trajectories s (thin grey lines) and their
magnitudes A (thick red and black lines) for two example STKs. D) Distributions of s at time
points ¢ and to are depicted in the right column.

The second layer of the model is depicted schematically in Fig 5A. We assume that STK
activations s are samples from a non-stationary exponential distribution with time-varying scale
parameter \; ¢, relaxing the assumption of stationary A; made in learning the first layer:

1 S;
plsie) = Bxp(Aig) = 1 - oxp {—Aﬁj (6)

When A;; is high, the distribution of s;; becomes heavy tailed (Fig 5C, black line in the top
row, red line in the bottom). This allows the coefficient s; to attain large values. For small values
of the scale parameter, the probability density is concentrated close to 0 (Fig 5D), red line in the
top row, black line in the bottom), and coefficients s; ; become small. To model the magnitudes
A (which are non-negative, akin to variances), we took their logarithm, mapping their values onto
the entire real line so that they could be represented by a sum of real-valued basis functions.

Patterns of STK magnitudes are represented in the second layer by a population of features B
convolved with coefficients v:

M

)\i,t = exp Z Bj,i *Vj + p; (7)

Jj=1 p

where p is a bias vector. Each second-layer basis function B represents a particular temporal
pattern of co-activation of first-layer STKs. Their corresponding coefficients v are assumed to be
sparse and independent:
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where « controls the degree of sparsity.

As with the first layer, learning and inference are performed by gradient descent on the negative
log posterior. Because the second layer units encode combinations of sparse first-layer coefficients,
we placed a sparse prior on the Ly norm of the basis functions B. The overall cost function to be
minimized during learning in the second layer is then:

M N T,

N T M T
B Y3 jj; +logis) +ad Y il + 83D > [Bjin (10)
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where (3 controls the strength of the sparse prior on B, and T is the temporal extent of each
second-layer basis function. As in the first layer cost function (Eq 5), the first term on the right
hand side of Eq 10 enforces a match of the representation to data (the magnitudes A are pushed
away from zero towards the observed coefficients s), while second and third terms promote sparsity
of second-layer coefficients and basis functions, respectively.

Learning procedure

The two layers of the model were trained separately, i.e. the training of the second layer occurred
after the first layer training was completed. In the first layer, training was performed with an
EM-like procedure that iteratively alternated between inferring STK coefficients and updating
STK features [29,43]. Spectrotemporal features ¢ were initialized with Gaussian white noise. For
each excerpt in the training set, coefficients s;; were inferred via gradient descent on the energy
function (5). Because inference of all coefficients s is computationally expensive, we adopted an
approximate inference scheme [45]. Instead of inferring values of all coefficients for each excerpt, we
selected only a subset of them to be minimized. This was done by computing the cross-correlation
between a sound excerpt and features ¢; and selecting a fixed number of the largest coefficients
s;¢+. The inference step adjusted only this subset of coefficients while setting the rest to 0. Given
the inferred coefficients, a gradient step on the spectrotemporal features ¢ was performed.
FEach learning iteration therefore consisted of the following steps:

1. Draw a random sound excerpt from the training data set. Excerpts were 403 ms in length
(129 time samples of the spectrogram, sampled at 320 Hz).

2. Compute the cross-correlation of all basis functions ¢; with the sound excerpt. Select the
1024 pairs of coefficient indices and time-points (i, t) that yield the highest correlation values.

3. Infer the values of the selected coeflicients by minimizing Eq. 5 with respect to s;; via
gradient descent. Set the rest of coefficients to 0.

4. Compute the gradient step on the basis functions as the derivative of Eq. 5 with respect to
basis functions ¢ using inferred coefficient values 5. Update basis functions according to the
gradient step.

5. Normalize all basis functions to unit norm.

This procedure was terminated after 200000 iterations.

The second layer was then learned via the same procedure used for the first layer. In each
iteration a 528 ms long (169 samples at 320 Hz) randomly drawn sound excerpt was encoded by
the first layer, and the resulting matrix of coefficients s served as an input to the second layer. A
subset of coefficients v was selected for approximate inference by computing the cross correlation
between features B; and the logarithm of the first-layer coefficients s (analogous to step 2 in the
procedure described above for the first layer). The energy function Es was first minimized with
respect to coefficients v followed by a gradient update to the basis functions B (analogous to steps
3 and 4 for the first layer). Entries in the bias vector p corresponding to each coefficient s; were set



to the expectation of the coefficient across the entire training set: p; = E[s; ] (i.e., the estimate of
the marginal scale parameter \; for the corresponding STK). Learning was again terminated after
200000 iterations.

Training data and spectrogram parameters

We trained the model on two different sound corpora. The first corpus was the TIMIT speech
database [46]. The second corpus combined a set of environmental sounds (the Pitt sound database
[32]) and a number of animal vocalizations downloaded from freesound.org. The environmental
sounds included both transient (breaking twigs, steps, etc.) and ambient (flowing water, wind,
etc.) sounds; the animal vocalizations were mostly harmonic.

We computed cochleagrams by filtering sounds with a set of 65 bandpass filters intended to
mimic cochlear frequency analysis. Filters were equally spaced on an equivalent rectangular band-
width (ERB) scale [47]), with parameters similar to that from a previous publication [48]. Center
frequencies ranged from 200 Hz to 8 kHz. We computed the Hilbert envelope of the output of each
filter and raised it to the power of 0.3, emulating cochlear amplitude compression [49]. To reduce
dimensionality, each envelope was downsampled to 320 Hz.

We set the number of features in the first layer to 128 and in the second layer to 100. Pilot
experiments yielded qualitatively similar results for alternative feature dimensionalities. Each first
layer feature encoded a 203 ms interval (65 time samples of the spectrogram).

Model Analysis

In this section we describe the methods used to analyze features learned by the model and to
compare them with experimental data. The details here are not critical to understanding the
central points of the paper.

Feature Selectivity Index

For comparison with neural data, we computed the feature selectivity index (FSI) proposed in [50].
The FSI is a number lying in the [0, 1] interval. FSI values close to 1 imply that stimuli eliciting
a response of a neuron (or, in our case, a model unit) are similar to each other (specifically, the
stimuli are close to the mean stimulus eliciting a response). When the FSI value is close to 0,
the corresponding neuron spikes at random i.e. stimuli preceding spikes are uncorrelated with the
spike-triggered average. The relevance of the FSI for our purposes is that a neuron or model unit
that exhibits invariance to some type of stimulus variation should have an FSI less than 1. By
comparing the FSI across layers we hoped to quantify differences in the degree of representational
abstraction.

The FSI computation procedure are described in detail in [50]. The only discrepancy between
the use of the FSI here and its prior use in neurophysiological studies is that units in our model
are continuously active, and do not discretely spike. We emulated the selection of stimuli eliciting
spikes by selecting the stimulus excerpts yielding the highest activation of model layer units. In
the first layer, we selected the 25 stimuli yielding highest positive activation. In the second layer,
we separately computed FSI indices for stimuli eliciting positive and negative responses, using 25
stimuli per unit in each case. We then averaged the indices obtained for the two sets of stimuli for
each unit.

Computing FSI for an i-th unit consists of the following steps:

1. Compute average of strongly activating stimuli (analogous to spike-triggered average - STA)
- separately for positive and negative stimuli in the case of second-layer units.

2. Compute correlations cg ;. between each strongly activating stimulus n and its respective
STA.

3. Compute correlations cg i, between the STA and a randomly selected subset of stimuli 7.

4. Compute the area Ag; under the empirical cumulative distribution function of correlations
1
¢si, Asi = [, ECDF(cs)des,i



5. Compute area Ap ; under the empirical cumulative distribution function of Ap; = f 711 ECDF(cg,;)dcr,

6. The FSI of each unit is defined as: F'SI; = (’4}2;&7;?5”)

Overlap of excitatory and inhibitory stimuli in the second layer

As will be described in the Results section, it became clear upon examining the model represen-
tations that there were interesting relationships between stimuli eliciting positive and negative
responses in second-layer units. To quantify the overlap of the distributions of stimuli eliciting
strong positive and negative responses, we estimated Bhattacharyya coefficients [51]. A Bhat-
tacharrya BC' coefficient measures the overlap of two probability distributions p and ¢ and is

defined as following:
BC(a) = [ Vplelala)ds (1)

The BC is a real number lying in the [0, 1] interval, where 1 corresponds to complete alignment
of two distributions, while 0 implies that the support of the distributions do not overlap at all.
Small BC values thus imply high stimulus separability - samples generated from non-overlapping
distributions lie far apart and can be easily separated into distinct classes.

To estimate how strongly positive and negative stimuli of second-layer units are separated we
computed the BC between distributions fitted to each stimulus class. First, we computed centers
of mass of each stimulus in the time-frequency and modulation planes, representing each stimulus
as a point in these two planes. We then fitted two-dimensional Gaussian distributions to the sets
of points corresponding to positive and negative stimuli, separately for each plane, and computed
the Bhattacharryya coefficient between the distributions for positive and negative stimuli. The
Bhattacharryya coefficient of two Gaussian distributions with respective mean vectors pq, pe and
covariance matrices C, Cy has the following closed form:

1 1 det C
BC = exp — | = (11 — pa)TC (g — “log | 12
exp [ m = 12) 07— ) + 10w ()| (12)
where C = %
Results

First layer: Basic spectrotemporal features of natural sounds

The first-layer features learned from each of the two sound corpora are shown in Fig 6 A and B.
These features could be considered as the model analogues of neural STRFs. The vast majority
of features are well localized within the time-frequency plane, encoding relatively brief acoustic
events. The STKs learned from speech included single harmonics and harmonic "stacks" (Fig 6
A - features numbered 1 and 2), frequency sweeps (feature 3), and broadband clicks (feature 4).
The features learned from environmental sounds also included single harmonics and clicks (Fig 6
B - features 1, 2 and 4). In contrast to the results obtained with speech, however, harmonic stacks
were absent, and a number of high-frequency hisses and noise-like features were present instead
(feature 3).
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Figure 6: Spectrotemporal kernels learned by the first layer. A) A population of STKs
learned from a speech database. Representative STKs for each corpus are magnified and num-
bered from 1-4 for ease of reference. B) Population of STKs learned from environmental sounds.
C) Speech-trained STK population plotted on time-frequency (left) and spectral-temporal mod-
ulation (right) planes. Each dot corresponds to a single STK, and its color encodes the log of
its mean coefficient (averaged over entire training dataset). D) The STK population trained on
environmental sounds, represented as in (C).

The properties of the learned dictionaries are also reflected in distributions of feature locations
in the time-frequency and spectrotemporal modulation planes, as visible in Fig 6C and D. Each
dot position denotes the center of mass of a single STK, while its color signals the feature’s
average coefficient value over the stimulus set. For both speech and environmental sounds, the
learned STKs uniformly the audio frequency spectrum (Fig 6 C and D, left panels). Due to the
convolutional nature of the code, the energy of each feature is concentrated near the middle of the
time axis. The modulation spectra of the learned STKs (Fig 6 C and D, right panels) are somewhat
specific to the sound-corpus. Features trained on a speech corpus were more strongly modulated
in frequency, while environmental sounds yielded STKs with faster temporal modulations. STKs
learned from both datasets exhibit a spectrotemporal modulation tradeoff: if a STK is strongly
temporally modulated its spectral modulation tends to be weaker. This tradeoff is an inevitable
consequence of time-frequency conjugacy [52], and is also found in the STRFs of the mammalian
and avian auditory systems [17,53].

Second layer: Combinations of spectrotemporal features

STKSs captured by the first layer of the model reflect elementary features of natural sounds. By
contrast, the features learned by the second layer capture how activations of different STKs cluster
together in natural sounds, and thus reflect more complex acoustic regularities. We first present
several ways of visualizing the multi-dimensional nature of the second-layer representation, then
make some connections to existing neurophysiological data, and then derive some neurophysiolog-
ical predictions from the model.
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Visualizing second-layer features

The second-layer features encode temporal combinations of STK log-magnitudes. Each feature can
be represented as a N x T} dimensional matrix, where rows correspond to STKs and columns to
time-points. An example second-layer unit is shown in Fig 7A (left panel). A positive value in
the i-th row and ¢-th column of a feature B; encodes a local increase in the magnitude of the i-th
STK. A negative value encodes a decrease in magnitude.

An alternative visualization is to examine the spectrotemporal structure of the STKs that have
large weights in the second-layer feature. The same feature B; is depicted in this way in the
center panel of Fig 7A, which displays the four STKs with highest average absolute weights for
this particular feature. To the right of each STK are its weights (i.e., the corresponding row of the
B; matrix). It is apparent that the weights increase and decrease in a coordinated fashion, and
thus likely encode particular dependencies between the STKs.

To summarize the full distribution of STKSs contributing to a second-layer unit, we adopted the
visualization scheme illustrated in the right panel of Fig 7A. We plot the center of mass of each
STK in the modulation (top row) and time-frequency (middle row) planes, as in Fig 6C and D.
The dot for a first-layer STK is colored red or blue, depending on the sign of their time-averaged
weight, with the average absolute value of the weight signaled by the intensity of the color. The
bottom row of the panel depicts the temporal pattern of STK magnitudes - line colors correspond
to dots in the top and middle rows of the panel. Although the weights of most STKs maintain the
same sign over the temporal support of the second-layer unit, there was not constraint enforcing
this, and in some cases the weight trajectories cross zero.

Representative examples of second-layer basis functions are depicted in this way in Fig 7B.
We separated them into two broad classes - "excitatory" units (columns 1 and 2 in Fig 7), which
pool STKs using weights of the same sign, and therefore encode a pattern of coordinated increase
in their magnitudes, and "excitatory-inhibitory" units (columns 3 and 4 in Fig 7) which pool
some STKs with positive average weights and others with negative average weights. We note that
excitatory-only and inhibitory-only units are functionally interchangeable in the model, because
the encoding is unaffected if the sign of both the STK weights and coefficients are reversed.

As is apparent in Fig 7B, second-layer basis functions tend to assign weights of the same
sign to STKs with similar frequency or modulation characteristics. We quantified this trend by
computing distances between pairs of STKs with large weights of the same sign compared to pairs
chosen randomly. Specifically, we measured the distance between STK centers of mass on the
time-frequency or modulation planes between each STK and its nearest neighbor within the set
of STKs with weights above a threshold (5% of the maximum for the unit). For comparison we
computed the same distances but for randomly selected STK subsets of the same size. We found
this distances between pooled STKs to be significantly lower than if pooling was fully random
(p < 0.001; obtained via t-test).

Example units pooling similar STKs are depicted in panels A2 and C2. They encode joint
increases in the magnitude of high-frequency and low-frequency STKs, respectively. The unit in
panel B3 encodes an increase in magnitude of temporally modulated features (clicks) together with
a simultaneous decrease of activation of a strongly spectrally modulated (harmonic) STK.

From inspection of Fig 7B it is also evident that some second-layer units pool only a few STKs
(e.g. A1, C1, D1) while others are more global and influence activations of many first-layer units
(e.g. A2, A3, C3).

Second layer features encode patterns of STK dependencies

To better understand the structure captured by the second-layer units, we considered their rela-
tionship to the two kinds of dependencies in STK activations that initially motivated the model.
In sections , we observed that STK activations to natural sounds exhibit strong local cross-
correlations as well as variations of particular temporal activation patterns. The second layer of
the model was formulated in order to capture and encode these redundancies.
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Figure 7: Second layer model features. A) Feature visualizations. Left panel - the first layer
STK weights for an example second layer feature (representing magnitudes of each STK over a
time window). Middle panel - STKs whose weights in the same second-layer feature deviate most
strongly from 0 are displayed along with their weight profile over time. Right panel - STKs are
plotted as dots in the modulation and time-frequency planes, with the dot location indicating the
STK center of mass in the plane, and the color indicating the weight sign and magnitude (red
denoting positive and blue denoting negative). STKs are divided into those with positive and
negative weights for clarity. Bottom row visualizes temporal trajectories of STK weights for the
feature. B) Examples of learned second-layer features. First two columns (labeled 1 and 2) depict
units with positive ("excitatory") weights only. Last two columns (labeled 3 and 4) depict units
that pool features with both positive and negative weights.
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Figure 8: Second-layer units respond to specific STK cross-correlation patterns.A) A
second-layer unit (top row, left column) and an example sound excerpt eliciting a strong positive
response in the unit (top row, right column). Bottom shows cross-correlation functions of coeffi-
cient trajectories for four STKs. The STKs selected were those with the largest weights for this
second-layer unit. Cross-correlations were averaged across 25 stimuli eliciting the strongest positive
response of the second-layer unit across a large subset of the TIMIT corpus. B, C, D) same as A
for three other second-layer units.

To first test whether the second layer captures the sorts of residual correlations evident in the
first layer output, we measured cross-correlations between STK activations conditioned on the
activation of particular second-layer units. Fig. 8A-D depicts four example second-layer units (top
row, left column) along with an example stimulus that produced a strong positive response in the
unit (selected from the TIMIT corpus). The bottom section of each panel depicts cross-correlation
functions of activations of four STKs, averaged over 25 stimulus epochs that produced a strong
positive response of the second-layer unit. The cross-correlation functions deviate substantially
from 0, as they do when conditioned on excepts of natural sounds (Fig. 3). These correlations
reflect the temporal pattern of STK coefficients that the second-layer unit responds to.
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Figure 9: Second-layer units generalize across variation in STK coefficients.Panels A-D
correspond to second-layer units depicted in Fig. 8 Each panel shows four STKs pooled with
strongest weights (left column) by the corresponding second-layer unit. Next to each STK are
their activation patterns (right column) for the 5 stimuli eliciting the strongest response in the
second-layer unit. Despite some variability they share a global trend.

We next examined whether the second-layer units respond to STK activations fluctuating
around particular global patterns (as depicted in Fig.4). Because the second layer of the model
represents the magnitude, rather than the precise values of first-layer coefficients, it should be ca-
pable of generalizing over minor STK coefficient variation. Fig.9 plots STK coeflicient trajectories
for stimuli eliciting a strong response in the second-layer features from Fig. 8. The STK activation
traces reveal variability in each case, but nonetheless exhibit a degree of global consistency, as we
saw earlier for natural sound exemplars (Fig.4). These results provide evidence that the second
layer is capturing the dependencies it was intended to model.

Comparison with neurophysiological data

Although our primary goal was to generate predictions of not-yet observed neural representations
of sound, we first sought to test whether our model would reproduce known findings from auditory
neuroscience. The first layer STKSs replicated some fairly standard findings in the STRF literature,
as discussed earlier. To compare the results from the second layer to experimental data, we
examined their receptive field structure and the specificity of their responses, and compared each
to published neurophysiology data.
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Figure 10: Comparison with neurophysiological data. A) Spectrotemporal receptive fields
estimated for second layer units trained on speech and environmental sounds. B) Comparison
of spectral and temporal modulation tuning of first and second layer receptive fields (panels in
left column) to experimental measurements in auditory thalamus and cortex of the cat (panels
in right column, courtesy of Lee Miller [53]). Higher processing stages both in the model and
the auditory system exhibit tuning for coarser modulations in both frequency and time. Sub-
panels with experimental data reprinted with permission of original author. C) Example activation
trajectories of first (black line) and second layer (red line) units to an excerpt of speech. The
activation of the first layer unit is tightly locked to presence of a preferred stimulus. Responses
of the second layer unit are less specifically locked to particular spectrotemporal structures. D)
Comparison of tuning specificity, as measured with the Feature Selectivity Index (FSI), for first
and second layers of the model trained either on speech or environmental sounds (gray and red
bars, respectively), and for different layers of the auditory cortex of the cat (right panel replotted
from [54]).
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First, we estimated spectrotemporal receptive fields for units in both layers of the model. The
receptive fields of the first-layer units are simply the STK of the unit. To estimate receptive
fields of a second-layer unit, we drew inspiration from the spike-triggered average, generating a
number of cochleagram samples from each basis function and averaging them. To generate samples
from a j—th basis function, we set a coefficient v; to 1 with all other v;«; set to zero. We then
sampled STK activation trajectories from the distribution dictated by the second-layer feature’s
coefficient and weights, convolved them with the corresponding STKs and summed the results.
We then averaged multiple such samples together. Although we could have computed something
more directly analogous to a spike-triggered average, the average sample (possible only because we
have the underlying generative model, unlike when conducting a neurophysiology experiment) has
the advantage of alleviating the influence of stimulus correlations on the signature of the receptive
field.

"Receptive fields" obtained in this way are depicted in Fig 10A. To compare the model units
to neurophysiological data, we generated histograms of average spectral and temporal modulation
frequency (center of mass in the modulation plane) of first- and second-layer receptive fields and plot
them next to distributions of preferred modulation frequencies of neurons in the auditory thalamus
and cortex of the cat [53| (Fig 10B). The same trend is evident in the model and the auditory
system: the second-layer prefers features with slower/coarser spectral and temporal modulations
relative to the first-layer, mirroring the difference seen between the cortex and thalamus. Lower
modulation frequencies may result from combining multiple distinct STKs in downstream units.
This analysis used features trained on speech, but environmental sounds yielded qualitatively
similar results.

Neuronal tuning in early and late stages of the auditory system also tends to differ in specificity
[1,22]. Compared to the auditory brainstem, cortical neurons are less selective and respond to
multiple features of sound [2,22], consistent with an increase in abstraction of the representation [1].
Suggestions of similar behavior in our model are apparent in the activations of first- and second-
layer units to sound, and example of which is shown in Fig 10C. The first layer feature (black line)
becomes activated only when it is strongly correlated with the stimulus. In contrast, activations of
a typical second layer feature (red line) deviate from zero during many, seemingly different parts
of the stimulus.

We quantified the specificity of tuning with the feature selectivity index (FSI), a measure
introduced previously to quantify how correlated a stimulus has to be with a neuron’s spike-
triggered average to evoke a response [50]. An FSI equal to 1 implies that a neuron spikes only
when a stimulus is precisely aligned with its STRF (defined as the spike-triggered average), whereas
an FSI equal to 0 means that neural firing is triggered by stimuli uncorrelated with the STRF.
We computed the FSI using the 25 cochleagram excerpts that most strongly activated each of the
first- and second-layer units. The average FSI of each model layer is plotted in Fig 10D. Second-
layer features are substantially less specific than first-layer features. A similar effect occurs across
different cortical layers [54] (Fig 10D, right). Analogous differences seem likely to occur between
thalamus and cortex as well, although we are not aware of an explicit prior comparison. The
decrease in response specificity in our model can be explained by the fact that second layer units
can become activated when any of the pooled first-layer features (or their combination) appears in
the stimulus.

Experimental predictions
Inhibition-excitation patterns in mid-level audition

Our visualizations of second layer features in Fig 7B revealed that many represent the concurrent
activation of many STKs. Examination of Fig 7B (columns 1 and 2) suggests that the first layer
STKs that such units pool are typically highly similar either in their spectrotemporal or modulation
properties. However, Fig 7B also shows examples of a distinct set of second-layer units in which
increased activation of one group of STKs (again, typically similar to each other) is associated with
a decrease in activity of another group of STKs. For example, when a harmonic feature becomes
active when encoding a vowel, click-like features might become inactive. Such "opponency" was
evident in a large subset of second layer units, and represents the main novel phenomenon evident in
our model. To our knowledge no such opponent tuning has been identified in auditory neuroscience,
but qualitatively similar opponent behavior is evident in visual neurons exhibiting end-stopping
or cross-orientation inhibition. The results raise the possibility that coordinated excitation and
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inhibition could be a feature of central auditory processing, and we thus examined this model
property in detail.
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Figure 11: Opponency in second layer units. Each row corresponds to a particular second-
layer unit. The leftmost column plots the center of mass of each first-layer STK in the modulation
and time-frequency planes, along with the time courses of their weights in the second-layer unit (as
in Fig 7B). The second and third columns from the left depict 25 stimuli eliciting strong positive
and negative responses in the corresponding second-layer unit. In the fourth and fifth columns,
positive and negative stimuli are visualized as red and blue circles, respectively, in time-frequency
and modulation planes (the circle is located at the center of mass of the stimulus). Large circles
correspond to centroids of positive and negative stimulus clusters.
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Examples of opponent patterns encoded by second-layer features are visualized in Fig 11. One
might imagine that one could simply examine the STKs pooled by each unit to determine the
sort of stimuli eliciting strong positive or negative responses. But because the activation of each
unit is the result of a non-linear inference process in which units compete to explain the stimulus
pattern [29], it is often not obvious what a set of STKs will capture. Thus to understand which
stimuli ’excite’ or ’inhibit’ second-level features, we inferred coefficients v by encoding the entire
training dataset and selected two sets of 25 sound epochs that elicited the strongest positive and
strongest negative responses, respectively, in each unit. These positive and negative stimuli are
depicted in the second and third columns from the left, respectively. In the last two columns, the
center of mass of each of these stimuli is plotted on the time-frequency plane (fourth column) and
modulation plane (fifth column). Although the center of mass of each stimulus is admittedly a crude
summary, the simplicity of the representation facilitates visualization and analysis of the clustering
of positive and negative stimuli. We note also that the phenomenon of interest is that different
sets of features have opposite effects on a second-layer unit - because second-layer coefficients and
weights can be sign-reversed without changing the represen