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1 Introduction

Holographic duality is the fascinating proposal that quantum field theories of a bound-

ary system are dual to quantum gravity theories of an associated higher-dimensional bulk

spacetime. This proposal found a stunningly precise realisation in the work of Malda-

cena [1] who argued that there is an exact equivalence between string theory on AdS5×S5

and N = 4 supersymmetric Yang-Mills theory on the four-dimensional boundary. This was

quickly solidified by Gubser, Klebanov, and Polyakov [2] and Witten [3]. Since these foun-

dational works there has been a huge amount of effort exploring such AdS/CFT dualities.

Most recently, quantum information ideas have been exploited to provide microscopic toy

models to understand quantum gravity [7] and bulk/boundary correspondences [4–6].

The idea that a bulk holographic spacetime might be associated with the entanglement

structure of a boundary quantum system finds its antecedents in the early works of Jacob-

sen [8] and Holzhey, Larsen, and Wilczek [9]: Jacobsen argued that Einstein’s equations

arise from black hole thermodynamics and might find their best interpretation as an equa-

tion of state (see [10] for a thorough account and references). By combining Jacobsen’s

observation with the earlier derivations of the area law of entanglement in conformal field

theory [9] one could already see a kernel of later developments in embryonic form.

The precise connection between bulk geometries and the structure of entanglement

of low-energy states of a boundary system was realised by Ryu and Takayanagi, who
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conjectured — based on analogies with black hole entropy via the AdS/CFT correspondence

— that the amount of entanglement on the boundary of the spacetime is given by the area

(in Planck units) of certain extremal surfaces (of co-dimension 2) in the bulk [11]. The Ryu-

Takayanagi conjecture was later reduced to the original AdS/CFT relation by Lewkowycz

and Maldacena [12]. However, it took until Van Raamsdonk’s essay [13] before the full scale

of the connection between quantum entanglement, as geometric glue, and quantum gravity

began to be emerge. During the same year, Swingle had independently drawn in [14] largely

the same conclusion as Van Raamsdonk. Further arguments for the connection between

entanglement and geometry via tensor networks were then developed in [15]. Swingle and

Van Raamsdonk later coauthored an investigation into dynamics: they have since managed

to derive Einstein’s equations linearized around pure AdS [16], providing further evidence

that the dynamics of spacetime, as well as its geometry, indeed emerge from the structure

of entanglement. Concurrently, Maldacena and Susskind [17] put forward their ER=EPR

conjecture according to which a wormhole is equivalent to an entangled pair of black holes

— significantly strengthening support for the idea of geometrising entanglement.

The proposals we discuss in this paper are found in recent works [18–21] and talks [22–

24] of van Raamsdonk, Swingle, Susskind, and Stanford: the core idea we explore is that the

pattern of the entanglement of a (boundary) state |ψ〉 of a collection of degrees of freedom

(qubits for simplicity) determines a dual bulk holographic spacetime via the principle of

minimal complexity. So far, in the literature, the focus has been on using the principle of

minimal complexity to identify with a given boundary quantum system a dual bulk classical

spacetime and vice versa. To this end, a variety of tools have been developed to build a dual

bulk geometry from the quantum circuit arising from the principle of minimal complexity.

To the best of our knowledge this task has usually been carried out in the Euclidean

Wick-rotated setting. Our first contribution in this paper is to develop a mathematically

precise formalism to build dual bulk geometries from quantum circuits in the Euclidean

Wick-rotated setting. As we explain, this approach seems rather indirect as we ultimately

want a Lorentzian structure for the dual bulk holographic spacetime. Thus, in our second

contribution, we develop a procedure to directly associate a Lorentzian manifold with the

dual bulk holographic spacetime arising from the natural causal structure induced by local

quantum circuits. This construction exploits the theory of causal sets to build a discrete

model for the Lorentzian dual.

Another problem which has received comparatively little attention in the context of

the principle of minimal complexity has been the study of the quantum fluctuations around

a dual bulk classical spacetime induced by the dynamics of the boundary quantum system.

The dynamics of such fluctuations ought to determined by the dual bulk quantum grav-

ity. Our third contribution in this paper is the observation that the principle of minimal

complexity actually determines not only the dual bulk holographic spacetime but also the

fluctuations, giving us a new avenue to identity the dual quantum gravity theory. The

mathematical mechanism underlying this is that of Jacobi fields : since a minimal quantum

circuit is a geodesic, a bulk fluctuation must be determined by a quantum circuit which

is “near” to this geodesic, which may be understood as a vector field along the original

geodesic. Such Jacobi fields are highly constrained and must obey the Jacobi equation.
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The chain of implications is thus: a minimal boundary quantum circuit determines a bulk

spacetime. A fluctuation in the minimal boundary quantum circuit leads to a fluctuation

of the dual bulk holographic spacetime. Any fluctuation of the boundary circuit (which

is a geodesic) must obey the Jacobi equation. Thus the (linearised) bulk fluctuations are

governed by the Jacobi equation.

It is a classical result in differential geometry that a geodesic may be variationally

determined by minimising over all paths in the manifold a quantity known as the energy

given by the length of the path. But this quantity is, per definition, the (square of) the

complexity. We hence have an action with respect to which a geometry is determined; in

this sense complexity is defined to be equal to the action, consistent with the proposals [19]

and [20] that complexity equals action. All of these ideas allow us to build a proposal for

the dual quantum gravity theory for the bulk as a path integral over Brownian bridges

with action given by the energy determined by the principle of minimal complexity.

The structure of our paper is as follows. We begin by discussing a precise approach to

associating a bulk geometry, as a topological space, with a quantum system comprised of a

discrete collection of degrees of freedom and discuss the relationship between fluctuations

of the bulk geometry and perturbations of the boundary quantum system. To that end,

in the next section we review the prerequisite material and introduce all the necessary

preliminary machinery to discuss correlated quantum systems and bulk geometries. In

section 3 we introduce two alternative ways, both capturing the essence of the principle of

minimal complexity, to associate a bulk holographic spacetime, as a topological space, with

the low-energy sector of a strongly correlated boundary quantum system. Following this,

in section 4 we introduce an action, building on the principle of minimal complexity, to

model fluctuations of the bulk holographic spacetime. The connection between boundary

perturbations and bulk fluctuations is then developed in section 5, where Jacobi fields play

a prominent role. These ideas are then explored in the context of several simple examples

in section 6. Finally, in section 7 we present our conclusions and outlook.

2 Preliminaries

The language and notation we use throughout this paper is influenced by that employed

in the literature on the AdS/CFT correspondence; we summarise it here briefly to orient

the reader. Firstly, we refer throughout to two rather different systems, namely, the bulk

M and the boundary ∂M. In the AdS/CFT context the bulk systemM is the AdS space-

time and the boundary ∂M is the CFT. Here the boundary system ∂M is taken to be a

quantum system comprised of n distinguishable subsystems. One particular example plays

a prominent role throughout this paper, namely that of n qubits where ∂M has Hilbert

space given by H ≡
⊗n

j=1C2. (The calculations for the qubit case are representative of

more complicated examples such as qudits or even harmonic oscillators, in which case the

boundary Hilbert space is given by H ≡
⊗n

j=1 L
2(R).) The bulk system is a “classical

system” which, for the purposes of this paper, is taken to be a topological space (X, T )

with point set X ∼= {1, 2, . . . , n}×R+ and an, as yet undetermined, topology T . The point

set X corresponds to a partially discretised holographic spacetime with discrete boundary
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“spatial” coordinates and an additional continuous “holographic time” or “radial” coordi-

nate referred to, henceforth, as r ∈ R+. Since the boundary system is a standard quantum

system, and we are working in the Hamiltonian picture, there is an additional “standard

time coordinate” τ (corresponding to the usual time for a boundary CFT); we always work

on a single time slice for both the boundary and bulk and hence this coordinate is sup-

pressed throughout. Thus, unless otherwise specified, whenever we say “time r” we are

referring to the holographic time/radial coordinate.

The boundary system is intended to capture all of the relevant low-energy degrees

of freedom of some boundary Hamiltonian H ∈ B(H). For example, if H ≥ 0 is gapped

with a unique ground state then there is only one relevant low-energy degree of freedom,

namely the ground state |Ω〉, in which case the boundary Hilbert space is just H ∼= C. A

slightly more nontrivial example is that of a ferromagnet in a small magnetic field where the

relevant degrees of freedom are the vacuum and the single-magnon sector; here the relevant

Hilbert space is H ∼= Cn+1. A somewhat nontrivial example is that of the Hubbard model

with n sites at half filling with large on-site repulsion, in which case only the spin degrees

of freedom are relevant and thus H ∼=
⊗n

j=1C2. A final example, which we don’t pursue

here, is that of a system of n anyons in general position. In this case dim(H) ∝ dn, where

d is the total quantum dimension.

The boundary Hamiltonians H are taken to be local with respect to some finite simple

graph G ≡ (V,E), where V is the vertex set representing the n subsystems and E is the

edge set representing interactions, i.e.,

H =
∑
j∼k

hjk, (2.1)

where hjk are hermitian operators acting nontrivially only on subsystems j and k and as

the identity otherwise, and j ∼ k means that (j, k) is an edge of the graph G.

States of the boundary Hilbert space H may be specified in terms of a trivial reference

basis, henceforth called the computational basis, which is usually determined by a trivial or

elementary initial local Hamiltonian. For our quantum spin system this is just the prod-

uct basis |x1x2 · · ·xn〉, xj ∈ {0, 1}, j = 1, 2, . . . , n (for a system of harmonic oscillators,

this would be the overcomplete basis |α1α2 · · ·αn〉, αj ∈ C, j = 1, 2, . . . , n, of all coherent

states). The boundary Hamiltonian determines a second basis via the unitary U which diag-

onalises H, i.e., U †HU = D, with D diagonal. Because global phases are irrelevant the uni-

tary U may be understood as an element of the special unitary group SU(H) ∼= SU(2n). It is

worth noting that even if H is rather simple, e.g., G is a line graph, that U can be extremely

difficult to determine in general (see, e.g., [25–27] and references therein for examples).

The unitary U diagonalising the boundary Hamiltonian H is the central object of inter-

est here: its entangling structure determines an associated dual holographic bulk spacetime

M. The way this is done is by studying the quantum information complexity of U counting

the number of nontrivial quantum gates required to implement U . A powerful method to

precisely capture the information complexity of a unitary U ∈ SU(H) was introduced by

Nielsen and coauthors [28–33], who proposed, for certain specific metrics on the tangent
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space TUSU(H) of SU(H) at U ,

〈·, ·〉U : TUSU(H)× TUSU(H)→ R,

the geodesic length C(U) ≡ d(I, U) between the identity I ∈ SU(H) and U as an appropriate

measure, where

d(I, U) ≡ inf
γ

∫ √
〈K(r),K(r)〉 dr, (2.2)

and the infimum is over all curves γ(r) ∈ SU(H) with tangent vector −iK(r)γ(r) connecting

U to the identity I, i.e., we have, via integration of the Schrödinger equation ∂rγ(r) =

−iK(r)γ(r), that γ(0) = I and γ(R) = U , for some R ∈ R+.

All the metrics in this paper are taken to be right invariant by identifying the tangent

space at I with that at U ∈ SU(H) via −iK 7→ −iKU , where −iK ∈ su(H) is a tangent

vector1 at I ∈ SU(H). Accordingly the metric 〈·, ·〉U is constant as a function of U and we

henceforth write 〈·, ·〉U ≡ 〈·, ·〉. We specialise now to H ∼= C2n ; one particular family of

metrics plays a key role in this paper, namely those built on penalising 3- or higher-particle

terms in the tangent space. To describe these metrics we define P≤2 ⊂ su(H) to be the

linear space spanned by all operators which consist of tensor products of at most two pauli

operators, e.g., σx ⊗ σy ⊗ I⊗ · · · ⊗ I and I⊗ · · · ⊗ I⊗ σz. The complementary subspace of

P≤2 in su(H) is denoted P>2; we have that su(H) = P≤2 ⊕ P>2. The space P>2 consists

of all operators which are linear combinations of tensor products of three or more Pauli

operators. Following Dowling and Nielsen we then introduce for p ∈ R+

〈A,B〉p ≡
1

dim(2n)

(
tr(A†P≤2

BP≤2
) + p tr(A†P>2

BP>2)
)
, (2.3)

where

XP≤2
, and XP>2 (2.4)

denote the restrictions of X ∈ su(H) to the subspaces P≤2 and XP>2 . For the special case

that p = 1 this metric reduces to the standard right-invariant metric on SU(H):

〈A,B〉 ≡ 1

dim(H)
tr(A†B). (2.5)

In general, as p → ∞ is increased, the measure d(I, U) admits the pleasing operational

interpretation as (being proportional to) the minimal number of quantum gates required

to (approximately) implement U as a quantum circuit: this result was derived in [29, 30]

(see also [32, 33]). The intuition behind this result is as follows: firstly note that any

unitary path in SU(H) can be generated by a path with tangent vector restricted to P≤2 as

any such path may be approximated arbitrarily well by a sequence of single- and two-qubit

gates, which are a universal set of quantum gates. Secondly, any path that involves three-

or higher-particle terms will be penalised heavily in the limit p → ∞. Thus for any path

connecting any two points in SU(H) there is a sufficiently large value of p such that it is

preferable to traverse a path involving only two or fewer body terms which still connects

the two points.

1Tangent vectors K ∈ su(H) are hence antihermitian operators of the form K = −ik, with k ∈ B(H)
hermitian.
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The case p = 1 does not admit as natural an operational interpretation as the p � 1

case, nevertheless, we carry out most of our calculations in the examples with respect to

the p = 1 metric because it is so much easier. (Note, however, all the conclusions we

draw in this paper hold also for the general case p ∈ R+: one can straightforwardly derive

the Euler-Arnol’d and Jacobi equations in complete generality with respect to any right

invariant metric. The difficulty is that the equations involve large matrices and are not

analytically tractable for large n.) The p = 1 case simply measures how many unitary gates,

whether they be two-qubit or not, are required to approximate a given unitary U ∈ SU(H):

if it turns out that the geodesic joining U with the identity involves few-body terms then

we are reasonably sure that the geodesic with respect to p→∞ will not differ too greatly.

This actually does turn out to be the case in many of the examples.

The metrics 〈·, ·〉p are all examples of right-invariant metrics on a Lie group. This

class of metric allows for elegant computations; the vector field −iK(r) associated with the

geodesic flow γ(r) satisfies a compact equation known as the Euler-Arnol’d equation

− idK(r)

dr
= Bp(−iK(r),−iK(r)), (2.6)

where Bp(·, ·) is a bilinear form determined by 〈[X,Y ], Z〉p ≡ 〈B(Z, Y ), X〉p, ∀X,Y, Z ∈
su(H) [34–36]. In the special case p = 1 and when U is sufficiently close to I, i.e., I and U

are not conjugate points of SU(H), then the geodesic γ(r) is simply given by

γ(r) ≡ e−irK , (2.7)

where K ≡ i log(U) is constant.

The Nielsen complexity measure was taken up by Susskind and coworkers as a central

tool to determine a bulk holographic space M from a state |ψ〉 of the boundary space ∂M
specified by H. Here the idea is as follows. Take as input a quantum state |ψ〉 ∈ H of the

boundary Hilbert space and first find the unitary U of minimal complexity C(U) which

prepares |ψ〉 from an initial trivial state |00 · · · 0〉, i.e., U |00 · · · 0〉 = |ψ〉. Now, assuming

that the infimum in eq. (2.2) may be achieved by the geodesic γ(r) with tangent vector

−iK(r), we can write

U ≡ T e−i
∫R
0 K(r) dr, (2.8)

where T denotes time ordering. This expression may then be approximated by discretisa-

tion: we find a quantum circuit V ≡ VTVT−1 · · ·V1, where Vj , j = 1, 2, . . . , T , are quantum

gates acting on one or two qubits at a time, such that V ≈ U :

– 6 –
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That this can always be done is not totally trivial; see [37, 38] for the state of the art.

The spacetime history of the circuit V determines a connectivity or adjacency relation on

the vertex or point set X ≡ {1, 2, . . . , n}×{1, 2, . . . , T}: we place an edge between vertices

(j, t) ∈ X and (k, t) ∈ X if the two-qubit gate Vt, t ∈ {1, 2, . . . , T}, acts nontrivially on

qubits j and k:

If the boundary system ∂M is thought of as having d spacetime “dimensions” then the

resulting graph with vertex set X is a classical geometrical space having spacetime dimen-

sion d+ 1, with the role of the holographic time axis being played by the set {1, 2, . . . , T}.
We follow a slightly different, yet morally equivalent, approach to associating a bulk

holographic geometry to a boundary system in this paper, where the holographic time

dimension is continuous. We detail this idea in the next section.

3 Bulk topology and geometry from geodesics in SU(H)

In this section we explain how to associate a bulk topological space to any path γ in SU(H)

connecting the identity I to a unitary U acting on the boundary space.

Let γ be a path connecting I to U in SU(H). As a matrix we express γ as a time-ordered

product

γ ≡ T e−i
∫R
0 K(r) dr, (3.1)

where K(r) ∈ B(H) is a possibly time-dependent traceless hermitian operator generating

the evolution at γ(r). The matrix K(r) may be regarded as a time-dependent Hamiltonian

acting on the boundary system. We can express K(r) as a sum of interaction terms acting

on the subsystems of ∂M:

K(r) =
∑

I⊂{1,2,...,n}

kI(r), (3.2)

where kI(r) is an operator acting nontrivially only on the subsystems in the subset I. In

general, for the metrics we consider here, all possible subsets I can appear, and there are

exponentially many (in n) interaction terms. In other words, K(r) is generically a strongly

interacting quantum spin system.

We want to associate a topological space to K(r) for each instantaneous holographic

time slice r ∈ [0, R]. There are many operationally meaningful ways to do this, depend-

ing on the physical questions you ask. One way is to interpret K(r) as a free-particle
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Hamiltonian for some possibly very complicated configuration space X which is built by

matching the dispersion relation of the localised excitations of K(r) to that of the free-

particle Hamiltonian on X . Another way, one of which we focus on here, is to study the

response of high-temperature states ρβ(r), with β small, to localised perturbations A and

B at different sites: at zero inverse temperature β = 0 all perturbations on different sites

will be completely uncorrelated, however, when β is small there are residual correlations

between nearby sites allowing us to say when two sites are close. This approach, while some-

what indirect, has the considerable upside that it immediately leads to a positive-definite

metric. Yet another approach is to study the propagation of a localised perturbation A at

some site j according to the Schrödinger time evolution determined by K(r) and assuming

a Lieb-Robinson type bound [39, 40] on the dynamics of K(r):

‖[A(τ), B]‖ ≤ Cev|τ |−d(j,k)‖A‖‖B‖, (3.3)

where C is a constant, v is the group velocity, and B is an observable localised at some

other site k. Such a bound can be used to infer a pseudo-Riemannian type structure

via a causality relation on the set {1, 2, . . . , n} × R+ which can, in turn, be quantified

in terms of a causal set leading to an embedding in a Lorentz manifold. (Here τ is the

standard time coordinate for the boundary quantum system.) We discuss this idea in

the second subsection. These last two proposals may be regarded as a Wick-rotated “Eu-

clidean approach” and “Lorentzian approach”, respectively, to the problem of building bulk

holographic spacetimes associated with paths of unitaries.

3.1 Bulk holographic geometry from thermal correlations

Suppose that a quantum system of n quantum spins {1, 2, . . . , n} with Hamiltonian K(r)

is brought into thermal equilibrium at inverse temperature β: the state of the system is

described by the Gibbs ensemble

ρβ(r) ≡ e−βK(r)

tr(e−βK(r))
. (3.4)

Consider the effect of a small perturbation A ∈ su(H) localised at site j (respectively, a

small perturbation B ∈ su(H) localised at site k): the resulting system state is now

ρβ(r) + εX ≈ e−βK(r)+iεA

tr(e−βK(r))
, (3.5)

respectively,

ρβ(r) + εY ≈ e−βK(r)+iεB

tr(e−βK(r))
. (3.6)

(The reason for the factor of i is that elements of su(H) are antihermitian in this paper.)

Now we ask the question: how distinguishable is the perturbed state ρβ(r) + εX from the

state ρβ(r)+εY ? We say that the local perturbation A at site j is close, or adjacent, to the

perturbation B local to site k if the states ρβ(r) + εX and ρβ(r) + εY are not completely

distinguishable. That this notion corresponds to a topological/geometrical conception of
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closeness may be argued as follows. If the temperature is very high, i.e., near to the infinite-

temperature fixed point ρ ∝ I, then all correlations are disordered by thermal fluctuations.

The effects of a local perturbation are hence delocalised only in a small surrounding region

determined by the high-temperature correlation length, which directly depends on the

inverse temperature. Hence, if ρβ(r) + εX and ρβ(r) + εY are independent fluctuations,

i.e., they are uncorrelated, we say that A is far from B, otherwise, they are adjacent. This

region, in turn, determines the desired adjacency relation for the sites j and k which, in

turn, supplies us with a metric quantity.

It is a remarkable fact that the quantum informational distinguishability, as measured

by the relative entropy S(·‖·), of the states ρβ(r) + εX and ρβ(r) + εY is quantified to O(ε)

by the following equation [41–43]:

〈A,B〉ρβ(r) ≡ −
∂2

∂x∂y
F (x, y)

∣∣
x=y=0

, (3.7)

where F (x, y) is the free energy

F (x, y) = − 1

β
log
(

tr
(
e−βK(r)+ixA+iyB

))
. (3.8)

This idea has also been exploited in various incarnations by Nozaki, Ryu, and

Takayanagi [44] to identify metrics for holographic spacetimes and is most directly in-

spired by the distance quantity exploited by Qi in investigations of the exact holographic

mapping [45]. Rather fortuitiously, the quantity 〈·, ·〉ρβ(r) is a positive definite inner prod-

uct on the space of local operators. Additionally, it is equal to the following two-point

thermal correlation function

〈A,B〉ρβ(r) ≡
1

β

∫ β

0
tr
(
ρβ(r)euK(r)Be−uK(r)A

)
du. (3.9)

It is this quantity that we employ to determine an adjacency relation between the sites.

When β is infinitesimal the two-point thermal correlation function is given by

〈A,B〉ρβ(r) ≈
1

2n
tr(AB)− β

2n+1
tr(A{K(r), B}) +O(β2). (3.10)

However, we also know [46, 47] that the high-temperature two-point correlation functions

are exponentially decaying for β small:

|〈A,B〉ρβ(r)| . e
− d(j,k)

ξ(β) ‖A‖‖B‖, (3.11)

where, generically, the high-temperature correlation length tends to zero like ξ(β) ∝ β as

β → 0. (The exponential decay of high-temperature correlations notably does not hold for

bosonic systems, and we must resort to other means in this case.) Thus, if 〈A,B〉ρβ(r) is

nonzero for β infinitesimal when j 6= k this means that d(j, k) must be arbitrarily small,

i.e., j and k are adjacent.

Our task is thus to extract a distance measure, or metric, d(j, k) from 〈A,B〉ρβ(r). One

direct way of doing this is simply to take a log of eq. (3.11), i.e., define

d(j, k)
!≡ sup
A,B
−β log

|〈A,B〉ρβ(r)|
‖A‖‖B‖

, (3.12)
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similar to the approach of Qi [45]. Unfortunately, it is not clear if d(j, k) so defined

satisfies the triangle inequality d(j, l) ≤ d(j, k) + d(k, l). We will evade this problem by

using eq. (3.12) only to identify an adjacency relation between pairs of spins (j, k) and

then use this adjacency relation to build a metric. What this means is we first set up the

adjacency matrix

Aj,k = sup
A,B
−β log

|〈A,B〉ρβ(r)|
‖A‖‖B‖

, j 6= k. (3.13)

This defines a weighted graph structure G = (V,E) on the vertex set V = {1, 2, . . . , n}. For

any pair of points j and k in G we define the distance between j and k as the length of the

shortest path p = (e1, e2, . . . , em), where el = (xl, yl) are edges, between j and k. This is

guaranteed to obey the triangle inequality. Thus we define the metric d(j, k) according to

d(j, k) = inf

 ∑
(x,y)∈p

Ax,y

∣∣∣∣∣∣p is a path from j to k

 . (3.14)

The definition of the metric we supply in this subsection is difficult to compute in

general. We can build a computable approximation by comparing eq. (3.10) expanded to

first order and eq. (3.11): if tr(A{K(r), B}) . e
− 1
β for all A and B then j and k are

not adjacent. If, however, there are local operators A at j and B at k such that for β

infinitesimal

〈A,B〉ρβ(r) � e
− 1
β , (3.15)

then j and k are adjacent. Restricting our attention to hamiltonians K(r) comprised of

only one- and two-particle interaction terms kj,k(r) (this is the case when p→∞) then to

first order in β this is equivalent to asking if there are traceless operators A at j and B at

k such that

tr(A{K(r), B}) 6= 0, (3.16)

i.e., j is adjacent to k if the two-particle interaction term kj,k(r) in K(r) is nonzero.

Physically this is equivalent to saying that j and k are adjacent if at time r an (infinites-

imal) quantum gate was applied coupling j and k. In the case where K is comprised of

three-particle or higher interactions we need to go to higher orders in β to determine a con-

nectivity relation (at first order the condition eq. (3.16) misses three-particle interactions,

we need to go to O(β2) to see the effect of such terms).

Taking the product of the metric topology determined by d(·, ·) for each r gives us our

desired bulk topological space M.

3.2 Bulk holographic geometry from causal sets

The method described in the previous subsection, while giving rise to a metric topological

space, does not really capture an important aspect of quantum circuits comprised of local

gates, namely, their causal structure: in every quantum circuit there is a kind of “light cone”

of information propagation where we can say that qubit j is in the past of qubit k if there

is a sequence of quantum gates in the circuit connecting j to k. Because the geodesics γ in

SU(H) obtained via the principle of minimal complexity are generated by essentially local
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gates this strongly suggests we should actually rather associate some kind of discretised

pseudo-Riemannian manifold to the bulk holographic spacetime. In other words, it is

rather more natural to think of M as a de Sitter-type space [48–50]. Equivalently, one

should regard the approach of the previous section as the Wick-rotated Euclidean version

of the approach described here.

In this subsection we detail an alternative approach to determining a bulk holographic

geometry from a path γ in SU(H) by associating a causal set X [51, 52] to γ. Causal sets,

in turn, are naturally associated to embeddings in pseudo-Riemannian manifolds.

Before we describe our construction we briefly review the main ideas of causal sets. A

causal set is a locally finite partially ordered set X of events, i.e., a set with order relation

� which is reflexive (i.e., x � x), transitive (i.e., x � y � z implies x � z), and noncircular

(i.e., x � y � x 6= y is excluded). To explain what “locally finite” means we introduce the

idea of an Alexandroff set which is a set of the form

[x, y] ≡ {z |x � z � y}; (3.17)

if every Alexandroff set [x, y], x, y ∈ X, contains a finite number of elements then X is said

to be locally finite. A topology T may be placed on X by using the Alexandroff sets as a

base.

To describe distances in causal sets we introduce the notion of a chain C which is a

subset of X such that for all pairs x and y in X, x and y can be compared via �, i.e.,

either x � y or y � x. Thus C is a sequence x = x1 � x2 � · · · � xs = y. The distance

d(x, y) between x and y is now defined to be the s− 1, where x = x1 � x2 � · · · � xs = y

is a maximal chain connecting x to y.

To obtain a causal set X from a path γ ≡ T e−i
∫ T
0 K(r) dr we sample points from the

Poisson distribution on {1, 2, . . . , n} × [0, T ] with density %. This gives us, almost surely,

a finite set X of points. We then build a causality relation on this set by first choosing a

threshold ε and then setting x � y if it is possible to send a detectable signal from x = (j, x0)

to y = (k, y0) via the unitary process γ. To obtain a causal set structure one has to allow

for arbitrary fast local interventions via local unitary operations (LU) during the evolution

of the unitary process γ: what this means is that we are allowed to interrupt the evolution

γ(t) = T e−i
∫ t
0 K(r) dr at any holographic time t, locally adjoin ancillary quantum systems

initialised in some pure state |0〉, and apply an arbitrary product unitary operation of the

form U1⊗U2⊗· · ·Un onH⊗Hanc, whereHanc is the Hilbert space for the additional ancillary

degrees of freedom. Such operations do not allow additional information transfer between

the subsystems. We write any evolution from holographic time t = x0 to holographic time

t = y0 resulting from such arbitrary local unitary interventions as a completely positive

(CP) map Ey0,x0 . We now obtain a causal set structure by saying that x � y if there exist

operators A and B local to sites j and k, respectively, such that (assuming, without loss

of generality, that x0 < y0):

‖[Ey0,x0(A), B]‖ > ε‖A‖‖B‖. (3.18)

This way of associating causal structures to a path γ in SU(H) also gives us a topo-

logical space (X, T ), this time generated by the Alexandroff sets. The space we obtain
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is rather different from that obtained in the previous section as a causal set is a pseudo-

Riemannian or Lorentzian space. Morally speaking, the topological space obtained in the

previous section is the “Wick rotated” version of the one obtained here.

As we increase the density of points in X we obtain finer and finer causal sets. It is

an intriguing question whether we can obtain a sensible continuum limit [53].

4 Complexity, action, and bulk fluctuations

The principle of minimal complexity identifies a geodesic γ in SU(H) which, in turn, gives

rise to a bulk geometry according to the constructions of the previous section. Here we dis-

cuss the fluctuations of the bulk geometry by introducing an energy functional determining

the geodesic γ and defining a corresponding partition function for what is presumably a

quantum gravity theory.

In Riemannian geometry a geodesic in a manifoldMmay be determined by minimising

the energy

E(γ) ≡ 1

2

∫ T

0
〈γ̇, γ̇〉γ dt. (4.1)

This quantity is minimised precisely on geodesics γ achieving the minimum geodesic dis-

tance d(I, U). A fluctuation γ′ = γ+dγ of a geodesic γ therefore should be a path in SU(H)

which has a near-minimal energy. Since any path in SU(H) gives rise to a bulk geometry,

perturbations γ′ of γ can also be interpreted as fluctuations in the bulk geometry. If we

imagine that the paths γ arise from a quantum system then it is natural to introduce the

partition function

ZB ≡
∫
Dγ e−βE(γ), (4.2)

to model the fluctuations, where
∫
Dγ is the path integral. Clearly, as β →∞, the integral

is dominated by the classical minimiser γ. Fluctuations γ′ are determined by the Gibbs

distribution. The partition function eq. (4.2) can be understood as that for a string with

target space SU(H) with fixed endpoints at I and U .

What is the structure of a fluctuation? The energy E(γ) is sensitive only to the presence

of quantum gates between pairs of spins but not which spins j and k the gate is applied to.

Thus it is easy to describe the structure of near-minimal fluctuations of a geodesic: these are

equal to γ(t) for all t except at one instant t = tw when a unitary gate Vj,k is applied to an

arbitrary pair (j, k) followed immediately by its inverse V †j,k. Such a geodesic corresponds to

a bulk holographic spacetime which is equal to the minimal one except with a “wormhole”

between j and k at t = tw which immediately “evaporates”. Thus the fluctuating bulk

geometry determined by the partition function eq. (4.2) is comprised of spacetimes where

wormholes are fluctuating in and out of existence between all pairs (j, k) of points.

The path integral in eq. (4.2) is remarkably simple in that it is quadratic in the tangent

field −iK(r) and hence the path measure Dγ e−βE(γ) may be understood as a Brownian

measure on paths in the unitary group SU(H) generated by 2-local tangent vectors. Pre-

cisely these Brownian motions on the unitary group were introduced in [54] as a model
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for black hole dynamics; in the p → ∞ limit each path γ(t) is a solution to the following

stochastic differential equation

dγ(t) ∝ i
n∑
j 6=k

3∑
αk=0

σ
αj
j ⊗ σ

αk
k γ(t) dBαjαk(t)− 1

2
γ(t) dt, (4.3)

where dBαjαk(t) are independent Brownian motions with unit variance per unit time. What

makes the partition function nontrivial is the constraint that the endpoints of the path are

exactly I and U , which turns the path integral into an integral over Brownian bridges (see,

e.g., [55] for details on the Brownian bridge in a unitary group) on SU(H). In this context,

fluctuations in the bulk geometry are interpreted as a very complicated random variable g ≡
g(U) which depends in a rather nonlinear way on the realisation U of the Brownian bridge.

We end this section with a comment on the relationship of the definition pursued

here the recent argument that information complexity equals action in the holographic

context [20, 21]. The proposal eq. (4.2) essentially promotes this argument to a definition:

the action E(γ) is directly related to the complexity d(I, U) in exactly the same way the

energy of a geodesic is related to the geodesic length in Riemannian geometry, i.e., the

minima of both quantities coincide.

5 Boundary perturbations and Jacobi fields

In this section we discuss the effect of a boundary perturbation on the bulk geometry

determined by the principle of minimal complexity. We argue that the principle of minimal

complexity already determines an equation of motion constraining the structure of the

induced bulk fluctuations. This equation of motion could be understood as a kind of

generalised Einstein equation.

The basic idea of this paper is captured by the following diagramme

Suppose the boundary system ∂M experiences a fluctuation. We model this as a perturba-

tion of the unitary U , i.e., we study perturbed unitaries U ′ = U + dU . One natural source

of such fluctuations arises from the presence of local external fields J , i.e., we study the

unitaries U(s, J) diagonalising the boundary Hamiltonians

H(s, J) ≡ H + s

n∑
j=1

3∑
α=1

J jασ
α
j , (5.1)

where J jα is a collection of 3n numbers parametrising an arbitrary inhomogeneous external

field and s is an infinitesimal. Knowledge of the ground state |Ω(s, J)〉 of a gapped Hamilto-

nian H(s, J) for all J allows us to calculate the expectation value 〈Ω|σα|Ω〉, for any collec-

tion of α ∈ {0, 1, 2, 3}×n by differentiation with respect to J at s = 0. The unitary U(s, J) is
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the generating function for H. Another natural source of fluctuations comes from unitaries

of the form U(s,M) = e−isMU , with M ∈ B(H) a hermitian operator and s small. The

physical justification for such fluctuations comes from interpreting U as the quantum circuit

which prepares the boundary system in a low-energy eigenstate of the boundary hamilto-

nian H. A circuit such as U(s,M) = e−isMU ≈ U+dU represents the situation where some

particles fluctuated into existence after the system was prepared in the low-energy sector.

So long as I and U are not conjugate points we can apply the prescription of the

previous section to identify a family of geodesics γ(r, s) connecting I to U(s, J) or U(s,M)

near to the geodesic γ connecting I to U , i.e., we study first-order corrections

γ(r, s) ≈ γ(r) + s∂sγ(r, s)|s=0. (5.2)

Via the argument of the previous section a shift in γ(r) corresponds in a shiftM 7→M+dM
in the bulk holographic spacetime. Since we capture the structure of the bulk holographic

spacetime with a (metric) topology, i.e., we observe a shift in the topology T on the point

set X. The key point is now that the vector field ∂sγ(r, s) which captures the first-order

shift in γ(r) is far from arbitrary, indeed, it satisfies a remarkable nontrivial equation of

motion known as the Jacobi equation:

∂2rY = Bp(∂rY + [X,Y ], X) +Bp(X, ∂rY + [X,Y ])− [Bp(X,X), Y ] + [X, ∂rY ], (5.3)

where we’ve defined X ≡ (∂rγ)γ−1 and Y ≡ (∂sγ)γ−1 [34–36]. This is a second-order

equation of motion for the fluctuation Y .

Since fluctuations in geodesics γ(r) directly correspond to fluctuations in bulk ge-

ometries the Jacobi equation may be naturally regarded as a kind of “Einstein equation”

constraining the dynamics of the bulk geometrical fluctuations. The vector field Y captur-

ing the bulk geometrical fluctuation dM is directly a function of the external boundary

field J jα, allowing us to deduce a precise bulk/boundary correspondence. This observation

is the main contribution of this paper.

For arbitrary local H it is very hard to say anything nontrivial about the structure of

U(J), and hence Y , so our general conclusions concerning the properties of the fluctuation

field Y are consequently limited; only in the context of solvable examples can we say

anything more.

6 Examples

Unfortunately, except for all but the simplest cases, the geodesic γ connecting I to a

unitary U is very hard to calculate, especially when p 6= 1. Nevertheless, much can already

be learned from very simple examples.

6.1 Example 1: the trivial case; bulk background

Suppose the boundary system is trivial, i.e., the unitary rotating H to its eigenbasis is

simply U = I. This would be the case, e.g., for the noninteracting boundary system

H =

n∑
j=1

σzj . (6.1)
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Figure 1. Example of the fluctuation in bulk spacetime M and bulk causal structure due to

a fluctuation on the boundary. The boundary quantum system ∂M is comprised of n = 100

qubits, and the boundary Hamiltonian is given by the 1D nearest-neighbour transverse Ising model

H =
∑100
j=0 σ

x
j σ

x
j+1 +hσzj , with periodic boundary conditions. The x axis is labelled by site number

and the y axis is holographic time r. The dots represent events in bulk holographic spacetime and

have been chosen according to the Poisson distribution. The unitary operator U studied here is U =

e−i50H , a quench scenario. We studied the minimal geodesic γ(r) = e−irH connecting the identity

I to U . The blue lines illustrate causal connections from a reference event at (j = 50, r = 25) to the

Poisson distributed events according to the criteria eq. (3.18). We considered a fluctuation U ′ =

e−iδh50,75U which models the addition of a remote entangled pair between the distant sites 50 and 75

(the spacetime history of both of the involved sites are illustrated with black lines) at time r = 50.

The bulk holographic spacetime for the new geodesic γ′ connecting I to U ′ was calculated according

to the principle of minimal complexity by solving the Jacobi equation and the additional causal

connections illustrated in red. One can readily observe the change in spacetime topology induced by

the fluctuation, which might be interpreted as the creation of a wormhole between sites 50 and 75.

In this case Cp(U) = 0 for all p and the holographic time direction collapses to a point

set. The associated holographic geometry is also trivial: this example corresponds to a

set of n completely disconnected bulk universes. The fluctuations are also structureless

as all different pairs of sites j 6= k fluctuate independently, corresponding to spontaneous

creation and annihilation of wormholes between all pairs of sites.

6.2 Example 2: the trivial case; pairwise perturbations

Imagine the trivial example experiences a boundary fluctuation where a pair (i, j) of bound-

ary spins is spontaneously entangled: H 7→ V †j,kHVj,k, where Vj,k is a near-identity unitary

operation entangling spins j and k. For example, take Vj,k = e−iεσ
x
j σ

x
k . In this case H
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fluctuates to

H ′ ≡ H + iε(σyj σ
x
k + σxj σ

y
k) (6.2)

By construction the unitary U ′ diagonalising H ′ is simply U ′ = Vj,k = I− iεσxj σxk .

It is straightforward to calculate the new geodesic γ′ connecting I to U ′: it is simply

γ′(r) ≡ e−irσ
x
j σ

x
k . (6.3)

The causal structure of the fluctuation in the associated bulk geometry may be directly de-

scribed: sites j and k become causally connected while the remaining sites remain causally

disconnected.

6.3 Example 3: quench dynamics

The final example we cover here concerns unitaries of the form U = eiτL, with L ∈ B(H)

a local generator. This sort of unitary is natural when studying the dynamics of quenched

systems where the hamiltonian of the boundary quantum system is suddenly changed from

some initial hamiltonian H to a new hamiltonian L. Recently it has been argued that such

dynamics are dual to Einstein-Rosen bridges supported by localised shock waves [56]. The

boundary system experiences a rotation according to L. In this particular case it is rather

easy to solve the Euler-Arnol’d equation (as long as I and U are not conjugate points),

namely, we find the geodesic

γ(r) ≡ eirL, r ∈ [0, τ ], (6.4)

that is, the vector field −iK(r) is constant and simply equal to L.

Consider now a fluctuation of the form U ′ = eisMU , with M local to a pair (j, k) of

sites, representing a nonlocal entangled pair of particles fluctuating into existence at sites

j and k just after the quench. In this rather general case we can actually completely solve

the Jacobi equation to yield the (constant) vector field Y :

− iY (r) =

∫ ∞
0

I
U + uI

M
U

U + uI
du. (6.5)

(Although not manifestly hermitian this expression does indeed lead to a hermitian operator

which can be confirmed by directly evaluating the integral.)

We have illustrated the application of this formula in figure 1 where we’ve calculated the

causal structure of the bulk spacetime geometry according to a fluctuation of a boundary

quantum system given by the transverse Ising model. This model was chosen because it may

be diagonalised in terms of spinless fermions via the Jordan-Wigner transformation. The

numerical simulation performed was as follows. We considered a boundary quantum system

given by n = 100 qubits arranged equally spaced around a circle. The unitary operator

whose complexity we studied was the propagator U = e−itH , where H =
∑100

j=0 σ
x
j σ

x
j+1+hσzj

is the hamiltonian for the transverse Ising model (here periodic boundary conditions means

that we identify site 0 with site 100). We made the physically reasonable assumption that

the minimal circuit γ(s) preparing U from the identity is none other than γ(s) = e−isH

itself. For the metric p = 1 this path does indeed achieve the minimum (up to the nearest

conjugate point), and any path achieving the minimum complexity/distance for p > 1
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could not outperform this path. The unitary U is appropriate for describing a boundary

system out of equilibrium, i.e., where all the relevant degrees of freedom given by the n

qubits are required to represent the system correctly. This is the situation epitomised by

a quench where, e.g., the magnetic field term h is suddenly turned on at t = 0.

Given the geodesic γ(s) we determined a Lorentzian bulk geometry by choosing ac-

cording to the Poisson distribution (with unit density) a set of M events of the form (j, t),

where j ∈ {0, 1, . . . , 99} and t is chosen uniformly in the interval [0, 50]. To determine

if a pair of such events was causally connected we calculated the commutator quantity

C(2)((j, tj); (k, tk)) = ‖[Aj(tj), Bk(tk)]‖, where Aj and Bk are operators localised at sites

j and k for all pairs of the events (j, t) and if it was above a threshold value we added

a connection. This first step produced the causal set for the background dual bulk holo-

graphic geometry. We then investigated fluctuations around this background by solving

the Jacobi equation, in particular, for a fluctuation of the form of a small interaction be-

tween sites j = 50 and k = 75 occurring at t = 50. That is, we calculated the minimal

geodesic γ′(s) connecting the identity to the new unitary operator U ′ = eiδh50,75U . Uni-

tary operators U ′ are indeed fluctuations because U ′ ≈ U + iδU . The Jacobi field for the

new geodesic γ′(s) is constant and may be directly calculated according to the formula

Y (s) = −i log(eiδh50,75U) − H. Given the Jacobi field we were able to calculate γ′(s) for

all s. Now that we had the formula for γ′(s) we again calculated, according to the same

recipe as for γ(s), the causal connections between all of our previously generated randomly

distributed spacetime events. This resulted in the formation of new causal connections that

might be interpreted as a wormhole having been formed in the bulk between sites 50 and 75.

7 Conclusions and outlook

In this paper we have discussed how, motivated by quantum information considerations,

one might associate a bulk holographic spacetime, as a topological space, with an arbitrary

boundary quantum system. This approach, exploiting the principle of minimal complex-

ity, was directly informed by the recent arguments of Maldacena, Ryu, Takayanagi, van

Raamsdonk, Swingle, and Susskind, and others. We introduced two ways to build bulk

holographic topological spaces from paths in the unitary group which are morally “Wick

rotated” versions of each other. Building on this observation we then argued that the

principle of minimal complexity supplies us with much more, namely, a quantum model

for fluctuations of the bulk holographic spacetime via Brownian bridges on the unitary

group. The connection between boundary fluctuations and bulk fluctuations is also simi-

larly determined via minimal complexity considerations: we derived an equation of motion

constraining the holographic fluctuations due to low-energy perturbations of the boundary

theory. Finally, we illustrated these ideas in the context of several simple examples.

We have just scratched the surface of these ideas and an enormous number of fasci-

nating questions remain to be explored. A partial list includes:

1. The calculations we carried out in this paper are almost exclusively for the case

p = 1 for the metric on SU(H). It is an intriguing question whether any quantitative
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results can be obtained for the more pertinent limit p → ∞. At least the Euler-

Arnol’d equation of motion can be written out and solved for small r. Also, the

Jacobi equation is, in principle, solvable for such limits.

2. The principle of minimal complexity is strongly reminiscent of the principle of least

action; indeed, we promoted it per definition to a least action principle to obtain a

model for the bulk holographic spacetime fluctuations. This is by far not the first

time such ideas have been proposed; indeed we learnt of very similar ideas long ago

from Andre Soklakov [57]. It is an intriguing question whether there is indeed a

deeper connection here between the minimal complexity principle and Kolmogorov

complexity, and similarly, between fluctuations and Solomonoff induction.

3. Should we give in to temptation and interpret the partition function eq. (4.2) as a

quantum gravity theory? Does this theory enjoy any kind of diffeomorphism invari-

ance? As it is a theory of strings in a ridiculously high-dimensional space (namely,

the manifold SU(H)) can it be related to string theory proper, or is this a mirage?

4. Our boundary quantum system is completely arbitrary, however, it is vitally impor-

tant to study the continuum limit. This can indeed be done following the method in-

troduced in [58]. The resulting bulk spacetime for CFTs should then converge to AdS.

5. Tensor networks did not play a prominent role here, but they should emerge as

(almost) geodesics. In particular, the perfect tensor model of [4] and the EHM of

Qi [45], are most natural candidates. Fluctuations around these cases should be

particularly relevant for AdS/CFT dualities.

6. We only looked at one example in any depth, namely, the transverse Ising model. It

would be very interesting to look deeper at more examples, including, more general

quantum lattice models and models of black holes, shockwaves, and beyond.
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