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Dynamic shape change of the octopus mantle during fast jet escape maneuvers results
in added mass energy recovery to the energetic advantage of the octopus, giving escape
thrust and speed additional to that due to jetting alone. We show through numerical
simulations and experimental validation of overall wake behavior, that the success of the
energy recovery is highly dependent on shrinking speed and Reynolds number, with
secondary dependence on shape considerations and shrinking amplitude. The added
mass energy recovery ratio ηma, which measures momentum recovery in relation to the
maximum momentum recovery possible in an ideal flow, increases with increasing the
non-dimensional shrinking parameter σ∗ = ȧmax

U

√
Re0, where ȧmax is the maximum

shrinking speed, U is the characteristic flow velocity, and
√

Re0 is the Reynolds number
at the beginning of the shrinking motion. An estimated threshold σ∗ ≈ 10 determines
whether or not enough energy is recovered to the body to produce net thrust. Since
there is a region of high transition for 10 < σ∗ < 30 where the recovery performance
varies widely and for σ∗ > 100 added mass energy is recovered at diminishing returns,
we propose a design criterion for shrinking bodies to be in the range of 50 < σ∗ < 100,
resulting in 61-82% energy recovery.

1. Introduction

The octopus, while not widely praised as a powerful swimmer, performs jet escape
maneuvers with ease and effectiveness, despite its bluff “bag-like” mantle shape in the
initial stages of the maneuver. Octopodes can be contrasted with squid, whose rigid
tunic mantle structures give them a definite advantage in jet propulsion (Gosline &
DeMont 1985). This specialized rigid tunic structure allows the squid to stay streamlined,
and does not involve extra expenditure of energy in maintaining mantle length when
expelling water for jet propulsion. Octopodes, on the other hand, must spend some
metabolic energy maintaining the longitudinal stiffness of its “bag-like” spherical mantle,
otherwise, radially squeezing of water might cause longitudinal mantle stretching, instead
of the intended fluid expulsion to form a jet (Gosline & DeMont 1985). There is one
factor, however, that is overlooked in the literature in giving some fair acknowledgment
to the versatility of the “bag-like” shape of the octopus: Its large dynamic mantle
shape-changing ability, from an initially hyper-inflated spherical shape to a streamlined
ellipsoidal shape, is shown in this work to aid in added mass energy recovery from the
fluid, providing additional thrust and much higher escape velocity than by the jetting
alone.

† Email address for correspondence: s chin@mit.edu
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(a) (b)

Figure 1: (a) The octopus mantle changes shape drastically from almost spherical (top)
to a streamlined shape (bottom) during the course of a jet escape. Images courtesy of
DJ Schuessler. (b) Close-up of an octopus mantle that is nearly spherical in shape, in
preparation for a jet escape. Images courtesy of Roger T. Hanlon.

Jet escapes are for avoiding predators, often employed in conjunction with expelling
ink to mask the octopus trajectory from the predator. The cycle of normal jet propulsion
swimming, that is, mantle hyperinflation, deflation, and relaxation, is exaggerated during
the more urgent jet escape response and can produce large shape changes in the octopus
mantle (Gosline & DeMont 1985).

The hydrodynamic effect from the shape change is a distinct effect from the jetting
alone, as shown by the self-propelled octopus-inspired robot Octobot (Weymouth et al.
2015). An elastic sheathing is filled with fluid and mounted externally to a rigid stream-
lined skeleton. When the fluid is released, fluid is expelled to provide jet propulsion
forward and also activates shape change of the external elastic sheathing. Image analysis
of the shape of the sheath and the speed of the robot shows that the thrust force on
the robot is 30% more than is provided by the jetting alone (Weymouth et al. 2015).
Moslemi & Krueger (2011) studied pulsed jet propulsion efficiency as a function of
Reynolds number, Krieg & Mohseni (2013) studied non-parallel starting jets to better
understand jellyfish and squid jets, and Linden & Turner (2004) discussed optimal vortex
ring formation in salps, squid, and fish swimming. Gemmell et al. (2013) illuminated the
stopping vortex in the deceleration phase of jellyfish swimming as a passive mechanism
that gives additional thrust to the jelly. In Gemmell et al. (2013), the stopping vortex
mechanism was previously overlooked in contributing to the optimality of the jellyfish
jet formation; here, we highlight the distinct contribution and importance of the shape
change mechanism in providing additional escape thrust during the octopus fast jet
escape.

Figure 1(a) shows an example of the shape change employed by octopodes during
fast jet escapes (images courtesy of DJ Schuessler). When the octopus senses danger, it
prepares for a fast getaway by taking up extra fluid into its mantle, hyperinflating to
an almost spherical mantle shape (top); midway through the jet escape the mantle is
much more streamlined in shape (bottom). Figure 1(b) shows a closer view of an octopus
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preparing to perform a jet escape, showcasing its initially bluff mantle shape (images
courtesy of Roger T. Hanlon).

The shape change of octopodes during fast jet escapes allows for added mass energy
recovery. Total added mass energy recovery is possible within potential flow for a
fixed-shape body; in a viscous flow at least partial energy recovery is still possible,
provided large scale separation does not occur. For a shrinking body it depends on
the conditions of body deflation whether energy will be recovered or released to the
flow (Weymouth & Triantafyllou 2012): For a deflating body with prescribed kinematics
energy is recoverable, provided flow separation is small, while for a ‘melting body’ no
energy is recovered. When added mass energy is recovered, conservation of momentum
requires that part of the momentum is also transferred back to the body.

Previous work on shape changing bodies demonstrates the concept of added mass
energy recovery. Spagnolie & Shelley (2009) showed in simulation that for a body
changing shape from a circle to an ellipse the sum of body and fluid momenta is
conserved. Kanso et al. (2005)’s work modeled fish swimming as a three-link solid
mechanism propelled and steered in potential flow by periodic shape changes, in this
case relative rotations between the articulated linkages. Saffman (1967) studied ways in
which manipulating body size, shape, and center of mass would result in added mass
energy recovery for net propulsion in an inviscid context. Childress et al. (2011) showed
that for intermediate Reynolds numbers, recoil locomotion produced by changing both
shape and internal mass distribution results in faster swimming speeds as compared to
predicted inviscid speeds.

Weymouth & Triantafyllou (2013) showed that a self-propelled, jetting, shrinking body
in simulation, if it is able to avoid massive flow separation, recovers added mass energy to
achieve a high escape velocity. In order to focus on the role of the shrinking parameters in
the present study, we do not consider the effects of jetting and acceleration. We note that
energy recovery is significant, provided that flow separation is prevented; these results
are entirely consistent with the results of Weymouth & Triantafyllou (2013) that include
acceleration and jet effects. Weymouth et al. (2015) provide an experimental validation
that shape change can result in additional thrust due to jet momentum flux, while
they introduce a deflation scaling parameter, σ∗, based on an analogy with separation
prevention through porous suction flow.

In the current work we show through numerical simulations as well as experimental
validation that the shrinking speed and Reynolds number are critical parameters, while
the specific shape and shrinking amplitude are secondary parameters for successful added
mass energy recovery. We also demonstrate that the suction flow analogy is appropriate

for shrinking bodies. We adopt the general deflation scaling parameter σ∗ = V̇
AU

√
Re

fromWeymouth et al. (2015), where V̇ is the body volume rate of change, A is the
frontal area, U is the forward velocity, and Re is the Reynolds number. We define the
non-dimensional shrinking parameter here as σ∗ = ȧmax

U

√
Re0 parameter, where ȧmax is

the maximum shrinking speed of the body, U is the characteristic forward velocity of the
motion, and Re0 is the Reynolds number based on the initial body size, which can predict
the degree of success of the added mass energy recovery. Furthermore, the threshold for
drag production versus successful thrust production is determined to be σ∗ ≈ 10, and a
range of 50 < σ∗ < 100 is shown to result in good recovery performance of 61-82%.
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2. Evaluation of Added Mass Energy Recovery Performance

2.1. Suction Analogy and Non-dimensional Shrinking Parameter σ∗

Many researchers have investigated separation prevention flow control involving suction
through porous walls (Prandtl 1935; Head 1959; Preston 1946). Prandtl (1935) derived
the momentum balance equation used to solve for the minimum suction rate needed to
prevent incipient separation on a laminar boundary layer. Preston (1946) used similar
techniques to show what the threshold suction rate would be on a circle with constant
suction applied on the rear half of the circle. Lugt (1983) explained in layman’s terms
that drag reduction techniques such as suction through pores remove fluid particles with
low momentum from the boundary layer, thus bringing fresh fluid particles with high
momentum to refresh the boundary layer.

Preston (1946)’s equation for the minimum constant suction flow to just avoid laminar

separation on a cylinder is v1
U0

= 3.214
√

ν
U0D

, where v1 is the suction rate, U0 is the

characteristic flow velocity, ν is the kinematic viscosity, and D is the diameter of the
cylinder. We propose that the form of this suction-based equation can inform our decision
of an appropriate non-dimensional parameter to predict and describe the success of
added mass energy recovery in shrinking cases. For Preston (1946)’s equation, meeting
or exceeding the threshold suction rate prevents boundary layer separation. Analogously,
exceeding the threshold shrinking rate prevents massive separation, allowing the wake to
reset to follow the instantaneous body size. Since shrinking also imposes a strong normal
velocity near the object boundary, we take

σ∗ =
ȧmax
U

√
Re0 (2.1)

to be the shrinking parameter, where ȧmax is the maximum shrinking speed of the body
analogous to the suction rate.

2.2. Wake Width and Added Mass Recovery Ratio ηma

Having proposed σ∗ as the relevant parameter that determines success of the added
mass energy recovery, we must also quantify the success of the recovery.

One measure that can indicate whether the energy recovery is successful or not is the
wake width. If the width of the wake is larger than the instantaneous body size, we know
that momentum is left in the fluid wake, and added mass energy recovery is only partial.
If the width of the wake is comparable to the instantaneous body size, this is a good
indicator that the energy recovery is high.

Additionally, we can quantify the recovery through an added mass recovery ratio,

ηma =

∫
tshrink

Fxdt

U(ma,0 −ma,f )
, (2.2)

where the total impulse of the x-direction force Fx integrated over the entire shrinking
time tshrink is normalized by the total possible recoverable added mass momentum in
the fluid, which is the difference between the initial and final potential flow added masses
ma,0 − ma,f multiplied by the characteristic velocity, in this case the constant towing
velocity U . The upper limit on this recovery ratio is 1, meaning that the entire added
mass fluid momentum has been recovered. On the other hand, the recovery ratio can
be negative, meaning that there is a net drag on the shrinking body as opposed to net
thrust production. The recovery ratio uses the total force in the x-direction, including
friction and pressure drag; as a consequence it is different than potential flow would
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Figure 2: Example of non-successful energy recovery for Re0 = 1000 and ȧmax = 0.1
(σ∗ = 3). (Left) Vorticity contours halfway through and (middle) at end of shrinking
motion. (Right) X-direction force on body for shrinking times.

predict, resulting in less recovered energy. When the recovery ratio is zero, there is no
net integrated thrust to the body but still some added mass energy has been recovered.

We provide some examples of unsuccessful, moderately high, and high energy recovery
in shrinking bodies to establish the effect of the principal parameters. In the following
three examples the two-dimensional simulated bodies have prescribed kinematics reaching
a constant “towing” speed U = 1 from left to right, and experiencing an initial ramped
impulsive start from tUD = 0 to tUD = 0.1, followed immediately by constant towing
motion and prescribed body deflation of the instantaneous minor axis length a(t) =

a0

(
1 +∆r

(
t−t0
∆t −

sin(2π
t−t0
∆t

2π

))
, where a0 is the initial minor axis length, ∆r is the

fraction of shape change (negative for shrinking), t0 is the time at which shrinking begins,
and ∆t is the duration of the shrinking.

In figure 2, initial Reynolds number Re0 = 1000 and maximum shrinking speed
ȧmax = 0.1 give the non-dimensional shrinking parameter to be σ∗ = 3. The left snapshot
shows the top half of the vorticity wake contours halfway through the shrinking motion,
and the middle snapshot shows the vorticity contours at the end of the shrinking motion.
The wake is clearly massively separated during the shrinking process. The right snapshot
shows the instantaneous horizontal force on the shrinking body (solid), as well as the
potential flow ideal instantaneous horizontal force (dashed), for the entire shrinking
motion. Here, the body experiences no thrust production from energy recovery at all,
but instead experiences a large drag force, giving a recovery ratio of ηma = −2. For low
σ∗ we see large wake widths in conjunction with negative ηma.

Figure 3 shows an example of moderately high energy recovery (12%), with initial
Reynolds number Re0 = 1000 and maximum shrinking speed ȧmax = 0.4, giving σ∗ = 13.
From the left and middle snapshots, the wake follows the instantaneous body size much
better than in figure 2, but still exhibits massive separation by the end of the shrinking
motion. Looking to the right force plot, the body experiences thrust production, with a
recovery ratio of ηma = 0.12. For this slightly larger σ∗ we see narrower wake widths and
positive ηma.

Lastly, figure 4 shows high energy recovery (87%), with initial Reynolds number Re0 =
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Figure 3: Example of moderately high energy recovery for Re0 = 1000 and ȧmax = 0.4
(σ∗ = 13). (Left) Vorticity contours halfway through and (middle) at end of shrinking
motion. (Right) X-direction force on body for shrinking times.
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Figure 4: Example of high energy recovery for Re0 = 1000 and ȧmax = 4 (σ∗ = 127).
(Left) Vorticity contours halfway through and (middle) at end of shrinking motion.
(Right) X-direction force on body for shrinking times.

1000 and maximum shrinking speed ȧmax = 4, giving σ∗ = 127. From the left and
middle snapshots, the wake follows the instantaneous body size very well throughout
the shrinking motion. The right force plot shows that the body experiences thrust very
similar to the potential flow ideal, with a recovery ratio of ηma = 0.87. For larger σ∗ we
see narrow wake widths and large positive ηma.

3. Numerical Results

3.1. Numerical Setup

All simulations in this work were performed using a boundary data immersion method
(BDIM), as developed by Weymouth & Yue (2011) and improved by Maertens &
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Weymouth (2015), with modifications to run the shape change simulations written by
the corresponding author. The simulations are fully viscous and can be performed in two
and three dimensions.

In all simulations, the body starts with a diameter of D = 1 and experiences a ramped
impulsive start from tUD = 0 to tUD = 0.1. Immediately following this, in all simulations
save those testing the influence of the starting time-scale in section 3.2, the shrinking
profile is superimposed on the constant prescribed forward speed U = 1. The prescribed
radius or minor axis length shrinking kinematics are as follows: instantaneous radius

or minor axis length a(t) = a0

(
1 +∆r

(
t−t0
∆t −

sin(2π
t−t0
∆t

2π

))
and the instantaneous

radius/minor axis length shrink speed da(t)
dt = a0∆r

∆t

(
1− cos(2π t−t0∆t )

)
, where a0 is the

initial radius or minor axis length, ∆r is the fraction of shape change (negative for
shrinking), t0 is the time at which shrinking begins, and ∆t is the duration of the
shrinking.

A number of three-dimensional simulations were performed to test energy recovery
conditions for a sphere shrinking to a prolate spheroid. A Reynolds number range was
conducted for Re0 = 100− 1100 and maximum shrink speed range for ȧmax = 0.1− 4.

For two dimensional simulations, two shape changes were tested: a circle shrinking to a
circle, and a circle shrinking to an ellipse. Reynolds number range for Re0 = 100− 2000,
maximum shrink speeds ȧmax = 0.1 − 10, and shrink amplitudes from 0.1 − 0.9D were
also tested.

Convergence tests were performed using simulations of shrinking two- and three-
dimensional bodies with identical shrinking kinematics within each convergence testing
set. The grid size is geometrically expanding, with the near-body field having a constant,
fine grid size h.

In two dimensions, a family of three grids of h = 1.5∆h2D, 1.28∆h2D, ∆h2D, where
the grid size ∆h2D = 0.005 was tested for various Reynolds numbers. Using results from
these three grids, an estimate of the convergence rate p and true value of the peak force
F0 was calculated from the convergence formula F (h) = F0 + ahp, where F (h) is the
peak force value output, a is the convergence coefficient, and h is the grid size. It was
found that for two dimensions, based on the convergence requirements that p > 2 and
the difference between F (h) and F0 is less than 2%, the shrinking simulations are valid
up to a Reynolds number of Re0 = 2000.

In three dimensions, a family of three grids of h = 1.6∆h3D, 1.28∆h3D, ∆h3D, where
the grid size ∆h3D = 0.0101 was tested for various Reynolds numbers. For the same
convergence requirements as stated above, the three-dimensional shrinking simulations
are valid up to a Reynolds number of Re0 = 1100.

The BDIM code has also been previously validated for bluff bodies as well as heaving
and pitching foils in Maertens & Weymouth (2015), and has been used in many other
works as well, including simulations of shrinking and jetting bodies (Weymouth &
Triantafyllou 2013) and retracting foils (Wibawa et al. 2012).

3.2. Starting Time-Scale

An aspect that influences all following results is the specific time when the shrinking
motion is triggered. In figure 5, vorticity contours at respective end of shrinking (top
row) and corresponding force plots in the shrinking duration (bottom row) are shown for
shrinking circles. The two cases have identical parameters of ȧmax = 4, Re0 = 1000, and
shrink amplitude of 0.8D, with the key difference that one shrinking motion has started
immediately after the impulsive start at time tUD = 0.1 (left) and the other has started
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Figure 5: (Left) circle shrinking to a smaller circle right after the impulsive start, and
(right) circle shrinking to a smaller circle after 8.4 body lengths of forward travel. Top
row: Wake vorticity contours at respective end of shrinking motions, maximum shrink
speed and initial Reynold number held constant at ȧmax = 4, Re0 = 1000. Bottom row:
X-direction force on body for shrinking times.

after 8.4 body lengths of travel at tUD = 8.5, after Kármán street shedding has already
occurred.

The wakes of the respective shrinking circles clearly show that the case with the shrink-
ing immediately after the start has boundary layers that closely follow the instantaneous
size of the body, while the delayed shrinking case has a large, massively separated wake.
The force during shrinking for the first case is also close to the ideal-recovery force
(dashed line), while that for the delayed shrinking case is not, giving a recovery ratio of
almost 77% for the first case, versus only 30% for the delayed deflation case. It should
be noted that for the delayed deflation, the flow has separated so that the added mass
is significantly different than for attached flow. Due to these results, all cases following
show results for a starting time-scale of tUD = 0.1.

3.3. Maximum Shrink Speed Range

Now we consider numerical simulation results for bodies shrinking from a spherical
to prolate spheroidal shape (in three dimensions), or from circular to ellipsoidal shape
(in two dimensions) with varying maximum shrink speed. In this set of simulations, all
cases were run at Re0 = 1000 and shrinking amplitude of 0.8D on the minor axis. From
the force outputs, the recovery ratio ηma was calculated for each run. From figure 6, for
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Figure 6: Recovery ratio ηma plotted against maximum shrink speed, Re0 = 1000 for 2D
and 3D simulations.
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Figure 7: Streamlines of equidistant stream function values, vorticity contours, and
radially spaced tracer particles, filled lightest to darkest, initially further from the
boundary to closer to the boundary layer. Beginning of (left), one-quarter through
(middle), and halfway through (right) shrinking motion, Re0 = 1000 and ȧmax = 1.

both two- and three-dimensional shrinking bodies, increasing the maximum shrink speed
increases the recovery ratio. In addition, the shrinking speed is a critical parameter that
can affect whether any energy is recovered at all, since the low speeds 0.1 and 0.2 result
in ηma < 0.

Figures 7 and 8 demonstrate the suitability of considering the shrinking speed as
equivalent to suction speed in determining whether the wake separates, as we postulated
in section 2.1. Non-dimensional vorticity ωDU contours, streamlines of equidistant stream
function values, the instantaneous body size and position, and radially spaced fluid tracer
particles are shown for two simulations. The tracer particles are seeded just outside the
boundary layer at non-dimensional time tUD = 0.1, right at the beginning of the shrinking

motion. For figure 7, snapshots are shown at times tUD = 0.1, 0.3, 0.5, corresponding to
the beginning, one-quarter through, and halfway through the complete shrinking motion
for a circle shrinking to an ellipse at ȧmax = 1. For figure 8, snapshots are shown at times
tUD = 0.1, 0.6, 1.1, corresponding to the beginning, one-sixteenth through, and one-eighth
through the complete shrinking motion for a circle shrinking to an ellipse at ȧmax = 0.1.

For the faster shrinking case of figure 7, the tracer particles show that fluid particles
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Figure 8: Streamlines of equidistant stream function values, vorticity contours, and
radially spaced tracer particles, filled lightest to darkest, initially further from the
boundary to closer to the boundary layer. Beginning of (left), one-sixteenth through
(middle), and one-eighth through (right) shrinking motion, Re0 = 1000 and ȧmax = 0.1.

from outside the boundary layer, which have high momentum, are brought close to and
then inside the boundary layer, injecting increased momentum into the boundary layer,
preventing it from separating from the body. Thus, the boundary layer stays close to the
body and the wake resets. By contrast, for the slowly shrinking case of figure 8, the fluid
particles that are right outside the boundary layer are not drawn in fast enough by the
imposed normal velocity of the shrinking body, in order to contribute any momentum
addition to the boundary layer. The vorticity contours show the boundary layer to
separate from the body, as the wake does not reset to follow the instantaneous body
outline.

Hence, we find that the normal velocity imposed by a deflating body can replenish
the boundary layer with high-momentum fluid particles to prevent separation, just as
the normal velocity imposed by suction flow through pores in a body can replenish
the boundary layer with high-momentum fluid particles so that incipient separation is
prevented.

3.4. Re Range

Next, results for shrinking recovery ratios ηma when Reynolds number is varied are
shown in figure 9, for bodies shrinking from spheres to prolate spheroids (in three
dimensions) and from circles to ellipses (in two dimensions). All cases in this simulation
set were run with shrinking amplitude of 0.8D on the minor axis.

For all two- and three-dimensional results, ηma increases with increasing Re0, consistent
with the physical interpretation that the lower the Reynolds number, the more fluid
momentum is diffused out of the boundary layer, impeding the added mass energy
recovery. For the two- and three-dimensional results run at a fast shrink speed of
ȧmax = 4.0, even for low Reynolds number all recovery ratios ηma > 0, whereas for
the two dimensional results run at slow shrink speed ȧmax = 0.4 for Re0 < 500, ηma < 0.
This shows that shrink speed is critical, and that dependence on Reynolds number is
important but less critical than shrink speed, consistent with the definition of the non-
dimensional shrinking parameter σ∗ = ȧmax

U

√
Re0.
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Figure 9: Recovery ratio ηma plotted against Re, ȧmax = 0.4 and ȧmax = 4.0 for 2D
simulations, and ȧmax = 4.0 for 3D simulations.
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Figure 10: Recovery ratio ηma plotted against maximum shrink speed for circle shrinking
to a circle and circle shrinking to an ellipse.

3.5. Shape Effects

Figure 10 shows recovery ratios against maximum shrinking speed for two different
shape changes, from a circle to a smaller diameter circle, and from a circle to an ellipse
with constant major axis diameter equal to the original circle diameter. All simulations in
this set were performed at Re0 = 1000 and shrink amplitude 0.8D. The results show that
for the same shrinking kinematics, shrinking to an ellipse is more effective than shrinking
to a circle. Figure 11 shows vorticity contours at the end of shrinking for ȧmax = 1 for a
circle shrinking to both a circle (left), and an ellipse (right). The circle’s wake is wider
than that of the ellipse with identical kinematics, signaling better energy recovery for
the ellipse.

3.6. Shrink Amplitude Range

Lastly, we determine the effect of varying the shrinking amplitude. Figure 12 shows
the recovery ratios for varying shrinking amplitudes, shown as fractions of the original
size D, for circles shrinking to ellipses; with ȧmax = 4 and Re0 = 1000 held constant.
While there is a decrease in recovery ratio with increasing shrink amplitude, the effect is
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Figure 11: Wake vorticity contours at respective end of shrinking motions for (left) circle
shrinking to a smaller circle with 50% recovery, and (right) circle shrinking to an ellipse
with 70% recovery; maximum shrink speed and initial Reynold number held constant at
ȧmax = 1, Re0 = 1000.
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Figure 12: Recovery ratio ηma plotted against shrink amplitude, Re0 = 1000, ȧmax = 4.0
for 2D simulations.

less than a 5% difference within the range from 10% to 90% shrink amplitude, covering
nearly the entire possible range of shrinking amplitude.

Though the effect of shrinking amplitude is relatively small, we can explain the decrease
of recovery ratio by looking at the near-body vorticity contours. Figure 13 shows the
vorticity contours at the end of shrinking for a circle shrinking to an ellipse for 10%
shrinking amplitude (left), and 90% shrinking amplitude (right); maximum shrinking
speed and initial Reynolds number are held constant at ȧmax = 4, Re0 = 1000. As seen,
the boundary layer for the larger amplitude is significantly thicker, reducing momentum
(and energy) recovery by the body.
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Figure 13: Comparison of vorticity contours at the end of 2D shrinking for a circle
shrinking to ellipse, and for (left) 10% and (right) 90% shrink amplitude; maximum
shrink speed and initial Reynold number held constant at ȧmax = 4, Re0 = 1000.

Figure 14: Experimental setup of deflating body, with air reservoir volume control
actuated by a linear motor.

4. Experimental Results

4.1. Experimental Setup

We also validated the energy recovery and wake resetting behavior experimentally with
a deflating and shape-changing body, filled with air and controlled by a linear-actuated
140 cc syringe. The experimental setup is shown in figure 14. The shape changing body
(‘muscle’) is connected to a thin aluminum hollow tube, which is connected to an actuated
air reservoir and allows for air to transfer in and out of the muscle without creating
a large disturbance wake. The air reservoir plunger is directly mounted to a Copley
Controls STA2504 linear motor, while the reservoir piston is mounted rigidly to the
carriage. Optical triggers were set up so that soon after the carriage’s impulsive start,
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Figure 15: Shape changing body used in experiments fully inflated (top), partially deflated
(middle), and fully deflated (bottom).
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Figure 16: Elongating shape change simulation vorticity contours at end of respective
shrinking motions, for Re0 = 1000 and maximum shrink speeds ȧmax = 0.1, 0.4, 4
(respectively σ∗ = 3, 13, 32).

the body deflation begins, and continues while the body is towed at constant speed. For
flow visualization, the horizontal laser plane is set at half-depth of the shape changing
body, in order to capture the wake at the most representative planar cut through the
three-dimensional shape.

Figure 15 shows the side view of the shape changing body used, in its fully inflated
state (top), partially deflated (middle), and fully deflated (bottom). As in the simulations,
the minor axes shrink as the body is deflated; but, due to the design of the body used,
the major axis is simultaneously elongated. Nonetheless, the simple construction and
repeatable performance of the shape changing body makes this experimental design
attractive.
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Figure 17: Vorticity contours of the near-body wake region of the shape-changing
body from experimental PIV data. Snapshots show the wake at one-quarter intervals
throughout the shrinking motion. σ∗ = 5 and the wake is massively separated.

4.2. Elongated Shape Change Simulations

First we confirmed that the deflating body’s shape change with simultaneous minor
axes shrinking and major axis elongation results in the same overall behavior as seen
in the previous simulations, where the major axis remained constant as the minor axis
shrank.

Numerical simulations were performed with this new elongating shape change at Re0 =
1000 and three different maximum shrink speeds of ȧmax = 0.1, 0.4, 4 (respectively σ∗ =
3, 13, 32). The elongation of the major axis follows the inverse of the kinematics of the
shrinking, with the minor axis shrinking to 0.5D and the major axis elongating to 2D.
Figure 16 shows the vorticity contours at the end of respective shrinking motions. The
wake massively separates for the slowest shrink speed (left) and resets to follow the
instantaneous body size for the faster shrink speeds (middle and right). Thus, the general
wake resetting behavior is the same for the experimental shape changing body as for the
previous numerical results.

4.3. PIV Experimental Wake Visualizations

Particle imaging velocimetry (PIV) results obtained within the half-depth plane of the
shape changing body validate the results of the previous simulations. Figures 17 through
19 show the experimental near-body vorticity contours of the aft half of the body, from
the beginning of the shrinking motion to the end of the shrinking motion, in one-quarter
intervals through the shrink motion. Image processing of the raw camera images provide
estimates of the shrinking motion duration, instantaneous body shape in the laser plane,
and shrinking kinematics, since the shape change of the body is not a simple analytic
shape change.

Figure 17 shows the vorticity contours from PIV results, for the shape changing body
at σ∗ = 5. The contours show that the wake is massively separated, consistent with
unsuccessful energy recovery. Comparing figure 17 with σ∗ = 5 with the left snapshot in
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Figure 18: Vorticity contours of near-body wake region of shape changing body, from
experimental PIV data. Snapshots show wake at one-quarter intervals throughout
shrinking motion. σ∗ = 19 and the wake successfully resets, with the streamlines following
the instantaneous body outline.

figure 16 with σ∗ = 3, we see excellent agreement between the numerical and experimental
results.

For figure 18, σ∗ = 19. The experimental vorticity contours here show that the wake
resets with the instantaneous body shape, consistent with successful energy recovery.
Comparing figure 18 with σ∗ = 19 with the middle snapshot in figure 16 with σ∗ = 13,
we see again excellent agreement between the numerical and experimental results.

For figure 19, σ∗ = 33. Again the experimental vorticity contours show that the wake
resets with the instantaneous body shape, consistent with successful energy recovery. The
numerical elongated shape change results show that the σ∗ = 32 case, right snapshot of
figure 16, has a narrower wake than the σ∗ = 13 case, middle snapshot of figure 16. We
would expect from this numerical results trend that the boundary layers of figure 19 with
σ∗ = 33 would be thinner than that of figure 18 with σ∗ = 19. Instead we see that the
two experimental wakes are very similar. This is attributed to the limited resolution of
the experimental PIV seeding close to the body.

5. Discussion

Figure 20 shows the compiled numerical results from six of the above numerical data
sets, showing the recovery ratio ηma as the non-dimensional shrinking parameter σ∗

varies. The sets of data include the two-dimensional simulations of a circle shrinking
to an ellipse: varying Re0 = 100 − 2000 with shrink speed ȧmax = 0.4 held constant,
varying Re0 = 100 − 2000 with shrink speed ȧmax = 4 held constant, varying shrink
speed ȧmax = 0.1− 10 with Re0 = 1000 held constant, and varying shrink speed ȧmax =
0.1 − 4 for the elongated shape change simulations with Re0 = 1000 held constant;
and three-dimensional simulations of a sphere shrinking to a prolate spheroid: varying
Re0 = 100 − 1100 with shrink speed ȧmax = 4 held constant, and varying shrink speed



Added Mass Energy Recovery for Shrinking 17

t
U

D
=0.00

Initial

−3D/2 −D

0

D/2

D

3D/2

t
U

D
=0.14

1/4 Shrink

−3D/2 −D

t
U

D
=0.28

1/2 Shrink

−3D/2 −D

t
U

D
=0.43

3/4 Shrink

−3D/2 −D

t
U

D
=0.57

End Shrink

 

 

−3D/2 −D

ω
D

U

−10 −8 −6 −4 −2 0 2 4 6 8 10

Figure 19: Vorticity contours of near-body wake region of shape changing body, from
experimental PIV data. Snapshots show wake at one-quarter intervals throughout
shrinking motion. σ∗ = 33 and the wake successfully resets, following the instantaneous
body width.
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Figure 20: Recovery ratio ηma plotted against σ∗ for six simulation sets: two-dimensional
simulations of a circle shrinking to an ellipse with i) Re0 = 100 − 2000 with constant
shrink speed ȧmax = 0.4, ii) Re0 = 100 − 2000 with constant shrink speed ȧmax = 4,
iii) shrink speed range ȧmax = 0.1 − 10 with constant Re0 = 1000, iv) shrink speed
range ȧmax = 0.1 − 4 for the elongated shape change simulations with constant Re0 =
1000; three-dimensional simulations of a sphere shrinking to a prolate spheroid with v)
Re0 = 100 − 1100 with constant shrink speed ȧmax = 4, and vi) shrink speed range
ȧmax = 0.1− 4 with Re0 = 1000 held constant.
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ȧmax = 0.1− 4 with Re0 = 1000 held constant. The prescribed forward speed U = 1 for
all simulations.

When plotted against the non-dimensional shrinking parameter σ∗, we see that all
recovery ratios closely follow the same curve, confirming that σ∗ is indeed a characteristic
parameter of the energy recovery shrinking problem. We also note that our definition
here of the non-dimensional shrinking parameter as σ∗ = ȧmax

U

√
Re0, where ȧmax is

the maximum shrinking speed of the body, U is the characteristic forward velocity of
the motion, and Re0 is the Reynolds number based on the initial body size, is a more
appropriate definition than that previously introduced in Weymouth et al. (2015), where

the deflation scaling parameter is defined as σ∗ = V̇
AU

√
Re, where V̇ is the body volume

rate of change, A is the frontal area, U is the forward velocity, and Re is the Reynolds
number. For example, in the two-dimensional simulations presented in this work of a
circle shrinking to an elongating ellipse, with the major axis elongating as the inverse of
the shrinking minor axis of the ellipse, the area is always constant so that the parameter
as defined in Weymouth et al. (2015) is always zero.

We can extract several overall trends from figure 20 that can be used to exploit the
energy and momentum recovery in deflating bodies:

(i) The shrinking parameter σ∗ is a good predictor of energy recovery performance
and can be used in the design of shrinking and shape changing robots in the recovery of
added mass energy.

(ii) A threshold value of σ∗ ≈ 10 is established, to determine whether energy extraction
in terms of net thrust is feasible, ηma > 0; or not, ηma < 0. This is a critical value
analogous to the minimum suction rate required to prevent incipient boundary layer
separation as described in section 2.1. If this threshold value is exceeded, enough energy
recovery for net thrust production is possible.

(iii) The experimental PIV wake results support the numerical prediction trends based
on the σ∗ value. The experimental shape changing body case with σ∗ = 5 (figure 17)
shows a massively separated wake, consistent with predictions of unsuccessful energy
recovery below the threshold value σ∗ ≈ 10. The other two experimental shape changing
body cases, with σ∗ = 19, 33 (figures 18, 19) show wakes consistent with at least partial
energy recovery, as predicted for σ∗ > 10.

(iv) A desired performance range of 50 < σ∗ < 100 can be established. The performance
region 10 < σ∗ < 30 is highly transient, with recovery ratio ηma values ranging from
0− 70%. Therefore, the less sensitive region of 50 < σ∗ < 100, with variation of 61-82%
recovery from data points inside the interval, gives a good range of recovery performance.
For σ∗ > 100 there are still recovery gains to be made, but with diminishing returns as
compared to merely increasing σ∗ to be beyond the transition range.

We can compare our predictions against some data available on larval squid. Based
on experimental measurements of larval squid mantle size and maximum mantle con-
traction rates during jet escapes available from Thompson & Kier (2001) and estimated
characteristic swimming velocities of 1 body length per second, non-dimensional shrinking
parameters are estimated to be σ∗ ≈ 70 for hatchling squid, σ∗ ≈ 139 for young larval
squid, and σ∗ ≈ 182 for larger larval squid. These non-dimensional shrinking parameter
estimates are based on squid measurements, because experimental octopus measurements
of this kind are scarce; but the shape change present in larval squid show that indeed σ∗

values obtained from animals agree with the conclusions presented above.

Lastly, we can discuss some aspects of external energy expenditure that must be
considered when designing a shrinking machine to take advantage of added mass energy
recovery. The fluid-related power is the integral over the exposed body surface (internal
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and external) of the inner product of the local fluid force (primarily the pressure force)
and the local velocity of the body in an inertial frame. This velocity is the vectorial
sum of the translational velocity and the local surface-shrinking velocity (relative to
the center of mass of the body), so we can identify two components, one related to
the translational and another one related to the shrinking velocity. In a body that is
self-propelled, since the latter drives the propulsive jet and the overall maneuver, it is
expected to be negative when integrated over the total time of the maneuver, hence
providing the required driving energy. The shrinking energy is expended in accelerating
the body, driving the propulsive jet, overcoming the drag force, and imparting energy to
(or recovering energy from) the fluid in the form of added mass; only the latter energy may
be negative since it is recoverable. In self-propelled experiments, the balloon is inflated,
storing potential energy in the membrane; this energy is expended for its deflation and
is equal to the shrinking energy. Because added mass energy recovery occurs at the later
part of the maneuver, when the body mass has been reduced as the jet expels mass from
the mantle, it has the added beneficial effects of imparting very high final velocity if
drag remains small. This is the reason for focusing on the energy recovery aspects of the
problem, combined with prevention of separation effects.

6. Conclusions

Octopodes use shape change to recover added mass energy that is first input into the
fluid during the onset of a bluff body jet escape maneuver. As the octopus releases fluid
mass from its mantle to generate thrust, it also deflates and the dynamic shape change
allows for recovery of the added mass energy to the energetic advantage of the octopus,
since now the simultaneous recovery of the momentum gives a greater burst of escape
speed with a lighter mass.

We showed that successful energy recovery is highly dependent on shrinking speed and
Reynolds number, with secondary dependence on shape considerations and shrinking
amplitude. We confirmed this using numerical results ranging in shrink speed, Reynolds
number, shape effects, and shrink amplitude, and also validated the results experimen-
tally with a towed and deflating shape-changing body.

The experimental and numerical simulation results when plotted together show that
the added mass energy recovery ratio ηma increases with increasing the non-dimensional
shrinking parameter σ∗ = ȧmax

U

√
Re0. These results point to a threshold value σ∗ ≈ 10

in order to recover energy for net thrust production; below this value not enough energy
and momentum are recovered, and, instead, net drag forces develop on the body. The
main conclusion is that the shrinking parameter range of 50 < σ∗ < 100 can be targeted
in order to achieve significant energy recovery.

The authors wish to thank DJ Schuessler and Roger T. Hanlon for their generous per-
mission to share images from their respective underwater videos of octopodes performing
jet escapes. We also wish to thank each anonymous reviewer for their time spent on our
paper.

REFERENCES

Childress, Stephen, Spagnolie, Saverio E. & Tokieda, Tadashi 2011 A bug on a raft:
recoil locomotion in a viscous fluid. Journal of Fluid Mechanics 669, 527–556.

Gemmell, B. J., Costello, J. H., Colin, S. P., Stewart, C. J., Dabiri, J. O., Tafti, D.
& Priya, S. 2013 Passive energy recapture in jellyfish contributes to propulsive advantage



20 S. C. Steele et al

over other metazoans. Proceedings of the National Academy of Sciences 110 (44), 17904–
17909.

Gosline, John M. & DeMont, M. Edwin 1985 Jet-propelled swimming in squids. Sci. Am
252 (1), 96–103.

Head, M. R. 1959 Approximate Calculations of the Laminar Boundary Layer with Suction,
with Particular Reference to the Suction Requirements for Boundary Layer Stability on
Aerofoils of Different Thickness/Chord Ratios. Res. Council, Rept. and Memo. 3124 .

Kanso, E., Marsden, J. E., Rowley, C. W. & Melli-Huber, J. B. 2005 Locomotion of
Articulated Bodies in a Perfect Fluid. Journal of Nonlinear Science 15 (4), 255–289.

Krieg, Michael & Mohseni, Kamran 2013 Modelling circulation, impulse and kinetic energy
of starting jets with non-zero radial velocity. Journal of Fluid Mechanics 719, 488–526.

Linden, P. F. & Turner, J. S. 2004 Optimalvortex rings and aquatic propulsion mechanisms.
Proceedings of the Royal Society of London B: Biological Sciences 271 (1539), 647–653.

Lugt, H.J. 1983 Vortex Flow in Nature and Technology . Wiley.
Maertens, Audrey P. & Weymouth, Gabriel D. 2015 Accurate Cartesian-grid simulations

of near-body flows at intermediate Reynolds numbers. Computer Methods in Applied
Mechanics and Engineering 283, 106–129.

Moslemi, Ali A & Krueger, Paul S 2011 The effect of Reynolds number on the propulsive
efficiency of a biomorphic pulsed-jet underwater vehicle. Bioinspiration & Biomimetics
6 (2), 026001.

Prandtl, L. 1935 The mechanics of viscous fluids. In Aerodynamic Theory , , vol. III. Berlin:
Julius Springer.

Preston, J. H. 1946 The Boundary-layer Flow over a Permeable Surface through which Suction
is Applied. British Aerospace Research Council, London 2244 .

Saffman, P. G. 1967 The self-propulsion of a deformable body in a perfect fluid. Journal of
Fluid Mechanics 28 (02), 385–389.

Spagnolie, Saverio E. & Shelley, Michael J. 2009 Shape-changing bodies in fluid:
Hovering, ratcheting, and bursting. Physics of Fluids 21 (1), 013103.

Thompson, Joseph T. & Kier, William M. 2001 Ontogenetic changes in mantle kinematics
during escape-jet locomotion in the oval squid, Sepioteuthis lessoniana Lesson, 1830. The
Biological Bulletin 201 (2), 154–166.

Weymouth, G.D. & Yue, Dick K.P. 2011 Boundary data immersion method for Cartesian-
grid simulations of fluid-body interaction problems. Journal of Computational Physics
230 (16), 6233–6247.

Weymouth, G. D., Subramaniam, V. & Triantafyllou, M. S. 2015 Ultra-fast escape
maneuver of an octopus-inspired robot. Bioinspiration & biomimetics 10 (1), 016016.

Weymouth, G. D. & Triantafyllou, M. S. 2012 Global vorticity shedding for a shrinking
cylinder. Journal of Fluid Mechanics 702, 470–487.

Weymouth, G. D. & Triantafyllou, M. S. 2013 Ultra-fast escape of a deformable jet-
propelled body. Journal of Fluid Mechanics 721, 367–385.

Wibawa, M. S., Steele, S. C., Dahl, J. M., Rival, D. E., Weymouth, G. D. &
Triantafyllou, M. S. 2012 Global vorticity shedding for a vanishing wing. Journal
of Fluid Mechanics 695, 112–134.


