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Abstract—Even in the aggregate, genomic data can reveal
sensitive information about individuals. We present a new model-
based measure, PrivMAF, that provides provable privacy guaran-
tees for aggregate data (namely minor allele frequencies) obtained
from genomic studies. Unlike many previous measures that have
been designed to measure the total privacy lost by all participants
in a study, PrivMAF gives an individual privacy measure for
each participants in the study, not just an average measure.
These individual measures can then be combined to measure
the worst case privacy loss in the study. Our measure also allows
us to quantify the privacy gains achieved by perturbing the data,
either by adding noise or binning. Our findings demonstrate
that both perturbation approaches offer significant privacy gains.
Moreover, we see that these privacy gains can be achieved while
minimizing perturbation (and thus maximizing the utility) rela-
tive to stricter notions of privacy, such as differential privacy. We
test PrivMAF using genotype data from the Wellcome Trust Case
Control Consortium, providing a more nuanced understanding of
the privacy risks involved in an actual genome-wide association
studies. Interestingly, our analysis demonstrates that the privacy
implications of releasing MAFs from a study can differ greatly
from individual to individual. An implementation of our method
is available at http://groups.csail.mit.edu/cb/PrivMAF/.

I. INTRODUCTION

Recent research has shown that sharing aggregate genomic
data, such as p-values, regression coefficients, and minor allele
frequencies (MAFs) may compromise participant privacy in
genomic studies [1], [2], [3], [4], [5]. In particular, Homer et
al. showed that, given an individual‘s genotype and the MAFs
of the study participants, an interested party can determine
with high confidence if the individual participated in the study
(recall that the MAF is the frequency with which the least
common allele occurs at a particular location in the genome).
Following the initial realization that aggregate data can be
used to reveal information about study participants, subsequent
work has led to even more powerful methods for determining
if an individual participated in a study based on MAFs [6],
[7], [8], [9], [10]. These methods work by comparing an
individual‘s genotype to the MAF in a study and to the MAF
in the background population. If their genotype is more similar
to the MAF in the study, then it is likely that the individual
was in the study. This raises a fundamental question: how do
researchers know when it is safe to release aggregate genomic
data?

To help answer this question we introduce a new model-
based measure, PrivMAF, that provides provable privacy guar-
antees for MAF data obtained from genomic studies. Unlike
many previous privacy measures, PrivMAF gives an individual

privacy measure for each study participants, not just an average
measure. These individual measures can then be combined
to measure the worst case privacy loss in the study. Our
measure also allows us to quantify the privacy gains achieved
by perturbing the data, either by adding noise or binning.

Previous work

Several methods have been proposed to help determine
when MAFs are safe to release. The simplest method– one
suggested for regression coefficients [11]– is to just choose
a certain number and release the MAFs for at most that
many single nucleotide polymorphisms (SNPs, e.g. locations
in the genome with multiple alleles). Sankararaman et al.
[7] suggested calculating the sensitivity and specificity of the
likelihood ratio test to help decide if the MAFs for a given
dataset are safe to release. More recently, Craig et al. [12]
advocated a similar approach, using the Positive Predictive
Value (PPV) rather than sensitivity and specificity. These
measures provide a powerful set of tools to help determine
the amount of privacy lost after releasing a given dataset. One
limitation of these approaches, however, is that they ignore
the fact that a given piece of aggregate data might reveal
different amounts of information about different individual
study participants, and instead look at an average measure of
privacy over all participants. For the unlucky few who lose
a lot of privacy in a given study, a privacy guarantee for
the average participant is not very comforting. The only sure
way to avoid potentially harmful repercussions is to produce
provable privacy guarantees for all participants when releasing
sensitive research data.

Some researchers have recently suggested k-anonymity
[13], [3], [14] or differential privacy [15], [16] based ap-
proaches, which allow release of a transformed version of
the aggregate data in such a way that privacy is preserved.
The idea behind these methods is that perturbing the data
decreases the amount of private information released. Though
such approaches do give improved privacy guarantees, they
limit the usefulness of the results, as the data has often been
perturbed beyond its usefulness; thus, there is a need to develop
methods that perturb the data as little as possible in order to
maximize its utility.

Identifying individuals whose genomic information has
been included in an aggregate result can have real-world
repercussions. Consider, for example, studies of the genetics
of drug abuse [17]. If the MAFs of the cases (e.g. people
who had abused drugs) were released, then knowing someone
contributed genetic material would be enough to tell that they
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had abused drugs. Along the same lines, there have been
numerous genome-wide association studies (GWAS) related
to susceptibility to numerous STDs, including HIV [18]. Since
many patients would want to keep their HIV status secret, these
studies need to use care in deciding what kind of information
they give away. Such privacy concerns have led the NIH and
the Wellcome Trust, among others, to move genomic data from
public databases to access-controlled repositories [19], [20],
[21]. Such restrictions are clearly not optimal, since ready
access to biomedical databases has been shown to enable a
wide range of secondary research [22], [23].

Many types of biomedical research data may compromise
individual‘s privacy, not just MAF [2], [24], [11], [25], [26],
[27], [28]. For instance, even if we just limit ourselves to
genomic data there are several broad categories of privacy
challenges that depend on the particular data available, e.g.
determining from an individuals genotype and aggregated data
whether they participated in a GWAS study [4], from an
individual‘s genotype whether they are in a gene-expression
database [5], or, alternately, determining an individual‘s iden-
tity from just genotype and public demographic information
[25].

Our Contribution

We introduce a privacy statistic, our measure PrivMAF,
which provides provable privacy guarantees for all individuals
in a given study when releasing MAFs for unperturbed or
minimally perturbed (but still useful) data. The guarantee
we give is straightforward: given only the MAFs and some
knowledge about the background population, PrivMAF mea-
sures the probability of a particular individual being in the
study. This guarantee implies that, if d is any individual
and PrivMAF(d,MAF) is the score of our statistic, then,
under reasonable assumptions, knowledge of the minor allele
frequencies implies that d participated in the study with prob-
ability at most PrivMAF(d,MAF). Intuitively, this measure
bounds how confident an adversary can be in concluding that a
given individual is in our study cohort based off the available
information.

Moreover, the PrivMAF framework can measure privacy
gains achieved by perturbing MAF data. Even though it is pref-
erential to release unperturbed MAFs, there may be situations
in which releasing perturbed statistics is the only option that
ensures the required level of privacy– such as when the number
of SNPs whose data we want to release is very large. With
this scenario in mind, PrivMAF can be modified to measure
the amount of privacy lost when releasing perturbed MAFs.
In particular, the statistic we obtain allows us to measure the
privacy gained by adding noise to (common in differential
privacy) or binning (truncating) the MAFs. To our knowledge,
PrivMAF is the first method for measuring the amount of
privacy gained by binning MAFs. In addition, our method
shows that much less noise is necessary to achieve reasonable
differential privacy guarantees, at the cost of adding realistic
assumptions about what information potential adversaries have
access to, thus providing more useful data.

In addition to developing PrivMAF, we apply our statistic
to genotype data from the Wellcome Trust Case Control
Consortium‘s (WTCCC) British Birth Cohorts genotype data.

This allows us to demonstrate our method on both perturbed
and unperturbed data. Moreover, we use PrivMAF to show
that, as claimed above, different individuals in a study can
experience very different levels of privacy loss after the release
of MAFs.

II. METHODS

A. The Underlying Model

Our method assumes a model implicitly described by Craig
et al. [12], with respect to how data were generated and what
knowledge is publicly available.

PrivMAF assumes a large background population. Like pre-
vious works, we assume this population is at Hardy-Weinberg
(H-W) equilibrium. We choose a subset (B) of this larger
population, consisting of all individuals who might reasonably
be believed to have participated in the study. Finally, the
smallest set, denoted D, consists of all individuals who actually
participated in the study. As an example, consider performing
a GWAS study at a hospital in Britain. The underlying popu-
lation might be all people of British ancestry; B, the set of all
patients at the hospital; and D, all study participants.

As a technical aside, it should be noted that– breaking
with standard conventions– we allow repetitions in D and
B. Moreover, we assume that the elements in D and B are
ordered.

In our model B is chosen uniformly at random from the
underlying population, and D is chosen uniformly at random
from B. An individual‘s genotype, d = (d1, . . . , dm), can be
viewed as a vector in {0, 1, 2}m, where m is the number of
SNPs we are considering releasing. Let pj be the minor allele
frequency of SNP j in the underlying population. We assume
that each of the SNPs is chosen independently. By definition
of H-W equilibrium, for any d ∈ B, the probability that dj = i
for i ∈ {0, 1, 2} is

(
2
i

)
(1− pj)2−ipij .

Let MAFj(D) =
1

2n

∑
d∈D

dj be the minor allele fre-

quency of SNP j in D, the frequency with which the
least common allele occurs at SNP j. Then MAF(D) =
(MAF1(D), . . . ,MAFm(D)). We assume the parameters,
{pi}i, the size of B (denoted N ), and the size of D (denoted
n) are publicly known. We are trying to determine if releasing
MAF(D) publicly will lead to a breach of privacy.

Note that our model does assume the SNPs are indepen-
dent, even though this is not always the case due to linkage
disequalibrium (LD). This independence assumption is made in
most previous approaches. We can, however, extend PrivMAF
to take into account LD by using a Markov Chain based
model (see the Appendix). The original WTCCC paper [29]
looked at the dependency between SNPs in their dataset and
found that there are limited dependencies between close-by
SNPs. In situations where LD is an issue one can often avoid
such complications by picking one representative SNP for each
locus in the genome.

B. Measuring Privacy of MAF

Consider an individual d ∈ B. We want to determine how
likely it is that d ∈ D based on publicly released information.



We assume that it is publicly known that d ∈ B. This is
a realistic assumption, since it corresponds to an attacker
believing that d may have participated in the study. This
inspires us to use

P (d ∈ D̃|MAF(D̃) = MAF(D), d ∈ B̃) (1)

as the measure of privacy for individual d, where D̃ and B̃
are drawn from the same distribution as D and B. Informally,
D̃ and B̃ are random variables that represent our adversary‘s
a priori knowledge about D and B.

More precisely, we calculate an upper bound on Equation
1, denoted by PrivMAF(d,MAF(D)). In practice we use the
approximation:

PrivMAF(d,MAF(D)) ≈ 1

1 + (N−n)Pn(x(D))
nPn−1(x(D)−d)

where x(D) = 2nMAF(D) and

Pn(x) =

m∏
i=1

(
2n

xi

)
pxii (1− pi)2n−xi

It should be noted that, for reasonable parameters, this upper
bound is almost tight. We can then let

PrivMAF(D) = max
d∈D

PrivMAF(d,MAF(D))

Informally, for all d ∈ D, PrivMAF(D) bounds the probability
that d participated in our study given only publicly-available
data and MAF(D). A sketch of the derivation is given in the
Appendix.

This measure allows a user to choose some privacy param-
eter, α, and release the data if and only if PrivMAF(D) ≤ α.
It is worth noting, however, that deciding whether or not to
release the data gives away a little bit of information about D,
which can weaken our privacy guarantee. While in practice this
seems to be a minor issue, we develop a method to correct for
it in the Appendix.

C. Measuring Privacy of Truncated Data

In order to deal with privacy concerns it is common
to release perturbed versions of the data. This task can be
achieved by adding noise (as in differential privacy), binning
(truncating results), or using similar approaches. Here we show
how PrivMAF can be extended to perturbed data.

We first consider truncated data. Let MAFtrunc(k)
j (D) be

obtained by taking the minor allele frequencies of the jth SNP
and truncating it to k decimal digits. For example, if k = 1
then .111 would become .1, and if k = 2 it would become
.11. We are interested in

P (d ∈ D̃|MAFtrunc(k)(D̃) = MAFtrunc(k)(D), d ∈ B̃)

As above, we can calculate an upper bound, denoted
by PrivMAFtrunc(k)(d,MAFtrunc(k)(D)). The approximation we
use to calculate this is given in the Appendix. We then have

PrivMAFtrunc(k)(D) = max
d∈D

PrivMAFtrunc(k)(d,MAFtrunc(k)(D))

For each d ∈ D, this measure upper bounds the probability

that individual d participated in our study given only publicly-
available data and knowledge of MAFtrunc(k)(D).

D. Measuring Privacy of Adding Noise

Another way to achieve privacy guarantees on released data
is by perturbing the data using random noise (this is a common
way of achieving differential privacy). Though there are many
approaches to generate this noise, most famously by drawing it
from the Laplace distribution [15], we investigate one standard
approach to adding noise that is used to achieve differential
privacy when releasing integer values [30].

Consider ε > 0. Let η be an integer valued random variable
such that P (η = i) is proportional to e−ε|i|. Let

MAFεj(D) = MAFj(D) +
ηj
2n

where η1, . . . , ηn are independently and identically distributed
(iid) copies of η. It is worth noting that MAFεj(D) is ε-
differentially private. Recall [15]:

Definition 1. Let n be an integer, Ω and Σ sets, and X a
random function that maps n element subsets of Ω (we call
such subsets ‘databases of size n‘) into Σ. We say that X is
ε-differentially private if, for all databases D and D′ of size
n that differ in exactly one element and all S ⊂ Σ, we have
that

P (X(D) ∈ S) ≤ exp(ε)P (X(D′) ∈ S)

Using the same framework as above we can define
PrivMAFε(d,MAFε(D)) and PrivMAFε(D) to measure the
amount of privacy lost by releasing MAFε(D). As above
the approximation we use to calculate this is given in the
Appendix.

E. Choosing the Size of the Background Population

One detail we did not go into above is the choice of N ,
where N is the number of people who could reasonably be
assumed to have participated in the study. This parameter
depends on the context, and giving a realistic estimate of it is
critical. In most applications the background population from
which the study is drawn is fairly obvious. That being said, one
needs to be careful of any other information released publicly
about participants–just listing a few facts about the participants
can greatly reduce N , thus greatly reducing the bounds on
privacy guarantees (since the amount of privacy lost by an
individual is roughly inversely proportional to N − n).

Note that N can be considered as one of the main privacy
parameters of our method. The smaller the N , the stronger the
adversary we are protected against. Therefore we want to make
N as large as possible, while at the same time ensuring the
privacy we need. In our method, an adversary who has limited
his pool of possible contenders to fewer than N individuals
before we publish the MAF can be considered to have already
achieved a privacy breach; thus it is a practitioner‘s job to
choose N small enough that such a breach is unlikely.

F. Simulated Data

In what follows, all simulated genotype data was created
by choosing a study size, denoted n, and a number of SNPs,



(a) (b)

Fig. 1: PrivMAF applied to the WTCCC dataset. In all plots we take n=1000 research subjects and a background population of
size N=100,000. (a) Our privacy measure PrivMAF increases with the number of SNPs. The blue line corresponds to releasing
MAFs with no rounding, the green line to releasing MAFs rounded to one decimal digit, and the red line to releasing MAFs
rounded to two decimal digits. Rounding to two digits appears to add very little to privacy, whereas rounding to one digit achieves
much greater privacy gains. (b) The blue line corresponds to releasing MAF with no noise, the red line to releasing MAF.5, and
the green line to releasing MAF.1. Adding noise corresponding to ε = .5 seems to add very little to privacy, whereas taking
ε = .1 achieves much greater privacy gains.

denoted m. For each SNP a random number, p, in the range
.05 to .5 was chosen uniformly at random to be the MAF
in the background population. Using these MAFs we then
generated the genotypes of n individuals independently. Note
that all computations were run on a machine with 48GB RAM,
3.47GHz XEON X5690 CPU liquid cooled and overclocked
to 4.4GHz, using a single core.

III. RESULTS

A. Privacy and MAF

As a case study we tested PrivMAF on data from the
Wellcome Trust Case Control Consortium (WTCCC)s 1958
British Birth Cohort [29]. This dataset consists of genotype
data from 1500 British citizens born in 1958.

We first looked at the privacy guarantees given by PrivMAF
for the WTCCC data for varying numbers of SNPs (blue curve,
Fig. 1a), quantifying the relationship between number of SNPs
released and privacy lost. The data were divided into two sets:
one of size 1,000 used as the study participants, the other
of size 500 which was used to estimate our model parame-
ters (pi’s). We assumed that participants were drawn from a
background population of 100,000 individuals (N = 100, 000;
see Methods for more details). Releasing the MAFs of a
small number of SNPs results in very little loss of privacy.
If we release 1,000 SNPs, however, we find that there exists a
participant in our study who loses most of their privacy– based
on only the MAF and public information we can conclude they
participated in the study with 90% confidence.

In addition, we considered the behavior of PrivMAF as
the size of the population from which our sample was drawn
increases. From the formula for our statistic we see that

PrivMAF approaches 0 as the background population size, N ,
increases, since there are more possibilities for who could be
in the study, while it goes to 1 as N decreases towards n.

B. Privacy and Truncation

Next we tested PrivMAF on perturbed WTCCC MAF data,
showing that both adding noise and binning result in large
increases in privacy. First we considered perturbing our data
by binning. We bin by truncating the unperturbed MAFs, first
to one decimal digit (MAFtrunc(1), k = 1) and then to two
decimal digits (MAFtrunc(2), k = 2). As depicted in Fig. 1a
we see that truncating to two digits gives us very little in
terms of privacy guarantees, while truncating to one digit gives
substantial gains.

In practice, releasing the MAF truncated to one digit may
render the data useless for most purposes. It seems reasonable
to conjecture, however, that as the size of GWAS continues
to increase similar gains can be made with less sacrifice. As
a demonstration of how population size affects the privacy
gained by truncation, we generated simulated data for 10,000
study participants and 10,000 SNPs, choosing N to be one
million. We then ran a similar experiment to the one performed
on truncated WTCCC data, except with k = 2 and k = 3;
we found the k = 2 case had similar privacy guarantees to
those seen in the k = 1 case on the real data (Fig. 2). For
example, we see that if we consider releasing all 10000 SNPs
then PrivMAF is near 0.35, while when k = 2 it is below 0.2
(almost a factor of two difference).

C. Privacy and Adding Noise

We also applied our method to data perturbed by adding
noise to each SNPs MAF (Fig. 1b). We used ε = 0.1 and 0.5



Fig. 2: Truncating simulated data to demonstrate scaling. We
plot our privacy measure PrivMAF versus the number of SNPs
for simulated data with n=10000 subjects and a background
population of size N=1,000,000. The green line corresponds
to releasing MAFs with no rounding, the blue line to releasing
MAFs rounded to three decimal digit, and the red line to
releasing MAFs rounded to two decimal digits. Rounding
to three digits seems to add very little to privacy, whereas
rounding to two digits achieves much greater privacy gains.

as our noise perturbation parameters (see Methods). We see
that when ε = 0.5, adding noise to our data resulted in very
small privacy gains. When we change our privacy parameter to
ε = 0.1, however, we see that the privacy gains are significant.
For example, if we were to release 500 unperturbed SNPs then
PrivMAF(D) would be over 0.4, while PrivMAF.1(D) is still
under 0.2.

The noise mechanism we use here gives us mε-differential
privacy (see Methods), where m is the number of SNPs
released. For ε = .1, if m = 200 then the result is 20-
differentially private, which is a nearly useless privacy guar-
antee in most cases. Our measure, however, shows that the
privacy gains are quite large in practice. This suggests that
PrivMAF allows one to use less noise to get reasonable levels
of privacy, at the cost of having to make some reasonable
assumptions about what information is publicly available.

D. Worst Case Versus Average

As stated earlier, the motivation for PrivMAF is that
previous methods do not measure privacy for each individual
in a study but instead provide a more aggregate measure of
privacy loss. This observation led us to wonder exactly how
much the privacy risk differs between individuals in a given
study. To test this question, we compared the maximum and
mean score of PrivMAF(d,MAF(D)) in the WTCCC example
for varying values of m, the number of released SNPs. The
result is pictured in Fig. 3. The difference is stark–the person
with the largest loss of privacy (pictured in blue) loses much
more privacy than the average participant (pictured in green).
By the time m = 1000 the participant with the largest privacy
loss is almost five times as likely to be in the study as the

Fig. 3: Worst Case Versus Average Case PrivMAF. Graph of
the number of SNPs, denoted m, versus PrivMAF. The blue
curve is the maximum value of PrivMAF(d,MAF(D)) taken
over all d ∈ D for a set of n = 1, 000 randomly chosen
participants in the British Birth Cohort, while the green curve
is the average value of PrivMAF(d,MAF(D)) in the same set.
The the maximum value of PrivMAF far exceeds the average.
By the time m = 1000 it is almost five times larger.

average participant. This result clearly illustrates why worse
case, and not just average, privacy should be considered.

IV. CONCLUSION

On the one hand, to facilitate genomic research, many
scientists would prefer to release even more data from stud-
ies [22], [32]. Though tempting, this approach can sacrifice
study participants‘ privacy. As highlighted in the introduction,
several different classes of methods have been previously
employed to balance privacy with the utility of data. Methods
such as sensitivity/PPV based methods are dataset specific,
but only give average-case privacy guarantees. Because our
method provides worst-case privacy guarantees for all individ-
uals, we are able to ensure improved anonymity for individuals.
Thus, PrivMAF can provide stronger privacy guarantees than
sensitivity/PPV based methods. Moreover, since our method
for deciding which SNPs to release takes into account the
genotypes of individuals in our study, it allows us to release
more data than any method based solely on MAFs with
comparable privacy guarantees.

Our findings demonstrate that differential privacy may not
always be the method of choice for preserving privacy of
genomic data. Notably, perturbing the data appears to provide
major gains in privacy, though these gains come at the cost
of utility. That said, our results suggest that, when n is
large, truncating minor allele frequencies may result in privacy
guarantees without the loss of too much utility. Moreover, the
method of binning we used here is very simple– it might be
worth considering how other methods of binning may be able
to achieve similar privacy guarantees while resulting in less
perturbation on average. We further show that adding noise



can result in improved privacy, even if the amount of noise we
add does not provide reasonable levels of differential privacy.

Note that our method is based off a certain model of
how the data is generated, a model that is similar to those
used in previous approaches. It will not protect against an
adversary that has access to insider information. This caveat,
however, seems to be unavoidable if we do not want to turn
to differential privacy or similar approaches that perturb the
data to a greater extent to get privacy guarantees, thus greatly
limiting data utility.

Having presented results on moderate-sized real datasets,
we test the ability of PrivMAF to scale as genomic data sets
grow. In particular, we ran our algorithm on larger artificial
datasets (with 10,000 individuals and 1000 SNPs) and have
found our PrivMAF implementation still runs in a short amount
of time (19.14 seconds on our artificial dataset of size 10,000
described above, with a running time of O(mn), where n is
the study size and m is the number of SNPs).

Though our work focuses on the technical aspects related
to preserving privacy, a related and equally important aspect
comes from the policy side. Methods similar to those pre-
sented here offer the biomedical community the tools it needs
to ensure privacy; however, the community must determine
appropriate privacy protections (ranging from the release of
all MAF data to use of controlled access repositories) and in
what contexts (i.e., do studies of certain populations, such as
children, require extra protection?). It is our hope that our work
helps inform this debate. Our tool could, for example, be used
in combination with controlled access repositories to release
the MAFs of a limited number of SNPs depending on what
privacy protections are deemed reasonable

Our work addresses the critical need to provide privacy
guarantees to study participants and patients by introducing
a quantitative measurement of privacy lost by release of
aggregate data, and thus may encourage release of genomic
data.

A Python implementation of our method, as well as
more detailed derivations of our results, are available at
http://groups.csail.mit.edu/cb/PrivMAF/.
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V. APPENDIX

A. Derivation of PrivMAF

We give a quick sketch of the derivation for PrivMAF
on unperturbed data, the derivation for the perturbed ver-
sions being similar. A more detailed derivation is available
at http://groups.csail.mit.edu/cb/PrivMAF/.

We begin with Pr(d ∈ D̃|d ∈ B̃,MAF(D̃) = MAF(D)).
Let Pn and x(D) be as in Section II-B. By repeated us of
Bayes law, the fact

Pn−1(x(D)− d) = Pr(x(D̃) = x(D)|d1 = d)

and the fact that B̃ − D̃ = {b ∈ B̃|b /∈ D̃} and D̃ are
independent random variables, we get that this equals

1

1 +

(
Pr(d∈B̃−D̃)

1−
(
1−Pr(d=d̃1)

Pn−1(x−d)
Pn(x)

)n
)
− Pr(d ∈ B̃ − D̃)

Using the fact that (1 − z)n ≥ 1 − nz when 0 ≤ z ≤ 1
(this follows from the inclusion exclusion principle) we get
that this is

≤ 1

1− Pr(d ∈ B̃ − D̃) + Pr(d∈B̃−D̃)(Pn(x))

nPr(d=d̃1)Pn−1(x−d)

Note that for realistic choices of n, N , p and m we get that
Pr(d ∈ B̃−D̃) is approximately equal to (N−n) Pr(d = d̃1)
and that Pr(d ∈ B̃ − D̃) << 1, so 1 − Pr(d ∈ B̃ − D̃) ≈ 1.
Plugging this in we get the measure

PrivMAF(d,MAF(D)) ≈ 1

1 + (N−n)Pn(x)
nPn−1(x−d)

which is what we use in practice.

B. Perturbed Statistics

When calculating PrivMAFε we use the approximation

PrivMAFε(d,MAFε(D)) ≈
1

1 +
(N−n)P εn(MAFε(D))
nP εn−1(MAFε(D)−d)

where

P εn(v) =

m∏
j=1

2n∑
i=0

(
2n

i

)
pij(1− pj)2n−i Pr(η = 2nvj − i)

Similarly, when considering truncated data, we use the
approximation

PrivMAFtrunc(k)(d,MAFtrunc(k)(D)) ≈

1

1 + N−n
n

Pr(MAFtrunc(k)(D̃)=v)

Pr(MAFtrunc(k)(D̃)=v|d=d̃1)

Where

Pr(MAFtrunc(k)(D̃) = v) =

m∏
j=1

Pr(MAFtrunc(k)
j (D̃) = vj)

and
Pr(MAFtrunc(k)(D̃) = v|d = d̃1)

=

m∏
j=1

Pr(MAFtrunc(k)
j (D̃) = vj |d = d̃1)

Letting Sk(vj) = {x| x2n truncates to vj}, we see that

Pr(MAFtrunc(k)
j (D̃) = vj) =

∑
i∈Sk(vj)

(
2n

i

)
pij(1− pj)2n−i

and

Pr(MAFtrunc(k)
j (D̃) = vj |d = d̃1)

=
∑

i∈Sk(vj)

(
2n− 2

i− dj

)
pij(1− pj)2n−i+dj−2

This allows us to calculate
PrivMAFtrunc(k)(d,MAFtrunc(k)

j (D)), just as we wanted.
The exact formulas and the corresponding derivations
for PrivMAFtrunc(k) and PrivMAFε are available at
http://groups.csail.mit.edu/cb/PrivMAF/ .

C. Changing the Assumptions

The above model makes a few assumptions (assumptions
that are present in most previous work that we are aware of).



In particular it assumes that there is no linkage disequilibrium
(LD) (which is to say that the SNPs are independently sam-
pled), that the genotypes of individuals are independent of one
another (that there are no relatives, population stratification,
etc. in the population), and that the background population is in
Hardy-Weinberg Equilibrium (H-W Equilibrium). The assump-
tion that genotypes of different individuals are independent
from one another is difficult to remove, and we do not consider
it here. We can, however, remove either the assumption of H-
W Equilibrium or of SNPs being independent.

First consider the case of H-W Equilibrium. Let us consider
the ith SNP, and let pi be the minor allele frequency. We also
let p0,i, p1,i and p2,i be the probability of us having zero, one,
or two copies of the minor allele respectively. Assuming the
population is in H-W equilibrium is the same as assuming that
p0,i = (1− pi)2, p1,i = 2pi(1− pi), and p2,i = p2i . Dropping
this assumption, we see that all of the calculations above still
hold, except we get that

Pr(xi(D̃) = xi) =

b xi2 c∑
c=0

(
n

c

)(
n− c
xi − 2c

)
pn−xi+c0,i pxi−2c1,i pc2,i

where we use the convention that
(
n
c

)
= 0 when c < 0.

This allows us to remove the assumption of H-W Equilibrium.
Unfortunately there are two problems with this approach.
The first is statistical– instead of having to just estimate one
parameter per SNP (pi), we have to estimate two (p0,i and
p1,i, since p2,i can be calculated from the other two). The
other problem is that calculating Pr(xi(D) = xi) suddenly
becomes more computationally intensive, so much so that it is
prohibitive for large data sets.

In order to allow us to drop the assumption of no LD we
can model the genome as a Markov model (you could also
use a hidden Markov model instead which allows for more
complex relationships, but for simplicity sake we will only
talk about Markov models since the generalization to HMM
is straightforward). In such a model the state of a given SNP
only depends on the state of the previous SNP. To specify
such a model we need to specify the probability distribution
of the first SNP, and for each subsequent SNP we need to
specify its distribution conditional on the previous SNP. It is
then straightforward to modify our framework to deal with this
model. As above, however, this requires us to estimate lots of
parameters and also is much more time consuming; thus it is
not likely to be useful in practice.

D. Release Mechanism

Often one might like to use PrivMAF to decide if it is safe
to release a set of MAF from a study. This can be done by
choosing α between 0 and 1 and releasing the MAF if and
only if PrivMAF(D) ≤ α. The action of deciding to release
D or not release D, however, gives away a little information.
In practice this is unlikely to be an issue, but in theory it
can lead to privacy breaches. This issue can be dealt with by
releasing the MAF if and only if PrivMAF(D) ≤ β(α), where
β = β(α) is chosen so that:

α ≥ 1

1 +
Pβ
β − Pβ −maxd∈{0,1,2}m Pr(d ∈ B̃ − D̃)

where

Pβ = Pr(max
d∈D̃

PrivMAF(d,MAF(D̃)) ≤ β|x(D̃) = x)

We call this release mechanism the Allele Leakage Guaran-
tee Test (ALGT). Unlike the naive release mechanism ALGT
gives us the following privacy guarantee:

Theorem 1. Choose β as above. Then, if PrivMAF(D) ≤ β,
for any choice of d ∈ D we get that

P

(
d ∈ D̃|d ∈ B̃, x(D̃) = x,max

d̃∈D̃
PrivMAF(d̃,MAF(D̃)) ≤ β

)
is less than or equal to α.

Note that the choice of α determines the level of privacy
achieved. Picking this level is left to the practitioner– perhaps
an approach similar to that taken by Hsu et al. [31] is
appropiate.

A more detailed proof of the privacy result above can be
found at http://groups.csail.mit.edu/cb/PrivMAF/.


