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Abstract

Genome-wide association studies (GWAS) hold tremendous promise to improve our 

understanding of human biology. Recent GWAS have revealed over 75 loci associated with 

erythroid traits, including the 4q27 locus that is associated with red blood cell size (mean 

corpuscular volume, MCV). The close linkage disequilibrium block at this locus harbors the 

CCNA2 gene that encodes cyclin A2. CCNA2 mRNA is highly expressed in human and murine 

erythroid progenitor cells and regulated by the essential erythroid transcription factor GATA1. To 

understand the role of cyclin A2 in erythropoiesis, we have reduced expression of this gene using 

short hairpin RNAs in a primary murine erythroid culture system. We demonstrate that cyclin A2 

levels affect erythroid cell size by regulating the passage through cytokinesis during the final cell 

division of terminal erythropoiesis. Our study provides new insight into cell cycle regulation 

during terminal erythropoiesis and more generally illustrates the value of functional GWAS 

follow-up to gain mechanistic insight into hematopoiesis.
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INTRODUCTION

Genome-wide associations studies (GWAS) have been successful at identifying thousands 

of common genetic variants associated with human diseases and traits [1, 2]. GWAS of 

hematologic traits hold promise for gaining an improved understanding of human 

hematopoiesis [2]. We and others have previously used such follow-up studies to identify 

BCL11A as a silencer of fetal hemoglobin expression, cyclin D3 as a key regulator of the 

number of cell divisions during erythropoiesis, and TRIM58 as a ubiquitin ligase necessary 

for terminal erythropoiesis [3-5]. In the case of cyclin D3, we found that variation in the 

number of cell divisions resulting from variable levels of cyclin D3 could impact both 

erythroid cell size and number [3]. Recent GWAS of erythroid traits have revealed a locus 

associated with red cell size (mean corpuscular volume, MCV) at 4q27 [6]. The close 

linkage disequilibrium block at the 4q27 locus harboring the most significantly associated 

genetic variants contains the CCNA2 gene, which encodes cyclin A2 [6, 7].

Given our prior studies of cell cycle regulation during terminal erythropoiesis, we reasoned 

that studying the role of cyclin A2 during erythropoiesis would provide insight into how this 

protein could result in natural variation in MCV. The absence of cyclin A2 causes 

embryonic lethality and its absence from the hematopoietic compartment results in stem cell 

depletion and consequent pancytopenia [8], which contrasts with our ability to study cyclin 

D3 in vivo using viable knockout mice [3]. Therefore, we reasoned that reducing the level of 

cyclin A2 in a primary murine fetal liver erythroid culture system with synchronous 

differentiation would be ideal to specifically study its dosage-dependent role in 

erythropoiesis. Since cyclin A2 is degraded at mitosis during each cell division [8], we 

postulated that this knockdown strategy would be successful and occur soon after 

introduction of short hairpin RNAs (shRNAs). Importantly, studies have suggested that a 

cis-regulatory element may harbor the causal non-coding variant at this locus, which is 

predicted to alter expression of CCNA2, and therefore such knockdown should mimic the 

situation observed with natural human variation [6, 7, 9].

MATERIALS AND METHODS

Cell culture

293T cells were maintained in DMEM with 10 % fetal bovine serum, 2 mM L-glutamine, 

and 1 % penicillin/streptomycin. For production of retrovirus, 293T cells were transfected 

with the appropriate viral packaging and genomic vectors using FuGene 6 reagent 

(Promega) according to the manufacturer’s protocol. Culture of primary mouse cells is 

described below.

Constructs

The shRNA sequences targeting mouse Ccna2 were obtained from the RNAi Consortium of 

the Broad Institute (http://www.broadinstitute.org/rnai/trc) and had the following sequences:

sh4 – 

AAAAGTTAATGAAGTACCTGACTATGTCGACATAGTCAGGTACTTCATTAAC
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sh5 – 

AAAAGCTTCGAAGTTTGAAGAAATAGTCGACTATTTCTTCAAACTTCGAAGC

These sequences were cloned into the BbsI restriction sites of the linearized MSCV-

pgkGFP-U3-U6P retroviral vector, which co-expresses GFP driven by the PGK promoter.

Mouse fetal liver erythroid progenitor purification, retrovirus infection and in vitro culture

E14.5-15.5 fetal liver cells were homogenized in PBS supplemented with 2 % FBS and 100 

µM EDTA. Mature erythrocytes were lysed by the addition of ammonium chloride solution 

(StemCell Technologies, Inc.) at a 1:4 ratio and incubation on ice for 10 min. After washing, 

the remaining cells were incubated with a cocktail of biotin-conjugated antibodies, including 

Lineage Cocktail (BD 559971), Ter119 (eBioscience 13-5921-85), CD16/32 (Abcam 

25249), Sca-1 (BD 553334), CD34 (MCA1825B), CD41 (MCA2245B). After magnetic 

depletion with streptavidin beads (BD 557812) a pure fetal liver Ter119-negative erythroid 

progenitor population was obtained [10].

For retroviral infection, 293T cells were transfected with retroviral construct described 

above along with the pCL-eco packaging vector. Media was changed the day after 

transfection. After 24 hours, this media was collected and filtered at 0.45 µm immediately 

prior to infection of purified erythroid progenitor cells. The cells were mixed with viral 

supernatant and polybrene (filtered 4 mg/ml stock) was added to the mixture at a final 

concentration of 0.4 µl/ml of media in a 24-well plate, at a density of 100,000 cells per well. 

The cells were spun at approximately 32 °C for 90 minutes at 2000 rpm.

Subsequently for differentiation, cells were resuspended in IMDM containing 15 % fetal 

bovine serum and 0.5 U/ml erythropoietin (EPO, Amgen) for up to 66 h at 37°C, 5 % CO2.

May Grϋnwald-Giemsa Staining

Approximately 50,000-200,000 cells were centrifuged on to poly-L-lysine coated slides and 

stained with May-Grϋnwald-Giemsa as described previously [3]. Then slides were mounted 

with coverslips and examined. Stained cells were captured, processed and analyzed using 

Axiovision Microscopy Software (Carl Zeiss).

Cell cycle analyses, phospho-Histone H3 staining and PKH labeling

In vitro cultured erythroid cells were pulsed with 10µM 5-ethynyl-2’-deoxyuridine (EdU) 

for 30 min and EdU incorporation was detected using an EdU flow kit (Invitrogen C10418) 

at indicated time points as described by the manufacturer’s protocol. Propidium iodide (PI) 

was added to stain for DNA content after RNAse digestion. The PI signal data was acquired 

on a linear scale.

For phospho-Histone H3 staining erythroid cells were fixed and permeabilized using 

reagents from an EdU flow kit (Invitrogen C10418). Incubation of anti-phospho-Histone H3 

rabbit monoclonal antibody (Ser10, clone MC463, Millipore) was conducted at room 

temperature for 45 minutes at a 1:400 dilution. After washing, incubation with secondary 

antibody donkey anti-rabbit AlexaFluor647 (Jackson Labs 711-605-152) was conducted for 

30min in the dark at a 1:200 dilution. Anti-GFP-FITC antibody (Abcam ab6662) was used 
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to identify GFP-infected cells at a 1:200 dilution. Propidium iodide (PI) was added to stain 

for DNA content after RNAse digestion. The PI signal data was acquired on a linear scale.

To allow tracking of the number of cell divisions cells were labeled with the PKH26 red 

fluorescent cell linker kit (Sigma-Aldrich, PKH26GL-1KT) as described previously [3]. An 

aliquot of the labeled cells was used to measure the mean fluorescence intensity (MFI) of 

PKH26 immediately after labeling (0 h). The number of cell divisions was calculated as 

described previously [3].

Flow cytometry analysis and sorting

For flow cytometry analysis, in vitro cultured erythroid cells were washed in PBS and 

stained with 7AAD or 1 µg/ml Propidium Iodide (PI), 1:100 APC-conjugated Ter119 

(eBioscience 17-5921-83), 1:300 PE-conjugated CD71 (eBioscience 12-0711-83) and 1 

µg/ml Hoechst and followed by FACS analysis (BD LSR II flow cytometer) [11]. Data was 

analyzed using FlowJo v10 (Tree Star).

Quantitative RT-PCR

Isolation of RNA was performed using the miRNeasy Mini Kit (Qiagen). An on-column 

DNase (Qiagen) digestion was performed according to manufacturer’s instructions. RNA 

was quantified by a NanoDrop spectrophotometer (Thermo Scientific). Reverse transcription 

was carried out using the iScript cDNA Synthesis Kit (Bio-Rad). Realtime PCR was 

performed using the ABI 7900 Machine Real-Time PCR System and SYBR Green PCR 

Master Mix (Applied Biosystems). The following primers were used for quantitative RT-

PCR:

Ccna2 forward 5’-TGGATGGCAGTTTTGAATCACC-3’

Ccna2 reverse 5’-CCCTAAGGTACGTGTGAATGTC-3’

Ubc forward 5’- GAGTTCCGTCTGCTGTGTGA-3’

Ubc reverse 5’- CCTCCAGGGTGATGGTCTTA-3’

Western Blotting

Cells were harvested at indicated timepoints and processed as previously described [3]. 

After SDS gel electrophoresis and western blotting, membranes were blocked with 3% 

BSA-PBST and probed with cyclin A rabbit polyclonal antibody (H-432: sc-751, Santa 

Cruz) at a 1:1000 dilution or ACTB mouse monoclonal antibody (AC-15, Sigma) at a 

1:2500 dilution. Membranes were washed, incubated with sheep-anti-mouse or donkey-anti-

rabbit peroxidase-coupled secondary antibodies (NA931 and NA934, GE Healthcare) and 

incubated for 1 min with Western Lightning Plus-ECL substrate (Perkin Elmer). Proteins 

were visualized by exposure to scientific imaging film (Kodak).

In silico analyses of cyclin A2 gene regulation and expression

Human and murine cyclin A2 mRNA expression patterns were obtained from publicly 

available microarray and RNA sequencing data [12-15]. Compiled GATA1 occupancy and 
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nucleosome depleted region (NDR) data were obtained and analyzed as described [16, 17]. 

Expression data was analyzed as previously described [12-15, 17].

RESULTS

Cyclin A2 was highly expressed in erythroid cells (Figure 1A, B) and downregulated during 

the late stages of terminal maturation concomitant with the cell cycle exit that temporally 

occurs at the same time (Figure 1C, D, E) [3]. The key erythroid transcription factor GATA1 

occupied chromatin within the CCNA2 locus and Ccna2 mRNA is induced upon reactivation 

of Gata1 in the murine erythroid cell line G1E-ER4 (1F, G). Thus, cyclin A2 demonstrates 

similar expression in human and murine erythroid cells and is potentially regulated by the 

key erythroid transcription factor GATA1.

To examine the role of cyclin A2 in erythropoiesis, its level was reduced using shRNAs in 

primary murine erythroid cells. This reduction in cyclin A2 levels occurred soon after 

infection of the cells, as assessed by a knockdown of >80% at the mRNA level at both 24 

and 48 hours and western blot at 24 hours (Figure 2A, B). As judged by induction of 

expression of the cell surface markers Ter119 and CD71 (transferrin receptor) [3, 18, 19], 

knockdown of cyclin A2 did not significantly perturb differentiation at 24 hours (Figure 

2C). We did note a mild decrease (1.4 – 2-fold) in enucleation of these cells at 48 hours as 

assessed using Hoechst 33342 dye, indicating some perturbation at the stages of 

differentiation that immediately precede enucleation (Figure 2C). We additionally observed 

that the erythroid cells had no major change in size at 24 hours, as assessed by both forward 

scatter (FSC) using flow cytometry and by direct measurement of cell diameter using phase 

contrast microscopy (Figures 3A, C). However, at 48 hours, we did observe a significant 

increase in both FSC and cell diameter among both the nucleated and enucleated fractions 

(Figures 3B, D). Interestingly, at 48 hours, the control cells were on average 6.5 μm in 

diameter (close to the value observed for mature murine red blood cells) [20], while sh4-

infected cells were 8.1 μm and sh5-infected cells were 8.4 μm (Figure 3D). This is consistent 

with the observation that common genetic variation in potential regulatory elements of the 

cyclin A2 locus appears to affect red cell size in humans [6, 7].

To understand the mechanisms underlying this observation, we initially examined the 

number of cell divisions during terminal erythroid maturation, using PKH26 labeling [3]. 

Both in control and knockdown cells, approximately 2 cell divisions had occurred by 24 

hours. In contrast, at 48 hours the cyclin A2 knockdown cells demonstrated a reduction in 

the average number of cell divisions (Figure 4A); control cells had undergone an average of 

3.9 cell divisions, whereas the two groups of cyclin A2 knockdown cells (sh4 and sh5 

cultures) completed 3.6 and 3.1 divisions, respectively (Figure 4A). This observation 

suggests that the terminal cell division is impaired in cells with reduced levels of cyclin A2. 

Next, we pulse-labeled the cultured cells with 5-ethynyl-2’ deoxyuridine (EdU), a modified 

nucleoside that gets incorporated into newly synthesized DNA, to assess cell cycle 

progression. There was no significant difference between knockdown and control cells at 24 

hours (Figure 4B); as expected the majority of cells were in S phase [3]. At 48 hours ~70% 

of control cells had exited the cell cycle and were in the G0/G1 state and ~25 % were in 

G2/M. In contrast, there was an increase (20-30% of total cells) in G2/M with a concomitant 
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reduction in the fraction of cells in G1 (Figure 4C) 48 hours following the knockdown of 

cyclin A2. We stained for phosphorylated histone H3 (phospho-histone H3), a well-known 

marker of mitosis (prior to anaphase), to assess the stage of G2/M at which this 

accumulation occurs [21]. The fraction of cells with phospho-histone H3 – about 1% - was 

not affected by a knockdown of Ccna2 (Figure 4D). This demonstrates that the 

accumulation of cells in G2/M is not attributable to an accumulation of cells in the early 

stages of mitosis, since dephosphorylation of histone H3 only occurs during anaphase. This 

observation suggests that erythroid cells with reduced cyclin A2 levels either accumulate in 

G2 phase prior to entry into mitosis or fail to undergo cytokinesis appropriately after 

progression through anaphase.

We therefore analyzed cytocentrifuge slides at 24 and 48 hours to attempt to gain insight 

into the nature of this arrest during terminal erythropoiesis. While knockdown and control 

cells at 24 hours showed no appreciable morphological differences, at 48 hours there was a 

7-fold increase in the number of binucleate orthochromatic erythroblasts in both cyclin A2 

knockdown cultures (Figure 4E, F). Thus, cells with reduced cyclin A2 levels frequently fail 

to undergo cytokinesis during the terminal erythroid cell division, but nonetheless go on to 

enucleate, forming larger red blood cells than normal. We noted on 48 hour cytocentrifuge 

specimens from the cyclin A2 knockdown cells many instances of binucleate cells that were 

undergoing enucleation, suggesting that this phenomenon does indeed occur and explains 

the observation that such cells can still undergo enucleation and therefore end up larger in 

size (Figure 4F).

DISCUSSION

Our findings illustrate an important and previously unappreciated mechanism that regulates 

red cell size and that appears to underlie human inter-individual variation in this trait [2, 6]. 

By regulating the ability of cells to progress through the final cytokinesis during terminal 

erythropoiesis, cyclin A2 regulates red blood cell size. We have previously shown that the 

number of cell divisions during terminal erythropoiesis is critical for determining red cell 

size and number and is affected by variation in cyclin D3 levels [3]. In contrast, in the 

absence of cyclin A2, only passage through cytokinesis in the final division of 

erythropoiesis appears to be affected, while prior divisions occur without observable 

perturbations. This may explain why the regulatory variants upstream of cyclin A2 are only 

significantly associated with red blood cell size in humans. While A-type cyclins have 

previously been implicated in the regulation of entry into mitosis in other cell types [8, 22], 

our finding that this factor is necessary for the initiation of cytokinesis has not been 

previously described and may be unique to terminal erythropoiesis. We note that the 

phenotypic similarity between the cytokinesis defect with reduced cyclin A2 and that 

observed in the context of congenital dyserythropoietic anemias is striking and there may be 

molecular connections between these pathways [23-25]. Our studies defining the roles of 

cyclin A2, cyclin D3, and BCL11A in erythropoiesis illustrate how the genetic contribution 

to variation seen in GWAS provides only a minimal estimate of the biological contribution 

and major perturbations of these genes can show dramatic phenotypes that illuminate 

fundamental molecular mechanisms [2-4].
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Figure 1. Cyclin A2 expression and regulation in human and murine erythroid tissues
Human CCNA2 mRNA expression levels in (A) purified human hematopoietic tissues [13] 

and (B) a panel of 79 human tissues [14]. Expression data was analyzed as previously 

described, except microarray gene expression was not normalized to 0 in (A). (C) CCNA2 

protein levels of whole fetal liver and cultured fetal liver cells at indicated timepoints as 

assessed by western blot. ACTB was used as a loading control. (D, E) CCNA2 mRNA 

expression levels of primary human and murine stage-fractionated human erythroblasts 

cultured from blood-derived progenitors. Expression peaks in both species at the 

polychromatophilic erythroblast stage. RNA-seq data was obtained and analyzed as 

previously described [12, 17]. FKPM = fragments per kilobase of transcript per million; 

ProE = proerythroblast; BasoE = basophilic erythroblast; eBasoE = early basophilic 

erythroblast; lBasoE = late basophilic erythroblast; PolyE = polychromatophillic 

erythroblast; OrthoE = orthochromatophillic erythroblast. (F) Chromatin 

immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) analysis of 

transcription factor GATA1 occupancy at the human (top) and murine cyclin A2 locus 

(bottom). GATA1 occupancy is observed both intronically and in the proximal promoter 

region. Nucleosome depleted regions (NDR) are shown across the human CCNA2 locus and 

overlap with GATA1 occupancy. (G) Ccna2 mRNA expression as measured in murine 

erythroid cell line G1E-ER4 before and after reactivation of GATA1 [15, 26].
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Figure 2. Effects on differentiation from reduction of cyclin A2 levels in erythroid progenitors
(A) Relative mRNA levels of Ccna2 in cultured fetal liver cells at 24 and 48 hours as 

assessed by quantitative RT-PCR (n ≥ 3 per group, results are shown as +/− standard 

deviation, *** = p < 0.001 using two-sided Student t-test). (B) Ccna2 protein levels of 

cultured fetal liver cells at 24 hours as assessed by western blot. (C) Representative flow 

cytometry plots of murine erythroid surface markers CD71 vs. Ter119 at 24 hours (top) and 

Ter119 vs. Hoechst 33342 staining at 48 hours (bottom) are shown. Results are 

representative of at least 3 independent experiments. Differences in enucleation frequency 

between control and knockdown cells are statistically significant, p < 0.05 using the two-

sided Student t-test.
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Figure 3. Increased erythrocyte size resulting from reduction of cyclin A2 levels in erythroid 
progenitors
(A, B) Forward scatter (FSC) profiles for a control shRNA (shLuc) or for shRNAs targeting 

Ccna2 (sh4, sh5) are shown for the nucleated and enucleated fractions at 24 and 48 hours, 

respectively. Results are representative of at least 3 independent experiments. (C, D) Cell 

size measurements using phase contrast microscopy images are shown as measured in 

micrometers (μm). Enucleated and nucleated cells were difficult to separate using phase 

contrast microscopy and therefore all cells were counted together. At least 100 cells were 

measured per group and the results are shown at 24 and 48 hours, respectively (ns = non-

significant difference, **** = p < 0.0001 using two-sided Student t-test).
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Figure 4. Cyclin A2 reduction impairs the transition through cytokinesis during terminal 
erythropoiesis
(A) PKH26 labeling was used to assess the number of cell divisions during the fetal liver 

cultures at 24 and 48 hours (n ≥ 3 per group, results are shown as +/− standard deviation; * = 

p < 0.05, ** = p < 0.01, *** = p < 0.001 using two-sided Student t-test in comparison with 

shLuc control). (B, C) EdU labeling of cells at 24 and 48 hours, respectively, with separation 

of various phases of the cell cycle (n ≥ 3 per group, results are shown as +/− standard 

deviation; ** = p < 0.01, *** = p < 0.001 using two-sided Student t-test in comparison with 

shLuc control). (D) Phospho-histone H3 staining is shown with the percentage of cells in 

mitosis (n ≥ 3 per group, results are shown as +/− standard deviation and did not reach 

statistical significance using a two-sided Student t-test, p > 0.05). (E) Distribution of relative 

amounts of cells with N nuclei is shown for N = 1-4 nuclei using cytocentrifuge specimens 

at 48 hours. Results are shown as +/− standard deviation, which were obtained by analysis 

of > 200 cells per group). (F) Representative examples of binuclear morphology in mature 

cells from cytocentrifuge specimens shown from images acquired with a 63X objective 

compared with normal orthochromatic erythroblasts and enucleated reticulocytes from the 

shLuc control.
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