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Two-dimensional spin liquids with Z2 topological order in an array of quantum wires

Aavishkar A. Patel1,* and Debanjan Chowdhury2,†
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 15 August 2016; published 16 November 2016)

Insulating Z2 spin liquids are a phase of matter with bulk anyonic quasiparticle excitations and ground-state
degeneracies on manifolds with nontrivial topology. We construct a time-reversal symmetric Z2 spin liquid in
two spatial dimensions using an array of quantum wires. We identify the anyons as kinks in the appropriate
Luttinger-liquid description, compute their mutual statistics, and construct local operators that transport these
quasiparticles. We also present a construction of a fractionalized Fermi liquid (FL*) by coupling the spin sector
of the Z2 spin liquid to a Fermi liquid via a Kondo-like coupling.
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I. INTRODUCTION

Mott insulators without any broken symmetries, commonly
referred to as quantum spin liquids (QSLs), have been studied
theoretically for more than four decades now. Starting with the
original theoretical proposal for the resonating valence bond
liquid by Anderson [1], much of the interest in QSLs has been
driven by the study of high-temperature superconductivity
[2–6] and quantum magnetism in low dimensions [7]. Many
interesting insights have been gained by using the notion of
topological order [8] in order to draw parallels between gapped
spin liquids [9,10] and other interesting phenomena such as
the fractional quantum Hall effect [11].

On the experimental side, a number of quasi-two-
dimensional materials have been proposed to host QSL ground
states [7]. One of the most well-studied and promising such
materials is herbertsmithite, consisting of spin-1/2 moments
arranged in a kagome lattice. There are indications from
theoretical studies that the ground state of the nearest-neighbor
Heisenberg model (supplemented by next-nearest-neighbor
interactions) on the kagome lattice is a gapped Z2 spin
liquid [12,13], even though the question is far from being
settled definitively. At the same time, inelastic neutron scat-
tering [14,15] and nuclear magnetic resonance (NMR) [16]
measurements on herbertsmithite have detected the existence
of a spinon continuum over a broad energy window and a spin
gap, respectively.

Theoretical descriptions of QSL ground states usually
rely on a “parton” description. Within this prescription, the
canonical fermionic operator is fractionalized in terms of
excitations that carry its spin and charge separately along
with the introduction of an emergent gauge field that encodes
the nontrivial entanglement in the system. The spin-liquid
phase corresponds to the deconfined phase of an appropriately
defined gauge theory; examples of gauge groups that often
arise in descriptions of various interacting models include Z2,
U(1), and SU(2) coupled to matter fields that are either gapped,
gapless at special points, or gapless along an entire contour in
momentum space (see, e.g., Refs. [17–22] for a few repre-
sentative examples). There also exist alternative descriptions
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for time-reversal symmetric QSLs as ground states of exactly
solvable (but somewhat artificial) Hamiltonians [23,24], which
provide a complementary and useful point of view on the above
approaches.

In this paper, we take yet another route to arrive at the
description of a gapped Z2 QSL, which does not rely on
either of the above two approaches. This approach involves
constructing an interacting phase in (2+1) dimensions starting
from a set of decoupled Luttinger-liquid wires in (1+1) dimen-
sions and turning on nonperturbative interactions between the
wires. It has been applied remarkably successfully to describe
and construct, e.g., electronic liquid crystalline phases in
doped Mott insulators [25], the Laughlin state in the fractional
quantum Hall (FQH) effect [26], and, more recently, even the
non-Abelian and compressible FQH states [27,28]. By using
this route, we obtain a fully gapped time-reversal symmetric
Z2 QSL and identify the local operators that correspond
to and transport the bulk quasiparticles and compute their
mutual statistics.1 A similar approach has been used to
construct chiral spin liquids [29] (with broken time-reversal
symmetry) [30,31], Abelian topological phases in higher
than two spatial dimensions [32,33], and even non-Abelian
topological spin liquids [30,34].

The rest of this paper is organized as follows: In Sec. II,
we summarize the key features of Z2 spin liquids using a
Chern-Simons effective field theory description. In Sec. III, we
propose a purely bosonic coupled wire construction for the Z2

spin liquid or, more specifically, the toric-code model, in (2+1)
dimensions. Section IV summarizes our key results for the bulk
quasiparticles, their mutual statistics, and the edge physics in
the insulating Z2 spin liquid within the wire construction. In
Sec. V, we fermionize the above description in order to arrive
at a coupled wire construction of a Z2 fractionalized Fermi
liquid (FL*) via a “Kondo”-like construction. We conclude in
Sec. VI with a summary of our results and an outlook for some
future directions.

1We note in passing that it is, in principle, possible to construct a
gapped spin-liquid phase starting from the decoupled (Jz = 0) and
gapless limit of Kitaev’s honeycomb model [24] and then study the
effect of a finite Jz perturbatively.
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II. PRELIMINARIES

In this section, we review key features of Z2 spin liquids
in terms of the low-energy effective theory for its topological
states in terms of a Chern-Simons action in imaginary time
(τ ) [35,36],

SCS =
∫

dτd2x

[
i

4π
εμνλa

I
μKIJ ∂νa

J
λ + i

2π
tIAμεμνλ∂νa

I
λ

]
.

(1)

In the above action, I,J are indices extending from 1, . . . ,N

and aI
μ are N U(1) gauge fields, with Aμ a fixed external

“probe” gauge field. The above action realizes an insulating
Z2 spin liquid for N = 2 with a K matrix given by

K =
(

0 2
2 0

)
, (2)

and where the ground-state degeneracy on a torus is given
by |detK|. The electromagnetic charge of the quasiparticles is
determined by the vector tI ,

tI =
(

1
0

)
. (3)

It is possible to integrate out the internal gauge fields {aI
μ},

leading to

SCS = (tT K−1t)
∫

dτd2x

[
i

4π
εμνλAμ∂νAλ

]
. (4)

The Hall response is then given by σxy = (tT K−1t) in units
of e2/2π , which is identically zero for the Z2 spin liquid as it
preserves time-reversal symmetry.

The quasiparticle excitations of the theory are characterized
by an integer vector l , such that they couple minimally to the
combination:

∑
I lI a

I
μ. The self-statistics of a quasiparticle is

determined by

θself = lKT l−1, (5)

with θself = 0(mod2π ) for bosons and θself = π (mod2π ) for
fermions. The mutual statistics between two different quasi-
particles (“1” and “2”) is given by

θmutual = 2π lT
1 K−1l2, (6)

with θmutual = π (mod2π ) for mutual semions. In particular,
the Z2 spin liquid has the following quasiparticle excitations:
e, m, and ε, with

le =
(

1
0

)
, lm =

(
0
1

)
, lε =

(
1
1

)
. (7)

It is straightforward to show that e,m are bosons, while ε is a
fermion. All of the above quasiparticles are mutual semions.

Before we present our construction, the reader might
wonder how to obtain a nonchiral and fully gapped state
starting from an array of coupled wires. As will become
clear in the next section, one of the key ingredients is to be
able to find a set of modes with vanishing self- and mutual
commutators. It then allows us to add independent sine-Gordon
terms for each of these modes in the action, pinning the fields
to certain classical values simultaneously and gapping out the
edge excitations [27,37].

III. BOSONIC COUPLED-WIRE CONSTRUCTION

In this section, we arrive at a description of an insulating
Z2 spin liquid using a purely bosonic construction; we defer
a discussion of the excitations and edge physics to the next
section. We begin by considering an array of uncoupled
identical one-dimensional (1D) quantum wires (labeled � =
1,2, . . .), where each wire consists of two chains, a and
b [see Fig. 1(a)]. Each of these chains is described by a
nonchiral Luttinger liquid (LL). We denote the bosonic fields
associated with the LL on the �th wire and on chains a or b

as {θa,b
� (x),ϕa,b

� (x)}; they satisfy the following commutation
relations: [

θ
a(b)
� (x),ϕa(b)

�′ (y)
] = i

π

2
sign(x − y)δ��′ . (8)

We now carry out a series of transformations on the above
fields, introducing new degrees of freedom at each stage, as
follows.

We first define a new set of variables,

φ1
� = ϕa

� + mθb
� , φ2

� = ϕb
� + m′θa

� ,
(9)

φ̄1
� = ϕa

� − m′θb
� , φ̄2

� = ϕb
� − mθa

� .

The commutation relations for these variables are[
φ1

� (x),φ2
�′(y)

] = −[
φ̄1

� (x),φ̄2
�′(y)

]
= i

π

2
(m + m′)sign(x − y)δ��′ , (10)

which follow trivially from Eq. (8). We also note that the
definitions in Eq. (9) are chosen such that[

φ1
� (x),φ̄2

�′(y)
] = [

φ̄1
� (x),φ2

�′(y)
] = 0,

(11)[
φ1

� (x),φ̄1
�′(y)

] = [
φ̄2

� (x),φ2
�′(y)

] = 0.

Now introduce a “new” array of wires, defined on the “dual”-
lattice sites, j ≡ � + êy/2, with the bosonic fields {θ̂ ,φ̂} and
{θ ′,φ′} [see Fig. 1(b)]. They are defined as

θ̂j = φ1
� − φ̄1

�+1

2
, φ̂j = φ2

� + φ̄2
�+1

2
,

(12)

θ ′
j = φ2

� − φ̄2
�+1

2
, φ′

j = φ1
� + φ̄1

�+1

2
.

Using the commutation relations in Eqs. (10) and (11), the
commutation relations for the bosonic fields on the dual lattice

(a) (b)

FIG. 1. (a) Representation of intra- and interwire scattering terms.
Vertical arrows represent the tunneling of bosons between wires (e.g.,
∼ϕa

� − ϕa
�+1). The circular arrows represent backscattering within

a wire (e.g., mθb
� ,m′θb

�+1). The dark (dashed) arrows represent a
combination of all the processes involved inO�

1(x) [O�
2(x)] in Eq. (18).

(b) Lattice of “dual” wires labeled by j .

195130-2



TWO-DIMENSIONAL SPIN LIQUIDS WITH Z2 . . . PHYSICAL REVIEW B 94, 195130 (2016)

sites are given by

[θ̂j (x),φ̂j ′ (y)] = [θ ′
j (x),φ′

j ′ (y)]

= i
π

4
(m + m′)sign(x − y)δjj ′ , (13)

and all other fields commute, i.e.,

[θ̂j (x),θ ′
j ′ (y)] = [φ′

j (x),φ̂j ′ (y)]

= [θ̂j (x),φ′
j ′ (y)] = [θ ′

j (x),φ̂j ′(y)] = 0. (14)

Thus far we have kept the description in terms of m,m′(∈
integers) completely general. As will become clear later in
Sec. IV, we require from Eq. (13) that m + m′ = 4 in order for
the bulk anyonic quasiparticles to be mutual semions with a
relative phase of π . Moreover, in order to make the definitions
symmetric, it is natural to choose m = m′ = 2.

The remainder of our discussion will be based on the wires
labeled j . In particular, the usual LL Hamiltonian for these
decoupled wires is given by

H0 =
∑

j

v̂j

2π

∫
dx

[
1

ĝj

(∂xθ̂j )2 + ĝj (∂xφ̂j )2

]

+
∑

j

v′
j

2π

∫
dx

[
1

g′
j

(∂xθ
′
j )2 + g′

j (∂xφ
′
j )2

]
, (15)

where v̂,v′ are the effective velocities and ĝ,g′ represent the
Luttinger parameters for each individual wire.

In addition, we also allow for forward-scattering terms
between different wires,

HF =
∑
j �=k

∫
dx(∂xφ̂j ∂xφ̂k)M̂jk

(
∂xφ̂j

∂xφ̂k

)

+
∑
j �=k

∫
dx(∂xφ

′
j ∂xφ

′
k)M′

jk

(
∂xφ

′
j

∂xφ
′
k

)
, (16)

where the matrices M̂jk,M′
jk represent 2 × 2 matrices that

describe interactions between wires labeled j and k. The theory
described in H0 + HF is quadratic in the fields {θ̂ ,φ̂}, {θ ′,φ′}
and describes a “sliding” LL phase.

Let us now add to the above Hamiltonian further inter-
channel scattering terms; it is useful to go back briefly to the
description of our system in terms of the original wires labeled
� [Fig. 1(a)]. Then it is possible to write a term of the form

HIC =
∑

�,α=1,2

∫
dxC�,αO�

α(x), (17)

with two specific choices of O�
α(x):

O�
1(x) ∼ cos

(
φ1

� − φ̄1
�+1

) = cos
[
ϕa

� − ϕa
�+1 + mθb

� + m′θb
�+1

]
= cos(2θ̂j ),

O�
2(x) ∼ cos

(
φ2

� − φ̄2
�+1

) = cos
[
ϕb

� − ϕb
�+1 + m′θa

� − mθa
�+1

]
= cos(2θ ′

j ). (18)

The solid and dashed arrows in Fig. 1(a) depict the scattering
processes involved above. For our bosonic wires, we need
m,m′ ≡ 0 (mod2) so that the above terms can be written as a

combination of interwire boson hoppings and scatterings off
boson density fluctuations,

ρ
a/b

� (x) − ρ̄a/b ∼ e2iθ
a/b

� (x)+2iπρ̄a/bx, (19)

in the wires [27,37], where we have taken the average densities
ρ̄a/b to be independent of �. Imagining the wires to be
one-dimensional lattices with lattice constant a0, we set the
average densities of bosons, ρ̄a/b, at commensurate values so
that the oscillatory factors eiπ(m±m′)ρ̄a/bx are equal to 1. Then,
oscillatory factors do not appear in the combinations of hop-
pings and scatterings used to achieve Eq. (18) and they are thus
not trivially rendered irrelevant in the long-wavelength limit.

We note that the scattering terms have been cleverly chosen
such that they gap out all possible single-site modes; this fol-
lows from the observation that (a�ϕ

a
� + b�ϕ

b
� + c�θ

a
� + d�θ

b
� )

can never commute with all the terms in HIC simultaneously
for any nontrivial choice of a�,b�,c�,d� [37]. Hence the bulk
of the system will be gapped—one of the criteria for realizing
a Z2 spin liquid.

HIC can therefore be most simply expressed as

HIC =
∑

j

[Cj,1 cos(2θ̂j ) + Cj,2 cos(2θ ′
j )], (20)

and the entire system is described in terms of the following
Hamiltonian:

HSL[θ̂ ,φ̂,θ ′,φ′] = H0 + HF + HIC. (21)

By appropriately tuning the values of ĝj ,g
′
j , both of the

coefficients Cj,α can be made relevant. A simple choice is
to set HF = 0 and to set ĝj = ĝ and g′

j = g′. This choice
produces independent sine-Gordon models for each of the
j wires. Then we have the following renormalization-group
(RG) flow equations for these coefficients [27,38]:

dCj,1

dl
=

(
2 − m + m′

2
ĝ

)
Cj,1,

(22)
dCj,2

dl
=

(
2 − m + m′

2
g′

)
Cj,2.

Therefore, at low energies, the system flows to a gapped phase
in which both θ̂ and θ ′ are localized in the respective wells of
the cosine potential if ĝ(l = 0),g′(l = 0) < 4/(m + m′); this is
made possible by the additional fact that these fields commute.
We will henceforth make Cj,1 and Cj,2 independent of j as
well, and drop the j label on them. Moreover, in the remainder
of this paper, we shall set m = m′ = 2, unless stated otherwise.

IV. BULK AND EDGE EXCITATIONS

Let us now investigate the nature of the excitations that arise
in the system described by HSL[θ̂ ,φ̂,θ ′,φ′]. In particular, our
aim is to identify the bulk anyonic quasiparticles along with
the operators that transport them and study the fate of the edge
excitations.

A. Bulk quasiparticles and Wilson loops

It is clear from the form of the term in Eq. (20) that
quasiparticles (in the bulk) correspond to kinks in θ̂j and
θ ′
j , where they jump by π ; the states described by θ̂j and
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(a) (b)

FIG. 2. (a) Adiabatic transport of quasiparticles gives statistics.
Here we take a θ̂ around a loop, picking up a Berry phase proportional
to the number of θ ′s enclosed. (b) The presence of a “vison” (θ ′)
induces a branch cut in the hopping of a “spinon” (θ̂ ).

θ̂j → θ̂j + π are energetically equivalent (similarly for θ ′
j ).

The quasiparticle density operators are then given by

ρ̂j = ∂xθ̂j

π
, ρ ′

j = ∂xθ
′
j

π
. (23)

The operators e∓iφ̂j /2 create and annihilate θ̂ quasiparticles,
while the operators e∓iφ′

j /2 create and annihilate θ ′ quasiparti-
cles, respectively.

Let us now construct the local operators that hop quasiparticles
from wire j to wire j + 1,

�̂j,j+1 = ei(φ̂j −φ̂j+1−θ ′
j −θ ′

j+1)/2 = e−2iθa
l+1 ,

(24)
�′

j,j+1 = ei(φ′
j −φ′

j+1−θ̂j −θ̂j+1)/2 = e−2iθb
l+1 ,

which are again proportional to the previously discussed
scatterings off density fluctuations on the original a,b wires
[Eq. (19)]. The operators that transfer quasiparticles from x1

to x2 along wire j are given by

ζ̂j (x1,x2) = e
−i

∫ x2
x1

dx(∂x φ̂j )/2
,

(25)
ζ ′
j (x1,x2) = e

−i
∫ x2
x1

dx(∂xφ
′
j )/2

,

which can again be expressed in terms of the a,b boson currents
and densities.

The mutual statistics of the bulk quasiparticles is easily
generated by computing the phase generated by taking a
quasiparticle around a loop adiabatically [27]. Such a process
is illustrated in Fig. 2(a). The Berry phases generated by such
processes are

ei�̂ =
⎛
⎝ ∏

j1�j<j2

�̂j,j+1(x2)

⎞
⎠ζ̂j2 (x2,x1)

⎛
⎝ ∏

j1�j<j2

�̂j,j+1(x1)

⎞
⎠

†

ζ̂j1 (x1,x2),

�̂ = − ∫ x2

x1
∂xθ

′
j1

2
+ − ∫ x2

x1
∂xθ

′
j2

2
−

∑
j1<j<j2

∫ x2

x1

∂xθ
′
j = −π

2

⎛
⎝N ′

j1
+ N ′

j2
+ 2

∑
j1<j<j2

N ′
j

⎞
⎠, (26)

�′ = −π

2

⎛
⎝N̂j1 + N̂j2 + 2

∑
j1<j<j2

N̂j

⎞
⎠,

where N̂j , N ′
j are the number of θ̂ and θ ′ quasiparticles inside

the loop on wire j .
A phase of −π is picked up for each quasiparticle of

the other kind inside the loop (and −π/2 for those on the
boundaries of the loop along the wires). Moreover, the phase
accumulated is 0, in the absence of any quasiparticles inside
the loop, thereby establishing mutual semionic statistics. We
can identify the above quasiparticles as the e and the m

introduced in Sec. II above. At this point, there is nothing in our
construction that distinguishes between the two quasiparticles.

We note that the above fields commute mutually and hence
there can be an additional composite quasiparticle, associated
with a simultaneous kink in θ̂j ,θ

′
j . The density operator for this

quasiparticle is given by ∂x(θ̂j + θ ′
j )/(2π ) and it is created and

annihilated by e∓i(φ̂j +φ′
j )/2, respectively. Repeating the above

procedure, we see that this quasiparticle has semionic statistics
with each of the θ̂ and θ ′ quasiparticles. Similarly, we also note
that each such quasiparticle within the loop contributes a phase
of −2π to the one being taken around. Since this involves a
full revolution, it implies an exchange statistical angle of −π ,

corresponding to only half a revolution. Thus, this additional
composite quasiparticle is a fermion and can be identified as
the ε introduced earlier in Sec. II.

We now place the array of n wires (i.e., j = 1, . . . ,n)
on a torus of dimensions (Lx,n) (Fig. 3). The Wilson loop

FIG. 3. Wire array of Fig. 1(b) on a torus. The Wilson loop
operators Ŵy and Ŵx are shown in red and blue, respectively.
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operators [35,39,40] are then given by

Ŵy(x) =
n∏

j=1

�̂j,j+1(x), Ŵx = ζ̂1(0,Lx),

(27)

W ′
y(x) =

n∏
j=1

�′
j,j+1(x), W ′

x = ζ ′
1(0,Lx).

We use periodic boundary conditions to identify n + 1 ≡ 1
and Lx ≡ 0. They obey the algebra

ŴxW
′
y(x) = −W ′

y(x)Ŵx,
(28)

W ′
xŴy(x) = −Ŵy(x)W ′

x,

with all other combinations commuting. This operator algebra
is easily realized by two independent sets of Pauli matrices,
signaling the fourfold degeneracy of the ground state on the
torus.

One possible choice for the action of the time-reversal
operator T on the bosonic fields is [37]

T : θa
� → θa

� , θb
� → −θb

� , ϕa
� → −ϕa

� , ϕb
� → ϕb

� + π. (29)

The wires labeled b can then be thought of as being derived
from the bosonization of XX spin-1/2 chains [38,41], while
the wires labeled a are simply neutral spinless bosons.
This is consistent with the above choice of time reversal
and the requirement that e4iπρ̄bx not oscillate. Then, the
interwire terms in Eq. (18) are only invariant under the SO(2)
rotations of the spin components in the XY plane, given by
ϕb

� → ϕb
� + f , and not under the SO(3) rotations that mix ϕb

�

and θb
� [42].

This choice of time reversal sends θ̂j → −θ̂j , while leaving
θ ′
j invariant; since we wish to identify the time-reversal odd

excitations of the toric code with physical spin densities,
we call θ̂ “spinons” and θ ′ “visons”. With this choice, the
kink/antikink creation operators transform as

T : e±iφ̂j /2 → ∓ie∓iφ̂j /2, e±iφ′
j /2 → e±iφ′

j /2,
(30)

T 2 : e±iφ̂j /2 → −e±iφ̂j /2, e±iφ′
j /2 → e±iφ′

j /2,

keeping in mind that T involves complex conjugation. Thus
spinon kinks get switched to antikinks, and vice versa, since
the physical spin density is odd under T . It also follows that
T 2 = −1 for the ε (fermion) quasiparticle.

Since the bulk is gapped, we can perturbatively add
interwire hoppings for the spinons to the Hamiltonian,

H
hop
j,j+1(x) = −tei�j,j+1(x)ei(φ̂j −φ̂j+1)/2 + H.c.,

(31)
�j,j+1(x) = −[〈θ ′

j (x)〉 + 〈θ ′
j+1(x)〉]/2.

As long as t is much smaller than the bulk gaps, this
should not destabilize the coupled-wire fixed point. Let us
consider the hopping of a spinon at x from wire j − 1 to
j + 1, in the presence of a vison located at x = 0 on wire
j [Fig. 2(b)]. The hopping amplitude for this process is
hj−1,j+1(x) ∝ t2ei[�j−1,j (x)+�j,j+1(x)]. Since the presence of the
vison causes θ ′

j to jump by π at x = 0, we can see that
hj−1,j+1(x > 0) = −hj−1,j+1(x < 0). Thus the vison induces
a branch cut for the spinon hopping, as we know already from

parton constructions of Z2 spin liquids [43]. A different model
of coupled spin chains without Z2 topological order but with
spinons capable of hopping between chains was previously
proposed in Ref. [44].

B. Bulk gap

The bulk quasiparticle excitations are gapped, with a finite
energy required to create them. The gaps are nonuniversal and
are, in general, different for θ̂ and θ ′, which would correspond
to different gaps for the spinons and visons. As we show below,
they depend on the details of the renormalization-group flows
of the sine-Gordon models on the j wires. The flow equations
for C1,C2 are given by Eq. (22); the equations for ĝ,g′ are
[38]

dĝ

dl
= −A1C

2
1 ĝ

3,

(32)
dg′

dl
= −A2C

2
2g

′3,

where A1 and A2 are nonuniversal numerical constants. Defin-
ing z

‖
1 = 2ĝ − 2, z

‖
2 = 2g′ − 2, z⊥

1 = C1/
√

8A1, and z⊥
2 =

C2/
√

8A2, we have the Kosterlitz-Thouless RG equations for
small |z‖

1,2|,

dz
‖
1,2

dl
≈ −(z⊥

1,2)2,

(33)
dz⊥

1,2

dl
= −z

‖
1,2z

⊥
1,2.

When z
‖
1,2 < 0 and z⊥

1,2 � |z‖
1,2|, the system flows to strong

coupling and the bulk is gapped. Additionally, when
z
‖
1,2 > −1, the low-energy excitations in the bulk are the

kinks we discussed previously, and the bulk gaps �1,2 ∼√
z⊥

1,2/(z‖
1,2 + 2) [38]. Note that the RG equations do not have

a stable fixed point, and hence the flows will be stopped by
nonuniversal scales. The kinks are of the form

〈θ̂ (x)〉 ∼ tan−1(x/w1),
(34)

〈θ ′(x)〉 ∼ tan−1(x/w2),

where w1,2 ∼ 1/

√
z⊥

1,2(z‖
1,2 + 2) [38]. However, we will as-

sume that the widths w1,2 of the kinks are much smaller than
the other length scales in our model, and treat the kinks as
sharp step functions.

C. Physics at the edges

In a wire array where � runs from 1 to n, the fields
φ̄1

1 ,φ̄
2
1 and φ1

n,φ
2
n living on the edges do not appear in the

sine-Gordon terms O�
α . Thus, these nonchiral modes are

gapless and also commute with the Hamiltonian. In the absence
of additional symmetries, we are free to add sine-Gordon terms
to the edges to gap these modes out; for example, we can
add

Hedge =
∫

dx
[
D1 cos

(
2φ̄1

1

) + Dn cos
(
2φ1

n

)]
, (35)
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and tune the kinetic terms on the edges, as we did before
for the bulk, to make these relevant. This localizes φ̄1

1 and
φ1

n. Due to the nonvanishing commutators [Eq. (10)] between
φ̄1

1 ,φ̄
2
1 and φ1

n,φ
2
n, fluctuations of φ̄2

1 and φ2
n are maximized

due to the uncertainty principle, and these modes are conse-
quently gapped [37]. Note that φ̄1,φ̄2 (or φ1

n,φ
2
n) cannot be

simultaneously localized owing to their nonvanishing mutual
commutators [Eq. (10)]. Thus, our results are consistent
with the usual expectations for the edge of the toric code,
which can either be of the m or e type, but not both
[45,46].

The edge fields φ̄1
1 → −φ̄1

1 and φ1
n → −φ1

n under time
reversal [Eq. (29)]; thus, if they are localized to 0, by Eq. (35)
the edges will be gapped without spontaneously breaking
time-reversal symmetry.

V. FERMIONIZATION AND Z2 FRACTIONALIZED
FERMI LIQUID

The previous section provided a coupled-wire construction
for the Z2 spin liquid using a purely bosonic model. Let us
now fermionize the spinons in HSL, as this will be necessary
for our construction of the Z2 FL*. The FL* is a phase of
matter where a Fermi liquid with gapless excitations coexists
with a background spin liquid. The simplest examples of
FL* arise in two-band Kondo-Heisenberg lattice models [47].
In a simplified picture of such models, the local moments
interacting via Heisenberg exchange interactions can form
the spin liquid, while the conduction electrons form a Fermi
liquid with a “small” Fermi surface. In the limit of a weak
Kondo exchange between the local and itinerant electrons, the
resulting FL* phase violates Luttinger’s theorem [48], which
can be understood as arising from the presence of background
topological order [49].

In order to fermionize the spinons, we first add a new set
of bosonic “chargon” fields θc

j ,φ
c
j to the wires labeled by j

which satisfy[
θc
j (x),φc

j ′ (y)
] = iπsign(x − y)δjj ′ . (36)

Their Hamiltonian is given by

Hc =
∑

j

{
vc

2π

[
1

gc

(
∂xθ

c
j

)2 + gc
(
∂xφ

c
j

)2
]

+ Cc cos
(
2θc

j

)}
,

(37)

with gc chosen so that Hc is gapped, and HSL → HSL + Hc.
We then consider the θ̂ ,φ̂ and θc,φc to respectively describe the
long-wavelength spin and charge sectors of spinful fermionic
Luttinger-liquid wires,

θ̂j = θj↑ − θj↓, φ̂j = φj↑ − φj↓,
(38)

θc
j = θj↑ + θj↓, φc

j = φj↑ + φj↓.

Given the commutation relations in Eqs. (13), (14),
and (36), we demand that the fields introduced above satisfy
the following commutation relations:

[θjσ (x),φj ′σ ′(y)] = i
π

2
sign(x − y)δjj ′δσσ ′ . (39)

These are the canonical Luttinger-liquid commutators. Thus,
the fermion creation and annihilation operators may then be

written as (σ =↑ , ↓)

ψR
jσ (x) = Fj√

2πxc

ei[k0
F x+φjσ (x)+θjσ (x)],

(40)

ψL
jσ (x) = F

†
j√

2πxc

ei[−k0
F x+φjσ (x)−θjσ (x)].

The Fj represent the Klein factors that ensure anticommutation
on different wires and xc is a short-distance cutoff; one possible
choice for the Klein factors is [27]

Fj = (−1)
∑

σ,l<j (NR
lσ +NL

lσ ),
(41)

N R/L

jσ = ±
∫

dx

2π
∂x[φjσ (x) ± θjσ (x)].

Under time reversal given by Eq. (29), we have

θj↑ ↔ θj↓,

φj↑ → −φj↓ + π/2, φj↓ → −φj↑ − π/2, (42)

ψ
R/L

jσ → (−1)σ iψ
L/R

jσ̄ ,

where we made a symmetric choice for the phase factors in
the second line of the above.

The spin lowering and raising operators corresponding to
the above definitions are given by

S+
j = 1

2

(
ψ

R†
j↑ ψR

j↓ + ψ
L†
j↑ψL

j↓
)
,

(43)
S−

j = 1
2

(
ψ

R†
j↓ ψR

j↑ + ψ
L†
j↓ψL

j↑
)
,

which can be reexpressed in terms of the bosonic fields as

S+
j = 1

4πxc

[e−i(φ̂j +θ̂j ) + e−i(φ̂j −θ̂j )],

(44)

S−
j = 1

4πxc

[ei(φ̂j +θ̂j ) + ei(φ̂j −θ̂j )].

On the other hand, the z component is given by

Sz
j = 1

2

(
ψ

R†
j↑ ψR

j↑ − ψ
R†
j↓ ψR

j↓ + ψ
L†
j↑ψL

j↑ − ψ
L†
j↓ψL

j↓
) = ∂xθ̂j

(2π )
.

(45)

Thus we have Sj → −Sj under T .
S± switch antikinks (≡↓) to kinks (≡↑), and vice versa.

Thus, they create and annihilate two spinons at a time
respectively. The spin-sector sine-Gordon term maps to the
backscattering term,

C1 cos(2θ̂j ) → C̃1ψ
L†
j↑ψR

j↑ψ
R†
j↓ ψL

j↓ + H.c., (46)

which does not have any oscillatory e2ik0
F x factors and hence is

not trivially rendered irrelevant in the long-wavelength limit.
For the charge sector, we have

Cc cos
(
2θc

j

) → e4ik0
F xC̃cψ

L†
j↑ψR

j↑ψ
L†
j↓ψR

j↓ + H.c. (47)

Imagining the fermions to live on a lattice with lattice constant
a0 as before, we tune to half filling k0

F = π/(2a0) to eliminate
the oscillatory factor in the above so that we can have both
charge and spin gaps.
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Thus we have

HSL → Hf + Hv,

Hf =
∑
j,σ

∫
dx

{
vf

[
ψR†

jσ

(
−i

∂

∂x

)
ψR

jσ − ψL†

jσ

(
−i

∂

∂x

)
ψL

jσ

]
+ C̃1

(
ψ

L†
j↑ψR

j↑ψ
R†
j↓ ψL

j↓ + H.c.
) + C̃c

(
ψ

L†
j↑ψR

j↑ψ
L†
j↓ψR

j↓ + H.c.
)}

,

Hv =
∑

j

v′
j

2π

∫
dx

[
1

g′ (∂xθ
′
j )2 + g′(∂xφ

′
j )2

]
+ C2 cos(2θ ′

j ), (48)

where Hv corresponds to the vison piece unaffected by the
fermionization.

The spinons (together with chargons) may be hopped
between wires by adding perturbative nonchiral hoppings of
the fermions,

H
hop,f

j,j+1 (x) = −tei�j,j+1(x)
[
ψ

L†
j+1,σ (x)ψL

jσ (x)

+ψ
R†
j+1,σ (x)ψR

jσ (x)
] + H.c., (49)

with the phase of the hopping amplitude given by Eq. (31) as
the chargons have trivial mutual statistics with the visons.

To realize the FL*, we add another set of wires to the sites
labeled by j , carrying the conduction electrons labeled by
c
R/L

jσ ; we also add nonchiral hoppings between these wires so
that the electrons form a quasi-1D Fermi surface (Fig. 4). The
conduction electrons are described by

Hel =
∑
j,σ

∫
dx

{
vF

[
cR†

jσ

(
−i

∂

∂x

)
cR
jσ − cL†

jσ

(
−i

∂

∂x

)
cL
jσ

]

− t1
(
c
R†
j+1,σ cR

jσ + c
L†
j+1,σ cL

jσ + H.c
)}

. (50)

The spin density corresponding to the conduction electrons is
denoted

sj = 1
2

(
c
R†
jσ τ σσ ′cR

jσ ′ + c
L†
jσ τ σσ ′cL

jσ ′
)
. (51)

We now couple the spin sector of the electrons to the spinons
via a local spin-spin coupling, similar to the Kondo coupling

-
-

(a) (b)

FIG. 4. (a) The additional set of wires (dashed blue line) carrying
the conduction electrons. Nonchiral tunneling between these wires
(red arrows) allows the electrons to form a two-dimensional Fermi
liquid, coupled to the spin-liquid background (FL*). (b) Schematic
Fermi surface of such a Fermi liquid.

used in the original description of the FL* [47]. We analyze
two different cases below.2

A. Kondo Hamiltonian

We begin by using a local Kondo coupling, HK =
JK

∑
j [S · s]j , that preserves the SU(2) spin rotation sym-

metry. Then,

HFL∗ = Hel + HSL + HK,

HK = JK

4

∑
j,σσ ′

∫
dx�j · τj ,

(52)
�j = (

ψ
R†
jσ τ σσ ′ψR

jσ ′ + ψ
L†
jσ τ σσ ′ψL

jσ ′
)
,

τj = (
c
R†
jσ τ σσ ′cR

jσ ′ + c
L†
jσ τ σσ ′cL

jσ ′
)
,

where HSL is as described in Eq. (21) earlier. Even though the
Hamiltonian looks like a standard Kondo-type Hamiltonian,
there is a subtlety associated here with the specific construction
used to arrive at the description of the Z2 spin liquid. The
spin-spin coupling in HK does not commute with HIC [in HSL;
see Eq. (21)] as S

x,y

j depend on φ̂j after bosonization. However,
we appeal to our physical intuition here; since the spin-liquid
background is gapped, the phase obtained by coupling it to
a Fermi liquid will be perturbatively stable as long as the
Kondo coupling is small compared to the typical gaps (i.e.,
JK � min{�1,2}). Thus in the small JK limit, we realize the
Z2 FL* phase without any broken symmetries. However, it
remains an interesting open problem to study the fate of this
phase when the above condition is not satisfied.

B. Ising limit

There is a special limit in which the complications described
above can be circumvented. Suppose J z

K � J
x,y

K as a result
of easy-axis anisotropy. The Kondo coupling then essentially
involves only a local Hz

K = JK

∑
j [Szsz]j coupling. We then

have

HFL∗ = Hel + HSL + Hz
K,

(53)

Hz
K = J z

K

4

∑
j

∫
dx�z

j τ
z
j .

2Recently, a construction for an FL* was proposed starting from a
set of decoupled wires in Ref. [50]. However, the phase obtained in
the above paper is not a Z2 FL* and does not discuss the topological
structure or nature of its anyonic excitations.
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Since Sz
j depends only on θ̂j in the bosonized language, it

commutes with HIC [in HSL; see Eq. (21)]. Thus, the spin-
liquid background is stable for any reasonable value of JK ,
as long as it is not strong enough to drive Kondo screening.
Moreover, we do not expect the gapped spinons to induce
any non-Fermi-liquid behavior for the electrons. Therefore,
for small values of JK , we realize once again a Z2 FL* [that
explicitly breaks the SU(2) spin rotation symmetry] with a
Fermi surface of the type shown in Fig. 4(b).

VI. DISCUSSION

In this work, we have tried to extend the general program
of constructing two-dimensional correlated phases of matter
by coupling together an array of one-dimensional wires. In
particular, we have demonstrated that it is possible to explicitly
construct a time-reversal symmetric phase of matter that has
the following characteristics: (i) Energy gap in the bulk and
at the edge, (ii) three bulk anyonic quasiparticles which are
mutual semions, and (iii) nontrivial ground-state degeneracy
on a torus and is the Z2 spin liquid. In the limit of a weak
Kondo-type coupling to an itinerant Fermi sea, we have also
constructed a Z2 FL*.

It would be interesting to explore the possibility of
realizing other time-reversal symmetric spin-liquid phases in
two spatial dimensions with gapless excitations in the bulk.
A particular example is the U(1) spin liquid with a spinon
Fermi surface [22], which can potentially be constructed
in a manner similar to the one proposed for the half-filled
Landau level [28]. The fate, or even the existence, of the
strong-coupling fixed point for the above spin-liquid problem
remains unanswered [51] and it would be interesting to see if a
complementary approach, such as the one proposed here, can
address some of these unresolved questions.
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