
What’s Wrong with Git? A Conceptual Design Analysis

Santiago Perez De Rosso Daniel Jackson
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
Cambridge, MA, US

{sperezde, dnj}@csail.mit.edu

Abstract
It is commonly asserted that the success of a software de-
velopment project, and the usability of the final product, de-
pend on the quality of the concepts that underlie its design.
Yet this hypothesis has not been systematically explored by
researchers, and conceptual design has not played the central
role in the research and teaching of software engineering that
one might expect.

As part of a new research project to explore conceptual
design, we are engaging in a series of case studies. This
paper reports on the early stages of our first study, on the
Git version control system. Despite its widespread adoption,
Git puzzles even experienced developers and is not regarded
as easy to use. In an attempt to understand the root causes of
its complexity, we analyze its conceptual model and identify
some undesirable properties; we then propose a reworking of
the conceptual model that forms the basis of (the first version
of) Gitless, an ongoing effort to redesign Git and experiment
with the effects of conceptual simplifications.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques; D.2.7 [Software
Engineering]: Distribution, Maintenance and Enhancement—
Version Control

Keywords concepts; concept design; conceptual integrity;
conceptual modeling; design; software design; usability;
version control; Git.

1. Introduction
Background and Motivation. In many areas of software
development, researchers have recognized the importance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Onward! 2013, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2472-4/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509578.2509584

of identifying underlying concepts, and of separating them
from their realization in code. Doing so enables conceptual
design to be pursued independently of implementation deci-
sions; in short, the most basic form of “what” before “how.”

Nevertheless, most research to date has focused narrowly
on the question of how to represent concepts – as database
semantic models, formal specifications, ontologies, and so
on. Much less attention has been paid to the concepts them-
selves: how they are chosen, and the role they play in design.

Sometimes the conceptual basis of a software product
is built by analogy to the real world; an online store, for
example, has concepts such as “shopping cart,” “item” and
“order.” But often the connection to the real world is tenuous
and concepts make sense only in the designer’s invented
world. Git is an example of this, with concepts such as
“tracked file,” “staging area” and “local repository” that have
no a priori meaning.

The best software designers already know how important
it is to discover or invent the right concepts, and that rough
edges in these concepts and their relationships will lead to
rough edges in the delivered product. Back in 1975, in The
Mythical Man Month [13], Fred Brooks described concep-
tual integrity as “the most important consideration in system
design” and twenty years later in the afterword of a new edi-
tion [14] wrote “I am more convinced than ever. Conceptual
integrity is central to product quality.”

Despite this, there have been few attempts to study the
design of concepts and their impact in software.

Git Overview. Version control (also referred to as revision
control or source control) is any practice that tracks and
provides control over changes to source code. This enables
users to, for example, revert files back to a previous state,
merge changes from different sources, and compare changes
over time. Version control systems have become ubiquitous
and indispensable tools for project coordination. Playing
such a vital role in the software development process, they
have the power to significantly increase the productivity
of users, or become an obstacle to progress, a source of
frustration, or even the cause of loss of data.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78072747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Git is a free, open-source, distributed version control sys-
tem. Designed initially for the Linux kernel development, it
has since been adopted by many other open source projects
including jQuery, Ruby on Rails and CakePHP [2]. Compa-
nies such as Facebook, Google and Twitter use it for their
open source projects [5–7] and have adopted it internally to
some extent. GitHub, a web-based service that hosts soft-
ware development projects that use Git for version control
has over 3 million users and over 7 million repositories.1

Despite its growing adoption, many users see room for
improvement. In the 2012 Git User’s Survey [4], the user in-
terface and documentation were identified by respondents as
two areas in need of help.2 Of those who expressed concerns
about the user interface, 71% agreed that improvements are
necessary.3 Of those who expressed concerns about doc-
umentation, 75% agreed that the available documentation
needs improvement.4 The question “What do you hate about
Git?” elicited over 1500 responses, including: “too complex
for many users,” “requires steep learning curve for newbies,”
“dark corners,” “the steep learning curve which makes it
harder to gain more converts,” “the staging area, for exam-
ple, is something I rarely find useful and often find confus-
ing.”5

These weaknesses have spurred the development of com-
mand line wrappers and GUIs whose primary goal is to re-
move some of Git’s complexity (most notably, EasyGit [1]
and GitHub’s desktop client). These make largely cosmetic
changes, through more attractive user interfaces, more con-
sistent terminology in commands and documentation, and a
focus on more commonly used commands. But their suc-
cess seems to have been fairly limited, and most people still
use the command line interface distributed with Git as their
primary frontend, or fall back to it for accomplishing more
complex tasks.

We believe that the usability problems of Git run deeper,
and can only be addressed by a more fundamental reworking
that reconsiders the underlying concepts. This is not to say
that such a reworking cannot be achieved in a lightweight
fashion. Indeed, our own reworking hides Git behind a ve-
neer just as these other tools do. The difference however, is
that we are willing to completely reconsider the core con-
cepts that are presented to the user.

Choice of Git as Case Study. We picked Git for several
reasons. First, it is a popular and widely used program, so
the case study would likely be of interest to a larger audi-
ence than a study of a more obscure application. Second,

1 As of August 2013. Data posted on http://github.com/about/

press.
2 See [4], Question 23.
3 25% a little improvement is necessary, 27% some, 19% much. 4116
responses.
4 35% a little improvement is necessary, 29% some, 11% much. 4080
responses.
5 See [4], Question 24.

Git is powerful and feature rich; this makes redesign more
challenging, and reduces the risk that the case study is a
straw-man with little relevance to well designed applica-
tions. Third, being so powerful, a conceptual redesign of Git
could be easily implemented using the existing code base,
with a wrapper that acts as a kind of conceptual “impedance
matcher.” This enables us to rapidly prototype tools that rep-
resent different points in the concept design space and try
them out with users (to misquote von Moltke “no design sur-
vives first contact with the user”). Last but not least, it is our
impression that Git is far more complicated than it needs to
be, and that many of the difficulties that users face in using
Git can be attributed to flaws in its conceptual model.

We present this case study in two parts: first, an analysis
of Git, and second, an outline of Gitless, our redesign. Our
focus, of course, is on the conceptual flaws of Git and how
we are trying to remedy them in Gitless.

Gitless as an Ongoing Effort. Gitless is an experiment, not
a demonstration and validation of our philosophy of concep-
tual design. Needless to say, Git is the result of many years
of development by many people, and has been refined in re-
sponse to its application by a large and expert community
of users. Gitless, in contrast, is an initial research prototype
that is currently only a few weeks old. Moreover, we do not
claim that Gitless occupies an ideal point in the design space;
indeed, in our discussion we identify several dimensions of
design that might be explored, producing very different con-
ceptual models. Of course we hope that a redesign of Git that
improves its conceptual model (according to criteria that we
outline in this paper) will result in a better and more usable
version control system, but we regard this as a research hy-
pothesis to be tested empirically.

Our hope is that, at the very least, our analysis will spur
interest in viewing software in this way. A fuller discussion
of our research program, along with a series of examples
of small conceptual analyses, appears in an accompanying
technical report [28].

2. Concept Design Criteria
By “concepts” we mean the constructs and notions either
that the system deals with (on account of them preexisting
in the world), such as “bank account” or “airline flight,” or
that are invented for the purpose of structuring the functions
of the system, such as “paragraph style” in a word proces-
sor, or “element group” in a drawing application. These con-
cepts, being essential to the design, are both apparent in the
interface of the system with the outside world, and (usually)
in the system’s implementation. In contrast, we do not mean
by “concept” anything that exists only at one level, whether
it be in the interface (e.g., “scroll bar”) or in the implement
(e.g., “callback”). In our view, concepts have psychological
content; they correspond to how users think about the appli-
cation.

Conceptual design for us, therefore, is about the design of
user-visible behavior, and not the design of internal software
structure, and we use the term “conceptual model” for a
specification that focuses on concepts rather than the details
of behavior.

Brooks lists three principles as representing the notion
of conceptual integrity [12]: orthogonality – that individual
functions should be independent of one another; propriety –
that a product should have only the functions essential to its
purpose and no more; and generality – that a single func-
tion should be usable in many ways. Despite using the terms
“conceptual design” and “conceptual integrity,” Brooks for-
mulates these principles in terms of functions. In this case
study, we will apply his principles, but attempt to focus them
more closely on concepts.

To illustrate this, we present an example of a violation of
each of Brooks’s principles, and how it might be viewed in
terms of concepts.

Orthogonality. The Epson R2400 printer allows border-
less printing only for some of the paper feed options. Unfor-
tunately, the driver for the printer (presumably in an attempt
to enforce this restriction) associates borderless printing with
the setting of preset margins to zero, even if a large margin is
used at printing time. Consequently, page presets are (invis-
ibly) linked to paper feed options, and if you select a preset
with a zero margin, the driver prevents you from selecting
the rear feeder (since it is not designed for borderless print-
ing). The choice of paper feed in the printing dialog and the
choice of preset in the page setup menu are thus coupled,
causing much consternation amongst users who fail even to
notice whether a preset has zero margins.6

The concepts here are those of a borderless print, and of
preset margins; the two are coupled, so that a print with a
preset margin of zero is defined to be borderless, irrespective
of its actual margins. A better design might have two distinct
concepts, the preset margin (to which the margin chosen at
print time is added), and the gutter (say), which defines the
maximum printable area.

Propriety. In the Tumblr blogging platform, if you end a
post (or its title) with a question mark, a dialog box appears
asking whether you would like to accept “answers.” It turns
out that there is a concept of a blog post that is a question
(and thus solicits answers). Yet such a concept is confusing
and unnecessary; there is already a concept of comments for
responses to posts. And in fact, the question concept seems
to have confused the developers also, since the feature is
buggy (and in particular, having marked a post as accepting
answers, you cannot undo it).

Generality. Some cameras let the user bind particular
parameter-setting actions to physical keys – in the Fuji
X100s, for example, a button marked “Fn” (for “function”).

6 A workaround is to use a tiny margin, e.g., a thousandth of an inch,
whenever a zero margin is required.

When parameters are set manually, not using such a key,
the user navigates through various levels of menus, first se-
lecting a particular feature (such as ISO speed) and then
subsequently navigating more deeply or actually setting val-
ues (such as setting the maximum ISO speed in auto-ISO to
1600). Unfortunately, in the x100, the function button can
only be bound to the top level selection, so that pressing it
does not set the parameter, but instead opens the submenu
(requiring a further step to actually change the parameter).
The problem here is that the concept of action is insuffi-
ciently general; both the selection of the feature at the top
level and the actual setting of parameters should be treated
uniformly as actions, so the user could bind the function key
at any level.

We considered including a fourth criterion, namely con-
sistency, which would require that actions behave in a sim-
ilar way irrespective of the arguments they are presented
with, or the states in which they are invoked. The Unix shell
offers many examples of violations of this criterion, amus-
ingly documented in The UNIX Hater’s Handbook [23]. Git
is rife with surprising inconsistencies; as one of the worst
examples, the commit command behaves completely differ-
ently if files are listed as explicit targets on the command
line (breaking the common Unix idiom that not specifying
files is equivalent to specifying the current directory). Even
though inconsistency is one of Git’s flaws, we decided not to
focus on it because it seems to be primarily a user interface
issue rather than a deeper conceptual issue.

3. An Overview of Git
Explaining all of Git is a daunting task, and far exceeds
the scope of this paper. We therefore restrict our analysis
to local operations, and even there consider only a limited
subset of features. Nevertheless, the subset of Git we analyze
in this paper is (we believe) rich enough to serve as the
cornerstone of a case study, and in fact a newcomer to Git
may be surprised at the sheer amount of complexity present
in such limited functionality. We assume some familiarity
with Git; for a more thorough explanation, see [16, 35].

Unlike traditional version control systems (such as CVS
and Subversion), Git is distributed. Rather than having a sin-
gle, centralized repository, each user has a separate repos-
itory to which work can be committed even when the user
is offline. It is common to designate one of the repositories
as a shared “remote” repository that acts as a hub for syn-
chronizations between the “local” repositories of individual
users. In this way, the benefits of both centralized and local
repositories are obtained.

Between the user’s working directory and the local repos-
itory, Git interposes a “staging area,” also called the “in-
dex.” All commits are made via this intermediate area. Thus
the standard workflow is first to make copies of files to the
staging area (using the add command), and then to commit

them to the repository (with the commit command). Expla-
nations of Git use the term “tracked files” to refer to files
that have been added. This confuses novices, since such files
are tracked only in the sense that the status command will
notice that changes to them have not been committed. Con-
trary to initial expectation, if a tracked file is updated, a sub-
sequent commit will save the older version of the file (repre-
senting its state the last time the add command was called),
and not the latest version.

The situation is made more complicated by the fact that
tracked files may not have corresponding versions in the
staging area. Following a commit, a file that had been pre-
viously added remains tracked, but the version in the stag-
ing area is removed. The term “staged file” often used inter-
changeably with “tracked file” is thus subtly different: in this
case, we have a file that is tracked but no longer staged.

Files that are not tracked are not included on a commit.
Separately, a file may be marked as “assumed unchanged.”
Such a file behaves for the most part like an untracked file,
but will not even be recognized by the add command; to
make it tracked again this marking has to be removed. Fi-
nally, a set of files (given implicitly by a path-specifier in
a special file) may be designated as “ignored.” This feature
enables the user to prevent files from being committed by
naming them before they even exist, and is used, for exam-
ple, to prevent the committing of non-source files.

At any one time, the user is working in a particular branch
of development. Switching to another branch enables the
user to put aside one development task and work on another
(for example, to pursue the implementation of a particular
feature, or fix a particular bug). Switching branches is a com-
plex matter, because, although the branches are maintained
separately in the repository, there is only one working di-
rectory and one staging area. As a result, when switching
branches, files may be unexpectedly overwritten. Git fails
with an error if there are any conflicting changes, effectively
preventing the user from switching branches in these cases.
To mitigate this problem, Git provides a way to save versions
of files to yet another storage area, called the “stash,” using
a special command issued prior to switching branches.

4. A Conceptual Model of Git
The view of Git embodied by our discussion and model has
been obtained from popular references and discussions, and
from observation (especially of the output from the so-called
“porcelain”7 commands such as git status).

Recall that a “conceptual model” to us is a specification
that focuses on concepts, not on implementation details. And

7 As Chacon in [16], Chapter 9.1, puts it “Git was initially a toolkit for a
VCS [version control system] rather than a full user-friendly VCS, it has
a bunch of verbs [commands] that do low-level work and were designed
to be chained together UNIX style or called from scripts.” These are the
commands that are generally referred to as “plumbing” commands to dif-
ferentiate them with the current, more user-friendly commands referred to
as the “porcelain” commands.

that, in our view, concepts correspond to how users think
about the application.

Due to the complexity of Git and the lack of a succinct
and clear user manual (and the fact that we ourselves are not
Git devotees), there are doubtless some errors in our model.

But the conceptual model conveyed by an application – in
its documentation, marketing materials, implied by its user
interface, and even in the culture that surrounds it – has to
be regarded as inseparable from the application itself. So
to the extent that consensus is missing on an application’s
conceptual model, it is arguably the application itself that is
at fault.

4.1 An Overview of Git’s Conceptual Model
Ideally, a description of a conceptual design should be
implementation-independent; it should be easy to under-
stand; it should be precise enough to support objective anal-
ysis; and it should be lightweight, presenting little inertia to
the exploration of different points in the design space.

For these reasons, we have chosen (initially at least) to
use a very standard state-machine model of computation,
in which named actions (performed by the user or some-
times by the application) produce transitions between ab-
stract states. The abstract state space is described by a re-
lational data model, using the variant of extended entity-
relationship diagrams developed for the Alloy modeling lan-
guage [29]. The actions are crudely specified by naming
them and describing their effects on the state informally.
This form of description is pretty conventional; instead, we
might have chosen any of the well-known “model based”
specification languages (such as Z [40], B [9], VDM [32],
or Alloy). Our own preference is for a diagrammatic repre-
sentation of the state space, but it may not be essential. We
might have used state machine diagrams (such as Statecharts
[25]) instead, but for applications like Git, such a notation
would not have been suitable, because it does not support
richly structured state.

Concepts correspond to state components. To connect the
abstract state components with the user’s understanding of
them as concepts we use Michael Jackson’s notion of a “des-
ignation” [31]: a necessarily informal statement that acts as a
kind of recognition rule. For example, in a conceptual model
of an application for managing university course registra-
tions, we would likely need a designation for the concept
of “student.” Designations are invariably more challenging
(and more interesting) than they first appear to be; the stu-
dents registered for a course, for example, might include not
only regular enrolled students but also special students, vis-
itors, and even staff and faculty members.

The concepts that form the abstract state of Git are
shown in the relational data model of Fig. 1. Each box
represents a set of objects, and the arcs represent rela-
tions. A large, open-headed arrow denotes a classifica-
tion relationship; thus Tracked File, Untracked File,
Assumed Unchanged File, Ignored File and Ignore

File Version

* -working ?
* -staged ?
* -committed[b] ?
* -stashed[s] ?

��BB

Tracked File Untracked
File

Assumed
Unchanged

File
Ignored File Ignore Spec

File
*�matches + + -defined by * Pattern

��BB

��BB

Staged for
Removal File Branch Stash

Figure 1. Graphical representation of Git’s conceptual model.

Spec File are subsets of File. Moreover, the fact that
Tracked File, Untracked File, Assumed Unchanged

File and Ignored File share an arrowhead indicates that
these are disjoint subsets of the set File. Ignore Spec

File has a separate arrow to indicate that the set it rep-
resents is not necessarily disjoint from the others; a file
may be, for example, both an Ignore Spec File and a
Tracked File. The italicization of File indicates that its
subsets exhaust it; that is, every file is tracked, untracked, as-
sumed unchanged or ignored. A small, closed arrow denotes
an association relationship (mathematically, a binary rela-
tion or set of ordered pairs). Thus the arc labeled working

from File to Version associates a file with its “working”
version.

The notation uses look-across cardinalities, where ! stands
for exactly one, ? denotes zero or one, ∗ zero or more and +
one or more. So a file has at most one staged version (given
by the ? at the Version end of the arc labeled staged),
and each version is the staged version of zero or more files
(given by the ∗ at the File end of the arc labeled staged).
An arc labeled r[i] represents not just one relation, but a
collection of relations indexed by i. Thus the arc labeled
committed[b] represents an association between files and
their committed version for each branch b. (Alternatively,
as in Alloy, such a relation can be viewed as ternary; in
this view, committed is a relation on branches, files and
versions.) The cardinalities apply to each of the indexed re-
lations; thus the markings on committed[b] indicate that,
for each branch, a file has at most one committed version.

The diagram omits an important state component. In ad-
dition to these sets and relations, there is a scalar value –
the current branch – that is used as a default for commands
that can be applied to multiple branches. It should also be

noted that diagrams such as this obviously do not express
the full state invariants – for example, that a version must be
associated by one of the relations with a file. This particular
invariant is akin to the notion of a weak entity in the Entity
Relationship Model [17]. We plan to extend our notation to
make it more expressive in the future, but are cognizant of
the fact that diagrammatic syntaxes for first order logic have
a long and troubled history (and that, anyway, richer invari-
ants are easily expressed textually, for example in Alloy).

4.2 Designations
We attempt to provide a clear designation for each of the
concepts that form our model of Git, realizing that this will
often not agree with popular accounts of Git (which are
anyway often inaccurate or inconsistent).

File. A File is the identity of a Unix file, to be distin-
guished from its contents. In Git, identity is equated with
the path of the file; thus the concept might equally well have
been named File Path.

Discussion. Only files that appear within Git projects are
considered, and our model takes the perspective (implicitly)
of a single user’s repository. When our model is extended
to include synchronization actions between repositories, a
single file may appear in several repositories, with different
status (untracked, tracked, etc.) in each.

An alternative designation of File would treat it as an
identity independent of the file’s path, so that a change of
name could be regarded as a modification of one of the prop-
erties of a file. Git sometimes provides an illusion that this
is the case; by examining the contents of files, for example,
the git status command is able to report when the name
of a file has been changed (but will also incorrectly report a
change of name if you copy a file and delete the original).

It is important to note that existence of a File does not
imply that a Unix file corresponding to it exists in the file
system, since a File can be staged for removal on the next
commit.

Tracked File. A Tracked File is a path corresponding to
a file whose modifications will be detected by Git (and
reported in the status command).

Discussion. The Pro Git book [16] describes tracked files
as “files that were in the last snapshot; they can be unmod-
ified, modified or staged.”8 It’s not entirely clear what is
meant by “files that were in the last snapshot” but from the
context it appears to mean “files that were in the last commit
point.”9 The book then says “Untracked files are everything
else,” but then qualifies this, surprisingly, with “[namely] any
files in your working directory that were not in your last
snapshot and are not in your staging area” suggesting that
tracked files also includes files that have been staged but are
not part of the last snapshot, contradicting the earlier defini-
tion.

Untracked File. An Untracked File is a file path represent-
ing a file that appears in the working directory (see working
below), but which has no committed version (see committed
below). The status command includes untracked files in
the “Untracked files” section of the output.

Discussion. This seems to correspond to the view in [16],
but it is nevertheless not entirely consistent with Git’s behav-
ior. Executing git rm --cached of a tracked file stages the
removal of the file without touching the file in the working
directory, so that it will be deleted from the repository at the
next commit. Subsequently running git status will show
the file under both the “Changes to be committed” section
(as “deleted”) and in the “Untracked files” section. We thus
have a file that is both tracked and untracked (according to
our designations). Since this is an edge case, we decided to
overlook it, to avoid making the model even harder to under-
stand.

Assumed Unchanged File. An Assumed Unchanged File
is a file path that was previously tracked, but for which the
user has indicated that Git should no longer detect changes.

Discussion. We were unable to find even an attempt at des-
ignating this term in popular references. The description of
the command used for marking a file as assumed unchanged
says “When the ‘assume unchanged’ bit is on, Git stops
checking the working tree files for possible modifications,
so you need to manually unset the bit to tell Git when you
change the working tree file.”

Unlike an untracked file, therefore, an assumed un-
changed file won’t be listed in the “Untracked files” sec-

8 See Chapter 2.2, “Recording Changes to the Repository.”
9 In explaining what it means for a file to be untracked, the books says:
“Untracked basically means that Git sees a file you didn’t have in the
previous snapshot (commit).”

tion of the output of the status command. Moreover, while
adding an untracked file will cause it to become tracked,
adding a file marked as assumed unchanged has no effect.

Ignore Spec File. An Ignore Spec File is the path corre-
sponding to a special kind of file (.gitignore files) whose
content is a set of patterns specifying which file paths are
to be ignored. Since these are standard files, they can be
tracked, untracked, assumed unchanged (and even ignored).

Discussion. A more complete model would take into ac-
count other ways Git enables a user to mark files as ignored
(such as adding patterns to .git/info/exclude or setting
up the core.excludesfile property for defining global ig-
nores).

Ignored File. An Ignored File is a file path that is com-
pletely ignored by Git, and it will not appear in any sec-
tion of the output of the status command. Since there
can be several ignore specs in a repository (i.e., multiple
.gitignore files in different directories) a file will be ig-
nored if it is matched by the .gitignore in its directory or
by any .gitignore file of its parent directories.

Discussion. There seems to be general consensus on what
an ignored file is.

Staged for Removal File. A Staged for Removal File is a
file path representing a file that no longer exists in the work-
ing directory and which will be removed from the repository
on the next commit.

Discussion. Some subtleties of this concept are discussed
below with the discussion of relation designations.

Pattern. A Pattern is a string specifying a set of file paths,
used in an ignore spec file to define the set of ignored files,
such as *.pyc, *.pyo for Python projects, *∼ to ignore Vi
backup files, and so on.

Discussion. A more complete model would take into ac-
count the fact that a pattern could be of two kinds: a regular
pattern or negated pattern. Any matching file excluded by a
previous pattern will become included again if it matches the
negated pattern.

Version. A Version represents the contents of a file at some
point in time. This means that two distinct files with the same
content would be modeled as having the same version.

Discussion. Do not confuse version with “version num-
ber,” which would be a name for a version (and which does
not exist as a concept in Git). Also, this concept of version
does not distinguish the same content at two different places.
For example, if a file was committed and the user hasn’t
modified it since, then in our model the working version of
the file would be the same as the committed version.

Branch. A Branch is a named collection of committed
versions of files. More precisely, in our model a branch is
an identifier that indexes the relation committed (designated
below) mapping files to committed versions.

Discussion. A more complete model would represent the
structure of branching; in the simplified view we take here,
there is just a collection of branches available, each with its
own most recently committed versions of files.

Stash. A Stash is a collection of file versions that are saved
together. More precisely, in our model a stash is an identifier
that indexes the relation stashed (designated below) mapping
files to stashed versions.

Discussion. Branches and stashes are conceptually unre-
lated, even though a stash is usually created when a user
switches branches. Also, while a user can choose the name
of a branch and change it at will, the stash name is assigned
by Git. Stash names have the form “stash{i}” where i is the
position of the stash in the stash stack from the top (a col-
lection of all stashes). So as the stash stack grows or shrinks,
the name of a given stash changes. A more complete model
might include these naming issues.

Working. The working version of a file is the one stored in
what is usually referred to as the working directory. Follow-
ing a modification of a file in the working directory, working
corresponds to the file’s new content. Note that, as indicated
in the diagram by the multiplicity marking, a file can have
at most one working version; a file may exist but have no
working version because, for example, it is committed in the
repository but no longer in the working directory.

Staged. The staged version of a file is the one stored in
what is usually referred to as the staging area, and is the
version that is saved in the repository when a commit is
performed. Note that, as indicated in the diagram by the
multiplicity marking, a file can have at most one staged
version.

Committed. The committed version of a file is the one
stored in the local repository at the last commit point. Since
a different version can be stored in each branch of the repos-
itory, there is a separate relation committed[b] for each
branch; thus for a file (path) f, the version f.committed[b]
is (if it exists) the version of the file f committed in branch
b. Note that, as indicated in the diagram by the multiplicity
marking, a file can have at most one committed version for
each branch. (Of course in practice there is a separate com-
mitted version also for each commit point, but to simply our
model we have chosen to ignore this.)

Stashed. The stashed version of a file is the one saved in
what is usually referred to as the stash list. Since a different
version can be stashed in each of multiple “stashes,” there
is a separate relation stashed[s] for each stash; thus for a
file (path) f, the version f.stashed[s] is (if it exists) the
version of the file f stashed in stash s. Note that, as indicated
in the diagram by the multiplicity marking, a file can have at
most one stashed version for each stash.

Discussion. Tracked files may or may not have staged ver-
sions. An untracked file, however, cannot have a staged ver-

sion. When a tracked file with a staged version is commit-
ted, immediately following the commit (as explained below),
the staged version is dropped but the file remains tracked.
(Note that since a git add can be performed before a file is
marked as assumed unchanged, an assumed unchanged file
can also have a staged version.)

When a tracked file is removed from the working direc-
tory (using the Unix rm command), it will not be unstaged,
and a subsequent commit will commit the last version to
have been staged by the previous git add command. So a
file can have a staged version but no working version. How-
ever, if the file is removed by the git rm command (dis-
cussed below), it will be staged for removal.

Some care is required in distinguishing between a file be-
ing unstaged (meaning that its staged version is removed)
and being staged for removal (which means that the staging
area records the absence of the file rather than its presence,
so that it will be removed from the local repository on the
next commit). Suppose a file is added (using the git add

command), then removed (using the Unix rm command) and
then committed (using the git commit command). Prior to
the commit, the file has a staged version but no working ver-
sion; after the commit, it has no staged version either. To
remove the file from the repository, in contrast, one executes
a git rm, which removes the staged and working versions,
and additionally marks the file for removal in the next com-
mit. Git’s documentation is not a big help here; the man page
for git rm, for example, states “Remove files from the in-
dex, or from the working tree and the index.” suggesting that
an unstaging is performed, when in fact a staging for removal
is performed instead.

4.3 Actions
• git add. The git add f command causes the working

version of file f to become (additionally) the staged ver-
sion. If the file is untracked, it becomes tracked. Subse-
quent modifications to the file will produce a divergence
between the working version and staged version.

• git commit. Executing the git commit command
causes all versions of files that were staged to become
committed versions. It is possible to skip the staging
area altogether, and use Git in a similar fashion to tradi-
tional centralized or distributed version control systems
such as Mercurial [8], using the git commit f1...fn
or git commit -a commands that perform an implicit
git add prior to the commit. These variations of the
commit command make the working version (rather than
the staged version) committed. Following any form of
commit, committed files are no longer associated with
their previously staged versions.

• git reset. Executing git reset HEAD f for a file f
removes its association to the staged version, and makes

the file untracked if it was an untracked file before the
git add that caused it to be staged, or will make the
file tracked if it previously was an assumed unchanged
file. (The very same command, in the form git reset

HEAD^, can be used for undoing the last commit, but to
simply our model we haven’t included the notion of a
commit history thus leaving out of the model this and
other variants of the git reset action that operate on
the history.)

• git checkout. The git checkout f command re-
verts local changes to file f by replacing the working ver-
sion, either with the staged version if there is one, or with
the committed version otherwise. The same command
is used to switch branches: git checkout b switches
from the current branch to the branch named b. After
a successful branch switch (no conflicts occurred), the
working version of files are replaced with their commit-
ted version in branch b. If a file has local modifications (or
no corresponding committed version in b), the working
version (and staged version if any) remain unchanged.

• git branch. The git branch b command creates a
new branch b. In addition, for each file in the current
branch with a committed version, a new tuple (file, ver-
sion, new branch) is added to the committed relation-
ship. Conversely, when a branch is deleted (for example,
by using the -d flag) all of its associations with files are
removed.

• git stash. The git stash command takes the work-
ing version of each file (with modifications) and makes
it a stashed version in a new stash. (Actually, the com-
mand also makes any staged version stashed, but our
simple model does not include the fact that both the
working and staged versions are stashed separately.) It
will also replace the working version of each affected file
with its committed version. To include untracked files in
the stash, the user can pass the --include-untracked

flag. Stashed changes can be later reapplied with the git
stash apply or git stash pop commands, the dif-
ference between them being the fact that pop will also
remove the stash (and thus the association between all
files and their versions stashed in that stash).

• git update-index. Executing the git update-index

--assume-unchanged f command makes file f an as-
sumed unchanged file. A subsequent git add f will not
make it a tracked file again; the correct command is git
update-index --no-assume-unchanged f .

• git rm. If the file is a tracked file, its removal is staged
and the file is also removed from the working directory.

The same thing happens if the file is an assumed un-
changed file but after the removal it will become a tracked
file again. The command fails if the file is untracked, ig-
nored, or if it has a staged or working version that differs
from its committed version.

• git mv. The command git mv old new is a shorthand
for the sequence of three commands mv old new; git
add new; git rm old, so it adds nothing new.

• rm. The standard Unix remove command removes a file’s
working version, and has no effect on the staged (or com-
mitted) versions.

• mv. The standard Unix move command removes the as-
sociation between the old path and its working version,
and associates the new path with that working version in-
stead.

5. Analysis of Git’s Conceptual Model
The very complexity of the conceptual model we have de-
scribed suggests to us that something is amiss in the design
of Git. Can a version control system really require so many,
and such intricate concepts? And before we have even con-
sidered synchronizing multiple repositories?

In this section, we attempt to point to some particular
problems, namely examples of ways in which Git violates
the criteria we outlined in Sec. 2. In each case we start by
showing a rough edge in Git – some situation that could
lead to surprising effects and user dissatisfaction – and then
attempt to explain how that rough edge is rooted in the
violation of the criterion.

5.1 Orthogonality
What Happened to My Changes? The purported justifica-
tion for the complex concept of staged versions is to enable
the user to hold a separate version of a file for committing,
distinct from the working version. So, for example, the user
might fix a bug, then stage the resulting version of the file
(using the git add command), and continue to edit the file,
say to expand its functionality for a much later commit. Now
a vanilla commit will, as desired, save only the bug fix as the
committed version.

In fact, however, the staged and working versions of a
file are coupled in complex ways, and Git commands that
one might expect to affect only one often affect the other
too. For example, if, in the situation just described, the user
executes the commit command to commit the bug fix, but
then decides to undo the commit by executing the reset

command, then (depending on the arguments presented) the
command may not only replace the staged version with the
committed version, but replace the working version too,
wiping out the changes that followed the bug fix.

Why This Happens. The concepts of staged and working
versions are not orthogonal. Many commands that are pri-
marily intended to modify one of the two modify the other
too. Worse, whether or not these ripple effects occur depends
on which arguments are presented to the commands.

5.2 Propriety
Just Let Me Commit! The most common action performed
by many users is committing changes; Git was designed
in particular to make commits fast for exactly this reason.
Despite this, committing files is non-trivial in Git, in large
part because of the intrusion of the concept of staging.

A user might think that the working version of a file could
be committed without creating an intermediate staged ver-
sion. The command git commit f , where a file is named
explicitly, causes the committed version to be obtained not
from the staged version but rather from the working version.
But if the file f is untracked, the command will fail with the
message “pathspec did not match any file(s) known to Git.”

Alternatively, the user might think that using the com-
mand git commit -a would enable her to avoid staging,
since it performs an implicit add prior to the actual commit.
But it also won’t include untracked files, and will commit all
tracked files with modifications (and will also remove from
the committed file versions all files that have been staged for
removal too). To commit all the modified files but one, the
user would have to list all of those files explicitly as argu-
ments to the commit command.

Why This Happens. Some Git enthusiasts make argu-
ments for the value of the staging concept, but for most users
it offers inessential functionality, and its presence compli-
cates the use of Git considerably.

5.3 Generality
I Just Want to Switch Branches! Say the user has two
branches b1 and b2, where b2 is several commits ahead of
b1 and there’s a committed file f2 in b2 that is not present
in b1. Working in branch b1, the user is unaware of that, and
creates a new file f1 with the same name as f2. Suppose
f1 is an untracked file, present in the working directory.
Usually, changes in the working directory are kept when
switching branches. As stated in the help message of the git
checkout command: “Local modifications to the files in the
working tree are kept, so that they can be committed to the
<branch>.” But in this case, since Git detects a conflict, the
user gets an error when trying to switch to b2.

An equivalent problem arises if f2 is present in both
branches, but branch b2 contains changes to f2 that are not
reflected in branch b1. Then if the user edits f2 in b1 and tries
to switch to branch b2, a conflict is reported and the switch
fails. To work around this problem, the user must either com-
mit (potentially saving to the repository unfinished work), or
use stashing. Either way, the user needs to execute an extra
command to achieve the desired goal, leading to a mismatch

between the user’s straightforward goal and the complex se-
quence of commands necessary to achieve it.

Why This Happens. Branches are intended to support in-
dependent lines of development. A line of development com-
prises both the working versions of files and committed ver-
sions. And yet, in Git’s conceptual model, only the commit-
ted versions are organized by branch; while there are poten-
tially multiple committed versions of a file (one per branch),
there can only be one working version. There is thus a lack
of generality, with the branching feature essentially available
only in one area and not another.

I Just Want to Stop Tracking a File! Suppose a user cre-
ates a database configuration file for an application, and
commits it. At a later time, the user might want to alter that
file in order to perform local testing. This new version of
the file should not be committed. How can this be achieved?
Of course, the user might make the set of files explicit on
every single commit (leaving out the database configuration
file), but this is laborious and error-prone. You might think
the file could be added to the ignore specification in the
.gitignore file, but this won’t work, since a file that has
already been committed cannot be ignored.

This simple task turns out to be surprisingly challeng-
ing. It involves using the rather strange command git

update-index to mark the file as “assumed unchanged,”
and since such files aren’t listed in the “Untracked files”
section of the status command’s output, the user needs to
remember to execute a different command, git ls-files

-v, to find out which files are marked “assumed unchanged.”

Why This Happens. The concepts of “assumed unchanged”
and “untracked” play fundamentally the same role: they
mark files that are not to be included in commits. And yet
there is no general concept that subsumes the two of them,
since Git distinguishes files according to whether they have
been previously committed; a file can only be untracked if
it is not also committed. Whether a file is committed is not
under the user’s control, since a file can be committed as a
result of a pull from another user’s repository. In short, there
is a violation here both of generality (since a more general
concept would subsume both cases), and propriety (since the
concept of “assumed unchanged file” could be eliminated).

6. Gitless
Gitless is free, open-source, and distributed under GPL. It
covers the most common Git use cases, including some
whose analysis is out of scope of this paper (such as converg-
ing divergent branches, and syncing with other repositories).
The tool can be downloaded from http://people.csail.

mit.edu/sperezde/gitless, which also provides links
to a user manual and the code repository.

6.1 An Overview of Gitless’s Conceptual Model
Fig. 2 shows the relevant parts of Gitless’s conceptual model.
The key differences between Git and Gitless are: (a) the
elimination of the concept of Assumed Unchanged File,
and the generalization of Untracked File to subsume it;
(b) the elimination of staged versions; (c) the elimination
of the concept of Stash, and stashed versions; (d) index-
ing of working versions by branch. Switching branches in
Gitless is equivalent to always creating a stash (more pre-
cisely, of executing git stash --all) before switching to
a different branch in Git, and then retrieving this stash when
the user switches back to the original branch. Thus, it is as if
there are multiple working directories (one for each branch),
or in other words, one can think of it as a file potentially hav-
ing several working versions accessible via a branch name b
(noted as working[b] in the diagram). This means that the
user can freely switch from branch to branch without having
to stash or commit unfinished changes. We believe this lives
up to the expectation of a branch being an independent line
of development.

6.2 Designations
File. The concept of a File in Gitless is equivalent to the
concept of a File in Git.

Tracked File. A Tracked File is a file whose changes Git-
less will automatically detect. Tracked files are automati-
cally considered for commit if they are modified.

Untracked File. Conversely, an Untracked File is a file
whose changes Gitless will not automatically detect.

Ignored File, Ignore Spec File, Pattern and Version. These
concepts are equivalent to the ones in Git.

Working. The working version of a file is the one stored in
the working directory of the user. Each branch has its own
set of working versions of files. Following a modification of
a file in the working directory, working corresponds to the
file’s new content.

Committed. This concept is equivalent to the one in Git.

Branch. A Branch is an identifier that maps files to work-
ing and committed versions.

6.3 Actions
• gl track. Executing gl track causes the files given as

input to become tracked. No change is made to working
or committed versions of files.

• gl untrack. Executing gl untrack causes the files
given as input to become untracked. No change is made
to working or committed versions of files.

• gl commit. In its default form (with no arguments
given), this command commits the working version of

all tracked files with modifications: for every tracked file
whose working version is different from its committed
version it will make the working version additionally
committed. The set of files to commit can be further cus-
tomized by either: (i) explicitly specifying a set of files; if
so, only these files will be committed; (ii) specifying a set
of tracked files to exclude via the -exc flag; or (iii) spec-
ifying a set of untracked files to include via the -inc flag.

• gl checkout. Unlike in Git (where git checkout be-
haves differently according to whether the argument is a
file or branch name), the checkout command in Gitless
only accepts files. Its effect is to make the working ver-
sion of each file listed equal to its committed version; the
committed version is not affected.

• gl branch. Executing the gl branch b command sets
the current branch of the repository to b, so that the work-
ing versions that appear in the working directory are
the ones associated with b. It previously creates b if it
doesn’t exist, additionally adding, for each file in the cur-
rent branch with a committed version, a new tuple (file,
version, new branch) to the committed and working re-
lationships.

• rm. The standard Unix remove command has the same
effect as in Git.

• mv. The standard Unix move command has the same
effect as in Git.

A more thorough description of these Gitless commands,
including those that are out of scope for this paper can be
found at the Gitless website.

6.4 Gitless versus Git
6.4.1 A More General Untracked Concept
Gitless eliminates the concept of an assumed unchanged file
by making the concept of an untracked file more general.
This addresses the rough edges described in Sec. 5.3 caused
by the violation of the generality (and propriety) criteria.

We believe there’s no reason to differentiate them. At
their core, they represent the same thing: a file the user
doesn’t want to be considered for committing. The distinc-
tion made by Git not only adds conceptual complexity but
also forces the user to learn separate commands – not only
for marking/unmarking an assumed unchanged file, but also
for listing files, since git status shows one category but
not the other.

6.4.2 A More General Branch Concept
In Gitless, the concept of branch is more general, and in-
cludes working versions of files as well. In Git, branching
supports two objectives, according to whether uncommitted

File Version Branch

* -working[b] ?

* -committed[b] ?

��BB

Tracked File Untracked
File

Ignored File Ignore Spec
File

*�matches + + -defined by * Pattern

��BB

Figure 2. Graphical representation of Gitless’s conceptual model.

changes are copied from the source branch to the destination
branch. Gitless favors the case in which the user wants to
keep the state of the destination branch independent of the
state of the current branch; uncommitted versions are not
copied to the new branch, but are also not lost (since they
are preserved as the working versions in the old branch). We
believe this to be a more common use case and that it lives
up to the expectation of a branch being an independent line
of development.

This addresses the rough edges described in Sec. 5.3 that
forces the user to either commit unfinished changes or stash
them before being able to switch branches.

6.4.3 No Staged Version
We have yet to be convinced that Git’s concept of staging
adds any benefits that can outweigh its complexity. Gitless
therefore eliminates the concept of a tracked file having a
staged version, and there is a single and direct path (in both
directions) between working and committed versions.

The elimination of the staged relation addresses the rough
edges in Git described in Sec. 5.2 caused by its violation of
the propriety criteria and also addresses those described in
Sec. 5.1 caused by its violation to the orthogonality criteria.

In our experience with Git, we did use staging to spec-
ify which files to commit. In this case, however, staging
is compensating for the rigidity of the commit command.
Gitless addresses this issue by providing a more flexible
commit command (with -inc and -exc flags, and allowing
untracked files to be given as input). Another justification of
the staging area is that it enables segments of files, rather
than entire files, to be committed. Despite the fact that we
believe this to be a less common use case, we might address
this by extending the gl commit command (for example,
using a -p flag in gl commit similar to Git’s commit -p),
without requiring staging.

Admittedly, there are some use cases for which a staging
area comes in handy. For example, when doing a commit that
includes several files, we have found ourselves executing
git diff f ; if the file f looks suitable for committing, we
then execute git add f , repeating this process for each file

f that has been modified, until all files have been “cleared”
for commit, and then finally issuing a git commit. In this
scenario, the staging area acts as a record of which files were
already cleared for commit and which ones are pending.
Gitless doesn’t support this; you could untrack all the files
and make them tracked one at a time, but Gitless would not
maintain for you a record of the entire set of files that should
eventually be tracked.

6.4.4 No Stashed Version or Stash
The main purpose of stashing in Git seems to be enabling a
switch between branches when a conflict occurs. Since Git-
less’s concept of a branch also includes the working version
of files these conflicts don’t occur anymore, so the need for
stashes and stashed versions is eliminated.

6.5 Evaluation
The first experimental version of Gitless was released a few
weeks ago to students in our research group, who have been
using it in their daily work and provided us with some initial
feedback.

There was general agreement that the assumed unchanged
part of Git is messy, but the improvements in that area were,
for the most part, unnoticed. Untracking a file that exists in
the repository seems to be a fairly unusual use case.

The elimination of the staging area was enthusiastically
received as a major reduction in complexity, though one
student missed being able to stage files and then only diff
those staged files prior to committing (using git diff

--staged). We believe this to be a limitation not so much
in the conceptual model of Gitless but rather in the detailed
functionality of the gl diff command, which appears to be
insufficiently versatile.

6.6 Other Points in the Concept Design Space
A file in Gitless, as in Git, is essentially a file path. A richer
concept would enable an identity distinct from the file’s path,
so that changes to a file’s name or location could be treated
as changes to properties of a file.

Treating files and directories as specializations of a com-
mon file system object (as in Unix) would lead to a more
consistent and flexible tool. (Not surprisingly, in the 2011
Git User’s Survey [3], for the question “Which of the follow-
ing features would you like to see implemented in Git?”1011,
the choice “support for tracking empty directories” got se-
lected by 2045 respondents12 becoming the second most de-
sired feature of all.) But this raises tricky questions, in partic-
ular what it would mean to track a directory. Would it mean
that all files under it are tracked by default? Could an un-
tracked directory contain tracked files?

Tracking might be by name rather than file identity. In
the current design, ignored files are specified by name; this
makes it possible to classify a set of files as ignored before
they even exist. The same strategy might be used for tracked
files, with the user providing not the name of a specific file
but rather a specification (e.g., as a regular expression over
file paths).This might unify the concepts of untracked and
ignored files. We explored this idea, but backed off when we
realized that the semantics of a sequence of track and untrack
commands on overlapping but not identical specifications
becomes quite intricate.

An alternative to explicit tracking would be to have
all files that are not matched by the corresponding ignore
specs tracked automatically. All files would be considered
for commit unless they are ignored. The commit command
would need to be more flexible though, since it would have
to compensate for the lack of gl untrack/gl track.

7. Related Work
Usability and Going Deeper. The idea that design for us-
ability should go beyond the user interface is widely ac-
cepted. As Bruce Tognazzini puts it, in his popular First
Principles of Interaction Design [41]: “The great efficiency
breakthroughs in software are to be found in the fundamen-
tal architecture of the system, not in the surface design of the
interface.” For a long time, designers have felt slighted by
the insinuation that they are decorators whose job is just to
make a product pretty; a design should be developed “from
the inside out,” according to Herbert Dreyfuss, in his clas-
sic industrial design memoir Designing for People [18], in
which he gives many examples of assignments he rejected
because the client expected him to work only on the surface
appearance.

Usability and Conceptual Models. Most usability experts
seem to recognize the importance of a product’s conceptual
model, and the problems that arise when the user’s mental
model, and the correct conceptual model of the product di-
verge. In his influential book [37], Donald Norman mentions
issues arising from conceptual models many times, and he

10 Question number 17.
11 Question wasn’t asked in the 2012 survey.
12 33% of the total.

suggests that the designer pay attention to crafting a “sys-
tem image” that reflects the conceptual model of the design.
But like many writers on usability, he has little to say about
the construction and analysis of the conceptual model itself,
except that it should be “functional, learnable and usable.”

Conceptual Integrity. Fred Brooks put the term “concep-
tual integrity” on everybody’s lips when he described it in
The Mythical Man Month [13] as the “most important con-
sideration in system design.” Unfortunately, that book had
little to say about what the term actually meant. The focus
in The Mythical Man Month is on software process, and on
Brooks’s contention that conceptual integrity requires a sin-
gle designer – put most bluntly in his recent book The De-
sign of Design [12] in a section entitled “Conceptual design,
especially, must not be collaborative.”

It’s not clear what “conceptual design” means in this
context, but he seems to use it the way traditional designers
do to refer to the initial and most high-level design steps. The
underlying assumption seems to be that great designs emerge
from single minds; Dick Gabriel has taken Brooks to task on
this, contending that he misconstrues his own example of the
history of development of the dome of the Florence cathedral
[20].

Brooks never really defines the term “conceptual in-
tegrity.” The closest he comes is the listing of its three key
principles, which first appeared in his coauthored book on
computer architecture [15], and which are recapitulated in
The Design of Design [12]. The principles are: orthogonal-
ity – that individual features should be independent of one
another; propriety – that a product should have only the func-
tions essential to its purpose and no more; and generality –
that a single function should be usable in many ways. Propri-
ety might also be called unity of purpose, most memorably
articulated by a sketch of that name by the British come-
dians Mitchell and Webb, in which they trade examples of
their frustration with products that include inessential func-
tions. Complaining about the inclusion of a heater in his car,
one proclaims: “A car is a means of transport, not a sitting
room on wheels!”

A different definition of the term, found in a wiki post by
Bill Griswold [24], suggests that conceptual integrity means
that wherever you look in a system, you see evidence of
the same overall design (or perhaps, of the same designer
at work). This might better be called stylistic uniformity;
and indeed, Brooks says that conceptual integrity is called
“coherence, sometimes consistency, sometimes uniformity
of style” in [12]. This seems a better match to Brooks’s view
that collaboration runs counter to conceptual integrity, since
harmonizing the style of multiple designers is not easy. But it
contradicts his definition in terms of the three key principles,
which are surely orthogonal to stylistic uniformity. And,
surprisingly, in a later chapter of The Design of Design
[12], Brooks himself later identifies style, quoting Webster’s

dictionary, as being more about “form or expression” than
about “substance.”

In his widely read “The Rise of the Worse is Better” [21],
Dick Gabriel presents a dichotomy between two styles of
software development. One, typified by LISP, values “doing
the right thing,” and never sacrifices simplicity or correct-
ness for any other quality. The other typified by C and Unix,
values growing a system piecemeal, worrying less about get-
ting it right, and emphasizing simplicity in the implementa-
tion over simplicity in the user interface. Gabriel himself re-
mains undecided on which approach is better [22], and has
written subsequent articles on both sides. From our perspec-
tive, we see “The Rise of the Worse is Better” as a warning
against the risk of attempting perfection at the expense of
the many pragmatic demands of a system development. But
at the same time, our critique of Git arises from the convic-
tion that worse really is worse, and that Git’s design amply
demonstrates this.

Conceptual Modeling. An entire field is devoted to “con-
ceptual modeling” (see, for example, the textbook by Olivé
[38]); it grew out of the need to find ways to describe the
structure of a system’s data without making any commit-
ments to how it is represented, originating with the entity
relationship diagram [17], continuing with research on more
expressive “semantic models” [27], and then merging with
the development of notations for more general software de-
sign, such as the object model of OMT [39], which became
the class diagram of UML [11]. Arguably, the field of formal
specification had the same motivation in mind – the Z lan-
guage [40] in particular grew out of Jean Raymond Abrial’s
work on databases – even though emphasis was sometimes
placed more on the transitions between states than on the
structure of the states themselves. The Alloy modeling lan-
guage [29] placed more emphasis on the description of the
data structure than its predecessors, and was designed to
make it easier to express conceptual data models textually
(principally by providing a very expressive declaration syn-
tax to support subtyping). Also, Alloy was designed in the
context of an advocacy of “lightweight formal methods”
[30], which emphasized capturing the essence of a system
over detailing all of its behaviors.

Bjørner’s work (see, e.g., [10]) on domain models of ap-
plication areas (such as railways and oil pipelines) can be
seen as a form of conceptual modeling. The aim is to artic-
ulate the key concepts in the problem domain independently
of the specification of any particular system to be built in
that domain. Conceptual model patterns play a similar role,
as found, for example, in Martin Fowler’s book Analysis Pat-
terns [19] and in David Hay’s Data Model Patterns: Conven-
tions of Thought [26].

Conceptual Design. Despite all this work on representing
concepts, much less attention has been paid to the question
of where concepts come from, whether discovered in the
problem domain or invented by the designer. In early object-

oriented methods, it was commonly argued that the objects
comprising the system emerged almost trivially from the
problem domain. Thus Bertrand Meyer in Object-Oriented
Software Construction [36]: “This is why object-oriented
designers usually do not spend their time in academic dis-
cussions of methods to find the objects: in the physical or
abstract reality being modeled, the objects are just there for
the picking!” Similarly, in John Guttag and Barbara Liskov’s
Abstraction and Specification in Program Development [33],
their method entails picking “abstractions” from the require-
ments specification, which are then elaborated using “helper
abstractions” into the program structure; where the original
abstractions come from is not explained. (A later edition of
the book [34], incidentally, introduced conceptual models
for requirements.)

8. Future Work
In the near future, we plan to extend our analysis to other
features of Git that were left out of scope, such as the differ-
ent ways of converging changes (merging, rebasing, cherry-
picking), submodules and synchronizing with other reposito-
ries. We also plan to extend our study to other version control
systems. We hope to build a small but diverse community of
Gitless users that will serve as experimental ground for our
redesign efforts.

Over the long term, we have the goal of building a rig-
orous foundation for concept design. This will include de-
veloping notations for capturing key conceptual issues, and
extending and refining the criteria outlined in this paper, and
applying them in more diverse case studies. We intend to
build a catalog of conceptual idioms that appear repeatedly
in different settings, and to note cases in which designs stray
needlessly from conventional idioms. If we’re lucky, we
may even make some progress in the challenge that seems
to have eluded the software engineering community for so
many years: figuring out what conceptual integrity means,
and finding a way to achieve it.

Acknowledgments
Thank you to our anonymous reviewers and to our shepherd,
Dick Gabriel, whose insightful critique and guidance greatly
improved this paper. Thanks also to Eunsuk Kang, Aleksan-
dar Milicevic and Joe Near for being our first Gitless guinea
pigs. This research is part of a collaboration between MIT
and SUTD (the Singapore University of Technology and De-
sign), and is funded by a grant from SUTD’s International
Design Center.

References
[1] EasyGit. URL http://people.gnome.org/~newren/eg.

[2] Projects That Use Git for Their Source Code Manage-
ment. URL http://git.wiki.kernel.org/index.php/

GitProjects.

[3] Git User’s Survey 2011. URL http://git.wiki.kernel.

org/index.php/GitSurvey2011.

[4] Git User’s Survey 2012. URL http://git.wiki.kernel.

org/index.php/GitSurvey2012.

[5] Facebook’s GitHub Page. URL http://github.com/

facebook.

[6] Google’s GitHub Page. URL http://github.com/google.

[7] Twitter’s GitHub Page. URL http://github.com/

twitter.

[8] Mercurial. URL http://mercurial.selenic.com.

[9] J.-R. Abrial. The B-book: Assigning Programs to Meanings.
Cambridge University Press, New York, NY, USA, 1996.
ISBN 0-521-49619-5.

[10] D. Bjørner. Domain engineering: A software engineer-
ing discipline in need of research. In SOFSEM 2000:
Theory and Practice of Informatics, volume 1963 of Lec-
ture Notes in Computer Science, pages 1–17. Springer
Berlin Heidelberg, 2000. ISBN 978-3-540-41348-6. doi:
10.1007/3-540-44411-4 1. URL http://dx.doi.org/10.

1007/3-540-44411-4_1.

[11] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1999. ISBN
0-201-57168-4.

[12] F. P. Brooks. The Design of Design: Essays from a Computer
Scientist. Addison-Wesley Professional, 2010. ISBN 978-0-
201-36298-5.

[13] F. P. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley Reading, 1975. ISBN 978-0-
201-00650-6.

[14] F. P. Brooks. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley Professional, 1995. ISBN
978-0-201-83595-3.

[15] F. P. Brooks and G. A. Blaauw. Computer Architecture -
Concepts and Evolution. Addison-Wesley, 1997. ISBN 978-
0-201-10557-5.

[16] S. Chacon. Pro Git. Apress, 2009. ISBN 978-1-4302-1833-3.
URL http://git-scm.com/book.

[17] P. P.-S. Chen. The entity-relationship model–toward a unified
view of data. ACM Trans. Database Syst., 1(1):9–36, Mar.
1976. ISSN 0362-5915. doi: 10.1145/320434.320440. URL
http://doi.acm.org/10.1145/320434.320440.

[18] H. Dreyfuss. Designing for People. The Classic of Industrial
Design. Allworth Press, New York, NY, USA, 2003. ISBN
978-1-58115-312-5.

[19] M. Fowler. Analysis Patterns: Reusable Object Models.
Addison-Wesley Professional, 1996. ISBN 978-0-201-89542-
1.

[20] R. P. Gabriel. Designed as designer. In Proceedings of
the 23rd ACM SIGPLAN conference on Object-oriented
programming systems languages and applications, OOPSLA
’08, pages 617–632, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-215-3. doi: 10.1145/1449764.1449813. URL
http://doi.acm.org/10.1145/1449764.1449813.

[21] R. P. Gabriel. Rise of worse is better. URL http:

//www.dreamsongs.com/RiseOfWorseIsBetter.html.

[22] R. P. Gabriel. Worse is better. URL http://www.

dreamsongs.com/WorseIsBetter.html.

[23] S. Garfinkel, D. Weise, and S. Strassmann. The UNIX
Hater’s Handbook: The Best of UNIX-Haters On-line Mailing
Reveals Why UNIX Must Die! IDG Books Worldwide,
Inc., June 1994. ISBN 978-1-56884-203-5. URL http:

//web.mit.edu/~simsong/www/ugh.pdf.

[24] W. Griswold. Conceptual integrity, December 1995.
URL http://cseweb.ucsd.edu/users/wgg/CSE131B/

Design/node6.html.

[25] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, June 1987.
ISSN 0167-6423. doi: 10.1016/0167-6423(87)90035-9. URL
http://dx.doi.org/10.1016/0167-6423(87)90035-9.

[26] D. Hay. Data Model Patterns: Conventions of Thought. Dorset
House, New York, NY, USA, 1996. ISBN 978-0-932633-74-
3.

[27] R. Hull and R. King. Semantic database modeling: Survey,
applications, and research issues. ACM Comput. Surv., 19(3):
201–260, Sept. 1987. ISSN 0360-0300. doi: 10.1145/45072.
45073. URL http://doi.acm.org/10.1145/45072.

45073.

[28] D. Jackson. Conceptual design of software: A research
agenda. Technical Report MIT-CSAIL-TR-2013-020, MIT,
2013. URL http://hdl.handle.net/1721.1/79826.

[29] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. The MIT Press, Cambridge, MA, USA, 2006.
ISBN 0-262-10114-9.

[30] D. Jackson and J. Wing. Lightweight formal methods. IEEE
Computer, 29(4):21–22, April 1996.

[31] M. Jackson. Software Requirements & Specifications: A
Lexicon of Practice, Principles and Prejudices. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
1995. ISBN 0-201-87712-0.

[32] C. B. Jones. Systematic Software Development Using VDM.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, second
edition, 1990. ISBN 0-13-880733-7.

[33] B. Liskov and J. Guttag. Abstraction and Specification in
Program Development. The MIT Press, Cambridge, MA,
USA, 1986. ISBN 0-262-12112-3.

[34] B. Liskov and J. Guttag. Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley Professional, 2000. ISBN 978-0-201-65768-
5.

[35] J. Loeliger and M. McCullough. Version Control with Git:
Powerful Tools and Techniques for Collaborative Software
Development. O’Reilly Media, second edition, 2012. ISBN
978-1-4493-1638-9.

[36] B. Meyer. Object-Oriented Software Construction. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, second edition,
1997. ISBN 0-13-629155-4.

[37] D. Norman. The Design of Everyday Things. Basic Books,
New York, NY, USA, 2002. ISBN 978-0-465-06710-7.

[38] A. Olivé. Conceptual Modeling of Information Systems.
Springer, 2007. ISBN 978-3-540-39390-0.

[39] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.
ISBN 0-13-629841-9.

[40] J. M. Spivey. The Z notation: A Reference Manual. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1989. ISBN 0-13-
983768-X.

[41] B. Tognazzini. First principles of interaction design. URL
http://www.asktog.com/basics/firstPrinciples.

html.

