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ABSTRACT

A method has been developed and demonstrated for the direct measurement

of aerodynamic forcing and aerodynamic damping of a transonic compressor.

The method is based on the inverse solution of the structural dynamic equa-

tions of motion of the blade disk system in order to determine the forces

acting on the system. The disturbing and damping forces acting on a given

blade are determined if the equations of motion are expressed in individual

blade coordinates. If the structural dynamic equations are transformed to

multiblade coordinates, the damping can be measured for blade-disk modes,

and related to a reduced frequency and interblade phase angle. To measure

the aerodynamic damping in this way, the free response to a known excitation

is studied.

This method of force determination was demonstrated using a specially

instrumented version of the MIT Transonic Compressor run in the MIT Blow-

down Compressor Test Facility. Unique on-rotor instrumentation included

piezoelectric displacement transducers to monitor the displacement of each

blade, three accelerometers to measure in plane motion of the disk and a

leading edge mounted total pressure transducer. Resonance tests performed

prior to installation of the rotor in the tunnel indicate that the blade-

disk structural interaction is dominated by the rigid body inertial coupling

of the disk. An analytical model was developed for this inertial coupling.

The model was verified by extensive testing of the tuned and severely mis-

tuned rotor.

No regions of aeroelastic instability were found while testing the

rotor in the Blowdown Facility, but three forms of orced vibration were
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encountered. When operated in rotating stall, the blades were strongly

excited at the fundamental frequency of stall cell excitation and those

higher harmonics in proximity to blade resonances. At the fundamental

frequency, the blade bending loading decreased as the blade entered the

stall cell and increased as smooth flow was reestablished over the blade.

In runs near the operating point, the rotor was aerodynamically ex-

cited by a controlled two-per-revolution fixed upstream disturbance. The

disturbance was sharply terminated midway through the test and the ring

down of the rotor monitored. Analysis of the data in terms of multiblade

modes led to a direct measurement of aerodynamic damping for several

interblade phase angles.

During all runs, the third circumferential harmonic of the blade

displacement was strongly excited by wakes shed from three evenly spaced

upstream struts. The addition of a two per revolution fixed upstream

disturbance caused a marked decrease in the third harmonic response,

suggesting a nonlinear mechanism either in the upstream wake production or

in the aerodynamic response of the rotor. It may therefore be possible to

alleviate some forced vibrations by the deliberate introduction of upstream

disturbances.
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1. INTRODUCTION

It is of primary importance in the study of turbomachine aeroelasti-

city to develop techniques for the measurement of aerodynamic damping and

eventually to gain an understanding of the physical processes which control

that damping. Taken in its broadest sense, aerodynamic damping together

with structural damping plays a role in both forced vibration and flutter,

by limiting the amplitude of response and controlling the decay rates in

the former and in the determination of the stability boundaries for the

latter. It is the purpose of this investigation to develop techniques for

the measurement of aerodynamic damping, and to make direct measurements of

damping in a transonic rotor operating at a known point on its performance

map.

The importance of aerodynamic damping can best be seen by examining a

typical performance map with the aeroelastic stability boundaries super-

imposed (Figure 1-1). It can be seen that flutter boundaries can place

limits on all sides of the performance map of the modern, lightweight tran-

sonic fan or compressor. Adamczyk [1] identifies five different stability

boundaries, each of which is associated with a different unsteady fluid

mechanical process [2,3]. Within the boundaries, the stage is aeroelasti-

cally stable, but is susceptible to forced vibration due to upstream and

downstream disturbances, as well as unsteady effects such as rotating stall

and surge. While the stability and forced vibration problems are usually

formulated differently, Dugundji [4] has shown that given the aerodynamic

damping coefficients in a proper form, the two problems can be analyzed in

a unified systematic manner. Aerodynamic damping coefficients used in such

an analysis might be based on either analytic or experimental results.
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Since the early 1960's, a number of analytical models of damping in

cascades have been developed. These analyses have in common that they

model the 3-dimensional annular geometry of an axial flow turbomachine as

a 2-dimensional infinite cascade, the blades of which undergo uniform sinu-

soidal motion with a fixed interblade phase angle. The force and moment

coefficients for a given blade are then calculated. The earliest work

focused primarily on the low-backpressure supersonic flutter of Region III

(Figure 1-1), beginning with Whitehead's analysis of incompressible flutter

of flat plate airfoils in bending [5] and in torsion [6]. This was

extended to the compressible case by Smith [7] and to supersonic rela-

tive flow by Verdon [8]. Recent work by Whitehead [9] has extended the

compressible flow case to cascades of finite thickness and high deflections

using 2-dimensional computational fluid dynamics techniques [9]. Comparison

of these 2-dimensional analytic models with experimental data by Snyder

[10], shows that although these models greatly simplify the flow con-

ditions, good agreement is found between experimental and predicted flutter

boundaries for cascades.

The other four flutter regions have received less extensive analysis.

A model which allows for finite shock strength has been developed by

Goldstein [11] to examine the high-backpressure supersonic flutter of

Region IV (Figure 1-1). Adamczyk has developed a low reduced frequency,

small interblade phase angle model which treats the supersonic stall

flutter Region V with an actuator disk model [1]. Finally, Ginzburg has

proposed a low reduced frequency model [12] which can be used to treat the

subsonic/transonic flutter of Region I, and the choke flutter of Region II.

In general, these theories give qualitative agreement with observed
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stability boundaries, but are not sufficiently refined to predict a priori

the boundary location.

Experimental investigations of turbomachine aerodynamic damping fall

into one of two distinctly different categories, cascade experiments and

full scale rig tests. Cascade experiments are conducted in essentially 2-

dimensional linear (finite) or annular (infinite) cascades. The blades are

externally driven by mechanical or electromagnetic drivers with a uniform

oscillatory motion and fixed interblade phase angle. Blades can be driven

in rotational mode, representing torsional flutter [13] or in a transla-

tional mode, as in bending flutter [14]. Measurements of the overall aero-

dynamic damping as well as detailed measurements of the unsteady pressure

distribution over the blade can be made over a wide range of Mach number

and reduced frequency.

Full scale engine tests are performed by first heavily instrumenting a

specially prepared stage or a fully operational engine and then running the

device in the vicinity of one of its stability boundaries. Instrumentation

usually consists of a number of low frequency response pressure taps to

determine the overall operating point and flow conditions, and a large

number of strain gauges mounted on the rotating assembly to monitor blade

strain and displacement levels [15]. In the last few years, full scale

rigs have also been run with miniature high frequency response pressure

transducers mounted on the blade of a rotor, so that unsteady on-blade

pressure measurements could be made in flutter. The principle value of

these tests is to identify the location of the stability boundaries of real

stages and the influence changes in operating parameters such as inlet tem-

perature and pressure, as well as changes in blade design, have on these
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locations. A further objective is to identify the modes of aeroelastic

instability [16].

Each of the two experimental procedures, cascade and full rig tests,

have their advantages and shortcomings. Cascade experiments, performed

under controlled conditions, lend themselves to careful study of the

influence that parameters such as reduced frequency and interblade phase

angle have on aerodynamic damping. Detailed measurement of energy input

and blade unsteady pressure distribution made in 2-dimensional cascades can

be directly correlated with existing 2-dimensional theory. However, the

principal shortcoming of cascades is that they fail to model the essential

3-dimensional nature of the flow in axial flow turbomachines, including

such potentially important effects as strong radial variation in shock

strength and boundary layer interaction, and distribution of total pressure

rise and flow quantities due to work done on the fluid [17].

Full scale rig tests model this complex 3-dimensional nature of the

flow, but do so under conditions which make the extraction of detailed

quantitative information about aerodynamic damping extremely difficult.

Since the blade-disk-shroud structural system is complex and highly

coupled, it is often impossible to isolate the response of a single struc-

tural mode so as to gain parameteric information of damping in terms of

reduced frequency and interblade phase angle. The results are confined to

location of the boundary of neutral stability, rather than quantitative

measurements of damping on either side of the boundary. Although there are

empirical and semi-empirical procedures for the correlation of such 3-

dimensional flutter data [18], there is really no truly 3-dimensional
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theory to predict unsteady aerodynamic damping for a rotor operating at

any point of its performance map.

The distinction between the two forms of experiments can be summarized

in the following way. Cascades provide a controlled environment to gain

detailed parameteric data but in simplified flow conditions. Rig tests

operate under real flow conditions but an uncontrolled aeroelastic en-

vironment.

The purposes of this investigation are to help bridge this gap and to

develop techniques by which quantitative parametric aeroelastic damping

data can be extracted from a device operating in a real working tur-

bomachine environment. The methods developed are general enough so that

they can be applied to the investigation of any of the stability boun-

daries. They are also applicable to the interior of the performance map

where the stage is stable, but encounters forced vibration. Included in

the present work are both a description of a new technique for determining

aerodynamic damping and the application of that technique to the MIT Rotor

[19]. The result is one of the first direct measurements of damping in a

transonic compressor.

The rotor chosen for the current experiments was the MIT Transonic

Rotor, typical of current stages with a hub tip ratio of 0.5, tip Mach

number of 1.2, pressure ratio of 1.6, and conventional, but somewhat stiff,

blades. Since the rotor had never encountered flutter in testing, a scan

of the performance map was made to locate any regions of aeroelastic insta-

bility. Although not all encompassing, 19 different runs were made, which

probed the stall, high speed and choke boundaries of the map (Figure 1-2).

For the current MIT Transonic Rotor design and within the limits of the MIT
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Blowdown Test Facility, [20], no regions of instability were found.

The current investigation is therefore confined of necessity to those

areas where the rotor is aeroelastically stable. Several cases of forced

vibration and resulting measurements of damping will be shown in later

chapters, but first the techniques and necessary background will be given,

beginning with a description of the instrumented rotor, the experimental

facility and the procedure in Chapter 2. In Chapter 3, the technique for

the extraction of aerodynamic forcing and damping is developed. This tech-

nique requires a characterization of the structural dynamics of the blade

disk system and a knowledge of the response while rotating in vacuum, which

are reported in Chapter 4. An example of a direct measurement of damping

obtained by subjecting the rotor to time varying upstream disturbances is

given in Chapter 5. Other cases of forced vibration, including forced

vibration due to rotating stall are discussed in Chapter 6, followed by a

summary and conclusion in Chapter 7.
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2. APPARATUS AND INSTRUMENTATION

2.1 The MIT Blowdown Facility and Compressor

2.1.1 The Blowdown Facility

The MIT Blowdown Compressor Facility, in operation for nearly ten

years, has been used to gather extensive data on the aerodynamic perfor-

mance of the MIT Transonic Compressor [19], as well as other state of the

art compressor stages [21]. The facility itself consists of three main

components, a supply tank, test section, and dump tank (Figure 2-1). Prior

to the test, the supply tank is filled to an initial pressure of 464 mm

with a Freon 12-Argon mixture having a speed of sound 74% that of air, and

a ratio of specific heats of 1.4. Downstream of an aluminum diaphragm and

still in the vacuum, the rotor is driven to speed by a small electric

motor. The test is begun by cutting power to the motor and explosively

cutting the diaphragm. After a start-up transient of approximately 60

msec, the flow becomes quasi-steady in the test section with the supply

tank essentially behaving as a stagnation plenum. The mass flow is set by

an orifice downstream of the stage which remains choked for about 150 msec.

During the test, the rotor slows down, doing work on the flow. By proper

matching of the rotor inertia and initial supply tank pressure, the tangen-

tial Mach number of the rotor can be kept constant. The torque can be

determined by monitoring the rotor deceleration. During this period of

constant Mach number flow, the steady aerodynamic performance of the stage

can be determined from a number of wall static pressure transducers, and a

five-way pressure probe which traverses the flow during the test [22].

For a complete discussion of the dynamics of the Blowdown Facility, see
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Reference [20]. Reference [21] describes in detail the data reduction

technique used to determine overall stage performance.

2.1.2 MIT Rotor

The Blowdown Facility has been adapted for use in aeroelastic studies

by structural, but not aerodynamic, modification of the MIT Transonic

Compressor Rotor, the geometry and performance of which are extensively

documented in [19]. The 23 blade, 23.25 inch diameter rotor operates at a

tip Mach number of 1.2, an average pressure ratio of 1.66. The mass flow

corrected to air at standard temperature and pressure is 84.7 lbm/sec (38.4

kg/sec) at the design point. The rotor is cantilevered forward of a center

body on which a fixed 48 blade stator is mounted, and which houses the

drive motor and a 12 channel slip-ring assembly. In aeroelastic studies,

these slip rings are supplemented by a 24 channel slip ring assembly housed

in a centerbody supported by three struts ahead of the rotor (Figure 2-2).

At design, the overall stage pressure ratio is 1.6.

2.1.3 Secondary Flow Injector

In certain runs, a time varying upstream disturbance was created in

front of the rotor. This disturbance was created by the interaction of the

primary flow with a series of small jets injected normal to the surface of

streamlined struts five inches upstream of the rotor face. The injection

takes place through a 5/8 inch tube which extends 3 inches into the tunnel

from the outer wall and is faired by an NACA 0012 airfoil. Two such

assemblies were located 180* apart, at the 0* and 180* instrument locations

(right and left hand sides looking downstream). Figure 2-3 shows the

18



injector protruding into the tunnel downstream of the boundary layer bleed

and upstream of the rotor. A close-up showing the fairing and proximity of

the injector to the rotor is shown in Figure 2-4.

The injector operates in the following manner. At 50 msec after the

diaphragm bursts, just as quasi-steady flow is established in the facility,

the main injector solenoid valve is opened, venting Argon from a 110 in3

33
(1.8 x 10 m ) supply bottle at 150 psi into the inner diameter of the

injector assembly. The assembly consists of two concentric tubes, an outer

tube to which the fairing is attached and an inner tube which is free to

rotate within the outer (Figure 2-5). The assembly of fairing, outer and

inner tube has drilled through its walls two rows of twelve 1/16" diameter

holes (1/8" center to center). The rows are on opposite sides of the

injector tube, one facing in the clockwise, and the other in the coun-

terclockwise circumferential direction (Figure 2-5). The high pressure

argon passes through these holes and is injected normal to the mean flow.

In this way, the symmetric disturbance creates a region of velocity defect

behind the injector, but imparts no mean swirl in the flow. The radial

extent of the defect is about 1 1/2 inches, and the circumferential extent

is determined in part by the total pressure ratio of the mean flow to

injected flow. With the given geometry and supply pressure, each injector

adds only 0.27% to the mass flow of the tunnel.

The disturbance is shut off at 100 msec after the start of the test by

pneumatically operating a rotary piston. This piston rotates the inner

tube of the assembly, closing off the two rows of vent holes in less than 1

msec. In this way, a very well defined and sharp termination of the
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upstream disturbance is achieved, which will be important in the later

analysis.

The creation of upstream disturbances by injection of a secondary flow

is not a new concept. In fact, several of the major laboratories have

sophisticated devices for creation of arbitrary distortion patterns [23].

The emphasis in those facilities is on degradation of engine performance

due to distortion. The patterns created are therefore steady, requiring

time on the order of seconds to change. The unique features of the injec-

tor described are its fast shut off characteristics and the ability to

tailor the circumferential extent of the disturbance simply by changing

injector supply pressure.

2.2 Instrumentation and Data Acquisition

2.2.1 Rotor Instrumentation

In addition to the usual tunnel instrumentation used at the blowdown

facility, a unique set of on-rotor instrumentation has been developed for

aeroelastic experimentation. This includes piezoelectric crystals and

strain gauges to monitor blade motion, accelerometers to monitor disk

motion, and a blade-mounted total pressure probe.

Several years ago, a second article of the MIT Transonic Compressor

Rotor was built, which incorporated a piezoelectric crystal into the root

of each blade [24]. The details of the root attachment (Figure 2-6) show

that the blade is attached well below the fairing line of the disk.

The piezoelectric crystal assemblies (consisting of a soft rubber spring,

G-10 glass/epoxy disk, brass electrical contact and PZT5H crystal) are held

in place between the disk and blade. In this configuration, the crystals
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can be used either to drive the blades with independent control of driving

amplitude and phase, or as displacement transducers. As transducers, the

crystals give a signal, linear to a very high amplitude, which can be

calibrated against tip displacement for each of the natural modes of the

blade. For the first flexural mode, the crystal yield a gain of 2400 V/in

or 24 Volts across the rings for a nominal 0.01 inch tip deflection.

Signals from the 23 crystals plus ground were carried across the forward

set of 24 slip rings.

It should be emphasized that for frequencies above its RC rolloff point

(about 30 Hz), the piezoelectric crystal (PZT) is functionally identical to

a strain gauge. That is, it measures the blade displacement at one point,

and for any blade mode this can be related to the displacement at all

points on the blade. To confirm this functional similarity, four blades

were also strain gauged with semiconductor gauges in a position to give

primary sensitivity to the blade's first bending mode (Figure 2-7). When

the PZT and strain gauge signals for the same blade were properly filtered

and scaled in terms of tip displacement, they showed exactly the same time

history of blade motion. The advantages of PZT's in this application are

that they are rugged and produce a signal of 500 to 1000 times greater

amplitude than that of a semiconductor strain gauge. Since they are active

transducers, N blades instrumented with PZT's require N+l slip rings, while

strain gauges would require 2N+2 rings. Their principal and perhaps

overwhelming disadvantage is that they must be incorporated into the blade

disk system at its design, and cannot be retrofitted to a rotor as can

strain gauges.

Of interest to the understanding of the response of the blade disk

21



system is the in-plane motion of the disk. To monitor this, the disk was

instrumented with three Bolt Beranek and Newman Model 501 miniature

accelerometers, with a nominal sensitivity of 10 mv/g. The accelerometers

were mounted 120* apart with their axis of principal sensitivity aligned

in the circumferential direction (Figure 2-7). From these three accelero-

meter signals, one can extract the rotational and two translational com-

ponents of in plane disk acceleration.

While most piezoelectric accelerometers are charge coupled devices, the

BBN accelerometers produce a voltage output by using an FET amplifier in-

side the device. The cost of this choice, made to reduce slip ring noise,

was that a power supply line for the FET's had to be run to the rotor, and

a power-signal conditioning circuit for each accelerometer had to be

included on the rotor. These three circuits, as well as all other on-rotor

connections were potted in an epoxy module and mounted inside the rim of

the disk. The accelerometers worked perfectly when the rotor was run at

full speed in vacuum. However, during the actual data test runs, one

signal consistently failed and the other two were intermittent. After the

test, the accelerometers were always found to be working perfectly again.

This pattern of failure and recovery is probably due to thermal or accel-

eration spikes saturating the signal conditioning circuit. This behavior

could be eliminated by either thermally insulating the accelerometers or by

soft mounting them to the disk so that accelerations above several thousand

Hertz would be attenuated. In the present investigation, neither of these

remedies were attempted.

The final piece of on-rotor instrumentation was a total pressure probe,

aligned with the relative flow and located on the leading edge of blade 8
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at r/rT = 0.73, just on the nominal sonic radius (Figure 2.7). The trans-

ducer used was a third generation Kulite high frequency response silicion

diaphragm type CQ-080-25 with type B screen, and a diameter of 0.064".

Mounted inside a supporting stainless steel tube, the probe was located as

far out radially as the structure of the blade would allow. The active

diaphragm was 0.2" in front of the blade leading edge. Signals from the

pressure probe, as well as accelerometers and strain gauges were carried on

the 12 rear slip rings.

The intent of placing a total pressure probe on the leading edge was to

investigate circumferential nonuniformities in the flow. The transducer

performed flawlessly, capturing low and high frequency content of the

pressure field with no apparent thermal drift. The pressure field

measured, even in the absence of any upstream distortion, was more complex

than expected. It was rich in frequency content in the range of several

hundred to 2000 Hz, and not easily identifiable with any blade resonance or

acoustic mode of the Blowdown Facility. The complete analysis of this

acoustic signal, and comparison with pressure measurements made by fixed

transducers will be the subject of further investigation.

Before moving on to the fixed instrumentation, it should be noted that

in 11 runs to full speed made in the most recent test, aside from the

accelerometer problems there were no failures of instrumentation in the

rotating system, despite vigorous vibration and centrifugal loading of up

to 20,000 g's at the pressure probe location.

2.2.2 Tunnel Instrumentation

Fixed instrumentation, pressure sensors and tachometers, used to

determine the overall operating conditions of the stage were essentially
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identical to those used in previous experiments in the blowdown facility,

and are thoroughly documented in [19] and [21]. Beginning at the extreme

upstream end of the facility, the pressure in the supply tank is measured

by two low frequency response transducers. These indicate the total

pressure of the upstream flow, and from their decay rate, the mass flow

through the facility can be determined [20]. One chord upstream of the

rotor at 0* and 72* circumferential location are a pair of high frequency

response (50 KHz) kulite semiconductor wall static pressure gauges.

Between the rotor and the stator is a low frequency static pressure

gauge and the location of the five-way probe. Unlike in aerodynamic tests

when the five-way probe is used to traverse downstream of the rotor from

tip to hub during the quasi-steady flow period, in these aeroelastic tests,

the probe was quickly translated to one radius, r/rT equals 0.93, before

the establishment of quasi-steady flow, and left there during the entire

test. In this way, it was hoped the effect of unsteady blade motion on the

downstream Mach number, pressure and flow angles at one radius, the

aeroelastic radius, could be understood. However, like the data from the

rotating total pressure probe, the five-way probe data is very complex, and

lends itself to no simple analysis. Except for extraction of overall

qualities such as downstream total pressure, this data will be left for

further analysis together with the other unsteady pressure data. Finally,

measurements were made of the dump tank pressure, and of a one per revolu-

tion and a 115 per revolution tachometer on the rotor shaft.

2.2.3 Data Acquisition

In summary, data was collected on 44 channels, including 23 PZT's, 2

strain gauges, 3 accelerometers, 2 tachometers, 12 pressure gauges, and 2
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other channels. Data rates ranged from 5 KHz for vibration data to 100 KHz

for high speed pressure data. The management, storage and analysis of this

data was a formidable task. The amount of data taken and number of chan-

nels exceeded the existing analog to digital conversion capability of the

Blowdown Facility [21]. As part of this investigation, a new A/D system

based on the CAMAC convention and manufactured by LeCroy was acquired,

installed, integrated into the lab's PDP 11/70 and checked out. Run in

parallel with the existing MIT A/D system, this gave a capability of

sampling 14 channels at up to 100 KHz, and 46 channels at up to 10 KHz,

with an aggregate storage of 170,000 data samples.

High speed pressure transducers and strain gauges were amplified and

digitized directly, while low speed pressure signals were amplified and low

pass filtered at 1 KHz prior to digitization. Accelerometer signals were

low pass filtered at 600 Hz, then digitized, but PZT's and tachometer data

went directly into the A/D converter. Immediately after a test, data from

the MIT A/D is moved from core to disk, while data from the CAMAC A/D is

read slowly over a serial line to core and finally to disk. All data is

eventually backed up to magnetic tape, where it is stored for further

analysis.

2.3 Summary of a Typical Run

A concise summary of the instrumentation used is given in Table 2.1.

Listed with each transducer are its location, the analogue to digital con-

verter and channel type used to digitize the data. If the signal was low

pass filtered before digitization, the -3 dB cutoff point of the four pole

Bessel filter is also listed. Table 2.2 gives the chronology of major
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events during the run. Note that times listed are after the rupture of the

diaphragm which begins the flow of gas into the test section. In some

runs, the diaphragm was broken at time t = 0, while in other runs, the

diaphragm rupture was delayed 20 msec to observe the response of the blades

in vacuum at speed for those 20 msec.

To put in perspective the overall pattern of a test and some of the

data collected, Figure 2.8 shows the pressure and blade response time

histories for a run in which the stage was operated in rotating stall, and

the diaphragm was commanded to rupture at 20 msec. The top two traces show

the wall static pressure one chord upstream and 0.1 chord downstream of the

rotor, and the bottom trace shows the response of blade 12 as measured by

the piezoelectric transducer. The test can be divided into three time

periods. From 0 to 24 msec, the rotor is spinning in a vacuum and there is

a low level of vibration of the blades. At 24 msec, the gas arrives and

impulsively drives the blades backwards, the blade row acting as a turbine.

The start-up time, reflected in the pressure and blade response, extends

until about 70 msec, after which the flow becomes quite steady. In this

last period, from 70 to 140 msec, three effects are reflected in the

pressure signal: a steady decrease with a time constant of about 100 msec

as the supply tank pressure drops; the stall cell passage with a period of

7 msec; and the blade passage with a period of 0.3 msec. The blade

response to the stall cell passage is almost as large as that caused by the

initial transient. All further discussion of the blade response will be

confined to the time after 70 msec, or 50 msec after diaphragm opening,

when quasi-steady flow has been achieved.
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3. COMPUTATION OF AERODYNAMIC FORCES ACTING ON THE BLADES

The data commonly acquired in full scale engine aeroelastic tests is

the deflection of the blades relative to the disk. This data can be

extracted from simple strain gauge data, or, in the case of this

investigation, piezoelectric displacement transducer data. The quantity of

ultimate interest to the aeroelastician is the net aerodynamic force acting

on the blade. These aerodynamic forces might be due to perturbations in

the flow arising oustside the blade row, which can lead to forced

vibration, or they might be due to the motion of the blades, in which case

they can be classified as damping terms.

In this chapter, a technique will be outlined for direct computation

of the aerodynamic forces acting on a blade from the blade deflection data.

Some aeroelastic effects in rotors are best viewed in a local sense, such

as the forced vibration of a blade due to passage of a stall cell. Other

effects are better viewed on a more global level, such as the correlation

of blade damping with interblade phase angle. In view of this, two comple-

mentary techniques will be developed for the computation of aerodynamic

forces acting on blades; one which focuses on the response of a single

blade and is based on the concept of dynamic substructuring, and a second

which focuses on the response of the entire blade disk system and is based

on the use of multiblade or modal coordinates. Since the single blade case

is most direct and lays the foundation for the multiblade case, it will be

discussed first.
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3.1 Computation of Forces Acting on a Single Blade

3.1.1 Single degree of freedom blade

If a blade is modelled as a single degree of freedom cantilever

mounted on a rigid massive disk, as in Figure 3-1(a), then the governing

equation of motion is simply:

m1 q1 + k1q, = F(t) (3.1)

The problem usually solved with this equation is to find the response

q of mass m, to an arbitrary forcing function F(t). However, the

problem at hand is the inverse problem, that is to find the aerodynamic

forces acting on a blade. The new problem statement is: given an

arbitrary response q, (and q1 ), find the force F(t) which would produce

this response.

If the motion of the blade were represented by Equation 3.1, the prob-

lem would be solved at this point. But two major simplifications were made

in arriving at this simple model, first that the blade has a single degree

of freedom and second that the disk is massive and rigid, and takes no part

in the motion. These simplificatlons will be removed first by allowing

participation of the disk, then by including multiple degrees of freedom of

the blade.

3.1.2 Single DOF blade with disk participation

The blade can be considered a substructure of a complex blade-disk-

shaft structural system. Each blade is attached to a part of the disk with

finite mass and elasticity. Through the root attachment, the motion of the
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disk can influence the blade asa substructure in much the same way the

motion of the ground excites a building in an earthquake.

Fabunmi proposed a very general model for this blade disk interaction

[24], a segment of which is reproduced in Figure 3-1(b). In this model,

each section of the disk has mass m2, and is influenced by other sections

of the disk through the springs k2 and by the shaft through the spring k3 '

The displacement q2 is the absolute displacement of the disk, and q, is the

displacement of the blade relative to the disk. The governing equations

for this system become

mi q1 + mI q2 + k, q = F(t) (3.2)

M q, + (m I + m2 ) q2 + (k2 + k3) q2 = F(t) (3.3)

The exciting force F(t) can be solved for in one of two ways. If both

Equations 3.2 and 3.3 are given, F(t) and q2 can be solved for, given only

g*. Given only Equation 3.2, F(t) can be found if both q, and q2 are

known. In this second approach, qj, the relative displacement, can be

inferred from strain gauge data, and q2 can be measured directly with an

accelerometer placed on the disk at the blade disk interface. Thus, with

the proper strain gauge and accelerometer data, the disturbance force F(t)

acting on the blade can be found directly. While this development used a

simple lumped mass model of the blade and disk, a model allowing distri-

buted mass and flexibility of the blade and disk results in equations of

the same functional form as Equations 3.2 and 3.3, but with slightly

different definitions of the mass and stiffness constants. The essential

feature remains that given any characterization of the structural interac-
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tion of the form of Equation 3.2 and the required data, the aerodynamic

forces on the blade can be calculated.

3.1.3 Multi Degree of Freedom blade

The simplification that the blade has only one degree of freedom can

be relaxed by expressing the displacement on the substructure of the blade

in terms of its blade cantilevered normal modes. Then if the equations of

motion are written in terms of the blade normal modes, the governing

equations reduce to r single degree of freedom equations of the form

2
M q + M w q = Fr r=1,2,... (3.4)
r r r r r total

where q, wrp Mr and Fr are the modal displacement, frequency, mass, and the

net modal force exclusive of the elastic restoring force. The blade

displacement is given by

w (x,y,t) = (t) r (x,y) (3.5)

where yr is the rth blade mode shape, and the modal force is defined by

rt TE
Fr (t) = frt f f(x,y,t) Yr (x,y) dy dx (3.6)

r LE

Using equation (3.4), the total modal force can be calculated if the

modal mass, frequency and displacement are known. The modal mass and

frequency can be found numerically using finite element models or

experimentally. In this investigation, the modal mass was calculated from

mode shapes measured holographically and the response of the blades

spinning in vacuum was used to determine the natural frequencies. Some
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care must be exercised in determining the modal displacement. If the

natural frequencies are well separated and the blade response is primarily

at or near the natural frequencies, then the modal displacements can be

determined by band pass filtering the total response of a single displace-

ment transducer and scaling the result appropriately. If the blade fre-

quencies are closely spaced, or if the response of the system is not easily

identifiable with a single particular mode, as would be the case in

bending-torsion flutter, a more elaborate technique would be required.

Several strain gauges could be used, each primarily sensitive to one blade

mode. In general, to determine the displacement of N modes, at least N

transducers would be required.

Substitution of the known amplitude, mass and frequency in equation

(3.4) will give the modal component of the sum of all the forces acting

on the blade. This sum contains at least three distinct components,

Frtotal = Fraero + Frdisturbance + Frdisk (3.7)

the unsteady aerodynamic forces due to blade motion and interaction, the

unsteady aerodynamic forces due to upstream or downstream disturbances, and

the forcing of the blade due to interaction with the disk, and shrouds, if

present. Unlike the energy approach, this generalizable formulation of the

problem using the equations of motion with the aerodynamic damping and

disturbance forces on the right hand side allows a consistent treatment of

both forced vibration and flutter [4].

Looking at the origins of each of the force components, the disturb-

ance force includes effects of blade passage through stationary circum-

ferential nonuniformities in the flow such as inlet distortion, wakes from
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struts and guide vanes, influences from upstream and downstream stators and

nonuniformities in burner outflow in the case of a turbine. Also included

would be unsteady aerodynamic loads not attributable to the motion of the

blades themselves such as loads induced by surge and rotating stall.

The disk force is the term through which the presence of the disk and

shrouds is accounted for. If handled rigorously, the influence of the disk

and shroud would be included by a complete specification of the stress or

displacement state of all the surfaces of contact of the blade with other

parts of the blade-disk system. However, with a proper model of the struc-

tural dynamics of the blade disk system, the expression of this disk

interaction force can be considerably simplified. In the single blade

degree of freedom model of Equation 3.2, the disk force appears simply as

the base acceleration term (m1q2). In the MIT Rotor, the three accelero-

meters described in Section 2.2.1 will be sufficient to characterize the

disk force. In general, the number of pieces of data required to charac-

terize the disk force will depend on the details of the rotor studied, and

will increase as the number of blade modes and degree of participation of

the disk in the model is increased.

After the disk and disturbance forces have been sorted out, the

remaining aerodynamic force is the one of most interest in the understanding

of aerodynamic damping. The aerodynamic modal force of equation (3.7)

represents exactly the quantity one calculates for each blade in deter-

mining flutter boundaries, that is, the integrated effect along the blade

span of the local damping forces. In the conventional calculation,

Equation (3.6) is evaluated as

Fr (t) = f f' (x,y) y (x) dx (3.8)
aero rh
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where f' is the force per unit span usually found either from a two-

dimensional theory or the results of cascade experiments.

There are two potential sources of error in the proposed method for

force computation, the choice of natural frequency w r, and the twice dif-

ferentiation of the blade displacement to obtain the acceleration. The

accuracy of the differentiation depends on the data sampling rate and

algorithm used in the differentiation, and will be discussed in Chapter 6.

An error in the choice of natural frequency in equation (3.4) will intro-

duce an error in the force which is in phase with displacement. The result

will be a small error in the amplitude and phase of the force. From the

simple case of a free decay, it can be shown that the error introduced in

the phase is small, provided the fractional error in frequency is small

compared to the critical damping ratio. Provided this criterion is met and

the differentiation done accurately, the modal force acting on the system

will be correctly calculated.

Since the blade damping force (F aero) depends strongly on the motion

of the other blades in the cascade, it is best analyzed by the more global

method developed next. The single blade approach as formulated with

equation (3.4) is best used to study forced vibrations localized to one or

several blades. Finally, it should be noted that the equations (3.4) for

the blade modal displacement which appear uncoupled can be recoupled

through the force term in one of two ways. This could occur either through

the disk force (Frdisk) if the disk or shrouds strongly couple the blade

modes, or through the aerodynamic damping force (Fraero ) if the unsteady

aerodynamic effects couple the modes. If these equations are solved in an

uncoupled way, as will be done in this analysis, it must be recognized as a

simplification of the actual system.
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3.2 Analysis of Blade Motion using Multiblade Coordinates

Certain forces acting on the blades are best viewed in a global sense,

that is looking at the response of all the blades simultaneously. Among

these are the unsteady aerodynamic damping which can be expanded in its

most general form as

Fiaero = F (q , q ) + F +1 (qq+1q+1g 1+1) + F1+20''aero I I i +1 +1'i1' +1 +2~ (3.9)

+ F 1 (q1 1, q1 -1 ) q1 ) + F1 -2..

where the force acting on the ith blade is dependent in some way on the

blade's own position, velocity and acceleration, and the position, velocity

and acceleration of all the remaining blades in the cascade, as well as the

aerodynamic parameters. In current analytical models for compressible and

transonic aeroelastic interaction [7,8], the assumption is made that every

blade in the cascade moves with a constant amplitude, frequency and

interblade phase angle. These assumptions reduce the complex functional

dependence expressed by the infinite series of equation (3.9) to a depen-

dence on just three parameters, the amplitude, reduced frequency (wc/V) and

interblade phase angle, for any given aerodynamic operating point and

cascade geometry. In this way, the displacement of the ith blade of an N

blade rotor located at P is given as

q = A ej(ot - nPi) i = 1,2,3,...,N (3.10)
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where

N

2 n n

N

where p is the interblade phase angle and n is the number of nodal diameters.

While this traveling wave formulation is useful in aerodynamic calcu-

lations, an alternate multiblade coordinate formulation [25] is more useful

in analyzing the structural response. In this formulation, the displace-

ments of the blades are given as a sum of two standing waves of the disk,

cos n4 i and sin n corresponding to n nodal diameters such that

q = a sin ni + bn cos nq (3.11)

where: an , bn - generalized coordinates

cos n % , sin n$ - disk modes

2 N n - interblade phase angle

The relation between the two formulations can be seen by expanding the real

part of equation (3.10)

q A cos (wt - n$i) (3.12)

= A cos wt cos n + A sin wt sin nPi

By comparing this to equation (3.11), it can be seen that if an and
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bn are sinusoidal and temporarily out of phase by 90* they give rise to

a travelling wave with interblade phase angle f.

The advantages of formulating the structural problem in generalized

multiblade coordinates as opposed to individual blade coordinates of the

type in equation (3.4) are several. First, each coordinate conveys infor-

mation about the global, rather than the local behavior of the rotor.

Second, the coordinates relate directly to the interblade phase angle used

in unsteady aerodynamic calculations. Third, as will be seen in Chapter 4,

the structural dynamic equations for the blade disk system expressed in

multiblade coordinates are considerably simpler than those expressed in

individual blade coordinates.

3.3 Application of Techniques for Computation of Blade Forces

Listed below is a brief step by step explanation of the application of

the techniques discussed to a set of structural response data for the pur-

poses of computing aerodynamic forces. This is given both as a summary of

this section and as a guide to the remainder of this report which will

follow this procedure:

1. Develop the equations of motion of the blade disk system which

adequately characterize the blade modes expected to be present and the

blade disk interaction. This will be done in Chapter 4.

2. Run a "model experiment", at full speed, but in vacuum to deter-

mine the excitation of the blades, if any, through the structural

system. This will be discussed at the end of Chapter 4.
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3. Run the aeroelastic experiment collecting data on every blade

response and disk participation and analyze the data in the following

manner:

a) Identify by Fourier transform in time, the dominant frequen-

cies of response and the blade modes (first bend, etc.) with which

they are associated.

b) Narrow band pass filter the raw data to isolate each frequency

of response.

c) If the excitation is local, work directly with the data pro-

duced in (b). If the response is global, perform discrete Fourier

transforms of the blade data in theta to transform to multiblade

coordinates.

d) Use the amplitude data collected, together with the structural

model, to calculate aerodynamic forces acting on the blades.

Examples of this last step will be given in Chapters 6 and 7.
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4. Structural Dynamics of the MIT Rotor

4.1 Inertial and Elastic Coupling in Bladed Disks

In determining the response of the rotor to applied external forcing,

and especially in determining the flutter boundaries of a stage, it is

important to understand and characterize the coupled response of the blade-

disk or blade-disk-shroud system. Previously, several authors have

discussed the effects of blade-disk elastic coupling [26] and blade-disk-

shroud elastic coupling [27] on the modal response of a tuned rotor. Other

investigators have looked further into the effect that mistuning of blades

has on the response of these systems [28].

These studies have focused primarily on the coupling of the flexural

and torsional modes of the blades through out of plane elastic deflection

of the disk. In these models, the hub or center of the disk is usually

constrained from motion in or out of the plane. Therefore the resulting

coupling of blade modes into blade-disk modes, characterized by a number of

nodal circles and diameters, is attributable solely to the elastic defor-

mation of the disk. Even the very general model of Fabumni [24] which

allows for in plane and out of plane motion of the disk imposes the boun-

dary condition that the hub center remain fixed.

The hub of any real rotor is not perfectly constrained, but is elasti-

cally constrained by the stiffness of the shaft on which it runs. In the

case of an isolated rotor on a shaft, the transverse deflection of the

shaft allows two in plane translation and two out of plane rotational modes

of the disk. The single out of plane translational degree of freedom of

the disk is resisted by the longitudinal stiffness of the shaft. The last
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of the six rigid body modes of the disk, in plane rotation, is completely

unconstrained by a shaft running on bearings.

Any of these rigid body degrees of freedom of the disk can couple the

blades through the inertia of the rotor. In principle, all six should be

considered in computing the coupled modes of the bladed disk. In the case

of very flexible disks, these couplings could be dominated by the out of

plane elastic deflection of the disk. However in the case of research

rotors which tend to have thick, massive disks, the inertial effect of the

relatively rigid disk can be the dominant source of blade disk coupling.

This chapter will deal with the question of in plane inertial coupling

as observed in the MIT Rotor. In the next section, a model of the blade-

disk-shaft system will be developed. In subsequent sections, the results

of three sets of experiments are discussed in which the natural modes of

the bladed rotor were found. In the first set of experiments, the blades

were uniform and well tuned. In the latter two sets, different com-

binations of blades were weighted at the tips to produce a bladed disk

system with extreme nonuniformity. The frequency results obtained from

these experiments were found to correlate well with the proposed model.

4.2 Model of Blade-Disk Inertial Coupling

The proposed model of the blade-disk system is shown in Figure 4-1.

A solid disk extends from the center to the hub radius (r = r h), and

possesses two translational and one rotational in plane degrees of freedom.

Extending from the hub to the tip (r = r t) are N blades located at angles

S(d4 = 2ni/N). The blades deflect with a single mode shape y which has

an amplitude of q rt. For every mode shape, the twisted blades deflect at
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an effective angle to the normal, so their in plane component of deflection

is q rt cos a With these assumptions, the deflections of a point on the

blade are given as

u = q - rqa sin - yrtq, sin $ cos a

v = q + rq cos + y rt q1 cos P cos a

w = y rt qi sin a

Evaluating the kinetic energy of a single blade gives

rt

T = ( + v + w2) dm

rh

rt

= (q2 + ; + r q2  + 2 r2 *2 + 2 r q cos

rh

- in + 2 4 y rt cos a cos - sin iP

+ 2 q 0 yrt r cos a ) dm (4.2)

Evaluating the mass integrals gives

Ti 1 * 2 + ;2 +1II*2 +1 -2
T = b (qx y 2b 0 m0q

+ 4 Sb [y cos i - 4 sin (i (4.3)

+ 4 m2 cos a [4 cos - 4 sin P + 4  i m1 cos a

where the integrals are defined as
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f dm = Mb

rdm = Sb

r 2dm = I b

rt 2 dm m

f rt y r dm m1

Jrt
y dm = m2

where the limits of integration go from rh to rt. The integrals in

Equation (4.4) are respectively the contribution of the blade to the system

mass (Mb), static imbalance (Sb) and moment of inertia (Ib), the blade

modal mass (m ) and the consistent mass terms of the coupling of the blade

with the rotation (m1 ) and translation (m2 ) of the disk.

The kinetic energy of a uniform disk reduces to

Td = I(2 + 2) Md + _L Id 2 x 1 2 d (4.5)

If the center of the disk is restrained by translational and rotary

springs, the potential energy is

U -- K q + K q + K q

and each blade has a potential energy

(4.6)

U, k q - 9 1 q 221 1 2 2

where o is the cantilevered natural frequency.
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Substitution of equations (4.3), (4.5), (4.6), and (4.7) into

Lagrange's equation yields the equations of motion as expressed in

individual blade coordinates.

Tq+ Kq -S sin (P + q in2 cos a sin 4 = 0

i=1 t-- N -- --

MT q y + K yq y+ q 0S b Cos i + q m n2 Cos a Cos ( = 0

T qO + K q9 + Sb (y cos -q sin ) + q1 m cos a = 0

m q1 + m2 cos a q cos P- q sin1

+ q m 1 cos a + k q i 1,2,...,N (4.8)

where MT = Md + Mb

IT Id + b (4.9)

Note that the translational and rotational equations are coupled

through the combined imbalance of the blades and the motion of the blades.

The blade motions do not couple to each other directly, but through the

inertial coupling of the disk represented by the m 1cos a and m2cos a terms.

The equations of motion as expressed in equation (4.8) are very

general. They will be used in simplified form to examine the cases of

extreme mistune of the disk. The equations are highly coupled through the

disk rigid body modes, making them difficult to work with. For uniform

blades, the equations can be simplified considerably by transforming to
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generalized multiblade coordinates, which for an odd number of blades N are

N-1 N-i
2 2

q = I an sin n +I bn cos n (4.10)
n=1 n=0

Substitution of this expression for qi into the first three equations

of set (4.8), and carrying out the sums in i gives

N
MT qx + K q - a 1 2 m2 cos a 0 (4.11)

N
MT qy + K q + b - 2 cos a 0

T q + Ke q0 + b N mI cos a 0

Upon substitution of the expression for q in (4.10) into the last N

equations of set (4.8), multiplication by successive values of cos n(i

and sin n i and summation over i gives the N new equations

N m b + N k b +q 0 N m cos a 0

N N
m a + k a q m2 cos a 0

N N Hkb *
Soi b+k b 1 + y m2 cos a = 0

N N
mo an + k ian 0

n = 2, 3, 4, ... ,(N-1)/2

Nm + k b = 0 (4.12)
o n 2 b n

where the equations have been simplified by the trigonometric summations
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m N/2, N, 3N/2,..., namely

N 2 N
cos n(

i=1 i=l

N

i=1
sin n% cos n$

sin n$ =

=0

A high degree of uncoupling has taken place by transformation to multiblade

coordinates. To emphasize this uncoupling, the equations in sets (4.11)

and (4.12) can be rewritten

MT

N
2 2

N
fm2

cos a

N
MT y

N
c2 Cos a

I N

N mI cosa

cos a

N
m9 0

m2 cos a

N
2m

m cosa

N m
0

m a +k. a =0
o n i n

m b + k b = 0
o n i n I n = 2, 3, ... , N-I

(4.14)
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Transformation to multiblade coordinates has reduced the completely

coupled set of (4.8) to three sets of two coupled equations each and N-1

simple single degree of freedom equations. It can be seen that the sine

and cosine modes (a1 and b1 ) couple to the translational rigid body modes

of the disk. The collective or cosOG mode couples only to the rotational

degree of freedom of the disk, and all higher modes are not coupled through

the disk.

The implications of this simple rigid body coupling for the calcula-

tion of the aerodynamic forces acting on the blade are enormous. The

second equation of each of the first three pairs in set (4.14) parallels

equation (3.2). Thus, if the modal displacements (b0,a1,bj) are known and

the in plane translational and rotational acceleration of the disk are

measured, the modal forces acting on the cosOG, sine and cosO modes can be

directly calculated. The last N-1 equations of set (4.14) resemble the

even simpler equation (3.1), and with knowledge of the modal displacements,

the modal forces can be calculated without any information about the disk

motion.

It remains to be shown that this disk inertial coupling model is suf-

ficient to characterize the dynamics of the MIT Rotor. The remainder of

this chapter describes the method used to determine the constants in

Equation (4.14) using a well-tuned rotor. Then, two experiments will be

discussed in which severe mistune was introduced to check and verify the

model.

4.3 Experiments with a Tuned Rotor

A series of tests was performed on the tuned MIT Aeroelastic Rotor to

determine its mass and stiffness properties and compare its resonant modes
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with those predicted by the proposed model. The rotor was mounted to a

short steel shaft, machined with the same taper and keyway as the shaft on

which the rotor was mounted in the Blowdown Facility. This short shaft was

then mounted directly to the head of a Ling Model 420 electromagnetic

shaker designed to produce a peak force of 100 pounds. Excitation of the

rotor to determine resonances was sometimes achieved by the shaker through

the mounting shaft. In other cases, a loud speaker was used to acousti-

cally excite the blades directly. Amplitudes of response were monitored

with the rotor strain gauges and PZT's and with blade and disk mounted

accelerometers.

First the mass properties of the rotor as defined by equations (4.14)

were determined. The dimensions of the aluminum rotor and blades were

carefully measured using calipers. These dimensions were used to calculate

the mass and rotary moment of inertia (MT and IT) of the rotor. As a

check, the calculated mass agreed within 2% of the measured mass, which is

well within the accuracy of the measurement. The blade mass properties

(m0 , M 1, '2) were based on the measured dimensions and holographic measure-

ments of the first bending mode made while the rotor was not rotating. The

dimension and mass properties for the blade first bending mode are sum-

marized in the Appendix.

One more required constant can be estimated from the rotor geometery,

the angle between the plane of the disk and the normal to the camber line

(Figure 4-1). For the blades of the MIT Rotor, this angle varies from

about 30* at the root to 600 at the tip. The effective angle around which

the blade flexes must lie between these limiting values. Reference 1 (page

23) cites the normal to the chord at 20% span height outboard of the root
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attachment as the effective flexural axis of such blades in first bending

mode. A value of 36* was measured for this location and will be used in

further calculations.

The remaining constants to be determined were the stiffness of the hub

restraint (Kr, Ky, K 0) and blade (k i). Rather than measure these directly,

it was decided to search for the resonances suggested by the model and

calculate the values of the stiffness using the mass properties and

observed frequencies.

Before any resonance tests were performed, the rotor was tuned in much

the same way as a string instrument. In designing and installing the

piezoelectric crystal assembly, it was observed that by selectively

tightening the retaining bolt, a variation of about 6 Hz could be achieved

in the frequency of the blade's first bending mode. It was impossible to

simply tune any given blade due to the participation of all the other bla-

des through the disk coupling. To isolate a given blade, all the other

blades in the rotor were weighted at the tip by a two inch "C" clamp, which

pulled the resonance of the weighted blades well below 200 Hz. The reso-

nance of the single unweighted blade could then easily be identified and

adjusted. In this way, the blades were tuned to 378 + 2 Hz

With the rotor thus tuned, scans were made for overall blade-disk reso-

nances and their modal patterns. Using the shaker excitation, a strong

resonance was found at 374.5 Hz with no distinct modal pattern, and a

second at 417-418 Hz. In this second resonance, all blades moved in phase.

The disk moved in a rotational sense opposite in direction to the blade

tips. This mode was referred to as the counterrotating mode. Under

acoustic excitation, the modes at 374 Hz and 417 Hz were found, plus an
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additional mode at 390-394 Hz. In this mode, the countertranslating mode,

the tip displacement pattern was observed to go as sino, and the disk

translated in the sense opposite that of the blade tips.

The countertranslating mode is the one associated with the first two

equations of set (4.14). If the base translation stiffness (K) is set to

zero, and the proper blade cantilever frequency is used (to be discussed

shortly), the calculated frequency of the a1sin and b1cos modes is 381 Hz.

But the shaft mounted on the shaker provides a finite restraining spring.

To move this resonance from 381 Hz to 390-394 Hz, Kx must have a value of 3

6 6
x 10 to 3.5 x 10 lb/ft. If this were the right value, the second mode

associated with these equations, the translating mode in which the blades

and disk move in phase rather than out of phase, would have a resonance in

the range of 280 Hz to 302 Hz. A weak resonance with this modal structure

was found in this range. The values of K and Ky will be taken as 3 - 3.5

6
x 10 lb/ft.

Similarly, the counterrotating mode is associated with the third

equation of set (4.14). With K set to zero, the predicted frequency is

417.2 Hz, within the observed range. However, a weak rotating resonance

was observed at 40 Hz, suggesting a small, but nonzero, torsional stiffness

4
of 1.5 x 10 lb ft/rad. This only moves the calculated counterrotating

frequency to 417.7 Hz, and will be included in subsequent calculations.

The strong resonance at 374.5 Hz was found to be the true blade can-

tilever natural frequency, as given by the last N-1 equations of set

(4.14). However, when the blades were tuned individually, they resonated

at an average of 378 Hz. This difference of 3.5 Hz is associated with the

participation of the disk. When the blades were tuned only one blade was
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excited at a time and the disk participated in the motion. This observed

natural frequency was not based on the modal mass of the blade, but on the

reduced mass of the blade disk system. With all the blades free to

vibrate, some combination of the higher modes (cos 20, cos 30,...) was

excited; the disk did not participate and the real blade cantilever fre-

quency was observed. In Section 4.5, the difference between the blade

modal mass and blade-disk reduced mass will be shown to lead to a dif-

ference of 3.5 Hz in first bending frequency.

As a final test on the tuned rotor, the structural damping of single

blades was measured by the half power bandwidth technique. Just as in the

tuning process all the blades but one were weighted, and the response of

the unweighted blade to constant amplitude excitation was measured. In

this way, the structural damping in air of individual blades was found to

have a Q ranging from 190 to 240 with an average value of 210. This

corresponds to an average log decrement of 0.015 or a critical damping

ratio of 0.0024. The combined material and structural damping only lightly

damp the motion of the blade.

4.4 Severely Mistuned Rotor with Several Blades Participating

In the process of tuning each blade of the rotor weights were clamped

to the tips of all the other blades. This process can be thought of as

introducing a severe mistune into the rotor, in this case to isolate the

resonance of a single blade. This method of creating a severe mistune was

used in two additional ways. In one case, two blades were left unweighted

and their natural frequencies were determined as a function of the angle

that separated them. These results will be described in Section 4.4. In
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the second case, between one and twenty-three adjacent blades were left

unweighted. A study was made of how the observed frequency changed with an

increasing number of participating blades.

The blades were weighted by a 2 inch steel "c-clamp" near the tip.

Between the contact points of the clamp and the metal surface of the blade

was a small piece of 1/8 inch thick hard rubber mat to prevent the clamp

from slipping or chattering. With this weighting, the blades were observed

to have a very well damped resonance in the range of 160 to 180 Hz, well

below the unweighted resonance of 374 Hz.

When only one blade was unweighted, its single natural frequency was

near that to which the blades were tuned, 378 Hz. When two or more blades

were unweighted, two strong resonances were found. At the blade cantilever

frequency of 374 Hz, the blades moved without any noticeable phase

relation. At a higher frequency, the blades were observed to move in

phase. This natural frequency was found at 381 Hz for two blades and mono-

tonically increased with increasing number of blades unweighted. As the

number of blades approached 23, the observed frequency approached the coun-

terrotating mode of the tuned rotor at 418 Hz. The trend of the highest

resonant frequency versus participating blades can be seen from the experi-

mental data in Figure 4-2.

This highest mode resonance of the mistuned rotor can be modelled by

assuming two modes for the blade displacements whose amplitudes are qA and

qB. The J unweighted blades respond at equal amplitude and in phase and

are symmetrically distributed about 0 = 0* such that for a blade at

$ = 2ni/N, the displacement is
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1-J 1-JJ- J-
qi" A -+ 1 ,., -1

2, A 2 2 2 2 ( 4 .1 5 )

The remaining K weighted blades respond at equal amplitude and in phase and

are symmetrically distributed about G - 180* such that

J-1 J-1 J-1 J-1
q, = q B 1 2+ 1, + 2, ... , N - -2, N -- -1

(4.16)

where
J + K = N

To derive the equations of motion for this untuned case, the two

assumed modes qA and qB are substituted into equation set (4.8). The sum-

mations in the first three equations and over the last N equations are

divided into sums over the K weighted and J unweighted blades. The

resulting equations are

MT q + K q = 0

MT qy + K q - a Sw - B M 2 cos a

+ a qA m2 cos a = 0

IT q + K q - a S q + e qB m cos a

+ qA m 1 cos a = 0

J m0 qA + a m2 y cos a + Jmj q. cos a + J k qA = 0

K m 0qB - a m2 q y cos a + K m1 q. cos a + K k qB = 0 (4.17)

where the blades have been assumed to be uniform except for the presence of
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the weights at the tips. The mass properties of the weighted blades are

given in a form similar to equation set (4.4) as

rt 2Y2 dm = m'r y dm = m'
Jt0i fPt m 2  (4.18)

rt y r dm = m M r S

the last term representing the contribution to the static imbalance by a

weight of Mw at radius rw. The total rotor mass and inertia terms must

also reflect the addition of weights at the tips. The term a is defined

as the partial sum

a = cos (4.19)
J

where the summation over the J blades represents the indices in equation

(4.15). It can be shown that

- a = I cos (4.20)
K

where the summation is over the K blades of the indices in equation (4.16).

Note that since the displacements were assumed to be symmetric about the x

axis, the x equation has uncoupled from the remaining four.

The solution to the last four equations of set (4.17) is shown in

Figure 4.2 for the range of experimentally determined elastic constants.

The agreement between the experimental results and those predicted by the

model for this assumed mode are excellent. In particular, note that the

model reproduces the dip in the resonance curve in the range of 15 to 20

blades unweighted. The lower end point for zero blades is the true can-

52



tilever frequency of the blade and the upper end point with all 23 blades

unweighted is that of the in-phase mode found for the perfectly tuned

rotor. In the range of 1 to 5 blades participating, the trend is nearly

linear. When the first blade is unweighted, the reduced mass effect of the

disk causes an increase in the observed resonance of about 3 Hz. As the

next few adjacent blades are unweighted, the effective modal mass of the

blades increases, growing closer to that of the disk. This increases the

reduced mass effect and the increment in frequency. Once the participating

blades subtend a large angle, the translational coupling begins to be

reduced and the trend curves over.

A simplification can be made to equations (4.17) if the weighted blades

are simply ignored, that is, they are assumed not to participate in the

motion, and that the additional mass of the weights at the tips is not

significant. With these assumptions, the last of the five equations of set

(4.17) is removed, qK and Sw are set to zero and the remaining three

equations are less highly coupled. Solutions of this simplified set of

equations for the in-plane resonance are shown in Figure 4-3. This

agreement is also quite good. In this case, simply ignoring the mass of

the weights and participation of the weighted blades still gives reasonable

results.

4.5 Severely Mistuned Rotor with Two Blades Participating

In this second set of experiments with severe mistune, two blades were

left unweighted. The angle subtended by the two blades was varied so that

the blades were first adjacent, then separated by one weighted blade, then
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two and so on until the unweighted blades were on opposite sides of the

rotor.

For each location of the two blades, two distinct resonances were

found, one in which the blades moved in phase, and one in which they moved

out of phase. When the blades were adjacent, the out of phase mode was

found at the true cantilever frequency of the blades (374 Hz). The out of

phase motion of the blades cancelled the participation of the disk. The in

phase mode was found at about 381 Hz, 7 Hz above the cantilever frequency.

This difference is just twice the increase in observed natural frequency

caused by the reduced mass effect of the disk acting on a single blade. As

the spacing of the two active blades increases, the two observed frequen-

cies tend to coalesce as shown in Figure 4-4. The error bars in the data

represent several different pairs of blades tested for each angular

separation.

Once again, this mistune can be modelled by assuming two modes for the

displacement of the two blades. As in the simplified analysis at the end

of section 4.4, the weighted blades will be assumed to have no displacement

and the mass of the clamps will be ignored. Then the displacement of the

two blades participating in the motion at plus % and minus $ can be given

as the sum and difference of an in phase and out of phase mode

qIP + q0p
q 2 at +

(4.21)

qp- q0p
q 2 at -

where 4 is one half the angle subtended by the two blades.
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Substitution of the displacements expressed above into equations (4.8)

gives

M q +K q -q 2 cos a sin = 0

MT qy + K q +q 1  m2 cos a cos =0 (4.22)

I T q + K 0q + qp m, cos a = 0

m 0 q + ki q1 P + 
2qy m2 cos a cos (

+ 2qi m1 cos a = 0

M0 q0 P + ki q0 P -2x m 2 cos a sin =0

The symmetry of the in and out of phase modes about the x axis has

caused an uncoupling of the equations of motion. It can be seen that the

first and last of set (4.22) completely determine the out of phase reso-

nance and lead to the lower curve of Figure 4-4. The middle three

equations are coupled and determine the in phase resonance responsible for

the upper curve of Figure 4-4.

Within the uncertainty concerning the disk restraint stiffness, the

agreement with experimental results is again excellent. Both branches of

the response and their coalescense are predicted correctly. Examination of

equations (4.22) shows the origin of this coalescence. The first and last

equations are coupled through a term expressing the translational coupling

which depends on sin $. For adjacent blades, cp is near zero and the true

cantilever frequency is observed. As p moves towards 90*, the equations

are increasingly coupled with a resulting upward shift in resonance. The

55



middle three equations are coupled through translational terms which depend

on cos 4 and rotational terms which have no (j dependence. At small values

of 1, both are present. As (f approaches 90* the translational terms go to

zero, reducing the coupling, but the rotational coupling still keeps the

observed resonance above the cantilever frequency. If the magnitude of the

translational and rotational coupling are the same, as they are in the MIT

Rotor, the two frequencies tend to coalesce as 4. approaches 90.

4.6 Summary

A structural model has been developed and demonstrated in which the

coupling of the blade motion is caused by the inertia of the disk. The

model correctly predicts the behavior of the real rotor even in the case of

severe mistune. Although present in all rotors, this inertial coupling

appears to dominate in the case of the MIT Rotor.

The model simplifies the interpretation of the aeroelastic data that

follows in two ways. First the higher multiblade modes (cos 20, sin 20,

cos 30, etc.) are unaffected by the motion of the disk. Therefore the

response of these modes can be calculated in the absence of any information

about the disk. The three lowest modes are coupled by the translational

and rotational motion of the disk. These are quantities which can be

measured using disk mounted accelerometers as are included in the MIT

Rotor.

Transformation of the equations of motion developed can be achieved by

letting the location of the blade depend on time such that

4 = + Qt (4.23)
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where Q is the rotation rate. This transformation has two effects on the

equations derived for a tuned rotor expressed by Equations (4.8). A

centrifural stiffening term is added in the blade bending stiffness ki,

which raises the cantilever frequency to 410 Hz at full speed. A gyrosco-

pic coupling term appears which couples the two translational degrees of

freedom of the disk. This gyroscopic coupling leads to whirling of the

disk and blades [29]. When run at full speed in a vacuum, a forced vibra-

tion of the blade was observed due to one modal diameter which occurred at

one, two, and three times the rotor rotation speed. This effect must be

included in the analysis of the aeroelastic response at these frequencies

and in these modes.
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5. FORCED VIBRATION DUE TO UPSTREAM DISTURBANCES

5.1 Stage Performance and Aerodynamic Response

Since no aeroelastic stability boundaries were encountered within the

performance map of the MIT Transonic Compressor Rotor, it was decided to

study the response to forced vibration at the design point. There, the

steady aerodynamic performance of the rotor is understood and well docu-

mented [19]. The secondary flow injector system described in Section 2.1.3

is used to create a disturbance upstream of the rotor. The disturbance

extends part way through the period of quasi-steady flow during which time

the forced vibration response of the rotor can be determined. Then the

disturbance is sharply ended and the subsequent ring down of the rotor is a

measure of the aerodynamic plus structural damping.

Several attempts were made before the flow injector successfully

created a steady disturbance. At first, the downstream throttle orifice

was chosen so that the rotor would operate at its design point when run at

100% speed. The disturbance was scheduled to turn on at the start of the

test and off at 80 msec or 30 msec into the quasi-steady flow. The total

pressure of the injected flow was 200 psia. This strong disturbance drove

the stage into a two cell rotating stall from which it did not recover

during the test. To correct this, the throttle was opened to move the

operating line away from the stall boundary, the beginning of gas injection

was delayed until the start of the quasi-steady flow at 50 msec, and the

injector pressure was reduced to 60 psia. This combination created no

clear excitation of the blades. In the third attempt, the throttle and

start time were left unchanged, but the supply pressure was increased to

58



150 psia. This combination succeeded in creating a disturbance with a

clearly observable aeroelastic response which will be discussed below.

The steady operating point of the rotor was on the 100% speed line just

below the design point, with a flow corrected to air at standard conditions

of 77 lb/sec (35 Kg/sec), and a tip Mach number of 1.23. A total pressure

ratio of 1.57 was measured by the 5 way probe at the 94% tip radius. This

is less than the pressure ratio of 1.70 measured by Durali [19] at this

radius at the design point. This would be expected since the throttle

orifice was larger than that for design. However, the corrected mass flow

of 77 lb/sec calculated from the rate of pressure decrease in the supply

tank is also less than Durali's measured value of 84.7 lb/sec. This

discrepancy can be accounted for by an inaccuracy in the supply tank volume

and calculation procedures used by Durali.

The aerodynamic response of the rotor to the upstream disturbance can

be seen in a change in bow shock strength. Figure 5-la shows the trace of

the high frequency response wall static pressure transducer 0.1 chord

upstream of the rotor at the 0* instrument location directly behind one of

the injectors. An increase in the bow shock strength can be seen starting

at about 55 msec and ending at 100-102 msec. During this period, when the

injector is on, a region of velocity defect is created behind the injector.

As a blade passes through this region, the incidence increases, and with it

the local shock strength. Comparison with Figure 5-lb taken from a wall

static transducer 1.0 chords upstream at the 720 instrument location (i.e.

far from the injectors at 00 and 180*) shows no corresponding change in

shock strength.

5.2 Aeroelastic Response of the Individual Blades
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The individual response of all 23 blades is shown in Figure 5-2. The

blades are shown in their proper relative positions around the rotor. The

signal from blade 23 is shown twice for reference, once at position zero

and again at position 23. The reference time is that time when the

diaphragm is commanded to burst. From this presentation of the data, some

overall trends can be seen. The rotor spins in vacuum until 3 msec when

the wavefront of the gas expanding into the test section subjects the rotor

to an almost impulsive loading. A complex and large amplitude response

continues until about 50 msec, when the first bending frequency becomes

dominant in a response which locally has some phase coherence. From 70 to

100 msec the first bending mode appears to damp and a higher frequency

grows, that of the second bending mode. After 100 msec, the second bending

response decays and the first bending re-emerges.

Other than these general observations, it is difficult to gain any

qualitative understanding of the response as it is shown in Figure 5-2.

The first step in reducing the data is to determine the frequency content

of the response by performing Fast Fourier Transform (FFT) in time of indi-

vidual blade signals. Fourier transforms of blade 3 response are shown in

Figure 5-3 for the period when the injector is on, and in Figure 5-4 for

the period after the injector is turned off. Both figures indicate that

the amplitude of response is concentrated in distinct frequencies: at low

frequency less than 50 Hz, at about 150 Hz, at 300 Hz, in a band from 400

to 500 Hz, and at 1140 Hz. These spikes correspond to the low frequency

response due to the blowdown transient, the first, second and third engine

orders, and the second blade bending frequency at the eighth engine order.

The next step in the data reduction is to narrow bandpass filter the
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total response of each blade to isolate each of the frequencies indicated.

This is done digitally using a Nearly Equal Ripple digital filter [30].

The filter parameters typically used included a transition width at the

edge of the pass band of 70 Hz and a loss outside of the pass band of 50

dB. Figure 5-5 shows the original data for blade 1 as well as its com-

ponents derived from low pass filtering the raw data below 100 Hz, and in

the ranges 100 - 220 Hz to isolate the first engine order, 220 - 350 Hz to

isolate the second engine order, 350 - 750 Hz which contains the bulk of

the first bending response, and 750 - 1500 Hz which contains the second

bending response. Little response of interest is contained in the two

lowest frequency ranges in the period of quasi-steady flow.

The bandpass filtered responses for the last three frequency ranges are

shown for all the blades in Figures 5-6, 5-7 and 5-8. The components of

the blade displacement data at the second engine order (Figure 5-6) should

show some sign of response to the flow injector since a two per revolution

disturbance fixed in tunnel coordinates would be seen by the rotor at this

frequency. While the amplitude of response is on average greater prior to

100 msec than after 100 msec, no clear pattern or phase relation emerges.

The situation is only slightly more clear in the response at the first

bending frequency (Figure 5-7). Here certain "patches" of response have

uniform amplitude and phase relation, such as the group of blades 1-8 from

50 to 70 msec and 16-22 from 60 to 80 msec. Again, no clear demarcation of

the response before and after termination of the disturbance is evident.

The response at second bending frequency (Figure 5-8) does show a rise in

amplitude prior to 100 msec and a decay thereafter for most blades, but no

global pattern is evident.
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At this point, the analysis can proceed in two ways. Either a detailed

study can be made of the individual blade data, or a transformation can be

made to disk modal or multiblade coordinates. Since the aerodynamic

damping is expected to depend on the global property of interblade phase

angle, the transformation to multiblade coordinates will be made.

5.3 Aeroelastic Response of the Multiblade Modes

The values of the multiblade coordinates as described in Section 3.2

can be calculated from the individual blade coordinates by performing at

each instant in time a Discrete Fourier Transform in theta such that

N
b = 1 q

i=1

2N
a = q sin n% (5.1)

i=1

2 N
b N=q i cos n $

i-i

where an and bn are the generalized multiblade coordinates defined by

Equation (3.11). In this way, the information contained in the displace-

ments of 23 individual blades has been transformed to the generalized

displacements of 12 cosine modes (cosOG, coslO, ... , cosllO) and 11 sine

modes (sinlO, sin2G, ... , sinllO). The transformed data for the frequency

ranges of interest corresponding to Figures 5-6, 5-7 and 5-8 is shown in

Figures 5-9, 5-10 and 5-11. The global nature of the response is much more

apparent from examination of the amplitudes of the multiblade modes.

Figure 5-9 reveals that for the frequency range around second engine order
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(220-350 Hz), the motion of the blades is primarily a superposition of the

lowest seven modes, the in-phase mode (cosOG) and the sin3G and cos 3G modes

appear in bursts which are unrelated to the upstream excitation. However

the one and two modal diameter modes clearly respond to the excitation.

The sinG and cosO modes decay in the time period up to 100 msec. After

that time, the two modes grow with the same amplitude envelope and with a

temporal phase relation such that the cosine mode lags the sine mode by 90

degrees., The two modal diameter modes are the pair which should respond

most strongly to the two per rev disturbance, and this is seen to happen.

Through the entire test time from 50 to 150 msec, the sin2e and cos2G have

similar amplitude and are temporarily 90 degrees out of phase.

As was discussed in Section 3.2, the condition that the sine and cosine

modes have the same amplitude and are 90 degrees out of phase is synonymous

with a travelling wave with a fixed amplitude and interblade phase angle.

In both the cases of the sine and cosO modes, and the sin2G and cos2o, the

cosine mode lags the sine mode 90 degrees. This translates to a rearward

travelling wave in rotor coordinates.

With an interblade phase angle

- - (5.2)

the blade displacements are

q- A sin wt sin nPi - A cos wt cos n i (5.3)

where n is the number of modal diameters. The wave speed of this tra-

velling wave is
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V = + _ (5.4)
- n

where has a forward sense for a positive interblade phase angle and a

rearward sense for a negative interblade phase angle.

The travelling blade displacement pattern given by the sin2O and cos20

modes has an interblade phase angle of -31.3 degrees. Since the observed

frequency is exactly twice the engine speed, the wave speed in rotating

coordinates given by Equation (5.4) is just - 0. In rotor coordinates, the

displacement pattern travels backward at Q . By a stationary observer,

this would be viewed as a standing wave and is therefore the forced

response to the fixed upstream disturbance. The observed response fluc-

tuates in amplitude in the interval from 60 to 100 msec, but from 100 to

120 msec, there is a smooth decay from a higher to a lower amplitude of

response.

There is not a resonance of the blade disk system at this frequency, so

the continued response indicates some lower level two per revolution exci-

tation must be present after 100 msec when the injector system shuts off.

Since it was shown in Chapter 4 that structural and shaft vibrations cannot

excite this two modal diameter mode, the source of this disturbance must be

an innate 20 nonuniformity in the flow in the facility. However, the

smooth decay between two levels of excitation can be used to determine the

total damping. With a knowledge of the structural damping, the aerodynamic

damping for this interblade phase angle and reduced frequency can be

calculated. The numerical values of these parameters are listed in the

summary at the end of this chapter.

The response of the one nodal diameter mode (cosO, sinG) is also a
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backwards travelling wave disturbance with an interblade phase angle of

-15.6 degrees and a wave speed of -2 9 in rotor coordinates or - Q as viewed

by a fixed observer. This is therefore not the response to any fixed

disturbance. The response builds up from a lower level at 100 msec to a

higher level at 120 msec. It then remains about at this level as if

responding to a fixed amplitude excitation. The source of this excitation

is probably the second engine order excitation of the backward whirling

mode of the blades and disk, as is observed in a vacuum (Section 4.6).

Again, an estimate of damping can be made from the time constant of the

transition from a lower to a higher amplitude of response.

The amplitudes of the multiblade coordinates for the component of the

response which includes blade first bending frequency is shown in Figure

5-10. The lowest nine modes (cos0e, sinG, ...cos 40) meet the criteria of

significant amplitude of response, similar envelopes of response of the

sine and cosine modes, and 90 degree phase lag of the cosine mode. While

all nine show some response to the turn on or off of the injector, only the

sin3O and cos30 modes have a response from which a damping estimate can be

made. This mode has an interblade phase angle of -50.0 degrees, and again

a wave speed of - Q giving a fixed pattern of blade deflection as viewed by

a stationary observer. This is a forced response to a steady 30 aerodyna-

mic disturbance which has its origins in the interaction of the boundary

layer bleed and three struts which support the forward centerbody (Figure

2.3). This response is present in every run, with or without the gas

injector system present.

The interaction between the fixed 30 disturbance and the controllable

29 disturbance can be seen at two times in the test. Prior to about 60
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msec, the response is large. When the 20 disturbance is turned on at about

55 msec, the three nodal diameter response diminishes sharply. When the

injectors are turned off at 100 msec, the response grows. From this growth

after 100 msec, the damping listed in the summary is calculated. The

explanation of this response pattern is as follows. Prior to injector turn

on, the three struts create wakes at 60, 180 and 300 degree locations. The

third circumferential Fourier component of this distortion pattern is domi-

nant, and the rotor sees an excitation at 3 Q (435 Hz). Since this is

close to blade first bending frequency (410 Hz), there is a strong

response. At 55 msec, the gas is injected and wakes created at 0 and 180

degrees (Figure 2.3). If the wake production and aerodynamic response

mechanisms were both linear, the structural response of the cos30 and

sin30 modes would not change in response to the 20 excitation. Obviously,

the responses do interact such that the third circumferential Fourier com-

ponent is reduced and the response at 30 decreases. When the injector

shuts off at 100 msec, the reverse process takes place and the 30 component

again dominates.

Since there clearly is an interaction of the two per revolution excita-

tion and three per revolution response, there could be a nonlinear mecha-

nism present. Since one gas injector is located directly downstream of one

of the struts (at 180 degrees, Figure 2.3), one possible explanation is

that the disturbance created by the strut does not combine in a simple

linear manner with the disturbance created by the injector. Another expla-

nation is that the unsteady aerodynamic response of the blades is not

linear. The actual disturbance that the blade encounters is not a smooth

sinusoidal variation in the inlet velocity, but a sharp edge gust whose
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width is about one blade chord. If the aerodynamic response were nonlinear

the response to such a gust or wake would be different than that predicted

by linear superposition of the response to circumferential Fourier com-

ponents of the gust. Such a nonlinearity would allow the two per revolu-

tion excitation and three per revolution response to interact.

At this time, it is not possible to determine if the source of the

interaction is in the wake generation mechanism or aerodynamic response.

The source of this effect could be isolated by changing the location and

number of upstream wake generators. A possible conclusion to be drawn from

this is that if an engine has a forced vibration problem due to proximity

of an engine order to a blade resonance, it is possible by selectively

adding upstream disturbances to change the frequency content of the excita-

tion and reduce the overall response of the blades.

The response of the rotor at second blade bending frequency shows a

completely different pattern in the response of the multiblade modes than

the two frequency ranges already discussed. Figure 5-11 shows that only

the eight nodal diameter modes (sin8G, cos8) respond to the disturbance

created by the injector. It has an interblade phase angle of -125 degrees

and a wave speed of - 9. Two injectors located 180 degrees apart in the

tunnel will create disturbances at all the even harmonics of the tunnel.

The rotor will see the eighth harmonic at eight times rotor rotation speed

or about 1160 Hz. Since this is very close to second blade bending, a

large response in the eighth multiblade mode results. The response after

100 msec is a decaying free vibration which gives another measurement of

aerodynamic damping.
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5.4 Summary of Measured Aerodynamic Damping

The techniques developed have been used to estimate four values of the

damping f or the operating point tested. They are summarized in Table 5-1.

These are, in fact, measurements of the total modal damping; aerodynamic

plus structural. The value of the modal structural damping can be deter-

mined for a rotor spinning in a vacuum and subtracted out to leave only the

aerodynamic damping. These modal dampings were not determined in the pre-

sent investigation. Individual blade structural damping was found to have

a log decrement of 0.015 in the first bending mode. Since this is a factor

of 10 to 50 less than the total damping, it can be assumed that the prin-

cipal source of the measured damping is aerodynamic.
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6. FORCED VIBRATION DUE TO ROTATING STALL

6.1 Stage Performance

With the stage operating just above its design point, a two cell

rotating stall was encountered. The wall static pressure signature from

this run is shown in Figure 2-8 and was discussed in Section 2.3. The

stall cells were found to rotate at a constant 54% of the rotor speed even

though the rotor decelerated during the test time. At the tip, each of the

two cells occupied about one-sixth of the rotor circumference. The rotor

was operated on the nominal 100% speed line with a measured tip Mach number

of 1.22. The mass flow passed by the stage was 66 lb/sec (30 kg/sec), 14%

less than the 77 lb/sec measured in the test at 100% speed just below the

design point. The total pressure ratio measured at 94% tip radius in the

smooth flow between stall cells was 1.70, the same as the pressure ratio

measured by Durali for this radius at the design point.

6.2 Response of the Blades

The procedure used for analyzing the structural data was much the same

as that described in Chapter 5. Fast Fourier Transforms in time of indivi-

dual blade signals revealed that the dominant frequencies in the response

were a low frequency component below 50 Hz, a component at about the rotor

rotation speed, and bands at the blade first bending resonance and second

bending resonance. The raw data was then digitally filtered to isolate the

response at each of these frequencies. Since this run was made in an

earlier series of tests, not all the blade displacement transducers were

functioning and recorded. In view of this missing data and the fact that
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the forcing due to passage of a stall cell is more a local than a global

went, the data was analyzed in terms of the individual blade displacements

rather than the amplitudes of the multiblade modes.

Figure 6-1 shows the blade response low pass filtered in the range up

to 250 Hz. Again, each trace is in a position corresponding to the circum-

ferential location of the blade. The propagating nature of the disturbance

caused by the rotating stall cells can be clearly seen to lock the ampli-

tude signals. The frequency of this response is just the apparent fre-

quency of cell passage which occurs at twice the rotating speed of the

cells in rotor coordinates [2 x (1 - 0.54) x 0 = 136 Hz]. Recall that

since the rotor decelerates, the stall cell rotation speed slows as a

constant fraction of the rotor speed, so the blade forcing frequency drops

through the test.

The band pass filtered response at first blade bending frequency in the

range from 250 to 750 Hz is shown in the same format in Figure 6-2. Not

only is the response of large amplitude, but it is also very closely phase-

locked with an interblade phase angle of about -90 degrees. For a 23 blade

rotor, this phase angle corresponds to a backward travelling displacement

pattern with 6 nodal diameters. If the source of this excitation were

linked to the rotating stall cells, the disturbance would be seen in rotor

coordinates at 6 x (1 - 0.54) x 9 or about 408 Hz, the measured frequency

of response. Since this excitation is just below the first bending fre-

quency it accounts for the strong excitation and phase lock.

A clearer picture of the forcing can be gained by focussing on one

blade. Figure 6-3 shows the low frequency, first bending and second

bending responses of blade 12, as well as the frequency of the first
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bending response. The frequency shown in this last curve is derived by

making a least squares fit of a decaying sinusoid to segments of the data

about 1.5 periods in length. The center time of the segment over which

the fit is made is progressively incremented in time and the process

repeated. The derived parameters of the curve which was fit to a segment

of data, namely its frequency, amplitude, phase, and time constant of decay

or growth, are assigned to the center time of the segment.

Returning to Figure 6-3, the small arrows at the bottom mark the

approximate arrival of the leading edge of the stall cell. From each of

the responses something can be learned about the nature of the forcing

during the passage of the cell, and of the damping while the blade is

operating in smoother flow between cells. The second bending response is

excited by the leading edge of the stall, and less strongly so at the

trailing edge, indicating that the higher frequency content of the distur-

bance is at its leading edge. This implies the blades stall sharply and

recover more gradually. As was pointed out by Bartlett [31] and Day and

Cumpsty [32], this difference between the sharp stall cell leading edge and

more gradual recovery can also be seen in the wall static pressure (Figure

2-8), if one recalls that in fixed coordinates one sees the trailing edge

of the cell go by before the leading edge. In undisturbed flow, the second

bending mode appears to be lightly damped.

The low frequency signal shows that the blade springs back from its

steady forward loaded position towards its neutral rest position as the

cell passes, indicating that the bending load on the blade drops off

sharply in the stall cell. Close examination of this top trace in figure

6-3 as well as the traces of the same low frequency range in Figure 6-1
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reveals that the signal is periodic with the stall cell passage period but

not sinusoidal. For about 60% of the period, the blades are deflected for-

ward by the gas bending loads of unstalled flow. Then for the remaining

40% of the period, the blades begin to relax back to their neutral rest

position, then suddenly regain their steady gas bending load. This tem-

poral division in the behavior of the blade corresponds directly to the

circumferential distribution of the stall cell which was found to occupy

about one third of the annulus at the tip. The conclusion drawn from the

phasing of this response to the arrival of the stall cell (Figure 6-3) and

its time history is that the "steady" gas bending load drops off sharply

during the passage of a stall cell.

6.3 Discussion of the Forcing Due to Stall Cell Passage

Day and Cumpsty [32] have studied the kinematics of the flow within

rotating stall cells in axial compressors. While the details of the flow

were found to depend on the number of stages, flow coefficient and degree

of reaction of the design, there were two traits they found fundamental to

the behavior of flow within the stall cell. First, that the net axial flow

in the stall cell is much less than that of the mean flow, and second that

the tangential velocity of the fluid in the cell is equal to the rotor's,

such that "the stalled blades behave like paddle wheels, sweeping the flow

in their direction of motion, and not at all in the manner of unstalled

airfoils". In rotor coordinates, the average flow within the cell would

have little net axial or tangential velocity although in any part of the

cell, the velocity is non-zero.

The influence that the flow field within the stall cell would have on
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the blade bending load is uncertain. Attention must be paid to the

interruption of the primary flow and the creation of secondary flows in the

cell. If one considers the net or specially averaged flow velocities, the

flow is nearly at rest in rotor coordinates. This reduction in the net

relative dynamic pressure would suggest an unloading of the blade as the

blade stalls and a reloading as the blade recovers. However, the presence

of secondary flow within the stall cells, and in particular the drift of

flow into and out of the rotor at the front of the passages, may cause a

redistribution of loading on the blading.

This redistribution of load can be measured in two ways, as a change in

torque on the rotor, and as a change in bending load on the blades. Note

that these two measurements are not synonymous. Torque is the product of

load times radius from the axis of rotation and can only be measured as an

average over the rotor. Bending moment is the product of load and distance

from the hub radius and can be measured for each blade. For moderate and

low aspect ratio (high hub to tip ratio) stages, this is an important

distinction. In particular, if the loading in a stall cell decreased on

the tip and increased in the root area, the torque could be unaffected, but

the bending load would decrease. Direct measurements of the torque were

not made on the MIT Rotor, but the bending load was found to decrease in

the stall cell as the blades relaxed back to their unloaded position. As

the blade emerged from the stall cell, it recovered its steady load.

That this redistribution of load is a quasi-steady aerodynamic process

can be inferred by comparing the duration of the stall cell passage to the

through flow time of the undisturbed flow and the lowest blade natural

frequency. The length of time any one blade remains stalled corresponds to
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the duration of the stall cell passage as seen in rotor coordinates. For

the MIT Rotor, this is 1/[6 x (1 - 0.54) x 9 ] or 2.4 msec. The flow time

through the passage of undisturbed flow (c/Vw) is 0.26 msec. Thus for about

ten through-flow times, the blades sit in the cell.

Returning to the first bending response in Figure 6-3 and focussing on

the four cell passage events "from 80 to 110 msec" it is clear that once

every three cycles the blade is forced by the stall cell, and in the

remaining time it rings down. The frequency is seen to drop just as the

cell arrives and peak just as the blade unstalls, oscillating approximately

between the forcing frequency at the sixth harmonic of the rotating distur-

bance and the blade natural frequency.

Figure 6-4 shows the modal velocity and force for the same blade, both

of which were calculated from the band pass filtered blade displacement

data. The velocity was calculated with a simple second order finite dif-

ference operator. The force was calculated for the first bending mode

using the model of Equation 3.4, with the interaction of the disk set to

zero, with the modal mass and stiffness derived in Chapter 4. Great care

had to be exercised in calculation of the inertial force since it required

twice differentiating numerical data. Second and fourth order finite dif-

ference operators were tried, but when the inertial and elastic terms were

added, the resulting apparent force was very noisy. Finally, a routine was

developed which for any given point fit a fourth order polynomial to seven

adjacent points (about one third of a period) by a least squares method.

The second derivative was then calculated for the center point from the

fit. The force calculated with the curve fitting technique contained less

noise at the sampling frequency than that calculated using finite dif-
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ference approximations.

The passage of the cell stands out clearly when the force signal is

compared to the velocity (Figure 6-4). As the blade stalls then recovers,

the forcing is nearly in phase with the velocity. Away from the distur-

bance the blade damping is just 180 degrees out of phase with the velocity.

In a sense, each stall cell passage can be viewed as an experiment to

measure the aerodynamic damping. The passage of the cell provides an exci-

tation and locks the phase of the blades to almost exactly -90 degrees. In

the clear flow, the blade motion usually decays, and by plotting the modal

force versus the velocity, as shown in Figure 6-5, it is clear that the

damping force is 180 degrees out of phase with the veloctty. The log

decrement measured this way and averaged over the three events from 90 to

110 msec is 0.2.

In this chapter, the technique to calculate the aerodynamic forces

acting on a rotor by analysis of individual blade displacements has been

demonstrated. Unlike the multiblade method of Chapter 5, this method is

best used when the events are of a local nature, or when the data from all

the blades is not available for transformation to multiblade coordinates.
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7. SUMMARY AND RECOMMENDATIONS

7.1 Summary

1. A method has been demonstrated for the measurement of

aerodynamic forcing and damping of a transonic rotor by an inverse solution

of the structural dynamic equation of motion. The method is quite general

and can be used in the analysis of forced vibration and damping of a rotor

in that region of its performance map where the rotor is aeroelastically

stable, as well as the behavior in regions of instability. It uses data

which is available from conventional strain gauges. In damping studies,

the final result is a direct measurement of the aerodynamic damplng for a

known point on the performance map as a function of the interblade phase

angle and reduced frequency.

2. The experimental and analytical tools needed to implement the pro-

posed method have been developed. Specifically, they are:

a) The rotor must be subjected to a controlled excitation which

causes measurable amplitude response of the blades. The excitation

must be of a type which can be terminated within one period of the

blade vibratory response. In the present investigation a

controllable upstream gas injector was used, but in general any

combination of structural or aerodynamic excitation can be

employed.

b) During and after, the excitation, the displacements of each

blade must be measured. The blade modal displacements must then

be identified by proper transformations and filtering. Either

piezoelectric crystals or strain gauges will provide the data.
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c) An adequate characterization of the structural dynamics of the

blade-disk-shroud-shaft system must be developed and sufficient

data must be collected during the test to determine the partici-

pation of the disk in the response. In this investigation, a

structural model was developed which focuses on the inertial

coupling of the blades through the rigid body mode of the disk, and

three accelerometers were mounted on the disk to measure these in-

plane displacements.

d) A capability must exist to process and reduce the data

gathered in order to solve the equations of motion for the force

acting on the blades. If the equations are expressed in terms of

individual blade displacements the result is a calculation of the

force acting on an individual blade. If a Discrete Fourier trans-

form around the rotor is performed on the blade displacement data

to extract the amplitude of the multiblade modes, the computed

forces are the generalized forces acting on these global modes.

Pairs of these multiblade modes have specific interblade phase

angles.

3. In addition to the elastic deformation of the disk, the rigid body

modes of the disk must be included in any model of the structural dynamics

of the blade disk system. For research rotors with thick massive disks,

these in-plane inertial effects dominate the blade disk coupling.

4. The aerodynamic damping of a transonic rotor operating at a known

point has been measured for several values of the interblade phase angle.

In all cases, the rotor was aeroelastically stable.

5. When operating in rotating stalls the passage of stall cells by a
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blade excite the blade at the fundamental frequency of cell passage and its

higher harmonics. For the rotor tested, the blade bending load decreases

as it enters the stall cell and it relaxes back toward its rest position.

As the cell passes the blade regains its steady load and maintains it until

the arrival of the next cell.

6. In the forced vibration response to three upstream struts, it was

observed that the addition of a two per revolution upstream disturbance

diminished the three per revolution response. This could be due to a nonli-

near mechanism either in the disturbance generation or the blade response.

It suggests that it may be possible to reduce the forced vibration response

of a rotor by "mistuning" the upstream disturbance.

7.2 Recommendations for Future Study

1. A useful demonstration of the techniques developed would be to per-

form a series of experiments on a rotor known to have an aeroelastic stabi-

lity boundary close to or within its normal operating map. A series of

runs could then be made where the rotor was successively run first near,

then at, then over, its stability boundary. The aerodynamic damping of the

mode known to become unstable could be followed from positive damping,

through zero at the boundary, to a negative value in the unstable region.

In this way, a great deal of insight could be gained into the nature of

aerodynamic damping in general, and its role in aeroelastic instabilities

in particular.

2. During the course of this investigation, a great deal of data was

taken on the unsteady pressure field upstream and downstream of the rotor,

both by fixed and rotating transducers. The signal from the rotating total
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pressure probe showed a great deal of response in the range of several

hxundred to a thousand Hertz not readily associated with the blade natural

frequencies or any multiple of the shaft frequency. Surprisingly, the

fixed transducers also showed a great deal of response in this range, well

below blade passage frequency, at about 3400 Hz. The frequencies and

amplitudes as measured by the fixed transducers were similar but not iden-

tical to those measured by the rotating probe. It is thought that this

fcombination tone" noise, responsible for some of the acoustic emission of

modern jet engines, could be related to the unsteady vibratory motion of

the blades. The interaction of the aeroelastic and acoustic phenomena is

important and of great interest, and should be further explored.

3. The techniques developed here for obtaining aerodynamic forcing

data from blade motions should be applied to turbomachine experiments

other than those conducted in the MIT Blowdown Compressor, so as to assess

its general applicability.
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Appendix - Mass Properties of the M.I.T. Rotor

Overall and blade mass properties for all blades

unweighted. (See equation 4.4 for definition)

all blades
unweighted

Md

Mb

MT

I T
MO0

mi 1

M2

(slug)

(slug)

(slug)

(slug)

(slug ft 2 )

(slug ft 2 )

(slug ft 2 )

(slug ft)

.793

.0058

.926

.211

.00105

.00169

.00216

unweighted and for J blades

J blades
unweighted

.00776

.926 + (N-J)

.211 + (N-J)

.00472

.00639

.00750

Blade dimensions and first bending mode shape:

rh rt-5 rt-4 rt-3 rt-2 rt-1

r (in) 5.43 6.56 7.56 8.56 9.56 10.56

Chord (in) 2.63 2.73 2.70 2.89 3.05 3.14

thickness(in) .321 .321 .260 .213 .117 .110

area (in2 ) .844 .745 .491 .431 .378 .242

y (mode shape) 0.00 .0693 .168 .311 .489 .714

.00776

.00601

r
t

11 56

3.17

.0827

.184

1.00
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- Instrumentation used in Aeroelastic Testing in the Blowdown Facility

Transducer

On Rotor Instrumentation:

Rotor Total Pressure
PZT Displacement
PZT Displacement

PZT Displacement
Strain Gauge
Strain Gauge
Disk Accelerometer
Disk Accelerometer
Disk Accelerometer
115 per Rev Tach
1 per Rev Tach

Tunnel Instrumentation:

5 way Probe P1
5 way Probe P2
5 way Probe P3
5 way Probe P4
Total Pressure (Kulite)
Total Pressure (Statham)
Total Pressure (Statham)
Wall Static Press. (low f)
Probe Linear Position
Probe Temp. Signal
Wall Static Pressure (high f)
Wall Static Pressure (high f)

Location 4-Pole Filter
03db Freq. (KHZ)

Blade 8 r/rT .73
Blade 18
Blade 1

Blade 23 (3600 on disk)
Blade 4
Blade 5
1204 on disk'
2400 on disk r/r = 26
360* on disk
Rotor Shaft
Motor Shaft

SRotor TE
f@ r/r 93T

'Supply Tank
Supply Tank
Dump Tank
Rotor TE
Probe Traverser
Rotor TE
1 chord upstream of 2E
1 (.1) chord upstream of LE3

50

0.6
0.6
0.6

1.4
1.4
1.4
1.4

1.4

Analogue to Digital
Converter Channel

MIT1 HS 5
MIT S 9
CAMAC LS

CAMAC LS
CAMAC LS
CAMAC LS
CAMAC LS
CAMAC LS
CAMAC LS
MIT HS 6
CAMAC HS

1

23
24
25
26
27
28

Bl

MIT HS 1
MIT HS 2
MIT HS 3
MIT HS 4
MIT LS 2
MIT LS 3
MIT LS 5
MIT LS 6
MIT LS 7
MIT LS 8
CAMAC HS Al
CAMAC HS A2

Notes: 1. MIT A/D samples at 100 KHZ. (HS) and 10 KHZ.(LS) during "test time"
2. CAMAC A/D samples at 100 KHZ. (HS) and 5 KHZ.(LS) during "test time"
3. When injector was used,transducer was moved to 0.1 chord upstream.

Table 2.1



TABLE 2.2

TIME LINE OF EVENTS IN BLOWDOWN
DURING AEROELASTIC TESTING

Time after Rupture
of Diaphram (msec.)

Event

Diaphram Bursts, Expanding Gas Hits Rotor
Probe Traverse Begins

Probe Reaches r/rT = .93

Beginning of Quasi-Steady "Test Time"
Injector Flow Begins (if used)

Injector Shuts Off (if used)

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150

85

Boundary Layer Bleed Unchokes

Downstream Throttle Unchokes, End Of "Test Time"
Calibration Continues For 30 Seconds



Measured Values of Damping

Interblade
Phase Angle

(0)

- 15.6

- 31.3

- 47.0

-125.0

Frequency
(Hz)

290

290

435

1160

Tip Reduced
Frequency
(wc/2V)

.25

.25

.38

1.01

Table 5.1

Blade
Node

1 Bend

1 Bend

2 Bend

2 Bend

Nodal
Diameters

(n)

1

2

3

8

Time
Constant
(msec.)

4.8

5.1

3.0

6.1

Log
Decrement

(6)

.72

.68

.77

.14



Stall line-,
Region V
(supersonic Region IV
stall flutter)\ (high-backpressure

\ supersonic flutter)

(subsonic/
transonic flutter)

Constant
wheel speed Region III

L (low-backpressure
supersonic flutter)

Choke boundary
Region II
(choke flutter)

Weight flow

Figure 1-1 Compressor performance and stability map.
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ZI)
C,'
w PERCENT

125 % DESIGNa-
WHEEL

108 */* SPEED
85 % 100 %

WEIGHT FLOW

Figure 1-2 Relative location on performance map

of tests performed in search of flutter

boundaries.
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Manifold for Boundary Layer
Bleed

Supply Tank

Diaphragm

Boundary
Layer
Bleed

Scale:.-= I foot

Figure 2-1 Scale drawing of Blowdown Compressor Facility

Dump Tank
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STRUTS ROTOR- -

HIGH VOLTAGE
SIGNAL LEADS PIEZOELECTRIC

CRYSTAL
ASSEMBLY

/ SLIP RINGS

/U SHAFT

\ \ASSEMBLY SEAL

Cut away view of the rotor, shaft and forward centerbody

0

Figure 2-2



Figure 2-3 View looking downstream into the

Blowdown Facility showing the for-

ward centerbody, boundary layer

bleed, gas injector (only visible

on right), and instrumented rotor.
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Figure 2-4 Closeup view of the faired gas injector.

Also visible are the blades on which the

total pressure probe and strain guages

are mounted.
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SECTION

cc INJECTED
ROTATION OF INNER
TUBE CAUSES GAS
SHUT OFF

FLOW

A

ARRAY OF

HOLES

SI TUNNEL
\7 N N 'WALL

Figure 2-5 Diagram of gas injector showing hole

pattern and gas flow path.
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Blade

Strain gages
PIEZOELECTRIC
CRYSTAL

ASSEMBLY Disc rim

gnd. Roll pins

EXCI TATION

live

Figure 2-6 Details of root attachment showing

the location of the piezoelectric

displacement transducer.
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Figure 2-7a Instrumented M.I.T. Rotor with
disk exposed showing instrumen-
tation and wiring.
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TOTAL PRESSURE
TRANSDUCER

POTTED
CIRCUIT
MODULE STRAIN

GAGES (4)

ACCELEROMETERS
(3,1200 APART)

FRONT SLIP
RING CONNECTORS

Figure 2-7b Location of instrumentation on disk and blades.

(Compare with Figure 2-7a)



OOWNSTRERM PRESSURE

UPSTREAM PRESSURE

cc5c

PZT SIGNAL

CD~

20.00 I0.00 60. 0 IMMEC' 0 0

Figure 2-8 Time history of the wall static pressure

measured upstream and downstream of the

rotor, and the response of one blade

piezoelectric crystal (PZT). In this

test the diaphram burst at about 23 msec.
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Mi --- F(t)

K,

DISK

M?

K2 K2

K3

Figure 3-1 Left: Model of an isolated blade mounted

on a rigid disk.

Right: Model of a blade mounted on a segment

of a disk with finite mass and stiffness.
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rH

q y
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Figure 3-2 Structural model of the M.I.T. Rotor with

flexible blades attached to a rigid disk,

which possesses 3 in plane degrees of free-

dom.
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410

0

400- 0 EXPERIMENTAL
VALUE

N

0 RIGID DISK
0 MODEL

390- Kg= 3XIO6

Ke =1.5XI0 4

a =360

380 Kg=3.5XIO6

K9 =1.5X104

a =360

370 1 1

0 5 10 15 20 23

NO. OF BLADES

Figure 3-3 Frequency of the highest observed (in phase)

mode vs. the number of blades participating.
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NOTE: MASS OF CLAMPS AND
ELASTIC EFFECTS OF
WEIGHTED BLADES NOT
INCLUDED IN MODEL

-

o EXPERIME
VALUE

RIGID DISK
MODEL

Kg= 3X10

K9 = 1.5XIC

a =36*

a =360

Kg =3.5 XI

K =1.5 X I

I

5 10

a =360

II

15

NTAL

4

06
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I
20 23

NO. OF BLADES

Figure 3-4 Frequency of the highest observed (in phase)

mode vs. the number of blades participating.
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Figure 3-5 The two observed frequencies of a system with 2 blades

free to participate vs. the angular separation between

blades. (For a 23 bladed rotor, 11.5 corresponds to 180

degrees).
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FIG 5-1A WALL
STATIC PRESSURE
BE IND INJECTOR
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Figure 5-la Upstream wall static pressure measured one inch

behind the injector.
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FIG 5-1B WALL
ATIC PRESSURE

FROM INJECTOR

'.1 I I

.00 60.00 70.00

Figure 5-lb

80.00
T I ME

90.00
(MS)

100.00 110.00

Upstream wall static pressure measured

72 degrees away from an injector.
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z

3C

0

C3

30.00 50.00 70.00 90.00 110.00 130.00 150.00
T IME (MS)

Figure 5-2 Total response of the piezoelectric crystal for

all blades. Each is shown in its proper relative

location.. Blade 23 is shown again as zero for re-

ference.
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Figure 5-3 Power spectrum density of Blade 3

response for the period from 50 to

100 msec.
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Figure 5-4 Power spectrum density of Blade 3

response for the period from 100

to 150 msec.
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FIG 5-5 BLADE I
RESPONSE AND ITS
FREQ. COMPONENTS

TOTRL RESPONSE
A LESS THRN 100 HZ
+ 100 - 220 HZ

o X( 220 - 350 HZ
oC 350 -750 HZ

+ 750 - 1500 HZ

a-

0

50.00 70.00 90.00 110.00 130.00 150.00
T IME (MS)
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TIME (MS)

Figure 5-6 Blade response in the range of 220-350 Hz.

(shown at 4 times the scale of Figure 5-2)
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Figure 5-7 Blade response in the range 350-750 Hz.

(shown at the same scale as Figure 5-2)
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Figure 5-8 Blade response in the range 750-1500 Hz.

(shown at 3 times the scale of Figure 5-2)
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Figure 5-9a Amplitudes of the multiblade modes of the

response in the range 220-350 Hz.
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Figure 5-10a Amplitudes of the multiblade modes of the

response in the range 350-750 Hz.
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Figure 5-11a Amplitudes of the multiblade modes of the

response in the range 750-1500 Hz.

0C0
-I'

0

C)

O

c-

z
0)

ILjo

0
C)

30.00 50.00

0 1



(D SIN 89 MODE
C COS 89 MODE

40.00 60.00 80.00
T IME

0

0

MC)

0

z
0)

LiJ c

0o

03

120.00 140.00

Figure 5-lb Amplitude of several of the multiblade

modes of the response in the range 750-

1500 Hz.
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Figure 6-1

130.00 140.00

The blade response at the fundamental frequency

of the 2-cell rotating stall.
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Figure b-2 Blade response at the first bending frequency

to a 2-cell rotating stall showing the strong

phase lock of the blades.
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FREQUENCYWNAAhMMTJ\/W\/W

80.00

STALL ARRIVAL

9b. oo 100.00
TIME (MSEIC)

1

Figure 6-3 The passage of four individual stall cells

is shown by the response at the forcing

frequency of rotating stall, in the second

bending mode (shown four times relative

scale), and in the first bending mode. The

frequency in Hertz of the first bending re-

sponse is shown at the bottom. Arrows mark

approximate time of arrival of the stall cell.
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Figure 6-4 The modal (tip) velocity and force. Note

that for about 24 msec after the arrival

of the stall cell the force is in phase

with the velocity. Outside that time they

are 180* out of phase.
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