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Abstract

The linear theory of a slender, initially bowed, rotating shaft is

reviewed for both free and forced vibrations, and found to compare well with

a simple experiment on such a shaft. The shaft behavior passing through the

critical speed is described in detail, and the maximum bowed-out static deflec-

tion of the shaft was found dependent on the external damping and the initial

bowing. The amplitude of the oscillatory deflections of the shaft due to

gravity loads increased somewhat near the critical speed, but these increases

were small compared to the large static deflection of the shaft. During rapid

passage through the critical speed, low frequency whirling modes were excited

transiently. At higher rotation speeds, the second critical speed was observed,

and also the first mode was excited subharmonically and appeared as a backward

whirl mode relative to the rotating shaft.
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Nomenclature

AOB

A s, Bc

Cs ,CA

FBY, FBZ

g

h ,n h C

h

I C

M

m

p

q , q

q ,0  q C

t

yc ,zc

CS, CA

N

93 , 2

observed amplitude

amplitudes

structural and aerodynamic damping

forces on bearings

acceleration of gravity

initial bowing of shaft

initial bow = h + h2

shaft stiffnesses

length of shaft

total mass of shaft

mass per unit length

characteristic root = a + iu

elastic deflection of shaft

static elastic deflection of shaft

time

absolute displacement of C.G.

structural and aerodynamic damping ratios

angle of rotation

rotation speed

natural frequencies of shaft

natural frequency, w N = 4. = 3C

frequencies relative to shaft
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1. Introduction

The vibrations of a rotating shaft have always been an important and

interesting phenomenon in mechanical systems. The occurrence of unbalance

vibrations, critical speeds, and associated whirling phenomena is well known

and has been described by many authors. Den Hartog [1] gives a good descrip-

tion of the physical and practical problems involved with these rotating shafts,

Bolotin [2] and Ziegler [3] give good discussions of theoretical aspects of

the problem. Vance and Royal [4] give a good discussion of the applications

to turbine engines. Gunter [5] gives a good extensive discussion of theoretical

and practical design considerations involving details of support motions, damp-

ing, nonlinear effects, hydrodynamic bearings, etc. Still, in many cases, the

consequences of passing through a critical speed region and the amplitude of

the resulting vibrations is often difficult to assess.

The present article reviews the linear theory for free and forced

vibrations of a slender, initially bowed, rotating shaft and compares it with

a simple experiment on such a shaft. It attempts thereby to give a clear

picture of the resulting free and forced vibrations, the amplitudes, the phase

angles, the whirling motions, and the effects of damping for this simple shaft.

2. Review of Theory -- No Damping

(a) Equations of Motion

Consider a clamped-clamped, slender shaft rotating with a constant

rotation speed Q. For simplicity, the shaft will be represented by a concen-

trated disk of mass M located at the center of a flexible but weightless shaft

as shown in Fig. 1. The shaft is represented as having a rectangular cross-
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section so that the resulting elastic deflections q and q in the Ti and c

directions at the center of shaft, can be more easily visualized. Also, there

is an initial bow h and h at the center of the shaft. Rotation of the shaft

is characterized by the angle p = Qt, while "whirling" motions of the shaft

are characterized by vibrations of q and q which are near 90' out of phase

with each other. The axes y and z pass through the two bearings and are fixed

to ground, while the axes fl and C pass through the center of the concentrated

disk mass M and are fixed to it, so that they rotate with the disk mass. All

torsional deflections and vibrations will be neglected in this analysis.

The absolute displacements of the disk C.G. are given by,

yC =(qn + h ) cs - (qC + h sin 1

ZC= n + h ) sin ip + (q + h )cos 1

The corresponding absolute velocities at the C.G. are,

yc = [q I(q + h )]cos -[4 + (q + h )] sin *

(2)

z = [4 - (q + h )]sin ip + [q + Q(q + h )] cos p
C fl 4 4 4 Ti T

and the corresponding absolute accelerations at the C.G. are,
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YC= [ - 2Qq - 2(q + h )]

- [j + 20 - Q2 (q + h )]

cos p

sin 4

(3)

C = [I - 20q - (q ' + h )] sin

+ [j + 2Qq - 2(q + h )q ] cos i

The accelerations above can be resolved along the n and C directions to give

the familiar accelerations in the rotating frame directions as,

C c cos Ip + C sin ip

=q -2Qq + Q2(q + h )

(4)

'C = _c sin $ + Y cos i

= C + 29q H - 02(q + h )

The equations of motion of the rotating disk are obtained by summing all

forces acting on the disk in the H and C directions to give,

Mi + k q + Mg sin P = 0
c H H

(5)

M-C + kC q + Mg cos Ip = 0
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where k q and k q are the spring forces due to shaft deflections and Mg

represents a vertical acting gravity load on the disk. See Fig. 1. Substitut-

ing ic and Cc from Eqs. (4) into the above gives finally,

Mj - 2QMHC + (k - ME 2  =M 2h - Mg sin Qt

(6)

MC + 2QMI + (k - MQ2 M2h - Mg cos Qt

Equations (6) are the basic equations of motion for a slender, rotating,

initially bowed shaft, subject to gravity forces, but neglecting damping. The

MO q and 2QMq terms represent the centrifugal and Coriolis forces respectively.

These equations give the motion q and q relative to the rotating frame. The

motion seen by a fixed ground observer yc and zc would be obtained by substitut-

ing the resulting q and q into Eqs. (1). Also, the forces acting at the

bearings in the y and z directions would be given by

FBY = k q cos p - k q sin i

(7)

FBZ = k q sin p + k q cos *

(b) Free Vibrations and Stability

To investigate the free vibrations and stability of the rotating shaft,

one sets the right-hand-side of Eqs. (6) equal to zero to obtain the homogeneous

equations,
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- 2Qq + (W2 _ 2 q =

+ 20q + (W2 _ q2) q =

0

(8)

0

where w = k /M and w= k /M represent the natural frequencies of the

shaft in the n and C directions respectively. Then assuming solutions of the

form

- ptq - = q ' e q pt
(9)

and setting the resulting determinant of Eqs. (8) equal to zero, one obtains

the characteristic equation,

p4 +(W2 + 2Q2 2 + W2 _2 )2 _ 2) 0 (10)

which can be readily solved to obtain the four characteristic roots p. For

the common case of a circular (or square) cross-section shaft where w = = WN'

the solution of Eq. (10) is particularly simple and yields the four roots,

p = + (WN + _+ ((N - (11)

Since the roots are all imaginary, Eqs. (9) imply the natural frequencies of

vibration a) and u2 given as,
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w 1  w N +

(12)

W2  N -Q for 0 < 0 < UN

Q - WN for > wN

These frequencies are shown plotted in Fig. 2.

The corresponding motions q" and q during these vibrations can be found

by substituting Eqs. (9) into the second of Eqs. (8) to obtain,

- -20p(
q 2 +2 2 q (13)

N

Setting arbitrarily q = C and introducing the roots p from Eq. (11) into the

above gives q = iC for o , and q = -iC for w2 when 0 < Q < wN, while q = iC

for w2 when Q > wN. For the natural frequency w1 , this implies the physical

vibration motion,

q (t) = Re Ce i 1 t = Ccos wit

(14)
iw t

q (t) = Re iCe - i = -C sin wit

which can be interpreted as a backward (clockwise) whirl motion of frequency

w relative to the rotating shaft (see Fig. 1). In a similar way, the 2

natural frequency can be shown to appear as a forward whirl motion for
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0 < 0 < WN, and as a backward whirl for 2 > wN, relative to the shaft. The

motion seen by a fixed observer on the ground yC and z for the w mode, would

be obtained by substituting q and q from Eq. (14) into Eq. (1) to give,

yc = C Cos WNt + h cos (t +$)

(15)

zc = -C sin wNt + h sin (ot +$)

where h = h2 + h and $ is an arbitrary phase angle. The resultant motion

is thus seen by a fixed observer as a forward whirl at frequency Q caused by

the initial bowing h, and a backward whirl at frequency wN caused by the free

vibration. For small bowing (h << C), the motion appears as a backward whirl

as in Eq. (14) only now, the frequency is wN rather than w . Similarly, one

can obtain the motion corresponding to the w2 vibration mode.

In the case of a non-circular (or non-square) cross-section shaft where

W W, the general characteristic equation (Eq. (10) will yield a positive

real root p between w < 0 < o , since the last term of the characteristic

equation becomes negative in this interval. This positive real root indicates

a static instability or divergence in this region. In reality, however, the

static instability is limited by nonlinear bending effects to a large bowed-out

position, rather than to infinite deflection. As the higher frequency w

approaches infinity, the region of static instability increases, and the system

acts like an unstable single degree of freedom system instead of the two degree

of freedom system described by Eqs. (6). It is interesting to note that for

the circular (or square) cross-section shaft, the system never diverges.
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(c) Forced Response

To investigate the forced response of the rotating shaft, one seeks

particular solutions of Eqs. (6) in the form,

q (t) = qT 0 + As sin Ot

(16)

q (t) = qCo + Bc cos Ot

Placing these equations into Eqs. (6) and matching the constant, sine and

cosine terms for each equation yields

(W2 ~ 2 )q=Q 2 h

(W 2 2h

(o ~ C -C2_2

(17)

(W - 202) A + 20 2 Bc --9

2Q2As + (W2 - 2Q2 ) Bc -9

For the common case of a circular (or square) cross-section shaft where

o = WC= wN, these equations can be solved simply to give,

2q h
q-0  2 _ 2 p

WN-

A=Bs c 2
WN

2 
2

, N

(18)
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Substituting these back into Eqs. (16) gives the forced response of the shaft

as,

2
q = h - --- s in P tq m2 _2 - 2

N Q~r N (19)

2
q= 2 2 h - 9cos Qt

W 2 2r 2
oN ~ N

The first term in the above equations represents the effect of initial bowing

h , h , and it bows out the shaft statically more and more as the rotation

speed Q increases until at the critical speed Q = wN, it theoretically goes

to infinity. Beyond Q = wN, the deflections q and q come back on the

negative side and approach the limits -h and -h respectively, thus demonstrat-

ing the well known "self-centering" effect of super critical rotors. See

Figs. 3 and 1. The second term in Eqs. (19) represents the effect of the

gravity loads, and according to the simple linear theory assumed here, it

results in a constant amplitude oscillating deflection of the rotating shaft

of magnitude g/2 = Mg/k, up to and beyond the critical speed i = wN'

The motion seen by a fixed observer on the ground y c and z c would be

obtained by substituting q and qC from Eq. (19) back into Eq. (1), and would

result in,

2

yc = 2 N 2 h cos (Ot +)

N (20)
2

z 2 "= N h sin (Ot+c$) -+ -c 2 ~2 2
WN ~N
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where,

h = 2 + h2

(21)

tan 5 = h /h

This represents a forward whirling motion at frequency Q and of observed

amplitude,

2

A N 2 h (22)AOB= 2 2
oN

2
superimposed on a steady downward deflection, g/w . This again illustrates

the "self-centering" effect of supercritical rotors.

The force transmitted to the bearings in the y and z directions can be

formed by substituting Eqs. (19) into Eqs. (7). For this circular cross-section

beam, the forces become,

FBY k 2 2 h cos (Pt +$)

(23)

FBZ = k 2 2 h sin (Qt + )-Mg

oN

Comparing Eqs. (23) with (19), it should be noted that the bearings feel an

oscillating force due to the bowing and a constant force due to gravity, while

the rotating shaft feels a constant force due to the bowing and an oscillatory

force due to gravity.
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3. Review of Theory -- Effect of Damping

(a) Equations of Motion

The previous results are modified somewhat by the presence of damping.

For the slender shafts here, two main types of damping will be considered,

namely, structural damping of the shaft and air damping. Another type, bearing

damping acts somewhat similarly to air damping.

The structural damping is due to internal motions of the shaft, and is

characterized by forces proportional to the shaft relative velocities as c s qn

and c q C, while the aerodynamic and bearing damping is due to external motions

of the shaft and is characterized by forces proportional to the shaft absolute

velocities as cAy c and cAz ic. It will be assumed further, that all dampings

are isotropic so that c5T = c5s = cs and cAy = cAz = cA. The total damping

forces along the n and C directions (see Fig. 1), can then be expressed as,

F = q c yCos ~p c z sin i

n = -cs rn - A c - CAc

(24)

FCD = -cs C + CA C sin 1k-cA C cos 1

Substituting yC and zC from Eqs. (2) into the above gives the damping forces as,

FnD -cs q1 - cA I C + h)]

(25)

F = -cs qC - cA + n + h )]

It is to be noted that the aerodynamic damping here is proportional to displace-

ments q , q as well as to the velocities q , q
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Equations (25) are added to the right-hand-sides of Eqs. (6) to provide

the effect of damping. Upon assuming a circular shaft (w = o ) and

dividing through by the mass M, one obtains,

2 2
S+ 2(cs + A - 2Qq + (Q _ n - 2AN Qq+I s +~-Qq CA NC NCw

= 2 h + 2CAwNOh - g sin Qt

+ 2(C + CA) q + 202 + -02) q + 2 n

= - 2CAwNQh - g cos t (26)

where one has introduced the critical damping ratios Cs = cS/2wNM and

CA = cA/2wNM for convenience. Equations (26) are the basic equations for

investigating the effects of damping on a slender, rotating, initially bowed

shaft, subject to gravity forces.

(b) Free Vibrations and Stability

To investigate for free vibrations and stability, one again sets the

right-hand-side of Eqs. (26) equal to zero, and assumes solutions of the form

of Eq. (9). Then setting the resulting determinant equal to zero, one obtains

the fourth order characteristic equation,

IP2 + 2(s + CA )Np + (W2 _ 2 )]2 + [20p + 2AwN 2 = 0 (27)
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which can be factored into two complex second order factors,

p2 + [2(gs W + i2Q] p + 2 - 02 + i2

p2 + [2(C +2]p + [W -02 -i2p s + A)WIN iQp[N- ~ - AwNs] =0

Looking at the first factor, one can solve for p to obtain

p = s + CA) wN N s + CA2

This can be simplified by using the identity,

v'A +Bi = + (C + Di)

D= 2 + B2 '- A 2' , C = B/2D

and then assuming small damping Cs' CA << 1, to obtain two of the four roots

p of the characteristic Eq. (27). Similarly, the second factor of Eq. (28)

can be solved to give two additional roots p. These four characteristic roots

of Eq. (27) are,

p - [-(cs + CA )WN s (WN +)i

(31)

p ~ [-(Cs + CA N + CsQ] + (wN -

(28)

(29)

(30)
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These roots are compared with the previous pure imaginary roots Eqs. (11) for

the undamped system. The frequencies are seen to be the same (because of the

CS' CA << 1 assumption), but now there are real parts present. The damping

associated with each of the two frequencies w. and w2 of Fig. 2 are then,

Li + [-(Cs + CA) WN ~ Qs

(32)

W 2 [Cs + CA) wN + Cso

It is seen that the wI frequency mode becomes increasingly greater damped as

the rotation speed Q increases, but the w2 mode decreases in damping until

above some critical speed ncr, the shaft becomes dynamically unstable. This

critical speed is found from Eq. (32) to be,

=cr C s C N (33)

and is seen to depend on the ratio of structural to aerodynamic and bearing

damping.

It should be mentioned that in the vicinity of 0 - WN, the assumption

of Cs' CA << 1 has to be applied with caution for the w2 frequency mode. In

this case, the solution of Eqs. (29) and (30) would not lead to exactly w2 = 0

but rather to a small finite value for w2. In fact, at 0 = wN, Eqs. (29) and

(30) would yield the frequency,

2 - Y s + CA2 (34)
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rather than o2 =0

The mode shapes during the damped vibrations can be obtained similarly

to that for the undamped case, and will result in similar type modes.

(c) Forced Response

To investigate the forced response of the damped rotating shaft, it is

convenient to seek particular solutions of Eqs. (26) in the form,

q (t) = ql qt eiot

(35)

q (t) = qCt + C eiot

Placing these solutions into Eqs. (26), treating the g sin Ot and g cos Ot

terms as the real parts of -g i e t and g eQt respectively, and matching the

constant and eit terms of each equation gives

(WN 2_ 2) q 0 - 2CAN Qq 0 2h + 2 AN h

2?A Q (WN 2 )q 2h - 2 AQNah

[2(c + A QNai + (W - 2Q2)] q + [-202i - 2 ig
2 + CA 2 nC()

[2Qi2i + 2ANN + [2(cs + A Ni + (W2 - 202)] -

(36)
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The first two equations above involving the constant terms q 0 and q10, can be

solved to give,

[(N - 02 - (2 2 ] h + [2 A3 0] h
TI 0 W 2 2 )2 + (2A 2

(37)

qC =
(2 2 2 _(2 [2 3 h[(N - 2 - (2CAwN 2] h - CAW ]h

2 2 2 + (2cAW 0)2
(N A

The second two equations of Eqs. (36) can also be solved for q and q after

some algebra and using the same factoring scheme of Eqs. (27) and (28) to

obtain simply,

- ~ ig
q = 2

N + sN

-9

2 + 2CsW NN~ 2

Substituting these q and q back into Eqs. (35) and then taking the real

part of the resulting equations, gives the final physical forced response of

the shaft as,

q = q - sin (Qt - y)
/2 2

W N U) + (2c )

(39)

q = cO Cos (Ot - y)

N N + (2cs

(38)
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where,

tan y = 2Cs Q/ N (40)

and q 0 and qc0 are given by Eqs. (37)'. The above solution is to be compared

with the no damping case Eqs. (19) determined previously. Again, the first

term represents the static effect of initial bowing, while the second term

represents the oscillatory effect of the gravity load.

Regarding the static effect of the initial bowing, the maximum static

deflection for small damping occurs at 0 z wN. From Eqs. (37), this results

in the maximum deflections,

h h
(qn) = - h , (q0) - h (41)

max A max 2CA C

at resonance. It is interesting to note that the static deflection of the

shaft qn0 and q 0 is strongly influenced by the aerodynamic (and bearing)

damping CA present in the system. In fact, this damping prevents the shaft

from bowing out to infinity as indicated by the no damping solution, Eq. (19),

during passage through the critical speed, Q = wN. An example of the bowed-

out position of the shaft, qn0 and q 0 versus rotation speed 0, is shown in

Fig. 3 for a typical shaft with an aerodynamic critical damping ratio,

CA = .014. It should be noted that qn0 and q 0 do not pass through zero at

the same frequency, but the total static deflection given by q0 =/ + qC2

becomes a maximum at 0 z wN. This passage through the critical speed is easier

visualized by the polar plot of shaft deflection given in Fig. 4.
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Regarding the effect of the gravity load, it can be seen from Eqs. (39)

that the oscillatory amplitude depends only on the structural damping Cs, and

that it decreases very slowly with rotation speed Q. In fact, for small

structural damping Cs, the amplitude remains almost constant as in the

no-damping case.

The motion seen by a fixed observer on the ground y c and z c is again

found by substituting q and q from Eq. (39) into Eq. (1) and results, after

some algebra, in the following,

y = AOB cos (Pt + ) + g sin y
12 2

cN N + (2C24)2

(42)

zc = AOB sin (Pt + $- Cos -Y

W wN + (2Cs

where one now has,

2

A = 2 N h (43)
OB / 2 _ 22 +( ANg2 '

~N - Q + (2 COO~)

(W 2 _ S 2) h -2t:AwN.h
tan = 2n (44)

(2 - 0 ) h + 2Aoh
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and h is the total initial bow given by Eq. (21) while y is defined previously

in Eq. (40). These results are to be compared with the no damping solutions,

Eqs. (20). They again represent a foward whirling motion at frequency 9,

superimposed on a steady downward gravity deflection which is now shifted

forward slightly because of the structural damping Cs contained in y. Figure 5

shows an example of the observed amplitude AOB versus rotational speed 0 for

a typical shaft with an aerodynamic damping ratio C A = .014. The maximum

amplitude is seen to occur at Q z wN and is given from Eq. (43) simply as,

(AOB) = (45)
max A

This is what an observer would see for the shaft at its critical resonance

speed.

4. Experiment

An experiment was performed to examine the basic theoretical behavior

described in the previous sections. The experiment was set up and run by the

latter two authors as part of an experimental project. Some previous initial

work had also been done by another student, Stephen Levin.

The test bed set-up consisted basically of a motor driven shaft assembly,

See Fig. 6. The steel channel frame supporting the shaft was .152 m (6 in.)

wide, 1.829 m (6 ft.) long, and was secured to the test-bed with C-clamps. A

variable speed motor with a range of 0 to 48 Hz was mounted on the test-bed

next to the end of the frame, and was connected to the slip ring assembly by

a. flexible coupling. One end of the test shaft was inserted into a tight
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fitting bushing on the slip ring assembly, while the other end was supported

by two ball bearings separated a few inches apart. This design simulated

clamped-clamped end conditions.

The shaft was made of 6.35 mm (1/4 in.) diameter aluminum 2024 rod, and

had a length of 1.334 m (52.5 in.) between the clamped ends. An aluminum

flywheel with a single slit on its edge was attached to the shaft between the

two end bearings. The slit passed through an optic sensor and gave a short

pulse for each revolution, which could be counted by a frequency counter

to give the rotation speed. Four strain gages were placed 900 apart around

the shaft at the end near the slip ring assembly. The strain signals were

taken out by the slip rings and viewed on an oscilloscope to provide an

indication of shaft bending in two perpendicular directions. Also, both strain

gage signals and the optic sensor pulses were recorded on a Gould direct

writing recorder oscillograph so that a permanent record could be made of the

test runs.

The testing procedure was-as follows. First, before starting the motor,

the natural frequency of the shaft was determined by tapping the shaft in the

center and recording the resulting vibrations on the oscillograph recorder.

This also gave a measure of the damping of the system. Second, the shaft was

rotated very slowly and an oscillograph record was taken. From the recorded

sinusoidal amplitude of the strain gage traces and from the calculated deflec-

tion of the clamped shaft under uniform gravity loading, the center deflection

of the shaft could be approximately calibrated. Next, the dynamic testing was

done. The motor was rotated from zero to maximum rotation speed (48 Hz) and

back down again, and a continuous oscillograph reading was taken. This was
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done several times until the amplification levels on the oscillograph recorder

were set properly. After that, detailed oscillograph readings were taken at

several interesting frequencies, usually at and around resonance. Concurrently,

independent visual observations of the. bowed-out amplitude of the shaft were

also taken by viewing the rotating, bowed-out shaft against a scale placed

under it. Finally, at the end of the run, the slow rotation calibration test

and the non-rotating natural frequency and damping test were repeated as a

check on the earlier tests at the beginning of the run.

5. Results and Discussion

The first and second natural frequencies of the clamped-clamped shaft

were estimated from the expressions,

W1 = 22.0 I/mO

(46)

W2 = 61.7

Using E = 72.5 x 109 N/m2 (10.5 x 106 lbs/in 2) and a mass per unit length

m = .0877 Kg/m (.1272 x 10~ lb-sec2 /in2 ) for this .00635 m (1/4 in) diameter

aluminum shaft, gave theoretical natural frequencies of w = 16.0 Hz

and w2 = 44.8 Hz. These compared reasonably with the measured frequencies

from transient decay tap tests of u) = 15.0 Hz and w2 = 41 Hz. The slightly

lower measured frequencies were probably due to not completely fixed end

conditions.
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The corresponding critical damping ratio for the lowest natural

frequency wN = 15.0 Hz was measured from these transient decay tests as

C = .015 approximately. Of this, the structural damping was estimated from

the material properties to be tsz .001 while the aerodynamic and bearing

damping accounted for the remainder and was taken to be A;z .014.

As mentioned previously, the static calibration of the shaft strain

gage traces was evaluated by rotating the shaft slowly, noting the resulting

sinusoidal oscillograph traces, and using the theoretical center deflection

6c of a clamped beam under uniform gravity loading, namely,

4

mgk (47)SC 384 EI

where g is the acceleration of gravity.

Figure 7 shows a photograph of the shaft rotating close to its lowest

critical speed, 0Qz 15.0 Hz. The large bowed position of the shaft is

apparent.

Figure 8 shows the strain gage traces q and q as the rotation speed

is increased steadily from slow speeds up to and beyond the lowest critical

speed of the shaft. Throughout this range, the amplitude of the gravity load

oscillations remains more or less constant as indicated by theory, Eqs. (38),

except for some small increases near the critical speed of the shaft. The

static position of the traces q 0 and q.0, however, change considerably as

resonance is approached and reach peak values near there. It should be noted

that qc0 and qn0 do not pass through zero nor peak at the same frequency,

which agrees with the theoretical calculations shown in Fig. 3. During a fast
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passage through resonance, a rapid increase, then a rapid decrease in static

deflection occurs which causes a backward whirl transient impulse on the shaft

(see the polar plot, Fig. 4). This transient impulse is sufficient to excite

the low frequency backward whirl vibration mode w2 indicated in Fig. 2. A

more detailed look at this excitation is shown in Fig. 9 where the frequency

sweep-through has been repeated using a faster oscillograph paper speed. The

obvious 90' phase shift between the two traces is apparent and gives a clear

picture of the backward whirl mode w2 whose frequency varies from 1.4 Hz at

0 = 16.4 Hz to 4.3 Hz at Q = 19.2 Hz. These experimental points are shown

plotted nondimensionally in Fig. 2.

Figure 10 shows a corresponding frequency sweep when Q decreases through

the resonance range. In this case, the w2 mode excited is now a forward whirl

mode whose frequency varies from 1.5 Hz at 0 = 13.5 Hz to 2.9 Hz at 0 = 12.0 Hz.

These points are also shown nondimensionally in Fig. 2.

The experimental center deflections q and q shown in Fig. 3 were

determined from the strain gage traces as described earlier. These experimental

points in Fig. 3 were obtained by dwelling at a given fixed rotation speed

rather than from the frequency sweeps indicated in Figs. 8, 9, and 10.

Experimental results seem to agree well with linear theory, using h = 1 mm

and A = .014 (h and h were subsequently deduced for best fit of experimental

data).

The experimental amplitude observed by a fixed observer A OB is shown in

Fig. 5 together with the theoretical estimates. These experimental points

were obtained by independent visual observation while dwelling at a fixed

rotation speed. Again, good correlation is obtained with linear theory. In
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particular, Eq. (45) together with the measured values of h 1 1 mm and cA z .014

gave good estimates of the observed maximum amplitudes at resonance here.

In addition to the first critical speed at 2 = 15 Hz shown here, the

second critical speed at Q = 42 Hz was also determined experimentally.

Figure 11 shows a photograph of this resonance, and the second vibration mode

is apparent. Similar static deflection displacement shifts in q and q

occurred as in the neighborhood of the first critical speed resonance. This

could be analyzed in a similar way using a more accurate distributed mass

modal representation of the shaft instead of the simple concentrated mass model

shown in Fig. 1.

Also, it should be mentioned in these experiments, a small subharmonic

resonance of order 2 was found in the shaft at Q ~ 30 Hz. This is shown by

the strain gage traces in Fig. 12 and indicates the center of the shaft is

vibrating in a backward whirl mode at w ~ 15 Hz relative to the shaft ends,

while the shaft ends were rotating at Q z 30 Hz. The phenomenon was also

observed visually by a fixed observer. This indicates perhaps some nonlinear

mechanism associated with shaft shortening or some parametric excitation is

also ocurring. It should be noted that Eqs. (6) indicate that at Q = 2wN'

there is a natural frequency w2 = WN = E/2. See Fig. 2.

6. Conclusions

The simple linear theory of slender rotating shafts has been reviewed

for both free and forced vibrations. The role of external (aerodynamic and

bearing) damping, internal (structural) damping, and various whirling and

resonance phenomena have been explicitly indicated.
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A simple experiment on a slender rotating shaft clearly revealed the

various features of the linear theory for both free and forced vibrations.

Good agreement was obtained between theory and experiment.

The detailed behavior of passing through the lowest critical speed was

explicitly shown both theoretically and experimentally. The maximum static

bowed-out deflection of the shaft at the critical speed was dependent on the

aerodynamic and bearing damping present, and the initial bowing of the shaft.

Simple expressions, Eqs. (41) and (45) estimated the maximum deflections

achieved.

The oscillatory deflection of the shaft due to gravity loads remained

more or less of constant amplitude except for some small increases near the

critical speed of the shaft. However, these increases were small compared to

the large static deflection of the shaft there.

During a rapid passage through the critical speed, the low frequency

whirl mode w2 was readily excited transiently. This was clearly shown to be

either a backward whirl or a forward whirl relative to the rotating shaft,

depending on whether the rotation speed Q was increased or was decreased

through the critical speed. This lower free vibration mode w2 agreed well

with the theoretical estimates given in Fig. 2.

At rotation speeds above the first critical speed 0 = , the shaft

would appear to run smoothly, and showed the well known "self-centering"

effect of supercritical shafts. However, large shaft deflections would occur

again as the rotation speed 0 approached the second vibration mode of the

shaft. Also, significant backward whirl vibrations of the first mode could

be excited subharmonically when the rotation speed Q approached twice the

first mode natural frequency.
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The preceding observations relative to the higher shaft vibration modes

and to subharmonic excitation of the first mode could be explored further by

using a more complex modal model of the shaft and including nonlinear effects.

Also, further investigations could be made into questions of C.G. offsets,

noncircular cross-sections, bearing motions, bearing damping, nonlinear effects,

parametric excitation effects, and torsional oscillations of the shaft. It is

hoped the present investigation has helped clarify some of the simpler linear

aspects of slender rotating shaft vibrations.
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