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ABSTRACT

An experimental investigation of stall propagation in a stationary circular

cascade by means of high speed schlieren and interferometer photography is

described. This investigation suggests an analytical approach to the problem

which is valid only for an isolated blade row in an infinite flow field but

which is not restricted to small unsteady perturbations or an assumed sim-

plified cascade geometry. Conditions necessary for the existence of the

assumed type of stall cells are described and equations are derived for the

velocity of stall cell propagation.

The propagation velocities predicted for the theoretical potential-

flow model correlate with all the experimental values measured in an isolated

rotor within 15%.

Analysis of the flow model predicts a tendency for the assumed type of

stall cell to split with increasing incidence of the mean flow through the

blade row which appears to correlate with the experimental observation of a

trend for increasing numbers of cells in the rotor.



1 Introduction

The objective of the analytical and experimental work presented herein

is the development of a theory which will enable one to predict the flow

through a cascade of rigid airfoils, or an isolated blade row of an axial

compressor, when the incidence of the fluid on the airfoils is high. It

was discovered in the early days of British jet engine development that the

flow can be unstable under these conditions and that self-induced periodic

disturbances on the flow can develop. The disturbances are caused by the

propagation along the cascade, at approximately the relative tangential

component of mainstream velocity, of regions where the flow is badly sepa-

rated from the airfoils. These regions where the blades are severely stalled

generally are called stall cells. The problem of stall cell propagation

in axial compressors has continued to receive considerable 6ttention since

the pioneering analytical treatment by Emmons (Ref. 5) because of its im-

portance as a cause of blade fatigue failure.

The appearance of stall propagation in aircraft gas turbine engines

generally occurs in the early stages of the axial compressor during any

off-design operating condition in which these stages operate at much higher

than design incidence. This condition can arise because of restriction

of flow associated with engine acceleration or because of operation at

lower than the "design value of reduced engine speed, N/Vt." Several

mechanical devices are in use which tend to prevent the occurrence of

rotating stall by lowering the incidence in the first few stages during

such off-design operation. However, there are weight penalties and/or

aerodynamic losses associated with these devices.

A satisfactory stall propagation theory might lead to: 1) prevention

of unsteady flow due to stall propagation when the incidence of the mean

flow is high; 2) alteration of the stall cell pattern and/or its velocity

of propagation so that for a given cascade geometry and mean flow, the

forcing frequency of the blade loading can be chosen by the designer; or

3) prediction of enough information about the unsteady flow so that blades

can be designed to withstand the unsteady aerodynamic loading.

However, before such a theory can be achieved, it appears that more

must be known about the detailed nature of the flow during stall propagation

1.
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in a blade row than has appeared in the literature. Experiments were run in a

radial outflow circulgr coscade installed in a closed circuit wind tunnel in

order to take high speed schlieren and interferometer pictures of the flow

through a portion of the cascade during stall propagation. Further experi-

ments were run with an isolated rotor of an axial flow compressor. The data

taken in these two test rigs suggest certain approximatins to the flow which

aid in the subsequent analytical treatment of the problem.

The analysis of the general problem of stall propagation in axial com-

pressors is obviously difficult since an unsteady, rotational, three-

dimensional flow of a compressible fluid is involved. In order to retain

the essential features of t4ie flow but to simplify the problem as much as

possible for analytical treatment, the flow is assumed to be two-dimensional

and incompressible and limited to the case of an isolated blade row. It is be-

lieved that further analysis of this problem is necessary before the much

more difficult, three-dimensional and multi-stage problem can be successfully

attacked.

There have been several analyses of the problem with the restricting

assumptions given above.* The main reason for attempting another analysis

of the same problem is the fact that all of the known previous theoretical

work has been further restricted by the assumption that the unsteady

velocity perturbations are small with respect to the mean flow velocity. From

the experimental data presented in Section 4 and in the listed references,

this assumption does not appear to be a good approximation, and the present

analyt is is not restricted to small unsteady perturbations. Moreover,

the previous analyses have been based upon rather restrictive representations

of an isolated blade row, either as a lifting line or infinitesimally

spaced flat plates; whereas, in the present analysis, the chord7 spacing,

shape5 and detailed stall characteristics of the blades are not specified.

Finally, none of the theories, except Ref. 19, has offered apparent physical

causes which determine the number of stall cells. The analytical flow model

used herein appears to present qualitative information in this regard.

* These analyses are given in Refs. 5, 12, 18, 19. A brief summary of
each is presented in Ref. 19.
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From the state of the art at the present time, it appears that the

desirable features of a stall propagation theory are predictions for a

given cascade geometry of:

a) mean flow incidences at which stall propagation is possible

b) the number of stall cells

c) the velocity of stall cell propagation

d) the magnitude of unsteady aerodynamic forces on the airfoils

Such a theory is the goal toward which the work presented herein is directed.

2 Background

Conditions required for the existence of small perturbation stall

propagation and a mechanism by which the stalling of rigid airfoils in

cascade can propagate has been clearly explained in Refs . 5 and 19, where

the cascade is assumed to consist of infinitesimally spaced flat plates of

finite chord which stall at or their trailing edges and between which the

flow is one-dimensional. It is apparent that, as is described in these

references, the diversion of flow around a stalled airfoil tends to stall

the adjacent airfoil on its suction side and unstall the opposite adjacent

airfoil. However, in order to apply the analysis of Ref . 19 to calculate

the velocity of stall propagation, it is necessary to know an "equivalent

chord length" if the airfoils do not stall locally at their trailing edges.

In general, from the data presented herein, it appears that the separation

of the boundary layer associated with stalling occurs more nearly at the

airfoil leading edge during stall propagation and that the flow in the

blade passages is rather far from one-dimensional for typical cascade

solidities. It was further assumed in Ref. 19 that the performance of a

blade; i.e. the "discharge coefficient A," or blade boundary layer dis-

placement thickness, was a function only of local incidence. A result of

the analysis based upon these assumptions was that the harmonics of the

small perturbation travelled at different velocities and it became necessary

to restrict the velocity perturbation upstream of the cascade to a pure

sine wave in the analysis in order that it should maintain its shape as it

propagated. The sine wave shape does not agree well with experimental

data, particularly for small numbers of cells.
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In all the previous analyses, the equations of motion were solved for

the irrotational motion of the fluid upstream of the cascade with the cascade

as a boundary and the cascade characteristics appearing in the boundary

conditions. Since the time dependent differential equations are non-linear,

the assumption of small unsteady perturbations was necessary in order to

linearize and solve the equations. Furthermore, in order to make the boundary

conditions continuous, it was necessary to restrict the cascade geometry to

infinitesimal blade spacing. The analyses based upon the assumption of

small perturbations have yielded valuable information about the qualitative

nature of stall propagation, and undoubtedly this assumption is valid for

the prediction of the onset of propagation. However, the validity of the

analyses in calculating propagation velocities of large amplitude perturba-

tions appears uncertain.

In Ref. 18 an analysis based upon representation of the cascade as a

distributed vortex sheet led to the prediction of infinite velocity of

propagation for some values of incidence unless an arbitrary "boundary layer

phase lag" was included. (This difficulty did not arise in the analyses

of Refs. 12 and 19, where the assumption of infinitesimal blade spacing

was made also.) From the experimental data and analysis herein, it appears

that if the two-dimensional flow between finitely spaced airfoils is con-

sidered in representing the cascade during stall propagation, the propagation

velocity must be of the same order of magnitude as the free stream velocity

even if the "boundary layer phase lag" of the airfoils is zero. As the

dimensions of the cascade shrink to zero, similitude requires that VP
remain finite. The present analysis indicates, also, that the stall cells

must be regions of high losses and low stagnation pressure in a coordinate

system fixed to the stall cell pattern, which is contrary to the assumption

of constant stagnation pressure in the "airfoil theory" section of Ref. 18.

Information derived from high speed interferometer pictures of the

flow through a portion of a cascade during stall propagation suggests an

analytical approach, which does not necessitate the direct integration of

the equations of motion and which is not limited to small perturbations,

infinitesimal blade chord, or infinitesimal blade spacing and which does not

require arbitrary assumptions regarding the location of separation of the

boundary layer from the airfoil or the time required for separation.
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3 Analys is of Stall Propagation in a Blade Row

3.1 Development of a Vortex Flow Model

3.1.1 Experimental and Mathematical Justification

It is noted in the interferometer pictures of rotating stall in a

circular cascade (Figs. 22, 25, 26 and 27) that the vorticity shed down-

stream from the cascade airfoils appears to be concentrated largely in dis-

crete vortices which accumulate at and depart from the leading and trailing

edges of the airfoils as they periodically stall and unstall. Furthermore,

the pictures indicate that the airfoils shed a large part of their bound

vorticity when they stall out. This appears to be true for all of the

circular cascade configurations, Reynolds numbers, and Mach numbers tested.

Experimental data and calculations which support these conclusions and which

suggest that they may be valid also for the flow through a research com-

pressor assembled as an isolated rotor are presented in Section 4. In

general, the data suggest that both the rotor and cascade airfoils which

were used in the tests shed vortices during stall propagation similar to

the Karman vortex-street shed from a flat plate and that the vortices formed

in a manner similar to the vortices formed at the edge of a flat plate

moved impulsively from rest normal to its plane, as in the analysis of Ref . 1.

However, the first suggestion that there might be a strong connec-

tion between stall propagation and vortex shedding was in Ref . 19, where

it was observed experimentally that, as the solidity of the circular cascade

was reduced, the frequency of stall propagation approached the Karman vortex-

street frequency for an isolated plate as found experimentally in Ref. 6.

Similar data for a different configuration of the circular cascade is shown

in Fig. 29.

With the above experimental evidence as a basis, it is assumed that

during stall propagation, all of the circulation downstream of the cascade

is about discrete potential vortices, which are shed from the airfoils

when they alter their circulation upon entering or leaving a stall cell.

The experimental evidence suggests that if this is done, it should be possi-

ble to devise a vortex flow model of stall propagation in a blade row where

the vortex shed from the leading edge of a blade moves across the passage

and stalls the adjacent blade before moving on downstream with undiminished

strength.

There are several advantages which arise from the fact that the

hypothetical flowe.model is irrotational except at discrete singularities.

The most important advantage is that the flow, even though it is unsteady,
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is "kinematic;" that is, the equations of motion need not be integrated to

solve the flow, since the assumed conditions of irrotationality and incom-

pressibility alone are sufficient. This may be shown from the vector identity,

,q2V = grad div V - curl curl V.

The continuity equation,

+ div p V = 0,

shows that div V = 0 since p is assumed constant. Stokes' and Kelvin's

Theorems are not affected by time variation of flow and are sufficient to

determine irrotationality. Since all vorticity is assumed to be concentrated

at singular points and inside airfoil surfaces, curl V = 0 everywhere in the

flow field because the singular points are excluded from the field. Con-

sequently, V 2 V = 0. La Place's Equation is satisfied at every instant of

time, and the flow may be built up by the superposition of the unsteady

potential flows about the vortices which are assumed to be shed from the

airfoils and convected downstream.

If one examines the effect of a single potential vortex upon the

flow about an isolated flat plate, one can obtain qualitative information

which is useful in the subsequent analysis of a complete cascade of airfoils.

3.1.2 Effect of a Vortex on the Flow About a Flat Plate

To find the effect of an adjacent potential vortex upon the circula-

tion about a flat plate of chord L in streaming flow, the method used in

Ref. 13 to estimate bi-plane wing interference is extended. The two-

dimensional flow about a circular cylinder which by the Joukowski trans-

formation can be altered to the desired flow is first considered.

Let -i = + i rj be the complex coordinate in the circular plane

and f( f ) be the complex potential of the flow before the "disturbance"

of the flow by the introduction of the circular cylinder, . Then

after the cylinder is introduced, by the circular theorem of Ref. 13, the

complex potential is given by

where f denotes the complex conjugate of f and I/2,, is the circulation

about the cylinder.
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where vt is the velocity tangent to the circle at & in the "undisturbed flow."

Applying the above result to an "undisturbed flow" consisting of a

uniform velocity W at the angle P and a potential vortex r at (ri, 01), if

one takes the trailing edge of the cylinder to be a stagnation point and

places it at the origin; o/2s gives the circulation required to maintain

the Kutta condition, and

I/2c= vt= (W sin 0 + C

= L W sin P + L cos G
0 2r,

The equation above indicates that if.the Kutta condition is satisfied,

the loci of the vortex r for constant cylinder circulation ro/2g form a

bi-polar system of circles. When the Joukowski transformation is applied

to the flow, the cylinder becomes a flat plate of chord L and the circles

are transformed into curves which pass through the trailing edge of the

plate. The dashed curves in Fig. 1 are the loci of the vortex P for con.

stant plate circulation , which is given by

r LW sin P + n

if the Kutta condition is satisfied. The curve for n = 0 is labeled the

neutral line. When the vortex r is on the neutral line it induces no

velocity -at the trailing edge of the plate and has no effect on the cylinder

circulation.

The effect of plate camber may be estimated by assuming the plate to

be a circular are which transforms into a circle displaced from the origin

as shown in Ref. 16 and indicated in Fig. 2. It can be seen from Fig. 2

that if 9 Is the camber of the plate and if 6 is the displacement of the

circle from the origin, then in the notation of Fig. 2,



0 0
R - 2 =R cos , 2a= R sin-

2a 2
1 / tan t/2

s1in 0/2 a
-__ 1 6

sin0/ t (n /2 an 9/2

ae= tan .1 sin 0/2ta02

The solid curve in Fig. 1 is the neutral line for a plate with camber angle

0 = 300. The displacement of the neutral line indicates the manner in which

the other curves are displaced by the effect of plate camber.

From Fig. 1 it can be seen that if a vortex is in the vicinity of a

plate, the plate circulation is greatest when it is near the trailing edge.

Therefore, if a vortex is shed from the leading edge of one of a cascade

of airfoils, the circulation about the adjacent airfoil goes through a maxi-

mum value just after the vortex passes under its trailing edge. In Figs.

22B, 25 and 26, it can be seen that as the shed vortex r' approaches the

location for maximum '0 , the succeeding cascade airfoil, stalls out and

sheds another vortex FP. In this simple quasi-steady analysis, only the

effect of one shed vortex is considered. However, Fig. 1 indicates that

this is the dominating effect, since the vortices shed from the other cas-

cade airfoils do not approach the trailing edge of the airfoil in question

so closely. The effect of the vorticity shed from the airfoil itself as

its circulation changes is neglected in this simple quasi-steady analysis.

However, it appears that one may conclude that there is little tendency

for a cascade airfoil to stall until the adjacent shed vortex approaches

its trailing edge. A certain amount of time is required for the shed

vortex to move to such a location; therefore, infinite propagation velocity

is precluded even though the time required for the separation of the bound-

ary layer and accumulation of vorticity is neglected. The qualitative

explanation above is a description of a mechanism by which stalling can

propagate along a cascade of airfoils . This description indicates which

9.
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direction the stalling will propagate and that the velocity of propagation

must be of the same order of magnitude as the free stream velocity.

3.1.3 The Trajectory of a Shed Vortex

With the quasi-steady effect of a vortex on plate circulation as

determined in the previous section, it should be possible to estimate a

velocity of stall propagation along a blade row if the trajectory of the

shed vortex can be calculated, and a stall criterion can be established to

determine when the succeeding vortex is shed. Although difficulties are

encountered which appear to be insurmountable, the attempts made to calcu-

late the shed vortex trajectory are presented briefly so that these diffi-

culties may be pointed out and so that some qualitative information can be

derived which is used in the succeeding analysis of Section 3.2.

In the first attempt, the cascade is assumed to be represented by an

infinite series of potential vortices as described in Ref. 17 where it was

shown that the conjugate complex velocity vector given by the geometry of

Fig. 3 is

W) 2 -,-i = fe coth (-g-e )
where z = r e = x + i y = complex coordinate

u + i v = complex velocity vector.

Values of the real and imaginary parts of the function,

e co+h (7r e A.)- /x
are tabulated for various values of in Ref. 17. By plotting this data

into graphs, it becomes easy to calculate (u + i v) at any point z = x in

the field near a vortex street at arbitrary angle A with the vortex at the

origin missing. It is assumed that the vortex at the origin is a free

vortex, having been shed from its airfoil; and its trajectory is calculated

by a stepwise numerical proceedWe making use of the graphs.

The geometry of Fig. 4 is used in the calculation since this

corresponds to the flow geometry of Fig. 22. It is assumed that before the

vortex is shed, the effective incidence on all of the cascade airfoils is

given by the mean velocity vector Wm, which is the velocity balfwqy between

each vortex (or airfoil). (&i)ag the local change from this effective

incidence at airfoil (a) is calculated as a function of the location of the
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shed vortex. The results are indicated in Table 1, where n is the number of

time intervals, 4 t = 20s , after the vortex has been shed, and Pa is the

local mean air angle at airfoil (a). The location of the shed vortex as a

function of n is shown in Fig. 4.

TABLE 1

n ( A i)a

0 55.5* 0
4 56.0 + 0.5*

7 55.4 - 0.1

9 57.2 + 1.7
10 57.8 + 2.3

11 60.1 + 4.6

It is noted in Table 1 that (A i)a is less than 1* until after n = 9. The

effect is the same found in Section 3.1.2 for plate circulation, as a function

of the location of vortex P ; that is, neither incidence nor circulation
increases rapidly at airfoil (a) until the shed vortex r approaches its

trailing edge. This qualitative information is used in the subsequent

analysis of Section 3.2.

If it is assumed that blade (a) stalls at (n = 11), or when (t&i)a = 4.60

(which gives roughly the same vortex location as observed in Fig. 22 at the

time when the succeeding blade stalls), the velocity of stall propagation is

Vp 20 Similar results were obtained when the calculation was made
WX 11

assuming that alternate blades in the cascade stalled simultaneously (which

corresponds approximately to the stall cell pattern of Fig. 22 for 16 cells,
20

27 blades), and the calculated value for Vp/Wx was , about twice the

experimental value.

It is concluded that the representation of the cascade used here is

too simple to give good numerical answers, since the effect of the presence

of the blade at the origin has been neglected after its circulation is shed.

An attempt is now made to include the effect of the blade from which

the vortex r is shed in calculating the trajectory of the vortex f' . it

will be shown that this effect on the shed vortex is to reduce its transport



velocity when it is near the blade, so as to give smaller values for .

The neglected boundary layer time delay further reduces .
WX

In Ref. 10, the following expression is derived for the path of a

vortex in streaming flow over a flat plate using the notation of Fig. 5.

U 
-) S Ir (,G f3) + r .1 -- 4 r

zir- L r 6

I - ro r ~o a- L4  =L2
~~ &m tCOS 26 + 4-r 4o ns .

And for the transport velocity components of the vortex in Fig.5, it was

shown that

where z=r = + and = re u and v are the radius

vector and velocity components in the circular plane or Joukowski transform
tha.*

of Fig. 5. It should be notedy as was shown in Ref. 10, the path of a vor-

tex near a flat plate is not simply the Joukowski transform of the path in

the circular plane but is given by the "Routh stream function."

If it is assumed that the plate sheds all of its distributed

vorticity into the vortex f , 0; and

2. r- sin-&
= W C"S W( ) CoS +( -) +

2T~ ~ = Li LI -n( -Sr

[l ( 4r)]
For this simplest case of one vortex near a plate with no circula-

tion, a finite difference method could be used to determine the time re-

quired for the vortex to move between two points on its path. However,

difficulty arises from the fact that when the vortex is near the plate just

after being shed, the assumption of potential flow gives very erroneous

results. This effect can be observed in the simpler case of a vortex near a

circular cylinder.

12.



In the notation of Fig. 7, the transport velocity components of a

vortex ' near a circular cylinder with no circulation ( f7, = 0) are

r W L1 r ) o( -)

r W - 1 + ()2 sin (0 - ) /2cr
(-) -l

It can be seen from the second equation that when the potential vortex

is near the circle, it moves rapidly around the circle in a counter-clockwise

direction. If it is assumed that the cylinder sheds all the vorticity re-

quired to satisfy the Kutta condition in streaming flow, F, = 0, r = )+,WR sin

and if P is near the leading edge of the circle,

r 0 = W sin P 2 + 2

Therefore, the initial point of the trajectory of the potential vortex

cannot be taken near the leading edge of the airfoil, and the calculation must

be started from some arbitrary point away from the airfoil surface. The

shape of the trajectory and the time required for the vortex to be convected

downstream depend critically upon the initial point chosen, as indicated in

Fig. 6, which shows the location of a vortex after several equal time

increments for two arbitrarily chosen initial points. Examination of Fig. 8

indicates that near the plate the transport velocity with which the shed

vortex moves downstream is less than at points away from the plate. This

information is used in the subsequent analysis, which circumvents the diffi-

culty mentioned above and which has been devised to deal with the problem

of the convection of a series of vortices shed from a cascade of airfoils.

It is interesting to note that there is a point in the flow about

a circle from which the vortex F will not move in an ideal fluid (with

no dissipation of the vortex).

If f = 0, this point is given by 9= P + 90*D

13.
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- -( + r 2 + 1 =F1 [( 
[rE R]

For 0 = 30D and 0 = 1200, r 0, and r ; is plotted as a function r/R in

Fig. 8 for three values of P/ft assuming f'+ JP. = 4kn W R sin 0.

It appears to be quite difficult to establish a suitable initial

point to begin calculating the vortex trajectory and to estimate the time

required for the vorticity to be shed from the airfoil surfaceVto accumulate

at this point. The problem was solved for a special case in Ref. 1, but the

method used appears to be too involved for the problem at hand.

3.2 Analysis of a Vortex Flow Model of Stall Propagation

3.2.1- Derivation of Expressions for Propagation Velocity

Velocity measurements taken during stall propagation indicate that

for a given operating condition or mean flow, the unsteady velocity per-

turbation translates at constant velocity VP along the cascade, and to a

first approximation, the shape of the velocity profile of the unsteady

perturbation is maintained constant. In other analyses, previously listed,

the assumption was made that the profile is constant and it is also made

here, although data which will be presented in Section 4 indicate that this

is not always strictly true. With the approximation that each cascade

airfoil sheds a discrete potential vortex (+ ' ) when it enters the stall

cell and another (- r ) of opposite sign when it leaves the cell, it

follows that all the trajectories of vortices (of same sign) shed from the

cascade airfoils must be translates of the same curve and separated by the

blade spacingt)along the cascade.

The vortices which have been shed downstream must be arranged in a

pattern as shown in Fig. 9. The dashed lines indicate the trajectoftes of

the vortices shed from two succeeding blades0 The (+ I') vortices must lie
on a line b) which eventually becomes straight downstream of the cascade

and the (- P ) vortices must be located along a line c) which becomes

straight and parallel to line b) downstream of the cascade. The region be-

tween lines b) and c) is called the stall cell. Lines b) and c) are of

constant shape in time and move relative to the cascade with the velocity

of propagation, Vp.



In a coordinate system which is fixed to the stall cell, the blades

move down in Fig. 9 with velocity Vp; and the shed vortices move downstream

along the stationary path lines b) and c). The flow is steady in time except

for the effects due to the finite spacing of blades and shed vortices. It

can be seen from Equation (1) that these are local effects confined to an

area within approximately one blade spacing of the cascade and one vortex

spacing of lines b) and c). Flow is diverted to each side of the stall cell

which has the nature of a thick wake.

After they are far downstream of the cascade, the shed vortices are

spaced uniformly by a distance (a) along lines b) and c) and move with

transport velocity V. 0 is defined as the angle between each street and the

cascade axis, and n is defined as the number of vortex spaces between the

streets as indicated in Fig. 9. In Fig. 10 are indicated the velocity tri-

angles associated with the stall cell. The velocity at any point far down-

stream of the cascade is W 2 plus the induced velocity due to the stall cell

(which is the velocity induced by two infinite vortex streets).

If the blades stall out completely when they enter the cell, the

strength of the shed vortices will be of the order of magnitude

r =(WO1 - W 2 ) s

From Ref. 7, for a single infinite row of equidistant vortices, each

of strength [ (+ clockwise) at distances a apart, with the origin at a vor-

tex, and the axis of x along the row, the velocity components induced by the

vortices are

U= r o s inh (2,g y/a)
2a cosh (2 y/a) cos (2g x/a)

(1)

P sin (2g x/a)
2a coh(2i y/a) cos (2g x/a)

Therefore,

S 2 (co s h  - 2 ) Cos 2 x sin2
(s2a a a a ais /

- cosh 29- y/a =cos 2:n*/)

15.



and for 1a

cosh ?ItCos -1t 1 = 0

cosh 5cos -l
a a

2iAx
a =cosh a

sn- 1I7 7 2 ~ osh2 2" -1
aa

a

~tanh
a

max = 2a sinh Zxy/a

Therefore, far downstream, the maximum lateral velocity (normal to

lines b) and c)) the vortex streets can induce on each other is,

max 2a sinh 2gn

where na is the distance between lines b) and c). If n ; 1

we3 - WO,,
max 500 a

and may be neglected.

The basis for taking n > 1 is derived from the hot wire data taken

downstream of the isolated rotor where it is noted that the cells always

cover at least two blade spaces. This appears to be true in general for

stall cells in rotors . In the interferometer pictures from the circular

cascade, Figs. 22B, 25, 26, it is notes that n = 1; however, the downstream
flow field extends only two or three blade chords from the circular cascade, so

the initial assumption of an infinite downstream field is not valid for

the circular cascade.

More than a distance (a) from the vortex streets the longitudinal

velocity induced by them may be neglected outside the cell, while inside

the cell, from Equation (1),

Vi = /a.

16.
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The resultant transport velocity of each downstream vortex is V

as shown in Figure 10.

Solving for the velocity of propagation V from Fig. 10, one finds

Vp = Wg ix - cos 0) tan 0
2 2 2

VP tan (2)

and if 0 0, Vp Wg

This same result can be obtained easily by noting the parallelogram

in the velocity diagram of Fig. 10 and solving for the equal and opposite

side from Vp. One advantage of the assumed vortex flow model is that Vp

can be calculated away from the cascade without solving for the detailed natyre

of the flow in or near the cascade except in so far as this affects the

angle 0. It is observed that VP and the angle 0 are uniquely dependent if

the downstream velocity W 2 is given and if n > 1. Vp does not depend ex-

plicitly on the physical size or shape of the stall cell or the magnitude

of the velocity perturbation. Since the angle has been observed experi-

mentally to be small in many cases, Equation (2) iniacates that the fair

experimental agreement between Vp and WO which has been noted by other ob-

servers is an immediate consequence. However, in the analysis to follow,

the only assumption regarding the angle 0 is that it is not a large negative
angle. Riasons for this assumption will be given.

To continue the analysis, the following variables are defined:

Lv cos

M shed vorticity
ME bound vorticity

XE Wx1
VX

Y the fraction of the downstream periphery-covered by
the stall cell

na/cos 0
d



It is assumed that the circulation around a blade away from the cell

is given by

P= B(g -W0 2 ) (3)

Then Vi = = = M ( -

S N (1)
a =M (X tan 01 - tan 02) COS

The time average continuity equation gives

d . W (d -) na + X2 Vi os 0)cs~ )WX 2 +~~x COVS

X - 1 = Y (1 - N) - Y

X =1 -YN

Solving from Fig. 10 for the velocity with which the vortices move along

lines b) and c), one finds

a WXa ViVa= cos # ~I

Since the frequency with which vortices pass downstream points on lines b)

and c) must be the same as the frequency with which vortices are shed onto

the lines,

s 0w2 - Wx tan0 (tan p-tan,) cos (6)
a Va Wx Vi N 

_ N
cs 2 2

Eliminating from Equations (4) and (6) gives

(tan 12 - tan ) cos 2 O M (Xt- N2 an K. (7)

From the velocity diagram for an isolated rotor in Fig. 11, it can be seen

that

X tan 1i - tan P2 = tan U-.



This relationship is valid only for an isolated rotor with no upstream whirl

velocity (CO, = 0).

It is noted that since the shed vortices are convected downstream,

N < 2. Also, the range of M must be limited to

0 < M < 1.

The curves of K versus N for M(X tan P1 - tan Pa) assumed constant are

parabolas. Curves of K versus tan 0 for P2 assumed constant are almost

straight for Itan 01 < 0.2, as shown in Fig. 12, which is a plot of K versus

tan 0 for P2 = 300 and 500. (Experimental values of p for the isolated

rotor from which data were taken in Section 4 fall between -30 and 50.)

A diagram of K versus N and K versus tan 0 with the intercepts and

peaks labeled is shown in Fig. 13. It is indicated that for a given

value of K, there are either two ot zero solutions for the angle 0 (and Vp).

However, solutions which are physically possible appear to lie on the posi-

tive side of the peak of the K versus tan 0 curve (tan 0> tan Pa - sec P2

in Fig. 13), since experimental values of 0 presented in Section 4 fall

between -150 and + 19", and since all known experimental values of Vp are

less than W9 1 . Qualitative reasoning based on the results of Section 3.1.2

indicates that a blade has little tendency to begin to stall until the

vortex shed from the preceding blade approaches the trailing edge. If

time T = s/vp is required for the vortex to be formed and shed from a

blade and to approach the trailing edge of the succeeding blade when it be-

gins to stall, T is also the time required for the vortex to move from

points 1) to 2) in Fig. 9. Since it has been shown that the velocity of the

shed vortex is less when it is near the blade than when it is downstream

(for an isolated blade and vortex) and since there is a boundary layer time

delay required for the vortex to be formed, it would appear that large

negative values for 0 are impossible for typical cascade geometries. This

precludes the possibility of infinite propagation velocity, since from

Equation (2) for Vp oo , 0-+ -90*.

It is assumed henceforth that

tan Pa - sec P2 < tan 0 < tan Pa

which is equivalent to assuming that

19.
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0 <V P < We

as shown in Fig. 13. Since in this range of 0, K versus tan 0 can be roughly

approximated by a straight line which passes through the intercepts (tan 02, 0),

(0, tan 02); it can be seen from the geometry of Fig. 13 that

VP:KQ: N- N/2 (8)
M(X tan 13 - tan 132 )*

Or, for an isolated rotor

R N - N2/2

S Wx2  M tan .2

rjN - N2/2N0  2
W02 M tan 2

The above approximation should be sufficient for the general relationship

existing between the variables to be given by Equation (8). If N = 1,
there is small net axial flow through the blades in the stall cell since

lines b) and c) in Fig. 9 are path lines and the mass flow into the cell

through the blades must be equal to the axial flow in the cell downstream.

It is assumed that the blades in the stall cell must lose most of their

circulation if N 1 I, and as a result M 1.

Experimental values of N appear to be close enough to unity for the

assumption that N = 1, since the variation of K with N is small for N near

unity as shown in Fig. 15, (if 3/4 < N < 1, 447 .50).tan Ca 2

For an isolated rotor (CO, = 0) and for (M = N = 1), Equation (8)

becomes,

=~ K~ gcotan a2
Wx2  2

(9)

Vp " cotanrap

7g-2 2

Equation (9) gives an approximate prediction of the propagation velocity

for the type of stall cell assumed based upon the approximation that K versus

tan 0 is linear. However, if M = N = 1, Equation (7) can be solved for
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tan 0, and a better answer can be obtained without recourse to this approximation.
If M = N,= 1, Equation (7) becomes

1 + tan 2 0
tan -2 tan 0 =2(X tan P1 - tan P2)

0 = tan2O + 2(X tan 3, - tan p2) tan 0# 1 - 2 tan P2 (X tan Pi - tan P3)

tan # -(X tan Pi - tan Pa)

+(X tan Pi - tan Pa) - 1 + 2 tan P2 (X tan Pi - tan 021

= tan P2 - X tan P1 t +(X tan Pi - tan p2 )(X tan PI + tan P2)-

=tan P2 -X tan i (Xa i-tan Ba

... = tan P2 - tan 0 = X tan Pi4X2tan2pi - tan2 - 1
Wx2

- tan Pi tanap - x2  (10)

The plus sign for the radical in Equation (10) is discarded since it implies

that tan 0 <.tan Pa - sec 32.

Therefore,

VP 1 1- We2 and

(11)

y 1 stall pattern RPM

V- 1 WO rotor RPM

for an isolated rotor, since We = U, and yg = U -vp

If it is assumed that an isentropic pressure coefficient may be used

outside the stall cell, then
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C P2-P - (K 2
p 1/2 p W12 an

0  _(WX2 COS 2 1 1 + tan
WxI COS P2 3 I + tan2P,

x 2(l- Cp) = 1 + tan2 3p

1 + tan2
1I

Therefore, substituting in Equation (10),

Wx1 = tan 13 - tanp 1 -(1 + tanf 1 ) C-

VP tan 01 - tan2 13- (1 - Cp) - tan2p, + Cp tan p1

tan Pi. - -

cos2 1 (12)

tan 1 -

Or, using coefficients as defined in Reference 2

1
tan P,

1/2 p C012

02

Equations (11) and (12) indicate that stall cells of the type assumed (N = M = 1,

0 <Vp <. We1 ) are impossible unless W2 < W 1 or Cp > ceehi.

If W2 = W01 , Vp = We1 and tan 0 = tan P2 - sec P2, as indicated in

Fig. 13 and CP = cos2P,. It is interesting to note that this corresponds

to the propagation velocity predicted in Ref. 19 for a simplified cascade
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geometry and entirely different type of stall cell, where the upstream velocity

perturbation was assumed to be a sine wave of small amplitude and many blade

chords wave length. In Ref. 19, for this type of cell, it was shown that

VP 2(1 - Cp)
sin 2 Pi

If Cp = COS 2 1

Vp , 2sinN -

VP = W 1

The preceding analysis of Section 3.2.1 indicates that this is a limiting value,

and that for the assumed type of finite amplitude stall cells to exist,

C P cos2p 1.

It is assumed in the preceding analysis that all of the downstream

circulation is about concentrated vortices. The implication is that: 1) the

wakes shed from the blades outside the cell are thin enough or mix soon

enough to be neglected, and 2) this is also true for the blade wakes in the

cell (or that the velocity through the blades in the cell is small enough

that the vorticity shed inside the cell can be neglected). The assumption

of M = 1, together with that above, implies that the blades outside the

cell have no drag and those inside the cell have no lift. It is assumed

that the analysis is valid for more than one cell if they are spaced far

enough apart so that Equation (3) remains valid, since the cells induce

no velocity on each other except for their blockage effect on the main flow

which is considered in the analysis.

Since in a coordinate system fixed to the stall cell pattern of Fig. 9,

the flow is steady and the streamlines are straight and parallel downstream, the

static pressure is constant downstream. There is a "head loss" in the stall

cell determined by the velocity defect there, just as in the case of a bluff

body wake, and the fraction of the downstream periphery covered by stall

cells could be expressed by a time average loss coefficient of stagnation

pressure. The qualitative nature of the flow for (M = N = 1) is similar to
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the flow about a flat plate translating along the cascade at velocity Vp and

blocking the flow through a portion of it.

3.2.2 Analysis of Model for Small Perturbations

It is noted that Equation (7) gives a relationship between the three

parameters (M, N, 0) and was developed without any assumptions regardins blade

stall characteristics other than the assumption of discrete vortice down-

stream. If another independent equation can be derived between M, N and

by specifying the dynamic blade stall characteristics, Vp can be determined

as a function of N only, or the stall cell amplitude.

For small perturbations, M and N can be related to lift and drag

coefficients since for an isolated airfoil,

lift =pWP. 1/2p W2 . L . CL

CL . L

The assumption is made, as in Ref. 18, that for a cascade of airfoils also

CLW

2

where W is the local mean velocity and r, the bound vorticity at an airfoil.

M(N, 0) can be determined independently of Equation (5) if CL is a known
function of local mean air angle P as determined by the local incidence.

It is difficult to determine W and P at the airfoils near the cell

for arbitrary values of N because the shape of lines b) and c) in Fig. 9

must be known. (This difficulty disappears for N C- 1, since for small

flow through the cell one can assume the blades shed all their vorticity;

and M = 1 regardless of the shape of the cell, as in the previous analysis.)

However, if N.<< 1, lines b) and c) must be straight even near the cascade,

and it becomes possible to determine W and 1 by restricting the amplitude

of the stall cell to a small perturbation.

For the velocity induced by a straight vortex street of finite

length, Equation (1) indicates that, except in the immediate vicinity of the

street, it may be considered as a distributed sheet of strength per unit

length r therefore, with the notation of Fig. 14, the velocity components
a

induced by an element of length dx are:



25.

' dxdu = - e - sin 0

r dxdv - Cos 02ina r

For a sheet of finite length, as in Fig. 15:

U r (tan tane

23ta J x2 +y 2  2, a

V ~ _ = Ij d xnf (X2 + y 2) (X1
2 + Y

u g, 2 - a

2i=au .8
(13)

It follows that the velocity induced at the blade in the center of the stall

cell, Vie, as shown in Fig. 16, is. parallel to the streets and equal to

if m >> n. For various assumptions of CL (0), one might assume that the

blades in the stall cell have a circulation corresponding to W and 0 at

the blade in the center of the cell, and calculate VP as a function of N.

However, rather than assuming CL (1) and proceeding as above, one

can start with an assumption regarding the angle 0 which appears to be

supported experimentally. Values of M which correspond to values of N as

determined by the dynamic stall characteristics restrict K versus N to an

"operating line" similar to the dashed curve of Fig. Up. As N -)" 0, M -p 0;

and Equation (8) becomes indeterminate. However, if it. is assumed that 0
must remain small as N -> 0 for the reasons given on page 19 , (in Section I

for N 1=2 3/4 , -15* < 0 < 20*) the type of dynamic blade stall character-

istics which satisfy this requirement can be determined as follows.

It is assumed that the M versus N curve must pass through the two

points (0, 0) and (1, 1) in Fig. 13, and an intervening M versus N
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relationship is sought which gives small angles 0 for N << 1. It is seen

that M = Np is a convenient function to work with. From Equation (7) values

of 0 are calculated as a function of N for various values of p and for typi-

cal experimental values of a2 and Pa from the isolated rotor. It is shown

in Section 4 that for each of two rotor-stagger angles A tested, a2 and Pa

were essentially constant in the range of 13, for which there was rotating

stall and that for

.20 a 2  370 a 2  40'

" -2 a =500 and for t =0' P2 0'

The result of calculating tan 0 versus N for .05 < N 4 .2 and various

values of p using the above values for a2 and P2 are shown in Table II,

where it is observed that for small perturbations on the assumed flow

(N << 1) and small angle 0, p t1 and M N.

TABLE II

for (P) = 500 (a2 )0 = 37

p 0 p =7 p = .85 p l p =1.2

N M=N 0  tan 0 M=N' 7  tan 0 M=N 85 tan0tan M=N1.2  tan 0

.05 1 1.1 .12 .47 .08 .24 .05 Imaginary .04 Imaginary

010 1 .9 .20 .41 '14 ,21 .10 - 41 .06 "

.20 1 .8I .32 .32 .25 .20 .20 0 .14

for (Pa) = 30* (a). 40*

p =0 p = .6 p = .7 p =
8 5

N M=N 0  tan 0 M=NO 6  tan M M=NN tan 8 M=N5 tan 

.05 1 .5 .16 .20 .12 .08 606 - .22

o10 1 .45 .25 .16 .20 06 .14 - .19

.20 1 '037 .38 .02 .32 -.10 .25 - .65

Furthermore, it is noted from Equation (7) that if N << 1 (such that N2/2

may be neglected), the same solution for 0 and VP results if M = 2 N << 1 as

for M = N = 1. It appears, therefore, that for small perturbations, and

small angles 0, the percentage of vorticity the airfoils shed upon entering
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a stall cell must be approximately equal to the percentage of downstream axial

velocity defect in the stall cell. Therefore, the reason that small perturba-

tion stall cells are not commonly observed may be that a compressor blade

generally is thin, stalls from its leading edge during stall propagation,

and must shed a large percentage of its bound vorticity. This description

appears to apply to the dynamic stall characteristics of the airfoils used

in Section 4 although in quasi-steady flow they exhibit a continuous CL versus

i curve even in stall as indicated by Figs. 18, 23, 46 and 53. It is shown

in Section 4.1.4 that the airfoils display stall characteristis during stall

propagation which depart considerably from their quasi-steady stall character-

istics. It is felt that the sudden increase of i as the airfoils enter a

stall cell causes them to stall abruptly from their leading edges for the

reason given on page 56 , even though they stall "gently" with a slow (quasi

steady) increase of i.

A qualitative reason that a compressor blade should not shed a small

vortex from its leading edge during stall propagation was indicated in Ref. 1,

where it was shown that for a flat plate moved impulsively from rest normal

to its plane, vortices must form at the edges of the plate (if infinite

velocity is precluded) and that during the initial formation of these edge

vortices, similitude of the flow requires them to grow until they 'are not

small in proportion to the width of the plate. Of course, the stronger the

vortex shed from a cascade blade, the greater is the tendency for the adjacent

blade to stall as the vortex moves past it and the greater the tendency for

stall propagation; however, there is no apparent reason why propagation of

small perturbations should not occur excpet that this appears to be precluded

by the dynamic stall characteristics of the -airfoils.

Since small perturbation stall cells which are two-dimensional (hub

to tip in a rotor) and stable have never been observed experimentally to

the knowledge of the author, the analysis is pursued no further. The dis-

cussion above is offered as a qualitative speculation (not an attempt to

prove) that small perturbation, two-dimensional stall cells cannot exist.

3.2.3 Prediction of a Trend for the Number of Cells

The vortex flow model used in the analysis appears to offer an ex-

planation for the general trend toward larger numbers of cells with increasing
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throttling of flow as indicated by the experimental data. The experimental

results indicate that with further throttling of the flow through an isolated

rotor after the formation of one stall cell, the cell first grew wider

(n increased in Fig. 9), then two cells appeared and grew wider, etc. until

four cells appeared and surging flow began. The vortex -f low model indicates

that if m is finite in Fig. 16, the velocity induced by the stall cell at

the blade in the center of the cell, (Vi)c, decreases as n increases. Thism
effect can be shown qualitatively by assuming the lines b) and c) to be

entirely straight. Then from Equation 13 , if m >; n

(V (1/2 n )
As =l inre

As increases, (Vi)c decreases faster than near the edges of the cell, there

is more flow through the center of the cell than near the edges, and the

blade at the center of the cell tends to unstall, thereby splitting the cell

into two cells which become distributed axisymmetrically around the rotor.

It does not appear possible to predict when a stall cell will split

as increases without detailed information regarding the dynamic stall-

unstall characteristics of the airfoils and the shape of the cell (lines b)

and c) in Fig. 9). The estimated relationship between and (Vi), abovem (i
does not indicate much effect on (Vi)c until 1/3. The measured effectm
is much greater and is described in Section 4*

3.2.4 Summary of Anasis

By making use of experimental data in order to develop a simplified

analytical flow model, a theory of stall propagation in an isolated blade

row has been developed which appears to be based upon fewer restrictive

assumptions than some of the earlier analyses. In the analysis, a restric-

tion is imposed upon nature of the stall cells. Although the approximation

to the actual observed flows appears to be valid for all the blading,

geometrical configurations, and flow conditions for which experiments were

run, it is unknown how valid the approximation is in general. It is

suggested that the approximation regarding the nature of the cells might

be widely applicable to continuous cascades of thin airfoils, where the

flow extends many blade chords downstream of the cascade.

It should be noted that in the preceding analysis no proof of existence,

equilibrium, or stability is given for the assumed flow model. The experi-

mental data in Section 4 are offered in lieu of mathemat;ical proof.
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1 Experimental Investigation of Rotating Stall

4.1 Investigation in a Circular Cascade

4.1.1 Description of Apparatus and Procedure

With the sponsorship of the National Advisory Committee for Aero-

nautics, a circular radial-outflow cascade was designed and installed in the

closed circuit wind tunnel at the Gas Turbine Laboratory during 1953. The

cascade was designed specifically for investigation of rotating stall and is

described in detail in Ref. 9. In Fig. 17 is shown a schematic view of the

test section which includes a ring of variable angle guide vanes with which

the air inlet angle to the test cascade, P1, can be continuously varied.

Some dimensions of the test caseade are:

radius to guide vane trailing edges 7.2" to 6.7" (varies

with Ps)

radius to blade leading edges and measuring stations 1 and 2 respectively

for Configuration A; 7.91, 7.69, 8.94 inches

for Configuration B; 8.66, 8.444, 9.69 inches

blade chord .96 inches

blade span 1.71 inches

blade profile NACA 65(12)10 as changed by circular transformation

number of blades - 54, 27, 18, 9 - giving nominal solidities G- = 1,

1/2, 1/3, 1/6

simulated linear cascade 65(8)10, mean line a = 1.0

Some advantages of the cascade geometry are:

1) The flow is two-dimensional through the cascade neglecting the

wall boundary layers.

2) Optical measurement of the flow through a portion of the cascade

is possible.

3) A continuously rotating stall pattern can be established, which

is not possible for a finite length linear cascade.

Some disadvantages are:

1) Because of the radial flow, the pressure distribution about the

airfoils is not precisely the same for a given pressure rise through the

cascade as in a rotor or linear cascade. As described in Ref. 9, a correc-
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tion was made for this effect by designing the cascade through the conformal

transformation of one linear cascade such that the adverse pressure gradient

on the suction side of the airfoils in the transformed, circular cascade was

approximately equal to that for a second linear cascade which was simulated.

It was found that the circular transformation of a linear NACA 65(12)10 cas-

cade gave approximately the same adverse pressure gradient on the circular

cascade blades at the design point as for a linear NACA 65(8)10 cascade.

The data for the linear cascade pressure distributions were taken from

Ref. 8. The degree of success of this procedure is indicated in Section 4.1.4

where the pressure distribution about the circular cascade blades is cal-

culated and compared with those from Ref. 8 for one value of i.

2) The flow field downstream of the cascade is necessarily rather

short which appears to have a pronounced effect on the rotating stall cell

pattern as discussed in Section 5.

In Ref. 19, an experimental investigation of rotating stall in the

circular cascade is described, which was conducted to determine the detailed

nature of the flow and to ascertain the effects of Mach number, Reynolds

number, mean incidence, and cascade solidity on the propagation of stall

cells in the cascade. The experimental work described here is a continuation

of this investigation. The procedures and instrumentation are largely the

same as described in Ref. 19 except for the use of the Gas Turbine Laboratory

portable Mach-Zehnder interferometer and a piezoelectric crystal pressure

pickup described in Section 4.1.4.

The purpose of the present investigation is to extend the above data

to include the effects of lower cascade stagger angle, of higher mean

incidence to the cascade, and of increased clearance between guide vanes and

test cascade. Quantitative measurement of the pressure field in a portion

of the cascade during stall propagation is also attempted by means of high

frequency interferometer pictures.

All of the tests in Ref. 19 were made with a cascade stagger angle A

fixed at 43. The highest angle to which the guide vanes could be turned

gave an entering air angle P, to the cascade of 690; therefore, the highest

mean flow incidence angle, i, possible was 26*. Stall propagation started
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at i = 20. In Ref. 14, it was observed that stall propagation existed in a

rotor plus guide vane axial compressor stage for 54' < i < 470 (relative to

the rotor at mean radius). Therefore, it was deemed desirable to alter

the linkages to the guide vanes to permit greater incidences to the cir-

cular cascade . It was noted in the schlieren pictures presented in Ref. 19

that during stall propagation in the circular caseade, when an airfoil

stalled some of the fluid from the separated boundary layer was washed

around the leading edge of the succeeding airfoil before it stalled. In

hope of decreasing this effect, to increase further the incidence on the

cascade airfoils, and to observe any other effects on the nature of the

flow, the stagger angle of the cascade was changed from 43* to 310. For

the altered guide vane linkages and reduced stagger angle, the range of i

was from 13* to 53*. With these two alterations, the following data,

similar to that presented in Refo 19, were taken at the reduced stagger

angle and over a greater range of incidence during stall propagation.

Throughout Section 4.1, Cp is defined as the ratio of time average

static pressure rise through the cascade to the dynamic pressure of the flow

P2entering, - , where J2 and p1 are wall static pressures as measured
1/2 p1W

2
Y

by the average of three equally spaced taps at measuring station 2 and three

at station 1. It was determined that each of the boundary layers on the

cascade walls was less than one-eighth inch thick before the onset of stall

propagation and they are neglected henceforth.

In all the series of schlieren and interferometer photographs such

as Fig. 19 and Fig. 25, time is from right to left. All the schlieren

photographs were taken at, 5000 per second and all the interferometer photo-

graphs at 6000 per second.

4.1.2 Experimental Results - Configuration A

Pressure coefficient C as a function of P, for cascade solidity

of unity is shown in Fig. 18 for two levels of Reynolds number Re1 . The

conventional (Cp)max is at Pi = 46* in Fig., 18. Subsequent hot wire data

and schlieren pictures indicate that periodic stall propagation occurred

at the peaks in the curve where Pi was 54*., 620, 680, and for 13 greater

than 79*. On each side of the peaks the stall cells gradually became
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tively steady in time. Visual observation of the flow through the schlieren

apparatus for values of 13 between the peaks of Fig. 18 showed that the flow

was completely separated from the suction side of the airfoils.

As 13 was varied, the mass flow through the test section was held

approximately constant; therefore, Reynolds number and Mach number increased

with 13 for each curve plotted, as indicated in Fig. 18.

It is noted in Fig. 18 that there was a distinct effect on Cp caused

by change of Reynolds number for 58 < Pi < 740. At the lower Reynolds nuw

bers propagation no longer occurred at the band of P3 centered at 620 and

the band at 68* became narrower. When the Reynolds number was decreased to

50,000 both of these bands disappeared; but propagation at the 54
0 band

became more violent and periodid, and the band at 790 was not affected

noticeably.

Schlieren photographs of the flow were taken in each of the bands of

13 for which there was stall propagation. The same equipment was used as irt

Ref . 19, the five inch portable schlieren apparatus of the Gaa Turbine

Laboratory altered to use an Edgerton Germashausan and Grier type 501

stroboscopic light source and a General Radio Corporation 35 mm. camera.

Sections of each of these four films are shown in Fig. 19.

The velocity of propagation and the number of cells in each band of

P, were determined from the films above and hot wire velocity measurements

made upstream of the cascade at 7.69 inches radius. This data is presented

in Fig. 20 together with values of Vp/Cr1 predicted for a circular cascade

by the equation on page 42 of Ref . 19. (Values for Pa used in this equatim

were determined by extrapolation from the values measured in schlieren

photographs before the onset of stall propagation as was done in Ref. 19.)

Traverses of the hot wire across the span of the cascade airfoils

indicated that the flow was two-dimensional for all the bands except for P1.

greater than 790 where the velocity fluctuations were about twice as great

near the walls as in the center of the blade span. Typical hot wire traces

taken at r = 7.69 inches for the four bands of propagation are shown in

Fig. 21. The hot wire equipment used was a Flow Corporation model HWB

hot wire anemometer and another similar unit with hot wires of .005 mm.
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diameter and .04" length.

By careful examination of the negatives from which Fig. 19 was made,

one .can discern the wakes from the upstream guide vanes. It was attempted

to make one wake more visible by heating a turning vane with soldering iron

filaments brazed to each end. However, no effect could be noticed in the

pictures. In Fig. 19A, during the first band of 13 for which there was

propagation, neither these wakes nor the fluid from the adjacent separated

airfoils were washed over the leading edges of the airfoils during stall

propagation. In Fig. 19B, a turning vane wake just barely flicked' over the

leading edge of each blade before it stalled and not much of the separated

fluid from the adjacent blade was washed over . In Fig. 19C, the same wake

as in Fig. 19B crossed back and forth over the leading edge of each blade

and more of the separated fluid was washed over. In Fig. 19D, the wakes

cannot be detected. It is probable that the wakes and separated fluid

injected into the blade boundary layers bad an effect on the time required

for the blades to stall. This may have caused the great increase of propa-

gation velocity from Fig. 19A to Fig. 19B. This effect is more evident

when YE is calculated, rather than Y. For the bands in order of increasing
C91 Cr0

Pti, was .13, .26, o28, .25. Thus, increased by a factor of two fromC(), C() 1

the first to the second band and then remained virtually constant.

Because the stall cells were not all precisely the same size and

shape for a given mean flow, there is an uncertainty in measuring Vp and

the number of cells. It is believed; that the uncertainty in determining

the number of cells was less than five for the first band, three for the

second and third, and zero for the last band at 710. The uncertainty in Vp

is about 12% for the last band, 8% for the first and less for the other two

as indicated in Fig. 20.

When half the blades were removed from the cascade, this being the

only alteration, the following experimental results were obtained for con-

figuration A, at a value of 6 = 1/2.

Pressure coefficient CP versus P, is plotted in Fig. 18 so that

comparison can be made with the data for 6f of unity. It is observed

that for (f = 1/2 there was a mean pressure drop through the cascade for

some values of 11. Hot wire traces showed that the first band of 13 for
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which there was stall propagation was at 54* and was very narrow. The signals

were never periodic, but were intermittent with occasional lapses to high

frequency turbulence For 60*< P3.-<' 64* a periodic signal was observed as

shown in Fig. 21E. For 64 0 4 p1 - 790 there were low amplitude, unperiodic

fluctuations in the flow which became more distinct for 31< 79. Traverses

of the hot wire indicated that the velocity fluctuations were two-dimensional

and periodic only for 600< f3< 640. In the 540 band, velocity fluctuations

existed only in the center third of the blade span and for P3 < 790 only

in outer thirds of the span near the walls.

Schlieren pictures were taken for P = 60* and a section of the film

is shown in Fig. 22A. From the film and hot wire traces the number of cells

and their velocity of propagation were determined and are indicated in Fig. 20.

In Fig. 22A, the wakes from two of the guide vanes are visible. (They have

been darkened to aid in reproduction.) From the motion of these wakes it

is apparent that the unsteady fluctuations in the flow are large. It is ob-

served that the wakes briefly cross over the leading edges of the cascade

blades as they fluctuate . In Figs. 19 and 22A, the boundary layer appears to

separate from near the leading edges of the airfoils when they stall and to

reattach when they unstall.

When the Reynolds number was lowered below 50,000 for a value of

1/2, the velocity fluctuations became non-periodic and of very low

amplitude for all the bands of P, where stall propagation had existed at

higher Reynolds numbers.

In Fig. 22B is seen a section of an interferqmeter film taken for

the same flow geometry as Fig. 22A, although Re, and MI are higher for

Fig . 22B, being 333,000 and .47 respectively. The bands in Fig. 22B

indicate lines of constant-mean air density, which correspond to lines

of constant pressure if isentropic flow can be assumed and lines of con-

stant velocity magnitude where the time rate of change of velocity can be

neglected. The striking feature of Fig. 22B is the distinct appearance

of the vortices shed from the leading and trailing edges of the airfoils.

4.1.3 Experimental Results - Configuration B

To determine the effect of interference between guide vanes and

test cascade, the radii of the test cascade and the static pressrure taps



for measuring P1 and P2 were increased three quarters of an inch to con-

figuration B. This effectively doubled the clearance between the blade

rows and shifted their relative angular position approximately three degrees

about the axis of the test section.

In Fig. 23 is plotted %versus 01 for configuration B and d' of unity.

Comparison with the corresponding Cp curve for configuration A from Fig. 18

indicates that the increased clearance had no pronounced qualitative effect

upon Cp, although values of Cp were generally greater for configuration B.

The bands of P where stall propagation existed were shifted a few degrees,

which was probably caused by the angular shift of the blade rows from con-

figuration A to B through the effect of the turning vane wakes on the

dynamic stall charactpristics of the cascade airfoils . There were also

detailed effects on the flow caused by the increased clearance. Periodic,

two-dimensional stall propagation existed at Pi = 570 and 630. Low amplitude,

low frequency, unperiodic fluctuations existed for 50* < pa < 53* and for

13. > 780. Flow was relatively steady between the peaks of P, in Fig. 23,

as was described for Fig. 18. Fig. 24 shows three interferograms of the

flow at incidences where the flow was comparatively steady. Interferometer

pictures were taken at Pi = 570 and 64* and are presented in Fig. 25A, B.

The number of stall cells and their velocity of propagation as determined

from these pictures are shown in Fig. 23.

When the cascade was assembled with 27 blades ( 0 = 1/2), it was

found that stall propagation existed for 53* < p,< 680, However, the

perturbations were two-dimensional and periodic only for 56*< Pj< 66*.

It was found that decreasing- the Reynolds number made the fluctuations

less periodic and of lower amplitude. Interferometer pictures were taken

for 13 = 58*, 61' and 64*, and are presented in Fig. 25A, B, C. (The

pictures for P, 61* are used to calculate the pressure field during one

cycle of the motion in Section 4.1.4.) The following data apply to Fig. 26:

Number of
0

Fig. PI Cells Vp/Cr1  Vp/Cde Cp Re1  MI

26A 58 15-16 .78 .42 .25 266,000 .30

26B 61 19-20 .87 .43 .15 235,000 .37

260 64 14-15 1.00 .45 .13 200,000 .31
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The cascade was reassembled with 18 blades ( 1 = 1/3) and it was

found that periodic two-dimensional stall propagation existed only for narrow

bands of Pi about 570 and 700. Interferometer pictures at these two values

of P] are shown in Fig. 27A, B and the following data apply to thems

Number of
Fig. Cells Vp/Cr1  p/C0 1  Cp Re 1

27A 57 7-8 ILo27 .83 .15 255,000 .31
27B 70 18 1 .47 .91 .058 264,000 .32

When the cascade was assembled with nine blades ( CE = 1/6), it was

found that hot wire traces upstream of the cascade indicated only varying

amplitude high frequency velocity fluctuations as 01 was increased. At

Pi = 570, however, the fluctuations appeared to be intermittently periodic

and interferometer pictures were taken as shown in Fig. 28. The frequency

with which the blade stalls in Fig. 28 is approximately 790 C.P.S.,

Re1 = 250,000 and W1 = 292 ft/sec.
In Ref. 6 is described an experimental investigation of the Karuan

vortex shedding of a flat plate at high incidence i. It was found that for

20'< i < 6o*

A64 < f L sin i < .150,

where f is the frequency at which vortices were shed from one edge of the

plate. The result of calculating L sin i from the preceding data for

configuration 2 .And plotting versus T is shown in Fig. 29. It is observed

that, as was shown by a similar plot for P 1f3 in Ref. 19, the fre-

quency with which a blade stalls during stall propagation in the cascade

appears to approach the Karman vortex shedding frequency of the isolated

flat plate as the solidity of the cascade is decreased.

4.1.4 Determination of Flow Properties from InterferograMs

From interferometer photographs of a two-dimensional flow, it is

possible to determine the pressure field by conventional procedures.

The purpose here is to determine the pressure distribution around the

circular cascade airfoils and to estimate the strength of the shed
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vortices during stall propagation. Also, the pressure distribution before

the onset of stall propagation is compared with that of the simulated

linear cascade.

The use of interferometry to obtain quantitative information about

two-dimensional pressure fields which are unsteady in time is no more

difficult in principle than for steady flows, but practical difficulties

are encountered in the photography and direct pressure measurement required.

As used here, the properly adjusted interferometer produces fringes or bands,
such as those in Fig. 26, which indicate lines of constant density. No

indication is given in the interferogram of the density level, but only

the absolute value of the density differences between fringes. The sign

of the density change between fringes is determined from the schlieren pic-

tures and from a qualitative knowledge of the flow. It is necessary to

determine independently the value of density at some point in the inter-

ferogram at the instant the picture was taken. This is done by the de-

termination of two other independent fluid properties at the point, pressure

and entropy. The entropy is assumed constant everywhere in the interferogram

(except in the cores of the vortices) and is evaluated upstream of the

cascade where the flow is relatively steady and fluid properties can be

measured conveniently. The static pressure fluctuations with time are

measured at a point in the interferogram with a miniature crystal pressure

pickup.

Interferometer

A portable Mach Zehnder interferometer with five inch diameter optical

elements, shown in Fig. 30, was used in this study. A detailed discussion

of the design and operation of this instrument is given in Ref. 3. Only

brief mention of its use will be made here with special reference to the

present application.

Fig. 31 is a schematic diagram of the interferometer. Apertures of 1/16

and 3/32 inches diameter were used at the focal point of the collimating

lens causing the light to emerge from the lens as a parallel beam. At the

first splitting plate the beam is divided into two halves which pass re-

spectively through and around the test section before being recombined at

the second splitting plate. The fact that one beam does not traverse the
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test section window is compensated for by including in its path two glass

plates which are optically similar to those of the test section. The re-

sulting beam is focused on the film. The image produced on the film depends

on a comparison between the two optical path lengths.

With no flow in the test section, and a small angular displacement

between the splitting plates, a series of parallel interference fringes

results. If these bands are originally spaced infinitely far apart, by

setting the mirrors exactly parallel, any fringes which appear in the flow

picture will be lines of constant density. Some loss of accuracy results

from imperfections in the optical elements precluding infinite band spacing.

The interferometer optics, test section windows, and compensating plates

combined gave a minimum of one fringe instead of the zero number of fringes

implied by perfect optics and exactly parallel mirrors.

. As shown in Fig. 31, a concentrated light source is required. The

source used was an experimental xenon-filled lamp, a photograph of which is

shown in Fig. 32. It is capable of flashing for approximately one micro-

second at rates of 60 to 8,000 per second when used with the Edgerton,

Germeshausen and Grier Type 501 Stroboscopic Modulator. Its small size,

large amount of light flux, reliability, and long life made it very

satisfactory. The light was filtered to give the monochromatic light

necessary to the interferogram evaluation using an interference filter

which passed a band of wavelengths 100 A wide centered at 4.,500 -

Pressure Measurement

A miniature crystal pickup capable of sensing high amplitude, high

frequency pressure fluctuations is shown in Fig. 33. It is a piezo-electric,

barium-titanite crystal in the shape of a hollow cylinder 0.L2" long by

0.09" O.D. It is inserted in a drilled hole in one of the optical flats

at a measuring point midway between two airfoils shown in Fig. 26B. It is

mounted flush with the inner surface and senses the wall static pressure.

A drop of glue in the end of the cylinder acts as a safety valve and seals

the crystal so that when the test section pressure is applied to its 'out-

side surfaces, hoop tension stresses are produced which cause mechanical

strains and the accumulation of electrical charge on its inner and outer

cylindrical surfaces; a voltage results which is sent through a high
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impedance amplifier and displayed on an oscilloscope. Since the impedance of

the circuit is not infinite, the charge produced on the crystal faces "leaks

off" which prevents its use in measuring low frequency pressure fluctuations.

To determine the rise time of the pickup to a step change in pressure, it

was mounted in the wall of a shock tube which is described in Ref . 4. The

response of the pickup to a step change of 7.2 psi in pressure and 96*F in

temperature is shown in Fig. 34., which indicates that the rise time was less

than .05 millisecond, more than adequate for the intended use.

To calibrate the pickup, determine its sensitivity to temperature and

observe how quickly electrical charge leaked from the faces of the crystal,

a device described in Ref. 11 was used rather than the shock tube because

of its convenience and reliability. The device makes of a rotating valve to

switch a small test chamber between two large tanks of air at different

pressure levels. The crystal and a previously calibrated catenary diaphragm

pressure indicator, described in Ref. 11, were subjected to the pressure pro-

duced in the test chamber, and the traces shown in Fig. 35 were produced on

a dual beam oscilloscope. The diaphragm pressure indicator is insensitive to

temperature and has a frequency response which is flat from zero to greater

than 20,000 c.p.s. Calculation of an estimated rate of charge leakage from

the crystal indicates that the gradual drop in the trace of Fig. 34 (after

the rise to the step change in pressure) was predominately the effect of

heat conduction into the crystal after the shock wave passed over it and not

charge leakage. Since the frequency of the pressure signal to be measured

is approximately 600 c.p.s. and the amplitude t 1 psi (which corresponds to

a 10*F isentropic variation in temperature), it is concluded from a com-

parison of the traces in Fig. 35 that the crystal is adequate for measuring

this signal and that the distortion due to charge leakage and temperature

sensitivity can be neglected. It was determined that the mean of the high

frequency transient oscillations in Fig. 35 were a measure of the tank pres-

sures which permitted the diaphragm indicator trace to be calibrated. The

crystal trace was calibrated by comparing the amplitudes of the high ampli-

tude, high frequency, transient portion of the two traces so that tempera-

ture and leakage effects could be neglected during the calibration.
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A convenient method of synchronizing the pressure trace on the oscillo-

scope with the interferometer photographs is to project both on the same film

as in Fig. 26B. With the oscilloscope set so as to suppress the time (hori-

zontal) axis and with the film stationary, the pressure trace is focused on

one half the fiIm and set above a convenient reference line in the interferogram,

the wire which connects the trailing edges of the blades. With the film in

motion, and the time axis thus provided, synchronization is complete. Thus,

to determine the amplitude of the pressure fluctuation at the measuring point

in an interferogram, it is only necessary to locate the intersection of the

wire and trace. Since the crystail does not record a steady pressure, this

fluctuating component of pressure must be added to the time mean static

pressure measured with a wall static pressure tap directly opposite the

crystal location ( a 1/8 inch diameter hole drilled in the opposite optical

flat). The scale in Fig. 26B indicates the value of the mean pressure and

the magnitude of the fluctuating component at the measuring point.

For pressure variations small with respect to the mean pressure, (in the

present case 0.9/18), the maximum error incurred in assuming the pressure at

the measuring point to be equal to the mean pressure is small (5%). Of

course, it was necessary to first measure these fluctuations to determine

whether or not they could be ignored. Pressure didtributions other than for

Fig. 26B were calculated neglecting the pressure fluctuations at the measuring

point.

Measured Pressure Distributions

The most common ordinate in use in the presentation of pressure dis-

tributions' from steady flows in cascades seems to be S = Po - Plocal
1/2 p Wi2

That this is also a meaningful parameter for use in unsteady flows may be

shown as follows:
2

In an unsteady flow$+ p+ 2E--= constant =-(p)_ hr#
velocity potential. If one integrates with respect to time over one cycle

and requires that O make no net contribution for this period (otherwise

the time mean value of (p + I p v2) becomes monotonically increasing or

decreasing),
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,p d t + 1p V2 d t7 =C T = (P.)0 - T

Jpdt+1 fPV )d d tc ~ v

2p + p vT)dt f dt= time mean po = (p0 )T

Therefore, for an unsteady flow,

S + (Po)-O- p Pv2
2 1 2

P W I 2

Although in a steady flow, S must always be positive, the above discussion

shows that in an unsteady flow, S may be negative in certain regions and periods

in which 0 is a large negative quantity.

The pressure distribution corresponding to each of the ten frames of

Fig. 26B for one period T of the motion are shown in Fig. 36. Generally,

they bear little relation in form to the conventional graphs of pressure dis-

tribution. This is to be expected, however, for not only is the flow unsteady,

but the effect of vortices in the field represents a major departure from

conventional flow. Figs. 36-3, -8, -9 show negative values of S. The

circled data points in Fig. 36 are obtained from the interferogram fringes

of Fig. 26B and by interpolating half fringes between them.

At the beginning of the cycle (frame 1 of Fig. 26B), the blade has shed

a counter-clockwise vortex from its trailing edge, and the vortex shed from

the leading edge of the preceding blade is coming into view. This latter

vortex should have a strong effect upon the blade circulation according to

the analysis of Section 3.1.2. One would expect from this analysis that in

order for the Kutta condition to be maintained, the circulation around the

blade in frame 3, Fig. 26B, must be large. This is verified qualitatively

from the pressure distribution of Fig. 36-3 and from Fig. 38, a graph of Cn

versus t/e as determined from the pressure distributions of Fig. 36.

On the other hand, the blade circulation decreases as the vortex leaves its

leading edge and the effect on the blade pressure distribution is clearly

indicated in Fig. 36.

Local incidence angles at the blade were estimated from the schlieren



pictures of Fig. 22A, which show the wakes of the upstream nozzles darkened

somewhat for reproduction purposes. These estimated values of i are plotted

in Fig 39 versus t/t . The error caused by the motion of the wakes and the

difference in clearance between blade rows in Figs. 22 and 26 is neglected.

Using a common time axis t/g , one may plot CL as calculated from Fig. 38

versus i from Fig. 39 for information about time lags between local incidence

and CL. Such a plot is shown in Fig. 40 which indicates that a phase lag

does exist between i and CL. This is the usual result, and the explanation

seems to be that the presence of a counter-clockwise vortex near the trailing

edge has a negative effect on the blade circulation compared to its effect

after having been washed downstream and vice versa for the leading edge vortex

as shown in Section -3.1.2.

The pressure trace in Fig. 26B clearly shows the presence of the shed

vortex. At the beginning of the cycle, when vortices are oriented so as to

cause low velocity at the measuring point, the trace indicates high static

pressure, At about the fifth frame, when a vortex is quite close to the pres-

sure pickup and oriented such that the velocity is high there, the trace

indicates low static pressure.

The magnitude of the blade force calculated from the sequence of Fig. 37

varied from 3 to 7.5 lbs, Although the blade force in the chord direction

was calculated, these forces were small enough to be neglected. Hence the

normal force is approximately equal to the blade vector force.

With the above experimental, information, one can also show the "Aen

effpct", which is that in the unsteady growth of lift on a wing accompanying

a studden increase in the angle of attack, an increase in the value of maxi-

mum lift occurs. Since in Ref. 8, a graph of lift coefficient versus

incidence is given, these results may be compared with those of Fig. 40p

At an incidence angle of 20* (for which the steady state CL is a maximum =

0.68 from Ref. 8), Fig. 41 gives values of 0.71 and 1.45 for CL during the

unsteady flow. The maximum value of CL from Fig. 41 is 2.1. There is some

error involved in this comparison since both CL and CN are based on the

average upstream dynamic head rather than the instantaneous local value;

however, the above calculations appear to demonstrate that there is eon-

siderable departure from their quasi-steady stall characteristics by the

airfoils in question during stall propagation as discussed on page 27.



In order to verify the design technique used to simulate a linear

cascade with the circular cascade, the airfoil pressure distribution was

calculated for P = 46.4* from Fig. 24. The pressure distribution for the

equivalent linear cascade (NACA 65-810) is given, for certain combinations

of solidity, incidence, etc. in Ref. 8. To compare the two distributions

it is only necessary to reduce the circular cascade distribution to that of

a linear cascade, using the transformation given in Ref. 9

&Zg =V2 Ex
q, v, r,

where

q = velocity in the linear cascade

v = velocity in circular cascade

r = radius

( ) = entry

( )2 = arbitrary location along the blade in the radial direction

Of course, the comparison must be made for equal values of 0" i, etc.

Thus, in Fig. 37, the transformed pressure distribution corresponding to

= 6.4* has been compared to the appropriate distribution of Ref. 8.

This comparison indicates some success in the attempt in the design of the

circular cascade to duplicate the pressure gradients on the suction side

of the blades . The apparent difference in blade loading is to be expected

from the circular transformation.

Estimation of Strength of Shed Vortices

It is possible to estimate the strength of a vortex moving past a point

where the pressure is measured as in Fig. 26B. An advantage of this method

is that no measurement is required near the core of the vortex where losses

are high, and the strength of an "equivalent potential vortex" can be

estimated.

The variation of p, static pressure at the origin, when an isolated

vortex V moves along a line (y = constant) with the free stream ielocity U

in an infinite field can be determined in a coordinate system fixed to

the vortex and is given by

430
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p0 0  -p 2t aU
1 u2 - 2

where the coordinates of the vortex are (x, y = a).

An estimate of the circulation about an airfoil can be made by using the

Kutta relationship,

L = p Wr

and substituting approximate measured values of L, p and W. Applying these

two relationships to the ninth frame of Fig. 26B, in which the blade circula-

tion is nearly minimum, (and neglecting the effect of adjacent blades) gives

an estimated ratio of blade circulation F to shed vortex strength f7 of .19.

However, because of the inaccuracies involved in this calculatibn, a direct

examination of the interferometer pictures probably yields as good an

answer. In Figs. 25 and 26, it is observed that after the airfoils stalled

there was virtually no difference in fluid density at points which are at

the same chordwise position on the airfoil but on opposite sides. Neglecting

the local time rate of change of velocity and losses, this indicates that

the pressure and velocity were almost equal at these points and that the

circulation about the airfoil must have been small. Therefore, itappears

that the circular cascade airfoils shed nearly all of their bound vorticity

when they stalled as assumed in the analysis of Section 3.2.1.

4.1.5 Discussion of Results

The experimental results from the circular cascade indicate that stall

propagation occurred for narrow bands of mean incidence during which the

blades periodically shed nearly all their bound vorticity in the form of

discrete vorticeb. It appears that the airfoils consistently stalled from

their leading edges during stall propagation and that between stall cells

the flow reattached to the suction side of the airfoils.

Although the washing of the guide vane wakes over the cascade air-

foils had an influence on the flow as discussed on page 33, this does not

appear to be the reason for the distinct bands of 1i at which propagation

occurred. The effect of Reynolds number on stall propagation was pronounced

at some mean incidences but not at others. There was no pronounced effect

hA_ro



4.

on Cp caused by the increase of clearance between blade rows for J of unity

but Vp increased and the number of cells decreased.

The analysis of Ref. 19 predicts that the effect of increased clear-

ance is to decrease Vp but that Vp should increase for fewer cells. The

present analysis indicates that the effect of decreasing the extension of

the flow field downstream of the circular cascade, which was associated

with the increase of clearance should have caused a tendency for the number

of cells to .increase. The fact that the number actually decreased indicates

that the effect of increased clearance was more important than the effect

of decreased downstream field in determining the number of cells in this case.

It is noted that for configuration B, V was essentially constant

for each value of d bvit increased as J decreased. It is probable that

this increase was caused in part by the effect of a decreased number of

boundary layer time' delays (associated with blade stalling). Furthermore,

from Fig. 4 it can be seen that the induced effect of the circulation about

airfoil a) upon the shed vortex d- tends to decrease its transport velocity.

This effect tends to decrease VP as 0 increases independently of the effect

of boundary layer time delay. The frequency of stall propagation appears

to have approached the Karman vortex frequency for an isolated plate as 0-

decreased.

It was observed during the experimental Vork with the circular

cascade that some of the stall cell patterns were sensitive to small dis-

turbances on the flow. For instance, in one case (for T = 1), stall

propagation could be prevented by the insertion of a 1/8 inch diameter hot

wire probe upstream of the cascade. On the other Iand, at one time during

the testing, eight of the fifty-four cascade blades failed and were washed

downstream and no pronounced effect was observed on stall propagation except

that the flow was slightly less periodic than with uniform blade spacing.

Therefore, the stability of the stall cell patterns and the effect on stall

propagation of destroying the axial symmetry of the flow appears to vary a

great deal with mean flow condition in the circular cascade. No hysteresis

or time delay effect could be discerned between the stall cell patterns in

the circular cascade and the guide vane setting (incidence).
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4.2 Investigation in an Isolated Rotor

4.2.1 Description of Apparatus and Procedure

This investigation was undertaken to extend the available experimental

information about the detailed nature of flow through an isolated rotor

during stall propagation. The equipment used was virtually the same as

described in Ref. 14, where a similar investigat-ion was made for a guide

vane-rotor and a guide vane-rotor-stator combination. Fig. 41 is a schematic

diagram of the research compressor showing the measuring stations.

The essential dimensions of the single stage axial compressor used

in this investigation are:

Hub-tip ratio 0.75

Tip radius 11.63 inches

Mean radius 10.27 inches

Blade chord 1.51 inches (no taper)

Camber angle 9 30.3*

Linear twist, root to tip 9.70

The blades were a circular arc camber line, with an NACA 0010 thickness

distribution (10% maximum thickness at 30% chord).

The rotor blades were unshrouded and the fastening, as shown in

Fig. 58, allowed the stagger angle to be easily changed. The constant area

annulus extended 29.8 inches upstream and 36.5 inches downstream of the

rotor. Radial-air flow entrance was through screens. The outflow annulus

was a diverging cone. The inner wall cone could be traversed, thereby

varying the exit annulus area and throttling the flow.

Three rotor configurations shown in Fig. 43 were tested.

Mean Radius Mean Radius
Configuration Stagger Solidity

A 30015' 1.02

B 30015' 0.51

C 52045' 1.02

Except where indicated, the rotor was operated at 1500 rpm (U - 134 ft/sec)

at mean radius for all configurations .
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The relative inlet velocity during stall propagation was 140 to

160 ft/see, which resulted in a Reynolds number based on the blade chord of

110,000 to 150,000.

The conventional instrumentation consisted of inner and outer wall

static pressure taps at five axial positions (C, E, F, FG and G in Fig. 41),

kiel probes, a five-hole probe which was used for yaw measurements and

sphere-static probes. The pressure measurements were read on an inclined

water manometer . The five -hole probe was nulled with the use of a Statham

gauge.

The probes used for measuring unsteady velocities were 0.00015 inch

diameter by 0.044 inch long tungsten hot wires. The d.c. circuits of two

constant current hot wire anemometers were used. The voltage signals from

the hot wires were applied directly to a Dumont 304 dual beam oscilloscope.

The amplifier and standard calibration probedure of the anemometer* for

high frequency fluctuations was not useable, since large, low frequency

fluctuations were being investigated. Drift in the d.c. circuitry caused

differences in the hot wire calibrations immediately before and after a

run of 1/2 hour length as great as 25%. The calibration which came closest

to being consistent with the steady-state readings before stall propagation

started was used. It is felt that the accuracy is sufficient to indicate

certain trends in the data which will be discussed.

Since the hot wire signal indicates only the component of velocity

normal to it (over a wide range of angles within a small percentage correc-

tion), total velocity, axial component, or tangential component were measured

by orienting the wire along radial, tangential, or axial directions re-

spectively (assuming that the radial velocity component can be neglected).

An unsteady angle measuring probe was developed during this investi-

gation. As shown in Fig. 44, it consists of a tube which slips over a

standard hot wire probe. The tube is sealed at the end and has two small

holes drilled 1200 apart at its mid section, similar to a standard cylindrical

yaw probe. A thin wall is soldered inside the tube near the hot wire to

reduce turbulence.

*Model HWB, manufactured by Flow Corporation, Cambridge, Massachusetts.
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If the probe is not nulled in a streaming flow, there is flow

through the probe which the hot wire senses . This probe is sensitive to

low velocities and it can be nulled within t 2 degrees. Its response is

fast enough to indicate stall cells passing by it. Since the downstream

velocity profiles during stall propagation were approximately square wave

shapes, one could null the probe by observing the scope trace and thereby

measure the angle of flow, either inside or outside the stall cells.

To obtain permanent records of the oscilloscope traces, a Polaroid

Corporation camera and a strip film camera were used. The latter is a

camera without a shutter but with a constant speed film drive. The number

of stall cells or O, the angle at which the cells extended downstream, was

determined by the relative displacement of two traces recorded on strip

film of hot wires located at different tangential or axial stations.

The stall cell frequency was determined by synchronizing a sine-

wave voltage frn A frequency generator on the x-axis input with the hot

wire velocity signal on the y-axis input of the oscilloscope.

All probe readings except wall static pressures are values at the

mean radius unless a radial traverse is indicated. Unsteady static

pressure readings are at the outer wall and were measured with two inductance

type electrical pressure gauges described in Ref. 15.

4.2.2 Experimental Results - Configuration A

The time average pressure coefficient C as determined by the average

of the inner and outer wall static pressures and the upstream relative

head is plotted in Fig. 45 versus PC, where

= PG - PC PF - PE
CG P We2 and CPE,= 1  2

Pressures weire measured at the stations indicated. W. and Pc were de-

termined by measuring Cc with a sphere static probe .

The number of stall cells and their velocity of propagation is given

in Fig. 46, together with values of Vp predicted in Ref . 19, for no

downstream pressure fluctuations,
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2(1 CPG)
P. = 2n nuber of cells;Cx sin 2 PC (a cos PG + 1

and the values predicted in Ref. 12 which are the same as in the "channel

theory" of Ref. 18 for no phase lag,

Vp 1
C7 sin 2 PC

In Fig. 47 are shown unsteady wall static gauge pressures measured

at stations E and FG. It is observed that the upstream fluctuations are

consistently several times as large as those downstream.

A series of hot wire traces corres-poding to measurement of CG and CG

are shown in Fig. 48. Traces for CxG and CxE are shown in Fig. 49. The

apparent difference in the average values of CXG and CxE in Fig. 49 is

probably due to error in calibration of the hot wires due to "d.c. drift"

in the hot wire circuitry as discussed previously, since these values must

be constant because of continuity.

In Fig. 50, are given the results of calculating (WgG) and (wW )i
from the hot wire traces of Fig. 48. In Fig. 51 are (CxG)o and (CXG)i

as calculated from Fig. 49 and C from sphere static probe readings.

The measured values of (CxGlo are less than CxC for PC < 58* in

Fig. 51. This does not appear to be physically possible because of the

blockage effect of the cells. It is felt that again this is a calibration

discrepancy since CxC must be the average value of CXG because of continuity.

Using this fact, the value of (CxGlo estimated for the hot wire trace at

e = 56.7* is 95 ft/sec. Since all of the data indicate that (CxG)o is
essentially constant with throttling except for extremely high values of

Pc, it is probably a good approximation to take (CxGo as constant and equal

to 95 ft/see as indicated in Fig. 51.

(aG)O, as measured by the hot wire angle probe, PG as determined

by a standard five-hole yaw probe, and (PGlo are plotted versus PC in

Fig. 52. (PGlo was calculated from an average value of (aG)O, 40; and

(CxG)o taken as 95 fps.
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From Fig. 50 it is determined that (We), was greater by four to

eighteen percent than (WQGXo (as PC increases). This result correlates

with the experimental observation that the stAll cell angle O was negative

and smaller than -15* for all the stall cell patterns of configuration A.

4.2.3 Experimental Results - Configuration B

To determine the effect of blade spacing, half the blades of con-

figuration A were removed resulting in configuration B. The number of cells

and their propagation velocity are shown in Figs. 65 and 66 vhich indicate

that periodic one and two cell patterns existed for only a narrow range of

high incidences for configuration B.

4.2.4 Experimental Results - Configuration C

To ascertain the effect of blade stagger angle, the stagger was

increased 22 1/2* from configuration A to configuration C and comparative

data taken. The measured results are indicated in' the following figures.

Results Plotted versus

CPCG and C

number of cells, Vp,,and
predicted VP
hot wire traces of CxZ and CxG

1) Cxc measured by sphere static
probe

2) (CxG)O and (Cx()i as calcu-
lated from Fig. 55

3) (Cxc) 76 fps as calculated
from fig. 12

4) PG as determined with standard
five -hole yaw probe

5) (qG)o as measured with hot
wire angle probe

6) (OG)o = 45.3* calculated
taking average (CiG)o = 37,50
and average (cxGo = 76 fps

Corresponding Fig. No.
for Configuration A

45

46

49
51, 52

Fig. 42 shows a strip film record of a hot wire trace of axial

velocity measured at station G while the throttle was continuously opened

Fig. Number

53

54

55

56
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so that the compressor operating condition changed from two, to one, to

zero cells. For (CxGlo, the trace is at the top edge of the film for the

entire strip. During this strip film, which took about five seconds, d.c.

amplifier drift was negligible. (The calibration was checked immediately

after the run, and it had not changed during the run.) The value of (CxG)O
is observed to be almost constant and is. calculated to be 76 fps, which

compares well with the average of the values from the hot wire traces of

Fig.55.

For configuration C, the angle 0 between the stall cells and rotor

axis was determined from the measurement of phase lag between two traces

of hot wires inserted at stations G and K. It was determined that for the

one cell pattern 0 = 19* and for the two cell pattern 0 = 160. The

error of measurement probably was less than 10%,

4.2.5 Comments on Compressor Operation

Just before rotating stall started as the throttle was closed, a

"1mushy" flow, as it has been called, was observed near the hub and tip as

indicated by a "hashy" hot wire trace. A very weak rotating stall might

have been present at the hub for configuration C. The relative magnitudes

of the mush at 1/4 inch from the hub and rotating stall of one cell can be

seen from hot wire traces of Fig. 57 for configuration C. The mush was

less than 1/5 the amplitude of rotating stall and was not investigated

further. Rotating stall measurements were taken through the operating

range until surge started. Although unperiodic propagation could still

be observed along with the surge (since surge was of much lower frequency),

no attempt was made to take data and separate the two effects . The

variation of velocity fluctuation with axial distance from the rotor was

measured at one operating condition for configuration A as is shown in

Fig. 59. It is noted that the amplitude of the velocity fluctuations

decreased rapidly with distance upstream but that they persist much farther

downstream. At station K, 26 inches downstream, the amplitude of the

fluctuations are about 1/2 those at station G.

Upon throttling the flow, rotating stall always started as two

cells, then as the flow was increased, the two cells changed to one. How-

ever, if the axial symmetry of the flow was destroyed by placing an
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obstacle (such as the observer's hand) in the inlet or outlet of the compressor,

the one cell pattern could be forced to appear before the two cell pattern

as the flow was throttled.

If the compressor were operated at a value of pC where the number

of stall cells ehanged, the cell pattern sometimes shifted back and forth

between the two numbers of cells.

Radial traverses of the hot wire during stall propagation indicated

that the flow was fairly two-dimensional for all the observed stall cell

patterns, although in some cases an estimated 25% smaller fluctuation in

velocity was observed at the hub.

To determine the effect of Reynolds number on rotating stall character-

istics, the rotor speed was held at 500, 750, 1000, 2000, and 2500 RPMi

and the flow throttled. A comparison of the number of cells and propagation

velocity at three speeds is shown in Figs. 60 and 61 as functions of PC.

"Constant geometry" runs were made for two constant throttle settings and

rotor RPM variation. The results of these runs and the previous are

shown in Fig. 62, a plot of the number of cells and PC as a function of

Rec. As indicated in these figures, there is a hysteresis effect between

the number of cells for some values of Re0 and 13C. The data points at

minimum P indicate the onset of stall propagation and the points at

maximum 13 indicate the end of periodic stall propagation. (For higher

values of PC high frequency velocity disturbances and surge existed.)

The data plotted in Figs. 60, 61 and 62 indicate that there was not much

effect of Reynolds number above 100,000 or 1500 RPM, but that for lower

values the range of PC for which periodic propagation existed is shifted

up. As Reynolds number was loweredy the one cell and then the two cell

patterns disappeared, but there was not much effect upon propagation

velocity. It was found that there was virtually no difference in CPCG
at corresponding values of Pc for 500 RPM and 1500 RPM.

Axial velocity profiles as determined from measurements made with

a standard five-hole yaw probe for configuration C are shown in Fig. 63.

They indicate that there is some error involved in assuming mean radius

measurements to be representative but that this error is less during than

before the onset of stall propagation. The difference in area under the

I
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profiles measured during stall propagation indicates the error inherent in

using a standard five-hole probe in an unsteady flow.

4.2.6 Discussion of Results

The hot wire measurements of Figs. 49 and 55 indicate that the down-

stream axial velocity profile can be approximated with a square wave which

changes with throttling only along the abscissa. That is, (CxG)o and

(CyG)i in Figs. 50 and 56 remain essentially constant with PC and of approxi-

mately 4/1 ratio, but the numb'er of cells and the width of the cells change

such that their blockage effect increases continuously with throttling.

The data appears to correlate with that from Ref . 2 in indicating that

during stall propagation the velocity triangles outside stall cells were

nearly the same as for Cp (before the onset of stall propagation).

The unsteady pressure measurements of Fig. 47 indicate that the

fluctuations were several times as great one inch upstream of the rotor

as they are 5.6 inches downstream. (When a pressure gauge was inserted

seven inches downstream at station G, virtually no fluctuations could be

observed in the trace.) As a stall cell approached the upstream gauge,

the -static pressure at this point ross to a value greater than the absolute

total head far upstream but less than the total head relative to a coordinate

system fixed to the stall cell pattern. The static pressure then dropped

as the stall cell passed by the gauge. There was a pressure drop through

the rotor in the stall cells . This qualitative description of the pressure

field is predictable from the flow model used in the analysis of Section 3.2

from a consideration of the velocities induced by the stall cell in a

coordinate system fixed to the stall cell pattern.

The hot wire traces for CxE in Figs. 49 and 55 indicate that as PC

increased, the cells grew wider and that the axial velocity profile just

upstream of the rotor changed shape as they grew wider. The "sag" in the

profile caused by the blockage of stall cell changed from a spike form for

a thin cell to a double spike indicating that there was more flow through

the center of the wide cell than near its edges. Since the trace did not

ever go to zero (the minimum value being 25 ft/sec), in no case was there

flow reversal at station E during stal.l propagation. This fact was veri-

fied independently of the calibration of Figs. 49 and 55 by quickly pulling



the hot wire at station E out of the compressor and observing that for zero

air velocity the trace went considerably lower than the minimum displacement

for the "double spike" wave form during stall propagation. A check was also

made by quickly turning the wire 900 from a tangential to axial direction

and observing the same result as above for zero velocity normal to the wire.

The number of cells is observed to increase after the double spike form

appeared, which suggests that the double spike form split into two cells,

a tendency predicted by the preceding analysis . From the strip film

trace of Fig. 42, it is observed that the opposite oequence occurred when

the flow was increased through the rotor running at constant RPM. At first

there were two stall cells 180* apart, then the cells gradually moved to-

gether forming a double spike pattern and then a single spike pattern.

The hot wire traces of Figs. 42, 49 and 55 show that the shape of

the stall cell pattern is not perfectly constant in time or axisymmetric

(as assumed in the analysis for a given mean flow and even number of cells).

This fact appears to explain why one cell of a two cell pattern might split

and thus form a three cell pattern as the flow is throttled instead of both

cells splitting simultaneously. However, the trend for the observed shapes

of the stall cell pattern with throttling appears to correspond qualitatively

with the trend predicted by the analysis of Section 3.2.3.

In Figs. 65 and 66 n2- and !. as functions of s3 are compared for0xc U
configurations A,.B, and C, and for data from Ref. 2. It is observed that

all stall cell patterns observed herein revolved at .48 U < VQ < .59 U,

or approximately half wheel speed. In Fig. 65, Vp increased slightly when

the solidity of the cascade was reduced in agreement with the trend ob-

served in the circular cascade.

Not much effect on propagation velocity occurred with the change of

stagger angle or with Reynolds number change above 100,009. However,

the number of cells- was greatly affected by the change of solidity, of

stagger, and of Reynolds number below 100,000.

The propagation velocities predicted by the small perturbation

theories of Ref. 12, Ref. 18 (no phase lag), and Ref. 19 as shown in

Figs. 46 and 54 appear to overestimate the experimental values by as much

as 50%. The correlation of the data with the theory of Ref. 19 appears

540
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to be well described by the correlation pred.I d on page OI of that reference.

"The values of propagation velocity predicted when the boundary-
layer delay is neglected should be larger than those obtained
experimentally, with the difference most pronounced for the
case of disturbances covering only a few airfoils when the
boundary-layer delay will have an important effect. An increase
in the wave length of the stall cells should be accompanied by
an increase in propagation velocity, if other variables are
unchanged."

The effect of number of cells on propagation velocity as predicted in

Ref. 19 appears to be borne out quite conclusively by the data plotted in

Figs. 46 and 54.

In Fig. 64 is plotted versus k, the function

A = discharge coefficient= Cos 1C

cos AG (1 - CpCG

The values of PG were those determined with the standard yaw probe. In

Refs. 5 and 19 it was predicted that small perturbation stall cells may

form when the slope of this curve passes through the origin. There seems

to be fair agreement from Fig. 64 with this prediction.

Is is observed in Figs. 45 and 53 that the slopes of the curves of

Cp versus 13 for configurations A and C both approached zero when stall

propagation occurred.

In Ref. 2 tests were made with a rotor of solidity equal unity,

28.5* stagger, NACA 65(12)10 airtoils, and hub-tip ratio of 0,9. As shown

in Fig. 66, there is overall qualitative agreement between the data for

configuration A and that in Ref. 2. Stall propagation started at nearly

the same incidence and Vs/U was nearly the same, but there were differences

in the number of cells and the measured pressure fluctuations. In Ref. 2

it is reported that the pressure fluctuations downstream were about 60%

of those upstream. In the present investigation, they are found to be three

to five times as great upstream as downstream; however, the gauges are

closer together than in Ref. 2, and the cells extend more uniformly from

root to tip than the two and three cell patterns of Ref. 2.



56.

5 Correlation of Analytical and Experimental Results

Verification of the assumptions made in the analysis appears from the

following experimental results:

1) From Figs. 19, 22, 25, 26 and 27, it is observed that during stall

propagation the blades in the circular cascade shed discrete vortices upon

entering or leaving stall cells and lose nearly all their bound vorticity

when they enter the cells.

2) From the approximate square wave shape of the velocity profiles

downstream of the rotor during stall propagation, as indicated by the hot

wire traces of Figs. 49 and 55, it appears that the vortex flow model of

Section 3 may be used to represent the actual flow through the rotor.

Furthermore, the square wave shape of the downstream velocity profiles

tends to support the idea that the rotor blades stalled from their leading

edges as the blades in the circular cascade are observed to have done. In

Ref. 7, page 66, it is shown that the rate at which vorticity is shed from

an airfoil is V2/2 where V is the free stream velocity at the separation

point of the boundary layer. Since immediately downstream of the rotor

blades the vorticity is observed to have been concentrated along the

stall cell boundaries, it might be argued that in order for the blades to

have 'shed vorticity quickly enough to havd established this pattern, the

point at which the boundary layer separated must have been located where

V was large, near the leading edge. The validity of this speculation is

not essential, however, since the present analysis is independent of the

location of separation.

3) The observation from Section 4.2 that the ratio of downstream

axial velocity outside the cell is about four times as great as inside

indicates that the approximation of N = M = 1 in the analysis may be a

reasonable one in view of the discussion on page 20 which indicates that

this approximation is not critical to the resulting prediction for V .

In the present analysis, an approximation is made for the flow far

downstream of a continuous blade row during stall propagation. The re-

sults of the analysis indicate why some observers have found incongruous

experimental results from linear cascades of finite length as reported in

private communication with the author. It appears that, as was first
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described in Ref. 18, the blade stall-unstall characteristics depend strongly

on the nature of the unsteady flow induced upon them by the downstream

flow pattern. In a linear cascade of finite length, the downstream flow

pattern is 'uite different from that for a continuous circular cascade

or a rotorb. Even though there may be many blades in the linear cascade,

a fully developed, translating, downstream flow pattern as described in

the analysis is precluded by the end wall effects. Therefore, the present

analysis is valid only for an infinitely long linear cascade, or an isolated

rotor, where the downstream flow field extends far from the cascade.

The tendency for the stall cell to split into two as its width increases,

as predicted by the analytical flow model, appears to be supported by the

measured axial velocity profiles just upstream of the rotor given in Figs. 50

and 55. Furthermore, this tendency might explain why smaller stall cells

(greater numbers of cells) existed in the circular cascade than in the rotor.

Since the two-dimensional flow field of the circular cascade extended only a

few blade chords downstream of the cascade, the discussion of page 28 in-

dicates that the cells should be thinner (n less in Fig. 9) than for the

rotor. This fact, together with the assumption that there must be enough

total blockage from the cells to cause (W2) to be nearly the same as for

C (as observed for the rotor), implies that there should be a greater

number of cells in the circular cascade than the rotor.

Equation (12) shows that for the vortex flow model assumed in the

analysis, stall cells can exist only for

Cp > cos 2p.

In Fig. 67 this minimum value of Cp is plotted versus P1. Measured values

of Cp are plotted for increasing P, until the onset of stall propagation.

Propagation started after C, >P cos 2 13 in the three rotors tested.

(This was not always true for the circular cascade.)

Equation (11) shows that for the assumed type of propagation to exist7

WO ;; W2 . If it is assumed that Cx1 = Cx2 and P2 = -A , this condition

becomes cotan 01 < cos )A giving a minimum value of P, for which stall

propagation can exist in a cascade of stagger ; . This minimum value of

Pj and the corresponding measured values of ti where stall propagation
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started in the test rigs are plotted in Fig. 68. Also plotted is cotan 0i =

.866 cos 'A (which gives Vp P from Equation (11) if Cx1 = CX2 and 32 = )
2

It appears that this latter curm 2 correlates rather well with the values of

01 where stall propagation actually began in the test rigs.

Predicted values of propagation velocity for the vortex flow model of

Section 3 are given by Equations (11) and (12). Correlation of the rotor

data with Equation (12) is shown in Figs. 46 and 54 where CPCG from Figs. 45

and 53 was used. Correlation of the data from Ref . 2 with Equation (12) is

shown in Table III where Cp3 7 from that reference was used. It appears that

the predicted values of Vp from Equation (12) are considerably greater than

the measured values . It is felt that the reason for this trend lies in the

fact that p - pi was assumed to be given by isentropic flow outside stall

cells in developing Equation (12). The presence of blade wakes in the

actual flow outside the stall cells causes (P2)0 to be less for a given

measured Ap than in the assumed ideal flow. Therefore, for a measured

A p, Vp should be less than predicted by Equation (12).

Using the average measured values for (PG)o and (CxG)o indicated in

Figs. 51, 52, and 56, one calculates VQ/U from Equation (11) to be .57

for Configuration A and .60 for Configuration B. The correlation with the

measured values of Vs/U as shown in Fig. 66 appears to be good considering

the accuracy of measurement, the departure of the flow from two-dimension-

ality, and the simplifying assumptions in the analysis. Equation (11)

appears to predict propagation velocities more closely than Equation (12),

probably because it is less sensitive to the effect of blade wakes outside

stall cells.

In Table III is shown the correlation of data from Ref. 2 with

Equation (11) using CP 3 7 from Ref. 2 and assuming:

(PG)o = const = 28.5*= , Cx1 = (CX=)o

for the two and three cell patterns, and Cxj = .8(Cx2 )0 for the one cell

pattern; which are estimates based upon the data presented in Ref. 2.



TABLE III

Pi C 3-7

550 .46

56 .43

58 .33

Number of
Cells

2

3
1

(Vp_-)Cxj meas.

.53

.48

.89

(VB)
Cx1 eqn. 12

.80

.87

1.19

(V~P )
Cx1 eqn. 11

.58

.54

.87

In Table IV is shown the correlation of data from the circular cascade

with Equation (12)

TABLE IV

Ref . 19, = 1

C Number of
p Cells

9
9

10-12

12

Cr1 meas.

.60

.64

.70

.70

(vC eCx egn. 12

.8o

.86

1.03
1.22

x (extrapolated from data)

Configuration A,

C Number of (1p_)p Cells Cr1 meas.

15-20

13-14

16

.24

.54

.75

5

31 CP Number of
Op Cells

Configuration B,

Cr1 Imeas.

= 1

Cx eqn. 12

1.4

1.3

1.6

4.3

=1

(!P 1
Cx1 eqn. 12

58 .45

64 .36

630

64
66
68

.48

.46

.41x

.36x

550
60

68
81

.33
.29

.25

.12

9-10

11

.55 .82

1.6

59.
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It is observed that Equation (12) overestimates the measured values of

Vp- considerably for the circular cascade. However, good correlationCxi
cannot be expected since the assumption in the analysis that the flow field

extends infinitely far downstream of the cascade is not a valid approximation

for the circular cascade. Furthermore, the analysis is not valid for a

radial flow field.

In Table V is shown the correlation with Equation (12) of data from

Ref. 14 for a guide vane-rotor stage relative to the rotor.

TABLE V

0 * C No. of (yA) (VA)P Cells (Cx-1 meas Cxj eqn. 12

67.5 .30 8 .9 1.4

72.5 .25 9 1.1 1.8

75.0 .23x 1 2.3 2.2

77.5 .20x 1 3.0 2.8

80.0 .16x 3 3.0 3.6

6 Summary and Suggestions for Future Research

Using approximations suggested by visual observation of the flow through

a circular cascade, a vortex flow model of stall propagation in an isolated

blade row has been developed. Equation (11) derived from analysis of the

vortex flow model, appears to predict the propagation velocities measured

in an isolated rotor within 15%. Stall cell configurations observed in an

isolated rotor were found to be nearly two-dimensional and to propagate

at approximately half wheel speed. The stall cells consisted of regions

where the axial velocity was small and extended downstream from the rotor

in a direction parallel to the rotor axis within t 200.

The number of cells increased as the flow through the rotor was

throttled. A qualitative prediction of the analysis is that a stall cell

of the type assumed should have a tendency to split into two cells as it

grows in peripheral extent. This tendency may be the reason for the ob-

served trend in the number of cells.
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It appears that the most fruitful areas for future analytical work will

be further investigation of the mechanism which determines the number of

cells and extension of the analysis to include flows which are not two-

dimensional, such as caused by "tip cells" or"hub cells." The interference

effect of one blade row on another during stall propagation may be attacked

by the method used in the present analysis by assuming the blades to shed

potential vortices and determining the effect on the blade rows of the

vortices as they are convected downstream.

It is suggested that future experimental work should include an in-

vestigation of the effect of 'airfoil profile on stall propagation in the

circular cascade and rotor. It appears that alteration of the single

stage research compressor so that two widely separated rotors could be

installed would be useful because it would permit a wider range of flow

geometry relative to one of the rotors (or rotor-stator combinations).

It is also suggested that further investigation of the effect on cascade

stall characteristics of the time rate of change of incidence should lead

to a better understanding of the dynamic stall characteristics of the cas-

cade during stall propagation.



LIST OF SYMBOLS
0

A angstroms

A cos 0 cos P2 T 1 - Cp = discharge coefficient

a vortex spacing along stall cell downstream of blade row

C absolute velocity

C static pressure coefficient of cascade = P2 - Pap 1/2 p Wj
blade lift coefficient = Lift/AreaCL 1/2p W12

C blade normal force coefficient = aerodynamic force normal to chord

1/2 p W12

d length of cascade or circumference of rotor

f ( ) function of; frequency

i incidence = 1 -

K defined by Equation (7)

L blade chord

M ; Mach number

m length of stall cell in vortex spaces a

N Vi Cos
Wx2

n width of stall cell downstream of blade row in vortex spaces a

p static pressure

r radius; polar coordinate

s cascade blade spacing

R radius; radius of cylinder in picture plane L

Re Reynolds number based on blade chord 0 W L

real part of

S time mean pp - p
1/2 p W12

t time

Uv v velocity components

U rotor velocity at mean radius = WO, for isolated rotor

V velocity; transport velocity of vortex downstream of blade row

Va velocity of vortex r along lines b) and c) in Fig. 10

V, p velocity of stall propagation relative to blade row



LIST OF SYMBOlS (Continued)

V absolute velocity of stall propagation = U - Vp
Vi velocity induced by stall cell =

a

W complex velocity potential in picture plane; velocity relative to
cascade or rotor

WX2
Y fraction of downstream periphery covered by stall cells = na

z = x + i y2 complex coordinate in physical plane

ac angle of flow from axial direction in absolute coordinate system

angle of flow from axial direction in coordinate system fixed to blade row

cascade solidity = L/s

cascade stagger angle from blade chord to axial direction

Z' period with which stall cells pass a fixed point

r strength of shed vortex

J7 strength of bound vortex

0 polar coordinate; blade camber angle

0 angle of stall cell from axial direction

= 8 + i -q complex coordinate in picture plane

) )o stagnation point; outside stall cell

( )i inside stall cell

( )a far upstream; upstream measuring station in circular cascade

( )2 far downstream; downstream measuring station in circular cascade

( ) complex conjugate of ( )
fI(x) d

( )X axial component of ( ) (Note, Cx = Wx)

( )r radial component of ( )
( )e tangential component of ( )

C, E, F, FG, G, K measuring stations along axis of rotor shown in Fig. 41
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