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ABSTRACT

An experimental investigation of stall propagation in a stationary circular
cascade by means of high speed schlieren and interferometer photography is
described. This investigation suggests an analytical approach to the problem
which is valid only for an isolated blade row in an infinite flow field but
which is not restricted to small unsteady perturbations or an assumed sim-
plified cascade geometry. Conditions necessary for the existence of the
assumed type of stall cells are described and equations are derived for the
velocity of stall cell propagation.

The propagation velocities predicted for the theoretical potential-
flow model correlate with all the experimental values measured in an isolated
rotor within 15%.

Analysis of the flow model predicts a tendency for the assumed type of
stall cell to split with increasing incidence of the mean flow through the
blade row which appears to correlate with the experimental observation of a

trend for increasing numbers of cells in the rotor.
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1 Introduction

The obJjective of the analytical and experimental work presented herein
is the development of a theory which will enable one to predict the flow
through a cascade of rigid airfoils, or an isolated blade row of an axial
compressor, when the incidence of the fluid on the airfoils is high. It
was discovered in the early days of British jet engine development that the
flow can be unstable under these conditions and that self -induced periodie
disturbances on the flow can develop. The disturbances are caused by the
propagation along the cascade, at approximately the relative tangential
component of mainstream velocity, of regions where the flow is badly sepa-~
rated from the airfoils. These regions where the blades are severely stalled
generally are called stall cells. The problem of stall cell propagation
in axial compressors has continued to receive considerable attention since
the pioneering analytical treatment by Emmons (Ref. 5) because of its im-
portance as a cause of blade fatigue failure.

The appearance of stall propagation in aircraft gas turbine engines
generally occurs in the early stages of the axial compressor during any
off-design operating condition in which these stages operate at much higher
than design incidence. This condition can arise because of restriction
of flow associated with engine acceleration or because of operation at
lower than the "design value of reduced engine speed, N/ T." Several
mechanical devices are in use which tend to prevent the occurrence of
rotating stall by lowering the incidence in the first few stages during
such off-design operation. However, there are weight penalties and/or
aerodyhamic losses associated with these devices.,

A satisfactory stall propagation theory might lead to: 1) prevention
of unsteady flow due to stall propagation when the incidence of the mean
flow is high; 2) alteration of the stall cell pattern and/or its velocity
of propagation so that for a given cascade geometry and mean flow, the
forcing frequency of the blade loading can be chosen by the designer; or
3) prediction of enough information about the unsteady flow so that blades
can be designed to withstand the unsteady aerodynsmic loading.

However, before such a theory can be achieved, it appears that more
must be known about the detailed nature of the flow during stall propagation
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in a blade row than has appeared in the literature. Experiments were run ina
radial outflow circular cescade installed in a closed circuit wind tunnel in
order to take high speed sehlieren and interferometer pictures of the flow
through a portion of the cascade during stall propagation. Further experi-
ments were run with an isclated rotor of an axial flow compressor. The data
taken in these two test rigs suggest certain approximations to the flow which
aid in the subsequent analytical treatment of the prdblem.

The analysis of the general problem of stall propagation in axial com-
pressors 1s obvicusly difficult since an unsteady, rotational, three-
dimensional flow of a compressible fluid is involved. In order to retain
the essential features of tpe flow but to simplify the problem as much as
possible for analytical treahment, the flow is assumed to be two-dimensional
and incompressible and limited to the case of an isolated blade row. It is be~
lieved that further analysis of this problem is necessary before the much
more difficult, three-dimensioﬁal and multi-stage problem can be successfully
attacked.

There have been several analyses of the problem with the restricting
assumptions given above.* The main reason for attempting another analysis
of the same problem is the fact that all of the known previous theoretical
work has been further restricted by the assumption that the unsteady
velocity perturbations are small with respect to the mean flow velocity. From
the experimental deta presented in Section 4 and in the listed references,
this assumption does not appear to be a good approximation, and the present
analysis is not restricted to small unsteady perturbations. Moreover,
the previous analyses have been based upon rather restrictive representations
of an isolated blade row, either as a lifting line or infinitesimally
spaced flat plates; whereas, in the present analysis, the chordyspacing,
shapg,and detailed stall characteristics of the blades are not specified.
Finally, none of the theories, except Ref. 19, has offered apparent physical
causes which determine the number of stall cells. The analytical flow model
used herein appears to present qualitative information in this regard.

* These analyses are given in Refs. 5, 12, 18, 19. A brief summary of
each is presented in Ref. 19.
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From the state of the art at the present time, it appears that the
desirable features of a stall propagation theory are predictions for a
given cascade geometry ofs

a) mean flow incidences at which stall propagation is possible

b) the number of stall cells '

c¢) the velocity of stall cell propagation

d) the magnitude of unsteady aerodynamic forces on the airfoils
Such a theory is the goal toward which the work presented hereih is directed.

2 Background

Conditions required for the existence of small perturbation stall
propagation and a mechanism by which the stalling of rigid airfoils in
cascade can propasgate has been clearly explained in Refs. 5 and 19, where
the cascade is assumed to consist of infinitesimally spaced flat plates of
finite chord which stall at or their trailing edges and between which the
flow is one-dimensional. It is apparent that, as is described in these
references, the diversion of flow around a stalled airfoil tends to stall
the adjacent airfoil on its suction side and unstall the opposite adjacent
airfoil. However, in order to apply the analysis of Ref. 19 to calculate
the velocity of stall propagation, it is necessary to know an "equivalent
chord length" if the airfoils do not stall locally at their trailing edges.
In general, from theydata presented herein, it appears that the separation
of the boundary layer associated with stalling occurs more nearly at the
airfoil leading edge during stall propagation and that the flow in the
blade passages is rather far from one-dimensiocnal for typical cascade
solidities. It was further assumed in Ref. 19 that the performance of a
blade; i.e. the "discharge coefficient A," or blade boundary layer dis-
placement thickness, was a function only of local incidence. A result of
the analysis based upon these assumptions was that the harmonics of the
small perturbation travelled at differént velocities and it became necessary
to restrict the veloecity perturbation upstream of the cascade to a pure
sine wave in the analysis in ordef that it should maintain its shape as it
propagated. The sine wave shape does not agree well with experimental
data, particularly for small numbers of cells.



In all the previous analyses, the equations of motion were solved for
the irrotational motion of the fluid upstream of the cascade with the cascade
as a boundary and the cascade characteristics appearing in the boundary
conditions. Since the time dependent differential equations are non-linear,
the assumption of small unsteady perturbations was necessary in order to
linearize and solve the equations. Furthermore, in order to make the boundary
conditions continuous, it was necessary to restrict the cascade geometry to
infinitesimal blade spacing. The analyses based upon the assumption of
small perturbations have yilelded valuable information about the gqualitative
nature of stall propagation, and undoubtedly this assumption is valid for
the prediction of the onset of propagation. However, the validity of the
analyses in calculating propegation velocities of large asmplitude perturba-
tions appears uncertain.

In Ref. 18 an analysis based upon representation of the cascade as &
distributed vortex sheet led to the prediction of infinite velocity of
propagation for some values of incidence unless an arbitrary "boundary layer
phase lag" was included. (This difficulty did not arise in the analyses
of Refs. 12 and 19, where the assumption of infinitesimal blade spacing
was made also.) From the experimental data and analysis herein, it appears
that if the two-dimensional flow between finitely spaced airfoils is con-
sidered in representing the cascade during stall propagation, the propagation
velocity must be of the same order of magnitude as the free stream velocity
even if the "boundary layer phase lag" of the airfoils is zero. As the
dimensions of the cascade shrink to zero, similitude requires that Vp
remain finite. The present analysis indicates, also, that the stall cells
must be regions of high losses and low stagnation pressure in a coordinate
system fixed to the stall cell pattern, which is contrary to the assumption
of constant stagnation pressure in the "airfoil theory" section of Ref. 18.

Informetion derived from high speed interferometer pictures of the
flow through a portion of a cascade during stall propagation suggests an
analytical approach, which does not necessitate the direct integration of
the equations of motion and which is not limited to small perturbations,
infinitesimal blade chord, or infinitesimal blade spacing and which does not
require arbitrary assumptions regarding the location of separation ofbthe
boundary layer from the airfoil or the time required for separation.



3 Analysis of Stall Propagation in a Blade Row

5.1 Development'of a Vortex Flow Model

3.,1l.1 Experimental and Mathematical Justification

It is noted 'in the interferometervpictures of rotating stall in a
circular cascade (Figs. 22, 25, 26 and 27) that the vorticity shed down-
stream from the cascade airfoils appears to be concentrated largely in dis-
crete vortices which accumulate at and depart from the leading and trailing
edges of the airfoils as they periodically stall and unstall. Furthermore,
the pictures indicate that the airfoils shed a large part of their bound
vorticity when they stall out. This appears to be true for all of the
eircular cascade configurations, Reynolds numbers, and Mach numbers tested.
Experimental data and calculations which support these conclusions and which
suggest that they may be valid also for the flow through a research com-

pressor assembled as an isolated rotor are presented in Section b, In
general, the data suggest that both the rotor and cascade airfoils which

were used in the tests shed vortices during stall propagation'similar to

the Karman vortex-street shed from a flat plate and that the vortices formed
in a manner similar to the vortices formed at the edge of a flat plate

moved impulsively from rest normal to its plane, as in the analysis of Ref. 1.

However, the first suggestion that there might be a strong connec-
tion between stall propagation and vortex shedding was in Ref. 19; where
it was observed experimentally that, as the solidity of the circﬁlar cascade
was reduced, the frequency of stall propagation approached the Karman vortex-
street frequency for an isolated plate as found experimentally in Ref. 6.
Similar date for a different configuration of the circular cascade is shown
in Fig. 29.

With the above experimental evidence as a basis, it is assumed that
during stall propagation, all of the circulation downstream of the cascade
is about discrete potential vortices, which are shed from the airfoils
vhen they alter their circulation upon entering or leaving a stall cell.

The experimental evidence suggests that if this is done, it should be possi-
ble to devise a vortex flow model of stall propagation in a blade row vhere
the vortex shed from the leading edge of a blade moves across the passage
and stalls the adjacent blade before moving on downstream with undiminished
strength.

There are several advantages which arise from the fact that the

hypothetical flowsmodel is irrotational except at discrete singularities.
The most important advantage is that the flow, even though it is unsteady,
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is "kinematic;" that is, the equations of motion need not be integrated to
solve the flow, since the assumed conditions of irrotationality and incom=-
pressibility alone are sufficient. This may be shown from the vector identity,

vav = grad div V - curl curl V.

The continuity equation,
20
ot

shows that div V = O since p is assumed constant. Stokes' and Kelvin's

Theorems are not affected by time variation of flow and are sufficient to
determine irrotationality. Since all vorticity is assumed to be concentrated .
at singular points and inside airfoil surfaces, curl V = O everywhere in the
flow fleld because the singular points are excluded from the field. Con-
seq,u.en‘bly,‘v2 V = Q. La Place's Equation is satisfied at every instant of
time, and the flow may be built up by the superposition of the unsteady
potential flows about the vortices which are assumed to be shed from the
airfolls and convected downstream.

If one exam&nes the effect of a single potential vortex upon the
flow about an isolated flat plate, one can obtain qualitative information
which is useful in the subsequent analysis of a complete cascade of airfoils.

J3.1l.2 Effect of a Vortex on the Flow About a Flat Plate

To find the effect of an adjacent potential veortex upon the circula-
tion about a flat plate of chord L in streaming flow, the method used in
Ref. 15 to estimate bi-plane wing interference is extended. The two-
dimensional flow about a circular cylinder which by the Joukowski trans-
formation can be altered to the desired flow is first considered.

Ilet % = § + 1 1 be the complex coordinate in the cirecular plane
and £( ¥ ) be the complex potential of the flow before the "disturbance"
of the flow by the introduction of the circular cylinder, \‘fl = %@ Then
after the cylinder is introduced, by the circular theorem of Ref. 13, the
complex potential is given by

2 L
- FLl_y_ 4o
w (3)= £18) + £iigg) — Zw In$
vwhere f denotes the complex conjugate of f and ,g/2n is the circulation
about the cylinder.




If % is a stagnation point on the eylinder
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Substituting into the above equation gives
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vhere v, is the veloeity tangent to the circle at $§_, in the "undisturbed flow.’
Applying the above result to an "undisturbed flow" consisting of a

uniform velocity W at the angle f and a poténtial vortex f' at (ri, 91), if

one takes the trailing edge of the cylinder to be a stagnation point and

places it at the origin; ra/th gives the circulation required to maintain

the Kutta condition, and

L L Mcos @
r5/2n=§-vt =§-(Wsin[3+ —-2?-;—;-;)

IZ:nLWsinB.;.-L—E-Oi.&LF.
ery

The equation above indicates that if the Kutta condition is satisfied,
the loci of the vortex I’ for constant cylinder circulation I?’:/zn form a
bi-polar system of circles. When the Joukowskl transformation is applied
to the flow, the cylinder beconies a flat plate of chord L and the circles
are transformed into curves which pass through the trailing edge of the
plate. The dashed curves in Fig. 1 are the loci of the vortex [ for con-
stant plate circulation ég%w s which is given by |

f;=stI.WsinB+n/7

if the Kutta condition is satisfied. The curve for n = 0 is labeled the
neutral line. When the vortex [ is 6n the neutral line it induces no
velocity at the trailing edge of the plate and has no effect on the cylinder
circulation.

The effect of plate camber may be estimated by assuming the plate to
be a circular arc which transforms into a circle displaced from the origin
as shown in Ref. 16 and indicated in Fig., 2, It can be seen from Fig. 2
that if @ 1s the camber of the plate and if £ is the displacement of the
circle from the origin, then in the notation of Fig. 2,
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The solid curve in Fig. 1 ie the neutral line for a plate with camber angle
® = 30°. The displacement of the neutral line indicates the manner in which
the other curves are displaced by the effect of plate camber.

From Fig. 1 it can be seen that if a vortex is in the vicinity of a
plate, the plate circulation is greatest when it.is near the trailing edge.
Therefore, if a vortex is shed from the leading edge of one of a cascade
of airfoils, the circulation about the adjacent airfoil goes through a maxi-
mum value just after the vortex passes under its trailing edge. In Figs.
22B, 25 and 26, it can be seen that as the shed vortex " approaches the
location for meximum [} , the succeeding cascade airfoil stalls out and
sheds another vortex /' . In this simple quasi-steady analysis, only the
effect of one shed vortex is considered. However, Fig. 1 indicates that
this is the dominating effect, since the vortices shed from the other cas-
cade airfoils do not approach the trailing edge of the airfoil in question
so closely. The effect of the vorticity shed from the airfoil itself as
its circulation changes is neglected in this simple quasi-steady analysis.
However, it appears that one may conclude that there is little tendency
for a cascade airfoil to stall until the adjacent shed vortex approaches
its trailing edge. A certain amount of time is required for the shed
vortex to move to such a location; therefore, infinite propagation velocity
is precluded even though the time required for the separation of the bound-
ary layer and accumulation of vorticity is neglected. The qualitative
explanation above is a description of & mechanism by which stalling can
propegate along a cascade of airfoils. This description indicates which
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direction the stalling will propagate and that the velocity of propagation
must be of the same order of magnitude as the free stream velocity.

3.1.3 The Trajectory of a Shed Vortex

With the quasi-steady effect of a vortex on plate circulation as
determined in the previous section, it should be possible to estimate a
velocity of stall propagation along a blade row if the trajectory of the
shed vortex can be calculated, and a stall criterion can be established to
determine when the succeeding vortex is shed. Although difficulties are
encountered which appeay to be insurmountable, the attempts made to calcu~
late the shed vortex tréjectory are presented briefly so that these diffi-
culties may be pointed out and so that some qualitative information can be
derived which is used in the succeeding analysis of Section 3.2,

In the first attempt, the cascade is assumed to be represented by an
infinite series of potential vortices as described in Ref. 17 where it was
shown that the conjugate complex velocity vector given by the geometry of
Fig. 3> is

— . ; )
(W) E MmM-LU = —g—sfe"?' coth (‘TI'SEQA )
i

where z = r e ° =X + 1 y = complex coordinate)
v + 1 v = complex velocity vector.,

Values of ?he real and imaginary parts of the function,
e“Pcoth(me* &)= Sx

are tabulated for various values of § in Ref, 17. By plotting this data

into graphs, it becomes easy to calculate (w + 1 v) at‘any point z = x in

the field near a vortex street at arbitrary angle A with the vortex at the

origin missing. It is assumed that the vortex at the origin is a free

vortex, having been shed from its airfoil; and its trajectory is calculated

by a stepwise numerical procedyme making use of the graphs.

The geometry of Fig. 4 is used in the caiculation since this
corresponds to the flow geometry of Fig° 22. It is assumed that before the
vortex is shed, the effective incidence on all of the cascade airfoils is
giveh by the mean velocity vector Wy, which is the velocity halquy between
each vortex (or airfoil). (Ai)a, the local change from this effective
incidence at airfoil (a)’is calculated as a function of the location of the
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shed vortex. The results are indicated in Table 1, where n is the number of

time intervals, At = §6§ﬁ" s after the vortex has been shed, and By 18 the
x

local mean air angle at airfoil (a). The location of the shed vortex as a

function of n is shown in Fig. k.

TABLE 1

n Ba A i)a
4) 55.5° 0

b 56.0 + 0,5°
7 55 .4 - 0.1

9 57.2 + 1.7

10 57.8 + 2,3

11 60.1 + 4.6

It is noted in Table 1 that (Ai)y is less than 1° until after n = 9. The
effect is the same found in Section 3.1.2 for plate circulmtion as a function
of the location of vortex [ ; that is, neither ihcidence<nor'circulation
increases rapidly at airfoil (a) until the shed vortex r’_approacheé its
trailing edge. This qualitative information 1s used in the subsequent
analysis of Section 3.2,

If it is assumed that blade (a) stalls at (n = 11), or when (Ai)y = 4.6°
(which gives roughly the same vortex location as observed in Fig. 22 at the
time when the succeeding blade stalls), the velocity of stall propagation is

%2 = %%— » Similar results were obtained when the caleculation was made
X

assuming that alternate blades in the cascade stalled simultaneously (which
corresponds approximately to the stall cell pattern of Fig. 22 for 16 cells,
27 blades), and the calculated value for VP/WX was gg; about twice the
experimental value.

It is concluded that the representation of the cascade used here is
too simple to give good numerical answers, since the effect of the presence
of the blade at the origin has been neglected after its circulation is shed.

An attempt is now mede to include the effect of the blade from which
the vortex [' is shed in calculating the trajectory of the vortex M. ot

will be shown that this effect on the shed vortex is to reduce its transport



velocity when it is near the blade, so as to give smaller values for %R .

The neglected boundary layer time delay further reduces %ﬁw x
In Ref. 10, the following expression is derived for the path of a

vortex in streaming flow over a flat plate using the notation of Fig. 5.

A 4r 2
M/(V"-']Eﬁﬁ)sni(é}‘73) ﬂ“‘ldL-T:'—k %;} In ]FE;:_TF57_
. = e

r L5 L4 V2
_ — S —_ =
7 L [I grz © 29 + 256 r‘4:( = const.

And for the transport velocity components of the vortex in Fig.'S, it was
shown that

. ) (/ ‘ /’)__-ZF %

M- ALY = (45) v A T"L-._[(4_L3_)2'—|]2'

vhere z = r o =8+§-,a.ndg=r'e %, u' and v' are the radius,
vector and velocity components in the circular plane or Joukowski transform
of Fig. 5. It should be noted¥ as was shown in Ref. 10, the path of a vor-
tex near a flat plate is not simply the Joukowski transform of the path in
the circular plane but is given by the "Routh stream function."

If it is assumed that the plate sheds all of its distributed
vorticity into the vortex ’“ » fL = Q; and |

ie’

I sine’
STL

= w cos @ - w(-zt%,)acos(ae/—(b) + r. [_ (M.,) ]

/

or E?#%: CCﬁB-é}

) ar

I - o'- ) .

wsin —w (g=) sin(2e-p T ladcy
T L

For this simplest case of one vortex near a plate with no cireula-

tion, a finite difference method could be used to determine the time re-

quired for the vortex to move between two points on its path. However,

difficulty arises from the fact that when the vortex is near the plate Jjust

after being shed, the assumption of potential flow gives very erroneous

!

results. This effect can be observed in the simpler case of a vortex near a

circular cylinder.
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In the notation of Fig. T, the transport velocity components of a
vortex [' near a circular cylinder with no eirculation ( [} = 0) are

;zw ['l«-(g)z] cos (0 - B)

r§=-w\-_l+(§)2] sin (6 - B) + __F_égﬂ

(£) -1

It can be seen from the second equation that when the potential vortex F
is near the circle, it moves rapidly around the circle in a counter-clockwise
direction. If it is assumed that the cylinder sheds all the vorticity re-
quired to satisfy the Kutta conditioh in streaming flow, r'o = 0, T' = byWR 5151 B;
and if [7 is near the leading edge of the circle, .

-]
re ¥

1 - ]
Wsin B 2+(%)2_{_(§) _11 .

Therefore, the initial point of the trajectory of the potential vortex
cannot be taken near the leading edge of the airfoil, and the calculation must
be started from some arbitrary point away from the airfoll surface. The
shape of the trajectory and the time required for the vortex to be convected
downstream depend eritically upon the initial point chosen, as indicated in
Fig. 6, which shows the location of a vortex after several equal time
increments for two arbitrarily chosen initial points. Examination of Fig. 8
indicates that near the plate the transport velocity with which the shed
vortex moves downstream is leés than at points away from the plate. This
information is used in the subsequent analysis, which circumvents the 4iffi-
culty mentioned above and which has been devised to deal with the problem
of the convection of a series of vortices shed from a cascade of airfoils.

Tt is interesting to note that there is a point in the flow about
a circle from which the vortex [7 will not move in en ideal fluid (with
no dissipation of the vortex).

Ir [, =0, this point is given by 6= p + 90°,
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For B = 30° and © = 120°, r = 0, and T 6 is plotted as a function r/R in
Fig. 8 for three values of V//Z assuming [7+ [7, = bx WR sin B.

It appears to be quite difficult to establish a suitable initial
point to begin calculating the vortex t.ra.,jectory and to’estimgﬁ& the time
required for the vorticity to be shed from the airfoil surfaceVto accumulate
at this point. The problem was solved for a special case in Ref. 1, but the
method used appears to be too involved for the problem at hand.

5.2 Analysis of a Vortex Flow Model of StallvPropaga.tion

53.2.1 Derivation of Expressions for Propagation Veloeity

Velocity measurements taken during stall propagetion indicate that
for a given operating condition or mean flow, the unsieady velocity per-
turbation translates at constant velocity VP along the cascade, and to a
first approximation, the shape of the velocity profile of the unsteady
perturbation is maintained constant. In other analyses, previously listed,
the assumption was made that the prbfile is constant and it is also made
here, although data which will be presented in Section 4 indicate that this
is not always strictly true. With the approximation that each cascade
airfoil sheds a discrete potential vortex (+ f' ) when it enters the stall
cell and another (- r ) of opposite sign when it leaves the cell, it
follows that all the trajectories of vortices (of same sign) shed from the
cascade airfoils must be translates of the same curve and separated by the
blade spacingg)along the cascade.

The vortices which have heen shed downstream must be arranged in a
pattern as shown in Fig. 9. The dashed lines indicate the tra,jecgtomjes of
the vortices shed from two succeeding blades. The (+ r ) vortices must lie
on a line b) which eventually becomes straight downstream of the cascade
and the (- |7 ) vortices must be located along a line ¢) which becomes
straight and parallel to line b) downstream of the cascade. The region be-
tween lines b) and ¢) is called the stall cell. Lines b) and c) are of
constant shape in time and move relative to the cascade with the velocity
of propagation, Vp., '
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In a coordinate system which is fixed to the stall cell, the blades
move down in Fig. 9 with velocity Vp; and the shed vortices move downstream
along the stationary path lines b) and c¢)., The flow is:éﬁeady in time except
for the effects due to the finite spacing of blades and shed vortices. It
can be seen from Equation (1) that these are local effects confined to an
area withinh approximstely one blade spacing of the cascade and one vortex
spacing of lines b) and ¢). Flow is diverted to each side of the stall cell
vhich has the nature of a thick wake, -

After they are far downstream of the cascade, the shed vortices are
spaced uniformly by a distence (a) along lines b) and ¢) and move with
transport velocity V. @ is defined as the angle between each street and the
cascade axis, and n is defined as the number of vortex spaces between the
streets as indicated in Fig. 9. In Fig. 10 are indicated the velocity tri-
angles associated with the stall cell. The velocity at any point far down-
gtream of the cascade is W2 plus the induced velocity due to the stall cell
(vhich is the velocity induced by two infinite vortex streets).

If the blades stall out completely when they enter the cell, the
strength of the shed vortices will be of the order of magnitude

I = (W, - Wo,) s

From Ref. 7, for a single infinite row of equidistant vortices, each
of strength f'(+ clockwise) at distances a apart, with the origin at a vor-
tex, and the axis of x along the row, the velocity components induced by the

vortices are

u = r sinh (2x y/a)
2a cosh (2n y/a) - cos (2n x/a)
(1)
v = Il. sin (2% x/a) )
~ 28 cosh (2n y/a) - cos (2n x/a)
Therefore,
K 25 2%y 2nx enx 2 2nx
W " a (cosh—-a-——wcosT)COS—--sin =

> (cosh 2n y/a = cos 2x x/a)
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and for Uma.x

2ny anx 4 .
coshacosa 1 =0

2nx
CO8 5~ = cosh 2—1-:

—_— ‘ :
sin _2__3_};_ = Vl - cos® -2%05 =-Kesh2 gﬂ - 1

cosh

*|3
®

=ta.nh?-al

A

r
Vmax = Za sinh 2ny/e

Therefore, far downstream, the maximum lateral velocity (normal to
lines b) and c)) the vortex streets can induce on each other is,

S L
max 2a s8inh 2mn ’
where na is the distance between lines b)and c). Ifn>>1l
,U.max = W9]550W92 °§'
and may be neglected. 7
The basis for teking n > 1 is derived from the hot wire data taken
downstream of the isolated rotor where it is noted that the cells always
cover at least two blade spaces. This appears to be true in general for
stall cells in rotors. In the interferometer pictures from the circular
cascade, Figs. 22B, 25, 26, it is notes that n?2 1; however, the downstream
flow Field extends only two or three blade chords from the circulsr cascade, s0
the initial assumption of an infinite downstream field is not valid for
the circular cascade.
More than a distance (a) from the vortex streets the longitudinal
velocity induced by them may be neglected outside the cell, while inside
the cell, from Equation (1),

V1 = r'/a-o
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The resultant transport velocity of each downstream vortex is V
as shown in Figure 10.
Solving for the velocity of propaga.’;ion VP from Fig. 10, one finds

i i
vp=w92-§lsin¢-(wx2«-§¥cos¢)tan¢

Vp = Wg_ - Wy, tan @ (2)

and if § £ 0, Vp ¥ W,

This same result can be obtained easily by noting the parallelogram
in the velocity diagram of Fig. 10 and solving for the equal and opposite
gide from Vp. One advantage of the assumed vortex flow model is that Vp
can be ealculated away from the cascade without solving for the detailed natyre
of the flow in or near the cascade except in so far as this affects the
angle ¢ It is observed that VP and the angle ¢ are uniguely dependent if
the downstream velocity Wp is given and if n > 1. Vp does not depend ex-
plicitly on the physical size or shape of the stall cell or the magnitude
of the velocity perturbation. Since the angle ,95 has heen observed experi-
mentally to be small in many cases, Equation (2) indicates that the fair
experimental agreement between Vp and Wea which has been noted by other ob-
servers is an immediate consequence. However, in the analysis to follow,
the only assumption regarding the angle ¢ is that it is not a large negative
angle, Reasons for this assumption will be given.

To continue the analysis, the following variables are defined:

NE_.Vic:osg

WXa
m=z I / _ shed vorticity
= o bound vorticity
W.
X= X1
X2

Y = the fraction of the downstream periphery cevered by
the stall cell .

na(cos é
=

d
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It is assumed that the circulation around a blade away from the cell

is given by
[ = e(We, - W) (3)
r wsle s N Wx
Then Vi = o =5—=M E'(wel - ng) = EEE"%

= N (%)
M (X tan B, - tan Bg) cos §

8
a

The time average continuity equation gives
na na .
d . Wy, = (a —m ) Weo + m (WXZ - V4 cos é)

X-1=Y(1L-N)-Y
X=1-1N (5)
Solving from Fig. 10 for the velocity with which the vortices move along

lines b) and ¢), one finds

D e Wi
Va = 558 ) 2 °

Since the frequency with which vortices pass downstream points on lines b)
and c) must be the same as the frequency with which vortices are shed onto
the lines, ‘
_Vp _VWep -Wxptan § _ (tan Ba - ten @) cos § (6)

Va Wx Vi N
cos @ f 2 1-53

8
a

Eliminating E-from Equations (4) and (6) gives

2
(t’a'n B2 - tan ¢) COSZ¢ = M (XNt;IINﬁ{_a— tan BZ) = K. (7)

From the velocity diagram for an isolated rotor in Fig. 11, it can be seen
that
X tan B3 -~ tan Bz = tan Gp.
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This relationship is valid only for an isolated rotor with no upstream whirl
velocity (Cg, = 0).

I? is noted that since the shed vortices are convected downstream,
N < 2., Also, the range of M must be limited to

0 < M <1,

The curves of K versus N for M(X tan B; - tan Bp) assumed constant are
parabolas. Curves of K versus tan ¢ for B assumed constant are slmost
straight for |tan §] < 0.2, as shown in Fig. 12, which is a plot of K versus
tan @ for Bz = 30° and 50°. (Experimental values of Pz for the isolated
rotor from which data were taken in Section 4 fall between 30° and 50°.)

A disgram of K versus N and K versus tan ¢ with the intercepts and
peaks labeled is shown in Figa,l}» Tt is indicated that for a given
value of K, there are either two or zero solutions for the éngle ¢ (and VP)o
However, solutions which are physically possible appear to lie on the posi-
tive side of the peak of the K versus tan § curve, (tan @ > tan Bp - sec Bz
in Fig. 13), since experimental values of @ presented in Section 4 fall
between ~15° and + 19°, and since all known experimental values of Vp are
less than Wg,. Qualitative reasoning based on the results of Section 3.1.2
indicates that a blade has little tendency to begin to stall until the
vortex shed from the preceding blade approaches the trailing edgé° Ir
time T = s/Vp is required for the vortex to be formed and shed from a
blade and to approach the trailing edge of the succeeding blade when it be-
gins to stall, T is also the time required for the vortex to move from ’
points 1) to 2) in Fig. 9. Since it has been shown that the velocity of the
shed vortex is less when it is near the blade than when it is downstream
(for an isolated blade and vortex) and since there is a boundary layer time
delay required for the vortex to be formed, it would appear that large
negetive values for ¢ are impossible for typical cescade geometries. This
precludes the possibility of infinite propagation velocity, since from
Equation (2) for V>0 , g> -90°,

It is assumed henceforth that

tan Bz - sec Po <ta.n¢<tan62)

which is equivalent to assuming that
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0 < Vp & W,

as shown in Fig. 13. Since in this range of ¢, K versus tan ¢ can be roughly
approximated by a straight line which passes through the intercepts (tan Bp, 0),
(0, tan Bz); it can be seen from the gecmetry of Fig. 13 that

Vp v .~ N -NZ/2
o M (X tan By - %an Pa) ° : (8)

Or, for an isolated rotor

Vp ~ N_- N%/2

Vp ~ N - N2

—

Voo M tan® o 21

The above approximation should be sufficient for the generé.l relationship
existing between the variables to be given by Equation (8). If N > 1,
there is small net axial flow through the blades in the stall cell since
lines b) and c)l in Fig. 9 are path lines and the mass flow into the cell
through the blades must be equal to the axial flow in the cell ‘downstream,
It is asswmed that the blades in the stall cell must lose most of their
circulation if N = 1, and as a result M =z 1.

Experimental values of N appear to be close enough to unity for the
assumption that N = 1, since the variation of K with N is small for N near

X
i < 7 <
unity as shown in Fig. 13, (if 3/k N < 1, .47 Tan O < .50).

For an isolated rotor {Cg, = 0) and for (M =N = 1), Equation (8)
becomes "

Vp K cotan Qo
Wxo B 2

(9)
Vp 2 cotan®ug
Vo, 2
Equation (9) gives an approximate prediction of the propagation velocity
for the type of stall cell assumed based upon the approximation that K versus
tan § is linear., However, if M = N = 1, Equation (7) can be solved for
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tan ¢, and a better answer can be obtained without recourse to this approximation.
If M = N.= 1, Equation (7) becomes

1 + tan®g
2(X tan B1 - tan B2)

tan Bo - tan @ =

O=tana¢+2(xta.n61—tanaa)tan¢r+l-2ta.nﬁa(Xta.nB;_-tanﬁ2)

tan § = -(X tan B; - tan Bz) |
2

1+

[(xtanal-tansa)z-1+atansa(x+.ansl-tanaaﬂ

N

(-

(]

tanBa-Xt&nﬁlt{(Xt&n_Bl"t&nﬁa)(x‘tanﬁl'*tanﬁa)"ﬂ

tan B - X tan Bl t-V(Xat&ngﬂl - ‘b&nzBa - f‘

%R - tan Pz - tan § = X tan By F | X2%an®8; - tan®pz - 1
X2

]
VD . tan B, (tenZp, - 2Pzl

1
WXl X2 ( G)

The plus sign for the radical in Equation (10) is discarded since it implies
that tan § < tan Pz - sec Ba.

Therefore,

1
Vp Wa 2
-1-Y1-@2) and
3 V 2o

vQ _ |/ (M2 ' stall pattern RPM
il (WQ]_) rotor RPM

for an isolated rotor, since Wg, = U, and Vo = U - Vpeo

(11)

If it is assumed that an isentrop'ic pressure coefficient may be used
outside the 'stall cell, then |
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x2(1 - cp) = l;i;ﬁﬁ&fﬁg

1l + ta.n261

Therefore, substituting in Equation (10),

)

tan B, -Ytan%l = (1 + tan®;) (1 - Cp) '

I

P = tan B, —-Vta.nasl - (1 - Cp) - tan®B; + Cp tan®py

'
=tan By - |/ 2B— -1

008%1 (12)

1
Pp -
=th1”Y12pr12‘l ’

Or, using coefficients as defined in Reference 2'

- 1
g = %an B:
LP-_-B%.:.‘E.L_
1/2 p Ce,2

V\p '
%13%' —¢E"l °

Equstions (11) and (12) indicate that stall cells of the type assumed (N =M =1,
0 <Vp < Wg,) are impossible unless W2 < Wg, or Cp > ces38,.
If Wz = Wg,, Vp = Wg, and tan @ = tan B> - sec Pa, as indicated in
Fig. 13 and Cp = coe@P,., It is interesting to note that this corresponds
to the propagation velocity predicted in Ref. 19 for a simplified cascade
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geometry and entirely different type of stall cell, where the upstream velocity
perturbation was assumed to be a sine wave of small amplitude and many blade
chords wave length. In Ref. 19, for this type of cell, it was shown that

Vp _2(1 -Cp)

le sin 2 B,y

If Cp = coseﬁl’

Vp _ 2 8in8, -
We, = 2 8in By cos Pa tan By

VP = W@l R

The preceding analysis of Section 3.2.1 indicates that this is a limiting value,
and that for the assumed type of finite amplitude stall cells to exist,
Cp > cos®B;.

It is assumed in the preceding analysis that all of the downstream
circulation is about concentrated vortices. The implication is that: 1) the
wakes shed from the blades outside the cell are thin enough or mix soon
enough to be neglected, and 2) this is also true for the blade wakes in the
cell (or thet the velccity through the blades in the cell is small enough
that the vorticity shed inside the cell can be neglected). The assumption
of M = 1, together with that above, implies that the blades outside the
cell have no drag and those inside the cell have no lift. It is assumed
that the analysis is valid for more than one cell if they are spaced far
enough apart so that Equation (3) remains valid, since the cells induce
no velocity on each other except for their blockage effect on the main flow
which is considered in the analysis.

Since in a coordinate system fixed to the stall cell pattern of Fig. 9,
the flow is steady and the streamlines are straight and parallel downstream, the
static pressure is constant downstream. There is a "head loss" in the stall
cell determined by the velocity defect there, just as in the case of a bluff
body wake; and the fraction of the downstream periphery covered by stall
cells could be expressed by a time average loss coefficient of stagnation
pressure. The qualitative nature of the flow for (M = N = 1) is similar to
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the flow about a flat plate translating along the cascade at velocity Vp and
blocking the flow through a portion of it.

3.2.2 Analysis of Model for Small Perturbations

It is noted that Equation. (7) gives a relationship between the three

parameters (M, N, ¢) and was developed without any-assumptions regarding blade
stall characteristics other than the assumption of discrete vortices dqwn-\
stream. If another independent equation can be derived between M; N andjﬁ,
by specifjing the dynamic blade stall ehafacteristics, Vp can be determined
as a function of N only, or the stall cell amplitude.

For small perturbations, M and N can be related to lift and drag
coefficients since for an isolated airfoil,

lift =p W[\, =1/2p W2. L . Cp,

CiW
ETOL

The assumption is made, as in Ref. 18, that for a cascade of airfoils also
=E=I.JE-L,

where W is the local mean velocity and r; the bound vorticity at an airfoil.
M(N, @) can be determined independently of Equation (5) if Cp is a known
function of local mean air angle P as determined by the local incidence.

It is difficult to determine W and B at the airfoils near the cell
for arbitrary values of N because the shape of linéa b) and ¢) in Pig. 9
must be known. (This difficulty disappears for N 2 1, since for small
flow through the cell one can assume the blades shed all their vorticity;
and M = 1 regardless of the shape of the cell, as in the previous analysis.)
However, if N<<& 1, lines b) and ¢) must be straight even near the cascade,
and it becomes possible to determine W and B by restricting the amplitude
of the stall cell to a small perturbation,

For the velocity induced by a straight vortex street of finite
length, Equation (1) indicates thax,exeept in the immediate vicinity of the
street;, it may be considered as a distributed sheet of strength per unit
length g-; thefefore, with the notation of Fig. lh, the velocity components
induced by an element of length dx are:
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I ax
du:-—-é;a—-rsine
dvg__’:—.d—-x-coseo

2na r

For a sheet of finite length, as in Fig. 15:

X2
[ ydx i -1 X3 -1 x
2 e m— B e— i S 22
u 2xa x2 + y2 2n8 (tan y tan y )
X
!
r )%x d x r’ 2 2 2 at]
V= 2m xa+ya=% I (22 + 3%) = Ln (x2® + ¥%)
Xl B
u =.:i:--8

(13)
v o fnra

It follows that the velocity induced at the blade in the center of the stall
cell, Vi,, as shown in Fig. 16, is.parallel to the streets and equal to é;
if m >> n. For various assumptions of Cy, (B), one might assume that the
blades in the stall cell have a circulation corresponding to W and B at |
the blade in the center of the cell, and calculate Vp as a function of N.

However, rather than assuming Cy, (B) and proceeding as above, one
can start with an assumption regarding the angle ¢ which appears to be
supported experimentally. Values of M which correspond to values of N as
determined by the dynamic stall characteristics restrict X versus N to an
"operating line" similar to the dashed curve of Fig. 13, As N >0, M = 0;
and Equation (8) becomes indeterminate. However, if it is assumed that @
must remain small as N > O for the reasons given on page 19 , (in Section 4
for N = 3/k, «15° < § < 20°) the type of dynamic blade stall character-
istics which satisfy this requirement can be determined as follows.

It is assumed that the M versus N curve must pass through the two
points (0, 0) end (1, 1) in Fig. 13, and an intervening M versus N
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relationship is sought which gives small angles § for N<< 1. It is seen
that M = N* is a convenient function to work with. ,From Equation (7) values
of ¢ are calculated as a function of N for various values of p and for typi-
cal experimental values of &z and Bz from the isolated rotor. It is shown
in Section 4 that for each of two rotor-stagger angles A tested, az and By
were essentially constant in the range of By for which there was rotating
stall and that for |
37° az ¥ ho°

)asao {ag . °
pa & 500 A Tor A =30° { g 390

The result of calculating tan § versus N for .05 < N < .2 and various
values of p using the above values for 0z and Pz are shown in Table II,
where it is observed that for small perturbations on the assumed flow
(N<< 1) and small angle §, p & 1 and M 2 N,

R IR

TABLE II

for (8), = 50° (02),

p=0 "p=o7 P = .85 p=1 p=1.2
N | Max° tan ¢ M=N°T  tan ¢ uxS  tan $ | MsN ten @ MN"2  ten @
.05 1 1.1 .12 AT .08 -2k .05 TImeginary| .04 Imaginary
0| 1 .9 .20 R A L2l 10 - .l .06 "
.20 1 .8 32 .32 .25 .20 .20 o .| .1k "

for (B2), = 30° (@a), = Lo°®

P=0 P = o6 P =T . p = .85
v |us®  ten g|Mew® tan g| uw'T ten g |uN®® ten g
.05 1 5 .16 .20 .12 .08 .08 - .22
<10 1 . b5 25 .16 +20 .06 o1k - .19
201 1 o 37 .38 .02 .32 =010 .25 - .65

Furthermore, it is noted from Equation (7) that if N<<1 (such that N2/2
may be neglected), the same solution for ¢ and V resulte if M = 2 N<KL 1 as
for M = N = 1. It appears, therefore, that for sma.ll perturbations, and
small angles ¢, the percentage of vorticity the airfoils shed upon entering
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a stall cell must be approximately equal to the percentage of downstream axial
velocity defect in the stall cell., Therefore, the reason that small perturbe-
tion stall cells are not commoﬁiy observed may be that a compressor blade
generally is thin, stalls from its leading edge during stall propagation,
and must shed a large percentage of its bound vortieity. This descripﬁion
appears to apply to the dynamic stallvcharacteristics of the airfoils used
in Section 4 although in quasi-steady flow they exhibit a coﬁtinuous C1, versus
i curve even in stall as indicated by Figs. 18, 23, 46 and 53. It is shown
in Section 4.1.% that the airfoils display stall characteristics.during stall
propagation which depart considerably from their quasi-steady stall character-
isties. It is felt that the sudden increase of i as thé airfoils enter a
stall cell causes them to stall abruptly from their leading edges for the
reason given on page 56 , even though they stall "gently" with a slow (quasi
steady) increase of i.

A qualitative reason that a compressor blade should not shed a small
vortex from its leading edge during stall propagation was indicated in Ref. 1,
where it was shown that for a flat plate movéd impulsively from rest normal
to its plane; vortices must form at the edges of the plate (if infinite
véloeity is precluded) and that during the initial formation Qf these edge
vorticeés, similitude of the flow requires them to grow until they are not
small in proportion to the width of the plate. Of course, the stronger the
vortex shed from a cascade blade, the greater is the tendency for the ad jacent
blade to stall as the vortex moves past it and the greater the tendency for
stall propagation; however, there is no apparent reason why propagatibn of
small perturbations should not occur excpet that this appears to be precluded
by the dynamic stall characteristics of the—airfoilé@

Since small perturbation stall cells which are two-dimensional (hub
to tip in a rotor) and stable have never been cbserved experimentally to
the knowledge of the author, the analysis is pursued no further. The dis-~
cussion above is offered as a qualitative speculatién.(not an attempt to
prove) that small perturbation, two-dimensional stall cells cannot exist.

Pe2.3 Prediction of a Trend for the Number of Cells

The vortex flow model used in the analysis appears to offer an ex-

planation for the general trend toward larger numbers of cells with increasing
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throttling of flow as indicated by the experimental data. The experimental
results indicate that with further throttling of the flow through an isolated
rotor after the formation of one stall cell, the cell first grew wider

(n ineressed in Fig. 9), then two cells appeared and grew wider, etc. until
four cells appeared and surging flow began. The vortex flow model indicates
that if m is finite in Fig. 16, the velocity induced by the stall cell at

the blade in the center of the cell, (Vi)e, decreases as %-increaseso This
effect can be shown qualitatively by assuming the lines b) and c) to be
entirely straight. Then from Equation 13 , if m>>n

() =5 /2 - ).

As %-inereases, (Vi) decreases faster than near the edges of the cell, there
is more flow through the center of the cell than near the edges, and the
blade at the cehter of the cell tends to unstall, thereby splitting the cell
into two cells which become distributed axisymmetrically around the rotor.

It does not appear possible to'predict when a stall cell will split
as %-increases without detailed information regarding the dynamic stall-
unstall characteristics of the airfoils and the shape of the cell (lines b)
and ¢) in Fig. 9). The estimated relationship between %-and (vy), above
does not indicate much effect on (Vi), until %- > 1/3. The measured effect
is much greater and is described in Section k.

3.,2.4 Summary of Analysis

By making use of experimental data in order to develop a simplified
analytical flow model, a theory of stall propagation in an isolated blade
row has been developed which appears to be based upon fewer restrictive
~assumptions than some of the earlier analyses. In the analysiS;va restric-
 tion is imposed upon nature of the stall cells. Although the approximation
to the actual observed flows appears to be valid for all the bleding,
geometrical configurations, and flow conditions for which experiments were

T, it is unknown how valid the approximation is in general. It is
suggested that the approximation regarding the nature of the cells might
be widely applicable to continuous cascades of thin airfoils, where the
flow extends many blade chords downstream of the cascade.

It should be noted that in the preceding analysis no proof of existence,
equilibrium, or stability is given for the assumed flow model. The experi-
mental daﬁa in Section U4 are offered in lieu of mathematical proof.
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4 Experimental Investigation of Rotating Stall

h.,1 Investigation in a Circular Cascade

k.1.1 Description of Apparatus and Procedure

With the sponsorship of the National Advisory Committee for Aero-
nauties, a circular radial-outflow cascade was designed and installed in the
closed circuit wind tunnel at the Gas Turbine laboratory during 1953. The
cascade was designed specifically for investigation of rotating stall and is
described in detail in Ref. 9. In Fig. 17 is shown a schematic view of the
test section which includes a ring of variable angle gulde vanes with which

the air inlet angle to the test cascade, B3, can be continuocusly varied.
Some dimensions of the test castade are:
radius to guide vane trailing edges T.2" to 6.7" (varies
with B;y)
radius to blade leading edges and measuring stations 1 and 2 respectively:
for Configuration A; 7.91, 7.69, 8.9% inches
for Configuration B; 8.66, 8.4k, 9.69 inches
blade chord .96 inches
blade span 1.7l inches g
blade profile NACA 65(12)10 as changed by circular transformation
number of blades - 5%, 27, 18, 9 - giving nominal solidities O = 1,
1/2, 1/3, 1/6
simulated linear cascade 65(8)10, mean line a = 1.0

Some advantages of the cascade geometry are:

1) The flow is two-dimensional through the cascade neglecting the
wall boundary layers. A

2) Optical measurement of the flow through a portion of the cascade
is possible.

3) A continuously rotating stall pattern can be established, which
is not possible for a finite length linear cascade.

Some disadvantages are: ' _

1) Because of the radial flow, the pressure distribution about the
airfoils is not precisely the same for a given pressure rise through the

cascade as in a rotor or linear cascade. As described in Ref. 9, a correc-
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tion was made for this effect by designing the cascade through the conformal
transformation of one linear cascade such that the adverse pressure gradient
on the suction side of the airfoils in the transformed,. circular cascade was
approximstely equal to that for a second linear cascadé‘which wis simulated.
Tt was found that the eircular transformation of a linear NACA 65(12)10 cas-
cade gave approximately the same adverse pressure gradient on the circular
cascade blades at the design point as for a linear NACA 65(8)10 cascade.

The data for the linear cascade pressure distributions were taken from

Ref. 8. The degree of success of this procedure is indicated in Section k1.4
where the pressure distribution about the circular cascade blades is cal-
culated and compared with those from Ref. 8 for one value of i.

2) The flow field downstream of the cascade is necessarily rather
short which appears to have a pronounced effect on the rotating stall cell
pattern as discussed in Section 5.

In Ref. 19, an experimental investigation of rotating stall in the
circular cascade is described, which was conducted to determine the detailed
nature of the flow and to ascertain the effects of Mach number, Reynolds
number, mean incidence, and cascade solidity on the propagation of stall
cells in the cascade. The experimental work described here is & contimiation
of this investigation. The procedures and instrumentation are largely the
same as described in Ref. 19 except for the use of the Gas Turbine laboratory
portable Mach-Zehnder interfercmeter and a piezoelectric crystal préssure
pickup described in Section 4.l.k.

The purpose of the present investigation is to extend the above data
to include the effects of lower cascade stagger angle, of higher mean
incidence to the cascade, and of increased clearance between guide vanes and‘

test cascade. Quantitative measurement of the pressure field in a portion

.of the cascade during stall propagation is also attempted by means of high

frequency interferometer pictures.

All of the tests in Ref. 19 were made with a cascade stagger angle A
fixed at 43°, The highest angle to vhich the guide vanes could be turned
gave an entering air angle B; to the cascade of 69°; therefore, the highest
meen flow incidence angle, i, possible was 26°. Stall propagation started



31.

at 1 = 20°. In Ref. 14, it was observed that stall propagation existed in a
rotor plus guide vane axial compressor stage for 34°< i < U7° (relative to
the rotor at mean radius), Therefore, it was deemed desirable to alter

the linkages to the guide vanes to permit greater incidences to the ecir-
cular cascade. It was noted in the schlieren pictures presented in Ref. 19
that during stall propagation in the circular cascade, when an airfoll
st#lled some of the fluid from the separated boundary layer was washed
around the leading edge of the succeeding airfoil before it stalled. In
hope of decreasing this effect, to increase further the incidence on the
cascade airfoils, and to observe any other effects on the nature of the
flow, the stagger angle of the cascade was changed from 43° to 31°. For
the altered gulde vane linkages and reduced stagger aﬁgle, the range of i
was from 13° to 53°. With these two alterations, the following data,
similar to that presented in Ref. 19, were taken at the reduced stagger
angle and over a greater range of incidence dwring stall propagation.

Throughout Section k.1, C, is defined as the ratlo of time average
static pressure rise through the cascade to the dynamic pressure of the flow
entering, P2 - Pa ¢ Where Pz and p; are wall static pressures as measured.

1/2 paW,y®
by the average of three equally spaced taps at measuring station 2 and three
at station 1. It was determined that each of the boundary layers on the
cascade walls was less than one-eighth inch thick before the onset of stall
propagation and they are neglected @eneeforth, '

In all the series of schlieren and interferometer photographs such
as Fig. 19 and Fig. 25, time is fram right to left. All the schlieren
photographs were taken at 5000 per second and all the interferometer photo-
graphs at 6000 per second.

4.1.2 Experimental Results - Configuration A .
as a function of By for cascade solidity

Pressufevcoefficient Cp
of unity is shown in Fig. 18 for two levels of Reynolds number Re,. The
conventional (cP)max is at By = 46° in Fig. 18. Subsequent hot wire data
and schlieren pictures indicate that periodic stall propagation occurred
at the peaks in the curve where B; was 54°, 62°, 68°, and for P, greater

than 79°. On each side of the peaks the stall cells gradually became
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intermittent and of lower amplitude, and between the peaks the flow was rela-
tively steady in time. Visual observation of the flow through the schlierem
apparatus for values of P, between the peaks of Fig. 18 showed that the flow
was completely separated from the suction side of the airfoils.

As By was varied, the mass flow through the test section was held
approximately constant; therefore, Reynolds number and Mach number increased
with B, for each curve plotted, as indicated in Fig. 18.

It is noted in Fig. 18 that there was a distinct effect on cp causeast
by change of Reynolds number for 58°«< By < T4°. At the lower Reynolds num-
bers propagation no longer occurred at the band of B centered at 62° and '
the band at 68° became narrower.  When the Reynolds number was decreased to
50,000 both of these bands disappeared; but propagation at the 5h° band
became more violent and periodic; and the band at 79° was not affected
noticeably.

Sehlieren photogrephs of the flow were taken in each of the bands of
8, for which there was stall propagation. The same equipment was used as im
Ref. 19, the five inch portable schlieren apparatus of the Gas Turbine
Laboratory altered to use an Edgerton Germashausan and Grier type 501
stroboscopic light source and a General Radio Corporation 35 mm. camera.
Sections of each of these four films are shown in Fig. 19.

The velocity of propagation and the number of cells in each band of
Bllwere determined from the films above and hot wire velocity meaéurements
made upstream of the cascade at 7.69 inches radius. This data is presented
in Pig. 20 together with values of Vp/Crl predicted for a circular cascade
by the equation on page 42 of Ref. 19. (Values for Pz used in this equatiom
vere determined by extrapolation from the values measured in schlieren
photographs before the onset of stall propagation as was done in Ref. 19.)

Traverses of the hot wire across the span of the cascade airfoils
indicated that the flow was two-dimensional for all the bands except fornﬁl.
gfeater than T9° where the velocity fluctuations were about twice as great
near the walls as in the center of the blade span. Typical hot wire traces.
taken at r = 7.69 inéhes for the four bands of propagation are shown in
Fig. 21. The hot wire equipment used was a Flow Corporation model HWB

hot wire snemometer and another similar unit with hot wires of .005 mm.



33.

diameter and .O4" length.

By careful examination of the negatives from which Fig. 19 was made,
one can discern the wakes from the upstream guide vanes. It was attempted
to make one wake more visible by heatingra turning vane with soldering iron
filaments brazed to each end. However, ﬁo effect could be noticed in the
pictures. ‘In Fig. 19A, during the first band of P, for which there was
propagation, neither these wakes nor the fluid from the adjacent separated
airfoils were washed over the leading edges of the alrfoils during stall
propagation. In Fig. 19B, a turning vane wake just barely flicked' over the
leading edge of each blade before it stalled and not much of the separated
fluid from the adjacent blade was washed over. In Fig. 19C, the same wake
as in Fig. 19B crossed back and forth over the leading edge of each blade
and more of the separated fluid was washed over. In Fig. 19D, the wakes
cannot be detected. It is probable that the wakes and separated fluid
injected into the blade boundary layers had an effect on the time required
for the blades to stall. This may have caused the great increase of propa-
gation velocity from Fig. 19A to Fig. 19B. This effect is more evident
when ggi is calculated, rather than i ] o For the bands in order of increasing

‘ Cry
Bi, gg» was .13, .26, .28, .25. Thus, gg- increased by a factor of two from
1 1

the first to the second band and then remained virtually constant.

Because the stall cells were not all precisely the same size and
shape for a given mean flow, there is an uncertainty in meaéuring Vp and
the number of cells. It is believed that the uncertainty in determining
the number of cells was less than five for the first band, three for the
second and third, and zero for the last band at 71°. The uncertainty in Vp
is about 12% for the last band, 8% for the first and less for the other two
a8 indicated in Fig. 20.

When half the blades were removed from the cascade, this being the
only alteration, the following experimental results were obtained for con-
figuration A, at a value of ( = 1/2,

Pressure coefficient Cp versus P is plotted in Fig. 18 so that
comparison can be made with the data for 0 of unity. It is cobserved
that for 4 = 1/2 there was a mean pressure drop through the cascade for
some values of B;. Hot wire traces showed that the first band of B3 for
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vhich there was stall propagation was at 5° and was very narrow. The signals
vere never periodic, but were intermittent with occasional lapses to high
frequency turbulence. For 60° < By < 64° a periodic signal was observed as
shown in Fig. 21E. For 64°< B; < T79° there were low amplitude, unperiodic
fluctuations in the flow which became more distinct for B;< T9°. Traverses
of the hot wire indicated that the velocity fluctuations were two-dimensional
and periodic only for 60°< By < 64°. In the 54° band, velocity fluctuations
existed only in the center third of the blade span and for B; < T9° only

in outer thirds of the span near the walls.

Schlieren pictures were taken for B = 60° and a section of the film
is shown in Fig. 22A. From the film and hot wire traces the number of cells
and their velocity of propagation were determined and are indicated in Fig. 20.
In Fig. 22A, the wakes from two of the guide vanes are visible. (They have
been darkened to aid in reproduction.) From the motion of these wakes it
is apparent that the unsteady fluctuations in the flow are large. It is ob-
served that the wakes briefly cross over the leading edges of the cascade
blades as they fluctuate. In Figs. 19 and 22A, the boundary layer appears to
separate from near the leading edges of the airfoils when they stall and to
reattach when they unstall. ) /

When the Reynolds number was lowered below 50,@@@ for a value of

g = 1/2, the velocity fluctuations became non-periodic and of very 1ov
amplitude for all the bands of B, where stall propagation had existed at
higher Reynolds numbers. ]

In Fig. 22B is seen a segtion of an interferometer film taken for
the same flow geometry as Fig. 22A, although Re, and M; are higher for
Fig, 22B, being 333,000 and .7 respectively. The bands in Fig. 22B
indicate lines of constant mean air density, which correspond to lines
of constant pressure if isentropic flow can be assumed and lines of con-
stant velocity magnitude where the time rate of change of velocity can be
neglected. The striking feature of Fig. 22B is the distinct appearance
of the vortices shed from the leading and trailing edges of the airfoils.

k,1.3 Experimental Results - Configuration B

Po determine the'effect of interference between guide vanes and
test cascade, the radii of the test cascade and the static pressure taps
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for measuring pjy and pz were increased three quarters of an inch to con-
figuration B. This effectively doubled the clearance between the blade

rows and shifted their relative angular position approximately three degrees
about the axis of the test section. _

In Fig. 23 is plotted vaeraus By for configuration B and 4 of unity.
Comparison with the corresponding Cp curve for configuration A from Fig. 18
indicates that the increased clearance had no pronounced gqualitative effect
upon Cp, although values of Cp were generally greater for configuration B.
The bands of Pj where stall propagation existed were shifted a few degrees,
vhich was probably caused by the angular shift of the blade rows from con-
figuration A to B through the effect of the turning vane wakes on the
dynamic stall chaiacter-istics of the cascade airfoils. There were also
detailed effects on the flow caused by the increased clearance. Periodie,
two-dimensional stall propagation existed at B3 = 57° and 63°., Low amplitude,
low frequency, unperiodic fluctuations existed for 50° < By < 53° and for
By > T78°. Flow was relatively steady between the peaks of P, in Fig. 23,
as was described for Fig. 18. Fig. 24 ghows three interferograms.of the
flow at incidences where the flow was comparatively steady. Interferometer
pictﬁz"es were taken at By = 57° and 64° and are presented in Fig. 25A, B.
The number 0f stall celis and theilr velocity of propagation as determined
from these pilctures are shown in Fig. 23.

When the cascade was assembled with 27 blades ( 0 = 1/2), it was
found that stall propagation existed for 53° < By < 68°. However, the
perturbations were two-dimensional and periodic only for 56°< B; < 66°.

It was found that decreas,'ing‘ the Reynolds number made the fluctuations

less periodic and of lower amplitude. Interfercmeter pictures were tsken
for By = 58°, 61° and 64°, and are presented in Fig. 25A, B, C. (The
pictures for B = 61° are used to calculate the pressure field during one
eycle of the motion in Section l&,l,ho) The following data apply to Fig. 26:

o Number of .
Fig. B1 Cells Vp/Cr, Vp/Cey Cp Re, My
26A 58 15-16 .78 42 .25 266,000 .30
26B 61 19-20 8T 43 .15 235,000 .37

26 - 64 14=15 1.00 45 .13 200,000 .31
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The cascade was reassembled with 18 blades ( O = 1/3) and it was
found that perlodic two-dimensional stall propagation existed only for narrow
bands of B; about 57° and 70°. Interferometer pictures at these two values
of B; are shown in Fig. 27A, B and the following data apply to them:

Number of ‘
Fig. By Cells Vp/Cry Vp/Co ., = Cp Re; M)
27TA 57 7-8 1.27 .83 .15 255,000 .31
278 T0 18 147 .91 058 26k,000 .32

When the cascade was assembled with nine blades ( 0 = 1/6), it was
found that hot wire traces upstream of the cascade indicated only varying
amplitude high frequency velocity fluctuations as B, was ineressed. At
Br = 57°, however, the fluctuations appeared to be intermittenily periodic
and interferometer pictures were tasken as shown in Fig. 28. The frequency
with which the blade stalls in Fig. 28 is approximately 790 C.P.S.,

Re; = 250,000 and Wy = 292 ft/sec.

In Ref. 6 is described an experimental investigation of the Karman
vortex shedding of a flat plate at high incidence i. It was found that for
20°< 1< 60° '

A6k < g——-li—%i-ﬂi < .150,

vhere £ is the ffequéﬁcy at which vertices were shed from one edge of the
plate. The result of calculating £—-Lﬁ?—-j:-r—l—é-from the preceding data for
configuration B and plotting versus J is shown in Fig. 29. It is observed
that, a8 was shown by a similar plot for A= 43° in Ref. 19, the fre-
queney with which a blade stalls during stall propagation in the cascade
appears to approach the Karman vortex shedding frequency of the isolated
flat plate as the solidity of the cascade is decreased.

h.1.4 Determination of Flow Properties from Interferograms

From interferometer photographs of a two-dimensional flow, it is
possible to determine the preésure field by conventional procedures.
The purpose here is to determine the pressure distribution around the
eircular cascade airfoils and to estimate the strength of the shed
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vortices during stall propagation. Also, the pressure distribution before
the onset of stall propagation is compared with that of the simulated
linear cascade.

The use of interferometry to obtain quantitative information about
two-dimensional pressure fields which are unsteady in time is no more
difficult in principle than for steady flows, but practical difficulties
are encountered in the photography and direct pressure measurement required.
As used here, the properly adjusted interferometer produces fringes or bandk5
such as those in Fig. 26, which indicate lines of constant demsity. No
indication is given in the interferogram of the density level, but only
the absolute value of the density differences between fringes. The sign
of the density change betweén fringes is determined from the schlieren pic-
tures and from a qualitative knovledge of the flow. It is necessary to .
determine independently the value of density at some point in the inter-
ferogram at the instant the picture was taken. This is done by the de-
termination of two other independent fluld properties at the point, pressure
and entropy. The entropy is assumed constant everywhere in the interferogram
(except in the cores of the vortices) and is evaluated upstream of the
cascade where the flow is relatively steady and fluid properties can be
measured conveniently. The static pressure fluctuations with time are
measured at a point in the interferogram with a miniature crystal pressure
pickup.

Interfercmeter
A portable Mach Zehnder interferometer with five inch diameter optical
elements, shown in Fig. 30, was used in this study. A detailed discussion
of the design and operation of this instrument is given in Ref. 3. Only
brief mention of its use will be made here with special reference to the

present application.

Fig. 31 is a schematic diagram of the interferometer. Apertures of 1/16
and 3/52 inches diameter were used at the focal point of the collimating
lens causing the light to emerge from the lens as a parallel beam. At the
first splitting plate the beam is divided into twe halves which pass re-
spectively through and around the test section before being recombined at
the second splitting plate. The fact that one beam does not traverse the
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test section window is compensated for by including in its path two glass
plates which are optically similar to those of the test section. The re-
sulting beam is focused on the film. The image produced on the film depends
on a comparison between the two optical path lengths.

With no flow in the test section, and a small angular displacement
betﬁeen the splitting plates, a series of parallel interference fringes
results. If these bands are originally spaced infinitely far apart, by
setting the mirrors exactly parallel, any fringes which appear in the flow
picture will be lines of constant density. Some loss of accuracy results
from imperfections in the optical elements precluding infinite band spacing.
The interferometer optics, test section windows, and éOmpensating plates
combined gave a minimum of one fringe instead of the zero number of fringes.
implied by perfect optics and exactly parallel mirrors.

. As shown in Fig. 31, a concentrated light source is required. The
source used was an experimental xenon-filled lamp, & photograph of which is
shown in Fig. 32. It is capable of flashing for approximately one micro-
second at rates of 60 to 8,000 per second when used with the Edgerton,
Germeshausen and Grier Type 501 Stroboscopic Modulator. Its small size,
large amount of light flux, reliability, and long life made it very
satisfactory. The light was filtered to give the mbnpchromatic light
necessary to the interferogram evaluation using an interference filter
which passed a band of wavelengths 100 X wide centered at h,SOO X.

Pressure Measurement

A miniature crystal pickup capable of sensing high amplitude, high
frequency pressure fluctuations is shown in Fig. 33. It is a plezo-electric,
barium-titanite crystal in the shape of a hollow cylinder 0.1i2" long by
0.09" 0.D. It is inserted in & drilled hole in one of the optical flats _

'at a measuring point midway between two airfoils shown in Fig. 26B. It is

mounted flush with the inner surface and senses the wall static pressure.
A drop of glue in the end of the cylinder acté as a éafety valve and seals
the crystal so that when the test section pressure is applied to its out-
side suffaces, hoop tension stresses are produced which cause mechanical
strains and the accumulation of electrical charge on its inner and outer

eylindrical surfaces; a voltage results which is sent through a high
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impedance amplifier and displayed on an oscilloscope. Since the impedance of
the circuit is not infinite, the charge produced on the crystal faces "leaks
off" which prevents its use in measuring low frequency pressure fluctuyations.

To determiné the rise time of the pickup to a step change in pressure, it
was mounted in the wall of a shock tube which is described in Ref. 4. The
respongse of the pickup to a step change of 702Apsi in pressure and 96°F in
temperature is shown in Fig. 34, which indicates that the rise time was less
than .05 millisecond, more than adequate for the intended use.

To calibrate the pickup, determine its sensitivity to temperature and
observe how quickly electrical charge leaked from the faces of the crystal,
a device described in Réf.rll wéé used rather than the shock tube because
of 1ts convenience and reliability. The device makes of a rotating valve to
switch a small test chamber between two large tanks of air at different
pressure levels. The erystal and a previously calibrated catenary diaphragm
pressure indicator, described in Ref. 11, were subjected to the pressure pro-
duced in the test chamber, and the traces shown in Fig. 35 were produced on
a dual beam oscilloscope. The diaphragm pressure indicator is insensitive to
temperature and has a frequency response which is flat from zero to greater
than 20,000 c.p.s. Calculation of an estimated rate of charge leakage from
the crystal indicates that the gradusal drop in the trace of Fig. 34 (after
' the rise to the step change in pressure) was predominately the effect of
heat conduction into the crystal after the shock wave passed over it and not
charge leakage. Since the frequency of the pressure signal to be measured
is approximately 600 c.p.s. and the smplitude + 1 psi (which corresponds to
a I 10°F isentropic variation in ﬁemperature), it is concluded from a com-
parison of the traces in Fig. 35 that the crystal 1s adequate for measuring
this signal and that the distortion due to charge leakage and temperature
sensitivity can be neglected. It was determined that the mean of the high
frequency transient oscillations in Fig. 35 were a measure of the tank pres-
sures which permitted the diaphragm indicator trace to be calibrated. The
crystal trace was calibrated by comparing the amplitudes of the hiéh ampli~
tude, high frequency, transient portion of the two traces so that tempera-
ture and leakage effects could be neglected during the calibration.
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A convenient method of synchronizing the pressure trace on the oscillo-
scope with the interferometer photographs is to proJject both on the same film
.68 ih Fig. 263. With the oscilloscope set so as to suppress the time (hori-
zontal) axis and with the film stationary, the pressure trace is focused on
one half the film and set above a convenient reference line in the interferogram,
the wire which connects the trailing edges of the blades. With the film in
motion, and the time axis thus provided, synchronization is complete. Thus,
to determine the amplitude of the pressure fluctuation at the measuring point
in an interferogram, it is only necessary to locate the intersection of the
wire and trace. Since the crystal does not record a steady pressure, this
fluctuating component of pressure must be added to the time mean static
pressure measured with a wall static pressure tap directly opposite the
erystal location ( a 1/8 inch diameter hole drilled in the opposite optical
flat). The scale in Fig. 26B indicates the value of the mean pressure and
the magnitude of the flﬁctuating component at the measuring point.

For pressure variations small with respect to the mean pressure, (in the
present case 0.9/18), the maximum error incurred in assuming the pressure at
the measuring point to be equal to the mean pressure is small (5%). Of
course, it was necessary to first measure these fluctuations to determine
vhether or not they could be ignored. Pressure distributions other than for
Fig. 26B were calculated neglecting the pressure fluctuations at the measuring .
point.

' Measured Pressure Distributions

The most common ordinate in use in the presentation of pressure dis-
Po = Plocal

1;2 p Wi2

That this is also a meaningful parameter for use in unsteady flows may be-

tributions from steady flows in cascades seems to he S =

shown as follows: . 2

In an unsteady flow § + p + 9%—- = constant = (po)—oo vhere @ =
veloeity potential. If one integrates with respect to time over one cycle
and requires that B.make no net contribution for this period (otherwise
the time mean value of (p + %-p v#) becomes monotonically increasing or

decreasing),
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Although in a steady flow, S must always be positive, the above discussion
shows that'in an unsteady flow, S may be negative in certain regions and periods
in which é is a large negative quantity.

The pressure distribution corresponding to each of the ten frames of
Fig. 26B for one period ‘T’ of the motion are shown in Fig. 36. Generally,
they bear little relation in form to the conventional graphs of pressure dis-
tribution. This is to be expected, however, for not only is the flow unsteady,
but the effect of vortices in the field represents a major departure from
conventional flow. Figs. 36-3, -8, -9 show negative values of S. The
circled data points in Fig. 36 are obtained from the interferogram fringes
of Fig. 26B and by interpolating half fringes between them.

At the beginning of the cycle (frame 1 of Fig. 263), the blade has shed
a counter-clockwise vortex from its trailing edge, and the vortex shed from
the leading edge of the preceding blade is coming into view. This latter
vortex should have a strong effect upon the blade circulation according to
the analysis of Section 3.1.2. One would expect from this analysis that in
order for the Kutta condition to be maintained, the circulation arcund the
blade in frame 3, Fig. 26B, must be large. This is verified qualitatively
from the pressure distribution of Fig. 36-3 and from Fig. 38, a graph of Cp
versus t/q: as determined from the pressure distributions of Fig. 36.
On the oth®r hand, the blade circulation decreasés as the vortex leaves its
leading edge and the effect on the blade pressure distribution is clearly
indicated in Fig. 36. ‘

Local incidence angles at the blade were estimated from the schlieren
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Pictures of Fig. 22A, vwhich show the wakes of the upstream nozzles darkened
somewhat for reproduction purposes. These estimated values of 1 are plotted
in Fig 39 versus t/}° . The error caused by the motion of the wakes and the
difference in clearance between blade rows in Figs. 22 and 26 is neglected.
Using a common time axis Y/ , one may plot Cp as calculated from Fig. 38
versus i from Fig. 39 for information about time lags between local incidence
and Cp.  Such a plot is shown in Fig. 4o which indicates that a phase lag
does exist between i and Cy,e This is the usual result, and the explanation
seems to be'ihat the presence of a counter-clockwise vortex near the trailing
edge has a negative effeet on the blade circulation compared to its effect
after having been waéhed downstream and vice verse for the leading edge vortex
a8 shown in Seetion 3.1.2. ‘

The pressure trace in Fig. 26B clearly shows the presence of the shed
vortex. At the beginning of the cycle, when vortices are oriented so as to
cause low velocity at the measuring point, the trace indicates high static
pressure. At about the £ifth frame, when a vortex is quite close to the pres-
sure plckup and oriented such that the velocity is high there, the trace
indicates low static pressure. v

The magnitude of the blade force calculated from the sequence of Fig. 37
veried fram 3 to 7.5 lbs. Although the blade force in the chord direction
was calculated, these forces were small enough to be neglected. Hence the

normal force is approximately equal to the blade vector force.

With the above experimental.information, one ean also show the "Ben
effect”, which is that in the unsteady growth of lift on a wing accompanying
a sudden increase in the angle of attack, an increas; in the value of maxi~-
mum 1lift occurs. Since in Ref. 8, a graph of 1ift coefficlent versus
incidence -is given, these results may be compared with those of Fig. 40,

At an incidence angle of 20° (for which the steady state Cp is a maximum =
0.68 from Ref. 8), Fig. 41 gives values of 0.7L and 1.45 for Cp during the
unsteady flow. The maximum value of Cy, from Fig. 41 is 2.1. There is some
error involved in this comparison since both Cy, and Cy are based on the.
aversge upstream dynamic héad rather than the instantaneous local valuej
however, the above calculations appear to demonstrate that there is con-
siderable departure from their quasi-steady stall characteristics by the
airfoils in question during stall propagation as discussed on page 27.
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In order to verify the desigh technigue used to simulate a linear
cascade with the circular cascade, the airfoil pressure distribution was
calculated for B = 46.4° from Fig. 24. The pressure distribution for the
equivalent linear cascade (NACA 65-810) is given, for certain combinations
of solidity, incidence, etc. in Ref. 8. To compare the two distributions
it is only necessary to reduce the circular cascade distribution to that of
a linear cascade, using the transformation given in Ref. 9

92 _ Y2 Iz
Q1 Vi Ty
vhere
q = veloecity in the linear cascade
= velocity in circular cascade
= radius
( )1 = entry

( e

Of course, the comparison must be made for equal values of J, 7\ i, ete.

arbitrary location along the blade in the radial direction

u

Thus, in Fig. 37, the transformed pressure distribution corresponding to
By = 46.4° has been compared to the appropriate distribution of Ref. 8.
This comparison indicates some success in the éttempt in the design of the
circular cascade to duplicate the pressure gradients on the suction side
of the blades. The apparent difference in blade loading is to be expected
from the circular transformastion.
Estimation of Strength of Shed Vortices
It is pessible to estimate the strength of a vortex moving past a point

where the pressure is meaéured as in Fig. 26B. An advantage of this method
is that no measurement is required near the core of the vortex where losses
are high, and the strength of an "equivalent potential vortex" can be
estimated.

The variation of p, static pressure at the origin, when an isclated
vortex [" moves along a line (y = constant) with the free stream velocity U
in an infinite fielﬂ,can be determined in a coordinate system fixed to
the vortex and is given by
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where the coordinates of the vortex are (x, y = a).
An estimate of the circulation about an airfoil can be made by using the
Kutta relationship,
szwr'o,

and substituting approximate measured values of L, p and W. Applying these
two relationships to the ninth frame of Fig. 263, in which the blade cirecula-
tion is nearly minimum, (and neglecting the effect of adjacent blades) gives
an estimated ratio of blade circulation rz to shed vortex strength M ot .19,
However, because of the inaccuracies involved in this calculatibn, a direct
examination of the interferometer pictures probably ylelds as good an
answer. In Figs. 25 and 26, it is observed that after the airfoils stalled
there was virtually no difference in fluid density at points which are at
the :8ame chordwise position on the airfoil but on opposite sides. Neglecting .
the local time rate of change of veloeity and losses, this indicates that
the pressure and velocliy were almost equal at these points and that the
circulation about the airfoil must have been small. Therefore, it-appears
that the circular cascade airfoils shed nearly all of their bound vorticity
vhen they stalled as assumed in the analysis of Section 3.2.1.

4.1.5 Discussion of Results

The experimental results from the circular cascade indicate that stall’

propagation occurred for narrow bands of mean incidence during which the
blades periodically shed nearly all their bound vorticity in the form of
discrete vortices. It appears that the airfoils consistently stalled from
their leading edges during stall propagetion and that between stall cells
the flow reattached to the suction side of the airfoils.

Although the washing of the guide vane wakes over the cascade air-
foils had an influence on the flow as discussed on page 57, this does not
appear to be the reason for the distinct bands of B; at which propagation
occurred. The effect of Reynolds number on stall propagation was pronounced

at some mean incidences but not at others. There was no pronounced effect
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on Cp caused by the increase of clearance between blade rows for ¢ of unity
but Vp increased and the number of cells decreased.

The analysis of Ref. 19 predicts that the effect of increased clear-
ance is to decrease Vp but that Vp should increase for fewer cells. The
present analysis indicates that the effect of deereasing the extension of
the flow field downstream of the circular cascadg,which was associated
with the increase of clearanc?’should,have caused a ten@ency for the number
of cells to jincrease. The fact that the number actually decreased lndicates
that the effect of inereased clearance was more important than the effect
of decreased downstream field in determining the number of cells in this case.

It is noted that for configuration B, g%. was essentially constant
' 1

for each value of & but increased as ¢ decreased. It is probable that
this increasg wa.s caﬁsed in part by the effect of a decreased number of
boundary layer time delays (associated with blade stalling). Furthermore,
from Fig. 4 it can be seen that the induced effect of the circulation about
airfoil a) upon the shed vortex ¢  tends to decrease its transport velocity.
This effect tends to decrease Vp as ‘d'increases independently of the effect
of boundary layer time delay. The frequency of stall propagation appears

to have approached the Karman vortex frequency for an isolated plate as o
decreased.

It was observed during the experimental work with the circular
cascade that some of the stall cell patterns were sensitive to snall dis-
turbances on the flow. For instance, in one case (for 4 = 1), stall
propagation could be prevented by the insertion of a 1/8 inch diameter hot
wire probe upstream of the cascade. On the other hand, at one time during
the testing, eight of the fifty-four cascade blades failed and were washed
downstream and no pronounced effect was observed on stall propagation ex;ept
that the flow was slightly less periodic than with uniform blade spacing.
Therefore, the stability of the stall cell patterns and the effect on stall
propagation of destroying the axial symmetry of the flow appears to vary a
great deal with mean flow condition in the circular cascade. No hysteresis
or time delay effect could be discerned between the stall cell patterns in
the circular cascade and the guide vane setting (incidence).
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4,2 Investigation in an Isolated Rotor
4.2.1 Description of Apparatus and Procedure
This investigation was undertaken to extend the available experimental
information about the detailed nature of flow through an isolated rotor
during stall propagation. The equipment used was virtuéliy the same as
described in Ref. 14, where a similar investigation was made for a guide

vane-rotor and a guide vane-rotor-stator combination. Fig. %1 is a schematic
diagram of the research compressor showing the measuring stations.
The essential dimensions of the single stage axial compressor used

in this investigation are:

Hub-tip ratio 0.75

Tip radius , 11.63 inches

Mean radius 10.27 inches

Blade chord 1.51 inches (no taper)
Camber angle © 30.3°

Linear twist, root to tip 9.7°

The blades were a circular arc camber line, with an NACA 0010 thickness
distribution (10% meximum thickness at 30% chord). |

The rotor blades were unshrouded and the fastening, as shown in
Fig. 58, allowed the'stégger angle to be easily changed. The constant area
annulus extended 29.8 inches upstream and 36.5 inches downstream of the
rotor. Radial air flow entrance was thfough screens. The outflow annulus
vas a diverging cone. The inner wall cone could be traversed, thereby
varying the exit annulus area and throttling the flow.

Three rotor configurations shown in Fig. b3 yere tested.

Mean Radius Mean Radius
Configuration Stagger Solidity
A 30°15" i1.02
B 30°15" 0.51
c 52°45" 1.02

Except where indicated, the rotor was operated at 1500 rpm (U = 134 ft/sec)

"

at mean radius for all configurations.
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The relative inlet velocity during stall propegation was 140 to
160 ft/sec, which resulted in a Reynolds number based on the blade chord of
110,000 to 150,000.

The conventional instrumentation consisted of inner and outer wall
static pressure taps at five axial positions (C, E, F, FG and @ in Fig. 41),
kiel probes, a five-hole probe which was used for yaw measurements and
sphere-static probes. The pressure measurements were read on an inclined
water manometer. The five-hole probe was nulled with the use of a Statham
gauge. o

The probes used for measuring unsteady velocitles were 0.00015 inch
diameter by 0.084 inch long tungsten hot wires. The d.c. circuits of two
constant current hot wire anemometers were used. The voltage signals from
the hot wires were applied direectly to a Dumont 30l dual beam oscilloscope.
The amplifier and standerd calibration protedure of the anemometer* for
high frequency fluctuations was not useable,.since large, low frequency
fluctuations were being investigated. ‘Drift iﬁ the d.c. circuitry caused
differences in the hot wire calibrations immediately before and after a
run of 1/2 hour length as great as 25%. The calibration which came closest
to being consistent with the steady-state readings before stall propagation
started was used. It is felt that the accuracy is sufficient to indicate
certain trends in the data which will be discussed. ] .

Since the hot wire signal indicates only the component of velocity
normel to it (over a wide range of angles within a small percentage correc-
tion), total veloecity, axial component, or tangentiel component were measured
by orienting the wire along radial, tangential, or axial directions re-
spectively (assuming that the radial veloecity component can be neglected).

“An unsteady angle measuring probe was developed during this investi-
gation. As shown in Fig. hh, it consists of a tube which slips over a
standard hot wire probe. The tube is sealed at the end and has two small
holes drilled 120° apart at its mid section, similar to a standard cylindrical
yaw probe. A thin wall is soldered inside the tube near the hot wire to

reduce turbulence.

¥Model HWB, manufactured by Flow Corporation, Cambridge, Massachusetts.



If the probe is not nulled in a streaming flow, there is flow
through the probe which the hot wire senses. This probe 1s sensitive to
low velocities and it can be nulled within te degrees. Its response is
fast enough to indicate stall cells passing by it. Since the downstrean
velocity profiles during stall propagation were approximately square wave
shapes, one cdﬁld null the probe by observing the scope trace and thereby
measure the angle of flow, either inside or outside the stall cells.

To obtain permanent records of the oscilloscope traces, a Polaroid
Corporation camera and a strip film camera were used. The latter is a
camera without a shutter but with a constant speéd film drive. The number
of stall cells or §, the angle at which the cells extended downstream, was
determined by the relative displacement of two traces recorded on strip
film of hot wiras located at different tangential or axial stations.

The stall cell frequendy was determined by synchronizing a sine—.
wave voltage from e frequency generator on the x~axis input with the hot
wire veloclty signal on the y~-axis input of the oscilloscope.

All probe readings except wall static pressures are values at the
mean radius unless a radisl traverse is indicated. Unsteady static
pressure readings are at the outer wall and vere measured with two inductance
type electrical pressure gauges described in Ref. 15,

4.,2.2 Experimental Results - Configuration A

The time average pressure coefficient cP ag determined by the average

of the inner and outer wall static preéssures and the upstream relative
head is plotted in Fig. 45 versus B., where

= PG - FC PF - Pg
Creg = 1 .2 and Cp = T
2PN ' = p WS

5P ¥e

Pressures were measured at the stations indicated. W, and B¢ were de-
germined by measuring C, with a sphere static prcbe.

The number of stall cells and their velocity of propagation is given
in Fig. 46, together with values of Vp predicted in Ref. 19, for no

downstream pressure fluctuations,
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2 (1 -Cpep)
YE_ = Ln“PCG ’ (n % nuwiber of cells\)
CX sin 2 BC (m + l)

and the values predicted in Ref. 12 which are the same as in the "channel
theory" of Ref. 18 for no phase lag,

Vp 1
Cx sin 2 B,

In Fig. 47 are shown unsteady wall static gauge pressures measured
at stations E and FG. It is observed that the upstream fluctuations are
consistently several times as large as those downstream.

A series of hot wire traces corresponding to measurement of ch and Cxc
are shown in Fig. ¥8. Traces for Cy; and Cyy are shown in Fig. 49, fThe
apparent difference in the average values of Cxg and Cxp in Fig. 49 is
probably due to error in calibration of the hot wires due to "d.c. drift"
in the hot wire circuitry as discussed previously, since these values must
be constant because of continuity.

In Fig. 50, are given the results of calculating (W'GG)O and (wéc)i
from the hot wire traces of Fig. 48. In Fig. 51 are (Cxglo and (Cxg)y
as calculated from Fig. 49 and Cxc from sphere static probe readings.

The measured values of (Cxg)o are less than Cxy for Be < 58° in
Fig. 51. This does not appear to be physically possible because of the
blockage effect of the cells. It is felt that again this is a calibration
disecrepancy since Cyp must be the average value of Cxg because of continuity.
Using this fact, the value of (CXG)0 estimated for the hot wire trace at
Be = 56.7° is 95 f£t/sec. Since all of the data indicate that (ch)o is
essentially constant with throttling except for extremely high values of
Bes, 1t is probably a good approximation to take (CXG)o as constant and equal
to 95 ft/sec as indicated in Fig. 51.

(ag)o, as measured by the hot wire angle probe, Bg as determined
by a standard five-hole yaw probe, and (ﬁg)o are plotted versus fg in
Fig. 52. (Bg)o was calculated from an average value of (ag)y, 403 and
(Cxglo taken as 95 fps.
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From Fig. 50 it is determined that (WOG)i was greater by four to
elghteen percent than (WGG)O (as Bg increases). This result correlates
with the experimental observation that the stall cell angle ¢.was negative
and smaller than -15° for all the stall cell patterns of configuration A.

4.2,3 Experimental Results - Configuration B '

To determine the effect of blade spacing, half the blades of con-
figuration A were removed resulting in configuration B. The number of cells
and their propagation veloeity are shown in Figs. 65 and 66 which indicate
that periodic one and two cell patterns existed for only a narrovw range of
high incidences for configuration B.

4.2.4 Experimental Results - Configuration C

To ascertain the effect of blade stagger angle, the stagger was
increased 22 1/2° from configuration A to confjguration C and comparative
data taken. The measured results are indiecated in'the following figures.

Fig. Number Results Plotted versus fg Corresponding Fig. No.
for Configuration A
5k number of cells, Vp,,and ke
predlicted Vp
55 hot wire traces of CXE and Cxg ko
56 1) Cxc measured by sphere static 51, 52
probe

2) (Cxg)o and (cxe)i as calcu-
1ated from Figo 55

3) (C g —-76 fps as caleculated
ig

k) Bg as determined with standard
five<hole yaw probe

5) (ag )o 86 measured with hot
wire angla probe

6) (Bglo = 45.3° calculated
taking average (ag), = 37.5°
and average (CXG)O = 76 fps

Fig. 42 shows a strip film record of a hot wire trace of axial
velocity measured at station G while the throttle was continuocusly opened
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so that the compressor operating condition changed from two, to one, to
zero cells. For (CxG)o, the trace is at the top edge of the £ilm for the
entire strip. During this strip film, which took about five seconds, d.c.
amplifier drift was negligible. (The calibration was checked immediately
after the run, and it had not changed during the run.) The value of (ch)O
is observed to be almost constant and is, calculated to be 76 fps, which
coﬁpares well with the average of the values from the hot wire traces of
Fig.55.

For configuration C, the angle § between the stall cells and rotor
axis was determined from the measurement of phase lag between two traces
of hot wires inserted at stations G and K. It was determined that for the
one cell pattern @ = 19° and for the two cell pattern # = 16°. The
error of measurement probably was less than 10%.

4.2.,5 Comments on Compressor Operation

Just before rotating stall started as the throttle was closed, a
"mushy" flow, as it has been called, was observed near the hub and tip as
indicated by a "hashy" hot wire trace. A very weak rotating stall might
have been present at the hub for configuration C. The relative magnitudes
of the mush at 1/4% inch from the hub and rotating stall of one cell can be
seen from hot wire traces of Fig. 57 for configuration C. The mush was
less than 1/5 the amplitude of rotating stall and was not investigated
further. Rotating stall measurements were taken through the operating
range until surge started. Although unperiodic propagation could still
be observed along with the surge (since surge was of much lower frequency),
no attempt was made to take data and separate the two effects. The
variation of velocity fluctuation with axial distance from the rotor was
measured at one operating condition for configuration A as is shown in
Fig. 59. It is noted that the amplitude of the velocity fluctuations
decreased rapidly with distance upstream but that they persist much farther
downstream. At station K, 26 inches downstream, the amplitude of the
fluctuations are about 1/2 those at station G. .

Upon throttling the flow, rotating stall always started as two
cells, then as the flow was increased, the two cells changed to one. Hov-

ever, if the axial symmetry of the flow was destroyed by placing an
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obstacle (such as the observer's hgnd) in the inlet or outlet of the compressor,
the one cell pattern could be forced to appear hefore the two cell pattern
as the flov was throttled.

If the compressor were operated at a value of ac where the number
of stall cells .changed, the cell pattern sometiﬁes‘shifted back and forth
between the two numbers of cells.

Radial traverses of the hot wire during stall propagation indicated
that the flow was fairly two-dimensional for all the observed stall cell
patterns, although in some cases an estimated 25% smaller fluetuation in
velocity was observed at the hub. .

To determine the effect of Reynolds number on rotating stall character-
istics, the rotor speed was held at 500, 750, 1000, 2000, and 2500 RPMjy
and the flow throttled. A comparison of the number of cells and propagation
velocity at three speeds is shown in Figs. 60 and 61 as functions of Bg.
"Constant geometry" runs were made for two constant throttle settings and
rotor RPM variation. The results of these runs and the previous are
shown in Fig. 62, a plot of the number of cells and By as a function of
Reco As indicated in these figures, there is & hysteresis effect between
the number of cells for some values of Reg and B,. The date points at
minimum qc indicate the onset of stall propagatlon and the points at
maximum B indicate the end of periodic stall propagetion. (For higher
values of Be high frequency velocity disturbances and surge existed.)

The data plotted in Figs. 60, 61 and 62 indicate that there was not much
effect of Reynolds number above 100,000 or 1500 RPM, but that for lower
values the range of By for which periodic propagation‘existed is shifted
up. As Reynolds number was lowered, the one cell and then the two cell
patterns disappeared, but there was not much effect ﬁpon‘propagation
velocity. It was found that there was virtually no difference in CPCG
at corresponding values of f» for 500 RFM and 1500 RPM.

Axial velocity profiles as determined from measurements made with
a standard five-hole yaw probe for configuration C are shown in Fig. 63.
They indicate that there is some error involved in assuming mean radlus
measurements to be representative but that this error is less during than
before the onset of stall propagation. The difference in area under the
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profiles measured during stall propagation indicates the error inherent in
vsing a standard five-hole probe in an unsteady flow.

4,2,6 Discussion of Results

The hot wire measurements of Figs. 49 and 55 indicate that the down-

stream axial velocity profile can be approximated with a square wave which
changes with throttling only along the abscissa. That is, (CXG)O and

(GXG)i in Figs. 50 and 56 remain essentially constant with BC and of approxi-
mately 4/1 ratio, but the number of cells and the width of the cells change
such that their blocksge effect increases continuously with throttling.

The data appears to correlate with that from Ref. 2 in indicating that
during stall propagation the velocity triangles outside stall cells were
nearly the same as for cpmax (before the onset of stall propagation).

The unsteady pressure measurements of Fig. 47 indicate that the
fluctuations were several times as great one inch upstream of the rotor
as the& are 5.6 inches downstream. (When a pressure gauge was inserted
seven inches downstream at station G, virtually no fluctuations could be
observed in the trace.) As a stall cell approached the upstream gauge,
the static pressure at this point rosé to a value greater than the absolute
total head far upstream but less than the total head relative to & coordinate
system fixed to the stall cell pattern. The static pressure then dropped
as the stall cell passed by the gauge. There was & pressure drop through
the rotor  in the stall cells. This qualitative description of the pressure
field is predictable from the flow model used in the analysis of Section 3.2
from a consideration of the velocities induced by the stall cell in a
coordinate system fixed to the stall cell pattern.

The hot wire traces for Cxy in‘Figs.‘h9 and 55 indicate that as Bg
increased, the cells grew wider and that the axial velocity profile just
upstream of the rotor changed shape as they grew wider. The "sag" in the
profile caused by the blockage of stall cell changed from a spike form for
a thin cell to a double spike indicating that there was more flow through
the center of the wide cell than near its edges. Since the trace did not
ever go to zero (the minimum value being 25 ft/sec), in no case was there
flow reversal at station E during stall propagation. This fact was veri-
fied independently of the calibration of Figs. 49 and 55 by quickly pulling
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‘ﬁhe hot wire at station E out of the compressor and observing that for zerc
air velocity the trace went considerably lower than the minimum displacement
for the "double spike" wave form during stall propagation. A check was also
made by quickly turning the wire 90° from a tangential to axial direction
and observing the same result as above for zero velocity normal to the wire.
The number of cells is observed to increase after the double spike form
appeared, which suggests that the double spike form split into two cells,
a tendency predicted by the preceding analysis. From the strip film
trace of Fig. 42, it ies observed that the opposite sequence occurred when
the flow was increased through the rotor running at constant RPM. At first
there were two stall cells 180° apart, then the cells gradually moved to-
gether forming a double spike pattern and then a single spike pattern.

The hot wire traces of Figs. 42, 49 and 55 show that the shape of
the stall cell pattern is not perfectly constant in time or axisymmetriec
(as assumed in the analysis’for a given mean flow and even number of cells).
This fact appears to expléin vhy one cell of a two cell pattern might split
and thus form a three cell pattern as the flow is throttled instead of both
cells splitting simultaneously. However, the trend for the observed shapes
of “the stall cell pattern with throttling appears to correspond qualitativaiy
with the trend predicted by the analysis of Section 3.2.3.

In Figs. 65 and 66 gﬁ;-and %Q‘as functions of By are compared for
configurations A, B, and C, and for data from Ref. 2. It is observed that
all stall cell patterns observed herein revolved at .48 U <« Vo < 59 U,
or approximately half wheel speed. In Fig. 65, Vp increased slightly vhen
the solidity of the cascade was reduced in agreement with the trend ob-
served in the circular cascade. ‘ v

Not much effect on propagation vélocity occurred with the change of
stagger angle or with Reynolds number change above 100,000. However,
the number of cells was greatly affected by the change of solidity, of
stagger, and of Reynolds number below 100,000.

The propagation velocities predicted by the small perturbation
theories of Ref. 12, Ref. 18 (no phase lag), and Ref. 19 as shown in
Figs. 46 and 54 appear to overestimate the experimental values by as much
as 50%. The correlation of the data with the theory of Ref. 19 appears
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to be well described by the correlation predicted on page 24 of that reference.

"The values of propagation velocity predicted when the boundary-
layer delay is neglected should be larger than those obtained
experimentally, with the difference most pronounced for the

case of disturbances covering only a few airfolls when the
boundary-layer delay will have an important effect. An increase
in the wave length of the stall cells should be accompanied by
an increase in propagation velocity, if other varisbles are

unchanged. .”
The effect of number of cells on propagation velocity as predicted in

Ref. 19 appears to be borne out quite conclusively by the data plotted in
’Fiés. b6 and 5&.
In Fig. 64 is plotted versus Bp, the function
cos Bo
cos Bg (1 - Cpog

A = discharge coefficient= v
)/&

The values of B were those determined with the standard yaw probe. In
Refs. 5 and 19 it was predicted that small perturbation stall cells may
form when the slope of this curve passes through the origin. There seems
to be fair agreement from Fig. 64 with this prediection.

Is is observed in Figs. 45 and 53 that the slopes of the curves of
Cp versus Bn for configurations A and C both approached zerc when stall
propagation occurred.

In Ref. 2 tests were made with a rotor of solidity equal unity,
28.5° stagger, NACA 65(12)10 airPoils, and hub-tip ratio of 0.9. As shown
in Fig. 66, there is overall qualitative agreement between the data for
configuration A and that in Ref. 2. Stall propagation started at nearly
the seme incidence and Vg/U was nearly the same, but there were differences
in the number of cells and the measured pressure fluctuations. In Ref. 2
it ié reported that the pressure fluctuations downstream were about 60%
of those upstre:am° In the preseht investigation, they are found to be three
to five times as great upstream as downstream; however, the gauges are
closer together than in Ref. 2, and the cells extend more uniformly from
root to tip than the two and three cell patterns of Ref. 2.
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5 Correlation of Analytical and Experimental Results

Verification of tﬁe assumptions made in the analysis appears from the
following experimental results: |

1) From Figs. 19, 22, 25, 26 and 27, it is observed that during stall
propagation the blades in the circuler cascade shed discrete vortices upon
entering or leaving stall cells and lose nearly all their bound vorticity
wvhen they enter the cells.

2) From the approximate square wave shape of the velocity profiles
downgtream of the rotor during stall propagation, as indicated by the hot
wire traces of Figs. 49 and 55, it appears that the vortex flow model of
Section 3 may be used to represent the actual flow through the rotor.
Furthermore, the square wave shape of the downstream velocity profiles
tends to support the idea that the rotor blades stalled from their leading
edges as the blades in the circular cascade are observed to have done. In
Ref. 7, page 66, it is shown that the rate at which vorticity is shed from
an airfoil is V2/2 where V is the free siream velocity at the separation
point of the boundary layer. Since immediately downstream of the rotor
blades the vorticity is observed to have been concentrated along the
stall cell boundaries, it might be argued that in order for the blades to
have shed vorticity quickly enough to have established this pattern, the
point at which the boundary layer separated must have been located where
V was large, near the leading edge. The validity of this speculation is
not essential, however, since the present analysis is independent of the
location of separation.

3) The observation from Section 4.2 that the ratio of downstream
axial velocity outside the cell is about four times as great as inside
indicates that the approximetion of N =M = 1 in the analysis may be a
reasonable one in viéw of the discussion on page 20 which indicates that
this approximation is not ecritical to the resulting prediction for V

In the present analysis, an approximation is made for the flow,?ar
downstream of a continuous blade row during stall propagation. The re-
sults of the analysis indicate why some observers have found incongruous
experimental results from linear cascades of finite length as reported in

private communication with the author. It appears that, as was first
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described in Ref. 18, the blade stall-unstall characteristics depend strongly
on the nature of the unsteady flow induced upon them by the downstreanm

flow pattern. In a linear cascade of finite length, the downstream flow
pattern is’'quite different from that for a continuocus circular cascade

or a rotors - Even though there may be many blades in the linear cascade,

a fully developed, translating, downstream flow pattern as described in

the analysis is precluded by the end wall effects. Therefore, the present
analysis is valid only for an infinitely long linear cascade, or an isolated
rotor, where the downstream flow field extends far from the cascade.

The tendency for the stall cell to split into two as its width increases,
as predicted by the analytical flow model, appears to be supported by the
measured axial velocity profiles just upstream of the rotor given in Figs. 50
and 55. Furthermore, this tendency might explain why smaller stall cells
(grester numbers of cells) existed in the circular cascade than in the rotor.
Since the two-dimensional flow field of the circular cascade extended only a
few blade chords downstream of the cascade, the discussion of page 28 in-
dicates that the cells should be thinner (n less in Fig. 9) than for the
rotor. This fact, together with the assumption that there must be enough
total blockage from the cells to cause (Wz)o to be nearly the same as for
CPmax (as observed for the rotor), implies that there should be a greater
number of cells in the circular cascade than the rotor.

Equation (12) shows that for the vortex flow model assﬁmed in the

analysis, stall cells can exist only for
Cp > cosaﬁlo

In Fig. 67 this minimum value of Cp is plotted versus f;. Measured values
of Cp are plotted for increasing B; until the onset of stall propagation.

Propagation started after CP > cos®3, in the three rotors tested.
(This was not always true for the circular cascade.)

Equation (ll) shows that for the assumed type of propagation to exist,
ng > Wa. If it is dassumed that ch = Cx2 and Bz = A, this condition
becomes cotan B; < cos A giving & minimum value of B; for which stall
propagation can exist in a cascade of stagger A . This minimum value of

P1 and the corresponding measured values of B, where stall propagation



58.

started in the test rigs are plotted in Fig. 68. Also plotted is cotan B; =
.866 cos X (which gives Vp = "’._g.; from Equation (11) if Cx, = Cxp and B2 = ).
It appears that this latter curv> correlates rather well with the values of

B, where stall propagetion actuslly begsn in the test rigs.

Predicted values of propagation velocity for the vortex flow model of
Section 3 are given by Equations (11) and (12). Correlation of the rotor
data with Equation (12) is shown in Figs. 46 and Sk where Cppg from Figs. 45
and 53 was used. Correlation of the dats from Ref. 2 with Equation (12) is
showvn in Table III vhere Cp3-7 from that reference was used. It appears that
the predicted values of Vp from Equation (12) are considerably greater than
the measured values. It is felt that the reason for this trend lies in the
fact that P, - b, was assumed to be given by isentropic flow outside stall
cells in developing Equation (12). The presence of blade wakes in the
actual flow outside the stall cells causes (Bg)o to be less for a given
measured Ap than in the assumed ideal flow. Therefore, for a measured

A P, Vp should be less than predicted by Equation (12).

 Using the average measured values for (BG)O and (CxG)o indicated in
Figs. 51, 52, and 56, one calculates VQ/U from Equation (11) to be .57
for Configuration A and .60 for Configuration B. The correlation with the
measured values of VQ/U as shown in Pig. 66 appears to be good considering
the accuracy of measurement, the departure of the flow from two-dimension-
ality, and the simplifying assumptions in the analysis. Equation (ll)
appears to predict propagation velocities more closely than Equation (12),
probably because it is less sensitive to the effect of blade wakes outside
stall cells.

In Table III is shown the correlation of data from Ref. 2 with

Equation (11) using C from Ref. 2 and assuming:

P3-7
(Bg), = const = 28.5°= A , Cx, = (Cxp)p

for the two and three cell patterns, and Cx, = .8(CX2)0 for the one cell

pettern; which are estimates based upon the data presented in Ref. 2.



59.

TABLE 1II
Number of V Vp
P1 Cp37 Cells (—E_)meas. G ) eqn. 12 ( Cx, )eqn. 11
55° 46 2 .53 480 .58
56 R 3 R 87 o5k
58 .33 1 .89 1.19 .87

In Table IV is shown the correlation of data from the circular cascade

with Equation (12)

TABLE IV
Ref . 19, = 1
: Number of Vp
Ba Cp Cells ( ) ,‘meas, (C o) , edan. 12
63° Lu8 9 +60 .80
64 A6 9 64 .86
66 H1* 10-12 .70 1.03
68 36% 12 .70 1.22
x (extrapolated from data)
Configuration A, = 1
¢ Number of v \'s
Ba Cp Cells (Eﬁ)meas . (E}‘E—;) eqn. 12
550 033 15 ‘20 021" l.h‘
60 .29 13-1k S5k 1.3
68 .25 16 .15 1.6
81 .12 5 1.6 h.3
Configuration B, =1
Number of vp
Pa Cp Cells (Ea)meas . (Cxl)eqn .12
58° 45 9-10 .55 .82
64 «36 11 .83 1.6
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Tt is observed that Equation (12) overestimates the measured velues of
Yg- considerably for the circular cascade. However, good correlation
cénnot be expected since the assumption in the analysis that the flow field
extends infinitely far downstream of the cascade is not a valid approximation
-for the circular cascade, Furthermore, the analysis is not valid for a
radial flow field.

In Table V is shown the correlation with Equation (12) of data from
Ref. 14 for a guide vane-rotor stage relative to the rotor.

TABLE V
° No. of v Vp
Ba o Cells (55: )mea.s (C—;: ) eqn. 12
67.5 .30 8 .9 1.k
72.5 025 9 lol 108
75 .0 23X 1 2.3 2.2
7.5 20% 1 3.0 2.8
80.0 J16% 3 3.0 3.6

6 Summary and Suggestions for Future Research

Using approximations suggested by visual observation of the flow through
a circular cascade, a vortex flow model of stall propagation in an isolated
blade row has been developed. Equation (11) de;ived from analysis of the
vortex flow model, appears to predict the propagation velocities measured
in an isolated rotor within 15%. Stall cell configurations observed in an
isolated rotor were found to be nearly two-dimensional and to propagate
at approximately half wheel speed. The stall cells consisted of regions
where the axial velocity was small and extended downstream from the rotor
in a direction parallel to the rotor axis within ¥ 20°.

The number of cells increased as the flow through the rotor was
throttled. A qualitative prediction of the analysis 1is that a stall cell
of the type assumed should have a tendency to split into two cells as itA
grows in peripheral extent. This tendency may be the reason for the ob-
served trend in the number of cells.
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It appears that the most fruitful areas for future analytical work will
be further investigation of the mechanism which determines the number of
cells and extension of the analysis to include flows which are not two-
dimensional, such as caused by "tip cells" or"hub cells.” The interference
effect of one blade row on another during stall propagation may be attacked
by the method used in the present analysis by assuming the blades to shed
potential vortices and determining the effect on the blade rows of the
vortices as they are convected downstream. ‘

It is suggested that future experimental work should include an in-
vestigation of the effect of airfoil profile on stall propagation in the
circular cascade and rotor. It appears that alteration of the single
stage research compressor so that two widely separated rotors could be
installed would be useful because it would permit a wider range of flow
geometry relative to one of the rotors(or rotor-stator combinations).

It is also suggested that further investigation of the effect on cascade
stall characteristics of the time rate of change of incidence should lead
to a better understanding of the dynamic stall characteristics of the cas-
cade during stall propagation.



LIST OF SYMBOLS

g angstroms )

A cos PBifcos Bg'v_i_:75; = discharge coefficient

a vortex spacing along stall cell downstream of blade row

c absoclute velocity

Cp static pressure coefficient of cascade = i§§L§—%ié

C;,  blade 1ift coefficient = 7—L—?L‘igtpA§i2

Cy blade normal force coefficient = aerodynamic force normal to chord
. 1/2 p W,®

da length of cascade or circumference of rotor

f ( ) function of; frequency

i incidence = B - )

K defined by Equation (7)

L blade chord

M ryfg 3 Mach number

m length of stall cell in vortex spaces a

N Vj Cos g

Wxo

n width of stall cell downstream of blade row in vortex spaces a
P static pressure ‘

r radius; polar coordinate

8 cascade blade spacing

R radius; radius of cylinder in picture plane =

Re Reynoids number based on blade chor%,g—g;k

] real part of
S ’time mean po -
T e
t time
u, v velocity components
U rotor velocity at mean radius = Wel for isolated rotor
v velocity; transport veloclity of vortex downstream of blade row

Ve, velocity of vortex |  along lines b) and c¢) in Fig. 10
veloecity of stall propagation relative to blade row



LIST OF SYMBOLS (Continued)

VQ absolute o ... velocity of ?Eall propagation = U - Vp
Vi veloeity induced by stall cell = a
W complex velocity potential in picture plane; velocity relative to
cascade or rotor .

x  Mx

' Wxg
Y fraction of downstream periphery covered by stall cells = a—;%%—a
z =X + 1 v, complex coordinate in physical plane
s angle of flow from axial direction in absolute coordinate system
B angle of flow from axial direction in coordinate system fixed to blade row
a cascade solidity = L/s

A cascade stagger angle from blade chord to axial direction

T period with which stall cells pass a fixed point

[T  strength of shed vortex

[: strength of bound vortex
) polar coordinate; blade camber angle
¢ angle of stall cell from axial direction
£ = § +17 complex coordinate in picture plane
( )o stagnation point; outside stall cell

( ) inside stall cell
( )1 far upstream; upstream measuring station in circular cascade
( )2 far downstream; downstream measuring station in circular cascade
(") complex conjugate of ( )
e (x) £
) ROt
( )y axial component of ( ) (Note, Cx = Wy)
( )p radial component of ( )
( )¢ tangential component of ( )
()

¢, E, F, FG, G, K measuring stations along axis of rotor shown in Fig. 41
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FIG. 9 PATTERN OF VORTICES {N STALL CELL
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FIG., 44 VELOCITY TRIANGLES FOR ISOLATED ROTOR
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FIG. 19 A)  SCHLIEREN FILMS-CONFIGURATION A, o'=1, (355, TIME 22



FIG. 19 B) SCHLIEREN FILMS-CONFIGURATION A, ¢’= 1, (3=60, TIVE 2= -
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FIG. 25 A)  INTERFEROMETER FILMS-CONFIGURATION B, 0=4, 3-57, TIME =



FIG. 25 B)  INTERFEROMETER FILMS-CONFIGURATION B, ¢ = 4, (3= 64‘: TIME &~
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FIG. 28  INTERFEROMETER FILMS-CONFIGURATION B, o’=1/6, (357"
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FIG., 30 PHOTOGRAPH OF GAS TURBINE LABORATORY INTERFEROMETER
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FIG., 36  PRESSURE DISTRIBUTIONS CALCULATED FROM FIG. 26 B
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