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ABSTRACT

-2We derive an asymptotic series in w , the inverse-square plasma
p

frequency, for the self-consistent, low frequency electrostatic field

in tori. The derivation is consistent with the drift-kinetic ordering

and may be used in either instability or equilibrium calculations. We

find that in a time-dependent formalism, the electric field is completely

determined to first order in a drift-kinetic expansion.
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I. INTRODUCTION

The creation of magnetically confined plasmas naturally results in

the occurrence of spatial inhomogeneities in densities, currents, and

temperatures, as well as in the confining magnetic field. These inhomo-

geneities drive species-dependent particle currents, causing charge

separations which set up electric fields. These electric fields in turn

influence the particle motions and currents, completing the cycle.

The physically interesting phemomena relating to equilibrium or

many types of instability behavior in such plasmas often occur on relatively

long drift, collision, or bounce time scales. However, the formal mathemat-

ical coupling of the kinetic equations for the individual species and the

electric field, by use of Poisson's equation, leads to the prediction of

extremely rapid oscillations at or near the plasma frequency W . Aside

from the mathematical and numerical difficulties such oscillations introduce,

they are of little physical interest in a wide variety of plasma problems.

The classical physical statement of this fact1 for ionized gases, virtually

tantamount to the definition of a plasma, is that one is only rarely

interested in a time resolution sufficiently fine to require accounting for

any significant build up of charge density.

An alternative statement of this physical concept is that many plasma

phenomena (including many instabilities) occur over distances long compared

to the Debye lengths. There are important exceptions, for which one must

account in detail for the instantaneous charge density (and/or current)

build-up in a relatively localized way. This process is essential, for

2
example, in the study of a whole host of microinstabilities , especially

since the latter very frequently involve plasma oscillations.
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If we consider plasmas confined in tori, both for quasi-equilibria

(including neoclassical transport theory) as well as for typical plasma

instability phenomena in toroidal discharges, we usually find a situation

in which at least one species responds on a much faster time scale than

the one of physical interest. It is then pointless to keep track in

detail of the time-space build-up of electrical charge, and Poisson's

equation is relegated to a position of only secondary interest. It often

suffices to state simply that the electron and ion densities are "nearly"

equal. In fact, it is often sufficient to determine the charge density

of one species directly from its dynamics, and then use that information

(see Spitzer's discussion of the ion-acoustic mode in Ref. 1, for example)

to determine the (coupled) kinetic behavior of the second species. The

"quasi-neutral" limit of the ion acoustic dispersion relation emerges in

this way.1

The physical ideas sketched briefly above are naturally, extremely

well-known. They are used, in one form or another, in virtually all of

the plasma physics literature. This is especially true in the treatment

of both neoclassical transport and instability problems in toroidally

confined plasmas. The concept is generally referred to as quasineutrality.

Thus, at this point, we are not attempting to discuss anything new, only

to review it.

Not only is this basic idea used in many situations; it is also

deceptively simple. A clue to this latter fact can be obtained by a survey

of the wide variety of the means by which the principle is actually

employed in practice (compare, for example, Refs. 3-7). When appropriate,

quasineutrality allows one to determine the required components of the
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electric field relatively simply.

In the next section we discuss briefly the variety of useful formu-

lations of the quasineutrality concept. Following that, we give a somewhat

more complete discussion of the mathematical and physical implications

of the more complete governing equations. We indicate as we go the rela-

tionship of quasineutrality, as normally employed, to the more exact state-

ment. It will be seen that earlier treatments represent useful special

cases of the general analysis. Our particular motivation in developing

this more precise treatment lies in our need to be able to compute the

full electric field relatively precisely for use with the CPM.8 ,9 However,

we feel also that the extended treatment offers some increased insight

into the more subtle implications of quasineutrality.

II. UNDERLYING PRINCIPLES - QUASINEUTRALITY REVISITED

It is widely accepted that an adequate mathematical statement of the

physical notion of quasineutrality (applied, for example, to neoclassical

transport; see Ref. 4) is simply

V7j=o0 , (2.1)

j being the total electrical current density in the plasma. Eq. (2.1)

implies, of course, that the rate of build-up of charge density is negli-

gible or zero. Note that in general one cannot use the rather tempting

equation, div E = 0. The recognition of this distinction is as old as

the theory of MHD itself.1 0

First let us note, from Maxwell's equations alone, that if div E

is and remains zero (which implies a certain initial condition for a time-

dependent problem), then div J = 0 automatically. However, the reverse
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is not true. For a simple conducting MHD fluid, for example, if one puts

div j = 0, one cannot, simultaneously, put div E = 0, without implying

generally unacceptable constraints on the flow field. [In ideal MHD, for

example, E = -V X B and div (V x B) 0 in general]. Instead, a simple

MHD fluid is effectively "polarized" by its motion through the B-field.

For a physically more complex plasma the concept of polarization is

not normally adequate. Still, we will be able to show in later sections

that the general treatment leads to a statement of the "polarizability"

of toroidally confined plasmas appropriate to phenomena occurring on a

sufficiently long time scale. We will also be able to establish the

regions of applicability of the statement div j = 0 as an appropriate

description of quasineutrality.

In Ref. 4 the relation div = 0 is used to determine those components

of E actually required in the portion of neoclassical transport theory

treated there. Similarly, in Ref. 5, a flux-averaged version of the cor-

responding statement is used. Throughout the development of neoclassical

theory, various methods have been employed to determine those portions of

the electric field needed for the particular problem being studied (see,

for example, Refs. 11 & 12). Nevertheless, we have yet to discover in

the literature a unified treatment adequate to treat all cases that can

arise. For example, no formulation previously stated is adequate to study

non-linear instabilities. For these reasons we offer in the following

sections a systematic method of determining all components of E needed in

the general toroidal problem. As it turns out, this development is also

crucial for the further use of the CPM8 ,9 .
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III. DETERMINATION OF E, AND THE QUASINEUTRAL LIMIT

By recognizing that in toroidally confined plasmas most of the

electrical current is aligned with the magnetic field, and by employing

momentum and particle number conservation, the authors in Refs. 4 and

5 were able to convert the div j = 0 requirement into the more appealing

statement (s here is the coordinate along B)

= 0 , (3.1)

i.e., quasineutrality leads to the expectation that no significant charge

variation can develop along the lines of force. To obtain this result

from the stricter requirement, one must not only assume that the electrons

* -l
behave adiabatically, one must also ignore order Q contributions,

where Q is the ion gyrofrequency.

The importance of (3.1), however, lies primarily in its relatively

simple physical nature and the corresponding insight thereby offered into

the true meaning of quasineutrality. Nevertheless, its use in Refs.

4 and 5 was sufficient, because of its approximate nature, to allow deter-

mination of the electric field only to zeroth-order in the drift-kinetic

expansion (expansion in powers of 01 , made appropriately dimensionless).

In addition, it gave no hint of the possible appearance of a high-frequency

component of E. For application to problems solvable via the CPM,9 in

which quantities of (at least) order S21 are frequently required, Eq. (3.1)

provides only a beginning. It has therefore turned out to be necessary

for our purposes to re-examine the problem of determining E from first

* We use here the classical definition of "adiabatic" behavior of the

electrons; viz., that their inherent response time is much shorter than

any time of interest in the plasma problem at hand. The low-order electron

density perturbations remain almost exactly in phase with any electric

potential which may arise.
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principles.

In many toroidal problems, the electric field consists of the externally

applied ring field, EA, and the plasma self-consistent field E, which is

still to be regarded as the solution of Poisson's equation. Equivalently,

the time-derivative equation (Gaussian units)

2+ 2
+ EV - -t = 47T -- , (3.2)

coupled with the initial conditions

[V - E =4ffp] ,

and charge continuity,

t= V - j (3.3)

can be combined to eliminate p from (3.2):

V.Q -- + 4 Tr = 0 (3.4)

At this point, one uses the momentum equations to eliminate Dj/t

from (3.4). (Again, the particle dynamics are essential in deter-

mining E .) The momentum balance equations for each species,

multiplied by charge and added together, provide a relation often referred

to as the generalized Ohm's Law (see, for example, Refs. 1 and/or 13).
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The process is a familiar one; for our purposes we choose to write the

general result in the form

2 + +
4 = E -G (3.5)

5t p

2 2
where w = 4f Z(e N /m ), and the vector G is written out in detail both

p s s s s

in Refs. 13 and 14 (using different but obvious notations). Note in

particular that G generally contains Z e (J x ), i.e. the Hall terms,s s s s
3 +*

and Zs fd v v Cs, the collisional momentum transfer terms. Thus, inser-

tion of (3.5) into (3.4) can lead to the emphasis of either effect (as

well as many others), depending on the parameter regime in question.

Combining (3.5) immediately with (3.4) seems to provide us straight-

forwardly with exactly what we have been seeking, namely, an equation

sufficient to determine I * E. We see that that equation is indeed time

dependent, indicating the occurrence of a rapidly oscillating portion of

E. It also demonstrates explicitly that div E = 0 is not in general an

acceptable solution, even in the quasineutral limit.

However, in a toroidally confined plasma, as emphasized in the discus-

sion above Eq. (3.1), the parallel component of the drift-kinetic version

of j dominates its perpendicular part [again, the ordering is such that

1j11/j111 = 0(Q )]. It is important to take advantage of this fact in

(3.5) before insertion in (3.4), adopting a procedure consistent

with the drift-kinetic ordering,8,15 standardly used in describing the

particle kinematics in toroidal discharges. (See, however, Ref. 16).

Introducing this natural ordering in (3.5), before combination with (3.4),

is in fact crucial at this point, because the latter does not naturally

break up into II and 1 parts [see, for example, its origin, Eq. (3.2)].
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Moreover, because of the drift-kinetic expansion, the appropriate form of
1--1 147/3t, at each order in Q~ , is somewhat different from that obtained dir-

ectly from the unexpanded version of the momentum equations. For example,

the Hall terms are treated separately in the drift-kinetic limit. The result

of using the drift-kinetic expansion from the beginning in (3.5) then leads

to

/2+
- 2+ nW E H + H (3.6)

(t p / 1

on insertion in (3.4). Here, (see Ref. 14 for details) Ell =/' E, with

n = B/B, and

H = (n G0) , H,= G 1 (3.7)

The notation with the 0 and 1 subscripts is used to emphasize the order-

zero and order-one terms in a drift-kinetic (Q I) expansion. The vectors

n^ G and C1 are obtained from the indicated moments of the drift-kinetic

equation, leading to a corresponding modified version of (3.5) in the

form

4T =2 Elin - nG - G (3.5a)
t p 0 1

It is easy to show that

G = n - E - 4TE e g0 p A s s Os

(3.8)

G = -47TE eg1 s s91S
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where for each species, s,

= fd 3v v cos a C - -Ki + (n^ - )(K - - K)

with b = ( B)/B. By definition, g1 E n(3J11/3t) 1 + 3i,/3t (and is written

3 f - =- f 3 2 .2 -
out in Ref. 14) and the moments, J= f d v v

3 2 2 d
Ki1 = f d v v Cos a f, are obtained from the indicated integrals of the

solution, f, of the drift-kinetic equation15 ,8 . We write the latter

schematically as

t(3.9)

The details of the drift and effective acceleration vectors, V, A,

are written out completely (in v - ca space) in Ref. 8. f(v,a) is the

guiding-center distribution (e.g., see Hazeltine, Ref. 15), satisfying

2 +v2
the first-order drift kinetic equation. Finally v = v11 + v ,=

tan-1 (vI/vi1 ), for use in (v - a) space.

Once again, it is a standard property of (3.9) that IJti/Jl | = ),

a priori. As already stated, this is why one uses (3.5a), rather than

(3.5), for problems of this type. In comparing (3.5a) with (3.5), it is

helpful to recall that j, in (3.5a) is actually obtained from the guiding-

center-, rather than the particle-, current, and is subject to finite

Lamor radius corrections. It is also apparent from (3.6) that any plasma

oscillation effects in the perpendicular direction occur as a result of

the E dependence in H These are therefore reduced in strength by a

factor of order Q~1 compared to any parallel plasma oscillations.
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Eq. (3.6) displays all the features we attempted to anticipate in our

earlier discussion, including, as already mentioned, the fact that E E = 0

is not (normally) a solution. In addition, the expected natural rapid

oscillations in E emerge. In the next section, we will sketch the procedure

for obtaining (formally) bcth the "fast" and the less-rapidly-varying-

parts of E. In the process, whenever we focus on the "slow" portion of

E, we shall in effect be discarding (in the lowest approximation) ap/Dt,

and this is tantamount to putting - = 0, which is, again, the

classical statement of quasineutrality. For general problems, 89 however,

it is necessary to have the ability to compute E with the increased pre-

cision allowed by a systematic treatment of (3.6).

IV. DETERMINATION OF E IN TOROIDAL DISCHARGES

Recently, Hazeltine and Ware 11, in a calculation of neoclassical

equilibrium to first order in a drift-kinetic approximation, obtained the

complete time-independent electric field except for the 6-averaged radial

component. Hazeltine and Ware emphasized that in that case, to obtain the

remaining portion of the equilibrium radial electric field it would be

necessary to go to a second order drift-kinetic approximation. This had

already been carried out by Rosenbluth et al.17

Plasma oscillations were, of course, precluded in the examples quoted

above. Further, the authors were not concerned with the question of the

extent to which quasineutrality serves as a substitute for Poisson's equation.

The results of Ref. 11 imply that the slow part of the electric quantities

-2
obtained from (3.6) must in some sense be expandable in powers of W - We

p

shall see later that this is true.

We find that we can usefully make an expansion of this type, in
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addition to the more standard drift-kinetic expansion. By carefully

noting which components of the electric field play an important role in

these two (complementary) expansion schemes, we find that all components

of the time-varying electric field can be determined to first order in

the drift-kinetic expansion. This could turn out to have wide practical

use.

An additional important consequence of following the drift-kinetic

expansion is that by imposing toroidal periodicities and by defining a

flux surface in which E1 lies, we can determine E completely on a flux

surface (for a low-3 plasma), up to an arbitrary constant. The latter

constant reflects simply the total charge enclosed within this flux surface.

By contrast, using the fully kinetic description [e.g., (3.5) combined

with (3.4)],one would be required to impose radial boundary conditions in

the usual, more global sense.

We assume a static magnetic field in the present discussion; in this

paper the electrostatic case is then used for illustration:

E = -Vc . (4.1)

(Recall that the total electric field is then -V$ + EA) Let P be separated

into its drift-kinetic ordered parts:

= + $l + ...

If we Fourier-analyze 4 and H with respect to both position, x, and
m m

time, t, (m refers to the G2 ordering) we can define
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+ f3 i(k-x + WOt) +

H (xt) d k f dwe H (k,w) . (4.3)
m m

Application of this procedure, together with (4.1), readily yields from

(3.6) the relationship in (kt,w) space:

2 2 2 2 ++
(k P - k W) m (k,) = Hm (km,M-(44

For reference, the appropriately ordered explicit 4 dependence of each HM

is indicated, with $_ = 0. In writing (4.4) at this point, fluctuations

2
in time and space of w are neglected, for convenience. In addition, the

p

variation of B VB along the magnetic field lines is omitted. These approx-

-2
imations at this point do not affect the basic content of the w ordering.

p

However, for those later steps where these dependencies are important,

we provide an exact treatment (see section V).

The first step beyond Eq. (4.4) is to note that its general solution

in (k,w) space is of the form

H m(kqw,$m-1 ~+
(k = (kkw P -2 + A(k,w) 6(i + w) + B(k,w) 6( - w), (4.5)

k2 (p )(+) p
p p

where I - (k1;/k)w P, and P represents the Cauchy principal value in the

generalized function sense, and 6(x) is the usual unit Dirac delta function.

A(k ) and B(k,w) are arbitrary in (4.5), but are immediately determined

in this case by application of the two initial conditions stated below

Eq. (3.2). Using the latter step, and applying the standard w - t inversion

13



of (4.2) and (4.3), one obtains for m (kt):

2 + _ _ _ _- _

k 2(k,t) = P dw 2 2

p

4TP (k,O) - P fdkJ Hcos,~) o (4.6)J 2 2 

p p -w

tooia prolem ('20 as wel as m is ver larg comare t (4.6beaus

1 4* +W m (kw M-1) ~
+ f 4 ow (k,) - P dor sinon t t t

W m ~2 2 p
P L - W

where ( Do=g Note that in practically all cases of interest in

toroidal problems W_ , as well as W , is very large compared to Q., because

there is a minimum natural value of kg . (The exceptional case, namely,

the flux average of (3.6) with (4.1), which corresponds to the kgl = 0

component of the above, is discussed separately in section V.)

The properties of the transforms H (k,t) are, of course, best
m

understood through their more physical counterparts, H (x,t). However,
m

it is through the transforms that we are able most easily to develop

the formal expansion of (4.6) necesary to separate 4 explicitly into

its rapidly-oscillating and its slowly-varying (or even quasi-steady)

parts. For example, the function HO(xt) is determined principally by

a balance of the ring field, collision, and pressure terms, and it therefore

~-l +
will vary on a time scale that is much longer than wo . HO(kw) will

consequently die off rapidly at frequencies near w and above. Therefore,

we can obtain from (4.6) the low frequency (zeroth order) portion of the

potential straightforwardly in the form
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2 s +p + H 0(k, w)e it t47
k 0(kt) = 4r p0 (kt) = Pfd 2 2H0((w'l)

p

where 0 and p0 are in effect time averages over several modified plasma

periods. Except for its dependence on the high frequency part of $0'

H is also a low frequency function, and therefore the low frequency,

first-order-correction potential is given by

+k--4o
2 -k +t -P H1(kS,$0)(

k $(k~t) = 47 pykt=P dw 2 2 . (4.8)

p

A formal asymptotic form exists for this expansion of 4(k,t).

Because each of the Hm(x,t) vary slowly in time, the numerators of the

integrands will tend to become vanishingly small unless jI/j I << 1. Thus,

H (k,W)e N 2j 2N it
P dw ~ 2 2 P = f { 2j+2 + ~ 2N+2 ~ 2 2 Hm(kw)e

f Wp W f I'j= Op Wp (Wp

(4.9)

N j 2j

=E 2j+2 
2 j Hm(k~t) + RN(kt),=0 2j at

p

where the remainder RN will be negligibly small, provided N is not too

large. Finally,

2- + -+ N (-I)j a2j
k M k,t) = 47T p m = -) 2j+2 2j H (k,t) . (4.10)

j=0 j p t
p

Differentiating with respect to time, we readily obtain the (transformed)

conservation equation
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.+ + '- tN j a2j+1k-3(k, t) = -p(k,t) -H(~). (.1ktm m 4EO ~ 2j+2 2 j+1 Hm k t) (4.11)
j =0 O at

p

Note that, even in this rather formal expansion, the classical

statement of quasineutrality (ik - j 0) tends to emerge in lowest

order (in the two expansions taken together):

+ + 1 1 0H
ik - j = (kf 2t) +... (4.12)

p

With op -2 typically very small, and with H 0(k,t) also slowly varying,

ik - j0 (div j0 in real space) tends to zero as anticipated. However,

(4.11) provides a systematic procedure for improving this approximation,

whenever needed. Perhaps even more usefully, the formulas determining

H0 (x,t) [Eq. (3.7) and below] reveal its fundamentally simple physical

nature.

If we turn our attention to Poisson's equation, in the form given in

-2(4.10), we see that E is determined to order (N+l) in an w expansion.
p

Writing out, for example, the leading term in (4.11) for m = 0, we find

as illustration

2-+ H 0 (kt)
k p0 (k,t) = 2 (4.13)

p

Inspection of (3.5a) then shows the corresponding current density (given

appropriate initial conditions) to be determined only to zeroth-order in

~ -2
W . These relations provide a useful illustration of how an electric

field arises in a "neutral" plasma. (In this sense, the plasma is indeed

polarized.)
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Note further that H0 (i,t)(as well as each H ) itself depends on E or

$. In this way (4.13)(or higher-order versions) is capable of generating all

of the appropriate dispersion relations expected for the familiar low-fre-

quency modes common, for example, to toroidal discharges. In addition, in the

quasi-steady (equilibrium) limit, (4.13) provides the lowest-order infor-

mation regarding E, including the familiar ambipolarity statement occuring

in that case.

For the application considered in the next section, we take N = 0:

it follows from (4.10), with (4.1) and (3.7), that the low frequency portion

of the electrostatic field must satisfy the equations

Y ~ 2 G 

G E, -G
-( Go) El 00, (4.14)

[2-
n 2 - G1] = 0. (4.15)

We can calculate in (4.15) with E 0 0 because E would contribute

a term of second order in Wp 2 to i . With N = 0 such higher order

terms are to be neglected. Equations (4.14) and (4.15) can be combined

to give

-

2 Ell -G 0  -l 0. (4.16)

Comparing this with (3.6) and (3.7), we see that we can obtain the (N = 0)

low frequency field simply by neglecting 332I/at2 in (3.6). However, as

we shall show, a breakdown of (4.16) occurs for its flux-surface average.

This problem is considered in section V, in the framework of toroidal

geometry with a specified, static model B field.
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V. FLUX-AVERAGED FIELD-COMPONENTS; TOROIDAL GEOMETRY

The k11 = 0 (flux-averaged) part of (4.16), referred to at the end of

section IV, reduces simply to

4 - G1> = 0. (5.1)

However, from the definition of G [see (3.8) and Ref. 14], we find (5.1)

cannot be satisfied in general. We therefore return to the exact (time-

dependent) equation (3.6) for the flux-surface average, obtaining the

more complete low-frequency relation for the perpendicular part:
2-)

3 E,
<V - G > = 0 . (5.2)

2 1

where E, = E - nE1. Equations (4.16) and (5.2) together can now be used

for the complete solution of the electrostatic field, including low-

frequency effects arising from I components which contribute to the flux

average. An explicit solution (for a toroidal geometry) is developed in

the following. The extension of (4.16) and (5.2) to higher orders in

Q~1 is straightforward.

We model the static magnetic field by the vacuum toroidal field and

the plasma current poloidal field, taking care to keep - B = 0. In

the usual toroidal geometry (R0 = major radius, r = minor radius, e =

poloidal angle, C = toroidal angle), the model field is given by

+ 0 A
B = = n B, (5.3)

Tnh
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where

h = 1 + s cos ,

n = ricy + qC

q =U(1 + a2 -1/2

C r
a q(r) ' RO

Here, q is the safety factor.

In this geometry the improved low-frequency equation (5.2) reduces to

rr <^ - - 1 > = 0 ,(5.4)

which relates <Er> to <jr> and properly generalizes Eq. (5.1).

This is also consistent with using an improved verson of (4.16):

- 2 - G1) G = 0 , (5.5)

where

G 11 = G 0 + nG

GL = G - i(i * G1) - r^ <G r> G

We may write (5.4) and (5.5) in terms of 5 by using (4.1) with (5.3),

yielding

_2 [
[r< - + r* 1 > =0 (5.6)

I 3t
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and, in the model field, (5.5) becomes

2- 2- 2  2
a + 2q 3 _ 6 sin + q + 92

36+e cs 1+os )s e )e 2 D2
(1+ E: Cos )B

)2
(2fi11 +G 1 ) , (5.7)

p

provided we continue to neglect fluctuations about the flux-average of w 2

Because must satisfy toroidal periodicity, we can expand it in a

Fourier series,

exp [i(p6 - X1)] , (5.8)

and solve (5.7) for all . Geometrical effects partially neglected in

Sec. IV are now included in Eqs. (5.7) and (5.8). Furthermore, an exact

form of (5.5), including any fluctuations in w 2, can be used to write

(5.7) in a more complete form if necessary or desired. One proceeds by
2 21

solving (5.5) first for ho 2Ell - x. One can then solve n -$ = -(hw 2 X
p p

to obtain completely general form for (5.7).

The equation for T can be used to determine all the except .

For most practical purposes, however, we need only 3$00 /Dr; the latter

can be obtained by integrating the equation following from (5.6) and (5.8)

2 0 1 ( 1 + 10)

_ 2 D + 2 E - - <r -G .1 (5.9)

Equations (5.7) and (5.9) allow complete determination of the first

-l -2
order (in both Q2 and o ) time-varying electrostatic electric fields.

p

The results are valid for any plasma distribution function and do not imply
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some of the restrictions cited from the earlier literature. We also have

-2
shown how one obtains the higher order terms in the wp expansion [Eq. (4.10)].

In the zeroth-order limit in the Q~1 expansion, the electric field reduces

to the form used by Hazeltine and Hinton.
4 ,5

By contrast, if one assumes a priori an equilibrium (3 /at) = 0,

(5.9) is not useful in determining 3 00 /3r, since r - G does not depend

11
on E r Under such an equilibrium constraint it is then indeed necessary

to extend the drift-kinetic expansion to second order17  In this limit,

our results agree with those of Ref. 11.

Finally, we note that Eq. (5.9) for 3$00/3r can be integrated once

in time because of the simple definition of G1 [see Eq. (3.5a) and below].

We obtain readily

3 - 1 10 +$1
+ 2+ ( r r> + const. (5.10)

where <jr= < ( e )> . This result is potentially of

special interest in toroidal discharges because it is related to any

spin-up or rotation1 8-2 2 which may occur in such devices. [In a static

B-field, determination of the flux-averaged radial component of E is

essentially tantamount to the determination of the mean poloidal rotation.]

Equation (5.10) is consistent with known results in the Pfirsch-

Schliter regime for the spin-up rate.1 8 92 1 92 2  Moreover, it appears to be

useful as a unifying expression, valid in all regimes. It illustrates

further that one can expect, as <j r> varies, important differences in

rotational tendencies of the plasma when one compares motions near the

center and toward the edges of the plasma.
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