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Abstract

This work presents numerical modeling results and flux experiments for a novel membrane distillation

configuration called conductive gap membrane distillation (CGMD), as well as permeate gap membrane

distillation (PGMD). CGMD has a conductive spacer in the gap between the membrane and condensing

surface rather than more commonly used insulating materials. Flux measurements with two experimental

systems are used to validate the numerical models for PGMD and CGMD. PGMD has 20% higher GOR

(energy efficiency) than an air gap membrane distillation (AGMD) system of the same size, whereas CGMD

can have two times higher GOR than even PGMD. Increasing gap effective thermal conductivity in CGMD

has negligible benefits beyond kgap ≈ 10 W/m·K under the conditions of this study. The direction of pure

water flow in the gap has a significant influence on overall system energy efficiency, especially in the case of

CGMD. Using a countercurrent configuration for the pure water flow in the gap relative to the cold stream

leads to 40% higher GOR than flow cocurrent with the cold water stream.
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Nomenclature

Roman Symbols

A Membrane area, m2

B Membrane permeability, kg/m2 s Pa

c Salt concentration, g/kg

d Depth of channel, m

dA Elemental area, m2

GOR Gained Output Ratio

h Specific enthalpy, kJ/kg

hfg Enthalpy of vaporization, J/kg

J Permeate flux, kg/m2 s

kmass Mass transfer coefficient, m/s

L Length of module, m

MW Molar mass, kg/mol

ṁ Mass flow rate, kg/s

Q̇ Heat transfer rate, W

q̇ Heat flux, W/m2

P Pressure, Pa

pvap Vapor Pressure, Pa

T Temperature, ◦C

T0 Ambient temperature, ◦C

w Width, m

Greek Symbols

δm Membrane thickness, m

φ Membrane Porosity

ρ Density

Subscripts

b Stream bulk

br Brine stream

c Cold stream

f Feed (hot) stream

g Gap

h Heater

in Inlet
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m Membrane surface

out Outlet

p Product stream

sat Saturation

w, wall Condensing surface
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1. Introduction

1.1. Membrane Distillation

Membrane distillation (MD) is a thermal desalination technology that has received increased attention

for small scale, renewable-energy-driven desalination applications as well as for treating high salinity brines.

Scalability, the ability to handle high salinity feed streams, and relatively high fouling resistance are some of

the advantages of the MD process. Several MD configurations with relative advantages and disadvantages

have been proposed in the literature. The four common MD configurations include air gap (AGMD), direct

contact (DCMD), vacuum (VMD) and sweeping gas membrane distillation (SGMD) [1, 2]. In addition, other

configurations have been suggested recently, including the permeate (liquid or water) gap MD (PGMD), and

material gap membrane distillation (MGMD) [3]. Several multi-staged configurations based on the above

designs have also been proposed in literature and commercially implemented [4].

The fundamental principle of operation of all these configurations is the same. Separation is achieved

through evaporation of the more volatile component of a mixture. When used for desalination, pure vapor

preferentially passes through the pores of a hydrophobic membrane that prevents liquid feed from passing

through. The different configurations of MD vary based on how this vapor is captured and condensed to

obtain pure water. In the case of DCMD, cooler pure water flows on the other side of the membrane,

countercurrent to the feed, and the vapor condenses into this stream and warms it up. The warm pure

water stream would then be passed through a heat exchanger to preheat incoming salt water [5, 6]. DCMD

is the oldest MD configuration proposed [7]. In AGMD, the vapor condenses on a condensing plate that is

cooled by the incoming feed. The feed thereby gets preheated within the module by the condensing vapor,

hence recovering some of the energy input. The air gap between the membrane and the condensing surface

is meant to reduce the sensible heat loss from the hot to the cold side [8].

In the case of SGMD and VMD, the condensation happens outside the MD module. The sweeping air

gets heated and humidified before leaving the module in SGMD, and in VMD, the vacuum pump would draw

out relatively pure vapor in the case of VMD. This is passed through a condenser or vapor trap to recover

pure liquid water [9]. Recently, a system using an aspirator was proposed to more efficiently recover the

product water in VMD systems [10], eliminating the vacuum pump and concerns associated with incomplete

condensation.

1.2. Energy Efficiency

Energy is supplied to MD systems both in the form of heat and work. Work transfer is usually used to

achieve fluid flow through the channels. Heat is required to increase the temperature of the feed liquid and

thereby enabling evaporation of water. Heat energy consumption by far exceeds pumping power requirements

under normal operating conditions. Energy consumption in MD has been relatively higher than that of other

desalination technologies as illustrated by Mistry et al. [11]. As a result, MD companies have focused on

applications with available waste heat energy, from power plants or other sources [4, 12]. MD is also readily
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coupled with renewable and waste heat sources due to its ability to operate at low temperatures and still

achieve desalination.

Energy efficiency is analyzed as gained output ratio (GOR) (Eq. 1):

GOR =
ṁphfg

Q̇h

(1)

Most MD systems in practice have been restricted to GORs of less than about 4-6 [4, 13]. In contrast, large

scale thermal desalination systems such as multi-stage flash and multi-effect distillation, which may have

significantly more complicated designs often have GOR higher than about 7-10 [14]. Increasing the GOR of

MD close to these values would make MD more competitive with these conventional technologies.

The GOR of single stage MD configurations has been previously analyzed and compared by Summers et

al. [5]. While single stage VMD systems are restricted to GOR below 1, single stage SGMD also does not

achieve GOR beyond about 4 [9]. In contrast, DCMD and AGMD are relatively simple systems, and were

shown to be capable of achieving higher GORs [5, 15, 16, 17].

1.3. Permeate Gap Membrane Distillation

(a) Permeate Gap Membrane Distillation
(b) Conductive Gap Membrane Distillation proposed as a

modification of PGMD

Figure 1: MD configurations analyzed in this study

Permeate Gap MD is also referred to as Water Gap and Liquid Gap MD. Simply, it can be understood

as a modification of AGMD where the gap between the membrane and the condensing surface is filled
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with permeate water (Fig. 1a). PGMD has shown improved fluxes compared to AGMD [8, 18, 19] as have

other modifications such as material gap MD systems with sand added to the gap [3]. A clear comparison

of GOR between AGMD and PGMD has not been established, though commercial spiral wound PGMD

modules have achieved higher GOR . Winter et al. [20] suggested PGMD as a modification of DCMD with

internal heat recovery by separation of the distillate from the coolant. Therefore the coolant can be any

other liquid, such as incoming feed water. They note that “The presence of the distillate channel reduces

sensible heat losses due to an additional heat transfer resistance. An additional effect is the reduction of the

effective temperature difference across the membrane, which slightly lowers the permeation rate.” PGMD

can therefore be intuitively placed between AGMD and DCMD with intermediate thermal resistance of the

gap, thereby having lower sensible heat transfer to the permeate as compared to DCMD, but perhaps more

heat loss than AGMD. A hollow fiber MD system in PGMD configuration was experimentally analyzed by

Singh et al. [21], where the condensate from one AGMD module was passed into another module. Singh et

al. note that the second module would perform between AGMD and DCMD when the gaps are filled with

condensate. Hollow fiber systems with high packing density may also lead to much lower effective gap sizes

[22] and sections of the module may have pure water extending across the narrow gaps between membrane

and non-porous fibers. While the focus of the present work is on modeling flat sheet and similar spiral-wound

MD systems, the overall trends are applicable to hollow fiber MD systems as well.

1.4. Conductive Gap Membrane Distillation

Conductive gap MD (CGMD) is suggested as a novel MD configuration (Fig. 1b). In CGMD, the overall

thermal conductance of the gap is increased. One way of achieving this is to insert a high conductivity

material (such as a metal mesh) into the gap of a PGMD system. Increasing the conductivity of the gap in

hollow fiber MD systems by inserting high conductivity materials was suggested by Ma et al. [23] in 2010.

This is in contrast to other systems proposed in the literature such as material gap MD where low conductivity

materials such as sand were added to the gap region [3]. This also contradicts the conventional wisdom and

the historical development in the field towards developing MD configurations with lower sensible heat loss

than DCMD [24], such as the the evolution from DCMD to AGMD or PGMD. Possible implementations

involve using a metal spacer instead of a plastic spacer, or implementing fins on the conductive surface

extending up to the membrane to increase the net conductivity of the gap. The gap is filled with pure water,

similar to the PGMD system. Vapor would condense immediately as it leaves the membrane. The energy is

conducted through the gap into the cold stream, preheating it. While this configuration may have a higher

sensible heat loss than even PGMD, perhaps close to that of a DCMD system, for a given membrane area

and feed flow rate, it rejects brine at a lower temperature and correspondingly achieves higher preheating of

the cold stream. This could therefore result in a higher overall GOR.

In this study, we use numerical modeling to investigate the energy efficiency of PGMD and CGMD

systems. The results are compared to previously published results for other conventional MD configurations
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under the same operating conditions. The effect of pure water flow direction in the gap is evaluated. The

effect of gap conductivity and membrane material conductivity on GOR is studied.

2. Numerical Modeling

2.1. Review

Several MD models with varying degrees of complexity have been developed to understand the effect of

system parameters on flux [25, 26]. Fewer, however, have analyzed energy efficiency [6, 27, 28]. The modeling

approach followed in this paper is very similar to that found in Summers et al. [5]. As a result, only the new

features of the modeling are discussed in detail.

A one-dimensional model of the MD modules is studied, where properties vary along the length of the

module, but are constant along the width (direction into the page). In the depth direction, property variations

due to transport processes are evaluated by considering the temperature and concentration boundary layers.

The bulk properties of the fluids are assumed equal to the value at the fluid interior; the boundary layers

are assumed to be thin, but not negligible. Mass, and energy conservation equations are solved for each

computational cell coupled with property evaluations performed using built-in functions on Engineering

Equation Solver (EES) [29].

The overall computational cell is shown in Fig. 2.

membrane

condensing
surface

Figure 2: PGMD computational cell
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2.2. Feed Channel

Modeling of the feed channel is common to both configurations. A concentration boundary layer is

incorporated into the feed channel model to account for desalination of salt water and capture second order

effects associated with salinity of the feed. The film model of concentration polarization (Eq. 2) is used

to relate the salt concentrations at the membrane interface (cf,m) to the bulk concentration (cf,b), effective

mass transfer coefficient (k) in the channel and vapor flux thorough the membrane (J):

cf,m
cf,b

= exp

(
J

ρfkmass

)
(2)

The effect of dissolved salt on the vapor pressure of water is captured using Raoult’s law (Eq. 3):

pvapf,m = Psat (Tf,m) ×

(
1 −

2cf,m
MWsolute

2cf,m
MWsolute

+
1000−cf,m
MWwater

)
(3)

The difference in vapor pressure across the membrane is the driving force for water vapor transfer as shown

in Fig. 2. The effect of salt content on the enthalpy of the feed solution is not modeled in detail since we are

focusing on low salinity conditions where these secondary effects are negligible. The effect of salt on other

thermophysical properties of the streams is not modeled. At close to seawater salinities considered in this

study, the reduction in vapor pressure is the only thermally significant effect.

The flux through the membrane is calculated locally from the vapor pressure difference and the membrane

permeability coefficient, B:

J = B ×
(
pvapf,m − pvapg,m

)
(4)

2.3. Gap

The region between the membrane and the condensing surface will be referred to as the gap. For air gap

Summers et al. [5] presented a vapor diffusion with air counter diffusion model. For PGMD and CGMD,

similar to the case of DCMD, vapor condenses immediately upon exiting the membrane pores into a stream

of pure water. From here, the heat is convected across the gap into the condensing surface. In this study,

the water flow rate is assumed to be relatively low and hence energy transfer across the gap is approximated

by conduction across the gap (5):

q̇gap =
kgap
dgap

× (Tg,m − Tw) (5)

Depending on the direction of water flow in the gap, q̇gap would be different.In the case of crossflow

configuration, the water produced at any given location along the length would flow perpendicularly out of

the module (in this case, into or out of the plane of the paper, as shown in Fig. 4). On the other hand,

the flow can also be countercurrent to the cold stream or parallel to the flow stream. The corresponding

equations for cell number n are given below (cell number 1 at the hot side):
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q̇ngap,cross = Jnhv
(
Tn
f,m

)
+ qnm − Jnhl

(
Tn
p

)
q̇ngap,countercurrent = Jnhv

(
Tn
f,m

)
+ qnm +

[
ṁn−1

p hl
(
Tn−1
p

)
− ṁn

phl
(
Tn
p

)]
/dA

q̇ngap,parallel = Jnhv
(
Tn
f,m

)
+ qnm +

[
ṁn+1

p hl
(
Tn+1
p

)
− ṁn

phl
(
Tn
p

)]
/dA

(6)

In the case of PGMD, the gap is filled with water with some plastic spacers often used to support the

membrane. On the other hand, in the case of conductive gap MD, conductive materials are used to enhance

the conductivity of the region. The effective thermal conductivity of this gap (kgap) would therefore be a

function of the conductivities of water and additional material in the gap as well porosity and geometry of

the region. In this study, kgap = 0.6 W/m-K is used for PGMD and kgap = 10 W/m-K is used for reporting

CGMD results.

The baseline conditions for the numerical model are shown in Table 1.

Table 1: Baseline values of parameters

No. Variable Value Units

1 Tf,in 85 ◦C

2 Tc,in 27 ◦C

3 ṁf,in 1 kg/s

4 cf,in 35 ppt

5 L 60 m

6 w 0.7 m

7 df , dc 0.004 m

8 dgap 0.001 m

9 kgap(PGMD) 0.6 W/m-K

10 kgap(CGMD) 10 W/m-K

11 B 16 × 10−7 [5] kg/m2 s Pa

3. Validation

The numerical modeling framework presented above has been validated for AGMD and DCMD in the past

[5]. PGMD experiments were carried out using the AGMD apparatus described in detail elsewhere [18, 30].

The apparatus was used to study PGMD by collecting water from the top, hydrostatically forcing the gap

region to be flooded with pure water. Experiments were conducted at different values of Tf,in(40, 50, 60, 70 ◦C)
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and Tc,in(17, 20, 25 ◦C). For the numerical model predictions, an effective gap conductivity of kgap = 0.6

W/m-K and effective gap thickness of 1 mm were used. Under similar conditions compared to PGMD, the

flux for AGMD is about 20% lower at higher Tf,in and more than 50% lower at lower temperatures. This

result is comparable to results in the literature that show that flux for liquid gap MD is higher than that of

AGMD. The magnitude of improvement in this study may be smaller since a smaller gap thickness is used,

resulting in lower resistance in the case of AGMD.

The results comparing the numerical modeling predictions against the experimental results are shown in

Fig. 3a. Each set of three data points corresponds to one value of hot side temperature.
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Figure 3: Model validation with experimental flux measurements

Further validation of the model for the effect of gap conductivity in CGMD configuration was carried out

using a modified Sterlitech apparatus described in [31] and the results are shown in Fig. 3b. In the figure,

M1 to M5 correspond to different types of metal meshes used in the gap which is about 2-4 mm thick. M1

to M3 are woven aluminum mesh spacers (McMaster-Carr part numbers 9227T53, 9227T56, 9227T57). M4

is a porous Duocel Aluminum material (ERGAerospace part number 6101-T6) hammered down to half its

thickness and covered by a thin brass mesh to protect the membrane. M5 is a specially manufactured copper

plate with fins. The gap conductivity in the case of M5 is likely to be much higher, but since the increase in

flux is negligible at higher conductivities, the point is plotted at the edge of the plot.

These results are also in overall agreement with flux results presented by Francis et al. [3] on material

gap MD configurations. With the introduction of sand that has lower thermal conductivity than water, the

flux was found to be lower than with only water in the gap. The opposite effect is observed in terms of flux

for CGMD.

In order to validate the model for a larger system with energy recovery, data from spiral wound module

analysis reported in [20] is used. The current model was run at the following conditions to compare with
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reported results: (B = 16 × 10−7 kg/m2 · s · Pa, km = 0.25 W/m · K , δm = 70µm , L = 7 m, w = 0.7 m,

dch = 3.2 mm, feed flow inlet rate = 0.04166 kg/s, permeate flow in counterflow direction, kgap = 0.5 W/m · K

(for water and a plastic spacer), dgap = 1 mm, Tf,in = 80 ◦C, Tc,in = 25 ◦C). The predicted specific thermal

energy consumption is 158 kWh/m3, and the flux is 1.76 LMH. The values reported in [20] for the same

operating conditions are specific thermal energy consumption of 150–160 kWh/m3 and a flux of about 1.5–1.6

LMH. The membrane permeability value, as well as the gap conditions were not available and were assumed.

Also, the model does not account for heat loss to the environment.

4. Results and Discussion

4.1. GOR comparison, Effect of gap flow

The configuration of pure water flow in the gap can affect the performance of a PGMD or CGMD system.

Figure 4 shows the different options for pure water flow in the gap. On the left, pure water in the gap flows

countercurrent to the coolant fluid across the condensing plate. The opposite gap configuration is to have

the pure water flow parallel to the coolant stream, as seen on the right. An intermediate design (middle)

may be that of perpendicular or crossflow, where water flows in a direction perpendicular to that of cold

water flow and leaves the module at several positions along the length of the module.

Figure 4: Illustration of various flow configurations in the gap region

The system with gap flow countercurrent to the cold stream (left) is likely to have the highest energy

efficiency since the pure water would leave the system close to the cold stream inlet temperature; this

is similar to the well-known behavior of a counterflow heat exchanger. On the other hand, the parallel

configuration (right) would be rejecting a warm pure water stream close to the top temperature. Even
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though the amount of water released is less than 8% of the feed stream, it can still have a detrimental

effect on energy efficiency. The perpendicular configuration is likely to lie in between, since water is released

both at warmer temperatures and cooler temperatures, and hence on average the stream is going to be of

intermediate temperature.

The effect of length on GOR is shown for all three flow orientations in Fig. 5. The GOR trend is as

expected. At L = 60 m, the GOR differs by about 1 between parallel and perpendicular and between

perpendicular and countercurrent for CGMD systems (Fig. 5a). The trend is similar for PGMD systems,

but the difference in magnitude of GOR differences is much smaller at about 0.2. The flux at L = 60 m,

is 5.8 L/m2-hr for PGMD and 6.6 L/m2-hr for CGMD in countercurrent configuration. The higher GOR

observed at larger membrane areas is accompanied by a lower flux, which is similar to the trade-off observed

for DCMD systems by Gilron et al. [15]. As a result, operating at very high GOR may not be optimal.

Comparing the graphs with data from [5] for AGMD, DCMD and VMD systems over the same operating

conditions, GOR of PGMD is about 20% higher than that of AGMD across the range of lengths. The GOR

of CGMD in turn is about two times higher than that of PGMD.
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Figure 5: Effect of gap flow direction and system length. Other parameters set at baseline values (Table 1).

Figure 6a shows the bulk stream temperature profiles within the module for the three different flow

orientations when L = 60 m. The temperature profiles are more straight for the counterflow case than the

crossflow and parallel arrangements. The cold stream leaves at a higher temperature in the case of the

counterflow configuration. This means that better preheating is achieved and hence less heat will be added

from the heater, contributing to a higher GOR. Figure 6b shows the driving temperature difference between

the hot and cold stream bulk temperatures along the length of the module. Interestingly, in counterflow

design, the pinch point temperature difference occurs at the hot side, leading to lower external heat input,

whereas in both the other configurations, the pinch point occurs at the cold end. The driving force is

also relatively more constant in the counterflow design, contributing to lower entropy generation within the
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module and better overall energy efficiency [32].

All subsequent results and discussions will focus on the counterflow configuration. The trends will be

relatively similar for other flow configurations as well.
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Figure 6: Effect of gap flow direction on temperature profile in CGMD. Other parameters set at baseline values (Table 1).

4.2. Effect of Gap Thermal Conductivity

Figure 7 shows the effect of gap conductivity on GOR. kgap is varied over a range of 0.5 W/m-K to more

than 30 W/m-K. At lower kgap, an increase in the conductivity leads to significant improvements in GOR

(Fig. 7) whereas beyond about kgap = 10 W/m-K, increase in conductivity doesn’t result in much further

improvement.

The results shown in Fig. 7 are also applicable for analyzing PGMD with smaller gap as can be easily

achieved by using a thinner spacer or packing the fibers more densely in the case of hollow fiber system.

The effect of reducing the gap thickness is similar to that of increasing the conductivity of the gap. From

Eq. 5, we see that the parameter of interest is the gap conductance given by kgap/δgap. At higher gap

conductivity or lower gap thickness the system would start behaving closer to CGMD. The value of gap

conductance corresponding to a kgap = 10 W/m-K as used in this study is 10000 W/m2-K. To achieve a

similar conductance with a permeate gap system, the gap thickness would have to be 60 µm.

Figure 8 illustrates the effect of kgap on ṁp and Q̇h. ṁp increases and Q̇h decreases, both leading to

an improvement in GOR. Among the two, the increase in ṁp is about 15% whereas the decrease in Q̇h is

around 60%. Together, both of these effects result in the nearly 100% higher GOR for CGMD compared to

PGMD, as kgap increases from about 0.6 to 10 W/m-K.

The temperature profiles within the modules are illustrated in Fig. 9 and help explain the results physi-

cally. For PGMD, a relatively large difference in temperature is observed between the membrane surface and
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Figure 7: Energy efficiency as a function of gap conductivity = 0.5–30 W/m·K. Other parameters set at baseline values (Table 1).

the condensation plate. As a result, there is a smaller temperature difference across the membrane leading

to lesser pure water production, even though the overall pinch point temperature difference between the

bulk streams is much larger compared to the profile for CGMD. On the other hand, since the pinch point

temperature difference is smaller in CGMD, lesser external energy supply was required too.

5. Conclusions

1. Numerical modeling shows that PGMD systems have higher GOR than AGMD. The proposed CGMD

configuration with a high thermal conductivity gap has two times higher GOR than even PGMD.

2. Pure water flow in the gap countercurrent to the cold stream leads to highest energy efficiency followed

in order of efficiency by crossflow and parallel configurations.

3. An increase in gap conductivity improves permeate production and GOR, with diminishing returns

beyond k ≈ 10 W/m-K in the cases considered here.

4. The main reason for improved GOR of CGMD is better energy recovery into the cold stream within

the MD module.
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