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Large-angle fluctuations in the cosmic microwave background temperature induced by the integrated
Sachs-Wolfe effect and Compton-y distortions from the thermal Sunyaev-Zeldovich (tSZ) effect are both
due to line-of-sight density perturbations. Here we calculate the cross-correlation between these two
signals. Measurement of this cross-correlation can be used to test the redshift distribution of the tSZ
distortion, which has implications for the redshift at which astrophysical processes in clusters begin to
operate. We also evaluate the detectability of a yT cross-correlation from exotic early-Universe sources in
the presence of this late-time effect.
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I. INTRODUCTION

The standard ΛCDM cosmological model provides a
remarkably good fit to an array of precise measurements.
However, there still remain some tensions between different
measurements which must be resolved, and the physics
responsible for the generation of primordial perturbations has
yet to be delineated. This paper addresses both these issues.
Large-angle fluctuations in the cosmic microwave back-

ground (CMB) temperature (T) are induced not only by
density perturbations at the CMB surface of last scatter (the
Sachs-Wolfe effect; SW), but also by the growth of density
perturbations along the line of sight (the integrated Sachs-
Wolfe effect; ISW) [1]. Although the CMB frequency
spectrum is very close to a blackbody, there are small
distortions, of the Compton-y type, induced by the rare
scattering of CMB photons from hot electrons in the
intergalactic medium of galaxy clusters [2]. This y dis-
tortion has been mapped, as a function of position on the
sky, by Planck with an angular resolution of a fraction of a
degree [3,4], and there are vigorous discussions of future
missions, such as PIXIE [5] and PRISM [6], that will map
the y distortion with far greater sensitivity and resolution.
Given that both the thermal Sunyaev-Zeldovich (tSZ) and

ISW fluctuations are induced by density perturbations at
relatively low redshifts, there should be some cross-
correlation between the two [7], and the purpose of this
paper is to calculate this cross-correlation. The motivation
for this work is twofold. First, there is some tension between
the measured amplitude of y fluctuations and the amplitude
of density perturbations inferred from CMB measurements
[8–11]. The tension, though, is based upon theoretical
models that connect the y-distortion and density-
perturbation amplitudes. Ingredients of these models
include nonlinear evolution of primordial perturbations,

gas dynamics, and feedback processes, all of which can
become quite complicated. Any empirical handle on this
physics would therefore be useful. To quantify how well the
cross-correlation can constrain these processes, we intro-
duce a parameter, ϵ, which describes the peak redshift of the
cross-correlation signal. If clusters were to develop a hot
envelope earlier than currently expected from theory, ϵ
would increase. We design this parameter so that it does not
affect the tSZ signal, merely the cross-correlation. Using our
formalismwequantify howwell the cross-correlation breaks
the degeneracy between structure formation parameters
(such as the amplitude of fluctuations, σ8) and the astro-
physical processes which lead to the halo pressure profile.
The second motivation involves the search for exotic

early-Universe physics. Recent work has shown that pri-
mordial non-Gaussianity may lead to a yT cross-correlation
which may be used to probe scale-dependent non-
Gaussianity [12]. The present calculation will be used to
explore whether this early-Universe signal can be distin-
guished from late-time effects that induce a yT correlation.
This paper is organized as follows. In Sec. II we derive

expressions for the power spectra for the ISW effect, the
tSZ effect, and their cross-correlation, and then present
numerical results. In Sec. III we evaluate the prospects to
infer some information about the redshift distribution for
tSZ fluctuations from measurement of the tSZ-ISW cross-
correlation. In Sec. IV we estimate the sensitivity of future
measurements to the tSZ-ISW cross-correlation from pri-
mordial non-Gaussianity. We conclude in Sec. V.

II. CALCULATION

A. The ISW effect

The ISW effect describes the frequency shift of
CMB photons as they traverse through time-evolving
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gravitational potentials. The fractional temperature fluc-
tuation in a direction n̂ due to this frequency shift is

ΔT
T

ðn̂Þ ¼ −
2

c2

Z
dη

dϕ
dη

ðcηn̂; zÞ

¼ −
2

c2

Z
dz

dϕ
dz

ðrn̂; zÞ; ð1Þ

where ϕð~x; zÞ is the gravitational potential at position ~x and
redshift z, η is the conformal time, c is the speed of light,
and r is the distance along the line of sight.
The potential ϕ is related to the density perturbation

through the Poisson equation ∇2ϕ ¼ 4πGρ, where ∇ is a
gradient with respect to physical position, G is Newton’s
constant, and ρ is the matter density. We write ρð~x; zÞ ¼
ρ̄½1þ δð~x; zÞ� in terms of the mean matter density ρ̄ and
fractional density perturbation δð~x; zÞ. We then use the
Friedmann equation to write ρ̄ ¼ ð3=8πGÞΩmH2

0a
−3 in

terms of the matter density Ωm (in units of the critical
density), the Hubble parameter H0, and the scale factor
a ¼ ð1þ zÞ−1. We further write the density perturbation
δð~x; zÞ ¼ DðzÞδð~x; z ¼ 0Þ in terms of the linear-theory
growth factor DðzÞ. We can then rewrite the Poisson
equation as

ϕð~x; zÞ ¼ −
3

2
ΩmH2

0

DðzÞ
aðzÞ ½∇

−2
c δð~x; z ¼ 0Þ�; ð2Þ

where ∇c ¼ ∇=a is the gradient with respect to the
comoving coordinates.
The power spectrum for ISW-induced angular temper-

ature fluctuations is then obtained using the Limber
approximation, which can be stated as follows. If we
observe a two-dimensional projection,

pðn̂Þ ¼
Z

drqðrÞδðrn̂Þ; ð3Þ

of a three-dimensional field δð~xÞ, with line-of-sight-
distance weight function qðrÞ, then the angular power
spectrum, for multipole l, of pðn̂Þ is

Cp
l ¼

Z
dr

½qðrÞ�2
r2

P
�
lþ 1=2

r

�
; ð4Þ

in terms of the three-dimensional power spectrum PðkÞ, for
wave number k, for δð~xÞ.
Using Eqs. (1), (2), and (4), we find the power spectrum

for ISW-induced temperature fluctuations to be,

Cl ¼
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in terms of the matter-density power spectrum PðkÞ today.
Note that we used the relation dz ¼ −ðH=cÞdr to get from
the first to the second line in Eq. (5), and we have defined in
the last line the ISW transfer function,

Δisw
l ðzÞ ¼ 3ΩmH2

0

c3ðlþ 1=2Þ2 rðzÞHðzÞ d
dz

�
DðzÞ
aðzÞ

�
: ð6Þ

B. The thermal Sunyaev-Zeldovich effect

The tSZ effect arises from inverse Compton scattering
from the hot electrons in the intergalactic medium of galaxy
clusters. This upscattering induces a frequency-dependent
shift in the CMB intensity in direction n̂ which we write as
a brightness-temperature fluctuation,

�
ΔT
T

�
ν

ðn̂Þ ¼ gðνÞy≡
�
x
ex þ 1

ex − 1
− 4

�
yðn̂Þ; ð7Þ

where yðn̂Þ is the y distortion in direction n̂, and
x≡ hν=kBT, where ν is the frequency, kB is the
Boltzmann constant, h is the Planck constant, and T ¼
2.7255 K is the CMB temperature [13]. The Compton-y
distortion is given by an integral,

yðn̂Þ≡ kBσT
mec2

Z
dsneðsn̂ÞTeðsn̂Þ; ð8Þ

along the line of sight, where s is the (physical) line-of-
sight distance, σT is the Thomson cross section, neð~xÞ is the
electron number density at position ~x, and Teð~xÞ is the
electron temperature. The hot electrons that give rise to this
distortion are assumed to be housed in galaxy clusters with
a variety of masses M and a variety of redshifts z. The
spatial abundance of clusters with masses between M and
M þ dM at redshift z is ðdn=dMÞdM in terms of a mass
function ðdn=dMÞðM; zÞ, a function of mass and redshift.
Galaxy clusters of mass M at redshift z are distributed
spatially with a fractional number-density perturbation that
is assumed to be bðM; zÞδð~xÞ in terms of a bias bðM; zÞ.
The spatial fluctuations to the electron pressure Peð~xÞ ¼
kBneð~xÞTeð~xÞ that give rise to angular fluctuations in the
Compton-y parameter induced by clusters of mass M and
redshift z can then be modeled as bðM; zÞ times a
convolution of the density perturbation δð~xÞ with the
electron-pressure profile of the cluster. Since convolution
in configuration space corresponds to multiplication in
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Fourier space, the Limber derivation discussed above can
be used to find the power spectrum for angular fluctuations
in the Compton-y parameter to be [3,7,14–16],

Cyy;2h
l ¼

Z
cdz
HðzÞ ½Δ

y
l ðzÞ�2P

�
lþ 1=2

r

�
; ð9Þ

in terms of a transfer function,

Δy
l ðzÞ ¼ rðzÞDðzÞ

Z
dn
dM

dMylðM; zÞbðM; zÞ: ð10Þ

Here, ylðM; zÞ is the two-dimensional Fourier transform of
the Compton-y image, on the sky, of a cluster of massM at
redshift z and is given in terms of the electron pressure
profile PeðM; z; xÞ, as a function of scale radius x in the
cluster. We neglect relativistic effects, which are second-
order for our purposes [17]. We use for our numerical work
the electron-pressure profiles of Refs. [18,19] with the
parameters described in Ref. [20]. We assume the halo mass
function of Ref. [21] and the halo bias of Ref. [22].
The “2h” superscript in the y-parameter power spectrum

indicates that this is the “two-halo” contribution, the y
autocorrelation that arises from large-scale density pertur-
bations. There is an additional “one-halo” contribution that
arises from Poisson fluctuations in the number of clusters.
This is [23],

Cyy;1h
l ¼

Z
dz½rðzÞ�2 c

HðzÞ
Z

dM
dnðM; zÞ

dM
jylðM; zÞj2:

ð11Þ

The total y-parameter power spectrum is Cyy
l ¼

Cyy;1h
l þ Cyy;2h

l . To avoid our signal being dominated by
unphysical z ∼ 0 objects, we place a lower integration limit
of z ¼ 0.02, the redshift of the COMA cluster.

C. ISW-tSZ cross-correlation

Given that the temperature fluctuation induced by the
ISW effect and the two-halo contribution to tSZ fluctua-
tions are both generated on large angular scales by the same
fractional density perturbation δð~xÞ, there should be a
cross-correlation between the two. From Eqs. (5) and
(9), it is clear that this cross-correlation is

CyT
l ¼

Z
cdz
HðzÞΔ

isw
l ðzÞΔy

l ðzÞP
�
lþ 1=2

r

�
: ð12Þ

D. Numerical results and approximations

Figure 1 shows the resulting power spectra. For our
numerical results, we use a vacuum-energy density (in units
of critical) ΩΛ ¼ 0.721, matter density Ωm ¼ 0.279,
baryon density Ωb ¼ 0.046, a critical density for collapse
of δc ¼ 1.686, and dimensionless Hubble parameter

h ¼ 0.701, although the large-angle results that will be
our primary focus are largely insensitive to these details. In
practice, we find that over 90 percent of the contribution
comes from the redshift range z ¼ 0–3 and the halo mass
range 1013M⊙ and 1015M⊙. We therefore integrate over
slightly wider ranges; z ¼ 0.02–4 and halo mass 1012M⊙
and 1016M⊙.
The large angle (low-l) behaviors of the ISW-ISW

autocorrelation, the yT cross-correlation, and the one-
and two-halo contributions to the yy power spectra are
easy to understand qualitatively. Let us begin with the ISW
effect. Here, the l dependence of the transfer function is
Δisw

l ∝ l−2, and for large angles (l≲ 20), the power
spectrum is Pðl=rÞ ∝ l, assuming lþ 1=2 ≈ l. As a result,
l2Cisw

l ∝ l−1 for l≲ 20. Next consider the tSZ power
spectra. Galaxy clusters subtend a broad distribution of
angular sizes but are rarely wider than a degree. Thus, for
l≲ 20, they are effectively point sources. The Fourier
transform is thus effectively approximated by ylðM; zÞ≃
yl¼0ðM; zÞ which is itself precisely the integral of the
y-distortion over the cluster image on the sky, or equiv-
alently, the total contribution of the cluster to the angle-
averaged y. As a result of the independence of yl on l and
Pðl=rÞ ∝ l for l≲ 20, we infer l2Cyy;2h

l ∝ l and l2CyT
l ∝

const for l≲ 20. Finally, the one-halo contribution to Cyy
l is

nearly constant (i.e., l2Cl ∝ l2Þ for l≲ 20 as expected for
Poisson fluctuations in what are (at these angular scales)
effectively point sources.

III. SZ REDSHIFT DISTRIBUTION

We now discuss the prospects to learn about the redshift
distribution of the galaxy clusters that produce the

FIG. 1. The ISW power spectrum Cisw
l (green) and the two-halo

contribution (y, 2h) to Cyy
l (blue) are shown in dashed lines, while

CyT
l is shown in solid red. The one-halo contribution (y, 1h) to

Cyy
l is dotted. The CMB power spectrum is shown dot-dashed for

comparison.
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Compton-y distortion. As seen above, the yT correlation is
significant primarily at multipole moments l≲ 100, where
the window function ylðzÞ is largely independent of l. The
amplitude of the cross-correlation, relative to the autocor-
relations, can be largely understood by examining the
overlap between the redshift dependences of the two
transfer functions Δy

l ðzÞ and Δisw
l ðzÞ. These transfer

functions are shown in Fig. 2. More precisely, we plot—
noting that Pðl=rÞ ∝ l=r for the relevant angular scales
—Δl=½HðzÞrðzÞ�1=2, the square root of the integrands for
Cl, as it is the overlap of these two functions that
determines the strength of the cross-correlation relative
to the autocorrelation. We also normalize the curves in
Fig. 2 to both have the same area under the curve.
Given the current fairly precise constraints to dark-

energy parameters, the predictions for Δisw
l ðzÞ have rela-

tively small uncertainties. The prediction for Δy
l ðzÞ

depends, however, on the redshift distribution of the halo
mass function, bias parameters, and cluster pressure pro-
files, all of which involve quite uncertain physics.
Measurement of the yT correlation will, however, provide
an additional empirical constraint on the redshift evolution
of the y parameter.
To see how this might work, we replace

Δy
l ðzÞ → Δy

l ðzÞ½1þ ϵðz − z0Þ�; ð13Þ

where

z0 ¼
R

dz
rðzÞHðzÞ zΔ

y
l ðzÞR

dz
rðzÞHðzÞΔ

y
l ðzÞ

≃ 0.04

�
l

100

�
: ð14Þ

The functional form in Eq. (13), is chosen so that, with z0
given in Eq. (14), the autocorrelation power spectrum Cyy

l
will remain unaltered for small ϵ. This alteration thus
describes, for ϵ > 0, a weighting of the Compton-y dis-
tribution to smaller redshifts (and vice versa for ϵ < 0) in
such a way that leaves the total y signal unchanged.
We now estimate the smallest value σϵ of ϵ that will be

detectable with future measurements. This is given by

1

σ2ϵ
≃X

l

ð∂CyT
l =∂ϵÞ2

ðσyTl Þ2 ; ð15Þ

where

∂CyT
l

∂ϵ ¼
Z

cdz
HðzÞΔ

isw
l ðzÞΔy

l ðzÞðz − z0ÞPðl=rÞ: ð16Þ

Figure 3 shows ∂CyT
l =∂ϵ and σyTl .

The error with which each CyT
l can be determined is

ðσyTl Þ2 ¼ 1

2lþ 1
½ðCyT

l Þ2 þ CTT
l ðCyy

l þ NlW−2
l Þ�; ð17Þ

where CTT
l is the CMB temperature power spectrum,Wl ¼

e−l
2σ2b=2 is a window function, and Nl ¼ ð4π=NÞσ2y is the

noise in the measurement of Cyy
l . Here, σb is the beam size,

σy is the root variance of the y-distortion measurement in
each pixel, and N is the number of pixels.
The Planck satellite has now measured the tSZ power

spectrum and found good agreement with the expectations
from the one-halo contribution to Cyy

l . They have now even
presented good evidence for the detection of the two-halo

FIG. 2. We plot the transfer functions Δisw
l ðzÞ and Δy

l ðzÞ,
divided by ½rðzÞHðzÞ�1=2, at l ¼ 20. The squares of the plotted
quantities are the redshift (z) integrands for the ISW power
spectrum Cisw

l and the two-halo contribution to the tSZ power
spectrum Cyy

l . Both curves are normalized so that the areas under
the curve are the same. The tSZ-ISW cross-correlation CyT

l is
obtained from the overlap of these two.

FIG. 3. The derivative ∂CyT
l =∂ϵ of the ISW-tSZ cross-

correlation with respect to ϵ (solid blue), and the ISW-tSZ noise
σyTl (dashed green). We also show the same quantities restricting
to z > 0.3 (solid red and dashed cyan, respectively), which
substantially increases the signal-to-noise.
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contribution at l≲ 10. From this we infer that the noise
contribution Nl to the yy measurement is already small
compared with Cyy

l , and it will be negligible for future
experiments like PIXIE or PRISM. We also note from the
numerical results that ðCyT

l Þ2 is small compared with
Cyy
l CTT

l ; this makes sense given that the cross-correlation
of y with the ISW effect is small and further that the ISW
effect provides only a small contribution to large-angle
temperature fluctuations. We may thus approximate

ðσyTl Þ2 ≃ 1

2lþ 1
CTT
l Cyy

l : ð18Þ

The smallest detectable value of ϵ evaluates to σϵ ≃ 2.3,
for z0 ¼ 0.13. This is still a considerable uncertainty, but
the signal to noise can be increased. While the majority of
the cross-correlation signal is at low redshifts, the one-halo
tSZ term, which appears as noise in Eq. (17), peaks even
more strongly at low redshift. Thus the lowest-redshift bins
are substantially noise dominated.1 If we remove all
information at redshifts z < 0.3—which is possible by
explicitly detecting resolved clusters and masking them
from the tSZ map—then the noise can be considerably
reduced. In this case, the smallest detectable value becomes
σϵ ≃ 0.57, which, if achieved, would provide some valu-
able information on the redshift distribution of tSZ fluc-
tuations, constraining the formation of massive clusters to
the era of dark energy dominance.
We also considered the profile of Ref. [23], which

produces a larger tSZ signal and thus a larger cross-
correlation. However, since the one-halo tSZ term
dominates the noise, this actually slightly decreased the
sensitivity. Thus our results should be largely insensitive to
the electron pressure profile used.

IV. PRIMORDIAL NON-GAUSSIANITY

We now review the yT cross-correlation from the scale-
dependent primordial non-Gaussianity scenario of
Ref. [12]. If primordial perturbations are non-Gaussian,
the amplitude of small-wavelength power can be modulated
by long-wavelength Fourier modes of the density field. The
dissipation of primordial Fourier modes with wave num-
bers k≃ 1–50 Mpc−1 (which takes place at redshifts
1100≲ z≲ 5 × 104) gives rise to primordial Compton-y
distortions. If there is non-Gaussianity, then the angular
distribution of this y distortion may be correlated with the
large-scale density modes that give rise, through the Sachs-
Wolfe effect, to large-angle fluctuations in the CMB
temperature.

The predictions for this primordial yT correlation
depend on the yet-unmeasured isotropic value hyi of the
Compton-y parameter for which we take as a canonical
value 4 × 10−9. The yy and yT power spectra for the
scenario are then,

l2Cyy;ng
l ≃ 5.5 × 10−20

�
fynl
200

�
2
� hyi
4 × 10−9

�
2

; ð19Þ

l2CyT;ng
l ≃ 5.8 × 10−15

�
fynl
200

�� hyi
4 × 10−9

�
: ð20Þ

Here, fynl is the non-Gaussianity parameter for squeezed
bispectrum configurations in which the wave number of the
long-wavelength mode is of the ∼Gpc−1 scales of modes
that contribute to the ISW effect, while the two short-
wavelength modes have wavelengths 1 Mpc−1 ≲ k≲
50 Mpc−1 As discussed in Ref. [12], there are no existing
model-independent constraints on fynl.
We now estimate the detectability of the yT cross-

correlation from non-Gaussianity, discussed in Ref. [12].
In that work, the late-time contribution to Cyy

l and CyT
l was

neglected, and the detectability of the primordial signal
was inferred assuming that detection of y fluctuations was
noise-limited. Here we redo those estimates taking into
account the late-time yT correlation calculated above.
If the late-time yT is somehow known precisely, the

signal-to-noise with which an early-Universe yT signal
with power spectrum CyT;ng

l can be distinguished from the
null hypothesis is

�
S
N

�
¼

�X
l

ðCyT;ng
l Þ2

ðσyTl Þ2
�1=2

: ð21Þ

Using Eq. (18) and the numerical results for Cyy
l ,

we then obtain a signal-to-noise ðS=NÞ≃
ðfynl=1065Þðhyi=4 × 10−9Þ. This calculation differs from
that of Ref. [12] in two respects; we have included the late-
time contribution to Compton-y fluctuations, which
degrades the detectability fynl by about a factor of 4, even
if the late-time yT correlation is assumed to be known
precisely. The detectability is, moreover, limited by cosmic
variance and not from measurement noise. We have
included in the sum in Eq. (21) angular modes up to
l ≤ 1000; the signal-to-noise improves if the sum is
extended to higher l.
This calculation overestimates the smallest detectable

signal, as there is a theoretical uncertainty in the late-time
yT correlation, as discussed in Sec. III; it must instead be
determined from the data. There is thus an additional
uncertainty to the inferred value of fynl that will arise after
marginalizing over the uncertain late-time yT amplitude.
We thus assume that the total yT power spectrum is a
combination CyT;tot

l ¼ αCyT
l þ CyT;ng

l of the late-time and

1Equation (17) assumes Gaussian fluctuations for Cyy
l . This

assumption is invalid at z ∼ 0, where a single nearby large
cluster can dominate large angular scales. The z ∼ 0 signal is
already extremely small, however, so this does not change our
conclusions.
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non-Gaussian contributions. Here α ∼ 1 accounts for uncer-
tainty in the amplitude of yT. We then calculate the Fisher
matrix [24],

Fij ¼
X
l

ð∂CyT;tot
l =∂siÞð∂CyT;tot

l =∂sjÞ
ðσyTl Þ2 ; ð22Þ

where s ¼ ffynl; αg is the set of parameters to be determined
from the data, and the partial derivatives are evaluated
under the null hypothesis fnl ¼ 0 and α ¼ 1. The noise
with which fnl can be determined, after marginalizing over
α, is then ½ðF−1Þfynlfynl �1=2 and the signal-to-noise ðS=NÞ is
fynl divided by this quantity. Numerically, we find
ðS=NÞ≃ ðfynl=1100Þðhyi=4 × 10−9Þ. Thus, the marginali-
zation over the ISW-tSZ effect only slightly decreases the
detectability.
Since the noise is again dominated by the tSZ one-halo

term, we can perform a similar cleaning to low-redshift
sources to that used in Sec. III. If we remove all z < 0.3
clusters, we find that we can detect a smaller value of fnl.
Numerically, using the Fisher matrix as above to margin-
alize over uncertainty in the yT amplitude, we find
ðS=NÞ≃ ðfynl=400Þðhyi=4 × 10−9Þ, closer to the value
estimated in Ref. [12].

V. CONCLUSION

Here we have calculated the tSZ-ISW cross-correlation,
investigated its use in constraining the redshift distribution
of y-parameter fluctuations, and evaluated the detectability
of an early-Universe yT cross-correlation. We showed that
measurement of the yT cross-correlation can be used to
constrain the redshift distribution of the sources of
y-parameter fluctuations, as long as low-redshift tSZ
clusters can be masked, something that may be of utility
given uncertainties in the cluster-physics and large-scale-
structure ingredients (pressure profiles, halo biases, mass
functions) that determine these fluctuations. We also
showed that estimates, that neglect the yT correlations
induced at late times, of the detectability of early-Universe
yT correlations may be optimistic by factors of a few.
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