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LOOP-FUSION COHOMOLOGY AND TRANSGRESSION

CHRIS KOTTKE AND RICHARD MELROSE

ABSTRACT. ‘Loop-fusion cohomology’ is defined on the continuous loop space of
a manifold in terms of Cech cochains satisfying two multiplicative conditions with
respect to the fusion and figure-of-eight products on loops. The main result is that
these cohomology groups, with coefficients in an abelian group, are isomorphic to
those of the manifold and the transgression homomorphism factors through the
isomorphism.

In this note we present a refined Cech cohomology of the continuous free loop space
LM of a manifold M (or we could work throughout with the energy space instead).
Compared to the standard theory, the cochains are limited by multiplicativity condi-
tions under two products on loops, the fusion product (defined by Stolz and Teichner
[ST]) and the figure-of-eight product (which appears implicitly in Barrett [Bar91] and
explicitly in [KM13]). The main result of this paper is that the resulting ‘loop-fusion’
cohomology, H, H(LM; A), recovers the cohomology of the manifold directly on the loop
space.

(a) (b)

FIGURE 1. Fusion (a) and figure-of-eight (b) configurations.

Theorem. For each k > 1 and discrete abelian group A there is an enhanced trans-
gression isomorphism

Ti¢ - H*(M; A) = Hﬁ_l(ﬁM;A),
forming a commutative diagram with the forgetful map, f, to ordinary cohomology and

the standard transgression map T :

Tk T s
H*(M;A) —— Hj (LM; A)

T, b

HF=Y(LM; A).

—~
—_
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For A =7 and k = 2 or k = 3 this result appears in [KMI3]. There the cohomology
classes are represented geometrically by functions and circle bundles over the loop
space which satisfy the fusion property and are reparameterization equivariant; the
figure-of-eight condition follows from these conditions.

The case k = 2 with integer coefficients is closely related to the problem of recovering
a circle bundle on M up to isomorphism from its holonomy as a function on LM,
which has been considered by Teleman [Tel63], Barrett [Bar91] and Caetano-Picken
[CP94]. In [Wal09], Waldorf considers principal bundles for general abelian groups
and makes explicit use of the fusion product. The case k = 3 corresponds to an
association between gerbes on M and circle bundles on £LM. Such a construction was
first given by Brylinski [Bry93|, and in [BM96], Brylinski and McLaughlin point out
that the resulting bundle on the smooth loop space has an action by Diff(S) and is
multiplicative with respect to the composition of loops based at the same point. In
[Wall0], [Wal12] Waldorf identifies the fusion property for bundles on LM given by
the transgression of gerbes, and uses this to define an inverse functor.

The extension of such results to k£ > 3 to give an explicit transgression of geometric
objects, such as higher gerbes, faces the usual obstacles associated with compatibility
conditions. Here, the use of Cech cohomology allows for a short and unified treatment
of the general case. In particular this shows that the two conditions included in the
loop-fusion structure, without equivariance with respect to the variable on the circle
or thin homotopy equivalence, suffice to capture the cohomology of M.

1. SPACES, COVERS AND CECH COHOMOLOGY

1.1. Base space. Let M be a compact smooth manifold. In the subsequent discussion
we fix a Riemann metric on M and € > 0 smaller than the injectivity radius although
refinement arguments show that none of the results depend on these choices. For each
m € M let U,, be the open geodesic ball of radius € > 0 centered at m and consider
the disjoint union of these balls as a cover of M :

U= || Un— M.
meM

This is a good cover: for k > 1, each of the k-fold intersections is empty or contractible.
The disjoint union of these intersections is equivalent to the fiber product

Z/{(k):Z/{mexML{—)M.

Remark 1. It is convenient to work with ‘maximal’ covers parameterized by the space
itself. However it is possible throughout the discussion below to restrict to countable
covers as is more conventional in Cech theory. Indeed, one can work here with the cover
of M by neighborhoods with centers at a countable dense subset. See the subsequent
remark on paths and loops.

Also, though we have assumed M to be smooth and compact for convenience, the
result we present applies to a wider variety of spaces. Indeed, we only use that M has
a good cover, with respect to which there are compatible good covers of the path and
loop spaces as below.

The collection {M™:n > 1} forms a simplicial space with the projections m; :
M"™ — M™ ' 1 < i < n, as face maps with the convention that m; omits the
ith factor. Similarly {U™ :n > 1} is a simplicial space, with face maps also denoted
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m;; each U™ — M™ is also a good cover. Differentials deriving from this simplicial
structure will be denoted by 0.

For each fixed n the successive fiber products { (™))" = (™)™ : k > 1} also form
a simplicial space with face maps ¢; : (U™)**+D — (U™)*) the inclusions of (k + 1)-
fold intersections of the open sets into the k-fold intersections. This second simplicial
space underlies the Cech cohomology of M™. Indeed, for an abelian group A the Cech
cochains on M™ with respect to U™ are the locally constant maps

CFM™A)sa:UM*Y — A, keN
with differential
§:CF(M™ A) — CFTL(M™; A),

(2) 2 1)7 k42
da = HL;f(i U E — A
j=1
Note that these are unoriented Cech cochains, so that « is not required to be odd with
respect to permutations acting on the fiberwise factors of U*) — M.

For a good cover such as U™, the Cech cohomology is isomorphic to the ordinary
cohomology of M™ [GodT73]:

H'(MW;A) = H.(C.(MR;A)75) o H.(MW;A).
Lemma 1.1. For each k, the sequence
H*(M; A) 25 BHR (M2 A) -2 B (M35 4) -2 -
n+1 )
0: Hk(Mn,A) Sa — H 7-‘—;‘0((*1)] c Hk(MnJrl;A)

j=1
15 exact.

Proof. The same computation as for the Cech differential ([@)) shows that 9% = 0. Fix
a point m € M and consider the inclusions

it M™ — ML (my,.. . mp) — (M,ma, ... my).
Then
TjOly = . .
ln_10Mj_1 J =2,

as maps from M" to M™ and for a € H*(M"™; A),

n+1 )

iy Oa = H i:;ﬂ';oz(fly =a ! (82':;_10471) .

j=1

Thus if da = 1 then a = 9i¥ ;o= O

1.2. Path space. Let ZM = C([0,1]; M) be the free continuous path space of M; it
is a Banach manifold which fibers over M? by the endpoint map

e IM — M?, () = (v(0),~(1)).
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We make use of the join product
Jim3IM Xy i IM — 73 ITM

(3) : _Jmi(2t) 0<t<1/2,
](’717'72)(“ = {72(2@_ 1/2)) 1/2<t<1,

where (y1,72) € m3ZM X s w3 ZM if and only if v1(1) = 42(0). Note that @) is a
bijection and hence 75ZM X pss i ZM can be identified with ZM fibering over M? by
the map 7 — (7(0),7(1/2), 7(1).

For vy € IM, let T, = {#' € IM : sup, |y(t) —7'(t)| < €} be the set of paths lying
pointwise within the metric tube of radius € around 7. Proceeding as above and setting

r= || 1y—1IM, T®=Txzy- xzuT,
YyEIM

gives a good cover of ZM, which factors through 42, i.e. the diagram

rtk) —5 U2)®

|

IM —— M2
commutes for each k. Furthermore, join lifts to a well-defined map
(5) w3 T® X ey T TH — w31 ®),
and there is a natural identification of 7T§I‘(k) X 143y (0 WTF(k) with T(®),

Remark 2. As noted in Remark [l above, it is possible to work throughout with count-
able covers. Omne can restrict to neighborhoods centered on paths which are finite
combinations of segments with rational end-points and which are affine geodesics be-
tween the chosen countable dense set in the manifold. The resulting cover has the
crucial property of being closed under join, and the induced countable cover of loop
space, considered below, is closed with respect to the two loop-fusion operations. It is
also possible to work over a more general space, provided M and ZM have good covers

satisfying (@) and (&)).

The definition of the Cech cochain complex above carries over to ZM (finite dimen-
sionality of M was not used there) giving
k+2 _
CHEIM;A)> f:T0D — A 6f =[] e CHH(IM; A),
j=1
where we reuse the notation ¢; : I+ 5 T for the face maps of the simplicial
space {F(k);k > 1}, and observe that again H*¥(ZM;A) = H*(IM;A) since T is a
good cover.
The identification of 75" X3 7T with I' and (@) gives a second chain map on
C*(ZM; A) associated to the simplicial structure on {M" : n > 1}:

9: CHIM; A) — CHIM; A), Of =m3f ' j (w3 f) : TW — A.

This does not lead to a complex, i.e. 9% is not trivial, since ZM is not itself a simplicial
space over { M™ : n > 1}; reparameterization is required to compare pullbacks of paths.
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The constant paths may be identified as an inclusion M C ZM. Let
CE(IM;A) = {f € CHIM;A): fly =1}

denote the subcomplex of cochains which are trivial on them. Since the join map
restricts to the trivial map on constant paths 0 : C§(ZM; A) — C(ZM; A).

Lemma 1.2. The subcompler (C3(ZM; A),d) is acyclic.

Proof. The short exact sequence of chain complexes
0 — CS(IM; A) — C*(IM; A) — C*(M; A) — 0

induces a long exact sequence in cohomology, however H®(ZM; A) = H*(M; A) since
there is a deformation retraction of ZM onto M, from which it follows that HJ(ZM; A) =
0. O

1.3. Loop space. For [ > 1 we denote by ZUM the fiber product
IUM =M Xy -+ X g2 IM,

and observe that TP M = {(y1,72) : 71 (t) = 72(t), t = 0,1} may be identified with the
Banach manifold of free continuous loops by fusion of paths:

T2y = _ (s _ @), o<t<1
’Q/JI M —>£M—C(S,M)a f(t) —’lﬁ(’}/l,’)/g)(t) = {72(_0, 1 <t< 0

where S is parameterized as [—1,1]/({—1} ~ {1}) for later convenience.

The set {I[”M > 1} forms another simplicial space, with face maps given by the
fiber projections p; : ZUM — ZU-UM, 1 < j <1, and {1"[” > 1} forms a good
cover, where

T =1 xpe - xye I — T M,
is lifted from the path space with k-fold overlaps
(p(k))[l] = (F[l])(k) =TW sy - xzump TH.
For clarity of notation, we denote this cover of loop space by
A=TE — M.
We will denote differentials derived from this simplicial space or its cover by d.

Passing to ZW M in @) gives rise to a map
(6) U UM x pps w3 TV M — 7370 M,
and its local version
(7) il :7r§(l—‘[l])(k) X (1430 ﬁ(p[l])(k) N 7T;(p[l])(k)_

In the case [ = 2, we call this the figure-of-eight product on loops as in [KM13]. The
product of two loops ¢1 = ¥(y11,712) and f2 = (721, 7v22) such that ¢1(1) = £2(0)
is the loop ¢35 = 1/)(]'(711,721),j(712,722)). See Figure [l (b). The domain in (@) with
[ = 2 may be identified with the subspace of figure-of-eight loops in M :

LsM = {6 € LM :0(1/2) = £(~1/2)} — M?>.
This Banach manifold fibers over M? and has a good cover given by the domain in (7))

with | = 2 and k£ = 1. Unlike the case [ = 1, LgM cannot be identified with the full
loop space nor is j (2l invertible.
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There is another product on loop space, considered already in [ST], associated to
TBIM. I (1, 792,73) € ZBIM, then £3 = 1(y1,73) is the fusion product (on loops) of

01 =(71,72) and £z = Y(y2,73). See Figure Il (a).
Within the Cech cochain complex (C*(LM; A),d) for loop space:

k+2 ‘
CHLM;A) S f: AW — A 5f =[] r0Y e CF (LM A),
j=1

consider the subcomplex of fusion cochains
CEL(LM;A) = {f € CM(LM;A): df =1}
df = o1~ o5 f o3 f " € CH(IPIM; A).
Note that d? : C*(ZW; A) — C*(ZIH2IM; A) is trivial and 6d = dd so this is indeed a

subcomplex.

The subspace LsM C LM is closed under fusion so C’;us(ﬁgM ; A) is well-defined,

and imposing a condition over the figure-of-eight product leads to the loop-fusion
subcomplex

) CR(LM; A) = {f € CR(LM; A) : Of = b6g for g € C [ (LsM; A)}
Of =msf ' mifH (IB)" (n5f) € Chis(LsM; A).
Thus, this complex consists of those fusion cochains which are multiplicative with
respect to the figure-of-eight product up to a fusion boundary. The image of d on
these chains lies in the space of fusion Cech cochains on the space of figure-of-eight
loops; though we do not need to consider it here, 9> may be sensibly defined (it is not
automatically trivial). That (§)) is a subcomplex follows from the fact that 0 = 0.
It is also the case that d0 = Od on suitaply defined spaces, in particular as maps from
CH(ZM; A) to C*1(TM; A) and from C*(LM; A) to CF1(LgM; A).

The loop-fusion cohomology of LM is then defined to be
(9) HE(LM;A) = H*(CH(LM; A),5) — H*(LM; A),

with its homomorphism, f, to ordinary Cech cohomology induced by the inclusion of
CH(LM;A) in C*(LM; A).
2. TRANSGRESSION AND REGRESSION

We proceed to the proof of the Theorem above.

2.1. Transgression. We first construct the map Tj;. Let « € C'k(M; A) be a cocycle
for k > 1, and consider

£*0a € CE(IM; A), da=ria 'mia € CF(M?; A).

Since de*0a = £*06a = 1 and C§(IM; A) is exact by Lemma [[Z it follows that
e*0a = 0 for some 3 € C'g_l(IM;A); set

(10) w=df = 0if ! 038 € C*H(LM; A).
Then € 0 91 = € 0 g2 implies

dw = dép = o}(e*0a) ™! g5(c*0a) = 1.
Moreover d? = 1 so

do=d’8=1 = weCF Y (LM;A).

fus



LOOP-FUSION COHOMOLOGY AND TRANSGRESSION 7

Finally, w is fusion-figure-of-eight since dw = ddB and 93, which lies in C§(ZM; A) by
Lemma [[.2] is a boundary. Indeed, for any path v = j(y1,72),

30B(v) = 9=*da(y) = £* 0! (11) "0 (72) €*Dax()

= a(y1(0))a™" ((1)a(12(0))a™ (v2(1)a™ (v(0))a((1)) = 1.
Thus 08 is a cocycle and as C8(IM; A) is acyclic there exists n € Ci~2(ZM; A) such
that 95 = dn. It follows that
Ow = dOB = dén = ddn, d(dn) =1 = w € CFH(LM; A).

Consider next the effect of the choices made. If 8’ € CE~'(ZM;A) is another
cochain such that 63" = £*da, then §(8'871) = 1 implies that 8/ = Bdv for some
v € C¥2(IM; A), which alters w by the boundary term ddv. Similarly if o/ = adu is

another representative for [a] € H*(M; A), it follows that w’ = wdo, where o is the
result of the same construction applied to pu. Thus the transgression map

(11) Ti¢ : H*(M; A) — HEHLM; A),  Tilo] = [w]™*
is well-defined.

2.2. Regression. Next we define a map which is shown below to be the inverse of Tis.
Suppose w € Cllffl(ﬁM; A) is a cocycle, so

dw=1, dw=1, 0w = v, dv=1.
Then w gives descent data for the trivial principal A-bundle
(12) e x A — 1"

over (U?)*). That is, multiplication by w determines a relation on the fibers, with the
content of dw = 1 being that this is an equivalence relation so inducing a well-defined
principal A-bundle P, — (U?)®):

(Po)mmy = { (1,0) € T® x A e(7) = (mm) } /
(v:0) ~o (75 0) = a=w(v,7)d’.
The condition dw = 1 implies that Py is a simplicial bundle (see [BM96], [MS03]), i.e.

the bundle over (Z/{2)(k+1) consisting of the alternating tensor products of the pullbacks
of Py by the maps ¢; : (U?)*F+D) — (U?)*) is canonically trivial:

P = R BTV = @)Y x A — 7).
J
Similarly, v determines a principal A-bundle

R =T D 5 A) ~fp—s ) FY),
and by functoriality of descent there is a canonical isomorphism
(13) Py 2 6Ry1 — UV, 0P, =P @ myPy @ mi P
The components of (U4?)*) and (U?)*~1) are contractible so there exist sections
s: (UHP — P, and r: (UP)FY — Ry,

These pull back to give sections ds of §P, and 0r of dRx_1 and as § Py is canonically
trivial ds gives rise to a cocycle

k=20se C*(M?:A), 6k =2060s=1,
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where 625 coincides with the canonical trivialization of 62 P for any section s. Another
choice of section s’ alters k by a term &y, where v € C*~1(M?; A) is fixed by s’ = s7.
Thus [k] € H*(M?; A) is determined by w. Similarly, another choice w’ such that
W' = wdp, dp = 1 leads to a bundle P}, and a canonical isomorphism P] = P, @ 0Qp_1,
where Q_1 is formed by descent using p. If Kk = ds and k' = s’ for respective sections
s and s’ of P, and P/, if ¢ is any section of Qx_1, and &' = (s ® dq) v for some
v € CF1(M?; A), then ' = k6%qdv = wdv. Thus the map from HE™H(LM; A) to
H*(M?; A) is well-defined.

Finally, we may compare s and 0r as sections of (I3); let 7 € C*~1(M?3; A) be
determined by ds = dr 7, from which it follows that

Ok = 6(0s) = 6%r ot = 61 € CH(M?; A).
(A different choice of 7 leads to dx = §7' for some other 7/ € C*~1(M?3; A).) Thus

Ikl =1 € H*(M?3; A) and so by Lemma [T} [x] = 9[a] for a unique class [a] €
HF(M; A). Tt follows that the regression map is well-defined by

(14) R:HE N LM; A) — HY(M;A), R[w] =[]t
Proposition 2.1. The maps () and ([Id) are inverses.

Proof. To see that Ty R = 1d fix a cocycle w € CEH(LM; A) and let o € C*(M; A)
represent R[w]!, so that da = kv for some v € CF~1(M?; A), where k = ds €
C*(M?; A) for a choice of section s of the bundle Py. Replacing s by sv~! if necessary,
we may assume that da = k = ds.

Consider the transgression of a. This involves a choice of 3 € C¥~1(ZM; A) such
that 68 = €*0a = €*k but there is a natural choice available. Namely, the section s
of Py lifts canonically to a section of the trivial A-bundle over I‘(k), from which Py is
descended, and so defines a cochain

FeCy Y IM;A), 3(y)=a — s(e(v)) = (v, a)] € Px.

That 5 is trivial on constant paths is a consequence of the fact that the fusion condition
implies that the descent data w for Py is trivial on constant loops. Since ¢ Py is trivially
descended from the trivial bundle over I'*+1)

05 = (ds) = e*ds = ™k,
and hence = s € C’gil(IM ; A) is an element such that 08 = £*k. It then follows
that d8 = 0{5 ' 053 = w € C 1 (LM; A) since

s(v)s(y) = aa’”", such that

s(e(7)) = s(e(") = [(v,0)] = (v, a")] <= a=w(y,7)d"

In the other direction, fix a cocycle o € C*(M?; A) and let w € CF'(LM; A)
represent T[a]™!, given by w = dB where 8 = £*0a € C§(ZM; A). The regression
of w involves a choice, of section of the bundle Py, but here too there is a natural
one which recovers da € C*(M?; A). Indeed, since w = oi3~" 03/, the equivalence
relation defining Py takes the particular form

Pe > [(v,a)] = [(v,d)] &= a=BB(H)""d,

and an appropriate section of Py is defined by

s(m,m’) = [(v, B())] = (v, B())],
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since this equivalence class is independent of the particular v € e~!(m, m’). With s so
defined, it follows that s € C*(M; A) is given by

ds(m,m') = [(v,08(y)] = [(v,€"0a(v))] = da(m, m’). 0

2.3. Compatibility. The commutativity of the diagram () asserts that the ‘en-
hanced transgression’ map constructed above is compatible with transgression in the
usual sense. The latter corresponds to pullback of cohomology under the evaluation
map followed by projection onto the second factor under the decomposition for the
product:

(15) ev*: H*(M; A) — H*(S x LM; A)
= H¥(LM; A) @ H* Y (LM; A) — H*Y(LM; A).

To realize this in Cech cohomology, fix a small parameter § > 0 and consider the
open cover 8 = | |; yesx o St of S x LM, where

Spu={{t"V)eSXLM '€ A, ' € (t—5,t+6), I'(t') €Uy },

(16) . r gt i
St,l—>Al, Stﬁl—>ItCS, eV.Stﬁl9(t,l>'—>l(t)€U[(t).

The interval I, = (t — d,t + ) C S is to be interpreted as the ‘short’ signed interval
on S. This is a good cover, with respect to which we consider the Cech complex on
Sx LM. The evaluation map ev: Sx LM — M and projections Sx LM — LM and
S x LM — S lift to maps of the covers S — U, S — A and § — V, respectively,
where V is the cover of S by intervals of length 26 around each point.

The first factor in the product (IH) corresponds to pullback to LM under the eval-
uation map at any fixed point on the circle. Consequently, to consider the projection
to the second factor of (I5) we modify the pullback ev* a € C*(S x LM; A) to
(17) o = (evia) ! evta € CF(S x LM; A)
instead, where evy : S x LM > (t,¢) — €(0) € M factors through the projection to
LM. Then the class of ([[T) projects to zero in H*(£M; A) and has the same projection
as ev* a to HF 1 (LM; A).

To compute the latter, consider the space [—1,1] x LM which maps to S x LM by
the identification of the endpoints. This has a good cover T = |_|t,l T}, where Ty is
defined as in (6] except that the interval is restricted to [—1,1]. The map to S x LM
then lifts to a continuous map of the covers. The image of (IT) lies in the subcomplex
CE([=1,1]x LM; A) of chains which are trivial at {0} x £M. This subcomplex is acyclic
as in the proof of Lemma [[.2since [—1, 1] x LM retracts onto {0} x LM. Thus

o =do, o€ CF(-1,1] x LM; A),
and the transgression class is represented by the difference
(18) (Ul{l}XLM) (0—_1|{71}><£M) S Ck_l(ﬁM;A).

That this is a cocycle follows from the fact that its Cech differential is the difference
of o/ at 1 and —1 which is trivial since o is pulled back from the circle.
On the other hand, the initial portion of the enhanced transgression construction
in §.1l may be modified as follows. Consider the pullback
0o e C*([0,1] x IM; A),

£:00,1] x IM — M?, E(t,y) = (7(0),7(t)).
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As before this lies in an exact subcomplex, so g 0a = 55 where E e C*1([0,1] x
IM; A), the restriction 8 = fB|(1}xzm to a cochain on ZM reduces to the earlier

construction and 5 |{0}X1M is trivial. Then the product
o=c BB e CF([~1,1] x T A),
G :[-1,1] x ZBIM — [0,1] x M,

1(t, (11,72)) = (max(0,¢),71), <2(t, (71,72)) = (—min(0,¢),72)
is a cochain on [—1,1] x LM with differential equal to o’. Indeed,

a(n(t)at(n(0), 0<t<1
a(ya(—t))a(12(0), —-1<t<0
= a(f(t))cfl(f(O)),

where ¢ = ¥ (71,72). Finally, observe that the transgression class (I8) is represented
by the ‘enhanced transgression’ class d3!:

00 (t,6) = (57883 08) (¢, (11, 72)) =

(oliiyxenr) (07 ciyxen) (1572) = B(Lm) 8711, 72) = dB~ (1, 72)-
This completes the proof of the Theorem.
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