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Abstract: An innovative variable stiffness device is proposed and investigated based on numerical simulations. The 
device, called a folding variable stiffness spring (FVSS), can be widely used, especially in tuned mass dampers (TMDs) 
with adaptive stiffness. An important characteristic of FVSS is its capability to change the stiffness between lower and upper 
bounds through a small change of distance between its supports. This special feature results in lower time-lag errors and 
readjustment in shorter time intervals. The governing equations of the device are derived and simplifi ed for a symmetrical 
FVSS with similar elements. This device is then used to control a single-degree-of-freedom (SDOF) structure as well as a 
multi-degree-of-freedom (MDOF) structure via a semi-active TMD. Numerical simulations are conducted to compare several 
control cases for these structures. To make it more realistic, a real direct current motor with its own limitations is simulated 
in addition to an ideal control case with no limitations and both the results are compared. It is shown that the proposed device 
can be effectively used to suppress undesirable vibrations of a structure and considerably improves the performance of the 
controller compared to a passive device.
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1   Introduction 

Mass vibration absorbers are useful devices that are 
widely used to control undesirable vibrations in a variety 
of structures. One of the interesting absorbers of this kind 
is a tuned mass damper (TMD), which was fi rst proposed 
by Frahm (1909). Although TMDs are theoretically high 
performance devices, they are not as effi cient as they are 
designed. One of the main reasons is their sensitivity to 
tuning, which can be resolved to some extent by the use 
of active and hybrid counterparts. The active types of 
mass absorbers, active mass driver (AMD) and active 
tuned mass damper (ATMD), do not have the limitations 
of passive TMDs. However, the large power sources 
needed for their operation may not be available during a 
major excitation such as an earthquake. Moreover, most 
of the structures with active systems have a potential to 
be destabilized. These drawbacks are resolved in semi-
active systems, which combine the best features of 

passive and active systems. In semi-active controllers, 
some of the mechanical properties of the system are 
changed based on a suitable control algorithm rather 
than applying force to some specifi c points (Housner et 
al., 1997; Yang et al., 2005). 

Semi-active TMDs (SATMDs) can be categorized 
based on their fundamental mechanical properties, which 
are mass, damping, and stiffness. Changing the mass of a 
device is not easy in most cases, although some studies 
have recently been done on this issue. Whirling-Beam 
Self-Tuning Vibration Absorber is another device that 
employs this concept (Ivres et al., 2008). In this device, 
asymmetric damping and stiffness on one side of a 
loosely threaded beam causes a moving mass to locate 
in an appropriate position; thus, the device readjusts 
automatically in real time. Mohammadi-Ghazi et al.
(2012) proposed an innovative device that retunes 
by changing its confi guration. In fact, changing the 
confi guration of the device changes the mass moment 
of inertia that consequently regulates the device to a 
new condition. Another important tunable property 
is the damping of a TMD, which affects its damped 
frequency. Several studies have been conducted on this 
subject (Hrovat et al., 1983; Abe, 1996; Pinkaew an d 
Fujino, 2001; Setareh,  2001 and 2002; Aldemir,  2003); 
however, such a tuning strategy is not very effi cient 
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for changing the tuning frequency. This is because the 
damped frequency of the device only slightly varies, 
even with a great change in its damping. The last 
property, stiffness, by which the device can be retuned, 
is much more effi cient than changing the damping; that 
is why more studies have been focused on it. In fact, 
a broader frequency band can be covered by changing 
the stiffness. Several mechanisms with variable stiffness 
have been proposed such as the one by Walsh and 
Lamancusa (1992), which is made of two leaf springs. 
Another system was proposed by Nagarajaiah (2000), in 
which four springs were connected together to form a 
rhombus. The stiffness of the system varies by changing 
the aspect-ratio of the rhombus. Another system 
consisting of springs arranged in a circular confi guration 
has also been proposed by Ghorbani-Tanha (2010). By 
rotating the rings on which the springs are connected, 
the confi guration of the device and therefore its stiffness 
would change. Another example of such systems, 
proposed by Ghorbani-Tanha et al. (2011), works based 
on the unsymmetrical bending of a beam.

As stated before, all studies have been aimed 
at proposing a simpler mechanism with higher 
performance. One of the most important evaluation 
criteria of a controller is its ability to retune in a short 
period of time. The more rapidly the device retunes, the 
more favorable it is. The goal of this study is to propose 
a new novel variable stiffness system with a very simple 
mechanism that can be retuned much faster than most 
of its counterparts. In this system, stiffness change 
is accomplished by changing the length of a folding 
system. The mechanism is designed such that with slight 
changes in its tunable parameter, considerable changes 
in its stiffness can be achieved. Immediate readjustment 
capability, simplicity, and the broad frequency band 
coverage are the main advantages of this semi-active 
TMD with folding variable stiffness spring (FVSS).

2   General description of FVSS

FVSS is a combination of modular rhombuses which 
are made of beams with pinned connections (Fig. 1). The 
number of rhombuses can be varied based on the range of 
the stiffness required in each practical case for which the 
device is designed. In this study, it is considered that the 
load is in-plane and applied at the free end of the device. 
The stiffness of the free end of the device in the vertical 
direction is related to the mechanical properties of each 
element and also the geometry of the device. Moreover, 
as  is shown in Fig. 1, it is obvious that the geometry of 
the device and hence its length changes if the distance 
between the supports varies. Consequently, such a 
strategy can be employed to change the effective stiffness 
of the free end of the device. Several mechanisms can be 
employed to change the distance between the supports 
in the vertical direction. For instance, a direct current 
(DC) motor with cables can be used to move them into 
a favorable position. Note that if both supports move 

equally and symmetrically, the free end of the device 
moves in a horizontal direction. On the other hand, it 
is possible to change their position unequally or even 
change only the position of one support while the other 
remains fi xed. In such cases, the free end of the FVSS 
moves both horizontally and vertically. The methodology 
to change the positions of the supports shown herein, 
affects the governing equations of the FVSS.

2.1 Governing equations

Two in-plane and one out-of-plane stiffness can be 
defi ned for this determinate system. The out-of-plane 
stiffness is considerably less than the in-plane stiffness 
due to the small moment of inertia corresponding to 
this direction, especially where the modular rhombuses 
are pinned together. Herein, the in-plane stiffness of 
the device, perpendicular to the moving direction of its 
free end, is calculated parametrically using the unit load 
method. 

To simplify the equations, half of each rhombus is 
considered as a “module” that is connected together to 
form the device. Referring to Figs. 1 and 2, one it can be 
concluded that the number of these modules is always an 
odd integer. Thus, for a parametric study, it is assumed 
that there are n modules that form this structure where n 
is a natural, odd number. It is assumed that n = 2N-1 and 
the equations are derived using N.

The fi rst two elements at the head, E1
t and E1

b, are 
rods with only axial force; however, the other elements 
are beam elements. The effect of axial force in the 
defl ection of FVSS is not the same in different elements; 
in addition, some terms may be very small. However, 
the defl ection of the device is calculated based on all 
these terms since an exact estimation of the stiffness is 
required in order to achieve acceptable results. 

The downward defl ection of the free end of the 
device, Point A, is comprised of three terms

Fig. 1   General confi guration of a FVSS (n = 9)

Fig. 2   Plane view of a FVSS with parametric properties (n = 5)
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 M  V N                             (1)

where ΔM , ΔV , and ΔN are defl ections caused by bending, 
shear, and axial force in all elements, respectively.  
Assuming all elements are identical in terms of material 
and cross section, each component of Eq. (1) can be 
derived as in Eq. (2). Note that the whole calculation 
is based on infi nitesimal displacements. For a detailed 
derivation and simplifi cation of these equations, see the 
Appendix.
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where P is the concentrated in-plane load, which is 
applied at Point A; E is the Young Modulus;   is the 
Poisson's ratio; I is the moment of inertia of the cross 
section with respect to its principal axes perpendicular 
to the plane of device; A is the cross section area; fs is the 
shear coeffi cient; θ is the angle of elements with respect 
to horizon; and b is the half length of the elements as 
shown in Fig. 2.

Using Eqs. (2), the stiffness of the system can be 
determined as a function of θ, which is
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In practice, the required stiffness is calculated based 
on an appropriate control algorithm. The angle   will 
then be modifi ed in order to change the length of FVSS 
and obtain the appropriate stiffness needed. Changing the 
angle, θ, is equivalent to changing the distance between 
the supports, which is denoted by 2y. Readjusting the 
device based on this distance seems to be much simpler 
than the angle θ. As a result, an appropriate distance 
between supports should be calculated based on a 
required stiffness. Noting that by)sin( , Eq. (3) is 
solved parametrically for y. Four roots are obtained for 
y, which are 
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where 1 , 2 , and 3  are as follows
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The only acceptable root is the one that is real and 
positive. 

A very important characteristic of this device, which 
makes it different from its counterparts, is the relation 
between the rate of change of the length of the device 
and the distance between its supports. Considering L as 
the length of the FVSS, it can be stated that

22 ybnL                              (6)

Differentiating Eq. (6) with respect to y shows the 
relation between these rates as

2 2d /
d
L ny b y
y
 

                      
(7)

In other words, by changing y, the length of FVSS 
changes by the scale factor of ny. In fact, little variation 
in y results in considerable change in the length of the 
device. Therefore, readjustment of the device can be 
accomplished much faster than its counterparts. Note 
that y usually does not take very small values in practice.

There are different ways to connect the FVSS to a 
TMD to make an SATMD. One of the possible ways is 
schematically shown in Fig. 3.

Note that all these equations are derived for a FVSS 
in which the capacity for axial force, shear, and bending 
of all elements are equal. Therefore, its design may not 
be optimum, since the elements in different positions are 
of different forces. However, such an assumption makes 
the formulation very easy and simple. 

2.2  Numerical examples

The effi cacy of the proposed FVSS is evaluated via 
numerical examples. A very simple excitation has been 
considered in these examples to avoid the complications 
of excitation effects. Thus, the performance of the device 

Fig. 3   A possible form for connecting a FVSS to a TMD
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Primary structure



512                                              EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                           Vol.13

can be evaluated more precisely. The excitation simulates 
the vibrations produced by a rotating unbalance mass mub 
and eccentricity of R whose frequency varies according to 
Fig. 4. This excitation simulates the vibrations produced 
by the rotating machine during the start-up period and 
can be defi ned as (Walsh and Lamancusa, 1992)
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 (8)
where α is the angular acceleration of the rotating 
unbalance; tacc is the time at which the acceleration ends; 
and ωmax is the operating frequency. The maximum 
frequency of the excitation is equal to the natural 
frequency of the structure, so the performance of the 
device is evaluated for the case of resonance, which is 
the most critical condition.

As the fi rst example, a SDOF structure is considered 
as the primary structure that should be controlled. 
The excitation parameters are taken as , mub = 1 kg,

m2.0R , tacc = 2 s, α = 20π rad/s2, and ωmax = 
40π rad/s2. The performance of the semi-active device 
is compared to a passive TMD's. The properties of the 
SDOF structure, along with the passive and semi-active 
TMDs, are listed in Table 1.

In the next example, the device is used to control 
a MDOF structure. The excitation parameters are taken 
as mub = 1 kg, m2.0R , tacc = 2 s, α = 10π rad/s2, and 
ωmax = 20π rad/s2. The MDOF structure was studied by 
Chung et al. (1989) and has the modal frequencies of 
2.24, 6.83, and 11.53 Hz, respectively. As is observed, 
the fi rst two modes' frequencies are very different from 

the maximum frequency of the excitation, i.e., 
ωmax = 20π rad/s2; therefore, resonance does not occur 
by the mentioned excitation. Hence, in the present study, 
the stiffness and damping matrices are taken to be the 
same as those of Chung et al. (1989), but the mass 
matrix of the structure is scaled by a factor of 0.05. The 
mass, stiffness, and damping matrices for the simulated 
MDOF structure are, respectively, as follows

         6

50.12 0 0
0 50.12 0 (kg);      
0 0 50.12

2.8012 1.6772 0.3772
1.6772 3.0878 1.6600 10 (N/m); 
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Table 1   Properties of the SDOF structure, passive TMD and SATMD

              Structure                  TMD              SATMD with FVSS

 Ms
* (kg) 1000 MTMD

* (kg) 50 MSATMD
* (kg) 50

n (rad/s) 40π n  (rad/s) 40π maxk *
 (N/m) 1.18×108

 ζs 
* 0.05  ζTMD

* 0.02 mink *
 (N/m) 3.61×105

 ζSATMD
* 0.02

max 75°

min  5° 

 n  7

1 9.39×10-7

2 1.19×10-10

3 112

*M,  , and k are, respectively, representative of mass, damping ratio, and stiffness. The subscripts s, TMD, and 
SATMD indicate the system for which the properties are defi ning.

ω (rad/s)

ωmax

tacc

Fig. 4   Frequency of excitation

t (s)
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The modal frequencies of the new MDOF structure 
are 10.00, 30.43, and 51.37 Hz, respectively. It is 
obvious that the frequency of the fi rst mode becomes 
equal to the maximum excitation frequency. Moreover, 
the excitation is applied to the fi rst fl oor of the structure. 

Like the SDOF structure, the performance of the 
semi-active device is compared to a passive TMD 
for the MDOF structure. The properties of the TMD 
and SATMD used to control the MDOF structure are 
presented in Table 2.

2.3 Control algorithms

Since the properties of the structures and excitation 
are already known, an open loop control algorithm 
based on instantaneous frequency of excitation is used 
in this example. This algorithm prevents some of the 
undesirable effects such as errors in the calculation of 
instantaneous frequency ordue to time-delay. This in 
turn makes it possible to focus on the performance of 
the device itself. 

In this algorithm, it is assumed that the natural 
frequency of the device is equal to the instantaneous 
frequency of the excitation. Denoting the excitation 
frequency by )(t and the mass of the absorber by mva, 
the required stiffness is calculated as

2
req va( ) ( )k m t                              (9)

Adding kreq(θ) in Eqs. (4) and (5), the required distance 
between the supports of FVSS, yreq, is determined. Due 

to geometrical constraints, y cannot assume every 
desirable value, so the algorithm is expressed with its 
general constraints as

 max min reqmin ,max ,y y y y                 
(10)

where maxy  and miny  are the upper and lower bounds for 
y, respectively.

Although this algorithm shows the theoretical 
performance of the device, it may not be feasible in 
practice due to limitations in velocity or the applied 
torque of DC motors, etc. In other words, it is not 
generally possible for the supports to be instantaneously 
re-arranged in a favorable position even if instantaneous 
frequency is exactly derived. For instance, if the excitation 
is generated during the start-up of a rotary machine, the 
instantaneous frequency is known; however, in the case 
of high angular acceleration of the machine, the velocity 
of FVSS's supports may exceed the limit of their drivers. 
Hence, the readjustment may not be perfectly achieved 
even in open loop systems. To investigate the effi cacy 
of the device in such conditions, another control case is 
simulated in which a real DC motor is modeled for each 
of the structures. Note that both control cases are based 
on the instantaneous frequency of the excitation and the 
only difference is that in the second case, the limitations 
of a real DC motor are being considered.

The considered DC motors in this study are 
permanent magnet motors for which there is a linear 
relation between torque and rpm for a given voltage. 
The maximum torque at zero rpm is called stall torque 
and zero torque occurs at maximum rpm, which is called 
free rpm. The relation between the torque, T, and a given 
rpm, R, is

s
f

1 RT T
R

 
  

                              
 (11)

where  Ts  and Rf  are stall torque and free rpm, respectively. 
The properties of the DC motors for each of the SDOF 
and MDOF structures are presented in Table 3.

2.4 Evaluation criteria

Six non-dimensional evaluation criteria are defi ned 
to compare the performance of the semi-active TMD in 

Table 2   Properties of the passive TMD and SATMD for the 
                MDOF structure

TMD    SATMD with FVSS
 MTMD (kg) 3.5  MSATMD (kg) 3.5

n (rad/s) 20π  kmax(N/m) 2.96×105

 ζTMD 0.02  kmax(N/m) 2.40×103

 ζSATMD 0.02

 θmax 75°

 θmin 5°

 n 7

 α1 4.18×10-4

 α2 1.19×10-10

 α3 112

Table 3   Properties of DC motors

Property SDOF structure MDOF structure

Voltage 12 12

 Ts (kg.cm) 40 27

 Rf (rpm) 50 800

Rotor diameter (m) 0.02 0.012
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reducing systems' responses with a passive TMD. Three 
evaluation criteria are based on maximum responses and 
the next three are defi ned by normed system responses 
[Root Mean Square (RMS)].These evaluation criteria 
are 

SATMD
ss

max TMD
s

max

maxd

x
J
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(12)
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s
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x
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where 
SATMD
sx  and TMD

sx  are the displacement response 
of the structure controlled by a variable stiffness TMD 
and a passive TMD, respectively. A dot represents 
the derivative with respect to time. The norm   .  
is the RMS of responses;   .   is the absolute value; 
subscripts d, v, and a, respectively, represent the criteria 
for the comparison of the displacement, velocity, and 
acceleration responses. 

3  Results and commentary

The roof displacement responses of the SDOF and 
MDOF structures due to external excitation applied to 
the fi rst fl oor are shown in Figs. 5 and 6, respectively. To 

be concise, the other responses are not shown in separate 
fi gures and are only compared based on the evaluation 
criteria. The variations of y for both structures are shown 
in Fig. 7. As shown in Figs. 5 and 6, simulating a real 
motor has a considerable effect on the response of SDOF 
structure; whereas it does not substantially affect the 
response of the MDOF structure. One important reason 
is that the MDOF structure has a lower frequency of 
excitation  since the TMDs' performance are higher 
in low frequencies; thus, the behavior of passive and 
semi-active TMDs with the ideal algorithm or the real 
motor are closer in such cases. Another reason is that 
the semi-active TMD with a real motor is adjusted to 
the excitation after the acceleration time. In contrast, 
the device with a real motor is adjusted to the excitation 
before the acceleration time is met in the case of the 
MDOF structure (Fig. 7). In other words, the control 
device of the MDOF structure is not matched to the 
vibration only at its beginning, which does not have a 
signifi cant contribution to the behavior of the structure. 
Whereas, the controller fails to be matched to the 
excitation, mostly during the accelerating period, in the 
case of the SDOF structure. Thus, its behavior is not 
similar to the ideal controller.

Additional comparisons between different cases are 
presented in Tables 4 and 5, which lists evaluation criteria 
for SDOF and MDOF structures, respectively. Based on 
these results, it is concluded that the semi-active TMD 
with an ideal algorithm has the best performance. The 
semi-active TMD with a real motor, despite having 
lower performance in comparison with the ideal one, 
suppresses the response of the structures considerably 
more than the passive TMD. As it was stated before, the 
difference between the ideal algorithm and real motor is 
negligible in the MDOF structure.

A parametric study is conducted to investigate the 
performance of the proposed SATMD under a variety of 
transient vibrations with different angular acceleration. 
The MDOF structure's responses are obtained for various 
values of angular accelerations of the rotating unbalance. 
For each case, all the excitation parameters except  and 
hence ωmax, because ωmax = α tacc, are taken to be constant 
and the same as presented in Table 2. Because the SATMD 
should be compared with an appropriate TMD for every 
case, the TMD is adjusted with the excitation operating 
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frequency for each transient vibration by changing its 
stiffness. The variations of  s

maxdJ   and RMS
s
dJ   versus

are presented in Figs. 8 and 9, respectively. These fi gures 
show that SATMD is more effective for higher values of 
angular acceleration of the excitation. 

Another important result is the variation of each 
component of Eq. (1) versus y. This result can help in 
the design of the FVSS; since for some values of y, the 
elements' moment may control the design of the device 
while for some other values of y, the axial force may 
do so. The variation of each component vs. y for SDOF 
and MDOF structures is illustrated in Figs.10 and 11, 
respectively. In both structures, ΔV  is not a considerable 
portion of the total deformation of FVSS, since none of 
its components nor the device as a whole are like a shear 
beam. On the other hand, ΔN is comparable to ΔM in the 
case of the SDOF structure although its contribution in 
the defl ection of the device is negligible in the case of 
the MDOF structure. This is because their geometries 
are different and their axial and bending stiffnesses are 
of a different order.

Another important result is the variations of the 
torque applied by the DC motor to the supports of the 
FVSS. This result is shown in Fig. 12 for both SDOF and 
MDOF structures.
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Fig. 7   Variation of y for: (a) SDOF structure; (b) MDOF structure
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Table 4   Evaluation criteria for SDOF structure

   
s

maxdJ     
s

maxvJ     
s

maxaJ    
s

RMSdJ    
s

RMSvJ    
s

RMSaJ 

Ideal algorithm 0.40 0.39 0.38 0.57 0.58 0.59
Real motor 0.69 0.74 0.79 0.69 0.73 0.78

     
  Table 5   Evaluation criteria for MDOF structure

s
maxdJ 

s
maxvJ 

s
maxaJ 

s
RMSdJ 

s
RMSvJ 

s
RMSaJ 

Ideal algorithm Story 1 0.664 0.668 0.673 0.765 0.770 0.777
Story 2 0.664 0.668 0.673 0.764 0.768 0.775
Story 3 0.663 0.667 0.673 0.763 0.767 0.773

Real motor Story 1 0.663 0.666 0.672 0.763 0.768 0.775
Story 2 0.662 0.666 0.672 0.762 0.767 0.774
Story 3 0.662 0.666 0.671 0.762 0.765 0.772

Ideal algorithm
Real motor
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4   Conclusions

A new variable stiffness device is proposed and 
investigated by using in a semi-active TMD. The 
stiffness of the device changes by changing its length 
and geometry. The rate of adjustment in this device 
varies based on its length in each time-step and it can 
be readjusted much faster for the lower frequencies. 
Numerical examples for SDOF and MDOF structures 
were conducted and the results demonstrated that 
the proposed device can signifi cantly suppress the 
undesirable vibrations of the structures.

To make the examples more realistic, two control 
cases for each structure were considered. For the fi rst 
case, an ideal control algorithm was employed which 
had no limitation in readjustment rate, velocity of 
supports, and type of drivers. The only constraint in this 
case was the lower and upper bounds of y. In the second 
case, a real DC motor was simulated with specifi c 
values for maximum torque and rpm for each structure. 
The results of the simulations show that despite lower 
performance in the second case with a real motor, the 
semi-active TMD with FVSS mitigates the vibrations for 
SDOF and MDOF structures more than 30% and 22%, 
respectively, compared to a passive TMD. Note that a 
control algorithm based on instantaneous frequency was 
used here with no error in calculation of the excitation's 

Fig. 10   Variation of  ΔM , ΔV , and ΔN vs. y for SDOF structure Fig. 11  Variation of ΔM , ΔV , and ΔN vs. y for MDOF structure

frequency. Thus, the example is appropriate for cases 
where the excitation is completely known in advance 
and it is reasonable to use an open-loop control strategy. 
For the other cases, it is recommended to use some other 
algorithms such as Proportional-Integral-Derivative 
(PID). 

Another important result that is essential in the 
design of a FVSS is the variation of each component of 
its deformation. It can be concluded based on the results 
that shear force does not have a considerable impact on 
the design of the device. On the other hand, axial force 
may determine the design and as is obvious, the only 
criteria for the fi rst two elements at the head of a FVSS 
are the axial force, since they are truss elements.
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Appendix

In this part, the procedure of analyzing the structure 
and simplifi cations of the equations are stated. The Unit 
Load Method is employed to calculate each component 
of Eq. (1). Before the calculation of the mentioned 
components, the structure should be analyzed. For 
simplicity, each element is named as Ei

t or Ei
b where 

i = 1,2,…N (Fig. 2). The superscript t indicates that the 
element is at the top of the axis of the device and the 
superscript b indicates that the element is at the bottom of 
the axis. The subscript i indicates the number of module 
(half rhombus), beginning from Point A, at which the 
element is located. For example,  E3

t
 is the element at the 

third module from Point A, which is located at the top 
of the axis of the device. It is obvious that the maximum 
of i is n. It should be noted that the axis of the device 
is a horizontal line which crosses Point A (Fig. 2) and 
perpendicular to the line which crosses both supports. 
Although all elements, except the fi rst two elements 
which are connected to Point A, are continuous at the 
intersection point with other elements, each part of them 
is called with a different name. For instance, the element 
between the Point B and F is continuous and pinned with 
another element at Point D; nevertheless, the fi rst part 
which is BD is called E2

t and the second part which is DF 
is called E2

b. The reason is that the shear and axial forces 
of each part are constant through its length and different 
from the other part.

Before analyzing, it should be noted that in each 
time step, the supports are considered to be fi xed; thus, 
the device can be statically analyzed. The element E1

t 
and E1

b are truss elements and the FVSS is a determinate 
structure. The axial force, shear, and moment of each 
element are denoted by Ni

t , Vi
t, and Mi

t, respectively. 
Assuming force P is applied to point A, one can conclude 
that Ni

t and Vi
t can be determined based on their subscript 

which can be odd or even. Thus, it is obtained that
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For a continuous system, the Unit Load Method is 
stated as

a
sd d d

L L L

N nM m V vx x f x
EI EA GA


 

    
      

(A3)

where Δ is the displacement in direction of the unit load; 
G is the shear modulus; m, n, and v are the moment, axial 
force, and the shear of the system with the unit load; M, 
Na, and V are the moment, axial force, and the shear of 
the system with force P. For a system with n elements 
and constant internal forces in each element, Eq. (A3) 
can be stated as

a,
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The fi rst term of Eq. (A4) is ΔM,  the second one is ΔN, 
and the third one is ΔV. Assuming that all elements of 
FVSS are identical and using (A1), (A2), and (A4) one 
can obtain 
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Knowing that for natural number r 2 2
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, and expansion of each 

term of (A7), Eqs. (A5) to (A7) are simplifi ed as
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The summation of Eqs. (A8) to (A10) and also 
defi ning the constants 1 , 2 , and 3  gives the total 
displacement of the FVSS at point A that is 

 2 2 2
1 2 3 2cot cos (2 1)

sin
P N


     


        

(A11)

 In order to obtain the mentioned stiffness, Δ in 
Eq. (A11) is taken as unity and the equation is solved 
for P. The obtained result for P which is a function of θ 
is called the stiffness of FVSS at point A in the direction 
of P (Eq. (3)). 


