
384

Manuscript received by the Editor June 17, 2013; revised manuscript received October 30, 2013.
*This study was supported by NSFC (No.41174118), one of the major state S &T special projects (No.2008ZX05020-004), a 
Postdoctoral Fellowship of China (No.2013M530106) and China Scholarship Council (No.2010644006).
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China.
2. Earth Resource Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA, 02139.
♦Corresponding author: Tao Guo (Email: taoguo@vip.sina.com)
© 2013 The Editorial Department of APPLIED GEOPHYSICS. All rights reserved.

Stability of fi nite difference numerical simulations of 
acoustic logging-while-drilling with different perfectly 

matched layer schemes*

APPLIED GEOPHYSICS, Vol.10, No.4 (December 2013), P. 384-396, 7 Figures.
DOI: 10.1007/s11770-013-0400-6

Wang Hua1,2, Tao Guo1♦, Shang Xue-Feng2, Fang Xin-Ding2, and Daniel R Burns2

Abstract: In acoustic logging-while-drilling (ALWD) fi nite difference in time domain (FDTD) 
simulations, large drill collar occupies, most of the fl uid-fi lled borehole and divides the borehole 
fl uid into two thin fl uid columns (radius ~27 mm). Fine grids and large computational models 
are required to model the thin fluid region between the tool and the formation. As a result, 
small time step and more iterations are needed, which increases the cumulative numerical error. 
Furthermore, due to high impedance contrast between the drill collar and fl uid in the borehole 
(the difference is >30 times), the stability and effi ciency of the perfectly matched layer (PML) 
scheme is critical to simulate complicated wave modes accurately. In this paper, we compared 
four different PML implementations in a staggered grid finite difference in time domain 
(FDTD) in the ALWD simulation, including fi eld-splitting PML (SPML), multiaxial PML(M-
PML), non-splitting PML (NPML), and complex frequency-shifted PML (CFS-PML). The 
comparison indicated that NPML and CFS-PML can absorb the guided wave reflection from 
the computational boundaries more efficiently than SPML and M-PML. For large simulation 
time, SPML, M-PML, and NPML are numerically unstable. However, the stability of M-PML 
can be improved further to some extent. Based on the analysis, we proposed that the CFS-PML 
method is used in FDTD to eliminate the numerical instability and to improve the effi ciency of 
absorption in the PML layers for LWD modeling. The optimal values of CFS-PML parameters in 
the LWD simulation were investigated based on thousands of 3D simulations. For typical LWD 
cases, the best maximum value of the quadratic damping profi le was obtained using one d0. The 
optimal parameter space for the maximum value of the linear frequency-shifted factor (α0) and 
the scaling factor (β0) depended on the thickness of the PML layer. For typical formations, if the 
PML thickness is 10 grid points, the global error can be reduced to <1% using the optimal PML 
parameters, and the error will decrease as the PML thickness increases.
Keywords: PML schemes, FD simulation, LWD acoustic

Introduction

Acoustic logging-while-drilling (ALWD) can 

provide important information about formations during 
drilling operations (Aron et al., 1997; Wang et al., 
2009). However, because the drill collar occupies most 
of the fluid-filled borehole and divides the borehole 
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fluid into two thin fluid columns (Byun and Toksoz, 
2003), the receiving wave-fi eld is different from that in 
acoustic wire-line logging. Therefore, the wave-field 
characteristics in ALWD need to be well understood to 
obtain accurate formation properties. 

Numerical simulations can help us understand the 
characteristics of the complex LWD wave field. Many 
different numerical methods have been used in seismic 
wave propagation simulation, such as the discrete 
wave number method (Bouchon and Aki, 1977), the 
finite difference method (Alterman and Karal, 1968; 
Madariaga, 1976; Virieux, 1984; Virieux, 1986), the 
finite element method (Lysmer and Drake, 1972; 
Marfurt, 1984), the boundary element method (Kawase, 
1988), the pseudo-spectral method (Carcione, 1994; 
Tessmer and Kosloff, 1994), and the spectral element 
method (Cohen et al., 1993).

Among these, the discrete wave number method 
(DWM) (Cheng and Toksoz, 1981; Schmitt and 
Bouchon, 1985; Kurkjian and Chang, 1986; Wang and 
Tao, 2011), the fi nite difference in time domain (FDTD) 
(Cheng, 1994; Wang and Tang, 2003a; Wang and Tang, 
2003b; Tao et al., 2008; Wang et al., 2009), and the 
finite element method (FEM) (Matuszyk and Torres-
Verdin, 2011; Wang et al., 2013) are commonly used to 
simulate the acoustic logging wave fi eld. The DWM is 
numerically fast, but is difficult to implement for non-
axial symmetric models, such as tool isolation design 
(Chen et al., 1998; Wang et al., 2009) and acoustic 
LWD tool eccentricity (Huang, 2003). Furthermore, the 
FDTD and FEM can be numerically demanding for large 
3D models, but can handle general spatial variations 
of elastic properties. However, the FEM is difficult to 
program and the computational cost is several times 
higher than FDTD (Wang et al., 2012).

The FDTD implementations include computational 
domain boundaries that will inevitably bring the 
reflected energy back into the computational domain, 
and then contaminate the signal. To avoid the artificial 
reflection from computational domain boundaries, 
many methods have been developed: nonreflecting 
plane boundary condition (Smith, 1974), absorbing 
boundary conditions (ABCs) (Clayton and Engquist, 
1977; Higdon, 1990), absorbing boundary layers (Cerjan 
et al., 1985; Sochacki et al., 1987), and transparent 
boundary (Zhu, 1999). The perfectly matched layer 
(PML) methods (Berenger, 1994; Chew and Weedon, 
1994) were initially developed for Maxwell’s equation 
problems. The idea of PML is to add layers of absorbing 
material outside of the computational domain, which can 
exponentially attenuate the entering energy and attenuate 

again when the energy is refl ected back from the outer 
boundary of the PML. If the layer is large enough, the 
energy will be completely absorbed in the layer. PML 
has since been introduced into seismic wave propagation 
simulation (Chew and Liu, 1996; Collino and Tsogka, 
2001; He, et al., 2013) and borehole wave propagation 
simulation (Kuzuoglu and Mittra, 1996; Wang and Tang, 
2003a and 2003b; Tao et al., 2008; Guan, et al., 2009; 
Wang et al., 2009). The PML method later also evolved 
into several different types, from field-splitting PML 
(SPML) (Berenger, 1994; Collino and Tsogka, 2001) to 
complex frequency shifted PML (CFS-PML) (Kuzuoglu 
and Mittra, 1996; Roden and Gedney, 2000; Komatitsch 
and Martin, 2007).

Unlike wire-line acoustic logging models, in acoustic 
LWD FDTD simulations, large drill collar occupies most 
of the fl uid-fi lled borehole and divide the borehole fl uid 
into two thin fl uid columns (radius ~27 mm). Fine grids 
and large computational models are required to model 
the thin fl uid region between the tool and the formation. 
As a result, small time step and more iterations are 
needed, which increases the cumulative numerical error. 
In addition, the high impedance contrast (the difference 
is >30 times) between the fluid and tool requires a 
high efficiency method to capture the rich and subtle 
features in the late arrivals. Because of these challenges, 
effi cient computational boundary conditions are critical 
to allow realistic simulations of ALWD problems with 
FDTD, which will be very different from seismic wave 
propagation simulations. 

In this paper, FDTD simulations of ALWD cases 
were compared completely and systematically for four 
different PML implementations (SPML, M-PML, NPML 
(non-splitting PML), and CFS-PML). The merits and 
demerits of the different PML methods were compared, 
and the optimal parameters of CFS-PML in typical 
ALWD cases were explored.

Elastic wave equation implementation 
for ALWD simulations

Acoustic LWD can be modeled by placing a drill 
collar in a fl uid-fi lled borehole with sources and receivers 
embedded on the outer edge of the drill collar. The model 
configuration and vibration modes of the sources are 
illustrated in Figure 1. Figure 1a and 1b are the top view 
of the model. As Figure 1a and 1b show, the drill collar 
occupies most of the fluid-filled borehole, and the “+” 
and “−” sings represent the loading pattern of the sources, 
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with Figure 1a representing a monopole source and 1b a 
quadrupole source. The explosive sources are loaded at 
the stress grids closest to the collar. The vibration modes 
of the sources are indicated by the arrows. Although 
the FD in the cylindrical coordinate system is better 
than that in the Cartesian coordinate system for the 
simulation of the wave fi eld in the LWD, the FD in the 

Cartesian coordinates system is used in this paper for 
the consideration of the simulation for a larger model in 
later. Figure 1c is a schematic of the x–z cross-section, 
where x is along the horizontal (radial) direction, and z 
is the vertical direction. The schematic also shows the 
arrangement of the sources and receivers. The tool and 
model parameters are listed in Table 1.

Formation

(a) (b) (c)

Collar

Inner-fluid

Outer-fluid

Array
Source

Fig.1 Schematic of model and the location of source and receivers. 
(a) Top view of the monopole source model.Vibration modes of sources are indicated by arrows. (b) Top view of the quadrupole source model. Vibration 

modes of sources are indicated by arrows. (c) Schematic of x–z cross-section. x is along the horizontal direction, and z is vertical direction.

Table 1 Model parameters
Vp

(m·s−1)
Vs

(m·s−1)
Density
(g·cm−3)

Radius
(mm)

Inner fl uid 1470 — 1.00 27

Drill collar 5860 3130 7.85 90
Outer fl uid 1470 — 1.00 117
Sandstone 3927 2455 2.32 ∞
Limestone 6500 3800 2.71 ∞
Mudstone 2100 510 2.00 ∞

   Note: Vp is P-wave velocity and Vs is S-wave velocity.

In the FD simulations of acoustic logging, we used the 
velocity–stress formulation of the elastic wave equation 
(Zhang and Shen, 2010):

                             1 ,
t
v  (1a)

                  :[ ( ) ] / 2,T

t
c v v  (1b)

where v is the particle velocity vector, σ is the stress tensor, 
ρ is the density of medium, and c is the stiffness tensor. 

Classical perfectly matched layer (PML)
Consider the plane wave solution of wave equation (1) 

in Cartesian coordinates (x, y, z): exp [−i (kxx + kyy + kzz − ωt)], 

and using the x coordinate as an example, a complex 
stretch factor Sx = 1 + dx(x)/(iω) (Chew and Weedon, 
1994; Chew and Liu, 1996) is introduced in the 
absorbing layer. Here the subscript x of Sx and dx denote 
the x direction, dx(x) is the damping function: dx(x) = ∂
γx/∂x (γx > 0), and ω is angular frequency. In the absorbing 
layer, x will be replaced by x' = x + γx/(iω), and the 
solution becomes exp[–i(kxx + kyy + kzz)] exp(–kxγ/ω). In 
such a confi guration, the incident plane wave along the 
x direction can be exponentially attenuated in the PML 
region.

Split-fi eld perfectly matched layer (SPML) 
There are many methods for implementing the PML in 

an elastic wave propagation simulation. SPML is one of 
the methods that avoids the convolution operation. The 
detail of the method is as follows. Using the velocity in 
x direction in governing equation (1a), the expression in 
the frequency domain is:

              ,
tt tyxxx zxi Vx x y z

 (2)

where the terms Vx, txx, tyx, and tzx are the expressions in 
the frequency domain of vx, σxx, σyx, and σzx. 

When the complex stretch factor is introduced, the 
space derivatives ∂/∂x, ∂/∂y, and ∂/∂z are replaced by ∂
/∂x' = ∂/∂x•1/sx, ∂/∂y'  = ∂/∂y•1/sy, and ∂/∂z' = ∂/∂z•1/sz, 
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respectively, in the complex stretch plane.
Equation (2) can then be expressed as follows (Zhang 

and Shen, 2010):

 .
)(

1
)(

1
)(

1
z
zxt

zSy
yxt

ySx
xxt

xSxVi
zyx

 (3)

To avoid a convolution operation, each velocity 
and stress component is split further into parallel and 
perpendicular components with respect to the coordinate 
directions (Berenger, 1994; Collino and Tsogka, 2001; 
Tao et al., 2008; Wang et al., 2009). For example, Vx can 
be split into three parts: Vx = Vxx + Vxy + Vxz, and equation 
(3) can then be expressed as follows:
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  The transformations into time domain become:
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  (5)

Here, we give the implantation of SPML in the 2D 
staggered grid FD. Figure 2 shows the schematic of a 
2D model with a PML thickness of two grid cells and 
a rectangular computational domain of 10 grid cells on 
each side. To make sure the result is exactly symmetrical 
to the center of the model, we only considered the two 
dashed-line domains: the region surrounded by the inner 
dashed line in the model is the computational domain 
and the region between the inner and outer dashed lines 
is the PML domain. Layers outside the model are not 
considered in the FD code (shown as Figure 2).

The time discrete form of equation (5) is as follows 
(assuming the velocity locates in the half grid of time): 
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In the implementation of SPML with FDTD, dx, dy, 
and dz will be given different values according to the 
different PML domains, and only the normal components 
to the axis are used while the others are set at zero, 
except the corner of the PML domains (Collino and 
Tsogka, 2001). For example, the four sides of the PML 
layer (not including the corners) take dx or dz depending 
on the direction and the four corners take both dx and dz 
in the above 2D model.
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Fig. 2 Schematicof a 2D model with a PML and a 
rectangular computational domain. 
vx and vz are the velocity in horizontal and vertical direction, 
respectively. tii and txz are the normal and shear stress.

Multi-axial perfectly matched layer (M-PML) 
Meza-Fajardo and Papageorgiou (2008) analyzed the 

numerical stability of SPML and introduced a modified 
version, M-PML, in which damping in different directions 
are coupled. Again, taking the x direction as an example, 
the damping profi le consists of three parts: d xx(x), which 
can be derived from SPML, d xy(x), and d xz(x), which are 
the corrections in the y and z directions, respectively. 
Here, the subscript x, y, and z are the normal directions 
and the superscript x is the damping direction, where 
d yx(x) = pyx d xx(x), d zx(x) = pzx d xx(x); pyx and pzx are the 
correction coefficients that can be tuned according 
to specific cases. According to Meza-Fajardo and 
Papageorgiou (2008), a p0 [0, 1] could fi nd where the 
MPML is stable for all p > p0. However, the refl ectivity 
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will be increased when the stability is improved.
In other words, the wave in the x direction will be 

damped in the x direction and will also be damped in the 
other two directions (y and z). Therefore, the damping 
coeffi cients of M-PML are: 

                

( ) ( ) ( ),

( ) ( ) ( ),

( ) ( ) ( ).

x y z
x x x x

x y z
y y y y

x y z
z z z z

d d x d y d z

d d x d y d z

d d x d y d z  (7)

In fact, Martin et al. (2010) made the case that 
the M-PML should not be considered a PML, as the 
theoretical reflection coefficient for an infinite PML is 
not exactly zero in this approach. It is just a modifi cation 
of a sponge and the refl ection coeffi cients are not zeros, 
even for differential formulations (Dmitriev and Lisitsa, 
2011). The M-PML is a brutal-force approach that allows 
anisotropy and high contrasts to be dealt with (Meza-
Fajardo and Papageorgiou, 2008).  

Non-splitting perfectly matched layer (NPML) 
To simplify the implementation of classic PML, 

Wang and Tang (2003b) introduced the non-splitting 
PML (NPML), in which a trapezoidal rule is applied to 
calculate the convolutions in the PML formulation. For 
example, equation (3) can be transformed into the time 
domain using the inverse Fourier transforms as follows:
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The two other convolution expressions will have the 
same form. Therefore, the formulation of velocity in x 
direction will be:
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Taking the time step as Δt, and the time in i steps as T 
= iΔt, then formulation (9) should be as follows:
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The time discrete form of equation (10) is as follows:
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The trapezoidal rule can be used for the numerical 
approximation of the integrations above. For example:

  

          

1( )

( 1)( )1 ( ) ,
2

i iP d x Pxx x xx
i it td x t xx xxxtd x ex x x

 

in which the auxiliary function is introduced to obtain 
the integration with second-order time accuracy.

Complex frequency-shifted perfectly matched 
layer (CFS-PML)

Ineffective absorption of evanescent waves and 
instability in long duration simulations have been 
reported in electromagnetic wave simulations (Berenger, 
1997) by FDTD with conventional PML (Berenger, 
1994). To address the limitations of conventional PML, 
many scholars have devoted a great deal of effort to the 
theory and practice of modifying PML. Kuzuoglu and 
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Mittra (1996) analyzed the causality of conventional 
PML and found that the conventional stretch factor 
does not meet the causality. They introduced complex 
frequency-shifted (CFS) PML, where they used a 
modifying factor S = 1 + d/(1 + iω). 

Furthermore, the conventional PML method no longer 
applies when the wavenumber is a pure imaginary 
number, such as in the case of evanescent waves and 
guided waves. For example, if kx is a negative imaginary 
number (Skelton et al., 2007), it can be replaced by kx = −
ik (where k is a real number). The plane wave solution 
in the x direction will become exp(−ikxx)exp(ikdxx/ω). 
The factor exp(ikxdx/ω) will make the signal oscillate 
without attenuation. In comparison, the solution with 
the modifi ed factor by Kuzuoglu and Mittra (1996) will 
be exp(−ikxx)exp(ikωdxx/(1+ω2))exp(−kxdx/(1+ω2)), in 
which the factor exp(−kxdx/(1+ω2)) can exponentially 
attenuate the energy with increasing distance.

To absorb guide waves and evanescent waves 
efficiently, Roden and Gendney (2000) proposed a 
general stretch factor S = β + d/(α+iω) for CFS-PML, 
where α is a frequency-shifted factor and β is a scaling 
factor. Komatitch and Martin (2007) used a recursive 
convolutional method to implement the CFS-PML with 
FDTD. Taking equation (7) as an example, the inverse 
Fourier transform of 1/S is expressed as follows:

1 1
2

( / )
2

1 ( ) 1ˆ

( ) ( ) .d t

t dS F F dS i

t d H t e  (12)

Then equation (7) is as follows:
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S
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S
t
v zx

z
yx

y
xx

x
x  (13)

The recursive convolutional method that is used to 
realize equation (13) has only second-order accuracy 
(Martin et al., 2010). To keep PML time accuracy the 
same as the computational domain, Zhang and Shen 
(2010) used the auxiliary differential equations (ADE) 
method to attain higher-order time accuracy. See Zhang 
and Shen (2010) for more details.

Table 2 compares the different PML methods to 
illustrate how CFS-PML differs from the others.

In general, the damping profile is chosen as a 
polynomial function. Here, we follow Collino’s equation 
(2001) for damping in the x direction:

                           0 ,
n

x
x

ld d
L

 (14)

where lx is the distance from the PML interior interface 
for the location in the PML domain, n is 2, d0 is the 
maximum value of d, which can be obtained from 
Collino and Tsogka (2001), and L is the thickness of the 
PML layer. 

Table 2 Summary of PML methods
SPML M-PML NPML CFS-PML

α 0 0 0 Non-zero
β 1 1 1 Variable

dx d xx(x)
d xx(x), 
d yx(x), 
d zx(x)

d xx(x) d xx(x)

Convolution No No Yes Yes

The value of α and β in CFS-PML are usually given 
by the following polynomials (Komatitsch and Martin, 
2007):

                     01 ( 1) ,
m

x
x

l
L

  (15)

                      0 1 ,
p

x
x

l
L

  (16)

where m and p are 2 and 1, respectively, and α0 and β0 
are the maximum values of α and β.

Numerical results and discussion

Results of 2D FDTD LWD acoustic simulation 
with different PML methods

To quickly determine the applicability of the different 
PML methods in the ALWD model, we implemented the 
four different PML methods in FDTD in the 2D LWD 
monopole case for the model shown in Figure 1c. For 
the 2D ALWD model, the FD code in the cylindrical 
coordinate system is often used to describe the 
simulation. However, 2D simulations in the Cartesian 
coordinate system could also demonstrate the fluid-
solid interface problem and the applicability of the PML 
methods for the ALWD case. We chose the FD code in 
the Cartesian coordinate system for the convenience, 
although it is just a profi le not a real borehole. 
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For the sandstone formation case in Table 1, the 
staggered grid FDTD scheme was used with fourth-
order accuracy in space and second-order in time (Tao 
et al., 2008). The model was discretized into 123 by 334 
grids along the x and z direction, respectively. The grid 
spacing was 9 mm and the time step was 0.9 μs. The 
PML layer thickness was 20 grids. A monopole source 
was applied and the source time function was a Ricker 
wavelet with central frequency fc of 10 kHz. d0 and α0 
were chosen as 1 and πfc respectively. The results are 
shown in Figure 3.

For the case of SPML (Figure 3a), it was possible 
to identify the drill collar wave, shear (S) wave, 
and Stoneley wave arrivals from their arrival times. 
Furthermore, the artificial reflection from the model 
boundaries (dashed black line) was visible, which was 

a refl ected Stoneley wave from the top boundary in the 
borehole (its velocity was 1389 m·s−1) as calculated 
by the time semblance method (Kimball and Marzetta, 
1984). The simulation becomes unstable after 10 ms, 
indicating the ill-posed nature of the SPML scheme in 
the LWD case. 

Figure 3b shows the result of M-PML with correction 
coefficients pzx and pxz taken as 0.1. The reflection 
artifacts were still visible, but the instability issue 
was improved to some extent (it appeared after 13 ms 
and without the high-frequency component), which 
indicates that the M-PML can be used to simulate a 
longer signal if the correction coefficients are suitable. 
If we could fi nd a suitable value for p0 between 0 and 1, 
the simulation would be stable when all values of p are 
greater than p0. However, the refl ectivity would increase. 
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Fig.3 Waveform of array receivers in the LWD case.
Results of (a) SPML, (b) M-PML, (c) NPML, (d) CFS-PML (β0 = 1), and (e) ADE CFS-PML (β0= 7). (f) Waveform of (e) zoomed in by 100 times. (g) 

Comparison of (d) and (e). (h) Velocity–time analysis of the array waveform after 4 ms of (f).
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If we want to obtain good simulation results, we need 
to find a coefficient that provides a balance between 
stability and refl ectivity. 

Figure 3c shows the result of NPML. Comparing 
Figure 3a with 3c, NPML (Figure 3c) is superior to 
SPML and M-PML in suppressing the refl ected Stoneley 
wave. However, the intrinsic instability of NPML (after 
12 ms in Figure 3c) in the LWD case indicates that it is 
not suitable for large simulation time.

We implemented the CFS-PML (Figure 3d) with 
α0 = πfc and β0 = 1. From Figure 3d, we found that CFS-
PML can attenuate the refl ected wave from the boundary 

and remain stable for long simulation time. CFS-PML 
appears to be the most effective implementation of the 
four in terms of stability and absorbance effi ciency. We 
also implemented the ADE CFS-PML method, which 
can be easily used for higher-order time accuracy, such 
as a fourth-order Runge-Kutta time-marching scheme 
(Zhang and Shen, 2010). In this case, we chose the 
α0 = πfc and β0 = 1 then changed β0 to 7 (according to 
Zhang and Shen (2010)). The same result as Figure 3d 
is obtained with β0 = 1. Figure 3e shows the case of the 
ADE CFS-PML with β0 = 7. Although it looks as though 
it has almost the same effect as CFS-PML, the difference 
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Fig.4 Snapshot of wave fi eld of 2D LWD acoustic case at 14.4 ms.
Results of (a) SPML, (b) M-PML, (c) NPML, and (d) CFS-PML.
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is found by comparison with Figure 3g, in which the 
reflection from the boundary can be eliminated better 
with a suitable value of β0. The coda wave arrives after 
4 ms in Figure 3e, which is zoomed in by 100 times in 
Figure 3f. These arrivals are reflected Stoneley waves 
as dominantly time semblance (Figure 3h). In the LWD 
FDTD simulations, PML artifacts are guided waves (e.g., 
Stoneley wave) generated at boundaries. 

Figure 4 shows the wavefield snapshots of FDTD 
simulations in the 2D LWD with different PML methods. 
The PML domains are also shown in the snapshots. The 
source location in the z direction is 0.45 m. Here, we can 
see that the numerical instability and refl ected wave are 
generated at the fl uid–steel interface. The CFS-PML gets 
the best results, although there are still some unabsorbed 
guided waves. M-PML is the second best PML of the 
four methods.

Parameter optimization of CFS-PML in 3D 
FDTD LWD acoustic simulations

The effects of CFS-PML parameters on the absorption 
efficiency based on totally homogenous models have 
been discussed previously (Komatitsch and Martin, 
2007; Zhang and Shen, 2010). Here, we optimized 
the parameters specifically for some typical 3D LWD 
acoustic simulations (monopole cases for limestone 
formation, sandstone formation, and mudstone 
formation, shown as Figure 1a, and a quadrupole case 
for mudstone formation, shown as Figure 1b). The 
computational domain for the 3D model is 30 cm by 30 
cm by 20 cm (shown in Figure 1). The media parameters 
and borehole geometry are defined in Table 1. The 
space grid size was 5 mm, the time step was 0.38 μs in 
the limestone case, and the total simulation time was 2 

ms. There were 6 points per dominant wavelength and 
the central frequency was 10 kHz for the monopole 
mode and 3 kHz for the quadrupole mode. About 3000 
simulations for each case are performed (each simulation 
takes ~10 min by parallel computer) using different 
PML parameter combinations. Here, d0, α0, β0 and L are 
considered. A large model was chosen as a reference 
model, in which no refl ected energy from the boundaries 
appears in the first 2 ms time window. The global 
relative error was defi ned as:

               
( ) ( )

,
( )

PML ref
t

g
ref

t

P t P t
E

P t
  (17)

where Eg is the global error of a given PML model, PPML 
and Pref are the pressure fields of the PML model and 
reference model respectively, and t is time. The global 
errors are shown in the following figures, for different 
parameters, d0, α0, β0 and L. Figures 5 and 6 show the 
monopole case for sandstone formation. As shown in 
Figure 5, the global error changes with d0. The minimum 
global error is <1% with one d0, which is the best value 
in the simulations. This result differs from the result of 
Zhang and Shen (2010) due to the layered homogeneous 
model in the LWD case. We also find that the optimal 
value of β0 is between 10 and 27, and the best 
combination of α0 and β0 is ~1.5πfc and 20, respectively, 
from Figure 5b. These values deviate from the empirical 
a formula for β0 according to Zhang and Shen (2010), 
which gives values of 39.067 for the monopole case 
in a sandstone formation. Therefore, it seems that the 
empirical formula of β0 should be modifi ed for layered 
homogeneous models such as the LWD case.
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The effect of the thickness of the PML on global 
error with one d0 is shown in Figure 6. Combining 
Figure 6 with Figure 5(b), we found that the global error 
decreased as L increased, and the range of optimal α0 

Fig.5 Contours of global error with α0, β0, and d0variation (L = 10).
Contours of global error as a function of α0 and β0 with (a) 0.5 d0, (b) d0, (c) 1.5 d0, (d) 2d0, (e) 2.5d0, and (f) 3d0.

and β0 became larger. By increasing the PML thickness 
to 20 grid points, we obtained a global error of < 5‰ for 
a large range of α0 and β0. This indicated the overall high 
level of performance of CFS-PML.
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Fig.6 Contours of global error with α0, β0, and L variation.
Contours of global error as a function of α0, and β0 with L equal to (a) 20 and (b) 30.

To test the CFS-PML for a wider range of formation 
properties, we also looked at results for a monopole 
source for a limestone formation and mudstone 
formation, and a quadrupole source for a mudstone 
formation. Figure 7 shows the contours of global error 

with α0 and β0 variation, in which a 10 grid points PML 
thickness and one d0 are considered. For the monopole 
case in mudstone (Figure 7a), we clearly found that 
the global error will be >2% for a large range of α0 
and β0, and the optimal value of β0 is between ~15 and 
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40 (43.3 for monopole case in limestone according 
to Zhang and Shen (2010) for totally homogeneous 
media). Similarly, we found the optimal value of α0 and 
β0 for the monopole and quadrupole cases in mudstone 
formation from Figures 7b and 7c. The optimal value of 
β0 was from ~10 to 17 (39 according to Zhang and Shen 

(2010) for totally homogeneous media) and α0 had two 
optimal areas: ~1.2πfc to 1.4πfc and 1.7πfc to 2πfc for the 
monopole case in the mudstone formation. The optimal 
value of α0 is from ~20 to 40 (130 according to Zhang 
and Shen ( 2010) for totally homogeneous media) for the 
quadrupole case in the mudstone formation.
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Fig.7 Contours of global error with α0 and β0 variation (d0 = 1, L = 10).
(a) Contours of global error as a function of α0 and β0 (a) in the monopole case for limestone, (b) in the monopole case for mudstone, and (c) β0 in the 

quadrupole case for mudstone.

Conclusions

Four kinds of PML were implemented with FDTD 
in a 2D acoustic LWD simulation. The simulation 
results indicated that NPML and CFS-PML can more 
effi ciently absorb the guided wave refl ections from the 
computational boundaries than SPML and M-PML. 
For long duration simulations, numerical instability 
was observed in SPML, M-PML, and NPML, though 
M-PML can improve the stability to some extent by fi ne 
tuning of the parameters. Among all methods, CFS-PML 
was the best choice for acoustic LWD FDTD simulation 
for both effi cient absorption and numerical stability. 

  The effects of CFS-PML parameters on the 
absorbance efficiency were investigated based on 
thousands of 3D simulations. For typical LWD cases, the 
best maximum value of the quadratic damping profi le (d) 
is one d0. The optimal parameter space for the maximum 
value of the linear frequency-shifted factor (α0) and the 
scaling factor (β0) depended on the thickness of the PML 
layer. For typical formations, if the PML thickness is 10 
grid points, the global error can be reduced to <1% using 
the optimal PML parameters, and the error will decrease 
as the PML thickness increases. The range of optimal 
values of α0 and β0 are given for typical formations in the 
LWD acoustic situation. 
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