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Abstract Multivariate pattern analysis (MVPA) methods
have become an important tool in neuroimaging, revealing
complex associations and yielding powerful prediction
models. Despite methodological developments and novel ap-
plication domains, there has been little effort to compile
benchmark results that researchers can reference and compare
against. This study takes a significant step in this direction.We
employed three classes of state-of-the-art MVPA algorithms
and common types of structural measurements from brain
Magnetic Resonance Imaging (MRI) scans to predict an array
of clinically relevant variables (diagnosis of Alzheimer’s,
schizophrenia, autism, and attention deficit and hyperactivity
disorder; age, cerebrospinal fluid derived amyloid-β levels
and mini-mental state exam score). We analyzed data from
over 2,800 subjects, compiled from six publicly available
datasets. The employed data and computational tools are

freely distributed (https://www.nmr.mgh.harvard.edu/lab/
mripredict), making this the largest, most comprehensive,
reproducible benchmark image-based prediction experiment
to date in structural neuroimaging. Finally, we make several
observations regarding the factors that influence prediction
performance and point to future research directions.
Unsurprisingly, our results suggest that the biological foot-
print (effect size) has a dramatic influence on prediction
performance. Though the choice of image measurement and
MVPA algorithm can impact the result, there was no univer-
sally optimal selection. Intriguingly, the choice of algorithm
seemed to be less critical than the choice ofmeasurement type.
Finally, our results showed that cross-validation estimates of
performance, while generally optimistic, correlate well with
generalization accuracy on a new dataset.

Keywords Image-based prediction . Computer aided
diagnosis . Machine learning .MRI

Introduction

Structural Magnetic Resonance Imaging (MRI), a non-
invasive and ubiquitous imaging modality, enables the
in vivo investigation of the morphological features of the
human brain macro-anatomy in health and disease, thus of-
fering insights into the underlying neurobiological processes.
A growing body of neuroimaging literature (Feinstein et al.
2004; Frisoni et al. 2010; Ho et al. 2003) has demonstrated
that markers derived from structural brain MRI scans can aid
in clinical decision-making and treatment development, mak-
ing this imaging technology an invaluable tool for translation-
al science and medical practice.

Multivariate pattern analysis (MVPA), or machine learn-
ing, offers a powerful approach in neuroimage analysis,
which, until recently, has been dominated by massively
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univariate (mass-univariate) methods that rely on classical
statistical techniques (Ashburner and Friston 2000).
Although MVPA algorithms have been employed for map-
ping regions of the brain associated with a particular condition
of interest (Kriegeskorte et al. 2006), their primary utility is for
building image-based predictive models, for example for the
purpose of computer-aided diagnosis (Kloppel et al. 2012) or
“mind reading” (Friston et al. 2008; Mitchell et al. 2004;
Mourao-Miranda et al. 2005). Over the last decade, MVPA
has been increasingly applied to structural brain MRI scans,
largely for developing models to predict clinical conditions at
the individual level (Costafreda et al. 2009; Cuingnet et al.
2011; Davatzikos et al. 2008; Davatzikos et al. 2009;
Duchesnay et al. 2007; Duchesne et al. 2009; Ecker et al.
2010; Kawasaki et al. 2007; Kloppel et al. 2009; Kloppel et al.
2008; Koutsouleris et al. 2009; Lao et al. 2004; Lerch et al.
2008; Liu et al. 2012; Mourao-Miranda et al. 2012; Mwangi
et al. 2012; Nieuwenhuis et al. 2012; Sabuncu and Van
Leemput 2012; Schnack et al. 2014; Soriano-Mas et al.
2007; Vemuri et al. 2008; Wang et al. 2010; Wilson et al.
2009).

Many prior MVPA studies in neuroimaging have focused
on proposing newmethods that involve extracting novel types
of imaging measurements or using innovative algorithms to
improve prediction accuracy or yield more interpretable
models (Batmanghelich et al. 2009; Cho et al. 2012;
Davatzikos et al. 2009; Duchesnay et al. 2007; Fan et al.
2007; Nouretdinov et al. 2011; Sabuncu and Van Leemput
2012; Teipel et al. 2007). However, with notable exceptions
(Brown et al. 2012; Cuingnet et al. 2011), there has been little
effort to publish benchmark results that researchers can repli-
cate, reference, and objectively compare against. Today, the
increasing availability of several widely used, thoroughly
validated, and freely distributed

& large-scale clinical neuroimage databases, such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Jack et al. 2008), made available through web-based data
sharing platforms, such as COINS (Scott et al. 2011) and
XNAT (Marcus et al. 2007a),

& neuroimage processing software packages, such as
FreeSurfer (Fischl 2012) and SPM (Friston et al. 1994), and

& implementations of cutting-edge machine learning algo-
rithms, such as LibSVM (Chang and Lin 2011),

makes such a study possible. This article presents the results
of a carefully designed empirical study that employs publicly
available computational tools and large-scale multi-site data to
report state-of-the-art prediction accuracies and to serve as a
reproducible benchmark reference for futureMVPA studies in
structural neuro imaging. In this study, we analyzed data from
over 2,800 individuals obtained from six large clinical neuro
imaging studies. We used FreeSurfer to extract imaging

measurements and publicly available implementations of
three different classes of MVPA algorithms to predict clinical
diagnoses, for instance of schizophrenia and Alzheimer’s
disease, and clinically relevant graded variables, such as cog-
nitive performance scores.

The constructed prediction models can directly be useful in
clinical practice, e.g., for identifying high-risk subjects, track-
ing disease progression, or replacing less reliable, more inva-
sive, and/or more expensive diagnostic tests. Furthermore
image-based prediction models can also serve basic scientific
goals by revealing and quantifying the macro-anatomical
footprint of clinical/experimental/behavioral conditions and
measuring the information overlap between the image content
and non-imaging variables, such as clinical test results.

In addition to reporting experimental results, we also ana-
lyze the factors that influence the prediction performance in
the domains we considered. We believe that the reported
benchmark results, shared data, and presented analyses will
catalyze progress and prompt new research in biomedical
image analysis, neuroscience, neurology and the intersections
between these fields.

Materials and Methods

The computational tools and data described in this work have
been assembled and made available for download at https://
www.nmr.mgh.harvard.edu/lab/mripredict. This website
includes instructions and data to reproduce the results
presented in this manuscript.

Data

In our experiments, we analyzed data from over 2,800 indi-
viduals obtained from six large clinical neuro imaging studies:
the Alzheimer’s Disease Neuroimaging Initiative, or ADNI
(Jack et al. 2008), the Open-Access Series of Imaging Studies
(OASIS, oasis-brains.org) (Marcus et al. 2007b), the Autism
Brain Imaging Data Exchange (ABIDE, https://tinyurl.com/
fcon1000-abide), the Attention Deficit Hyperactivity Disorder
(ADHD) sample from the ADHD-200 Consortium (Milham
et al. 2012) (https://tinyurl.com/fcon1000-adhd), the Center
for Biomedical Research Excellence (COBRE) schizophrenia
sample (https://tinyurl.com/fcon1000-cobre), and the MIND
Clinical Imaging Consortium (MCIC) schizophrenia sample
(Gollub et al. 2013). Table 1 summarizes these data, which are
publicly available for download via corresponding websites.
We employed the T1-weighted structural brain MRI scans,
demographic data (age and gender), site information, and
clinical assessments in our analyses. For details of these data,
we refer the reader to the associated studies.
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We restricted all our analyses to the subjects for which the
automatic image processing steps of FreeSurfer (see next sub-
section) completed successfully. In the OASIS sample, the
AD diagnosis was defined as CDR >=1 and “AD mild” was
defined as CDR >0, which include subjects suffering from
Mild Cognitive Impairment (MCI) (Petersen et al. 1999) and
not clinically demented. In the ADHD sample, cases were
defined as those with evidence of non-typical development
and an ADHD diagnosis, as per the ADHD200 phenotypic
key.1 Schizophrenia (SCZ) cases in the Center for Biomedical
Research Excellence (COBRE) sample were those identified
as “Patient” in the COBRE phenotypic key. The ABIDE
analyses were restricted to subjects who were at least 10 years
old, since we were more confident that the imaging measure-
ments automatically computed from scans in this age group
were reliable. In the ABIDE sample, cases were defined as
those having a non-zero diagnostic group entry in the pheno-
type table.

In addition to the binary clinical diagnosis (patient
versus control), we analyzed continuous measures de-
rived from non-imaging data (age, mini-mental state
exam –MMSE- score, and cerebro-spinal fluid based
amyloid-β1–42, −CSF-Aβ1-42–). Tables 2 and 3 provides a
list of all (binary and continuous) target variables along with
additional information regarding group characteristics. For age,
we employed only the control subjects within each dataset. In
the ABIDE data, we restricted the age sample to the largest
healthy cohort from a single site. The other two continuous
variables, MMSE and CSF Aβ1–42 levels, are markers of
dementia, and demonstrate meaningful variation across clinical
groups, but not necessarily within controls. Hence, for these
variables, we combined data across clinical groups (Table 3).

MRI Processing

We used FreeSurfer (https://freesurfer.nmr.mgh.harvard.edu)
(Fischl 2012) -version 5.1 – a freely available, widely used
and extensively validated brain MRI analysis software pack-
age - to process the structural brain MRI scans and compute
morphological measurements. The FreeSurfer pipeline is fully
automatic and includes steps to compute a representation of
the cortical surface between white and gray matter, a repre-
sentation of the pial surface (Dale et al. 1999; Fischl et al.
1999a), and a segmentation of white matter regions; to per-
form skull stripping, B1 bias field correction, nonlinear regis-
tration of the cortical surface of an individual with a stereo-
taxic atlas (Fischl et al. 1999b), labeling of regions of the
cortical surface (Fischl et al. 2004), and labeling of sub-
cortical brain structures (Fischl et al. 2002). Furthermore, for

each MRI scan, FreeSurfer automatically computes subject-
specific thickness measurements across the entire cortical
mantle and within anatomically defined cortical regions of
interest (ROIs), volume estimates of a wide range of sub-
cortical structures and estimates of the intra-cranial volume
(ICV) and measures of image quality, such as white-matter
signal to noise ratio (WM-SNR), which is computed based on
the noise level (standard deviation of intensities) within the
white matter.

In our analyses, we defined four sets of features to be used
by the prediction models.

1) Feature set 1 (aseg; 45 dimensional vector): Volumes of
the 45 anatomical structures saved as stats/aseg.stats
under the FreeSurfer subject directory, which were nor-
malized with each subject’s ICV to account for head size
variation. The structures we used are: Left and right
cerebral white matter, cerebral cortex, lateral ventricle,
inferior lateral ventricle, cerebellum white matter, cere-
bellum cortex, thalamus proper, caudate, putamen,
pallidum, hippocampus, and amygdala, plus the 3rd and
4th ventricles.

2) Feature set 2 (aparc; 68 dimensional vector): Average
thickness within the following cortical parcellations
(saved as stats/lh.aparc.stats and stats/rh.aparc.stats un-
der the FreeSurfer subject directory. There are 34 mea-
surements per hemisphere). Superior frontal, rostral
middle frontal, caudal middle frontal, pars opercularis,
pars triangularis, pars orbitalis, lateral orbitofrontal,
medial orbitofrontal, precentral, paracentral, frontal
pole, superior parietal, inferior parietal, supra margin-
al, post central, precuneus, superior temporal, middle
temporal, inferior temporal, banks of the superior tem-
poral sulcus, fusiform, transverse temporal, entorhinal,
temporal pole, parahippocampal, lateral occipital, lin-
gual, cuneus, pericalcarine, rostral anterior frontal,
caudal anterior frontal, posterior parietal, isthmus pa-
rietal, and insula.

3) Feature set 3 (aparc + aseg; 113 dimensional vector): The
union of the first two feature sets.

4) Feature set 4 (thick; 20,484 dimensional vector): Cortical
thickness values sampled onto the fsaverage5 template
(10,242 vertices per hemisphere) and smoothed on the
surface with an approximate Gaussian kernel (Han et al.
2006) of a full-width-half-max (FWHM) of 5 mm.

Multivariate Pattern Analysis Algorithms

We employed publicly available implementations of three
different classes of MVPA algorithms: Support Vector
Machines, Neighborhood Approximation Forests, and

1 http://fcon_1000.projects.nitrc.org/indi/adhd200/general/ADHD-200_
PhenotypicKey.pdf.
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Relevance Vector Machines. These three algorithms were
selected because they have been applied to neuroimage data
in prior studies and represent a wide range of methods; each
algorithm was derived using a different modeling approach
and relying on distinct assumptions about the data. We em-
phasize that there is a rich pool of potential algorithms that can
be used on these data and we hope that by publicly distributing
the data2 we used in the presented analyses, we will enable
other researchers to test, benchmark and publicize other
method(s), thus allowing the exploration of a much wider
class of machine learning algorithms than we could achieve
by our own means. Our primary experiment and associated
analyses were constrained to the following three algorithms.

1) The Support Vector Machine (SVM) is one of the most
popular generic machine learning methods (Cortes and
Vapnik 1995; Scholkopf and Smola 2002). In our exper-
iments we used the publicly available implementation
LibSVM (https://csie.ntu.edu.tw/~cjlin/libsvm). We
employed the l inear kernel , which has been
demonstrated to yield good accuracy in prior neuro
imaging studies. The hyper-parameters were optimized
using a (“nested”) cross-validation loop over the training
dataset (using the “grid.py” tool available on the LibSVM
website). We trained the SVM model for probability
estimates. These estimates are directly used for the ROC
analysis and thresholded at p=0.5 to compute the correct
classification ratio.

2) The Neighborhood Approximation Forest (NAF) (www.
nmr.mgh.harvard.edu/~enderk/sof tware .html)
(Konukoglu et al. 2013) is a generic variant of random
decision forests (Criminisi et al. 2011) that can be applied
to regression and classification without any modification
of the underlying algorithm. The underlying principle of
NAF is to approximate the “closest” training images to a
given test image. The proximity between images is de-
fined based on the variable of interest, such as diagnosis.
During training, NAF learns to estimate the closest
neighbors based on the image-derived measurements,
such as ROI volumes or cortical thickness measurements.

For a test image, NAF estimates its closest neighbors
within the training set along with a weight associated
with each neighbor indicating its approximate proximity
to the test image. The prediction is then given as the
weighted average of the labels of these closest neighbors.
To identify the number of closest neighbors used in
prediction, we ran a “nested” cross-validation on the
training dataset only, similar to our SVM implementa-
tion. The remaining hyper-parameters of NAF were set
heuristically based on experiments provided in previous
publications (Konukoglu et al. 2013). These are: number
of trees=800, maximum tree depth=12, stopping
criteria=10 samples and number of random samples per
node=20 for feature sets 1–3 and 1000 for feature set 4.

3) The Relevance Voxel Machine (RVoxM, https://tinyurl.
com/rvoxm) (Sabuncu and Van Leemput 2012), is an
adaptation of the Bayesian Relevance Vector Machine
(RVM) (Tipping 2001) customized to handle image data.
The RVM model assumes that the target variable is a
noisy observation of a linear weighted sum of the feature
data. For regression, the noise is an additive Gaussian
model. For classification, a logistic link function is used.
RVM builds on MacKay’s Automatic Relevance
Determination (ARD) framework (MacKay 1992) and
employs a Gaussian prior on the weight parameters,
which are (approximately) integrated (or marginalized)
out during learning and prediction. RVM’s prior encour-
ages sparsity, i.e., a small number of non-zero weights.
RVoxM modifies this prior to also encourage spatial
smoothness. We note that for Feature set 4 (thick), we
utilized the neighborhood structure of the fsaverage5
surface mesh to define the Laplacian matrix that encour-
ages the weights to be spatially smooth. For feature sets
1–3, we used no spatial smoothness, i.e., Laplacian term.
Thus for the aseg and aparc features, the RVoxM model
was essentially equivalent to a RVMmodel on the feature
dimensions. We therefore refer to this algorithm as RVM
throughout the manuscript.

In total, there were 12 (=3×4) different combinations of
algorithm and image feature pairs, or MVPA models, which
we applied to the data.2 https://www.nmr.mgh.harvard.edu/lab/mripredict

Table 1 A summary of the 6
publicly available clinical neuro-
imaging initiative datasets used in
this study

Dataset N Mean age Std age Min age Max age %Female Number of sites

ADNI 810 75.2 6.9 55.0 91.0 42.0 58

OASIS 415 51.4 25.3 18.0 96.0 61.4 1

COBRE 129 35.7 11.9 18.0 65.0 24.8 1

MCIC 194 33.1 11.5 18.0 60.0 28.4 3

ABIDE 935 18.4 8.0 10.0 64.0 14.0 20

ADHD 392 12.9 2.4 8.4 20.9 72.7 6
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Univariate Prediction Models

Most common image-derived structural biomarkers are univar-
iate descriptions of morphology, such as the volume of a region
of interest (ROI). To implement such a biomarker, we used the
aseg and aparc features, which are volume and thickness
estimates of anatomical ROIs. These measurements, such as
the volume of the hippocampus or size of ventricles, represent
most of the classical MRI-derived biomarkers associated with
neurological disorders, such as dementia or schizophrenia.

To identify the univariate predictive marker for each vari-
able of interest, we conducted the following unbiased, data-
driven analysis. At each cross-validation session, we deter-
mined the feature (out of the 113 aparc + aseg measurements)
that was most significantly associated with the variable of
interest on the training data (based on t-test between two
samples for classification; based on Pearson’s linear

correlation for regression). Next, we computed the affine
transformation (scale and shift) that converted the correspond-
ing measurements to best agree with the training labels, which
was assessed via the correct classification ratio (the binary
prediction was computed by thresholding at zero) or mean
squared error. For classification, the scale was restricted to
−1/std (measurements) or 1/std (measurements), where the
standard deviation was computed on the training sample.
The index of the ROI (i.e., identity of the feature), and
optimal affine parameters were then saved as the univar-
iate prediction model, to be used on test data. Finally,
predictions were computed on the test data by applying
the affine transformation to the corresponding measure-
ments. The agreement between these values and ground
truth was then computed as in the MVPA case. This
whole procedure was repeated across the different cross-
validation sessions.

Table 3 Continuous variables used in the regression experiments

Dataset Variable Total N Mean±Std Range Female % Num. of sites

OASIS Age (yrs) 315 43.9±23.8 [18, 94] 62.1 1

ADNI Age (yrs) 213 75.9±5.0 [60, 90] 47.9 55

MCIC Age (yrs) 90 32.3±11.7 [18, 60] 67.8 3

ADHD Age (yrs) 115 11.7±1.7 [8.4, 14.9] 60.9 1

COBRE Age (yrs) 73 35.7±11.6 [18, 65] 31.5 1

ABIDE Age (yrs) 34 23.4±4.2 [17.3, 31.8] 23.5 1

OASIS MMSE 235 27.1±3.7 [14, 30] 66.4 1

ADNI MMSE 810 26.8±2.6 [20, 30] 42 58

ADNI CSF-Aβ (ng/L) 415 169.9±55.7 [50.7, 298.8] 39.8 56

Age,MMSE, mini-mental state exam score, and cerebro-spinal fluid (CSF)-derived amyloid burden measured as the concentration of Ab1–42. Number of
subjects, variable statistics (mean, standard deviation, minimum/maximum value), female ratio and number of sites are listed

Table 2 Discrete variables used in the binary classification experiments

Dataset Variable N per group Age (Mean±Std) Female % Number of sites

Cases Controls

ADNI AD 145 76.6±5.7 76.6±5.8 47.6 49

ADNI MCI 135 75.6±5.7 75.6±5.7 36.3 47

OASIS AD 25 77.5±6.8 77.5±6.6 72 1

OASIS AD mild 70 75.9±7.3 76±7.2 68.6 1

COBRE SCZ 50 34.3±10.6 34.1±10.7 18 1

MCIC SCZ 75 33.3±11.6 33.4±11.4 26.7 3

ABIDE ASD 325 17.8±7.4 17.9±7.4 11.4 17

ADHD ADHD 150 13.2±2.4 13.2±2.3 78.7 6

AD, Alzheimer’s disease;MCI, mild cognitive impairment; SCZ, schizophrenia; ASD, autism spectrum disorder; ADHD, attention-deficit hyperactivity
disorder. See Methods for detailed definitions. For each phenotype, we constructed age, sex, site-matched case and control groups. The number of
subjects per group, average age, female ratio, and number of unique sites are listed
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Cross-Validation

To quantify the accuracy of an image-based prediction model
we utilized 5-fold cross-validation on each sample. For clas-
sification, we conducted stratified and balanced cross-
validation (Parker et al. 2007), where each partition contained
the same number of cases and controls (i.e., was balanced). In
each partition, the two groups were also matched based on
age, gender and site data, where appropriate. For regression,
we partitioned the data into 5 (almost) equally sized groups (if
needed, the last partition was allowed to be larger than the rest
to account for all subjects). In each fold, each partition was
treated as test data and the remaining subjects constituted
training data.

In cross-validation, prediction accuracy was computed
by aggregating predictions across the five folds. Binary
classification accuracy was then quantified using correct
classification rate (CCR), i.e., the empirical ratio of cor-
rect predictions across all samples. Regression accuracy
was measured with the root mean squared error (RMSE)
of the predictions. To normalize RMSE scores, we divided
by the range of the target variable in the sample. This
allowed a comparison across different variables with dif-
ferent units.

The statistical significance of prediction accuracies for the
classification problems were computed using DeLong’s meth-
od (DeLong et al. 1988) based on the receiver operating
characteristic (ROC) analysis. DeLong’s test is a non-
parametric statistical test for comparing areas-under-the-curve
(AUC) for two ROC curves. It is based on estimating an AUC
value (which we computed usingMatlab’s perfcurve function)
and an associated variance using the probabilistic predictions
for positive and negative samples. A z-score, which has a
standard normal distribution, can then be computed for the
AUC estimate using the calculated variance and the fact that
under the null AUC should equal to 0.5. To compute the p-
values we performed a one-sided test on these resulting z-
scores. We choose to use the ROC analysis to compute statis-
tical significance because it captures more information than
CCR, in particular about how the probabilistic predictions are
distributed.

In the regression problems the statistical significance
values were computed using Pearson’s linear correlation co-
efficient, r, and corresponding t-test.

To assess the uncertainty in the cross-validation based
estimates of performance metrics, we repeated the 5-fold
cross-validation procedure for the best MVPA models using
100 different 5-fold partitions. The best MVPA models were
identified as the ones that yielded the predictions that were
most significantly associated with the ground truth variables
on the first 5-fold cross-validation (these results are reported in
Fig. 1). For each 5-fold partitioning, we computed the cross-
validation performance metric, yielding a distribution of 100

values. For the results of Figs. 2 and 4, we computed the mean
prediction accuracy as the average of these 100 values and the
95 % confidence interval was computed by excluding the
highest and lowest two values.

Mass-Univariate Analysis of Thickness Maps

We conducted a mass-univariate analysis to map regions
where cortical thickness is associated with clinical variables
of interest. For this analysis, we used the thickness values
sampled onto the highest resolution template, fsaverage,
which contains over 140 k vertices on each hemisphere, and
smoothed on the cortical surface with a Gaussian-like filter of
a 10 mm FWHM. We then applied a general linear model at
each vertex, where the outcome was thickness and the inde-
pendent variables were age, gender and the clinical variable.
The p-value associated with the clinical variables was then
saved for each vertex (see Fig. 3). When identifying cortical
areas of significant associations, we applied the false discov-
ery rate (Benjamini and Hochberg 1995) (FDR, q=0.05) to
correct for multiple comparisons. The total area of significant
associations was then computed as the sum of the areas
corresponding to the significant vertices in fsaverage.

Statistical Analyses of the Influence of Measurement
and Algorithm Choice

To gain further insights into the impact of the measurement
(image feature) type and MVPA algorithm on prediction ac-
curacy, we used the 5-fold cross-validation performance esti-
mates presented in Fig. 1. We employed the non-parametric
Friedman’s test (Wolfe and Hollander 1973) to assess the
difference across measurement types and algorithm classes,
adjusting for variation across variables and treating the nui-
sance factor (e.g., algorithm choice when assessing image
feature) as a replicated measurement.

To assess whether the algorithm or image feature design
decision had a bigger impact on prediction accuracy, we
computed range data as follows. For each variable, we com-
puted the algorithm range as the difference between the best
and worst performance metrics across the three algorithms
(SVM, RVM and NAF), while fixing the feature type. These
values were then averaged over feature types. Similarly, for
each variable, the feature range was defined as the difference
between the best and worst performance metrics across the
four feature types, while fixing the algorithm type. These
values were then average over the algorithms (see
Supplementary Fig. S4). We performed the nonparametric
Wilcoxon signed rank test (Wolfe and Hollander 1973) on
the paired range values to assess the significance of the dif-
ference between the feature and algorithm effects. For the
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binary variables, the feature range was significantly larger
than the algorithm range (P=0.008). For regression, however,
the two effects were statistically equivalent (P=0.36).

Results

There was significant variation in the sample sizes across
datasets and variables (see Tables 2 and 3). For example, for
the Alzheimer’s disease (AD) variable (clinical dementia rating,
CDR, greater than or equal to 1), the ADNI sample provided
145 subjects per group, where as the OASIS sample offered
only 25. Also, certain datasets were collected at multiple sites

(e.g., 20 sites participated in the ABIDE study), whereas others,
e.g., COBRE, were acquired at a single location.

Estimating Prediction Accuracy via Cross-Validation

To estimate the accuracy of all twelve MVPA models, we
utilized a single 5-fold cross-validation on each sample (See
Fig. 1. More detailed results are provided in Supplementary
Fig. S1). These results revealed that all but two (ADHD diag-
nosis, and age in the ABIDE sample) of the examined variables
exhibited some degree of predictability from brain MRI scans,
i.e., there was at least one MVPA model that produced a

Fig. 1 Correct classification ratio
(CCR) (Panel a) and normalized
root mean square (NRMSE)
(Panel b) for each variable and
MVPA algorithm, estimated via
5-fold cross-validation. The
MVPA algorithms are
abbreviated as follows: N for
neighborhood approximation
forest, S for SVMs, and R for
RVMs. The number after each
letter denotes the feature type
(1:aseg, 2:aparc, 3:aseg + aparc,
4:thick). The shaded gray color
indicates statistical significance
(−log10 p-value), where the p-
value is computed via DeLong’s
method (DeLong et al. 1988) for
classification (Panel a), and
Pearson’s linear correlation
coefficient for regression (Panel
b). Statistically significant
associations with a p-value less
than 0.01 are shown in red. The
RMSE is normalized by dividing
by the range of the variable,
enabling a comparison between
variables with different units
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prediction on test data that was statistically significantly
associated with the ground truth label (P<1e-3). In
practice, there were multiple MVPA models that were
significantly associated with each predictable variable,
not just one.

Today, most classical image-derived biomarkers are
univariate, e.g., the size of a region of interest. To
provide a comparison between MVPA models and clas-
sical markers, we also quantified the prediction perfor-
mance of univariate models that use a single measure-
ment, e.g., volume of an anatomical structure. We ap-
plied the univariate models to the same hundred 5-fold
cross-validations as the ones used for the MVPA
models. Supplementary Table S1 lists the ROIs that

were most frequently identified as univariate markers
for each variable. Figure 2 shows the estimated perfor-
mance metrics for the MVPA and univariate models.
For all variables, the performance metrics were signifi-
cantly better for the MVPA model (all P<1e-4, paired
Wilcoxon signed rank test), although the performance
boost varied across variables. For example, on the
OASIS AD sample, the MVPA model yielded an im-
provement of more than 10 % in Correct Classification
Ratio (CCR), while the difference between the predic-
tion accuracies of the MVPA and univariate models was
modest for the ADNI: CSF-Aβ phenotype.

From Figs. 1 and 2, we observe that there is a dramatic
variation in prediction accuracies across datasets, target

Fig. 2 Average prediction
accuracy estimated via repeated
5-fold cross-validation for MVPA
and univariate models. The
MVPAmodels were chosen as the
ones that yielded the predictions
that were most significantly
associated with the ground truth
variables on the first 5-fold cross-
validation (see Fig. 1). Panel a:
Binary Classification, Panel b:
Regression. Error bars show the
95 % confidence intervals.
MVPA models yield better
prediction accuracy than
univariate models in all variables
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variables, image features, and algorithms. These results un-
derscore the factors that influence image-based prediction,
which include:

1) Biological footprint of the variable, or effect size,
2) Data quality, e.g., the amount of image noise,
3) Sample size,
4) The accuracy and relevance of image-derived

measurements,
5) And the prediction algorithm.

In the following, we provide some analyses to gain insights
into how these individual factors influence prediction
performance.

Dissecting the Influence of Various Factors on Prediction
Performance

Arguably, the most significant determinant of how accurately
one can predict a particular variable from a brain MRI scan is

Fig. 3 MVPA prediction
accuracy versus biological
footprint. There is a strong
agreement between the correct
classification rate (CCR) and size
of cortical area where thickness
measurements are statistically
significantly associated with the
target variable (at False Discovery
Rate (Benjamini and Hochberg
1995), FDR, q=0.05). The error
bars show the full range of CCR
values across the cross-validation
folds. Within each panel, the
samples contained comparable
number of subjects and the scans
were of commensurate quality.
The Relevance Voxel Machine, a
variant of RVM, was applied to
cortical thickness maps for the
multivariate analysis. The mass-
univariate analysis was conducted
on the thickness maps normalized
and re-sampled to the standard
fsaverage template, the left
hemisphere of which is visualized
with the statistical significance
(−log10 p value) of the
associations overlaid in color
(uncorrected p-value <0.01). We
underscore that these maps are
different from the features the
MVPAmodels rely on for making
the corresponding predictions
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the biological footprint. This is observable from Fig. 1,
where most of the variation in performance metrics is
vertical, i.e., across variables. Figure 3 illustrates this
point further, where MVPA prediction accuracies are
shown alongside results from a mass-univariate analysis
that reveals the cortical thinning patterns of each disease.
In each panel of Fig. 3, we present three variables, where
the MVPA and mass-univariate analyses were conducted
on samples of roughly the same size (Panel a: ADNI:AD,
N=145; ADNI: MCI, N=135; and ADHD, N=150. Panel
b: ADNI-75:AD, MCIC: SCZ, and ABIDE-75: ASD, each
with 75 subjects per group) and commensurate MRI data
quality (estimated white matter signal to noise ratio, WM-
SNR, mean±standard deviation. First panel: 16.8±4.2,
17.0±4.1, 16.8±2.3. Second panel: 18.9±3.0, 20.2±3.7,
19.7±3.4.). All MVPA results reported in Fig. 3 were
computed with the RVM algorithm, using the cortical
thickness maps (i.e., feature type 4). Hence, factors 2–5
have minimal influence on the variation in prediction
performance within each panel. This leaves the biological
footprint as the only factor that one would expect to
largely determine prediction accuracy. The results of
Fig. 3 provide compelling support for this hypothesis,
since there is a strong agreement between prediction ac-
curacy and the size of the cortical area significantly asso-
ciated with the disease. AD clearly has the most promi-
nent biological footprint on cortical thickness, which is
followed by MCI and schizophrenia. Autism and ADHD
seem to have very modest footprints, which were not
detectable using a mass-univariate method in these sam-
ples. Intriguingly, the MVPA analysis of the ABIDE:
ASD sample demonstrated a significant global association
between brain morphology and autism diagnosis
(CCR:0.59, with 95 % confidence interval [0.57–0.61]),
which was not revealed by the mass-univariate analysis.

The influence of sample size on multivariate pattern anal-
ysis is twofold. Firstly, increasing training size should in
general yield better models and thus improve prediction accu-
racy. Secondly, increasing test size will typically improve our
confidence in the estimates of prediction accuracy, i.e., reduce
uncertainty, which will in turn translate into improved statis-
tical power, allowing us to detect more subtle associations. We
observed both of these phenomena in our experiments, partic-
ularly for predicting age. There was a statistically significant
association between sample size and prediction accuracy of
age across samples (P=0.0011, Pearson correlation).
Furthermore, the statistical significance associated with each
sample was correlated with its size (Pearson r=0.88, P=0.02),
exposing the strong link between the number of subjects and
statistical power.

Finally, we examined the influence of the choice of image-
derived measurements and machine learning algorithms. Our
primary observation is that among the types of features and

algorithms we considered (see Fig. 1 and Supplementary
Fig. S1-S3), there was no globally optimal choice that pro-
duced the best results overall. However, for the binary pheno-
types, feature type 2 (aparc) produced significantly worse
results than the remaining three types of features (P=0.04),
and the performances of the three MVPA algorithms were
statistically indistinguishable (P=0.73). For regression, RVM
produced inferior results than NAF and SVM (P=7.4e-6),
which were statistically equivalent. Feature types 3 and 4
offered statistically significantly better accuracy than the other
two features (P=3.5e-4).

The next question we tackled was whether the algo-
rithm or image feature design decision had a bigger im-
pact on prediction accuracy. The results presented in
Supplementary Fig. S3 revealed that for the binary clas-
sification cases we analyzed, although the algorithm de-
cision was an important determinant, the choice of image
feature had a significantly larger effect on prediction
accuracy (P=0.008). For regression, however, both deci-
sions had a statistically indistinguishable (P=0.36), yet
large effect. Overall, these results suggest that among
the ones we tested, there was no universally optimal
choice of imaging measurements or machine learning tool
that would produce the best prediction performance, al-
though, these design choices had a substantial impact on
accuracy.

Validation on Independent Datasets

Although, in theory, cross-validation provides an unbiased
estimate of performance, validation on independent datasets
remains to be the more realistic approach to quantifying
generalization accuracy. Here we applied this strategy to four
variables, for which we had multiple independent datasets:
Alzheimer’s disease diagnosis, schizophrenia diagnosis, age
and MMSE score. For age, we chose to employ the OASIS
and COBRE datasets, which offered a similar range in values.

The results presented in Fig. 4 revealed that all of the eight
MVPA models that produced statistically significant predic-
tions on cross-validation, further yielded statistically signifi-
cant predictions on independent validation datasets. However,
for most models (all but the models of OASIS:AD and
COBRE: SCZ), the prediction accuracies on the validation
datasets were outside the 95 % confidence intervals estimated
via cross-validation. On the other hand, there was a strong
agreement between the cross-validation and independent val-
idation performances: the rankings of models based on the
performance on the independent samples and those based on
the estimated cross-validation accuracies were identical within
regression and classification. These results suggest that cross-
validation can be optimistic in estimating prediction perfor-
mance, yet provides an informative upper bound.
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Discussion

The dramatic variability in the brain’s structural anatomy is
influenced by genetics, environmental factors, age, disease,
and interactions between all these factors. The complexity of
these mechanisms makes the problem of predicting diagnosis
and clinically relevant variables from structural neuroimaging
data very difficult. The problem is further complicated be-
cause of our limited understanding of clinical conditions,
which introduces heterogeneity and noise into the definitions
of the target variables. This phenotype contamination is par-
ticularly evident in neurology, where there is an abundance of
heterogeneity within and overlap across clinical conditions.
Yet, image-based prediction methods can be useful for dem-
onstrating complex and subtle associations, while enabling

more accurate individual-level clinical assessments, which in
turn can help us refine our clinical definitions.

Multivariate Models Outperform Univariate Markers
in Prediction

Structural brain MRI-derived biomarkers are classically uni-
variate, measuring the volume, size, or thickness of an ana-
tomical ROI, including the whole brain. However, recent
studies have demonstrated that many neurological conditions
are associated with large-scale networks of distributed regions
(Seeley et al. 2009). This suggests that aggregating informa-
tion across multiple regions within the associated network

Fig. 4 Eight MVPA models
(in blue font) were applied to
independent validation datasets
(in black font) to assess prediction
accuracy. Panel a: Correct
classification ratio, CCR, is
shown for each variable (in
white). Blue bars show the 95 %
confidence interval of CCR
estimated via cross-validation on
original dataset of model. Area
under the receiver-operatic
charactertic curve (AUC, shown
in black) was used to assess
statistical significance via
DeLong’s method (DeLong et al.
1988). ** p-value<0.001,
*** p-value<0.0001. Panel b:
Normalized root mean squared
error (NRMSE) is shown for each
variable (in white). Blue bars
show the 95 % confidence
interval of NRMSE, estimated via
cross-validation on original
dataset of model. Pearson’s
correlation (CORR, shown in
black) was used to assess
statistical significance.
*** p-value <0.0001
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should improve the sensitivity and specificity of brain bio-
markers. Our results generalize prior studies that make similar
observations, e.g., (Westman et al. 2011), to a range of target
variables. In all our analyses, MVPA models offered a statis-
tically significant boost in prediction performance as assessed
via cross-validation. This improvement was reflected as a 5–
10 % increase in correct classification ratio for binary
variables.

An Array of Variables can be Predicted from Structural
Neuroimaging Data

Our results demonstrated that MVPA models produce predic-
tions that are statistically significantly associated with the
ground truth for a range of variables. However, there is a
dramatic variation in the accuracies of these predictions,
which determines the utility of these models. On one end of
the spectrum, we have autism, which our cross-validation
suggests can correctly be discriminated from a healthy state
about 59 % of the time (95 % confidence interval [0.57–
0.61]). This, by itself, is unlikely to be useful for making
individual-level predictions, especially in the clinical setting,
where the problem is particularly more challenging due to
sample heterogeneity and lower data quality. However, it can
be used as one line of evidence among an array of other
observations. Furthermore, this MVPA result reveals a statis-
tically significant association between brain anatomy and
autism, which is so subtle that it cannot be detected via a more
traditional mass-univariate analysis. On the other hand of the
spectrum, we have Alzheimer’s diagnosis and age, which can
be predicted very accurately (86 % accuracy in discriminating
from healthy controls, and root mean squared error less than
9 years, respectively). Thus, these models by themselves
might be useful for individualized prognosis in the clinical
setting. Age is a particularly interesting variable, which might
be informative for detecting deviations from normal aging or
healthy development (e.g. when the subject’s predicted brain
age is substantially different from his/her chronological age).

The results we present in this study, in general, are consis-
tent with prior studies that report structural MRI (sMRI) based
clinical predictions. Our AD, MCI, age, and MMSE predic-
tion results are in strong agreement with state-of-the-art struc-
turalMRI-based predictions computed on the ADNI data, e.g.,
as reported in (Cuingnet et al. 2011; Sabuncu and Van
Leemput 2012; Stonnington et al. 2010). For schizophrenia,
the classification accuracy we present, which is roughly
around 70 %, is in line with a previously reported large-scale
multi-site MRI-based prediction study (Nieuwenhuis et al.
2012). Finally, the autism prediction accuracy we obtain,
which is about 60 %, is congruent with the results obtained
with resting state functional MRI (rs-fMRI) data on the same
ABIDE dataset (Nielsen et al. 2013). This last result suggests

that both rs-fMRI and sMRI offer similar prediction accuracy
for autism.

Factors That Influence Prediction Accuracy

There are at least five factors that determine prediction accu-
racy: 1) biological footprint, 2) sample size, 3) data quality, 4)
image measurements, and 5) prediction algorithm.We believe
that the footprint of the underlying biological process, as
captured by the imaging data, is the most important determi-
nant of prediction performance. One way of measuring this
footprint is via normalizing the remaining factors, i.e., to
compare the footprint of different variables, one could conduct
a MVPA prediction analysis, where the last four factors are
roughly standardized (same sample size, data quality, imaging
measurements and prediction algorithm). We applied this
strategy to our data, which provided a clear demonstration of
the variable footprint sizes of the different clinical conditions
we considered.

Image measurements and prediction algorithms, on the
other hand, also have a significant impact on prediction accu-
racy. Our results further suggest that the former factor has an
impact that is at least as important as the latter. Varying these
design decisions can lead to radically different conclusions, as
our results revealed. However, our analyses also suggest that
there is no universally optimal choice for structural neuroim-
aging. This makes benchmark studies, such as the present,
particularly important, since they provide an objective frame-
work for comparing and assessing image processing and
analysis methods for different clinical conditions of interest.
In this study, we analyzed a small set of possible machine
learning algorithms and image measurement types. Future
studies will explore alternative algorithms and image-
derived features to identify the optimal design choices for
each individual problem.

One particular issue that one needs to pay special
attention to is the uncertainty in the performance assess-
ments (Japkowicz and Shah 2011). We observed a con-
siderable variation between the prediction accuracies
estimated using different 5-fold partitions of the data.
To quantify this, we employed 100 different partitions
of the data, over which performance metric statistics
(e.g., average, confidence interval, etc.) were computed.
All these lists (i.e., the subject ID’s for each fold of
each partition) are made publicly available, so that
alternative methods can use these data to estimate the
prediction accuracy and corresponding uncertainty. We
will further distribute the individual predictions comput-
ed for each list using each MVPA model. These data
will enable a fair and objective comparison across
methods.
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Validation on Independent Datasets

Although cross-validation offers a useful strategy for quanti-
fying prediction accuracy, we found that its estimates are often
optimistic. We believe this arises due to the variation in (i) the
data acquisition protocol, (ii) composition of the populations,
and (iii) the application of the diagnostic criteria and/or clin-
ical tests. For example, scan parameters, such as field strength,
usually vary and this alters the distributions of the imaging
measurements. Furthermore, the precise definitions of the
clinical conditions can also change, especially across different
clinical centers. These issues can be minimized by standard-
izing the imaging and clinical protocols. However, in most
practical scenarios, inter-site variability will remain a major
challenge and impact the clinical application of image-based
prediction models. Therefore, we believe using different
datasets independently collected at different centers is critical
for obtaining a realistic estimate of the generalization accuracy
of a prediction model.

Considering and Probing the Underlying Biology

Our experiments suggest that the type of measurements
derived from the imaging data have a substantial influ-
ence on prediction accuracy. This observation highlights
the significance of the utilized image processing tools.
Furthermore, it indicates that intelligent feature selection
methods might yield improved prediction performance.
Feature (variable) selection is an active area of research
in machine learning (Guyon and Elisseeff 2003; Jain
and Zongker 1997; Saeys et al. 2007) and is also being
investigated in the context of neuroimaging, e.g. (Nie
et al. 2008; Pereira and Botvinick 2011; Plant et al.
2010; Rondina et al. 2013; Wang et al. 2011; Wang
et al. 2006).

While obtaining improved and more efficient predic-
tion is the main motivation of feature selection methods
(Chu et al. 2012), by identifying a small, interpretable
subset of relevant features, they might also lead to
biological insights. From this perspective, feature learn-
ing is intimately related to the recent line of research
that aims to measure the statistical significance of each
variable in a discriminative (predictive) model, e.g.,
(Gaonkar and Davatzikos 2013; Lockhart et al. 2012;
Meinshausen and Buhlmann 2010; Rondina et al. 2013).
Rather than focusing on statistical significance, which
assumes a null hypothesis, an alternative approach is to
quantify the importance of each variable for prediction,
e.g., (Sonnenburg et al. 2008; Strobl et al. 2008; Zien
et al. 2009). Such methods promise to allow us to probe
the prediction models we build and make inferences
about the underlying biology.

Conclusion

We presented the largest empirical benchmarkMVPA study in
structural neuroimaging. Our results demonstrate that one can
predict a range of clinically relevant variables from structural
brain MRI scans with varying degrees of accuracy. MVPA
models offer more accurate predictions than univariate
markers, such as the volume of a ROI, though the choice of
the feature set and machine-learning algorithm has a signifi-
cant impact on prediction performance. We found no univer-
sally optimal MVPA method that would yield the best predic-
tion. Furthermore the biological footprint of the phenotype
seems to be the most important determinant of prediction
accuracy. Future MVPA studies can compare alternative
methods against the published results using the public datasets
and distributed cross-validation lists, while properly account-
ing for the uncertainty in performance estimates.

Information Sharing Statement

The data and computational tools used to generate the cross-
validation results presented in this manuscript are made avail-
able via: https://www.nmr.mgh.harvard.edu/lab/mripredict.

We note that in compiling these resources, we heavily
relied on third-party data collection efforts and software pack-
ages. These include the following publicly available datasets,
the Alzheimer’s Disease Neuroimaging Initiative, (ADNI,
www.adni-info.org, RRID:nif-0000-00516), the Open-
Access Series of Imaging Studies (OASIS, oasis-brains.org,
RRID:nif-0000-00387), the Autism Brain Imaging Data
Exchange (ABIDE, tinyurl.com/fcon1000-abide, RRID:nlx_
157761), the Attention Deficit Hyperactivity Disorder
(ADHD) sample from the ADHD-200 Consortium (tinyurl.
com/fcon1000-adhd, RRID:nlx_144426), the Center for
Biomedical Research Excellence (COBRE) schizophrenia
sample (tinyurl.com/fcon1000-cobre, RRID:nlx_157762),
and the MIND Clinical Imaging Consortium (MCIC,
RRID:nlx_155657) schizophrenia sample (coins.mrn.org).
To process the structural MRI scans, we utilized FreeSurfer
(RRID:nif-0000-00304, https://surfer.nmr.mgh.harvard.edu/).
We distribute Free Surfer-derived morphological measure-
ments in easy-to-read formats. This way, we ensure that re-
searchers with little or no experience in MRI processing can
analyze these data. We further employed publicly available
implementations of three different classes of Machine
Learning algorithms: (SVM, csie.ntu.edu.tw/~cjlin/libsvm,
RRID:nlx_157763), RVM (http://people.csail.mit.edu/
msabuncu/sw/RVoxM/index.html, RRID:SciRes_000134),
and NAF (http://www.nmr.mgh.harvard.edu/~enderk/
software.html, RRID:SciRes_000135). We provide all the
lists necessary to replicate the 100 random split 5-fold cross-
validation sessions we conducted in our analyses. Finally, we
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distribute a sample script that demonstrates how we compile
and evaluate the cross-validation results.
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