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Abstract. We define a novel combinatorial object—the extended Gelfand–Tsetlin graph with
cotransition probabilities depending on a parameter q . The boundary of this graph admits an
explicit description. We introduce a family of probability measures on the boundary and describe
their correlation functions. These measures are a q-analogue of the spectral measures studied earlier
in the context of the problem of harmonic analysis on the infinite-dimensional unitary group.
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Determinantal measures form a special class of probability measures on spaces of locally finite
point configurations (see Borodin’s survey [1]). The key property of a determinantal measure is
that its correlation functions of any order are expressed in a simple way through a function in two
variables, called the correlation kernel.

A family of determinantal measures, called the zw-measures, was studied by Borodin and Ol-
shanski [2] in connection with the problem of harmonic analysis on the infinite-dimensional unitary
group U(∞), posed by Olshanski [12]. Analogues of the zw-measures also exist for other infinite-
dimensional classical groups and for infinite-dimensional symmetric spaces (see Olshanski and Os-
inenko’s paper [14]). The zw-measures play a fundamental role in infinite-dimensional harmonic
analysis, because their scaling limits govern the spectral decomposition of certain distinguished
unitary representations.

On the other hand, the zw-measures are nice combinatorial objects and have much in com-
mon with the so-called z-measures, which are a particular case of Okounkov’s Schur measures on
partitions. Like Schur measures, the zw-measures admit a generalization involving an additional
deformation parameter similar to Dyson’s β-parameter in random matrix theory or the continuous
parameter of the Jack symmetric functions (see Olshanski’s paper [13]).

Our aim is to show that the notion of zw-measures can be extended in another direction; namely,
there exists a (nonevident) q-analogue of the zw-measures. Our first result says that the “N -particle
q-zw-measures” have a large-N limit, and the limiting probability measure is a determinantal
measure on a space of infinite point configurations. We find the corresponding correlation kernel—
it is expressed through the basic hypergeometric function 2φ1 . The large-N limit transition is
related to another result, which is of independent interest—a description of the q-boundary for an
extended version of the Gelfand–Tsetlin graph.

1. The q-analogue of zw-measures. We fix a triple (ζ+, ζ−, q) of real parameters, where
ζ+ > 0, ζ− < 0, and 0 < q < 1. The corresponding double q-lattice is a subset L ⊂ R \ {0} of the
form

L = L− ∪ L+, L± := {ζ±qn : n ∈ Z}.
By a configuration we mean an arbitrary subset X ⊂ L. For N = 1, 2, . . . , let GN denote the

countable set consisting of all N -point configurations. We enumerate the points of every X ∈ GN

in increasing order and write X = (x1 < · · · < xN ).

We are going to introduce, for every N = 1, 2, . . . , a probability measure Mα,β,γ,δ
N on GN . It

depends on a quadruple (α, β, γ, δ) of parameters subject to constraints specified below and is given
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by

Mα,β,γ,δ
N (X) =

1

ZN (α, β, γ, δ)

N∏

i=1

|xi| (αxi; q)∞(βxi; q)∞
(γq1−Nxi; q)∞(δq1−Nxi; q)∞

∏

1�i<j�N

(xj − xi)
2, (1)

where ZN(α, β, γ, δ) is a normalization constant and the standard notation (a; q)∞ =
∏∞

n=0(1−aqn)
of q-analysis is used.

The constraints on the parameters are as follows. We assume that the pair (α, β) is L-admissible
in the sense that the product (αx; q)∞(βx; q)∞ is real and strictly positive for every x ∈ L; this
means that either α = β̄ ∈ C \R or both α and β are nonzero reals such that α−1 and β−1 lie in
an open interval between two neighboring nodes of L. Next, we assume that (γ, δ) is L-admissible,
too. Finally, we assume that γδq2 > αβ , but we believe that all results presented below hold under
the weaker condition γδq > αβ .

Under all these assumptions, the measure on GN defined by (1) but without the constant factor
has strictly positive weights and the sum of all weights is finite. Then the normalization constant
is equal to the sum of weights. For this constant, there exists an explicit but rather complicated
expression.

Remark 1. Our definition of Mα,β,γ,δ
N fits into the general formalism of orthogonal polynomial

ensembles; see Borodin’s paper [1] and König’s paper [8]. In our case, the orthogonal polynomials
that we need (let us denote them by Pn(x; a, b, c, d), n = 0, 1, 2, . . . ) are close relatives of the
classical big q-Jacobi polynomials. Koornwinder [10] calls them pseudo big q-Jacobi polynomials.
The weight function of the polynomials Pn(x; a, b, c, d) has the form

w(x; a, b, c, d) = |x| (ax; q)∞(bx; q)∞
(cx; q)∞(dx; q)∞

, x ∈ L,

and for the N th measure, we choose the parameters (a, b, c, d) = (α, β, γq1−N , δq1−N ).

Remark 2. The papers [12] by Olshanski and [2] by Borodin and Olshanski deal with the
“zw-measures” which live on the levels GTN of the Gelfand–Tsetlin graph. The zw-measures depend
on a quadruple of parameters (z, z′, w,w′) and are related to certain discrete orthogonal polynomials
on the ordinary lattice Z, termed the Askey–Lesky polynomials in [2]. In a suitable limit regime
as q ↗ 1, the polynomials Pn(x; a, b, c, d) degenerate into the Askey–Lesky polynomials and the

measures Mα,β,γ,δ
N degenerate into zw-measures. This is one of the reasons to regard the measures

Mα,β,γ,δ
N as a q-analogue of the zw-measures.
More precisely, in the limit transition we take

α = qw+1, β = qw
′+1, γ = q−z, δ = q−z′

and assume that ζ+ = 1, while ζ− = ζ−(q) may vary arbitrarily with the only condition that it
remains bounded away from −∞. Note that in this limit the weight function w(x; a, b, c, d) (after a
suitable renormalization) disappears on L− , so that we are left with the positive part of L, which
can be identified with Z.

2. Large-N limit transition. Let Ḡ∞ denote the set of all configurations on L that are
bounded as subsets of R, and let G∞ ⊂ Ḡ∞ consist of countable bounded configurations. Evidently,

Ḡ∞ = {∅} ∪G1 ∪G2 ∪ · · · ∪G∞.

Given ε > 0, we say that two configurations in Ḡ∞ are ε-close if they coincide outside the interval
(−ε, ε). This makes Ḡ∞ a uniform space and hence a topological space, and in fact a locally compact
topological space.

Theorem 1. Fix a quadruple (α, β, γ, δ) of parameters subject to the constraints stated above.

The measures Mα,β,γ,δ
N , N = 1, 2, . . . , treated as probability measures on Ḡ∞ weakly converge as

N → ∞ to a probability measure Mα,β,γ,δ on G∞ .
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Theorem 2. The limit measure Mα,β,γ,δ is a determinantal measure with correlation kernel
Kα,β,γ,δ expressed through the basic hypergeometric series 2φ1 as

Kα,β,γ,δ(x, y) = const(α, β, γ, δ) · F0(x)F1(y)− F1(x)F0(y)

x− y
, x, y ∈ L,

where, for m = 0, 1,

Fm(x) =

√

|x| (αx; q)∞(βx; q)∞
(γx; q)∞(q/(γx); q)∞(δx; q)∞(q/(δx); q)∞

· x1−m

× (βγ−1qm−1; q)∞(δ−1x−1qm; q)∞
(αβγ−1δ−1q2m−2; q)∞

· 2φ1

(
αδ−1qm−1, β−1x−1q

δ−1x−1qm

∣∣∣∣ βγ
−1qm−1

)
,

and the constant factor also admits a closed expression.

Theorem 1 is derived from Theorems 3 and 4. Theorem 2 is obtained by a direct (but te-
dious) computation using the known explicit formula for the squared norm of the polynomials
Pn(x; a, b, c, d).

3. The boundary and the coherency property. We define the interval I(a, b) between two
points a < b of L as (a, b] if 0 < a < b; [a, b] if a < 0 < b; and [a, b) if a < b < 0. Then we say
that two configurations X = (x1 < · · · < xN+1) ∈ GN+1 and Y = (y1 < · · · < yN) ∈ GN interlace
if yi ∈ I(xi, xi+1) for i = 1, . . . , N .

For every N = 1, 2, . . . , we introduce a matrix ΛN+1
N of format GN+1×GN : its nonzero entries

correspond to interlacing pairs (X,Y ) and are given by

ΛN+1
N (X,Y ) =

N∏

i=1

|yi| ·
N∏

i=1

(1− qi) ·
∏

1�i<j�N(yj − yi)∏
1�i<j�N+1(xj − xi)

.

When both X and Y lie in L+ , this definition essentially reduces to the definition of cotransition
probabilities in Gorin’s paper [4, Sec. 4]. We prove that the matrices ΛN+1

N are stochastic, which
makes it possible to apply Borodin and Olshanski’s version ([2], [3]) of the Vershik–Kerov formalism

and define the (minimal) boundary of the chain {GN ,ΛN+1
N }. The approximation of a boundary

point by a sequence X(N) ∈ GN is understood in the sense of Okounkov and Olshanski [11,
Theorem 6.1].

Theorem 3. The boundary of the chain {GN ,ΛN+1
N } can be identified with G∞ . Under this

identification, a sequence {X(N) ∈ GN} approximates a boundary point X ∈ G∞ if and only if
X(N) → X in the topology of the ambient space Ḡ∞ .

This result generalizes (a part of) Gorin’s Theorem 5.1 in [4], but the proof is different.

Theorem 4. The measures Mα,β,γ,δ
N , N = 1, 2, . . . , form a coherent system in the sense that

they satisfy the coherency relation

Mα,β,γ,δ
N+1 ΛN+1

N = Mα,β,γ,δ
N ,

or, in more detail,
∑

X∈GN+1

Mα,β,γ,δ
N+1 (X)ΛN+1

N (X,Y ) = Mα,β,γ,δ
N (Y ) ∀Y ∈ GN .

According to a general theory, Theorems 3 and 4 imply the existence of a probability measure
Mα,β,γ,δ on the boundary G∞ , and then we use additional arguments to show that Mα,β,γ,δ is the

weak limit of the measures Mα,β,γ,δ
N ; this leads to Theorem 1.

Theorem 4 is a q-analogue of Proposition 7.7 in Olshanski’s paper [12], which establishes the
coherency property for the zw-measures. The present paper stemmed from the desire to find such
an analogue. At first we thought that this can be achieved in the framework of Gorin’s paper [4],
where a q-version of the notion of coherent systems on the levels of the Gelfand–Tsetlin graph was
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suggested. But it turned out that, for our purposes, the formalism of [4] is insufficient and the very
notion of the Gelfand–Tsetlin graph has to be extended.

In a different representation-theoretic context, the polynomials Pn(x; a, b, c, d) earlier appeared
in a series of works by Groenevelt and Koelink (see, e.g., [5]–[7] and the references therein). We
thank Yuri Neretin for bringing our attention to these works; their ideas helped us very much. We
are also grateful to Erik Koelink for valuable comments.
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