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Abstract Computation of exact ellipsoidal bounds on the state trajectories of

discrete-time linear systems that have time-varying or time-invariant linear frac-

tional parameter uncertainties and ellipsoidal uncertainty in the initial state is known

to be NP-hard. This paper proposes three algorithms to compute ellipsoidal bounds

on such a state trajectory set and discusses the tradeoffs between computational

complexity and conservatism of the algorithms. The approach employs linear matrix

inequalities to determine an initial estimate of the ellipsoid that is refined by the

subsequent application of the skewed structured singular value m. Numerical

examples are used to illustrate the application of the proposed algorithms and to

compare the differences between them, where small conservatism for the tightest

bounds is observed.

Keywords Uncertain dynamical systems � Discrete-time systems � Bounding
method � Structured singular value � Linear matrix inequalities

1 Introduction

Identifying the potential ranges for the states in an uncertain dynamical system is

important in many systems engineering problems such as safety analysis (Huang
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et al. 2002), satellite control (Rokityanski and Veres 2005), and attitude estimation

of aerospace and underwater vehicles (Sanyal et al. 2008). Motivated by various

applications, many papers have considered the state outer bounding problem for

time-varying (Durieu et al. 2001; Polyak et al. 2004; El Ghaoui and Calafiore 1999)

and time-invariant perturbations (Horak 1988; Tibken and Hofer 1995; Kishida

et al. 2011), with discussing the greater difficulty for time-invariant perturbations

(Puig et al. 2005). The bounding of the state vector by an ellipsoid has been deeply

discussed in literature for discrete-time linear dynamical systems with unknown-

but-bounded uncertainties (e.g., see Schweppe (1968), Polyak et al. (2004), and

citations therein), including for additive perturbations (Durieu et al. 2001),

combinations of state-space matrix and additive perturbations (Polyak et al.

2004), and linear fractional perturbations (El Ghaoui and Calafiore 1999). The

relative merits of uncertainty descriptions described by ellipsoids or independent

upper and lower bounds on each parameter within the context of this problem have

been discussed (Chernousko 2010).

In this paper, a new approach for computing tight ellipsoidal outer bounds is

presented. The approach applies to time-invariant, time-varying, and mixed parametric

uncertainties,withellipsoidal initial state uncertainties. In contrast to the vastmajorityof

the literature that assumes that the system dynamics depend on the perturbations in a

restrictive way (e.g., affine); this paper (i) treats linear fractional perturbations (as in El

Ghaoui and Calafiore (1999)), which includes other dependencies such as polytopic,

polynomial, and rational as special cases, and (ii) presents algorithms that propagate the

uncertain state for multiple time instances, which can dramatically reduce conservatism

for both time-invariant and time-varying perturbations.

The key idea of the proposed approach is to first employ linear matrix inequalities

(LMIs) (Boyd et al. 1994) to estimate the orientation and ratios of axis lengths of the

ellipsoid, followed by application of the skewed structured singular value m (Smith 1990)

to compute two-sided bounds on the size of the ellipsoid. The first approximation step

can have either constant or exponential computational complexity depending on the

users’ choices, and the second step employs upper and lower bounds with polynomial

computational complexity. Based on this idea, three numerical algorithms that employ

various strategies to reduce the computational cost are proposed.

Section 2 presents the problem statement and some mathematical background.

Section 3 presents a preliminary analysis needed for Section 4 that proposes the

numerical algorithms, which are applied and compared in numerical examples in

Section 5. Section 6 concludes the paper.

The following notations will be used. The maximum singular value (aka the

induced 2-norm) of a matrix N is defined as kNk2 ¼ �rðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmaxðN�NÞ
p

, where N�

denotes the conjugate transpose of the matrix N and kmaxðNÞ denotes the maximum

eigenvalue of the matrix N. The determinant of a matrix N is denoted by jNj.

2 Problem statement and mathematical background

This paper considers the following state trajectory bounding problem.
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Problem 1 Let xk; ck 2 R
n denote the state and nominal state vectors at time

instance k 2 f0; 1; 2; . . .g, p 2 R
m denote a vector of uncertain real parameters, and

T : Rm ! R
n�n be a rational function of its arguments. Given an uncertain value for

the initial states x0,

ðx0 � c0ÞTE0ðx0 � c0Þ� 1; E0 [ 0; ð1Þ

and discrete-time uncertain dynamical system

xkþ1 ¼ TðpÞxk; pmin � p � pmax; k ¼ 0; 1; 2; . . .; ð2Þ

determine an ellipsoidal outer bound on the state vector xk specified by Ek [ 0, and

ck, k ¼ 1; 2; 3; . . ., such that

min log detE�1
k ð3Þ

subject to

Ek [ 0 and ðxk � ckÞTEkðxk � ckÞ� 1;

8xk 2 Sk ¼ fxk satisfying ð1Þ and ð2Þg:

The objective (3) is to determine, for each time instance, the ellipsoid of

minimum volume that outer bounds the state vector.1 This paper proposes to

approach Problem 1 through a combination of LMIs and the skewed structured

singular value, which will write TðpÞ in terms of a linear fractional transformation

(LFT) that represents the uncertain real parameter p as a real structured perturbation

matrix.

Definition 1 (Mixed structured perturbation (Zhou et al. 1995))

A mixed structured perturbation D is a matrix with the specified structure:

D ¼ D : D 2 diag dr1Ik1 ; . . .; d
r
mr
Ikmr ; d

c
1Ikmrþ1

; . . .; dcmc
Ikmrþmc

;
nn

DC
mrþmcþ1; . . .;D

C
mrþmcþmC

oo

;

with real scalars dri , complex scalars dcj , and full complex blocks DC
q 2 C

kq�kq . The

integers mr, mc, mC, and ki define the structure of the perturbation. A real scalar dri
(or complex scalar dci ) is said to be repeated if the integer ki [ 1.

Definition 2 (LFT (Zhou et al. 1995)) For any

N ¼
N11 N12

N21 N22

� �

2 C
ðp1þp2Þ�ðq1þq2Þ; Dp 2 C

q1�p1 ;

such that the inverse ðI � N11DpÞ�1
exists, the mapping

1 Alternative objectives, such as minimizing the trace as in El Ghaoui and Calafiore (1999), can be

addressed by the algorithms in this paper by slightly modifying the first step of the LMI formulation.
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FuðN;DpÞ ¼ N22 þ N21DpðI � N11DpÞ�1
N12;

is an (upper) (LFT).

I � N11Dp is not invertible for some perturbation Dp of interest if and only if the

LFT is ill-posed. The existence of the inverse of I � N11Dp for perturbations Dp

within some set under consideration can be evaluated using the structured singular

value (Zhou et al. 1995). To simplify the presentation, this paper assumes that this

verification is carried out before applying the propsed algorithms.

To express an uncertain parameter vector p 2 R
m defined by box constraints in

terms of an LFT, let

p ¼ pc þWpd�p; kd�pk1 � 1;

pc ¼
1

2
ðpmax þ pminÞ; Wp ¼

1

2
diagfpmax � pming;

ð4Þ

then, the uncertain system (2) can be written as

xkþ1 ¼ Tðpc þWpd�pÞxk ð5Þ

¼ FuðN;DpÞxk ð6Þ

where

N ¼
N11 N12

N21 N22

� �

; Dp ¼ diag fd�p1Ik1 ; . . .; d�pmIkmg : jd�pij � 1; i ¼ 1; . . .;mf g;

where the values of ki, i ¼ 1; . . .;m, depend on the order and structure of the map T .

The transformation from (5) to (6) is always possible for any well-posed rational

function by using block-diagram algebra (Zhou et al. 1995), and by application of

multidimensional realization algorithms (Russell et al. 1997). The LFT for any

particular function is not unique, and LFTs are desired in which the dimension of Dp

is minimal, so as to minimize the computational cost of the proposed algorithms.

Multidimensional model reduction algorithms (e.g., see Russell and Braatz (1998)

and references cited therein) can be applied to an LFT to reduce its dimensions

before applying the proposed algorithms.

The proposed outer bounding algorithms utilize the skewed structured singular

value and scaled main loop theorem, which are given below.

Definition 3 (Skewed structured singular value m (Smith 1990)) Let the set of

matrices with specified structure be represented in boldface font, Dp, and let the unit

ball in the space of the mixed structured perturbation be

BD :¼ fD : D 2 D; �rðDÞ� 1g. The skewed structured singular value m of N with

respect to mixed structured perturbation matrices Dp and DC of appropriate

dimensions is defined by
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mDp;DC
ðNÞ ¼

0;

if 8j\1; 6 9D ¼ diagfDp; jDCg;Di 2 BDi s:t: jI � NDj ¼ 0;

minfj� 0 : 9D ¼ diagfDp; jDCg;
�

Di 2 BDi s:t: jI � NDj ¼ 0gÞ�1;

otherwise:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Upper and lower bounds on the skewed structured singular value m can be

computed in polynomial time, with no more effort than non-skewed structured

singular value calculations (Fan and Tits 1992; Ferreres 1999), by a variety of

methods including power iterations and linear matrix inequalities. The next result

relates the LFT (6) for the uncertain system (2) to the skewed structured singular

value m.

Theorem 1 (Scaled main loop theorem (Smith 1990; Fan and Tits 1992)) For any

well-posed LFT in the uncertain dynamical system xkþ1 ¼ FuðN;DpÞxk,
max

Dp2BDp

kFuðN;DpÞk2 ¼ mDp;DC
ðNÞ;

where DC is the set of full complex perturbation matrices of appropriate dimension.

By defining the matrix N appropriately, this result can also be applied to compute

bounds on the minimum diameter of an ellipsoid that overbounds the state vector

when the ellipsoid’s axis orientations and relative lengths are pre-specified. The

next section gives some preliminary analysis used in the subsequent derivation of

LMI-based algorithms for determining the ellipsoid’s axis orientations and relative

lengths.

3 Preliminary analysis: uncertainty only in the initial state

For a known nonsingular linear system, (2) simplifies to

xkþ1 ¼ Txk; T : nonsingular:

Given a state xk with uncertainty that can take any value within the ellipsoid,

ðxk � ckÞTEkðxk � ckÞ� 1; Ek [ 0;

an outer bounding ellipsoid parameterized by Ekþ1 [ 0 and ckþ1 satisfies

ðxkþ1 � ckþ1ÞTEkþ1ðxkþ1 � ckþ1Þ� 1

for all xkþ1 2 Skþ1. By application of the S-procedure (Boyd and Vandenberghe

2004), the state is outer bounded by this ellipsoid if and only if there exists k� 0

that satisfies the linear matrix inequality
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�Ekþ1 � �ckþ1 0

��cTkþ1 � 1 � �cTkþ1

0 � �ckþ1 � �Ekþ1

2

6

4

3

7

5

� k

Ek � Ekck 0

�cTk E
T
k cTk Ekck � 1 0

0 0 0

2

6

4

3

7

5

� 0; ð7Þ

with variables �Ekþ1 ¼ TTEkþ1T , �ckþ1 ¼ TTEkþ1ckþ1, and k. The matrix Ekþ1 and

vector ckþ1 can be computed from �Ekþ1 and �ckþ1.
2 A solution to this LMI for

invertible T that gives an ellipsoid of minimum volume is (see Section 4.3 of

Schweppe (1973))

Ekþ1 ¼ T�TEkT
�1; ckþ1 ¼ Tck;

which occurs for k ¼ 1. From the Loewner–Behrend Theorem (Berger 1979;

Pronzato and Walter 1994), this minimum-volume ellipsoid is unique.

Repeating the above procedure from the uncertain initial condition implies that

the minimum-volume ellipsoids for all time instances k are given by

Ek ¼ ðT�TÞkE0ðT�1Þk; ck ¼ Tkc0: ð8Þ

These ellipsoidal covers on the states are exact, which can be observed by checking

the map between the boundary of the ellipsoid at time instance k and the boundary

of the ellipsoid of time instance k þ 1.

Remark 1 The above analysis can be generalized to singular T . If T is singular,

then there exists a nonzero x1 2 Sk that maps to the origin, and x1 and all subsequent

xk lie in a lower dimensional space. This lower dimensional space and its covering

ellipsoid are of dimension n� m, where n is the dimension of the matrix T and m is

the number of zero eigenvalues of T .

The next section addresses uncertain state matrices.

4 Proposed algorithms: uncertain systems

To focus on delivering the main concept of the proposed approach, this section

describes the simple case of ck ¼ 0 for all k (i.e., the ellipsoid on the initial

uncertain state is centered at the origin; the analysis is similar for ck 6¼ 0). By letting

c0 ¼ 0 in (7), Ekþ1 specifies an outer bounding ellipsoid for xkþ1 for fixed T if

TTEkþ1T �Ek;

with the Ek specifying the minimum-volume ellipsoid when the inequality is an

equality (8). The proposed algorithms employ this LMI to address uncertainties in

the state matrix. The three algorithms discussed in this section are:

– Algorithm I: one step ahead

This simplest algorithm is based on the bounds on the state at the previous time

instance; given Ek, compute Ekþ1 at each time instance.

2 This derivation is simpler than an equivalent LMI derived elsewhere (El Ghaoui and Calafiore 1999).
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– Algorithm II: compound

This algorithm propagates the state instead of the state bounds as in Algorithm I

between time instances; given initial uncertainty E0, compute Ekþ1 at each time

instance.

– Algorithm III: receding horizon

This algorithm combines the update strategies in Algorithms I and II by introducing

a moving horizon. s: at each time step k of k\s, this algorithm coincides with

Algorithms II and for each time step k of k� s, given Ek�sþ1, compute Ekþ1.

4.1 Algorithm I: one step ahead

Recall that the uncertain system (2) is written as

xkþ1 ¼ FuðN;DpÞxk; Dp 2 BDp; ð9Þ

where xTk Ekxk � 1 and Ek [ 0 are given. The minimum-volume ellipsoid is descri-

bed by

min log detE�1
kþ1 ð10Þ

subject to

Ekþ1 [ 0;

FuðN;DpÞTEkþ1FuðN;DpÞ � Ek � 0;

Dp 2 BDp:

ð11Þ

For general LFTs, it is straightforward to apply the proof technique in (Braatz et al.

1994) to show that this nonconvex optimization is NP-hard. An approximate

solution Y for Ekþ1 can be obtained by replacing (11) by the

– nominal system: FuðN; 0ÞTYFuðN; 0Þ � Ek � 0 (constant computational com-

plexity), or

– average: �FuðN;DpÞTY �FuðN;DpÞ � Ek � 0, where �FðN;DpÞ is an elementwise

averaged matrix over multiple sampled Dp within the uncertainty set BDp

(constant computational complexity), or

– extreme uncertainties: FuðN;Di
pÞ

T
YFuðN;Di

pÞ � Ek � 0, i ¼ 1; . . .; 2m, where m

is the dimension of parameter p and Di
p taken from a set defined by diagonal

matrices with all combinations of �1 and 1 as diagonal elements (exponential

computational complexity).

An improved solution to (10) can be obtained by combining one of the

approximations for (11) with the application of m to determine an optimal scaling

of the ellipsoid. Remember that the approximate solution was used to fix the shape

of the ellipsoid, and does not mean approximate covering of the states. For

specificity, the steps are described for the case when extreme uncertainties are used,

with similar steps for the other cases.
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Step 1: Solve

min log det Y�1
k

subject to

Yk [ 0;

FuðN;Di
pÞ

T
YkFuðN;Di

pÞ � Ek � 0; i ¼ 1; . . .; 2m;

ð12Þ

where each Di
p has �1 as its diagonal elements.

Step 2: Set

Mkþ1;11 ¼ N11; Mkþ1;12 ¼ N12E
�1=2
k ;

Mkþ1;21 ¼ Y
1=2
k N21; Mkþ1;22 ¼ Y

1=2
k N22E

�1=2
k ;

ð13Þ

and compute upper and lower bounds on mDp;DC
ðMkþ1Þ.

Step 3: The ellipsoidal bound on the state

1

m2Dp;DC
ðMkþ1Þ

xTkþ1Ykxkþ1 � 1; or

xTkþ1Ekþ1xkþ1 � 1; Ekþ1 ¼
1

m2Dp;DC
ðMkþ1Þ

Yk;

ð14Þ

is the ellipsoid of minimum volume with rotation and relative magnitude of axes

defined by Yk. Replacing m with its upper bound in (14) results in an ellipsoid that is

guaranteed to cover the state xkþ1 for all perturbations within the uncertainty

description.

4.2 Algorithm II: compound

In this algorithm, the uncertain state equation corresponding to (9) is

xkþ1 ¼ FuðNk;Dp;kÞx0; Dp;k 2 BDp;k; ð15Þ

where xT0E0x0 � 1 and E0 [ 0 are given. Therefore, the algorithm takes the fol-

lowing steps.

Step 1 (use extreme uncertainties): Solve

min log det Y�1
k

subject to

Yk [ 0;
FuðNk;D

i
p;kÞ

T
YkFuðNk;D

i
p;kÞ � E0 � 0; i ¼ 1; . . .; 2m;

ð16Þ

where each Di
p;k has �1 as its diagonal elements.

Step 2: Set

Mkþ1;11 ¼ Nk;11; Mkþ1;12 ¼ Nk;12E
�1=2
0 ;

Mkþ1;21 ¼ Y
1=2
k Nk;21; Mkþ1;22 ¼ Y

1=2
k Nk;22E

�1=2
0 ;

ð17Þ
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and compute upper and lower bounds on mDp;k ;DC
ðMkþ1Þ.

Step 3: The ellipsoidal bound on the state

1

m2Dp;k ;DC
ðMkþ1Þ

xTkþ1Ykxkþ1 � 1; or

xTkþ1Ekþ1xkþ1 � 1; Ekþ1 ¼
1

m2Dp;k ;DC
ðMkþ1Þ

Yk;

ð18Þ

is the ellipsoid of minimum volume with rotation and relative magnitude of axes

defined by Yk. Note that if the size of matrix N of Algorithm I is n, then the size of

the matrix Nk in Algorithm II is bounded by nk for the same problem.

4.3 Algorithm III: receding horizon

In this algorithm, the uncertain state equation corresponds to (9) is

xkþ1 ¼
FuðNk;Dp;kÞx0; Dp;k 2 BDp;k; for k\s;

FuðNs;Dp;sÞxk�sþ1; Dp;s 2 BDp;s; for k� s:

�

ð19Þ

Therefore, the algorithm takes the following steps for k� s (for k\s, the algorithm

is the same as Algorithm II).

Step 1 (use extreme uncertainties): Solve

min log det Y�1
k

subject to

Yk [ 0;
FuðNs;Di

p;sÞ
T
YkFuðNs;Di

p;sÞ � Ek�sþ1 � 0; i ¼ 1; . . .; 2m;

ð20Þ

where each Di
p;s has �1 as its diagonal elements.

Step 2: Set

Mkþ1;11 ¼ Ns;11; Mkþ1;12 ¼ Ns;12E
�1=2
k�sþ1;

Mkþ1;21 ¼ Y
1=2
k Ns;21; Mkþ1;22 ¼ Y

1=2
k Ns;22E

�1=2
k�sþ1;

ð21Þ

and compute upper and lower bounds on mDp;s;DC
ðMkþ1Þ.

Step 3: The ellipsoidal bound on the state

1

m2Dp;s;DC
ðMkþ1Þ

xTkþ1Ykxkþ1 � 1; or

xTkþ1Ekþ1xkþ1 � 1; Ekþ1 ¼
1

m2Dp;s;DC
ðMkþ1Þ

Yk;

ð22Þ

is the ellipsoid of minimum volume with rotation and relative magnitude of axes

defined by Yk. Note that if the size of matrix N of Algorithm I is n, then the size of

the matrix Ns in Algorithm III is bounded by ns for the same problem.
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4.4 Comparison of Algorithms I–III

Figure 1 and Table 1 summarize the properties and dependencies of Algorithms I–

III for computing the bounds on state at one time instance. The maximum

computational cost at each time step of Algorithms I and III is independent of k and

the computation of the bounds on m are polynomial-time in dimfNg, which implies

that Step 2 of Algorithms I and III are polynomial-time. Numerical studies for dense

matrices have observed that a computational cost for the upper and lower bounds on

m is approximately cubic as a function of the row dimension of N (Young et al.

1995); the computational cost for the bounding algorithms when sparse-matrix

algebra is used to exploit the sparseness of N.

Algorithm I applies to time-varying perturbations because it propagates the

ellipsoidal bound on the state at each time instance k (i.e., E0 is used to compute E1,

E1 is used to compute E2, etc.), with approximately constant computational cost per

time instance.

Algorithm II can treat each real parametric uncertainty as being time-invariant or

time-varying and propagates the state instead of the state bounds between time

instances, which requires the use of a new LFT for each time instance. The only

uncertainties at each time instance are in the initial state x0 and the uncertain

parameters. The structure of the Dp;k in the m computations depends on the time

dependency of each uncertain parameter. At each time instance k, with the given initial

uncertainty E0, Ek is computed. For the special case of all parameters being time-

invariant, the matrix N and structure of the Dp are constructed from FuðN;DpÞk.
Analytical expressions for these LFTs are available (Zhou et al. 1995).

Algorithm III combines the update strategies in Algorithms I and II, so as to be more

computationally efficient than Algorithm II, but with the introduction of potential

conservatism.Algorithm III employs amoving horizon s: at each time instance k\s, this

algorithm coincides with Algorithm II. As each time instance k� s, Ekþ1 is computed

from Ek�sþ1 by using FuðNs;Dp;sÞ ¼ FuðN;DpÞs for time-invariant parameters.

Algorithms II and III can be extended to mixed time-varying and time-invariant

parameter uncertainties by specifying appropriate structures for the Dp. For

example, consider a scalar state equation xkþ1 ¼ ðdpþ dqÞxk being dp time-

invariant and dq time-varying whose absolute values are bounded by 1, then the

state at time 2 can be expressed as

x2 ¼ FuðN;DpÞx0

where N ¼

0 1 0 1

0 0 0 0

0 1 0 1

0 0 0 0

2

6

6

6

4

3

7

7

7

5

0

1

0

1

2

6

6

6

4

3

7

7

7

5

1 0 1 0½ 	 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; Dp ¼ diag dpI2; dqð0Þ; dqð1Þf g

where dqðkÞ indicates the value of the uncertain parameter at time k. Regardless of

the fact that dp and dq appears in the same way in the state equation, they appear

differently in Dp due to having different time dependencies.
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4.5 Remarks on the perturbation and complex ellipsoid

All of the steps also apply to complex structured perturbation matrices, in which the

ellipsoid is defined over a complex space and the states can be complex. Such a

system could arise when applying Fourier transforms to PDEs.

5 Numerical examples

This section gives two examples to illustrate the effectiveness of the three proposed

algorithms as well as to compare their differences. The first simple example also

details the usage of the proposed algorithms. In each example, uncertain parameters

are bounded by known upper and lower bounds. The maximum and minimum

bounds on m were computed by using YALMIP (Löfberg 2004) and the Skew Mu

Toolbox (SMT) (Ferreres and Biannic 2009).

In all figures, unless otherwise stated, the curves are the boundaries of the

ellipsoids, Alg. I is red (m lower bound) and orange (m upper), Alg. II is purple (m
lower) and magenta (m upper), Alg. III is green (m lower) and blue (m upper).

5.1 Coordinate transformation

The first numerical example uses the state-space equation:

x1;kþ1

x2;kþ1

� �

¼ a
1 p

�p 1

� �

x1;k

x2;k

� �

; ð23Þ

where x1;k and x2;k are the states at time instance k, p is a parameter, and a is a

scaling constant. Equation (23) describes state vectors that rotate in 2 dimensions if

a ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
p

is used.

This simple example is a discrete-time variation of a continuous-time problem

used to evaluate the accuracy of state-bounding algorithms in handling rotations in

the state vector (Moore 1996). The example of a coordinate transformation that

rotates and scales the state vector is a useful model problem because the application

of many state-bounding algorithms, including those based on interval analysis, to

such systems can produce conservatism approaching 1 as k ! 1 (Moore 1996).

The associated LFTs for each algorithms are summarized below.

x1;kþ1

x2;kþ1

� �

¼ FuðN;DpÞ
x1;k

x2;k

� �

; ðAlg: IÞ

¼ FuðNk;Dp;kÞ
x1;0

x2;0

� �

; ðAlg: IIÞ

¼ FuðNs;Dp;sÞ
x1;s�kþ1

x2;s�kþ1

� �

; ðAlg: IIIÞ

ð24Þ

where
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N ¼

0 0

0 0

� �

1 0

0 1

� �

a
0 wp

�wp 0

� �

a
1 pc

�pc 1

� �

2

6

6

6

4

3

7

7

7

5

; Dp 2 fd�pI2 : �1� d�p� 1g; ð25Þ

and Nk, Ns, Dp;k, and Dp;s are given by the expressions for multiplication of LFTs

(Zhou et al. 1995). The time dependency of the parameters appears in the structures

of Dp;k and Dp;s.

For the uncertain parameter p 2 ½0:9; 1:1	 and a ¼ 1=
ffiffiffi

2
p

, the ellipsoidal state

outer bounds obtained by Algorithms I–III are indistinguishable each other (Fig.

2a) and very tight (Fig. 2b). On the other hand, for p 2 ½�0:3; 0:3	 and a ¼ 1, the

outer bounding ellipsoids produced by Algorithms I–III are different; with

Algorithm II with time-invariant p having the smallest conservatism and Algorithm

I with time-varying p having the largest, as expected from the theoretical

derivations in Section 4 (see Fig. 3). None of the three algorithms have the large

conservatism as obtained by interval analysis (Moore 1996). Depending on the

system, Algorithm I, which treats the parameter as being time-varying, ranged

from producing the same tight outer ellipsoids as Algorithms II–III to producing

larger ellipsoids (compare Figs. 2 and 3).

Fig. 1 The propagation of
information in Algorithms I–III

Table 1 Comparison of algorithms�

At the kth step I II III

Computational cost ratio of Step 2 1 k minfk; sg
Bounds Possibly loose Tight Moderate

Dependency xk�1 x0 xk�1�s to xk�1

� Same for both time-invariant and time-varying
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5.2 Consensus in a network

Consider a three-state network with uncertain parameters p and q, as shown in Fig.

4. The state-space equation can be written as
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Fig. 2 Outer ellipsoids with an uncertain parameter p 2 ½0:9; 1:1	 and a ¼ 1=
ffiffiffi

2
p

. The ellipsoidal
uncertain initial state is centered at ð0; 0Þ with E0 ¼ ½2 0; 0 1	, and the horizon s ¼ 3 for Algorithm III.
For the initial estimates, extreme uncertainties are used in the LMI optimization
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Fig. 3 Outer ellipsoids with time-invariant p 2 ½�0:3; 0:3	 and a ¼ 1. The ellipsoidal uncertain initial
state is centered at ð0; 0Þ with E0 ¼ ½2 0; 0 1	, and the horizon s ¼ 3 for Algorithm III. For the initial
estimates, extreme uncertainties are used in the LMI optimization
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x1;kþ1

x2;kþ1

x3;kþ1

2

6

4

3

7

5

¼
1� p p 0

0 1� q q

0:5p=ðqþ 1Þ 0:5p=ðqþ 1Þ 1� p=ðqþ 1Þ

2

6

4

3

7

5

x1;k

x2;k

x3;k

2

6

4

3

7

5

;

where x1;k, x2;k, and x3;k are the states 1, 2, and 3 at time k, respectively. The state-

transition matrix is rational with respect to the parameters, and can be written by an

LFT similarly as in Example 5.1.

For 0\p\1 and 0\q\1, the network is strongly connected and the state can

achieve a consensus (Fig. 5). Each of Algorithms I–III gives a sequence of ellipsoids

converging to a line in three-dimensional space, as shown Fig. 6, that indicates that

consensus is achieved.

1

2

p 

0.5p/(q+1)

0.5p/(q+1)

q 

1-p/(q+1)1-q 

1-p 

3

Fig. 4 A network with three
states. The numbers on the links
indicate the transition
probabilities
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Fig. 5 Trajectories with time-invariant parameters p and q with an arbitrary initial condition. Solid lines
are with nominal parameter values and dotted lines are with arbitrary parameters in the given uncertainty
set 0:8� p� 0:9 and 0:6� q� 0:8. States x1;k , x2;k and x3;k are plotted with red, orange, and blue,

respectively. (Color figure online)

708 M. Kishida, R. D. Braatz

123



F
ig
.
6

T
im

e
ev
o
lu
ti
o
n
o
f
th
e
b
o
u
n
d
s
co
m
p
u
te
d
b
y
th
e
th
re
e
al
g
o
ri
th
m
s.
T
h
e
m
u
p
p
er

b
o
u
n
d
s
ar
e
p
lo
tt
ed
.
T
h
e
el
li
p
so
id
al

u
n
ce
rt
ai
n
in
it
ia
l
st
at
e
is
ce
n
te
re
d
at
ð0
;0
;0
Þw

it
h

E
0
¼

½1
0
0
;0

1
0
;
0
0
1
	,

th
e
u
n
ce
rt
ai
n

p
ar
am

et
er
s
p
2
½0
:8
;
0
:9
	
an
d

q
2
½0
:6
;
0
:8
	,

an
d
th
e
h
o
ri
zo
n

s
¼

3
fo
r
A
lg
o
ri
th
m

II
I.

F
o
r
th
e
in
it
ia
l
es
ti
m
at
e,

ex
tr
em

e
u
n
ce
rt
ai
n
ti
es

ar
e
u
se
d
in

th
e
L
M
I
o
p
ti
m
iz
at
io
n

Ellipsoidal bounds on state trajectories 709

123



6 Conclusions

Algorithms are presented for computing ellipsoidal bounds on the state trajectories

of discrete-time linear systems with ellipsoidal uncertainty on the initial state and

time-varying or time-invariant real parametric uncertainties. Upper and lower

bounds on the minimum size of the ellipsoid were determined by using the skewed

structured singular value m, with rotation and ratios of the axis lengths determined

by solving quasi-convex LMI-based optimizations. The algorithms apply to systems

with linear fractional dependence on the model parameters, which includes the

polynomial and rational dependencies that commonly occur in applications.

Algorithm I has the lowest computational cost, but can be conservative if applied

to a system with time-invariant uncertainties, or if the actual reachable sets of states

are not ellipsoids. Algorithm II produced tight bounds for polynomial systems with

either time-varying or time-invariant parameter uncertainties but is computationally

expensive. Algorithm III employs a moving horizon to reduce the computational

cost of Algorithm II, while increasing conservatism. The moving horizon can be

specified in Algorithm III to trade off computational cost with tightness of the

bounds, and this algorithm is the most practical for computing outer ellipsoids for

large k for systems with time-invariant uncertainties.
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